]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slob.c
mm: SLOB fix reclaim_state
[net-next-2.6.git] / mm / slob.c
CommitLineData
10cef602
MM
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6193a2ff
PM
6 * NUMA support by Paul Mundt, 2007.
7 *
10cef602
MM
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
55394849
NP
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 14 *
20cecbae
MM
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
10cef602
MM
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 30 * alloc_pages() directly, allocating compound pages so the page order
d87a133f
NP
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
10cef602
MM
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 41 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 42 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
6193a2ff
PM
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
10cef602
MM
58 */
59
95b35127 60#include <linux/kernel.h>
10cef602
MM
61#include <linux/slab.h>
62#include <linux/mm.h>
1f0532eb 63#include <linux/swap.h> /* struct reclaim_state */
10cef602
MM
64#include <linux/cache.h>
65#include <linux/init.h>
66#include <linux/module.h>
afc0cedb 67#include <linux/rcupdate.h>
95b35127 68#include <linux/list.h>
36994e58 69#include <trace/kmemtrace.h>
95b35127
NP
70#include <asm/atomic.h>
71
95b35127
NP
72/*
73 * slob_block has a field 'units', which indicates size of block if +ve,
74 * or offset of next block if -ve (in SLOB_UNITs).
75 *
76 * Free blocks of size 1 unit simply contain the offset of the next block.
77 * Those with larger size contain their size in the first SLOB_UNIT of
78 * memory, and the offset of the next free block in the second SLOB_UNIT.
79 */
55394849 80#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
81typedef s16 slobidx_t;
82#else
83typedef s32 slobidx_t;
84#endif
85
10cef602 86struct slob_block {
95b35127 87 slobidx_t units;
55394849 88};
10cef602
MM
89typedef struct slob_block slob_t;
90
95b35127
NP
91/*
92 * We use struct page fields to manage some slob allocation aspects,
93 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
94 * just define our own struct page type variant here.
95 */
96struct slob_page {
97 union {
98 struct {
99 unsigned long flags; /* mandatory */
100 atomic_t _count; /* mandatory */
101 slobidx_t units; /* free units left in page */
102 unsigned long pad[2];
103 slob_t *free; /* first free slob_t in page */
104 struct list_head list; /* linked list of free pages */
105 };
106 struct page page;
107 };
108};
109static inline void struct_slob_page_wrong_size(void)
110{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
111
112/*
113 * free_slob_page: call before a slob_page is returned to the page allocator.
114 */
115static inline void free_slob_page(struct slob_page *sp)
116{
117 reset_page_mapcount(&sp->page);
118 sp->page.mapping = NULL;
119}
120
121/*
20cecbae 122 * All partially free slob pages go on these lists.
95b35127 123 */
20cecbae
MM
124#define SLOB_BREAK1 256
125#define SLOB_BREAK2 1024
126static LIST_HEAD(free_slob_small);
127static LIST_HEAD(free_slob_medium);
128static LIST_HEAD(free_slob_large);
95b35127
NP
129
130/*
6e9ed0cc 131 * is_slob_page: True for all slob pages (false for bigblock pages)
95b35127 132 */
6e9ed0cc 133static inline int is_slob_page(struct slob_page *sp)
95b35127 134{
9023cb7e 135 return PageSlobPage((struct page *)sp);
95b35127
NP
136}
137
138static inline void set_slob_page(struct slob_page *sp)
139{
9023cb7e 140 __SetPageSlobPage((struct page *)sp);
95b35127
NP
141}
142
143static inline void clear_slob_page(struct slob_page *sp)
144{
9023cb7e 145 __ClearPageSlobPage((struct page *)sp);
95b35127
NP
146}
147
6e9ed0cc
AW
148static inline struct slob_page *slob_page(const void *addr)
149{
150 return (struct slob_page *)virt_to_page(addr);
151}
152
95b35127
NP
153/*
154 * slob_page_free: true for pages on free_slob_pages list.
155 */
156static inline int slob_page_free(struct slob_page *sp)
157{
9023cb7e 158 return PageSlobFree((struct page *)sp);
95b35127
NP
159}
160
20cecbae 161static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
95b35127 162{
20cecbae 163 list_add(&sp->list, list);
9023cb7e 164 __SetPageSlobFree((struct page *)sp);
95b35127
NP
165}
166
167static inline void clear_slob_page_free(struct slob_page *sp)
168{
169 list_del(&sp->list);
9023cb7e 170 __ClearPageSlobFree((struct page *)sp);
95b35127
NP
171}
172
10cef602
MM
173#define SLOB_UNIT sizeof(slob_t)
174#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
175#define SLOB_ALIGN L1_CACHE_BYTES
176
afc0cedb
NP
177/*
178 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
179 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
180 * the block using call_rcu.
181 */
182struct slob_rcu {
183 struct rcu_head head;
184 int size;
185};
186
95b35127
NP
187/*
188 * slob_lock protects all slob allocator structures.
189 */
10cef602 190static DEFINE_SPINLOCK(slob_lock);
10cef602 191
95b35127
NP
192/*
193 * Encode the given size and next info into a free slob block s.
194 */
195static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
196{
197 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
198 slobidx_t offset = next - base;
bcb4ddb4 199
95b35127
NP
200 if (size > 1) {
201 s[0].units = size;
202 s[1].units = offset;
203 } else
204 s[0].units = -offset;
205}
10cef602 206
95b35127
NP
207/*
208 * Return the size of a slob block.
209 */
210static slobidx_t slob_units(slob_t *s)
211{
212 if (s->units > 0)
213 return s->units;
214 return 1;
215}
216
217/*
218 * Return the next free slob block pointer after this one.
219 */
220static slob_t *slob_next(slob_t *s)
221{
222 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
223 slobidx_t next;
224
225 if (s[0].units < 0)
226 next = -s[0].units;
227 else
228 next = s[1].units;
229 return base+next;
230}
231
232/*
233 * Returns true if s is the last free block in its page.
234 */
235static int slob_last(slob_t *s)
236{
237 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
238}
239
6e9ed0cc 240static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff
PM
241{
242 void *page;
243
244#ifdef CONFIG_NUMA
245 if (node != -1)
246 page = alloc_pages_node(node, gfp, order);
247 else
248#endif
249 page = alloc_pages(gfp, order);
250
251 if (!page)
252 return NULL;
253
254 return page_address(page);
255}
256
6e9ed0cc
AW
257static void slob_free_pages(void *b, int order)
258{
1f0532eb
NP
259 if (current->reclaim_state)
260 current->reclaim_state->reclaimed_slab += 1 << order;
6e9ed0cc
AW
261 free_pages((unsigned long)b, order);
262}
263
95b35127
NP
264/*
265 * Allocate a slob block within a given slob_page sp.
266 */
267static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
10cef602 268{
6e9ed0cc 269 slob_t *prev, *cur, *aligned = NULL;
10cef602 270 int delta = 0, units = SLOB_UNITS(size);
10cef602 271
95b35127
NP
272 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
273 slobidx_t avail = slob_units(cur);
274
10cef602
MM
275 if (align) {
276 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
277 delta = aligned - cur;
278 }
95b35127
NP
279 if (avail >= units + delta) { /* room enough? */
280 slob_t *next;
281
10cef602 282 if (delta) { /* need to fragment head to align? */
95b35127
NP
283 next = slob_next(cur);
284 set_slob(aligned, avail - delta, next);
285 set_slob(cur, delta, aligned);
10cef602
MM
286 prev = cur;
287 cur = aligned;
95b35127 288 avail = slob_units(cur);
10cef602
MM
289 }
290
95b35127
NP
291 next = slob_next(cur);
292 if (avail == units) { /* exact fit? unlink. */
293 if (prev)
294 set_slob(prev, slob_units(prev), next);
295 else
296 sp->free = next;
297 } else { /* fragment */
298 if (prev)
299 set_slob(prev, slob_units(prev), cur + units);
300 else
301 sp->free = cur + units;
302 set_slob(cur + units, avail - units, next);
10cef602
MM
303 }
304
95b35127
NP
305 sp->units -= units;
306 if (!sp->units)
307 clear_slob_page_free(sp);
10cef602
MM
308 return cur;
309 }
95b35127
NP
310 if (slob_last(cur))
311 return NULL;
312 }
313}
10cef602 314
95b35127
NP
315/*
316 * slob_alloc: entry point into the slob allocator.
317 */
6193a2ff 318static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127
NP
319{
320 struct slob_page *sp;
d6269543 321 struct list_head *prev;
20cecbae 322 struct list_head *slob_list;
95b35127
NP
323 slob_t *b = NULL;
324 unsigned long flags;
10cef602 325
20cecbae
MM
326 if (size < SLOB_BREAK1)
327 slob_list = &free_slob_small;
328 else if (size < SLOB_BREAK2)
329 slob_list = &free_slob_medium;
330 else
331 slob_list = &free_slob_large;
332
95b35127
NP
333 spin_lock_irqsave(&slob_lock, flags);
334 /* Iterate through each partially free page, try to find room */
20cecbae 335 list_for_each_entry(sp, slob_list, list) {
6193a2ff
PM
336#ifdef CONFIG_NUMA
337 /*
338 * If there's a node specification, search for a partial
339 * page with a matching node id in the freelist.
340 */
341 if (node != -1 && page_to_nid(&sp->page) != node)
342 continue;
343#endif
d6269543
MM
344 /* Enough room on this page? */
345 if (sp->units < SLOB_UNITS(size))
346 continue;
6193a2ff 347
d6269543
MM
348 /* Attempt to alloc */
349 prev = sp->list.prev;
350 b = slob_page_alloc(sp, size, align);
351 if (!b)
352 continue;
353
354 /* Improve fragment distribution and reduce our average
355 * search time by starting our next search here. (see
356 * Knuth vol 1, sec 2.5, pg 449) */
20cecbae
MM
357 if (prev != slob_list->prev &&
358 slob_list->next != prev->next)
359 list_move_tail(slob_list, prev->next);
d6269543 360 break;
10cef602 361 }
95b35127
NP
362 spin_unlock_irqrestore(&slob_lock, flags);
363
364 /* Not enough space: must allocate a new page */
365 if (!b) {
6e9ed0cc 366 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 367 if (!b)
6e9ed0cc
AW
368 return NULL;
369 sp = slob_page(b);
95b35127
NP
370 set_slob_page(sp);
371
372 spin_lock_irqsave(&slob_lock, flags);
373 sp->units = SLOB_UNITS(PAGE_SIZE);
374 sp->free = b;
375 INIT_LIST_HEAD(&sp->list);
376 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 377 set_slob_page_free(sp, slob_list);
95b35127
NP
378 b = slob_page_alloc(sp, size, align);
379 BUG_ON(!b);
380 spin_unlock_irqrestore(&slob_lock, flags);
381 }
d07dbea4
CL
382 if (unlikely((gfp & __GFP_ZERO) && b))
383 memset(b, 0, size);
95b35127 384 return b;
10cef602
MM
385}
386
95b35127
NP
387/*
388 * slob_free: entry point into the slob allocator.
389 */
10cef602
MM
390static void slob_free(void *block, int size)
391{
95b35127
NP
392 struct slob_page *sp;
393 slob_t *prev, *next, *b = (slob_t *)block;
394 slobidx_t units;
10cef602
MM
395 unsigned long flags;
396
2408c550 397 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 398 return;
95b35127 399 BUG_ON(!size);
10cef602 400
6e9ed0cc 401 sp = slob_page(block);
95b35127 402 units = SLOB_UNITS(size);
10cef602 403
10cef602 404 spin_lock_irqsave(&slob_lock, flags);
10cef602 405
95b35127
NP
406 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
407 /* Go directly to page allocator. Do not pass slob allocator */
408 if (slob_page_free(sp))
409 clear_slob_page_free(sp);
6fb8f424 410 spin_unlock_irqrestore(&slob_lock, flags);
95b35127
NP
411 clear_slob_page(sp);
412 free_slob_page(sp);
1f0532eb 413 slob_free_pages(b, 0);
6fb8f424 414 return;
95b35127 415 }
10cef602 416
95b35127
NP
417 if (!slob_page_free(sp)) {
418 /* This slob page is about to become partially free. Easy! */
419 sp->units = units;
420 sp->free = b;
421 set_slob(b, units,
422 (void *)((unsigned long)(b +
423 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
20cecbae 424 set_slob_page_free(sp, &free_slob_small);
95b35127
NP
425 goto out;
426 }
427
428 /*
429 * Otherwise the page is already partially free, so find reinsertion
430 * point.
431 */
432 sp->units += units;
10cef602 433
95b35127 434 if (b < sp->free) {
679299b3
MM
435 if (b + units == sp->free) {
436 units += slob_units(sp->free);
437 sp->free = slob_next(sp->free);
438 }
95b35127
NP
439 set_slob(b, units, sp->free);
440 sp->free = b;
441 } else {
442 prev = sp->free;
443 next = slob_next(prev);
444 while (b > next) {
445 prev = next;
446 next = slob_next(prev);
447 }
10cef602 448
95b35127
NP
449 if (!slob_last(prev) && b + units == next) {
450 units += slob_units(next);
451 set_slob(b, units, slob_next(next));
452 } else
453 set_slob(b, units, next);
454
455 if (prev + slob_units(prev) == b) {
456 units = slob_units(b) + slob_units(prev);
457 set_slob(prev, units, slob_next(b));
458 } else
459 set_slob(prev, slob_units(prev), b);
460 }
461out:
10cef602
MM
462 spin_unlock_irqrestore(&slob_lock, flags);
463}
464
95b35127
NP
465/*
466 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
467 */
468
55394849
NP
469#ifndef ARCH_KMALLOC_MINALIGN
470#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
471#endif
472
473#ifndef ARCH_SLAB_MINALIGN
474#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
475#endif
476
6193a2ff 477void *__kmalloc_node(size_t size, gfp_t gfp, int node)
10cef602 478{
6cb8f913 479 unsigned int *m;
55394849 480 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
3eae2cb2 481 void *ret;
55394849 482
19cefdff 483 lockdep_trace_alloc(gfp);
cf40bd16 484
55394849 485 if (size < PAGE_SIZE - align) {
6cb8f913
CL
486 if (!size)
487 return ZERO_SIZE_PTR;
488
6193a2ff 489 m = slob_alloc(size + align, gfp, align, node);
3eae2cb2 490
239f49c0
MK
491 if (!m)
492 return NULL;
493 *m = size;
3eae2cb2
EGM
494 ret = (void *)m + align;
495
ca2b84cb
EGM
496 trace_kmalloc_node(_RET_IP_, ret,
497 size, size + align, gfp, node);
d87a133f 498 } else {
3eae2cb2 499 unsigned int order = get_order(size);
d87a133f 500
6e9ed0cc 501 ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
d87a133f
NP
502 if (ret) {
503 struct page *page;
504 page = virt_to_page(ret);
505 page->private = size;
506 }
3eae2cb2 507
ca2b84cb
EGM
508 trace_kmalloc_node(_RET_IP_, ret,
509 size, PAGE_SIZE << order, gfp, node);
10cef602 510 }
3eae2cb2
EGM
511
512 return ret;
10cef602 513}
6193a2ff 514EXPORT_SYMBOL(__kmalloc_node);
10cef602
MM
515
516void kfree(const void *block)
517{
95b35127 518 struct slob_page *sp;
10cef602 519
2121db74
PE
520 trace_kfree(_RET_IP_, block);
521
2408c550 522 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602
MM
523 return;
524
6e9ed0cc
AW
525 sp = slob_page(block);
526 if (is_slob_page(sp)) {
55394849
NP
527 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
528 unsigned int *m = (unsigned int *)(block - align);
529 slob_free(m, *m + align);
d87a133f
NP
530 } else
531 put_page(&sp->page);
10cef602 532}
10cef602
MM
533EXPORT_SYMBOL(kfree);
534
d87a133f 535/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
fd76bab2 536size_t ksize(const void *block)
10cef602 537{
95b35127 538 struct slob_page *sp;
10cef602 539
ef8b4520
CL
540 BUG_ON(!block);
541 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
542 return 0;
543
6e9ed0cc
AW
544 sp = slob_page(block);
545 if (is_slob_page(sp)) {
70096a56
MM
546 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
547 unsigned int *m = (unsigned int *)(block - align);
548 return SLOB_UNITS(*m) * SLOB_UNIT;
549 } else
d87a133f 550 return sp->page.private;
10cef602 551}
b1aabecd 552EXPORT_SYMBOL(ksize);
10cef602
MM
553
554struct kmem_cache {
555 unsigned int size, align;
afc0cedb 556 unsigned long flags;
10cef602 557 const char *name;
51cc5068 558 void (*ctor)(void *);
10cef602
MM
559};
560
561struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 562 size_t align, unsigned long flags, void (*ctor)(void *))
10cef602
MM
563{
564 struct kmem_cache *c;
565
0701a9e6 566 c = slob_alloc(sizeof(struct kmem_cache),
5e18e2b8 567 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
10cef602
MM
568
569 if (c) {
570 c->name = name;
571 c->size = size;
afc0cedb 572 if (flags & SLAB_DESTROY_BY_RCU) {
afc0cedb
NP
573 /* leave room for rcu footer at the end of object */
574 c->size += sizeof(struct slob_rcu);
575 }
576 c->flags = flags;
10cef602 577 c->ctor = ctor;
10cef602 578 /* ignore alignment unless it's forced */
5af60839 579 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
55394849
NP
580 if (c->align < ARCH_SLAB_MINALIGN)
581 c->align = ARCH_SLAB_MINALIGN;
10cef602
MM
582 if (c->align < align)
583 c->align = align;
bc0055ae
AM
584 } else if (flags & SLAB_PANIC)
585 panic("Cannot create slab cache %s\n", name);
10cef602
MM
586
587 return c;
588}
589EXPORT_SYMBOL(kmem_cache_create);
590
133d205a 591void kmem_cache_destroy(struct kmem_cache *c)
10cef602
MM
592{
593 slob_free(c, sizeof(struct kmem_cache));
10cef602
MM
594}
595EXPORT_SYMBOL(kmem_cache_destroy);
596
6193a2ff 597void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
598{
599 void *b;
600
3eae2cb2 601 if (c->size < PAGE_SIZE) {
6193a2ff 602 b = slob_alloc(c->size, flags, c->align, node);
ca2b84cb
EGM
603 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
604 SLOB_UNITS(c->size) * SLOB_UNIT,
605 flags, node);
3eae2cb2 606 } else {
6e9ed0cc 607 b = slob_new_pages(flags, get_order(c->size), node);
ca2b84cb
EGM
608 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
609 PAGE_SIZE << get_order(c->size),
610 flags, node);
3eae2cb2 611 }
10cef602
MM
612
613 if (c->ctor)
51cc5068 614 c->ctor(b);
10cef602
MM
615
616 return b;
617}
6193a2ff 618EXPORT_SYMBOL(kmem_cache_alloc_node);
10cef602 619
afc0cedb 620static void __kmem_cache_free(void *b, int size)
10cef602 621{
afc0cedb
NP
622 if (size < PAGE_SIZE)
623 slob_free(b, size);
10cef602 624 else
6e9ed0cc 625 slob_free_pages(b, get_order(size));
afc0cedb
NP
626}
627
628static void kmem_rcu_free(struct rcu_head *head)
629{
630 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
631 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
632
633 __kmem_cache_free(b, slob_rcu->size);
634}
635
636void kmem_cache_free(struct kmem_cache *c, void *b)
637{
638 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
639 struct slob_rcu *slob_rcu;
640 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
641 INIT_RCU_HEAD(&slob_rcu->head);
642 slob_rcu->size = c->size;
643 call_rcu(&slob_rcu->head, kmem_rcu_free);
644 } else {
afc0cedb
NP
645 __kmem_cache_free(b, c->size);
646 }
3eae2cb2 647
ca2b84cb 648 trace_kmem_cache_free(_RET_IP_, b);
10cef602
MM
649}
650EXPORT_SYMBOL(kmem_cache_free);
651
652unsigned int kmem_cache_size(struct kmem_cache *c)
653{
654 return c->size;
655}
656EXPORT_SYMBOL(kmem_cache_size);
657
658const char *kmem_cache_name(struct kmem_cache *c)
659{
660 return c->name;
661}
662EXPORT_SYMBOL(kmem_cache_name);
663
2e892f43
CL
664int kmem_cache_shrink(struct kmem_cache *d)
665{
666 return 0;
667}
668EXPORT_SYMBOL(kmem_cache_shrink);
669
55935a34 670int kmem_ptr_validate(struct kmem_cache *a, const void *b)
2e892f43
CL
671{
672 return 0;
673}
674
84a01c2f
PM
675static unsigned int slob_ready __read_mostly;
676
677int slab_is_available(void)
678{
679 return slob_ready;
680}
681
bcb4ddb4
DG
682void __init kmem_cache_init(void)
683{
84a01c2f 684 slob_ready = 1;
10cef602 685}