]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
mempolicy: restructure rebinding-mempolicy functions
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
02af61bb 105#include <linux/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
1da177e4 119
1da177e4
LT
120#include <asm/cacheflush.h>
121#include <asm/tlbflush.h>
122#include <asm/page.h>
123
124/*
50953fe9 125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
126 * 0 for faster, smaller code (especially in the critical paths).
127 *
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
130 *
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 */
133
134#ifdef CONFIG_DEBUG_SLAB
135#define DEBUG 1
136#define STATS 1
137#define FORCED_DEBUG 1
138#else
139#define DEBUG 0
140#define STATS 0
141#define FORCED_DEBUG 0
142#endif
143
1da177e4
LT
144/* Shouldn't this be in a header file somewhere? */
145#define BYTES_PER_WORD sizeof(void *)
87a927c7 146#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 147
1da177e4
LT
148#ifndef ARCH_KMALLOC_FLAGS
149#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150#endif
151
152/* Legal flag mask for kmem_cache_create(). */
153#if DEBUG
50953fe9 154# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 156 SLAB_CACHE_DMA | \
5af60839 157 SLAB_STORE_USER | \
1da177e4 158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 161#else
ac2b898c 162# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 163 SLAB_CACHE_DMA | \
1da177e4 164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
167#endif
168
169/*
170 * kmem_bufctl_t:
171 *
172 * Bufctl's are used for linking objs within a slab
173 * linked offsets.
174 *
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
186 */
187
fa5b08d5 188typedef unsigned int kmem_bufctl_t;
1da177e4
LT
189#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
191#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 193
1da177e4
LT
194/*
195 * struct slab
196 *
197 * Manages the objs in a slab. Placed either at the beginning of mem allocated
198 * for a slab, or allocated from an general cache.
199 * Slabs are chained into three list: fully used, partial, fully free slabs.
200 */
201struct slab {
b28a02de
PE
202 struct list_head list;
203 unsigned long colouroff;
204 void *s_mem; /* including colour offset */
205 unsigned int inuse; /* num of objs active in slab */
206 kmem_bufctl_t free;
207 unsigned short nodeid;
1da177e4
LT
208};
209
210/*
211 * struct slab_rcu
212 *
213 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
214 * arrange for kmem_freepages to be called via RCU. This is useful if
215 * we need to approach a kernel structure obliquely, from its address
216 * obtained without the usual locking. We can lock the structure to
217 * stabilize it and check it's still at the given address, only if we
218 * can be sure that the memory has not been meanwhile reused for some
219 * other kind of object (which our subsystem's lock might corrupt).
220 *
221 * rcu_read_lock before reading the address, then rcu_read_unlock after
222 * taking the spinlock within the structure expected at that address.
223 *
224 * We assume struct slab_rcu can overlay struct slab when destroying.
225 */
226struct slab_rcu {
b28a02de 227 struct rcu_head head;
343e0d7a 228 struct kmem_cache *cachep;
b28a02de 229 void *addr;
1da177e4
LT
230};
231
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
a737b3e2 254 */
1da177e4
LT
255};
256
a737b3e2
AM
257/*
258 * bootstrap: The caches do not work without cpuarrays anymore, but the
259 * cpuarrays are allocated from the generic caches...
1da177e4
LT
260 */
261#define BOOT_CPUCACHE_ENTRIES 1
262struct arraycache_init {
263 struct array_cache cache;
b28a02de 264 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
265};
266
267/*
e498be7d 268 * The slab lists for all objects.
1da177e4
LT
269 */
270struct kmem_list3 {
b28a02de
PE
271 struct list_head slabs_partial; /* partial list first, better asm code */
272 struct list_head slabs_full;
273 struct list_head slabs_free;
274 unsigned long free_objects;
b28a02de 275 unsigned int free_limit;
2e1217cf 276 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
277 spinlock_t list_lock;
278 struct array_cache *shared; /* shared per node */
279 struct array_cache **alien; /* on other nodes */
35386e3b
CL
280 unsigned long next_reap; /* updated without locking */
281 int free_touched; /* updated without locking */
1da177e4
LT
282};
283
e498be7d
CL
284/*
285 * Need this for bootstrapping a per node allocator.
286 */
556a169d 287#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
288struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
289#define CACHE_CACHE 0
556a169d
PE
290#define SIZE_AC MAX_NUMNODES
291#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 292
ed11d9eb
CL
293static int drain_freelist(struct kmem_cache *cache,
294 struct kmem_list3 *l3, int tofree);
295static void free_block(struct kmem_cache *cachep, void **objpp, int len,
296 int node);
83b519e8 297static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 298static void cache_reap(struct work_struct *unused);
ed11d9eb 299
e498be7d 300/*
a737b3e2
AM
301 * This function must be completely optimized away if a constant is passed to
302 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 303 */
7243cc05 304static __always_inline int index_of(const size_t size)
e498be7d 305{
5ec8a847
SR
306 extern void __bad_size(void);
307
e498be7d
CL
308 if (__builtin_constant_p(size)) {
309 int i = 0;
310
311#define CACHE(x) \
312 if (size <=x) \
313 return i; \
314 else \
315 i++;
1c61fc40 316#include <linux/kmalloc_sizes.h>
e498be7d 317#undef CACHE
5ec8a847 318 __bad_size();
7243cc05 319 } else
5ec8a847 320 __bad_size();
e498be7d
CL
321 return 0;
322}
323
e0a42726
IM
324static int slab_early_init = 1;
325
e498be7d
CL
326#define INDEX_AC index_of(sizeof(struct arraycache_init))
327#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 328
5295a74c 329static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
330{
331 INIT_LIST_HEAD(&parent->slabs_full);
332 INIT_LIST_HEAD(&parent->slabs_partial);
333 INIT_LIST_HEAD(&parent->slabs_free);
334 parent->shared = NULL;
335 parent->alien = NULL;
2e1217cf 336 parent->colour_next = 0;
e498be7d
CL
337 spin_lock_init(&parent->list_lock);
338 parent->free_objects = 0;
339 parent->free_touched = 0;
340}
341
a737b3e2
AM
342#define MAKE_LIST(cachep, listp, slab, nodeid) \
343 do { \
344 INIT_LIST_HEAD(listp); \
345 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
346 } while (0)
347
a737b3e2
AM
348#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
349 do { \
e498be7d
CL
350 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
351 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
352 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
353 } while (0)
1da177e4 354
1da177e4
LT
355#define CFLGS_OFF_SLAB (0x80000000UL)
356#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
357
358#define BATCHREFILL_LIMIT 16
a737b3e2
AM
359/*
360 * Optimization question: fewer reaps means less probability for unnessary
361 * cpucache drain/refill cycles.
1da177e4 362 *
dc6f3f27 363 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
364 * which could lock up otherwise freeable slabs.
365 */
366#define REAPTIMEOUT_CPUC (2*HZ)
367#define REAPTIMEOUT_LIST3 (4*HZ)
368
369#if STATS
370#define STATS_INC_ACTIVE(x) ((x)->num_active++)
371#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
372#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
373#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 374#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
375#define STATS_SET_HIGH(x) \
376 do { \
377 if ((x)->num_active > (x)->high_mark) \
378 (x)->high_mark = (x)->num_active; \
379 } while (0)
1da177e4
LT
380#define STATS_INC_ERR(x) ((x)->errors++)
381#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 382#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 383#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
384#define STATS_SET_FREEABLE(x, i) \
385 do { \
386 if ((x)->max_freeable < i) \
387 (x)->max_freeable = i; \
388 } while (0)
1da177e4
LT
389#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
390#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
391#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
392#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
393#else
394#define STATS_INC_ACTIVE(x) do { } while (0)
395#define STATS_DEC_ACTIVE(x) do { } while (0)
396#define STATS_INC_ALLOCED(x) do { } while (0)
397#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 398#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
399#define STATS_SET_HIGH(x) do { } while (0)
400#define STATS_INC_ERR(x) do { } while (0)
401#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 402#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 403#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 404#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
405#define STATS_INC_ALLOCHIT(x) do { } while (0)
406#define STATS_INC_ALLOCMISS(x) do { } while (0)
407#define STATS_INC_FREEHIT(x) do { } while (0)
408#define STATS_INC_FREEMISS(x) do { } while (0)
409#endif
410
411#if DEBUG
1da177e4 412
a737b3e2
AM
413/*
414 * memory layout of objects:
1da177e4 415 * 0 : objp
3dafccf2 416 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
417 * the end of an object is aligned with the end of the real
418 * allocation. Catches writes behind the end of the allocation.
3dafccf2 419 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 420 * redzone word.
3dafccf2
MS
421 * cachep->obj_offset: The real object.
422 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
423 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
424 * [BYTES_PER_WORD long]
1da177e4 425 */
343e0d7a 426static int obj_offset(struct kmem_cache *cachep)
1da177e4 427{
3dafccf2 428 return cachep->obj_offset;
1da177e4
LT
429}
430
343e0d7a 431static int obj_size(struct kmem_cache *cachep)
1da177e4 432{
3dafccf2 433 return cachep->obj_size;
1da177e4
LT
434}
435
b46b8f19 436static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
437{
438 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
439 return (unsigned long long*) (objp + obj_offset(cachep) -
440 sizeof(unsigned long long));
1da177e4
LT
441}
442
b46b8f19 443static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
444{
445 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
446 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
447 return (unsigned long long *)(objp + cachep->buffer_size -
448 sizeof(unsigned long long) -
87a927c7 449 REDZONE_ALIGN);
b46b8f19
DW
450 return (unsigned long long *) (objp + cachep->buffer_size -
451 sizeof(unsigned long long));
1da177e4
LT
452}
453
343e0d7a 454static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
455{
456 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 457 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
458}
459
460#else
461
3dafccf2
MS
462#define obj_offset(x) 0
463#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
464#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
466#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
467
468#endif
469
0f24f128 470#ifdef CONFIG_TRACING
36555751
EGM
471size_t slab_buffer_size(struct kmem_cache *cachep)
472{
473 return cachep->buffer_size;
474}
475EXPORT_SYMBOL(slab_buffer_size);
476#endif
477
1da177e4
LT
478/*
479 * Do not go above this order unless 0 objects fit into the slab.
480 */
481#define BREAK_GFP_ORDER_HI 1
482#define BREAK_GFP_ORDER_LO 0
483static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
484
a737b3e2
AM
485/*
486 * Functions for storing/retrieving the cachep and or slab from the page
487 * allocator. These are used to find the slab an obj belongs to. With kfree(),
488 * these are used to find the cache which an obj belongs to.
1da177e4 489 */
065d41cb
PE
490static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
491{
492 page->lru.next = (struct list_head *)cache;
493}
494
495static inline struct kmem_cache *page_get_cache(struct page *page)
496{
d85f3385 497 page = compound_head(page);
ddc2e812 498 BUG_ON(!PageSlab(page));
065d41cb
PE
499 return (struct kmem_cache *)page->lru.next;
500}
501
502static inline void page_set_slab(struct page *page, struct slab *slab)
503{
504 page->lru.prev = (struct list_head *)slab;
505}
506
507static inline struct slab *page_get_slab(struct page *page)
508{
ddc2e812 509 BUG_ON(!PageSlab(page));
065d41cb
PE
510 return (struct slab *)page->lru.prev;
511}
1da177e4 512
6ed5eb22
PE
513static inline struct kmem_cache *virt_to_cache(const void *obj)
514{
b49af68f 515 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
516 return page_get_cache(page);
517}
518
519static inline struct slab *virt_to_slab(const void *obj)
520{
b49af68f 521 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
522 return page_get_slab(page);
523}
524
8fea4e96
PE
525static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
526 unsigned int idx)
527{
528 return slab->s_mem + cache->buffer_size * idx;
529}
530
6a2d7a95
ED
531/*
532 * We want to avoid an expensive divide : (offset / cache->buffer_size)
533 * Using the fact that buffer_size is a constant for a particular cache,
534 * we can replace (offset / cache->buffer_size) by
535 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
536 */
537static inline unsigned int obj_to_index(const struct kmem_cache *cache,
538 const struct slab *slab, void *obj)
8fea4e96 539{
6a2d7a95
ED
540 u32 offset = (obj - slab->s_mem);
541 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
542}
543
a737b3e2
AM
544/*
545 * These are the default caches for kmalloc. Custom caches can have other sizes.
546 */
1da177e4
LT
547struct cache_sizes malloc_sizes[] = {
548#define CACHE(x) { .cs_size = (x) },
549#include <linux/kmalloc_sizes.h>
550 CACHE(ULONG_MAX)
551#undef CACHE
552};
553EXPORT_SYMBOL(malloc_sizes);
554
555/* Must match cache_sizes above. Out of line to keep cache footprint low. */
556struct cache_names {
557 char *name;
558 char *name_dma;
559};
560
561static struct cache_names __initdata cache_names[] = {
562#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
563#include <linux/kmalloc_sizes.h>
b28a02de 564 {NULL,}
1da177e4
LT
565#undef CACHE
566};
567
568static struct arraycache_init initarray_cache __initdata =
b28a02de 569 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 570static struct arraycache_init initarray_generic =
b28a02de 571 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
572
573/* internal cache of cache description objs */
343e0d7a 574static struct kmem_cache cache_cache = {
b28a02de
PE
575 .batchcount = 1,
576 .limit = BOOT_CPUCACHE_ENTRIES,
577 .shared = 1,
343e0d7a 578 .buffer_size = sizeof(struct kmem_cache),
b28a02de 579 .name = "kmem_cache",
1da177e4
LT
580};
581
056c6241
RT
582#define BAD_ALIEN_MAGIC 0x01020304ul
583
ce79ddc8
PE
584/*
585 * chicken and egg problem: delay the per-cpu array allocation
586 * until the general caches are up.
587 */
588static enum {
589 NONE,
590 PARTIAL_AC,
591 PARTIAL_L3,
592 EARLY,
593 FULL
594} g_cpucache_up;
595
596/*
597 * used by boot code to determine if it can use slab based allocator
598 */
599int slab_is_available(void)
600{
601 return g_cpucache_up >= EARLY;
602}
603
f1aaee53
AV
604#ifdef CONFIG_LOCKDEP
605
606/*
607 * Slab sometimes uses the kmalloc slabs to store the slab headers
608 * for other slabs "off slab".
609 * The locking for this is tricky in that it nests within the locks
610 * of all other slabs in a few places; to deal with this special
611 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
612 *
613 * We set lock class for alien array caches which are up during init.
614 * The lock annotation will be lost if all cpus of a node goes down and
615 * then comes back up during hotplug
f1aaee53 616 */
056c6241
RT
617static struct lock_class_key on_slab_l3_key;
618static struct lock_class_key on_slab_alc_key;
619
ce79ddc8 620static void init_node_lock_keys(int q)
f1aaee53 621{
056c6241
RT
622 struct cache_sizes *s = malloc_sizes;
623
ce79ddc8
PE
624 if (g_cpucache_up != FULL)
625 return;
626
627 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
628 struct array_cache **alc;
629 struct kmem_list3 *l3;
630 int r;
631
632 l3 = s->cs_cachep->nodelists[q];
633 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 634 continue;
ce79ddc8
PE
635 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
636 alc = l3->alien;
637 /*
638 * FIXME: This check for BAD_ALIEN_MAGIC
639 * should go away when common slab code is taught to
640 * work even without alien caches.
641 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
642 * for alloc_alien_cache,
643 */
644 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
00afa758 645 continue;
ce79ddc8
PE
646 for_each_node(r) {
647 if (alc[r])
648 lockdep_set_class(&alc[r]->lock,
649 &on_slab_alc_key);
056c6241 650 }
f1aaee53
AV
651 }
652}
ce79ddc8
PE
653
654static inline void init_lock_keys(void)
655{
656 int node;
657
658 for_each_node(node)
659 init_node_lock_keys(node);
660}
f1aaee53 661#else
ce79ddc8
PE
662static void init_node_lock_keys(int q)
663{
664}
665
056c6241 666static inline void init_lock_keys(void)
f1aaee53
AV
667{
668}
669#endif
670
8f5be20b 671/*
95402b38 672 * Guard access to the cache-chain.
8f5be20b 673 */
fc0abb14 674static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
675static struct list_head cache_chain;
676
1871e52c 677static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 678
343e0d7a 679static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
680{
681 return cachep->array[smp_processor_id()];
682}
683
a737b3e2
AM
684static inline struct kmem_cache *__find_general_cachep(size_t size,
685 gfp_t gfpflags)
1da177e4
LT
686{
687 struct cache_sizes *csizep = malloc_sizes;
688
689#if DEBUG
690 /* This happens if someone tries to call
b28a02de
PE
691 * kmem_cache_create(), or __kmalloc(), before
692 * the generic caches are initialized.
693 */
c7e43c78 694 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 695#endif
6cb8f913
CL
696 if (!size)
697 return ZERO_SIZE_PTR;
698
1da177e4
LT
699 while (size > csizep->cs_size)
700 csizep++;
701
702 /*
0abf40c1 703 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
704 * has cs_{dma,}cachep==NULL. Thus no special case
705 * for large kmalloc calls required.
706 */
4b51d669 707#ifdef CONFIG_ZONE_DMA
1da177e4
LT
708 if (unlikely(gfpflags & GFP_DMA))
709 return csizep->cs_dmacachep;
4b51d669 710#endif
1da177e4
LT
711 return csizep->cs_cachep;
712}
713
b221385b 714static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
715{
716 return __find_general_cachep(size, gfpflags);
717}
97e2bde4 718
fbaccacf 719static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 720{
fbaccacf
SR
721 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
722}
1da177e4 723
a737b3e2
AM
724/*
725 * Calculate the number of objects and left-over bytes for a given buffer size.
726 */
fbaccacf
SR
727static void cache_estimate(unsigned long gfporder, size_t buffer_size,
728 size_t align, int flags, size_t *left_over,
729 unsigned int *num)
730{
731 int nr_objs;
732 size_t mgmt_size;
733 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 734
fbaccacf
SR
735 /*
736 * The slab management structure can be either off the slab or
737 * on it. For the latter case, the memory allocated for a
738 * slab is used for:
739 *
740 * - The struct slab
741 * - One kmem_bufctl_t for each object
742 * - Padding to respect alignment of @align
743 * - @buffer_size bytes for each object
744 *
745 * If the slab management structure is off the slab, then the
746 * alignment will already be calculated into the size. Because
747 * the slabs are all pages aligned, the objects will be at the
748 * correct alignment when allocated.
749 */
750 if (flags & CFLGS_OFF_SLAB) {
751 mgmt_size = 0;
752 nr_objs = slab_size / buffer_size;
753
754 if (nr_objs > SLAB_LIMIT)
755 nr_objs = SLAB_LIMIT;
756 } else {
757 /*
758 * Ignore padding for the initial guess. The padding
759 * is at most @align-1 bytes, and @buffer_size is at
760 * least @align. In the worst case, this result will
761 * be one greater than the number of objects that fit
762 * into the memory allocation when taking the padding
763 * into account.
764 */
765 nr_objs = (slab_size - sizeof(struct slab)) /
766 (buffer_size + sizeof(kmem_bufctl_t));
767
768 /*
769 * This calculated number will be either the right
770 * amount, or one greater than what we want.
771 */
772 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
773 > slab_size)
774 nr_objs--;
775
776 if (nr_objs > SLAB_LIMIT)
777 nr_objs = SLAB_LIMIT;
778
779 mgmt_size = slab_mgmt_size(nr_objs, align);
780 }
781 *num = nr_objs;
782 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
783}
784
d40cee24 785#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 786
a737b3e2
AM
787static void __slab_error(const char *function, struct kmem_cache *cachep,
788 char *msg)
1da177e4
LT
789{
790 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 791 function, cachep->name, msg);
1da177e4
LT
792 dump_stack();
793}
794
3395ee05
PM
795/*
796 * By default on NUMA we use alien caches to stage the freeing of
797 * objects allocated from other nodes. This causes massive memory
798 * inefficiencies when using fake NUMA setup to split memory into a
799 * large number of small nodes, so it can be disabled on the command
800 * line
801 */
802
803static int use_alien_caches __read_mostly = 1;
804static int __init noaliencache_setup(char *s)
805{
806 use_alien_caches = 0;
807 return 1;
808}
809__setup("noaliencache", noaliencache_setup);
810
8fce4d8e
CL
811#ifdef CONFIG_NUMA
812/*
813 * Special reaping functions for NUMA systems called from cache_reap().
814 * These take care of doing round robin flushing of alien caches (containing
815 * objects freed on different nodes from which they were allocated) and the
816 * flushing of remote pcps by calling drain_node_pages.
817 */
1871e52c 818static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
819
820static void init_reap_node(int cpu)
821{
822 int node;
823
824 node = next_node(cpu_to_node(cpu), node_online_map);
825 if (node == MAX_NUMNODES)
442295c9 826 node = first_node(node_online_map);
8fce4d8e 827
1871e52c 828 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
829}
830
831static void next_reap_node(void)
832{
1871e52c 833 int node = __get_cpu_var(slab_reap_node);
8fce4d8e 834
8fce4d8e
CL
835 node = next_node(node, node_online_map);
836 if (unlikely(node >= MAX_NUMNODES))
837 node = first_node(node_online_map);
1871e52c 838 __get_cpu_var(slab_reap_node) = node;
8fce4d8e
CL
839}
840
841#else
842#define init_reap_node(cpu) do { } while (0)
843#define next_reap_node(void) do { } while (0)
844#endif
845
1da177e4
LT
846/*
847 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
848 * via the workqueue/eventd.
849 * Add the CPU number into the expiration time to minimize the possibility of
850 * the CPUs getting into lockstep and contending for the global cache chain
851 * lock.
852 */
897e679b 853static void __cpuinit start_cpu_timer(int cpu)
1da177e4 854{
1871e52c 855 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
856
857 /*
858 * When this gets called from do_initcalls via cpucache_init(),
859 * init_workqueues() has already run, so keventd will be setup
860 * at that time.
861 */
52bad64d 862 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 863 init_reap_node(cpu);
65f27f38 864 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
865 schedule_delayed_work_on(cpu, reap_work,
866 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
867 }
868}
869
e498be7d 870static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 871 int batchcount, gfp_t gfp)
1da177e4 872{
b28a02de 873 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
874 struct array_cache *nc = NULL;
875
83b519e8 876 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
877 /*
878 * The array_cache structures contain pointers to free object.
879 * However, when such objects are allocated or transfered to another
880 * cache the pointers are not cleared and they could be counted as
881 * valid references during a kmemleak scan. Therefore, kmemleak must
882 * not scan such objects.
883 */
884 kmemleak_no_scan(nc);
1da177e4
LT
885 if (nc) {
886 nc->avail = 0;
887 nc->limit = entries;
888 nc->batchcount = batchcount;
889 nc->touched = 0;
e498be7d 890 spin_lock_init(&nc->lock);
1da177e4
LT
891 }
892 return nc;
893}
894
3ded175a
CL
895/*
896 * Transfer objects in one arraycache to another.
897 * Locking must be handled by the caller.
898 *
899 * Return the number of entries transferred.
900 */
901static int transfer_objects(struct array_cache *to,
902 struct array_cache *from, unsigned int max)
903{
904 /* Figure out how many entries to transfer */
905 int nr = min(min(from->avail, max), to->limit - to->avail);
906
907 if (!nr)
908 return 0;
909
910 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
911 sizeof(void *) *nr);
912
913 from->avail -= nr;
914 to->avail += nr;
3ded175a
CL
915 return nr;
916}
917
765c4507
CL
918#ifndef CONFIG_NUMA
919
920#define drain_alien_cache(cachep, alien) do { } while (0)
921#define reap_alien(cachep, l3) do { } while (0)
922
83b519e8 923static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
924{
925 return (struct array_cache **)BAD_ALIEN_MAGIC;
926}
927
928static inline void free_alien_cache(struct array_cache **ac_ptr)
929{
930}
931
932static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
933{
934 return 0;
935}
936
937static inline void *alternate_node_alloc(struct kmem_cache *cachep,
938 gfp_t flags)
939{
940 return NULL;
941}
942
8b98c169 943static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
944 gfp_t flags, int nodeid)
945{
946 return NULL;
947}
948
949#else /* CONFIG_NUMA */
950
8b98c169 951static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 952static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 953
83b519e8 954static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
955{
956 struct array_cache **ac_ptr;
8ef82866 957 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
958 int i;
959
960 if (limit > 1)
961 limit = 12;
f3186a9c 962 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
963 if (ac_ptr) {
964 for_each_node(i) {
f3186a9c 965 if (i == node || !node_online(i))
e498be7d 966 continue;
83b519e8 967 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 968 if (!ac_ptr[i]) {
cc550def 969 for (i--; i >= 0; i--)
e498be7d
CL
970 kfree(ac_ptr[i]);
971 kfree(ac_ptr);
972 return NULL;
973 }
974 }
975 }
976 return ac_ptr;
977}
978
5295a74c 979static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
980{
981 int i;
982
983 if (!ac_ptr)
984 return;
e498be7d 985 for_each_node(i)
b28a02de 986 kfree(ac_ptr[i]);
e498be7d
CL
987 kfree(ac_ptr);
988}
989
343e0d7a 990static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 991 struct array_cache *ac, int node)
e498be7d
CL
992{
993 struct kmem_list3 *rl3 = cachep->nodelists[node];
994
995 if (ac->avail) {
996 spin_lock(&rl3->list_lock);
e00946fe
CL
997 /*
998 * Stuff objects into the remote nodes shared array first.
999 * That way we could avoid the overhead of putting the objects
1000 * into the free lists and getting them back later.
1001 */
693f7d36
JS
1002 if (rl3->shared)
1003 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1004
ff69416e 1005 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1006 ac->avail = 0;
1007 spin_unlock(&rl3->list_lock);
1008 }
1009}
1010
8fce4d8e
CL
1011/*
1012 * Called from cache_reap() to regularly drain alien caches round robin.
1013 */
1014static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1015{
1871e52c 1016 int node = __get_cpu_var(slab_reap_node);
8fce4d8e
CL
1017
1018 if (l3->alien) {
1019 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1020
1021 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1022 __drain_alien_cache(cachep, ac, node);
1023 spin_unlock_irq(&ac->lock);
1024 }
1025 }
1026}
1027
a737b3e2
AM
1028static void drain_alien_cache(struct kmem_cache *cachep,
1029 struct array_cache **alien)
e498be7d 1030{
b28a02de 1031 int i = 0;
e498be7d
CL
1032 struct array_cache *ac;
1033 unsigned long flags;
1034
1035 for_each_online_node(i) {
4484ebf1 1036 ac = alien[i];
e498be7d
CL
1037 if (ac) {
1038 spin_lock_irqsave(&ac->lock, flags);
1039 __drain_alien_cache(cachep, ac, i);
1040 spin_unlock_irqrestore(&ac->lock, flags);
1041 }
1042 }
1043}
729bd0b7 1044
873623df 1045static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1046{
1047 struct slab *slabp = virt_to_slab(objp);
1048 int nodeid = slabp->nodeid;
1049 struct kmem_list3 *l3;
1050 struct array_cache *alien = NULL;
1ca4cb24
PE
1051 int node;
1052
1053 node = numa_node_id();
729bd0b7
PE
1054
1055 /*
1056 * Make sure we are not freeing a object from another node to the array
1057 * cache on this cpu.
1058 */
62918a03 1059 if (likely(slabp->nodeid == node))
729bd0b7
PE
1060 return 0;
1061
1ca4cb24 1062 l3 = cachep->nodelists[node];
729bd0b7
PE
1063 STATS_INC_NODEFREES(cachep);
1064 if (l3->alien && l3->alien[nodeid]) {
1065 alien = l3->alien[nodeid];
873623df 1066 spin_lock(&alien->lock);
729bd0b7
PE
1067 if (unlikely(alien->avail == alien->limit)) {
1068 STATS_INC_ACOVERFLOW(cachep);
1069 __drain_alien_cache(cachep, alien, nodeid);
1070 }
1071 alien->entry[alien->avail++] = objp;
1072 spin_unlock(&alien->lock);
1073 } else {
1074 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1075 free_block(cachep, &objp, 1, nodeid);
1076 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1077 }
1078 return 1;
1079}
e498be7d
CL
1080#endif
1081
8f9f8d9e
DR
1082/*
1083 * Allocates and initializes nodelists for a node on each slab cache, used for
1084 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1085 * will be allocated off-node since memory is not yet online for the new node.
1086 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1087 * already in use.
1088 *
1089 * Must hold cache_chain_mutex.
1090 */
1091static int init_cache_nodelists_node(int node)
1092{
1093 struct kmem_cache *cachep;
1094 struct kmem_list3 *l3;
1095 const int memsize = sizeof(struct kmem_list3);
1096
1097 list_for_each_entry(cachep, &cache_chain, next) {
1098 /*
1099 * Set up the size64 kmemlist for cpu before we can
1100 * begin anything. Make sure some other cpu on this
1101 * node has not already allocated this
1102 */
1103 if (!cachep->nodelists[node]) {
1104 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1105 if (!l3)
1106 return -ENOMEM;
1107 kmem_list3_init(l3);
1108 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1109 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1110
1111 /*
1112 * The l3s don't come and go as CPUs come and
1113 * go. cache_chain_mutex is sufficient
1114 * protection here.
1115 */
1116 cachep->nodelists[node] = l3;
1117 }
1118
1119 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1120 cachep->nodelists[node]->free_limit =
1121 (1 + nr_cpus_node(node)) *
1122 cachep->batchcount + cachep->num;
1123 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1124 }
1125 return 0;
1126}
1127
fbf1e473
AM
1128static void __cpuinit cpuup_canceled(long cpu)
1129{
1130 struct kmem_cache *cachep;
1131 struct kmem_list3 *l3 = NULL;
1132 int node = cpu_to_node(cpu);
a70f7302 1133 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1134
1135 list_for_each_entry(cachep, &cache_chain, next) {
1136 struct array_cache *nc;
1137 struct array_cache *shared;
1138 struct array_cache **alien;
fbf1e473 1139
fbf1e473
AM
1140 /* cpu is dead; no one can alloc from it. */
1141 nc = cachep->array[cpu];
1142 cachep->array[cpu] = NULL;
1143 l3 = cachep->nodelists[node];
1144
1145 if (!l3)
1146 goto free_array_cache;
1147
1148 spin_lock_irq(&l3->list_lock);
1149
1150 /* Free limit for this kmem_list3 */
1151 l3->free_limit -= cachep->batchcount;
1152 if (nc)
1153 free_block(cachep, nc->entry, nc->avail, node);
1154
58463c1f 1155 if (!cpumask_empty(mask)) {
fbf1e473
AM
1156 spin_unlock_irq(&l3->list_lock);
1157 goto free_array_cache;
1158 }
1159
1160 shared = l3->shared;
1161 if (shared) {
1162 free_block(cachep, shared->entry,
1163 shared->avail, node);
1164 l3->shared = NULL;
1165 }
1166
1167 alien = l3->alien;
1168 l3->alien = NULL;
1169
1170 spin_unlock_irq(&l3->list_lock);
1171
1172 kfree(shared);
1173 if (alien) {
1174 drain_alien_cache(cachep, alien);
1175 free_alien_cache(alien);
1176 }
1177free_array_cache:
1178 kfree(nc);
1179 }
1180 /*
1181 * In the previous loop, all the objects were freed to
1182 * the respective cache's slabs, now we can go ahead and
1183 * shrink each nodelist to its limit.
1184 */
1185 list_for_each_entry(cachep, &cache_chain, next) {
1186 l3 = cachep->nodelists[node];
1187 if (!l3)
1188 continue;
1189 drain_freelist(cachep, l3, l3->free_objects);
1190 }
1191}
1192
1193static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1194{
343e0d7a 1195 struct kmem_cache *cachep;
e498be7d
CL
1196 struct kmem_list3 *l3 = NULL;
1197 int node = cpu_to_node(cpu);
8f9f8d9e 1198 int err;
1da177e4 1199
fbf1e473
AM
1200 /*
1201 * We need to do this right in the beginning since
1202 * alloc_arraycache's are going to use this list.
1203 * kmalloc_node allows us to add the slab to the right
1204 * kmem_list3 and not this cpu's kmem_list3
1205 */
8f9f8d9e
DR
1206 err = init_cache_nodelists_node(node);
1207 if (err < 0)
1208 goto bad;
fbf1e473
AM
1209
1210 /*
1211 * Now we can go ahead with allocating the shared arrays and
1212 * array caches
1213 */
1214 list_for_each_entry(cachep, &cache_chain, next) {
1215 struct array_cache *nc;
1216 struct array_cache *shared = NULL;
1217 struct array_cache **alien = NULL;
1218
1219 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1220 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1221 if (!nc)
1222 goto bad;
1223 if (cachep->shared) {
1224 shared = alloc_arraycache(node,
1225 cachep->shared * cachep->batchcount,
83b519e8 1226 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1227 if (!shared) {
1228 kfree(nc);
1da177e4 1229 goto bad;
12d00f6a 1230 }
fbf1e473
AM
1231 }
1232 if (use_alien_caches) {
83b519e8 1233 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1234 if (!alien) {
1235 kfree(shared);
1236 kfree(nc);
fbf1e473 1237 goto bad;
12d00f6a 1238 }
fbf1e473
AM
1239 }
1240 cachep->array[cpu] = nc;
1241 l3 = cachep->nodelists[node];
1242 BUG_ON(!l3);
1243
1244 spin_lock_irq(&l3->list_lock);
1245 if (!l3->shared) {
1246 /*
1247 * We are serialised from CPU_DEAD or
1248 * CPU_UP_CANCELLED by the cpucontrol lock
1249 */
1250 l3->shared = shared;
1251 shared = NULL;
1252 }
4484ebf1 1253#ifdef CONFIG_NUMA
fbf1e473
AM
1254 if (!l3->alien) {
1255 l3->alien = alien;
1256 alien = NULL;
1da177e4 1257 }
fbf1e473
AM
1258#endif
1259 spin_unlock_irq(&l3->list_lock);
1260 kfree(shared);
1261 free_alien_cache(alien);
1262 }
ce79ddc8
PE
1263 init_node_lock_keys(node);
1264
fbf1e473
AM
1265 return 0;
1266bad:
12d00f6a 1267 cpuup_canceled(cpu);
fbf1e473
AM
1268 return -ENOMEM;
1269}
1270
1271static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1272 unsigned long action, void *hcpu)
1273{
1274 long cpu = (long)hcpu;
1275 int err = 0;
1276
1277 switch (action) {
fbf1e473
AM
1278 case CPU_UP_PREPARE:
1279 case CPU_UP_PREPARE_FROZEN:
95402b38 1280 mutex_lock(&cache_chain_mutex);
fbf1e473 1281 err = cpuup_prepare(cpu);
95402b38 1282 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1283 break;
1284 case CPU_ONLINE:
8bb78442 1285 case CPU_ONLINE_FROZEN:
1da177e4
LT
1286 start_cpu_timer(cpu);
1287 break;
1288#ifdef CONFIG_HOTPLUG_CPU
5830c590 1289 case CPU_DOWN_PREPARE:
8bb78442 1290 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1291 /*
1292 * Shutdown cache reaper. Note that the cache_chain_mutex is
1293 * held so that if cache_reap() is invoked it cannot do
1294 * anything expensive but will only modify reap_work
1295 * and reschedule the timer.
1296 */
1871e52c 1297 cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
5830c590 1298 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1299 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1300 break;
1301 case CPU_DOWN_FAILED:
8bb78442 1302 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1303 start_cpu_timer(cpu);
1304 break;
1da177e4 1305 case CPU_DEAD:
8bb78442 1306 case CPU_DEAD_FROZEN:
4484ebf1
RT
1307 /*
1308 * Even if all the cpus of a node are down, we don't free the
1309 * kmem_list3 of any cache. This to avoid a race between
1310 * cpu_down, and a kmalloc allocation from another cpu for
1311 * memory from the node of the cpu going down. The list3
1312 * structure is usually allocated from kmem_cache_create() and
1313 * gets destroyed at kmem_cache_destroy().
1314 */
183ff22b 1315 /* fall through */
8f5be20b 1316#endif
1da177e4 1317 case CPU_UP_CANCELED:
8bb78442 1318 case CPU_UP_CANCELED_FROZEN:
95402b38 1319 mutex_lock(&cache_chain_mutex);
fbf1e473 1320 cpuup_canceled(cpu);
fc0abb14 1321 mutex_unlock(&cache_chain_mutex);
1da177e4 1322 break;
1da177e4 1323 }
fbf1e473 1324 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1325}
1326
74b85f37
CS
1327static struct notifier_block __cpuinitdata cpucache_notifier = {
1328 &cpuup_callback, NULL, 0
1329};
1da177e4 1330
8f9f8d9e
DR
1331#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1332/*
1333 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1334 * Returns -EBUSY if all objects cannot be drained so that the node is not
1335 * removed.
1336 *
1337 * Must hold cache_chain_mutex.
1338 */
1339static int __meminit drain_cache_nodelists_node(int node)
1340{
1341 struct kmem_cache *cachep;
1342 int ret = 0;
1343
1344 list_for_each_entry(cachep, &cache_chain, next) {
1345 struct kmem_list3 *l3;
1346
1347 l3 = cachep->nodelists[node];
1348 if (!l3)
1349 continue;
1350
1351 drain_freelist(cachep, l3, l3->free_objects);
1352
1353 if (!list_empty(&l3->slabs_full) ||
1354 !list_empty(&l3->slabs_partial)) {
1355 ret = -EBUSY;
1356 break;
1357 }
1358 }
1359 return ret;
1360}
1361
1362static int __meminit slab_memory_callback(struct notifier_block *self,
1363 unsigned long action, void *arg)
1364{
1365 struct memory_notify *mnb = arg;
1366 int ret = 0;
1367 int nid;
1368
1369 nid = mnb->status_change_nid;
1370 if (nid < 0)
1371 goto out;
1372
1373 switch (action) {
1374 case MEM_GOING_ONLINE:
1375 mutex_lock(&cache_chain_mutex);
1376 ret = init_cache_nodelists_node(nid);
1377 mutex_unlock(&cache_chain_mutex);
1378 break;
1379 case MEM_GOING_OFFLINE:
1380 mutex_lock(&cache_chain_mutex);
1381 ret = drain_cache_nodelists_node(nid);
1382 mutex_unlock(&cache_chain_mutex);
1383 break;
1384 case MEM_ONLINE:
1385 case MEM_OFFLINE:
1386 case MEM_CANCEL_ONLINE:
1387 case MEM_CANCEL_OFFLINE:
1388 break;
1389 }
1390out:
1391 return ret ? notifier_from_errno(ret) : NOTIFY_OK;
1392}
1393#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1394
e498be7d
CL
1395/*
1396 * swap the static kmem_list3 with kmalloced memory
1397 */
8f9f8d9e
DR
1398static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1399 int nodeid)
e498be7d
CL
1400{
1401 struct kmem_list3 *ptr;
1402
83b519e8 1403 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1404 BUG_ON(!ptr);
1405
e498be7d 1406 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1407 /*
1408 * Do not assume that spinlocks can be initialized via memcpy:
1409 */
1410 spin_lock_init(&ptr->list_lock);
1411
e498be7d
CL
1412 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1413 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1414}
1415
556a169d
PE
1416/*
1417 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1418 * size of kmem_list3.
1419 */
1420static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1421{
1422 int node;
1423
1424 for_each_online_node(node) {
1425 cachep->nodelists[node] = &initkmem_list3[index + node];
1426 cachep->nodelists[node]->next_reap = jiffies +
1427 REAPTIMEOUT_LIST3 +
1428 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1429 }
1430}
1431
a737b3e2
AM
1432/*
1433 * Initialisation. Called after the page allocator have been initialised and
1434 * before smp_init().
1da177e4
LT
1435 */
1436void __init kmem_cache_init(void)
1437{
1438 size_t left_over;
1439 struct cache_sizes *sizes;
1440 struct cache_names *names;
e498be7d 1441 int i;
07ed76b2 1442 int order;
1ca4cb24 1443 int node;
e498be7d 1444
b6e68bc1 1445 if (num_possible_nodes() == 1)
62918a03
SS
1446 use_alien_caches = 0;
1447
e498be7d
CL
1448 for (i = 0; i < NUM_INIT_LISTS; i++) {
1449 kmem_list3_init(&initkmem_list3[i]);
1450 if (i < MAX_NUMNODES)
1451 cache_cache.nodelists[i] = NULL;
1452 }
556a169d 1453 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1454
1455 /*
1456 * Fragmentation resistance on low memory - only use bigger
1457 * page orders on machines with more than 32MB of memory.
1458 */
4481374c 1459 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1da177e4
LT
1460 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1461
1da177e4
LT
1462 /* Bootstrap is tricky, because several objects are allocated
1463 * from caches that do not exist yet:
a737b3e2
AM
1464 * 1) initialize the cache_cache cache: it contains the struct
1465 * kmem_cache structures of all caches, except cache_cache itself:
1466 * cache_cache is statically allocated.
e498be7d
CL
1467 * Initially an __init data area is used for the head array and the
1468 * kmem_list3 structures, it's replaced with a kmalloc allocated
1469 * array at the end of the bootstrap.
1da177e4 1470 * 2) Create the first kmalloc cache.
343e0d7a 1471 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1472 * An __init data area is used for the head array.
1473 * 3) Create the remaining kmalloc caches, with minimally sized
1474 * head arrays.
1da177e4
LT
1475 * 4) Replace the __init data head arrays for cache_cache and the first
1476 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1477 * 5) Replace the __init data for kmem_list3 for cache_cache and
1478 * the other cache's with kmalloc allocated memory.
1479 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1480 */
1481
1ca4cb24
PE
1482 node = numa_node_id();
1483
1da177e4 1484 /* 1) create the cache_cache */
1da177e4
LT
1485 INIT_LIST_HEAD(&cache_chain);
1486 list_add(&cache_cache.next, &cache_chain);
1487 cache_cache.colour_off = cache_line_size();
1488 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1489 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1490
8da3430d
ED
1491 /*
1492 * struct kmem_cache size depends on nr_node_ids, which
1493 * can be less than MAX_NUMNODES.
1494 */
1495 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1496 nr_node_ids * sizeof(struct kmem_list3 *);
1497#if DEBUG
1498 cache_cache.obj_size = cache_cache.buffer_size;
1499#endif
a737b3e2
AM
1500 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1501 cache_line_size());
6a2d7a95
ED
1502 cache_cache.reciprocal_buffer_size =
1503 reciprocal_value(cache_cache.buffer_size);
1da177e4 1504
07ed76b2
JS
1505 for (order = 0; order < MAX_ORDER; order++) {
1506 cache_estimate(order, cache_cache.buffer_size,
1507 cache_line_size(), 0, &left_over, &cache_cache.num);
1508 if (cache_cache.num)
1509 break;
1510 }
40094fa6 1511 BUG_ON(!cache_cache.num);
07ed76b2 1512 cache_cache.gfporder = order;
b28a02de 1513 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1514 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1515 sizeof(struct slab), cache_line_size());
1da177e4
LT
1516
1517 /* 2+3) create the kmalloc caches */
1518 sizes = malloc_sizes;
1519 names = cache_names;
1520
a737b3e2
AM
1521 /*
1522 * Initialize the caches that provide memory for the array cache and the
1523 * kmem_list3 structures first. Without this, further allocations will
1524 * bug.
e498be7d
CL
1525 */
1526
1527 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1528 sizes[INDEX_AC].cs_size,
1529 ARCH_KMALLOC_MINALIGN,
1530 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1531 NULL);
e498be7d 1532
a737b3e2 1533 if (INDEX_AC != INDEX_L3) {
e498be7d 1534 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1535 kmem_cache_create(names[INDEX_L3].name,
1536 sizes[INDEX_L3].cs_size,
1537 ARCH_KMALLOC_MINALIGN,
1538 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1539 NULL);
a737b3e2 1540 }
e498be7d 1541
e0a42726
IM
1542 slab_early_init = 0;
1543
1da177e4 1544 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1545 /*
1546 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1547 * This should be particularly beneficial on SMP boxes, as it
1548 * eliminates "false sharing".
1549 * Note for systems short on memory removing the alignment will
e498be7d
CL
1550 * allow tighter packing of the smaller caches.
1551 */
a737b3e2 1552 if (!sizes->cs_cachep) {
e498be7d 1553 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1554 sizes->cs_size,
1555 ARCH_KMALLOC_MINALIGN,
1556 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1557 NULL);
a737b3e2 1558 }
4b51d669
CL
1559#ifdef CONFIG_ZONE_DMA
1560 sizes->cs_dmacachep = kmem_cache_create(
1561 names->name_dma,
a737b3e2
AM
1562 sizes->cs_size,
1563 ARCH_KMALLOC_MINALIGN,
1564 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1565 SLAB_PANIC,
20c2df83 1566 NULL);
4b51d669 1567#endif
1da177e4
LT
1568 sizes++;
1569 names++;
1570 }
1571 /* 4) Replace the bootstrap head arrays */
1572 {
2b2d5493 1573 struct array_cache *ptr;
e498be7d 1574
83b519e8 1575 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1576
9a2dba4b
PE
1577 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1578 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1579 sizeof(struct arraycache_init));
2b2d5493
IM
1580 /*
1581 * Do not assume that spinlocks can be initialized via memcpy:
1582 */
1583 spin_lock_init(&ptr->lock);
1584
1da177e4 1585 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1586
83b519e8 1587 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1588
9a2dba4b 1589 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1590 != &initarray_generic.cache);
9a2dba4b 1591 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1592 sizeof(struct arraycache_init));
2b2d5493
IM
1593 /*
1594 * Do not assume that spinlocks can be initialized via memcpy:
1595 */
1596 spin_lock_init(&ptr->lock);
1597
e498be7d 1598 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1599 ptr;
1da177e4 1600 }
e498be7d
CL
1601 /* 5) Replace the bootstrap kmem_list3's */
1602 {
1ca4cb24
PE
1603 int nid;
1604
9c09a95c 1605 for_each_online_node(nid) {
ec1f5eee 1606 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1607
e498be7d 1608 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1609 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1610
1611 if (INDEX_AC != INDEX_L3) {
1612 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1613 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1614 }
1615 }
1616 }
1da177e4 1617
8429db5c 1618 g_cpucache_up = EARLY;
8429db5c
PE
1619}
1620
1621void __init kmem_cache_init_late(void)
1622{
1623 struct kmem_cache *cachep;
1624
8429db5c
PE
1625 /* 6) resize the head arrays to their final sizes */
1626 mutex_lock(&cache_chain_mutex);
1627 list_for_each_entry(cachep, &cache_chain, next)
1628 if (enable_cpucache(cachep, GFP_NOWAIT))
1629 BUG();
1630 mutex_unlock(&cache_chain_mutex);
056c6241 1631
1da177e4
LT
1632 /* Done! */
1633 g_cpucache_up = FULL;
1634
ec5a36f9
PE
1635 /* Annotate slab for lockdep -- annotate the malloc caches */
1636 init_lock_keys();
1637
a737b3e2
AM
1638 /*
1639 * Register a cpu startup notifier callback that initializes
1640 * cpu_cache_get for all new cpus
1da177e4
LT
1641 */
1642 register_cpu_notifier(&cpucache_notifier);
1da177e4 1643
8f9f8d9e
DR
1644#ifdef CONFIG_NUMA
1645 /*
1646 * Register a memory hotplug callback that initializes and frees
1647 * nodelists.
1648 */
1649 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1650#endif
1651
a737b3e2
AM
1652 /*
1653 * The reap timers are started later, with a module init call: That part
1654 * of the kernel is not yet operational.
1da177e4
LT
1655 */
1656}
1657
1658static int __init cpucache_init(void)
1659{
1660 int cpu;
1661
a737b3e2
AM
1662 /*
1663 * Register the timers that return unneeded pages to the page allocator
1da177e4 1664 */
e498be7d 1665 for_each_online_cpu(cpu)
a737b3e2 1666 start_cpu_timer(cpu);
1da177e4
LT
1667 return 0;
1668}
1da177e4
LT
1669__initcall(cpucache_init);
1670
1671/*
1672 * Interface to system's page allocator. No need to hold the cache-lock.
1673 *
1674 * If we requested dmaable memory, we will get it. Even if we
1675 * did not request dmaable memory, we might get it, but that
1676 * would be relatively rare and ignorable.
1677 */
343e0d7a 1678static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1679{
1680 struct page *page;
e1b6aa6f 1681 int nr_pages;
1da177e4
LT
1682 int i;
1683
d6fef9da 1684#ifndef CONFIG_MMU
e1b6aa6f
CH
1685 /*
1686 * Nommu uses slab's for process anonymous memory allocations, and thus
1687 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1688 */
e1b6aa6f 1689 flags |= __GFP_COMP;
d6fef9da 1690#endif
765c4507 1691
3c517a61 1692 flags |= cachep->gfpflags;
e12ba74d
MG
1693 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1694 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1695
517d0869 1696 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1697 if (!page)
1698 return NULL;
1da177e4 1699
e1b6aa6f 1700 nr_pages = (1 << cachep->gfporder);
1da177e4 1701 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1702 add_zone_page_state(page_zone(page),
1703 NR_SLAB_RECLAIMABLE, nr_pages);
1704 else
1705 add_zone_page_state(page_zone(page),
1706 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1707 for (i = 0; i < nr_pages; i++)
1708 __SetPageSlab(page + i);
c175eea4 1709
b1eeab67
VN
1710 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1711 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1712
1713 if (cachep->ctor)
1714 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1715 else
1716 kmemcheck_mark_unallocated_pages(page, nr_pages);
1717 }
c175eea4 1718
e1b6aa6f 1719 return page_address(page);
1da177e4
LT
1720}
1721
1722/*
1723 * Interface to system's page release.
1724 */
343e0d7a 1725static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1726{
b28a02de 1727 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1728 struct page *page = virt_to_page(addr);
1729 const unsigned long nr_freed = i;
1730
b1eeab67 1731 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1732
972d1a7b
CL
1733 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1734 sub_zone_page_state(page_zone(page),
1735 NR_SLAB_RECLAIMABLE, nr_freed);
1736 else
1737 sub_zone_page_state(page_zone(page),
1738 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1739 while (i--) {
f205b2fe
NP
1740 BUG_ON(!PageSlab(page));
1741 __ClearPageSlab(page);
1da177e4
LT
1742 page++;
1743 }
1da177e4
LT
1744 if (current->reclaim_state)
1745 current->reclaim_state->reclaimed_slab += nr_freed;
1746 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1747}
1748
1749static void kmem_rcu_free(struct rcu_head *head)
1750{
b28a02de 1751 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1752 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1753
1754 kmem_freepages(cachep, slab_rcu->addr);
1755 if (OFF_SLAB(cachep))
1756 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1757}
1758
1759#if DEBUG
1760
1761#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1762static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1763 unsigned long caller)
1da177e4 1764{
3dafccf2 1765 int size = obj_size(cachep);
1da177e4 1766
3dafccf2 1767 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1768
b28a02de 1769 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1770 return;
1771
b28a02de
PE
1772 *addr++ = 0x12345678;
1773 *addr++ = caller;
1774 *addr++ = smp_processor_id();
1775 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1776 {
1777 unsigned long *sptr = &caller;
1778 unsigned long svalue;
1779
1780 while (!kstack_end(sptr)) {
1781 svalue = *sptr++;
1782 if (kernel_text_address(svalue)) {
b28a02de 1783 *addr++ = svalue;
1da177e4
LT
1784 size -= sizeof(unsigned long);
1785 if (size <= sizeof(unsigned long))
1786 break;
1787 }
1788 }
1789
1790 }
b28a02de 1791 *addr++ = 0x87654321;
1da177e4
LT
1792}
1793#endif
1794
343e0d7a 1795static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1796{
3dafccf2
MS
1797 int size = obj_size(cachep);
1798 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1799
1800 memset(addr, val, size);
b28a02de 1801 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1802}
1803
1804static void dump_line(char *data, int offset, int limit)
1805{
1806 int i;
aa83aa40
DJ
1807 unsigned char error = 0;
1808 int bad_count = 0;
1809
1da177e4 1810 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1811 for (i = 0; i < limit; i++) {
1812 if (data[offset + i] != POISON_FREE) {
1813 error = data[offset + i];
1814 bad_count++;
1815 }
b28a02de 1816 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1817 }
1da177e4 1818 printk("\n");
aa83aa40
DJ
1819
1820 if (bad_count == 1) {
1821 error ^= POISON_FREE;
1822 if (!(error & (error - 1))) {
1823 printk(KERN_ERR "Single bit error detected. Probably "
1824 "bad RAM.\n");
1825#ifdef CONFIG_X86
1826 printk(KERN_ERR "Run memtest86+ or a similar memory "
1827 "test tool.\n");
1828#else
1829 printk(KERN_ERR "Run a memory test tool.\n");
1830#endif
1831 }
1832 }
1da177e4
LT
1833}
1834#endif
1835
1836#if DEBUG
1837
343e0d7a 1838static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1839{
1840 int i, size;
1841 char *realobj;
1842
1843 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1844 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1845 *dbg_redzone1(cachep, objp),
1846 *dbg_redzone2(cachep, objp));
1da177e4
LT
1847 }
1848
1849 if (cachep->flags & SLAB_STORE_USER) {
1850 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1851 *dbg_userword(cachep, objp));
1da177e4 1852 print_symbol("(%s)",
a737b3e2 1853 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1854 printk("\n");
1855 }
3dafccf2
MS
1856 realobj = (char *)objp + obj_offset(cachep);
1857 size = obj_size(cachep);
b28a02de 1858 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1859 int limit;
1860 limit = 16;
b28a02de
PE
1861 if (i + limit > size)
1862 limit = size - i;
1da177e4
LT
1863 dump_line(realobj, i, limit);
1864 }
1865}
1866
343e0d7a 1867static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1868{
1869 char *realobj;
1870 int size, i;
1871 int lines = 0;
1872
3dafccf2
MS
1873 realobj = (char *)objp + obj_offset(cachep);
1874 size = obj_size(cachep);
1da177e4 1875
b28a02de 1876 for (i = 0; i < size; i++) {
1da177e4 1877 char exp = POISON_FREE;
b28a02de 1878 if (i == size - 1)
1da177e4
LT
1879 exp = POISON_END;
1880 if (realobj[i] != exp) {
1881 int limit;
1882 /* Mismatch ! */
1883 /* Print header */
1884 if (lines == 0) {
b28a02de 1885 printk(KERN_ERR
e94a40c5
DH
1886 "Slab corruption: %s start=%p, len=%d\n",
1887 cachep->name, realobj, size);
1da177e4
LT
1888 print_objinfo(cachep, objp, 0);
1889 }
1890 /* Hexdump the affected line */
b28a02de 1891 i = (i / 16) * 16;
1da177e4 1892 limit = 16;
b28a02de
PE
1893 if (i + limit > size)
1894 limit = size - i;
1da177e4
LT
1895 dump_line(realobj, i, limit);
1896 i += 16;
1897 lines++;
1898 /* Limit to 5 lines */
1899 if (lines > 5)
1900 break;
1901 }
1902 }
1903 if (lines != 0) {
1904 /* Print some data about the neighboring objects, if they
1905 * exist:
1906 */
6ed5eb22 1907 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1908 unsigned int objnr;
1da177e4 1909
8fea4e96 1910 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1911 if (objnr) {
8fea4e96 1912 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1913 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1914 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1915 realobj, size);
1da177e4
LT
1916 print_objinfo(cachep, objp, 2);
1917 }
b28a02de 1918 if (objnr + 1 < cachep->num) {
8fea4e96 1919 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1920 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1921 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1922 realobj, size);
1da177e4
LT
1923 print_objinfo(cachep, objp, 2);
1924 }
1925 }
1926}
1927#endif
1928
12dd36fa 1929#if DEBUG
e79aec29 1930static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1931{
1da177e4
LT
1932 int i;
1933 for (i = 0; i < cachep->num; i++) {
8fea4e96 1934 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1935
1936 if (cachep->flags & SLAB_POISON) {
1937#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1938 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1939 OFF_SLAB(cachep))
b28a02de 1940 kernel_map_pages(virt_to_page(objp),
a737b3e2 1941 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1942 else
1943 check_poison_obj(cachep, objp);
1944#else
1945 check_poison_obj(cachep, objp);
1946#endif
1947 }
1948 if (cachep->flags & SLAB_RED_ZONE) {
1949 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1950 slab_error(cachep, "start of a freed object "
b28a02de 1951 "was overwritten");
1da177e4
LT
1952 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1953 slab_error(cachep, "end of a freed object "
b28a02de 1954 "was overwritten");
1da177e4 1955 }
1da177e4 1956 }
12dd36fa 1957}
1da177e4 1958#else
e79aec29 1959static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1960{
12dd36fa 1961}
1da177e4
LT
1962#endif
1963
911851e6
RD
1964/**
1965 * slab_destroy - destroy and release all objects in a slab
1966 * @cachep: cache pointer being destroyed
1967 * @slabp: slab pointer being destroyed
1968 *
12dd36fa 1969 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1970 * Before calling the slab must have been unlinked from the cache. The
1971 * cache-lock is not held/needed.
12dd36fa 1972 */
343e0d7a 1973static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1974{
1975 void *addr = slabp->s_mem - slabp->colouroff;
1976
e79aec29 1977 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1978 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1979 struct slab_rcu *slab_rcu;
1980
b28a02de 1981 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1982 slab_rcu->cachep = cachep;
1983 slab_rcu->addr = addr;
1984 call_rcu(&slab_rcu->head, kmem_rcu_free);
1985 } else {
1986 kmem_freepages(cachep, addr);
873623df
IM
1987 if (OFF_SLAB(cachep))
1988 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1989 }
1990}
1991
117f6eb1
CL
1992static void __kmem_cache_destroy(struct kmem_cache *cachep)
1993{
1994 int i;
1995 struct kmem_list3 *l3;
1996
1997 for_each_online_cpu(i)
1998 kfree(cachep->array[i]);
1999
2000 /* NUMA: free the list3 structures */
2001 for_each_online_node(i) {
2002 l3 = cachep->nodelists[i];
2003 if (l3) {
2004 kfree(l3->shared);
2005 free_alien_cache(l3->alien);
2006 kfree(l3);
2007 }
2008 }
2009 kmem_cache_free(&cache_cache, cachep);
2010}
2011
2012
4d268eba 2013/**
a70773dd
RD
2014 * calculate_slab_order - calculate size (page order) of slabs
2015 * @cachep: pointer to the cache that is being created
2016 * @size: size of objects to be created in this cache.
2017 * @align: required alignment for the objects.
2018 * @flags: slab allocation flags
2019 *
2020 * Also calculates the number of objects per slab.
4d268eba
PE
2021 *
2022 * This could be made much more intelligent. For now, try to avoid using
2023 * high order pages for slabs. When the gfp() functions are more friendly
2024 * towards high-order requests, this should be changed.
2025 */
a737b3e2 2026static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2027 size_t size, size_t align, unsigned long flags)
4d268eba 2028{
b1ab41c4 2029 unsigned long offslab_limit;
4d268eba 2030 size_t left_over = 0;
9888e6fa 2031 int gfporder;
4d268eba 2032
0aa817f0 2033 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2034 unsigned int num;
2035 size_t remainder;
2036
9888e6fa 2037 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2038 if (!num)
2039 continue;
9888e6fa 2040
b1ab41c4
IM
2041 if (flags & CFLGS_OFF_SLAB) {
2042 /*
2043 * Max number of objs-per-slab for caches which
2044 * use off-slab slabs. Needed to avoid a possible
2045 * looping condition in cache_grow().
2046 */
2047 offslab_limit = size - sizeof(struct slab);
2048 offslab_limit /= sizeof(kmem_bufctl_t);
2049
2050 if (num > offslab_limit)
2051 break;
2052 }
4d268eba 2053
9888e6fa 2054 /* Found something acceptable - save it away */
4d268eba 2055 cachep->num = num;
9888e6fa 2056 cachep->gfporder = gfporder;
4d268eba
PE
2057 left_over = remainder;
2058
f78bb8ad
LT
2059 /*
2060 * A VFS-reclaimable slab tends to have most allocations
2061 * as GFP_NOFS and we really don't want to have to be allocating
2062 * higher-order pages when we are unable to shrink dcache.
2063 */
2064 if (flags & SLAB_RECLAIM_ACCOUNT)
2065 break;
2066
4d268eba
PE
2067 /*
2068 * Large number of objects is good, but very large slabs are
2069 * currently bad for the gfp()s.
2070 */
9888e6fa 2071 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2072 break;
2073
9888e6fa
LT
2074 /*
2075 * Acceptable internal fragmentation?
2076 */
a737b3e2 2077 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2078 break;
2079 }
2080 return left_over;
2081}
2082
83b519e8 2083static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2084{
2ed3a4ef 2085 if (g_cpucache_up == FULL)
83b519e8 2086 return enable_cpucache(cachep, gfp);
2ed3a4ef 2087
f30cf7d1
PE
2088 if (g_cpucache_up == NONE) {
2089 /*
2090 * Note: the first kmem_cache_create must create the cache
2091 * that's used by kmalloc(24), otherwise the creation of
2092 * further caches will BUG().
2093 */
2094 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2095
2096 /*
2097 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2098 * the first cache, then we need to set up all its list3s,
2099 * otherwise the creation of further caches will BUG().
2100 */
2101 set_up_list3s(cachep, SIZE_AC);
2102 if (INDEX_AC == INDEX_L3)
2103 g_cpucache_up = PARTIAL_L3;
2104 else
2105 g_cpucache_up = PARTIAL_AC;
2106 } else {
2107 cachep->array[smp_processor_id()] =
83b519e8 2108 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2109
2110 if (g_cpucache_up == PARTIAL_AC) {
2111 set_up_list3s(cachep, SIZE_L3);
2112 g_cpucache_up = PARTIAL_L3;
2113 } else {
2114 int node;
556a169d 2115 for_each_online_node(node) {
f30cf7d1
PE
2116 cachep->nodelists[node] =
2117 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2118 gfp, node);
f30cf7d1
PE
2119 BUG_ON(!cachep->nodelists[node]);
2120 kmem_list3_init(cachep->nodelists[node]);
2121 }
2122 }
2123 }
2124 cachep->nodelists[numa_node_id()]->next_reap =
2125 jiffies + REAPTIMEOUT_LIST3 +
2126 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2127
2128 cpu_cache_get(cachep)->avail = 0;
2129 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2130 cpu_cache_get(cachep)->batchcount = 1;
2131 cpu_cache_get(cachep)->touched = 0;
2132 cachep->batchcount = 1;
2133 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2134 return 0;
f30cf7d1
PE
2135}
2136
1da177e4
LT
2137/**
2138 * kmem_cache_create - Create a cache.
2139 * @name: A string which is used in /proc/slabinfo to identify this cache.
2140 * @size: The size of objects to be created in this cache.
2141 * @align: The required alignment for the objects.
2142 * @flags: SLAB flags
2143 * @ctor: A constructor for the objects.
1da177e4
LT
2144 *
2145 * Returns a ptr to the cache on success, NULL on failure.
2146 * Cannot be called within a int, but can be interrupted.
20c2df83 2147 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2148 *
2149 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2150 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2151 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2152 * therefore applications must manage it themselves.
a737b3e2 2153 *
1da177e4
LT
2154 * The flags are
2155 *
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2158 *
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2161 *
1da177e4
LT
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline. This can be beneficial if you're counting cycles as closely
2164 * as davem.
2165 */
343e0d7a 2166struct kmem_cache *
1da177e4 2167kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2168 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2169{
2170 size_t left_over, slab_size, ralign;
7a7c381d 2171 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2172 gfp_t gfp;
1da177e4
LT
2173
2174 /*
2175 * Sanity checks... these are all serious usage bugs.
2176 */
a737b3e2 2177 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2178 size > KMALLOC_MAX_SIZE) {
d40cee24 2179 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2180 name);
b28a02de
PE
2181 BUG();
2182 }
1da177e4 2183
f0188f47 2184 /*
8f5be20b 2185 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2186 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2187 */
83b519e8
PE
2188 if (slab_is_available()) {
2189 get_online_cpus();
2190 mutex_lock(&cache_chain_mutex);
2191 }
4f12bb4f 2192
7a7c381d 2193 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2194 char tmp;
2195 int res;
2196
2197 /*
2198 * This happens when the module gets unloaded and doesn't
2199 * destroy its slab cache and no-one else reuses the vmalloc
2200 * area of the module. Print a warning.
2201 */
138ae663 2202 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2203 if (res) {
b4169525 2204 printk(KERN_ERR
2205 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2206 pc->buffer_size);
4f12bb4f
AM
2207 continue;
2208 }
2209
b28a02de 2210 if (!strcmp(pc->name, name)) {
b4169525 2211 printk(KERN_ERR
2212 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2213 dump_stack();
2214 goto oops;
2215 }
2216 }
2217
1da177e4
LT
2218#if DEBUG
2219 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2220#if FORCED_DEBUG
2221 /*
2222 * Enable redzoning and last user accounting, except for caches with
2223 * large objects, if the increased size would increase the object size
2224 * above the next power of two: caches with object sizes just above a
2225 * power of two have a significant amount of internal fragmentation.
2226 */
87a927c7
DW
2227 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2228 2 * sizeof(unsigned long long)))
b28a02de 2229 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2230 if (!(flags & SLAB_DESTROY_BY_RCU))
2231 flags |= SLAB_POISON;
2232#endif
2233 if (flags & SLAB_DESTROY_BY_RCU)
2234 BUG_ON(flags & SLAB_POISON);
2235#endif
1da177e4 2236 /*
a737b3e2
AM
2237 * Always checks flags, a caller might be expecting debug support which
2238 * isn't available.
1da177e4 2239 */
40094fa6 2240 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2241
a737b3e2
AM
2242 /*
2243 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2244 * unaligned accesses for some archs when redzoning is used, and makes
2245 * sure any on-slab bufctl's are also correctly aligned.
2246 */
b28a02de
PE
2247 if (size & (BYTES_PER_WORD - 1)) {
2248 size += (BYTES_PER_WORD - 1);
2249 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2250 }
2251
a737b3e2
AM
2252 /* calculate the final buffer alignment: */
2253
1da177e4
LT
2254 /* 1) arch recommendation: can be overridden for debug */
2255 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2256 /*
2257 * Default alignment: as specified by the arch code. Except if
2258 * an object is really small, then squeeze multiple objects into
2259 * one cacheline.
1da177e4
LT
2260 */
2261 ralign = cache_line_size();
b28a02de 2262 while (size <= ralign / 2)
1da177e4
LT
2263 ralign /= 2;
2264 } else {
2265 ralign = BYTES_PER_WORD;
2266 }
ca5f9703
PE
2267
2268 /*
87a927c7
DW
2269 * Redzoning and user store require word alignment or possibly larger.
2270 * Note this will be overridden by architecture or caller mandated
2271 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2272 */
87a927c7
DW
2273 if (flags & SLAB_STORE_USER)
2274 ralign = BYTES_PER_WORD;
2275
2276 if (flags & SLAB_RED_ZONE) {
2277 ralign = REDZONE_ALIGN;
2278 /* If redzoning, ensure that the second redzone is suitably
2279 * aligned, by adjusting the object size accordingly. */
2280 size += REDZONE_ALIGN - 1;
2281 size &= ~(REDZONE_ALIGN - 1);
2282 }
ca5f9703 2283
a44b56d3 2284 /* 2) arch mandated alignment */
1da177e4
LT
2285 if (ralign < ARCH_SLAB_MINALIGN) {
2286 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2287 }
a44b56d3 2288 /* 3) caller mandated alignment */
1da177e4
LT
2289 if (ralign < align) {
2290 ralign = align;
1da177e4 2291 }
5c5e3b33
SL
2292 /* disable debug if not aligning with REDZONE_ALIGN */
2293 if (ralign & (__alignof__(unsigned long long) - 1))
a44b56d3 2294 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2295 /*
ca5f9703 2296 * 4) Store it.
1da177e4
LT
2297 */
2298 align = ralign;
2299
83b519e8
PE
2300 if (slab_is_available())
2301 gfp = GFP_KERNEL;
2302 else
2303 gfp = GFP_NOWAIT;
2304
1da177e4 2305 /* Get cache's description obj. */
83b519e8 2306 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2307 if (!cachep)
4f12bb4f 2308 goto oops;
1da177e4
LT
2309
2310#if DEBUG
3dafccf2 2311 cachep->obj_size = size;
1da177e4 2312
ca5f9703
PE
2313 /*
2314 * Both debugging options require word-alignment which is calculated
2315 * into align above.
2316 */
1da177e4 2317 if (flags & SLAB_RED_ZONE) {
1da177e4 2318 /* add space for red zone words */
5c5e3b33
SL
2319 cachep->obj_offset += align;
2320 size += align + sizeof(unsigned long long);
1da177e4
LT
2321 }
2322 if (flags & SLAB_STORE_USER) {
ca5f9703 2323 /* user store requires one word storage behind the end of
87a927c7
DW
2324 * the real object. But if the second red zone needs to be
2325 * aligned to 64 bits, we must allow that much space.
1da177e4 2326 */
87a927c7
DW
2327 if (flags & SLAB_RED_ZONE)
2328 size += REDZONE_ALIGN;
2329 else
2330 size += BYTES_PER_WORD;
1da177e4
LT
2331 }
2332#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2333 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2334 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2335 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2336 size = PAGE_SIZE;
2337 }
2338#endif
2339#endif
2340
e0a42726
IM
2341 /*
2342 * Determine if the slab management is 'on' or 'off' slab.
2343 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2344 * it too early on. Always use on-slab management when
2345 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2346 */
e7cb55b9
CM
2347 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2348 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2349 /*
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2352 */
2353 flags |= CFLGS_OFF_SLAB;
2354
2355 size = ALIGN(size, align);
2356
f78bb8ad 2357 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2358
2359 if (!cachep->num) {
b4169525 2360 printk(KERN_ERR
2361 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2362 kmem_cache_free(&cache_cache, cachep);
2363 cachep = NULL;
4f12bb4f 2364 goto oops;
1da177e4 2365 }
b28a02de
PE
2366 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2367 + sizeof(struct slab), align);
1da177e4
LT
2368
2369 /*
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2372 */
2373 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2374 flags &= ~CFLGS_OFF_SLAB;
2375 left_over -= slab_size;
2376 }
2377
2378 if (flags & CFLGS_OFF_SLAB) {
2379 /* really off slab. No need for manual alignment */
b28a02de
PE
2380 slab_size =
2381 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2382
2383#ifdef CONFIG_PAGE_POISONING
2384 /* If we're going to use the generic kernel_map_pages()
2385 * poisoning, then it's going to smash the contents of
2386 * the redzone and userword anyhow, so switch them off.
2387 */
2388 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2389 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2390#endif
1da177e4
LT
2391 }
2392
2393 cachep->colour_off = cache_line_size();
2394 /* Offset must be a multiple of the alignment. */
2395 if (cachep->colour_off < align)
2396 cachep->colour_off = align;
b28a02de 2397 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2398 cachep->slab_size = slab_size;
2399 cachep->flags = flags;
2400 cachep->gfpflags = 0;
4b51d669 2401 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2402 cachep->gfpflags |= GFP_DMA;
3dafccf2 2403 cachep->buffer_size = size;
6a2d7a95 2404 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2405
e5ac9c5a 2406 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2407 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2408 /*
2409 * This is a possibility for one of the malloc_sizes caches.
2410 * But since we go off slab only for object size greater than
2411 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412 * this should not happen at all.
2413 * But leave a BUG_ON for some lucky dude.
2414 */
6cb8f913 2415 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2416 }
1da177e4 2417 cachep->ctor = ctor;
1da177e4
LT
2418 cachep->name = name;
2419
83b519e8 2420 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2421 __kmem_cache_destroy(cachep);
2422 cachep = NULL;
2423 goto oops;
2424 }
1da177e4 2425
1da177e4
LT
2426 /* cache setup completed, link it into the list */
2427 list_add(&cachep->next, &cache_chain);
a737b3e2 2428oops:
1da177e4
LT
2429 if (!cachep && (flags & SLAB_PANIC))
2430 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2431 name);
83b519e8
PE
2432 if (slab_is_available()) {
2433 mutex_unlock(&cache_chain_mutex);
2434 put_online_cpus();
2435 }
1da177e4
LT
2436 return cachep;
2437}
2438EXPORT_SYMBOL(kmem_cache_create);
2439
2440#if DEBUG
2441static void check_irq_off(void)
2442{
2443 BUG_ON(!irqs_disabled());
2444}
2445
2446static void check_irq_on(void)
2447{
2448 BUG_ON(irqs_disabled());
2449}
2450
343e0d7a 2451static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2452{
2453#ifdef CONFIG_SMP
2454 check_irq_off();
e498be7d 2455 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2456#endif
2457}
e498be7d 2458
343e0d7a 2459static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2460{
2461#ifdef CONFIG_SMP
2462 check_irq_off();
2463 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2464#endif
2465}
2466
1da177e4
LT
2467#else
2468#define check_irq_off() do { } while(0)
2469#define check_irq_on() do { } while(0)
2470#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2471#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2472#endif
2473
aab2207c
CL
2474static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2475 struct array_cache *ac,
2476 int force, int node);
2477
1da177e4
LT
2478static void do_drain(void *arg)
2479{
a737b3e2 2480 struct kmem_cache *cachep = arg;
1da177e4 2481 struct array_cache *ac;
ff69416e 2482 int node = numa_node_id();
1da177e4
LT
2483
2484 check_irq_off();
9a2dba4b 2485 ac = cpu_cache_get(cachep);
ff69416e
CL
2486 spin_lock(&cachep->nodelists[node]->list_lock);
2487 free_block(cachep, ac->entry, ac->avail, node);
2488 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2489 ac->avail = 0;
2490}
2491
343e0d7a 2492static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2493{
e498be7d
CL
2494 struct kmem_list3 *l3;
2495 int node;
2496
15c8b6c1 2497 on_each_cpu(do_drain, cachep, 1);
1da177e4 2498 check_irq_on();
b28a02de 2499 for_each_online_node(node) {
e498be7d 2500 l3 = cachep->nodelists[node];
a4523a8b
RD
2501 if (l3 && l3->alien)
2502 drain_alien_cache(cachep, l3->alien);
2503 }
2504
2505 for_each_online_node(node) {
2506 l3 = cachep->nodelists[node];
2507 if (l3)
aab2207c 2508 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2509 }
1da177e4
LT
2510}
2511
ed11d9eb
CL
2512/*
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2515 *
2516 * Returns the actual number of slabs released.
2517 */
2518static int drain_freelist(struct kmem_cache *cache,
2519 struct kmem_list3 *l3, int tofree)
1da177e4 2520{
ed11d9eb
CL
2521 struct list_head *p;
2522 int nr_freed;
1da177e4 2523 struct slab *slabp;
1da177e4 2524
ed11d9eb
CL
2525 nr_freed = 0;
2526 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2527
ed11d9eb 2528 spin_lock_irq(&l3->list_lock);
e498be7d 2529 p = l3->slabs_free.prev;
ed11d9eb
CL
2530 if (p == &l3->slabs_free) {
2531 spin_unlock_irq(&l3->list_lock);
2532 goto out;
2533 }
1da177e4 2534
ed11d9eb 2535 slabp = list_entry(p, struct slab, list);
1da177e4 2536#if DEBUG
40094fa6 2537 BUG_ON(slabp->inuse);
1da177e4
LT
2538#endif
2539 list_del(&slabp->list);
ed11d9eb
CL
2540 /*
2541 * Safe to drop the lock. The slab is no longer linked
2542 * to the cache.
2543 */
2544 l3->free_objects -= cache->num;
e498be7d 2545 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2546 slab_destroy(cache, slabp);
2547 nr_freed++;
1da177e4 2548 }
ed11d9eb
CL
2549out:
2550 return nr_freed;
1da177e4
LT
2551}
2552
8f5be20b 2553/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2554static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2555{
2556 int ret = 0, i = 0;
2557 struct kmem_list3 *l3;
2558
2559 drain_cpu_caches(cachep);
2560
2561 check_irq_on();
2562 for_each_online_node(i) {
2563 l3 = cachep->nodelists[i];
ed11d9eb
CL
2564 if (!l3)
2565 continue;
2566
2567 drain_freelist(cachep, l3, l3->free_objects);
2568
2569 ret += !list_empty(&l3->slabs_full) ||
2570 !list_empty(&l3->slabs_partial);
e498be7d
CL
2571 }
2572 return (ret ? 1 : 0);
2573}
2574
1da177e4
LT
2575/**
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2578 *
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2581 */
343e0d7a 2582int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2583{
8f5be20b 2584 int ret;
40094fa6 2585 BUG_ON(!cachep || in_interrupt());
1da177e4 2586
95402b38 2587 get_online_cpus();
8f5be20b
RT
2588 mutex_lock(&cache_chain_mutex);
2589 ret = __cache_shrink(cachep);
2590 mutex_unlock(&cache_chain_mutex);
95402b38 2591 put_online_cpus();
8f5be20b 2592 return ret;
1da177e4
LT
2593}
2594EXPORT_SYMBOL(kmem_cache_shrink);
2595
2596/**
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2599 *
72fd4a35 2600 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2601 *
2602 * It is expected this function will be called by a module when it is
2603 * unloaded. This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2606 *
2607 * The cache must be empty before calling this function.
2608 *
2609 * The caller must guarantee that noone will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2611 */
133d205a 2612void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2613{
40094fa6 2614 BUG_ON(!cachep || in_interrupt());
1da177e4 2615
1da177e4 2616 /* Find the cache in the chain of caches. */
95402b38 2617 get_online_cpus();
fc0abb14 2618 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2619 /*
2620 * the chain is never empty, cache_cache is never destroyed
2621 */
2622 list_del(&cachep->next);
1da177e4
LT
2623 if (__cache_shrink(cachep)) {
2624 slab_error(cachep, "Can't free all objects");
b28a02de 2625 list_add(&cachep->next, &cache_chain);
fc0abb14 2626 mutex_unlock(&cache_chain_mutex);
95402b38 2627 put_online_cpus();
133d205a 2628 return;
1da177e4
LT
2629 }
2630
2631 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2632 rcu_barrier();
1da177e4 2633
117f6eb1 2634 __kmem_cache_destroy(cachep);
8f5be20b 2635 mutex_unlock(&cache_chain_mutex);
95402b38 2636 put_online_cpus();
1da177e4
LT
2637}
2638EXPORT_SYMBOL(kmem_cache_destroy);
2639
e5ac9c5a
RT
2640/*
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches. The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2650 */
343e0d7a 2651static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2652 int colour_off, gfp_t local_flags,
2653 int nodeid)
1da177e4
LT
2654{
2655 struct slab *slabp;
b28a02de 2656
1da177e4
LT
2657 if (OFF_SLAB(cachep)) {
2658 /* Slab management obj is off-slab. */
5b74ada7 2659 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2660 local_flags, nodeid);
d5cff635
CM
2661 /*
2662 * If the first object in the slab is leaked (it's allocated
2663 * but no one has a reference to it), we want to make sure
2664 * kmemleak does not treat the ->s_mem pointer as a reference
2665 * to the object. Otherwise we will not report the leak.
2666 */
c017b4be
CM
2667 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2668 local_flags);
1da177e4
LT
2669 if (!slabp)
2670 return NULL;
2671 } else {
b28a02de 2672 slabp = objp + colour_off;
1da177e4
LT
2673 colour_off += cachep->slab_size;
2674 }
2675 slabp->inuse = 0;
2676 slabp->colouroff = colour_off;
b28a02de 2677 slabp->s_mem = objp + colour_off;
5b74ada7 2678 slabp->nodeid = nodeid;
e51bfd0a 2679 slabp->free = 0;
1da177e4
LT
2680 return slabp;
2681}
2682
2683static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2684{
b28a02de 2685 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2686}
2687
343e0d7a 2688static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2689 struct slab *slabp)
1da177e4
LT
2690{
2691 int i;
2692
2693 for (i = 0; i < cachep->num; i++) {
8fea4e96 2694 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2695#if DEBUG
2696 /* need to poison the objs? */
2697 if (cachep->flags & SLAB_POISON)
2698 poison_obj(cachep, objp, POISON_FREE);
2699 if (cachep->flags & SLAB_STORE_USER)
2700 *dbg_userword(cachep, objp) = NULL;
2701
2702 if (cachep->flags & SLAB_RED_ZONE) {
2703 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2704 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2705 }
2706 /*
a737b3e2
AM
2707 * Constructors are not allowed to allocate memory from the same
2708 * cache which they are a constructor for. Otherwise, deadlock.
2709 * They must also be threaded.
1da177e4
LT
2710 */
2711 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2712 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2713
2714 if (cachep->flags & SLAB_RED_ZONE) {
2715 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2716 slab_error(cachep, "constructor overwrote the"
b28a02de 2717 " end of an object");
1da177e4
LT
2718 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2719 slab_error(cachep, "constructor overwrote the"
b28a02de 2720 " start of an object");
1da177e4 2721 }
a737b3e2
AM
2722 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2723 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2724 kernel_map_pages(virt_to_page(objp),
3dafccf2 2725 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2726#else
2727 if (cachep->ctor)
51cc5068 2728 cachep->ctor(objp);
1da177e4 2729#endif
b28a02de 2730 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2731 }
b28a02de 2732 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2733}
2734
343e0d7a 2735static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2736{
4b51d669
CL
2737 if (CONFIG_ZONE_DMA_FLAG) {
2738 if (flags & GFP_DMA)
2739 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2740 else
2741 BUG_ON(cachep->gfpflags & GFP_DMA);
2742 }
1da177e4
LT
2743}
2744
a737b3e2
AM
2745static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2746 int nodeid)
78d382d7 2747{
8fea4e96 2748 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2749 kmem_bufctl_t next;
2750
2751 slabp->inuse++;
2752 next = slab_bufctl(slabp)[slabp->free];
2753#if DEBUG
2754 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2755 WARN_ON(slabp->nodeid != nodeid);
2756#endif
2757 slabp->free = next;
2758
2759 return objp;
2760}
2761
a737b3e2
AM
2762static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2763 void *objp, int nodeid)
78d382d7 2764{
8fea4e96 2765 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2766
2767#if DEBUG
2768 /* Verify that the slab belongs to the intended node */
2769 WARN_ON(slabp->nodeid != nodeid);
2770
871751e2 2771 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2772 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2773 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2774 BUG();
2775 }
2776#endif
2777 slab_bufctl(slabp)[objnr] = slabp->free;
2778 slabp->free = objnr;
2779 slabp->inuse--;
2780}
2781
4776874f
PE
2782/*
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
2785 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2786 */
2787static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2788 void *addr)
1da177e4 2789{
4776874f 2790 int nr_pages;
1da177e4
LT
2791 struct page *page;
2792
4776874f 2793 page = virt_to_page(addr);
84097518 2794
4776874f 2795 nr_pages = 1;
84097518 2796 if (likely(!PageCompound(page)))
4776874f
PE
2797 nr_pages <<= cache->gfporder;
2798
1da177e4 2799 do {
4776874f
PE
2800 page_set_cache(page, cache);
2801 page_set_slab(page, slab);
1da177e4 2802 page++;
4776874f 2803 } while (--nr_pages);
1da177e4
LT
2804}
2805
2806/*
2807 * Grow (by 1) the number of slabs within a cache. This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2809 */
3c517a61
CL
2810static int cache_grow(struct kmem_cache *cachep,
2811 gfp_t flags, int nodeid, void *objp)
1da177e4 2812{
b28a02de 2813 struct slab *slabp;
b28a02de
PE
2814 size_t offset;
2815 gfp_t local_flags;
e498be7d 2816 struct kmem_list3 *l3;
1da177e4 2817
a737b3e2
AM
2818 /*
2819 * Be lazy and only check for valid flags here, keeping it out of the
2820 * critical path in kmem_cache_alloc().
1da177e4 2821 */
6cb06229
CL
2822 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2823 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2824
2e1217cf 2825 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2826 check_irq_off();
2e1217cf
RT
2827 l3 = cachep->nodelists[nodeid];
2828 spin_lock(&l3->list_lock);
1da177e4
LT
2829
2830 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2831 offset = l3->colour_next;
2832 l3->colour_next++;
2833 if (l3->colour_next >= cachep->colour)
2834 l3->colour_next = 0;
2835 spin_unlock(&l3->list_lock);
1da177e4 2836
2e1217cf 2837 offset *= cachep->colour_off;
1da177e4
LT
2838
2839 if (local_flags & __GFP_WAIT)
2840 local_irq_enable();
2841
2842 /*
2843 * The test for missing atomic flag is performed here, rather than
2844 * the more obvious place, simply to reduce the critical path length
2845 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846 * will eventually be caught here (where it matters).
2847 */
2848 kmem_flagcheck(cachep, flags);
2849
a737b3e2
AM
2850 /*
2851 * Get mem for the objs. Attempt to allocate a physical page from
2852 * 'nodeid'.
e498be7d 2853 */
3c517a61 2854 if (!objp)
b8c1c5da 2855 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2856 if (!objp)
1da177e4
LT
2857 goto failed;
2858
2859 /* Get slab management. */
3c517a61 2860 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2861 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2862 if (!slabp)
1da177e4
LT
2863 goto opps1;
2864
4776874f 2865 slab_map_pages(cachep, slabp, objp);
1da177e4 2866
a35afb83 2867 cache_init_objs(cachep, slabp);
1da177e4
LT
2868
2869 if (local_flags & __GFP_WAIT)
2870 local_irq_disable();
2871 check_irq_off();
e498be7d 2872 spin_lock(&l3->list_lock);
1da177e4
LT
2873
2874 /* Make slab active. */
e498be7d 2875 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2876 STATS_INC_GROWN(cachep);
e498be7d
CL
2877 l3->free_objects += cachep->num;
2878 spin_unlock(&l3->list_lock);
1da177e4 2879 return 1;
a737b3e2 2880opps1:
1da177e4 2881 kmem_freepages(cachep, objp);
a737b3e2 2882failed:
1da177e4
LT
2883 if (local_flags & __GFP_WAIT)
2884 local_irq_disable();
2885 return 0;
2886}
2887
2888#if DEBUG
2889
2890/*
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
1da177e4
LT
2894 */
2895static void kfree_debugcheck(const void *objp)
2896{
1da177e4
LT
2897 if (!virt_addr_valid(objp)) {
2898 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2899 (unsigned long)objp);
2900 BUG();
1da177e4 2901 }
1da177e4
LT
2902}
2903
58ce1fd5
PE
2904static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2905{
b46b8f19 2906 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2907
2908 redzone1 = *dbg_redzone1(cache, obj);
2909 redzone2 = *dbg_redzone2(cache, obj);
2910
2911 /*
2912 * Redzone is ok.
2913 */
2914 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2915 return;
2916
2917 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2918 slab_error(cache, "double free detected");
2919 else
2920 slab_error(cache, "memory outside object was overwritten");
2921
b46b8f19 2922 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2923 obj, redzone1, redzone2);
2924}
2925
343e0d7a 2926static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2927 void *caller)
1da177e4
LT
2928{
2929 struct page *page;
2930 unsigned int objnr;
2931 struct slab *slabp;
2932
80cbd911
MW
2933 BUG_ON(virt_to_cache(objp) != cachep);
2934
3dafccf2 2935 objp -= obj_offset(cachep);
1da177e4 2936 kfree_debugcheck(objp);
b49af68f 2937 page = virt_to_head_page(objp);
1da177e4 2938
065d41cb 2939 slabp = page_get_slab(page);
1da177e4
LT
2940
2941 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2942 verify_redzone_free(cachep, objp);
1da177e4
LT
2943 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2944 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2945 }
2946 if (cachep->flags & SLAB_STORE_USER)
2947 *dbg_userword(cachep, objp) = caller;
2948
8fea4e96 2949 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2950
2951 BUG_ON(objnr >= cachep->num);
8fea4e96 2952 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2953
871751e2
AV
2954#ifdef CONFIG_DEBUG_SLAB_LEAK
2955 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2956#endif
1da177e4
LT
2957 if (cachep->flags & SLAB_POISON) {
2958#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2959 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2960 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2961 kernel_map_pages(virt_to_page(objp),
3dafccf2 2962 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2963 } else {
2964 poison_obj(cachep, objp, POISON_FREE);
2965 }
2966#else
2967 poison_obj(cachep, objp, POISON_FREE);
2968#endif
2969 }
2970 return objp;
2971}
2972
343e0d7a 2973static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2974{
2975 kmem_bufctl_t i;
2976 int entries = 0;
b28a02de 2977
1da177e4
LT
2978 /* Check slab's freelist to see if this obj is there. */
2979 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2980 entries++;
2981 if (entries > cachep->num || i >= cachep->num)
2982 goto bad;
2983 }
2984 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2985bad:
2986 printk(KERN_ERR "slab: Internal list corruption detected in "
2987 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2989 for (i = 0;
264132bc 2990 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2991 i++) {
a737b3e2 2992 if (i % 16 == 0)
1da177e4 2993 printk("\n%03x:", i);
b28a02de 2994 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2995 }
2996 printk("\n");
2997 BUG();
2998 }
2999}
3000#else
3001#define kfree_debugcheck(x) do { } while(0)
3002#define cache_free_debugcheck(x,objp,z) (objp)
3003#define check_slabp(x,y) do { } while(0)
3004#endif
3005
343e0d7a 3006static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3007{
3008 int batchcount;
3009 struct kmem_list3 *l3;
3010 struct array_cache *ac;
1ca4cb24
PE
3011 int node;
3012
6d2144d3 3013retry:
1da177e4 3014 check_irq_off();
6d2144d3 3015 node = numa_node_id();
9a2dba4b 3016 ac = cpu_cache_get(cachep);
1da177e4
LT
3017 batchcount = ac->batchcount;
3018 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3019 /*
3020 * If there was little recent activity on this cache, then
3021 * perform only a partial refill. Otherwise we could generate
3022 * refill bouncing.
1da177e4
LT
3023 */
3024 batchcount = BATCHREFILL_LIMIT;
3025 }
1ca4cb24 3026 l3 = cachep->nodelists[node];
e498be7d
CL
3027
3028 BUG_ON(ac->avail > 0 || !l3);
3029 spin_lock(&l3->list_lock);
1da177e4 3030
3ded175a 3031 /* See if we can refill from the shared array */
44b57f1c
NP
3032 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3033 l3->shared->touched = 1;
3ded175a 3034 goto alloc_done;
44b57f1c 3035 }
3ded175a 3036
1da177e4
LT
3037 while (batchcount > 0) {
3038 struct list_head *entry;
3039 struct slab *slabp;
3040 /* Get slab alloc is to come from. */
3041 entry = l3->slabs_partial.next;
3042 if (entry == &l3->slabs_partial) {
3043 l3->free_touched = 1;
3044 entry = l3->slabs_free.next;
3045 if (entry == &l3->slabs_free)
3046 goto must_grow;
3047 }
3048
3049 slabp = list_entry(entry, struct slab, list);
3050 check_slabp(cachep, slabp);
3051 check_spinlock_acquired(cachep);
714b8171
PE
3052
3053 /*
3054 * The slab was either on partial or free list so
3055 * there must be at least one object available for
3056 * allocation.
3057 */
249b9f33 3058 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3059
1da177e4 3060 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3061 STATS_INC_ALLOCED(cachep);
3062 STATS_INC_ACTIVE(cachep);
3063 STATS_SET_HIGH(cachep);
3064
78d382d7 3065 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3066 node);
1da177e4
LT
3067 }
3068 check_slabp(cachep, slabp);
3069
3070 /* move slabp to correct slabp list: */
3071 list_del(&slabp->list);
3072 if (slabp->free == BUFCTL_END)
3073 list_add(&slabp->list, &l3->slabs_full);
3074 else
3075 list_add(&slabp->list, &l3->slabs_partial);
3076 }
3077
a737b3e2 3078must_grow:
1da177e4 3079 l3->free_objects -= ac->avail;
a737b3e2 3080alloc_done:
e498be7d 3081 spin_unlock(&l3->list_lock);
1da177e4
LT
3082
3083 if (unlikely(!ac->avail)) {
3084 int x;
3c517a61 3085 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3086
a737b3e2 3087 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3088 ac = cpu_cache_get(cachep);
a737b3e2 3089 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3090 return NULL;
3091
a737b3e2 3092 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3093 goto retry;
3094 }
3095 ac->touched = 1;
e498be7d 3096 return ac->entry[--ac->avail];
1da177e4
LT
3097}
3098
a737b3e2
AM
3099static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3100 gfp_t flags)
1da177e4
LT
3101{
3102 might_sleep_if(flags & __GFP_WAIT);
3103#if DEBUG
3104 kmem_flagcheck(cachep, flags);
3105#endif
3106}
3107
3108#if DEBUG
a737b3e2
AM
3109static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3110 gfp_t flags, void *objp, void *caller)
1da177e4 3111{
b28a02de 3112 if (!objp)
1da177e4 3113 return objp;
b28a02de 3114 if (cachep->flags & SLAB_POISON) {
1da177e4 3115#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3116 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3117 kernel_map_pages(virt_to_page(objp),
3dafccf2 3118 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3119 else
3120 check_poison_obj(cachep, objp);
3121#else
3122 check_poison_obj(cachep, objp);
3123#endif
3124 poison_obj(cachep, objp, POISON_INUSE);
3125 }
3126 if (cachep->flags & SLAB_STORE_USER)
3127 *dbg_userword(cachep, objp) = caller;
3128
3129 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3130 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3131 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3132 slab_error(cachep, "double free, or memory outside"
3133 " object was overwritten");
b28a02de 3134 printk(KERN_ERR
b46b8f19 3135 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3136 objp, *dbg_redzone1(cachep, objp),
3137 *dbg_redzone2(cachep, objp));
1da177e4
LT
3138 }
3139 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3140 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3141 }
871751e2
AV
3142#ifdef CONFIG_DEBUG_SLAB_LEAK
3143 {
3144 struct slab *slabp;
3145 unsigned objnr;
3146
b49af68f 3147 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3148 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3149 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3150 }
3151#endif
3dafccf2 3152 objp += obj_offset(cachep);
4f104934 3153 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3154 cachep->ctor(objp);
a44b56d3
KH
3155#if ARCH_SLAB_MINALIGN
3156 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3157 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158 objp, ARCH_SLAB_MINALIGN);
3159 }
3160#endif
1da177e4
LT
3161 return objp;
3162}
3163#else
3164#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3165#endif
3166
773ff60e 3167static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3168{
3169 if (cachep == &cache_cache)
773ff60e 3170 return false;
8a8b6502 3171
4c13dd3b 3172 return should_failslab(obj_size(cachep), flags, cachep->flags);
8a8b6502
AM
3173}
3174
343e0d7a 3175static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3176{
b28a02de 3177 void *objp;
1da177e4
LT
3178 struct array_cache *ac;
3179
5c382300 3180 check_irq_off();
8a8b6502 3181
9a2dba4b 3182 ac = cpu_cache_get(cachep);
1da177e4
LT
3183 if (likely(ac->avail)) {
3184 STATS_INC_ALLOCHIT(cachep);
3185 ac->touched = 1;
e498be7d 3186 objp = ac->entry[--ac->avail];
1da177e4
LT
3187 } else {
3188 STATS_INC_ALLOCMISS(cachep);
3189 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3190 /*
3191 * the 'ac' may be updated by cache_alloc_refill(),
3192 * and kmemleak_erase() requires its correct value.
3193 */
3194 ac = cpu_cache_get(cachep);
1da177e4 3195 }
d5cff635
CM
3196 /*
3197 * To avoid a false negative, if an object that is in one of the
3198 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199 * treat the array pointers as a reference to the object.
3200 */
f3d8b53a
O
3201 if (objp)
3202 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3203 return objp;
3204}
3205
e498be7d 3206#ifdef CONFIG_NUMA
c61afb18 3207/*
b2455396 3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3209 *
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3212 */
3213static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3214{
3215 int nid_alloc, nid_here;
3216
765c4507 3217 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3218 return NULL;
3219 nid_alloc = nid_here = numa_node_id();
3220 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3221 nid_alloc = cpuset_mem_spread_node();
3222 else if (current->mempolicy)
3223 nid_alloc = slab_node(current->mempolicy);
3224 if (nid_alloc != nid_here)
8b98c169 3225 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3226 return NULL;
3227}
3228
765c4507
CL
3229/*
3230 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3231 * certain node and fall back is permitted. First we scan all the
3232 * available nodelists for available objects. If that fails then we
3233 * perform an allocation without specifying a node. This allows the page
3234 * allocator to do its reclaim / fallback magic. We then insert the
3235 * slab into the proper nodelist and then allocate from it.
765c4507 3236 */
8c8cc2c1 3237static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3238{
8c8cc2c1
PE
3239 struct zonelist *zonelist;
3240 gfp_t local_flags;
dd1a239f 3241 struct zoneref *z;
54a6eb5c
MG
3242 struct zone *zone;
3243 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3244 void *obj = NULL;
3c517a61 3245 int nid;
8c8cc2c1
PE
3246
3247 if (flags & __GFP_THISNODE)
3248 return NULL;
3249
0e88460d 3250 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3251 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3252
3c517a61
CL
3253retry:
3254 /*
3255 * Look through allowed nodes for objects available
3256 * from existing per node queues.
3257 */
54a6eb5c
MG
3258 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3259 nid = zone_to_nid(zone);
aedb0eb1 3260
54a6eb5c 3261 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3262 cache->nodelists[nid] &&
481c5346 3263 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
481c5346
CL
3266 if (obj)
3267 break;
3268 }
3c517a61
CL
3269 }
3270
cfce6604 3271 if (!obj) {
3c517a61
CL
3272 /*
3273 * This allocation will be performed within the constraints
3274 * of the current cpuset / memory policy requirements.
3275 * We may trigger various forms of reclaim on the allowed
3276 * set and go into memory reserves if necessary.
3277 */
dd47ea75
CL
3278 if (local_flags & __GFP_WAIT)
3279 local_irq_enable();
3280 kmem_flagcheck(cache, flags);
6484eb3e 3281 obj = kmem_getpages(cache, local_flags, numa_node_id());
dd47ea75
CL
3282 if (local_flags & __GFP_WAIT)
3283 local_irq_disable();
3c517a61
CL
3284 if (obj) {
3285 /*
3286 * Insert into the appropriate per node queues
3287 */
3288 nid = page_to_nid(virt_to_page(obj));
3289 if (cache_grow(cache, flags, nid, obj)) {
3290 obj = ____cache_alloc_node(cache,
3291 flags | GFP_THISNODE, nid);
3292 if (!obj)
3293 /*
3294 * Another processor may allocate the
3295 * objects in the slab since we are
3296 * not holding any locks.
3297 */
3298 goto retry;
3299 } else {
b6a60451 3300 /* cache_grow already freed obj */
3c517a61
CL
3301 obj = NULL;
3302 }
3303 }
aedb0eb1 3304 }
765c4507
CL
3305 return obj;
3306}
3307
e498be7d
CL
3308/*
3309 * A interface to enable slab creation on nodeid
1da177e4 3310 */
8b98c169 3311static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3312 int nodeid)
e498be7d
CL
3313{
3314 struct list_head *entry;
b28a02de
PE
3315 struct slab *slabp;
3316 struct kmem_list3 *l3;
3317 void *obj;
b28a02de
PE
3318 int x;
3319
3320 l3 = cachep->nodelists[nodeid];
3321 BUG_ON(!l3);
3322
a737b3e2 3323retry:
ca3b9b91 3324 check_irq_off();
b28a02de
PE
3325 spin_lock(&l3->list_lock);
3326 entry = l3->slabs_partial.next;
3327 if (entry == &l3->slabs_partial) {
3328 l3->free_touched = 1;
3329 entry = l3->slabs_free.next;
3330 if (entry == &l3->slabs_free)
3331 goto must_grow;
3332 }
3333
3334 slabp = list_entry(entry, struct slab, list);
3335 check_spinlock_acquired_node(cachep, nodeid);
3336 check_slabp(cachep, slabp);
3337
3338 STATS_INC_NODEALLOCS(cachep);
3339 STATS_INC_ACTIVE(cachep);
3340 STATS_SET_HIGH(cachep);
3341
3342 BUG_ON(slabp->inuse == cachep->num);
3343
78d382d7 3344 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3345 check_slabp(cachep, slabp);
3346 l3->free_objects--;
3347 /* move slabp to correct slabp list: */
3348 list_del(&slabp->list);
3349
a737b3e2 3350 if (slabp->free == BUFCTL_END)
b28a02de 3351 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3352 else
b28a02de 3353 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3354
b28a02de
PE
3355 spin_unlock(&l3->list_lock);
3356 goto done;
e498be7d 3357
a737b3e2 3358must_grow:
b28a02de 3359 spin_unlock(&l3->list_lock);
3c517a61 3360 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3361 if (x)
3362 goto retry;
1da177e4 3363
8c8cc2c1 3364 return fallback_alloc(cachep, flags);
e498be7d 3365
a737b3e2 3366done:
b28a02de 3367 return obj;
e498be7d 3368}
8c8cc2c1
PE
3369
3370/**
3371 * kmem_cache_alloc_node - Allocate an object on the specified node
3372 * @cachep: The cache to allocate from.
3373 * @flags: See kmalloc().
3374 * @nodeid: node number of the target node.
3375 * @caller: return address of caller, used for debug information
3376 *
3377 * Identical to kmem_cache_alloc but it will allocate memory on the given
3378 * node, which can improve the performance for cpu bound structures.
3379 *
3380 * Fallback to other node is possible if __GFP_THISNODE is not set.
3381 */
3382static __always_inline void *
3383__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3384 void *caller)
3385{
3386 unsigned long save_flags;
3387 void *ptr;
3388
dcce284a 3389 flags &= gfp_allowed_mask;
7e85ee0c 3390
cf40bd16
NP
3391 lockdep_trace_alloc(flags);
3392
773ff60e 3393 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3394 return NULL;
3395
8c8cc2c1
PE
3396 cache_alloc_debugcheck_before(cachep, flags);
3397 local_irq_save(save_flags);
3398
8e15b79c 3399 if (nodeid == -1)
8c8cc2c1
PE
3400 nodeid = numa_node_id();
3401
3402 if (unlikely(!cachep->nodelists[nodeid])) {
3403 /* Node not bootstrapped yet */
3404 ptr = fallback_alloc(cachep, flags);
3405 goto out;
3406 }
3407
3408 if (nodeid == numa_node_id()) {
3409 /*
3410 * Use the locally cached objects if possible.
3411 * However ____cache_alloc does not allow fallback
3412 * to other nodes. It may fail while we still have
3413 * objects on other nodes available.
3414 */
3415 ptr = ____cache_alloc(cachep, flags);
3416 if (ptr)
3417 goto out;
3418 }
3419 /* ___cache_alloc_node can fall back to other nodes */
3420 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3421 out:
3422 local_irq_restore(save_flags);
3423 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3424 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3425 flags);
8c8cc2c1 3426
c175eea4
PE
3427 if (likely(ptr))
3428 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3429
d07dbea4
CL
3430 if (unlikely((flags & __GFP_ZERO) && ptr))
3431 memset(ptr, 0, obj_size(cachep));
3432
8c8cc2c1
PE
3433 return ptr;
3434}
3435
3436static __always_inline void *
3437__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3438{
3439 void *objp;
3440
3441 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3442 objp = alternate_node_alloc(cache, flags);
3443 if (objp)
3444 goto out;
3445 }
3446 objp = ____cache_alloc(cache, flags);
3447
3448 /*
3449 * We may just have run out of memory on the local node.
3450 * ____cache_alloc_node() knows how to locate memory on other nodes
3451 */
3452 if (!objp)
3453 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3454
3455 out:
3456 return objp;
3457}
3458#else
3459
3460static __always_inline void *
3461__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3462{
3463 return ____cache_alloc(cachep, flags);
3464}
3465
3466#endif /* CONFIG_NUMA */
3467
3468static __always_inline void *
3469__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3470{
3471 unsigned long save_flags;
3472 void *objp;
3473
dcce284a 3474 flags &= gfp_allowed_mask;
7e85ee0c 3475
cf40bd16
NP
3476 lockdep_trace_alloc(flags);
3477
773ff60e 3478 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3479 return NULL;
3480
8c8cc2c1
PE
3481 cache_alloc_debugcheck_before(cachep, flags);
3482 local_irq_save(save_flags);
3483 objp = __do_cache_alloc(cachep, flags);
3484 local_irq_restore(save_flags);
3485 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3486 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3487 flags);
8c8cc2c1
PE
3488 prefetchw(objp);
3489
c175eea4
PE
3490 if (likely(objp))
3491 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3492
d07dbea4
CL
3493 if (unlikely((flags & __GFP_ZERO) && objp))
3494 memset(objp, 0, obj_size(cachep));
3495
8c8cc2c1
PE
3496 return objp;
3497}
e498be7d
CL
3498
3499/*
3500 * Caller needs to acquire correct kmem_list's list_lock
3501 */
343e0d7a 3502static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3503 int node)
1da177e4
LT
3504{
3505 int i;
e498be7d 3506 struct kmem_list3 *l3;
1da177e4
LT
3507
3508 for (i = 0; i < nr_objects; i++) {
3509 void *objp = objpp[i];
3510 struct slab *slabp;
1da177e4 3511
6ed5eb22 3512 slabp = virt_to_slab(objp);
ff69416e 3513 l3 = cachep->nodelists[node];
1da177e4 3514 list_del(&slabp->list);
ff69416e 3515 check_spinlock_acquired_node(cachep, node);
1da177e4 3516 check_slabp(cachep, slabp);
78d382d7 3517 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3518 STATS_DEC_ACTIVE(cachep);
e498be7d 3519 l3->free_objects++;
1da177e4
LT
3520 check_slabp(cachep, slabp);
3521
3522 /* fixup slab chains */
3523 if (slabp->inuse == 0) {
e498be7d
CL
3524 if (l3->free_objects > l3->free_limit) {
3525 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3526 /* No need to drop any previously held
3527 * lock here, even if we have a off-slab slab
3528 * descriptor it is guaranteed to come from
3529 * a different cache, refer to comments before
3530 * alloc_slabmgmt.
3531 */
1da177e4
LT
3532 slab_destroy(cachep, slabp);
3533 } else {
e498be7d 3534 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3535 }
3536 } else {
3537 /* Unconditionally move a slab to the end of the
3538 * partial list on free - maximum time for the
3539 * other objects to be freed, too.
3540 */
e498be7d 3541 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3542 }
3543 }
3544}
3545
343e0d7a 3546static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3547{
3548 int batchcount;
e498be7d 3549 struct kmem_list3 *l3;
ff69416e 3550 int node = numa_node_id();
1da177e4
LT
3551
3552 batchcount = ac->batchcount;
3553#if DEBUG
3554 BUG_ON(!batchcount || batchcount > ac->avail);
3555#endif
3556 check_irq_off();
ff69416e 3557 l3 = cachep->nodelists[node];
873623df 3558 spin_lock(&l3->list_lock);
e498be7d
CL
3559 if (l3->shared) {
3560 struct array_cache *shared_array = l3->shared;
b28a02de 3561 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3562 if (max) {
3563 if (batchcount > max)
3564 batchcount = max;
e498be7d 3565 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3566 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3567 shared_array->avail += batchcount;
3568 goto free_done;
3569 }
3570 }
3571
ff69416e 3572 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3573free_done:
1da177e4
LT
3574#if STATS
3575 {
3576 int i = 0;
3577 struct list_head *p;
3578
e498be7d
CL
3579 p = l3->slabs_free.next;
3580 while (p != &(l3->slabs_free)) {
1da177e4
LT
3581 struct slab *slabp;
3582
3583 slabp = list_entry(p, struct slab, list);
3584 BUG_ON(slabp->inuse);
3585
3586 i++;
3587 p = p->next;
3588 }
3589 STATS_SET_FREEABLE(cachep, i);
3590 }
3591#endif
e498be7d 3592 spin_unlock(&l3->list_lock);
1da177e4 3593 ac->avail -= batchcount;
a737b3e2 3594 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3595}
3596
3597/*
a737b3e2
AM
3598 * Release an obj back to its cache. If the obj has a constructed state, it must
3599 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3600 */
873623df 3601static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3602{
9a2dba4b 3603 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3604
3605 check_irq_off();
d5cff635 3606 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3607 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3608
c175eea4
PE
3609 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3610
1807a1aa
SS
3611 /*
3612 * Skip calling cache_free_alien() when the platform is not numa.
3613 * This will avoid cache misses that happen while accessing slabp (which
3614 * is per page memory reference) to get nodeid. Instead use a global
3615 * variable to skip the call, which is mostly likely to be present in
3616 * the cache.
3617 */
b6e68bc1 3618 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3619 return;
3620
1da177e4
LT
3621 if (likely(ac->avail < ac->limit)) {
3622 STATS_INC_FREEHIT(cachep);
e498be7d 3623 ac->entry[ac->avail++] = objp;
1da177e4
LT
3624 return;
3625 } else {
3626 STATS_INC_FREEMISS(cachep);
3627 cache_flusharray(cachep, ac);
e498be7d 3628 ac->entry[ac->avail++] = objp;
1da177e4
LT
3629 }
3630}
3631
3632/**
3633 * kmem_cache_alloc - Allocate an object
3634 * @cachep: The cache to allocate from.
3635 * @flags: See kmalloc().
3636 *
3637 * Allocate an object from this cache. The flags are only relevant
3638 * if the cache has no available objects.
3639 */
343e0d7a 3640void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3641{
36555751
EGM
3642 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3643
ca2b84cb
EGM
3644 trace_kmem_cache_alloc(_RET_IP_, ret,
3645 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3646
3647 return ret;
1da177e4
LT
3648}
3649EXPORT_SYMBOL(kmem_cache_alloc);
3650
0f24f128 3651#ifdef CONFIG_TRACING
36555751
EGM
3652void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3653{
3654 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3655}
3656EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3657#endif
3658
1da177e4 3659/**
7682486b 3660 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3661 * @cachep: the cache we're checking against
3662 * @ptr: pointer to validate
3663 *
7682486b 3664 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3665 * it is _not_ a guarantee that the pointer is actually
3666 * part of the slab cache in question, but it at least
3667 * validates that the pointer can be dereferenced and
3668 * looks half-way sane.
3669 *
3670 * Currently only used for dentry validation.
3671 */
b7f869a2 3672int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3673{
3dafccf2 3674 unsigned long size = cachep->buffer_size;
1da177e4
LT
3675 struct page *page;
3676
fc1c1833 3677 if (unlikely(!kern_ptr_validate(ptr, size)))
1da177e4
LT
3678 goto out;
3679 page = virt_to_page(ptr);
3680 if (unlikely(!PageSlab(page)))
3681 goto out;
065d41cb 3682 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3683 goto out;
3684 return 1;
a737b3e2 3685out:
1da177e4
LT
3686 return 0;
3687}
3688
3689#ifdef CONFIG_NUMA
8b98c169
CH
3690void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3691{
36555751
EGM
3692 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3693 __builtin_return_address(0));
3694
ca2b84cb
EGM
3695 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3696 obj_size(cachep), cachep->buffer_size,
3697 flags, nodeid);
36555751
EGM
3698
3699 return ret;
8b98c169 3700}
1da177e4
LT
3701EXPORT_SYMBOL(kmem_cache_alloc_node);
3702
0f24f128 3703#ifdef CONFIG_TRACING
36555751
EGM
3704void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3705 gfp_t flags,
3706 int nodeid)
3707{
3708 return __cache_alloc_node(cachep, flags, nodeid,
3709 __builtin_return_address(0));
3710}
3711EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3712#endif
3713
8b98c169
CH
3714static __always_inline void *
3715__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3716{
343e0d7a 3717 struct kmem_cache *cachep;
36555751 3718 void *ret;
97e2bde4
MS
3719
3720 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3721 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3722 return cachep;
36555751
EGM
3723 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3724
ca2b84cb
EGM
3725 trace_kmalloc_node((unsigned long) caller, ret,
3726 size, cachep->buffer_size, flags, node);
36555751
EGM
3727
3728 return ret;
97e2bde4 3729}
8b98c169 3730
0bb38a5c 3731#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3732void *__kmalloc_node(size_t size, gfp_t flags, int node)
3733{
3734 return __do_kmalloc_node(size, flags, node,
3735 __builtin_return_address(0));
3736}
dbe5e69d 3737EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3738
3739void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3740 int node, unsigned long caller)
8b98c169 3741{
ce71e27c 3742 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3743}
3744EXPORT_SYMBOL(__kmalloc_node_track_caller);
3745#else
3746void *__kmalloc_node(size_t size, gfp_t flags, int node)
3747{
3748 return __do_kmalloc_node(size, flags, node, NULL);
3749}
3750EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3751#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3752#endif /* CONFIG_NUMA */
1da177e4
LT
3753
3754/**
800590f5 3755 * __do_kmalloc - allocate memory
1da177e4 3756 * @size: how many bytes of memory are required.
800590f5 3757 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3758 * @caller: function caller for debug tracking of the caller
1da177e4 3759 */
7fd6b141
PE
3760static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3761 void *caller)
1da177e4 3762{
343e0d7a 3763 struct kmem_cache *cachep;
36555751 3764 void *ret;
1da177e4 3765
97e2bde4
MS
3766 /* If you want to save a few bytes .text space: replace
3767 * __ with kmem_.
3768 * Then kmalloc uses the uninlined functions instead of the inline
3769 * functions.
3770 */
3771 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3772 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3773 return cachep;
36555751
EGM
3774 ret = __cache_alloc(cachep, flags, caller);
3775
ca2b84cb
EGM
3776 trace_kmalloc((unsigned long) caller, ret,
3777 size, cachep->buffer_size, flags);
36555751
EGM
3778
3779 return ret;
7fd6b141
PE
3780}
3781
7fd6b141 3782
0bb38a5c 3783#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3784void *__kmalloc(size_t size, gfp_t flags)
3785{
871751e2 3786 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3787}
3788EXPORT_SYMBOL(__kmalloc);
3789
ce71e27c 3790void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3791{
ce71e27c 3792 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3793}
3794EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3795
3796#else
3797void *__kmalloc(size_t size, gfp_t flags)
3798{
3799 return __do_kmalloc(size, flags, NULL);
3800}
3801EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3802#endif
3803
1da177e4
LT
3804/**
3805 * kmem_cache_free - Deallocate an object
3806 * @cachep: The cache the allocation was from.
3807 * @objp: The previously allocated object.
3808 *
3809 * Free an object which was previously allocated from this
3810 * cache.
3811 */
343e0d7a 3812void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3813{
3814 unsigned long flags;
3815
3816 local_irq_save(flags);
898552c9 3817 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3818 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3819 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3820 __cache_free(cachep, objp);
1da177e4 3821 local_irq_restore(flags);
36555751 3822
ca2b84cb 3823 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3824}
3825EXPORT_SYMBOL(kmem_cache_free);
3826
1da177e4
LT
3827/**
3828 * kfree - free previously allocated memory
3829 * @objp: pointer returned by kmalloc.
3830 *
80e93eff
PE
3831 * If @objp is NULL, no operation is performed.
3832 *
1da177e4
LT
3833 * Don't free memory not originally allocated by kmalloc()
3834 * or you will run into trouble.
3835 */
3836void kfree(const void *objp)
3837{
343e0d7a 3838 struct kmem_cache *c;
1da177e4
LT
3839 unsigned long flags;
3840
2121db74
PE
3841 trace_kfree(_RET_IP_, objp);
3842
6cb8f913 3843 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3844 return;
3845 local_irq_save(flags);
3846 kfree_debugcheck(objp);
6ed5eb22 3847 c = virt_to_cache(objp);
f9b8404c 3848 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3849 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3850 __cache_free(c, (void *)objp);
1da177e4
LT
3851 local_irq_restore(flags);
3852}
3853EXPORT_SYMBOL(kfree);
3854
343e0d7a 3855unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3856{
3dafccf2 3857 return obj_size(cachep);
1da177e4
LT
3858}
3859EXPORT_SYMBOL(kmem_cache_size);
3860
343e0d7a 3861const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3862{
3863 return cachep->name;
3864}
3865EXPORT_SYMBOL_GPL(kmem_cache_name);
3866
e498be7d 3867/*
183ff22b 3868 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3869 */
83b519e8 3870static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3871{
3872 int node;
3873 struct kmem_list3 *l3;
cafeb02e 3874 struct array_cache *new_shared;
3395ee05 3875 struct array_cache **new_alien = NULL;
e498be7d 3876
9c09a95c 3877 for_each_online_node(node) {
cafeb02e 3878
3395ee05 3879 if (use_alien_caches) {
83b519e8 3880 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3881 if (!new_alien)
3882 goto fail;
3883 }
cafeb02e 3884
63109846
ED
3885 new_shared = NULL;
3886 if (cachep->shared) {
3887 new_shared = alloc_arraycache(node,
0718dc2a 3888 cachep->shared*cachep->batchcount,
83b519e8 3889 0xbaadf00d, gfp);
63109846
ED
3890 if (!new_shared) {
3891 free_alien_cache(new_alien);
3892 goto fail;
3893 }
0718dc2a 3894 }
cafeb02e 3895
a737b3e2
AM
3896 l3 = cachep->nodelists[node];
3897 if (l3) {
cafeb02e
CL
3898 struct array_cache *shared = l3->shared;
3899
e498be7d
CL
3900 spin_lock_irq(&l3->list_lock);
3901
cafeb02e 3902 if (shared)
0718dc2a
CL
3903 free_block(cachep, shared->entry,
3904 shared->avail, node);
e498be7d 3905
cafeb02e
CL
3906 l3->shared = new_shared;
3907 if (!l3->alien) {
e498be7d
CL
3908 l3->alien = new_alien;
3909 new_alien = NULL;
3910 }
b28a02de 3911 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3912 cachep->batchcount + cachep->num;
e498be7d 3913 spin_unlock_irq(&l3->list_lock);
cafeb02e 3914 kfree(shared);
e498be7d
CL
3915 free_alien_cache(new_alien);
3916 continue;
3917 }
83b519e8 3918 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3919 if (!l3) {
3920 free_alien_cache(new_alien);
3921 kfree(new_shared);
e498be7d 3922 goto fail;
0718dc2a 3923 }
e498be7d
CL
3924
3925 kmem_list3_init(l3);
3926 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3927 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3928 l3->shared = new_shared;
e498be7d 3929 l3->alien = new_alien;
b28a02de 3930 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3931 cachep->batchcount + cachep->num;
e498be7d
CL
3932 cachep->nodelists[node] = l3;
3933 }
cafeb02e 3934 return 0;
0718dc2a 3935
a737b3e2 3936fail:
0718dc2a
CL
3937 if (!cachep->next.next) {
3938 /* Cache is not active yet. Roll back what we did */
3939 node--;
3940 while (node >= 0) {
3941 if (cachep->nodelists[node]) {
3942 l3 = cachep->nodelists[node];
3943
3944 kfree(l3->shared);
3945 free_alien_cache(l3->alien);
3946 kfree(l3);
3947 cachep->nodelists[node] = NULL;
3948 }
3949 node--;
3950 }
3951 }
cafeb02e 3952 return -ENOMEM;
e498be7d
CL
3953}
3954
1da177e4 3955struct ccupdate_struct {
343e0d7a 3956 struct kmem_cache *cachep;
1da177e4
LT
3957 struct array_cache *new[NR_CPUS];
3958};
3959
3960static void do_ccupdate_local(void *info)
3961{
a737b3e2 3962 struct ccupdate_struct *new = info;
1da177e4
LT
3963 struct array_cache *old;
3964
3965 check_irq_off();
9a2dba4b 3966 old = cpu_cache_get(new->cachep);
e498be7d 3967
1da177e4
LT
3968 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3969 new->new[smp_processor_id()] = old;
3970}
3971
b5d8ca7c 3972/* Always called with the cache_chain_mutex held */
a737b3e2 3973static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3974 int batchcount, int shared, gfp_t gfp)
1da177e4 3975{
d2e7b7d0 3976 struct ccupdate_struct *new;
2ed3a4ef 3977 int i;
1da177e4 3978
83b519e8 3979 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3980 if (!new)
3981 return -ENOMEM;
3982
e498be7d 3983 for_each_online_cpu(i) {
d2e7b7d0 3984 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
83b519e8 3985 batchcount, gfp);
d2e7b7d0 3986 if (!new->new[i]) {
b28a02de 3987 for (i--; i >= 0; i--)
d2e7b7d0
SS
3988 kfree(new->new[i]);
3989 kfree(new);
e498be7d 3990 return -ENOMEM;
1da177e4
LT
3991 }
3992 }
d2e7b7d0 3993 new->cachep = cachep;
1da177e4 3994
15c8b6c1 3995 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3996
1da177e4 3997 check_irq_on();
1da177e4
LT
3998 cachep->batchcount = batchcount;
3999 cachep->limit = limit;
e498be7d 4000 cachep->shared = shared;
1da177e4 4001
e498be7d 4002 for_each_online_cpu(i) {
d2e7b7d0 4003 struct array_cache *ccold = new->new[i];
1da177e4
LT
4004 if (!ccold)
4005 continue;
e498be7d 4006 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 4007 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 4008 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
4009 kfree(ccold);
4010 }
d2e7b7d0 4011 kfree(new);
83b519e8 4012 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4013}
4014
b5d8ca7c 4015/* Called with cache_chain_mutex held always */
83b519e8 4016static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4017{
4018 int err;
4019 int limit, shared;
4020
a737b3e2
AM
4021 /*
4022 * The head array serves three purposes:
1da177e4
LT
4023 * - create a LIFO ordering, i.e. return objects that are cache-warm
4024 * - reduce the number of spinlock operations.
a737b3e2 4025 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4026 * bufctl chains: array operations are cheaper.
4027 * The numbers are guessed, we should auto-tune as described by
4028 * Bonwick.
4029 */
3dafccf2 4030 if (cachep->buffer_size > 131072)
1da177e4 4031 limit = 1;
3dafccf2 4032 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4033 limit = 8;
3dafccf2 4034 else if (cachep->buffer_size > 1024)
1da177e4 4035 limit = 24;
3dafccf2 4036 else if (cachep->buffer_size > 256)
1da177e4
LT
4037 limit = 54;
4038 else
4039 limit = 120;
4040
a737b3e2
AM
4041 /*
4042 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4043 * allocation behaviour: Most allocs on one cpu, most free operations
4044 * on another cpu. For these cases, an efficient object passing between
4045 * cpus is necessary. This is provided by a shared array. The array
4046 * replaces Bonwick's magazine layer.
4047 * On uniprocessor, it's functionally equivalent (but less efficient)
4048 * to a larger limit. Thus disabled by default.
4049 */
4050 shared = 0;
364fbb29 4051 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4052 shared = 8;
1da177e4
LT
4053
4054#if DEBUG
a737b3e2
AM
4055 /*
4056 * With debugging enabled, large batchcount lead to excessively long
4057 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4058 */
4059 if (limit > 32)
4060 limit = 32;
4061#endif
83b519e8 4062 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4063 if (err)
4064 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4065 cachep->name, -err);
2ed3a4ef 4066 return err;
1da177e4
LT
4067}
4068
1b55253a
CL
4069/*
4070 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4071 * necessary. Note that the l3 listlock also protects the array_cache
4072 * if drain_array() is used on the shared array.
1b55253a
CL
4073 */
4074void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4075 struct array_cache *ac, int force, int node)
1da177e4
LT
4076{
4077 int tofree;
4078
1b55253a
CL
4079 if (!ac || !ac->avail)
4080 return;
1da177e4
LT
4081 if (ac->touched && !force) {
4082 ac->touched = 0;
b18e7e65 4083 } else {
1b55253a 4084 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4085 if (ac->avail) {
4086 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4087 if (tofree > ac->avail)
4088 tofree = (ac->avail + 1) / 2;
4089 free_block(cachep, ac->entry, tofree, node);
4090 ac->avail -= tofree;
4091 memmove(ac->entry, &(ac->entry[tofree]),
4092 sizeof(void *) * ac->avail);
4093 }
1b55253a 4094 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4095 }
4096}
4097
4098/**
4099 * cache_reap - Reclaim memory from caches.
05fb6bf0 4100 * @w: work descriptor
1da177e4
LT
4101 *
4102 * Called from workqueue/eventd every few seconds.
4103 * Purpose:
4104 * - clear the per-cpu caches for this CPU.
4105 * - return freeable pages to the main free memory pool.
4106 *
a737b3e2
AM
4107 * If we cannot acquire the cache chain mutex then just give up - we'll try
4108 * again on the next iteration.
1da177e4 4109 */
7c5cae36 4110static void cache_reap(struct work_struct *w)
1da177e4 4111{
7a7c381d 4112 struct kmem_cache *searchp;
e498be7d 4113 struct kmem_list3 *l3;
aab2207c 4114 int node = numa_node_id();
bf6aede7 4115 struct delayed_work *work = to_delayed_work(w);
1da177e4 4116
7c5cae36 4117 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4118 /* Give up. Setup the next iteration. */
7c5cae36 4119 goto out;
1da177e4 4120
7a7c381d 4121 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4122 check_irq_on();
4123
35386e3b
CL
4124 /*
4125 * We only take the l3 lock if absolutely necessary and we
4126 * have established with reasonable certainty that
4127 * we can do some work if the lock was obtained.
4128 */
aab2207c 4129 l3 = searchp->nodelists[node];
35386e3b 4130
8fce4d8e 4131 reap_alien(searchp, l3);
1da177e4 4132
aab2207c 4133 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4134
35386e3b
CL
4135 /*
4136 * These are racy checks but it does not matter
4137 * if we skip one check or scan twice.
4138 */
e498be7d 4139 if (time_after(l3->next_reap, jiffies))
35386e3b 4140 goto next;
1da177e4 4141
e498be7d 4142 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4143
aab2207c 4144 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4145
ed11d9eb 4146 if (l3->free_touched)
e498be7d 4147 l3->free_touched = 0;
ed11d9eb
CL
4148 else {
4149 int freed;
1da177e4 4150
ed11d9eb
CL
4151 freed = drain_freelist(searchp, l3, (l3->free_limit +
4152 5 * searchp->num - 1) / (5 * searchp->num));
4153 STATS_ADD_REAPED(searchp, freed);
4154 }
35386e3b 4155next:
1da177e4
LT
4156 cond_resched();
4157 }
4158 check_irq_on();
fc0abb14 4159 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4160 next_reap_node();
7c5cae36 4161out:
a737b3e2 4162 /* Set up the next iteration */
7c5cae36 4163 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4164}
4165
158a9624 4166#ifdef CONFIG_SLABINFO
1da177e4 4167
85289f98 4168static void print_slabinfo_header(struct seq_file *m)
1da177e4 4169{
85289f98
PE
4170 /*
4171 * Output format version, so at least we can change it
4172 * without _too_ many complaints.
4173 */
1da177e4 4174#if STATS
85289f98 4175 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4176#else
85289f98 4177 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4178#endif
85289f98
PE
4179 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4180 "<objperslab> <pagesperslab>");
4181 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4182 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4183#if STATS
85289f98 4184 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4185 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4186 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4187#endif
85289f98
PE
4188 seq_putc(m, '\n');
4189}
4190
4191static void *s_start(struct seq_file *m, loff_t *pos)
4192{
4193 loff_t n = *pos;
85289f98 4194
fc0abb14 4195 mutex_lock(&cache_chain_mutex);
85289f98
PE
4196 if (!n)
4197 print_slabinfo_header(m);
b92151ba
PE
4198
4199 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4200}
4201
4202static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4203{
b92151ba 4204 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4205}
4206
4207static void s_stop(struct seq_file *m, void *p)
4208{
fc0abb14 4209 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4210}
4211
4212static int s_show(struct seq_file *m, void *p)
4213{
b92151ba 4214 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4215 struct slab *slabp;
4216 unsigned long active_objs;
4217 unsigned long num_objs;
4218 unsigned long active_slabs = 0;
4219 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4220 const char *name;
1da177e4 4221 char *error = NULL;
e498be7d
CL
4222 int node;
4223 struct kmem_list3 *l3;
1da177e4 4224
1da177e4
LT
4225 active_objs = 0;
4226 num_slabs = 0;
e498be7d
CL
4227 for_each_online_node(node) {
4228 l3 = cachep->nodelists[node];
4229 if (!l3)
4230 continue;
4231
ca3b9b91
RT
4232 check_irq_on();
4233 spin_lock_irq(&l3->list_lock);
e498be7d 4234
7a7c381d 4235 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4236 if (slabp->inuse != cachep->num && !error)
4237 error = "slabs_full accounting error";
4238 active_objs += cachep->num;
4239 active_slabs++;
4240 }
7a7c381d 4241 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4242 if (slabp->inuse == cachep->num && !error)
4243 error = "slabs_partial inuse accounting error";
4244 if (!slabp->inuse && !error)
4245 error = "slabs_partial/inuse accounting error";
4246 active_objs += slabp->inuse;
4247 active_slabs++;
4248 }
7a7c381d 4249 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4250 if (slabp->inuse && !error)
4251 error = "slabs_free/inuse accounting error";
4252 num_slabs++;
4253 }
4254 free_objects += l3->free_objects;
4484ebf1
RT
4255 if (l3->shared)
4256 shared_avail += l3->shared->avail;
e498be7d 4257
ca3b9b91 4258 spin_unlock_irq(&l3->list_lock);
1da177e4 4259 }
b28a02de
PE
4260 num_slabs += active_slabs;
4261 num_objs = num_slabs * cachep->num;
e498be7d 4262 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4263 error = "free_objects accounting error";
4264
b28a02de 4265 name = cachep->name;
1da177e4
LT
4266 if (error)
4267 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4268
4269 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4270 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4271 cachep->num, (1 << cachep->gfporder));
1da177e4 4272 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4273 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4274 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4275 active_slabs, num_slabs, shared_avail);
1da177e4 4276#if STATS
b28a02de 4277 { /* list3 stats */
1da177e4
LT
4278 unsigned long high = cachep->high_mark;
4279 unsigned long allocs = cachep->num_allocations;
4280 unsigned long grown = cachep->grown;
4281 unsigned long reaped = cachep->reaped;
4282 unsigned long errors = cachep->errors;
4283 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4284 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4285 unsigned long node_frees = cachep->node_frees;
fb7faf33 4286 unsigned long overflows = cachep->node_overflow;
1da177e4 4287
e92dd4fd
JP
4288 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4289 "%4lu %4lu %4lu %4lu %4lu",
4290 allocs, high, grown,
4291 reaped, errors, max_freeable, node_allocs,
4292 node_frees, overflows);
1da177e4
LT
4293 }
4294 /* cpu stats */
4295 {
4296 unsigned long allochit = atomic_read(&cachep->allochit);
4297 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4298 unsigned long freehit = atomic_read(&cachep->freehit);
4299 unsigned long freemiss = atomic_read(&cachep->freemiss);
4300
4301 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4302 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4303 }
4304#endif
4305 seq_putc(m, '\n');
1da177e4
LT
4306 return 0;
4307}
4308
4309/*
4310 * slabinfo_op - iterator that generates /proc/slabinfo
4311 *
4312 * Output layout:
4313 * cache-name
4314 * num-active-objs
4315 * total-objs
4316 * object size
4317 * num-active-slabs
4318 * total-slabs
4319 * num-pages-per-slab
4320 * + further values on SMP and with statistics enabled
4321 */
4322
7b3c3a50 4323static const struct seq_operations slabinfo_op = {
b28a02de
PE
4324 .start = s_start,
4325 .next = s_next,
4326 .stop = s_stop,
4327 .show = s_show,
1da177e4
LT
4328};
4329
4330#define MAX_SLABINFO_WRITE 128
4331/**
4332 * slabinfo_write - Tuning for the slab allocator
4333 * @file: unused
4334 * @buffer: user buffer
4335 * @count: data length
4336 * @ppos: unused
4337 */
b28a02de
PE
4338ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4339 size_t count, loff_t *ppos)
1da177e4 4340{
b28a02de 4341 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4342 int limit, batchcount, shared, res;
7a7c381d 4343 struct kmem_cache *cachep;
b28a02de 4344
1da177e4
LT
4345 if (count > MAX_SLABINFO_WRITE)
4346 return -EINVAL;
4347 if (copy_from_user(&kbuf, buffer, count))
4348 return -EFAULT;
b28a02de 4349 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4350
4351 tmp = strchr(kbuf, ' ');
4352 if (!tmp)
4353 return -EINVAL;
4354 *tmp = '\0';
4355 tmp++;
4356 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4357 return -EINVAL;
4358
4359 /* Find the cache in the chain of caches. */
fc0abb14 4360 mutex_lock(&cache_chain_mutex);
1da177e4 4361 res = -EINVAL;
7a7c381d 4362 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4363 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4364 if (limit < 1 || batchcount < 1 ||
4365 batchcount > limit || shared < 0) {
e498be7d 4366 res = 0;
1da177e4 4367 } else {
e498be7d 4368 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4369 batchcount, shared,
4370 GFP_KERNEL);
1da177e4
LT
4371 }
4372 break;
4373 }
4374 }
fc0abb14 4375 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4376 if (res >= 0)
4377 res = count;
4378 return res;
4379}
871751e2 4380
7b3c3a50
AD
4381static int slabinfo_open(struct inode *inode, struct file *file)
4382{
4383 return seq_open(file, &slabinfo_op);
4384}
4385
4386static const struct file_operations proc_slabinfo_operations = {
4387 .open = slabinfo_open,
4388 .read = seq_read,
4389 .write = slabinfo_write,
4390 .llseek = seq_lseek,
4391 .release = seq_release,
4392};
4393
871751e2
AV
4394#ifdef CONFIG_DEBUG_SLAB_LEAK
4395
4396static void *leaks_start(struct seq_file *m, loff_t *pos)
4397{
871751e2 4398 mutex_lock(&cache_chain_mutex);
b92151ba 4399 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4400}
4401
4402static inline int add_caller(unsigned long *n, unsigned long v)
4403{
4404 unsigned long *p;
4405 int l;
4406 if (!v)
4407 return 1;
4408 l = n[1];
4409 p = n + 2;
4410 while (l) {
4411 int i = l/2;
4412 unsigned long *q = p + 2 * i;
4413 if (*q == v) {
4414 q[1]++;
4415 return 1;
4416 }
4417 if (*q > v) {
4418 l = i;
4419 } else {
4420 p = q + 2;
4421 l -= i + 1;
4422 }
4423 }
4424 if (++n[1] == n[0])
4425 return 0;
4426 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4427 p[0] = v;
4428 p[1] = 1;
4429 return 1;
4430}
4431
4432static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4433{
4434 void *p;
4435 int i;
4436 if (n[0] == n[1])
4437 return;
4438 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4439 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4440 continue;
4441 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4442 return;
4443 }
4444}
4445
4446static void show_symbol(struct seq_file *m, unsigned long address)
4447{
4448#ifdef CONFIG_KALLSYMS
871751e2 4449 unsigned long offset, size;
9281acea 4450 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4451
a5c43dae 4452 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4453 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4454 if (modname[0])
871751e2
AV
4455 seq_printf(m, " [%s]", modname);
4456 return;
4457 }
4458#endif
4459 seq_printf(m, "%p", (void *)address);
4460}
4461
4462static int leaks_show(struct seq_file *m, void *p)
4463{
b92151ba 4464 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4465 struct slab *slabp;
4466 struct kmem_list3 *l3;
4467 const char *name;
4468 unsigned long *n = m->private;
4469 int node;
4470 int i;
4471
4472 if (!(cachep->flags & SLAB_STORE_USER))
4473 return 0;
4474 if (!(cachep->flags & SLAB_RED_ZONE))
4475 return 0;
4476
4477 /* OK, we can do it */
4478
4479 n[1] = 0;
4480
4481 for_each_online_node(node) {
4482 l3 = cachep->nodelists[node];
4483 if (!l3)
4484 continue;
4485
4486 check_irq_on();
4487 spin_lock_irq(&l3->list_lock);
4488
7a7c381d 4489 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4490 handle_slab(n, cachep, slabp);
7a7c381d 4491 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4492 handle_slab(n, cachep, slabp);
871751e2
AV
4493 spin_unlock_irq(&l3->list_lock);
4494 }
4495 name = cachep->name;
4496 if (n[0] == n[1]) {
4497 /* Increase the buffer size */
4498 mutex_unlock(&cache_chain_mutex);
4499 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4500 if (!m->private) {
4501 /* Too bad, we are really out */
4502 m->private = n;
4503 mutex_lock(&cache_chain_mutex);
4504 return -ENOMEM;
4505 }
4506 *(unsigned long *)m->private = n[0] * 2;
4507 kfree(n);
4508 mutex_lock(&cache_chain_mutex);
4509 /* Now make sure this entry will be retried */
4510 m->count = m->size;
4511 return 0;
4512 }
4513 for (i = 0; i < n[1]; i++) {
4514 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4515 show_symbol(m, n[2*i+2]);
4516 seq_putc(m, '\n');
4517 }
d2e7b7d0 4518
871751e2
AV
4519 return 0;
4520}
4521
a0ec95a8 4522static const struct seq_operations slabstats_op = {
871751e2
AV
4523 .start = leaks_start,
4524 .next = s_next,
4525 .stop = s_stop,
4526 .show = leaks_show,
4527};
a0ec95a8
AD
4528
4529static int slabstats_open(struct inode *inode, struct file *file)
4530{
4531 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4532 int ret = -ENOMEM;
4533 if (n) {
4534 ret = seq_open(file, &slabstats_op);
4535 if (!ret) {
4536 struct seq_file *m = file->private_data;
4537 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4538 m->private = n;
4539 n = NULL;
4540 }
4541 kfree(n);
4542 }
4543 return ret;
4544}
4545
4546static const struct file_operations proc_slabstats_operations = {
4547 .open = slabstats_open,
4548 .read = seq_read,
4549 .llseek = seq_lseek,
4550 .release = seq_release_private,
4551};
4552#endif
4553
4554static int __init slab_proc_init(void)
4555{
7b3c3a50 4556 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4557#ifdef CONFIG_DEBUG_SLAB_LEAK
4558 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4559#endif
a0ec95a8
AD
4560 return 0;
4561}
4562module_init(slab_proc_init);
1da177e4
LT
4563#endif
4564
00e145b6
MS
4565/**
4566 * ksize - get the actual amount of memory allocated for a given object
4567 * @objp: Pointer to the object
4568 *
4569 * kmalloc may internally round up allocations and return more memory
4570 * than requested. ksize() can be used to determine the actual amount of
4571 * memory allocated. The caller may use this additional memory, even though
4572 * a smaller amount of memory was initially specified with the kmalloc call.
4573 * The caller must guarantee that objp points to a valid object previously
4574 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4575 * must not be freed during the duration of the call.
4576 */
fd76bab2 4577size_t ksize(const void *objp)
1da177e4 4578{
ef8b4520
CL
4579 BUG_ON(!objp);
4580 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4581 return 0;
1da177e4 4582
6ed5eb22 4583 return obj_size(virt_to_cache(objp));
1da177e4 4584}
b1aabecd 4585EXPORT_SYMBOL(ksize);