]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
[PATCH] slab: add transfer_objects() function
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
e498be7d 106#include <linux/nodemask.h>
dc85da15 107#include <linux/mempolicy.h>
fc0abb14 108#include <linux/mutex.h>
1da177e4
LT
109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
1da177e4
LT
136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 174 SLAB_CACHE_DMA | \
1da177e4
LT
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 178#else
ac2b898c 179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
fa5b08d5 204typedef unsigned int kmem_bufctl_t;
1da177e4
LT
205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4
LT
209
210/* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213static unsigned long offslab_limit;
214
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
b28a02de
PE
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
1da177e4
LT
229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
b28a02de 248 struct rcu_head head;
343e0d7a 249 struct kmem_cache *cachep;
b28a02de 250 void *addr;
1da177e4
LT
251};
252
253/*
254 * struct array_cache
255 *
1da177e4
LT
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
e498be7d 270 spinlock_t lock;
a737b3e2
AM
271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
276 */
1da177e4
LT
277};
278
a737b3e2
AM
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
1da177e4
LT
282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
b28a02de 286 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
287};
288
289/*
e498be7d 290 * The slab lists for all objects.
1da177e4
LT
291 */
292struct kmem_list3 {
b28a02de
PE
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
b28a02de 297 unsigned int free_limit;
2e1217cf 298 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
35386e3b
CL
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
1da177e4
LT
304};
305
e498be7d
CL
306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define CACHE_CACHE 0
312#define SIZE_AC 1
313#define SIZE_L3 (1 + MAX_NUMNODES)
314
315/*
a737b3e2
AM
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 318 */
7243cc05 319static __always_inline int index_of(const size_t size)
e498be7d 320{
5ec8a847
SR
321 extern void __bad_size(void);
322
e498be7d
CL
323 if (__builtin_constant_p(size)) {
324 int i = 0;
325
326#define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331#include "linux/kmalloc_sizes.h"
332#undef CACHE
5ec8a847 333 __bad_size();
7243cc05 334 } else
5ec8a847 335 __bad_size();
e498be7d
CL
336 return 0;
337}
338
339#define INDEX_AC index_of(sizeof(struct arraycache_init))
340#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 341
5295a74c 342static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
343{
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
2e1217cf 349 parent->colour_next = 0;
e498be7d
CL
350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
353}
354
a737b3e2
AM
355#define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
359 } while (0)
360
a737b3e2
AM
361#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
e498be7d
CL
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
1da177e4
LT
367
368/*
343e0d7a 369 * struct kmem_cache
1da177e4
LT
370 *
371 * manages a cache.
372 */
b28a02de 373
2109a2d1 374struct kmem_cache {
1da177e4 375/* 1) per-cpu data, touched during every alloc/free */
b28a02de 376 struct array_cache *array[NR_CPUS];
b5d8ca7c 377/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
b5d8ca7c 381
3dafccf2 382 unsigned int buffer_size;
b5d8ca7c 383/* 3) touched by every alloc & free from the backend */
b28a02de 384 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 385
a737b3e2
AM
386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
1da177e4 388
b5d8ca7c 389/* 4) cache_grow/shrink */
1da177e4 390 /* order of pgs per slab (2^n) */
b28a02de 391 unsigned int gfporder;
1da177e4
LT
392
393 /* force GFP flags, e.g. GFP_DMA */
b28a02de 394 gfp_t gfpflags;
1da177e4 395
a737b3e2 396 size_t colour; /* cache colouring range */
b28a02de 397 unsigned int colour_off; /* colour offset */
343e0d7a 398 struct kmem_cache *slabp_cache;
b28a02de 399 unsigned int slab_size;
a737b3e2 400 unsigned int dflags; /* dynamic flags */
1da177e4
LT
401
402 /* constructor func */
343e0d7a 403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
404
405 /* de-constructor func */
343e0d7a 406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 407
b5d8ca7c 408/* 5) cache creation/removal */
b28a02de
PE
409 const char *name;
410 struct list_head next;
1da177e4 411
b5d8ca7c 412/* 6) statistics */
1da177e4 413#if STATS
b28a02de
PE
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
423 atomic_t allochit;
424 atomic_t allocmiss;
425 atomic_t freehit;
426 atomic_t freemiss;
1da177e4
LT
427#endif
428#if DEBUG
3dafccf2
MS
429 /*
430 * If debugging is enabled, then the allocator can add additional
431 * fields and/or padding to every object. buffer_size contains the total
432 * object size including these internal fields, the following two
433 * variables contain the offset to the user object and its size.
434 */
435 int obj_offset;
436 int obj_size;
1da177e4
LT
437#endif
438};
439
440#define CFLGS_OFF_SLAB (0x80000000UL)
441#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
442
443#define BATCHREFILL_LIMIT 16
a737b3e2
AM
444/*
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
1da177e4 447 *
dc6f3f27 448 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
449 * which could lock up otherwise freeable slabs.
450 */
451#define REAPTIMEOUT_CPUC (2*HZ)
452#define REAPTIMEOUT_LIST3 (4*HZ)
453
454#if STATS
455#define STATS_INC_ACTIVE(x) ((x)->num_active++)
456#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
457#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
458#define STATS_INC_GROWN(x) ((x)->grown++)
459#define STATS_INC_REAPED(x) ((x)->reaped++)
a737b3e2
AM
460#define STATS_SET_HIGH(x) \
461 do { \
462 if ((x)->num_active > (x)->high_mark) \
463 (x)->high_mark = (x)->num_active; \
464 } while (0)
1da177e4
LT
465#define STATS_INC_ERR(x) ((x)->errors++)
466#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 467#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
a737b3e2
AM
468#define STATS_SET_FREEABLE(x, i) \
469 do { \
470 if ((x)->max_freeable < i) \
471 (x)->max_freeable = i; \
472 } while (0)
1da177e4
LT
473#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
474#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
475#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
476#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
477#else
478#define STATS_INC_ACTIVE(x) do { } while (0)
479#define STATS_DEC_ACTIVE(x) do { } while (0)
480#define STATS_INC_ALLOCED(x) do { } while (0)
481#define STATS_INC_GROWN(x) do { } while (0)
482#define STATS_INC_REAPED(x) do { } while (0)
483#define STATS_SET_HIGH(x) do { } while (0)
484#define STATS_INC_ERR(x) do { } while (0)
485#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 486#define STATS_INC_NODEFREES(x) do { } while (0)
a737b3e2 487#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
488#define STATS_INC_ALLOCHIT(x) do { } while (0)
489#define STATS_INC_ALLOCMISS(x) do { } while (0)
490#define STATS_INC_FREEHIT(x) do { } while (0)
491#define STATS_INC_FREEMISS(x) do { } while (0)
492#endif
493
494#if DEBUG
a737b3e2
AM
495/*
496 * Magic nums for obj red zoning.
1da177e4
LT
497 * Placed in the first word before and the first word after an obj.
498 */
499#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
500#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
501
502/* ...and for poisoning */
503#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
504#define POISON_FREE 0x6b /* for use-after-free poisoning */
505#define POISON_END 0xa5 /* end-byte of poisoning */
506
a737b3e2
AM
507/*
508 * memory layout of objects:
1da177e4 509 * 0 : objp
3dafccf2 510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
3dafccf2 513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 514 * redzone word.
3dafccf2
MS
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
1da177e4 519 */
343e0d7a 520static int obj_offset(struct kmem_cache *cachep)
1da177e4 521{
3dafccf2 522 return cachep->obj_offset;
1da177e4
LT
523}
524
343e0d7a 525static int obj_size(struct kmem_cache *cachep)
1da177e4 526{
3dafccf2 527 return cachep->obj_size;
1da177e4
LT
528}
529
343e0d7a 530static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
531{
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
534}
535
343e0d7a 536static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
537{
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 541 2 * BYTES_PER_WORD);
3dafccf2 542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
543}
544
343e0d7a 545static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
546{
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
549}
550
551#else
552
3dafccf2
MS
553#define obj_offset(x) 0
554#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
555#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559#endif
560
561/*
a737b3e2
AM
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
1da177e4
LT
564 */
565#if defined(CONFIG_LARGE_ALLOCS)
566#define MAX_OBJ_ORDER 13 /* up to 32Mb */
567#define MAX_GFP_ORDER 13 /* up to 32Mb */
568#elif defined(CONFIG_MMU)
569#define MAX_OBJ_ORDER 5 /* 32 pages */
570#define MAX_GFP_ORDER 5 /* 32 pages */
571#else
572#define MAX_OBJ_ORDER 8 /* up to 1Mb */
573#define MAX_GFP_ORDER 8 /* up to 1Mb */
574#endif
575
576/*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579#define BREAK_GFP_ORDER_HI 1
580#define BREAK_GFP_ORDER_LO 0
581static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
a737b3e2
AM
583/*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
1da177e4 587 */
065d41cb
PE
588static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589{
590 page->lru.next = (struct list_head *)cache;
591}
592
593static inline struct kmem_cache *page_get_cache(struct page *page)
594{
84097518
NP
595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
065d41cb
PE
597 return (struct kmem_cache *)page->lru.next;
598}
599
600static inline void page_set_slab(struct page *page, struct slab *slab)
601{
602 page->lru.prev = (struct list_head *)slab;
603}
604
605static inline struct slab *page_get_slab(struct page *page)
606{
84097518
NP
607 if (unlikely(PageCompound(page)))
608 page = (struct page *)page_private(page);
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
677/* Guard access to the cache-chain. */
fc0abb14 678static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
679static struct list_head cache_chain;
680
681/*
a737b3e2
AM
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
1da177e4
LT
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
1da177e4
LT
688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694 NONE,
e498be7d
CL
695 PARTIAL_AC,
696 PARTIAL_L3,
1da177e4
LT
697 FULL
698} g_cpucache_up;
699
700static DEFINE_PER_CPU(struct work_struct, reap_work);
701
a737b3e2
AM
702static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703 int node);
343e0d7a 704static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 705static void cache_reap(void *unused);
343e0d7a 706static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 707
343e0d7a 708static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
709{
710 return cachep->array[smp_processor_id()];
711}
712
a737b3e2
AM
713static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
1da177e4
LT
715{
716 struct cache_sizes *csizep = malloc_sizes;
717
718#if DEBUG
719 /* This happens if someone tries to call
b28a02de
PE
720 * kmem_cache_create(), or __kmalloc(), before
721 * the generic caches are initialized.
722 */
c7e43c78 723 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
724#endif
725 while (size > csizep->cs_size)
726 csizep++;
727
728 /*
0abf40c1 729 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
730 * has cs_{dma,}cachep==NULL. Thus no special case
731 * for large kmalloc calls required.
732 */
733 if (unlikely(gfpflags & GFP_DMA))
734 return csizep->cs_dmacachep;
735 return csizep->cs_cachep;
736}
737
343e0d7a 738struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
739{
740 return __find_general_cachep(size, gfpflags);
741}
742EXPORT_SYMBOL(kmem_find_general_cachep);
743
fbaccacf 744static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 745{
fbaccacf
SR
746 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
747}
1da177e4 748
a737b3e2
AM
749/*
750 * Calculate the number of objects and left-over bytes for a given buffer size.
751 */
fbaccacf
SR
752static void cache_estimate(unsigned long gfporder, size_t buffer_size,
753 size_t align, int flags, size_t *left_over,
754 unsigned int *num)
755{
756 int nr_objs;
757 size_t mgmt_size;
758 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 759
fbaccacf
SR
760 /*
761 * The slab management structure can be either off the slab or
762 * on it. For the latter case, the memory allocated for a
763 * slab is used for:
764 *
765 * - The struct slab
766 * - One kmem_bufctl_t for each object
767 * - Padding to respect alignment of @align
768 * - @buffer_size bytes for each object
769 *
770 * If the slab management structure is off the slab, then the
771 * alignment will already be calculated into the size. Because
772 * the slabs are all pages aligned, the objects will be at the
773 * correct alignment when allocated.
774 */
775 if (flags & CFLGS_OFF_SLAB) {
776 mgmt_size = 0;
777 nr_objs = slab_size / buffer_size;
778
779 if (nr_objs > SLAB_LIMIT)
780 nr_objs = SLAB_LIMIT;
781 } else {
782 /*
783 * Ignore padding for the initial guess. The padding
784 * is at most @align-1 bytes, and @buffer_size is at
785 * least @align. In the worst case, this result will
786 * be one greater than the number of objects that fit
787 * into the memory allocation when taking the padding
788 * into account.
789 */
790 nr_objs = (slab_size - sizeof(struct slab)) /
791 (buffer_size + sizeof(kmem_bufctl_t));
792
793 /*
794 * This calculated number will be either the right
795 * amount, or one greater than what we want.
796 */
797 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
798 > slab_size)
799 nr_objs--;
800
801 if (nr_objs > SLAB_LIMIT)
802 nr_objs = SLAB_LIMIT;
803
804 mgmt_size = slab_mgmt_size(nr_objs, align);
805 }
806 *num = nr_objs;
807 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
808}
809
810#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
811
a737b3e2
AM
812static void __slab_error(const char *function, struct kmem_cache *cachep,
813 char *msg)
1da177e4
LT
814{
815 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 816 function, cachep->name, msg);
1da177e4
LT
817 dump_stack();
818}
819
8fce4d8e
CL
820#ifdef CONFIG_NUMA
821/*
822 * Special reaping functions for NUMA systems called from cache_reap().
823 * These take care of doing round robin flushing of alien caches (containing
824 * objects freed on different nodes from which they were allocated) and the
825 * flushing of remote pcps by calling drain_node_pages.
826 */
827static DEFINE_PER_CPU(unsigned long, reap_node);
828
829static void init_reap_node(int cpu)
830{
831 int node;
832
833 node = next_node(cpu_to_node(cpu), node_online_map);
834 if (node == MAX_NUMNODES)
442295c9 835 node = first_node(node_online_map);
8fce4d8e
CL
836
837 __get_cpu_var(reap_node) = node;
838}
839
840static void next_reap_node(void)
841{
842 int node = __get_cpu_var(reap_node);
843
844 /*
845 * Also drain per cpu pages on remote zones
846 */
847 if (node != numa_node_id())
848 drain_node_pages(node);
849
850 node = next_node(node, node_online_map);
851 if (unlikely(node >= MAX_NUMNODES))
852 node = first_node(node_online_map);
853 __get_cpu_var(reap_node) = node;
854}
855
856#else
857#define init_reap_node(cpu) do { } while (0)
858#define next_reap_node(void) do { } while (0)
859#endif
860
1da177e4
LT
861/*
862 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
863 * via the workqueue/eventd.
864 * Add the CPU number into the expiration time to minimize the possibility of
865 * the CPUs getting into lockstep and contending for the global cache chain
866 * lock.
867 */
868static void __devinit start_cpu_timer(int cpu)
869{
870 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
871
872 /*
873 * When this gets called from do_initcalls via cpucache_init(),
874 * init_workqueues() has already run, so keventd will be setup
875 * at that time.
876 */
877 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 878 init_reap_node(cpu);
1da177e4
LT
879 INIT_WORK(reap_work, cache_reap, NULL);
880 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
881 }
882}
883
e498be7d 884static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 885 int batchcount)
1da177e4 886{
b28a02de 887 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
888 struct array_cache *nc = NULL;
889
e498be7d 890 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
891 if (nc) {
892 nc->avail = 0;
893 nc->limit = entries;
894 nc->batchcount = batchcount;
895 nc->touched = 0;
e498be7d 896 spin_lock_init(&nc->lock);
1da177e4
LT
897 }
898 return nc;
899}
900
3ded175a
CL
901/*
902 * Transfer objects in one arraycache to another.
903 * Locking must be handled by the caller.
904 *
905 * Return the number of entries transferred.
906 */
907static int transfer_objects(struct array_cache *to,
908 struct array_cache *from, unsigned int max)
909{
910 /* Figure out how many entries to transfer */
911 int nr = min(min(from->avail, max), to->limit - to->avail);
912
913 if (!nr)
914 return 0;
915
916 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
917 sizeof(void *) *nr);
918
919 from->avail -= nr;
920 to->avail += nr;
921 to->touched = 1;
922 return nr;
923}
924
e498be7d 925#ifdef CONFIG_NUMA
343e0d7a 926static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 927static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 928
5295a74c 929static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
930{
931 struct array_cache **ac_ptr;
b28a02de 932 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
933 int i;
934
935 if (limit > 1)
936 limit = 12;
937 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
938 if (ac_ptr) {
939 for_each_node(i) {
940 if (i == node || !node_online(i)) {
941 ac_ptr[i] = NULL;
942 continue;
943 }
944 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
945 if (!ac_ptr[i]) {
b28a02de 946 for (i--; i <= 0; i--)
e498be7d
CL
947 kfree(ac_ptr[i]);
948 kfree(ac_ptr);
949 return NULL;
950 }
951 }
952 }
953 return ac_ptr;
954}
955
5295a74c 956static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
957{
958 int i;
959
960 if (!ac_ptr)
961 return;
e498be7d 962 for_each_node(i)
b28a02de 963 kfree(ac_ptr[i]);
e498be7d
CL
964 kfree(ac_ptr);
965}
966
343e0d7a 967static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 968 struct array_cache *ac, int node)
e498be7d
CL
969{
970 struct kmem_list3 *rl3 = cachep->nodelists[node];
971
972 if (ac->avail) {
973 spin_lock(&rl3->list_lock);
ff69416e 974 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
975 ac->avail = 0;
976 spin_unlock(&rl3->list_lock);
977 }
978}
979
8fce4d8e
CL
980/*
981 * Called from cache_reap() to regularly drain alien caches round robin.
982 */
983static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
984{
985 int node = __get_cpu_var(reap_node);
986
987 if (l3->alien) {
988 struct array_cache *ac = l3->alien[node];
989 if (ac && ac->avail) {
990 spin_lock_irq(&ac->lock);
991 __drain_alien_cache(cachep, ac, node);
992 spin_unlock_irq(&ac->lock);
993 }
994 }
995}
996
a737b3e2
AM
997static void drain_alien_cache(struct kmem_cache *cachep,
998 struct array_cache **alien)
e498be7d 999{
b28a02de 1000 int i = 0;
e498be7d
CL
1001 struct array_cache *ac;
1002 unsigned long flags;
1003
1004 for_each_online_node(i) {
4484ebf1 1005 ac = alien[i];
e498be7d
CL
1006 if (ac) {
1007 spin_lock_irqsave(&ac->lock, flags);
1008 __drain_alien_cache(cachep, ac, i);
1009 spin_unlock_irqrestore(&ac->lock, flags);
1010 }
1011 }
1012}
1013#else
7a21ef6f 1014
4484ebf1 1015#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1016#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1017
7a21ef6f
LT
1018static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019{
1020 return (struct array_cache **) 0x01020304ul;
1021}
1022
4484ebf1
RT
1023static inline void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025}
7a21ef6f 1026
e498be7d
CL
1027#endif
1028
1da177e4 1029static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1030 unsigned long action, void *hcpu)
1da177e4
LT
1031{
1032 long cpu = (long)hcpu;
343e0d7a 1033 struct kmem_cache *cachep;
e498be7d
CL
1034 struct kmem_list3 *l3 = NULL;
1035 int node = cpu_to_node(cpu);
1036 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1037
1038 switch (action) {
1039 case CPU_UP_PREPARE:
fc0abb14 1040 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1041 /*
1042 * We need to do this right in the beginning since
e498be7d
CL
1043 * alloc_arraycache's are going to use this list.
1044 * kmalloc_node allows us to add the slab to the right
1045 * kmem_list3 and not this cpu's kmem_list3
1046 */
1047
1da177e4 1048 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1049 /*
1050 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1051 * begin anything. Make sure some other cpu on this
1052 * node has not already allocated this
1053 */
1054 if (!cachep->nodelists[node]) {
a737b3e2
AM
1055 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1056 if (!l3)
e498be7d
CL
1057 goto bad;
1058 kmem_list3_init(l3);
1059 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1060 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1061
4484ebf1
RT
1062 /*
1063 * The l3s don't come and go as CPUs come and
1064 * go. cache_chain_mutex is sufficient
1065 * protection here.
1066 */
e498be7d
CL
1067 cachep->nodelists[node] = l3;
1068 }
1da177e4 1069
e498be7d
CL
1070 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1071 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1072 (1 + nr_cpus_node(node)) *
1073 cachep->batchcount + cachep->num;
e498be7d
CL
1074 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1075 }
1076
a737b3e2
AM
1077 /*
1078 * Now we can go ahead with allocating the shared arrays and
1079 * array caches
1080 */
e498be7d 1081 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1082 struct array_cache *nc;
4484ebf1
RT
1083 struct array_cache *shared;
1084 struct array_cache **alien;
cd105df4 1085
e498be7d 1086 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1087 cachep->batchcount);
1da177e4
LT
1088 if (!nc)
1089 goto bad;
4484ebf1
RT
1090 shared = alloc_arraycache(node,
1091 cachep->shared * cachep->batchcount,
1092 0xbaadf00d);
1093 if (!shared)
1094 goto bad;
7a21ef6f 1095
4484ebf1
RT
1096 alien = alloc_alien_cache(node, cachep->limit);
1097 if (!alien)
1098 goto bad;
1da177e4 1099 cachep->array[cpu] = nc;
e498be7d
CL
1100 l3 = cachep->nodelists[node];
1101 BUG_ON(!l3);
e498be7d 1102
4484ebf1
RT
1103 spin_lock_irq(&l3->list_lock);
1104 if (!l3->shared) {
1105 /*
1106 * We are serialised from CPU_DEAD or
1107 * CPU_UP_CANCELLED by the cpucontrol lock
1108 */
1109 l3->shared = shared;
1110 shared = NULL;
e498be7d 1111 }
4484ebf1
RT
1112#ifdef CONFIG_NUMA
1113 if (!l3->alien) {
1114 l3->alien = alien;
1115 alien = NULL;
1116 }
1117#endif
1118 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1119 kfree(shared);
1120 free_alien_cache(alien);
1da177e4 1121 }
fc0abb14 1122 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1123 break;
1124 case CPU_ONLINE:
1125 start_cpu_timer(cpu);
1126 break;
1127#ifdef CONFIG_HOTPLUG_CPU
1128 case CPU_DEAD:
4484ebf1
RT
1129 /*
1130 * Even if all the cpus of a node are down, we don't free the
1131 * kmem_list3 of any cache. This to avoid a race between
1132 * cpu_down, and a kmalloc allocation from another cpu for
1133 * memory from the node of the cpu going down. The list3
1134 * structure is usually allocated from kmem_cache_create() and
1135 * gets destroyed at kmem_cache_destroy().
1136 */
1da177e4
LT
1137 /* fall thru */
1138 case CPU_UP_CANCELED:
fc0abb14 1139 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1140 list_for_each_entry(cachep, &cache_chain, next) {
1141 struct array_cache *nc;
4484ebf1
RT
1142 struct array_cache *shared;
1143 struct array_cache **alien;
e498be7d 1144 cpumask_t mask;
1da177e4 1145
e498be7d 1146 mask = node_to_cpumask(node);
1da177e4
LT
1147 /* cpu is dead; no one can alloc from it. */
1148 nc = cachep->array[cpu];
1149 cachep->array[cpu] = NULL;
e498be7d
CL
1150 l3 = cachep->nodelists[node];
1151
1152 if (!l3)
4484ebf1 1153 goto free_array_cache;
e498be7d 1154
ca3b9b91 1155 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1156
1157 /* Free limit for this kmem_list3 */
1158 l3->free_limit -= cachep->batchcount;
1159 if (nc)
ff69416e 1160 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1161
1162 if (!cpus_empty(mask)) {
ca3b9b91 1163 spin_unlock_irq(&l3->list_lock);
4484ebf1 1164 goto free_array_cache;
b28a02de 1165 }
e498be7d 1166
4484ebf1
RT
1167 shared = l3->shared;
1168 if (shared) {
e498be7d 1169 free_block(cachep, l3->shared->entry,
b28a02de 1170 l3->shared->avail, node);
e498be7d
CL
1171 l3->shared = NULL;
1172 }
e498be7d 1173
4484ebf1
RT
1174 alien = l3->alien;
1175 l3->alien = NULL;
1176
1177 spin_unlock_irq(&l3->list_lock);
1178
1179 kfree(shared);
1180 if (alien) {
1181 drain_alien_cache(cachep, alien);
1182 free_alien_cache(alien);
e498be7d 1183 }
4484ebf1 1184free_array_cache:
1da177e4
LT
1185 kfree(nc);
1186 }
4484ebf1
RT
1187 /*
1188 * In the previous loop, all the objects were freed to
1189 * the respective cache's slabs, now we can go ahead and
1190 * shrink each nodelist to its limit.
1191 */
1192 list_for_each_entry(cachep, &cache_chain, next) {
1193 l3 = cachep->nodelists[node];
1194 if (!l3)
1195 continue;
1196 spin_lock_irq(&l3->list_lock);
1197 /* free slabs belonging to this node */
1198 __node_shrink(cachep, node);
1199 spin_unlock_irq(&l3->list_lock);
1200 }
fc0abb14 1201 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1202 break;
1203#endif
1204 }
1205 return NOTIFY_OK;
a737b3e2 1206bad:
fc0abb14 1207 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1208 return NOTIFY_BAD;
1209}
1210
1211static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1212
e498be7d
CL
1213/*
1214 * swap the static kmem_list3 with kmalloced memory
1215 */
a737b3e2
AM
1216static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1217 int nodeid)
e498be7d
CL
1218{
1219 struct kmem_list3 *ptr;
1220
1221 BUG_ON(cachep->nodelists[nodeid] != list);
1222 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1223 BUG_ON(!ptr);
1224
1225 local_irq_disable();
1226 memcpy(ptr, list, sizeof(struct kmem_list3));
1227 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1228 cachep->nodelists[nodeid] = ptr;
1229 local_irq_enable();
1230}
1231
a737b3e2
AM
1232/*
1233 * Initialisation. Called after the page allocator have been initialised and
1234 * before smp_init().
1da177e4
LT
1235 */
1236void __init kmem_cache_init(void)
1237{
1238 size_t left_over;
1239 struct cache_sizes *sizes;
1240 struct cache_names *names;
e498be7d 1241 int i;
07ed76b2 1242 int order;
e498be7d
CL
1243
1244 for (i = 0; i < NUM_INIT_LISTS; i++) {
1245 kmem_list3_init(&initkmem_list3[i]);
1246 if (i < MAX_NUMNODES)
1247 cache_cache.nodelists[i] = NULL;
1248 }
1da177e4
LT
1249
1250 /*
1251 * Fragmentation resistance on low memory - only use bigger
1252 * page orders on machines with more than 32MB of memory.
1253 */
1254 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1255 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1256
1da177e4
LT
1257 /* Bootstrap is tricky, because several objects are allocated
1258 * from caches that do not exist yet:
a737b3e2
AM
1259 * 1) initialize the cache_cache cache: it contains the struct
1260 * kmem_cache structures of all caches, except cache_cache itself:
1261 * cache_cache is statically allocated.
e498be7d
CL
1262 * Initially an __init data area is used for the head array and the
1263 * kmem_list3 structures, it's replaced with a kmalloc allocated
1264 * array at the end of the bootstrap.
1da177e4 1265 * 2) Create the first kmalloc cache.
343e0d7a 1266 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1267 * An __init data area is used for the head array.
1268 * 3) Create the remaining kmalloc caches, with minimally sized
1269 * head arrays.
1da177e4
LT
1270 * 4) Replace the __init data head arrays for cache_cache and the first
1271 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1272 * 5) Replace the __init data for kmem_list3 for cache_cache and
1273 * the other cache's with kmalloc allocated memory.
1274 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1275 */
1276
1277 /* 1) create the cache_cache */
1da177e4
LT
1278 INIT_LIST_HEAD(&cache_chain);
1279 list_add(&cache_cache.next, &cache_chain);
1280 cache_cache.colour_off = cache_line_size();
1281 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1282 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1283
a737b3e2
AM
1284 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1285 cache_line_size());
1da177e4 1286
07ed76b2
JS
1287 for (order = 0; order < MAX_ORDER; order++) {
1288 cache_estimate(order, cache_cache.buffer_size,
1289 cache_line_size(), 0, &left_over, &cache_cache.num);
1290 if (cache_cache.num)
1291 break;
1292 }
1da177e4
LT
1293 if (!cache_cache.num)
1294 BUG();
07ed76b2 1295 cache_cache.gfporder = order;
b28a02de 1296 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1297 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1298 sizeof(struct slab), cache_line_size());
1da177e4
LT
1299
1300 /* 2+3) create the kmalloc caches */
1301 sizes = malloc_sizes;
1302 names = cache_names;
1303
a737b3e2
AM
1304 /*
1305 * Initialize the caches that provide memory for the array cache and the
1306 * kmem_list3 structures first. Without this, further allocations will
1307 * bug.
e498be7d
CL
1308 */
1309
1310 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1311 sizes[INDEX_AC].cs_size,
1312 ARCH_KMALLOC_MINALIGN,
1313 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1314 NULL, NULL);
e498be7d 1315
a737b3e2 1316 if (INDEX_AC != INDEX_L3) {
e498be7d 1317 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1318 kmem_cache_create(names[INDEX_L3].name,
1319 sizes[INDEX_L3].cs_size,
1320 ARCH_KMALLOC_MINALIGN,
1321 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1322 NULL, NULL);
1323 }
e498be7d 1324
1da177e4 1325 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1326 /*
1327 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1328 * This should be particularly beneficial on SMP boxes, as it
1329 * eliminates "false sharing".
1330 * Note for systems short on memory removing the alignment will
e498be7d
CL
1331 * allow tighter packing of the smaller caches.
1332 */
a737b3e2 1333 if (!sizes->cs_cachep) {
e498be7d 1334 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1335 sizes->cs_size,
1336 ARCH_KMALLOC_MINALIGN,
1337 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1338 NULL, NULL);
1339 }
1da177e4
LT
1340
1341 /* Inc off-slab bufctl limit until the ceiling is hit. */
1342 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1343 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1344 offslab_limit /= sizeof(kmem_bufctl_t);
1345 }
1346
1347 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1348 sizes->cs_size,
1349 ARCH_KMALLOC_MINALIGN,
1350 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1351 SLAB_PANIC,
1352 NULL, NULL);
1da177e4
LT
1353 sizes++;
1354 names++;
1355 }
1356 /* 4) Replace the bootstrap head arrays */
1357 {
b28a02de 1358 void *ptr;
e498be7d 1359
1da177e4 1360 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1361
1da177e4 1362 local_irq_disable();
9a2dba4b
PE
1363 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1364 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1365 sizeof(struct arraycache_init));
1da177e4
LT
1366 cache_cache.array[smp_processor_id()] = ptr;
1367 local_irq_enable();
e498be7d 1368
1da177e4 1369 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1370
1da177e4 1371 local_irq_disable();
9a2dba4b 1372 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1373 != &initarray_generic.cache);
9a2dba4b 1374 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1375 sizeof(struct arraycache_init));
e498be7d 1376 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1377 ptr;
1da177e4
LT
1378 local_irq_enable();
1379 }
e498be7d
CL
1380 /* 5) Replace the bootstrap kmem_list3's */
1381 {
1382 int node;
1383 /* Replace the static kmem_list3 structures for the boot cpu */
1384 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1385 numa_node_id());
e498be7d
CL
1386
1387 for_each_online_node(node) {
1388 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1389 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1390
1391 if (INDEX_AC != INDEX_L3) {
1392 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1393 &initkmem_list3[SIZE_L3 + node],
1394 node);
e498be7d
CL
1395 }
1396 }
1397 }
1da177e4 1398
e498be7d 1399 /* 6) resize the head arrays to their final sizes */
1da177e4 1400 {
343e0d7a 1401 struct kmem_cache *cachep;
fc0abb14 1402 mutex_lock(&cache_chain_mutex);
1da177e4 1403 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1404 enable_cpucache(cachep);
fc0abb14 1405 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1406 }
1407
1408 /* Done! */
1409 g_cpucache_up = FULL;
1410
a737b3e2
AM
1411 /*
1412 * Register a cpu startup notifier callback that initializes
1413 * cpu_cache_get for all new cpus
1da177e4
LT
1414 */
1415 register_cpu_notifier(&cpucache_notifier);
1da177e4 1416
a737b3e2
AM
1417 /*
1418 * The reap timers are started later, with a module init call: That part
1419 * of the kernel is not yet operational.
1da177e4
LT
1420 */
1421}
1422
1423static int __init cpucache_init(void)
1424{
1425 int cpu;
1426
a737b3e2
AM
1427 /*
1428 * Register the timers that return unneeded pages to the page allocator
1da177e4 1429 */
e498be7d 1430 for_each_online_cpu(cpu)
a737b3e2 1431 start_cpu_timer(cpu);
1da177e4
LT
1432 return 0;
1433}
1da177e4
LT
1434__initcall(cpucache_init);
1435
1436/*
1437 * Interface to system's page allocator. No need to hold the cache-lock.
1438 *
1439 * If we requested dmaable memory, we will get it. Even if we
1440 * did not request dmaable memory, we might get it, but that
1441 * would be relatively rare and ignorable.
1442 */
343e0d7a 1443static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1444{
1445 struct page *page;
1446 void *addr;
1447 int i;
1448
1449 flags |= cachep->gfpflags;
50c85a19 1450 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1451 if (!page)
1452 return NULL;
1453 addr = page_address(page);
1454
1455 i = (1 << cachep->gfporder);
1456 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1457 atomic_add(i, &slab_reclaim_pages);
1458 add_page_state(nr_slab, i);
1459 while (i--) {
f205b2fe 1460 __SetPageSlab(page);
1da177e4
LT
1461 page++;
1462 }
1463 return addr;
1464}
1465
1466/*
1467 * Interface to system's page release.
1468 */
343e0d7a 1469static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1470{
b28a02de 1471 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1472 struct page *page = virt_to_page(addr);
1473 const unsigned long nr_freed = i;
1474
1475 while (i--) {
f205b2fe
NP
1476 BUG_ON(!PageSlab(page));
1477 __ClearPageSlab(page);
1da177e4
LT
1478 page++;
1479 }
1480 sub_page_state(nr_slab, nr_freed);
1481 if (current->reclaim_state)
1482 current->reclaim_state->reclaimed_slab += nr_freed;
1483 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1484 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1485 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1486}
1487
1488static void kmem_rcu_free(struct rcu_head *head)
1489{
b28a02de 1490 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1491 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1492
1493 kmem_freepages(cachep, slab_rcu->addr);
1494 if (OFF_SLAB(cachep))
1495 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1496}
1497
1498#if DEBUG
1499
1500#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1501static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1502 unsigned long caller)
1da177e4 1503{
3dafccf2 1504 int size = obj_size(cachep);
1da177e4 1505
3dafccf2 1506 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1507
b28a02de 1508 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1509 return;
1510
b28a02de
PE
1511 *addr++ = 0x12345678;
1512 *addr++ = caller;
1513 *addr++ = smp_processor_id();
1514 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1515 {
1516 unsigned long *sptr = &caller;
1517 unsigned long svalue;
1518
1519 while (!kstack_end(sptr)) {
1520 svalue = *sptr++;
1521 if (kernel_text_address(svalue)) {
b28a02de 1522 *addr++ = svalue;
1da177e4
LT
1523 size -= sizeof(unsigned long);
1524 if (size <= sizeof(unsigned long))
1525 break;
1526 }
1527 }
1528
1529 }
b28a02de 1530 *addr++ = 0x87654321;
1da177e4
LT
1531}
1532#endif
1533
343e0d7a 1534static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1535{
3dafccf2
MS
1536 int size = obj_size(cachep);
1537 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1538
1539 memset(addr, val, size);
b28a02de 1540 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1541}
1542
1543static void dump_line(char *data, int offset, int limit)
1544{
1545 int i;
1546 printk(KERN_ERR "%03x:", offset);
a737b3e2 1547 for (i = 0; i < limit; i++)
b28a02de 1548 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1549 printk("\n");
1550}
1551#endif
1552
1553#if DEBUG
1554
343e0d7a 1555static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1556{
1557 int i, size;
1558 char *realobj;
1559
1560 if (cachep->flags & SLAB_RED_ZONE) {
1561 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1562 *dbg_redzone1(cachep, objp),
1563 *dbg_redzone2(cachep, objp));
1da177e4
LT
1564 }
1565
1566 if (cachep->flags & SLAB_STORE_USER) {
1567 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1568 *dbg_userword(cachep, objp));
1da177e4 1569 print_symbol("(%s)",
a737b3e2 1570 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1571 printk("\n");
1572 }
3dafccf2
MS
1573 realobj = (char *)objp + obj_offset(cachep);
1574 size = obj_size(cachep);
b28a02de 1575 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1576 int limit;
1577 limit = 16;
b28a02de
PE
1578 if (i + limit > size)
1579 limit = size - i;
1da177e4
LT
1580 dump_line(realobj, i, limit);
1581 }
1582}
1583
343e0d7a 1584static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1585{
1586 char *realobj;
1587 int size, i;
1588 int lines = 0;
1589
3dafccf2
MS
1590 realobj = (char *)objp + obj_offset(cachep);
1591 size = obj_size(cachep);
1da177e4 1592
b28a02de 1593 for (i = 0; i < size; i++) {
1da177e4 1594 char exp = POISON_FREE;
b28a02de 1595 if (i == size - 1)
1da177e4
LT
1596 exp = POISON_END;
1597 if (realobj[i] != exp) {
1598 int limit;
1599 /* Mismatch ! */
1600 /* Print header */
1601 if (lines == 0) {
b28a02de 1602 printk(KERN_ERR
a737b3e2
AM
1603 "Slab corruption: start=%p, len=%d\n",
1604 realobj, size);
1da177e4
LT
1605 print_objinfo(cachep, objp, 0);
1606 }
1607 /* Hexdump the affected line */
b28a02de 1608 i = (i / 16) * 16;
1da177e4 1609 limit = 16;
b28a02de
PE
1610 if (i + limit > size)
1611 limit = size - i;
1da177e4
LT
1612 dump_line(realobj, i, limit);
1613 i += 16;
1614 lines++;
1615 /* Limit to 5 lines */
1616 if (lines > 5)
1617 break;
1618 }
1619 }
1620 if (lines != 0) {
1621 /* Print some data about the neighboring objects, if they
1622 * exist:
1623 */
6ed5eb22 1624 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1625 unsigned int objnr;
1da177e4 1626
8fea4e96 1627 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1628 if (objnr) {
8fea4e96 1629 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1630 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1631 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1632 realobj, size);
1da177e4
LT
1633 print_objinfo(cachep, objp, 2);
1634 }
b28a02de 1635 if (objnr + 1 < cachep->num) {
8fea4e96 1636 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1637 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1638 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1639 realobj, size);
1da177e4
LT
1640 print_objinfo(cachep, objp, 2);
1641 }
1642 }
1643}
1644#endif
1645
12dd36fa
MD
1646#if DEBUG
1647/**
911851e6
RD
1648 * slab_destroy_objs - destroy a slab and its objects
1649 * @cachep: cache pointer being destroyed
1650 * @slabp: slab pointer being destroyed
1651 *
1652 * Call the registered destructor for each object in a slab that is being
1653 * destroyed.
1da177e4 1654 */
343e0d7a 1655static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1656{
1da177e4
LT
1657 int i;
1658 for (i = 0; i < cachep->num; i++) {
8fea4e96 1659 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1660
1661 if (cachep->flags & SLAB_POISON) {
1662#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1663 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1664 OFF_SLAB(cachep))
b28a02de 1665 kernel_map_pages(virt_to_page(objp),
a737b3e2 1666 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1667 else
1668 check_poison_obj(cachep, objp);
1669#else
1670 check_poison_obj(cachep, objp);
1671#endif
1672 }
1673 if (cachep->flags & SLAB_RED_ZONE) {
1674 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1675 slab_error(cachep, "start of a freed object "
b28a02de 1676 "was overwritten");
1da177e4
LT
1677 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1678 slab_error(cachep, "end of a freed object "
b28a02de 1679 "was overwritten");
1da177e4
LT
1680 }
1681 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1682 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1683 }
12dd36fa 1684}
1da177e4 1685#else
343e0d7a 1686static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1687{
1da177e4
LT
1688 if (cachep->dtor) {
1689 int i;
1690 for (i = 0; i < cachep->num; i++) {
8fea4e96 1691 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1692 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1693 }
1694 }
12dd36fa 1695}
1da177e4
LT
1696#endif
1697
911851e6
RD
1698/**
1699 * slab_destroy - destroy and release all objects in a slab
1700 * @cachep: cache pointer being destroyed
1701 * @slabp: slab pointer being destroyed
1702 *
12dd36fa 1703 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1704 * Before calling the slab must have been unlinked from the cache. The
1705 * cache-lock is not held/needed.
12dd36fa 1706 */
343e0d7a 1707static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1708{
1709 void *addr = slabp->s_mem - slabp->colouroff;
1710
1711 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1712 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1713 struct slab_rcu *slab_rcu;
1714
b28a02de 1715 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1716 slab_rcu->cachep = cachep;
1717 slab_rcu->addr = addr;
1718 call_rcu(&slab_rcu->head, kmem_rcu_free);
1719 } else {
1720 kmem_freepages(cachep, addr);
1721 if (OFF_SLAB(cachep))
1722 kmem_cache_free(cachep->slabp_cache, slabp);
1723 }
1724}
1725
a737b3e2
AM
1726/*
1727 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1728 * size of kmem_list3.
1729 */
343e0d7a 1730static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1731{
1732 int node;
1733
1734 for_each_online_node(node) {
b28a02de 1735 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1736 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1737 REAPTIMEOUT_LIST3 +
1738 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1739 }
1740}
1741
4d268eba 1742/**
a70773dd
RD
1743 * calculate_slab_order - calculate size (page order) of slabs
1744 * @cachep: pointer to the cache that is being created
1745 * @size: size of objects to be created in this cache.
1746 * @align: required alignment for the objects.
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
4d268eba
PE
1750 *
1751 * This could be made much more intelligent. For now, try to avoid using
1752 * high order pages for slabs. When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
1754 */
a737b3e2 1755static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1756 size_t size, size_t align, unsigned long flags)
4d268eba
PE
1757{
1758 size_t left_over = 0;
9888e6fa 1759 int gfporder;
4d268eba 1760
a737b3e2 1761 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1762 unsigned int num;
1763 size_t remainder;
1764
9888e6fa 1765 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1766 if (!num)
1767 continue;
9888e6fa 1768
4d268eba 1769 /* More than offslab_limit objects will cause problems */
9888e6fa 1770 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
4d268eba
PE
1771 break;
1772
9888e6fa 1773 /* Found something acceptable - save it away */
4d268eba 1774 cachep->num = num;
9888e6fa 1775 cachep->gfporder = gfporder;
4d268eba
PE
1776 left_over = remainder;
1777
f78bb8ad
LT
1778 /*
1779 * A VFS-reclaimable slab tends to have most allocations
1780 * as GFP_NOFS and we really don't want to have to be allocating
1781 * higher-order pages when we are unable to shrink dcache.
1782 */
1783 if (flags & SLAB_RECLAIM_ACCOUNT)
1784 break;
1785
4d268eba
PE
1786 /*
1787 * Large number of objects is good, but very large slabs are
1788 * currently bad for the gfp()s.
1789 */
9888e6fa 1790 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1791 break;
1792
9888e6fa
LT
1793 /*
1794 * Acceptable internal fragmentation?
1795 */
a737b3e2 1796 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1797 break;
1798 }
1799 return left_over;
1800}
1801
f30cf7d1
PE
1802static void setup_cpu_cache(struct kmem_cache *cachep)
1803{
1804 if (g_cpucache_up == FULL) {
1805 enable_cpucache(cachep);
1806 return;
1807 }
1808 if (g_cpucache_up == NONE) {
1809 /*
1810 * Note: the first kmem_cache_create must create the cache
1811 * that's used by kmalloc(24), otherwise the creation of
1812 * further caches will BUG().
1813 */
1814 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1815
1816 /*
1817 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1818 * the first cache, then we need to set up all its list3s,
1819 * otherwise the creation of further caches will BUG().
1820 */
1821 set_up_list3s(cachep, SIZE_AC);
1822 if (INDEX_AC == INDEX_L3)
1823 g_cpucache_up = PARTIAL_L3;
1824 else
1825 g_cpucache_up = PARTIAL_AC;
1826 } else {
1827 cachep->array[smp_processor_id()] =
1828 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1829
1830 if (g_cpucache_up == PARTIAL_AC) {
1831 set_up_list3s(cachep, SIZE_L3);
1832 g_cpucache_up = PARTIAL_L3;
1833 } else {
1834 int node;
1835 for_each_online_node(node) {
1836 cachep->nodelists[node] =
1837 kmalloc_node(sizeof(struct kmem_list3),
1838 GFP_KERNEL, node);
1839 BUG_ON(!cachep->nodelists[node]);
1840 kmem_list3_init(cachep->nodelists[node]);
1841 }
1842 }
1843 }
1844 cachep->nodelists[numa_node_id()]->next_reap =
1845 jiffies + REAPTIMEOUT_LIST3 +
1846 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1847
1848 cpu_cache_get(cachep)->avail = 0;
1849 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1850 cpu_cache_get(cachep)->batchcount = 1;
1851 cpu_cache_get(cachep)->touched = 0;
1852 cachep->batchcount = 1;
1853 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1854}
1855
1da177e4
LT
1856/**
1857 * kmem_cache_create - Create a cache.
1858 * @name: A string which is used in /proc/slabinfo to identify this cache.
1859 * @size: The size of objects to be created in this cache.
1860 * @align: The required alignment for the objects.
1861 * @flags: SLAB flags
1862 * @ctor: A constructor for the objects.
1863 * @dtor: A destructor for the objects.
1864 *
1865 * Returns a ptr to the cache on success, NULL on failure.
1866 * Cannot be called within a int, but can be interrupted.
1867 * The @ctor is run when new pages are allocated by the cache
1868 * and the @dtor is run before the pages are handed back.
1869 *
1870 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1871 * the module calling this has to destroy the cache before getting unloaded.
1872 *
1da177e4
LT
1873 * The flags are
1874 *
1875 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1876 * to catch references to uninitialised memory.
1877 *
1878 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1879 * for buffer overruns.
1880 *
1da177e4
LT
1881 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1882 * cacheline. This can be beneficial if you're counting cycles as closely
1883 * as davem.
1884 */
343e0d7a 1885struct kmem_cache *
1da177e4 1886kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1887 unsigned long flags,
1888 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1889 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1890{
1891 size_t left_over, slab_size, ralign;
343e0d7a 1892 struct kmem_cache *cachep = NULL;
4f12bb4f 1893 struct list_head *p;
1da177e4
LT
1894
1895 /*
1896 * Sanity checks... these are all serious usage bugs.
1897 */
a737b3e2 1898 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1899 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1900 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1901 name);
b28a02de
PE
1902 BUG();
1903 }
1da177e4 1904
f0188f47
RT
1905 /*
1906 * Prevent CPUs from coming and going.
1907 * lock_cpu_hotplug() nests outside cache_chain_mutex
1908 */
1909 lock_cpu_hotplug();
1910
fc0abb14 1911 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1912
1913 list_for_each(p, &cache_chain) {
343e0d7a 1914 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
4f12bb4f
AM
1915 mm_segment_t old_fs = get_fs();
1916 char tmp;
1917 int res;
1918
1919 /*
1920 * This happens when the module gets unloaded and doesn't
1921 * destroy its slab cache and no-one else reuses the vmalloc
1922 * area of the module. Print a warning.
1923 */
1924 set_fs(KERNEL_DS);
1925 res = __get_user(tmp, pc->name);
1926 set_fs(old_fs);
1927 if (res) {
1928 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1929 pc->buffer_size);
4f12bb4f
AM
1930 continue;
1931 }
1932
b28a02de 1933 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1934 printk("kmem_cache_create: duplicate cache %s\n", name);
1935 dump_stack();
1936 goto oops;
1937 }
1938 }
1939
1da177e4
LT
1940#if DEBUG
1941 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1942 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1943 /* No constructor, but inital state check requested */
1944 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1945 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1946 flags &= ~SLAB_DEBUG_INITIAL;
1947 }
1da177e4
LT
1948#if FORCED_DEBUG
1949 /*
1950 * Enable redzoning and last user accounting, except for caches with
1951 * large objects, if the increased size would increase the object size
1952 * above the next power of two: caches with object sizes just above a
1953 * power of two have a significant amount of internal fragmentation.
1954 */
a737b3e2 1955 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 1956 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1957 if (!(flags & SLAB_DESTROY_BY_RCU))
1958 flags |= SLAB_POISON;
1959#endif
1960 if (flags & SLAB_DESTROY_BY_RCU)
1961 BUG_ON(flags & SLAB_POISON);
1962#endif
1963 if (flags & SLAB_DESTROY_BY_RCU)
1964 BUG_ON(dtor);
1965
1966 /*
a737b3e2
AM
1967 * Always checks flags, a caller might be expecting debug support which
1968 * isn't available.
1da177e4
LT
1969 */
1970 if (flags & ~CREATE_MASK)
1971 BUG();
1972
a737b3e2
AM
1973 /*
1974 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1975 * unaligned accesses for some archs when redzoning is used, and makes
1976 * sure any on-slab bufctl's are also correctly aligned.
1977 */
b28a02de
PE
1978 if (size & (BYTES_PER_WORD - 1)) {
1979 size += (BYTES_PER_WORD - 1);
1980 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1981 }
1982
a737b3e2
AM
1983 /* calculate the final buffer alignment: */
1984
1da177e4
LT
1985 /* 1) arch recommendation: can be overridden for debug */
1986 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
1987 /*
1988 * Default alignment: as specified by the arch code. Except if
1989 * an object is really small, then squeeze multiple objects into
1990 * one cacheline.
1da177e4
LT
1991 */
1992 ralign = cache_line_size();
b28a02de 1993 while (size <= ralign / 2)
1da177e4
LT
1994 ralign /= 2;
1995 } else {
1996 ralign = BYTES_PER_WORD;
1997 }
1998 /* 2) arch mandated alignment: disables debug if necessary */
1999 if (ralign < ARCH_SLAB_MINALIGN) {
2000 ralign = ARCH_SLAB_MINALIGN;
2001 if (ralign > BYTES_PER_WORD)
b28a02de 2002 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2003 }
2004 /* 3) caller mandated alignment: disables debug if necessary */
2005 if (ralign < align) {
2006 ralign = align;
2007 if (ralign > BYTES_PER_WORD)
b28a02de 2008 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2009 }
a737b3e2
AM
2010 /*
2011 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2012 * the alignment to BYTES_PER_WORD.
2013 */
2014 align = ralign;
2015
2016 /* Get cache's description obj. */
c5e3b83e 2017 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2018 if (!cachep)
4f12bb4f 2019 goto oops;
1da177e4
LT
2020
2021#if DEBUG
3dafccf2 2022 cachep->obj_size = size;
1da177e4
LT
2023
2024 if (flags & SLAB_RED_ZONE) {
2025 /* redzoning only works with word aligned caches */
2026 align = BYTES_PER_WORD;
2027
2028 /* add space for red zone words */
3dafccf2 2029 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2030 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2031 }
2032 if (flags & SLAB_STORE_USER) {
2033 /* user store requires word alignment and
2034 * one word storage behind the end of the real
2035 * object.
2036 */
2037 align = BYTES_PER_WORD;
2038 size += BYTES_PER_WORD;
2039 }
2040#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2041 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2042 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2043 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2044 size = PAGE_SIZE;
2045 }
2046#endif
2047#endif
2048
2049 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 2050 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
2051 /*
2052 * Size is large, assume best to place the slab management obj
2053 * off-slab (should allow better packing of objs).
2054 */
2055 flags |= CFLGS_OFF_SLAB;
2056
2057 size = ALIGN(size, align);
2058
f78bb8ad 2059 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2060
2061 if (!cachep->num) {
2062 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2063 kmem_cache_free(&cache_cache, cachep);
2064 cachep = NULL;
4f12bb4f 2065 goto oops;
1da177e4 2066 }
b28a02de
PE
2067 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2068 + sizeof(struct slab), align);
1da177e4
LT
2069
2070 /*
2071 * If the slab has been placed off-slab, and we have enough space then
2072 * move it on-slab. This is at the expense of any extra colouring.
2073 */
2074 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2075 flags &= ~CFLGS_OFF_SLAB;
2076 left_over -= slab_size;
2077 }
2078
2079 if (flags & CFLGS_OFF_SLAB) {
2080 /* really off slab. No need for manual alignment */
b28a02de
PE
2081 slab_size =
2082 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2083 }
2084
2085 cachep->colour_off = cache_line_size();
2086 /* Offset must be a multiple of the alignment. */
2087 if (cachep->colour_off < align)
2088 cachep->colour_off = align;
b28a02de 2089 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2090 cachep->slab_size = slab_size;
2091 cachep->flags = flags;
2092 cachep->gfpflags = 0;
2093 if (flags & SLAB_CACHE_DMA)
2094 cachep->gfpflags |= GFP_DMA;
3dafccf2 2095 cachep->buffer_size = size;
1da177e4
LT
2096
2097 if (flags & CFLGS_OFF_SLAB)
b2d55073 2098 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2099 cachep->ctor = ctor;
2100 cachep->dtor = dtor;
2101 cachep->name = name;
2102
1da177e4 2103
f30cf7d1 2104 setup_cpu_cache(cachep);
1da177e4 2105
1da177e4
LT
2106 /* cache setup completed, link it into the list */
2107 list_add(&cachep->next, &cache_chain);
a737b3e2 2108oops:
1da177e4
LT
2109 if (!cachep && (flags & SLAB_PANIC))
2110 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2111 name);
fc0abb14 2112 mutex_unlock(&cache_chain_mutex);
f0188f47 2113 unlock_cpu_hotplug();
1da177e4
LT
2114 return cachep;
2115}
2116EXPORT_SYMBOL(kmem_cache_create);
2117
2118#if DEBUG
2119static void check_irq_off(void)
2120{
2121 BUG_ON(!irqs_disabled());
2122}
2123
2124static void check_irq_on(void)
2125{
2126 BUG_ON(irqs_disabled());
2127}
2128
343e0d7a 2129static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2130{
2131#ifdef CONFIG_SMP
2132 check_irq_off();
e498be7d 2133 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2134#endif
2135}
e498be7d 2136
343e0d7a 2137static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2138{
2139#ifdef CONFIG_SMP
2140 check_irq_off();
2141 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2142#endif
2143}
2144
1da177e4
LT
2145#else
2146#define check_irq_off() do { } while(0)
2147#define check_irq_on() do { } while(0)
2148#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2149#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2150#endif
2151
aab2207c
CL
2152static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2153 struct array_cache *ac,
2154 int force, int node);
2155
1da177e4
LT
2156static void do_drain(void *arg)
2157{
a737b3e2 2158 struct kmem_cache *cachep = arg;
1da177e4 2159 struct array_cache *ac;
ff69416e 2160 int node = numa_node_id();
1da177e4
LT
2161
2162 check_irq_off();
9a2dba4b 2163 ac = cpu_cache_get(cachep);
ff69416e
CL
2164 spin_lock(&cachep->nodelists[node]->list_lock);
2165 free_block(cachep, ac->entry, ac->avail, node);
2166 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2167 ac->avail = 0;
2168}
2169
343e0d7a 2170static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2171{
e498be7d
CL
2172 struct kmem_list3 *l3;
2173 int node;
2174
a07fa394 2175 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2176 check_irq_on();
b28a02de 2177 for_each_online_node(node) {
e498be7d
CL
2178 l3 = cachep->nodelists[node];
2179 if (l3) {
aab2207c 2180 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2181 if (l3->alien)
4484ebf1 2182 drain_alien_cache(cachep, l3->alien);
e498be7d
CL
2183 }
2184 }
1da177e4
LT
2185}
2186
343e0d7a 2187static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2188{
2189 struct slab *slabp;
e498be7d 2190 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2191 int ret;
2192
e498be7d 2193 for (;;) {
1da177e4
LT
2194 struct list_head *p;
2195
e498be7d
CL
2196 p = l3->slabs_free.prev;
2197 if (p == &l3->slabs_free)
1da177e4
LT
2198 break;
2199
e498be7d 2200 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
2201#if DEBUG
2202 if (slabp->inuse)
2203 BUG();
2204#endif
2205 list_del(&slabp->list);
2206
e498be7d
CL
2207 l3->free_objects -= cachep->num;
2208 spin_unlock_irq(&l3->list_lock);
1da177e4 2209 slab_destroy(cachep, slabp);
e498be7d 2210 spin_lock_irq(&l3->list_lock);
1da177e4 2211 }
b28a02de 2212 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2213 return ret;
2214}
2215
343e0d7a 2216static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2217{
2218 int ret = 0, i = 0;
2219 struct kmem_list3 *l3;
2220
2221 drain_cpu_caches(cachep);
2222
2223 check_irq_on();
2224 for_each_online_node(i) {
2225 l3 = cachep->nodelists[i];
2226 if (l3) {
2227 spin_lock_irq(&l3->list_lock);
2228 ret += __node_shrink(cachep, i);
2229 spin_unlock_irq(&l3->list_lock);
2230 }
2231 }
2232 return (ret ? 1 : 0);
2233}
2234
1da177e4
LT
2235/**
2236 * kmem_cache_shrink - Shrink a cache.
2237 * @cachep: The cache to shrink.
2238 *
2239 * Releases as many slabs as possible for a cache.
2240 * To help debugging, a zero exit status indicates all slabs were released.
2241 */
343e0d7a 2242int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4
LT
2243{
2244 if (!cachep || in_interrupt())
2245 BUG();
2246
2247 return __cache_shrink(cachep);
2248}
2249EXPORT_SYMBOL(kmem_cache_shrink);
2250
2251/**
2252 * kmem_cache_destroy - delete a cache
2253 * @cachep: the cache to destroy
2254 *
343e0d7a 2255 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2256 * Returns 0 on success.
2257 *
2258 * It is expected this function will be called by a module when it is
2259 * unloaded. This will remove the cache completely, and avoid a duplicate
2260 * cache being allocated each time a module is loaded and unloaded, if the
2261 * module doesn't have persistent in-kernel storage across loads and unloads.
2262 *
2263 * The cache must be empty before calling this function.
2264 *
2265 * The caller must guarantee that noone will allocate memory from the cache
2266 * during the kmem_cache_destroy().
2267 */
343e0d7a 2268int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2269{
2270 int i;
e498be7d 2271 struct kmem_list3 *l3;
1da177e4
LT
2272
2273 if (!cachep || in_interrupt())
2274 BUG();
2275
2276 /* Don't let CPUs to come and go */
2277 lock_cpu_hotplug();
2278
2279 /* Find the cache in the chain of caches. */
fc0abb14 2280 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2281 /*
2282 * the chain is never empty, cache_cache is never destroyed
2283 */
2284 list_del(&cachep->next);
fc0abb14 2285 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2286
2287 if (__cache_shrink(cachep)) {
2288 slab_error(cachep, "Can't free all objects");
fc0abb14 2289 mutex_lock(&cache_chain_mutex);
b28a02de 2290 list_add(&cachep->next, &cache_chain);
fc0abb14 2291 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2292 unlock_cpu_hotplug();
2293 return 1;
2294 }
2295
2296 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2297 synchronize_rcu();
1da177e4 2298
e498be7d 2299 for_each_online_cpu(i)
b28a02de 2300 kfree(cachep->array[i]);
1da177e4
LT
2301
2302 /* NUMA: free the list3 structures */
e498be7d 2303 for_each_online_node(i) {
a737b3e2
AM
2304 l3 = cachep->nodelists[i];
2305 if (l3) {
e498be7d
CL
2306 kfree(l3->shared);
2307 free_alien_cache(l3->alien);
2308 kfree(l3);
2309 }
2310 }
1da177e4 2311 kmem_cache_free(&cache_cache, cachep);
1da177e4 2312 unlock_cpu_hotplug();
1da177e4
LT
2313 return 0;
2314}
2315EXPORT_SYMBOL(kmem_cache_destroy);
2316
2317/* Get the memory for a slab management obj. */
343e0d7a 2318static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
b28a02de 2319 int colour_off, gfp_t local_flags)
1da177e4
LT
2320{
2321 struct slab *slabp;
b28a02de 2322
1da177e4
LT
2323 if (OFF_SLAB(cachep)) {
2324 /* Slab management obj is off-slab. */
2325 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2326 if (!slabp)
2327 return NULL;
2328 } else {
b28a02de 2329 slabp = objp + colour_off;
1da177e4
LT
2330 colour_off += cachep->slab_size;
2331 }
2332 slabp->inuse = 0;
2333 slabp->colouroff = colour_off;
b28a02de 2334 slabp->s_mem = objp + colour_off;
1da177e4
LT
2335 return slabp;
2336}
2337
2338static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2339{
b28a02de 2340 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2341}
2342
343e0d7a 2343static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2344 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2345{
2346 int i;
2347
2348 for (i = 0; i < cachep->num; i++) {
8fea4e96 2349 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2350#if DEBUG
2351 /* need to poison the objs? */
2352 if (cachep->flags & SLAB_POISON)
2353 poison_obj(cachep, objp, POISON_FREE);
2354 if (cachep->flags & SLAB_STORE_USER)
2355 *dbg_userword(cachep, objp) = NULL;
2356
2357 if (cachep->flags & SLAB_RED_ZONE) {
2358 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2359 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2360 }
2361 /*
a737b3e2
AM
2362 * Constructors are not allowed to allocate memory from the same
2363 * cache which they are a constructor for. Otherwise, deadlock.
2364 * They must also be threaded.
1da177e4
LT
2365 */
2366 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2367 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2368 ctor_flags);
1da177e4
LT
2369
2370 if (cachep->flags & SLAB_RED_ZONE) {
2371 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2372 slab_error(cachep, "constructor overwrote the"
b28a02de 2373 " end of an object");
1da177e4
LT
2374 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2375 slab_error(cachep, "constructor overwrote the"
b28a02de 2376 " start of an object");
1da177e4 2377 }
a737b3e2
AM
2378 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2379 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2380 kernel_map_pages(virt_to_page(objp),
3dafccf2 2381 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2382#else
2383 if (cachep->ctor)
2384 cachep->ctor(objp, cachep, ctor_flags);
2385#endif
b28a02de 2386 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2387 }
b28a02de 2388 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2389 slabp->free = 0;
2390}
2391
343e0d7a 2392static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2393{
a737b3e2
AM
2394 if (flags & SLAB_DMA)
2395 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2396 else
2397 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2398}
2399
a737b3e2
AM
2400static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2401 int nodeid)
78d382d7 2402{
8fea4e96 2403 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2404 kmem_bufctl_t next;
2405
2406 slabp->inuse++;
2407 next = slab_bufctl(slabp)[slabp->free];
2408#if DEBUG
2409 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2410 WARN_ON(slabp->nodeid != nodeid);
2411#endif
2412 slabp->free = next;
2413
2414 return objp;
2415}
2416
a737b3e2
AM
2417static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2418 void *objp, int nodeid)
78d382d7 2419{
8fea4e96 2420 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2421
2422#if DEBUG
2423 /* Verify that the slab belongs to the intended node */
2424 WARN_ON(slabp->nodeid != nodeid);
2425
871751e2 2426 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2427 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2428 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2429 BUG();
2430 }
2431#endif
2432 slab_bufctl(slabp)[objnr] = slabp->free;
2433 slabp->free = objnr;
2434 slabp->inuse--;
2435}
2436
a737b3e2
AM
2437static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2438 void *objp)
1da177e4
LT
2439{
2440 int i;
2441 struct page *page;
2442
2443 /* Nasty!!!!!! I hope this is OK. */
1da177e4 2444 page = virt_to_page(objp);
84097518
NP
2445
2446 i = 1;
2447 if (likely(!PageCompound(page)))
2448 i <<= cachep->gfporder;
1da177e4 2449 do {
065d41cb
PE
2450 page_set_cache(page, cachep);
2451 page_set_slab(page, slabp);
1da177e4
LT
2452 page++;
2453 } while (--i);
2454}
2455
2456/*
2457 * Grow (by 1) the number of slabs within a cache. This is called by
2458 * kmem_cache_alloc() when there are no active objs left in a cache.
2459 */
343e0d7a 2460static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2461{
b28a02de
PE
2462 struct slab *slabp;
2463 void *objp;
2464 size_t offset;
2465 gfp_t local_flags;
2466 unsigned long ctor_flags;
e498be7d 2467 struct kmem_list3 *l3;
1da177e4 2468
a737b3e2
AM
2469 /*
2470 * Be lazy and only check for valid flags here, keeping it out of the
2471 * critical path in kmem_cache_alloc().
1da177e4 2472 */
b28a02de 2473 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2474 BUG();
2475 if (flags & SLAB_NO_GROW)
2476 return 0;
2477
2478 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2479 local_flags = (flags & SLAB_LEVEL_MASK);
2480 if (!(local_flags & __GFP_WAIT))
2481 /*
2482 * Not allowed to sleep. Need to tell a constructor about
2483 * this - it might need to know...
2484 */
2485 ctor_flags |= SLAB_CTOR_ATOMIC;
2486
2e1217cf 2487 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2488 check_irq_off();
2e1217cf
RT
2489 l3 = cachep->nodelists[nodeid];
2490 spin_lock(&l3->list_lock);
1da177e4
LT
2491
2492 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2493 offset = l3->colour_next;
2494 l3->colour_next++;
2495 if (l3->colour_next >= cachep->colour)
2496 l3->colour_next = 0;
2497 spin_unlock(&l3->list_lock);
1da177e4 2498
2e1217cf 2499 offset *= cachep->colour_off;
1da177e4
LT
2500
2501 if (local_flags & __GFP_WAIT)
2502 local_irq_enable();
2503
2504 /*
2505 * The test for missing atomic flag is performed here, rather than
2506 * the more obvious place, simply to reduce the critical path length
2507 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2508 * will eventually be caught here (where it matters).
2509 */
2510 kmem_flagcheck(cachep, flags);
2511
a737b3e2
AM
2512 /*
2513 * Get mem for the objs. Attempt to allocate a physical page from
2514 * 'nodeid'.
e498be7d 2515 */
a737b3e2
AM
2516 objp = kmem_getpages(cachep, flags, nodeid);
2517 if (!objp)
1da177e4
LT
2518 goto failed;
2519
2520 /* Get slab management. */
a737b3e2
AM
2521 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2522 if (!slabp)
1da177e4
LT
2523 goto opps1;
2524
e498be7d 2525 slabp->nodeid = nodeid;
1da177e4
LT
2526 set_slab_attr(cachep, slabp, objp);
2527
2528 cache_init_objs(cachep, slabp, ctor_flags);
2529
2530 if (local_flags & __GFP_WAIT)
2531 local_irq_disable();
2532 check_irq_off();
e498be7d 2533 spin_lock(&l3->list_lock);
1da177e4
LT
2534
2535 /* Make slab active. */
e498be7d 2536 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2537 STATS_INC_GROWN(cachep);
e498be7d
CL
2538 l3->free_objects += cachep->num;
2539 spin_unlock(&l3->list_lock);
1da177e4 2540 return 1;
a737b3e2 2541opps1:
1da177e4 2542 kmem_freepages(cachep, objp);
a737b3e2 2543failed:
1da177e4
LT
2544 if (local_flags & __GFP_WAIT)
2545 local_irq_disable();
2546 return 0;
2547}
2548
2549#if DEBUG
2550
2551/*
2552 * Perform extra freeing checks:
2553 * - detect bad pointers.
2554 * - POISON/RED_ZONE checking
2555 * - destructor calls, for caches with POISON+dtor
2556 */
2557static void kfree_debugcheck(const void *objp)
2558{
2559 struct page *page;
2560
2561 if (!virt_addr_valid(objp)) {
2562 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2563 (unsigned long)objp);
2564 BUG();
1da177e4
LT
2565 }
2566 page = virt_to_page(objp);
2567 if (!PageSlab(page)) {
b28a02de
PE
2568 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2569 (unsigned long)objp);
1da177e4
LT
2570 BUG();
2571 }
2572}
2573
343e0d7a 2574static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2575 void *caller)
1da177e4
LT
2576{
2577 struct page *page;
2578 unsigned int objnr;
2579 struct slab *slabp;
2580
3dafccf2 2581 objp -= obj_offset(cachep);
1da177e4
LT
2582 kfree_debugcheck(objp);
2583 page = virt_to_page(objp);
2584
065d41cb 2585 if (page_get_cache(page) != cachep) {
a737b3e2
AM
2586 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2587 "cache %p, got %p\n",
b28a02de 2588 page_get_cache(page), cachep);
1da177e4 2589 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2590 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2591 page_get_cache(page)->name);
1da177e4
LT
2592 WARN_ON(1);
2593 }
065d41cb 2594 slabp = page_get_slab(page);
1da177e4
LT
2595
2596 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2597 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2598 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2599 slab_error(cachep, "double free, or memory outside"
2600 " object was overwritten");
2601 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2602 "redzone 2:0x%lx.\n",
b28a02de
PE
2603 objp, *dbg_redzone1(cachep, objp),
2604 *dbg_redzone2(cachep, objp));
1da177e4
LT
2605 }
2606 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2607 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2608 }
2609 if (cachep->flags & SLAB_STORE_USER)
2610 *dbg_userword(cachep, objp) = caller;
2611
8fea4e96 2612 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2613
2614 BUG_ON(objnr >= cachep->num);
8fea4e96 2615 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2616
2617 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2618 /*
2619 * Need to call the slab's constructor so the caller can
2620 * perform a verify of its state (debugging). Called without
2621 * the cache-lock held.
1da177e4 2622 */
3dafccf2 2623 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2624 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2625 }
2626 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2627 /* we want to cache poison the object,
2628 * call the destruction callback
2629 */
3dafccf2 2630 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2631 }
871751e2
AV
2632#ifdef CONFIG_DEBUG_SLAB_LEAK
2633 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2634#endif
1da177e4
LT
2635 if (cachep->flags & SLAB_POISON) {
2636#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2637 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2638 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2639 kernel_map_pages(virt_to_page(objp),
3dafccf2 2640 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2641 } else {
2642 poison_obj(cachep, objp, POISON_FREE);
2643 }
2644#else
2645 poison_obj(cachep, objp, POISON_FREE);
2646#endif
2647 }
2648 return objp;
2649}
2650
343e0d7a 2651static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2652{
2653 kmem_bufctl_t i;
2654 int entries = 0;
b28a02de 2655
1da177e4
LT
2656 /* Check slab's freelist to see if this obj is there. */
2657 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2658 entries++;
2659 if (entries > cachep->num || i >= cachep->num)
2660 goto bad;
2661 }
2662 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2663bad:
2664 printk(KERN_ERR "slab: Internal list corruption detected in "
2665 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2666 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2667 for (i = 0;
264132bc 2668 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2669 i++) {
a737b3e2 2670 if (i % 16 == 0)
1da177e4 2671 printk("\n%03x:", i);
b28a02de 2672 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2673 }
2674 printk("\n");
2675 BUG();
2676 }
2677}
2678#else
2679#define kfree_debugcheck(x) do { } while(0)
2680#define cache_free_debugcheck(x,objp,z) (objp)
2681#define check_slabp(x,y) do { } while(0)
2682#endif
2683
343e0d7a 2684static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2685{
2686 int batchcount;
2687 struct kmem_list3 *l3;
2688 struct array_cache *ac;
2689
2690 check_irq_off();
9a2dba4b 2691 ac = cpu_cache_get(cachep);
a737b3e2 2692retry:
1da177e4
LT
2693 batchcount = ac->batchcount;
2694 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2695 /*
2696 * If there was little recent activity on this cache, then
2697 * perform only a partial refill. Otherwise we could generate
2698 * refill bouncing.
1da177e4
LT
2699 */
2700 batchcount = BATCHREFILL_LIMIT;
2701 }
e498be7d
CL
2702 l3 = cachep->nodelists[numa_node_id()];
2703
2704 BUG_ON(ac->avail > 0 || !l3);
2705 spin_lock(&l3->list_lock);
1da177e4 2706
3ded175a
CL
2707 /* See if we can refill from the shared array */
2708 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2709 goto alloc_done;
2710
1da177e4
LT
2711 while (batchcount > 0) {
2712 struct list_head *entry;
2713 struct slab *slabp;
2714 /* Get slab alloc is to come from. */
2715 entry = l3->slabs_partial.next;
2716 if (entry == &l3->slabs_partial) {
2717 l3->free_touched = 1;
2718 entry = l3->slabs_free.next;
2719 if (entry == &l3->slabs_free)
2720 goto must_grow;
2721 }
2722
2723 slabp = list_entry(entry, struct slab, list);
2724 check_slabp(cachep, slabp);
2725 check_spinlock_acquired(cachep);
2726 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2727 STATS_INC_ALLOCED(cachep);
2728 STATS_INC_ACTIVE(cachep);
2729 STATS_SET_HIGH(cachep);
2730
78d382d7
MD
2731 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2732 numa_node_id());
1da177e4
LT
2733 }
2734 check_slabp(cachep, slabp);
2735
2736 /* move slabp to correct slabp list: */
2737 list_del(&slabp->list);
2738 if (slabp->free == BUFCTL_END)
2739 list_add(&slabp->list, &l3->slabs_full);
2740 else
2741 list_add(&slabp->list, &l3->slabs_partial);
2742 }
2743
a737b3e2 2744must_grow:
1da177e4 2745 l3->free_objects -= ac->avail;
a737b3e2 2746alloc_done:
e498be7d 2747 spin_unlock(&l3->list_lock);
1da177e4
LT
2748
2749 if (unlikely(!ac->avail)) {
2750 int x;
e498be7d
CL
2751 x = cache_grow(cachep, flags, numa_node_id());
2752
a737b3e2 2753 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2754 ac = cpu_cache_get(cachep);
a737b3e2 2755 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2756 return NULL;
2757
a737b3e2 2758 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2759 goto retry;
2760 }
2761 ac->touched = 1;
e498be7d 2762 return ac->entry[--ac->avail];
1da177e4
LT
2763}
2764
a737b3e2
AM
2765static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2766 gfp_t flags)
1da177e4
LT
2767{
2768 might_sleep_if(flags & __GFP_WAIT);
2769#if DEBUG
2770 kmem_flagcheck(cachep, flags);
2771#endif
2772}
2773
2774#if DEBUG
a737b3e2
AM
2775static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2776 gfp_t flags, void *objp, void *caller)
1da177e4 2777{
b28a02de 2778 if (!objp)
1da177e4 2779 return objp;
b28a02de 2780 if (cachep->flags & SLAB_POISON) {
1da177e4 2781#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2782 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2783 kernel_map_pages(virt_to_page(objp),
3dafccf2 2784 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2785 else
2786 check_poison_obj(cachep, objp);
2787#else
2788 check_poison_obj(cachep, objp);
2789#endif
2790 poison_obj(cachep, objp, POISON_INUSE);
2791 }
2792 if (cachep->flags & SLAB_STORE_USER)
2793 *dbg_userword(cachep, objp) = caller;
2794
2795 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2796 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2797 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2798 slab_error(cachep, "double free, or memory outside"
2799 " object was overwritten");
b28a02de 2800 printk(KERN_ERR
a737b3e2
AM
2801 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2802 objp, *dbg_redzone1(cachep, objp),
2803 *dbg_redzone2(cachep, objp));
1da177e4
LT
2804 }
2805 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2806 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2807 }
871751e2
AV
2808#ifdef CONFIG_DEBUG_SLAB_LEAK
2809 {
2810 struct slab *slabp;
2811 unsigned objnr;
2812
2813 slabp = page_get_slab(virt_to_page(objp));
2814 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2815 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2816 }
2817#endif
3dafccf2 2818 objp += obj_offset(cachep);
1da177e4 2819 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2820 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2821
2822 if (!(flags & __GFP_WAIT))
2823 ctor_flags |= SLAB_CTOR_ATOMIC;
2824
2825 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2826 }
1da177e4
LT
2827 return objp;
2828}
2829#else
2830#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2831#endif
2832
343e0d7a 2833static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2834{
b28a02de 2835 void *objp;
1da177e4
LT
2836 struct array_cache *ac;
2837
dc85da15 2838#ifdef CONFIG_NUMA
b2455396 2839 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2840 objp = alternate_node_alloc(cachep, flags);
2841 if (objp != NULL)
2842 return objp;
dc85da15
CL
2843 }
2844#endif
2845
5c382300 2846 check_irq_off();
9a2dba4b 2847 ac = cpu_cache_get(cachep);
1da177e4
LT
2848 if (likely(ac->avail)) {
2849 STATS_INC_ALLOCHIT(cachep);
2850 ac->touched = 1;
e498be7d 2851 objp = ac->entry[--ac->avail];
1da177e4
LT
2852 } else {
2853 STATS_INC_ALLOCMISS(cachep);
2854 objp = cache_alloc_refill(cachep, flags);
2855 }
5c382300
AK
2856 return objp;
2857}
2858
a737b3e2
AM
2859static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2860 gfp_t flags, void *caller)
5c382300
AK
2861{
2862 unsigned long save_flags;
b28a02de 2863 void *objp;
5c382300
AK
2864
2865 cache_alloc_debugcheck_before(cachep, flags);
2866
2867 local_irq_save(save_flags);
2868 objp = ____cache_alloc(cachep, flags);
1da177e4 2869 local_irq_restore(save_flags);
34342e86 2870 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2871 caller);
34342e86 2872 prefetchw(objp);
1da177e4
LT
2873 return objp;
2874}
2875
e498be7d 2876#ifdef CONFIG_NUMA
c61afb18 2877/*
b2455396 2878 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
2879 *
2880 * If we are in_interrupt, then process context, including cpusets and
2881 * mempolicy, may not apply and should not be used for allocation policy.
2882 */
2883static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2884{
2885 int nid_alloc, nid_here;
2886
2887 if (in_interrupt())
2888 return NULL;
2889 nid_alloc = nid_here = numa_node_id();
2890 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2891 nid_alloc = cpuset_mem_spread_node();
2892 else if (current->mempolicy)
2893 nid_alloc = slab_node(current->mempolicy);
2894 if (nid_alloc != nid_here)
2895 return __cache_alloc_node(cachep, flags, nid_alloc);
2896 return NULL;
2897}
2898
e498be7d
CL
2899/*
2900 * A interface to enable slab creation on nodeid
1da177e4 2901 */
a737b3e2
AM
2902static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2903 int nodeid)
e498be7d
CL
2904{
2905 struct list_head *entry;
b28a02de
PE
2906 struct slab *slabp;
2907 struct kmem_list3 *l3;
2908 void *obj;
b28a02de
PE
2909 int x;
2910
2911 l3 = cachep->nodelists[nodeid];
2912 BUG_ON(!l3);
2913
a737b3e2 2914retry:
ca3b9b91 2915 check_irq_off();
b28a02de
PE
2916 spin_lock(&l3->list_lock);
2917 entry = l3->slabs_partial.next;
2918 if (entry == &l3->slabs_partial) {
2919 l3->free_touched = 1;
2920 entry = l3->slabs_free.next;
2921 if (entry == &l3->slabs_free)
2922 goto must_grow;
2923 }
2924
2925 slabp = list_entry(entry, struct slab, list);
2926 check_spinlock_acquired_node(cachep, nodeid);
2927 check_slabp(cachep, slabp);
2928
2929 STATS_INC_NODEALLOCS(cachep);
2930 STATS_INC_ACTIVE(cachep);
2931 STATS_SET_HIGH(cachep);
2932
2933 BUG_ON(slabp->inuse == cachep->num);
2934
78d382d7 2935 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
2936 check_slabp(cachep, slabp);
2937 l3->free_objects--;
2938 /* move slabp to correct slabp list: */
2939 list_del(&slabp->list);
2940
a737b3e2 2941 if (slabp->free == BUFCTL_END)
b28a02de 2942 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 2943 else
b28a02de 2944 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 2945
b28a02de
PE
2946 spin_unlock(&l3->list_lock);
2947 goto done;
e498be7d 2948
a737b3e2 2949must_grow:
b28a02de
PE
2950 spin_unlock(&l3->list_lock);
2951 x = cache_grow(cachep, flags, nodeid);
1da177e4 2952
b28a02de
PE
2953 if (!x)
2954 return NULL;
e498be7d 2955
b28a02de 2956 goto retry;
a737b3e2 2957done:
b28a02de 2958 return obj;
e498be7d
CL
2959}
2960#endif
2961
2962/*
2963 * Caller needs to acquire correct kmem_list's list_lock
2964 */
343e0d7a 2965static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 2966 int node)
1da177e4
LT
2967{
2968 int i;
e498be7d 2969 struct kmem_list3 *l3;
1da177e4
LT
2970
2971 for (i = 0; i < nr_objects; i++) {
2972 void *objp = objpp[i];
2973 struct slab *slabp;
1da177e4 2974
6ed5eb22 2975 slabp = virt_to_slab(objp);
ff69416e 2976 l3 = cachep->nodelists[node];
1da177e4 2977 list_del(&slabp->list);
ff69416e 2978 check_spinlock_acquired_node(cachep, node);
1da177e4 2979 check_slabp(cachep, slabp);
78d382d7 2980 slab_put_obj(cachep, slabp, objp, node);
1da177e4 2981 STATS_DEC_ACTIVE(cachep);
e498be7d 2982 l3->free_objects++;
1da177e4
LT
2983 check_slabp(cachep, slabp);
2984
2985 /* fixup slab chains */
2986 if (slabp->inuse == 0) {
e498be7d
CL
2987 if (l3->free_objects > l3->free_limit) {
2988 l3->free_objects -= cachep->num;
1da177e4
LT
2989 slab_destroy(cachep, slabp);
2990 } else {
e498be7d 2991 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2992 }
2993 } else {
2994 /* Unconditionally move a slab to the end of the
2995 * partial list on free - maximum time for the
2996 * other objects to be freed, too.
2997 */
e498be7d 2998 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2999 }
3000 }
3001}
3002
343e0d7a 3003static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3004{
3005 int batchcount;
e498be7d 3006 struct kmem_list3 *l3;
ff69416e 3007 int node = numa_node_id();
1da177e4
LT
3008
3009 batchcount = ac->batchcount;
3010#if DEBUG
3011 BUG_ON(!batchcount || batchcount > ac->avail);
3012#endif
3013 check_irq_off();
ff69416e 3014 l3 = cachep->nodelists[node];
e498be7d
CL
3015 spin_lock(&l3->list_lock);
3016 if (l3->shared) {
3017 struct array_cache *shared_array = l3->shared;
b28a02de 3018 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3019 if (max) {
3020 if (batchcount > max)
3021 batchcount = max;
e498be7d 3022 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3023 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3024 shared_array->avail += batchcount;
3025 goto free_done;
3026 }
3027 }
3028
ff69416e 3029 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3030free_done:
1da177e4
LT
3031#if STATS
3032 {
3033 int i = 0;
3034 struct list_head *p;
3035
e498be7d
CL
3036 p = l3->slabs_free.next;
3037 while (p != &(l3->slabs_free)) {
1da177e4
LT
3038 struct slab *slabp;
3039
3040 slabp = list_entry(p, struct slab, list);
3041 BUG_ON(slabp->inuse);
3042
3043 i++;
3044 p = p->next;
3045 }
3046 STATS_SET_FREEABLE(cachep, i);
3047 }
3048#endif
e498be7d 3049 spin_unlock(&l3->list_lock);
1da177e4 3050 ac->avail -= batchcount;
a737b3e2 3051 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3052}
3053
3054/*
a737b3e2
AM
3055 * Release an obj back to its cache. If the obj has a constructed state, it must
3056 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3057 */
343e0d7a 3058static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3059{
9a2dba4b 3060 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3061
3062 check_irq_off();
3063 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3064
e498be7d
CL
3065 /* Make sure we are not freeing a object from another
3066 * node to the array cache on this cpu.
3067 */
3068#ifdef CONFIG_NUMA
3069 {
3070 struct slab *slabp;
6ed5eb22 3071 slabp = virt_to_slab(objp);
e498be7d
CL
3072 if (unlikely(slabp->nodeid != numa_node_id())) {
3073 struct array_cache *alien = NULL;
3074 int nodeid = slabp->nodeid;
a737b3e2 3075 struct kmem_list3 *l3;
e498be7d 3076
a737b3e2 3077 l3 = cachep->nodelists[numa_node_id()];
e498be7d
CL
3078 STATS_INC_NODEFREES(cachep);
3079 if (l3->alien && l3->alien[nodeid]) {
3080 alien = l3->alien[nodeid];
3081 spin_lock(&alien->lock);
3082 if (unlikely(alien->avail == alien->limit))
3083 __drain_alien_cache(cachep,
b28a02de 3084 alien, nodeid);
e498be7d
CL
3085 alien->entry[alien->avail++] = objp;
3086 spin_unlock(&alien->lock);
3087 } else {
3088 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 3089 list_lock);
ff69416e 3090 free_block(cachep, &objp, 1, nodeid);
e498be7d 3091 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 3092 list_lock);
e498be7d
CL
3093 }
3094 return;
3095 }
3096 }
3097#endif
1da177e4
LT
3098 if (likely(ac->avail < ac->limit)) {
3099 STATS_INC_FREEHIT(cachep);
e498be7d 3100 ac->entry[ac->avail++] = objp;
1da177e4
LT
3101 return;
3102 } else {
3103 STATS_INC_FREEMISS(cachep);
3104 cache_flusharray(cachep, ac);
e498be7d 3105 ac->entry[ac->avail++] = objp;
1da177e4
LT
3106 }
3107}
3108
3109/**
3110 * kmem_cache_alloc - Allocate an object
3111 * @cachep: The cache to allocate from.
3112 * @flags: See kmalloc().
3113 *
3114 * Allocate an object from this cache. The flags are only relevant
3115 * if the cache has no available objects.
3116 */
343e0d7a 3117void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3118{
7fd6b141 3119 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3120}
3121EXPORT_SYMBOL(kmem_cache_alloc);
3122
a8c0f9a4
PE
3123/**
3124 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3125 * @cache: The cache to allocate from.
3126 * @flags: See kmalloc().
3127 *
3128 * Allocate an object from this cache and set the allocated memory to zero.
3129 * The flags are only relevant if the cache has no available objects.
3130 */
3131void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3132{
3133 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3134 if (ret)
3135 memset(ret, 0, obj_size(cache));
3136 return ret;
3137}
3138EXPORT_SYMBOL(kmem_cache_zalloc);
3139
1da177e4
LT
3140/**
3141 * kmem_ptr_validate - check if an untrusted pointer might
3142 * be a slab entry.
3143 * @cachep: the cache we're checking against
3144 * @ptr: pointer to validate
3145 *
3146 * This verifies that the untrusted pointer looks sane:
3147 * it is _not_ a guarantee that the pointer is actually
3148 * part of the slab cache in question, but it at least
3149 * validates that the pointer can be dereferenced and
3150 * looks half-way sane.
3151 *
3152 * Currently only used for dentry validation.
3153 */
343e0d7a 3154int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3155{
b28a02de 3156 unsigned long addr = (unsigned long)ptr;
1da177e4 3157 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3158 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3159 unsigned long size = cachep->buffer_size;
1da177e4
LT
3160 struct page *page;
3161
3162 if (unlikely(addr < min_addr))
3163 goto out;
3164 if (unlikely(addr > (unsigned long)high_memory - size))
3165 goto out;
3166 if (unlikely(addr & align_mask))
3167 goto out;
3168 if (unlikely(!kern_addr_valid(addr)))
3169 goto out;
3170 if (unlikely(!kern_addr_valid(addr + size - 1)))
3171 goto out;
3172 page = virt_to_page(ptr);
3173 if (unlikely(!PageSlab(page)))
3174 goto out;
065d41cb 3175 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3176 goto out;
3177 return 1;
a737b3e2 3178out:
1da177e4
LT
3179 return 0;
3180}
3181
3182#ifdef CONFIG_NUMA
3183/**
3184 * kmem_cache_alloc_node - Allocate an object on the specified node
3185 * @cachep: The cache to allocate from.
3186 * @flags: See kmalloc().
3187 * @nodeid: node number of the target node.
3188 *
3189 * Identical to kmem_cache_alloc, except that this function is slow
3190 * and can sleep. And it will allocate memory on the given node, which
3191 * can improve the performance for cpu bound structures.
e498be7d
CL
3192 * New and improved: it will now make sure that the object gets
3193 * put on the correct node list so that there is no false sharing.
1da177e4 3194 */
343e0d7a 3195void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3196{
e498be7d
CL
3197 unsigned long save_flags;
3198 void *ptr;
1da177e4 3199
e498be7d
CL
3200 cache_alloc_debugcheck_before(cachep, flags);
3201 local_irq_save(save_flags);
18f820f6
CL
3202
3203 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3204 !cachep->nodelists[nodeid])
5c382300
AK
3205 ptr = ____cache_alloc(cachep, flags);
3206 else
3207 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3208 local_irq_restore(save_flags);
18f820f6
CL
3209
3210 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3211 __builtin_return_address(0));
1da177e4 3212
e498be7d 3213 return ptr;
1da177e4
LT
3214}
3215EXPORT_SYMBOL(kmem_cache_alloc_node);
3216
dd0fc66f 3217void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3218{
343e0d7a 3219 struct kmem_cache *cachep;
97e2bde4
MS
3220
3221 cachep = kmem_find_general_cachep(size, flags);
3222 if (unlikely(cachep == NULL))
3223 return NULL;
3224 return kmem_cache_alloc_node(cachep, flags, node);
3225}
3226EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3227#endif
3228
3229/**
3230 * kmalloc - allocate memory
3231 * @size: how many bytes of memory are required.
3232 * @flags: the type of memory to allocate.
911851e6 3233 * @caller: function caller for debug tracking of the caller
1da177e4
LT
3234 *
3235 * kmalloc is the normal method of allocating memory
3236 * in the kernel.
3237 *
3238 * The @flags argument may be one of:
3239 *
3240 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3241 *
3242 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3243 *
3244 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3245 *
3246 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3247 * must be suitable for DMA. This can mean different things on different
3248 * platforms. For example, on i386, it means that the memory must come
3249 * from the first 16MB.
3250 */
7fd6b141
PE
3251static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3252 void *caller)
1da177e4 3253{
343e0d7a 3254 struct kmem_cache *cachep;
1da177e4 3255
97e2bde4
MS
3256 /* If you want to save a few bytes .text space: replace
3257 * __ with kmem_.
3258 * Then kmalloc uses the uninlined functions instead of the inline
3259 * functions.
3260 */
3261 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3262 if (unlikely(cachep == NULL))
3263 return NULL;
7fd6b141
PE
3264 return __cache_alloc(cachep, flags, caller);
3265}
3266
7fd6b141
PE
3267
3268void *__kmalloc(size_t size, gfp_t flags)
3269{
871751e2 3270#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3271 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3272#else
3273 return __do_kmalloc(size, flags, __builtin_return_address(0));
3274#endif
1da177e4
LT
3275}
3276EXPORT_SYMBOL(__kmalloc);
3277
871751e2 3278#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3279void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3280{
3281 return __do_kmalloc(size, flags, caller);
3282}
3283EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3284#endif
3285
1da177e4
LT
3286#ifdef CONFIG_SMP
3287/**
3288 * __alloc_percpu - allocate one copy of the object for every present
3289 * cpu in the system, zeroing them.
3290 * Objects should be dereferenced using the per_cpu_ptr macro only.
3291 *
3292 * @size: how many bytes of memory are required.
1da177e4 3293 */
f9f75005 3294void *__alloc_percpu(size_t size)
1da177e4
LT
3295{
3296 int i;
b28a02de 3297 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3298
3299 if (!pdata)
3300 return NULL;
3301
e498be7d
CL
3302 /*
3303 * Cannot use for_each_online_cpu since a cpu may come online
3304 * and we have no way of figuring out how to fix the array
3305 * that we have allocated then....
3306 */
3307 for_each_cpu(i) {
3308 int node = cpu_to_node(i);
3309
3310 if (node_online(node))
3311 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3312 else
3313 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3314
3315 if (!pdata->ptrs[i])
3316 goto unwind_oom;
3317 memset(pdata->ptrs[i], 0, size);
3318 }
3319
3320 /* Catch derefs w/o wrappers */
b28a02de 3321 return (void *)(~(unsigned long)pdata);
1da177e4 3322
a737b3e2 3323unwind_oom:
1da177e4
LT
3324 while (--i >= 0) {
3325 if (!cpu_possible(i))
3326 continue;
3327 kfree(pdata->ptrs[i]);
3328 }
3329 kfree(pdata);
3330 return NULL;
3331}
3332EXPORT_SYMBOL(__alloc_percpu);
3333#endif
3334
3335/**
3336 * kmem_cache_free - Deallocate an object
3337 * @cachep: The cache the allocation was from.
3338 * @objp: The previously allocated object.
3339 *
3340 * Free an object which was previously allocated from this
3341 * cache.
3342 */
343e0d7a 3343void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3344{
3345 unsigned long flags;
3346
3347 local_irq_save(flags);
3348 __cache_free(cachep, objp);
3349 local_irq_restore(flags);
3350}
3351EXPORT_SYMBOL(kmem_cache_free);
3352
1da177e4
LT
3353/**
3354 * kfree - free previously allocated memory
3355 * @objp: pointer returned by kmalloc.
3356 *
80e93eff
PE
3357 * If @objp is NULL, no operation is performed.
3358 *
1da177e4
LT
3359 * Don't free memory not originally allocated by kmalloc()
3360 * or you will run into trouble.
3361 */
3362void kfree(const void *objp)
3363{
343e0d7a 3364 struct kmem_cache *c;
1da177e4
LT
3365 unsigned long flags;
3366
3367 if (unlikely(!objp))
3368 return;
3369 local_irq_save(flags);
3370 kfree_debugcheck(objp);
6ed5eb22 3371 c = virt_to_cache(objp);
3dafccf2 3372 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3373 __cache_free(c, (void *)objp);
1da177e4
LT
3374 local_irq_restore(flags);
3375}
3376EXPORT_SYMBOL(kfree);
3377
3378#ifdef CONFIG_SMP
3379/**
3380 * free_percpu - free previously allocated percpu memory
3381 * @objp: pointer returned by alloc_percpu.
3382 *
3383 * Don't free memory not originally allocated by alloc_percpu()
3384 * The complemented objp is to check for that.
3385 */
b28a02de 3386void free_percpu(const void *objp)
1da177e4
LT
3387{
3388 int i;
b28a02de 3389 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3390
e498be7d
CL
3391 /*
3392 * We allocate for all cpus so we cannot use for online cpu here.
3393 */
3394 for_each_cpu(i)
b28a02de 3395 kfree(p->ptrs[i]);
1da177e4
LT
3396 kfree(p);
3397}
3398EXPORT_SYMBOL(free_percpu);
3399#endif
3400
343e0d7a 3401unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3402{
3dafccf2 3403 return obj_size(cachep);
1da177e4
LT
3404}
3405EXPORT_SYMBOL(kmem_cache_size);
3406
343e0d7a 3407const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3408{
3409 return cachep->name;
3410}
3411EXPORT_SYMBOL_GPL(kmem_cache_name);
3412
e498be7d
CL
3413/*
3414 * This initializes kmem_list3 for all nodes.
3415 */
343e0d7a 3416static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3417{
3418 int node;
3419 struct kmem_list3 *l3;
3420 int err = 0;
3421
3422 for_each_online_node(node) {
3423 struct array_cache *nc = NULL, *new;
3424 struct array_cache **new_alien = NULL;
3425#ifdef CONFIG_NUMA
a737b3e2
AM
3426 new_alien = alloc_alien_cache(node, cachep->limit);
3427 if (!new_alien)
e498be7d
CL
3428 goto fail;
3429#endif
a737b3e2
AM
3430 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3431 0xbaadf00d);
3432 if (!new)
e498be7d 3433 goto fail;
a737b3e2
AM
3434 l3 = cachep->nodelists[node];
3435 if (l3) {
e498be7d
CL
3436 spin_lock_irq(&l3->list_lock);
3437
a737b3e2
AM
3438 nc = cachep->nodelists[node]->shared;
3439 if (nc)
b28a02de 3440 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3441
3442 l3->shared = new;
3443 if (!cachep->nodelists[node]->alien) {
3444 l3->alien = new_alien;
3445 new_alien = NULL;
3446 }
b28a02de 3447 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3448 cachep->batchcount + cachep->num;
e498be7d
CL
3449 spin_unlock_irq(&l3->list_lock);
3450 kfree(nc);
3451 free_alien_cache(new_alien);
3452 continue;
3453 }
a737b3e2
AM
3454 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3455 if (!l3)
e498be7d
CL
3456 goto fail;
3457
3458 kmem_list3_init(l3);
3459 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3460 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3461 l3->shared = new;
3462 l3->alien = new_alien;
b28a02de 3463 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3464 cachep->batchcount + cachep->num;
e498be7d
CL
3465 cachep->nodelists[node] = l3;
3466 }
3467 return err;
a737b3e2 3468fail:
e498be7d
CL
3469 err = -ENOMEM;
3470 return err;
3471}
3472
1da177e4 3473struct ccupdate_struct {
343e0d7a 3474 struct kmem_cache *cachep;
1da177e4
LT
3475 struct array_cache *new[NR_CPUS];
3476};
3477
3478static void do_ccupdate_local(void *info)
3479{
a737b3e2 3480 struct ccupdate_struct *new = info;
1da177e4
LT
3481 struct array_cache *old;
3482
3483 check_irq_off();
9a2dba4b 3484 old = cpu_cache_get(new->cachep);
e498be7d 3485
1da177e4
LT
3486 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3487 new->new[smp_processor_id()] = old;
3488}
3489
b5d8ca7c 3490/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3491static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3492 int batchcount, int shared)
1da177e4
LT
3493{
3494 struct ccupdate_struct new;
e498be7d 3495 int i, err;
1da177e4 3496
b28a02de 3497 memset(&new.new, 0, sizeof(new.new));
e498be7d 3498 for_each_online_cpu(i) {
a737b3e2
AM
3499 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3500 batchcount);
e498be7d 3501 if (!new.new[i]) {
b28a02de
PE
3502 for (i--; i >= 0; i--)
3503 kfree(new.new[i]);
e498be7d 3504 return -ENOMEM;
1da177e4
LT
3505 }
3506 }
3507 new.cachep = cachep;
3508
a07fa394 3509 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3510
1da177e4 3511 check_irq_on();
1da177e4
LT
3512 cachep->batchcount = batchcount;
3513 cachep->limit = limit;
e498be7d 3514 cachep->shared = shared;
1da177e4 3515
e498be7d 3516 for_each_online_cpu(i) {
1da177e4
LT
3517 struct array_cache *ccold = new.new[i];
3518 if (!ccold)
3519 continue;
e498be7d 3520 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3521 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3522 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3523 kfree(ccold);
3524 }
1da177e4 3525
e498be7d
CL
3526 err = alloc_kmemlist(cachep);
3527 if (err) {
3528 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3529 cachep->name, -err);
e498be7d 3530 BUG();
1da177e4 3531 }
1da177e4
LT
3532 return 0;
3533}
3534
b5d8ca7c 3535/* Called with cache_chain_mutex held always */
343e0d7a 3536static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3537{
3538 int err;
3539 int limit, shared;
3540
a737b3e2
AM
3541 /*
3542 * The head array serves three purposes:
1da177e4
LT
3543 * - create a LIFO ordering, i.e. return objects that are cache-warm
3544 * - reduce the number of spinlock operations.
a737b3e2 3545 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3546 * bufctl chains: array operations are cheaper.
3547 * The numbers are guessed, we should auto-tune as described by
3548 * Bonwick.
3549 */
3dafccf2 3550 if (cachep->buffer_size > 131072)
1da177e4 3551 limit = 1;
3dafccf2 3552 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3553 limit = 8;
3dafccf2 3554 else if (cachep->buffer_size > 1024)
1da177e4 3555 limit = 24;
3dafccf2 3556 else if (cachep->buffer_size > 256)
1da177e4
LT
3557 limit = 54;
3558 else
3559 limit = 120;
3560
a737b3e2
AM
3561 /*
3562 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3563 * allocation behaviour: Most allocs on one cpu, most free operations
3564 * on another cpu. For these cases, an efficient object passing between
3565 * cpus is necessary. This is provided by a shared array. The array
3566 * replaces Bonwick's magazine layer.
3567 * On uniprocessor, it's functionally equivalent (but less efficient)
3568 * to a larger limit. Thus disabled by default.
3569 */
3570 shared = 0;
3571#ifdef CONFIG_SMP
3dafccf2 3572 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3573 shared = 8;
3574#endif
3575
3576#if DEBUG
a737b3e2
AM
3577 /*
3578 * With debugging enabled, large batchcount lead to excessively long
3579 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3580 */
3581 if (limit > 32)
3582 limit = 32;
3583#endif
b28a02de 3584 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3585 if (err)
3586 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3587 cachep->name, -err);
1da177e4
LT
3588}
3589
1b55253a
CL
3590/*
3591 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3592 * necessary. Note that the l3 listlock also protects the array_cache
3593 * if drain_array() is used on the shared array.
1b55253a
CL
3594 */
3595void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3596 struct array_cache *ac, int force, int node)
1da177e4
LT
3597{
3598 int tofree;
3599
1b55253a
CL
3600 if (!ac || !ac->avail)
3601 return;
1da177e4
LT
3602 if (ac->touched && !force) {
3603 ac->touched = 0;
b18e7e65 3604 } else {
1b55253a 3605 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3606 if (ac->avail) {
3607 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3608 if (tofree > ac->avail)
3609 tofree = (ac->avail + 1) / 2;
3610 free_block(cachep, ac->entry, tofree, node);
3611 ac->avail -= tofree;
3612 memmove(ac->entry, &(ac->entry[tofree]),
3613 sizeof(void *) * ac->avail);
3614 }
1b55253a 3615 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3616 }
3617}
3618
3619/**
3620 * cache_reap - Reclaim memory from caches.
1e5d5331 3621 * @unused: unused parameter
1da177e4
LT
3622 *
3623 * Called from workqueue/eventd every few seconds.
3624 * Purpose:
3625 * - clear the per-cpu caches for this CPU.
3626 * - return freeable pages to the main free memory pool.
3627 *
a737b3e2
AM
3628 * If we cannot acquire the cache chain mutex then just give up - we'll try
3629 * again on the next iteration.
1da177e4
LT
3630 */
3631static void cache_reap(void *unused)
3632{
3633 struct list_head *walk;
e498be7d 3634 struct kmem_list3 *l3;
aab2207c 3635 int node = numa_node_id();
1da177e4 3636
fc0abb14 3637 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3638 /* Give up. Setup the next iteration. */
b28a02de
PE
3639 schedule_delayed_work(&__get_cpu_var(reap_work),
3640 REAPTIMEOUT_CPUC);
1da177e4
LT
3641 return;
3642 }
3643
3644 list_for_each(walk, &cache_chain) {
343e0d7a 3645 struct kmem_cache *searchp;
b28a02de 3646 struct list_head *p;
1da177e4
LT
3647 int tofree;
3648 struct slab *slabp;
3649
343e0d7a 3650 searchp = list_entry(walk, struct kmem_cache, next);
1da177e4
LT
3651 check_irq_on();
3652
35386e3b
CL
3653 /*
3654 * We only take the l3 lock if absolutely necessary and we
3655 * have established with reasonable certainty that
3656 * we can do some work if the lock was obtained.
3657 */
aab2207c 3658 l3 = searchp->nodelists[node];
35386e3b 3659
8fce4d8e 3660 reap_alien(searchp, l3);
1da177e4 3661
aab2207c 3662 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3663
35386e3b
CL
3664 /*
3665 * These are racy checks but it does not matter
3666 * if we skip one check or scan twice.
3667 */
e498be7d 3668 if (time_after(l3->next_reap, jiffies))
35386e3b 3669 goto next;
1da177e4 3670
e498be7d 3671 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3672
aab2207c 3673 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3674
e498be7d
CL
3675 if (l3->free_touched) {
3676 l3->free_touched = 0;
35386e3b 3677 goto next;
1da177e4
LT
3678 }
3679
a737b3e2
AM
3680 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3681 (5 * searchp->num);
1da177e4 3682 do {
35386e3b
CL
3683 /*
3684 * Do not lock if there are no free blocks.
3685 */
3686 if (list_empty(&l3->slabs_free))
3687 break;
3688
3689 spin_lock_irq(&l3->list_lock);
e498be7d 3690 p = l3->slabs_free.next;
35386e3b
CL
3691 if (p == &(l3->slabs_free)) {
3692 spin_unlock_irq(&l3->list_lock);
1da177e4 3693 break;
35386e3b 3694 }
1da177e4
LT
3695
3696 slabp = list_entry(p, struct slab, list);
3697 BUG_ON(slabp->inuse);
3698 list_del(&slabp->list);
3699 STATS_INC_REAPED(searchp);
3700
a737b3e2
AM
3701 /*
3702 * Safe to drop the lock. The slab is no longer linked
3703 * to the cache. searchp cannot disappear, we hold
1da177e4
LT
3704 * cache_chain_lock
3705 */
e498be7d
CL
3706 l3->free_objects -= searchp->num;
3707 spin_unlock_irq(&l3->list_lock);
1da177e4 3708 slab_destroy(searchp, slabp);
b28a02de 3709 } while (--tofree > 0);
35386e3b 3710next:
1da177e4
LT
3711 cond_resched();
3712 }
3713 check_irq_on();
fc0abb14 3714 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3715 next_reap_node();
a737b3e2 3716 /* Set up the next iteration */
cd61ef62 3717 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3718}
3719
3720#ifdef CONFIG_PROC_FS
3721
85289f98 3722static void print_slabinfo_header(struct seq_file *m)
1da177e4 3723{
85289f98
PE
3724 /*
3725 * Output format version, so at least we can change it
3726 * without _too_ many complaints.
3727 */
1da177e4 3728#if STATS
85289f98 3729 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3730#else
85289f98 3731 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3732#endif
85289f98
PE
3733 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3734 "<objperslab> <pagesperslab>");
3735 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3736 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3737#if STATS
85289f98
PE
3738 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3739 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3740 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3741#endif
85289f98
PE
3742 seq_putc(m, '\n');
3743}
3744
3745static void *s_start(struct seq_file *m, loff_t *pos)
3746{
3747 loff_t n = *pos;
3748 struct list_head *p;
3749
fc0abb14 3750 mutex_lock(&cache_chain_mutex);
85289f98
PE
3751 if (!n)
3752 print_slabinfo_header(m);
1da177e4
LT
3753 p = cache_chain.next;
3754 while (n--) {
3755 p = p->next;
3756 if (p == &cache_chain)
3757 return NULL;
3758 }
343e0d7a 3759 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3760}
3761
3762static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3763{
343e0d7a 3764 struct kmem_cache *cachep = p;
1da177e4 3765 ++*pos;
a737b3e2
AM
3766 return cachep->next.next == &cache_chain ?
3767 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3768}
3769
3770static void s_stop(struct seq_file *m, void *p)
3771{
fc0abb14 3772 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3773}
3774
3775static int s_show(struct seq_file *m, void *p)
3776{
343e0d7a 3777 struct kmem_cache *cachep = p;
1da177e4 3778 struct list_head *q;
b28a02de
PE
3779 struct slab *slabp;
3780 unsigned long active_objs;
3781 unsigned long num_objs;
3782 unsigned long active_slabs = 0;
3783 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3784 const char *name;
1da177e4 3785 char *error = NULL;
e498be7d
CL
3786 int node;
3787 struct kmem_list3 *l3;
1da177e4 3788
1da177e4
LT
3789 active_objs = 0;
3790 num_slabs = 0;
e498be7d
CL
3791 for_each_online_node(node) {
3792 l3 = cachep->nodelists[node];
3793 if (!l3)
3794 continue;
3795
ca3b9b91
RT
3796 check_irq_on();
3797 spin_lock_irq(&l3->list_lock);
e498be7d 3798
b28a02de 3799 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3800 slabp = list_entry(q, struct slab, list);
3801 if (slabp->inuse != cachep->num && !error)
3802 error = "slabs_full accounting error";
3803 active_objs += cachep->num;
3804 active_slabs++;
3805 }
b28a02de 3806 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3807 slabp = list_entry(q, struct slab, list);
3808 if (slabp->inuse == cachep->num && !error)
3809 error = "slabs_partial inuse accounting error";
3810 if (!slabp->inuse && !error)
3811 error = "slabs_partial/inuse accounting error";
3812 active_objs += slabp->inuse;
3813 active_slabs++;
3814 }
b28a02de 3815 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3816 slabp = list_entry(q, struct slab, list);
3817 if (slabp->inuse && !error)
3818 error = "slabs_free/inuse accounting error";
3819 num_slabs++;
3820 }
3821 free_objects += l3->free_objects;
4484ebf1
RT
3822 if (l3->shared)
3823 shared_avail += l3->shared->avail;
e498be7d 3824
ca3b9b91 3825 spin_unlock_irq(&l3->list_lock);
1da177e4 3826 }
b28a02de
PE
3827 num_slabs += active_slabs;
3828 num_objs = num_slabs * cachep->num;
e498be7d 3829 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3830 error = "free_objects accounting error";
3831
b28a02de 3832 name = cachep->name;
1da177e4
LT
3833 if (error)
3834 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3835
3836 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3837 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3838 cachep->num, (1 << cachep->gfporder));
1da177e4 3839 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3840 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3841 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3842 active_slabs, num_slabs, shared_avail);
1da177e4 3843#if STATS
b28a02de 3844 { /* list3 stats */
1da177e4
LT
3845 unsigned long high = cachep->high_mark;
3846 unsigned long allocs = cachep->num_allocations;
3847 unsigned long grown = cachep->grown;
3848 unsigned long reaped = cachep->reaped;
3849 unsigned long errors = cachep->errors;
3850 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3851 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3852 unsigned long node_frees = cachep->node_frees;
1da177e4 3853
e498be7d 3854 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
a737b3e2
AM
3855 %4lu %4lu %4lu %4lu", allocs, high, grown,
3856 reaped, errors, max_freeable, node_allocs,
3857 node_frees);
1da177e4
LT
3858 }
3859 /* cpu stats */
3860 {
3861 unsigned long allochit = atomic_read(&cachep->allochit);
3862 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3863 unsigned long freehit = atomic_read(&cachep->freehit);
3864 unsigned long freemiss = atomic_read(&cachep->freemiss);
3865
3866 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3867 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3868 }
3869#endif
3870 seq_putc(m, '\n');
1da177e4
LT
3871 return 0;
3872}
3873
3874/*
3875 * slabinfo_op - iterator that generates /proc/slabinfo
3876 *
3877 * Output layout:
3878 * cache-name
3879 * num-active-objs
3880 * total-objs
3881 * object size
3882 * num-active-slabs
3883 * total-slabs
3884 * num-pages-per-slab
3885 * + further values on SMP and with statistics enabled
3886 */
3887
3888struct seq_operations slabinfo_op = {
b28a02de
PE
3889 .start = s_start,
3890 .next = s_next,
3891 .stop = s_stop,
3892 .show = s_show,
1da177e4
LT
3893};
3894
3895#define MAX_SLABINFO_WRITE 128
3896/**
3897 * slabinfo_write - Tuning for the slab allocator
3898 * @file: unused
3899 * @buffer: user buffer
3900 * @count: data length
3901 * @ppos: unused
3902 */
b28a02de
PE
3903ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3904 size_t count, loff_t *ppos)
1da177e4 3905{
b28a02de 3906 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3907 int limit, batchcount, shared, res;
3908 struct list_head *p;
b28a02de 3909
1da177e4
LT
3910 if (count > MAX_SLABINFO_WRITE)
3911 return -EINVAL;
3912 if (copy_from_user(&kbuf, buffer, count))
3913 return -EFAULT;
b28a02de 3914 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3915
3916 tmp = strchr(kbuf, ' ');
3917 if (!tmp)
3918 return -EINVAL;
3919 *tmp = '\0';
3920 tmp++;
3921 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3922 return -EINVAL;
3923
3924 /* Find the cache in the chain of caches. */
fc0abb14 3925 mutex_lock(&cache_chain_mutex);
1da177e4 3926 res = -EINVAL;
b28a02de 3927 list_for_each(p, &cache_chain) {
a737b3e2 3928 struct kmem_cache *cachep;
1da177e4 3929
a737b3e2 3930 cachep = list_entry(p, struct kmem_cache, next);
1da177e4 3931 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3932 if (limit < 1 || batchcount < 1 ||
3933 batchcount > limit || shared < 0) {
e498be7d 3934 res = 0;
1da177e4 3935 } else {
e498be7d 3936 res = do_tune_cpucache(cachep, limit,
b28a02de 3937 batchcount, shared);
1da177e4
LT
3938 }
3939 break;
3940 }
3941 }
fc0abb14 3942 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3943 if (res >= 0)
3944 res = count;
3945 return res;
3946}
871751e2
AV
3947
3948#ifdef CONFIG_DEBUG_SLAB_LEAK
3949
3950static void *leaks_start(struct seq_file *m, loff_t *pos)
3951{
3952 loff_t n = *pos;
3953 struct list_head *p;
3954
3955 mutex_lock(&cache_chain_mutex);
3956 p = cache_chain.next;
3957 while (n--) {
3958 p = p->next;
3959 if (p == &cache_chain)
3960 return NULL;
3961 }
3962 return list_entry(p, struct kmem_cache, next);
3963}
3964
3965static inline int add_caller(unsigned long *n, unsigned long v)
3966{
3967 unsigned long *p;
3968 int l;
3969 if (!v)
3970 return 1;
3971 l = n[1];
3972 p = n + 2;
3973 while (l) {
3974 int i = l/2;
3975 unsigned long *q = p + 2 * i;
3976 if (*q == v) {
3977 q[1]++;
3978 return 1;
3979 }
3980 if (*q > v) {
3981 l = i;
3982 } else {
3983 p = q + 2;
3984 l -= i + 1;
3985 }
3986 }
3987 if (++n[1] == n[0])
3988 return 0;
3989 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
3990 p[0] = v;
3991 p[1] = 1;
3992 return 1;
3993}
3994
3995static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
3996{
3997 void *p;
3998 int i;
3999 if (n[0] == n[1])
4000 return;
4001 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4002 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4003 continue;
4004 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4005 return;
4006 }
4007}
4008
4009static void show_symbol(struct seq_file *m, unsigned long address)
4010{
4011#ifdef CONFIG_KALLSYMS
4012 char *modname;
4013 const char *name;
4014 unsigned long offset, size;
4015 char namebuf[KSYM_NAME_LEN+1];
4016
4017 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4018
4019 if (name) {
4020 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4021 if (modname)
4022 seq_printf(m, " [%s]", modname);
4023 return;
4024 }
4025#endif
4026 seq_printf(m, "%p", (void *)address);
4027}
4028
4029static int leaks_show(struct seq_file *m, void *p)
4030{
4031 struct kmem_cache *cachep = p;
4032 struct list_head *q;
4033 struct slab *slabp;
4034 struct kmem_list3 *l3;
4035 const char *name;
4036 unsigned long *n = m->private;
4037 int node;
4038 int i;
4039
4040 if (!(cachep->flags & SLAB_STORE_USER))
4041 return 0;
4042 if (!(cachep->flags & SLAB_RED_ZONE))
4043 return 0;
4044
4045 /* OK, we can do it */
4046
4047 n[1] = 0;
4048
4049 for_each_online_node(node) {
4050 l3 = cachep->nodelists[node];
4051 if (!l3)
4052 continue;
4053
4054 check_irq_on();
4055 spin_lock_irq(&l3->list_lock);
4056
4057 list_for_each(q, &l3->slabs_full) {
4058 slabp = list_entry(q, struct slab, list);
4059 handle_slab(n, cachep, slabp);
4060 }
4061 list_for_each(q, &l3->slabs_partial) {
4062 slabp = list_entry(q, struct slab, list);
4063 handle_slab(n, cachep, slabp);
4064 }
4065 spin_unlock_irq(&l3->list_lock);
4066 }
4067 name = cachep->name;
4068 if (n[0] == n[1]) {
4069 /* Increase the buffer size */
4070 mutex_unlock(&cache_chain_mutex);
4071 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4072 if (!m->private) {
4073 /* Too bad, we are really out */
4074 m->private = n;
4075 mutex_lock(&cache_chain_mutex);
4076 return -ENOMEM;
4077 }
4078 *(unsigned long *)m->private = n[0] * 2;
4079 kfree(n);
4080 mutex_lock(&cache_chain_mutex);
4081 /* Now make sure this entry will be retried */
4082 m->count = m->size;
4083 return 0;
4084 }
4085 for (i = 0; i < n[1]; i++) {
4086 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4087 show_symbol(m, n[2*i+2]);
4088 seq_putc(m, '\n');
4089 }
4090 return 0;
4091}
4092
4093struct seq_operations slabstats_op = {
4094 .start = leaks_start,
4095 .next = s_next,
4096 .stop = s_stop,
4097 .show = leaks_show,
4098};
4099#endif
1da177e4
LT
4100#endif
4101
00e145b6
MS
4102/**
4103 * ksize - get the actual amount of memory allocated for a given object
4104 * @objp: Pointer to the object
4105 *
4106 * kmalloc may internally round up allocations and return more memory
4107 * than requested. ksize() can be used to determine the actual amount of
4108 * memory allocated. The caller may use this additional memory, even though
4109 * a smaller amount of memory was initially specified with the kmalloc call.
4110 * The caller must guarantee that objp points to a valid object previously
4111 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4112 * must not be freed during the duration of the call.
4113 */
1da177e4
LT
4114unsigned int ksize(const void *objp)
4115{
00e145b6
MS
4116 if (unlikely(objp == NULL))
4117 return 0;
1da177e4 4118
6ed5eb22 4119 return obj_size(virt_to_cache(objp));
1da177e4 4120}