]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
[PATCH] cpuset: mempolicy one more nodemask conversion
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
a226f6c8
DH
58static void fastcall free_hot_cold_page(struct page *page, int cold);
59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
85unsigned long __initdata nr_kernel_pages;
86unsigned long __initdata nr_all_pages;
87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
129
13e7444b
NP
130#else
131static inline int bad_range(struct zone *zone, struct page *page)
132{
133 return 0;
134}
135#endif
136
224abf92 137static void bad_page(struct page *page)
1da177e4 138{
224abf92
NP
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 "Trying to fix it up, but a reboot is needed\n"
142 "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
1da177e4 146 dump_stack();
334795ec
HD
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
1da177e4 149 1 << PG_locked |
1da177e4
LT
150 1 << PG_active |
151 1 << PG_dirty |
334795ec
HD
152 1 << PG_reclaim |
153 1 << PG_slab |
1da177e4 154 1 << PG_swapcache |
689bcebf 155 1 << PG_writeback );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
172 * The first tail page's ->mapping, if non-zero, holds the address of the
173 * compound page's put_page() function.
174 *
175 * The order of the allocation is stored in the first tail page's ->index
176 * This is only for debug at present. This usage means that zero-order pages
177 * may not be compound.
178 */
179static void prep_compound_page(struct page *page, unsigned long order)
180{
181 int i;
182 int nr_pages = 1 << order;
183
184 page[1].mapping = NULL;
185 page[1].index = order;
186 for (i = 0; i < nr_pages; i++) {
187 struct page *p = page + i;
188
189 SetPageCompound(p);
4c21e2f2 190 set_page_private(p, (unsigned long)page);
1da177e4
LT
191 }
192}
193
194static void destroy_compound_page(struct page *page, unsigned long order)
195{
196 int i;
197 int nr_pages = 1 << order;
198
224abf92
NP
199 if (unlikely(page[1].index != order))
200 bad_page(page);
1da177e4
LT
201
202 for (i = 0; i < nr_pages; i++) {
203 struct page *p = page + i;
204
224abf92
NP
205 if (unlikely(!PageCompound(p) |
206 (page_private(p) != (unsigned long)page)))
207 bad_page(page);
1da177e4
LT
208 ClearPageCompound(p);
209 }
210}
1da177e4
LT
211
212/*
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
216 */
217static inline unsigned long page_order(struct page *page) {
4c21e2f2 218 return page_private(page);
1da177e4
LT
219}
220
221static inline void set_page_order(struct page *page, int order) {
4c21e2f2 222 set_page_private(page, order);
1da177e4
LT
223 __SetPagePrivate(page);
224}
225
226static inline void rmv_page_order(struct page *page)
227{
228 __ClearPagePrivate(page);
4c21e2f2 229 set_page_private(page, 0);
1da177e4
LT
230}
231
232/*
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
235 *
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242 *
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
246 *
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248 */
249static inline struct page *
250__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251{
252 unsigned long buddy_idx = page_idx ^ (1 << order);
253
254 return page + (buddy_idx - page_idx);
255}
256
257static inline unsigned long
258__find_combined_index(unsigned long page_idx, unsigned int order)
259{
260 return (page_idx & ~(1 << order));
261}
262
263/*
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
13e7444b
NP
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
4c21e2f2 270 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
271 *
272 */
273static inline int page_is_buddy(struct page *page, int order)
274{
13e7444b
NP
275#ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278#endif
279
1da177e4
LT
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
1da177e4
LT
282 page_count(page) == 0)
283 return 1;
284 return 0;
285}
286
287/*
288 * Freeing function for a buddy system allocator.
289 *
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 301 * order is recorded in page_private(page) field.
1da177e4
LT
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
307 *
308 * -- wli
309 */
310
48db57f8 311static inline void __free_one_page(struct page *page,
1da177e4
LT
312 struct zone *zone, unsigned int order)
313{
314 unsigned long page_idx;
315 int order_size = 1 << order;
316
224abf92 317 if (unlikely(PageCompound(page)))
1da177e4
LT
318 destroy_compound_page(page, order);
319
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
321
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
324
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
330
1da177e4 331 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
13e7444b 334
1da177e4
LT
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
13e7444b 339 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
343 }
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
347}
348
224abf92 349static inline int free_pages_check(struct page *page)
1da177e4 350{
92be2e33
NP
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
1da177e4
LT
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
b5810039 362 1 << PG_writeback |
92be2e33 363 1 << PG_reserved ))))
224abf92 364 bad_page(page);
1da177e4 365 if (PageDirty(page))
242e5468 366 __ClearPageDirty(page);
689bcebf
HD
367 /*
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
371 */
372 return PageReserved(page);
1da177e4
LT
373}
374
375/*
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
207f36ee 378 * count is the number of pages to free.
1da177e4
LT
379 *
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
382 *
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
385 */
48db57f8
NP
386static void free_pages_bulk(struct zone *zone, int count,
387 struct list_head *list, int order)
1da177e4 388{
c54ad30c 389 spin_lock(&zone->lock);
1da177e4
LT
390 zone->all_unreclaimable = 0;
391 zone->pages_scanned = 0;
48db57f8
NP
392 while (count--) {
393 struct page *page;
394
395 BUG_ON(list_empty(list));
1da177e4 396 page = list_entry(list->prev, struct page, lru);
48db57f8 397 /* have to delete it as __free_one_page list manipulates */
1da177e4 398 list_del(&page->lru);
48db57f8 399 __free_one_page(page, zone, order);
1da177e4 400 }
c54ad30c 401 spin_unlock(&zone->lock);
1da177e4
LT
402}
403
48db57f8 404static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
405{
406 LIST_HEAD(list);
48db57f8
NP
407 list_add(&page->lru, &list);
408 free_pages_bulk(zone, 1, &list, order);
409}
410
411static void __free_pages_ok(struct page *page, unsigned int order)
412{
413 unsigned long flags;
1da177e4 414 int i;
689bcebf 415 int reserved = 0;
1da177e4
LT
416
417 arch_free_page(page, order);
418
1da177e4 419#ifndef CONFIG_MMU
48db57f8
NP
420 for (i = 1 ; i < (1 << order) ; ++i)
421 __put_page(page + i);
1da177e4
LT
422#endif
423
424 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 425 reserved += free_pages_check(page + i);
689bcebf
HD
426 if (reserved)
427 return;
428
48db57f8 429 kernel_map_pages(page, 1 << order, 0);
c54ad30c 430 local_irq_save(flags);
a74609fa 431 __mod_page_state(pgfree, 1 << order);
48db57f8 432 free_one_page(page_zone(page), page, order);
c54ad30c 433 local_irq_restore(flags);
1da177e4
LT
434}
435
a226f6c8
DH
436/*
437 * permit the bootmem allocator to evade page validation on high-order frees
438 */
439void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
440{
441 if (order == 0) {
442 __ClearPageReserved(page);
443 set_page_count(page, 0);
444
445 free_hot_cold_page(page, 0);
446 } else {
447 LIST_HEAD(list);
448 int loop;
449
450 for (loop = 0; loop < BITS_PER_LONG; loop++) {
451 struct page *p = &page[loop];
452
453 if (loop + 16 < BITS_PER_LONG)
454 prefetchw(p + 16);
455 __ClearPageReserved(p);
456 set_page_count(p, 0);
457 }
458
459 arch_free_page(page, order);
460
461 mod_page_state(pgfree, 1 << order);
462
463 list_add(&page->lru, &list);
464 kernel_map_pages(page, 1 << order, 0);
465 free_pages_bulk(page_zone(page), 1, &list, order);
466 }
467}
468
1da177e4
LT
469
470/*
471 * The order of subdivision here is critical for the IO subsystem.
472 * Please do not alter this order without good reasons and regression
473 * testing. Specifically, as large blocks of memory are subdivided,
474 * the order in which smaller blocks are delivered depends on the order
475 * they're subdivided in this function. This is the primary factor
476 * influencing the order in which pages are delivered to the IO
477 * subsystem according to empirical testing, and this is also justified
478 * by considering the behavior of a buddy system containing a single
479 * large block of memory acted on by a series of small allocations.
480 * This behavior is a critical factor in sglist merging's success.
481 *
482 * -- wli
483 */
085cc7d5 484static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
485 int low, int high, struct free_area *area)
486{
487 unsigned long size = 1 << high;
488
489 while (high > low) {
490 area--;
491 high--;
492 size >>= 1;
493 BUG_ON(bad_range(zone, &page[size]));
494 list_add(&page[size].lru, &area->free_list);
495 area->nr_free++;
496 set_page_order(&page[size], high);
497 }
1da177e4
LT
498}
499
1da177e4
LT
500/*
501 * This page is about to be returned from the page allocator
502 */
689bcebf 503static int prep_new_page(struct page *page, int order)
1da177e4 504{
92be2e33
NP
505 if (unlikely(page_mapcount(page) |
506 (page->mapping != NULL) |
507 (page_count(page) != 0) |
334795ec
HD
508 (page->flags & (
509 1 << PG_lru |
1da177e4
LT
510 1 << PG_private |
511 1 << PG_locked |
1da177e4
LT
512 1 << PG_active |
513 1 << PG_dirty |
514 1 << PG_reclaim |
334795ec 515 1 << PG_slab |
1da177e4 516 1 << PG_swapcache |
b5810039 517 1 << PG_writeback |
92be2e33 518 1 << PG_reserved ))))
224abf92 519 bad_page(page);
1da177e4 520
689bcebf
HD
521 /*
522 * For now, we report if PG_reserved was found set, but do not
523 * clear it, and do not allocate the page: as a safety net.
524 */
525 if (PageReserved(page))
526 return 1;
527
1da177e4
LT
528 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
529 1 << PG_referenced | 1 << PG_arch_1 |
530 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 531 set_page_private(page, 0);
1da177e4
LT
532 set_page_refs(page, order);
533 kernel_map_pages(page, 1 << order, 1);
689bcebf 534 return 0;
1da177e4
LT
535}
536
537/*
538 * Do the hard work of removing an element from the buddy allocator.
539 * Call me with the zone->lock already held.
540 */
541static struct page *__rmqueue(struct zone *zone, unsigned int order)
542{
543 struct free_area * area;
544 unsigned int current_order;
545 struct page *page;
546
547 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
548 area = zone->free_area + current_order;
549 if (list_empty(&area->free_list))
550 continue;
551
552 page = list_entry(area->free_list.next, struct page, lru);
553 list_del(&page->lru);
554 rmv_page_order(page);
555 area->nr_free--;
556 zone->free_pages -= 1UL << order;
085cc7d5
NP
557 expand(zone, page, order, current_order, area);
558 return page;
1da177e4
LT
559 }
560
561 return NULL;
562}
563
564/*
565 * Obtain a specified number of elements from the buddy allocator, all under
566 * a single hold of the lock, for efficiency. Add them to the supplied list.
567 * Returns the number of new pages which were placed at *list.
568 */
569static int rmqueue_bulk(struct zone *zone, unsigned int order,
570 unsigned long count, struct list_head *list)
571{
1da177e4 572 int i;
1da177e4 573
c54ad30c 574 spin_lock(&zone->lock);
1da177e4 575 for (i = 0; i < count; ++i) {
085cc7d5
NP
576 struct page *page = __rmqueue(zone, order);
577 if (unlikely(page == NULL))
1da177e4 578 break;
1da177e4
LT
579 list_add_tail(&page->lru, list);
580 }
c54ad30c 581 spin_unlock(&zone->lock);
085cc7d5 582 return i;
1da177e4
LT
583}
584
4ae7c039
CL
585#ifdef CONFIG_NUMA
586/* Called from the slab reaper to drain remote pagesets */
587void drain_remote_pages(void)
588{
589 struct zone *zone;
590 int i;
591 unsigned long flags;
592
593 local_irq_save(flags);
594 for_each_zone(zone) {
595 struct per_cpu_pageset *pset;
596
597 /* Do not drain local pagesets */
598 if (zone->zone_pgdat->node_id == numa_node_id())
599 continue;
600
23316bc8 601 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
602 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
603 struct per_cpu_pages *pcp;
604
605 pcp = &pset->pcp[i];
48db57f8
NP
606 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
607 pcp->count = 0;
4ae7c039
CL
608 }
609 }
610 local_irq_restore(flags);
611}
612#endif
613
1da177e4
LT
614#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
615static void __drain_pages(unsigned int cpu)
616{
c54ad30c 617 unsigned long flags;
1da177e4
LT
618 struct zone *zone;
619 int i;
620
621 for_each_zone(zone) {
622 struct per_cpu_pageset *pset;
623
e7c8d5c9 624 pset = zone_pcp(zone, cpu);
1da177e4
LT
625 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
626 struct per_cpu_pages *pcp;
627
628 pcp = &pset->pcp[i];
c54ad30c 629 local_irq_save(flags);
48db57f8
NP
630 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
631 pcp->count = 0;
c54ad30c 632 local_irq_restore(flags);
1da177e4
LT
633 }
634 }
635}
636#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
637
638#ifdef CONFIG_PM
639
640void mark_free_pages(struct zone *zone)
641{
642 unsigned long zone_pfn, flags;
643 int order;
644 struct list_head *curr;
645
646 if (!zone->spanned_pages)
647 return;
648
649 spin_lock_irqsave(&zone->lock, flags);
650 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
651 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
652
653 for (order = MAX_ORDER - 1; order >= 0; --order)
654 list_for_each(curr, &zone->free_area[order].free_list) {
655 unsigned long start_pfn, i;
656
657 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
658
659 for (i=0; i < (1<<order); i++)
660 SetPageNosaveFree(pfn_to_page(start_pfn+i));
661 }
662 spin_unlock_irqrestore(&zone->lock, flags);
663}
664
665/*
666 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
667 */
668void drain_local_pages(void)
669{
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __drain_pages(smp_processor_id());
674 local_irq_restore(flags);
675}
676#endif /* CONFIG_PM */
677
a74609fa 678static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
679{
680#ifdef CONFIG_NUMA
1da177e4
LT
681 pg_data_t *pg = z->zone_pgdat;
682 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
683 struct per_cpu_pageset *p;
684
a74609fa 685 p = zone_pcp(z, cpu);
1da177e4 686 if (pg == orig) {
e7c8d5c9 687 p->numa_hit++;
1da177e4
LT
688 } else {
689 p->numa_miss++;
e7c8d5c9 690 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
691 }
692 if (pg == NODE_DATA(numa_node_id()))
693 p->local_node++;
694 else
695 p->other_node++;
1da177e4
LT
696#endif
697}
698
699/*
700 * Free a 0-order page
701 */
1da177e4
LT
702static void fastcall free_hot_cold_page(struct page *page, int cold)
703{
704 struct zone *zone = page_zone(page);
705 struct per_cpu_pages *pcp;
706 unsigned long flags;
707
708 arch_free_page(page, 0);
709
1da177e4
LT
710 if (PageAnon(page))
711 page->mapping = NULL;
224abf92 712 if (free_pages_check(page))
689bcebf
HD
713 return;
714
689bcebf
HD
715 kernel_map_pages(page, 1, 0);
716
e7c8d5c9 717 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 718 local_irq_save(flags);
a74609fa 719 __inc_page_state(pgfree);
1da177e4
LT
720 list_add(&page->lru, &pcp->list);
721 pcp->count++;
48db57f8
NP
722 if (pcp->count >= pcp->high) {
723 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
724 pcp->count -= pcp->batch;
725 }
1da177e4
LT
726 local_irq_restore(flags);
727 put_cpu();
728}
729
730void fastcall free_hot_page(struct page *page)
731{
732 free_hot_cold_page(page, 0);
733}
734
735void fastcall free_cold_page(struct page *page)
736{
737 free_hot_cold_page(page, 1);
738}
739
dd0fc66f 740static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
741{
742 int i;
743
744 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
745 for(i = 0; i < (1 << order); i++)
746 clear_highpage(page + i);
747}
748
749/*
750 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
751 * we cheat by calling it from here, in the order > 0 path. Saves a branch
752 * or two.
753 */
a74609fa
NP
754static struct page *buffered_rmqueue(struct zonelist *zonelist,
755 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
756{
757 unsigned long flags;
689bcebf 758 struct page *page;
1da177e4 759 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 760 int cpu;
1da177e4 761
689bcebf 762again:
a74609fa 763 cpu = get_cpu();
48db57f8 764 if (likely(order == 0)) {
1da177e4
LT
765 struct per_cpu_pages *pcp;
766
a74609fa 767 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 768 local_irq_save(flags);
a74609fa 769 if (!pcp->count) {
1da177e4
LT
770 pcp->count += rmqueue_bulk(zone, 0,
771 pcp->batch, &pcp->list);
a74609fa
NP
772 if (unlikely(!pcp->count))
773 goto failed;
1da177e4 774 }
a74609fa
NP
775 page = list_entry(pcp->list.next, struct page, lru);
776 list_del(&page->lru);
777 pcp->count--;
7fb1d9fc 778 } else {
1da177e4
LT
779 spin_lock_irqsave(&zone->lock, flags);
780 page = __rmqueue(zone, order);
a74609fa
NP
781 spin_unlock(&zone->lock);
782 if (!page)
783 goto failed;
1da177e4
LT
784 }
785
a74609fa
NP
786 __mod_page_state_zone(zone, pgalloc, 1 << order);
787 zone_statistics(zonelist, zone, cpu);
788 local_irq_restore(flags);
789 put_cpu();
1da177e4 790
a74609fa
NP
791 BUG_ON(bad_range(zone, page));
792 if (prep_new_page(page, order))
793 goto again;
1da177e4 794
a74609fa
NP
795 if (gfp_flags & __GFP_ZERO)
796 prep_zero_page(page, order, gfp_flags);
797
798 if (order && (gfp_flags & __GFP_COMP))
799 prep_compound_page(page, order);
1da177e4 800 return page;
a74609fa
NP
801
802failed:
803 local_irq_restore(flags);
804 put_cpu();
805 return NULL;
1da177e4
LT
806}
807
7fb1d9fc 808#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
809#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
810#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
811#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
812#define ALLOC_HARDER 0x10 /* try to alloc harder */
813#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
814#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 815
1da177e4
LT
816/*
817 * Return 1 if free pages are above 'mark'. This takes into account the order
818 * of the allocation.
819 */
820int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 821 int classzone_idx, int alloc_flags)
1da177e4
LT
822{
823 /* free_pages my go negative - that's OK */
824 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
825 int o;
826
7fb1d9fc 827 if (alloc_flags & ALLOC_HIGH)
1da177e4 828 min -= min / 2;
7fb1d9fc 829 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
830 min -= min / 4;
831
832 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
833 return 0;
834 for (o = 0; o < order; o++) {
835 /* At the next order, this order's pages become unavailable */
836 free_pages -= z->free_area[o].nr_free << o;
837
838 /* Require fewer higher order pages to be free */
839 min >>= 1;
840
841 if (free_pages <= min)
842 return 0;
843 }
844 return 1;
845}
846
7fb1d9fc
RS
847/*
848 * get_page_from_freeliest goes through the zonelist trying to allocate
849 * a page.
850 */
851static struct page *
852get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
853 struct zonelist *zonelist, int alloc_flags)
753ee728 854{
7fb1d9fc
RS
855 struct zone **z = zonelist->zones;
856 struct page *page = NULL;
857 int classzone_idx = zone_idx(*z);
858
859 /*
860 * Go through the zonelist once, looking for a zone with enough free.
861 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
862 */
863 do {
864 if ((alloc_flags & ALLOC_CPUSET) &&
865 !cpuset_zone_allowed(*z, gfp_mask))
866 continue;
867
868 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
869 unsigned long mark;
870 if (alloc_flags & ALLOC_WMARK_MIN)
871 mark = (*z)->pages_min;
872 else if (alloc_flags & ALLOC_WMARK_LOW)
873 mark = (*z)->pages_low;
874 else
875 mark = (*z)->pages_high;
876 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc
RS
877 classzone_idx, alloc_flags))
878 continue;
879 }
880
a74609fa 881 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 882 if (page) {
7fb1d9fc
RS
883 break;
884 }
885 } while (*(++z) != NULL);
886 return page;
753ee728
MH
887}
888
1da177e4
LT
889/*
890 * This is the 'heart' of the zoned buddy allocator.
891 */
892struct page * fastcall
dd0fc66f 893__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
894 struct zonelist *zonelist)
895{
260b2367 896 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 897 struct zone **z;
1da177e4
LT
898 struct page *page;
899 struct reclaim_state reclaim_state;
900 struct task_struct *p = current;
1da177e4 901 int do_retry;
7fb1d9fc 902 int alloc_flags;
1da177e4
LT
903 int did_some_progress;
904
905 might_sleep_if(wait);
906
6b1de916 907restart:
7fb1d9fc 908 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 909
7fb1d9fc 910 if (unlikely(*z == NULL)) {
1da177e4
LT
911 /* Should this ever happen?? */
912 return NULL;
913 }
6b1de916 914
7fb1d9fc 915 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 916 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
917 if (page)
918 goto got_pg;
1da177e4 919
6b1de916 920 do {
7fb1d9fc 921 wakeup_kswapd(*z, order);
6b1de916 922 } while (*(++z));
1da177e4 923
9bf2229f 924 /*
7fb1d9fc
RS
925 * OK, we're below the kswapd watermark and have kicked background
926 * reclaim. Now things get more complex, so set up alloc_flags according
927 * to how we want to proceed.
928 *
929 * The caller may dip into page reserves a bit more if the caller
930 * cannot run direct reclaim, or if the caller has realtime scheduling
931 * policy.
9bf2229f 932 */
3148890b 933 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
934 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
935 alloc_flags |= ALLOC_HARDER;
936 if (gfp_mask & __GFP_HIGH)
937 alloc_flags |= ALLOC_HIGH;
47f3a867 938 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
939
940 /*
941 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 942 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
943 *
944 * This is the last chance, in general, before the goto nopage.
945 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 946 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 947 */
7fb1d9fc
RS
948 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
949 if (page)
950 goto got_pg;
1da177e4
LT
951
952 /* This allocation should allow future memory freeing. */
b84a35be
NP
953
954 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
955 && !in_interrupt()) {
956 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 957nofail_alloc:
b84a35be 958 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 959 page = get_page_from_freelist(gfp_mask, order,
47f3a867 960 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
961 if (page)
962 goto got_pg;
885036d3
KK
963 if (gfp_mask & __GFP_NOFAIL) {
964 blk_congestion_wait(WRITE, HZ/50);
965 goto nofail_alloc;
966 }
1da177e4
LT
967 }
968 goto nopage;
969 }
970
971 /* Atomic allocations - we can't balance anything */
972 if (!wait)
973 goto nopage;
974
975rebalance:
976 cond_resched();
977
978 /* We now go into synchronous reclaim */
979 p->flags |= PF_MEMALLOC;
980 reclaim_state.reclaimed_slab = 0;
981 p->reclaim_state = &reclaim_state;
982
7fb1d9fc 983 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
984
985 p->reclaim_state = NULL;
986 p->flags &= ~PF_MEMALLOC;
987
988 cond_resched();
989
990 if (likely(did_some_progress)) {
7fb1d9fc
RS
991 page = get_page_from_freelist(gfp_mask, order,
992 zonelist, alloc_flags);
993 if (page)
994 goto got_pg;
1da177e4
LT
995 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
996 /*
997 * Go through the zonelist yet one more time, keep
998 * very high watermark here, this is only to catch
999 * a parallel oom killing, we must fail if we're still
1000 * under heavy pressure.
1001 */
7fb1d9fc 1002 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1003 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1004 if (page)
1005 goto got_pg;
1da177e4 1006
79b9ce31 1007 out_of_memory(gfp_mask, order);
1da177e4
LT
1008 goto restart;
1009 }
1010
1011 /*
1012 * Don't let big-order allocations loop unless the caller explicitly
1013 * requests that. Wait for some write requests to complete then retry.
1014 *
1015 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1016 * <= 3, but that may not be true in other implementations.
1017 */
1018 do_retry = 0;
1019 if (!(gfp_mask & __GFP_NORETRY)) {
1020 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1021 do_retry = 1;
1022 if (gfp_mask & __GFP_NOFAIL)
1023 do_retry = 1;
1024 }
1025 if (do_retry) {
1026 blk_congestion_wait(WRITE, HZ/50);
1027 goto rebalance;
1028 }
1029
1030nopage:
1031 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1032 printk(KERN_WARNING "%s: page allocation failure."
1033 " order:%d, mode:0x%x\n",
1034 p->comm, order, gfp_mask);
1035 dump_stack();
578c2fd6 1036 show_mem();
1da177e4 1037 }
1da177e4 1038got_pg:
1da177e4
LT
1039 return page;
1040}
1041
1042EXPORT_SYMBOL(__alloc_pages);
1043
1044/*
1045 * Common helper functions.
1046 */
dd0fc66f 1047fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1048{
1049 struct page * page;
1050 page = alloc_pages(gfp_mask, order);
1051 if (!page)
1052 return 0;
1053 return (unsigned long) page_address(page);
1054}
1055
1056EXPORT_SYMBOL(__get_free_pages);
1057
dd0fc66f 1058fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1059{
1060 struct page * page;
1061
1062 /*
1063 * get_zeroed_page() returns a 32-bit address, which cannot represent
1064 * a highmem page
1065 */
260b2367 1066 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1067
1068 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1069 if (page)
1070 return (unsigned long) page_address(page);
1071 return 0;
1072}
1073
1074EXPORT_SYMBOL(get_zeroed_page);
1075
1076void __pagevec_free(struct pagevec *pvec)
1077{
1078 int i = pagevec_count(pvec);
1079
1080 while (--i >= 0)
1081 free_hot_cold_page(pvec->pages[i], pvec->cold);
1082}
1083
1084fastcall void __free_pages(struct page *page, unsigned int order)
1085{
b5810039 1086 if (put_page_testzero(page)) {
1da177e4
LT
1087 if (order == 0)
1088 free_hot_page(page);
1089 else
1090 __free_pages_ok(page, order);
1091 }
1092}
1093
1094EXPORT_SYMBOL(__free_pages);
1095
1096fastcall void free_pages(unsigned long addr, unsigned int order)
1097{
1098 if (addr != 0) {
1099 BUG_ON(!virt_addr_valid((void *)addr));
1100 __free_pages(virt_to_page((void *)addr), order);
1101 }
1102}
1103
1104EXPORT_SYMBOL(free_pages);
1105
1106/*
1107 * Total amount of free (allocatable) RAM:
1108 */
1109unsigned int nr_free_pages(void)
1110{
1111 unsigned int sum = 0;
1112 struct zone *zone;
1113
1114 for_each_zone(zone)
1115 sum += zone->free_pages;
1116
1117 return sum;
1118}
1119
1120EXPORT_SYMBOL(nr_free_pages);
1121
1122#ifdef CONFIG_NUMA
1123unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1124{
1125 unsigned int i, sum = 0;
1126
1127 for (i = 0; i < MAX_NR_ZONES; i++)
1128 sum += pgdat->node_zones[i].free_pages;
1129
1130 return sum;
1131}
1132#endif
1133
1134static unsigned int nr_free_zone_pages(int offset)
1135{
e310fd43
MB
1136 /* Just pick one node, since fallback list is circular */
1137 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1138 unsigned int sum = 0;
1139
e310fd43
MB
1140 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1141 struct zone **zonep = zonelist->zones;
1142 struct zone *zone;
1da177e4 1143
e310fd43
MB
1144 for (zone = *zonep++; zone; zone = *zonep++) {
1145 unsigned long size = zone->present_pages;
1146 unsigned long high = zone->pages_high;
1147 if (size > high)
1148 sum += size - high;
1da177e4
LT
1149 }
1150
1151 return sum;
1152}
1153
1154/*
1155 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1156 */
1157unsigned int nr_free_buffer_pages(void)
1158{
af4ca457 1159 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1160}
1161
1162/*
1163 * Amount of free RAM allocatable within all zones
1164 */
1165unsigned int nr_free_pagecache_pages(void)
1166{
af4ca457 1167 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1168}
1169
1170#ifdef CONFIG_HIGHMEM
1171unsigned int nr_free_highpages (void)
1172{
1173 pg_data_t *pgdat;
1174 unsigned int pages = 0;
1175
1176 for_each_pgdat(pgdat)
1177 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1178
1179 return pages;
1180}
1181#endif
1182
1183#ifdef CONFIG_NUMA
1184static void show_node(struct zone *zone)
1185{
1186 printk("Node %d ", zone->zone_pgdat->node_id);
1187}
1188#else
1189#define show_node(zone) do { } while (0)
1190#endif
1191
1192/*
1193 * Accumulate the page_state information across all CPUs.
1194 * The result is unavoidably approximate - it can change
1195 * during and after execution of this function.
1196 */
1197static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1198
1199atomic_t nr_pagecache = ATOMIC_INIT(0);
1200EXPORT_SYMBOL(nr_pagecache);
1201#ifdef CONFIG_SMP
1202DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1203#endif
1204
a86b1f53 1205static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1206{
1207 int cpu = 0;
1208
1209 memset(ret, 0, sizeof(*ret));
84c2008a 1210 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1211
c07e02db 1212 cpu = first_cpu(*cpumask);
1da177e4
LT
1213 while (cpu < NR_CPUS) {
1214 unsigned long *in, *out, off;
1215
1216 in = (unsigned long *)&per_cpu(page_states, cpu);
1217
c07e02db 1218 cpu = next_cpu(cpu, *cpumask);
1da177e4
LT
1219
1220 if (cpu < NR_CPUS)
1221 prefetch(&per_cpu(page_states, cpu));
1222
1223 out = (unsigned long *)ret;
1224 for (off = 0; off < nr; off++)
1225 *out++ += *in++;
1226 }
1227}
1228
c07e02db
MH
1229void get_page_state_node(struct page_state *ret, int node)
1230{
1231 int nr;
1232 cpumask_t mask = node_to_cpumask(node);
1233
1234 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1235 nr /= sizeof(unsigned long);
1236
1237 __get_page_state(ret, nr+1, &mask);
1238}
1239
1da177e4
LT
1240void get_page_state(struct page_state *ret)
1241{
1242 int nr;
c07e02db 1243 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1244
1245 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1246 nr /= sizeof(unsigned long);
1247
c07e02db 1248 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1249}
1250
1251void get_full_page_state(struct page_state *ret)
1252{
c07e02db
MH
1253 cpumask_t mask = CPU_MASK_ALL;
1254
1255 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1256}
1257
a74609fa 1258unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1259{
1260 unsigned long ret = 0;
1261 int cpu;
1262
84c2008a 1263 for_each_online_cpu(cpu) {
1da177e4
LT
1264 unsigned long in;
1265
1266 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1267 ret += *((unsigned long *)in);
1268 }
1269 return ret;
1270}
1271
a74609fa
NP
1272void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1273{
1274 void *ptr;
1275
1276 ptr = &__get_cpu_var(page_states);
1277 *(unsigned long *)(ptr + offset) += delta;
1278}
1279EXPORT_SYMBOL(__mod_page_state_offset);
1280
1281void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1282{
1283 unsigned long flags;
a74609fa 1284 void *ptr;
1da177e4
LT
1285
1286 local_irq_save(flags);
1287 ptr = &__get_cpu_var(page_states);
a74609fa 1288 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1289 local_irq_restore(flags);
1290}
a74609fa 1291EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1292
1293void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1294 unsigned long *free, struct pglist_data *pgdat)
1295{
1296 struct zone *zones = pgdat->node_zones;
1297 int i;
1298
1299 *active = 0;
1300 *inactive = 0;
1301 *free = 0;
1302 for (i = 0; i < MAX_NR_ZONES; i++) {
1303 *active += zones[i].nr_active;
1304 *inactive += zones[i].nr_inactive;
1305 *free += zones[i].free_pages;
1306 }
1307}
1308
1309void get_zone_counts(unsigned long *active,
1310 unsigned long *inactive, unsigned long *free)
1311{
1312 struct pglist_data *pgdat;
1313
1314 *active = 0;
1315 *inactive = 0;
1316 *free = 0;
1317 for_each_pgdat(pgdat) {
1318 unsigned long l, m, n;
1319 __get_zone_counts(&l, &m, &n, pgdat);
1320 *active += l;
1321 *inactive += m;
1322 *free += n;
1323 }
1324}
1325
1326void si_meminfo(struct sysinfo *val)
1327{
1328 val->totalram = totalram_pages;
1329 val->sharedram = 0;
1330 val->freeram = nr_free_pages();
1331 val->bufferram = nr_blockdev_pages();
1332#ifdef CONFIG_HIGHMEM
1333 val->totalhigh = totalhigh_pages;
1334 val->freehigh = nr_free_highpages();
1335#else
1336 val->totalhigh = 0;
1337 val->freehigh = 0;
1338#endif
1339 val->mem_unit = PAGE_SIZE;
1340}
1341
1342EXPORT_SYMBOL(si_meminfo);
1343
1344#ifdef CONFIG_NUMA
1345void si_meminfo_node(struct sysinfo *val, int nid)
1346{
1347 pg_data_t *pgdat = NODE_DATA(nid);
1348
1349 val->totalram = pgdat->node_present_pages;
1350 val->freeram = nr_free_pages_pgdat(pgdat);
1351 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1352 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1353 val->mem_unit = PAGE_SIZE;
1354}
1355#endif
1356
1357#define K(x) ((x) << (PAGE_SHIFT-10))
1358
1359/*
1360 * Show free area list (used inside shift_scroll-lock stuff)
1361 * We also calculate the percentage fragmentation. We do this by counting the
1362 * memory on each free list with the exception of the first item on the list.
1363 */
1364void show_free_areas(void)
1365{
1366 struct page_state ps;
1367 int cpu, temperature;
1368 unsigned long active;
1369 unsigned long inactive;
1370 unsigned long free;
1371 struct zone *zone;
1372
1373 for_each_zone(zone) {
1374 show_node(zone);
1375 printk("%s per-cpu:", zone->name);
1376
f3fe6512 1377 if (!populated_zone(zone)) {
1da177e4
LT
1378 printk(" empty\n");
1379 continue;
1380 } else
1381 printk("\n");
1382
6b482c67 1383 for_each_online_cpu(cpu) {
1da177e4
LT
1384 struct per_cpu_pageset *pageset;
1385
e7c8d5c9 1386 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1387
1388 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1389 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1390 cpu,
1391 temperature ? "cold" : "hot",
1da177e4 1392 pageset->pcp[temperature].high,
4ae7c039
CL
1393 pageset->pcp[temperature].batch,
1394 pageset->pcp[temperature].count);
1da177e4
LT
1395 }
1396 }
1397
1398 get_page_state(&ps);
1399 get_zone_counts(&active, &inactive, &free);
1400
c0d62219 1401 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1402 K(nr_free_pages()),
1403 K(nr_free_highpages()));
1404
1405 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1406 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1407 active,
1408 inactive,
1409 ps.nr_dirty,
1410 ps.nr_writeback,
1411 ps.nr_unstable,
1412 nr_free_pages(),
1413 ps.nr_slab,
1414 ps.nr_mapped,
1415 ps.nr_page_table_pages);
1416
1417 for_each_zone(zone) {
1418 int i;
1419
1420 show_node(zone);
1421 printk("%s"
1422 " free:%lukB"
1423 " min:%lukB"
1424 " low:%lukB"
1425 " high:%lukB"
1426 " active:%lukB"
1427 " inactive:%lukB"
1428 " present:%lukB"
1429 " pages_scanned:%lu"
1430 " all_unreclaimable? %s"
1431 "\n",
1432 zone->name,
1433 K(zone->free_pages),
1434 K(zone->pages_min),
1435 K(zone->pages_low),
1436 K(zone->pages_high),
1437 K(zone->nr_active),
1438 K(zone->nr_inactive),
1439 K(zone->present_pages),
1440 zone->pages_scanned,
1441 (zone->all_unreclaimable ? "yes" : "no")
1442 );
1443 printk("lowmem_reserve[]:");
1444 for (i = 0; i < MAX_NR_ZONES; i++)
1445 printk(" %lu", zone->lowmem_reserve[i]);
1446 printk("\n");
1447 }
1448
1449 for_each_zone(zone) {
1450 unsigned long nr, flags, order, total = 0;
1451
1452 show_node(zone);
1453 printk("%s: ", zone->name);
f3fe6512 1454 if (!populated_zone(zone)) {
1da177e4
LT
1455 printk("empty\n");
1456 continue;
1457 }
1458
1459 spin_lock_irqsave(&zone->lock, flags);
1460 for (order = 0; order < MAX_ORDER; order++) {
1461 nr = zone->free_area[order].nr_free;
1462 total += nr << order;
1463 printk("%lu*%lukB ", nr, K(1UL) << order);
1464 }
1465 spin_unlock_irqrestore(&zone->lock, flags);
1466 printk("= %lukB\n", K(total));
1467 }
1468
1469 show_swap_cache_info();
1470}
1471
1472/*
1473 * Builds allocation fallback zone lists.
1a93205b
CL
1474 *
1475 * Add all populated zones of a node to the zonelist.
1da177e4 1476 */
1a93205b 1477static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1478 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1479{
1a93205b
CL
1480 struct zone *zone;
1481
070f8032 1482 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1483
1484 do {
070f8032 1485 zone = pgdat->node_zones + zone_type;
1a93205b 1486 if (populated_zone(zone)) {
1da177e4 1487#ifndef CONFIG_HIGHMEM
070f8032 1488 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1489#endif
070f8032
CL
1490 zonelist->zones[nr_zones++] = zone;
1491 check_highest_zone(zone_type);
1da177e4 1492 }
070f8032 1493 zone_type--;
02a68a5e 1494
070f8032
CL
1495 } while (zone_type >= 0);
1496 return nr_zones;
1da177e4
LT
1497}
1498
260b2367
AV
1499static inline int highest_zone(int zone_bits)
1500{
1501 int res = ZONE_NORMAL;
1502 if (zone_bits & (__force int)__GFP_HIGHMEM)
1503 res = ZONE_HIGHMEM;
a2f1b424
AK
1504 if (zone_bits & (__force int)__GFP_DMA32)
1505 res = ZONE_DMA32;
260b2367
AV
1506 if (zone_bits & (__force int)__GFP_DMA)
1507 res = ZONE_DMA;
1508 return res;
1509}
1510
1da177e4
LT
1511#ifdef CONFIG_NUMA
1512#define MAX_NODE_LOAD (num_online_nodes())
1513static int __initdata node_load[MAX_NUMNODES];
1514/**
4dc3b16b 1515 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1516 * @node: node whose fallback list we're appending
1517 * @used_node_mask: nodemask_t of already used nodes
1518 *
1519 * We use a number of factors to determine which is the next node that should
1520 * appear on a given node's fallback list. The node should not have appeared
1521 * already in @node's fallback list, and it should be the next closest node
1522 * according to the distance array (which contains arbitrary distance values
1523 * from each node to each node in the system), and should also prefer nodes
1524 * with no CPUs, since presumably they'll have very little allocation pressure
1525 * on them otherwise.
1526 * It returns -1 if no node is found.
1527 */
1528static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1529{
1530 int i, n, val;
1531 int min_val = INT_MAX;
1532 int best_node = -1;
1533
1534 for_each_online_node(i) {
1535 cpumask_t tmp;
1536
1537 /* Start from local node */
1538 n = (node+i) % num_online_nodes();
1539
1540 /* Don't want a node to appear more than once */
1541 if (node_isset(n, *used_node_mask))
1542 continue;
1543
1544 /* Use the local node if we haven't already */
1545 if (!node_isset(node, *used_node_mask)) {
1546 best_node = node;
1547 break;
1548 }
1549
1550 /* Use the distance array to find the distance */
1551 val = node_distance(node, n);
1552
1553 /* Give preference to headless and unused nodes */
1554 tmp = node_to_cpumask(n);
1555 if (!cpus_empty(tmp))
1556 val += PENALTY_FOR_NODE_WITH_CPUS;
1557
1558 /* Slight preference for less loaded node */
1559 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1560 val += node_load[n];
1561
1562 if (val < min_val) {
1563 min_val = val;
1564 best_node = n;
1565 }
1566 }
1567
1568 if (best_node >= 0)
1569 node_set(best_node, *used_node_mask);
1570
1571 return best_node;
1572}
1573
1574static void __init build_zonelists(pg_data_t *pgdat)
1575{
1576 int i, j, k, node, local_node;
1577 int prev_node, load;
1578 struct zonelist *zonelist;
1579 nodemask_t used_mask;
1580
1581 /* initialize zonelists */
1582 for (i = 0; i < GFP_ZONETYPES; i++) {
1583 zonelist = pgdat->node_zonelists + i;
1584 zonelist->zones[0] = NULL;
1585 }
1586
1587 /* NUMA-aware ordering of nodes */
1588 local_node = pgdat->node_id;
1589 load = num_online_nodes();
1590 prev_node = local_node;
1591 nodes_clear(used_mask);
1592 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1593 /*
1594 * We don't want to pressure a particular node.
1595 * So adding penalty to the first node in same
1596 * distance group to make it round-robin.
1597 */
1598 if (node_distance(local_node, node) !=
1599 node_distance(local_node, prev_node))
1600 node_load[node] += load;
1601 prev_node = node;
1602 load--;
1603 for (i = 0; i < GFP_ZONETYPES; i++) {
1604 zonelist = pgdat->node_zonelists + i;
1605 for (j = 0; zonelist->zones[j] != NULL; j++);
1606
260b2367 1607 k = highest_zone(i);
1da177e4
LT
1608
1609 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1610 zonelist->zones[j] = NULL;
1611 }
1612 }
1613}
1614
1615#else /* CONFIG_NUMA */
1616
1617static void __init build_zonelists(pg_data_t *pgdat)
1618{
1619 int i, j, k, node, local_node;
1620
1621 local_node = pgdat->node_id;
1622 for (i = 0; i < GFP_ZONETYPES; i++) {
1623 struct zonelist *zonelist;
1624
1625 zonelist = pgdat->node_zonelists + i;
1626
1627 j = 0;
260b2367 1628 k = highest_zone(i);
1da177e4
LT
1629 j = build_zonelists_node(pgdat, zonelist, j, k);
1630 /*
1631 * Now we build the zonelist so that it contains the zones
1632 * of all the other nodes.
1633 * We don't want to pressure a particular node, so when
1634 * building the zones for node N, we make sure that the
1635 * zones coming right after the local ones are those from
1636 * node N+1 (modulo N)
1637 */
1638 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1639 if (!node_online(node))
1640 continue;
1641 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1642 }
1643 for (node = 0; node < local_node; node++) {
1644 if (!node_online(node))
1645 continue;
1646 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1647 }
1648
1649 zonelist->zones[j] = NULL;
1650 }
1651}
1652
1653#endif /* CONFIG_NUMA */
1654
1655void __init build_all_zonelists(void)
1656{
1657 int i;
1658
1659 for_each_online_node(i)
1660 build_zonelists(NODE_DATA(i));
1661 printk("Built %i zonelists\n", num_online_nodes());
1662 cpuset_init_current_mems_allowed();
1663}
1664
1665/*
1666 * Helper functions to size the waitqueue hash table.
1667 * Essentially these want to choose hash table sizes sufficiently
1668 * large so that collisions trying to wait on pages are rare.
1669 * But in fact, the number of active page waitqueues on typical
1670 * systems is ridiculously low, less than 200. So this is even
1671 * conservative, even though it seems large.
1672 *
1673 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1674 * waitqueues, i.e. the size of the waitq table given the number of pages.
1675 */
1676#define PAGES_PER_WAITQUEUE 256
1677
1678static inline unsigned long wait_table_size(unsigned long pages)
1679{
1680 unsigned long size = 1;
1681
1682 pages /= PAGES_PER_WAITQUEUE;
1683
1684 while (size < pages)
1685 size <<= 1;
1686
1687 /*
1688 * Once we have dozens or even hundreds of threads sleeping
1689 * on IO we've got bigger problems than wait queue collision.
1690 * Limit the size of the wait table to a reasonable size.
1691 */
1692 size = min(size, 4096UL);
1693
1694 return max(size, 4UL);
1695}
1696
1697/*
1698 * This is an integer logarithm so that shifts can be used later
1699 * to extract the more random high bits from the multiplicative
1700 * hash function before the remainder is taken.
1701 */
1702static inline unsigned long wait_table_bits(unsigned long size)
1703{
1704 return ffz(~size);
1705}
1706
1707#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1708
1709static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1710 unsigned long *zones_size, unsigned long *zholes_size)
1711{
1712 unsigned long realtotalpages, totalpages = 0;
1713 int i;
1714
1715 for (i = 0; i < MAX_NR_ZONES; i++)
1716 totalpages += zones_size[i];
1717 pgdat->node_spanned_pages = totalpages;
1718
1719 realtotalpages = totalpages;
1720 if (zholes_size)
1721 for (i = 0; i < MAX_NR_ZONES; i++)
1722 realtotalpages -= zholes_size[i];
1723 pgdat->node_present_pages = realtotalpages;
1724 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1725}
1726
1727
1728/*
1729 * Initially all pages are reserved - free ones are freed
1730 * up by free_all_bootmem() once the early boot process is
1731 * done. Non-atomic initialization, single-pass.
1732 */
3947be19 1733void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1734 unsigned long start_pfn)
1735{
1da177e4 1736 struct page *page;
29751f69
AW
1737 unsigned long end_pfn = start_pfn + size;
1738 unsigned long pfn;
1da177e4 1739
d41dee36
AW
1740 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1741 if (!early_pfn_valid(pfn))
1742 continue;
1743 page = pfn_to_page(pfn);
1744 set_page_links(page, zone, nid, pfn);
b5810039 1745 set_page_count(page, 1);
1da177e4
LT
1746 reset_page_mapcount(page);
1747 SetPageReserved(page);
1748 INIT_LIST_HEAD(&page->lru);
1749#ifdef WANT_PAGE_VIRTUAL
1750 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1751 if (!is_highmem_idx(zone))
3212c6be 1752 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1753#endif
1da177e4
LT
1754 }
1755}
1756
1757void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1758 unsigned long size)
1759{
1760 int order;
1761 for (order = 0; order < MAX_ORDER ; order++) {
1762 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1763 zone->free_area[order].nr_free = 0;
1764 }
1765}
1766
d41dee36
AW
1767#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1768void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1769 unsigned long size)
1770{
1771 unsigned long snum = pfn_to_section_nr(pfn);
1772 unsigned long end = pfn_to_section_nr(pfn + size);
1773
1774 if (FLAGS_HAS_NODE)
1775 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1776 else
1777 for (; snum <= end; snum++)
1778 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1779}
1780
1da177e4
LT
1781#ifndef __HAVE_ARCH_MEMMAP_INIT
1782#define memmap_init(size, nid, zone, start_pfn) \
1783 memmap_init_zone((size), (nid), (zone), (start_pfn))
1784#endif
1785
e7c8d5c9
CL
1786static int __devinit zone_batchsize(struct zone *zone)
1787{
1788 int batch;
1789
1790 /*
1791 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1792 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1793 *
1794 * OK, so we don't know how big the cache is. So guess.
1795 */
1796 batch = zone->present_pages / 1024;
ba56e91c
SR
1797 if (batch * PAGE_SIZE > 512 * 1024)
1798 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1799 batch /= 4; /* We effectively *= 4 below */
1800 if (batch < 1)
1801 batch = 1;
1802
1803 /*
0ceaacc9
NP
1804 * Clamp the batch to a 2^n - 1 value. Having a power
1805 * of 2 value was found to be more likely to have
1806 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1807 *
0ceaacc9
NP
1808 * For example if 2 tasks are alternately allocating
1809 * batches of pages, one task can end up with a lot
1810 * of pages of one half of the possible page colors
1811 * and the other with pages of the other colors.
e7c8d5c9 1812 */
0ceaacc9 1813 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1814
e7c8d5c9
CL
1815 return batch;
1816}
1817
2caaad41
CL
1818inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1819{
1820 struct per_cpu_pages *pcp;
1821
1c6fe946
MD
1822 memset(p, 0, sizeof(*p));
1823
2caaad41
CL
1824 pcp = &p->pcp[0]; /* hot */
1825 pcp->count = 0;
2caaad41
CL
1826 pcp->high = 6 * batch;
1827 pcp->batch = max(1UL, 1 * batch);
1828 INIT_LIST_HEAD(&pcp->list);
1829
1830 pcp = &p->pcp[1]; /* cold*/
1831 pcp->count = 0;
2caaad41 1832 pcp->high = 2 * batch;
e46a5e28 1833 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1834 INIT_LIST_HEAD(&pcp->list);
1835}
1836
8ad4b1fb
RS
1837/*
1838 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1839 * to the value high for the pageset p.
1840 */
1841
1842static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1843 unsigned long high)
1844{
1845 struct per_cpu_pages *pcp;
1846
1847 pcp = &p->pcp[0]; /* hot list */
1848 pcp->high = high;
1849 pcp->batch = max(1UL, high/4);
1850 if ((high/4) > (PAGE_SHIFT * 8))
1851 pcp->batch = PAGE_SHIFT * 8;
1852}
1853
1854
e7c8d5c9
CL
1855#ifdef CONFIG_NUMA
1856/*
2caaad41
CL
1857 * Boot pageset table. One per cpu which is going to be used for all
1858 * zones and all nodes. The parameters will be set in such a way
1859 * that an item put on a list will immediately be handed over to
1860 * the buddy list. This is safe since pageset manipulation is done
1861 * with interrupts disabled.
1862 *
1863 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1864 *
1865 * The boot_pagesets must be kept even after bootup is complete for
1866 * unused processors and/or zones. They do play a role for bootstrapping
1867 * hotplugged processors.
1868 *
1869 * zoneinfo_show() and maybe other functions do
1870 * not check if the processor is online before following the pageset pointer.
1871 * Other parts of the kernel may not check if the zone is available.
2caaad41
CL
1872 */
1873static struct per_cpu_pageset
b7c84c6a 1874 boot_pageset[NR_CPUS];
2caaad41
CL
1875
1876/*
1877 * Dynamically allocate memory for the
e7c8d5c9
CL
1878 * per cpu pageset array in struct zone.
1879 */
1880static int __devinit process_zones(int cpu)
1881{
1882 struct zone *zone, *dzone;
e7c8d5c9
CL
1883
1884 for_each_zone(zone) {
e7c8d5c9 1885
23316bc8 1886 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1887 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1888 if (!zone_pcp(zone, cpu))
e7c8d5c9 1889 goto bad;
e7c8d5c9 1890
23316bc8 1891 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1892
1893 if (percpu_pagelist_fraction)
1894 setup_pagelist_highmark(zone_pcp(zone, cpu),
1895 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1896 }
1897
1898 return 0;
1899bad:
1900 for_each_zone(dzone) {
1901 if (dzone == zone)
1902 break;
23316bc8
NP
1903 kfree(zone_pcp(dzone, cpu));
1904 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1905 }
1906 return -ENOMEM;
1907}
1908
1909static inline void free_zone_pagesets(int cpu)
1910{
e7c8d5c9
CL
1911 struct zone *zone;
1912
1913 for_each_zone(zone) {
1914 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1915
1916 zone_pcp(zone, cpu) = NULL;
1917 kfree(pset);
1918 }
e7c8d5c9
CL
1919}
1920
1921static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1922 unsigned long action,
1923 void *hcpu)
1924{
1925 int cpu = (long)hcpu;
1926 int ret = NOTIFY_OK;
1927
1928 switch (action) {
1929 case CPU_UP_PREPARE:
1930 if (process_zones(cpu))
1931 ret = NOTIFY_BAD;
1932 break;
b0d41693 1933 case CPU_UP_CANCELED:
e7c8d5c9
CL
1934 case CPU_DEAD:
1935 free_zone_pagesets(cpu);
1936 break;
e7c8d5c9
CL
1937 default:
1938 break;
1939 }
1940 return ret;
1941}
1942
1943static struct notifier_block pageset_notifier =
1944 { &pageset_cpuup_callback, NULL, 0 };
1945
78d9955b 1946void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1947{
1948 int err;
1949
1950 /* Initialize per_cpu_pageset for cpu 0.
1951 * A cpuup callback will do this for every cpu
1952 * as it comes online
1953 */
1954 err = process_zones(smp_processor_id());
1955 BUG_ON(err);
1956 register_cpu_notifier(&pageset_notifier);
1957}
1958
1959#endif
1960
ed8ece2e
DH
1961static __devinit
1962void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1963{
1964 int i;
1965 struct pglist_data *pgdat = zone->zone_pgdat;
1966
1967 /*
1968 * The per-page waitqueue mechanism uses hashed waitqueues
1969 * per zone.
1970 */
1971 zone->wait_table_size = wait_table_size(zone_size_pages);
1972 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1973 zone->wait_table = (wait_queue_head_t *)
1974 alloc_bootmem_node(pgdat, zone->wait_table_size
1975 * sizeof(wait_queue_head_t));
1976
1977 for(i = 0; i < zone->wait_table_size; ++i)
1978 init_waitqueue_head(zone->wait_table + i);
1979}
1980
1981static __devinit void zone_pcp_init(struct zone *zone)
1982{
1983 int cpu;
1984 unsigned long batch = zone_batchsize(zone);
1985
1986 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1987#ifdef CONFIG_NUMA
1988 /* Early boot. Slab allocator not functional yet */
23316bc8 1989 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1990 setup_pageset(&boot_pageset[cpu],0);
1991#else
1992 setup_pageset(zone_pcp(zone,cpu), batch);
1993#endif
1994 }
1995 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1996 zone->name, zone->present_pages, batch);
1997}
1998
1999static __devinit void init_currently_empty_zone(struct zone *zone,
2000 unsigned long zone_start_pfn, unsigned long size)
2001{
2002 struct pglist_data *pgdat = zone->zone_pgdat;
2003
2004 zone_wait_table_init(zone, size);
2005 pgdat->nr_zones = zone_idx(zone) + 1;
2006
2007 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2008 zone->zone_start_pfn = zone_start_pfn;
2009
2010 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2011
2012 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2013}
2014
1da177e4
LT
2015/*
2016 * Set up the zone data structures:
2017 * - mark all pages reserved
2018 * - mark all memory queues empty
2019 * - clear the memory bitmaps
2020 */
2021static void __init free_area_init_core(struct pglist_data *pgdat,
2022 unsigned long *zones_size, unsigned long *zholes_size)
2023{
ed8ece2e
DH
2024 unsigned long j;
2025 int nid = pgdat->node_id;
1da177e4
LT
2026 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2027
208d54e5 2028 pgdat_resize_init(pgdat);
1da177e4
LT
2029 pgdat->nr_zones = 0;
2030 init_waitqueue_head(&pgdat->kswapd_wait);
2031 pgdat->kswapd_max_order = 0;
2032
2033 for (j = 0; j < MAX_NR_ZONES; j++) {
2034 struct zone *zone = pgdat->node_zones + j;
2035 unsigned long size, realsize;
1da177e4 2036
1da177e4
LT
2037 realsize = size = zones_size[j];
2038 if (zholes_size)
2039 realsize -= zholes_size[j];
2040
a2f1b424 2041 if (j < ZONE_HIGHMEM)
1da177e4
LT
2042 nr_kernel_pages += realsize;
2043 nr_all_pages += realsize;
2044
2045 zone->spanned_pages = size;
2046 zone->present_pages = realsize;
2047 zone->name = zone_names[j];
2048 spin_lock_init(&zone->lock);
2049 spin_lock_init(&zone->lru_lock);
bdc8cb98 2050 zone_seqlock_init(zone);
1da177e4
LT
2051 zone->zone_pgdat = pgdat;
2052 zone->free_pages = 0;
2053
2054 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2055
ed8ece2e 2056 zone_pcp_init(zone);
1da177e4
LT
2057 INIT_LIST_HEAD(&zone->active_list);
2058 INIT_LIST_HEAD(&zone->inactive_list);
2059 zone->nr_scan_active = 0;
2060 zone->nr_scan_inactive = 0;
2061 zone->nr_active = 0;
2062 zone->nr_inactive = 0;
53e9a615 2063 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2064 if (!size)
2065 continue;
2066
d41dee36 2067 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2068 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2069 zone_start_pfn += size;
1da177e4
LT
2070 }
2071}
2072
2073static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2074{
1da177e4
LT
2075 /* Skip empty nodes */
2076 if (!pgdat->node_spanned_pages)
2077 return;
2078
d41dee36 2079#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2080 /* ia64 gets its own node_mem_map, before this, without bootmem */
2081 if (!pgdat->node_mem_map) {
d41dee36
AW
2082 unsigned long size;
2083 struct page *map;
2084
1da177e4 2085 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2086 map = alloc_remap(pgdat->node_id, size);
2087 if (!map)
2088 map = alloc_bootmem_node(pgdat, size);
2089 pgdat->node_mem_map = map;
1da177e4 2090 }
d41dee36 2091#ifdef CONFIG_FLATMEM
1da177e4
LT
2092 /*
2093 * With no DISCONTIG, the global mem_map is just set as node 0's
2094 */
2095 if (pgdat == NODE_DATA(0))
2096 mem_map = NODE_DATA(0)->node_mem_map;
2097#endif
d41dee36 2098#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2099}
2100
2101void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2102 unsigned long *zones_size, unsigned long node_start_pfn,
2103 unsigned long *zholes_size)
2104{
2105 pgdat->node_id = nid;
2106 pgdat->node_start_pfn = node_start_pfn;
2107 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2108
2109 alloc_node_mem_map(pgdat);
2110
2111 free_area_init_core(pgdat, zones_size, zholes_size);
2112}
2113
93b7504e 2114#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2115static bootmem_data_t contig_bootmem_data;
2116struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2117
2118EXPORT_SYMBOL(contig_page_data);
93b7504e 2119#endif
1da177e4
LT
2120
2121void __init free_area_init(unsigned long *zones_size)
2122{
93b7504e 2123 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2124 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2125}
1da177e4
LT
2126
2127#ifdef CONFIG_PROC_FS
2128
2129#include <linux/seq_file.h>
2130
2131static void *frag_start(struct seq_file *m, loff_t *pos)
2132{
2133 pg_data_t *pgdat;
2134 loff_t node = *pos;
2135
2136 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2137 --node;
2138
2139 return pgdat;
2140}
2141
2142static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2143{
2144 pg_data_t *pgdat = (pg_data_t *)arg;
2145
2146 (*pos)++;
2147 return pgdat->pgdat_next;
2148}
2149
2150static void frag_stop(struct seq_file *m, void *arg)
2151{
2152}
2153
2154/*
2155 * This walks the free areas for each zone.
2156 */
2157static int frag_show(struct seq_file *m, void *arg)
2158{
2159 pg_data_t *pgdat = (pg_data_t *)arg;
2160 struct zone *zone;
2161 struct zone *node_zones = pgdat->node_zones;
2162 unsigned long flags;
2163 int order;
2164
2165 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2166 if (!populated_zone(zone))
1da177e4
LT
2167 continue;
2168
2169 spin_lock_irqsave(&zone->lock, flags);
2170 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2171 for (order = 0; order < MAX_ORDER; ++order)
2172 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2173 spin_unlock_irqrestore(&zone->lock, flags);
2174 seq_putc(m, '\n');
2175 }
2176 return 0;
2177}
2178
2179struct seq_operations fragmentation_op = {
2180 .start = frag_start,
2181 .next = frag_next,
2182 .stop = frag_stop,
2183 .show = frag_show,
2184};
2185
295ab934
ND
2186/*
2187 * Output information about zones in @pgdat.
2188 */
2189static int zoneinfo_show(struct seq_file *m, void *arg)
2190{
2191 pg_data_t *pgdat = arg;
2192 struct zone *zone;
2193 struct zone *node_zones = pgdat->node_zones;
2194 unsigned long flags;
2195
2196 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2197 int i;
2198
f3fe6512 2199 if (!populated_zone(zone))
295ab934
ND
2200 continue;
2201
2202 spin_lock_irqsave(&zone->lock, flags);
2203 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2204 seq_printf(m,
2205 "\n pages free %lu"
2206 "\n min %lu"
2207 "\n low %lu"
2208 "\n high %lu"
2209 "\n active %lu"
2210 "\n inactive %lu"
2211 "\n scanned %lu (a: %lu i: %lu)"
2212 "\n spanned %lu"
2213 "\n present %lu",
2214 zone->free_pages,
2215 zone->pages_min,
2216 zone->pages_low,
2217 zone->pages_high,
2218 zone->nr_active,
2219 zone->nr_inactive,
2220 zone->pages_scanned,
2221 zone->nr_scan_active, zone->nr_scan_inactive,
2222 zone->spanned_pages,
2223 zone->present_pages);
2224 seq_printf(m,
2225 "\n protection: (%lu",
2226 zone->lowmem_reserve[0]);
2227 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2228 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2229 seq_printf(m,
2230 ")"
2231 "\n pagesets");
23316bc8 2232 for_each_online_cpu(i) {
295ab934
ND
2233 struct per_cpu_pageset *pageset;
2234 int j;
2235
e7c8d5c9 2236 pageset = zone_pcp(zone, i);
295ab934
ND
2237 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2238 if (pageset->pcp[j].count)
2239 break;
2240 }
2241 if (j == ARRAY_SIZE(pageset->pcp))
2242 continue;
2243 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2244 seq_printf(m,
2245 "\n cpu: %i pcp: %i"
2246 "\n count: %i"
295ab934
ND
2247 "\n high: %i"
2248 "\n batch: %i",
2249 i, j,
2250 pageset->pcp[j].count,
295ab934
ND
2251 pageset->pcp[j].high,
2252 pageset->pcp[j].batch);
2253 }
2254#ifdef CONFIG_NUMA
2255 seq_printf(m,
2256 "\n numa_hit: %lu"
2257 "\n numa_miss: %lu"
2258 "\n numa_foreign: %lu"
2259 "\n interleave_hit: %lu"
2260 "\n local_node: %lu"
2261 "\n other_node: %lu",
2262 pageset->numa_hit,
2263 pageset->numa_miss,
2264 pageset->numa_foreign,
2265 pageset->interleave_hit,
2266 pageset->local_node,
2267 pageset->other_node);
2268#endif
2269 }
2270 seq_printf(m,
2271 "\n all_unreclaimable: %u"
2272 "\n prev_priority: %i"
2273 "\n temp_priority: %i"
2274 "\n start_pfn: %lu",
2275 zone->all_unreclaimable,
2276 zone->prev_priority,
2277 zone->temp_priority,
2278 zone->zone_start_pfn);
2279 spin_unlock_irqrestore(&zone->lock, flags);
2280 seq_putc(m, '\n');
2281 }
2282 return 0;
2283}
2284
2285struct seq_operations zoneinfo_op = {
2286 .start = frag_start, /* iterate over all zones. The same as in
2287 * fragmentation. */
2288 .next = frag_next,
2289 .stop = frag_stop,
2290 .show = zoneinfo_show,
2291};
2292
1da177e4
LT
2293static char *vmstat_text[] = {
2294 "nr_dirty",
2295 "nr_writeback",
2296 "nr_unstable",
2297 "nr_page_table_pages",
2298 "nr_mapped",
2299 "nr_slab",
2300
2301 "pgpgin",
2302 "pgpgout",
2303 "pswpin",
2304 "pswpout",
1da177e4 2305
9328b8fa 2306 "pgalloc_high",
1da177e4 2307 "pgalloc_normal",
9328b8fa 2308 "pgalloc_dma32",
1da177e4 2309 "pgalloc_dma",
9328b8fa 2310
1da177e4
LT
2311 "pgfree",
2312 "pgactivate",
2313 "pgdeactivate",
2314
2315 "pgfault",
2316 "pgmajfault",
9328b8fa 2317
1da177e4
LT
2318 "pgrefill_high",
2319 "pgrefill_normal",
9328b8fa 2320 "pgrefill_dma32",
1da177e4
LT
2321 "pgrefill_dma",
2322
2323 "pgsteal_high",
2324 "pgsteal_normal",
9328b8fa 2325 "pgsteal_dma32",
1da177e4 2326 "pgsteal_dma",
9328b8fa 2327
1da177e4
LT
2328 "pgscan_kswapd_high",
2329 "pgscan_kswapd_normal",
9328b8fa 2330 "pgscan_kswapd_dma32",
1da177e4 2331 "pgscan_kswapd_dma",
9328b8fa 2332
1da177e4
LT
2333 "pgscan_direct_high",
2334 "pgscan_direct_normal",
9328b8fa 2335 "pgscan_direct_dma32",
1da177e4 2336 "pgscan_direct_dma",
1da177e4 2337
9328b8fa 2338 "pginodesteal",
1da177e4
LT
2339 "slabs_scanned",
2340 "kswapd_steal",
2341 "kswapd_inodesteal",
2342 "pageoutrun",
2343 "allocstall",
2344
2345 "pgrotated",
edfbe2b0 2346 "nr_bounce",
1da177e4
LT
2347};
2348
2349static void *vmstat_start(struct seq_file *m, loff_t *pos)
2350{
2351 struct page_state *ps;
2352
2353 if (*pos >= ARRAY_SIZE(vmstat_text))
2354 return NULL;
2355
2356 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2357 m->private = ps;
2358 if (!ps)
2359 return ERR_PTR(-ENOMEM);
2360 get_full_page_state(ps);
2361 ps->pgpgin /= 2; /* sectors -> kbytes */
2362 ps->pgpgout /= 2;
2363 return (unsigned long *)ps + *pos;
2364}
2365
2366static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2367{
2368 (*pos)++;
2369 if (*pos >= ARRAY_SIZE(vmstat_text))
2370 return NULL;
2371 return (unsigned long *)m->private + *pos;
2372}
2373
2374static int vmstat_show(struct seq_file *m, void *arg)
2375{
2376 unsigned long *l = arg;
2377 unsigned long off = l - (unsigned long *)m->private;
2378
2379 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2380 return 0;
2381}
2382
2383static void vmstat_stop(struct seq_file *m, void *arg)
2384{
2385 kfree(m->private);
2386 m->private = NULL;
2387}
2388
2389struct seq_operations vmstat_op = {
2390 .start = vmstat_start,
2391 .next = vmstat_next,
2392 .stop = vmstat_stop,
2393 .show = vmstat_show,
2394};
2395
2396#endif /* CONFIG_PROC_FS */
2397
2398#ifdef CONFIG_HOTPLUG_CPU
2399static int page_alloc_cpu_notify(struct notifier_block *self,
2400 unsigned long action, void *hcpu)
2401{
2402 int cpu = (unsigned long)hcpu;
2403 long *count;
2404 unsigned long *src, *dest;
2405
2406 if (action == CPU_DEAD) {
2407 int i;
2408
2409 /* Drain local pagecache count. */
2410 count = &per_cpu(nr_pagecache_local, cpu);
2411 atomic_add(*count, &nr_pagecache);
2412 *count = 0;
2413 local_irq_disable();
2414 __drain_pages(cpu);
2415
2416 /* Add dead cpu's page_states to our own. */
2417 dest = (unsigned long *)&__get_cpu_var(page_states);
2418 src = (unsigned long *)&per_cpu(page_states, cpu);
2419
2420 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2421 i++) {
2422 dest[i] += src[i];
2423 src[i] = 0;
2424 }
2425
2426 local_irq_enable();
2427 }
2428 return NOTIFY_OK;
2429}
2430#endif /* CONFIG_HOTPLUG_CPU */
2431
2432void __init page_alloc_init(void)
2433{
2434 hotcpu_notifier(page_alloc_cpu_notify, 0);
2435}
2436
2437/*
2438 * setup_per_zone_lowmem_reserve - called whenever
2439 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2440 * has a correct pages reserved value, so an adequate number of
2441 * pages are left in the zone after a successful __alloc_pages().
2442 */
2443static void setup_per_zone_lowmem_reserve(void)
2444{
2445 struct pglist_data *pgdat;
2446 int j, idx;
2447
2448 for_each_pgdat(pgdat) {
2449 for (j = 0; j < MAX_NR_ZONES; j++) {
2450 struct zone *zone = pgdat->node_zones + j;
2451 unsigned long present_pages = zone->present_pages;
2452
2453 zone->lowmem_reserve[j] = 0;
2454
2455 for (idx = j-1; idx >= 0; idx--) {
2456 struct zone *lower_zone;
2457
2458 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2459 sysctl_lowmem_reserve_ratio[idx] = 1;
2460
2461 lower_zone = pgdat->node_zones + idx;
2462 lower_zone->lowmem_reserve[j] = present_pages /
2463 sysctl_lowmem_reserve_ratio[idx];
2464 present_pages += lower_zone->present_pages;
2465 }
2466 }
2467 }
2468}
2469
2470/*
2471 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2472 * that the pages_{min,low,high} values for each zone are set correctly
2473 * with respect to min_free_kbytes.
2474 */
3947be19 2475void setup_per_zone_pages_min(void)
1da177e4
LT
2476{
2477 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2478 unsigned long lowmem_pages = 0;
2479 struct zone *zone;
2480 unsigned long flags;
2481
2482 /* Calculate total number of !ZONE_HIGHMEM pages */
2483 for_each_zone(zone) {
2484 if (!is_highmem(zone))
2485 lowmem_pages += zone->present_pages;
2486 }
2487
2488 for_each_zone(zone) {
669ed175 2489 unsigned long tmp;
1da177e4 2490 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2491 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2492 if (is_highmem(zone)) {
2493 /*
669ed175
NP
2494 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2495 * need highmem pages, so cap pages_min to a small
2496 * value here.
2497 *
2498 * The (pages_high-pages_low) and (pages_low-pages_min)
2499 * deltas controls asynch page reclaim, and so should
2500 * not be capped for highmem.
1da177e4
LT
2501 */
2502 int min_pages;
2503
2504 min_pages = zone->present_pages / 1024;
2505 if (min_pages < SWAP_CLUSTER_MAX)
2506 min_pages = SWAP_CLUSTER_MAX;
2507 if (min_pages > 128)
2508 min_pages = 128;
2509 zone->pages_min = min_pages;
2510 } else {
669ed175
NP
2511 /*
2512 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2513 * proportionate to the zone's size.
2514 */
669ed175 2515 zone->pages_min = tmp;
1da177e4
LT
2516 }
2517
669ed175
NP
2518 zone->pages_low = zone->pages_min + tmp / 4;
2519 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2520 spin_unlock_irqrestore(&zone->lru_lock, flags);
2521 }
2522}
2523
2524/*
2525 * Initialise min_free_kbytes.
2526 *
2527 * For small machines we want it small (128k min). For large machines
2528 * we want it large (64MB max). But it is not linear, because network
2529 * bandwidth does not increase linearly with machine size. We use
2530 *
2531 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2532 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2533 *
2534 * which yields
2535 *
2536 * 16MB: 512k
2537 * 32MB: 724k
2538 * 64MB: 1024k
2539 * 128MB: 1448k
2540 * 256MB: 2048k
2541 * 512MB: 2896k
2542 * 1024MB: 4096k
2543 * 2048MB: 5792k
2544 * 4096MB: 8192k
2545 * 8192MB: 11584k
2546 * 16384MB: 16384k
2547 */
2548static int __init init_per_zone_pages_min(void)
2549{
2550 unsigned long lowmem_kbytes;
2551
2552 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2553
2554 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2555 if (min_free_kbytes < 128)
2556 min_free_kbytes = 128;
2557 if (min_free_kbytes > 65536)
2558 min_free_kbytes = 65536;
2559 setup_per_zone_pages_min();
2560 setup_per_zone_lowmem_reserve();
2561 return 0;
2562}
2563module_init(init_per_zone_pages_min)
2564
2565/*
2566 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2567 * that we can call two helper functions whenever min_free_kbytes
2568 * changes.
2569 */
2570int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2571 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2572{
2573 proc_dointvec(table, write, file, buffer, length, ppos);
2574 setup_per_zone_pages_min();
2575 return 0;
2576}
2577
2578/*
2579 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2580 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2581 * whenever sysctl_lowmem_reserve_ratio changes.
2582 *
2583 * The reserve ratio obviously has absolutely no relation with the
2584 * pages_min watermarks. The lowmem reserve ratio can only make sense
2585 * if in function of the boot time zone sizes.
2586 */
2587int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2588 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2589{
2590 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2591 setup_per_zone_lowmem_reserve();
2592 return 0;
2593}
2594
8ad4b1fb
RS
2595/*
2596 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2597 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2598 * can have before it gets flushed back to buddy allocator.
2599 */
2600
2601int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2602 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2603{
2604 struct zone *zone;
2605 unsigned int cpu;
2606 int ret;
2607
2608 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2609 if (!write || (ret == -EINVAL))
2610 return ret;
2611 for_each_zone(zone) {
2612 for_each_online_cpu(cpu) {
2613 unsigned long high;
2614 high = zone->present_pages / percpu_pagelist_fraction;
2615 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2616 }
2617 }
2618 return 0;
2619}
2620
1da177e4
LT
2621__initdata int hashdist = HASHDIST_DEFAULT;
2622
2623#ifdef CONFIG_NUMA
2624static int __init set_hashdist(char *str)
2625{
2626 if (!str)
2627 return 0;
2628 hashdist = simple_strtoul(str, &str, 0);
2629 return 1;
2630}
2631__setup("hashdist=", set_hashdist);
2632#endif
2633
2634/*
2635 * allocate a large system hash table from bootmem
2636 * - it is assumed that the hash table must contain an exact power-of-2
2637 * quantity of entries
2638 * - limit is the number of hash buckets, not the total allocation size
2639 */
2640void *__init alloc_large_system_hash(const char *tablename,
2641 unsigned long bucketsize,
2642 unsigned long numentries,
2643 int scale,
2644 int flags,
2645 unsigned int *_hash_shift,
2646 unsigned int *_hash_mask,
2647 unsigned long limit)
2648{
2649 unsigned long long max = limit;
2650 unsigned long log2qty, size;
2651 void *table = NULL;
2652
2653 /* allow the kernel cmdline to have a say */
2654 if (!numentries) {
2655 /* round applicable memory size up to nearest megabyte */
2656 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2657 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2658 numentries >>= 20 - PAGE_SHIFT;
2659 numentries <<= 20 - PAGE_SHIFT;
2660
2661 /* limit to 1 bucket per 2^scale bytes of low memory */
2662 if (scale > PAGE_SHIFT)
2663 numentries >>= (scale - PAGE_SHIFT);
2664 else
2665 numentries <<= (PAGE_SHIFT - scale);
2666 }
2667 /* rounded up to nearest power of 2 in size */
2668 numentries = 1UL << (long_log2(numentries) + 1);
2669
2670 /* limit allocation size to 1/16 total memory by default */
2671 if (max == 0) {
2672 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2673 do_div(max, bucketsize);
2674 }
2675
2676 if (numentries > max)
2677 numentries = max;
2678
2679 log2qty = long_log2(numentries);
2680
2681 do {
2682 size = bucketsize << log2qty;
2683 if (flags & HASH_EARLY)
2684 table = alloc_bootmem(size);
2685 else if (hashdist)
2686 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2687 else {
2688 unsigned long order;
2689 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2690 ;
2691 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2692 }
2693 } while (!table && size > PAGE_SIZE && --log2qty);
2694
2695 if (!table)
2696 panic("Failed to allocate %s hash table\n", tablename);
2697
2698 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2699 tablename,
2700 (1U << log2qty),
2701 long_log2(size) - PAGE_SHIFT,
2702 size);
2703
2704 if (_hash_shift)
2705 *_hash_shift = log2qty;
2706 if (_hash_mask)
2707 *_hash_mask = (1 << log2qty) - 1;
2708
2709 return table;
2710}