]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory.c
[PATCH] V4L/DVB (3087) fix analog NTSC for pcHDTV 3000
[net-next-2.6.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
4c21e2f2 117 pte_lock_deinit(page);
e0da382c
HD
118 pte_free_tlb(tlb, page);
119 dec_page_state(nr_page_table_pages);
120 tlb->mm->nr_ptes--;
1da177e4
LT
121}
122
e0da382c
HD
123static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124 unsigned long addr, unsigned long end,
125 unsigned long floor, unsigned long ceiling)
1da177e4
LT
126{
127 pmd_t *pmd;
128 unsigned long next;
e0da382c 129 unsigned long start;
1da177e4 130
e0da382c 131 start = addr;
1da177e4 132 pmd = pmd_offset(pud, addr);
1da177e4
LT
133 do {
134 next = pmd_addr_end(addr, end);
135 if (pmd_none_or_clear_bad(pmd))
136 continue;
e0da382c 137 free_pte_range(tlb, pmd);
1da177e4
LT
138 } while (pmd++, addr = next, addr != end);
139
e0da382c
HD
140 start &= PUD_MASK;
141 if (start < floor)
142 return;
143 if (ceiling) {
144 ceiling &= PUD_MASK;
145 if (!ceiling)
146 return;
1da177e4 147 }
e0da382c
HD
148 if (end - 1 > ceiling - 1)
149 return;
150
151 pmd = pmd_offset(pud, start);
152 pud_clear(pud);
153 pmd_free_tlb(tlb, pmd);
1da177e4
LT
154}
155
e0da382c
HD
156static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157 unsigned long addr, unsigned long end,
158 unsigned long floor, unsigned long ceiling)
1da177e4
LT
159{
160 pud_t *pud;
161 unsigned long next;
e0da382c 162 unsigned long start;
1da177e4 163
e0da382c 164 start = addr;
1da177e4 165 pud = pud_offset(pgd, addr);
1da177e4
LT
166 do {
167 next = pud_addr_end(addr, end);
168 if (pud_none_or_clear_bad(pud))
169 continue;
e0da382c 170 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
171 } while (pud++, addr = next, addr != end);
172
e0da382c
HD
173 start &= PGDIR_MASK;
174 if (start < floor)
175 return;
176 if (ceiling) {
177 ceiling &= PGDIR_MASK;
178 if (!ceiling)
179 return;
1da177e4 180 }
e0da382c
HD
181 if (end - 1 > ceiling - 1)
182 return;
183
184 pud = pud_offset(pgd, start);
185 pgd_clear(pgd);
186 pud_free_tlb(tlb, pud);
1da177e4
LT
187}
188
189/*
e0da382c
HD
190 * This function frees user-level page tables of a process.
191 *
1da177e4
LT
192 * Must be called with pagetable lock held.
193 */
3bf5ee95 194void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
1da177e4
LT
197{
198 pgd_t *pgd;
199 unsigned long next;
e0da382c
HD
200 unsigned long start;
201
202 /*
203 * The next few lines have given us lots of grief...
204 *
205 * Why are we testing PMD* at this top level? Because often
206 * there will be no work to do at all, and we'd prefer not to
207 * go all the way down to the bottom just to discover that.
208 *
209 * Why all these "- 1"s? Because 0 represents both the bottom
210 * of the address space and the top of it (using -1 for the
211 * top wouldn't help much: the masks would do the wrong thing).
212 * The rule is that addr 0 and floor 0 refer to the bottom of
213 * the address space, but end 0 and ceiling 0 refer to the top
214 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215 * that end 0 case should be mythical).
216 *
217 * Wherever addr is brought up or ceiling brought down, we must
218 * be careful to reject "the opposite 0" before it confuses the
219 * subsequent tests. But what about where end is brought down
220 * by PMD_SIZE below? no, end can't go down to 0 there.
221 *
222 * Whereas we round start (addr) and ceiling down, by different
223 * masks at different levels, in order to test whether a table
224 * now has no other vmas using it, so can be freed, we don't
225 * bother to round floor or end up - the tests don't need that.
226 */
1da177e4 227
e0da382c
HD
228 addr &= PMD_MASK;
229 if (addr < floor) {
230 addr += PMD_SIZE;
231 if (!addr)
232 return;
233 }
234 if (ceiling) {
235 ceiling &= PMD_MASK;
236 if (!ceiling)
237 return;
238 }
239 if (end - 1 > ceiling - 1)
240 end -= PMD_SIZE;
241 if (addr > end - 1)
242 return;
243
244 start = addr;
3bf5ee95 245 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
246 do {
247 next = pgd_addr_end(addr, end);
248 if (pgd_none_or_clear_bad(pgd))
249 continue;
3bf5ee95 250 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 251 } while (pgd++, addr = next, addr != end);
e0da382c 252
4d6ddfa9 253 if (!(*tlb)->fullmm)
3bf5ee95 254 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
255}
256
257void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 258 unsigned long floor, unsigned long ceiling)
e0da382c
HD
259{
260 while (vma) {
261 struct vm_area_struct *next = vma->vm_next;
262 unsigned long addr = vma->vm_start;
263
8f4f8c16
HD
264 /*
265 * Hide vma from rmap and vmtruncate before freeing pgtables
266 */
267 anon_vma_unlink(vma);
268 unlink_file_vma(vma);
269
3bf5ee95
HD
270 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 272 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
273 } else {
274 /*
275 * Optimization: gather nearby vmas into one call down
276 */
277 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279 HPAGE_SIZE)) {
280 vma = next;
281 next = vma->vm_next;
8f4f8c16
HD
282 anon_vma_unlink(vma);
283 unlink_file_vma(vma);
3bf5ee95
HD
284 }
285 free_pgd_range(tlb, addr, vma->vm_end,
286 floor, next? next->vm_start: ceiling);
287 }
e0da382c
HD
288 vma = next;
289 }
1da177e4
LT
290}
291
1bb3630e 292int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 293{
c74df32c 294 struct page *new = pte_alloc_one(mm, address);
1bb3630e
HD
295 if (!new)
296 return -ENOMEM;
297
4c21e2f2 298 pte_lock_init(new);
c74df32c 299 spin_lock(&mm->page_table_lock);
4c21e2f2
HD
300 if (pmd_present(*pmd)) { /* Another has populated it */
301 pte_lock_deinit(new);
1bb3630e 302 pte_free(new);
4c21e2f2 303 } else {
1da177e4
LT
304 mm->nr_ptes++;
305 inc_page_state(nr_page_table_pages);
306 pmd_populate(mm, pmd, new);
307 }
c74df32c 308 spin_unlock(&mm->page_table_lock);
1bb3630e 309 return 0;
1da177e4
LT
310}
311
1bb3630e 312int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 313{
1bb3630e
HD
314 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315 if (!new)
316 return -ENOMEM;
317
318 spin_lock(&init_mm.page_table_lock);
319 if (pmd_present(*pmd)) /* Another has populated it */
320 pte_free_kernel(new);
321 else
322 pmd_populate_kernel(&init_mm, pmd, new);
323 spin_unlock(&init_mm.page_table_lock);
324 return 0;
1da177e4
LT
325}
326
ae859762
HD
327static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
328{
329 if (file_rss)
330 add_mm_counter(mm, file_rss, file_rss);
331 if (anon_rss)
332 add_mm_counter(mm, anon_rss, anon_rss);
333}
334
b5810039 335/*
6aab341e
LT
336 * This function is called to print an error when a bad pte
337 * is found. For example, we might have a PFN-mapped pte in
338 * a region that doesn't allow it.
b5810039
NP
339 *
340 * The calling function must still handle the error.
341 */
342void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
343{
344 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345 "vm_flags = %lx, vaddr = %lx\n",
346 (long long)pte_val(pte),
347 (vma->vm_mm == current->mm ? current->comm : "???"),
348 vma->vm_flags, vaddr);
349 dump_stack();
350}
351
ee498ed7 352/*
6aab341e
LT
353 * This function gets the "struct page" associated with a pte.
354 *
355 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
356 * will have each page table entry just pointing to a raw page frame
357 * number, and as far as the VM layer is concerned, those do not have
358 * pages associated with them - even if the PFN might point to memory
359 * that otherwise is perfectly fine and has a "struct page".
360 *
361 * The way we recognize those mappings is through the rules set up
362 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
363 * and the vm_pgoff will point to the first PFN mapped: thus every
364 * page that is a raw mapping will always honor the rule
365 *
366 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
367 *
368 * and if that isn't true, the page has been COW'ed (in which case it
369 * _does_ have a "struct page" associated with it even if it is in a
370 * VM_PFNMAP range).
ee498ed7 371 */
6aab341e 372struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
ee498ed7 373{
6aab341e
LT
374 unsigned long pfn = pte_pfn(pte);
375
376 if (vma->vm_flags & VM_PFNMAP) {
377 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
378 if (pfn == vma->vm_pgoff + off)
379 return NULL;
380 }
381
382 /*
383 * Add some anal sanity checks for now. Eventually,
384 * we should just do "return pfn_to_page(pfn)", but
385 * in the meantime we check that we get a valid pfn,
386 * and that the resulting page looks ok.
387 *
388 * Remove this test eventually!
389 */
390 if (unlikely(!pfn_valid(pfn))) {
391 print_bad_pte(vma, pte, addr);
392 return NULL;
393 }
394
395 /*
396 * NOTE! We still have PageReserved() pages in the page
397 * tables.
398 *
399 * The PAGE_ZERO() pages and various VDSO mappings can
400 * cause them to exist.
401 */
402 return pfn_to_page(pfn);
ee498ed7
HD
403}
404
1da177e4
LT
405/*
406 * copy one vm_area from one task to the other. Assumes the page tables
407 * already present in the new task to be cleared in the whole range
408 * covered by this vma.
1da177e4
LT
409 */
410
8c103762 411static inline void
1da177e4 412copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 413 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 414 unsigned long addr, int *rss)
1da177e4 415{
b5810039 416 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
417 pte_t pte = *src_pte;
418 struct page *page;
1da177e4
LT
419
420 /* pte contains position in swap or file, so copy. */
421 if (unlikely(!pte_present(pte))) {
422 if (!pte_file(pte)) {
423 swap_duplicate(pte_to_swp_entry(pte));
424 /* make sure dst_mm is on swapoff's mmlist. */
425 if (unlikely(list_empty(&dst_mm->mmlist))) {
426 spin_lock(&mmlist_lock);
f412ac08
HD
427 if (list_empty(&dst_mm->mmlist))
428 list_add(&dst_mm->mmlist,
429 &src_mm->mmlist);
1da177e4
LT
430 spin_unlock(&mmlist_lock);
431 }
432 }
ae859762 433 goto out_set_pte;
1da177e4
LT
434 }
435
1da177e4
LT
436 /*
437 * If it's a COW mapping, write protect it both
438 * in the parent and the child
439 */
440 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
441 ptep_set_wrprotect(src_mm, addr, src_pte);
442 pte = *src_pte;
443 }
444
445 /*
446 * If it's a shared mapping, mark it clean in
447 * the child
448 */
449 if (vm_flags & VM_SHARED)
450 pte = pte_mkclean(pte);
451 pte = pte_mkold(pte);
6aab341e
LT
452
453 page = vm_normal_page(vma, addr, pte);
454 if (page) {
455 get_page(page);
456 page_dup_rmap(page);
457 rss[!!PageAnon(page)]++;
458 }
ae859762
HD
459
460out_set_pte:
461 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
462}
463
464static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
465 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
466 unsigned long addr, unsigned long end)
467{
468 pte_t *src_pte, *dst_pte;
c74df32c 469 spinlock_t *src_ptl, *dst_ptl;
e040f218 470 int progress = 0;
8c103762 471 int rss[2];
1da177e4
LT
472
473again:
ae859762 474 rss[1] = rss[0] = 0;
c74df32c 475 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
476 if (!dst_pte)
477 return -ENOMEM;
478 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 479 src_ptl = pte_lockptr(src_mm, src_pmd);
c74df32c 480 spin_lock(src_ptl);
1da177e4 481
1da177e4
LT
482 do {
483 /*
484 * We are holding two locks at this point - either of them
485 * could generate latencies in another task on another CPU.
486 */
e040f218
HD
487 if (progress >= 32) {
488 progress = 0;
489 if (need_resched() ||
c74df32c
HD
490 need_lockbreak(src_ptl) ||
491 need_lockbreak(dst_ptl))
e040f218
HD
492 break;
493 }
1da177e4
LT
494 if (pte_none(*src_pte)) {
495 progress++;
496 continue;
497 }
8c103762 498 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
499 progress += 8;
500 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 501
c74df32c 502 spin_unlock(src_ptl);
1da177e4 503 pte_unmap_nested(src_pte - 1);
ae859762 504 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
505 pte_unmap_unlock(dst_pte - 1, dst_ptl);
506 cond_resched();
1da177e4
LT
507 if (addr != end)
508 goto again;
509 return 0;
510}
511
512static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
513 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
514 unsigned long addr, unsigned long end)
515{
516 pmd_t *src_pmd, *dst_pmd;
517 unsigned long next;
518
519 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
520 if (!dst_pmd)
521 return -ENOMEM;
522 src_pmd = pmd_offset(src_pud, addr);
523 do {
524 next = pmd_addr_end(addr, end);
525 if (pmd_none_or_clear_bad(src_pmd))
526 continue;
527 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
528 vma, addr, next))
529 return -ENOMEM;
530 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
531 return 0;
532}
533
534static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
535 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
536 unsigned long addr, unsigned long end)
537{
538 pud_t *src_pud, *dst_pud;
539 unsigned long next;
540
541 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
542 if (!dst_pud)
543 return -ENOMEM;
544 src_pud = pud_offset(src_pgd, addr);
545 do {
546 next = pud_addr_end(addr, end);
547 if (pud_none_or_clear_bad(src_pud))
548 continue;
549 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
550 vma, addr, next))
551 return -ENOMEM;
552 } while (dst_pud++, src_pud++, addr = next, addr != end);
553 return 0;
554}
555
556int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 struct vm_area_struct *vma)
558{
559 pgd_t *src_pgd, *dst_pgd;
560 unsigned long next;
561 unsigned long addr = vma->vm_start;
562 unsigned long end = vma->vm_end;
563
d992895b
NP
564 /*
565 * Don't copy ptes where a page fault will fill them correctly.
566 * Fork becomes much lighter when there are big shared or private
567 * readonly mappings. The tradeoff is that copy_page_range is more
568 * efficient than faulting.
569 */
6aab341e 570 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP))) {
d992895b
NP
571 if (!vma->anon_vma)
572 return 0;
573 }
574
1da177e4
LT
575 if (is_vm_hugetlb_page(vma))
576 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
577
578 dst_pgd = pgd_offset(dst_mm, addr);
579 src_pgd = pgd_offset(src_mm, addr);
580 do {
581 next = pgd_addr_end(addr, end);
582 if (pgd_none_or_clear_bad(src_pgd))
583 continue;
584 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
585 vma, addr, next))
586 return -ENOMEM;
587 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
588 return 0;
589}
590
51c6f666 591static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 592 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 593 unsigned long addr, unsigned long end,
51c6f666 594 long *zap_work, struct zap_details *details)
1da177e4 595{
b5810039 596 struct mm_struct *mm = tlb->mm;
1da177e4 597 pte_t *pte;
508034a3 598 spinlock_t *ptl;
ae859762
HD
599 int file_rss = 0;
600 int anon_rss = 0;
1da177e4 601
508034a3 602 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
603 do {
604 pte_t ptent = *pte;
51c6f666
RH
605 if (pte_none(ptent)) {
606 (*zap_work)--;
1da177e4 607 continue;
51c6f666 608 }
1da177e4 609 if (pte_present(ptent)) {
ee498ed7 610 struct page *page;
51c6f666
RH
611
612 (*zap_work) -= PAGE_SIZE;
613
6aab341e 614 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
615 if (unlikely(details) && page) {
616 /*
617 * unmap_shared_mapping_pages() wants to
618 * invalidate cache without truncating:
619 * unmap shared but keep private pages.
620 */
621 if (details->check_mapping &&
622 details->check_mapping != page->mapping)
623 continue;
624 /*
625 * Each page->index must be checked when
626 * invalidating or truncating nonlinear.
627 */
628 if (details->nonlinear_vma &&
629 (page->index < details->first_index ||
630 page->index > details->last_index))
631 continue;
632 }
b5810039 633 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 634 tlb->fullmm);
1da177e4
LT
635 tlb_remove_tlb_entry(tlb, pte, addr);
636 if (unlikely(!page))
637 continue;
638 if (unlikely(details) && details->nonlinear_vma
639 && linear_page_index(details->nonlinear_vma,
640 addr) != page->index)
b5810039 641 set_pte_at(mm, addr, pte,
1da177e4 642 pgoff_to_pte(page->index));
1da177e4 643 if (PageAnon(page))
86d912f4 644 anon_rss--;
6237bcd9
HD
645 else {
646 if (pte_dirty(ptent))
647 set_page_dirty(page);
648 if (pte_young(ptent))
649 mark_page_accessed(page);
86d912f4 650 file_rss--;
6237bcd9 651 }
1da177e4
LT
652 page_remove_rmap(page);
653 tlb_remove_page(tlb, page);
654 continue;
655 }
656 /*
657 * If details->check_mapping, we leave swap entries;
658 * if details->nonlinear_vma, we leave file entries.
659 */
660 if (unlikely(details))
661 continue;
662 if (!pte_file(ptent))
663 free_swap_and_cache(pte_to_swp_entry(ptent));
b5810039 664 pte_clear_full(mm, addr, pte, tlb->fullmm);
51c6f666 665 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 666
86d912f4 667 add_mm_rss(mm, file_rss, anon_rss);
508034a3 668 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
669
670 return addr;
1da177e4
LT
671}
672
51c6f666 673static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 674 struct vm_area_struct *vma, pud_t *pud,
1da177e4 675 unsigned long addr, unsigned long end,
51c6f666 676 long *zap_work, struct zap_details *details)
1da177e4
LT
677{
678 pmd_t *pmd;
679 unsigned long next;
680
681 pmd = pmd_offset(pud, addr);
682 do {
683 next = pmd_addr_end(addr, end);
51c6f666
RH
684 if (pmd_none_or_clear_bad(pmd)) {
685 (*zap_work)--;
1da177e4 686 continue;
51c6f666
RH
687 }
688 next = zap_pte_range(tlb, vma, pmd, addr, next,
689 zap_work, details);
690 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
691
692 return addr;
1da177e4
LT
693}
694
51c6f666 695static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 696 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 697 unsigned long addr, unsigned long end,
51c6f666 698 long *zap_work, struct zap_details *details)
1da177e4
LT
699{
700 pud_t *pud;
701 unsigned long next;
702
703 pud = pud_offset(pgd, addr);
704 do {
705 next = pud_addr_end(addr, end);
51c6f666
RH
706 if (pud_none_or_clear_bad(pud)) {
707 (*zap_work)--;
1da177e4 708 continue;
51c6f666
RH
709 }
710 next = zap_pmd_range(tlb, vma, pud, addr, next,
711 zap_work, details);
712 } while (pud++, addr = next, (addr != end && *zap_work > 0));
713
714 return addr;
1da177e4
LT
715}
716
51c6f666
RH
717static unsigned long unmap_page_range(struct mmu_gather *tlb,
718 struct vm_area_struct *vma,
1da177e4 719 unsigned long addr, unsigned long end,
51c6f666 720 long *zap_work, struct zap_details *details)
1da177e4
LT
721{
722 pgd_t *pgd;
723 unsigned long next;
724
725 if (details && !details->check_mapping && !details->nonlinear_vma)
726 details = NULL;
727
728 BUG_ON(addr >= end);
729 tlb_start_vma(tlb, vma);
730 pgd = pgd_offset(vma->vm_mm, addr);
731 do {
732 next = pgd_addr_end(addr, end);
51c6f666
RH
733 if (pgd_none_or_clear_bad(pgd)) {
734 (*zap_work)--;
1da177e4 735 continue;
51c6f666
RH
736 }
737 next = zap_pud_range(tlb, vma, pgd, addr, next,
738 zap_work, details);
739 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 740 tlb_end_vma(tlb, vma);
51c6f666
RH
741
742 return addr;
1da177e4
LT
743}
744
745#ifdef CONFIG_PREEMPT
746# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
747#else
748/* No preempt: go for improved straight-line efficiency */
749# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
750#endif
751
752/**
753 * unmap_vmas - unmap a range of memory covered by a list of vma's
754 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
755 * @vma: the starting vma
756 * @start_addr: virtual address at which to start unmapping
757 * @end_addr: virtual address at which to end unmapping
758 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
759 * @details: details of nonlinear truncation or shared cache invalidation
760 *
ee39b37b 761 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 762 *
508034a3 763 * Unmap all pages in the vma list.
1da177e4 764 *
508034a3
HD
765 * We aim to not hold locks for too long (for scheduling latency reasons).
766 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
767 * return the ending mmu_gather to the caller.
768 *
769 * Only addresses between `start' and `end' will be unmapped.
770 *
771 * The VMA list must be sorted in ascending virtual address order.
772 *
773 * unmap_vmas() assumes that the caller will flush the whole unmapped address
774 * range after unmap_vmas() returns. So the only responsibility here is to
775 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
776 * drops the lock and schedules.
777 */
508034a3 778unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
779 struct vm_area_struct *vma, unsigned long start_addr,
780 unsigned long end_addr, unsigned long *nr_accounted,
781 struct zap_details *details)
782{
51c6f666 783 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
784 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
785 int tlb_start_valid = 0;
ee39b37b 786 unsigned long start = start_addr;
1da177e4 787 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 788 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
789
790 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
791 unsigned long end;
792
793 start = max(vma->vm_start, start_addr);
794 if (start >= vma->vm_end)
795 continue;
796 end = min(vma->vm_end, end_addr);
797 if (end <= vma->vm_start)
798 continue;
799
800 if (vma->vm_flags & VM_ACCOUNT)
801 *nr_accounted += (end - start) >> PAGE_SHIFT;
802
1da177e4 803 while (start != end) {
1da177e4
LT
804 if (!tlb_start_valid) {
805 tlb_start = start;
806 tlb_start_valid = 1;
807 }
808
51c6f666 809 if (unlikely(is_vm_hugetlb_page(vma))) {
1da177e4 810 unmap_hugepage_range(vma, start, end);
51c6f666
RH
811 zap_work -= (end - start) /
812 (HPAGE_SIZE / PAGE_SIZE);
813 start = end;
814 } else
815 start = unmap_page_range(*tlbp, vma,
816 start, end, &zap_work, details);
817
818 if (zap_work > 0) {
819 BUG_ON(start != end);
820 break;
1da177e4
LT
821 }
822
1da177e4
LT
823 tlb_finish_mmu(*tlbp, tlb_start, start);
824
825 if (need_resched() ||
1da177e4
LT
826 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
827 if (i_mmap_lock) {
508034a3 828 *tlbp = NULL;
1da177e4
LT
829 goto out;
830 }
1da177e4 831 cond_resched();
1da177e4
LT
832 }
833
508034a3 834 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 835 tlb_start_valid = 0;
51c6f666 836 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
837 }
838 }
839out:
ee39b37b 840 return start; /* which is now the end (or restart) address */
1da177e4
LT
841}
842
843/**
844 * zap_page_range - remove user pages in a given range
845 * @vma: vm_area_struct holding the applicable pages
846 * @address: starting address of pages to zap
847 * @size: number of bytes to zap
848 * @details: details of nonlinear truncation or shared cache invalidation
849 */
ee39b37b 850unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
851 unsigned long size, struct zap_details *details)
852{
853 struct mm_struct *mm = vma->vm_mm;
854 struct mmu_gather *tlb;
855 unsigned long end = address + size;
856 unsigned long nr_accounted = 0;
857
1da177e4 858 lru_add_drain();
1da177e4 859 tlb = tlb_gather_mmu(mm, 0);
365e9c87 860 update_hiwater_rss(mm);
508034a3
HD
861 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
862 if (tlb)
863 tlb_finish_mmu(tlb, address, end);
ee39b37b 864 return end;
1da177e4
LT
865}
866
867/*
868 * Do a quick page-table lookup for a single page.
1da177e4 869 */
6aab341e 870struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 871 unsigned int flags)
1da177e4
LT
872{
873 pgd_t *pgd;
874 pud_t *pud;
875 pmd_t *pmd;
876 pte_t *ptep, pte;
deceb6cd 877 spinlock_t *ptl;
1da177e4 878 struct page *page;
6aab341e 879 struct mm_struct *mm = vma->vm_mm;
1da177e4 880
deceb6cd
HD
881 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
882 if (!IS_ERR(page)) {
883 BUG_ON(flags & FOLL_GET);
884 goto out;
885 }
1da177e4 886
deceb6cd 887 page = NULL;
1da177e4
LT
888 pgd = pgd_offset(mm, address);
889 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 890 goto no_page_table;
1da177e4
LT
891
892 pud = pud_offset(pgd, address);
893 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 894 goto no_page_table;
1da177e4
LT
895
896 pmd = pmd_offset(pud, address);
897 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
deceb6cd
HD
898 goto no_page_table;
899
900 if (pmd_huge(*pmd)) {
901 BUG_ON(flags & FOLL_GET);
902 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 903 goto out;
deceb6cd 904 }
1da177e4 905
deceb6cd 906 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
907 if (!ptep)
908 goto out;
909
910 pte = *ptep;
deceb6cd
HD
911 if (!pte_present(pte))
912 goto unlock;
913 if ((flags & FOLL_WRITE) && !pte_write(pte))
914 goto unlock;
6aab341e
LT
915 page = vm_normal_page(vma, address, pte);
916 if (unlikely(!page))
deceb6cd 917 goto unlock;
1da177e4 918
deceb6cd
HD
919 if (flags & FOLL_GET)
920 get_page(page);
921 if (flags & FOLL_TOUCH) {
922 if ((flags & FOLL_WRITE) &&
923 !pte_dirty(pte) && !PageDirty(page))
924 set_page_dirty(page);
925 mark_page_accessed(page);
926 }
927unlock:
928 pte_unmap_unlock(ptep, ptl);
1da177e4 929out:
deceb6cd 930 return page;
1da177e4 931
deceb6cd
HD
932no_page_table:
933 /*
934 * When core dumping an enormous anonymous area that nobody
935 * has touched so far, we don't want to allocate page tables.
936 */
937 if (flags & FOLL_ANON) {
938 page = ZERO_PAGE(address);
939 if (flags & FOLL_GET)
940 get_page(page);
941 BUG_ON(flags & FOLL_WRITE);
942 }
943 return page;
1da177e4
LT
944}
945
1da177e4
LT
946int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
947 unsigned long start, int len, int write, int force,
948 struct page **pages, struct vm_area_struct **vmas)
949{
950 int i;
deceb6cd 951 unsigned int vm_flags;
1da177e4
LT
952
953 /*
954 * Require read or write permissions.
955 * If 'force' is set, we only require the "MAY" flags.
956 */
deceb6cd
HD
957 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
958 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
959 i = 0;
960
961 do {
deceb6cd
HD
962 struct vm_area_struct *vma;
963 unsigned int foll_flags;
1da177e4
LT
964
965 vma = find_extend_vma(mm, start);
966 if (!vma && in_gate_area(tsk, start)) {
967 unsigned long pg = start & PAGE_MASK;
968 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
969 pgd_t *pgd;
970 pud_t *pud;
971 pmd_t *pmd;
972 pte_t *pte;
973 if (write) /* user gate pages are read-only */
974 return i ? : -EFAULT;
975 if (pg > TASK_SIZE)
976 pgd = pgd_offset_k(pg);
977 else
978 pgd = pgd_offset_gate(mm, pg);
979 BUG_ON(pgd_none(*pgd));
980 pud = pud_offset(pgd, pg);
981 BUG_ON(pud_none(*pud));
982 pmd = pmd_offset(pud, pg);
690dbe1c
HD
983 if (pmd_none(*pmd))
984 return i ? : -EFAULT;
1da177e4 985 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
986 if (pte_none(*pte)) {
987 pte_unmap(pte);
988 return i ? : -EFAULT;
989 }
1da177e4 990 if (pages) {
fa2a455b 991 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
992 pages[i] = page;
993 if (page)
994 get_page(page);
1da177e4
LT
995 }
996 pte_unmap(pte);
997 if (vmas)
998 vmas[i] = gate_vma;
999 i++;
1000 start += PAGE_SIZE;
1001 len--;
1002 continue;
1003 }
1004
ed5297a9 1005 if (!vma || (vma->vm_flags & VM_IO)
deceb6cd 1006 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1007 return i ? : -EFAULT;
1008
1009 if (is_vm_hugetlb_page(vma)) {
1010 i = follow_hugetlb_page(mm, vma, pages, vmas,
1011 &start, &len, i);
1012 continue;
1013 }
deceb6cd
HD
1014
1015 foll_flags = FOLL_TOUCH;
1016 if (pages)
1017 foll_flags |= FOLL_GET;
1018 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1019 (!vma->vm_ops || !vma->vm_ops->nopage))
1020 foll_flags |= FOLL_ANON;
1021
1da177e4 1022 do {
08ef4729 1023 struct page *page;
1da177e4 1024
deceb6cd
HD
1025 if (write)
1026 foll_flags |= FOLL_WRITE;
a68d2ebc 1027
deceb6cd 1028 cond_resched();
6aab341e 1029 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd
HD
1030 int ret;
1031 ret = __handle_mm_fault(mm, vma, start,
1032 foll_flags & FOLL_WRITE);
a68d2ebc
LT
1033 /*
1034 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1035 * broken COW when necessary, even if maybe_mkwrite
1036 * decided not to set pte_write. We can thus safely do
1037 * subsequent page lookups as if they were reads.
1038 */
1039 if (ret & VM_FAULT_WRITE)
deceb6cd 1040 foll_flags &= ~FOLL_WRITE;
a68d2ebc
LT
1041
1042 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
1043 case VM_FAULT_MINOR:
1044 tsk->min_flt++;
1045 break;
1046 case VM_FAULT_MAJOR:
1047 tsk->maj_flt++;
1048 break;
1049 case VM_FAULT_SIGBUS:
1050 return i ? i : -EFAULT;
1051 case VM_FAULT_OOM:
1052 return i ? i : -ENOMEM;
1053 default:
1054 BUG();
1055 }
1da177e4
LT
1056 }
1057 if (pages) {
08ef4729
HD
1058 pages[i] = page;
1059 flush_dcache_page(page);
1da177e4
LT
1060 }
1061 if (vmas)
1062 vmas[i] = vma;
1063 i++;
1064 start += PAGE_SIZE;
1065 len--;
08ef4729 1066 } while (len && start < vma->vm_end);
08ef4729 1067 } while (len);
1da177e4
LT
1068 return i;
1069}
1da177e4
LT
1070EXPORT_SYMBOL(get_user_pages);
1071
1072static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1073 unsigned long addr, unsigned long end, pgprot_t prot)
1074{
1075 pte_t *pte;
c74df32c 1076 spinlock_t *ptl;
1da177e4 1077
c74df32c 1078 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1079 if (!pte)
1080 return -ENOMEM;
1081 do {
b5810039
NP
1082 struct page *page = ZERO_PAGE(addr);
1083 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1084 page_cache_get(page);
1085 page_add_file_rmap(page);
1086 inc_mm_counter(mm, file_rss);
1da177e4
LT
1087 BUG_ON(!pte_none(*pte));
1088 set_pte_at(mm, addr, pte, zero_pte);
1089 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1090 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1091 return 0;
1092}
1093
1094static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1095 unsigned long addr, unsigned long end, pgprot_t prot)
1096{
1097 pmd_t *pmd;
1098 unsigned long next;
1099
1100 pmd = pmd_alloc(mm, pud, addr);
1101 if (!pmd)
1102 return -ENOMEM;
1103 do {
1104 next = pmd_addr_end(addr, end);
1105 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1106 return -ENOMEM;
1107 } while (pmd++, addr = next, addr != end);
1108 return 0;
1109}
1110
1111static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1112 unsigned long addr, unsigned long end, pgprot_t prot)
1113{
1114 pud_t *pud;
1115 unsigned long next;
1116
1117 pud = pud_alloc(mm, pgd, addr);
1118 if (!pud)
1119 return -ENOMEM;
1120 do {
1121 next = pud_addr_end(addr, end);
1122 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1123 return -ENOMEM;
1124 } while (pud++, addr = next, addr != end);
1125 return 0;
1126}
1127
1128int zeromap_page_range(struct vm_area_struct *vma,
1129 unsigned long addr, unsigned long size, pgprot_t prot)
1130{
1131 pgd_t *pgd;
1132 unsigned long next;
1133 unsigned long end = addr + size;
1134 struct mm_struct *mm = vma->vm_mm;
1135 int err;
1136
1137 BUG_ON(addr >= end);
1138 pgd = pgd_offset(mm, addr);
1139 flush_cache_range(vma, addr, end);
1da177e4
LT
1140 do {
1141 next = pgd_addr_end(addr, end);
1142 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1143 if (err)
1144 break;
1145 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1146 return err;
1147}
1148
49c91fb0 1149pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
c9cfcddf
LT
1150{
1151 pgd_t * pgd = pgd_offset(mm, addr);
1152 pud_t * pud = pud_alloc(mm, pgd, addr);
1153 if (pud) {
49c91fb0 1154 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1155 if (pmd)
1156 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1157 }
1158 return NULL;
1159}
1160
238f58d8
LT
1161/*
1162 * This is the old fallback for page remapping.
1163 *
1164 * For historical reasons, it only allows reserved pages. Only
1165 * old drivers should use this, and they needed to mark their
1166 * pages reserved for the old functions anyway.
1167 */
1168static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1169{
1170 int retval;
c9cfcddf 1171 pte_t *pte;
238f58d8
LT
1172 spinlock_t *ptl;
1173
1174 retval = -EINVAL;
a145dd41 1175 if (PageAnon(page))
238f58d8
LT
1176 goto out;
1177 retval = -ENOMEM;
1178 flush_dcache_page(page);
c9cfcddf 1179 pte = get_locked_pte(mm, addr, &ptl);
238f58d8
LT
1180 if (!pte)
1181 goto out;
1182 retval = -EBUSY;
1183 if (!pte_none(*pte))
1184 goto out_unlock;
1185
1186 /* Ok, finally just insert the thing.. */
1187 get_page(page);
1188 inc_mm_counter(mm, file_rss);
1189 page_add_file_rmap(page);
1190 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1191
1192 retval = 0;
1193out_unlock:
1194 pte_unmap_unlock(pte, ptl);
1195out:
1196 return retval;
1197}
1198
a145dd41
LT
1199/*
1200 * This allows drivers to insert individual pages they've allocated
1201 * into a user vma.
1202 *
1203 * The page has to be a nice clean _individual_ kernel allocation.
1204 * If you allocate a compound page, you need to have marked it as
1205 * such (__GFP_COMP), or manually just split the page up yourself
1206 * (which is mainly an issue of doing "set_page_count(page, 1)" for
1207 * each sub-page, and then freeing them one by one when you free
1208 * them rather than freeing it as a compound page).
1209 *
1210 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1211 * took an arbitrary page protection parameter. This doesn't allow
1212 * that. Your vma protection will have to be set up correctly, which
1213 * means that if you want a shared writable mapping, you'd better
1214 * ask for a shared writable mapping!
1215 *
1216 * The page does not need to be reserved.
1217 */
1218int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1219{
1220 if (addr < vma->vm_start || addr >= vma->vm_end)
1221 return -EFAULT;
1222 if (!page_count(page))
1223 return -EINVAL;
1224 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1225}
e3c3374f 1226EXPORT_SYMBOL(vm_insert_page);
a145dd41 1227
238f58d8
LT
1228/*
1229 * Somebody does a pfn remapping that doesn't actually work as a vma.
1230 *
1231 * Do it as individual pages instead, and warn about it. It's bad form,
1232 * and very inefficient.
1233 */
1234static int incomplete_pfn_remap(struct vm_area_struct *vma,
1235 unsigned long start, unsigned long end,
1236 unsigned long pfn, pgprot_t prot)
1237{
1238 static int warn = 10;
1239 struct page *page;
1240 int retval;
1241
1242 if (!(vma->vm_flags & VM_INCOMPLETE)) {
1243 if (warn) {
1244 warn--;
1245 printk("%s does an incomplete pfn remapping", current->comm);
1246 dump_stack();
1247 }
1248 }
1249 vma->vm_flags |= VM_INCOMPLETE | VM_IO | VM_RESERVED;
1250
1251 if (start < vma->vm_start || end > vma->vm_end)
1252 return -EINVAL;
1253
1254 if (!pfn_valid(pfn))
1255 return -EINVAL;
1256
238f58d8 1257 page = pfn_to_page(pfn);
a145dd41
LT
1258 if (!PageReserved(page))
1259 return -EINVAL;
1260
1261 retval = 0;
238f58d8
LT
1262 while (start < end) {
1263 retval = insert_page(vma->vm_mm, start, page, prot);
1264 if (retval < 0)
1265 break;
1266 start += PAGE_SIZE;
1267 page++;
1268 }
1269 return retval;
1270}
1271
1da177e4
LT
1272/*
1273 * maps a range of physical memory into the requested pages. the old
1274 * mappings are removed. any references to nonexistent pages results
1275 * in null mappings (currently treated as "copy-on-access")
1276 */
1277static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1278 unsigned long addr, unsigned long end,
1279 unsigned long pfn, pgprot_t prot)
1280{
1281 pte_t *pte;
c74df32c 1282 spinlock_t *ptl;
1da177e4 1283
c74df32c 1284 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1285 if (!pte)
1286 return -ENOMEM;
1287 do {
1288 BUG_ON(!pte_none(*pte));
b5810039 1289 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1da177e4
LT
1290 pfn++;
1291 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1292 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1293 return 0;
1294}
1295
1296static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1297 unsigned long addr, unsigned long end,
1298 unsigned long pfn, pgprot_t prot)
1299{
1300 pmd_t *pmd;
1301 unsigned long next;
1302
1303 pfn -= addr >> PAGE_SHIFT;
1304 pmd = pmd_alloc(mm, pud, addr);
1305 if (!pmd)
1306 return -ENOMEM;
1307 do {
1308 next = pmd_addr_end(addr, end);
1309 if (remap_pte_range(mm, pmd, addr, next,
1310 pfn + (addr >> PAGE_SHIFT), prot))
1311 return -ENOMEM;
1312 } while (pmd++, addr = next, addr != end);
1313 return 0;
1314}
1315
1316static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1317 unsigned long addr, unsigned long end,
1318 unsigned long pfn, pgprot_t prot)
1319{
1320 pud_t *pud;
1321 unsigned long next;
1322
1323 pfn -= addr >> PAGE_SHIFT;
1324 pud = pud_alloc(mm, pgd, addr);
1325 if (!pud)
1326 return -ENOMEM;
1327 do {
1328 next = pud_addr_end(addr, end);
1329 if (remap_pmd_range(mm, pud, addr, next,
1330 pfn + (addr >> PAGE_SHIFT), prot))
1331 return -ENOMEM;
1332 } while (pud++, addr = next, addr != end);
1333 return 0;
1334}
1335
1336/* Note: this is only safe if the mm semaphore is held when called. */
1337int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1338 unsigned long pfn, unsigned long size, pgprot_t prot)
1339{
1340 pgd_t *pgd;
1341 unsigned long next;
2d15cab8 1342 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1343 struct mm_struct *mm = vma->vm_mm;
1344 int err;
1345
238f58d8
LT
1346 if (addr != vma->vm_start || end != vma->vm_end)
1347 return incomplete_pfn_remap(vma, addr, end, pfn, prot);
1348
1da177e4
LT
1349 /*
1350 * Physically remapped pages are special. Tell the
1351 * rest of the world about it:
1352 * VM_IO tells people not to look at these pages
1353 * (accesses can have side effects).
0b14c179
HD
1354 * VM_RESERVED is specified all over the place, because
1355 * in 2.4 it kept swapout's vma scan off this vma; but
1356 * in 2.6 the LRU scan won't even find its pages, so this
1357 * flag means no more than count its pages in reserved_vm,
1358 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1359 * VM_PFNMAP tells the core MM that the base pages are just
1360 * raw PFN mappings, and do not have a "struct page" associated
1361 * with them.
1da177e4 1362 */
6aab341e
LT
1363 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1364 vma->vm_pgoff = pfn;
1da177e4
LT
1365
1366 BUG_ON(addr >= end);
1367 pfn -= addr >> PAGE_SHIFT;
1368 pgd = pgd_offset(mm, addr);
1369 flush_cache_range(vma, addr, end);
1da177e4
LT
1370 do {
1371 next = pgd_addr_end(addr, end);
1372 err = remap_pud_range(mm, pgd, addr, next,
1373 pfn + (addr >> PAGE_SHIFT), prot);
1374 if (err)
1375 break;
1376 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1377 return err;
1378}
1379EXPORT_SYMBOL(remap_pfn_range);
1380
8f4e2101
HD
1381/*
1382 * handle_pte_fault chooses page fault handler according to an entry
1383 * which was read non-atomically. Before making any commitment, on
1384 * those architectures or configurations (e.g. i386 with PAE) which
1385 * might give a mix of unmatched parts, do_swap_page and do_file_page
1386 * must check under lock before unmapping the pte and proceeding
1387 * (but do_wp_page is only called after already making such a check;
1388 * and do_anonymous_page and do_no_page can safely check later on).
1389 */
4c21e2f2 1390static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1391 pte_t *page_table, pte_t orig_pte)
1392{
1393 int same = 1;
1394#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1395 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1396 spinlock_t *ptl = pte_lockptr(mm, pmd);
1397 spin_lock(ptl);
8f4e2101 1398 same = pte_same(*page_table, orig_pte);
4c21e2f2 1399 spin_unlock(ptl);
8f4e2101
HD
1400 }
1401#endif
1402 pte_unmap(page_table);
1403 return same;
1404}
1405
1da177e4
LT
1406/*
1407 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1408 * servicing faults for write access. In the normal case, do always want
1409 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1410 * that do not have writing enabled, when used by access_process_vm.
1411 */
1412static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1413{
1414 if (likely(vma->vm_flags & VM_WRITE))
1415 pte = pte_mkwrite(pte);
1416 return pte;
1417}
1418
6aab341e
LT
1419static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1420{
1421 /*
1422 * If the source page was a PFN mapping, we don't have
1423 * a "struct page" for it. We do a best-effort copy by
1424 * just copying from the original user address. If that
1425 * fails, we just zero-fill it. Live with it.
1426 */
1427 if (unlikely(!src)) {
1428 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1429 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1430
1431 /*
1432 * This really shouldn't fail, because the page is there
1433 * in the page tables. But it might just be unreadable,
1434 * in which case we just give up and fill the result with
1435 * zeroes.
1436 */
1437 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1438 memset(kaddr, 0, PAGE_SIZE);
1439 kunmap_atomic(kaddr, KM_USER0);
1440 return;
1441
1442 }
1443 copy_user_highpage(dst, src, va);
1444}
1445
1da177e4
LT
1446/*
1447 * This routine handles present pages, when users try to write
1448 * to a shared page. It is done by copying the page to a new address
1449 * and decrementing the shared-page counter for the old page.
1450 *
1da177e4
LT
1451 * Note that this routine assumes that the protection checks have been
1452 * done by the caller (the low-level page fault routine in most cases).
1453 * Thus we can safely just mark it writable once we've done any necessary
1454 * COW.
1455 *
1456 * We also mark the page dirty at this point even though the page will
1457 * change only once the write actually happens. This avoids a few races,
1458 * and potentially makes it more efficient.
1459 *
8f4e2101
HD
1460 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1461 * but allow concurrent faults), with pte both mapped and locked.
1462 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1463 */
65500d23
HD
1464static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1465 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1466 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1467{
e5bbe4df 1468 struct page *old_page, *new_page;
1da177e4 1469 pte_t entry;
65500d23 1470 int ret = VM_FAULT_MINOR;
1da177e4 1471
6aab341e 1472 old_page = vm_normal_page(vma, address, orig_pte);
6aab341e
LT
1473 if (!old_page)
1474 goto gotten;
1da177e4 1475
d296e9cd 1476 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1477 int reuse = can_share_swap_page(old_page);
1478 unlock_page(old_page);
1479 if (reuse) {
eca35133 1480 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1481 entry = pte_mkyoung(orig_pte);
1482 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1483 ptep_set_access_flags(vma, address, page_table, entry, 1);
1484 update_mmu_cache(vma, address, entry);
1485 lazy_mmu_prot_update(entry);
65500d23
HD
1486 ret |= VM_FAULT_WRITE;
1487 goto unlock;
1da177e4
LT
1488 }
1489 }
1da177e4
LT
1490
1491 /*
1492 * Ok, we need to copy. Oh, well..
1493 */
b5810039 1494 page_cache_get(old_page);
920fc356 1495gotten:
8f4e2101 1496 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1497
1498 if (unlikely(anon_vma_prepare(vma)))
65500d23 1499 goto oom;
e5bbe4df 1500 if (old_page == ZERO_PAGE(address)) {
1da177e4
LT
1501 new_page = alloc_zeroed_user_highpage(vma, address);
1502 if (!new_page)
65500d23 1503 goto oom;
1da177e4
LT
1504 } else {
1505 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1506 if (!new_page)
65500d23 1507 goto oom;
e5bbe4df 1508 cow_user_page(new_page, old_page, address);
1da177e4 1509 }
65500d23 1510
1da177e4
LT
1511 /*
1512 * Re-check the pte - we dropped the lock
1513 */
8f4e2101 1514 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1515 if (likely(pte_same(*page_table, orig_pte))) {
920fc356
HD
1516 if (old_page) {
1517 page_remove_rmap(old_page);
1518 if (!PageAnon(old_page)) {
1519 dec_mm_counter(mm, file_rss);
1520 inc_mm_counter(mm, anon_rss);
1521 }
1522 } else
4294621f 1523 inc_mm_counter(mm, anon_rss);
eca35133 1524 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1525 entry = mk_pte(new_page, vma->vm_page_prot);
1526 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1527 ptep_establish(vma, address, page_table, entry);
1528 update_mmu_cache(vma, address, entry);
1529 lazy_mmu_prot_update(entry);
1da177e4
LT
1530 lru_cache_add_active(new_page);
1531 page_add_anon_rmap(new_page, vma, address);
1532
1533 /* Free the old page.. */
1534 new_page = old_page;
f33ea7f4 1535 ret |= VM_FAULT_WRITE;
1da177e4 1536 }
920fc356
HD
1537 if (new_page)
1538 page_cache_release(new_page);
1539 if (old_page)
1540 page_cache_release(old_page);
65500d23 1541unlock:
8f4e2101 1542 pte_unmap_unlock(page_table, ptl);
f33ea7f4 1543 return ret;
65500d23 1544oom:
920fc356
HD
1545 if (old_page)
1546 page_cache_release(old_page);
1da177e4
LT
1547 return VM_FAULT_OOM;
1548}
1549
1550/*
1551 * Helper functions for unmap_mapping_range().
1552 *
1553 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1554 *
1555 * We have to restart searching the prio_tree whenever we drop the lock,
1556 * since the iterator is only valid while the lock is held, and anyway
1557 * a later vma might be split and reinserted earlier while lock dropped.
1558 *
1559 * The list of nonlinear vmas could be handled more efficiently, using
1560 * a placeholder, but handle it in the same way until a need is shown.
1561 * It is important to search the prio_tree before nonlinear list: a vma
1562 * may become nonlinear and be shifted from prio_tree to nonlinear list
1563 * while the lock is dropped; but never shifted from list to prio_tree.
1564 *
1565 * In order to make forward progress despite restarting the search,
1566 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1567 * quickly skip it next time around. Since the prio_tree search only
1568 * shows us those vmas affected by unmapping the range in question, we
1569 * can't efficiently keep all vmas in step with mapping->truncate_count:
1570 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1571 * mapping->truncate_count and vma->vm_truncate_count are protected by
1572 * i_mmap_lock.
1573 *
1574 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1575 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1576 * and restart from that address when we reach that vma again. It might
1577 * have been split or merged, shrunk or extended, but never shifted: so
1578 * restart_addr remains valid so long as it remains in the vma's range.
1579 * unmap_mapping_range forces truncate_count to leap over page-aligned
1580 * values so we can save vma's restart_addr in its truncate_count field.
1581 */
1582#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1583
1584static void reset_vma_truncate_counts(struct address_space *mapping)
1585{
1586 struct vm_area_struct *vma;
1587 struct prio_tree_iter iter;
1588
1589 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1590 vma->vm_truncate_count = 0;
1591 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1592 vma->vm_truncate_count = 0;
1593}
1594
1595static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1596 unsigned long start_addr, unsigned long end_addr,
1597 struct zap_details *details)
1598{
1599 unsigned long restart_addr;
1600 int need_break;
1601
1602again:
1603 restart_addr = vma->vm_truncate_count;
1604 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1605 start_addr = restart_addr;
1606 if (start_addr >= end_addr) {
1607 /* Top of vma has been split off since last time */
1608 vma->vm_truncate_count = details->truncate_count;
1609 return 0;
1610 }
1611 }
1612
ee39b37b
HD
1613 restart_addr = zap_page_range(vma, start_addr,
1614 end_addr - start_addr, details);
1da177e4
LT
1615 need_break = need_resched() ||
1616 need_lockbreak(details->i_mmap_lock);
1617
ee39b37b 1618 if (restart_addr >= end_addr) {
1da177e4
LT
1619 /* We have now completed this vma: mark it so */
1620 vma->vm_truncate_count = details->truncate_count;
1621 if (!need_break)
1622 return 0;
1623 } else {
1624 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1625 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1626 if (!need_break)
1627 goto again;
1628 }
1629
1630 spin_unlock(details->i_mmap_lock);
1631 cond_resched();
1632 spin_lock(details->i_mmap_lock);
1633 return -EINTR;
1634}
1635
1636static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1637 struct zap_details *details)
1638{
1639 struct vm_area_struct *vma;
1640 struct prio_tree_iter iter;
1641 pgoff_t vba, vea, zba, zea;
1642
1643restart:
1644 vma_prio_tree_foreach(vma, &iter, root,
1645 details->first_index, details->last_index) {
1646 /* Skip quickly over those we have already dealt with */
1647 if (vma->vm_truncate_count == details->truncate_count)
1648 continue;
1649
1650 vba = vma->vm_pgoff;
1651 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1652 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1653 zba = details->first_index;
1654 if (zba < vba)
1655 zba = vba;
1656 zea = details->last_index;
1657 if (zea > vea)
1658 zea = vea;
1659
1660 if (unmap_mapping_range_vma(vma,
1661 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1662 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1663 details) < 0)
1664 goto restart;
1665 }
1666}
1667
1668static inline void unmap_mapping_range_list(struct list_head *head,
1669 struct zap_details *details)
1670{
1671 struct vm_area_struct *vma;
1672
1673 /*
1674 * In nonlinear VMAs there is no correspondence between virtual address
1675 * offset and file offset. So we must perform an exhaustive search
1676 * across *all* the pages in each nonlinear VMA, not just the pages
1677 * whose virtual address lies outside the file truncation point.
1678 */
1679restart:
1680 list_for_each_entry(vma, head, shared.vm_set.list) {
1681 /* Skip quickly over those we have already dealt with */
1682 if (vma->vm_truncate_count == details->truncate_count)
1683 continue;
1684 details->nonlinear_vma = vma;
1685 if (unmap_mapping_range_vma(vma, vma->vm_start,
1686 vma->vm_end, details) < 0)
1687 goto restart;
1688 }
1689}
1690
1691/**
1692 * unmap_mapping_range - unmap the portion of all mmaps
1693 * in the specified address_space corresponding to the specified
1694 * page range in the underlying file.
3d41088f 1695 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1696 * @holebegin: byte in first page to unmap, relative to the start of
1697 * the underlying file. This will be rounded down to a PAGE_SIZE
1698 * boundary. Note that this is different from vmtruncate(), which
1699 * must keep the partial page. In contrast, we must get rid of
1700 * partial pages.
1701 * @holelen: size of prospective hole in bytes. This will be rounded
1702 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1703 * end of the file.
1704 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1705 * but 0 when invalidating pagecache, don't throw away private data.
1706 */
1707void unmap_mapping_range(struct address_space *mapping,
1708 loff_t const holebegin, loff_t const holelen, int even_cows)
1709{
1710 struct zap_details details;
1711 pgoff_t hba = holebegin >> PAGE_SHIFT;
1712 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1713
1714 /* Check for overflow. */
1715 if (sizeof(holelen) > sizeof(hlen)) {
1716 long long holeend =
1717 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1718 if (holeend & ~(long long)ULONG_MAX)
1719 hlen = ULONG_MAX - hba + 1;
1720 }
1721
1722 details.check_mapping = even_cows? NULL: mapping;
1723 details.nonlinear_vma = NULL;
1724 details.first_index = hba;
1725 details.last_index = hba + hlen - 1;
1726 if (details.last_index < details.first_index)
1727 details.last_index = ULONG_MAX;
1728 details.i_mmap_lock = &mapping->i_mmap_lock;
1729
1730 spin_lock(&mapping->i_mmap_lock);
1731
1732 /* serialize i_size write against truncate_count write */
1733 smp_wmb();
1734 /* Protect against page faults, and endless unmapping loops */
1735 mapping->truncate_count++;
1736 /*
1737 * For archs where spin_lock has inclusive semantics like ia64
1738 * this smp_mb() will prevent to read pagetable contents
1739 * before the truncate_count increment is visible to
1740 * other cpus.
1741 */
1742 smp_mb();
1743 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1744 if (mapping->truncate_count == 0)
1745 reset_vma_truncate_counts(mapping);
1746 mapping->truncate_count++;
1747 }
1748 details.truncate_count = mapping->truncate_count;
1749
1750 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1751 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1752 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1753 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1754 spin_unlock(&mapping->i_mmap_lock);
1755}
1756EXPORT_SYMBOL(unmap_mapping_range);
1757
1758/*
1759 * Handle all mappings that got truncated by a "truncate()"
1760 * system call.
1761 *
1762 * NOTE! We have to be ready to update the memory sharing
1763 * between the file and the memory map for a potential last
1764 * incomplete page. Ugly, but necessary.
1765 */
1766int vmtruncate(struct inode * inode, loff_t offset)
1767{
1768 struct address_space *mapping = inode->i_mapping;
1769 unsigned long limit;
1770
1771 if (inode->i_size < offset)
1772 goto do_expand;
1773 /*
1774 * truncation of in-use swapfiles is disallowed - it would cause
1775 * subsequent swapout to scribble on the now-freed blocks.
1776 */
1777 if (IS_SWAPFILE(inode))
1778 goto out_busy;
1779 i_size_write(inode, offset);
1780 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1781 truncate_inode_pages(mapping, offset);
1782 goto out_truncate;
1783
1784do_expand:
1785 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1786 if (limit != RLIM_INFINITY && offset > limit)
1787 goto out_sig;
1788 if (offset > inode->i_sb->s_maxbytes)
1789 goto out_big;
1790 i_size_write(inode, offset);
1791
1792out_truncate:
1793 if (inode->i_op && inode->i_op->truncate)
1794 inode->i_op->truncate(inode);
1795 return 0;
1796out_sig:
1797 send_sig(SIGXFSZ, current, 0);
1798out_big:
1799 return -EFBIG;
1800out_busy:
1801 return -ETXTBSY;
1802}
1803
1804EXPORT_SYMBOL(vmtruncate);
1805
1806/*
1807 * Primitive swap readahead code. We simply read an aligned block of
1808 * (1 << page_cluster) entries in the swap area. This method is chosen
1809 * because it doesn't cost us any seek time. We also make sure to queue
1810 * the 'original' request together with the readahead ones...
1811 *
1812 * This has been extended to use the NUMA policies from the mm triggering
1813 * the readahead.
1814 *
1815 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1816 */
1817void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1818{
1819#ifdef CONFIG_NUMA
1820 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1821#endif
1822 int i, num;
1823 struct page *new_page;
1824 unsigned long offset;
1825
1826 /*
1827 * Get the number of handles we should do readahead io to.
1828 */
1829 num = valid_swaphandles(entry, &offset);
1830 for (i = 0; i < num; offset++, i++) {
1831 /* Ok, do the async read-ahead now */
1832 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1833 offset), vma, addr);
1834 if (!new_page)
1835 break;
1836 page_cache_release(new_page);
1837#ifdef CONFIG_NUMA
1838 /*
1839 * Find the next applicable VMA for the NUMA policy.
1840 */
1841 addr += PAGE_SIZE;
1842 if (addr == 0)
1843 vma = NULL;
1844 if (vma) {
1845 if (addr >= vma->vm_end) {
1846 vma = next_vma;
1847 next_vma = vma ? vma->vm_next : NULL;
1848 }
1849 if (vma && addr < vma->vm_start)
1850 vma = NULL;
1851 } else {
1852 if (next_vma && addr >= next_vma->vm_start) {
1853 vma = next_vma;
1854 next_vma = vma->vm_next;
1855 }
1856 }
1857#endif
1858 }
1859 lru_add_drain(); /* Push any new pages onto the LRU now */
1860}
1861
1862/*
8f4e2101
HD
1863 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1864 * but allow concurrent faults), and pte mapped but not yet locked.
1865 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1866 */
65500d23
HD
1867static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1868 unsigned long address, pte_t *page_table, pmd_t *pmd,
1869 int write_access, pte_t orig_pte)
1da177e4 1870{
8f4e2101 1871 spinlock_t *ptl;
1da177e4 1872 struct page *page;
65500d23 1873 swp_entry_t entry;
1da177e4
LT
1874 pte_t pte;
1875 int ret = VM_FAULT_MINOR;
1876
4c21e2f2 1877 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 1878 goto out;
65500d23
HD
1879
1880 entry = pte_to_swp_entry(orig_pte);
1da177e4
LT
1881 page = lookup_swap_cache(entry);
1882 if (!page) {
1883 swapin_readahead(entry, address, vma);
1884 page = read_swap_cache_async(entry, vma, address);
1885 if (!page) {
1886 /*
8f4e2101
HD
1887 * Back out if somebody else faulted in this pte
1888 * while we released the pte lock.
1da177e4 1889 */
8f4e2101 1890 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1891 if (likely(pte_same(*page_table, orig_pte)))
1892 ret = VM_FAULT_OOM;
65500d23 1893 goto unlock;
1da177e4
LT
1894 }
1895
1896 /* Had to read the page from swap area: Major fault */
1897 ret = VM_FAULT_MAJOR;
1898 inc_page_state(pgmajfault);
1899 grab_swap_token();
1900 }
1901
1902 mark_page_accessed(page);
1903 lock_page(page);
1904
1905 /*
8f4e2101 1906 * Back out if somebody else already faulted in this pte.
1da177e4 1907 */
8f4e2101 1908 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 1909 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 1910 goto out_nomap;
b8107480
KK
1911
1912 if (unlikely(!PageUptodate(page))) {
1913 ret = VM_FAULT_SIGBUS;
1914 goto out_nomap;
1da177e4
LT
1915 }
1916
1917 /* The page isn't present yet, go ahead with the fault. */
1da177e4 1918
4294621f 1919 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1920 pte = mk_pte(page, vma->vm_page_prot);
1921 if (write_access && can_share_swap_page(page)) {
1922 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1923 write_access = 0;
1924 }
1da177e4
LT
1925
1926 flush_icache_page(vma, page);
1927 set_pte_at(mm, address, page_table, pte);
1928 page_add_anon_rmap(page, vma, address);
1929
c475a8ab
HD
1930 swap_free(entry);
1931 if (vm_swap_full())
1932 remove_exclusive_swap_page(page);
1933 unlock_page(page);
1934
1da177e4
LT
1935 if (write_access) {
1936 if (do_wp_page(mm, vma, address,
8f4e2101 1937 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1da177e4
LT
1938 ret = VM_FAULT_OOM;
1939 goto out;
1940 }
1941
1942 /* No need to invalidate - it was non-present before */
1943 update_mmu_cache(vma, address, pte);
1944 lazy_mmu_prot_update(pte);
65500d23 1945unlock:
8f4e2101 1946 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1947out:
1948 return ret;
b8107480 1949out_nomap:
8f4e2101 1950 pte_unmap_unlock(page_table, ptl);
b8107480
KK
1951 unlock_page(page);
1952 page_cache_release(page);
65500d23 1953 return ret;
1da177e4
LT
1954}
1955
1956/*
8f4e2101
HD
1957 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1958 * but allow concurrent faults), and pte mapped but not yet locked.
1959 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1960 */
65500d23
HD
1961static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1962 unsigned long address, pte_t *page_table, pmd_t *pmd,
1963 int write_access)
1da177e4 1964{
8f4e2101
HD
1965 struct page *page;
1966 spinlock_t *ptl;
1da177e4 1967 pte_t entry;
1da177e4 1968
6aab341e 1969 if (write_access) {
1da177e4
LT
1970 /* Allocate our own private page. */
1971 pte_unmap(page_table);
1da177e4
LT
1972
1973 if (unlikely(anon_vma_prepare(vma)))
65500d23
HD
1974 goto oom;
1975 page = alloc_zeroed_user_highpage(vma, address);
1da177e4 1976 if (!page)
65500d23 1977 goto oom;
1da177e4 1978
65500d23
HD
1979 entry = mk_pte(page, vma->vm_page_prot);
1980 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8f4e2101
HD
1981
1982 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1983 if (!pte_none(*page_table))
1984 goto release;
1985 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1986 lru_cache_add_active(page);
1987 SetPageReferenced(page);
65500d23 1988 page_add_anon_rmap(page, vma, address);
b5810039 1989 } else {
8f4e2101
HD
1990 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1991 page = ZERO_PAGE(address);
1992 page_cache_get(page);
1993 entry = mk_pte(page, vma->vm_page_prot);
1994
4c21e2f2 1995 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
1996 spin_lock(ptl);
1997 if (!pte_none(*page_table))
1998 goto release;
b5810039
NP
1999 inc_mm_counter(mm, file_rss);
2000 page_add_file_rmap(page);
1da177e4
LT
2001 }
2002
65500d23 2003 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2004
2005 /* No need to invalidate - it was non-present before */
65500d23 2006 update_mmu_cache(vma, address, entry);
1da177e4 2007 lazy_mmu_prot_update(entry);
65500d23 2008unlock:
8f4e2101 2009 pte_unmap_unlock(page_table, ptl);
1da177e4 2010 return VM_FAULT_MINOR;
8f4e2101
HD
2011release:
2012 page_cache_release(page);
2013 goto unlock;
65500d23 2014oom:
1da177e4
LT
2015 return VM_FAULT_OOM;
2016}
2017
2018/*
2019 * do_no_page() tries to create a new page mapping. It aggressively
2020 * tries to share with existing pages, but makes a separate copy if
2021 * the "write_access" parameter is true in order to avoid the next
2022 * page fault.
2023 *
2024 * As this is called only for pages that do not currently exist, we
2025 * do not need to flush old virtual caches or the TLB.
2026 *
8f4e2101
HD
2027 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2028 * but allow concurrent faults), and pte mapped but not yet locked.
2029 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2030 */
65500d23
HD
2031static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2032 unsigned long address, pte_t *page_table, pmd_t *pmd,
2033 int write_access)
1da177e4 2034{
8f4e2101 2035 spinlock_t *ptl;
65500d23 2036 struct page *new_page;
1da177e4
LT
2037 struct address_space *mapping = NULL;
2038 pte_t entry;
2039 unsigned int sequence = 0;
2040 int ret = VM_FAULT_MINOR;
2041 int anon = 0;
2042
1da177e4 2043 pte_unmap(page_table);
325f04db
HD
2044 BUG_ON(vma->vm_flags & VM_PFNMAP);
2045
1da177e4
LT
2046 if (vma->vm_file) {
2047 mapping = vma->vm_file->f_mapping;
2048 sequence = mapping->truncate_count;
2049 smp_rmb(); /* serializes i_size against truncate_count */
2050 }
2051retry:
1da177e4
LT
2052 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2053 /*
2054 * No smp_rmb is needed here as long as there's a full
2055 * spin_lock/unlock sequence inside the ->nopage callback
2056 * (for the pagecache lookup) that acts as an implicit
2057 * smp_mb() and prevents the i_size read to happen
2058 * after the next truncate_count read.
2059 */
2060
2061 /* no page was available -- either SIGBUS or OOM */
2062 if (new_page == NOPAGE_SIGBUS)
2063 return VM_FAULT_SIGBUS;
2064 if (new_page == NOPAGE_OOM)
2065 return VM_FAULT_OOM;
2066
2067 /*
2068 * Should we do an early C-O-W break?
2069 */
2070 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2071 struct page *page;
2072
2073 if (unlikely(anon_vma_prepare(vma)))
2074 goto oom;
2075 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2076 if (!page)
2077 goto oom;
325f04db 2078 copy_user_highpage(page, new_page, address);
1da177e4
LT
2079 page_cache_release(new_page);
2080 new_page = page;
2081 anon = 1;
2082 }
2083
8f4e2101 2084 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2085 /*
2086 * For a file-backed vma, someone could have truncated or otherwise
2087 * invalidated this page. If unmap_mapping_range got called,
2088 * retry getting the page.
2089 */
2090 if (mapping && unlikely(sequence != mapping->truncate_count)) {
8f4e2101 2091 pte_unmap_unlock(page_table, ptl);
1da177e4 2092 page_cache_release(new_page);
65500d23
HD
2093 cond_resched();
2094 sequence = mapping->truncate_count;
2095 smp_rmb();
1da177e4
LT
2096 goto retry;
2097 }
1da177e4
LT
2098
2099 /*
2100 * This silly early PAGE_DIRTY setting removes a race
2101 * due to the bad i386 page protection. But it's valid
2102 * for other architectures too.
2103 *
2104 * Note that if write_access is true, we either now have
2105 * an exclusive copy of the page, or this is a shared mapping,
2106 * so we can make it writable and dirty to avoid having to
2107 * handle that later.
2108 */
2109 /* Only go through if we didn't race with anybody else... */
2110 if (pte_none(*page_table)) {
1da177e4
LT
2111 flush_icache_page(vma, new_page);
2112 entry = mk_pte(new_page, vma->vm_page_prot);
2113 if (write_access)
2114 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2115 set_pte_at(mm, address, page_table, entry);
2116 if (anon) {
4294621f 2117 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2118 lru_cache_add_active(new_page);
2119 page_add_anon_rmap(new_page, vma, address);
f57e88a8 2120 } else {
4294621f 2121 inc_mm_counter(mm, file_rss);
1da177e4 2122 page_add_file_rmap(new_page);
4294621f 2123 }
1da177e4
LT
2124 } else {
2125 /* One of our sibling threads was faster, back out. */
1da177e4 2126 page_cache_release(new_page);
65500d23 2127 goto unlock;
1da177e4
LT
2128 }
2129
2130 /* no need to invalidate: a not-present page shouldn't be cached */
2131 update_mmu_cache(vma, address, entry);
2132 lazy_mmu_prot_update(entry);
65500d23 2133unlock:
8f4e2101 2134 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2135 return ret;
2136oom:
2137 page_cache_release(new_page);
65500d23 2138 return VM_FAULT_OOM;
1da177e4
LT
2139}
2140
2141/*
2142 * Fault of a previously existing named mapping. Repopulate the pte
2143 * from the encoded file_pte if possible. This enables swappable
2144 * nonlinear vmas.
8f4e2101
HD
2145 *
2146 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2147 * but allow concurrent faults), and pte mapped but not yet locked.
2148 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2149 */
65500d23
HD
2150static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2151 unsigned long address, pte_t *page_table, pmd_t *pmd,
2152 int write_access, pte_t orig_pte)
1da177e4 2153{
65500d23 2154 pgoff_t pgoff;
1da177e4
LT
2155 int err;
2156
4c21e2f2 2157 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2158 return VM_FAULT_MINOR;
1da177e4 2159
65500d23
HD
2160 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2161 /*
2162 * Page table corrupted: show pte and kill process.
2163 */
b5810039 2164 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2165 return VM_FAULT_OOM;
2166 }
2167 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2168
2169 pgoff = pte_to_pgoff(orig_pte);
2170 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2171 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
2172 if (err == -ENOMEM)
2173 return VM_FAULT_OOM;
2174 if (err)
2175 return VM_FAULT_SIGBUS;
2176 return VM_FAULT_MAJOR;
2177}
2178
2179/*
2180 * These routines also need to handle stuff like marking pages dirty
2181 * and/or accessed for architectures that don't do it in hardware (most
2182 * RISC architectures). The early dirtying is also good on the i386.
2183 *
2184 * There is also a hook called "update_mmu_cache()" that architectures
2185 * with external mmu caches can use to update those (ie the Sparc or
2186 * PowerPC hashed page tables that act as extended TLBs).
2187 *
c74df32c
HD
2188 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2189 * but allow concurrent faults), and pte mapped but not yet locked.
2190 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2191 */
2192static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2193 struct vm_area_struct *vma, unsigned long address,
2194 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2195{
2196 pte_t entry;
1a44e149 2197 pte_t old_entry;
8f4e2101 2198 spinlock_t *ptl;
1da177e4 2199
1a44e149 2200 old_entry = entry = *pte;
1da177e4 2201 if (!pte_present(entry)) {
65500d23
HD
2202 if (pte_none(entry)) {
2203 if (!vma->vm_ops || !vma->vm_ops->nopage)
2204 return do_anonymous_page(mm, vma, address,
2205 pte, pmd, write_access);
2206 return do_no_page(mm, vma, address,
2207 pte, pmd, write_access);
2208 }
1da177e4 2209 if (pte_file(entry))
65500d23
HD
2210 return do_file_page(mm, vma, address,
2211 pte, pmd, write_access, entry);
2212 return do_swap_page(mm, vma, address,
2213 pte, pmd, write_access, entry);
1da177e4
LT
2214 }
2215
4c21e2f2 2216 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2217 spin_lock(ptl);
2218 if (unlikely(!pte_same(*pte, entry)))
2219 goto unlock;
1da177e4
LT
2220 if (write_access) {
2221 if (!pte_write(entry))
8f4e2101
HD
2222 return do_wp_page(mm, vma, address,
2223 pte, pmd, ptl, entry);
1da177e4
LT
2224 entry = pte_mkdirty(entry);
2225 }
2226 entry = pte_mkyoung(entry);
1a44e149
AA
2227 if (!pte_same(old_entry, entry)) {
2228 ptep_set_access_flags(vma, address, pte, entry, write_access);
2229 update_mmu_cache(vma, address, entry);
2230 lazy_mmu_prot_update(entry);
2231 } else {
2232 /*
2233 * This is needed only for protection faults but the arch code
2234 * is not yet telling us if this is a protection fault or not.
2235 * This still avoids useless tlb flushes for .text page faults
2236 * with threads.
2237 */
2238 if (write_access)
2239 flush_tlb_page(vma, address);
2240 }
8f4e2101
HD
2241unlock:
2242 pte_unmap_unlock(pte, ptl);
1da177e4
LT
2243 return VM_FAULT_MINOR;
2244}
2245
2246/*
2247 * By the time we get here, we already hold the mm semaphore
2248 */
65500d23 2249int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2250 unsigned long address, int write_access)
2251{
2252 pgd_t *pgd;
2253 pud_t *pud;
2254 pmd_t *pmd;
2255 pte_t *pte;
2256
2257 __set_current_state(TASK_RUNNING);
2258
2259 inc_page_state(pgfault);
2260
ac9b9c66
HD
2261 if (unlikely(is_vm_hugetlb_page(vma)))
2262 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2263
1da177e4 2264 pgd = pgd_offset(mm, address);
1da177e4
LT
2265 pud = pud_alloc(mm, pgd, address);
2266 if (!pud)
c74df32c 2267 return VM_FAULT_OOM;
1da177e4
LT
2268 pmd = pmd_alloc(mm, pud, address);
2269 if (!pmd)
c74df32c 2270 return VM_FAULT_OOM;
1da177e4
LT
2271 pte = pte_alloc_map(mm, pmd, address);
2272 if (!pte)
c74df32c 2273 return VM_FAULT_OOM;
1da177e4 2274
c74df32c 2275 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2276}
2277
2278#ifndef __PAGETABLE_PUD_FOLDED
2279/*
2280 * Allocate page upper directory.
872fec16 2281 * We've already handled the fast-path in-line.
1da177e4 2282 */
1bb3630e 2283int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2284{
c74df32c
HD
2285 pud_t *new = pud_alloc_one(mm, address);
2286 if (!new)
1bb3630e 2287 return -ENOMEM;
1da177e4 2288
872fec16 2289 spin_lock(&mm->page_table_lock);
1bb3630e 2290 if (pgd_present(*pgd)) /* Another has populated it */
1da177e4 2291 pud_free(new);
1bb3630e
HD
2292 else
2293 pgd_populate(mm, pgd, new);
c74df32c 2294 spin_unlock(&mm->page_table_lock);
1bb3630e 2295 return 0;
1da177e4 2296}
e0f39591
AS
2297#else
2298/* Workaround for gcc 2.96 */
2299int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2300{
2301 return 0;
2302}
1da177e4
LT
2303#endif /* __PAGETABLE_PUD_FOLDED */
2304
2305#ifndef __PAGETABLE_PMD_FOLDED
2306/*
2307 * Allocate page middle directory.
872fec16 2308 * We've already handled the fast-path in-line.
1da177e4 2309 */
1bb3630e 2310int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2311{
c74df32c
HD
2312 pmd_t *new = pmd_alloc_one(mm, address);
2313 if (!new)
1bb3630e 2314 return -ENOMEM;
1da177e4 2315
872fec16 2316 spin_lock(&mm->page_table_lock);
1da177e4 2317#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2318 if (pud_present(*pud)) /* Another has populated it */
1da177e4 2319 pmd_free(new);
1bb3630e
HD
2320 else
2321 pud_populate(mm, pud, new);
1da177e4 2322#else
1bb3630e 2323 if (pgd_present(*pud)) /* Another has populated it */
1da177e4 2324 pmd_free(new);
1bb3630e
HD
2325 else
2326 pgd_populate(mm, pud, new);
1da177e4 2327#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2328 spin_unlock(&mm->page_table_lock);
1bb3630e 2329 return 0;
e0f39591
AS
2330}
2331#else
2332/* Workaround for gcc 2.96 */
2333int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2334{
2335 return 0;
1da177e4
LT
2336}
2337#endif /* __PAGETABLE_PMD_FOLDED */
2338
2339int make_pages_present(unsigned long addr, unsigned long end)
2340{
2341 int ret, len, write;
2342 struct vm_area_struct * vma;
2343
2344 vma = find_vma(current->mm, addr);
2345 if (!vma)
2346 return -1;
2347 write = (vma->vm_flags & VM_WRITE) != 0;
2348 if (addr >= end)
2349 BUG();
2350 if (end > vma->vm_end)
2351 BUG();
2352 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2353 ret = get_user_pages(current, current->mm, addr,
2354 len, write, 0, NULL, NULL);
2355 if (ret < 0)
2356 return ret;
2357 return ret == len ? 0 : -1;
2358}
2359
2360/*
2361 * Map a vmalloc()-space virtual address to the physical page.
2362 */
2363struct page * vmalloc_to_page(void * vmalloc_addr)
2364{
2365 unsigned long addr = (unsigned long) vmalloc_addr;
2366 struct page *page = NULL;
2367 pgd_t *pgd = pgd_offset_k(addr);
2368 pud_t *pud;
2369 pmd_t *pmd;
2370 pte_t *ptep, pte;
2371
2372 if (!pgd_none(*pgd)) {
2373 pud = pud_offset(pgd, addr);
2374 if (!pud_none(*pud)) {
2375 pmd = pmd_offset(pud, addr);
2376 if (!pmd_none(*pmd)) {
2377 ptep = pte_offset_map(pmd, addr);
2378 pte = *ptep;
2379 if (pte_present(pte))
2380 page = pte_page(pte);
2381 pte_unmap(ptep);
2382 }
2383 }
2384 }
2385 return page;
2386}
2387
2388EXPORT_SYMBOL(vmalloc_to_page);
2389
2390/*
2391 * Map a vmalloc()-space virtual address to the physical page frame number.
2392 */
2393unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2394{
2395 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2396}
2397
2398EXPORT_SYMBOL(vmalloc_to_pfn);
2399
1da177e4
LT
2400#if !defined(__HAVE_ARCH_GATE_AREA)
2401
2402#if defined(AT_SYSINFO_EHDR)
5ce7852c 2403static struct vm_area_struct gate_vma;
1da177e4
LT
2404
2405static int __init gate_vma_init(void)
2406{
2407 gate_vma.vm_mm = NULL;
2408 gate_vma.vm_start = FIXADDR_USER_START;
2409 gate_vma.vm_end = FIXADDR_USER_END;
2410 gate_vma.vm_page_prot = PAGE_READONLY;
0b14c179 2411 gate_vma.vm_flags = 0;
1da177e4
LT
2412 return 0;
2413}
2414__initcall(gate_vma_init);
2415#endif
2416
2417struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2418{
2419#ifdef AT_SYSINFO_EHDR
2420 return &gate_vma;
2421#else
2422 return NULL;
2423#endif
2424}
2425
2426int in_gate_area_no_task(unsigned long addr)
2427{
2428#ifdef AT_SYSINFO_EHDR
2429 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2430 return 1;
2431#endif
2432 return 0;
2433}
2434
2435#endif /* __HAVE_ARCH_GATE_AREA */