]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory.c
x86: PAT: remove follow_pfnmap_pte in favor of follow_phys
[net-next-2.6.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
1da177e4
LT
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
42b77728
JB
65#include "internal.h"
66
d41dee36 67#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
1da177e4
LT
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
1da177e4 88
32a93233
IM
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97 1;
98#else
99 2;
100#endif
a62eaf15 101
2ab64037 102#ifndef track_pfn_vma_new
103/*
104 * Interface that can be used by architecture code to keep track of
105 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
106 *
107 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
108 * for physical range indicated by pfn and size.
109 */
110int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t prot,
111 unsigned long pfn, unsigned long size)
112{
113 return 0;
114}
115#endif
116
117#ifndef track_pfn_vma_copy
118/*
119 * Interface that can be used by architecture code to keep track of
120 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
121 *
122 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
123 * copied through copy_page_range().
124 */
125int track_pfn_vma_copy(struct vm_area_struct *vma)
126{
127 return 0;
128}
129#endif
130
131#ifndef untrack_pfn_vma
132/*
133 * Interface that can be used by architecture code to keep track of
134 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
135 *
136 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
137 * untrack can be called for a specific region indicated by pfn and size or
138 * can be for the entire vma (in which case size can be zero).
139 */
140void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
141 unsigned long size)
142{
143}
144#endif
145
a62eaf15
AK
146static int __init disable_randmaps(char *s)
147{
148 randomize_va_space = 0;
9b41046c 149 return 1;
a62eaf15
AK
150}
151__setup("norandmaps", disable_randmaps);
152
153
1da177e4
LT
154/*
155 * If a p?d_bad entry is found while walking page tables, report
156 * the error, before resetting entry to p?d_none. Usually (but
157 * very seldom) called out from the p?d_none_or_clear_bad macros.
158 */
159
160void pgd_clear_bad(pgd_t *pgd)
161{
162 pgd_ERROR(*pgd);
163 pgd_clear(pgd);
164}
165
166void pud_clear_bad(pud_t *pud)
167{
168 pud_ERROR(*pud);
169 pud_clear(pud);
170}
171
172void pmd_clear_bad(pmd_t *pmd)
173{
174 pmd_ERROR(*pmd);
175 pmd_clear(pmd);
176}
177
178/*
179 * Note: this doesn't free the actual pages themselves. That
180 * has been handled earlier when unmapping all the memory regions.
181 */
e0da382c 182static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 183{
2f569afd 184 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 185 pmd_clear(pmd);
2f569afd 186 pte_free_tlb(tlb, token);
e0da382c 187 tlb->mm->nr_ptes--;
1da177e4
LT
188}
189
e0da382c
HD
190static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
191 unsigned long addr, unsigned long end,
192 unsigned long floor, unsigned long ceiling)
1da177e4
LT
193{
194 pmd_t *pmd;
195 unsigned long next;
e0da382c 196 unsigned long start;
1da177e4 197
e0da382c 198 start = addr;
1da177e4 199 pmd = pmd_offset(pud, addr);
1da177e4
LT
200 do {
201 next = pmd_addr_end(addr, end);
202 if (pmd_none_or_clear_bad(pmd))
203 continue;
e0da382c 204 free_pte_range(tlb, pmd);
1da177e4
LT
205 } while (pmd++, addr = next, addr != end);
206
e0da382c
HD
207 start &= PUD_MASK;
208 if (start < floor)
209 return;
210 if (ceiling) {
211 ceiling &= PUD_MASK;
212 if (!ceiling)
213 return;
1da177e4 214 }
e0da382c
HD
215 if (end - 1 > ceiling - 1)
216 return;
217
218 pmd = pmd_offset(pud, start);
219 pud_clear(pud);
220 pmd_free_tlb(tlb, pmd);
1da177e4
LT
221}
222
e0da382c
HD
223static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
224 unsigned long addr, unsigned long end,
225 unsigned long floor, unsigned long ceiling)
1da177e4
LT
226{
227 pud_t *pud;
228 unsigned long next;
e0da382c 229 unsigned long start;
1da177e4 230
e0da382c 231 start = addr;
1da177e4 232 pud = pud_offset(pgd, addr);
1da177e4
LT
233 do {
234 next = pud_addr_end(addr, end);
235 if (pud_none_or_clear_bad(pud))
236 continue;
e0da382c 237 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
238 } while (pud++, addr = next, addr != end);
239
e0da382c
HD
240 start &= PGDIR_MASK;
241 if (start < floor)
242 return;
243 if (ceiling) {
244 ceiling &= PGDIR_MASK;
245 if (!ceiling)
246 return;
1da177e4 247 }
e0da382c
HD
248 if (end - 1 > ceiling - 1)
249 return;
250
251 pud = pud_offset(pgd, start);
252 pgd_clear(pgd);
253 pud_free_tlb(tlb, pud);
1da177e4
LT
254}
255
256/*
e0da382c
HD
257 * This function frees user-level page tables of a process.
258 *
1da177e4
LT
259 * Must be called with pagetable lock held.
260 */
42b77728 261void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
262 unsigned long addr, unsigned long end,
263 unsigned long floor, unsigned long ceiling)
1da177e4
LT
264{
265 pgd_t *pgd;
266 unsigned long next;
e0da382c
HD
267 unsigned long start;
268
269 /*
270 * The next few lines have given us lots of grief...
271 *
272 * Why are we testing PMD* at this top level? Because often
273 * there will be no work to do at all, and we'd prefer not to
274 * go all the way down to the bottom just to discover that.
275 *
276 * Why all these "- 1"s? Because 0 represents both the bottom
277 * of the address space and the top of it (using -1 for the
278 * top wouldn't help much: the masks would do the wrong thing).
279 * The rule is that addr 0 and floor 0 refer to the bottom of
280 * the address space, but end 0 and ceiling 0 refer to the top
281 * Comparisons need to use "end - 1" and "ceiling - 1" (though
282 * that end 0 case should be mythical).
283 *
284 * Wherever addr is brought up or ceiling brought down, we must
285 * be careful to reject "the opposite 0" before it confuses the
286 * subsequent tests. But what about where end is brought down
287 * by PMD_SIZE below? no, end can't go down to 0 there.
288 *
289 * Whereas we round start (addr) and ceiling down, by different
290 * masks at different levels, in order to test whether a table
291 * now has no other vmas using it, so can be freed, we don't
292 * bother to round floor or end up - the tests don't need that.
293 */
1da177e4 294
e0da382c
HD
295 addr &= PMD_MASK;
296 if (addr < floor) {
297 addr += PMD_SIZE;
298 if (!addr)
299 return;
300 }
301 if (ceiling) {
302 ceiling &= PMD_MASK;
303 if (!ceiling)
304 return;
305 }
306 if (end - 1 > ceiling - 1)
307 end -= PMD_SIZE;
308 if (addr > end - 1)
309 return;
310
311 start = addr;
42b77728 312 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
313 do {
314 next = pgd_addr_end(addr, end);
315 if (pgd_none_or_clear_bad(pgd))
316 continue;
42b77728 317 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 318 } while (pgd++, addr = next, addr != end);
e0da382c
HD
319}
320
42b77728 321void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 322 unsigned long floor, unsigned long ceiling)
e0da382c
HD
323{
324 while (vma) {
325 struct vm_area_struct *next = vma->vm_next;
326 unsigned long addr = vma->vm_start;
327
8f4f8c16
HD
328 /*
329 * Hide vma from rmap and vmtruncate before freeing pgtables
330 */
331 anon_vma_unlink(vma);
332 unlink_file_vma(vma);
333
9da61aef 334 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 335 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 336 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
337 } else {
338 /*
339 * Optimization: gather nearby vmas into one call down
340 */
341 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 342 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
343 vma = next;
344 next = vma->vm_next;
8f4f8c16
HD
345 anon_vma_unlink(vma);
346 unlink_file_vma(vma);
3bf5ee95
HD
347 }
348 free_pgd_range(tlb, addr, vma->vm_end,
349 floor, next? next->vm_start: ceiling);
350 }
e0da382c
HD
351 vma = next;
352 }
1da177e4
LT
353}
354
1bb3630e 355int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 356{
2f569afd 357 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
358 if (!new)
359 return -ENOMEM;
360
362a61ad
NP
361 /*
362 * Ensure all pte setup (eg. pte page lock and page clearing) are
363 * visible before the pte is made visible to other CPUs by being
364 * put into page tables.
365 *
366 * The other side of the story is the pointer chasing in the page
367 * table walking code (when walking the page table without locking;
368 * ie. most of the time). Fortunately, these data accesses consist
369 * of a chain of data-dependent loads, meaning most CPUs (alpha
370 * being the notable exception) will already guarantee loads are
371 * seen in-order. See the alpha page table accessors for the
372 * smp_read_barrier_depends() barriers in page table walking code.
373 */
374 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
375
c74df32c 376 spin_lock(&mm->page_table_lock);
2f569afd 377 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 378 mm->nr_ptes++;
1da177e4 379 pmd_populate(mm, pmd, new);
2f569afd 380 new = NULL;
1da177e4 381 }
c74df32c 382 spin_unlock(&mm->page_table_lock);
2f569afd
MS
383 if (new)
384 pte_free(mm, new);
1bb3630e 385 return 0;
1da177e4
LT
386}
387
1bb3630e 388int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 389{
1bb3630e
HD
390 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
391 if (!new)
392 return -ENOMEM;
393
362a61ad
NP
394 smp_wmb(); /* See comment in __pte_alloc */
395
1bb3630e 396 spin_lock(&init_mm.page_table_lock);
2f569afd 397 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 398 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
399 new = NULL;
400 }
1bb3630e 401 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
402 if (new)
403 pte_free_kernel(&init_mm, new);
1bb3630e 404 return 0;
1da177e4
LT
405}
406
ae859762
HD
407static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
408{
409 if (file_rss)
410 add_mm_counter(mm, file_rss, file_rss);
411 if (anon_rss)
412 add_mm_counter(mm, anon_rss, anon_rss);
413}
414
b5810039 415/*
6aab341e
LT
416 * This function is called to print an error when a bad pte
417 * is found. For example, we might have a PFN-mapped pte in
418 * a region that doesn't allow it.
b5810039
NP
419 *
420 * The calling function must still handle the error.
421 */
15f59ada
AB
422static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
423 unsigned long vaddr)
b5810039
NP
424{
425 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
426 "vm_flags = %lx, vaddr = %lx\n",
427 (long long)pte_val(pte),
428 (vma->vm_mm == current->mm ? current->comm : "???"),
429 vma->vm_flags, vaddr);
430 dump_stack();
431}
432
67121172
LT
433static inline int is_cow_mapping(unsigned int flags)
434{
435 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
436}
437
ee498ed7 438/*
7e675137 439 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 440 *
7e675137
NP
441 * "Special" mappings do not wish to be associated with a "struct page" (either
442 * it doesn't exist, or it exists but they don't want to touch it). In this
443 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 444 *
7e675137
NP
445 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
446 * pte bit, in which case this function is trivial. Secondly, an architecture
447 * may not have a spare pte bit, which requires a more complicated scheme,
448 * described below.
449 *
450 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
451 * special mapping (even if there are underlying and valid "struct pages").
452 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 453 *
b379d790
JH
454 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
455 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
456 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
457 * mapping will always honor the rule
6aab341e
LT
458 *
459 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
460 *
7e675137
NP
461 * And for normal mappings this is false.
462 *
463 * This restricts such mappings to be a linear translation from virtual address
464 * to pfn. To get around this restriction, we allow arbitrary mappings so long
465 * as the vma is not a COW mapping; in that case, we know that all ptes are
466 * special (because none can have been COWed).
b379d790 467 *
b379d790 468 *
7e675137 469 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
470 *
471 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
472 * page" backing, however the difference is that _all_ pages with a struct
473 * page (that is, those where pfn_valid is true) are refcounted and considered
474 * normal pages by the VM. The disadvantage is that pages are refcounted
475 * (which can be slower and simply not an option for some PFNMAP users). The
476 * advantage is that we don't have to follow the strict linearity rule of
477 * PFNMAP mappings in order to support COWable mappings.
478 *
ee498ed7 479 */
7e675137
NP
480#ifdef __HAVE_ARCH_PTE_SPECIAL
481# define HAVE_PTE_SPECIAL 1
482#else
483# define HAVE_PTE_SPECIAL 0
484#endif
485struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
486 pte_t pte)
ee498ed7 487{
7e675137
NP
488 unsigned long pfn;
489
490 if (HAVE_PTE_SPECIAL) {
491 if (likely(!pte_special(pte))) {
492 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
493 return pte_page(pte);
494 }
495 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
496 return NULL;
497 }
498
499 /* !HAVE_PTE_SPECIAL case follows: */
500
501 pfn = pte_pfn(pte);
6aab341e 502
b379d790
JH
503 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
504 if (vma->vm_flags & VM_MIXEDMAP) {
505 if (!pfn_valid(pfn))
506 return NULL;
507 goto out;
508 } else {
7e675137
NP
509 unsigned long off;
510 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
511 if (pfn == vma->vm_pgoff + off)
512 return NULL;
513 if (!is_cow_mapping(vma->vm_flags))
514 return NULL;
515 }
6aab341e
LT
516 }
517
7e675137 518 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
519
520 /*
7e675137 521 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 522 *
7e675137 523 * eg. VDSO mappings can cause them to exist.
6aab341e 524 */
b379d790 525out:
6aab341e 526 return pfn_to_page(pfn);
ee498ed7
HD
527}
528
1da177e4
LT
529/*
530 * copy one vm_area from one task to the other. Assumes the page tables
531 * already present in the new task to be cleared in the whole range
532 * covered by this vma.
1da177e4
LT
533 */
534
8c103762 535static inline void
1da177e4 536copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 537 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 538 unsigned long addr, int *rss)
1da177e4 539{
b5810039 540 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
541 pte_t pte = *src_pte;
542 struct page *page;
1da177e4
LT
543
544 /* pte contains position in swap or file, so copy. */
545 if (unlikely(!pte_present(pte))) {
546 if (!pte_file(pte)) {
0697212a
CL
547 swp_entry_t entry = pte_to_swp_entry(pte);
548
549 swap_duplicate(entry);
1da177e4
LT
550 /* make sure dst_mm is on swapoff's mmlist. */
551 if (unlikely(list_empty(&dst_mm->mmlist))) {
552 spin_lock(&mmlist_lock);
f412ac08
HD
553 if (list_empty(&dst_mm->mmlist))
554 list_add(&dst_mm->mmlist,
555 &src_mm->mmlist);
1da177e4
LT
556 spin_unlock(&mmlist_lock);
557 }
0697212a
CL
558 if (is_write_migration_entry(entry) &&
559 is_cow_mapping(vm_flags)) {
560 /*
561 * COW mappings require pages in both parent
562 * and child to be set to read.
563 */
564 make_migration_entry_read(&entry);
565 pte = swp_entry_to_pte(entry);
566 set_pte_at(src_mm, addr, src_pte, pte);
567 }
1da177e4 568 }
ae859762 569 goto out_set_pte;
1da177e4
LT
570 }
571
1da177e4
LT
572 /*
573 * If it's a COW mapping, write protect it both
574 * in the parent and the child
575 */
67121172 576 if (is_cow_mapping(vm_flags)) {
1da177e4 577 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 578 pte = pte_wrprotect(pte);
1da177e4
LT
579 }
580
581 /*
582 * If it's a shared mapping, mark it clean in
583 * the child
584 */
585 if (vm_flags & VM_SHARED)
586 pte = pte_mkclean(pte);
587 pte = pte_mkold(pte);
6aab341e
LT
588
589 page = vm_normal_page(vma, addr, pte);
590 if (page) {
591 get_page(page);
c97a9e10 592 page_dup_rmap(page, vma, addr);
6aab341e
LT
593 rss[!!PageAnon(page)]++;
594 }
ae859762
HD
595
596out_set_pte:
597 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
598}
599
600static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
601 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end)
603{
604 pte_t *src_pte, *dst_pte;
c74df32c 605 spinlock_t *src_ptl, *dst_ptl;
e040f218 606 int progress = 0;
8c103762 607 int rss[2];
1da177e4
LT
608
609again:
ae859762 610 rss[1] = rss[0] = 0;
c74df32c 611 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
612 if (!dst_pte)
613 return -ENOMEM;
614 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 615 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 617 arch_enter_lazy_mmu_mode();
1da177e4 618
1da177e4
LT
619 do {
620 /*
621 * We are holding two locks at this point - either of them
622 * could generate latencies in another task on another CPU.
623 */
e040f218
HD
624 if (progress >= 32) {
625 progress = 0;
626 if (need_resched() ||
95c354fe 627 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
628 break;
629 }
1da177e4
LT
630 if (pte_none(*src_pte)) {
631 progress++;
632 continue;
633 }
8c103762 634 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
635 progress += 8;
636 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 637
6606c3e0 638 arch_leave_lazy_mmu_mode();
c74df32c 639 spin_unlock(src_ptl);
1da177e4 640 pte_unmap_nested(src_pte - 1);
ae859762 641 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
642 pte_unmap_unlock(dst_pte - 1, dst_ptl);
643 cond_resched();
1da177e4
LT
644 if (addr != end)
645 goto again;
646 return 0;
647}
648
649static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
651 unsigned long addr, unsigned long end)
652{
653 pmd_t *src_pmd, *dst_pmd;
654 unsigned long next;
655
656 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
657 if (!dst_pmd)
658 return -ENOMEM;
659 src_pmd = pmd_offset(src_pud, addr);
660 do {
661 next = pmd_addr_end(addr, end);
662 if (pmd_none_or_clear_bad(src_pmd))
663 continue;
664 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
665 vma, addr, next))
666 return -ENOMEM;
667 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
668 return 0;
669}
670
671static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
672 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
673 unsigned long addr, unsigned long end)
674{
675 pud_t *src_pud, *dst_pud;
676 unsigned long next;
677
678 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
679 if (!dst_pud)
680 return -ENOMEM;
681 src_pud = pud_offset(src_pgd, addr);
682 do {
683 next = pud_addr_end(addr, end);
684 if (pud_none_or_clear_bad(src_pud))
685 continue;
686 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
687 vma, addr, next))
688 return -ENOMEM;
689 } while (dst_pud++, src_pud++, addr = next, addr != end);
690 return 0;
691}
692
693int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
694 struct vm_area_struct *vma)
695{
696 pgd_t *src_pgd, *dst_pgd;
697 unsigned long next;
698 unsigned long addr = vma->vm_start;
699 unsigned long end = vma->vm_end;
cddb8a5c 700 int ret;
1da177e4 701
d992895b
NP
702 /*
703 * Don't copy ptes where a page fault will fill them correctly.
704 * Fork becomes much lighter when there are big shared or private
705 * readonly mappings. The tradeoff is that copy_page_range is more
706 * efficient than faulting.
707 */
4d7672b4 708 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
709 if (!vma->anon_vma)
710 return 0;
711 }
712
1da177e4
LT
713 if (is_vm_hugetlb_page(vma))
714 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
715
2ab64037 716 if (is_pfn_mapping(vma)) {
717 /*
718 * We do not free on error cases below as remove_vma
719 * gets called on error from higher level routine
720 */
721 ret = track_pfn_vma_copy(vma);
722 if (ret)
723 return ret;
724 }
725
cddb8a5c
AA
726 /*
727 * We need to invalidate the secondary MMU mappings only when
728 * there could be a permission downgrade on the ptes of the
729 * parent mm. And a permission downgrade will only happen if
730 * is_cow_mapping() returns true.
731 */
732 if (is_cow_mapping(vma->vm_flags))
733 mmu_notifier_invalidate_range_start(src_mm, addr, end);
734
735 ret = 0;
1da177e4
LT
736 dst_pgd = pgd_offset(dst_mm, addr);
737 src_pgd = pgd_offset(src_mm, addr);
738 do {
739 next = pgd_addr_end(addr, end);
740 if (pgd_none_or_clear_bad(src_pgd))
741 continue;
cddb8a5c
AA
742 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
743 vma, addr, next))) {
744 ret = -ENOMEM;
745 break;
746 }
1da177e4 747 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
748
749 if (is_cow_mapping(vma->vm_flags))
750 mmu_notifier_invalidate_range_end(src_mm,
751 vma->vm_start, end);
752 return ret;
1da177e4
LT
753}
754
51c6f666 755static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 756 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 757 unsigned long addr, unsigned long end,
51c6f666 758 long *zap_work, struct zap_details *details)
1da177e4 759{
b5810039 760 struct mm_struct *mm = tlb->mm;
1da177e4 761 pte_t *pte;
508034a3 762 spinlock_t *ptl;
ae859762
HD
763 int file_rss = 0;
764 int anon_rss = 0;
1da177e4 765
508034a3 766 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 767 arch_enter_lazy_mmu_mode();
1da177e4
LT
768 do {
769 pte_t ptent = *pte;
51c6f666
RH
770 if (pte_none(ptent)) {
771 (*zap_work)--;
1da177e4 772 continue;
51c6f666 773 }
6f5e6b9e
HD
774
775 (*zap_work) -= PAGE_SIZE;
776
1da177e4 777 if (pte_present(ptent)) {
ee498ed7 778 struct page *page;
51c6f666 779
6aab341e 780 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
781 if (unlikely(details) && page) {
782 /*
783 * unmap_shared_mapping_pages() wants to
784 * invalidate cache without truncating:
785 * unmap shared but keep private pages.
786 */
787 if (details->check_mapping &&
788 details->check_mapping != page->mapping)
789 continue;
790 /*
791 * Each page->index must be checked when
792 * invalidating or truncating nonlinear.
793 */
794 if (details->nonlinear_vma &&
795 (page->index < details->first_index ||
796 page->index > details->last_index))
797 continue;
798 }
b5810039 799 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 800 tlb->fullmm);
1da177e4
LT
801 tlb_remove_tlb_entry(tlb, pte, addr);
802 if (unlikely(!page))
803 continue;
804 if (unlikely(details) && details->nonlinear_vma
805 && linear_page_index(details->nonlinear_vma,
806 addr) != page->index)
b5810039 807 set_pte_at(mm, addr, pte,
1da177e4 808 pgoff_to_pte(page->index));
1da177e4 809 if (PageAnon(page))
86d912f4 810 anon_rss--;
6237bcd9
HD
811 else {
812 if (pte_dirty(ptent))
813 set_page_dirty(page);
814 if (pte_young(ptent))
daa88c8d 815 SetPageReferenced(page);
86d912f4 816 file_rss--;
6237bcd9 817 }
7de6b805 818 page_remove_rmap(page, vma);
1da177e4
LT
819 tlb_remove_page(tlb, page);
820 continue;
821 }
822 /*
823 * If details->check_mapping, we leave swap entries;
824 * if details->nonlinear_vma, we leave file entries.
825 */
826 if (unlikely(details))
827 continue;
828 if (!pte_file(ptent))
829 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 830 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 831 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 832
86d912f4 833 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 834 arch_leave_lazy_mmu_mode();
508034a3 835 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
836
837 return addr;
1da177e4
LT
838}
839
51c6f666 840static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 841 struct vm_area_struct *vma, pud_t *pud,
1da177e4 842 unsigned long addr, unsigned long end,
51c6f666 843 long *zap_work, struct zap_details *details)
1da177e4
LT
844{
845 pmd_t *pmd;
846 unsigned long next;
847
848 pmd = pmd_offset(pud, addr);
849 do {
850 next = pmd_addr_end(addr, end);
51c6f666
RH
851 if (pmd_none_or_clear_bad(pmd)) {
852 (*zap_work)--;
1da177e4 853 continue;
51c6f666
RH
854 }
855 next = zap_pte_range(tlb, vma, pmd, addr, next,
856 zap_work, details);
857 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
858
859 return addr;
1da177e4
LT
860}
861
51c6f666 862static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 863 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 864 unsigned long addr, unsigned long end,
51c6f666 865 long *zap_work, struct zap_details *details)
1da177e4
LT
866{
867 pud_t *pud;
868 unsigned long next;
869
870 pud = pud_offset(pgd, addr);
871 do {
872 next = pud_addr_end(addr, end);
51c6f666
RH
873 if (pud_none_or_clear_bad(pud)) {
874 (*zap_work)--;
1da177e4 875 continue;
51c6f666
RH
876 }
877 next = zap_pmd_range(tlb, vma, pud, addr, next,
878 zap_work, details);
879 } while (pud++, addr = next, (addr != end && *zap_work > 0));
880
881 return addr;
1da177e4
LT
882}
883
51c6f666
RH
884static unsigned long unmap_page_range(struct mmu_gather *tlb,
885 struct vm_area_struct *vma,
1da177e4 886 unsigned long addr, unsigned long end,
51c6f666 887 long *zap_work, struct zap_details *details)
1da177e4
LT
888{
889 pgd_t *pgd;
890 unsigned long next;
891
892 if (details && !details->check_mapping && !details->nonlinear_vma)
893 details = NULL;
894
895 BUG_ON(addr >= end);
896 tlb_start_vma(tlb, vma);
897 pgd = pgd_offset(vma->vm_mm, addr);
898 do {
899 next = pgd_addr_end(addr, end);
51c6f666
RH
900 if (pgd_none_or_clear_bad(pgd)) {
901 (*zap_work)--;
1da177e4 902 continue;
51c6f666
RH
903 }
904 next = zap_pud_range(tlb, vma, pgd, addr, next,
905 zap_work, details);
906 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 907 tlb_end_vma(tlb, vma);
51c6f666
RH
908
909 return addr;
1da177e4
LT
910}
911
912#ifdef CONFIG_PREEMPT
913# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
914#else
915/* No preempt: go for improved straight-line efficiency */
916# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
917#endif
918
919/**
920 * unmap_vmas - unmap a range of memory covered by a list of vma's
921 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
922 * @vma: the starting vma
923 * @start_addr: virtual address at which to start unmapping
924 * @end_addr: virtual address at which to end unmapping
925 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
926 * @details: details of nonlinear truncation or shared cache invalidation
927 *
ee39b37b 928 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 929 *
508034a3 930 * Unmap all pages in the vma list.
1da177e4 931 *
508034a3
HD
932 * We aim to not hold locks for too long (for scheduling latency reasons).
933 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
934 * return the ending mmu_gather to the caller.
935 *
936 * Only addresses between `start' and `end' will be unmapped.
937 *
938 * The VMA list must be sorted in ascending virtual address order.
939 *
940 * unmap_vmas() assumes that the caller will flush the whole unmapped address
941 * range after unmap_vmas() returns. So the only responsibility here is to
942 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
943 * drops the lock and schedules.
944 */
508034a3 945unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
946 struct vm_area_struct *vma, unsigned long start_addr,
947 unsigned long end_addr, unsigned long *nr_accounted,
948 struct zap_details *details)
949{
51c6f666 950 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
951 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
952 int tlb_start_valid = 0;
ee39b37b 953 unsigned long start = start_addr;
1da177e4 954 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 955 int fullmm = (*tlbp)->fullmm;
cddb8a5c 956 struct mm_struct *mm = vma->vm_mm;
1da177e4 957
cddb8a5c 958 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 959 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
960 unsigned long end;
961
962 start = max(vma->vm_start, start_addr);
963 if (start >= vma->vm_end)
964 continue;
965 end = min(vma->vm_end, end_addr);
966 if (end <= vma->vm_start)
967 continue;
968
969 if (vma->vm_flags & VM_ACCOUNT)
970 *nr_accounted += (end - start) >> PAGE_SHIFT;
971
2ab64037 972 if (is_pfn_mapping(vma))
973 untrack_pfn_vma(vma, 0, 0);
974
1da177e4 975 while (start != end) {
1da177e4
LT
976 if (!tlb_start_valid) {
977 tlb_start = start;
978 tlb_start_valid = 1;
979 }
980
51c6f666 981 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
982 /*
983 * It is undesirable to test vma->vm_file as it
984 * should be non-null for valid hugetlb area.
985 * However, vm_file will be NULL in the error
986 * cleanup path of do_mmap_pgoff. When
987 * hugetlbfs ->mmap method fails,
988 * do_mmap_pgoff() nullifies vma->vm_file
989 * before calling this function to clean up.
990 * Since no pte has actually been setup, it is
991 * safe to do nothing in this case.
992 */
993 if (vma->vm_file) {
994 unmap_hugepage_range(vma, start, end, NULL);
995 zap_work -= (end - start) /
a5516438 996 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
997 }
998
51c6f666
RH
999 start = end;
1000 } else
1001 start = unmap_page_range(*tlbp, vma,
1002 start, end, &zap_work, details);
1003
1004 if (zap_work > 0) {
1005 BUG_ON(start != end);
1006 break;
1da177e4
LT
1007 }
1008
1da177e4
LT
1009 tlb_finish_mmu(*tlbp, tlb_start, start);
1010
1011 if (need_resched() ||
95c354fe 1012 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1013 if (i_mmap_lock) {
508034a3 1014 *tlbp = NULL;
1da177e4
LT
1015 goto out;
1016 }
1da177e4 1017 cond_resched();
1da177e4
LT
1018 }
1019
508034a3 1020 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1021 tlb_start_valid = 0;
51c6f666 1022 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1023 }
1024 }
1025out:
cddb8a5c 1026 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1027 return start; /* which is now the end (or restart) address */
1da177e4
LT
1028}
1029
1030/**
1031 * zap_page_range - remove user pages in a given range
1032 * @vma: vm_area_struct holding the applicable pages
1033 * @address: starting address of pages to zap
1034 * @size: number of bytes to zap
1035 * @details: details of nonlinear truncation or shared cache invalidation
1036 */
ee39b37b 1037unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1038 unsigned long size, struct zap_details *details)
1039{
1040 struct mm_struct *mm = vma->vm_mm;
1041 struct mmu_gather *tlb;
1042 unsigned long end = address + size;
1043 unsigned long nr_accounted = 0;
1044
1da177e4 1045 lru_add_drain();
1da177e4 1046 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1047 update_hiwater_rss(mm);
508034a3
HD
1048 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1049 if (tlb)
1050 tlb_finish_mmu(tlb, address, end);
ee39b37b 1051 return end;
1da177e4
LT
1052}
1053
c627f9cc
JS
1054/**
1055 * zap_vma_ptes - remove ptes mapping the vma
1056 * @vma: vm_area_struct holding ptes to be zapped
1057 * @address: starting address of pages to zap
1058 * @size: number of bytes to zap
1059 *
1060 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1061 *
1062 * The entire address range must be fully contained within the vma.
1063 *
1064 * Returns 0 if successful.
1065 */
1066int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1067 unsigned long size)
1068{
1069 if (address < vma->vm_start || address + size > vma->vm_end ||
1070 !(vma->vm_flags & VM_PFNMAP))
1071 return -1;
1072 zap_page_range(vma, address, size, NULL);
1073 return 0;
1074}
1075EXPORT_SYMBOL_GPL(zap_vma_ptes);
1076
1da177e4
LT
1077/*
1078 * Do a quick page-table lookup for a single page.
1da177e4 1079 */
6aab341e 1080struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1081 unsigned int flags)
1da177e4
LT
1082{
1083 pgd_t *pgd;
1084 pud_t *pud;
1085 pmd_t *pmd;
1086 pte_t *ptep, pte;
deceb6cd 1087 spinlock_t *ptl;
1da177e4 1088 struct page *page;
6aab341e 1089 struct mm_struct *mm = vma->vm_mm;
1da177e4 1090
deceb6cd
HD
1091 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1092 if (!IS_ERR(page)) {
1093 BUG_ON(flags & FOLL_GET);
1094 goto out;
1095 }
1da177e4 1096
deceb6cd 1097 page = NULL;
1da177e4
LT
1098 pgd = pgd_offset(mm, address);
1099 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1100 goto no_page_table;
1da177e4
LT
1101
1102 pud = pud_offset(pgd, address);
ceb86879 1103 if (pud_none(*pud))
deceb6cd 1104 goto no_page_table;
ceb86879
AK
1105 if (pud_huge(*pud)) {
1106 BUG_ON(flags & FOLL_GET);
1107 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1108 goto out;
1109 }
1110 if (unlikely(pud_bad(*pud)))
1111 goto no_page_table;
1112
1da177e4 1113 pmd = pmd_offset(pud, address);
aeed5fce 1114 if (pmd_none(*pmd))
deceb6cd 1115 goto no_page_table;
deceb6cd
HD
1116 if (pmd_huge(*pmd)) {
1117 BUG_ON(flags & FOLL_GET);
1118 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1119 goto out;
deceb6cd 1120 }
aeed5fce
HD
1121 if (unlikely(pmd_bad(*pmd)))
1122 goto no_page_table;
1123
deceb6cd 1124 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1125
1126 pte = *ptep;
deceb6cd 1127 if (!pte_present(pte))
89f5b7da 1128 goto no_page;
deceb6cd
HD
1129 if ((flags & FOLL_WRITE) && !pte_write(pte))
1130 goto unlock;
6aab341e
LT
1131 page = vm_normal_page(vma, address, pte);
1132 if (unlikely(!page))
89f5b7da 1133 goto bad_page;
1da177e4 1134
deceb6cd
HD
1135 if (flags & FOLL_GET)
1136 get_page(page);
1137 if (flags & FOLL_TOUCH) {
1138 if ((flags & FOLL_WRITE) &&
1139 !pte_dirty(pte) && !PageDirty(page))
1140 set_page_dirty(page);
1141 mark_page_accessed(page);
1142 }
1143unlock:
1144 pte_unmap_unlock(ptep, ptl);
1da177e4 1145out:
deceb6cd 1146 return page;
1da177e4 1147
89f5b7da
LT
1148bad_page:
1149 pte_unmap_unlock(ptep, ptl);
1150 return ERR_PTR(-EFAULT);
1151
1152no_page:
1153 pte_unmap_unlock(ptep, ptl);
1154 if (!pte_none(pte))
1155 return page;
1156 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1157no_page_table:
1158 /*
1159 * When core dumping an enormous anonymous area that nobody
1160 * has touched so far, we don't want to allocate page tables.
1161 */
1162 if (flags & FOLL_ANON) {
557ed1fa 1163 page = ZERO_PAGE(0);
deceb6cd
HD
1164 if (flags & FOLL_GET)
1165 get_page(page);
1166 BUG_ON(flags & FOLL_WRITE);
1167 }
1168 return page;
1da177e4
LT
1169}
1170
672ca28e
LT
1171/* Can we do the FOLL_ANON optimization? */
1172static inline int use_zero_page(struct vm_area_struct *vma)
1173{
1174 /*
1175 * We don't want to optimize FOLL_ANON for make_pages_present()
1176 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1177 * we want to get the page from the page tables to make sure
1178 * that we serialize and update with any other user of that
1179 * mapping.
1180 */
1181 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1182 return 0;
1183 /*
0d71d10a 1184 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1185 */
0d71d10a 1186 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1187}
1188
b291f000
NP
1189
1190
1191int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1192 unsigned long start, int len, int flags,
1da177e4
LT
1193 struct page **pages, struct vm_area_struct **vmas)
1194{
1195 int i;
b291f000
NP
1196 unsigned int vm_flags = 0;
1197 int write = !!(flags & GUP_FLAGS_WRITE);
1198 int force = !!(flags & GUP_FLAGS_FORCE);
1199 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1200
900cf086
JC
1201 if (len <= 0)
1202 return 0;
1da177e4
LT
1203 /*
1204 * Require read or write permissions.
1205 * If 'force' is set, we only require the "MAY" flags.
1206 */
deceb6cd
HD
1207 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1208 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1209 i = 0;
1210
1211 do {
deceb6cd
HD
1212 struct vm_area_struct *vma;
1213 unsigned int foll_flags;
1da177e4
LT
1214
1215 vma = find_extend_vma(mm, start);
1216 if (!vma && in_gate_area(tsk, start)) {
1217 unsigned long pg = start & PAGE_MASK;
1218 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1219 pgd_t *pgd;
1220 pud_t *pud;
1221 pmd_t *pmd;
1222 pte_t *pte;
b291f000
NP
1223
1224 /* user gate pages are read-only */
1225 if (!ignore && write)
1da177e4
LT
1226 return i ? : -EFAULT;
1227 if (pg > TASK_SIZE)
1228 pgd = pgd_offset_k(pg);
1229 else
1230 pgd = pgd_offset_gate(mm, pg);
1231 BUG_ON(pgd_none(*pgd));
1232 pud = pud_offset(pgd, pg);
1233 BUG_ON(pud_none(*pud));
1234 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1235 if (pmd_none(*pmd))
1236 return i ? : -EFAULT;
1da177e4 1237 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1238 if (pte_none(*pte)) {
1239 pte_unmap(pte);
1240 return i ? : -EFAULT;
1241 }
1da177e4 1242 if (pages) {
fa2a455b 1243 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1244 pages[i] = page;
1245 if (page)
1246 get_page(page);
1da177e4
LT
1247 }
1248 pte_unmap(pte);
1249 if (vmas)
1250 vmas[i] = gate_vma;
1251 i++;
1252 start += PAGE_SIZE;
1253 len--;
1254 continue;
1255 }
1256
b291f000
NP
1257 if (!vma ||
1258 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1259 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1260 return i ? : -EFAULT;
1261
1262 if (is_vm_hugetlb_page(vma)) {
1263 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1264 &start, &len, i, write);
1da177e4
LT
1265 continue;
1266 }
deceb6cd
HD
1267
1268 foll_flags = FOLL_TOUCH;
1269 if (pages)
1270 foll_flags |= FOLL_GET;
672ca28e 1271 if (!write && use_zero_page(vma))
deceb6cd
HD
1272 foll_flags |= FOLL_ANON;
1273
1da177e4 1274 do {
08ef4729 1275 struct page *page;
1da177e4 1276
462e00cc
ES
1277 /*
1278 * If tsk is ooming, cut off its access to large memory
1279 * allocations. It has a pending SIGKILL, but it can't
1280 * be processed until returning to user space.
1281 */
1282 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1283 return i ? i : -ENOMEM;
462e00cc 1284
deceb6cd
HD
1285 if (write)
1286 foll_flags |= FOLL_WRITE;
a68d2ebc 1287
deceb6cd 1288 cond_resched();
6aab341e 1289 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1290 int ret;
83c54070 1291 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1292 foll_flags & FOLL_WRITE);
83c54070
NP
1293 if (ret & VM_FAULT_ERROR) {
1294 if (ret & VM_FAULT_OOM)
1295 return i ? i : -ENOMEM;
1296 else if (ret & VM_FAULT_SIGBUS)
1297 return i ? i : -EFAULT;
1298 BUG();
1299 }
1300 if (ret & VM_FAULT_MAJOR)
1301 tsk->maj_flt++;
1302 else
1303 tsk->min_flt++;
1304
a68d2ebc 1305 /*
83c54070
NP
1306 * The VM_FAULT_WRITE bit tells us that
1307 * do_wp_page has broken COW when necessary,
1308 * even if maybe_mkwrite decided not to set
1309 * pte_write. We can thus safely do subsequent
1310 * page lookups as if they were reads.
a68d2ebc
LT
1311 */
1312 if (ret & VM_FAULT_WRITE)
deceb6cd 1313 foll_flags &= ~FOLL_WRITE;
83c54070 1314
7f7bbbe5 1315 cond_resched();
1da177e4 1316 }
89f5b7da
LT
1317 if (IS_ERR(page))
1318 return i ? i : PTR_ERR(page);
1da177e4 1319 if (pages) {
08ef4729 1320 pages[i] = page;
03beb076 1321
a6f36be3 1322 flush_anon_page(vma, page, start);
08ef4729 1323 flush_dcache_page(page);
1da177e4
LT
1324 }
1325 if (vmas)
1326 vmas[i] = vma;
1327 i++;
1328 start += PAGE_SIZE;
1329 len--;
08ef4729 1330 } while (len && start < vma->vm_end);
08ef4729 1331 } while (len);
1da177e4
LT
1332 return i;
1333}
b291f000
NP
1334
1335int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1336 unsigned long start, int len, int write, int force,
1337 struct page **pages, struct vm_area_struct **vmas)
1338{
1339 int flags = 0;
1340
1341 if (write)
1342 flags |= GUP_FLAGS_WRITE;
1343 if (force)
1344 flags |= GUP_FLAGS_FORCE;
1345
1346 return __get_user_pages(tsk, mm,
1347 start, len, flags,
1348 pages, vmas);
1349}
1350
1da177e4
LT
1351EXPORT_SYMBOL(get_user_pages);
1352
920c7a5d
HH
1353pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1354 spinlock_t **ptl)
c9cfcddf
LT
1355{
1356 pgd_t * pgd = pgd_offset(mm, addr);
1357 pud_t * pud = pud_alloc(mm, pgd, addr);
1358 if (pud) {
49c91fb0 1359 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1360 if (pmd)
1361 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1362 }
1363 return NULL;
1364}
1365
238f58d8
LT
1366/*
1367 * This is the old fallback for page remapping.
1368 *
1369 * For historical reasons, it only allows reserved pages. Only
1370 * old drivers should use this, and they needed to mark their
1371 * pages reserved for the old functions anyway.
1372 */
423bad60
NP
1373static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1374 struct page *page, pgprot_t prot)
238f58d8 1375{
423bad60 1376 struct mm_struct *mm = vma->vm_mm;
238f58d8 1377 int retval;
c9cfcddf 1378 pte_t *pte;
8a9f3ccd
BS
1379 spinlock_t *ptl;
1380
238f58d8 1381 retval = -EINVAL;
a145dd41 1382 if (PageAnon(page))
5b4e655e 1383 goto out;
238f58d8
LT
1384 retval = -ENOMEM;
1385 flush_dcache_page(page);
c9cfcddf 1386 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1387 if (!pte)
5b4e655e 1388 goto out;
238f58d8
LT
1389 retval = -EBUSY;
1390 if (!pte_none(*pte))
1391 goto out_unlock;
1392
1393 /* Ok, finally just insert the thing.. */
1394 get_page(page);
1395 inc_mm_counter(mm, file_rss);
1396 page_add_file_rmap(page);
1397 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1398
1399 retval = 0;
8a9f3ccd
BS
1400 pte_unmap_unlock(pte, ptl);
1401 return retval;
238f58d8
LT
1402out_unlock:
1403 pte_unmap_unlock(pte, ptl);
1404out:
1405 return retval;
1406}
1407
bfa5bf6d
REB
1408/**
1409 * vm_insert_page - insert single page into user vma
1410 * @vma: user vma to map to
1411 * @addr: target user address of this page
1412 * @page: source kernel page
1413 *
a145dd41
LT
1414 * This allows drivers to insert individual pages they've allocated
1415 * into a user vma.
1416 *
1417 * The page has to be a nice clean _individual_ kernel allocation.
1418 * If you allocate a compound page, you need to have marked it as
1419 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1420 * (see split_page()).
a145dd41
LT
1421 *
1422 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1423 * took an arbitrary page protection parameter. This doesn't allow
1424 * that. Your vma protection will have to be set up correctly, which
1425 * means that if you want a shared writable mapping, you'd better
1426 * ask for a shared writable mapping!
1427 *
1428 * The page does not need to be reserved.
1429 */
423bad60
NP
1430int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1431 struct page *page)
a145dd41
LT
1432{
1433 if (addr < vma->vm_start || addr >= vma->vm_end)
1434 return -EFAULT;
1435 if (!page_count(page))
1436 return -EINVAL;
4d7672b4 1437 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1438 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1439}
e3c3374f 1440EXPORT_SYMBOL(vm_insert_page);
a145dd41 1441
423bad60
NP
1442static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1443 unsigned long pfn, pgprot_t prot)
1444{
1445 struct mm_struct *mm = vma->vm_mm;
1446 int retval;
1447 pte_t *pte, entry;
1448 spinlock_t *ptl;
1449
1450 retval = -ENOMEM;
1451 pte = get_locked_pte(mm, addr, &ptl);
1452 if (!pte)
1453 goto out;
1454 retval = -EBUSY;
1455 if (!pte_none(*pte))
1456 goto out_unlock;
1457
1458 /* Ok, finally just insert the thing.. */
1459 entry = pte_mkspecial(pfn_pte(pfn, prot));
1460 set_pte_at(mm, addr, pte, entry);
1461 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1462
1463 retval = 0;
1464out_unlock:
1465 pte_unmap_unlock(pte, ptl);
1466out:
1467 return retval;
1468}
1469
e0dc0d8f
NP
1470/**
1471 * vm_insert_pfn - insert single pfn into user vma
1472 * @vma: user vma to map to
1473 * @addr: target user address of this page
1474 * @pfn: source kernel pfn
1475 *
1476 * Similar to vm_inert_page, this allows drivers to insert individual pages
1477 * they've allocated into a user vma. Same comments apply.
1478 *
1479 * This function should only be called from a vm_ops->fault handler, and
1480 * in that case the handler should return NULL.
0d71d10a
NP
1481 *
1482 * vma cannot be a COW mapping.
1483 *
1484 * As this is called only for pages that do not currently exist, we
1485 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1486 */
1487int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1488 unsigned long pfn)
e0dc0d8f 1489{
2ab64037 1490 int ret;
7e675137
NP
1491 /*
1492 * Technically, architectures with pte_special can avoid all these
1493 * restrictions (same for remap_pfn_range). However we would like
1494 * consistency in testing and feature parity among all, so we should
1495 * try to keep these invariants in place for everybody.
1496 */
b379d790
JH
1497 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1498 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1499 (VM_PFNMAP|VM_MIXEDMAP));
1500 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1501 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1502
423bad60
NP
1503 if (addr < vma->vm_start || addr >= vma->vm_end)
1504 return -EFAULT;
2ab64037 1505 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1506 return -EINVAL;
1507
1508 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1509
1510 if (ret)
1511 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1512
1513 return ret;
423bad60
NP
1514}
1515EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1516
423bad60
NP
1517int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1518 unsigned long pfn)
1519{
1520 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1521
423bad60
NP
1522 if (addr < vma->vm_start || addr >= vma->vm_end)
1523 return -EFAULT;
e0dc0d8f 1524
423bad60
NP
1525 /*
1526 * If we don't have pte special, then we have to use the pfn_valid()
1527 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1528 * refcount the page if pfn_valid is true (hence insert_page rather
1529 * than insert_pfn).
1530 */
1531 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1532 struct page *page;
1533
1534 page = pfn_to_page(pfn);
1535 return insert_page(vma, addr, page, vma->vm_page_prot);
1536 }
1537 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1538}
423bad60 1539EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1540
1da177e4
LT
1541/*
1542 * maps a range of physical memory into the requested pages. the old
1543 * mappings are removed. any references to nonexistent pages results
1544 * in null mappings (currently treated as "copy-on-access")
1545 */
1546static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1547 unsigned long addr, unsigned long end,
1548 unsigned long pfn, pgprot_t prot)
1549{
1550 pte_t *pte;
c74df32c 1551 spinlock_t *ptl;
1da177e4 1552
c74df32c 1553 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1554 if (!pte)
1555 return -ENOMEM;
6606c3e0 1556 arch_enter_lazy_mmu_mode();
1da177e4
LT
1557 do {
1558 BUG_ON(!pte_none(*pte));
7e675137 1559 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1560 pfn++;
1561 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1562 arch_leave_lazy_mmu_mode();
c74df32c 1563 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1564 return 0;
1565}
1566
1567static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1568 unsigned long addr, unsigned long end,
1569 unsigned long pfn, pgprot_t prot)
1570{
1571 pmd_t *pmd;
1572 unsigned long next;
1573
1574 pfn -= addr >> PAGE_SHIFT;
1575 pmd = pmd_alloc(mm, pud, addr);
1576 if (!pmd)
1577 return -ENOMEM;
1578 do {
1579 next = pmd_addr_end(addr, end);
1580 if (remap_pte_range(mm, pmd, addr, next,
1581 pfn + (addr >> PAGE_SHIFT), prot))
1582 return -ENOMEM;
1583 } while (pmd++, addr = next, addr != end);
1584 return 0;
1585}
1586
1587static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1588 unsigned long addr, unsigned long end,
1589 unsigned long pfn, pgprot_t prot)
1590{
1591 pud_t *pud;
1592 unsigned long next;
1593
1594 pfn -= addr >> PAGE_SHIFT;
1595 pud = pud_alloc(mm, pgd, addr);
1596 if (!pud)
1597 return -ENOMEM;
1598 do {
1599 next = pud_addr_end(addr, end);
1600 if (remap_pmd_range(mm, pud, addr, next,
1601 pfn + (addr >> PAGE_SHIFT), prot))
1602 return -ENOMEM;
1603 } while (pud++, addr = next, addr != end);
1604 return 0;
1605}
1606
bfa5bf6d
REB
1607/**
1608 * remap_pfn_range - remap kernel memory to userspace
1609 * @vma: user vma to map to
1610 * @addr: target user address to start at
1611 * @pfn: physical address of kernel memory
1612 * @size: size of map area
1613 * @prot: page protection flags for this mapping
1614 *
1615 * Note: this is only safe if the mm semaphore is held when called.
1616 */
1da177e4
LT
1617int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1618 unsigned long pfn, unsigned long size, pgprot_t prot)
1619{
1620 pgd_t *pgd;
1621 unsigned long next;
2d15cab8 1622 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1623 struct mm_struct *mm = vma->vm_mm;
1624 int err;
1625
1626 /*
1627 * Physically remapped pages are special. Tell the
1628 * rest of the world about it:
1629 * VM_IO tells people not to look at these pages
1630 * (accesses can have side effects).
0b14c179
HD
1631 * VM_RESERVED is specified all over the place, because
1632 * in 2.4 it kept swapout's vma scan off this vma; but
1633 * in 2.6 the LRU scan won't even find its pages, so this
1634 * flag means no more than count its pages in reserved_vm,
1635 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1636 * VM_PFNMAP tells the core MM that the base pages are just
1637 * raw PFN mappings, and do not have a "struct page" associated
1638 * with them.
fb155c16
LT
1639 *
1640 * There's a horrible special case to handle copy-on-write
1641 * behaviour that some programs depend on. We mark the "original"
1642 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1643 */
3c8bb73a 1644 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1645 vma->vm_pgoff = pfn;
3c8bb73a 1646 else if (is_cow_mapping(vma->vm_flags))
1647 return -EINVAL;
fb155c16 1648
6aab341e 1649 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1650
2ab64037 1651 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1652 if (err)
1653 return -EINVAL;
1654
1da177e4
LT
1655 BUG_ON(addr >= end);
1656 pfn -= addr >> PAGE_SHIFT;
1657 pgd = pgd_offset(mm, addr);
1658 flush_cache_range(vma, addr, end);
1da177e4
LT
1659 do {
1660 next = pgd_addr_end(addr, end);
1661 err = remap_pud_range(mm, pgd, addr, next,
1662 pfn + (addr >> PAGE_SHIFT), prot);
1663 if (err)
1664 break;
1665 } while (pgd++, addr = next, addr != end);
2ab64037 1666
1667 if (err)
1668 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1669
1da177e4
LT
1670 return err;
1671}
1672EXPORT_SYMBOL(remap_pfn_range);
1673
aee16b3c
JF
1674static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1675 unsigned long addr, unsigned long end,
1676 pte_fn_t fn, void *data)
1677{
1678 pte_t *pte;
1679 int err;
2f569afd 1680 pgtable_t token;
94909914 1681 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1682
1683 pte = (mm == &init_mm) ?
1684 pte_alloc_kernel(pmd, addr) :
1685 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1686 if (!pte)
1687 return -ENOMEM;
1688
1689 BUG_ON(pmd_huge(*pmd));
1690
2f569afd 1691 token = pmd_pgtable(*pmd);
aee16b3c
JF
1692
1693 do {
2f569afd 1694 err = fn(pte, token, addr, data);
aee16b3c
JF
1695 if (err)
1696 break;
1697 } while (pte++, addr += PAGE_SIZE, addr != end);
1698
1699 if (mm != &init_mm)
1700 pte_unmap_unlock(pte-1, ptl);
1701 return err;
1702}
1703
1704static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1705 unsigned long addr, unsigned long end,
1706 pte_fn_t fn, void *data)
1707{
1708 pmd_t *pmd;
1709 unsigned long next;
1710 int err;
1711
ceb86879
AK
1712 BUG_ON(pud_huge(*pud));
1713
aee16b3c
JF
1714 pmd = pmd_alloc(mm, pud, addr);
1715 if (!pmd)
1716 return -ENOMEM;
1717 do {
1718 next = pmd_addr_end(addr, end);
1719 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1720 if (err)
1721 break;
1722 } while (pmd++, addr = next, addr != end);
1723 return err;
1724}
1725
1726static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1727 unsigned long addr, unsigned long end,
1728 pte_fn_t fn, void *data)
1729{
1730 pud_t *pud;
1731 unsigned long next;
1732 int err;
1733
1734 pud = pud_alloc(mm, pgd, addr);
1735 if (!pud)
1736 return -ENOMEM;
1737 do {
1738 next = pud_addr_end(addr, end);
1739 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1740 if (err)
1741 break;
1742 } while (pud++, addr = next, addr != end);
1743 return err;
1744}
1745
1746/*
1747 * Scan a region of virtual memory, filling in page tables as necessary
1748 * and calling a provided function on each leaf page table.
1749 */
1750int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1751 unsigned long size, pte_fn_t fn, void *data)
1752{
1753 pgd_t *pgd;
1754 unsigned long next;
cddb8a5c 1755 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1756 int err;
1757
1758 BUG_ON(addr >= end);
cddb8a5c 1759 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1760 pgd = pgd_offset(mm, addr);
1761 do {
1762 next = pgd_addr_end(addr, end);
1763 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1764 if (err)
1765 break;
1766 } while (pgd++, addr = next, addr != end);
cddb8a5c 1767 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1768 return err;
1769}
1770EXPORT_SYMBOL_GPL(apply_to_page_range);
1771
8f4e2101
HD
1772/*
1773 * handle_pte_fault chooses page fault handler according to an entry
1774 * which was read non-atomically. Before making any commitment, on
1775 * those architectures or configurations (e.g. i386 with PAE) which
1776 * might give a mix of unmatched parts, do_swap_page and do_file_page
1777 * must check under lock before unmapping the pte and proceeding
1778 * (but do_wp_page is only called after already making such a check;
1779 * and do_anonymous_page and do_no_page can safely check later on).
1780 */
4c21e2f2 1781static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1782 pte_t *page_table, pte_t orig_pte)
1783{
1784 int same = 1;
1785#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1786 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1787 spinlock_t *ptl = pte_lockptr(mm, pmd);
1788 spin_lock(ptl);
8f4e2101 1789 same = pte_same(*page_table, orig_pte);
4c21e2f2 1790 spin_unlock(ptl);
8f4e2101
HD
1791 }
1792#endif
1793 pte_unmap(page_table);
1794 return same;
1795}
1796
1da177e4
LT
1797/*
1798 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1799 * servicing faults for write access. In the normal case, do always want
1800 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1801 * that do not have writing enabled, when used by access_process_vm.
1802 */
1803static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1804{
1805 if (likely(vma->vm_flags & VM_WRITE))
1806 pte = pte_mkwrite(pte);
1807 return pte;
1808}
1809
9de455b2 1810static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1811{
1812 /*
1813 * If the source page was a PFN mapping, we don't have
1814 * a "struct page" for it. We do a best-effort copy by
1815 * just copying from the original user address. If that
1816 * fails, we just zero-fill it. Live with it.
1817 */
1818 if (unlikely(!src)) {
1819 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1820 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1821
1822 /*
1823 * This really shouldn't fail, because the page is there
1824 * in the page tables. But it might just be unreadable,
1825 * in which case we just give up and fill the result with
1826 * zeroes.
1827 */
1828 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1829 memset(kaddr, 0, PAGE_SIZE);
1830 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1831 flush_dcache_page(dst);
0ed361de
NP
1832 } else
1833 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1834}
1835
1da177e4
LT
1836/*
1837 * This routine handles present pages, when users try to write
1838 * to a shared page. It is done by copying the page to a new address
1839 * and decrementing the shared-page counter for the old page.
1840 *
1da177e4
LT
1841 * Note that this routine assumes that the protection checks have been
1842 * done by the caller (the low-level page fault routine in most cases).
1843 * Thus we can safely just mark it writable once we've done any necessary
1844 * COW.
1845 *
1846 * We also mark the page dirty at this point even though the page will
1847 * change only once the write actually happens. This avoids a few races,
1848 * and potentially makes it more efficient.
1849 *
8f4e2101
HD
1850 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1851 * but allow concurrent faults), with pte both mapped and locked.
1852 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1853 */
65500d23
HD
1854static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1855 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1856 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1857{
e5bbe4df 1858 struct page *old_page, *new_page;
1da177e4 1859 pte_t entry;
83c54070 1860 int reuse = 0, ret = 0;
a200ee18 1861 int page_mkwrite = 0;
d08b3851 1862 struct page *dirty_page = NULL;
1da177e4 1863
6aab341e 1864 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1865 if (!old_page) {
1866 /*
1867 * VM_MIXEDMAP !pfn_valid() case
1868 *
1869 * We should not cow pages in a shared writeable mapping.
1870 * Just mark the pages writable as we can't do any dirty
1871 * accounting on raw pfn maps.
1872 */
1873 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1874 (VM_WRITE|VM_SHARED))
1875 goto reuse;
6aab341e 1876 goto gotten;
251b97f5 1877 }
1da177e4 1878
d08b3851 1879 /*
ee6a6457
PZ
1880 * Take out anonymous pages first, anonymous shared vmas are
1881 * not dirty accountable.
d08b3851 1882 */
ee6a6457 1883 if (PageAnon(old_page)) {
529ae9aa 1884 if (trylock_page(old_page)) {
ee6a6457
PZ
1885 reuse = can_share_swap_page(old_page);
1886 unlock_page(old_page);
1887 }
1888 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1889 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1890 /*
1891 * Only catch write-faults on shared writable pages,
1892 * read-only shared pages can get COWed by
1893 * get_user_pages(.write=1, .force=1).
1894 */
9637a5ef
DH
1895 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1896 /*
1897 * Notify the address space that the page is about to
1898 * become writable so that it can prohibit this or wait
1899 * for the page to get into an appropriate state.
1900 *
1901 * We do this without the lock held, so that it can
1902 * sleep if it needs to.
1903 */
1904 page_cache_get(old_page);
1905 pte_unmap_unlock(page_table, ptl);
1906
1907 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1908 goto unwritable_page;
1909
9637a5ef
DH
1910 /*
1911 * Since we dropped the lock we need to revalidate
1912 * the PTE as someone else may have changed it. If
1913 * they did, we just return, as we can count on the
1914 * MMU to tell us if they didn't also make it writable.
1915 */
1916 page_table = pte_offset_map_lock(mm, pmd, address,
1917 &ptl);
c3704ceb 1918 page_cache_release(old_page);
9637a5ef
DH
1919 if (!pte_same(*page_table, orig_pte))
1920 goto unlock;
a200ee18
PZ
1921
1922 page_mkwrite = 1;
1da177e4 1923 }
d08b3851
PZ
1924 dirty_page = old_page;
1925 get_page(dirty_page);
9637a5ef 1926 reuse = 1;
9637a5ef
DH
1927 }
1928
1929 if (reuse) {
251b97f5 1930reuse:
9637a5ef
DH
1931 flush_cache_page(vma, address, pte_pfn(orig_pte));
1932 entry = pte_mkyoung(orig_pte);
1933 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1934 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1935 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1936 ret |= VM_FAULT_WRITE;
1937 goto unlock;
1da177e4 1938 }
1da177e4
LT
1939
1940 /*
1941 * Ok, we need to copy. Oh, well..
1942 */
b5810039 1943 page_cache_get(old_page);
920fc356 1944gotten:
8f4e2101 1945 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1946
1947 if (unlikely(anon_vma_prepare(vma)))
65500d23 1948 goto oom;
557ed1fa
NP
1949 VM_BUG_ON(old_page == ZERO_PAGE(0));
1950 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1951 if (!new_page)
1952 goto oom;
b291f000
NP
1953 /*
1954 * Don't let another task, with possibly unlocked vma,
1955 * keep the mlocked page.
1956 */
1957 if (vma->vm_flags & VM_LOCKED) {
1958 lock_page(old_page); /* for LRU manipulation */
1959 clear_page_mlock(old_page);
1960 unlock_page(old_page);
1961 }
557ed1fa 1962 cow_user_page(new_page, old_page, address, vma);
0ed361de 1963 __SetPageUptodate(new_page);
65500d23 1964
e1a1cd59 1965 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1966 goto oom_free_new;
1967
1da177e4
LT
1968 /*
1969 * Re-check the pte - we dropped the lock
1970 */
8f4e2101 1971 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1972 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1973 if (old_page) {
920fc356
HD
1974 if (!PageAnon(old_page)) {
1975 dec_mm_counter(mm, file_rss);
1976 inc_mm_counter(mm, anon_rss);
1977 }
1978 } else
4294621f 1979 inc_mm_counter(mm, anon_rss);
eca35133 1980 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1981 entry = mk_pte(new_page, vma->vm_page_prot);
1982 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1983 /*
1984 * Clear the pte entry and flush it first, before updating the
1985 * pte with the new entry. This will avoid a race condition
1986 * seen in the presence of one thread doing SMC and another
1987 * thread doing COW.
1988 */
cddb8a5c 1989 ptep_clear_flush_notify(vma, address, page_table);
b2e18538 1990 SetPageSwapBacked(new_page);
64d6519d 1991 lru_cache_add_active_or_unevictable(new_page, vma);
9617d95e 1992 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 1993
64d6519d
LS
1994//TODO: is this safe? do_anonymous_page() does it this way.
1995 set_pte_at(mm, address, page_table, entry);
1996 update_mmu_cache(vma, address, entry);
945754a1
NP
1997 if (old_page) {
1998 /*
1999 * Only after switching the pte to the new page may
2000 * we remove the mapcount here. Otherwise another
2001 * process may come and find the rmap count decremented
2002 * before the pte is switched to the new page, and
2003 * "reuse" the old page writing into it while our pte
2004 * here still points into it and can be read by other
2005 * threads.
2006 *
2007 * The critical issue is to order this
2008 * page_remove_rmap with the ptp_clear_flush above.
2009 * Those stores are ordered by (if nothing else,)
2010 * the barrier present in the atomic_add_negative
2011 * in page_remove_rmap.
2012 *
2013 * Then the TLB flush in ptep_clear_flush ensures that
2014 * no process can access the old page before the
2015 * decremented mapcount is visible. And the old page
2016 * cannot be reused until after the decremented
2017 * mapcount is visible. So transitively, TLBs to
2018 * old page will be flushed before it can be reused.
2019 */
2020 page_remove_rmap(old_page, vma);
2021 }
2022
1da177e4
LT
2023 /* Free the old page.. */
2024 new_page = old_page;
f33ea7f4 2025 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2026 } else
2027 mem_cgroup_uncharge_page(new_page);
2028
920fc356
HD
2029 if (new_page)
2030 page_cache_release(new_page);
2031 if (old_page)
2032 page_cache_release(old_page);
65500d23 2033unlock:
8f4e2101 2034 pte_unmap_unlock(page_table, ptl);
d08b3851 2035 if (dirty_page) {
8f7b3d15
AS
2036 if (vma->vm_file)
2037 file_update_time(vma->vm_file);
2038
79352894
NP
2039 /*
2040 * Yes, Virginia, this is actually required to prevent a race
2041 * with clear_page_dirty_for_io() from clearing the page dirty
2042 * bit after it clear all dirty ptes, but before a racing
2043 * do_wp_page installs a dirty pte.
2044 *
2045 * do_no_page is protected similarly.
2046 */
2047 wait_on_page_locked(dirty_page);
a200ee18 2048 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2049 put_page(dirty_page);
2050 }
f33ea7f4 2051 return ret;
8a9f3ccd 2052oom_free_new:
6dbf6d3b 2053 page_cache_release(new_page);
65500d23 2054oom:
920fc356
HD
2055 if (old_page)
2056 page_cache_release(old_page);
1da177e4 2057 return VM_FAULT_OOM;
9637a5ef
DH
2058
2059unwritable_page:
2060 page_cache_release(old_page);
2061 return VM_FAULT_SIGBUS;
1da177e4
LT
2062}
2063
2064/*
2065 * Helper functions for unmap_mapping_range().
2066 *
2067 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2068 *
2069 * We have to restart searching the prio_tree whenever we drop the lock,
2070 * since the iterator is only valid while the lock is held, and anyway
2071 * a later vma might be split and reinserted earlier while lock dropped.
2072 *
2073 * The list of nonlinear vmas could be handled more efficiently, using
2074 * a placeholder, but handle it in the same way until a need is shown.
2075 * It is important to search the prio_tree before nonlinear list: a vma
2076 * may become nonlinear and be shifted from prio_tree to nonlinear list
2077 * while the lock is dropped; but never shifted from list to prio_tree.
2078 *
2079 * In order to make forward progress despite restarting the search,
2080 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2081 * quickly skip it next time around. Since the prio_tree search only
2082 * shows us those vmas affected by unmapping the range in question, we
2083 * can't efficiently keep all vmas in step with mapping->truncate_count:
2084 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2085 * mapping->truncate_count and vma->vm_truncate_count are protected by
2086 * i_mmap_lock.
2087 *
2088 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2089 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2090 * and restart from that address when we reach that vma again. It might
2091 * have been split or merged, shrunk or extended, but never shifted: so
2092 * restart_addr remains valid so long as it remains in the vma's range.
2093 * unmap_mapping_range forces truncate_count to leap over page-aligned
2094 * values so we can save vma's restart_addr in its truncate_count field.
2095 */
2096#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2097
2098static void reset_vma_truncate_counts(struct address_space *mapping)
2099{
2100 struct vm_area_struct *vma;
2101 struct prio_tree_iter iter;
2102
2103 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2104 vma->vm_truncate_count = 0;
2105 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2106 vma->vm_truncate_count = 0;
2107}
2108
2109static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2110 unsigned long start_addr, unsigned long end_addr,
2111 struct zap_details *details)
2112{
2113 unsigned long restart_addr;
2114 int need_break;
2115
d00806b1
NP
2116 /*
2117 * files that support invalidating or truncating portions of the
d0217ac0 2118 * file from under mmaped areas must have their ->fault function
83c54070
NP
2119 * return a locked page (and set VM_FAULT_LOCKED in the return).
2120 * This provides synchronisation against concurrent unmapping here.
d00806b1 2121 */
d00806b1 2122
1da177e4
LT
2123again:
2124 restart_addr = vma->vm_truncate_count;
2125 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2126 start_addr = restart_addr;
2127 if (start_addr >= end_addr) {
2128 /* Top of vma has been split off since last time */
2129 vma->vm_truncate_count = details->truncate_count;
2130 return 0;
2131 }
2132 }
2133
ee39b37b
HD
2134 restart_addr = zap_page_range(vma, start_addr,
2135 end_addr - start_addr, details);
95c354fe 2136 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2137
ee39b37b 2138 if (restart_addr >= end_addr) {
1da177e4
LT
2139 /* We have now completed this vma: mark it so */
2140 vma->vm_truncate_count = details->truncate_count;
2141 if (!need_break)
2142 return 0;
2143 } else {
2144 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2145 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2146 if (!need_break)
2147 goto again;
2148 }
2149
2150 spin_unlock(details->i_mmap_lock);
2151 cond_resched();
2152 spin_lock(details->i_mmap_lock);
2153 return -EINTR;
2154}
2155
2156static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2157 struct zap_details *details)
2158{
2159 struct vm_area_struct *vma;
2160 struct prio_tree_iter iter;
2161 pgoff_t vba, vea, zba, zea;
2162
2163restart:
2164 vma_prio_tree_foreach(vma, &iter, root,
2165 details->first_index, details->last_index) {
2166 /* Skip quickly over those we have already dealt with */
2167 if (vma->vm_truncate_count == details->truncate_count)
2168 continue;
2169
2170 vba = vma->vm_pgoff;
2171 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2172 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2173 zba = details->first_index;
2174 if (zba < vba)
2175 zba = vba;
2176 zea = details->last_index;
2177 if (zea > vea)
2178 zea = vea;
2179
2180 if (unmap_mapping_range_vma(vma,
2181 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2182 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2183 details) < 0)
2184 goto restart;
2185 }
2186}
2187
2188static inline void unmap_mapping_range_list(struct list_head *head,
2189 struct zap_details *details)
2190{
2191 struct vm_area_struct *vma;
2192
2193 /*
2194 * In nonlinear VMAs there is no correspondence between virtual address
2195 * offset and file offset. So we must perform an exhaustive search
2196 * across *all* the pages in each nonlinear VMA, not just the pages
2197 * whose virtual address lies outside the file truncation point.
2198 */
2199restart:
2200 list_for_each_entry(vma, head, shared.vm_set.list) {
2201 /* Skip quickly over those we have already dealt with */
2202 if (vma->vm_truncate_count == details->truncate_count)
2203 continue;
2204 details->nonlinear_vma = vma;
2205 if (unmap_mapping_range_vma(vma, vma->vm_start,
2206 vma->vm_end, details) < 0)
2207 goto restart;
2208 }
2209}
2210
2211/**
72fd4a35 2212 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2213 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2214 * @holebegin: byte in first page to unmap, relative to the start of
2215 * the underlying file. This will be rounded down to a PAGE_SIZE
2216 * boundary. Note that this is different from vmtruncate(), which
2217 * must keep the partial page. In contrast, we must get rid of
2218 * partial pages.
2219 * @holelen: size of prospective hole in bytes. This will be rounded
2220 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2221 * end of the file.
2222 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2223 * but 0 when invalidating pagecache, don't throw away private data.
2224 */
2225void unmap_mapping_range(struct address_space *mapping,
2226 loff_t const holebegin, loff_t const holelen, int even_cows)
2227{
2228 struct zap_details details;
2229 pgoff_t hba = holebegin >> PAGE_SHIFT;
2230 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2231
2232 /* Check for overflow. */
2233 if (sizeof(holelen) > sizeof(hlen)) {
2234 long long holeend =
2235 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2236 if (holeend & ~(long long)ULONG_MAX)
2237 hlen = ULONG_MAX - hba + 1;
2238 }
2239
2240 details.check_mapping = even_cows? NULL: mapping;
2241 details.nonlinear_vma = NULL;
2242 details.first_index = hba;
2243 details.last_index = hba + hlen - 1;
2244 if (details.last_index < details.first_index)
2245 details.last_index = ULONG_MAX;
2246 details.i_mmap_lock = &mapping->i_mmap_lock;
2247
2248 spin_lock(&mapping->i_mmap_lock);
2249
d00806b1 2250 /* Protect against endless unmapping loops */
1da177e4 2251 mapping->truncate_count++;
1da177e4
LT
2252 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2253 if (mapping->truncate_count == 0)
2254 reset_vma_truncate_counts(mapping);
2255 mapping->truncate_count++;
2256 }
2257 details.truncate_count = mapping->truncate_count;
2258
2259 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2260 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2261 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2262 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2263 spin_unlock(&mapping->i_mmap_lock);
2264}
2265EXPORT_SYMBOL(unmap_mapping_range);
2266
bfa5bf6d
REB
2267/**
2268 * vmtruncate - unmap mappings "freed" by truncate() syscall
2269 * @inode: inode of the file used
2270 * @offset: file offset to start truncating
1da177e4
LT
2271 *
2272 * NOTE! We have to be ready to update the memory sharing
2273 * between the file and the memory map for a potential last
2274 * incomplete page. Ugly, but necessary.
2275 */
2276int vmtruncate(struct inode * inode, loff_t offset)
2277{
61d5048f
CH
2278 if (inode->i_size < offset) {
2279 unsigned long limit;
2280
2281 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2282 if (limit != RLIM_INFINITY && offset > limit)
2283 goto out_sig;
2284 if (offset > inode->i_sb->s_maxbytes)
2285 goto out_big;
2286 i_size_write(inode, offset);
2287 } else {
2288 struct address_space *mapping = inode->i_mapping;
1da177e4 2289
61d5048f
CH
2290 /*
2291 * truncation of in-use swapfiles is disallowed - it would
2292 * cause subsequent swapout to scribble on the now-freed
2293 * blocks.
2294 */
2295 if (IS_SWAPFILE(inode))
2296 return -ETXTBSY;
2297 i_size_write(inode, offset);
2298
2299 /*
2300 * unmap_mapping_range is called twice, first simply for
2301 * efficiency so that truncate_inode_pages does fewer
2302 * single-page unmaps. However after this first call, and
2303 * before truncate_inode_pages finishes, it is possible for
2304 * private pages to be COWed, which remain after
2305 * truncate_inode_pages finishes, hence the second
2306 * unmap_mapping_range call must be made for correctness.
2307 */
2308 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2309 truncate_inode_pages(mapping, offset);
2310 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2311 }
d00806b1 2312
1da177e4
LT
2313 if (inode->i_op && inode->i_op->truncate)
2314 inode->i_op->truncate(inode);
2315 return 0;
61d5048f 2316
1da177e4
LT
2317out_sig:
2318 send_sig(SIGXFSZ, current, 0);
2319out_big:
2320 return -EFBIG;
1da177e4 2321}
1da177e4
LT
2322EXPORT_SYMBOL(vmtruncate);
2323
f6b3ec23
BP
2324int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2325{
2326 struct address_space *mapping = inode->i_mapping;
2327
2328 /*
2329 * If the underlying filesystem is not going to provide
2330 * a way to truncate a range of blocks (punch a hole) -
2331 * we should return failure right now.
2332 */
2333 if (!inode->i_op || !inode->i_op->truncate_range)
2334 return -ENOSYS;
2335
1b1dcc1b 2336 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2337 down_write(&inode->i_alloc_sem);
2338 unmap_mapping_range(mapping, offset, (end - offset), 1);
2339 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2340 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2341 inode->i_op->truncate_range(inode, offset, end);
2342 up_write(&inode->i_alloc_sem);
1b1dcc1b 2343 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2344
2345 return 0;
2346}
f6b3ec23 2347
1da177e4 2348/*
8f4e2101
HD
2349 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2350 * but allow concurrent faults), and pte mapped but not yet locked.
2351 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2352 */
65500d23
HD
2353static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2354 unsigned long address, pte_t *page_table, pmd_t *pmd,
2355 int write_access, pte_t orig_pte)
1da177e4 2356{
8f4e2101 2357 spinlock_t *ptl;
1da177e4 2358 struct page *page;
65500d23 2359 swp_entry_t entry;
1da177e4 2360 pte_t pte;
83c54070 2361 int ret = 0;
1da177e4 2362
4c21e2f2 2363 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2364 goto out;
65500d23
HD
2365
2366 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2367 if (is_migration_entry(entry)) {
2368 migration_entry_wait(mm, pmd, address);
2369 goto out;
2370 }
0ff92245 2371 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2372 page = lookup_swap_cache(entry);
2373 if (!page) {
098fe651 2374 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2375 page = swapin_readahead(entry,
2376 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2377 if (!page) {
2378 /*
8f4e2101
HD
2379 * Back out if somebody else faulted in this pte
2380 * while we released the pte lock.
1da177e4 2381 */
8f4e2101 2382 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2383 if (likely(pte_same(*page_table, orig_pte)))
2384 ret = VM_FAULT_OOM;
0ff92245 2385 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2386 goto unlock;
1da177e4
LT
2387 }
2388
2389 /* Had to read the page from swap area: Major fault */
2390 ret = VM_FAULT_MAJOR;
f8891e5e 2391 count_vm_event(PGMAJFAULT);
1da177e4
LT
2392 }
2393
073e587e
KH
2394 mark_page_accessed(page);
2395
2396 lock_page(page);
2397 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2398
e1a1cd59 2399 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd 2400 ret = VM_FAULT_OOM;
073e587e 2401 unlock_page(page);
8a9f3ccd
BS
2402 goto out;
2403 }
2404
1da177e4 2405 /*
8f4e2101 2406 * Back out if somebody else already faulted in this pte.
1da177e4 2407 */
8f4e2101 2408 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2409 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2410 goto out_nomap;
b8107480
KK
2411
2412 if (unlikely(!PageUptodate(page))) {
2413 ret = VM_FAULT_SIGBUS;
2414 goto out_nomap;
1da177e4
LT
2415 }
2416
2417 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2418
4294621f 2419 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2420 pte = mk_pte(page, vma->vm_page_prot);
2421 if (write_access && can_share_swap_page(page)) {
2422 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2423 write_access = 0;
2424 }
1da177e4
LT
2425
2426 flush_icache_page(vma, page);
2427 set_pte_at(mm, address, page_table, pte);
2428 page_add_anon_rmap(page, vma, address);
2429
c475a8ab 2430 swap_free(entry);
b291f000 2431 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
c475a8ab
HD
2432 remove_exclusive_swap_page(page);
2433 unlock_page(page);
2434
1da177e4 2435 if (write_access) {
61469f1d
HD
2436 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2437 if (ret & VM_FAULT_ERROR)
2438 ret &= VM_FAULT_ERROR;
1da177e4
LT
2439 goto out;
2440 }
2441
2442 /* No need to invalidate - it was non-present before */
2443 update_mmu_cache(vma, address, pte);
65500d23 2444unlock:
8f4e2101 2445 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2446out:
2447 return ret;
b8107480 2448out_nomap:
8a9f3ccd 2449 mem_cgroup_uncharge_page(page);
8f4e2101 2450 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2451 unlock_page(page);
2452 page_cache_release(page);
65500d23 2453 return ret;
1da177e4
LT
2454}
2455
2456/*
8f4e2101
HD
2457 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2458 * but allow concurrent faults), and pte mapped but not yet locked.
2459 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2460 */
65500d23
HD
2461static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2462 unsigned long address, pte_t *page_table, pmd_t *pmd,
2463 int write_access)
1da177e4 2464{
8f4e2101
HD
2465 struct page *page;
2466 spinlock_t *ptl;
1da177e4 2467 pte_t entry;
1da177e4 2468
557ed1fa
NP
2469 /* Allocate our own private page. */
2470 pte_unmap(page_table);
8f4e2101 2471
557ed1fa
NP
2472 if (unlikely(anon_vma_prepare(vma)))
2473 goto oom;
2474 page = alloc_zeroed_user_highpage_movable(vma, address);
2475 if (!page)
2476 goto oom;
0ed361de 2477 __SetPageUptodate(page);
8f4e2101 2478
e1a1cd59 2479 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2480 goto oom_free_page;
2481
557ed1fa
NP
2482 entry = mk_pte(page, vma->vm_page_prot);
2483 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2484
557ed1fa
NP
2485 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2486 if (!pte_none(*page_table))
2487 goto release;
2488 inc_mm_counter(mm, anon_rss);
b2e18538 2489 SetPageSwapBacked(page);
64d6519d 2490 lru_cache_add_active_or_unevictable(page, vma);
557ed1fa 2491 page_add_new_anon_rmap(page, vma, address);
65500d23 2492 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2493
2494 /* No need to invalidate - it was non-present before */
65500d23 2495 update_mmu_cache(vma, address, entry);
65500d23 2496unlock:
8f4e2101 2497 pte_unmap_unlock(page_table, ptl);
83c54070 2498 return 0;
8f4e2101 2499release:
8a9f3ccd 2500 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2501 page_cache_release(page);
2502 goto unlock;
8a9f3ccd 2503oom_free_page:
6dbf6d3b 2504 page_cache_release(page);
65500d23 2505oom:
1da177e4
LT
2506 return VM_FAULT_OOM;
2507}
2508
2509/*
54cb8821 2510 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2511 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2512 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2513 * the next page fault.
1da177e4
LT
2514 *
2515 * As this is called only for pages that do not currently exist, we
2516 * do not need to flush old virtual caches or the TLB.
2517 *
8f4e2101 2518 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2519 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2520 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2521 */
54cb8821 2522static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2523 unsigned long address, pmd_t *pmd,
54cb8821 2524 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2525{
16abfa08 2526 pte_t *page_table;
8f4e2101 2527 spinlock_t *ptl;
d0217ac0 2528 struct page *page;
1da177e4 2529 pte_t entry;
1da177e4 2530 int anon = 0;
5b4e655e 2531 int charged = 0;
d08b3851 2532 struct page *dirty_page = NULL;
d0217ac0
NP
2533 struct vm_fault vmf;
2534 int ret;
a200ee18 2535 int page_mkwrite = 0;
54cb8821 2536
d0217ac0
NP
2537 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2538 vmf.pgoff = pgoff;
2539 vmf.flags = flags;
2540 vmf.page = NULL;
1da177e4 2541
3c18ddd1
NP
2542 ret = vma->vm_ops->fault(vma, &vmf);
2543 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2544 return ret;
1da177e4 2545
d00806b1 2546 /*
d0217ac0 2547 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2548 * locked.
2549 */
83c54070 2550 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2551 lock_page(vmf.page);
54cb8821 2552 else
d0217ac0 2553 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2554
1da177e4
LT
2555 /*
2556 * Should we do an early C-O-W break?
2557 */
d0217ac0 2558 page = vmf.page;
54cb8821 2559 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2560 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2561 anon = 1;
d00806b1 2562 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2563 ret = VM_FAULT_OOM;
54cb8821 2564 goto out;
d00806b1 2565 }
83c54070
NP
2566 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2567 vma, address);
d00806b1 2568 if (!page) {
d0217ac0 2569 ret = VM_FAULT_OOM;
54cb8821 2570 goto out;
d00806b1 2571 }
5b4e655e
KH
2572 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2573 ret = VM_FAULT_OOM;
2574 page_cache_release(page);
2575 goto out;
2576 }
2577 charged = 1;
b291f000
NP
2578 /*
2579 * Don't let another task, with possibly unlocked vma,
2580 * keep the mlocked page.
2581 */
2582 if (vma->vm_flags & VM_LOCKED)
2583 clear_page_mlock(vmf.page);
d0217ac0 2584 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2585 __SetPageUptodate(page);
9637a5ef 2586 } else {
54cb8821
NP
2587 /*
2588 * If the page will be shareable, see if the backing
9637a5ef 2589 * address space wants to know that the page is about
54cb8821
NP
2590 * to become writable
2591 */
69676147
MF
2592 if (vma->vm_ops->page_mkwrite) {
2593 unlock_page(page);
2594 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2595 ret = VM_FAULT_SIGBUS;
2596 anon = 1; /* no anon but release vmf.page */
69676147
MF
2597 goto out_unlocked;
2598 }
2599 lock_page(page);
d0217ac0
NP
2600 /*
2601 * XXX: this is not quite right (racy vs
2602 * invalidate) to unlock and relock the page
2603 * like this, however a better fix requires
2604 * reworking page_mkwrite locking API, which
2605 * is better done later.
2606 */
2607 if (!page->mapping) {
83c54070 2608 ret = 0;
d0217ac0
NP
2609 anon = 1; /* no anon but release vmf.page */
2610 goto out;
2611 }
a200ee18 2612 page_mkwrite = 1;
9637a5ef
DH
2613 }
2614 }
54cb8821 2615
1da177e4
LT
2616 }
2617
8f4e2101 2618 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2619
2620 /*
2621 * This silly early PAGE_DIRTY setting removes a race
2622 * due to the bad i386 page protection. But it's valid
2623 * for other architectures too.
2624 *
2625 * Note that if write_access is true, we either now have
2626 * an exclusive copy of the page, or this is a shared mapping,
2627 * so we can make it writable and dirty to avoid having to
2628 * handle that later.
2629 */
2630 /* Only go through if we didn't race with anybody else... */
54cb8821 2631 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2632 flush_icache_page(vma, page);
2633 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2634 if (flags & FAULT_FLAG_WRITE)
1da177e4 2635 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2636 if (anon) {
64d6519d 2637 inc_mm_counter(mm, anon_rss);
b2e18538 2638 SetPageSwapBacked(page);
64d6519d
LS
2639 lru_cache_add_active_or_unevictable(page, vma);
2640 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2641 } else {
4294621f 2642 inc_mm_counter(mm, file_rss);
d00806b1 2643 page_add_file_rmap(page);
54cb8821 2644 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2645 dirty_page = page;
d08b3851
PZ
2646 get_page(dirty_page);
2647 }
4294621f 2648 }
64d6519d
LS
2649//TODO: is this safe? do_anonymous_page() does it this way.
2650 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2651
2652 /* no need to invalidate: a not-present page won't be cached */
2653 update_mmu_cache(vma, address, entry);
1da177e4 2654 } else {
5b4e655e
KH
2655 if (charged)
2656 mem_cgroup_uncharge_page(page);
d00806b1
NP
2657 if (anon)
2658 page_cache_release(page);
2659 else
54cb8821 2660 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2661 }
2662
8f4e2101 2663 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2664
2665out:
d0217ac0 2666 unlock_page(vmf.page);
69676147 2667out_unlocked:
d00806b1 2668 if (anon)
d0217ac0 2669 page_cache_release(vmf.page);
d00806b1 2670 else if (dirty_page) {
8f7b3d15
AS
2671 if (vma->vm_file)
2672 file_update_time(vma->vm_file);
2673
a200ee18 2674 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2675 put_page(dirty_page);
2676 }
d00806b1 2677
83c54070 2678 return ret;
54cb8821 2679}
d00806b1 2680
54cb8821
NP
2681static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2682 unsigned long address, pte_t *page_table, pmd_t *pmd,
2683 int write_access, pte_t orig_pte)
2684{
2685 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2686 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2687 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2688
16abfa08
HD
2689 pte_unmap(page_table);
2690 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2691}
2692
1da177e4
LT
2693/*
2694 * Fault of a previously existing named mapping. Repopulate the pte
2695 * from the encoded file_pte if possible. This enables swappable
2696 * nonlinear vmas.
8f4e2101
HD
2697 *
2698 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2699 * but allow concurrent faults), and pte mapped but not yet locked.
2700 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2701 */
d0217ac0 2702static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2703 unsigned long address, pte_t *page_table, pmd_t *pmd,
2704 int write_access, pte_t orig_pte)
1da177e4 2705{
d0217ac0
NP
2706 unsigned int flags = FAULT_FLAG_NONLINEAR |
2707 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2708 pgoff_t pgoff;
1da177e4 2709
4c21e2f2 2710 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2711 return 0;
1da177e4 2712
d0217ac0
NP
2713 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2714 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2715 /*
2716 * Page table corrupted: show pte and kill process.
2717 */
b5810039 2718 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2719 return VM_FAULT_OOM;
2720 }
65500d23
HD
2721
2722 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2723 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2724}
2725
2726/*
2727 * These routines also need to handle stuff like marking pages dirty
2728 * and/or accessed for architectures that don't do it in hardware (most
2729 * RISC architectures). The early dirtying is also good on the i386.
2730 *
2731 * There is also a hook called "update_mmu_cache()" that architectures
2732 * with external mmu caches can use to update those (ie the Sparc or
2733 * PowerPC hashed page tables that act as extended TLBs).
2734 *
c74df32c
HD
2735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736 * but allow concurrent faults), and pte mapped but not yet locked.
2737 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2738 */
2739static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2740 struct vm_area_struct *vma, unsigned long address,
2741 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2742{
2743 pte_t entry;
8f4e2101 2744 spinlock_t *ptl;
1da177e4 2745
8dab5241 2746 entry = *pte;
1da177e4 2747 if (!pte_present(entry)) {
65500d23 2748 if (pte_none(entry)) {
f4b81804 2749 if (vma->vm_ops) {
3c18ddd1 2750 if (likely(vma->vm_ops->fault))
54cb8821
NP
2751 return do_linear_fault(mm, vma, address,
2752 pte, pmd, write_access, entry);
f4b81804
JS
2753 }
2754 return do_anonymous_page(mm, vma, address,
2755 pte, pmd, write_access);
65500d23 2756 }
1da177e4 2757 if (pte_file(entry))
d0217ac0 2758 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2759 pte, pmd, write_access, entry);
2760 return do_swap_page(mm, vma, address,
2761 pte, pmd, write_access, entry);
1da177e4
LT
2762 }
2763
4c21e2f2 2764 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2765 spin_lock(ptl);
2766 if (unlikely(!pte_same(*pte, entry)))
2767 goto unlock;
1da177e4
LT
2768 if (write_access) {
2769 if (!pte_write(entry))
8f4e2101
HD
2770 return do_wp_page(mm, vma, address,
2771 pte, pmd, ptl, entry);
1da177e4
LT
2772 entry = pte_mkdirty(entry);
2773 }
2774 entry = pte_mkyoung(entry);
8dab5241 2775 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2776 update_mmu_cache(vma, address, entry);
1a44e149
AA
2777 } else {
2778 /*
2779 * This is needed only for protection faults but the arch code
2780 * is not yet telling us if this is a protection fault or not.
2781 * This still avoids useless tlb flushes for .text page faults
2782 * with threads.
2783 */
2784 if (write_access)
2785 flush_tlb_page(vma, address);
2786 }
8f4e2101
HD
2787unlock:
2788 pte_unmap_unlock(pte, ptl);
83c54070 2789 return 0;
1da177e4
LT
2790}
2791
2792/*
2793 * By the time we get here, we already hold the mm semaphore
2794 */
83c54070 2795int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2796 unsigned long address, int write_access)
2797{
2798 pgd_t *pgd;
2799 pud_t *pud;
2800 pmd_t *pmd;
2801 pte_t *pte;
2802
2803 __set_current_state(TASK_RUNNING);
2804
f8891e5e 2805 count_vm_event(PGFAULT);
1da177e4 2806
ac9b9c66
HD
2807 if (unlikely(is_vm_hugetlb_page(vma)))
2808 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2809
1da177e4 2810 pgd = pgd_offset(mm, address);
1da177e4
LT
2811 pud = pud_alloc(mm, pgd, address);
2812 if (!pud)
c74df32c 2813 return VM_FAULT_OOM;
1da177e4
LT
2814 pmd = pmd_alloc(mm, pud, address);
2815 if (!pmd)
c74df32c 2816 return VM_FAULT_OOM;
1da177e4
LT
2817 pte = pte_alloc_map(mm, pmd, address);
2818 if (!pte)
c74df32c 2819 return VM_FAULT_OOM;
1da177e4 2820
c74df32c 2821 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2822}
2823
2824#ifndef __PAGETABLE_PUD_FOLDED
2825/*
2826 * Allocate page upper directory.
872fec16 2827 * We've already handled the fast-path in-line.
1da177e4 2828 */
1bb3630e 2829int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2830{
c74df32c
HD
2831 pud_t *new = pud_alloc_one(mm, address);
2832 if (!new)
1bb3630e 2833 return -ENOMEM;
1da177e4 2834
362a61ad
NP
2835 smp_wmb(); /* See comment in __pte_alloc */
2836
872fec16 2837 spin_lock(&mm->page_table_lock);
1bb3630e 2838 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2839 pud_free(mm, new);
1bb3630e
HD
2840 else
2841 pgd_populate(mm, pgd, new);
c74df32c 2842 spin_unlock(&mm->page_table_lock);
1bb3630e 2843 return 0;
1da177e4
LT
2844}
2845#endif /* __PAGETABLE_PUD_FOLDED */
2846
2847#ifndef __PAGETABLE_PMD_FOLDED
2848/*
2849 * Allocate page middle directory.
872fec16 2850 * We've already handled the fast-path in-line.
1da177e4 2851 */
1bb3630e 2852int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2853{
c74df32c
HD
2854 pmd_t *new = pmd_alloc_one(mm, address);
2855 if (!new)
1bb3630e 2856 return -ENOMEM;
1da177e4 2857
362a61ad
NP
2858 smp_wmb(); /* See comment in __pte_alloc */
2859
872fec16 2860 spin_lock(&mm->page_table_lock);
1da177e4 2861#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2862 if (pud_present(*pud)) /* Another has populated it */
5e541973 2863 pmd_free(mm, new);
1bb3630e
HD
2864 else
2865 pud_populate(mm, pud, new);
1da177e4 2866#else
1bb3630e 2867 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2868 pmd_free(mm, new);
1bb3630e
HD
2869 else
2870 pgd_populate(mm, pud, new);
1da177e4 2871#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2872 spin_unlock(&mm->page_table_lock);
1bb3630e 2873 return 0;
e0f39591 2874}
1da177e4
LT
2875#endif /* __PAGETABLE_PMD_FOLDED */
2876
2877int make_pages_present(unsigned long addr, unsigned long end)
2878{
2879 int ret, len, write;
2880 struct vm_area_struct * vma;
2881
2882 vma = find_vma(current->mm, addr);
2883 if (!vma)
a477097d 2884 return -ENOMEM;
1da177e4 2885 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2886 BUG_ON(addr >= end);
2887 BUG_ON(end > vma->vm_end);
68e116a3 2888 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2889 ret = get_user_pages(current, current->mm, addr,
2890 len, write, 0, NULL, NULL);
c11d69d8 2891 if (ret < 0)
1da177e4 2892 return ret;
9978ad58 2893 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2894}
2895
1da177e4
LT
2896#if !defined(__HAVE_ARCH_GATE_AREA)
2897
2898#if defined(AT_SYSINFO_EHDR)
5ce7852c 2899static struct vm_area_struct gate_vma;
1da177e4
LT
2900
2901static int __init gate_vma_init(void)
2902{
2903 gate_vma.vm_mm = NULL;
2904 gate_vma.vm_start = FIXADDR_USER_START;
2905 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2906 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2907 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2908 /*
2909 * Make sure the vDSO gets into every core dump.
2910 * Dumping its contents makes post-mortem fully interpretable later
2911 * without matching up the same kernel and hardware config to see
2912 * what PC values meant.
2913 */
2914 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2915 return 0;
2916}
2917__initcall(gate_vma_init);
2918#endif
2919
2920struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2921{
2922#ifdef AT_SYSINFO_EHDR
2923 return &gate_vma;
2924#else
2925 return NULL;
2926#endif
2927}
2928
2929int in_gate_area_no_task(unsigned long addr)
2930{
2931#ifdef AT_SYSINFO_EHDR
2932 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2933 return 1;
2934#endif
2935 return 0;
2936}
2937
2938#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2939
28b2ee20 2940#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 2941int follow_phys(struct vm_area_struct *vma,
2942 unsigned long address, unsigned int flags,
2943 unsigned long *prot, resource_size_t *phys)
28b2ee20
RR
2944{
2945 pgd_t *pgd;
2946 pud_t *pud;
2947 pmd_t *pmd;
2948 pte_t *ptep, pte;
2949 spinlock_t *ptl;
2950 resource_size_t phys_addr = 0;
2951 struct mm_struct *mm = vma->vm_mm;
d87fe660 2952 int ret = -EINVAL;
28b2ee20 2953
d87fe660 2954 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2955 goto out;
28b2ee20
RR
2956
2957 pgd = pgd_offset(mm, address);
2958 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
d87fe660 2959 goto out;
28b2ee20
RR
2960
2961 pud = pud_offset(pgd, address);
2962 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
d87fe660 2963 goto out;
28b2ee20
RR
2964
2965 pmd = pmd_offset(pud, address);
2966 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
d87fe660 2967 goto out;
28b2ee20
RR
2968
2969 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2970 if (pmd_huge(*pmd))
d87fe660 2971 goto out;
28b2ee20
RR
2972
2973 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2974 if (!ptep)
2975 goto out;
2976
2977 pte = *ptep;
2978 if (!pte_present(pte))
2979 goto unlock;
2980 if ((flags & FOLL_WRITE) && !pte_write(pte))
2981 goto unlock;
2982 phys_addr = pte_pfn(pte);
2983 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2984
2985 *prot = pgprot_val(pte_pgprot(pte));
d87fe660 2986 *phys = phys_addr;
2987 ret = 0;
28b2ee20
RR
2988
2989unlock:
2990 pte_unmap_unlock(ptep, ptl);
2991out:
d87fe660 2992 return ret;
28b2ee20
RR
2993}
2994
2995int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2996 void *buf, int len, int write)
2997{
2998 resource_size_t phys_addr;
2999 unsigned long prot = 0;
3000 void *maddr;
3001 int offset = addr & (PAGE_SIZE-1);
3002
d87fe660 3003 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3004 return -EINVAL;
3005
3006 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3007 if (write)
3008 memcpy_toio(maddr + offset, buf, len);
3009 else
3010 memcpy_fromio(buf, maddr + offset, len);
3011 iounmap(maddr);
3012
3013 return len;
3014}
3015#endif
3016
0ec76a11
DH
3017/*
3018 * Access another process' address space.
3019 * Source/target buffer must be kernel space,
3020 * Do not walk the page table directly, use get_user_pages
3021 */
3022int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3023{
3024 struct mm_struct *mm;
3025 struct vm_area_struct *vma;
0ec76a11
DH
3026 void *old_buf = buf;
3027
3028 mm = get_task_mm(tsk);
3029 if (!mm)
3030 return 0;
3031
3032 down_read(&mm->mmap_sem);
183ff22b 3033 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3034 while (len) {
3035 int bytes, ret, offset;
3036 void *maddr;
28b2ee20 3037 struct page *page = NULL;
0ec76a11
DH
3038
3039 ret = get_user_pages(tsk, mm, addr, 1,
3040 write, 1, &page, &vma);
28b2ee20
RR
3041 if (ret <= 0) {
3042 /*
3043 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3044 * we can access using slightly different code.
3045 */
3046#ifdef CONFIG_HAVE_IOREMAP_PROT
3047 vma = find_vma(mm, addr);
3048 if (!vma)
3049 break;
3050 if (vma->vm_ops && vma->vm_ops->access)
3051 ret = vma->vm_ops->access(vma, addr, buf,
3052 len, write);
3053 if (ret <= 0)
3054#endif
3055 break;
3056 bytes = ret;
0ec76a11 3057 } else {
28b2ee20
RR
3058 bytes = len;
3059 offset = addr & (PAGE_SIZE-1);
3060 if (bytes > PAGE_SIZE-offset)
3061 bytes = PAGE_SIZE-offset;
3062
3063 maddr = kmap(page);
3064 if (write) {
3065 copy_to_user_page(vma, page, addr,
3066 maddr + offset, buf, bytes);
3067 set_page_dirty_lock(page);
3068 } else {
3069 copy_from_user_page(vma, page, addr,
3070 buf, maddr + offset, bytes);
3071 }
3072 kunmap(page);
3073 page_cache_release(page);
0ec76a11 3074 }
0ec76a11
DH
3075 len -= bytes;
3076 buf += bytes;
3077 addr += bytes;
3078 }
3079 up_read(&mm->mmap_sem);
3080 mmput(mm);
3081
3082 return buf - old_buf;
3083}
03252919
AK
3084
3085/*
3086 * Print the name of a VMA.
3087 */
3088void print_vma_addr(char *prefix, unsigned long ip)
3089{
3090 struct mm_struct *mm = current->mm;
3091 struct vm_area_struct *vma;
3092
e8bff74a
IM
3093 /*
3094 * Do not print if we are in atomic
3095 * contexts (in exception stacks, etc.):
3096 */
3097 if (preempt_count())
3098 return;
3099
03252919
AK
3100 down_read(&mm->mmap_sem);
3101 vma = find_vma(mm, ip);
3102 if (vma && vma->vm_file) {
3103 struct file *f = vma->vm_file;
3104 char *buf = (char *)__get_free_page(GFP_KERNEL);
3105 if (buf) {
3106 char *p, *s;
3107
cf28b486 3108 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3109 if (IS_ERR(p))
3110 p = "?";
3111 s = strrchr(p, '/');
3112 if (s)
3113 p = s+1;
3114 printk("%s%s[%lx+%lx]", prefix, p,
3115 vma->vm_start,
3116 vma->vm_end - vma->vm_start);
3117 free_page((unsigned long)buf);
3118 }
3119 }
3120 up_read(&current->mm->mmap_sem);
3121}