]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory.c
badpage: zap print_bad_pte on swap and file
[net-next-2.6.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
3dc14741
HD
55#include <linux/kallsyms.h>
56#include <linux/swapops.h>
57#include <linux/elf.h>
1da177e4
LT
58
59#include <asm/pgalloc.h>
60#include <asm/uaccess.h>
61#include <asm/tlb.h>
62#include <asm/tlbflush.h>
63#include <asm/pgtable.h>
64
42b77728
JB
65#include "internal.h"
66
d41dee36 67#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
1da177e4
LT
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
1da177e4 88
32a93233
IM
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97 1;
98#else
99 2;
100#endif
a62eaf15
AK
101
102static int __init disable_randmaps(char *s)
103{
104 randomize_va_space = 0;
9b41046c 105 return 1;
a62eaf15
AK
106}
107__setup("norandmaps", disable_randmaps);
108
109
1da177e4
LT
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124 pud_ERROR(*pud);
125 pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
e0da382c 138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 139{
2f569afd 140 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 141 pmd_clear(pmd);
2f569afd 142 pte_free_tlb(tlb, token);
e0da382c 143 tlb->mm->nr_ptes--;
1da177e4
LT
144}
145
e0da382c
HD
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
1da177e4
LT
149{
150 pmd_t *pmd;
151 unsigned long next;
e0da382c 152 unsigned long start;
1da177e4 153
e0da382c 154 start = addr;
1da177e4 155 pmd = pmd_offset(pud, addr);
1da177e4
LT
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
e0da382c 160 free_pte_range(tlb, pmd);
1da177e4
LT
161 } while (pmd++, addr = next, addr != end);
162
e0da382c
HD
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
1da177e4 170 }
e0da382c
HD
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
1da177e4
LT
177}
178
e0da382c
HD
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
e0da382c 185 unsigned long start;
1da177e4 186
e0da382c 187 start = addr;
1da177e4 188 pud = pud_offset(pgd, addr);
1da177e4
LT
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
e0da382c 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
194 } while (pud++, addr = next, addr != end);
195
e0da382c
HD
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
1da177e4 203 }
e0da382c
HD
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
1da177e4
LT
210}
211
212/*
e0da382c
HD
213 * This function frees user-level page tables of a process.
214 *
1da177e4
LT
215 * Must be called with pagetable lock held.
216 */
42b77728 217void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pgd_t *pgd;
222 unsigned long next;
e0da382c
HD
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
1da177e4 250
e0da382c
HD
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
42b77728 268 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
42b77728 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 274 } while (pgd++, addr = next, addr != end);
e0da382c
HD
275}
276
42b77728 277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 278 unsigned long floor, unsigned long ceiling)
e0da382c
HD
279{
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
8f4f8c16
HD
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
9da61aef 290 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 292 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 298 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
299 vma = next;
300 next = vma->vm_next;
8f4f8c16
HD
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
3bf5ee95
HD
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
e0da382c
HD
307 vma = next;
308 }
1da177e4
LT
309}
310
1bb3630e 311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 312{
2f569afd 313 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
314 if (!new)
315 return -ENOMEM;
316
362a61ad
NP
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
c74df32c 332 spin_lock(&mm->page_table_lock);
2f569afd 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 334 mm->nr_ptes++;
1da177e4 335 pmd_populate(mm, pmd, new);
2f569afd 336 new = NULL;
1da177e4 337 }
c74df32c 338 spin_unlock(&mm->page_table_lock);
2f569afd
MS
339 if (new)
340 pte_free(mm, new);
1bb3630e 341 return 0;
1da177e4
LT
342}
343
1bb3630e 344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 345{
1bb3630e
HD
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
362a61ad
NP
350 smp_wmb(); /* See comment in __pte_alloc */
351
1bb3630e 352 spin_lock(&init_mm.page_table_lock);
2f569afd 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 354 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
355 new = NULL;
356 }
1bb3630e 357 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
358 if (new)
359 pte_free_kernel(&init_mm, new);
1bb3630e 360 return 0;
1da177e4
LT
361}
362
ae859762
HD
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369}
370
b5810039 371/*
6aab341e
LT
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
b5810039
NP
375 *
376 * The calling function must still handle the error.
377 */
3dc14741
HD
378static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 pte_t pte, struct page *page)
b5810039 380{
3dc14741
HD
381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 pud_t *pud = pud_offset(pgd, addr);
383 pmd_t *pmd = pmd_offset(pud, addr);
384 struct address_space *mapping;
385 pgoff_t index;
386
387 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
388 index = linear_page_index(vma, addr);
389
390 printk(KERN_EMERG "Bad page map in process %s pte:%08llx pmd:%08llx\n",
391 current->comm,
392 (long long)pte_val(pte), (long long)pmd_val(*pmd));
393 if (page) {
394 printk(KERN_EMERG
395 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
396 page, (void *)page->flags, page_count(page),
397 page_mapcount(page), page->mapping, page->index);
398 }
399 printk(KERN_EMERG
400 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
401 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
402 /*
403 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
404 */
405 if (vma->vm_ops)
406 print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n",
407 (unsigned long)vma->vm_ops->fault);
408 if (vma->vm_file && vma->vm_file->f_op)
409 print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n",
410 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 411 dump_stack();
3dc14741 412 add_taint(TAINT_BAD_PAGE);
b5810039
NP
413}
414
67121172
LT
415static inline int is_cow_mapping(unsigned int flags)
416{
417 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
418}
419
ee498ed7 420/*
7e675137 421 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 422 *
7e675137
NP
423 * "Special" mappings do not wish to be associated with a "struct page" (either
424 * it doesn't exist, or it exists but they don't want to touch it). In this
425 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 426 *
7e675137
NP
427 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
428 * pte bit, in which case this function is trivial. Secondly, an architecture
429 * may not have a spare pte bit, which requires a more complicated scheme,
430 * described below.
431 *
432 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
433 * special mapping (even if there are underlying and valid "struct pages").
434 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 435 *
b379d790
JH
436 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
437 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
438 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
439 * mapping will always honor the rule
6aab341e
LT
440 *
441 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
442 *
7e675137
NP
443 * And for normal mappings this is false.
444 *
445 * This restricts such mappings to be a linear translation from virtual address
446 * to pfn. To get around this restriction, we allow arbitrary mappings so long
447 * as the vma is not a COW mapping; in that case, we know that all ptes are
448 * special (because none can have been COWed).
b379d790 449 *
b379d790 450 *
7e675137 451 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
452 *
453 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
454 * page" backing, however the difference is that _all_ pages with a struct
455 * page (that is, those where pfn_valid is true) are refcounted and considered
456 * normal pages by the VM. The disadvantage is that pages are refcounted
457 * (which can be slower and simply not an option for some PFNMAP users). The
458 * advantage is that we don't have to follow the strict linearity rule of
459 * PFNMAP mappings in order to support COWable mappings.
460 *
ee498ed7 461 */
7e675137
NP
462#ifdef __HAVE_ARCH_PTE_SPECIAL
463# define HAVE_PTE_SPECIAL 1
464#else
465# define HAVE_PTE_SPECIAL 0
466#endif
467struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
468 pte_t pte)
ee498ed7 469{
22b31eec 470 unsigned long pfn = pte_pfn(pte);
7e675137
NP
471
472 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
473 if (likely(!pte_special(pte)))
474 goto check_pfn;
475 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
476 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
477 return NULL;
478 }
479
480 /* !HAVE_PTE_SPECIAL case follows: */
481
b379d790
JH
482 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
483 if (vma->vm_flags & VM_MIXEDMAP) {
484 if (!pfn_valid(pfn))
485 return NULL;
486 goto out;
487 } else {
7e675137
NP
488 unsigned long off;
489 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
490 if (pfn == vma->vm_pgoff + off)
491 return NULL;
492 if (!is_cow_mapping(vma->vm_flags))
493 return NULL;
494 }
6aab341e
LT
495 }
496
22b31eec
HD
497check_pfn:
498 if (unlikely(pfn > highest_memmap_pfn)) {
499 print_bad_pte(vma, addr, pte, NULL);
500 return NULL;
501 }
6aab341e
LT
502
503 /*
7e675137 504 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 505 * eg. VDSO mappings can cause them to exist.
6aab341e 506 */
b379d790 507out:
6aab341e 508 return pfn_to_page(pfn);
ee498ed7
HD
509}
510
1da177e4
LT
511/*
512 * copy one vm_area from one task to the other. Assumes the page tables
513 * already present in the new task to be cleared in the whole range
514 * covered by this vma.
1da177e4
LT
515 */
516
8c103762 517static inline void
1da177e4 518copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 519 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 520 unsigned long addr, int *rss)
1da177e4 521{
b5810039 522 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
523 pte_t pte = *src_pte;
524 struct page *page;
1da177e4
LT
525
526 /* pte contains position in swap or file, so copy. */
527 if (unlikely(!pte_present(pte))) {
528 if (!pte_file(pte)) {
0697212a
CL
529 swp_entry_t entry = pte_to_swp_entry(pte);
530
531 swap_duplicate(entry);
1da177e4
LT
532 /* make sure dst_mm is on swapoff's mmlist. */
533 if (unlikely(list_empty(&dst_mm->mmlist))) {
534 spin_lock(&mmlist_lock);
f412ac08
HD
535 if (list_empty(&dst_mm->mmlist))
536 list_add(&dst_mm->mmlist,
537 &src_mm->mmlist);
1da177e4
LT
538 spin_unlock(&mmlist_lock);
539 }
0697212a
CL
540 if (is_write_migration_entry(entry) &&
541 is_cow_mapping(vm_flags)) {
542 /*
543 * COW mappings require pages in both parent
544 * and child to be set to read.
545 */
546 make_migration_entry_read(&entry);
547 pte = swp_entry_to_pte(entry);
548 set_pte_at(src_mm, addr, src_pte, pte);
549 }
1da177e4 550 }
ae859762 551 goto out_set_pte;
1da177e4
LT
552 }
553
1da177e4
LT
554 /*
555 * If it's a COW mapping, write protect it both
556 * in the parent and the child
557 */
67121172 558 if (is_cow_mapping(vm_flags)) {
1da177e4 559 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 560 pte = pte_wrprotect(pte);
1da177e4
LT
561 }
562
563 /*
564 * If it's a shared mapping, mark it clean in
565 * the child
566 */
567 if (vm_flags & VM_SHARED)
568 pte = pte_mkclean(pte);
569 pte = pte_mkold(pte);
6aab341e
LT
570
571 page = vm_normal_page(vma, addr, pte);
572 if (page) {
573 get_page(page);
c97a9e10 574 page_dup_rmap(page, vma, addr);
6aab341e
LT
575 rss[!!PageAnon(page)]++;
576 }
ae859762
HD
577
578out_set_pte:
579 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
580}
581
582static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
584 unsigned long addr, unsigned long end)
585{
586 pte_t *src_pte, *dst_pte;
c74df32c 587 spinlock_t *src_ptl, *dst_ptl;
e040f218 588 int progress = 0;
8c103762 589 int rss[2];
1da177e4
LT
590
591again:
ae859762 592 rss[1] = rss[0] = 0;
c74df32c 593 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
594 if (!dst_pte)
595 return -ENOMEM;
596 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 597 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 598 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 599 arch_enter_lazy_mmu_mode();
1da177e4 600
1da177e4
LT
601 do {
602 /*
603 * We are holding two locks at this point - either of them
604 * could generate latencies in another task on another CPU.
605 */
e040f218
HD
606 if (progress >= 32) {
607 progress = 0;
608 if (need_resched() ||
95c354fe 609 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
610 break;
611 }
1da177e4
LT
612 if (pte_none(*src_pte)) {
613 progress++;
614 continue;
615 }
8c103762 616 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
617 progress += 8;
618 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 619
6606c3e0 620 arch_leave_lazy_mmu_mode();
c74df32c 621 spin_unlock(src_ptl);
1da177e4 622 pte_unmap_nested(src_pte - 1);
ae859762 623 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
624 pte_unmap_unlock(dst_pte - 1, dst_ptl);
625 cond_resched();
1da177e4
LT
626 if (addr != end)
627 goto again;
628 return 0;
629}
630
631static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
632 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
633 unsigned long addr, unsigned long end)
634{
635 pmd_t *src_pmd, *dst_pmd;
636 unsigned long next;
637
638 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
639 if (!dst_pmd)
640 return -ENOMEM;
641 src_pmd = pmd_offset(src_pud, addr);
642 do {
643 next = pmd_addr_end(addr, end);
644 if (pmd_none_or_clear_bad(src_pmd))
645 continue;
646 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
647 vma, addr, next))
648 return -ENOMEM;
649 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
650 return 0;
651}
652
653static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
654 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
655 unsigned long addr, unsigned long end)
656{
657 pud_t *src_pud, *dst_pud;
658 unsigned long next;
659
660 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
661 if (!dst_pud)
662 return -ENOMEM;
663 src_pud = pud_offset(src_pgd, addr);
664 do {
665 next = pud_addr_end(addr, end);
666 if (pud_none_or_clear_bad(src_pud))
667 continue;
668 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
669 vma, addr, next))
670 return -ENOMEM;
671 } while (dst_pud++, src_pud++, addr = next, addr != end);
672 return 0;
673}
674
675int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
676 struct vm_area_struct *vma)
677{
678 pgd_t *src_pgd, *dst_pgd;
679 unsigned long next;
680 unsigned long addr = vma->vm_start;
681 unsigned long end = vma->vm_end;
cddb8a5c 682 int ret;
1da177e4 683
d992895b
NP
684 /*
685 * Don't copy ptes where a page fault will fill them correctly.
686 * Fork becomes much lighter when there are big shared or private
687 * readonly mappings. The tradeoff is that copy_page_range is more
688 * efficient than faulting.
689 */
4d7672b4 690 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
691 if (!vma->anon_vma)
692 return 0;
693 }
694
1da177e4
LT
695 if (is_vm_hugetlb_page(vma))
696 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
697
34801ba9 698 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 699 /*
700 * We do not free on error cases below as remove_vma
701 * gets called on error from higher level routine
702 */
703 ret = track_pfn_vma_copy(vma);
704 if (ret)
705 return ret;
706 }
707
cddb8a5c
AA
708 /*
709 * We need to invalidate the secondary MMU mappings only when
710 * there could be a permission downgrade on the ptes of the
711 * parent mm. And a permission downgrade will only happen if
712 * is_cow_mapping() returns true.
713 */
714 if (is_cow_mapping(vma->vm_flags))
715 mmu_notifier_invalidate_range_start(src_mm, addr, end);
716
717 ret = 0;
1da177e4
LT
718 dst_pgd = pgd_offset(dst_mm, addr);
719 src_pgd = pgd_offset(src_mm, addr);
720 do {
721 next = pgd_addr_end(addr, end);
722 if (pgd_none_or_clear_bad(src_pgd))
723 continue;
cddb8a5c
AA
724 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
725 vma, addr, next))) {
726 ret = -ENOMEM;
727 break;
728 }
1da177e4 729 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
730
731 if (is_cow_mapping(vma->vm_flags))
732 mmu_notifier_invalidate_range_end(src_mm,
733 vma->vm_start, end);
734 return ret;
1da177e4
LT
735}
736
51c6f666 737static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 738 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 739 unsigned long addr, unsigned long end,
51c6f666 740 long *zap_work, struct zap_details *details)
1da177e4 741{
b5810039 742 struct mm_struct *mm = tlb->mm;
1da177e4 743 pte_t *pte;
508034a3 744 spinlock_t *ptl;
ae859762
HD
745 int file_rss = 0;
746 int anon_rss = 0;
1da177e4 747
508034a3 748 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 749 arch_enter_lazy_mmu_mode();
1da177e4
LT
750 do {
751 pte_t ptent = *pte;
51c6f666
RH
752 if (pte_none(ptent)) {
753 (*zap_work)--;
1da177e4 754 continue;
51c6f666 755 }
6f5e6b9e
HD
756
757 (*zap_work) -= PAGE_SIZE;
758
1da177e4 759 if (pte_present(ptent)) {
ee498ed7 760 struct page *page;
51c6f666 761
6aab341e 762 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
763 if (unlikely(details) && page) {
764 /*
765 * unmap_shared_mapping_pages() wants to
766 * invalidate cache without truncating:
767 * unmap shared but keep private pages.
768 */
769 if (details->check_mapping &&
770 details->check_mapping != page->mapping)
771 continue;
772 /*
773 * Each page->index must be checked when
774 * invalidating or truncating nonlinear.
775 */
776 if (details->nonlinear_vma &&
777 (page->index < details->first_index ||
778 page->index > details->last_index))
779 continue;
780 }
b5810039 781 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 782 tlb->fullmm);
1da177e4
LT
783 tlb_remove_tlb_entry(tlb, pte, addr);
784 if (unlikely(!page))
785 continue;
786 if (unlikely(details) && details->nonlinear_vma
787 && linear_page_index(details->nonlinear_vma,
788 addr) != page->index)
b5810039 789 set_pte_at(mm, addr, pte,
1da177e4 790 pgoff_to_pte(page->index));
1da177e4 791 if (PageAnon(page))
86d912f4 792 anon_rss--;
6237bcd9
HD
793 else {
794 if (pte_dirty(ptent))
795 set_page_dirty(page);
4917e5d0
JW
796 if (pte_young(ptent) &&
797 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 798 mark_page_accessed(page);
86d912f4 799 file_rss--;
6237bcd9 800 }
7de6b805 801 page_remove_rmap(page, vma);
3dc14741
HD
802 if (unlikely(page_mapcount(page) < 0))
803 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
804 tlb_remove_page(tlb, page);
805 continue;
806 }
807 /*
808 * If details->check_mapping, we leave swap entries;
809 * if details->nonlinear_vma, we leave file entries.
810 */
811 if (unlikely(details))
812 continue;
2509ef26
HD
813 if (pte_file(ptent)) {
814 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
815 print_bad_pte(vma, addr, ptent, NULL);
816 } else if
817 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
818 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 819 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 820 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 821
86d912f4 822 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 823 arch_leave_lazy_mmu_mode();
508034a3 824 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
825
826 return addr;
1da177e4
LT
827}
828
51c6f666 829static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 830 struct vm_area_struct *vma, pud_t *pud,
1da177e4 831 unsigned long addr, unsigned long end,
51c6f666 832 long *zap_work, struct zap_details *details)
1da177e4
LT
833{
834 pmd_t *pmd;
835 unsigned long next;
836
837 pmd = pmd_offset(pud, addr);
838 do {
839 next = pmd_addr_end(addr, end);
51c6f666
RH
840 if (pmd_none_or_clear_bad(pmd)) {
841 (*zap_work)--;
1da177e4 842 continue;
51c6f666
RH
843 }
844 next = zap_pte_range(tlb, vma, pmd, addr, next,
845 zap_work, details);
846 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
847
848 return addr;
1da177e4
LT
849}
850
51c6f666 851static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 852 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 853 unsigned long addr, unsigned long end,
51c6f666 854 long *zap_work, struct zap_details *details)
1da177e4
LT
855{
856 pud_t *pud;
857 unsigned long next;
858
859 pud = pud_offset(pgd, addr);
860 do {
861 next = pud_addr_end(addr, end);
51c6f666
RH
862 if (pud_none_or_clear_bad(pud)) {
863 (*zap_work)--;
1da177e4 864 continue;
51c6f666
RH
865 }
866 next = zap_pmd_range(tlb, vma, pud, addr, next,
867 zap_work, details);
868 } while (pud++, addr = next, (addr != end && *zap_work > 0));
869
870 return addr;
1da177e4
LT
871}
872
51c6f666
RH
873static unsigned long unmap_page_range(struct mmu_gather *tlb,
874 struct vm_area_struct *vma,
1da177e4 875 unsigned long addr, unsigned long end,
51c6f666 876 long *zap_work, struct zap_details *details)
1da177e4
LT
877{
878 pgd_t *pgd;
879 unsigned long next;
880
881 if (details && !details->check_mapping && !details->nonlinear_vma)
882 details = NULL;
883
884 BUG_ON(addr >= end);
885 tlb_start_vma(tlb, vma);
886 pgd = pgd_offset(vma->vm_mm, addr);
887 do {
888 next = pgd_addr_end(addr, end);
51c6f666
RH
889 if (pgd_none_or_clear_bad(pgd)) {
890 (*zap_work)--;
1da177e4 891 continue;
51c6f666
RH
892 }
893 next = zap_pud_range(tlb, vma, pgd, addr, next,
894 zap_work, details);
895 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 896 tlb_end_vma(tlb, vma);
51c6f666
RH
897
898 return addr;
1da177e4
LT
899}
900
901#ifdef CONFIG_PREEMPT
902# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
903#else
904/* No preempt: go for improved straight-line efficiency */
905# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
906#endif
907
908/**
909 * unmap_vmas - unmap a range of memory covered by a list of vma's
910 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
911 * @vma: the starting vma
912 * @start_addr: virtual address at which to start unmapping
913 * @end_addr: virtual address at which to end unmapping
914 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
915 * @details: details of nonlinear truncation or shared cache invalidation
916 *
ee39b37b 917 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 918 *
508034a3 919 * Unmap all pages in the vma list.
1da177e4 920 *
508034a3
HD
921 * We aim to not hold locks for too long (for scheduling latency reasons).
922 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
923 * return the ending mmu_gather to the caller.
924 *
925 * Only addresses between `start' and `end' will be unmapped.
926 *
927 * The VMA list must be sorted in ascending virtual address order.
928 *
929 * unmap_vmas() assumes that the caller will flush the whole unmapped address
930 * range after unmap_vmas() returns. So the only responsibility here is to
931 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
932 * drops the lock and schedules.
933 */
508034a3 934unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
935 struct vm_area_struct *vma, unsigned long start_addr,
936 unsigned long end_addr, unsigned long *nr_accounted,
937 struct zap_details *details)
938{
51c6f666 939 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
940 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
941 int tlb_start_valid = 0;
ee39b37b 942 unsigned long start = start_addr;
1da177e4 943 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 944 int fullmm = (*tlbp)->fullmm;
cddb8a5c 945 struct mm_struct *mm = vma->vm_mm;
1da177e4 946
cddb8a5c 947 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 948 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
949 unsigned long end;
950
951 start = max(vma->vm_start, start_addr);
952 if (start >= vma->vm_end)
953 continue;
954 end = min(vma->vm_end, end_addr);
955 if (end <= vma->vm_start)
956 continue;
957
958 if (vma->vm_flags & VM_ACCOUNT)
959 *nr_accounted += (end - start) >> PAGE_SHIFT;
960
34801ba9 961 if (unlikely(is_pfn_mapping(vma)))
2ab64037 962 untrack_pfn_vma(vma, 0, 0);
963
1da177e4 964 while (start != end) {
1da177e4
LT
965 if (!tlb_start_valid) {
966 tlb_start = start;
967 tlb_start_valid = 1;
968 }
969
51c6f666 970 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
971 /*
972 * It is undesirable to test vma->vm_file as it
973 * should be non-null for valid hugetlb area.
974 * However, vm_file will be NULL in the error
975 * cleanup path of do_mmap_pgoff. When
976 * hugetlbfs ->mmap method fails,
977 * do_mmap_pgoff() nullifies vma->vm_file
978 * before calling this function to clean up.
979 * Since no pte has actually been setup, it is
980 * safe to do nothing in this case.
981 */
982 if (vma->vm_file) {
983 unmap_hugepage_range(vma, start, end, NULL);
984 zap_work -= (end - start) /
a5516438 985 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
986 }
987
51c6f666
RH
988 start = end;
989 } else
990 start = unmap_page_range(*tlbp, vma,
991 start, end, &zap_work, details);
992
993 if (zap_work > 0) {
994 BUG_ON(start != end);
995 break;
1da177e4
LT
996 }
997
1da177e4
LT
998 tlb_finish_mmu(*tlbp, tlb_start, start);
999
1000 if (need_resched() ||
95c354fe 1001 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1002 if (i_mmap_lock) {
508034a3 1003 *tlbp = NULL;
1da177e4
LT
1004 goto out;
1005 }
1da177e4 1006 cond_resched();
1da177e4
LT
1007 }
1008
508034a3 1009 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1010 tlb_start_valid = 0;
51c6f666 1011 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1012 }
1013 }
1014out:
cddb8a5c 1015 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1016 return start; /* which is now the end (or restart) address */
1da177e4
LT
1017}
1018
1019/**
1020 * zap_page_range - remove user pages in a given range
1021 * @vma: vm_area_struct holding the applicable pages
1022 * @address: starting address of pages to zap
1023 * @size: number of bytes to zap
1024 * @details: details of nonlinear truncation or shared cache invalidation
1025 */
ee39b37b 1026unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1027 unsigned long size, struct zap_details *details)
1028{
1029 struct mm_struct *mm = vma->vm_mm;
1030 struct mmu_gather *tlb;
1031 unsigned long end = address + size;
1032 unsigned long nr_accounted = 0;
1033
1da177e4 1034 lru_add_drain();
1da177e4 1035 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1036 update_hiwater_rss(mm);
508034a3
HD
1037 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1038 if (tlb)
1039 tlb_finish_mmu(tlb, address, end);
ee39b37b 1040 return end;
1da177e4
LT
1041}
1042
c627f9cc
JS
1043/**
1044 * zap_vma_ptes - remove ptes mapping the vma
1045 * @vma: vm_area_struct holding ptes to be zapped
1046 * @address: starting address of pages to zap
1047 * @size: number of bytes to zap
1048 *
1049 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1050 *
1051 * The entire address range must be fully contained within the vma.
1052 *
1053 * Returns 0 if successful.
1054 */
1055int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1056 unsigned long size)
1057{
1058 if (address < vma->vm_start || address + size > vma->vm_end ||
1059 !(vma->vm_flags & VM_PFNMAP))
1060 return -1;
1061 zap_page_range(vma, address, size, NULL);
1062 return 0;
1063}
1064EXPORT_SYMBOL_GPL(zap_vma_ptes);
1065
1da177e4
LT
1066/*
1067 * Do a quick page-table lookup for a single page.
1da177e4 1068 */
6aab341e 1069struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1070 unsigned int flags)
1da177e4
LT
1071{
1072 pgd_t *pgd;
1073 pud_t *pud;
1074 pmd_t *pmd;
1075 pte_t *ptep, pte;
deceb6cd 1076 spinlock_t *ptl;
1da177e4 1077 struct page *page;
6aab341e 1078 struct mm_struct *mm = vma->vm_mm;
1da177e4 1079
deceb6cd
HD
1080 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1081 if (!IS_ERR(page)) {
1082 BUG_ON(flags & FOLL_GET);
1083 goto out;
1084 }
1da177e4 1085
deceb6cd 1086 page = NULL;
1da177e4
LT
1087 pgd = pgd_offset(mm, address);
1088 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1089 goto no_page_table;
1da177e4
LT
1090
1091 pud = pud_offset(pgd, address);
ceb86879 1092 if (pud_none(*pud))
deceb6cd 1093 goto no_page_table;
ceb86879
AK
1094 if (pud_huge(*pud)) {
1095 BUG_ON(flags & FOLL_GET);
1096 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1097 goto out;
1098 }
1099 if (unlikely(pud_bad(*pud)))
1100 goto no_page_table;
1101
1da177e4 1102 pmd = pmd_offset(pud, address);
aeed5fce 1103 if (pmd_none(*pmd))
deceb6cd 1104 goto no_page_table;
deceb6cd
HD
1105 if (pmd_huge(*pmd)) {
1106 BUG_ON(flags & FOLL_GET);
1107 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1108 goto out;
deceb6cd 1109 }
aeed5fce
HD
1110 if (unlikely(pmd_bad(*pmd)))
1111 goto no_page_table;
1112
deceb6cd 1113 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1114
1115 pte = *ptep;
deceb6cd 1116 if (!pte_present(pte))
89f5b7da 1117 goto no_page;
deceb6cd
HD
1118 if ((flags & FOLL_WRITE) && !pte_write(pte))
1119 goto unlock;
6aab341e
LT
1120 page = vm_normal_page(vma, address, pte);
1121 if (unlikely(!page))
89f5b7da 1122 goto bad_page;
1da177e4 1123
deceb6cd
HD
1124 if (flags & FOLL_GET)
1125 get_page(page);
1126 if (flags & FOLL_TOUCH) {
1127 if ((flags & FOLL_WRITE) &&
1128 !pte_dirty(pte) && !PageDirty(page))
1129 set_page_dirty(page);
1130 mark_page_accessed(page);
1131 }
1132unlock:
1133 pte_unmap_unlock(ptep, ptl);
1da177e4 1134out:
deceb6cd 1135 return page;
1da177e4 1136
89f5b7da
LT
1137bad_page:
1138 pte_unmap_unlock(ptep, ptl);
1139 return ERR_PTR(-EFAULT);
1140
1141no_page:
1142 pte_unmap_unlock(ptep, ptl);
1143 if (!pte_none(pte))
1144 return page;
1145 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1146no_page_table:
1147 /*
1148 * When core dumping an enormous anonymous area that nobody
1149 * has touched so far, we don't want to allocate page tables.
1150 */
1151 if (flags & FOLL_ANON) {
557ed1fa 1152 page = ZERO_PAGE(0);
deceb6cd
HD
1153 if (flags & FOLL_GET)
1154 get_page(page);
1155 BUG_ON(flags & FOLL_WRITE);
1156 }
1157 return page;
1da177e4
LT
1158}
1159
672ca28e
LT
1160/* Can we do the FOLL_ANON optimization? */
1161static inline int use_zero_page(struct vm_area_struct *vma)
1162{
1163 /*
1164 * We don't want to optimize FOLL_ANON for make_pages_present()
1165 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1166 * we want to get the page from the page tables to make sure
1167 * that we serialize and update with any other user of that
1168 * mapping.
1169 */
1170 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1171 return 0;
1172 /*
0d71d10a 1173 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1174 */
0d71d10a 1175 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1176}
1177
b291f000
NP
1178
1179
1180int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long start, int len, int flags,
1da177e4
LT
1182 struct page **pages, struct vm_area_struct **vmas)
1183{
1184 int i;
b291f000
NP
1185 unsigned int vm_flags = 0;
1186 int write = !!(flags & GUP_FLAGS_WRITE);
1187 int force = !!(flags & GUP_FLAGS_FORCE);
1188 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1189
900cf086
JC
1190 if (len <= 0)
1191 return 0;
1da177e4
LT
1192 /*
1193 * Require read or write permissions.
1194 * If 'force' is set, we only require the "MAY" flags.
1195 */
deceb6cd
HD
1196 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1197 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1198 i = 0;
1199
1200 do {
deceb6cd
HD
1201 struct vm_area_struct *vma;
1202 unsigned int foll_flags;
1da177e4
LT
1203
1204 vma = find_extend_vma(mm, start);
1205 if (!vma && in_gate_area(tsk, start)) {
1206 unsigned long pg = start & PAGE_MASK;
1207 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1208 pgd_t *pgd;
1209 pud_t *pud;
1210 pmd_t *pmd;
1211 pte_t *pte;
b291f000
NP
1212
1213 /* user gate pages are read-only */
1214 if (!ignore && write)
1da177e4
LT
1215 return i ? : -EFAULT;
1216 if (pg > TASK_SIZE)
1217 pgd = pgd_offset_k(pg);
1218 else
1219 pgd = pgd_offset_gate(mm, pg);
1220 BUG_ON(pgd_none(*pgd));
1221 pud = pud_offset(pgd, pg);
1222 BUG_ON(pud_none(*pud));
1223 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1224 if (pmd_none(*pmd))
1225 return i ? : -EFAULT;
1da177e4 1226 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1227 if (pte_none(*pte)) {
1228 pte_unmap(pte);
1229 return i ? : -EFAULT;
1230 }
1da177e4 1231 if (pages) {
fa2a455b 1232 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1233 pages[i] = page;
1234 if (page)
1235 get_page(page);
1da177e4
LT
1236 }
1237 pte_unmap(pte);
1238 if (vmas)
1239 vmas[i] = gate_vma;
1240 i++;
1241 start += PAGE_SIZE;
1242 len--;
1243 continue;
1244 }
1245
b291f000
NP
1246 if (!vma ||
1247 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1248 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1249 return i ? : -EFAULT;
1250
1251 if (is_vm_hugetlb_page(vma)) {
1252 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1253 &start, &len, i, write);
1da177e4
LT
1254 continue;
1255 }
deceb6cd
HD
1256
1257 foll_flags = FOLL_TOUCH;
1258 if (pages)
1259 foll_flags |= FOLL_GET;
672ca28e 1260 if (!write && use_zero_page(vma))
deceb6cd
HD
1261 foll_flags |= FOLL_ANON;
1262
1da177e4 1263 do {
08ef4729 1264 struct page *page;
1da177e4 1265
462e00cc
ES
1266 /*
1267 * If tsk is ooming, cut off its access to large memory
1268 * allocations. It has a pending SIGKILL, but it can't
1269 * be processed until returning to user space.
1270 */
1271 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1272 return i ? i : -ENOMEM;
462e00cc 1273
deceb6cd
HD
1274 if (write)
1275 foll_flags |= FOLL_WRITE;
a68d2ebc 1276
deceb6cd 1277 cond_resched();
6aab341e 1278 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1279 int ret;
83c54070 1280 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1281 foll_flags & FOLL_WRITE);
83c54070
NP
1282 if (ret & VM_FAULT_ERROR) {
1283 if (ret & VM_FAULT_OOM)
1284 return i ? i : -ENOMEM;
1285 else if (ret & VM_FAULT_SIGBUS)
1286 return i ? i : -EFAULT;
1287 BUG();
1288 }
1289 if (ret & VM_FAULT_MAJOR)
1290 tsk->maj_flt++;
1291 else
1292 tsk->min_flt++;
1293
a68d2ebc 1294 /*
83c54070
NP
1295 * The VM_FAULT_WRITE bit tells us that
1296 * do_wp_page has broken COW when necessary,
1297 * even if maybe_mkwrite decided not to set
1298 * pte_write. We can thus safely do subsequent
878b63ac
HD
1299 * page lookups as if they were reads. But only
1300 * do so when looping for pte_write is futile:
1301 * in some cases userspace may also be wanting
1302 * to write to the gotten user page, which a
1303 * read fault here might prevent (a readonly
1304 * page might get reCOWed by userspace write).
a68d2ebc 1305 */
878b63ac
HD
1306 if ((ret & VM_FAULT_WRITE) &&
1307 !(vma->vm_flags & VM_WRITE))
deceb6cd 1308 foll_flags &= ~FOLL_WRITE;
83c54070 1309
7f7bbbe5 1310 cond_resched();
1da177e4 1311 }
89f5b7da
LT
1312 if (IS_ERR(page))
1313 return i ? i : PTR_ERR(page);
1da177e4 1314 if (pages) {
08ef4729 1315 pages[i] = page;
03beb076 1316
a6f36be3 1317 flush_anon_page(vma, page, start);
08ef4729 1318 flush_dcache_page(page);
1da177e4
LT
1319 }
1320 if (vmas)
1321 vmas[i] = vma;
1322 i++;
1323 start += PAGE_SIZE;
1324 len--;
08ef4729 1325 } while (len && start < vma->vm_end);
08ef4729 1326 } while (len);
1da177e4
LT
1327 return i;
1328}
b291f000
NP
1329
1330int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1331 unsigned long start, int len, int write, int force,
1332 struct page **pages, struct vm_area_struct **vmas)
1333{
1334 int flags = 0;
1335
1336 if (write)
1337 flags |= GUP_FLAGS_WRITE;
1338 if (force)
1339 flags |= GUP_FLAGS_FORCE;
1340
1341 return __get_user_pages(tsk, mm,
1342 start, len, flags,
1343 pages, vmas);
1344}
1345
1da177e4
LT
1346EXPORT_SYMBOL(get_user_pages);
1347
920c7a5d
HH
1348pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1349 spinlock_t **ptl)
c9cfcddf
LT
1350{
1351 pgd_t * pgd = pgd_offset(mm, addr);
1352 pud_t * pud = pud_alloc(mm, pgd, addr);
1353 if (pud) {
49c91fb0 1354 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1355 if (pmd)
1356 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1357 }
1358 return NULL;
1359}
1360
238f58d8
LT
1361/*
1362 * This is the old fallback for page remapping.
1363 *
1364 * For historical reasons, it only allows reserved pages. Only
1365 * old drivers should use this, and they needed to mark their
1366 * pages reserved for the old functions anyway.
1367 */
423bad60
NP
1368static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1369 struct page *page, pgprot_t prot)
238f58d8 1370{
423bad60 1371 struct mm_struct *mm = vma->vm_mm;
238f58d8 1372 int retval;
c9cfcddf 1373 pte_t *pte;
8a9f3ccd
BS
1374 spinlock_t *ptl;
1375
238f58d8 1376 retval = -EINVAL;
a145dd41 1377 if (PageAnon(page))
5b4e655e 1378 goto out;
238f58d8
LT
1379 retval = -ENOMEM;
1380 flush_dcache_page(page);
c9cfcddf 1381 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1382 if (!pte)
5b4e655e 1383 goto out;
238f58d8
LT
1384 retval = -EBUSY;
1385 if (!pte_none(*pte))
1386 goto out_unlock;
1387
1388 /* Ok, finally just insert the thing.. */
1389 get_page(page);
1390 inc_mm_counter(mm, file_rss);
1391 page_add_file_rmap(page);
1392 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1393
1394 retval = 0;
8a9f3ccd
BS
1395 pte_unmap_unlock(pte, ptl);
1396 return retval;
238f58d8
LT
1397out_unlock:
1398 pte_unmap_unlock(pte, ptl);
1399out:
1400 return retval;
1401}
1402
bfa5bf6d
REB
1403/**
1404 * vm_insert_page - insert single page into user vma
1405 * @vma: user vma to map to
1406 * @addr: target user address of this page
1407 * @page: source kernel page
1408 *
a145dd41
LT
1409 * This allows drivers to insert individual pages they've allocated
1410 * into a user vma.
1411 *
1412 * The page has to be a nice clean _individual_ kernel allocation.
1413 * If you allocate a compound page, you need to have marked it as
1414 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1415 * (see split_page()).
a145dd41
LT
1416 *
1417 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1418 * took an arbitrary page protection parameter. This doesn't allow
1419 * that. Your vma protection will have to be set up correctly, which
1420 * means that if you want a shared writable mapping, you'd better
1421 * ask for a shared writable mapping!
1422 *
1423 * The page does not need to be reserved.
1424 */
423bad60
NP
1425int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 struct page *page)
a145dd41
LT
1427{
1428 if (addr < vma->vm_start || addr >= vma->vm_end)
1429 return -EFAULT;
1430 if (!page_count(page))
1431 return -EINVAL;
4d7672b4 1432 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1433 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1434}
e3c3374f 1435EXPORT_SYMBOL(vm_insert_page);
a145dd41 1436
423bad60
NP
1437static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1438 unsigned long pfn, pgprot_t prot)
1439{
1440 struct mm_struct *mm = vma->vm_mm;
1441 int retval;
1442 pte_t *pte, entry;
1443 spinlock_t *ptl;
1444
1445 retval = -ENOMEM;
1446 pte = get_locked_pte(mm, addr, &ptl);
1447 if (!pte)
1448 goto out;
1449 retval = -EBUSY;
1450 if (!pte_none(*pte))
1451 goto out_unlock;
1452
1453 /* Ok, finally just insert the thing.. */
1454 entry = pte_mkspecial(pfn_pte(pfn, prot));
1455 set_pte_at(mm, addr, pte, entry);
1456 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1457
1458 retval = 0;
1459out_unlock:
1460 pte_unmap_unlock(pte, ptl);
1461out:
1462 return retval;
1463}
1464
e0dc0d8f
NP
1465/**
1466 * vm_insert_pfn - insert single pfn into user vma
1467 * @vma: user vma to map to
1468 * @addr: target user address of this page
1469 * @pfn: source kernel pfn
1470 *
1471 * Similar to vm_inert_page, this allows drivers to insert individual pages
1472 * they've allocated into a user vma. Same comments apply.
1473 *
1474 * This function should only be called from a vm_ops->fault handler, and
1475 * in that case the handler should return NULL.
0d71d10a
NP
1476 *
1477 * vma cannot be a COW mapping.
1478 *
1479 * As this is called only for pages that do not currently exist, we
1480 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1481 */
1482int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1483 unsigned long pfn)
e0dc0d8f 1484{
2ab64037 1485 int ret;
7e675137
NP
1486 /*
1487 * Technically, architectures with pte_special can avoid all these
1488 * restrictions (same for remap_pfn_range). However we would like
1489 * consistency in testing and feature parity among all, so we should
1490 * try to keep these invariants in place for everybody.
1491 */
b379d790
JH
1492 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1493 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1494 (VM_PFNMAP|VM_MIXEDMAP));
1495 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1496 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1497
423bad60
NP
1498 if (addr < vma->vm_start || addr >= vma->vm_end)
1499 return -EFAULT;
2ab64037 1500 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1501 return -EINVAL;
1502
1503 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1504
1505 if (ret)
1506 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1507
1508 return ret;
423bad60
NP
1509}
1510EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1511
423bad60
NP
1512int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1513 unsigned long pfn)
1514{
1515 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1516
423bad60
NP
1517 if (addr < vma->vm_start || addr >= vma->vm_end)
1518 return -EFAULT;
e0dc0d8f 1519
423bad60
NP
1520 /*
1521 * If we don't have pte special, then we have to use the pfn_valid()
1522 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1523 * refcount the page if pfn_valid is true (hence insert_page rather
1524 * than insert_pfn).
1525 */
1526 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1527 struct page *page;
1528
1529 page = pfn_to_page(pfn);
1530 return insert_page(vma, addr, page, vma->vm_page_prot);
1531 }
1532 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1533}
423bad60 1534EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1535
1da177e4
LT
1536/*
1537 * maps a range of physical memory into the requested pages. the old
1538 * mappings are removed. any references to nonexistent pages results
1539 * in null mappings (currently treated as "copy-on-access")
1540 */
1541static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1542 unsigned long addr, unsigned long end,
1543 unsigned long pfn, pgprot_t prot)
1544{
1545 pte_t *pte;
c74df32c 1546 spinlock_t *ptl;
1da177e4 1547
c74df32c 1548 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1549 if (!pte)
1550 return -ENOMEM;
6606c3e0 1551 arch_enter_lazy_mmu_mode();
1da177e4
LT
1552 do {
1553 BUG_ON(!pte_none(*pte));
7e675137 1554 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1555 pfn++;
1556 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1557 arch_leave_lazy_mmu_mode();
c74df32c 1558 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1559 return 0;
1560}
1561
1562static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1563 unsigned long addr, unsigned long end,
1564 unsigned long pfn, pgprot_t prot)
1565{
1566 pmd_t *pmd;
1567 unsigned long next;
1568
1569 pfn -= addr >> PAGE_SHIFT;
1570 pmd = pmd_alloc(mm, pud, addr);
1571 if (!pmd)
1572 return -ENOMEM;
1573 do {
1574 next = pmd_addr_end(addr, end);
1575 if (remap_pte_range(mm, pmd, addr, next,
1576 pfn + (addr >> PAGE_SHIFT), prot))
1577 return -ENOMEM;
1578 } while (pmd++, addr = next, addr != end);
1579 return 0;
1580}
1581
1582static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1583 unsigned long addr, unsigned long end,
1584 unsigned long pfn, pgprot_t prot)
1585{
1586 pud_t *pud;
1587 unsigned long next;
1588
1589 pfn -= addr >> PAGE_SHIFT;
1590 pud = pud_alloc(mm, pgd, addr);
1591 if (!pud)
1592 return -ENOMEM;
1593 do {
1594 next = pud_addr_end(addr, end);
1595 if (remap_pmd_range(mm, pud, addr, next,
1596 pfn + (addr >> PAGE_SHIFT), prot))
1597 return -ENOMEM;
1598 } while (pud++, addr = next, addr != end);
1599 return 0;
1600}
1601
bfa5bf6d
REB
1602/**
1603 * remap_pfn_range - remap kernel memory to userspace
1604 * @vma: user vma to map to
1605 * @addr: target user address to start at
1606 * @pfn: physical address of kernel memory
1607 * @size: size of map area
1608 * @prot: page protection flags for this mapping
1609 *
1610 * Note: this is only safe if the mm semaphore is held when called.
1611 */
1da177e4
LT
1612int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1613 unsigned long pfn, unsigned long size, pgprot_t prot)
1614{
1615 pgd_t *pgd;
1616 unsigned long next;
2d15cab8 1617 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1618 struct mm_struct *mm = vma->vm_mm;
1619 int err;
1620
1621 /*
1622 * Physically remapped pages are special. Tell the
1623 * rest of the world about it:
1624 * VM_IO tells people not to look at these pages
1625 * (accesses can have side effects).
0b14c179
HD
1626 * VM_RESERVED is specified all over the place, because
1627 * in 2.4 it kept swapout's vma scan off this vma; but
1628 * in 2.6 the LRU scan won't even find its pages, so this
1629 * flag means no more than count its pages in reserved_vm,
1630 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1631 * VM_PFNMAP tells the core MM that the base pages are just
1632 * raw PFN mappings, and do not have a "struct page" associated
1633 * with them.
fb155c16
LT
1634 *
1635 * There's a horrible special case to handle copy-on-write
1636 * behaviour that some programs depend on. We mark the "original"
1637 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1638 */
3c8bb73a 1639 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1640 vma->vm_pgoff = pfn;
3c8bb73a 1641 else if (is_cow_mapping(vma->vm_flags))
1642 return -EINVAL;
fb155c16 1643
6aab341e 1644 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1645
2ab64037 1646 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1647 if (err)
1648 return -EINVAL;
1649
1da177e4
LT
1650 BUG_ON(addr >= end);
1651 pfn -= addr >> PAGE_SHIFT;
1652 pgd = pgd_offset(mm, addr);
1653 flush_cache_range(vma, addr, end);
1da177e4
LT
1654 do {
1655 next = pgd_addr_end(addr, end);
1656 err = remap_pud_range(mm, pgd, addr, next,
1657 pfn + (addr >> PAGE_SHIFT), prot);
1658 if (err)
1659 break;
1660 } while (pgd++, addr = next, addr != end);
2ab64037 1661
1662 if (err)
1663 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1664
1da177e4
LT
1665 return err;
1666}
1667EXPORT_SYMBOL(remap_pfn_range);
1668
aee16b3c
JF
1669static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1670 unsigned long addr, unsigned long end,
1671 pte_fn_t fn, void *data)
1672{
1673 pte_t *pte;
1674 int err;
2f569afd 1675 pgtable_t token;
94909914 1676 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1677
1678 pte = (mm == &init_mm) ?
1679 pte_alloc_kernel(pmd, addr) :
1680 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1681 if (!pte)
1682 return -ENOMEM;
1683
1684 BUG_ON(pmd_huge(*pmd));
1685
38e0edb1
JF
1686 arch_enter_lazy_mmu_mode();
1687
2f569afd 1688 token = pmd_pgtable(*pmd);
aee16b3c
JF
1689
1690 do {
2f569afd 1691 err = fn(pte, token, addr, data);
aee16b3c
JF
1692 if (err)
1693 break;
1694 } while (pte++, addr += PAGE_SIZE, addr != end);
1695
38e0edb1
JF
1696 arch_leave_lazy_mmu_mode();
1697
aee16b3c
JF
1698 if (mm != &init_mm)
1699 pte_unmap_unlock(pte-1, ptl);
1700 return err;
1701}
1702
1703static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1704 unsigned long addr, unsigned long end,
1705 pte_fn_t fn, void *data)
1706{
1707 pmd_t *pmd;
1708 unsigned long next;
1709 int err;
1710
ceb86879
AK
1711 BUG_ON(pud_huge(*pud));
1712
aee16b3c
JF
1713 pmd = pmd_alloc(mm, pud, addr);
1714 if (!pmd)
1715 return -ENOMEM;
1716 do {
1717 next = pmd_addr_end(addr, end);
1718 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1719 if (err)
1720 break;
1721 } while (pmd++, addr = next, addr != end);
1722 return err;
1723}
1724
1725static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1726 unsigned long addr, unsigned long end,
1727 pte_fn_t fn, void *data)
1728{
1729 pud_t *pud;
1730 unsigned long next;
1731 int err;
1732
1733 pud = pud_alloc(mm, pgd, addr);
1734 if (!pud)
1735 return -ENOMEM;
1736 do {
1737 next = pud_addr_end(addr, end);
1738 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1739 if (err)
1740 break;
1741 } while (pud++, addr = next, addr != end);
1742 return err;
1743}
1744
1745/*
1746 * Scan a region of virtual memory, filling in page tables as necessary
1747 * and calling a provided function on each leaf page table.
1748 */
1749int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1750 unsigned long size, pte_fn_t fn, void *data)
1751{
1752 pgd_t *pgd;
1753 unsigned long next;
cddb8a5c 1754 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1755 int err;
1756
1757 BUG_ON(addr >= end);
cddb8a5c 1758 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1759 pgd = pgd_offset(mm, addr);
1760 do {
1761 next = pgd_addr_end(addr, end);
1762 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1763 if (err)
1764 break;
1765 } while (pgd++, addr = next, addr != end);
cddb8a5c 1766 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1767 return err;
1768}
1769EXPORT_SYMBOL_GPL(apply_to_page_range);
1770
8f4e2101
HD
1771/*
1772 * handle_pte_fault chooses page fault handler according to an entry
1773 * which was read non-atomically. Before making any commitment, on
1774 * those architectures or configurations (e.g. i386 with PAE) which
1775 * might give a mix of unmatched parts, do_swap_page and do_file_page
1776 * must check under lock before unmapping the pte and proceeding
1777 * (but do_wp_page is only called after already making such a check;
1778 * and do_anonymous_page and do_no_page can safely check later on).
1779 */
4c21e2f2 1780static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1781 pte_t *page_table, pte_t orig_pte)
1782{
1783 int same = 1;
1784#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1785 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1786 spinlock_t *ptl = pte_lockptr(mm, pmd);
1787 spin_lock(ptl);
8f4e2101 1788 same = pte_same(*page_table, orig_pte);
4c21e2f2 1789 spin_unlock(ptl);
8f4e2101
HD
1790 }
1791#endif
1792 pte_unmap(page_table);
1793 return same;
1794}
1795
1da177e4
LT
1796/*
1797 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1798 * servicing faults for write access. In the normal case, do always want
1799 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1800 * that do not have writing enabled, when used by access_process_vm.
1801 */
1802static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1803{
1804 if (likely(vma->vm_flags & VM_WRITE))
1805 pte = pte_mkwrite(pte);
1806 return pte;
1807}
1808
9de455b2 1809static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1810{
1811 /*
1812 * If the source page was a PFN mapping, we don't have
1813 * a "struct page" for it. We do a best-effort copy by
1814 * just copying from the original user address. If that
1815 * fails, we just zero-fill it. Live with it.
1816 */
1817 if (unlikely(!src)) {
1818 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1819 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1820
1821 /*
1822 * This really shouldn't fail, because the page is there
1823 * in the page tables. But it might just be unreadable,
1824 * in which case we just give up and fill the result with
1825 * zeroes.
1826 */
1827 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1828 memset(kaddr, 0, PAGE_SIZE);
1829 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1830 flush_dcache_page(dst);
0ed361de
NP
1831 } else
1832 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1833}
1834
1da177e4
LT
1835/*
1836 * This routine handles present pages, when users try to write
1837 * to a shared page. It is done by copying the page to a new address
1838 * and decrementing the shared-page counter for the old page.
1839 *
1da177e4
LT
1840 * Note that this routine assumes that the protection checks have been
1841 * done by the caller (the low-level page fault routine in most cases).
1842 * Thus we can safely just mark it writable once we've done any necessary
1843 * COW.
1844 *
1845 * We also mark the page dirty at this point even though the page will
1846 * change only once the write actually happens. This avoids a few races,
1847 * and potentially makes it more efficient.
1848 *
8f4e2101
HD
1849 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1850 * but allow concurrent faults), with pte both mapped and locked.
1851 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1852 */
65500d23
HD
1853static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1854 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1855 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1856{
e5bbe4df 1857 struct page *old_page, *new_page;
1da177e4 1858 pte_t entry;
83c54070 1859 int reuse = 0, ret = 0;
a200ee18 1860 int page_mkwrite = 0;
d08b3851 1861 struct page *dirty_page = NULL;
1da177e4 1862
6aab341e 1863 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1864 if (!old_page) {
1865 /*
1866 * VM_MIXEDMAP !pfn_valid() case
1867 *
1868 * We should not cow pages in a shared writeable mapping.
1869 * Just mark the pages writable as we can't do any dirty
1870 * accounting on raw pfn maps.
1871 */
1872 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1873 (VM_WRITE|VM_SHARED))
1874 goto reuse;
6aab341e 1875 goto gotten;
251b97f5 1876 }
1da177e4 1877
d08b3851 1878 /*
ee6a6457
PZ
1879 * Take out anonymous pages first, anonymous shared vmas are
1880 * not dirty accountable.
d08b3851 1881 */
ee6a6457 1882 if (PageAnon(old_page)) {
ab967d86
HD
1883 if (!trylock_page(old_page)) {
1884 page_cache_get(old_page);
1885 pte_unmap_unlock(page_table, ptl);
1886 lock_page(old_page);
1887 page_table = pte_offset_map_lock(mm, pmd, address,
1888 &ptl);
1889 if (!pte_same(*page_table, orig_pte)) {
1890 unlock_page(old_page);
1891 page_cache_release(old_page);
1892 goto unlock;
1893 }
1894 page_cache_release(old_page);
ee6a6457 1895 }
7b1fe597 1896 reuse = reuse_swap_page(old_page);
ab967d86 1897 unlock_page(old_page);
ee6a6457 1898 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1899 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1900 /*
1901 * Only catch write-faults on shared writable pages,
1902 * read-only shared pages can get COWed by
1903 * get_user_pages(.write=1, .force=1).
1904 */
9637a5ef
DH
1905 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1906 /*
1907 * Notify the address space that the page is about to
1908 * become writable so that it can prohibit this or wait
1909 * for the page to get into an appropriate state.
1910 *
1911 * We do this without the lock held, so that it can
1912 * sleep if it needs to.
1913 */
1914 page_cache_get(old_page);
1915 pte_unmap_unlock(page_table, ptl);
1916
1917 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1918 goto unwritable_page;
1919
9637a5ef
DH
1920 /*
1921 * Since we dropped the lock we need to revalidate
1922 * the PTE as someone else may have changed it. If
1923 * they did, we just return, as we can count on the
1924 * MMU to tell us if they didn't also make it writable.
1925 */
1926 page_table = pte_offset_map_lock(mm, pmd, address,
1927 &ptl);
c3704ceb 1928 page_cache_release(old_page);
9637a5ef
DH
1929 if (!pte_same(*page_table, orig_pte))
1930 goto unlock;
a200ee18
PZ
1931
1932 page_mkwrite = 1;
1da177e4 1933 }
d08b3851
PZ
1934 dirty_page = old_page;
1935 get_page(dirty_page);
9637a5ef 1936 reuse = 1;
9637a5ef
DH
1937 }
1938
1939 if (reuse) {
251b97f5 1940reuse:
9637a5ef
DH
1941 flush_cache_page(vma, address, pte_pfn(orig_pte));
1942 entry = pte_mkyoung(orig_pte);
1943 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1944 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1945 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1946 ret |= VM_FAULT_WRITE;
1947 goto unlock;
1da177e4 1948 }
1da177e4
LT
1949
1950 /*
1951 * Ok, we need to copy. Oh, well..
1952 */
b5810039 1953 page_cache_get(old_page);
920fc356 1954gotten:
8f4e2101 1955 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1956
1957 if (unlikely(anon_vma_prepare(vma)))
65500d23 1958 goto oom;
557ed1fa
NP
1959 VM_BUG_ON(old_page == ZERO_PAGE(0));
1960 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1961 if (!new_page)
1962 goto oom;
b291f000
NP
1963 /*
1964 * Don't let another task, with possibly unlocked vma,
1965 * keep the mlocked page.
1966 */
1967 if (vma->vm_flags & VM_LOCKED) {
1968 lock_page(old_page); /* for LRU manipulation */
1969 clear_page_mlock(old_page);
1970 unlock_page(old_page);
1971 }
557ed1fa 1972 cow_user_page(new_page, old_page, address, vma);
0ed361de 1973 __SetPageUptodate(new_page);
65500d23 1974
e1a1cd59 1975 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1976 goto oom_free_new;
1977
1da177e4
LT
1978 /*
1979 * Re-check the pte - we dropped the lock
1980 */
8f4e2101 1981 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1982 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1983 if (old_page) {
920fc356
HD
1984 if (!PageAnon(old_page)) {
1985 dec_mm_counter(mm, file_rss);
1986 inc_mm_counter(mm, anon_rss);
1987 }
1988 } else
4294621f 1989 inc_mm_counter(mm, anon_rss);
eca35133 1990 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1991 entry = mk_pte(new_page, vma->vm_page_prot);
1992 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1993 /*
1994 * Clear the pte entry and flush it first, before updating the
1995 * pte with the new entry. This will avoid a race condition
1996 * seen in the presence of one thread doing SMC and another
1997 * thread doing COW.
1998 */
cddb8a5c 1999 ptep_clear_flush_notify(vma, address, page_table);
9617d95e 2000 page_add_new_anon_rmap(new_page, vma, address);
64d6519d
LS
2001 set_pte_at(mm, address, page_table, entry);
2002 update_mmu_cache(vma, address, entry);
945754a1
NP
2003 if (old_page) {
2004 /*
2005 * Only after switching the pte to the new page may
2006 * we remove the mapcount here. Otherwise another
2007 * process may come and find the rmap count decremented
2008 * before the pte is switched to the new page, and
2009 * "reuse" the old page writing into it while our pte
2010 * here still points into it and can be read by other
2011 * threads.
2012 *
2013 * The critical issue is to order this
2014 * page_remove_rmap with the ptp_clear_flush above.
2015 * Those stores are ordered by (if nothing else,)
2016 * the barrier present in the atomic_add_negative
2017 * in page_remove_rmap.
2018 *
2019 * Then the TLB flush in ptep_clear_flush ensures that
2020 * no process can access the old page before the
2021 * decremented mapcount is visible. And the old page
2022 * cannot be reused until after the decremented
2023 * mapcount is visible. So transitively, TLBs to
2024 * old page will be flushed before it can be reused.
2025 */
2026 page_remove_rmap(old_page, vma);
2027 }
2028
1da177e4
LT
2029 /* Free the old page.. */
2030 new_page = old_page;
f33ea7f4 2031 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2032 } else
2033 mem_cgroup_uncharge_page(new_page);
2034
920fc356
HD
2035 if (new_page)
2036 page_cache_release(new_page);
2037 if (old_page)
2038 page_cache_release(old_page);
65500d23 2039unlock:
8f4e2101 2040 pte_unmap_unlock(page_table, ptl);
d08b3851 2041 if (dirty_page) {
8f7b3d15
AS
2042 if (vma->vm_file)
2043 file_update_time(vma->vm_file);
2044
79352894
NP
2045 /*
2046 * Yes, Virginia, this is actually required to prevent a race
2047 * with clear_page_dirty_for_io() from clearing the page dirty
2048 * bit after it clear all dirty ptes, but before a racing
2049 * do_wp_page installs a dirty pte.
2050 *
2051 * do_no_page is protected similarly.
2052 */
2053 wait_on_page_locked(dirty_page);
a200ee18 2054 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2055 put_page(dirty_page);
2056 }
f33ea7f4 2057 return ret;
8a9f3ccd 2058oom_free_new:
6dbf6d3b 2059 page_cache_release(new_page);
65500d23 2060oom:
920fc356
HD
2061 if (old_page)
2062 page_cache_release(old_page);
1da177e4 2063 return VM_FAULT_OOM;
9637a5ef
DH
2064
2065unwritable_page:
2066 page_cache_release(old_page);
2067 return VM_FAULT_SIGBUS;
1da177e4
LT
2068}
2069
2070/*
2071 * Helper functions for unmap_mapping_range().
2072 *
2073 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2074 *
2075 * We have to restart searching the prio_tree whenever we drop the lock,
2076 * since the iterator is only valid while the lock is held, and anyway
2077 * a later vma might be split and reinserted earlier while lock dropped.
2078 *
2079 * The list of nonlinear vmas could be handled more efficiently, using
2080 * a placeholder, but handle it in the same way until a need is shown.
2081 * It is important to search the prio_tree before nonlinear list: a vma
2082 * may become nonlinear and be shifted from prio_tree to nonlinear list
2083 * while the lock is dropped; but never shifted from list to prio_tree.
2084 *
2085 * In order to make forward progress despite restarting the search,
2086 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2087 * quickly skip it next time around. Since the prio_tree search only
2088 * shows us those vmas affected by unmapping the range in question, we
2089 * can't efficiently keep all vmas in step with mapping->truncate_count:
2090 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2091 * mapping->truncate_count and vma->vm_truncate_count are protected by
2092 * i_mmap_lock.
2093 *
2094 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2095 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2096 * and restart from that address when we reach that vma again. It might
2097 * have been split or merged, shrunk or extended, but never shifted: so
2098 * restart_addr remains valid so long as it remains in the vma's range.
2099 * unmap_mapping_range forces truncate_count to leap over page-aligned
2100 * values so we can save vma's restart_addr in its truncate_count field.
2101 */
2102#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2103
2104static void reset_vma_truncate_counts(struct address_space *mapping)
2105{
2106 struct vm_area_struct *vma;
2107 struct prio_tree_iter iter;
2108
2109 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2110 vma->vm_truncate_count = 0;
2111 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2112 vma->vm_truncate_count = 0;
2113}
2114
2115static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2116 unsigned long start_addr, unsigned long end_addr,
2117 struct zap_details *details)
2118{
2119 unsigned long restart_addr;
2120 int need_break;
2121
d00806b1
NP
2122 /*
2123 * files that support invalidating or truncating portions of the
d0217ac0 2124 * file from under mmaped areas must have their ->fault function
83c54070
NP
2125 * return a locked page (and set VM_FAULT_LOCKED in the return).
2126 * This provides synchronisation against concurrent unmapping here.
d00806b1 2127 */
d00806b1 2128
1da177e4
LT
2129again:
2130 restart_addr = vma->vm_truncate_count;
2131 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2132 start_addr = restart_addr;
2133 if (start_addr >= end_addr) {
2134 /* Top of vma has been split off since last time */
2135 vma->vm_truncate_count = details->truncate_count;
2136 return 0;
2137 }
2138 }
2139
ee39b37b
HD
2140 restart_addr = zap_page_range(vma, start_addr,
2141 end_addr - start_addr, details);
95c354fe 2142 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2143
ee39b37b 2144 if (restart_addr >= end_addr) {
1da177e4
LT
2145 /* We have now completed this vma: mark it so */
2146 vma->vm_truncate_count = details->truncate_count;
2147 if (!need_break)
2148 return 0;
2149 } else {
2150 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2151 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2152 if (!need_break)
2153 goto again;
2154 }
2155
2156 spin_unlock(details->i_mmap_lock);
2157 cond_resched();
2158 spin_lock(details->i_mmap_lock);
2159 return -EINTR;
2160}
2161
2162static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2163 struct zap_details *details)
2164{
2165 struct vm_area_struct *vma;
2166 struct prio_tree_iter iter;
2167 pgoff_t vba, vea, zba, zea;
2168
2169restart:
2170 vma_prio_tree_foreach(vma, &iter, root,
2171 details->first_index, details->last_index) {
2172 /* Skip quickly over those we have already dealt with */
2173 if (vma->vm_truncate_count == details->truncate_count)
2174 continue;
2175
2176 vba = vma->vm_pgoff;
2177 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2178 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2179 zba = details->first_index;
2180 if (zba < vba)
2181 zba = vba;
2182 zea = details->last_index;
2183 if (zea > vea)
2184 zea = vea;
2185
2186 if (unmap_mapping_range_vma(vma,
2187 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2188 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2189 details) < 0)
2190 goto restart;
2191 }
2192}
2193
2194static inline void unmap_mapping_range_list(struct list_head *head,
2195 struct zap_details *details)
2196{
2197 struct vm_area_struct *vma;
2198
2199 /*
2200 * In nonlinear VMAs there is no correspondence between virtual address
2201 * offset and file offset. So we must perform an exhaustive search
2202 * across *all* the pages in each nonlinear VMA, not just the pages
2203 * whose virtual address lies outside the file truncation point.
2204 */
2205restart:
2206 list_for_each_entry(vma, head, shared.vm_set.list) {
2207 /* Skip quickly over those we have already dealt with */
2208 if (vma->vm_truncate_count == details->truncate_count)
2209 continue;
2210 details->nonlinear_vma = vma;
2211 if (unmap_mapping_range_vma(vma, vma->vm_start,
2212 vma->vm_end, details) < 0)
2213 goto restart;
2214 }
2215}
2216
2217/**
72fd4a35 2218 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2219 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2220 * @holebegin: byte in first page to unmap, relative to the start of
2221 * the underlying file. This will be rounded down to a PAGE_SIZE
2222 * boundary. Note that this is different from vmtruncate(), which
2223 * must keep the partial page. In contrast, we must get rid of
2224 * partial pages.
2225 * @holelen: size of prospective hole in bytes. This will be rounded
2226 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2227 * end of the file.
2228 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2229 * but 0 when invalidating pagecache, don't throw away private data.
2230 */
2231void unmap_mapping_range(struct address_space *mapping,
2232 loff_t const holebegin, loff_t const holelen, int even_cows)
2233{
2234 struct zap_details details;
2235 pgoff_t hba = holebegin >> PAGE_SHIFT;
2236 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2237
2238 /* Check for overflow. */
2239 if (sizeof(holelen) > sizeof(hlen)) {
2240 long long holeend =
2241 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2242 if (holeend & ~(long long)ULONG_MAX)
2243 hlen = ULONG_MAX - hba + 1;
2244 }
2245
2246 details.check_mapping = even_cows? NULL: mapping;
2247 details.nonlinear_vma = NULL;
2248 details.first_index = hba;
2249 details.last_index = hba + hlen - 1;
2250 if (details.last_index < details.first_index)
2251 details.last_index = ULONG_MAX;
2252 details.i_mmap_lock = &mapping->i_mmap_lock;
2253
2254 spin_lock(&mapping->i_mmap_lock);
2255
d00806b1 2256 /* Protect against endless unmapping loops */
1da177e4 2257 mapping->truncate_count++;
1da177e4
LT
2258 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2259 if (mapping->truncate_count == 0)
2260 reset_vma_truncate_counts(mapping);
2261 mapping->truncate_count++;
2262 }
2263 details.truncate_count = mapping->truncate_count;
2264
2265 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2266 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2267 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2268 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2269 spin_unlock(&mapping->i_mmap_lock);
2270}
2271EXPORT_SYMBOL(unmap_mapping_range);
2272
bfa5bf6d
REB
2273/**
2274 * vmtruncate - unmap mappings "freed" by truncate() syscall
2275 * @inode: inode of the file used
2276 * @offset: file offset to start truncating
1da177e4
LT
2277 *
2278 * NOTE! We have to be ready to update the memory sharing
2279 * between the file and the memory map for a potential last
2280 * incomplete page. Ugly, but necessary.
2281 */
2282int vmtruncate(struct inode * inode, loff_t offset)
2283{
61d5048f
CH
2284 if (inode->i_size < offset) {
2285 unsigned long limit;
2286
2287 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2288 if (limit != RLIM_INFINITY && offset > limit)
2289 goto out_sig;
2290 if (offset > inode->i_sb->s_maxbytes)
2291 goto out_big;
2292 i_size_write(inode, offset);
2293 } else {
2294 struct address_space *mapping = inode->i_mapping;
1da177e4 2295
61d5048f
CH
2296 /*
2297 * truncation of in-use swapfiles is disallowed - it would
2298 * cause subsequent swapout to scribble on the now-freed
2299 * blocks.
2300 */
2301 if (IS_SWAPFILE(inode))
2302 return -ETXTBSY;
2303 i_size_write(inode, offset);
2304
2305 /*
2306 * unmap_mapping_range is called twice, first simply for
2307 * efficiency so that truncate_inode_pages does fewer
2308 * single-page unmaps. However after this first call, and
2309 * before truncate_inode_pages finishes, it is possible for
2310 * private pages to be COWed, which remain after
2311 * truncate_inode_pages finishes, hence the second
2312 * unmap_mapping_range call must be made for correctness.
2313 */
2314 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2315 truncate_inode_pages(mapping, offset);
2316 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2317 }
d00806b1 2318
acfa4380 2319 if (inode->i_op->truncate)
1da177e4
LT
2320 inode->i_op->truncate(inode);
2321 return 0;
61d5048f 2322
1da177e4
LT
2323out_sig:
2324 send_sig(SIGXFSZ, current, 0);
2325out_big:
2326 return -EFBIG;
1da177e4 2327}
1da177e4
LT
2328EXPORT_SYMBOL(vmtruncate);
2329
f6b3ec23
BP
2330int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2331{
2332 struct address_space *mapping = inode->i_mapping;
2333
2334 /*
2335 * If the underlying filesystem is not going to provide
2336 * a way to truncate a range of blocks (punch a hole) -
2337 * we should return failure right now.
2338 */
acfa4380 2339 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2340 return -ENOSYS;
2341
1b1dcc1b 2342 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2343 down_write(&inode->i_alloc_sem);
2344 unmap_mapping_range(mapping, offset, (end - offset), 1);
2345 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2346 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2347 inode->i_op->truncate_range(inode, offset, end);
2348 up_write(&inode->i_alloc_sem);
1b1dcc1b 2349 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2350
2351 return 0;
2352}
f6b3ec23 2353
1da177e4 2354/*
8f4e2101
HD
2355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2356 * but allow concurrent faults), and pte mapped but not yet locked.
2357 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2358 */
65500d23
HD
2359static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2360 unsigned long address, pte_t *page_table, pmd_t *pmd,
2361 int write_access, pte_t orig_pte)
1da177e4 2362{
8f4e2101 2363 spinlock_t *ptl;
1da177e4 2364 struct page *page;
65500d23 2365 swp_entry_t entry;
1da177e4 2366 pte_t pte;
83c54070 2367 int ret = 0;
1da177e4 2368
4c21e2f2 2369 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2370 goto out;
65500d23
HD
2371
2372 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2373 if (is_migration_entry(entry)) {
2374 migration_entry_wait(mm, pmd, address);
2375 goto out;
2376 }
0ff92245 2377 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2378 page = lookup_swap_cache(entry);
2379 if (!page) {
098fe651 2380 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2381 page = swapin_readahead(entry,
2382 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2383 if (!page) {
2384 /*
8f4e2101
HD
2385 * Back out if somebody else faulted in this pte
2386 * while we released the pte lock.
1da177e4 2387 */
8f4e2101 2388 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2389 if (likely(pte_same(*page_table, orig_pte)))
2390 ret = VM_FAULT_OOM;
0ff92245 2391 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2392 goto unlock;
1da177e4
LT
2393 }
2394
2395 /* Had to read the page from swap area: Major fault */
2396 ret = VM_FAULT_MAJOR;
f8891e5e 2397 count_vm_event(PGMAJFAULT);
1da177e4
LT
2398 }
2399
073e587e
KH
2400 mark_page_accessed(page);
2401
2402 lock_page(page);
2403 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2404
e1a1cd59 2405 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd 2406 ret = VM_FAULT_OOM;
073e587e 2407 unlock_page(page);
8a9f3ccd
BS
2408 goto out;
2409 }
2410
1da177e4 2411 /*
8f4e2101 2412 * Back out if somebody else already faulted in this pte.
1da177e4 2413 */
8f4e2101 2414 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2415 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2416 goto out_nomap;
b8107480
KK
2417
2418 if (unlikely(!PageUptodate(page))) {
2419 ret = VM_FAULT_SIGBUS;
2420 goto out_nomap;
1da177e4
LT
2421 }
2422
2423 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2424
4294621f 2425 inc_mm_counter(mm, anon_rss);
1da177e4 2426 pte = mk_pte(page, vma->vm_page_prot);
7b1fe597 2427 if (write_access && reuse_swap_page(page)) {
1da177e4
LT
2428 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2429 write_access = 0;
2430 }
1da177e4
LT
2431
2432 flush_icache_page(vma, page);
2433 set_pte_at(mm, address, page_table, pte);
2434 page_add_anon_rmap(page, vma, address);
2435
c475a8ab 2436 swap_free(entry);
b291f000 2437 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2438 try_to_free_swap(page);
c475a8ab
HD
2439 unlock_page(page);
2440
1da177e4 2441 if (write_access) {
61469f1d
HD
2442 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2443 if (ret & VM_FAULT_ERROR)
2444 ret &= VM_FAULT_ERROR;
1da177e4
LT
2445 goto out;
2446 }
2447
2448 /* No need to invalidate - it was non-present before */
2449 update_mmu_cache(vma, address, pte);
65500d23 2450unlock:
8f4e2101 2451 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2452out:
2453 return ret;
b8107480 2454out_nomap:
8a9f3ccd 2455 mem_cgroup_uncharge_page(page);
8f4e2101 2456 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2457 unlock_page(page);
2458 page_cache_release(page);
65500d23 2459 return ret;
1da177e4
LT
2460}
2461
2462/*
8f4e2101
HD
2463 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464 * but allow concurrent faults), and pte mapped but not yet locked.
2465 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2466 */
65500d23
HD
2467static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2468 unsigned long address, pte_t *page_table, pmd_t *pmd,
2469 int write_access)
1da177e4 2470{
8f4e2101
HD
2471 struct page *page;
2472 spinlock_t *ptl;
1da177e4 2473 pte_t entry;
1da177e4 2474
557ed1fa
NP
2475 /* Allocate our own private page. */
2476 pte_unmap(page_table);
8f4e2101 2477
557ed1fa
NP
2478 if (unlikely(anon_vma_prepare(vma)))
2479 goto oom;
2480 page = alloc_zeroed_user_highpage_movable(vma, address);
2481 if (!page)
2482 goto oom;
0ed361de 2483 __SetPageUptodate(page);
8f4e2101 2484
e1a1cd59 2485 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2486 goto oom_free_page;
2487
557ed1fa
NP
2488 entry = mk_pte(page, vma->vm_page_prot);
2489 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2490
557ed1fa
NP
2491 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2492 if (!pte_none(*page_table))
2493 goto release;
2494 inc_mm_counter(mm, anon_rss);
557ed1fa 2495 page_add_new_anon_rmap(page, vma, address);
65500d23 2496 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2497
2498 /* No need to invalidate - it was non-present before */
65500d23 2499 update_mmu_cache(vma, address, entry);
65500d23 2500unlock:
8f4e2101 2501 pte_unmap_unlock(page_table, ptl);
83c54070 2502 return 0;
8f4e2101 2503release:
8a9f3ccd 2504 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2505 page_cache_release(page);
2506 goto unlock;
8a9f3ccd 2507oom_free_page:
6dbf6d3b 2508 page_cache_release(page);
65500d23 2509oom:
1da177e4
LT
2510 return VM_FAULT_OOM;
2511}
2512
2513/*
54cb8821 2514 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2515 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2516 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2517 * the next page fault.
1da177e4
LT
2518 *
2519 * As this is called only for pages that do not currently exist, we
2520 * do not need to flush old virtual caches or the TLB.
2521 *
8f4e2101 2522 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2523 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2524 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2525 */
54cb8821 2526static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2527 unsigned long address, pmd_t *pmd,
54cb8821 2528 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2529{
16abfa08 2530 pte_t *page_table;
8f4e2101 2531 spinlock_t *ptl;
d0217ac0 2532 struct page *page;
1da177e4 2533 pte_t entry;
1da177e4 2534 int anon = 0;
5b4e655e 2535 int charged = 0;
d08b3851 2536 struct page *dirty_page = NULL;
d0217ac0
NP
2537 struct vm_fault vmf;
2538 int ret;
a200ee18 2539 int page_mkwrite = 0;
54cb8821 2540
d0217ac0
NP
2541 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2542 vmf.pgoff = pgoff;
2543 vmf.flags = flags;
2544 vmf.page = NULL;
1da177e4 2545
3c18ddd1
NP
2546 ret = vma->vm_ops->fault(vma, &vmf);
2547 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2548 return ret;
1da177e4 2549
d00806b1 2550 /*
d0217ac0 2551 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2552 * locked.
2553 */
83c54070 2554 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2555 lock_page(vmf.page);
54cb8821 2556 else
d0217ac0 2557 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2558
1da177e4
LT
2559 /*
2560 * Should we do an early C-O-W break?
2561 */
d0217ac0 2562 page = vmf.page;
54cb8821 2563 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2564 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2565 anon = 1;
d00806b1 2566 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2567 ret = VM_FAULT_OOM;
54cb8821 2568 goto out;
d00806b1 2569 }
83c54070
NP
2570 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2571 vma, address);
d00806b1 2572 if (!page) {
d0217ac0 2573 ret = VM_FAULT_OOM;
54cb8821 2574 goto out;
d00806b1 2575 }
5b4e655e
KH
2576 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2577 ret = VM_FAULT_OOM;
2578 page_cache_release(page);
2579 goto out;
2580 }
2581 charged = 1;
b291f000
NP
2582 /*
2583 * Don't let another task, with possibly unlocked vma,
2584 * keep the mlocked page.
2585 */
2586 if (vma->vm_flags & VM_LOCKED)
2587 clear_page_mlock(vmf.page);
d0217ac0 2588 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2589 __SetPageUptodate(page);
9637a5ef 2590 } else {
54cb8821
NP
2591 /*
2592 * If the page will be shareable, see if the backing
9637a5ef 2593 * address space wants to know that the page is about
54cb8821
NP
2594 * to become writable
2595 */
69676147
MF
2596 if (vma->vm_ops->page_mkwrite) {
2597 unlock_page(page);
2598 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2599 ret = VM_FAULT_SIGBUS;
2600 anon = 1; /* no anon but release vmf.page */
69676147
MF
2601 goto out_unlocked;
2602 }
2603 lock_page(page);
d0217ac0
NP
2604 /*
2605 * XXX: this is not quite right (racy vs
2606 * invalidate) to unlock and relock the page
2607 * like this, however a better fix requires
2608 * reworking page_mkwrite locking API, which
2609 * is better done later.
2610 */
2611 if (!page->mapping) {
83c54070 2612 ret = 0;
d0217ac0
NP
2613 anon = 1; /* no anon but release vmf.page */
2614 goto out;
2615 }
a200ee18 2616 page_mkwrite = 1;
9637a5ef
DH
2617 }
2618 }
54cb8821 2619
1da177e4
LT
2620 }
2621
8f4e2101 2622 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2623
2624 /*
2625 * This silly early PAGE_DIRTY setting removes a race
2626 * due to the bad i386 page protection. But it's valid
2627 * for other architectures too.
2628 *
2629 * Note that if write_access is true, we either now have
2630 * an exclusive copy of the page, or this is a shared mapping,
2631 * so we can make it writable and dirty to avoid having to
2632 * handle that later.
2633 */
2634 /* Only go through if we didn't race with anybody else... */
54cb8821 2635 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2636 flush_icache_page(vma, page);
2637 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2638 if (flags & FAULT_FLAG_WRITE)
1da177e4 2639 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2640 if (anon) {
64d6519d 2641 inc_mm_counter(mm, anon_rss);
64d6519d 2642 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2643 } else {
4294621f 2644 inc_mm_counter(mm, file_rss);
d00806b1 2645 page_add_file_rmap(page);
54cb8821 2646 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2647 dirty_page = page;
d08b3851
PZ
2648 get_page(dirty_page);
2649 }
4294621f 2650 }
64d6519d 2651 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2652
2653 /* no need to invalidate: a not-present page won't be cached */
2654 update_mmu_cache(vma, address, entry);
1da177e4 2655 } else {
5b4e655e
KH
2656 if (charged)
2657 mem_cgroup_uncharge_page(page);
d00806b1
NP
2658 if (anon)
2659 page_cache_release(page);
2660 else
54cb8821 2661 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2662 }
2663
8f4e2101 2664 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2665
2666out:
d0217ac0 2667 unlock_page(vmf.page);
69676147 2668out_unlocked:
d00806b1 2669 if (anon)
d0217ac0 2670 page_cache_release(vmf.page);
d00806b1 2671 else if (dirty_page) {
8f7b3d15
AS
2672 if (vma->vm_file)
2673 file_update_time(vma->vm_file);
2674
a200ee18 2675 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2676 put_page(dirty_page);
2677 }
d00806b1 2678
83c54070 2679 return ret;
54cb8821 2680}
d00806b1 2681
54cb8821
NP
2682static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2683 unsigned long address, pte_t *page_table, pmd_t *pmd,
2684 int write_access, pte_t orig_pte)
2685{
2686 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2687 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2688 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2689
16abfa08
HD
2690 pte_unmap(page_table);
2691 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2692}
2693
1da177e4
LT
2694/*
2695 * Fault of a previously existing named mapping. Repopulate the pte
2696 * from the encoded file_pte if possible. This enables swappable
2697 * nonlinear vmas.
8f4e2101
HD
2698 *
2699 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2700 * but allow concurrent faults), and pte mapped but not yet locked.
2701 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2702 */
d0217ac0 2703static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2704 unsigned long address, pte_t *page_table, pmd_t *pmd,
2705 int write_access, pte_t orig_pte)
1da177e4 2706{
d0217ac0
NP
2707 unsigned int flags = FAULT_FLAG_NONLINEAR |
2708 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2709 pgoff_t pgoff;
1da177e4 2710
4c21e2f2 2711 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2712 return 0;
1da177e4 2713
2509ef26 2714 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2715 /*
2716 * Page table corrupted: show pte and kill process.
2717 */
3dc14741 2718 print_bad_pte(vma, address, orig_pte, NULL);
65500d23
HD
2719 return VM_FAULT_OOM;
2720 }
65500d23
HD
2721
2722 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2723 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2724}
2725
2726/*
2727 * These routines also need to handle stuff like marking pages dirty
2728 * and/or accessed for architectures that don't do it in hardware (most
2729 * RISC architectures). The early dirtying is also good on the i386.
2730 *
2731 * There is also a hook called "update_mmu_cache()" that architectures
2732 * with external mmu caches can use to update those (ie the Sparc or
2733 * PowerPC hashed page tables that act as extended TLBs).
2734 *
c74df32c
HD
2735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736 * but allow concurrent faults), and pte mapped but not yet locked.
2737 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2738 */
2739static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2740 struct vm_area_struct *vma, unsigned long address,
2741 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2742{
2743 pte_t entry;
8f4e2101 2744 spinlock_t *ptl;
1da177e4 2745
8dab5241 2746 entry = *pte;
1da177e4 2747 if (!pte_present(entry)) {
65500d23 2748 if (pte_none(entry)) {
f4b81804 2749 if (vma->vm_ops) {
3c18ddd1 2750 if (likely(vma->vm_ops->fault))
54cb8821
NP
2751 return do_linear_fault(mm, vma, address,
2752 pte, pmd, write_access, entry);
f4b81804
JS
2753 }
2754 return do_anonymous_page(mm, vma, address,
2755 pte, pmd, write_access);
65500d23 2756 }
1da177e4 2757 if (pte_file(entry))
d0217ac0 2758 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2759 pte, pmd, write_access, entry);
2760 return do_swap_page(mm, vma, address,
2761 pte, pmd, write_access, entry);
1da177e4
LT
2762 }
2763
4c21e2f2 2764 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2765 spin_lock(ptl);
2766 if (unlikely(!pte_same(*pte, entry)))
2767 goto unlock;
1da177e4
LT
2768 if (write_access) {
2769 if (!pte_write(entry))
8f4e2101
HD
2770 return do_wp_page(mm, vma, address,
2771 pte, pmd, ptl, entry);
1da177e4
LT
2772 entry = pte_mkdirty(entry);
2773 }
2774 entry = pte_mkyoung(entry);
8dab5241 2775 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2776 update_mmu_cache(vma, address, entry);
1a44e149
AA
2777 } else {
2778 /*
2779 * This is needed only for protection faults but the arch code
2780 * is not yet telling us if this is a protection fault or not.
2781 * This still avoids useless tlb flushes for .text page faults
2782 * with threads.
2783 */
2784 if (write_access)
2785 flush_tlb_page(vma, address);
2786 }
8f4e2101
HD
2787unlock:
2788 pte_unmap_unlock(pte, ptl);
83c54070 2789 return 0;
1da177e4
LT
2790}
2791
2792/*
2793 * By the time we get here, we already hold the mm semaphore
2794 */
83c54070 2795int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2796 unsigned long address, int write_access)
2797{
2798 pgd_t *pgd;
2799 pud_t *pud;
2800 pmd_t *pmd;
2801 pte_t *pte;
2802
2803 __set_current_state(TASK_RUNNING);
2804
f8891e5e 2805 count_vm_event(PGFAULT);
1da177e4 2806
ac9b9c66
HD
2807 if (unlikely(is_vm_hugetlb_page(vma)))
2808 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2809
1da177e4 2810 pgd = pgd_offset(mm, address);
1da177e4
LT
2811 pud = pud_alloc(mm, pgd, address);
2812 if (!pud)
c74df32c 2813 return VM_FAULT_OOM;
1da177e4
LT
2814 pmd = pmd_alloc(mm, pud, address);
2815 if (!pmd)
c74df32c 2816 return VM_FAULT_OOM;
1da177e4
LT
2817 pte = pte_alloc_map(mm, pmd, address);
2818 if (!pte)
c74df32c 2819 return VM_FAULT_OOM;
1da177e4 2820
c74df32c 2821 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2822}
2823
2824#ifndef __PAGETABLE_PUD_FOLDED
2825/*
2826 * Allocate page upper directory.
872fec16 2827 * We've already handled the fast-path in-line.
1da177e4 2828 */
1bb3630e 2829int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2830{
c74df32c
HD
2831 pud_t *new = pud_alloc_one(mm, address);
2832 if (!new)
1bb3630e 2833 return -ENOMEM;
1da177e4 2834
362a61ad
NP
2835 smp_wmb(); /* See comment in __pte_alloc */
2836
872fec16 2837 spin_lock(&mm->page_table_lock);
1bb3630e 2838 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2839 pud_free(mm, new);
1bb3630e
HD
2840 else
2841 pgd_populate(mm, pgd, new);
c74df32c 2842 spin_unlock(&mm->page_table_lock);
1bb3630e 2843 return 0;
1da177e4
LT
2844}
2845#endif /* __PAGETABLE_PUD_FOLDED */
2846
2847#ifndef __PAGETABLE_PMD_FOLDED
2848/*
2849 * Allocate page middle directory.
872fec16 2850 * We've already handled the fast-path in-line.
1da177e4 2851 */
1bb3630e 2852int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2853{
c74df32c
HD
2854 pmd_t *new = pmd_alloc_one(mm, address);
2855 if (!new)
1bb3630e 2856 return -ENOMEM;
1da177e4 2857
362a61ad
NP
2858 smp_wmb(); /* See comment in __pte_alloc */
2859
872fec16 2860 spin_lock(&mm->page_table_lock);
1da177e4 2861#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2862 if (pud_present(*pud)) /* Another has populated it */
5e541973 2863 pmd_free(mm, new);
1bb3630e
HD
2864 else
2865 pud_populate(mm, pud, new);
1da177e4 2866#else
1bb3630e 2867 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2868 pmd_free(mm, new);
1bb3630e
HD
2869 else
2870 pgd_populate(mm, pud, new);
1da177e4 2871#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2872 spin_unlock(&mm->page_table_lock);
1bb3630e 2873 return 0;
e0f39591 2874}
1da177e4
LT
2875#endif /* __PAGETABLE_PMD_FOLDED */
2876
2877int make_pages_present(unsigned long addr, unsigned long end)
2878{
2879 int ret, len, write;
2880 struct vm_area_struct * vma;
2881
2882 vma = find_vma(current->mm, addr);
2883 if (!vma)
a477097d 2884 return -ENOMEM;
1da177e4 2885 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2886 BUG_ON(addr >= end);
2887 BUG_ON(end > vma->vm_end);
68e116a3 2888 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2889 ret = get_user_pages(current, current->mm, addr,
2890 len, write, 0, NULL, NULL);
c11d69d8 2891 if (ret < 0)
1da177e4 2892 return ret;
9978ad58 2893 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2894}
2895
1da177e4
LT
2896#if !defined(__HAVE_ARCH_GATE_AREA)
2897
2898#if defined(AT_SYSINFO_EHDR)
5ce7852c 2899static struct vm_area_struct gate_vma;
1da177e4
LT
2900
2901static int __init gate_vma_init(void)
2902{
2903 gate_vma.vm_mm = NULL;
2904 gate_vma.vm_start = FIXADDR_USER_START;
2905 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2906 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2907 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2908 /*
2909 * Make sure the vDSO gets into every core dump.
2910 * Dumping its contents makes post-mortem fully interpretable later
2911 * without matching up the same kernel and hardware config to see
2912 * what PC values meant.
2913 */
2914 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2915 return 0;
2916}
2917__initcall(gate_vma_init);
2918#endif
2919
2920struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2921{
2922#ifdef AT_SYSINFO_EHDR
2923 return &gate_vma;
2924#else
2925 return NULL;
2926#endif
2927}
2928
2929int in_gate_area_no_task(unsigned long addr)
2930{
2931#ifdef AT_SYSINFO_EHDR
2932 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2933 return 1;
2934#endif
2935 return 0;
2936}
2937
2938#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2939
28b2ee20 2940#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 2941int follow_phys(struct vm_area_struct *vma,
2942 unsigned long address, unsigned int flags,
2943 unsigned long *prot, resource_size_t *phys)
28b2ee20
RR
2944{
2945 pgd_t *pgd;
2946 pud_t *pud;
2947 pmd_t *pmd;
2948 pte_t *ptep, pte;
2949 spinlock_t *ptl;
2950 resource_size_t phys_addr = 0;
2951 struct mm_struct *mm = vma->vm_mm;
d87fe660 2952 int ret = -EINVAL;
28b2ee20 2953
d87fe660 2954 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2955 goto out;
28b2ee20
RR
2956
2957 pgd = pgd_offset(mm, address);
2958 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
d87fe660 2959 goto out;
28b2ee20
RR
2960
2961 pud = pud_offset(pgd, address);
2962 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
d87fe660 2963 goto out;
28b2ee20
RR
2964
2965 pmd = pmd_offset(pud, address);
2966 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
d87fe660 2967 goto out;
28b2ee20
RR
2968
2969 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2970 if (pmd_huge(*pmd))
d87fe660 2971 goto out;
28b2ee20
RR
2972
2973 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2974 if (!ptep)
2975 goto out;
2976
2977 pte = *ptep;
2978 if (!pte_present(pte))
2979 goto unlock;
2980 if ((flags & FOLL_WRITE) && !pte_write(pte))
2981 goto unlock;
2982 phys_addr = pte_pfn(pte);
2983 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2984
2985 *prot = pgprot_val(pte_pgprot(pte));
d87fe660 2986 *phys = phys_addr;
2987 ret = 0;
28b2ee20
RR
2988
2989unlock:
2990 pte_unmap_unlock(ptep, ptl);
2991out:
d87fe660 2992 return ret;
28b2ee20
RR
2993}
2994
2995int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2996 void *buf, int len, int write)
2997{
2998 resource_size_t phys_addr;
2999 unsigned long prot = 0;
2bc7273b 3000 void __iomem *maddr;
28b2ee20
RR
3001 int offset = addr & (PAGE_SIZE-1);
3002
d87fe660 3003 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3004 return -EINVAL;
3005
3006 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3007 if (write)
3008 memcpy_toio(maddr + offset, buf, len);
3009 else
3010 memcpy_fromio(buf, maddr + offset, len);
3011 iounmap(maddr);
3012
3013 return len;
3014}
3015#endif
3016
0ec76a11
DH
3017/*
3018 * Access another process' address space.
3019 * Source/target buffer must be kernel space,
3020 * Do not walk the page table directly, use get_user_pages
3021 */
3022int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3023{
3024 struct mm_struct *mm;
3025 struct vm_area_struct *vma;
0ec76a11
DH
3026 void *old_buf = buf;
3027
3028 mm = get_task_mm(tsk);
3029 if (!mm)
3030 return 0;
3031
3032 down_read(&mm->mmap_sem);
183ff22b 3033 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3034 while (len) {
3035 int bytes, ret, offset;
3036 void *maddr;
28b2ee20 3037 struct page *page = NULL;
0ec76a11
DH
3038
3039 ret = get_user_pages(tsk, mm, addr, 1,
3040 write, 1, &page, &vma);
28b2ee20
RR
3041 if (ret <= 0) {
3042 /*
3043 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3044 * we can access using slightly different code.
3045 */
3046#ifdef CONFIG_HAVE_IOREMAP_PROT
3047 vma = find_vma(mm, addr);
3048 if (!vma)
3049 break;
3050 if (vma->vm_ops && vma->vm_ops->access)
3051 ret = vma->vm_ops->access(vma, addr, buf,
3052 len, write);
3053 if (ret <= 0)
3054#endif
3055 break;
3056 bytes = ret;
0ec76a11 3057 } else {
28b2ee20
RR
3058 bytes = len;
3059 offset = addr & (PAGE_SIZE-1);
3060 if (bytes > PAGE_SIZE-offset)
3061 bytes = PAGE_SIZE-offset;
3062
3063 maddr = kmap(page);
3064 if (write) {
3065 copy_to_user_page(vma, page, addr,
3066 maddr + offset, buf, bytes);
3067 set_page_dirty_lock(page);
3068 } else {
3069 copy_from_user_page(vma, page, addr,
3070 buf, maddr + offset, bytes);
3071 }
3072 kunmap(page);
3073 page_cache_release(page);
0ec76a11 3074 }
0ec76a11
DH
3075 len -= bytes;
3076 buf += bytes;
3077 addr += bytes;
3078 }
3079 up_read(&mm->mmap_sem);
3080 mmput(mm);
3081
3082 return buf - old_buf;
3083}
03252919
AK
3084
3085/*
3086 * Print the name of a VMA.
3087 */
3088void print_vma_addr(char *prefix, unsigned long ip)
3089{
3090 struct mm_struct *mm = current->mm;
3091 struct vm_area_struct *vma;
3092
e8bff74a
IM
3093 /*
3094 * Do not print if we are in atomic
3095 * contexts (in exception stacks, etc.):
3096 */
3097 if (preempt_count())
3098 return;
3099
03252919
AK
3100 down_read(&mm->mmap_sem);
3101 vma = find_vma(mm, ip);
3102 if (vma && vma->vm_file) {
3103 struct file *f = vma->vm_file;
3104 char *buf = (char *)__get_free_page(GFP_KERNEL);
3105 if (buf) {
3106 char *p, *s;
3107
cf28b486 3108 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3109 if (IS_ERR(p))
3110 p = "?";
3111 s = strrchr(p, '/');
3112 if (s)
3113 p = s+1;
3114 printk("%s%s[%lx+%lx]", prefix, p,
3115 vma->vm_start,
3116 vma->vm_end - vma->vm_start);
3117 free_page((unsigned long)buf);
3118 }
3119 }
3120 up_read(&current->mm->mmap_sem);
3121}
3ee1afa3
NP
3122
3123#ifdef CONFIG_PROVE_LOCKING
3124void might_fault(void)
3125{
3126 might_sleep();
3127 /*
3128 * it would be nicer only to annotate paths which are not under
3129 * pagefault_disable, however that requires a larger audit and
3130 * providing helpers like get_user_atomic.
3131 */
3132 if (!in_atomic() && current->mm)
3133 might_lock_read(&current->mm->mmap_sem);
3134}
3135EXPORT_SYMBOL(might_fault);
3136#endif