]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory-failure.c
HWPOISON: Use new shake_page in memory_failure
[net-next-2.6.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27/*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33#define DEBUG 1 /* remove me in 2.6.34 */
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/page-flags.h>
478c5ffc 37#include <linux/kernel-page-flags.h>
6a46079c 38#include <linux/sched.h>
01e00f88 39#include <linux/ksm.h>
6a46079c
AK
40#include <linux/rmap.h>
41#include <linux/pagemap.h>
42#include <linux/swap.h>
43#include <linux/backing-dev.h>
44#include "internal.h"
45
46int sysctl_memory_failure_early_kill __read_mostly = 0;
47
48int sysctl_memory_failure_recovery __read_mostly = 1;
49
50atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
51
1bfe5feb 52u32 hwpoison_filter_enable = 0;
7c116f2b
WF
53u32 hwpoison_filter_dev_major = ~0U;
54u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
55u64 hwpoison_filter_flags_mask;
56u64 hwpoison_filter_flags_value;
1bfe5feb 57EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
58EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
59EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
60EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
61EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
62
63static int hwpoison_filter_dev(struct page *p)
64{
65 struct address_space *mapping;
66 dev_t dev;
67
68 if (hwpoison_filter_dev_major == ~0U &&
69 hwpoison_filter_dev_minor == ~0U)
70 return 0;
71
72 /*
73 * page_mapping() does not accept slab page
74 */
75 if (PageSlab(p))
76 return -EINVAL;
77
78 mapping = page_mapping(p);
79 if (mapping == NULL || mapping->host == NULL)
80 return -EINVAL;
81
82 dev = mapping->host->i_sb->s_dev;
83 if (hwpoison_filter_dev_major != ~0U &&
84 hwpoison_filter_dev_major != MAJOR(dev))
85 return -EINVAL;
86 if (hwpoison_filter_dev_minor != ~0U &&
87 hwpoison_filter_dev_minor != MINOR(dev))
88 return -EINVAL;
89
90 return 0;
91}
92
478c5ffc
WF
93static int hwpoison_filter_flags(struct page *p)
94{
95 if (!hwpoison_filter_flags_mask)
96 return 0;
97
98 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
99 hwpoison_filter_flags_value)
100 return 0;
101 else
102 return -EINVAL;
103}
104
4fd466eb
AK
105/*
106 * This allows stress tests to limit test scope to a collection of tasks
107 * by putting them under some memcg. This prevents killing unrelated/important
108 * processes such as /sbin/init. Note that the target task may share clean
109 * pages with init (eg. libc text), which is harmless. If the target task
110 * share _dirty_ pages with another task B, the test scheme must make sure B
111 * is also included in the memcg. At last, due to race conditions this filter
112 * can only guarantee that the page either belongs to the memcg tasks, or is
113 * a freed page.
114 */
115#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
116u64 hwpoison_filter_memcg;
117EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
118static int hwpoison_filter_task(struct page *p)
119{
120 struct mem_cgroup *mem;
121 struct cgroup_subsys_state *css;
122 unsigned long ino;
123
124 if (!hwpoison_filter_memcg)
125 return 0;
126
127 mem = try_get_mem_cgroup_from_page(p);
128 if (!mem)
129 return -EINVAL;
130
131 css = mem_cgroup_css(mem);
132 /* root_mem_cgroup has NULL dentries */
133 if (!css->cgroup->dentry)
134 return -EINVAL;
135
136 ino = css->cgroup->dentry->d_inode->i_ino;
137 css_put(css);
138
139 if (ino != hwpoison_filter_memcg)
140 return -EINVAL;
141
142 return 0;
143}
144#else
145static int hwpoison_filter_task(struct page *p) { return 0; }
146#endif
147
7c116f2b
WF
148int hwpoison_filter(struct page *p)
149{
1bfe5feb
HL
150 if (!hwpoison_filter_enable)
151 return 0;
152
7c116f2b
WF
153 if (hwpoison_filter_dev(p))
154 return -EINVAL;
155
478c5ffc
WF
156 if (hwpoison_filter_flags(p))
157 return -EINVAL;
158
4fd466eb
AK
159 if (hwpoison_filter_task(p))
160 return -EINVAL;
161
7c116f2b
WF
162 return 0;
163}
164EXPORT_SYMBOL_GPL(hwpoison_filter);
165
6a46079c
AK
166/*
167 * Send all the processes who have the page mapped an ``action optional''
168 * signal.
169 */
170static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
171 unsigned long pfn)
172{
173 struct siginfo si;
174 int ret;
175
176 printk(KERN_ERR
177 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
178 pfn, t->comm, t->pid);
179 si.si_signo = SIGBUS;
180 si.si_errno = 0;
181 si.si_code = BUS_MCEERR_AO;
182 si.si_addr = (void *)addr;
183#ifdef __ARCH_SI_TRAPNO
184 si.si_trapno = trapno;
185#endif
186 si.si_addr_lsb = PAGE_SHIFT;
187 /*
188 * Don't use force here, it's convenient if the signal
189 * can be temporarily blocked.
190 * This could cause a loop when the user sets SIGBUS
191 * to SIG_IGN, but hopefully noone will do that?
192 */
193 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
194 if (ret < 0)
195 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
196 t->comm, t->pid, ret);
197 return ret;
198}
199
588f9ce6
AK
200/*
201 * When a unknown page type is encountered drain as many buffers as possible
202 * in the hope to turn the page into a LRU or free page, which we can handle.
203 */
204void shake_page(struct page *p)
205{
206 if (!PageSlab(p)) {
207 lru_add_drain_all();
208 if (PageLRU(p))
209 return;
210 drain_all_pages();
211 if (PageLRU(p) || is_free_buddy_page(p))
212 return;
213 }
214 /*
215 * Could call shrink_slab here (which would also
216 * shrink other caches). Unfortunately that might
217 * also access the corrupted page, which could be fatal.
218 */
219}
220EXPORT_SYMBOL_GPL(shake_page);
221
6a46079c
AK
222/*
223 * Kill all processes that have a poisoned page mapped and then isolate
224 * the page.
225 *
226 * General strategy:
227 * Find all processes having the page mapped and kill them.
228 * But we keep a page reference around so that the page is not
229 * actually freed yet.
230 * Then stash the page away
231 *
232 * There's no convenient way to get back to mapped processes
233 * from the VMAs. So do a brute-force search over all
234 * running processes.
235 *
236 * Remember that machine checks are not common (or rather
237 * if they are common you have other problems), so this shouldn't
238 * be a performance issue.
239 *
240 * Also there are some races possible while we get from the
241 * error detection to actually handle it.
242 */
243
244struct to_kill {
245 struct list_head nd;
246 struct task_struct *tsk;
247 unsigned long addr;
248 unsigned addr_valid:1;
249};
250
251/*
252 * Failure handling: if we can't find or can't kill a process there's
253 * not much we can do. We just print a message and ignore otherwise.
254 */
255
256/*
257 * Schedule a process for later kill.
258 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
259 * TBD would GFP_NOIO be enough?
260 */
261static void add_to_kill(struct task_struct *tsk, struct page *p,
262 struct vm_area_struct *vma,
263 struct list_head *to_kill,
264 struct to_kill **tkc)
265{
266 struct to_kill *tk;
267
268 if (*tkc) {
269 tk = *tkc;
270 *tkc = NULL;
271 } else {
272 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
273 if (!tk) {
274 printk(KERN_ERR
275 "MCE: Out of memory while machine check handling\n");
276 return;
277 }
278 }
279 tk->addr = page_address_in_vma(p, vma);
280 tk->addr_valid = 1;
281
282 /*
283 * In theory we don't have to kill when the page was
284 * munmaped. But it could be also a mremap. Since that's
285 * likely very rare kill anyways just out of paranoia, but use
286 * a SIGKILL because the error is not contained anymore.
287 */
288 if (tk->addr == -EFAULT) {
289 pr_debug("MCE: Unable to find user space address %lx in %s\n",
290 page_to_pfn(p), tsk->comm);
291 tk->addr_valid = 0;
292 }
293 get_task_struct(tsk);
294 tk->tsk = tsk;
295 list_add_tail(&tk->nd, to_kill);
296}
297
298/*
299 * Kill the processes that have been collected earlier.
300 *
301 * Only do anything when DOIT is set, otherwise just free the list
302 * (this is used for clean pages which do not need killing)
303 * Also when FAIL is set do a force kill because something went
304 * wrong earlier.
305 */
306static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
307 int fail, unsigned long pfn)
308{
309 struct to_kill *tk, *next;
310
311 list_for_each_entry_safe (tk, next, to_kill, nd) {
312 if (doit) {
313 /*
af901ca1 314 * In case something went wrong with munmapping
6a46079c
AK
315 * make sure the process doesn't catch the
316 * signal and then access the memory. Just kill it.
317 * the signal handlers
318 */
319 if (fail || tk->addr_valid == 0) {
320 printk(KERN_ERR
321 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
322 pfn, tk->tsk->comm, tk->tsk->pid);
323 force_sig(SIGKILL, tk->tsk);
324 }
325
326 /*
327 * In theory the process could have mapped
328 * something else on the address in-between. We could
329 * check for that, but we need to tell the
330 * process anyways.
331 */
332 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
333 pfn) < 0)
334 printk(KERN_ERR
335 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
336 pfn, tk->tsk->comm, tk->tsk->pid);
337 }
338 put_task_struct(tk->tsk);
339 kfree(tk);
340 }
341}
342
343static int task_early_kill(struct task_struct *tsk)
344{
345 if (!tsk->mm)
346 return 0;
347 if (tsk->flags & PF_MCE_PROCESS)
348 return !!(tsk->flags & PF_MCE_EARLY);
349 return sysctl_memory_failure_early_kill;
350}
351
352/*
353 * Collect processes when the error hit an anonymous page.
354 */
355static void collect_procs_anon(struct page *page, struct list_head *to_kill,
356 struct to_kill **tkc)
357{
358 struct vm_area_struct *vma;
359 struct task_struct *tsk;
360 struct anon_vma *av;
361
362 read_lock(&tasklist_lock);
363 av = page_lock_anon_vma(page);
364 if (av == NULL) /* Not actually mapped anymore */
365 goto out;
366 for_each_process (tsk) {
367 if (!task_early_kill(tsk))
368 continue;
369 list_for_each_entry (vma, &av->head, anon_vma_node) {
370 if (!page_mapped_in_vma(page, vma))
371 continue;
372 if (vma->vm_mm == tsk->mm)
373 add_to_kill(tsk, page, vma, to_kill, tkc);
374 }
375 }
376 page_unlock_anon_vma(av);
377out:
378 read_unlock(&tasklist_lock);
379}
380
381/*
382 * Collect processes when the error hit a file mapped page.
383 */
384static void collect_procs_file(struct page *page, struct list_head *to_kill,
385 struct to_kill **tkc)
386{
387 struct vm_area_struct *vma;
388 struct task_struct *tsk;
389 struct prio_tree_iter iter;
390 struct address_space *mapping = page->mapping;
391
392 /*
393 * A note on the locking order between the two locks.
394 * We don't rely on this particular order.
395 * If you have some other code that needs a different order
396 * feel free to switch them around. Or add a reverse link
397 * from mm_struct to task_struct, then this could be all
398 * done without taking tasklist_lock and looping over all tasks.
399 */
400
401 read_lock(&tasklist_lock);
402 spin_lock(&mapping->i_mmap_lock);
403 for_each_process(tsk) {
404 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
405
406 if (!task_early_kill(tsk))
407 continue;
408
409 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
410 pgoff) {
411 /*
412 * Send early kill signal to tasks where a vma covers
413 * the page but the corrupted page is not necessarily
414 * mapped it in its pte.
415 * Assume applications who requested early kill want
416 * to be informed of all such data corruptions.
417 */
418 if (vma->vm_mm == tsk->mm)
419 add_to_kill(tsk, page, vma, to_kill, tkc);
420 }
421 }
422 spin_unlock(&mapping->i_mmap_lock);
423 read_unlock(&tasklist_lock);
424}
425
426/*
427 * Collect the processes who have the corrupted page mapped to kill.
428 * This is done in two steps for locking reasons.
429 * First preallocate one tokill structure outside the spin locks,
430 * so that we can kill at least one process reasonably reliable.
431 */
432static void collect_procs(struct page *page, struct list_head *tokill)
433{
434 struct to_kill *tk;
435
436 if (!page->mapping)
437 return;
438
439 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
440 if (!tk)
441 return;
442 if (PageAnon(page))
443 collect_procs_anon(page, tokill, &tk);
444 else
445 collect_procs_file(page, tokill, &tk);
446 kfree(tk);
447}
448
449/*
450 * Error handlers for various types of pages.
451 */
452
453enum outcome {
d95ea51e
WF
454 IGNORED, /* Error: cannot be handled */
455 FAILED, /* Error: handling failed */
6a46079c 456 DELAYED, /* Will be handled later */
6a46079c
AK
457 RECOVERED, /* Successfully recovered */
458};
459
460static const char *action_name[] = {
d95ea51e 461 [IGNORED] = "Ignored",
6a46079c
AK
462 [FAILED] = "Failed",
463 [DELAYED] = "Delayed",
6a46079c
AK
464 [RECOVERED] = "Recovered",
465};
466
dc2a1cbf
WF
467/*
468 * XXX: It is possible that a page is isolated from LRU cache,
469 * and then kept in swap cache or failed to remove from page cache.
470 * The page count will stop it from being freed by unpoison.
471 * Stress tests should be aware of this memory leak problem.
472 */
473static int delete_from_lru_cache(struct page *p)
474{
475 if (!isolate_lru_page(p)) {
476 /*
477 * Clear sensible page flags, so that the buddy system won't
478 * complain when the page is unpoison-and-freed.
479 */
480 ClearPageActive(p);
481 ClearPageUnevictable(p);
482 /*
483 * drop the page count elevated by isolate_lru_page()
484 */
485 page_cache_release(p);
486 return 0;
487 }
488 return -EIO;
489}
490
6a46079c
AK
491/*
492 * Error hit kernel page.
493 * Do nothing, try to be lucky and not touch this instead. For a few cases we
494 * could be more sophisticated.
495 */
496static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
497{
498 return IGNORED;
499}
500
501/*
502 * Page in unknown state. Do nothing.
503 */
504static int me_unknown(struct page *p, unsigned long pfn)
505{
506 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
507 return FAILED;
508}
509
6a46079c
AK
510/*
511 * Clean (or cleaned) page cache page.
512 */
513static int me_pagecache_clean(struct page *p, unsigned long pfn)
514{
515 int err;
516 int ret = FAILED;
517 struct address_space *mapping;
518
dc2a1cbf
WF
519 delete_from_lru_cache(p);
520
6a46079c
AK
521 /*
522 * For anonymous pages we're done the only reference left
523 * should be the one m_f() holds.
524 */
525 if (PageAnon(p))
526 return RECOVERED;
527
528 /*
529 * Now truncate the page in the page cache. This is really
530 * more like a "temporary hole punch"
531 * Don't do this for block devices when someone else
532 * has a reference, because it could be file system metadata
533 * and that's not safe to truncate.
534 */
535 mapping = page_mapping(p);
536 if (!mapping) {
537 /*
538 * Page has been teared down in the meanwhile
539 */
540 return FAILED;
541 }
542
543 /*
544 * Truncation is a bit tricky. Enable it per file system for now.
545 *
546 * Open: to take i_mutex or not for this? Right now we don't.
547 */
548 if (mapping->a_ops->error_remove_page) {
549 err = mapping->a_ops->error_remove_page(mapping, p);
550 if (err != 0) {
551 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
552 pfn, err);
553 } else if (page_has_private(p) &&
554 !try_to_release_page(p, GFP_NOIO)) {
555 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
556 } else {
557 ret = RECOVERED;
558 }
559 } else {
560 /*
561 * If the file system doesn't support it just invalidate
562 * This fails on dirty or anything with private pages
563 */
564 if (invalidate_inode_page(p))
565 ret = RECOVERED;
566 else
567 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
568 pfn);
569 }
570 return ret;
571}
572
573/*
574 * Dirty cache page page
575 * Issues: when the error hit a hole page the error is not properly
576 * propagated.
577 */
578static int me_pagecache_dirty(struct page *p, unsigned long pfn)
579{
580 struct address_space *mapping = page_mapping(p);
581
582 SetPageError(p);
583 /* TBD: print more information about the file. */
584 if (mapping) {
585 /*
586 * IO error will be reported by write(), fsync(), etc.
587 * who check the mapping.
588 * This way the application knows that something went
589 * wrong with its dirty file data.
590 *
591 * There's one open issue:
592 *
593 * The EIO will be only reported on the next IO
594 * operation and then cleared through the IO map.
595 * Normally Linux has two mechanisms to pass IO error
596 * first through the AS_EIO flag in the address space
597 * and then through the PageError flag in the page.
598 * Since we drop pages on memory failure handling the
599 * only mechanism open to use is through AS_AIO.
600 *
601 * This has the disadvantage that it gets cleared on
602 * the first operation that returns an error, while
603 * the PageError bit is more sticky and only cleared
604 * when the page is reread or dropped. If an
605 * application assumes it will always get error on
606 * fsync, but does other operations on the fd before
607 * and the page is dropped inbetween then the error
608 * will not be properly reported.
609 *
610 * This can already happen even without hwpoisoned
611 * pages: first on metadata IO errors (which only
612 * report through AS_EIO) or when the page is dropped
613 * at the wrong time.
614 *
615 * So right now we assume that the application DTRT on
616 * the first EIO, but we're not worse than other parts
617 * of the kernel.
618 */
619 mapping_set_error(mapping, EIO);
620 }
621
622 return me_pagecache_clean(p, pfn);
623}
624
625/*
626 * Clean and dirty swap cache.
627 *
628 * Dirty swap cache page is tricky to handle. The page could live both in page
629 * cache and swap cache(ie. page is freshly swapped in). So it could be
630 * referenced concurrently by 2 types of PTEs:
631 * normal PTEs and swap PTEs. We try to handle them consistently by calling
632 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
633 * and then
634 * - clear dirty bit to prevent IO
635 * - remove from LRU
636 * - but keep in the swap cache, so that when we return to it on
637 * a later page fault, we know the application is accessing
638 * corrupted data and shall be killed (we installed simple
639 * interception code in do_swap_page to catch it).
640 *
641 * Clean swap cache pages can be directly isolated. A later page fault will
642 * bring in the known good data from disk.
643 */
644static int me_swapcache_dirty(struct page *p, unsigned long pfn)
645{
6a46079c
AK
646 ClearPageDirty(p);
647 /* Trigger EIO in shmem: */
648 ClearPageUptodate(p);
649
dc2a1cbf
WF
650 if (!delete_from_lru_cache(p))
651 return DELAYED;
652 else
653 return FAILED;
6a46079c
AK
654}
655
656static int me_swapcache_clean(struct page *p, unsigned long pfn)
657{
6a46079c 658 delete_from_swap_cache(p);
e43c3afb 659
dc2a1cbf
WF
660 if (!delete_from_lru_cache(p))
661 return RECOVERED;
662 else
663 return FAILED;
6a46079c
AK
664}
665
666/*
667 * Huge pages. Needs work.
668 * Issues:
669 * No rmap support so we cannot find the original mapper. In theory could walk
670 * all MMs and look for the mappings, but that would be non atomic and racy.
671 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
672 * like just walking the current process and hoping it has it mapped (that
673 * should be usually true for the common "shared database cache" case)
674 * Should handle free huge pages and dequeue them too, but this needs to
675 * handle huge page accounting correctly.
676 */
677static int me_huge_page(struct page *p, unsigned long pfn)
678{
679 return FAILED;
680}
681
682/*
683 * Various page states we can handle.
684 *
685 * A page state is defined by its current page->flags bits.
686 * The table matches them in order and calls the right handler.
687 *
688 * This is quite tricky because we can access page at any time
689 * in its live cycle, so all accesses have to be extremly careful.
690 *
691 * This is not complete. More states could be added.
692 * For any missing state don't attempt recovery.
693 */
694
695#define dirty (1UL << PG_dirty)
696#define sc (1UL << PG_swapcache)
697#define unevict (1UL << PG_unevictable)
698#define mlock (1UL << PG_mlocked)
699#define writeback (1UL << PG_writeback)
700#define lru (1UL << PG_lru)
701#define swapbacked (1UL << PG_swapbacked)
702#define head (1UL << PG_head)
703#define tail (1UL << PG_tail)
704#define compound (1UL << PG_compound)
705#define slab (1UL << PG_slab)
6a46079c
AK
706#define reserved (1UL << PG_reserved)
707
708static struct page_state {
709 unsigned long mask;
710 unsigned long res;
711 char *msg;
712 int (*action)(struct page *p, unsigned long pfn);
713} error_states[] = {
d95ea51e 714 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
715 /*
716 * free pages are specially detected outside this table:
717 * PG_buddy pages only make a small fraction of all free pages.
718 */
6a46079c
AK
719
720 /*
721 * Could in theory check if slab page is free or if we can drop
722 * currently unused objects without touching them. But just
723 * treat it as standard kernel for now.
724 */
725 { slab, slab, "kernel slab", me_kernel },
726
727#ifdef CONFIG_PAGEFLAGS_EXTENDED
728 { head, head, "huge", me_huge_page },
729 { tail, tail, "huge", me_huge_page },
730#else
731 { compound, compound, "huge", me_huge_page },
732#endif
733
734 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
735 { sc|dirty, sc, "swapcache", me_swapcache_clean },
736
737 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
738 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
739
6a46079c
AK
740 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
741 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
6a46079c
AK
742
743 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
744 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
745
746 /*
747 * Catchall entry: must be at end.
748 */
749 { 0, 0, "unknown page state", me_unknown },
750};
751
6a46079c
AK
752static void action_result(unsigned long pfn, char *msg, int result)
753{
a7560fc8 754 struct page *page = pfn_to_page(pfn);
6a46079c
AK
755
756 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
757 pfn,
a7560fc8 758 PageDirty(page) ? "dirty " : "",
6a46079c
AK
759 msg, action_name[result]);
760}
761
762static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 763 unsigned long pfn)
6a46079c
AK
764{
765 int result;
7456b040 766 int count;
6a46079c
AK
767
768 result = ps->action(p, pfn);
769 action_result(pfn, ps->msg, result);
7456b040 770
bd1ce5f9 771 count = page_count(p) - 1;
138ce286
WF
772 if (ps->action == me_swapcache_dirty && result == DELAYED)
773 count--;
774 if (count != 0) {
6a46079c
AK
775 printk(KERN_ERR
776 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 777 pfn, ps->msg, count);
138ce286
WF
778 result = FAILED;
779 }
6a46079c
AK
780
781 /* Could do more checks here if page looks ok */
782 /*
783 * Could adjust zone counters here to correct for the missing page.
784 */
785
138ce286 786 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
787}
788
789#define N_UNMAP_TRIES 5
790
791/*
792 * Do all that is necessary to remove user space mappings. Unmap
793 * the pages and send SIGBUS to the processes if the data was dirty.
794 */
1668bfd5 795static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
6a46079c
AK
796 int trapno)
797{
798 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
799 struct address_space *mapping;
800 LIST_HEAD(tokill);
801 int ret;
802 int i;
803 int kill = 1;
804
1668bfd5
WF
805 if (PageReserved(p) || PageSlab(p))
806 return SWAP_SUCCESS;
6a46079c 807
6a46079c
AK
808 /*
809 * This check implies we don't kill processes if their pages
810 * are in the swap cache early. Those are always late kills.
811 */
812 if (!page_mapped(p))
1668bfd5
WF
813 return SWAP_SUCCESS;
814
815 if (PageCompound(p) || PageKsm(p))
816 return SWAP_FAIL;
6a46079c
AK
817
818 if (PageSwapCache(p)) {
819 printk(KERN_ERR
820 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
821 ttu |= TTU_IGNORE_HWPOISON;
822 }
823
824 /*
825 * Propagate the dirty bit from PTEs to struct page first, because we
826 * need this to decide if we should kill or just drop the page.
db0480b3
WF
827 * XXX: the dirty test could be racy: set_page_dirty() may not always
828 * be called inside page lock (it's recommended but not enforced).
6a46079c
AK
829 */
830 mapping = page_mapping(p);
831 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
832 if (page_mkclean(p)) {
833 SetPageDirty(p);
834 } else {
835 kill = 0;
836 ttu |= TTU_IGNORE_HWPOISON;
837 printk(KERN_INFO
838 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
839 pfn);
840 }
841 }
842
843 /*
844 * First collect all the processes that have the page
845 * mapped in dirty form. This has to be done before try_to_unmap,
846 * because ttu takes the rmap data structures down.
847 *
848 * Error handling: We ignore errors here because
849 * there's nothing that can be done.
850 */
851 if (kill)
852 collect_procs(p, &tokill);
853
854 /*
855 * try_to_unmap can fail temporarily due to races.
856 * Try a few times (RED-PEN better strategy?)
857 */
858 for (i = 0; i < N_UNMAP_TRIES; i++) {
859 ret = try_to_unmap(p, ttu);
860 if (ret == SWAP_SUCCESS)
861 break;
862 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
863 }
864
865 if (ret != SWAP_SUCCESS)
866 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
867 pfn, page_mapcount(p));
868
869 /*
870 * Now that the dirty bit has been propagated to the
871 * struct page and all unmaps done we can decide if
872 * killing is needed or not. Only kill when the page
873 * was dirty, otherwise the tokill list is merely
874 * freed. When there was a problem unmapping earlier
875 * use a more force-full uncatchable kill to prevent
876 * any accesses to the poisoned memory.
877 */
878 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
879 ret != SWAP_SUCCESS, pfn);
1668bfd5
WF
880
881 return ret;
6a46079c
AK
882}
883
82ba011b 884int __memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
885{
886 struct page_state *ps;
887 struct page *p;
888 int res;
889
890 if (!sysctl_memory_failure_recovery)
891 panic("Memory failure from trap %d on page %lx", trapno, pfn);
892
893 if (!pfn_valid(pfn)) {
a7560fc8
WF
894 printk(KERN_ERR
895 "MCE %#lx: memory outside kernel control\n",
896 pfn);
897 return -ENXIO;
6a46079c
AK
898 }
899
900 p = pfn_to_page(pfn);
901 if (TestSetPageHWPoison(p)) {
d95ea51e 902 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
903 return 0;
904 }
905
906 atomic_long_add(1, &mce_bad_pages);
907
908 /*
909 * We need/can do nothing about count=0 pages.
910 * 1) it's a free page, and therefore in safe hand:
911 * prep_new_page() will be the gate keeper.
912 * 2) it's part of a non-compound high order page.
913 * Implies some kernel user: cannot stop them from
914 * R/W the page; let's pray that the page has been
915 * used and will be freed some time later.
916 * In fact it's dangerous to directly bump up page count from 0,
917 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
918 */
82ba011b
AK
919 if (!(flags & MF_COUNT_INCREASED) &&
920 !get_page_unless_zero(compound_head(p))) {
8d22ba1b
WF
921 if (is_free_buddy_page(p)) {
922 action_result(pfn, "free buddy", DELAYED);
923 return 0;
924 } else {
925 action_result(pfn, "high order kernel", IGNORED);
926 return -EBUSY;
927 }
6a46079c
AK
928 }
929
e43c3afb
WF
930 /*
931 * We ignore non-LRU pages for good reasons.
932 * - PG_locked is only well defined for LRU pages and a few others
933 * - to avoid races with __set_page_locked()
934 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
935 * The check (unnecessarily) ignores LRU pages being isolated and
936 * walked by the page reclaim code, however that's not a big loss.
937 */
938 if (!PageLRU(p))
0474a60e 939 shake_page(p);
dc2a1cbf 940 if (!PageLRU(p)) {
0474a60e
AK
941 /*
942 * shake_page could have turned it free.
943 */
944 if (is_free_buddy_page(p)) {
945 action_result(pfn, "free buddy, 2nd try", DELAYED);
946 return 0;
947 }
e43c3afb
WF
948 action_result(pfn, "non LRU", IGNORED);
949 put_page(p);
950 return -EBUSY;
951 }
e43c3afb 952
6a46079c
AK
953 /*
954 * Lock the page and wait for writeback to finish.
955 * It's very difficult to mess with pages currently under IO
956 * and in many cases impossible, so we just avoid it here.
957 */
958 lock_page_nosync(p);
847ce401
WF
959
960 /*
961 * unpoison always clear PG_hwpoison inside page lock
962 */
963 if (!PageHWPoison(p)) {
d95ea51e 964 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
847ce401
WF
965 res = 0;
966 goto out;
967 }
7c116f2b
WF
968 if (hwpoison_filter(p)) {
969 if (TestClearPageHWPoison(p))
970 atomic_long_dec(&mce_bad_pages);
971 unlock_page(p);
972 put_page(p);
973 return 0;
974 }
847ce401 975
6a46079c
AK
976 wait_on_page_writeback(p);
977
978 /*
979 * Now take care of user space mappings.
1668bfd5 980 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
6a46079c 981 */
1668bfd5
WF
982 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
983 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
984 res = -EBUSY;
985 goto out;
986 }
6a46079c
AK
987
988 /*
989 * Torn down by someone else?
990 */
dc2a1cbf 991 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 992 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 993 res = -EBUSY;
6a46079c
AK
994 goto out;
995 }
996
997 res = -EBUSY;
998 for (ps = error_states;; ps++) {
dc2a1cbf 999 if ((p->flags & ps->mask) == ps->res) {
bd1ce5f9 1000 res = page_action(ps, p, pfn);
6a46079c
AK
1001 break;
1002 }
1003 }
1004out:
1005 unlock_page(p);
1006 return res;
1007}
1008EXPORT_SYMBOL_GPL(__memory_failure);
1009
1010/**
1011 * memory_failure - Handle memory failure of a page.
1012 * @pfn: Page Number of the corrupted page
1013 * @trapno: Trap number reported in the signal to user space.
1014 *
1015 * This function is called by the low level machine check code
1016 * of an architecture when it detects hardware memory corruption
1017 * of a page. It tries its best to recover, which includes
1018 * dropping pages, killing processes etc.
1019 *
1020 * The function is primarily of use for corruptions that
1021 * happen outside the current execution context (e.g. when
1022 * detected by a background scrubber)
1023 *
1024 * Must run in process context (e.g. a work queue) with interrupts
1025 * enabled and no spinlocks hold.
1026 */
1027void memory_failure(unsigned long pfn, int trapno)
1028{
1029 __memory_failure(pfn, trapno, 0);
1030}
847ce401
WF
1031
1032/**
1033 * unpoison_memory - Unpoison a previously poisoned page
1034 * @pfn: Page number of the to be unpoisoned page
1035 *
1036 * Software-unpoison a page that has been poisoned by
1037 * memory_failure() earlier.
1038 *
1039 * This is only done on the software-level, so it only works
1040 * for linux injected failures, not real hardware failures
1041 *
1042 * Returns 0 for success, otherwise -errno.
1043 */
1044int unpoison_memory(unsigned long pfn)
1045{
1046 struct page *page;
1047 struct page *p;
1048 int freeit = 0;
1049
1050 if (!pfn_valid(pfn))
1051 return -ENXIO;
1052
1053 p = pfn_to_page(pfn);
1054 page = compound_head(p);
1055
1056 if (!PageHWPoison(p)) {
1057 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1058 return 0;
1059 }
1060
1061 if (!get_page_unless_zero(page)) {
1062 if (TestClearPageHWPoison(p))
1063 atomic_long_dec(&mce_bad_pages);
1064 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1065 return 0;
1066 }
1067
1068 lock_page_nosync(page);
1069 /*
1070 * This test is racy because PG_hwpoison is set outside of page lock.
1071 * That's acceptable because that won't trigger kernel panic. Instead,
1072 * the PG_hwpoison page will be caught and isolated on the entrance to
1073 * the free buddy page pool.
1074 */
1075 if (TestClearPageHWPoison(p)) {
1076 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1077 atomic_long_dec(&mce_bad_pages);
1078 freeit = 1;
1079 }
1080 unlock_page(page);
1081
1082 put_page(page);
1083 if (freeit)
1084 put_page(page);
1085
1086 return 0;
1087}
1088EXPORT_SYMBOL(unpoison_memory);