]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/ksm.c
ksm: memory hotremove migration only
[net-next-2.6.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3
HD
35#include <linux/ksm.h>
36
31dbd01f 37#include <asm/tlbflush.h>
73848b46 38#include "internal.h"
31dbd01f
IE
39
40/*
41 * A few notes about the KSM scanning process,
42 * to make it easier to understand the data structures below:
43 *
44 * In order to reduce excessive scanning, KSM sorts the memory pages by their
45 * contents into a data structure that holds pointers to the pages' locations.
46 *
47 * Since the contents of the pages may change at any moment, KSM cannot just
48 * insert the pages into a normal sorted tree and expect it to find anything.
49 * Therefore KSM uses two data structures - the stable and the unstable tree.
50 *
51 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
52 * by their contents. Because each such page is write-protected, searching on
53 * this tree is fully assured to be working (except when pages are unmapped),
54 * and therefore this tree is called the stable tree.
55 *
56 * In addition to the stable tree, KSM uses a second data structure called the
57 * unstable tree: this tree holds pointers to pages which have been found to
58 * be "unchanged for a period of time". The unstable tree sorts these pages
59 * by their contents, but since they are not write-protected, KSM cannot rely
60 * upon the unstable tree to work correctly - the unstable tree is liable to
61 * be corrupted as its contents are modified, and so it is called unstable.
62 *
63 * KSM solves this problem by several techniques:
64 *
65 * 1) The unstable tree is flushed every time KSM completes scanning all
66 * memory areas, and then the tree is rebuilt again from the beginning.
67 * 2) KSM will only insert into the unstable tree, pages whose hash value
68 * has not changed since the previous scan of all memory areas.
69 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
70 * colors of the nodes and not on their contents, assuring that even when
71 * the tree gets "corrupted" it won't get out of balance, so scanning time
72 * remains the same (also, searching and inserting nodes in an rbtree uses
73 * the same algorithm, so we have no overhead when we flush and rebuild).
74 * 4) KSM never flushes the stable tree, which means that even if it were to
75 * take 10 attempts to find a page in the unstable tree, once it is found,
76 * it is secured in the stable tree. (When we scan a new page, we first
77 * compare it against the stable tree, and then against the unstable tree.)
78 */
79
80/**
81 * struct mm_slot - ksm information per mm that is being scanned
82 * @link: link to the mm_slots hash list
83 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 84 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
85 * @mm: the mm that this information is valid for
86 */
87struct mm_slot {
88 struct hlist_node link;
89 struct list_head mm_list;
6514d511 90 struct rmap_item *rmap_list;
31dbd01f
IE
91 struct mm_struct *mm;
92};
93
94/**
95 * struct ksm_scan - cursor for scanning
96 * @mm_slot: the current mm_slot we are scanning
97 * @address: the next address inside that to be scanned
6514d511 98 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
99 * @seqnr: count of completed full scans (needed when removing unstable node)
100 *
101 * There is only the one ksm_scan instance of this cursor structure.
102 */
103struct ksm_scan {
104 struct mm_slot *mm_slot;
105 unsigned long address;
6514d511 106 struct rmap_item **rmap_list;
31dbd01f
IE
107 unsigned long seqnr;
108};
109
7b6ba2c7
HD
110/**
111 * struct stable_node - node of the stable rbtree
112 * @node: rb node of this ksm page in the stable tree
113 * @hlist: hlist head of rmap_items using this ksm page
62b61f61 114 * @kpfn: page frame number of this ksm page
7b6ba2c7
HD
115 */
116struct stable_node {
117 struct rb_node node;
118 struct hlist_head hlist;
62b61f61 119 unsigned long kpfn;
7b6ba2c7
HD
120};
121
31dbd01f
IE
122/**
123 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 124 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 125 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
31dbd01f
IE
126 * @mm: the memory structure this rmap_item is pointing into
127 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
128 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
129 * @node: rb node of this rmap_item in the unstable tree
130 * @head: pointer to stable_node heading this list in the stable tree
131 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
132 */
133struct rmap_item {
6514d511 134 struct rmap_item *rmap_list;
db114b83 135 struct anon_vma *anon_vma; /* when stable */
31dbd01f
IE
136 struct mm_struct *mm;
137 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 138 unsigned int oldchecksum; /* when unstable */
31dbd01f 139 union {
7b6ba2c7
HD
140 struct rb_node node; /* when node of unstable tree */
141 struct { /* when listed from stable tree */
142 struct stable_node *head;
143 struct hlist_node hlist;
144 };
31dbd01f
IE
145 };
146};
147
148#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
149#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
150#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
151
152/* The stable and unstable tree heads */
153static struct rb_root root_stable_tree = RB_ROOT;
154static struct rb_root root_unstable_tree = RB_ROOT;
155
156#define MM_SLOTS_HASH_HEADS 1024
157static struct hlist_head *mm_slots_hash;
158
159static struct mm_slot ksm_mm_head = {
160 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
161};
162static struct ksm_scan ksm_scan = {
163 .mm_slot = &ksm_mm_head,
164};
165
166static struct kmem_cache *rmap_item_cache;
7b6ba2c7 167static struct kmem_cache *stable_node_cache;
31dbd01f
IE
168static struct kmem_cache *mm_slot_cache;
169
170/* The number of nodes in the stable tree */
b4028260 171static unsigned long ksm_pages_shared;
31dbd01f 172
e178dfde 173/* The number of page slots additionally sharing those nodes */
b4028260 174static unsigned long ksm_pages_sharing;
31dbd01f 175
473b0ce4
HD
176/* The number of nodes in the unstable tree */
177static unsigned long ksm_pages_unshared;
178
179/* The number of rmap_items in use: to calculate pages_volatile */
180static unsigned long ksm_rmap_items;
181
31dbd01f 182/* Limit on the number of unswappable pages used */
2c6854fd 183static unsigned long ksm_max_kernel_pages;
31dbd01f
IE
184
185/* Number of pages ksmd should scan in one batch */
2c6854fd 186static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
187
188/* Milliseconds ksmd should sleep between batches */
2ffd8679 189static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f
IE
190
191#define KSM_RUN_STOP 0
192#define KSM_RUN_MERGE 1
193#define KSM_RUN_UNMERGE 2
2c6854fd 194static unsigned int ksm_run = KSM_RUN_STOP;
31dbd01f
IE
195
196static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
197static DEFINE_MUTEX(ksm_thread_mutex);
198static DEFINE_SPINLOCK(ksm_mmlist_lock);
199
200#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
201 sizeof(struct __struct), __alignof__(struct __struct),\
202 (__flags), NULL)
203
204static int __init ksm_slab_init(void)
205{
206 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
207 if (!rmap_item_cache)
208 goto out;
209
7b6ba2c7
HD
210 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
211 if (!stable_node_cache)
212 goto out_free1;
213
31dbd01f
IE
214 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
215 if (!mm_slot_cache)
7b6ba2c7 216 goto out_free2;
31dbd01f
IE
217
218 return 0;
219
7b6ba2c7
HD
220out_free2:
221 kmem_cache_destroy(stable_node_cache);
222out_free1:
31dbd01f
IE
223 kmem_cache_destroy(rmap_item_cache);
224out:
225 return -ENOMEM;
226}
227
228static void __init ksm_slab_free(void)
229{
230 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 231 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
232 kmem_cache_destroy(rmap_item_cache);
233 mm_slot_cache = NULL;
234}
235
236static inline struct rmap_item *alloc_rmap_item(void)
237{
473b0ce4
HD
238 struct rmap_item *rmap_item;
239
240 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
241 if (rmap_item)
242 ksm_rmap_items++;
243 return rmap_item;
31dbd01f
IE
244}
245
246static inline void free_rmap_item(struct rmap_item *rmap_item)
247{
473b0ce4 248 ksm_rmap_items--;
31dbd01f
IE
249 rmap_item->mm = NULL; /* debug safety */
250 kmem_cache_free(rmap_item_cache, rmap_item);
251}
252
7b6ba2c7
HD
253static inline struct stable_node *alloc_stable_node(void)
254{
255 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
256}
257
258static inline void free_stable_node(struct stable_node *stable_node)
259{
260 kmem_cache_free(stable_node_cache, stable_node);
261}
262
31dbd01f
IE
263static inline struct mm_slot *alloc_mm_slot(void)
264{
265 if (!mm_slot_cache) /* initialization failed */
266 return NULL;
267 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
268}
269
270static inline void free_mm_slot(struct mm_slot *mm_slot)
271{
272 kmem_cache_free(mm_slot_cache, mm_slot);
273}
274
275static int __init mm_slots_hash_init(void)
276{
277 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
278 GFP_KERNEL);
279 if (!mm_slots_hash)
280 return -ENOMEM;
281 return 0;
282}
283
284static void __init mm_slots_hash_free(void)
285{
286 kfree(mm_slots_hash);
287}
288
289static struct mm_slot *get_mm_slot(struct mm_struct *mm)
290{
291 struct mm_slot *mm_slot;
292 struct hlist_head *bucket;
293 struct hlist_node *node;
294
295 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
296 % MM_SLOTS_HASH_HEADS];
297 hlist_for_each_entry(mm_slot, node, bucket, link) {
298 if (mm == mm_slot->mm)
299 return mm_slot;
300 }
301 return NULL;
302}
303
304static void insert_to_mm_slots_hash(struct mm_struct *mm,
305 struct mm_slot *mm_slot)
306{
307 struct hlist_head *bucket;
308
309 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
310 % MM_SLOTS_HASH_HEADS];
311 mm_slot->mm = mm;
31dbd01f
IE
312 hlist_add_head(&mm_slot->link, bucket);
313}
314
315static inline int in_stable_tree(struct rmap_item *rmap_item)
316{
317 return rmap_item->address & STABLE_FLAG;
318}
319
db114b83
HD
320static void hold_anon_vma(struct rmap_item *rmap_item,
321 struct anon_vma *anon_vma)
322{
323 rmap_item->anon_vma = anon_vma;
324 atomic_inc(&anon_vma->ksm_refcount);
325}
326
327static void drop_anon_vma(struct rmap_item *rmap_item)
328{
329 struct anon_vma *anon_vma = rmap_item->anon_vma;
330
331 if (atomic_dec_and_lock(&anon_vma->ksm_refcount, &anon_vma->lock)) {
332 int empty = list_empty(&anon_vma->head);
333 spin_unlock(&anon_vma->lock);
334 if (empty)
335 anon_vma_free(anon_vma);
336 }
337}
338
a913e182
HD
339/*
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
346 */
347static inline bool ksm_test_exit(struct mm_struct *mm)
348{
349 return atomic_read(&mm->mm_users) == 0;
350}
351
31dbd01f
IE
352/*
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
354 *
355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 * put_page(page);
357 *
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362 */
d952b791 363static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
364{
365 struct page *page;
d952b791 366 int ret = 0;
31dbd01f
IE
367
368 do {
369 cond_resched();
370 page = follow_page(vma, addr, FOLL_GET);
371 if (!page)
372 break;
373 if (PageKsm(page))
374 ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 FAULT_FLAG_WRITE);
376 else
377 ret = VM_FAULT_WRITE;
378 put_page(page);
d952b791
HD
379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
380 /*
381 * We must loop because handle_mm_fault() may back out if there's
382 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 *
384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 * COW has been broken, even if the vma does not permit VM_WRITE;
386 * but note that a concurrent fault might break PageKsm for us.
387 *
388 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 * backing file, which also invalidates anonymous pages: that's
390 * okay, that truncation will have unmapped the PageKsm for us.
391 *
392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 * to user; and ksmd, having no mm, would never be chosen for that.
396 *
397 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 * even ksmd can fail in this way - though it's usually breaking ksm
400 * just to undo a merge it made a moment before, so unlikely to oom.
401 *
402 * That's a pity: we might therefore have more kernel pages allocated
403 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 * will retry to break_cow on each pass, so should recover the page
405 * in due course. The important thing is to not let VM_MERGEABLE
406 * be cleared while any such pages might remain in the area.
407 */
408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
409}
410
8dd3557a 411static void break_cow(struct rmap_item *rmap_item)
31dbd01f 412{
8dd3557a
HD
413 struct mm_struct *mm = rmap_item->mm;
414 unsigned long addr = rmap_item->address;
31dbd01f
IE
415 struct vm_area_struct *vma;
416
4035c07a
HD
417 /*
418 * It is not an accident that whenever we want to break COW
419 * to undo, we also need to drop a reference to the anon_vma.
420 */
421 drop_anon_vma(rmap_item);
422
81464e30 423 down_read(&mm->mmap_sem);
9ba69294
HD
424 if (ksm_test_exit(mm))
425 goto out;
31dbd01f
IE
426 vma = find_vma(mm, addr);
427 if (!vma || vma->vm_start > addr)
81464e30 428 goto out;
31dbd01f 429 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
81464e30 430 goto out;
31dbd01f 431 break_ksm(vma, addr);
81464e30 432out:
31dbd01f
IE
433 up_read(&mm->mmap_sem);
434}
435
436static struct page *get_mergeable_page(struct rmap_item *rmap_item)
437{
438 struct mm_struct *mm = rmap_item->mm;
439 unsigned long addr = rmap_item->address;
440 struct vm_area_struct *vma;
441 struct page *page;
442
443 down_read(&mm->mmap_sem);
9ba69294
HD
444 if (ksm_test_exit(mm))
445 goto out;
31dbd01f
IE
446 vma = find_vma(mm, addr);
447 if (!vma || vma->vm_start > addr)
448 goto out;
449 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
450 goto out;
451
452 page = follow_page(vma, addr, FOLL_GET);
453 if (!page)
454 goto out;
455 if (PageAnon(page)) {
456 flush_anon_page(vma, page, addr);
457 flush_dcache_page(page);
458 } else {
459 put_page(page);
460out: page = NULL;
461 }
462 up_read(&mm->mmap_sem);
463 return page;
464}
465
4035c07a
HD
466static void remove_node_from_stable_tree(struct stable_node *stable_node)
467{
468 struct rmap_item *rmap_item;
469 struct hlist_node *hlist;
470
471 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
472 if (rmap_item->hlist.next)
473 ksm_pages_sharing--;
474 else
475 ksm_pages_shared--;
476 drop_anon_vma(rmap_item);
477 rmap_item->address &= PAGE_MASK;
478 cond_resched();
479 }
480
481 rb_erase(&stable_node->node, &root_stable_tree);
482 free_stable_node(stable_node);
483}
484
485/*
486 * get_ksm_page: checks if the page indicated by the stable node
487 * is still its ksm page, despite having held no reference to it.
488 * In which case we can trust the content of the page, and it
489 * returns the gotten page; but if the page has now been zapped,
490 * remove the stale node from the stable tree and return NULL.
491 *
492 * You would expect the stable_node to hold a reference to the ksm page.
493 * But if it increments the page's count, swapping out has to wait for
494 * ksmd to come around again before it can free the page, which may take
495 * seconds or even minutes: much too unresponsive. So instead we use a
496 * "keyhole reference": access to the ksm page from the stable node peeps
497 * out through its keyhole to see if that page still holds the right key,
498 * pointing back to this stable node. This relies on freeing a PageAnon
499 * page to reset its page->mapping to NULL, and relies on no other use of
500 * a page to put something that might look like our key in page->mapping.
501 *
502 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
503 * but this is different - made simpler by ksm_thread_mutex being held, but
504 * interesting for assuming that no other use of the struct page could ever
505 * put our expected_mapping into page->mapping (or a field of the union which
506 * coincides with page->mapping). The RCU calls are not for KSM at all, but
507 * to keep the page_count protocol described with page_cache_get_speculative.
508 *
509 * Note: it is possible that get_ksm_page() will return NULL one moment,
510 * then page the next, if the page is in between page_freeze_refs() and
511 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
512 * is on its way to being freed; but it is an anomaly to bear in mind.
513 */
514static struct page *get_ksm_page(struct stable_node *stable_node)
515{
516 struct page *page;
517 void *expected_mapping;
518
62b61f61 519 page = pfn_to_page(stable_node->kpfn);
4035c07a
HD
520 expected_mapping = (void *)stable_node +
521 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
522 rcu_read_lock();
523 if (page->mapping != expected_mapping)
524 goto stale;
525 if (!get_page_unless_zero(page))
526 goto stale;
527 if (page->mapping != expected_mapping) {
528 put_page(page);
529 goto stale;
530 }
531 rcu_read_unlock();
532 return page;
533stale:
534 rcu_read_unlock();
535 remove_node_from_stable_tree(stable_node);
536 return NULL;
537}
538
31dbd01f
IE
539/*
540 * Removing rmap_item from stable or unstable tree.
541 * This function will clean the information from the stable/unstable tree.
542 */
543static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
544{
7b6ba2c7
HD
545 if (rmap_item->address & STABLE_FLAG) {
546 struct stable_node *stable_node;
5ad64688 547 struct page *page;
31dbd01f 548
7b6ba2c7 549 stable_node = rmap_item->head;
4035c07a
HD
550 page = get_ksm_page(stable_node);
551 if (!page)
552 goto out;
5ad64688 553
4035c07a 554 lock_page(page);
7b6ba2c7 555 hlist_del(&rmap_item->hlist);
4035c07a
HD
556 unlock_page(page);
557 put_page(page);
08beca44 558
4035c07a
HD
559 if (stable_node->hlist.first)
560 ksm_pages_sharing--;
561 else
7b6ba2c7 562 ksm_pages_shared--;
31dbd01f 563
db114b83 564 drop_anon_vma(rmap_item);
93d17715 565 rmap_item->address &= PAGE_MASK;
31dbd01f 566
7b6ba2c7 567 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
568 unsigned char age;
569 /*
9ba69294 570 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 571 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
572 * But be careful when an mm is exiting: do the rb_erase
573 * if this rmap_item was inserted by this scan, rather
574 * than left over from before.
31dbd01f
IE
575 */
576 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 577 BUG_ON(age > 1);
31dbd01f
IE
578 if (!age)
579 rb_erase(&rmap_item->node, &root_unstable_tree);
93d17715 580
473b0ce4 581 ksm_pages_unshared--;
93d17715 582 rmap_item->address &= PAGE_MASK;
31dbd01f 583 }
4035c07a 584out:
31dbd01f
IE
585 cond_resched(); /* we're called from many long loops */
586}
587
31dbd01f 588static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 589 struct rmap_item **rmap_list)
31dbd01f 590{
6514d511
HD
591 while (*rmap_list) {
592 struct rmap_item *rmap_item = *rmap_list;
593 *rmap_list = rmap_item->rmap_list;
31dbd01f 594 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
595 free_rmap_item(rmap_item);
596 }
597}
598
599/*
600 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
601 * than check every pte of a given vma, the locking doesn't quite work for
602 * that - an rmap_item is assigned to the stable tree after inserting ksm
603 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
604 * rmap_items from parent to child at fork time (so as not to waste time
605 * if exit comes before the next scan reaches it).
81464e30
HD
606 *
607 * Similarly, although we'd like to remove rmap_items (so updating counts
608 * and freeing memory) when unmerging an area, it's easier to leave that
609 * to the next pass of ksmd - consider, for example, how ksmd might be
610 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 611 */
d952b791
HD
612static int unmerge_ksm_pages(struct vm_area_struct *vma,
613 unsigned long start, unsigned long end)
31dbd01f
IE
614{
615 unsigned long addr;
d952b791 616 int err = 0;
31dbd01f 617
d952b791 618 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
619 if (ksm_test_exit(vma->vm_mm))
620 break;
d952b791
HD
621 if (signal_pending(current))
622 err = -ERESTARTSYS;
623 else
624 err = break_ksm(vma, addr);
625 }
626 return err;
31dbd01f
IE
627}
628
2ffd8679
HD
629#ifdef CONFIG_SYSFS
630/*
631 * Only called through the sysfs control interface:
632 */
d952b791 633static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
634{
635 struct mm_slot *mm_slot;
636 struct mm_struct *mm;
637 struct vm_area_struct *vma;
d952b791
HD
638 int err = 0;
639
640 spin_lock(&ksm_mmlist_lock);
9ba69294 641 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
642 struct mm_slot, mm_list);
643 spin_unlock(&ksm_mmlist_lock);
31dbd01f 644
9ba69294
HD
645 for (mm_slot = ksm_scan.mm_slot;
646 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
647 mm = mm_slot->mm;
648 down_read(&mm->mmap_sem);
649 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
650 if (ksm_test_exit(mm))
651 break;
31dbd01f
IE
652 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
653 continue;
d952b791
HD
654 err = unmerge_ksm_pages(vma,
655 vma->vm_start, vma->vm_end);
9ba69294
HD
656 if (err)
657 goto error;
31dbd01f 658 }
9ba69294 659
6514d511 660 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
661
662 spin_lock(&ksm_mmlist_lock);
9ba69294 663 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 664 struct mm_slot, mm_list);
9ba69294
HD
665 if (ksm_test_exit(mm)) {
666 hlist_del(&mm_slot->link);
667 list_del(&mm_slot->mm_list);
668 spin_unlock(&ksm_mmlist_lock);
669
670 free_mm_slot(mm_slot);
671 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
672 up_read(&mm->mmap_sem);
673 mmdrop(mm);
674 } else {
675 spin_unlock(&ksm_mmlist_lock);
676 up_read(&mm->mmap_sem);
677 }
31dbd01f
IE
678 }
679
d952b791 680 ksm_scan.seqnr = 0;
9ba69294
HD
681 return 0;
682
683error:
684 up_read(&mm->mmap_sem);
31dbd01f 685 spin_lock(&ksm_mmlist_lock);
d952b791 686 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 687 spin_unlock(&ksm_mmlist_lock);
d952b791 688 return err;
31dbd01f 689}
2ffd8679 690#endif /* CONFIG_SYSFS */
31dbd01f 691
31dbd01f
IE
692static u32 calc_checksum(struct page *page)
693{
694 u32 checksum;
695 void *addr = kmap_atomic(page, KM_USER0);
696 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
697 kunmap_atomic(addr, KM_USER0);
698 return checksum;
699}
700
701static int memcmp_pages(struct page *page1, struct page *page2)
702{
703 char *addr1, *addr2;
704 int ret;
705
706 addr1 = kmap_atomic(page1, KM_USER0);
707 addr2 = kmap_atomic(page2, KM_USER1);
708 ret = memcmp(addr1, addr2, PAGE_SIZE);
709 kunmap_atomic(addr2, KM_USER1);
710 kunmap_atomic(addr1, KM_USER0);
711 return ret;
712}
713
714static inline int pages_identical(struct page *page1, struct page *page2)
715{
716 return !memcmp_pages(page1, page2);
717}
718
719static int write_protect_page(struct vm_area_struct *vma, struct page *page,
720 pte_t *orig_pte)
721{
722 struct mm_struct *mm = vma->vm_mm;
723 unsigned long addr;
724 pte_t *ptep;
725 spinlock_t *ptl;
726 int swapped;
727 int err = -EFAULT;
728
729 addr = page_address_in_vma(page, vma);
730 if (addr == -EFAULT)
731 goto out;
732
733 ptep = page_check_address(page, mm, addr, &ptl, 0);
734 if (!ptep)
735 goto out;
736
737 if (pte_write(*ptep)) {
738 pte_t entry;
739
740 swapped = PageSwapCache(page);
741 flush_cache_page(vma, addr, page_to_pfn(page));
742 /*
743 * Ok this is tricky, when get_user_pages_fast() run it doesnt
744 * take any lock, therefore the check that we are going to make
745 * with the pagecount against the mapcount is racey and
746 * O_DIRECT can happen right after the check.
747 * So we clear the pte and flush the tlb before the check
748 * this assure us that no O_DIRECT can happen after the check
749 * or in the middle of the check.
750 */
751 entry = ptep_clear_flush(vma, addr, ptep);
752 /*
753 * Check that no O_DIRECT or similar I/O is in progress on the
754 * page
755 */
31e855ea 756 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
31dbd01f
IE
757 set_pte_at_notify(mm, addr, ptep, entry);
758 goto out_unlock;
759 }
760 entry = pte_wrprotect(entry);
761 set_pte_at_notify(mm, addr, ptep, entry);
762 }
763 *orig_pte = *ptep;
764 err = 0;
765
766out_unlock:
767 pte_unmap_unlock(ptep, ptl);
768out:
769 return err;
770}
771
772/**
773 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
774 * @vma: vma that holds the pte pointing to page
775 * @page: the page we are replacing by kpage
776 * @kpage: the ksm page we replace page by
31dbd01f
IE
777 * @orig_pte: the original value of the pte
778 *
779 * Returns 0 on success, -EFAULT on failure.
780 */
8dd3557a
HD
781static int replace_page(struct vm_area_struct *vma, struct page *page,
782 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
783{
784 struct mm_struct *mm = vma->vm_mm;
785 pgd_t *pgd;
786 pud_t *pud;
787 pmd_t *pmd;
788 pte_t *ptep;
789 spinlock_t *ptl;
790 unsigned long addr;
31dbd01f
IE
791 int err = -EFAULT;
792
8dd3557a 793 addr = page_address_in_vma(page, vma);
31dbd01f
IE
794 if (addr == -EFAULT)
795 goto out;
796
797 pgd = pgd_offset(mm, addr);
798 if (!pgd_present(*pgd))
799 goto out;
800
801 pud = pud_offset(pgd, addr);
802 if (!pud_present(*pud))
803 goto out;
804
805 pmd = pmd_offset(pud, addr);
806 if (!pmd_present(*pmd))
807 goto out;
808
809 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
810 if (!pte_same(*ptep, orig_pte)) {
811 pte_unmap_unlock(ptep, ptl);
812 goto out;
813 }
814
8dd3557a 815 get_page(kpage);
5ad64688 816 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
817
818 flush_cache_page(vma, addr, pte_pfn(*ptep));
819 ptep_clear_flush(vma, addr, ptep);
8dd3557a 820 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 821
8dd3557a
HD
822 page_remove_rmap(page);
823 put_page(page);
31dbd01f
IE
824
825 pte_unmap_unlock(ptep, ptl);
826 err = 0;
827out:
828 return err;
829}
830
831/*
832 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
833 * @vma: the vma that holds the pte pointing to page
834 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
835 * @kpage: the PageKsm page that we want to map instead of page,
836 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
837 *
838 * This function returns 0 if the pages were merged, -EFAULT otherwise.
839 */
840static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 841 struct page *page, struct page *kpage)
31dbd01f
IE
842{
843 pte_t orig_pte = __pte(0);
844 int err = -EFAULT;
845
db114b83
HD
846 if (page == kpage) /* ksm page forked */
847 return 0;
848
31dbd01f
IE
849 if (!(vma->vm_flags & VM_MERGEABLE))
850 goto out;
8dd3557a 851 if (!PageAnon(page))
31dbd01f
IE
852 goto out;
853
31dbd01f
IE
854 /*
855 * We need the page lock to read a stable PageSwapCache in
856 * write_protect_page(). We use trylock_page() instead of
857 * lock_page() because we don't want to wait here - we
858 * prefer to continue scanning and merging different pages,
859 * then come back to this page when it is unlocked.
860 */
8dd3557a 861 if (!trylock_page(page))
31e855ea 862 goto out;
31dbd01f
IE
863 /*
864 * If this anonymous page is mapped only here, its pte may need
865 * to be write-protected. If it's mapped elsewhere, all of its
866 * ptes are necessarily already write-protected. But in either
867 * case, we need to lock and check page_count is not raised.
868 */
80e14822
HD
869 if (write_protect_page(vma, page, &orig_pte) == 0) {
870 if (!kpage) {
871 /*
872 * While we hold page lock, upgrade page from
873 * PageAnon+anon_vma to PageKsm+NULL stable_node:
874 * stable_tree_insert() will update stable_node.
875 */
876 set_page_stable_node(page, NULL);
877 mark_page_accessed(page);
878 err = 0;
879 } else if (pages_identical(page, kpage))
880 err = replace_page(vma, page, kpage, orig_pte);
881 }
31dbd01f 882
80e14822 883 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 884 munlock_vma_page(page);
5ad64688
HD
885 if (!PageMlocked(kpage)) {
886 unlock_page(page);
5ad64688
HD
887 lock_page(kpage);
888 mlock_vma_page(kpage);
889 page = kpage; /* for final unlock */
890 }
891 }
73848b46 892
8dd3557a 893 unlock_page(page);
31dbd01f
IE
894out:
895 return err;
896}
897
81464e30
HD
898/*
899 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
900 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
901 *
902 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 903 */
8dd3557a
HD
904static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
905 struct page *page, struct page *kpage)
81464e30 906{
8dd3557a 907 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
908 struct vm_area_struct *vma;
909 int err = -EFAULT;
910
8dd3557a
HD
911 down_read(&mm->mmap_sem);
912 if (ksm_test_exit(mm))
9ba69294 913 goto out;
8dd3557a
HD
914 vma = find_vma(mm, rmap_item->address);
915 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
916 goto out;
917
8dd3557a 918 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
919 if (err)
920 goto out;
921
922 /* Must get reference to anon_vma while still holding mmap_sem */
923 hold_anon_vma(rmap_item, vma->anon_vma);
81464e30 924out:
8dd3557a 925 up_read(&mm->mmap_sem);
81464e30
HD
926 return err;
927}
928
31dbd01f
IE
929/*
930 * try_to_merge_two_pages - take two identical pages and prepare them
931 * to be merged into one page.
932 *
8dd3557a
HD
933 * This function returns the kpage if we successfully merged two identical
934 * pages into one ksm page, NULL otherwise.
31dbd01f 935 *
80e14822 936 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
937 * is already a ksm page, try_to_merge_with_ksm_page should be used.
938 */
8dd3557a
HD
939static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
940 struct page *page,
941 struct rmap_item *tree_rmap_item,
942 struct page *tree_page)
31dbd01f 943{
80e14822 944 int err;
31dbd01f
IE
945
946 /*
947 * The number of nodes in the stable tree
948 * is the number of kernel pages that we hold.
949 */
950 if (ksm_max_kernel_pages &&
b4028260 951 ksm_max_kernel_pages <= ksm_pages_shared)
8dd3557a 952 return NULL;
31dbd01f 953
80e14822 954 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 955 if (!err) {
8dd3557a 956 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 957 tree_page, page);
31dbd01f 958 /*
81464e30
HD
959 * If that fails, we have a ksm page with only one pte
960 * pointing to it: so break it.
31dbd01f 961 */
4035c07a 962 if (err)
8dd3557a 963 break_cow(rmap_item);
31dbd01f 964 }
80e14822 965 return err ? NULL : page;
31dbd01f
IE
966}
967
31dbd01f 968/*
8dd3557a 969 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
970 *
971 * This function checks if there is a page inside the stable tree
972 * with identical content to the page that we are scanning right now.
973 *
7b6ba2c7 974 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
975 * NULL otherwise.
976 */
62b61f61 977static struct page *stable_tree_search(struct page *page)
31dbd01f
IE
978{
979 struct rb_node *node = root_stable_tree.rb_node;
7b6ba2c7 980 struct stable_node *stable_node;
31dbd01f 981
08beca44
HD
982 stable_node = page_stable_node(page);
983 if (stable_node) { /* ksm page forked */
984 get_page(page);
62b61f61 985 return page;
08beca44
HD
986 }
987
31dbd01f 988 while (node) {
4035c07a 989 struct page *tree_page;
31dbd01f
IE
990 int ret;
991
08beca44 992 cond_resched();
7b6ba2c7 993 stable_node = rb_entry(node, struct stable_node, node);
4035c07a
HD
994 tree_page = get_ksm_page(stable_node);
995 if (!tree_page)
996 return NULL;
31dbd01f 997
4035c07a 998 ret = memcmp_pages(page, tree_page);
31dbd01f 999
4035c07a
HD
1000 if (ret < 0) {
1001 put_page(tree_page);
31dbd01f 1002 node = node->rb_left;
4035c07a
HD
1003 } else if (ret > 0) {
1004 put_page(tree_page);
31dbd01f 1005 node = node->rb_right;
4035c07a 1006 } else
62b61f61 1007 return tree_page;
31dbd01f
IE
1008 }
1009
1010 return NULL;
1011}
1012
1013/*
1014 * stable_tree_insert - insert rmap_item pointing to new ksm page
1015 * into the stable tree.
1016 *
7b6ba2c7
HD
1017 * This function returns the stable tree node just allocated on success,
1018 * NULL otherwise.
31dbd01f 1019 */
7b6ba2c7 1020static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f
IE
1021{
1022 struct rb_node **new = &root_stable_tree.rb_node;
1023 struct rb_node *parent = NULL;
7b6ba2c7 1024 struct stable_node *stable_node;
31dbd01f
IE
1025
1026 while (*new) {
4035c07a 1027 struct page *tree_page;
31dbd01f
IE
1028 int ret;
1029
08beca44 1030 cond_resched();
7b6ba2c7 1031 stable_node = rb_entry(*new, struct stable_node, node);
4035c07a
HD
1032 tree_page = get_ksm_page(stable_node);
1033 if (!tree_page)
1034 return NULL;
31dbd01f 1035
4035c07a
HD
1036 ret = memcmp_pages(kpage, tree_page);
1037 put_page(tree_page);
31dbd01f
IE
1038
1039 parent = *new;
1040 if (ret < 0)
1041 new = &parent->rb_left;
1042 else if (ret > 0)
1043 new = &parent->rb_right;
1044 else {
1045 /*
1046 * It is not a bug that stable_tree_search() didn't
1047 * find this node: because at that time our page was
1048 * not yet write-protected, so may have changed since.
1049 */
1050 return NULL;
1051 }
1052 }
1053
7b6ba2c7
HD
1054 stable_node = alloc_stable_node();
1055 if (!stable_node)
1056 return NULL;
31dbd01f 1057
7b6ba2c7
HD
1058 rb_link_node(&stable_node->node, parent, new);
1059 rb_insert_color(&stable_node->node, &root_stable_tree);
1060
1061 INIT_HLIST_HEAD(&stable_node->hlist);
1062
62b61f61 1063 stable_node->kpfn = page_to_pfn(kpage);
08beca44
HD
1064 set_page_stable_node(kpage, stable_node);
1065
7b6ba2c7 1066 return stable_node;
31dbd01f
IE
1067}
1068
1069/*
8dd3557a
HD
1070 * unstable_tree_search_insert - search for identical page,
1071 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1072 *
1073 * This function searches for a page in the unstable tree identical to the
1074 * page currently being scanned; and if no identical page is found in the
1075 * tree, we insert rmap_item as a new object into the unstable tree.
1076 *
1077 * This function returns pointer to rmap_item found to be identical
1078 * to the currently scanned page, NULL otherwise.
1079 *
1080 * This function does both searching and inserting, because they share
1081 * the same walking algorithm in an rbtree.
1082 */
8dd3557a
HD
1083static
1084struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1085 struct page *page,
1086 struct page **tree_pagep)
1087
31dbd01f
IE
1088{
1089 struct rb_node **new = &root_unstable_tree.rb_node;
1090 struct rb_node *parent = NULL;
1091
1092 while (*new) {
1093 struct rmap_item *tree_rmap_item;
8dd3557a 1094 struct page *tree_page;
31dbd01f
IE
1095 int ret;
1096
d178f27f 1097 cond_resched();
31dbd01f 1098 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a
HD
1099 tree_page = get_mergeable_page(tree_rmap_item);
1100 if (!tree_page)
31dbd01f
IE
1101 return NULL;
1102
1103 /*
8dd3557a 1104 * Don't substitute a ksm page for a forked page.
31dbd01f 1105 */
8dd3557a
HD
1106 if (page == tree_page) {
1107 put_page(tree_page);
31dbd01f
IE
1108 return NULL;
1109 }
1110
8dd3557a 1111 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1112
1113 parent = *new;
1114 if (ret < 0) {
8dd3557a 1115 put_page(tree_page);
31dbd01f
IE
1116 new = &parent->rb_left;
1117 } else if (ret > 0) {
8dd3557a 1118 put_page(tree_page);
31dbd01f
IE
1119 new = &parent->rb_right;
1120 } else {
8dd3557a 1121 *tree_pagep = tree_page;
31dbd01f
IE
1122 return tree_rmap_item;
1123 }
1124 }
1125
7b6ba2c7 1126 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f
IE
1127 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1128 rb_link_node(&rmap_item->node, parent, new);
1129 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1130
473b0ce4 1131 ksm_pages_unshared++;
31dbd01f
IE
1132 return NULL;
1133}
1134
1135/*
1136 * stable_tree_append - add another rmap_item to the linked list of
1137 * rmap_items hanging off a given node of the stable tree, all sharing
1138 * the same ksm page.
1139 */
1140static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1141 struct stable_node *stable_node)
31dbd01f 1142{
7b6ba2c7 1143 rmap_item->head = stable_node;
31dbd01f 1144 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1145 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1146
7b6ba2c7
HD
1147 if (rmap_item->hlist.next)
1148 ksm_pages_sharing++;
1149 else
1150 ksm_pages_shared++;
31dbd01f
IE
1151}
1152
1153/*
81464e30
HD
1154 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1155 * if not, compare checksum to previous and if it's the same, see if page can
1156 * be inserted into the unstable tree, or merged with a page already there and
1157 * both transferred to the stable tree.
31dbd01f
IE
1158 *
1159 * @page: the page that we are searching identical page to.
1160 * @rmap_item: the reverse mapping into the virtual address of this page
1161 */
1162static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1163{
31dbd01f 1164 struct rmap_item *tree_rmap_item;
8dd3557a 1165 struct page *tree_page = NULL;
7b6ba2c7 1166 struct stable_node *stable_node;
8dd3557a 1167 struct page *kpage;
31dbd01f
IE
1168 unsigned int checksum;
1169 int err;
1170
93d17715 1171 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1172
1173 /* We first start with searching the page inside the stable tree */
62b61f61
HD
1174 kpage = stable_tree_search(page);
1175 if (kpage) {
08beca44 1176 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1177 if (!err) {
1178 /*
1179 * The page was successfully merged:
1180 * add its rmap_item to the stable tree.
1181 */
5ad64688 1182 lock_page(kpage);
62b61f61 1183 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1184 unlock_page(kpage);
31dbd01f 1185 }
8dd3557a 1186 put_page(kpage);
31dbd01f
IE
1187 return;
1188 }
1189
1190 /*
4035c07a
HD
1191 * If the hash value of the page has changed from the last time
1192 * we calculated it, this page is changing frequently: therefore we
1193 * don't want to insert it in the unstable tree, and we don't want
1194 * to waste our time searching for something identical to it there.
31dbd01f
IE
1195 */
1196 checksum = calc_checksum(page);
1197 if (rmap_item->oldchecksum != checksum) {
1198 rmap_item->oldchecksum = checksum;
1199 return;
1200 }
1201
8dd3557a
HD
1202 tree_rmap_item =
1203 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1204 if (tree_rmap_item) {
8dd3557a
HD
1205 kpage = try_to_merge_two_pages(rmap_item, page,
1206 tree_rmap_item, tree_page);
1207 put_page(tree_page);
31dbd01f
IE
1208 /*
1209 * As soon as we merge this page, we want to remove the
1210 * rmap_item of the page we have merged with from the unstable
1211 * tree, and insert it instead as new node in the stable tree.
1212 */
8dd3557a 1213 if (kpage) {
93d17715 1214 remove_rmap_item_from_tree(tree_rmap_item);
473b0ce4 1215
5ad64688 1216 lock_page(kpage);
7b6ba2c7
HD
1217 stable_node = stable_tree_insert(kpage);
1218 if (stable_node) {
1219 stable_tree_append(tree_rmap_item, stable_node);
1220 stable_tree_append(rmap_item, stable_node);
1221 }
5ad64688 1222 unlock_page(kpage);
7b6ba2c7 1223
31dbd01f
IE
1224 /*
1225 * If we fail to insert the page into the stable tree,
1226 * we will have 2 virtual addresses that are pointing
1227 * to a ksm page left outside the stable tree,
1228 * in which case we need to break_cow on both.
1229 */
7b6ba2c7 1230 if (!stable_node) {
8dd3557a
HD
1231 break_cow(tree_rmap_item);
1232 break_cow(rmap_item);
31dbd01f
IE
1233 }
1234 }
31dbd01f
IE
1235 }
1236}
1237
1238static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1239 struct rmap_item **rmap_list,
31dbd01f
IE
1240 unsigned long addr)
1241{
1242 struct rmap_item *rmap_item;
1243
6514d511
HD
1244 while (*rmap_list) {
1245 rmap_item = *rmap_list;
93d17715 1246 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1247 return rmap_item;
31dbd01f
IE
1248 if (rmap_item->address > addr)
1249 break;
6514d511 1250 *rmap_list = rmap_item->rmap_list;
31dbd01f 1251 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1252 free_rmap_item(rmap_item);
1253 }
1254
1255 rmap_item = alloc_rmap_item();
1256 if (rmap_item) {
1257 /* It has already been zeroed */
1258 rmap_item->mm = mm_slot->mm;
1259 rmap_item->address = addr;
6514d511
HD
1260 rmap_item->rmap_list = *rmap_list;
1261 *rmap_list = rmap_item;
31dbd01f
IE
1262 }
1263 return rmap_item;
1264}
1265
1266static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1267{
1268 struct mm_struct *mm;
1269 struct mm_slot *slot;
1270 struct vm_area_struct *vma;
1271 struct rmap_item *rmap_item;
1272
1273 if (list_empty(&ksm_mm_head.mm_list))
1274 return NULL;
1275
1276 slot = ksm_scan.mm_slot;
1277 if (slot == &ksm_mm_head) {
1278 root_unstable_tree = RB_ROOT;
1279
1280 spin_lock(&ksm_mmlist_lock);
1281 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1282 ksm_scan.mm_slot = slot;
1283 spin_unlock(&ksm_mmlist_lock);
1284next_mm:
1285 ksm_scan.address = 0;
6514d511 1286 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1287 }
1288
1289 mm = slot->mm;
1290 down_read(&mm->mmap_sem);
9ba69294
HD
1291 if (ksm_test_exit(mm))
1292 vma = NULL;
1293 else
1294 vma = find_vma(mm, ksm_scan.address);
1295
1296 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1297 if (!(vma->vm_flags & VM_MERGEABLE))
1298 continue;
1299 if (ksm_scan.address < vma->vm_start)
1300 ksm_scan.address = vma->vm_start;
1301 if (!vma->anon_vma)
1302 ksm_scan.address = vma->vm_end;
1303
1304 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1305 if (ksm_test_exit(mm))
1306 break;
31dbd01f
IE
1307 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1308 if (*page && PageAnon(*page)) {
1309 flush_anon_page(vma, *page, ksm_scan.address);
1310 flush_dcache_page(*page);
1311 rmap_item = get_next_rmap_item(slot,
6514d511 1312 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1313 if (rmap_item) {
6514d511
HD
1314 ksm_scan.rmap_list =
1315 &rmap_item->rmap_list;
31dbd01f
IE
1316 ksm_scan.address += PAGE_SIZE;
1317 } else
1318 put_page(*page);
1319 up_read(&mm->mmap_sem);
1320 return rmap_item;
1321 }
1322 if (*page)
1323 put_page(*page);
1324 ksm_scan.address += PAGE_SIZE;
1325 cond_resched();
1326 }
1327 }
1328
9ba69294
HD
1329 if (ksm_test_exit(mm)) {
1330 ksm_scan.address = 0;
6514d511 1331 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1332 }
31dbd01f
IE
1333 /*
1334 * Nuke all the rmap_items that are above this current rmap:
1335 * because there were no VM_MERGEABLE vmas with such addresses.
1336 */
6514d511 1337 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1338
1339 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1340 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1341 struct mm_slot, mm_list);
1342 if (ksm_scan.address == 0) {
1343 /*
1344 * We've completed a full scan of all vmas, holding mmap_sem
1345 * throughout, and found no VM_MERGEABLE: so do the same as
1346 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1347 * This applies either when cleaning up after __ksm_exit
1348 * (but beware: we can reach here even before __ksm_exit),
1349 * or when all VM_MERGEABLE areas have been unmapped (and
1350 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97
HD
1351 */
1352 hlist_del(&slot->link);
1353 list_del(&slot->mm_list);
9ba69294
HD
1354 spin_unlock(&ksm_mmlist_lock);
1355
cd551f97
HD
1356 free_mm_slot(slot);
1357 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1358 up_read(&mm->mmap_sem);
1359 mmdrop(mm);
1360 } else {
1361 spin_unlock(&ksm_mmlist_lock);
1362 up_read(&mm->mmap_sem);
cd551f97 1363 }
31dbd01f
IE
1364
1365 /* Repeat until we've completed scanning the whole list */
cd551f97 1366 slot = ksm_scan.mm_slot;
31dbd01f
IE
1367 if (slot != &ksm_mm_head)
1368 goto next_mm;
1369
31dbd01f
IE
1370 ksm_scan.seqnr++;
1371 return NULL;
1372}
1373
1374/**
1375 * ksm_do_scan - the ksm scanner main worker function.
1376 * @scan_npages - number of pages we want to scan before we return.
1377 */
1378static void ksm_do_scan(unsigned int scan_npages)
1379{
1380 struct rmap_item *rmap_item;
1381 struct page *page;
1382
1383 while (scan_npages--) {
1384 cond_resched();
1385 rmap_item = scan_get_next_rmap_item(&page);
1386 if (!rmap_item)
1387 return;
1388 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1389 cmp_and_merge_page(page, rmap_item);
1390 put_page(page);
1391 }
1392}
1393
6e158384
HD
1394static int ksmd_should_run(void)
1395{
1396 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1397}
1398
31dbd01f
IE
1399static int ksm_scan_thread(void *nothing)
1400{
339aa624 1401 set_user_nice(current, 5);
31dbd01f
IE
1402
1403 while (!kthread_should_stop()) {
6e158384
HD
1404 mutex_lock(&ksm_thread_mutex);
1405 if (ksmd_should_run())
31dbd01f 1406 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1407 mutex_unlock(&ksm_thread_mutex);
1408
1409 if (ksmd_should_run()) {
31dbd01f
IE
1410 schedule_timeout_interruptible(
1411 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1412 } else {
1413 wait_event_interruptible(ksm_thread_wait,
6e158384 1414 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1415 }
1416 }
1417 return 0;
1418}
1419
f8af4da3
HD
1420int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1421 unsigned long end, int advice, unsigned long *vm_flags)
1422{
1423 struct mm_struct *mm = vma->vm_mm;
d952b791 1424 int err;
f8af4da3
HD
1425
1426 switch (advice) {
1427 case MADV_MERGEABLE:
1428 /*
1429 * Be somewhat over-protective for now!
1430 */
1431 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1432 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1433 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
5ad64688 1434 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
f8af4da3
HD
1435 return 0; /* just ignore the advice */
1436
d952b791
HD
1437 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1438 err = __ksm_enter(mm);
1439 if (err)
1440 return err;
1441 }
f8af4da3
HD
1442
1443 *vm_flags |= VM_MERGEABLE;
1444 break;
1445
1446 case MADV_UNMERGEABLE:
1447 if (!(*vm_flags & VM_MERGEABLE))
1448 return 0; /* just ignore the advice */
1449
d952b791
HD
1450 if (vma->anon_vma) {
1451 err = unmerge_ksm_pages(vma, start, end);
1452 if (err)
1453 return err;
1454 }
f8af4da3
HD
1455
1456 *vm_flags &= ~VM_MERGEABLE;
1457 break;
1458 }
1459
1460 return 0;
1461}
1462
1463int __ksm_enter(struct mm_struct *mm)
1464{
6e158384
HD
1465 struct mm_slot *mm_slot;
1466 int needs_wakeup;
1467
1468 mm_slot = alloc_mm_slot();
31dbd01f
IE
1469 if (!mm_slot)
1470 return -ENOMEM;
1471
6e158384
HD
1472 /* Check ksm_run too? Would need tighter locking */
1473 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1474
31dbd01f
IE
1475 spin_lock(&ksm_mmlist_lock);
1476 insert_to_mm_slots_hash(mm, mm_slot);
1477 /*
1478 * Insert just behind the scanning cursor, to let the area settle
1479 * down a little; when fork is followed by immediate exec, we don't
1480 * want ksmd to waste time setting up and tearing down an rmap_list.
1481 */
1482 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1483 spin_unlock(&ksm_mmlist_lock);
1484
f8af4da3 1485 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1486 atomic_inc(&mm->mm_count);
6e158384
HD
1487
1488 if (needs_wakeup)
1489 wake_up_interruptible(&ksm_thread_wait);
1490
f8af4da3
HD
1491 return 0;
1492}
1493
1c2fb7a4 1494void __ksm_exit(struct mm_struct *mm)
f8af4da3 1495{
cd551f97 1496 struct mm_slot *mm_slot;
9ba69294 1497 int easy_to_free = 0;
cd551f97 1498
31dbd01f 1499 /*
9ba69294
HD
1500 * This process is exiting: if it's straightforward (as is the
1501 * case when ksmd was never running), free mm_slot immediately.
1502 * But if it's at the cursor or has rmap_items linked to it, use
1503 * mmap_sem to synchronize with any break_cows before pagetables
1504 * are freed, and leave the mm_slot on the list for ksmd to free.
1505 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1506 */
9ba69294 1507
cd551f97
HD
1508 spin_lock(&ksm_mmlist_lock);
1509 mm_slot = get_mm_slot(mm);
9ba69294 1510 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1511 if (!mm_slot->rmap_list) {
9ba69294
HD
1512 hlist_del(&mm_slot->link);
1513 list_del(&mm_slot->mm_list);
1514 easy_to_free = 1;
1515 } else {
1516 list_move(&mm_slot->mm_list,
1517 &ksm_scan.mm_slot->mm_list);
1518 }
cd551f97 1519 }
cd551f97
HD
1520 spin_unlock(&ksm_mmlist_lock);
1521
9ba69294
HD
1522 if (easy_to_free) {
1523 free_mm_slot(mm_slot);
1524 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1525 mmdrop(mm);
1526 } else if (mm_slot) {
9ba69294
HD
1527 down_write(&mm->mmap_sem);
1528 up_write(&mm->mmap_sem);
9ba69294 1529 }
31dbd01f
IE
1530}
1531
5ad64688
HD
1532struct page *ksm_does_need_to_copy(struct page *page,
1533 struct vm_area_struct *vma, unsigned long address)
1534{
1535 struct page *new_page;
1536
1537 unlock_page(page); /* any racers will COW it, not modify it */
1538
1539 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1540 if (new_page) {
1541 copy_user_highpage(new_page, page, address, vma);
1542
1543 SetPageDirty(new_page);
1544 __SetPageUptodate(new_page);
1545 SetPageSwapBacked(new_page);
1546 __set_page_locked(new_page);
1547
1548 if (page_evictable(new_page, vma))
1549 lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1550 else
1551 add_page_to_unevictable_list(new_page);
1552 }
1553
1554 page_cache_release(page);
1555 return new_page;
1556}
1557
1558int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1559 unsigned long *vm_flags)
1560{
1561 struct stable_node *stable_node;
1562 struct rmap_item *rmap_item;
1563 struct hlist_node *hlist;
1564 unsigned int mapcount = page_mapcount(page);
1565 int referenced = 0;
db114b83 1566 int search_new_forks = 0;
5ad64688
HD
1567
1568 VM_BUG_ON(!PageKsm(page));
1569 VM_BUG_ON(!PageLocked(page));
1570
1571 stable_node = page_stable_node(page);
1572 if (!stable_node)
1573 return 0;
db114b83 1574again:
5ad64688 1575 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83
HD
1576 struct anon_vma *anon_vma = rmap_item->anon_vma;
1577 struct vm_area_struct *vma;
5ad64688 1578
db114b83
HD
1579 spin_lock(&anon_vma->lock);
1580 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1581 if (rmap_item->address < vma->vm_start ||
1582 rmap_item->address >= vma->vm_end)
1583 continue;
1584 /*
1585 * Initially we examine only the vma which covers this
1586 * rmap_item; but later, if there is still work to do,
1587 * we examine covering vmas in other mms: in case they
1588 * were forked from the original since ksmd passed.
1589 */
1590 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1591 continue;
1592
1593 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1594 continue;
5ad64688 1595
db114b83 1596 referenced += page_referenced_one(page, vma,
5ad64688 1597 rmap_item->address, &mapcount, vm_flags);
db114b83
HD
1598 if (!search_new_forks || !mapcount)
1599 break;
1600 }
1601 spin_unlock(&anon_vma->lock);
5ad64688
HD
1602 if (!mapcount)
1603 goto out;
1604 }
db114b83
HD
1605 if (!search_new_forks++)
1606 goto again;
5ad64688 1607out:
5ad64688
HD
1608 return referenced;
1609}
1610
1611int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1612{
1613 struct stable_node *stable_node;
1614 struct hlist_node *hlist;
1615 struct rmap_item *rmap_item;
1616 int ret = SWAP_AGAIN;
db114b83 1617 int search_new_forks = 0;
5ad64688
HD
1618
1619 VM_BUG_ON(!PageKsm(page));
1620 VM_BUG_ON(!PageLocked(page));
1621
1622 stable_node = page_stable_node(page);
1623 if (!stable_node)
1624 return SWAP_FAIL;
db114b83 1625again:
5ad64688 1626 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83
HD
1627 struct anon_vma *anon_vma = rmap_item->anon_vma;
1628 struct vm_area_struct *vma;
5ad64688 1629
db114b83
HD
1630 spin_lock(&anon_vma->lock);
1631 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1632 if (rmap_item->address < vma->vm_start ||
1633 rmap_item->address >= vma->vm_end)
1634 continue;
1635 /*
1636 * Initially we examine only the vma which covers this
1637 * rmap_item; but later, if there is still work to do,
1638 * we examine covering vmas in other mms: in case they
1639 * were forked from the original since ksmd passed.
1640 */
1641 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1642 continue;
1643
1644 ret = try_to_unmap_one(page, vma,
1645 rmap_item->address, flags);
1646 if (ret != SWAP_AGAIN || !page_mapped(page)) {
1647 spin_unlock(&anon_vma->lock);
1648 goto out;
1649 }
1650 }
1651 spin_unlock(&anon_vma->lock);
5ad64688 1652 }
db114b83
HD
1653 if (!search_new_forks++)
1654 goto again;
5ad64688 1655out:
5ad64688
HD
1656 return ret;
1657}
1658
e9995ef9
HD
1659#ifdef CONFIG_MIGRATION
1660int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1661 struct vm_area_struct *, unsigned long, void *), void *arg)
1662{
1663 struct stable_node *stable_node;
1664 struct hlist_node *hlist;
1665 struct rmap_item *rmap_item;
1666 int ret = SWAP_AGAIN;
1667 int search_new_forks = 0;
1668
1669 VM_BUG_ON(!PageKsm(page));
1670 VM_BUG_ON(!PageLocked(page));
1671
1672 stable_node = page_stable_node(page);
1673 if (!stable_node)
1674 return ret;
1675again:
1676 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1677 struct anon_vma *anon_vma = rmap_item->anon_vma;
1678 struct vm_area_struct *vma;
1679
1680 spin_lock(&anon_vma->lock);
1681 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1682 if (rmap_item->address < vma->vm_start ||
1683 rmap_item->address >= vma->vm_end)
1684 continue;
1685 /*
1686 * Initially we examine only the vma which covers this
1687 * rmap_item; but later, if there is still work to do,
1688 * we examine covering vmas in other mms: in case they
1689 * were forked from the original since ksmd passed.
1690 */
1691 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1692 continue;
1693
1694 ret = rmap_one(page, vma, rmap_item->address, arg);
1695 if (ret != SWAP_AGAIN) {
1696 spin_unlock(&anon_vma->lock);
1697 goto out;
1698 }
1699 }
1700 spin_unlock(&anon_vma->lock);
1701 }
1702 if (!search_new_forks++)
1703 goto again;
1704out:
1705 return ret;
1706}
1707
1708void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1709{
1710 struct stable_node *stable_node;
1711
1712 VM_BUG_ON(!PageLocked(oldpage));
1713 VM_BUG_ON(!PageLocked(newpage));
1714 VM_BUG_ON(newpage->mapping != oldpage->mapping);
1715
1716 stable_node = page_stable_node(newpage);
1717 if (stable_node) {
62b61f61
HD
1718 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1719 stable_node->kpfn = page_to_pfn(newpage);
e9995ef9
HD
1720 }
1721}
1722#endif /* CONFIG_MIGRATION */
1723
62b61f61
HD
1724#ifdef CONFIG_MEMORY_HOTREMOVE
1725static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1726 unsigned long end_pfn)
1727{
1728 struct rb_node *node;
1729
1730 for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1731 struct stable_node *stable_node;
1732
1733 stable_node = rb_entry(node, struct stable_node, node);
1734 if (stable_node->kpfn >= start_pfn &&
1735 stable_node->kpfn < end_pfn)
1736 return stable_node;
1737 }
1738 return NULL;
1739}
1740
1741static int ksm_memory_callback(struct notifier_block *self,
1742 unsigned long action, void *arg)
1743{
1744 struct memory_notify *mn = arg;
1745 struct stable_node *stable_node;
1746
1747 switch (action) {
1748 case MEM_GOING_OFFLINE:
1749 /*
1750 * Keep it very simple for now: just lock out ksmd and
1751 * MADV_UNMERGEABLE while any memory is going offline.
1752 */
1753 mutex_lock(&ksm_thread_mutex);
1754 break;
1755
1756 case MEM_OFFLINE:
1757 /*
1758 * Most of the work is done by page migration; but there might
1759 * be a few stable_nodes left over, still pointing to struct
1760 * pages which have been offlined: prune those from the tree.
1761 */
1762 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1763 mn->start_pfn + mn->nr_pages)) != NULL)
1764 remove_node_from_stable_tree(stable_node);
1765 /* fallthrough */
1766
1767 case MEM_CANCEL_OFFLINE:
1768 mutex_unlock(&ksm_thread_mutex);
1769 break;
1770 }
1771 return NOTIFY_OK;
1772}
1773#endif /* CONFIG_MEMORY_HOTREMOVE */
1774
2ffd8679
HD
1775#ifdef CONFIG_SYSFS
1776/*
1777 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1778 */
1779
31dbd01f
IE
1780#define KSM_ATTR_RO(_name) \
1781 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1782#define KSM_ATTR(_name) \
1783 static struct kobj_attribute _name##_attr = \
1784 __ATTR(_name, 0644, _name##_show, _name##_store)
1785
1786static ssize_t sleep_millisecs_show(struct kobject *kobj,
1787 struct kobj_attribute *attr, char *buf)
1788{
1789 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1790}
1791
1792static ssize_t sleep_millisecs_store(struct kobject *kobj,
1793 struct kobj_attribute *attr,
1794 const char *buf, size_t count)
1795{
1796 unsigned long msecs;
1797 int err;
1798
1799 err = strict_strtoul(buf, 10, &msecs);
1800 if (err || msecs > UINT_MAX)
1801 return -EINVAL;
1802
1803 ksm_thread_sleep_millisecs = msecs;
1804
1805 return count;
1806}
1807KSM_ATTR(sleep_millisecs);
1808
1809static ssize_t pages_to_scan_show(struct kobject *kobj,
1810 struct kobj_attribute *attr, char *buf)
1811{
1812 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1813}
1814
1815static ssize_t pages_to_scan_store(struct kobject *kobj,
1816 struct kobj_attribute *attr,
1817 const char *buf, size_t count)
1818{
1819 int err;
1820 unsigned long nr_pages;
1821
1822 err = strict_strtoul(buf, 10, &nr_pages);
1823 if (err || nr_pages > UINT_MAX)
1824 return -EINVAL;
1825
1826 ksm_thread_pages_to_scan = nr_pages;
1827
1828 return count;
1829}
1830KSM_ATTR(pages_to_scan);
1831
1832static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1833 char *buf)
1834{
1835 return sprintf(buf, "%u\n", ksm_run);
1836}
1837
1838static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1839 const char *buf, size_t count)
1840{
1841 int err;
1842 unsigned long flags;
1843
1844 err = strict_strtoul(buf, 10, &flags);
1845 if (err || flags > UINT_MAX)
1846 return -EINVAL;
1847 if (flags > KSM_RUN_UNMERGE)
1848 return -EINVAL;
1849
1850 /*
1851 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1852 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
b4028260 1853 * breaking COW to free the unswappable pages_shared (but leaves
31dbd01f
IE
1854 * mm_slots on the list for when ksmd may be set running again).
1855 */
1856
1857 mutex_lock(&ksm_thread_mutex);
1858 if (ksm_run != flags) {
1859 ksm_run = flags;
d952b791 1860 if (flags & KSM_RUN_UNMERGE) {
35451bee 1861 current->flags |= PF_OOM_ORIGIN;
d952b791 1862 err = unmerge_and_remove_all_rmap_items();
35451bee 1863 current->flags &= ~PF_OOM_ORIGIN;
d952b791
HD
1864 if (err) {
1865 ksm_run = KSM_RUN_STOP;
1866 count = err;
1867 }
1868 }
31dbd01f
IE
1869 }
1870 mutex_unlock(&ksm_thread_mutex);
1871
1872 if (flags & KSM_RUN_MERGE)
1873 wake_up_interruptible(&ksm_thread_wait);
1874
1875 return count;
1876}
1877KSM_ATTR(run);
1878
31dbd01f
IE
1879static ssize_t max_kernel_pages_store(struct kobject *kobj,
1880 struct kobj_attribute *attr,
1881 const char *buf, size_t count)
1882{
1883 int err;
1884 unsigned long nr_pages;
1885
1886 err = strict_strtoul(buf, 10, &nr_pages);
1887 if (err)
1888 return -EINVAL;
1889
1890 ksm_max_kernel_pages = nr_pages;
1891
1892 return count;
1893}
1894
1895static ssize_t max_kernel_pages_show(struct kobject *kobj,
1896 struct kobj_attribute *attr, char *buf)
1897{
1898 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1899}
1900KSM_ATTR(max_kernel_pages);
1901
b4028260
HD
1902static ssize_t pages_shared_show(struct kobject *kobj,
1903 struct kobj_attribute *attr, char *buf)
1904{
1905 return sprintf(buf, "%lu\n", ksm_pages_shared);
1906}
1907KSM_ATTR_RO(pages_shared);
1908
1909static ssize_t pages_sharing_show(struct kobject *kobj,
1910 struct kobj_attribute *attr, char *buf)
1911{
e178dfde 1912 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
1913}
1914KSM_ATTR_RO(pages_sharing);
1915
473b0ce4
HD
1916static ssize_t pages_unshared_show(struct kobject *kobj,
1917 struct kobj_attribute *attr, char *buf)
1918{
1919 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1920}
1921KSM_ATTR_RO(pages_unshared);
1922
1923static ssize_t pages_volatile_show(struct kobject *kobj,
1924 struct kobj_attribute *attr, char *buf)
1925{
1926 long ksm_pages_volatile;
1927
1928 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1929 - ksm_pages_sharing - ksm_pages_unshared;
1930 /*
1931 * It was not worth any locking to calculate that statistic,
1932 * but it might therefore sometimes be negative: conceal that.
1933 */
1934 if (ksm_pages_volatile < 0)
1935 ksm_pages_volatile = 0;
1936 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1937}
1938KSM_ATTR_RO(pages_volatile);
1939
1940static ssize_t full_scans_show(struct kobject *kobj,
1941 struct kobj_attribute *attr, char *buf)
1942{
1943 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1944}
1945KSM_ATTR_RO(full_scans);
1946
31dbd01f
IE
1947static struct attribute *ksm_attrs[] = {
1948 &sleep_millisecs_attr.attr,
1949 &pages_to_scan_attr.attr,
1950 &run_attr.attr,
31dbd01f 1951 &max_kernel_pages_attr.attr,
b4028260
HD
1952 &pages_shared_attr.attr,
1953 &pages_sharing_attr.attr,
473b0ce4
HD
1954 &pages_unshared_attr.attr,
1955 &pages_volatile_attr.attr,
1956 &full_scans_attr.attr,
31dbd01f
IE
1957 NULL,
1958};
1959
1960static struct attribute_group ksm_attr_group = {
1961 .attrs = ksm_attrs,
1962 .name = "ksm",
1963};
2ffd8679 1964#endif /* CONFIG_SYSFS */
31dbd01f
IE
1965
1966static int __init ksm_init(void)
1967{
1968 struct task_struct *ksm_thread;
1969 int err;
1970
c73602ad 1971 ksm_max_kernel_pages = totalram_pages / 4;
2c6854fd 1972
31dbd01f
IE
1973 err = ksm_slab_init();
1974 if (err)
1975 goto out;
1976
1977 err = mm_slots_hash_init();
1978 if (err)
1979 goto out_free1;
1980
1981 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1982 if (IS_ERR(ksm_thread)) {
1983 printk(KERN_ERR "ksm: creating kthread failed\n");
1984 err = PTR_ERR(ksm_thread);
1985 goto out_free2;
1986 }
1987
2ffd8679 1988#ifdef CONFIG_SYSFS
31dbd01f
IE
1989 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1990 if (err) {
1991 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679
HD
1992 kthread_stop(ksm_thread);
1993 goto out_free2;
31dbd01f 1994 }
c73602ad
HD
1995#else
1996 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
1997
2ffd8679 1998#endif /* CONFIG_SYSFS */
31dbd01f 1999
62b61f61
HD
2000#ifdef CONFIG_MEMORY_HOTREMOVE
2001 /*
2002 * Choose a high priority since the callback takes ksm_thread_mutex:
2003 * later callbacks could only be taking locks which nest within that.
2004 */
2005 hotplug_memory_notifier(ksm_memory_callback, 100);
2006#endif
31dbd01f
IE
2007 return 0;
2008
31dbd01f
IE
2009out_free2:
2010 mm_slots_hash_free();
2011out_free1:
2012 ksm_slab_free();
2013out:
2014 return err;
f8af4da3 2015}
31dbd01f 2016module_init(ksm_init)