]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/filemap.c
Linux 2.6.36-rc8
[net-next-2.6.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
25d9e2d1 61 * ->i_mmap_lock (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
6a46079c
AK
107 *
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
1da177e4
LT
111 */
112
113/*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 116 * is safe. The caller must hold the mapping's tree_lock.
1da177e4
LT
117 */
118void __remove_from_page_cache(struct page *page)
119{
120 struct address_space *mapping = page->mapping;
121
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
347ce434 125 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
45426812 128 BUG_ON(page_mapped(page));
3a692790
LT
129
130 /*
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
133 *
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
136 */
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 }
1da177e4
LT
141}
142
143void remove_from_page_cache(struct page *page)
144{
145 struct address_space *mapping = page->mapping;
146
cd7619d6 147 BUG_ON(!PageLocked(page));
1da177e4 148
19fd6231 149 spin_lock_irq(&mapping->tree_lock);
1da177e4 150 __remove_from_page_cache(page);
19fd6231 151 spin_unlock_irq(&mapping->tree_lock);
e767e056 152 mem_cgroup_uncharge_cache_page(page);
1da177e4 153}
a52116ab 154EXPORT_SYMBOL(remove_from_page_cache);
1da177e4
LT
155
156static int sync_page(void *word)
157{
158 struct address_space *mapping;
159 struct page *page;
160
07808b74 161 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
162
163 /*
dd1d5afc
WLII
164 * page_mapping() is being called without PG_locked held.
165 * Some knowledge of the state and use of the page is used to
166 * reduce the requirements down to a memory barrier.
167 * The danger here is of a stale page_mapping() return value
168 * indicating a struct address_space different from the one it's
169 * associated with when it is associated with one.
170 * After smp_mb(), it's either the correct page_mapping() for
171 * the page, or an old page_mapping() and the page's own
172 * page_mapping() has gone NULL.
173 * The ->sync_page() address_space operation must tolerate
174 * page_mapping() going NULL. By an amazing coincidence,
175 * this comes about because none of the users of the page
176 * in the ->sync_page() methods make essential use of the
177 * page_mapping(), merely passing the page down to the backing
178 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 179 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
180 * of interest. When page_mapping() does go NULL, the entire
181 * call stack gracefully ignores the page and returns.
182 * -- wli
1da177e4
LT
183 */
184 smp_mb();
185 mapping = page_mapping(page);
186 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187 mapping->a_ops->sync_page(page);
188 io_schedule();
189 return 0;
190}
191
2687a356
MW
192static int sync_page_killable(void *word)
193{
194 sync_page(word);
195 return fatal_signal_pending(current) ? -EINTR : 0;
196}
197
1da177e4 198/**
485bb99b 199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
200 * @mapping: address space structure to write
201 * @start: offset in bytes where the range starts
469eb4d0 202 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 203 * @sync_mode: enable synchronous operation
1da177e4 204 *
485bb99b
RD
205 * Start writeback against all of a mapping's dirty pages that lie
206 * within the byte offsets <start, end> inclusive.
207 *
1da177e4 208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 209 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
210 * these two operations is that if a dirty page/buffer is encountered, it must
211 * be waited upon, and not just skipped over.
212 */
ebcf28e1
AM
213int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214 loff_t end, int sync_mode)
1da177e4
LT
215{
216 int ret;
217 struct writeback_control wbc = {
218 .sync_mode = sync_mode,
05fe478d 219 .nr_to_write = LONG_MAX,
111ebb6e
OH
220 .range_start = start,
221 .range_end = end,
1da177e4
LT
222 };
223
224 if (!mapping_cap_writeback_dirty(mapping))
225 return 0;
226
227 ret = do_writepages(mapping, &wbc);
228 return ret;
229}
230
231static inline int __filemap_fdatawrite(struct address_space *mapping,
232 int sync_mode)
233{
111ebb6e 234 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
235}
236
237int filemap_fdatawrite(struct address_space *mapping)
238{
239 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240}
241EXPORT_SYMBOL(filemap_fdatawrite);
242
f4c0a0fd 243int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 244 loff_t end)
1da177e4
LT
245{
246 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247}
f4c0a0fd 248EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 249
485bb99b
RD
250/**
251 * filemap_flush - mostly a non-blocking flush
252 * @mapping: target address_space
253 *
1da177e4
LT
254 * This is a mostly non-blocking flush. Not suitable for data-integrity
255 * purposes - I/O may not be started against all dirty pages.
256 */
257int filemap_flush(struct address_space *mapping)
258{
259 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260}
261EXPORT_SYMBOL(filemap_flush);
262
485bb99b 263/**
94004ed7
CH
264 * filemap_fdatawait_range - wait for writeback to complete
265 * @mapping: address space structure to wait for
266 * @start_byte: offset in bytes where the range starts
267 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 268 *
94004ed7
CH
269 * Walk the list of under-writeback pages of the given address space
270 * in the given range and wait for all of them.
1da177e4 271 */
94004ed7
CH
272int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273 loff_t end_byte)
1da177e4 274{
94004ed7
CH
275 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
277 struct pagevec pvec;
278 int nr_pages;
279 int ret = 0;
1da177e4 280
94004ed7 281 if (end_byte < start_byte)
1da177e4
LT
282 return 0;
283
284 pagevec_init(&pvec, 0);
1da177e4
LT
285 while ((index <= end) &&
286 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287 PAGECACHE_TAG_WRITEBACK,
288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289 unsigned i;
290
291 for (i = 0; i < nr_pages; i++) {
292 struct page *page = pvec.pages[i];
293
294 /* until radix tree lookup accepts end_index */
295 if (page->index > end)
296 continue;
297
298 wait_on_page_writeback(page);
299 if (PageError(page))
300 ret = -EIO;
301 }
302 pagevec_release(&pvec);
303 cond_resched();
304 }
305
306 /* Check for outstanding write errors */
307 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308 ret = -ENOSPC;
309 if (test_and_clear_bit(AS_EIO, &mapping->flags))
310 ret = -EIO;
311
312 return ret;
313}
d3bccb6f
JK
314EXPORT_SYMBOL(filemap_fdatawait_range);
315
1da177e4 316/**
485bb99b 317 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 318 * @mapping: address space structure to wait for
485bb99b
RD
319 *
320 * Walk the list of under-writeback pages of the given address space
321 * and wait for all of them.
1da177e4
LT
322 */
323int filemap_fdatawait(struct address_space *mapping)
324{
325 loff_t i_size = i_size_read(mapping->host);
326
327 if (i_size == 0)
328 return 0;
329
94004ed7 330 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
331}
332EXPORT_SYMBOL(filemap_fdatawait);
333
334int filemap_write_and_wait(struct address_space *mapping)
335{
28fd1298 336 int err = 0;
1da177e4
LT
337
338 if (mapping->nrpages) {
28fd1298
OH
339 err = filemap_fdatawrite(mapping);
340 /*
341 * Even if the above returned error, the pages may be
342 * written partially (e.g. -ENOSPC), so we wait for it.
343 * But the -EIO is special case, it may indicate the worst
344 * thing (e.g. bug) happened, so we avoid waiting for it.
345 */
346 if (err != -EIO) {
347 int err2 = filemap_fdatawait(mapping);
348 if (!err)
349 err = err2;
350 }
1da177e4 351 }
28fd1298 352 return err;
1da177e4 353}
28fd1298 354EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 355
485bb99b
RD
356/**
357 * filemap_write_and_wait_range - write out & wait on a file range
358 * @mapping: the address_space for the pages
359 * @lstart: offset in bytes where the range starts
360 * @lend: offset in bytes where the range ends (inclusive)
361 *
469eb4d0
AM
362 * Write out and wait upon file offsets lstart->lend, inclusive.
363 *
364 * Note that `lend' is inclusive (describes the last byte to be written) so
365 * that this function can be used to write to the very end-of-file (end = -1).
366 */
1da177e4
LT
367int filemap_write_and_wait_range(struct address_space *mapping,
368 loff_t lstart, loff_t lend)
369{
28fd1298 370 int err = 0;
1da177e4
LT
371
372 if (mapping->nrpages) {
28fd1298
OH
373 err = __filemap_fdatawrite_range(mapping, lstart, lend,
374 WB_SYNC_ALL);
375 /* See comment of filemap_write_and_wait() */
376 if (err != -EIO) {
94004ed7
CH
377 int err2 = filemap_fdatawait_range(mapping,
378 lstart, lend);
28fd1298
OH
379 if (!err)
380 err = err2;
381 }
1da177e4 382 }
28fd1298 383 return err;
1da177e4 384}
f6995585 385EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 386
485bb99b 387/**
e286781d 388 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
389 * @page: page to add
390 * @mapping: the page's address_space
391 * @offset: page index
392 * @gfp_mask: page allocation mode
393 *
e286781d 394 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
395 * This function does not add the page to the LRU. The caller must do that.
396 */
e286781d 397int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 398 pgoff_t offset, gfp_t gfp_mask)
1da177e4 399{
e286781d
NP
400 int error;
401
402 VM_BUG_ON(!PageLocked(page));
403
404 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 405 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
406 if (error)
407 goto out;
1da177e4 408
35c754d7 409 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 410 if (error == 0) {
e286781d
NP
411 page_cache_get(page);
412 page->mapping = mapping;
413 page->index = offset;
414
19fd6231 415 spin_lock_irq(&mapping->tree_lock);
1da177e4 416 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 417 if (likely(!error)) {
1da177e4 418 mapping->nrpages++;
347ce434 419 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
420 if (PageSwapBacked(page))
421 __inc_zone_page_state(page, NR_SHMEM);
e767e056 422 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
423 } else {
424 page->mapping = NULL;
e767e056 425 spin_unlock_irq(&mapping->tree_lock);
69029cd5 426 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
427 page_cache_release(page);
428 }
1da177e4 429 radix_tree_preload_end();
35c754d7 430 } else
69029cd5 431 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 432out:
1da177e4
LT
433 return error;
434}
e286781d 435EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
436
437int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 438 pgoff_t offset, gfp_t gfp_mask)
1da177e4 439{
4f98a2fe
RR
440 int ret;
441
442 /*
443 * Splice_read and readahead add shmem/tmpfs pages into the page cache
444 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 445 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
446 * (called in add_to_page_cache) needs to know where they're going too.
447 */
448 if (mapping_cap_swap_backed(mapping))
449 SetPageSwapBacked(page);
450
451 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452 if (ret == 0) {
453 if (page_is_file_cache(page))
454 lru_cache_add_file(page);
455 else
e9d6c157 456 lru_cache_add_anon(page);
4f98a2fe 457 }
1da177e4
LT
458 return ret;
459}
18bc0bbd 460EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 461
44110fe3 462#ifdef CONFIG_NUMA
2ae88149 463struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 464{
c0ff7453
MX
465 int n;
466 struct page *page;
467
44110fe3 468 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
469 get_mems_allowed();
470 n = cpuset_mem_spread_node();
471 page = alloc_pages_exact_node(n, gfp, 0);
472 put_mems_allowed();
473 return page;
44110fe3 474 }
2ae88149 475 return alloc_pages(gfp, 0);
44110fe3 476}
2ae88149 477EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
478#endif
479
db37648c
NP
480static int __sleep_on_page_lock(void *word)
481{
482 io_schedule();
483 return 0;
484}
485
1da177e4
LT
486/*
487 * In order to wait for pages to become available there must be
488 * waitqueues associated with pages. By using a hash table of
489 * waitqueues where the bucket discipline is to maintain all
490 * waiters on the same queue and wake all when any of the pages
491 * become available, and for the woken contexts to check to be
492 * sure the appropriate page became available, this saves space
493 * at a cost of "thundering herd" phenomena during rare hash
494 * collisions.
495 */
496static wait_queue_head_t *page_waitqueue(struct page *page)
497{
498 const struct zone *zone = page_zone(page);
499
500 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
501}
502
503static inline void wake_up_page(struct page *page, int bit)
504{
505 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
506}
507
920c7a5d 508void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
509{
510 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
511
512 if (test_bit(bit_nr, &page->flags))
513 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
514 TASK_UNINTERRUPTIBLE);
515}
516EXPORT_SYMBOL(wait_on_page_bit);
517
385e1ca5
DH
518/**
519 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
520 * @page: Page defining the wait queue of interest
521 * @waiter: Waiter to add to the queue
385e1ca5
DH
522 *
523 * Add an arbitrary @waiter to the wait queue for the nominated @page.
524 */
525void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
526{
527 wait_queue_head_t *q = page_waitqueue(page);
528 unsigned long flags;
529
530 spin_lock_irqsave(&q->lock, flags);
531 __add_wait_queue(q, waiter);
532 spin_unlock_irqrestore(&q->lock, flags);
533}
534EXPORT_SYMBOL_GPL(add_page_wait_queue);
535
1da177e4 536/**
485bb99b 537 * unlock_page - unlock a locked page
1da177e4
LT
538 * @page: the page
539 *
540 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542 * mechananism between PageLocked pages and PageWriteback pages is shared.
543 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544 *
8413ac9d
NP
545 * The mb is necessary to enforce ordering between the clear_bit and the read
546 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 547 */
920c7a5d 548void unlock_page(struct page *page)
1da177e4 549{
8413ac9d
NP
550 VM_BUG_ON(!PageLocked(page));
551 clear_bit_unlock(PG_locked, &page->flags);
552 smp_mb__after_clear_bit();
1da177e4
LT
553 wake_up_page(page, PG_locked);
554}
555EXPORT_SYMBOL(unlock_page);
556
485bb99b
RD
557/**
558 * end_page_writeback - end writeback against a page
559 * @page: the page
1da177e4
LT
560 */
561void end_page_writeback(struct page *page)
562{
ac6aadb2
MS
563 if (TestClearPageReclaim(page))
564 rotate_reclaimable_page(page);
565
566 if (!test_clear_page_writeback(page))
567 BUG();
568
1da177e4
LT
569 smp_mb__after_clear_bit();
570 wake_up_page(page, PG_writeback);
571}
572EXPORT_SYMBOL(end_page_writeback);
573
485bb99b
RD
574/**
575 * __lock_page - get a lock on the page, assuming we need to sleep to get it
576 * @page: the page to lock
1da177e4 577 *
485bb99b 578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
579 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
580 * chances are that on the second loop, the block layer's plug list is empty,
581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582 */
920c7a5d 583void __lock_page(struct page *page)
1da177e4
LT
584{
585 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586
587 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588 TASK_UNINTERRUPTIBLE);
589}
590EXPORT_SYMBOL(__lock_page);
591
b5606c2d 592int __lock_page_killable(struct page *page)
2687a356
MW
593{
594 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
595
596 return __wait_on_bit_lock(page_waitqueue(page), &wait,
597 sync_page_killable, TASK_KILLABLE);
598}
18bc0bbd 599EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 600
7682486b
RD
601/**
602 * __lock_page_nosync - get a lock on the page, without calling sync_page()
603 * @page: the page to lock
604 *
db37648c
NP
605 * Variant of lock_page that does not require the caller to hold a reference
606 * on the page's mapping.
607 */
920c7a5d 608void __lock_page_nosync(struct page *page)
db37648c
NP
609{
610 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
612 TASK_UNINTERRUPTIBLE);
613}
614
485bb99b
RD
615/**
616 * find_get_page - find and get a page reference
617 * @mapping: the address_space to search
618 * @offset: the page index
619 *
da6052f7
NP
620 * Is there a pagecache struct page at the given (mapping, offset) tuple?
621 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 622 */
a60637c8 623struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 624{
a60637c8 625 void **pagep;
1da177e4
LT
626 struct page *page;
627
a60637c8
NP
628 rcu_read_lock();
629repeat:
630 page = NULL;
631 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
632 if (pagep) {
633 page = radix_tree_deref_slot(pagep);
634 if (unlikely(!page || page == RADIX_TREE_RETRY))
635 goto repeat;
636
637 if (!page_cache_get_speculative(page))
638 goto repeat;
639
640 /*
641 * Has the page moved?
642 * This is part of the lockless pagecache protocol. See
643 * include/linux/pagemap.h for details.
644 */
645 if (unlikely(page != *pagep)) {
646 page_cache_release(page);
647 goto repeat;
648 }
649 }
650 rcu_read_unlock();
651
1da177e4
LT
652 return page;
653}
1da177e4
LT
654EXPORT_SYMBOL(find_get_page);
655
1da177e4
LT
656/**
657 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
658 * @mapping: the address_space to search
659 * @offset: the page index
1da177e4
LT
660 *
661 * Locates the desired pagecache page, locks it, increments its reference
662 * count and returns its address.
663 *
664 * Returns zero if the page was not present. find_lock_page() may sleep.
665 */
a60637c8 666struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
667{
668 struct page *page;
669
1da177e4 670repeat:
a60637c8 671 page = find_get_page(mapping, offset);
1da177e4 672 if (page) {
a60637c8
NP
673 lock_page(page);
674 /* Has the page been truncated? */
675 if (unlikely(page->mapping != mapping)) {
676 unlock_page(page);
677 page_cache_release(page);
678 goto repeat;
1da177e4 679 }
a60637c8 680 VM_BUG_ON(page->index != offset);
1da177e4 681 }
1da177e4
LT
682 return page;
683}
1da177e4
LT
684EXPORT_SYMBOL(find_lock_page);
685
686/**
687 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
688 * @mapping: the page's address_space
689 * @index: the page's index into the mapping
690 * @gfp_mask: page allocation mode
1da177e4
LT
691 *
692 * Locates a page in the pagecache. If the page is not present, a new page
693 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
694 * LRU list. The returned page is locked and has its reference count
695 * incremented.
696 *
697 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
698 * allocation!
699 *
700 * find_or_create_page() returns the desired page's address, or zero on
701 * memory exhaustion.
702 */
703struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 704 pgoff_t index, gfp_t gfp_mask)
1da177e4 705{
eb2be189 706 struct page *page;
1da177e4
LT
707 int err;
708repeat:
709 page = find_lock_page(mapping, index);
710 if (!page) {
eb2be189
NP
711 page = __page_cache_alloc(gfp_mask);
712 if (!page)
713 return NULL;
67d58ac4
NP
714 /*
715 * We want a regular kernel memory (not highmem or DMA etc)
716 * allocation for the radix tree nodes, but we need to honour
717 * the context-specific requirements the caller has asked for.
718 * GFP_RECLAIM_MASK collects those requirements.
719 */
720 err = add_to_page_cache_lru(page, mapping, index,
721 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
722 if (unlikely(err)) {
723 page_cache_release(page);
724 page = NULL;
725 if (err == -EEXIST)
726 goto repeat;
1da177e4 727 }
1da177e4 728 }
1da177e4
LT
729 return page;
730}
1da177e4
LT
731EXPORT_SYMBOL(find_or_create_page);
732
733/**
734 * find_get_pages - gang pagecache lookup
735 * @mapping: The address_space to search
736 * @start: The starting page index
737 * @nr_pages: The maximum number of pages
738 * @pages: Where the resulting pages are placed
739 *
740 * find_get_pages() will search for and return a group of up to
741 * @nr_pages pages in the mapping. The pages are placed at @pages.
742 * find_get_pages() takes a reference against the returned pages.
743 *
744 * The search returns a group of mapping-contiguous pages with ascending
745 * indexes. There may be holes in the indices due to not-present pages.
746 *
747 * find_get_pages() returns the number of pages which were found.
748 */
749unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
750 unsigned int nr_pages, struct page **pages)
751{
752 unsigned int i;
753 unsigned int ret;
a60637c8
NP
754 unsigned int nr_found;
755
756 rcu_read_lock();
757restart:
758 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
759 (void ***)pages, start, nr_pages);
760 ret = 0;
761 for (i = 0; i < nr_found; i++) {
762 struct page *page;
763repeat:
764 page = radix_tree_deref_slot((void **)pages[i]);
765 if (unlikely(!page))
766 continue;
767 /*
768 * this can only trigger if nr_found == 1, making livelock
769 * a non issue.
770 */
771 if (unlikely(page == RADIX_TREE_RETRY))
772 goto restart;
773
774 if (!page_cache_get_speculative(page))
775 goto repeat;
776
777 /* Has the page moved? */
778 if (unlikely(page != *((void **)pages[i]))) {
779 page_cache_release(page);
780 goto repeat;
781 }
1da177e4 782
a60637c8
NP
783 pages[ret] = page;
784 ret++;
785 }
786 rcu_read_unlock();
1da177e4
LT
787 return ret;
788}
789
ebf43500
JA
790/**
791 * find_get_pages_contig - gang contiguous pagecache lookup
792 * @mapping: The address_space to search
793 * @index: The starting page index
794 * @nr_pages: The maximum number of pages
795 * @pages: Where the resulting pages are placed
796 *
797 * find_get_pages_contig() works exactly like find_get_pages(), except
798 * that the returned number of pages are guaranteed to be contiguous.
799 *
800 * find_get_pages_contig() returns the number of pages which were found.
801 */
802unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
803 unsigned int nr_pages, struct page **pages)
804{
805 unsigned int i;
806 unsigned int ret;
a60637c8
NP
807 unsigned int nr_found;
808
809 rcu_read_lock();
810restart:
811 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
812 (void ***)pages, index, nr_pages);
813 ret = 0;
814 for (i = 0; i < nr_found; i++) {
815 struct page *page;
816repeat:
817 page = radix_tree_deref_slot((void **)pages[i]);
818 if (unlikely(!page))
819 continue;
820 /*
821 * this can only trigger if nr_found == 1, making livelock
822 * a non issue.
823 */
824 if (unlikely(page == RADIX_TREE_RETRY))
825 goto restart;
ebf43500 826
a60637c8 827 if (page->mapping == NULL || page->index != index)
ebf43500
JA
828 break;
829
a60637c8
NP
830 if (!page_cache_get_speculative(page))
831 goto repeat;
832
833 /* Has the page moved? */
834 if (unlikely(page != *((void **)pages[i]))) {
835 page_cache_release(page);
836 goto repeat;
837 }
838
839 pages[ret] = page;
840 ret++;
ebf43500
JA
841 index++;
842 }
a60637c8
NP
843 rcu_read_unlock();
844 return ret;
ebf43500 845}
ef71c15c 846EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 847
485bb99b
RD
848/**
849 * find_get_pages_tag - find and return pages that match @tag
850 * @mapping: the address_space to search
851 * @index: the starting page index
852 * @tag: the tag index
853 * @nr_pages: the maximum number of pages
854 * @pages: where the resulting pages are placed
855 *
1da177e4 856 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 857 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
858 */
859unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
860 int tag, unsigned int nr_pages, struct page **pages)
861{
862 unsigned int i;
863 unsigned int ret;
a60637c8
NP
864 unsigned int nr_found;
865
866 rcu_read_lock();
867restart:
868 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
869 (void ***)pages, *index, nr_pages, tag);
870 ret = 0;
871 for (i = 0; i < nr_found; i++) {
872 struct page *page;
873repeat:
874 page = radix_tree_deref_slot((void **)pages[i]);
875 if (unlikely(!page))
876 continue;
877 /*
878 * this can only trigger if nr_found == 1, making livelock
879 * a non issue.
880 */
881 if (unlikely(page == RADIX_TREE_RETRY))
882 goto restart;
883
884 if (!page_cache_get_speculative(page))
885 goto repeat;
886
887 /* Has the page moved? */
888 if (unlikely(page != *((void **)pages[i]))) {
889 page_cache_release(page);
890 goto repeat;
891 }
892
893 pages[ret] = page;
894 ret++;
895 }
896 rcu_read_unlock();
1da177e4 897
1da177e4
LT
898 if (ret)
899 *index = pages[ret - 1]->index + 1;
a60637c8 900
1da177e4
LT
901 return ret;
902}
ef71c15c 903EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 904
485bb99b
RD
905/**
906 * grab_cache_page_nowait - returns locked page at given index in given cache
907 * @mapping: target address_space
908 * @index: the page index
909 *
72fd4a35 910 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
911 * This is intended for speculative data generators, where the data can
912 * be regenerated if the page couldn't be grabbed. This routine should
913 * be safe to call while holding the lock for another page.
914 *
915 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
916 * and deadlock against the caller's locked page.
917 */
918struct page *
57f6b96c 919grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
920{
921 struct page *page = find_get_page(mapping, index);
1da177e4
LT
922
923 if (page) {
529ae9aa 924 if (trylock_page(page))
1da177e4
LT
925 return page;
926 page_cache_release(page);
927 return NULL;
928 }
2ae88149 929 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 930 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
931 page_cache_release(page);
932 page = NULL;
933 }
934 return page;
935}
1da177e4
LT
936EXPORT_SYMBOL(grab_cache_page_nowait);
937
76d42bd9
WF
938/*
939 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
940 * a _large_ part of the i/o request. Imagine the worst scenario:
941 *
942 * ---R__________________________________________B__________
943 * ^ reading here ^ bad block(assume 4k)
944 *
945 * read(R) => miss => readahead(R...B) => media error => frustrating retries
946 * => failing the whole request => read(R) => read(R+1) =>
947 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
948 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
949 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
950 *
951 * It is going insane. Fix it by quickly scaling down the readahead size.
952 */
953static void shrink_readahead_size_eio(struct file *filp,
954 struct file_ra_state *ra)
955{
76d42bd9 956 ra->ra_pages /= 4;
76d42bd9
WF
957}
958
485bb99b 959/**
36e78914 960 * do_generic_file_read - generic file read routine
485bb99b
RD
961 * @filp: the file to read
962 * @ppos: current file position
963 * @desc: read_descriptor
964 * @actor: read method
965 *
1da177e4 966 * This is a generic file read routine, and uses the
485bb99b 967 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
968 *
969 * This is really ugly. But the goto's actually try to clarify some
970 * of the logic when it comes to error handling etc.
1da177e4 971 */
36e78914
CH
972static void do_generic_file_read(struct file *filp, loff_t *ppos,
973 read_descriptor_t *desc, read_actor_t actor)
1da177e4 974{
36e78914 975 struct address_space *mapping = filp->f_mapping;
1da177e4 976 struct inode *inode = mapping->host;
36e78914 977 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
978 pgoff_t index;
979 pgoff_t last_index;
980 pgoff_t prev_index;
981 unsigned long offset; /* offset into pagecache page */
ec0f1637 982 unsigned int prev_offset;
1da177e4 983 int error;
1da177e4 984
1da177e4 985 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
986 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
987 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
988 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
989 offset = *ppos & ~PAGE_CACHE_MASK;
990
1da177e4
LT
991 for (;;) {
992 struct page *page;
57f6b96c 993 pgoff_t end_index;
a32ea1e1 994 loff_t isize;
1da177e4
LT
995 unsigned long nr, ret;
996
1da177e4 997 cond_resched();
1da177e4
LT
998find_page:
999 page = find_get_page(mapping, index);
3ea89ee8 1000 if (!page) {
cf914a7d 1001 page_cache_sync_readahead(mapping,
7ff81078 1002 ra, filp,
3ea89ee8
FW
1003 index, last_index - index);
1004 page = find_get_page(mapping, index);
1005 if (unlikely(page == NULL))
1006 goto no_cached_page;
1007 }
1008 if (PageReadahead(page)) {
cf914a7d 1009 page_cache_async_readahead(mapping,
7ff81078 1010 ra, filp, page,
3ea89ee8 1011 index, last_index - index);
1da177e4 1012 }
8ab22b9a
HH
1013 if (!PageUptodate(page)) {
1014 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1015 !mapping->a_ops->is_partially_uptodate)
1016 goto page_not_up_to_date;
529ae9aa 1017 if (!trylock_page(page))
8ab22b9a
HH
1018 goto page_not_up_to_date;
1019 if (!mapping->a_ops->is_partially_uptodate(page,
1020 desc, offset))
1021 goto page_not_up_to_date_locked;
1022 unlock_page(page);
1023 }
1da177e4 1024page_ok:
a32ea1e1
N
1025 /*
1026 * i_size must be checked after we know the page is Uptodate.
1027 *
1028 * Checking i_size after the check allows us to calculate
1029 * the correct value for "nr", which means the zero-filled
1030 * part of the page is not copied back to userspace (unless
1031 * another truncate extends the file - this is desired though).
1032 */
1033
1034 isize = i_size_read(inode);
1035 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1036 if (unlikely(!isize || index > end_index)) {
1037 page_cache_release(page);
1038 goto out;
1039 }
1040
1041 /* nr is the maximum number of bytes to copy from this page */
1042 nr = PAGE_CACHE_SIZE;
1043 if (index == end_index) {
1044 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1045 if (nr <= offset) {
1046 page_cache_release(page);
1047 goto out;
1048 }
1049 }
1050 nr = nr - offset;
1da177e4
LT
1051
1052 /* If users can be writing to this page using arbitrary
1053 * virtual addresses, take care about potential aliasing
1054 * before reading the page on the kernel side.
1055 */
1056 if (mapping_writably_mapped(mapping))
1057 flush_dcache_page(page);
1058
1059 /*
ec0f1637
JK
1060 * When a sequential read accesses a page several times,
1061 * only mark it as accessed the first time.
1da177e4 1062 */
ec0f1637 1063 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1064 mark_page_accessed(page);
1065 prev_index = index;
1066
1067 /*
1068 * Ok, we have the page, and it's up-to-date, so
1069 * now we can copy it to user space...
1070 *
1071 * The actor routine returns how many bytes were actually used..
1072 * NOTE! This may not be the same as how much of a user buffer
1073 * we filled up (we may be padding etc), so we can only update
1074 * "pos" here (the actor routine has to update the user buffer
1075 * pointers and the remaining count).
1076 */
1077 ret = actor(desc, page, offset, nr);
1078 offset += ret;
1079 index += offset >> PAGE_CACHE_SHIFT;
1080 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1081 prev_offset = offset;
1da177e4
LT
1082
1083 page_cache_release(page);
1084 if (ret == nr && desc->count)
1085 continue;
1086 goto out;
1087
1088page_not_up_to_date:
1089 /* Get exclusive access to the page ... */
85462323
ON
1090 error = lock_page_killable(page);
1091 if (unlikely(error))
1092 goto readpage_error;
1da177e4 1093
8ab22b9a 1094page_not_up_to_date_locked:
da6052f7 1095 /* Did it get truncated before we got the lock? */
1da177e4
LT
1096 if (!page->mapping) {
1097 unlock_page(page);
1098 page_cache_release(page);
1099 continue;
1100 }
1101
1102 /* Did somebody else fill it already? */
1103 if (PageUptodate(page)) {
1104 unlock_page(page);
1105 goto page_ok;
1106 }
1107
1108readpage:
91803b49
JM
1109 /*
1110 * A previous I/O error may have been due to temporary
1111 * failures, eg. multipath errors.
1112 * PG_error will be set again if readpage fails.
1113 */
1114 ClearPageError(page);
1da177e4
LT
1115 /* Start the actual read. The read will unlock the page. */
1116 error = mapping->a_ops->readpage(filp, page);
1117
994fc28c
ZB
1118 if (unlikely(error)) {
1119 if (error == AOP_TRUNCATED_PAGE) {
1120 page_cache_release(page);
1121 goto find_page;
1122 }
1da177e4 1123 goto readpage_error;
994fc28c 1124 }
1da177e4
LT
1125
1126 if (!PageUptodate(page)) {
85462323
ON
1127 error = lock_page_killable(page);
1128 if (unlikely(error))
1129 goto readpage_error;
1da177e4
LT
1130 if (!PageUptodate(page)) {
1131 if (page->mapping == NULL) {
1132 /*
2ecdc82e 1133 * invalidate_mapping_pages got it
1da177e4
LT
1134 */
1135 unlock_page(page);
1136 page_cache_release(page);
1137 goto find_page;
1138 }
1139 unlock_page(page);
7ff81078 1140 shrink_readahead_size_eio(filp, ra);
85462323
ON
1141 error = -EIO;
1142 goto readpage_error;
1da177e4
LT
1143 }
1144 unlock_page(page);
1145 }
1146
1da177e4
LT
1147 goto page_ok;
1148
1149readpage_error:
1150 /* UHHUH! A synchronous read error occurred. Report it */
1151 desc->error = error;
1152 page_cache_release(page);
1153 goto out;
1154
1155no_cached_page:
1156 /*
1157 * Ok, it wasn't cached, so we need to create a new
1158 * page..
1159 */
eb2be189
NP
1160 page = page_cache_alloc_cold(mapping);
1161 if (!page) {
1162 desc->error = -ENOMEM;
1163 goto out;
1da177e4 1164 }
eb2be189 1165 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1166 index, GFP_KERNEL);
1167 if (error) {
eb2be189 1168 page_cache_release(page);
1da177e4
LT
1169 if (error == -EEXIST)
1170 goto find_page;
1171 desc->error = error;
1172 goto out;
1173 }
1da177e4
LT
1174 goto readpage;
1175 }
1176
1177out:
7ff81078
FW
1178 ra->prev_pos = prev_index;
1179 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1180 ra->prev_pos |= prev_offset;
1da177e4 1181
f4e6b498 1182 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1183 file_accessed(filp);
1da177e4 1184}
1da177e4
LT
1185
1186int file_read_actor(read_descriptor_t *desc, struct page *page,
1187 unsigned long offset, unsigned long size)
1188{
1189 char *kaddr;
1190 unsigned long left, count = desc->count;
1191
1192 if (size > count)
1193 size = count;
1194
1195 /*
1196 * Faults on the destination of a read are common, so do it before
1197 * taking the kmap.
1198 */
1199 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1200 kaddr = kmap_atomic(page, KM_USER0);
1201 left = __copy_to_user_inatomic(desc->arg.buf,
1202 kaddr + offset, size);
1203 kunmap_atomic(kaddr, KM_USER0);
1204 if (left == 0)
1205 goto success;
1206 }
1207
1208 /* Do it the slow way */
1209 kaddr = kmap(page);
1210 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1211 kunmap(page);
1212
1213 if (left) {
1214 size -= left;
1215 desc->error = -EFAULT;
1216 }
1217success:
1218 desc->count = count - size;
1219 desc->written += size;
1220 desc->arg.buf += size;
1221 return size;
1222}
1223
0ceb3314
DM
1224/*
1225 * Performs necessary checks before doing a write
1226 * @iov: io vector request
1227 * @nr_segs: number of segments in the iovec
1228 * @count: number of bytes to write
1229 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1230 *
1231 * Adjust number of segments and amount of bytes to write (nr_segs should be
1232 * properly initialized first). Returns appropriate error code that caller
1233 * should return or zero in case that write should be allowed.
1234 */
1235int generic_segment_checks(const struct iovec *iov,
1236 unsigned long *nr_segs, size_t *count, int access_flags)
1237{
1238 unsigned long seg;
1239 size_t cnt = 0;
1240 for (seg = 0; seg < *nr_segs; seg++) {
1241 const struct iovec *iv = &iov[seg];
1242
1243 /*
1244 * If any segment has a negative length, or the cumulative
1245 * length ever wraps negative then return -EINVAL.
1246 */
1247 cnt += iv->iov_len;
1248 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1249 return -EINVAL;
1250 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1251 continue;
1252 if (seg == 0)
1253 return -EFAULT;
1254 *nr_segs = seg;
1255 cnt -= iv->iov_len; /* This segment is no good */
1256 break;
1257 }
1258 *count = cnt;
1259 return 0;
1260}
1261EXPORT_SYMBOL(generic_segment_checks);
1262
485bb99b 1263/**
b2abacf3 1264 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1265 * @iocb: kernel I/O control block
1266 * @iov: io vector request
1267 * @nr_segs: number of segments in the iovec
b2abacf3 1268 * @pos: current file position
485bb99b 1269 *
1da177e4
LT
1270 * This is the "read()" routine for all filesystems
1271 * that can use the page cache directly.
1272 */
1273ssize_t
543ade1f
BP
1274generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1275 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1276{
1277 struct file *filp = iocb->ki_filp;
1278 ssize_t retval;
66f998f6 1279 unsigned long seg = 0;
1da177e4 1280 size_t count;
543ade1f 1281 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1282
1283 count = 0;
0ceb3314
DM
1284 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1285 if (retval)
1286 return retval;
1da177e4
LT
1287
1288 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1289 if (filp->f_flags & O_DIRECT) {
543ade1f 1290 loff_t size;
1da177e4
LT
1291 struct address_space *mapping;
1292 struct inode *inode;
1293
1294 mapping = filp->f_mapping;
1295 inode = mapping->host;
1da177e4
LT
1296 if (!count)
1297 goto out; /* skip atime */
1298 size = i_size_read(inode);
1299 if (pos < size) {
48b47c56
NP
1300 retval = filemap_write_and_wait_range(mapping, pos,
1301 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1302 if (!retval) {
1303 retval = mapping->a_ops->direct_IO(READ, iocb,
1304 iov, pos, nr_segs);
1305 }
66f998f6 1306 if (retval > 0) {
1da177e4 1307 *ppos = pos + retval;
66f998f6
JB
1308 count -= retval;
1309 }
1310
1311 /*
1312 * Btrfs can have a short DIO read if we encounter
1313 * compressed extents, so if there was an error, or if
1314 * we've already read everything we wanted to, or if
1315 * there was a short read because we hit EOF, go ahead
1316 * and return. Otherwise fallthrough to buffered io for
1317 * the rest of the read.
1318 */
1319 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1320 file_accessed(filp);
1321 goto out;
1322 }
0e0bcae3 1323 }
1da177e4
LT
1324 }
1325
66f998f6 1326 count = retval;
11fa977e
HD
1327 for (seg = 0; seg < nr_segs; seg++) {
1328 read_descriptor_t desc;
66f998f6
JB
1329 loff_t offset = 0;
1330
1331 /*
1332 * If we did a short DIO read we need to skip the section of the
1333 * iov that we've already read data into.
1334 */
1335 if (count) {
1336 if (count > iov[seg].iov_len) {
1337 count -= iov[seg].iov_len;
1338 continue;
1339 }
1340 offset = count;
1341 count = 0;
1342 }
1da177e4 1343
11fa977e 1344 desc.written = 0;
66f998f6
JB
1345 desc.arg.buf = iov[seg].iov_base + offset;
1346 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1347 if (desc.count == 0)
1348 continue;
1349 desc.error = 0;
1350 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1351 retval += desc.written;
1352 if (desc.error) {
1353 retval = retval ?: desc.error;
1354 break;
1da177e4 1355 }
11fa977e
HD
1356 if (desc.count > 0)
1357 break;
1da177e4
LT
1358 }
1359out:
1360 return retval;
1361}
1da177e4
LT
1362EXPORT_SYMBOL(generic_file_aio_read);
1363
1da177e4
LT
1364static ssize_t
1365do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1366 pgoff_t index, unsigned long nr)
1da177e4
LT
1367{
1368 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1369 return -EINVAL;
1370
f7e839dd 1371 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1372 return 0;
1373}
1374
6673e0c3 1375SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1376{
1377 ssize_t ret;
1378 struct file *file;
1379
1380 ret = -EBADF;
1381 file = fget(fd);
1382 if (file) {
1383 if (file->f_mode & FMODE_READ) {
1384 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1385 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1386 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1387 unsigned long len = end - start + 1;
1388 ret = do_readahead(mapping, file, start, len);
1389 }
1390 fput(file);
1391 }
1392 return ret;
1393}
6673e0c3
HC
1394#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1395asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1396{
1397 return SYSC_readahead((int) fd, offset, (size_t) count);
1398}
1399SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1400#endif
1da177e4
LT
1401
1402#ifdef CONFIG_MMU
485bb99b
RD
1403/**
1404 * page_cache_read - adds requested page to the page cache if not already there
1405 * @file: file to read
1406 * @offset: page index
1407 *
1da177e4
LT
1408 * This adds the requested page to the page cache if it isn't already there,
1409 * and schedules an I/O to read in its contents from disk.
1410 */
920c7a5d 1411static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1412{
1413 struct address_space *mapping = file->f_mapping;
1414 struct page *page;
994fc28c 1415 int ret;
1da177e4 1416
994fc28c
ZB
1417 do {
1418 page = page_cache_alloc_cold(mapping);
1419 if (!page)
1420 return -ENOMEM;
1421
1422 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1423 if (ret == 0)
1424 ret = mapping->a_ops->readpage(file, page);
1425 else if (ret == -EEXIST)
1426 ret = 0; /* losing race to add is OK */
1da177e4 1427
1da177e4 1428 page_cache_release(page);
1da177e4 1429
994fc28c
ZB
1430 } while (ret == AOP_TRUNCATED_PAGE);
1431
1432 return ret;
1da177e4
LT
1433}
1434
1435#define MMAP_LOTSAMISS (100)
1436
ef00e08e
LT
1437/*
1438 * Synchronous readahead happens when we don't even find
1439 * a page in the page cache at all.
1440 */
1441static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1442 struct file_ra_state *ra,
1443 struct file *file,
1444 pgoff_t offset)
1445{
1446 unsigned long ra_pages;
1447 struct address_space *mapping = file->f_mapping;
1448
1449 /* If we don't want any read-ahead, don't bother */
1450 if (VM_RandomReadHint(vma))
1451 return;
1452
70ac23cf
WF
1453 if (VM_SequentialReadHint(vma) ||
1454 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1455 page_cache_sync_readahead(mapping, ra, file, offset,
1456 ra->ra_pages);
ef00e08e
LT
1457 return;
1458 }
1459
1460 if (ra->mmap_miss < INT_MAX)
1461 ra->mmap_miss++;
1462
1463 /*
1464 * Do we miss much more than hit in this file? If so,
1465 * stop bothering with read-ahead. It will only hurt.
1466 */
1467 if (ra->mmap_miss > MMAP_LOTSAMISS)
1468 return;
1469
d30a1100
WF
1470 /*
1471 * mmap read-around
1472 */
ef00e08e
LT
1473 ra_pages = max_sane_readahead(ra->ra_pages);
1474 if (ra_pages) {
d30a1100
WF
1475 ra->start = max_t(long, 0, offset - ra_pages/2);
1476 ra->size = ra_pages;
1477 ra->async_size = 0;
1478 ra_submit(ra, mapping, file);
ef00e08e
LT
1479 }
1480}
1481
1482/*
1483 * Asynchronous readahead happens when we find the page and PG_readahead,
1484 * so we want to possibly extend the readahead further..
1485 */
1486static void do_async_mmap_readahead(struct vm_area_struct *vma,
1487 struct file_ra_state *ra,
1488 struct file *file,
1489 struct page *page,
1490 pgoff_t offset)
1491{
1492 struct address_space *mapping = file->f_mapping;
1493
1494 /* If we don't want any read-ahead, don't bother */
1495 if (VM_RandomReadHint(vma))
1496 return;
1497 if (ra->mmap_miss > 0)
1498 ra->mmap_miss--;
1499 if (PageReadahead(page))
2fad6f5d
WF
1500 page_cache_async_readahead(mapping, ra, file,
1501 page, offset, ra->ra_pages);
ef00e08e
LT
1502}
1503
485bb99b 1504/**
54cb8821 1505 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1506 * @vma: vma in which the fault was taken
1507 * @vmf: struct vm_fault containing details of the fault
485bb99b 1508 *
54cb8821 1509 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1510 * mapped memory region to read in file data during a page fault.
1511 *
1512 * The goto's are kind of ugly, but this streamlines the normal case of having
1513 * it in the page cache, and handles the special cases reasonably without
1514 * having a lot of duplicated code.
1515 */
d0217ac0 1516int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1517{
1518 int error;
54cb8821 1519 struct file *file = vma->vm_file;
1da177e4
LT
1520 struct address_space *mapping = file->f_mapping;
1521 struct file_ra_state *ra = &file->f_ra;
1522 struct inode *inode = mapping->host;
ef00e08e 1523 pgoff_t offset = vmf->pgoff;
1da177e4 1524 struct page *page;
2004dc8e 1525 pgoff_t size;
83c54070 1526 int ret = 0;
1da177e4 1527
1da177e4 1528 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1529 if (offset >= size)
5307cc1a 1530 return VM_FAULT_SIGBUS;
1da177e4 1531
1da177e4
LT
1532 /*
1533 * Do we have something in the page cache already?
1534 */
ef00e08e
LT
1535 page = find_get_page(mapping, offset);
1536 if (likely(page)) {
1da177e4 1537 /*
ef00e08e
LT
1538 * We found the page, so try async readahead before
1539 * waiting for the lock.
1da177e4 1540 */
ef00e08e
LT
1541 do_async_mmap_readahead(vma, ra, file, page, offset);
1542 lock_page(page);
1da177e4 1543
ef00e08e
LT
1544 /* Did it get truncated? */
1545 if (unlikely(page->mapping != mapping)) {
1546 unlock_page(page);
1547 put_page(page);
1548 goto no_cached_page;
1da177e4 1549 }
ef00e08e
LT
1550 } else {
1551 /* No page in the page cache at all */
1552 do_sync_mmap_readahead(vma, ra, file, offset);
1553 count_vm_event(PGMAJFAULT);
1554 ret = VM_FAULT_MAJOR;
1555retry_find:
1556 page = find_lock_page(mapping, offset);
1da177e4
LT
1557 if (!page)
1558 goto no_cached_page;
1559 }
1560
1da177e4 1561 /*
d00806b1
NP
1562 * We have a locked page in the page cache, now we need to check
1563 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1564 */
d00806b1 1565 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1566 goto page_not_uptodate;
1567
ef00e08e
LT
1568 /*
1569 * Found the page and have a reference on it.
1570 * We must recheck i_size under page lock.
1571 */
d00806b1 1572 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1573 if (unlikely(offset >= size)) {
d00806b1 1574 unlock_page(page);
745ad48e 1575 page_cache_release(page);
5307cc1a 1576 return VM_FAULT_SIGBUS;
d00806b1
NP
1577 }
1578
ef00e08e 1579 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1580 vmf->page = page;
83c54070 1581 return ret | VM_FAULT_LOCKED;
1da177e4 1582
1da177e4
LT
1583no_cached_page:
1584 /*
1585 * We're only likely to ever get here if MADV_RANDOM is in
1586 * effect.
1587 */
ef00e08e 1588 error = page_cache_read(file, offset);
1da177e4
LT
1589
1590 /*
1591 * The page we want has now been added to the page cache.
1592 * In the unlikely event that someone removed it in the
1593 * meantime, we'll just come back here and read it again.
1594 */
1595 if (error >= 0)
1596 goto retry_find;
1597
1598 /*
1599 * An error return from page_cache_read can result if the
1600 * system is low on memory, or a problem occurs while trying
1601 * to schedule I/O.
1602 */
1603 if (error == -ENOMEM)
d0217ac0
NP
1604 return VM_FAULT_OOM;
1605 return VM_FAULT_SIGBUS;
1da177e4
LT
1606
1607page_not_uptodate:
1da177e4
LT
1608 /*
1609 * Umm, take care of errors if the page isn't up-to-date.
1610 * Try to re-read it _once_. We do this synchronously,
1611 * because there really aren't any performance issues here
1612 * and we need to check for errors.
1613 */
1da177e4 1614 ClearPageError(page);
994fc28c 1615 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1616 if (!error) {
1617 wait_on_page_locked(page);
1618 if (!PageUptodate(page))
1619 error = -EIO;
1620 }
d00806b1
NP
1621 page_cache_release(page);
1622
1623 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1624 goto retry_find;
1da177e4 1625
d00806b1 1626 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1627 shrink_readahead_size_eio(file, ra);
d0217ac0 1628 return VM_FAULT_SIGBUS;
54cb8821
NP
1629}
1630EXPORT_SYMBOL(filemap_fault);
1631
f0f37e2f 1632const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1633 .fault = filemap_fault,
1da177e4
LT
1634};
1635
1636/* This is used for a general mmap of a disk file */
1637
1638int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1639{
1640 struct address_space *mapping = file->f_mapping;
1641
1642 if (!mapping->a_ops->readpage)
1643 return -ENOEXEC;
1644 file_accessed(file);
1645 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1646 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1647 return 0;
1648}
1da177e4
LT
1649
1650/*
1651 * This is for filesystems which do not implement ->writepage.
1652 */
1653int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1654{
1655 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1656 return -EINVAL;
1657 return generic_file_mmap(file, vma);
1658}
1659#else
1660int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1661{
1662 return -ENOSYS;
1663}
1664int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1665{
1666 return -ENOSYS;
1667}
1668#endif /* CONFIG_MMU */
1669
1670EXPORT_SYMBOL(generic_file_mmap);
1671EXPORT_SYMBOL(generic_file_readonly_mmap);
1672
6fe6900e 1673static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1674 pgoff_t index,
1da177e4 1675 int (*filler)(void *,struct page*),
0531b2aa
LT
1676 void *data,
1677 gfp_t gfp)
1da177e4 1678{
eb2be189 1679 struct page *page;
1da177e4
LT
1680 int err;
1681repeat:
1682 page = find_get_page(mapping, index);
1683 if (!page) {
0531b2aa 1684 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1685 if (!page)
1686 return ERR_PTR(-ENOMEM);
1687 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1688 if (unlikely(err)) {
1689 page_cache_release(page);
1690 if (err == -EEXIST)
1691 goto repeat;
1da177e4 1692 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1693 return ERR_PTR(err);
1694 }
1da177e4
LT
1695 err = filler(data, page);
1696 if (err < 0) {
1697 page_cache_release(page);
1698 page = ERR_PTR(err);
1699 }
1700 }
1da177e4
LT
1701 return page;
1702}
1703
0531b2aa 1704static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1705 pgoff_t index,
1da177e4 1706 int (*filler)(void *,struct page*),
0531b2aa
LT
1707 void *data,
1708 gfp_t gfp)
1709
1da177e4
LT
1710{
1711 struct page *page;
1712 int err;
1713
1714retry:
0531b2aa 1715 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1716 if (IS_ERR(page))
c855ff37 1717 return page;
1da177e4
LT
1718 if (PageUptodate(page))
1719 goto out;
1720
1721 lock_page(page);
1722 if (!page->mapping) {
1723 unlock_page(page);
1724 page_cache_release(page);
1725 goto retry;
1726 }
1727 if (PageUptodate(page)) {
1728 unlock_page(page);
1729 goto out;
1730 }
1731 err = filler(data, page);
1732 if (err < 0) {
1733 page_cache_release(page);
c855ff37 1734 return ERR_PTR(err);
1da177e4 1735 }
c855ff37 1736out:
6fe6900e
NP
1737 mark_page_accessed(page);
1738 return page;
1739}
0531b2aa
LT
1740
1741/**
1742 * read_cache_page_async - read into page cache, fill it if needed
1743 * @mapping: the page's address_space
1744 * @index: the page index
1745 * @filler: function to perform the read
1746 * @data: destination for read data
1747 *
1748 * Same as read_cache_page, but don't wait for page to become unlocked
1749 * after submitting it to the filler.
1750 *
1751 * Read into the page cache. If a page already exists, and PageUptodate() is
1752 * not set, try to fill the page but don't wait for it to become unlocked.
1753 *
1754 * If the page does not get brought uptodate, return -EIO.
1755 */
1756struct page *read_cache_page_async(struct address_space *mapping,
1757 pgoff_t index,
1758 int (*filler)(void *,struct page*),
1759 void *data)
1760{
1761 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1762}
6fe6900e
NP
1763EXPORT_SYMBOL(read_cache_page_async);
1764
0531b2aa
LT
1765static struct page *wait_on_page_read(struct page *page)
1766{
1767 if (!IS_ERR(page)) {
1768 wait_on_page_locked(page);
1769 if (!PageUptodate(page)) {
1770 page_cache_release(page);
1771 page = ERR_PTR(-EIO);
1772 }
1773 }
1774 return page;
1775}
1776
1777/**
1778 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1779 * @mapping: the page's address_space
1780 * @index: the page index
1781 * @gfp: the page allocator flags to use if allocating
1782 *
1783 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1784 * any new page allocations done using the specified allocation flags. Note
1785 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1786 * expect to do this atomically or anything like that - but you can pass in
1787 * other page requirements.
1788 *
1789 * If the page does not get brought uptodate, return -EIO.
1790 */
1791struct page *read_cache_page_gfp(struct address_space *mapping,
1792 pgoff_t index,
1793 gfp_t gfp)
1794{
1795 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1796
1797 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1798}
1799EXPORT_SYMBOL(read_cache_page_gfp);
1800
6fe6900e
NP
1801/**
1802 * read_cache_page - read into page cache, fill it if needed
1803 * @mapping: the page's address_space
1804 * @index: the page index
1805 * @filler: function to perform the read
1806 * @data: destination for read data
1807 *
1808 * Read into the page cache. If a page already exists, and PageUptodate() is
1809 * not set, try to fill the page then wait for it to become unlocked.
1810 *
1811 * If the page does not get brought uptodate, return -EIO.
1812 */
1813struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1814 pgoff_t index,
6fe6900e
NP
1815 int (*filler)(void *,struct page*),
1816 void *data)
1817{
0531b2aa 1818 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1819}
1da177e4
LT
1820EXPORT_SYMBOL(read_cache_page);
1821
1da177e4
LT
1822/*
1823 * The logic we want is
1824 *
1825 * if suid or (sgid and xgrp)
1826 * remove privs
1827 */
01de85e0 1828int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1829{
1830 mode_t mode = dentry->d_inode->i_mode;
1831 int kill = 0;
1da177e4
LT
1832
1833 /* suid always must be killed */
1834 if (unlikely(mode & S_ISUID))
1835 kill = ATTR_KILL_SUID;
1836
1837 /*
1838 * sgid without any exec bits is just a mandatory locking mark; leave
1839 * it alone. If some exec bits are set, it's a real sgid; kill it.
1840 */
1841 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1842 kill |= ATTR_KILL_SGID;
1843
7f5ff766 1844 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1845 return kill;
1da177e4 1846
01de85e0
JA
1847 return 0;
1848}
d23a147b 1849EXPORT_SYMBOL(should_remove_suid);
01de85e0 1850
7f3d4ee1 1851static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1852{
1853 struct iattr newattrs;
1854
1855 newattrs.ia_valid = ATTR_FORCE | kill;
1856 return notify_change(dentry, &newattrs);
1857}
1858
2f1936b8 1859int file_remove_suid(struct file *file)
01de85e0 1860{
2f1936b8 1861 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1862 int killsuid = should_remove_suid(dentry);
1863 int killpriv = security_inode_need_killpriv(dentry);
1864 int error = 0;
01de85e0 1865
b5376771
SH
1866 if (killpriv < 0)
1867 return killpriv;
1868 if (killpriv)
1869 error = security_inode_killpriv(dentry);
1870 if (!error && killsuid)
1871 error = __remove_suid(dentry, killsuid);
01de85e0 1872
b5376771 1873 return error;
1da177e4 1874}
2f1936b8 1875EXPORT_SYMBOL(file_remove_suid);
1da177e4 1876
2f718ffc 1877static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1878 const struct iovec *iov, size_t base, size_t bytes)
1879{
f1800536 1880 size_t copied = 0, left = 0;
1da177e4
LT
1881
1882 while (bytes) {
1883 char __user *buf = iov->iov_base + base;
1884 int copy = min(bytes, iov->iov_len - base);
1885
1886 base = 0;
f1800536 1887 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1888 copied += copy;
1889 bytes -= copy;
1890 vaddr += copy;
1891 iov++;
1892
01408c49 1893 if (unlikely(left))
1da177e4 1894 break;
1da177e4
LT
1895 }
1896 return copied - left;
1897}
1898
2f718ffc
NP
1899/*
1900 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1901 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1902 * bytes which were copied.
1903 */
1904size_t iov_iter_copy_from_user_atomic(struct page *page,
1905 struct iov_iter *i, unsigned long offset, size_t bytes)
1906{
1907 char *kaddr;
1908 size_t copied;
1909
1910 BUG_ON(!in_atomic());
1911 kaddr = kmap_atomic(page, KM_USER0);
1912 if (likely(i->nr_segs == 1)) {
1913 int left;
1914 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1915 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1916 copied = bytes - left;
1917 } else {
1918 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1919 i->iov, i->iov_offset, bytes);
1920 }
1921 kunmap_atomic(kaddr, KM_USER0);
1922
1923 return copied;
1924}
89e10787 1925EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1926
1927/*
1928 * This has the same sideeffects and return value as
1929 * iov_iter_copy_from_user_atomic().
1930 * The difference is that it attempts to resolve faults.
1931 * Page must not be locked.
1932 */
1933size_t iov_iter_copy_from_user(struct page *page,
1934 struct iov_iter *i, unsigned long offset, size_t bytes)
1935{
1936 char *kaddr;
1937 size_t copied;
1938
1939 kaddr = kmap(page);
1940 if (likely(i->nr_segs == 1)) {
1941 int left;
1942 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1943 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
1944 copied = bytes - left;
1945 } else {
1946 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1947 i->iov, i->iov_offset, bytes);
1948 }
1949 kunmap(page);
1950 return copied;
1951}
89e10787 1952EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1953
f7009264 1954void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1955{
f7009264
NP
1956 BUG_ON(i->count < bytes);
1957
2f718ffc
NP
1958 if (likely(i->nr_segs == 1)) {
1959 i->iov_offset += bytes;
f7009264 1960 i->count -= bytes;
2f718ffc
NP
1961 } else {
1962 const struct iovec *iov = i->iov;
1963 size_t base = i->iov_offset;
1964
124d3b70
NP
1965 /*
1966 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1967 * zero-length segments (without overruning the iovec).
124d3b70 1968 */
94ad374a 1969 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 1970 int copy;
2f718ffc 1971
f7009264
NP
1972 copy = min(bytes, iov->iov_len - base);
1973 BUG_ON(!i->count || i->count < copy);
1974 i->count -= copy;
2f718ffc
NP
1975 bytes -= copy;
1976 base += copy;
1977 if (iov->iov_len == base) {
1978 iov++;
1979 base = 0;
1980 }
1981 }
1982 i->iov = iov;
1983 i->iov_offset = base;
1984 }
1985}
89e10787 1986EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 1987
afddba49
NP
1988/*
1989 * Fault in the first iovec of the given iov_iter, to a maximum length
1990 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1991 * accessed (ie. because it is an invalid address).
1992 *
1993 * writev-intensive code may want this to prefault several iovecs -- that
1994 * would be possible (callers must not rely on the fact that _only_ the
1995 * first iovec will be faulted with the current implementation).
1996 */
1997int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 1998{
2f718ffc 1999 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2000 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2001 return fault_in_pages_readable(buf, bytes);
2f718ffc 2002}
89e10787 2003EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2004
2005/*
2006 * Return the count of just the current iov_iter segment.
2007 */
2008size_t iov_iter_single_seg_count(struct iov_iter *i)
2009{
2010 const struct iovec *iov = i->iov;
2011 if (i->nr_segs == 1)
2012 return i->count;
2013 else
2014 return min(i->count, iov->iov_len - i->iov_offset);
2015}
89e10787 2016EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2017
1da177e4
LT
2018/*
2019 * Performs necessary checks before doing a write
2020 *
485bb99b 2021 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2022 * Returns appropriate error code that caller should return or
2023 * zero in case that write should be allowed.
2024 */
2025inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2026{
2027 struct inode *inode = file->f_mapping->host;
59e99e5b 2028 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2029
2030 if (unlikely(*pos < 0))
2031 return -EINVAL;
2032
1da177e4
LT
2033 if (!isblk) {
2034 /* FIXME: this is for backwards compatibility with 2.4 */
2035 if (file->f_flags & O_APPEND)
2036 *pos = i_size_read(inode);
2037
2038 if (limit != RLIM_INFINITY) {
2039 if (*pos >= limit) {
2040 send_sig(SIGXFSZ, current, 0);
2041 return -EFBIG;
2042 }
2043 if (*count > limit - (typeof(limit))*pos) {
2044 *count = limit - (typeof(limit))*pos;
2045 }
2046 }
2047 }
2048
2049 /*
2050 * LFS rule
2051 */
2052 if (unlikely(*pos + *count > MAX_NON_LFS &&
2053 !(file->f_flags & O_LARGEFILE))) {
2054 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2055 return -EFBIG;
2056 }
2057 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2058 *count = MAX_NON_LFS - (unsigned long)*pos;
2059 }
2060 }
2061
2062 /*
2063 * Are we about to exceed the fs block limit ?
2064 *
2065 * If we have written data it becomes a short write. If we have
2066 * exceeded without writing data we send a signal and return EFBIG.
2067 * Linus frestrict idea will clean these up nicely..
2068 */
2069 if (likely(!isblk)) {
2070 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2071 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2072 return -EFBIG;
2073 }
2074 /* zero-length writes at ->s_maxbytes are OK */
2075 }
2076
2077 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2078 *count = inode->i_sb->s_maxbytes - *pos;
2079 } else {
9361401e 2080#ifdef CONFIG_BLOCK
1da177e4
LT
2081 loff_t isize;
2082 if (bdev_read_only(I_BDEV(inode)))
2083 return -EPERM;
2084 isize = i_size_read(inode);
2085 if (*pos >= isize) {
2086 if (*count || *pos > isize)
2087 return -ENOSPC;
2088 }
2089
2090 if (*pos + *count > isize)
2091 *count = isize - *pos;
9361401e
DH
2092#else
2093 return -EPERM;
2094#endif
1da177e4
LT
2095 }
2096 return 0;
2097}
2098EXPORT_SYMBOL(generic_write_checks);
2099
afddba49
NP
2100int pagecache_write_begin(struct file *file, struct address_space *mapping,
2101 loff_t pos, unsigned len, unsigned flags,
2102 struct page **pagep, void **fsdata)
2103{
2104 const struct address_space_operations *aops = mapping->a_ops;
2105
4e02ed4b 2106 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2107 pagep, fsdata);
afddba49
NP
2108}
2109EXPORT_SYMBOL(pagecache_write_begin);
2110
2111int pagecache_write_end(struct file *file, struct address_space *mapping,
2112 loff_t pos, unsigned len, unsigned copied,
2113 struct page *page, void *fsdata)
2114{
2115 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2116
4e02ed4b
NP
2117 mark_page_accessed(page);
2118 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2119}
2120EXPORT_SYMBOL(pagecache_write_end);
2121
1da177e4
LT
2122ssize_t
2123generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2124 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2125 size_t count, size_t ocount)
2126{
2127 struct file *file = iocb->ki_filp;
2128 struct address_space *mapping = file->f_mapping;
2129 struct inode *inode = mapping->host;
2130 ssize_t written;
a969e903
CH
2131 size_t write_len;
2132 pgoff_t end;
1da177e4
LT
2133
2134 if (count != ocount)
2135 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2136
a969e903
CH
2137 write_len = iov_length(iov, *nr_segs);
2138 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2139
48b47c56 2140 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2141 if (written)
2142 goto out;
2143
2144 /*
2145 * After a write we want buffered reads to be sure to go to disk to get
2146 * the new data. We invalidate clean cached page from the region we're
2147 * about to write. We do this *before* the write so that we can return
6ccfa806 2148 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2149 */
2150 if (mapping->nrpages) {
2151 written = invalidate_inode_pages2_range(mapping,
2152 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2153 /*
2154 * If a page can not be invalidated, return 0 to fall back
2155 * to buffered write.
2156 */
2157 if (written) {
2158 if (written == -EBUSY)
2159 return 0;
a969e903 2160 goto out;
6ccfa806 2161 }
a969e903
CH
2162 }
2163
2164 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2165
2166 /*
2167 * Finally, try again to invalidate clean pages which might have been
2168 * cached by non-direct readahead, or faulted in by get_user_pages()
2169 * if the source of the write was an mmap'ed region of the file
2170 * we're writing. Either one is a pretty crazy thing to do,
2171 * so we don't support it 100%. If this invalidation
2172 * fails, tough, the write still worked...
2173 */
2174 if (mapping->nrpages) {
2175 invalidate_inode_pages2_range(mapping,
2176 pos >> PAGE_CACHE_SHIFT, end);
2177 }
2178
1da177e4
LT
2179 if (written > 0) {
2180 loff_t end = pos + written;
2181 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2182 i_size_write(inode, end);
2183 mark_inode_dirty(inode);
2184 }
2185 *ppos = end;
2186 }
a969e903 2187out:
1da177e4
LT
2188 return written;
2189}
2190EXPORT_SYMBOL(generic_file_direct_write);
2191
eb2be189
NP
2192/*
2193 * Find or create a page at the given pagecache position. Return the locked
2194 * page. This function is specifically for buffered writes.
2195 */
54566b2c
NP
2196struct page *grab_cache_page_write_begin(struct address_space *mapping,
2197 pgoff_t index, unsigned flags)
eb2be189
NP
2198{
2199 int status;
2200 struct page *page;
54566b2c
NP
2201 gfp_t gfp_notmask = 0;
2202 if (flags & AOP_FLAG_NOFS)
2203 gfp_notmask = __GFP_FS;
eb2be189
NP
2204repeat:
2205 page = find_lock_page(mapping, index);
2206 if (likely(page))
2207 return page;
2208
54566b2c 2209 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2210 if (!page)
2211 return NULL;
54566b2c
NP
2212 status = add_to_page_cache_lru(page, mapping, index,
2213 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2214 if (unlikely(status)) {
2215 page_cache_release(page);
2216 if (status == -EEXIST)
2217 goto repeat;
2218 return NULL;
2219 }
2220 return page;
2221}
54566b2c 2222EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2223
afddba49
NP
2224static ssize_t generic_perform_write(struct file *file,
2225 struct iov_iter *i, loff_t pos)
2226{
2227 struct address_space *mapping = file->f_mapping;
2228 const struct address_space_operations *a_ops = mapping->a_ops;
2229 long status = 0;
2230 ssize_t written = 0;
674b892e
NP
2231 unsigned int flags = 0;
2232
2233 /*
2234 * Copies from kernel address space cannot fail (NFSD is a big user).
2235 */
2236 if (segment_eq(get_fs(), KERNEL_DS))
2237 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2238
2239 do {
2240 struct page *page;
afddba49
NP
2241 unsigned long offset; /* Offset into pagecache page */
2242 unsigned long bytes; /* Bytes to write to page */
2243 size_t copied; /* Bytes copied from user */
2244 void *fsdata;
2245
2246 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2247 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2248 iov_iter_count(i));
2249
2250again:
2251
2252 /*
2253 * Bring in the user page that we will copy from _first_.
2254 * Otherwise there's a nasty deadlock on copying from the
2255 * same page as we're writing to, without it being marked
2256 * up-to-date.
2257 *
2258 * Not only is this an optimisation, but it is also required
2259 * to check that the address is actually valid, when atomic
2260 * usercopies are used, below.
2261 */
2262 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2263 status = -EFAULT;
2264 break;
2265 }
2266
674b892e 2267 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2268 &page, &fsdata);
2269 if (unlikely(status))
2270 break;
2271
931e80e4 2272 if (mapping_writably_mapped(mapping))
2273 flush_dcache_page(page);
2274
afddba49
NP
2275 pagefault_disable();
2276 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2277 pagefault_enable();
2278 flush_dcache_page(page);
2279
c8236db9 2280 mark_page_accessed(page);
afddba49
NP
2281 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2282 page, fsdata);
2283 if (unlikely(status < 0))
2284 break;
2285 copied = status;
2286
2287 cond_resched();
2288
124d3b70 2289 iov_iter_advance(i, copied);
afddba49
NP
2290 if (unlikely(copied == 0)) {
2291 /*
2292 * If we were unable to copy any data at all, we must
2293 * fall back to a single segment length write.
2294 *
2295 * If we didn't fallback here, we could livelock
2296 * because not all segments in the iov can be copied at
2297 * once without a pagefault.
2298 */
2299 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2300 iov_iter_single_seg_count(i));
2301 goto again;
2302 }
afddba49
NP
2303 pos += copied;
2304 written += copied;
2305
2306 balance_dirty_pages_ratelimited(mapping);
2307
2308 } while (iov_iter_count(i));
2309
2310 return written ? written : status;
2311}
2312
2313ssize_t
2314generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2315 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2316 size_t count, ssize_t written)
2317{
2318 struct file *file = iocb->ki_filp;
afddba49
NP
2319 ssize_t status;
2320 struct iov_iter i;
2321
2322 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2323 status = generic_perform_write(file, &i, pos);
1da177e4 2324
1da177e4 2325 if (likely(status >= 0)) {
afddba49
NP
2326 written += status;
2327 *ppos = pos + status;
1da177e4
LT
2328 }
2329
1da177e4
LT
2330 return written ? written : status;
2331}
2332EXPORT_SYMBOL(generic_file_buffered_write);
2333
e4dd9de3
JK
2334/**
2335 * __generic_file_aio_write - write data to a file
2336 * @iocb: IO state structure (file, offset, etc.)
2337 * @iov: vector with data to write
2338 * @nr_segs: number of segments in the vector
2339 * @ppos: position where to write
2340 *
2341 * This function does all the work needed for actually writing data to a
2342 * file. It does all basic checks, removes SUID from the file, updates
2343 * modification times and calls proper subroutines depending on whether we
2344 * do direct IO or a standard buffered write.
2345 *
2346 * It expects i_mutex to be grabbed unless we work on a block device or similar
2347 * object which does not need locking at all.
2348 *
2349 * This function does *not* take care of syncing data in case of O_SYNC write.
2350 * A caller has to handle it. This is mainly due to the fact that we want to
2351 * avoid syncing under i_mutex.
2352 */
2353ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2354 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2355{
2356 struct file *file = iocb->ki_filp;
fb5527e6 2357 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2358 size_t ocount; /* original count */
2359 size_t count; /* after file limit checks */
2360 struct inode *inode = mapping->host;
1da177e4
LT
2361 loff_t pos;
2362 ssize_t written;
2363 ssize_t err;
2364
2365 ocount = 0;
0ceb3314
DM
2366 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2367 if (err)
2368 return err;
1da177e4
LT
2369
2370 count = ocount;
2371 pos = *ppos;
2372
2373 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2374
2375 /* We can write back this queue in page reclaim */
2376 current->backing_dev_info = mapping->backing_dev_info;
2377 written = 0;
2378
2379 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2380 if (err)
2381 goto out;
2382
2383 if (count == 0)
2384 goto out;
2385
2f1936b8 2386 err = file_remove_suid(file);
1da177e4
LT
2387 if (err)
2388 goto out;
2389
870f4817 2390 file_update_time(file);
1da177e4
LT
2391
2392 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2393 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2394 loff_t endbyte;
2395 ssize_t written_buffered;
2396
2397 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2398 ppos, count, ocount);
1da177e4
LT
2399 if (written < 0 || written == count)
2400 goto out;
2401 /*
2402 * direct-io write to a hole: fall through to buffered I/O
2403 * for completing the rest of the request.
2404 */
2405 pos += written;
2406 count -= written;
fb5527e6
JM
2407 written_buffered = generic_file_buffered_write(iocb, iov,
2408 nr_segs, pos, ppos, count,
2409 written);
2410 /*
2411 * If generic_file_buffered_write() retuned a synchronous error
2412 * then we want to return the number of bytes which were
2413 * direct-written, or the error code if that was zero. Note
2414 * that this differs from normal direct-io semantics, which
2415 * will return -EFOO even if some bytes were written.
2416 */
2417 if (written_buffered < 0) {
2418 err = written_buffered;
2419 goto out;
2420 }
1da177e4 2421
fb5527e6
JM
2422 /*
2423 * We need to ensure that the page cache pages are written to
2424 * disk and invalidated to preserve the expected O_DIRECT
2425 * semantics.
2426 */
2427 endbyte = pos + written_buffered - written - 1;
c05c4edd 2428 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2429 if (err == 0) {
2430 written = written_buffered;
2431 invalidate_mapping_pages(mapping,
2432 pos >> PAGE_CACHE_SHIFT,
2433 endbyte >> PAGE_CACHE_SHIFT);
2434 } else {
2435 /*
2436 * We don't know how much we wrote, so just return
2437 * the number of bytes which were direct-written
2438 */
2439 }
2440 } else {
2441 written = generic_file_buffered_write(iocb, iov, nr_segs,
2442 pos, ppos, count, written);
2443 }
1da177e4
LT
2444out:
2445 current->backing_dev_info = NULL;
2446 return written ? written : err;
2447}
e4dd9de3
JK
2448EXPORT_SYMBOL(__generic_file_aio_write);
2449
e4dd9de3
JK
2450/**
2451 * generic_file_aio_write - write data to a file
2452 * @iocb: IO state structure
2453 * @iov: vector with data to write
2454 * @nr_segs: number of segments in the vector
2455 * @pos: position in file where to write
2456 *
2457 * This is a wrapper around __generic_file_aio_write() to be used by most
2458 * filesystems. It takes care of syncing the file in case of O_SYNC file
2459 * and acquires i_mutex as needed.
2460 */
027445c3
BP
2461ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2462 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2463{
2464 struct file *file = iocb->ki_filp;
148f948b 2465 struct inode *inode = file->f_mapping->host;
1da177e4 2466 ssize_t ret;
1da177e4
LT
2467
2468 BUG_ON(iocb->ki_pos != pos);
2469
1b1dcc1b 2470 mutex_lock(&inode->i_mutex);
e4dd9de3 2471 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2472 mutex_unlock(&inode->i_mutex);
1da177e4 2473
148f948b 2474 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2475 ssize_t err;
2476
148f948b 2477 err = generic_write_sync(file, pos, ret);
c7b50db2 2478 if (err < 0 && ret > 0)
1da177e4
LT
2479 ret = err;
2480 }
2481 return ret;
2482}
2483EXPORT_SYMBOL(generic_file_aio_write);
2484
cf9a2ae8
DH
2485/**
2486 * try_to_release_page() - release old fs-specific metadata on a page
2487 *
2488 * @page: the page which the kernel is trying to free
2489 * @gfp_mask: memory allocation flags (and I/O mode)
2490 *
2491 * The address_space is to try to release any data against the page
2492 * (presumably at page->private). If the release was successful, return `1'.
2493 * Otherwise return zero.
2494 *
266cf658
DH
2495 * This may also be called if PG_fscache is set on a page, indicating that the
2496 * page is known to the local caching routines.
2497 *
cf9a2ae8 2498 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2499 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2500 *
cf9a2ae8
DH
2501 */
2502int try_to_release_page(struct page *page, gfp_t gfp_mask)
2503{
2504 struct address_space * const mapping = page->mapping;
2505
2506 BUG_ON(!PageLocked(page));
2507 if (PageWriteback(page))
2508 return 0;
2509
2510 if (mapping && mapping->a_ops->releasepage)
2511 return mapping->a_ops->releasepage(page, gfp_mask);
2512 return try_to_free_buffers(page);
2513}
2514
2515EXPORT_SYMBOL(try_to_release_page);