]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/trace/ring_buffer.c
tracing: add cpu_file intialization for ftrace_dump
[net-next-2.6.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
19#include <linux/fs.h>
20
182e9f5f
SR
21#include "trace.h"
22
033601a3
SR
23/*
24 * A fast way to enable or disable all ring buffers is to
25 * call tracing_on or tracing_off. Turning off the ring buffers
26 * prevents all ring buffers from being recorded to.
27 * Turning this switch on, makes it OK to write to the
28 * ring buffer, if the ring buffer is enabled itself.
29 *
30 * There's three layers that must be on in order to write
31 * to the ring buffer.
32 *
33 * 1) This global flag must be set.
34 * 2) The ring buffer must be enabled for recording.
35 * 3) The per cpu buffer must be enabled for recording.
36 *
37 * In case of an anomaly, this global flag has a bit set that
38 * will permantly disable all ring buffers.
39 */
40
41/*
42 * Global flag to disable all recording to ring buffers
43 * This has two bits: ON, DISABLED
44 *
45 * ON DISABLED
46 * ---- ----------
47 * 0 0 : ring buffers are off
48 * 1 0 : ring buffers are on
49 * X 1 : ring buffers are permanently disabled
50 */
51
52enum {
53 RB_BUFFERS_ON_BIT = 0,
54 RB_BUFFERS_DISABLED_BIT = 1,
55};
56
57enum {
58 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
59 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
60};
61
5e39841c 62static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 63
474d32b6
SR
64#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
65
a3583244
SR
66/**
67 * tracing_on - enable all tracing buffers
68 *
69 * This function enables all tracing buffers that may have been
70 * disabled with tracing_off.
71 */
72void tracing_on(void)
73{
033601a3 74 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 75}
c4f50183 76EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
77
78/**
79 * tracing_off - turn off all tracing buffers
80 *
81 * This function stops all tracing buffers from recording data.
82 * It does not disable any overhead the tracers themselves may
83 * be causing. This function simply causes all recording to
84 * the ring buffers to fail.
85 */
86void tracing_off(void)
87{
033601a3
SR
88 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
89}
c4f50183 90EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
91
92/**
93 * tracing_off_permanent - permanently disable ring buffers
94 *
95 * This function, once called, will disable all ring buffers
c3706f00 96 * permanently.
033601a3
SR
97 */
98void tracing_off_permanent(void)
99{
100 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
101}
102
988ae9d6
SR
103/**
104 * tracing_is_on - show state of ring buffers enabled
105 */
106int tracing_is_on(void)
107{
108 return ring_buffer_flags == RB_BUFFERS_ON;
109}
110EXPORT_SYMBOL_GPL(tracing_is_on);
111
d06bbd66
IM
112#include "trace.h"
113
7a8e76a3
SR
114/* Up this if you want to test the TIME_EXTENTS and normalization */
115#define DEBUG_SHIFT 0
116
7a8e76a3
SR
117u64 ring_buffer_time_stamp(int cpu)
118{
47e74f2b
SR
119 u64 time;
120
121 preempt_disable_notrace();
7a8e76a3 122 /* shift to debug/test normalization and TIME_EXTENTS */
14131f2f 123 time = trace_clock_local() << DEBUG_SHIFT;
2c2d7329 124 preempt_enable_no_resched_notrace();
47e74f2b
SR
125
126 return time;
7a8e76a3 127}
c4f50183 128EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
7a8e76a3
SR
129
130void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
131{
132 /* Just stupid testing the normalize function and deltas */
133 *ts >>= DEBUG_SHIFT;
134}
c4f50183 135EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
7a8e76a3 136
e3d6bf0a 137#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 138#define RB_ALIGNMENT 4U
7a8e76a3
SR
139#define RB_MAX_SMALL_DATA 28
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
146/* inline for ring buffer fast paths */
34a148bf 147static unsigned
7a8e76a3
SR
148rb_event_length(struct ring_buffer_event *event)
149{
150 unsigned length;
151
152 switch (event->type) {
153 case RINGBUF_TYPE_PADDING:
154 /* undefined */
155 return -1;
156
157 case RINGBUF_TYPE_TIME_EXTEND:
158 return RB_LEN_TIME_EXTEND;
159
160 case RINGBUF_TYPE_TIME_STAMP:
161 return RB_LEN_TIME_STAMP;
162
163 case RINGBUF_TYPE_DATA:
164 if (event->len)
67d34724 165 length = event->len * RB_ALIGNMENT;
7a8e76a3
SR
166 else
167 length = event->array[0];
168 return length + RB_EVNT_HDR_SIZE;
169 default:
170 BUG();
171 }
172 /* not hit */
173 return 0;
174}
175
176/**
177 * ring_buffer_event_length - return the length of the event
178 * @event: the event to get the length of
179 */
180unsigned ring_buffer_event_length(struct ring_buffer_event *event)
181{
465634ad
RR
182 unsigned length = rb_event_length(event);
183 if (event->type != RINGBUF_TYPE_DATA)
184 return length;
185 length -= RB_EVNT_HDR_SIZE;
186 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
187 length -= sizeof(event->array[0]);
188 return length;
7a8e76a3 189}
c4f50183 190EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
191
192/* inline for ring buffer fast paths */
34a148bf 193static void *
7a8e76a3
SR
194rb_event_data(struct ring_buffer_event *event)
195{
196 BUG_ON(event->type != RINGBUF_TYPE_DATA);
197 /* If length is in len field, then array[0] has the data */
198 if (event->len)
199 return (void *)&event->array[0];
200 /* Otherwise length is in array[0] and array[1] has the data */
201 return (void *)&event->array[1];
202}
203
204/**
205 * ring_buffer_event_data - return the data of the event
206 * @event: the event to get the data from
207 */
208void *ring_buffer_event_data(struct ring_buffer_event *event)
209{
210 return rb_event_data(event);
211}
c4f50183 212EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
213
214#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 215 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
216
217#define TS_SHIFT 27
218#define TS_MASK ((1ULL << TS_SHIFT) - 1)
219#define TS_DELTA_TEST (~TS_MASK)
220
abc9b56d 221struct buffer_data_page {
e4c2ce82 222 u64 time_stamp; /* page time stamp */
c3706f00 223 local_t commit; /* write committed index */
abc9b56d
SR
224 unsigned char data[]; /* data of buffer page */
225};
226
227struct buffer_page {
228 local_t write; /* index for next write */
6f807acd 229 unsigned read; /* index for next read */
e4c2ce82 230 struct list_head list; /* list of free pages */
abc9b56d 231 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
232};
233
044fa782 234static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 235{
044fa782 236 local_set(&bpage->commit, 0);
abc9b56d
SR
237}
238
474d32b6
SR
239/**
240 * ring_buffer_page_len - the size of data on the page.
241 * @page: The page to read
242 *
243 * Returns the amount of data on the page, including buffer page header.
244 */
ef7a4a16
SR
245size_t ring_buffer_page_len(void *page)
246{
474d32b6
SR
247 return local_read(&((struct buffer_data_page *)page)->commit)
248 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
249}
250
ed56829c
SR
251/*
252 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
253 * this issue out.
254 */
34a148bf 255static void free_buffer_page(struct buffer_page *bpage)
ed56829c 256{
34a148bf 257 free_page((unsigned long)bpage->page);
e4c2ce82 258 kfree(bpage);
ed56829c
SR
259}
260
7a8e76a3
SR
261/*
262 * We need to fit the time_stamp delta into 27 bits.
263 */
264static inline int test_time_stamp(u64 delta)
265{
266 if (delta & TS_DELTA_TEST)
267 return 1;
268 return 0;
269}
270
474d32b6 271#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3
SR
272
273/*
274 * head_page == tail_page && head == tail then buffer is empty.
275 */
276struct ring_buffer_per_cpu {
277 int cpu;
278 struct ring_buffer *buffer;
f83c9d0f 279 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 280 raw_spinlock_t lock;
7a8e76a3
SR
281 struct lock_class_key lock_key;
282 struct list_head pages;
6f807acd
SR
283 struct buffer_page *head_page; /* read from head */
284 struct buffer_page *tail_page; /* write to tail */
c3706f00 285 struct buffer_page *commit_page; /* committed pages */
d769041f 286 struct buffer_page *reader_page;
7a8e76a3
SR
287 unsigned long overrun;
288 unsigned long entries;
289 u64 write_stamp;
290 u64 read_stamp;
291 atomic_t record_disabled;
292};
293
294struct ring_buffer {
7a8e76a3
SR
295 unsigned pages;
296 unsigned flags;
297 int cpus;
7a8e76a3 298 atomic_t record_disabled;
00f62f61 299 cpumask_var_t cpumask;
7a8e76a3
SR
300
301 struct mutex mutex;
302
303 struct ring_buffer_per_cpu **buffers;
304};
305
306struct ring_buffer_iter {
307 struct ring_buffer_per_cpu *cpu_buffer;
308 unsigned long head;
309 struct buffer_page *head_page;
310 u64 read_stamp;
311};
312
f536aafc 313/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 314#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
315 ({ \
316 int _____ret = unlikely(cond); \
317 if (_____ret) { \
bf41a158
SR
318 atomic_inc(&buffer->record_disabled); \
319 WARN_ON(1); \
320 } \
3e89c7bb
SR
321 _____ret; \
322 })
f536aafc 323
7a8e76a3
SR
324/**
325 * check_pages - integrity check of buffer pages
326 * @cpu_buffer: CPU buffer with pages to test
327 *
c3706f00 328 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
329 * been corrupted.
330 */
331static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
332{
333 struct list_head *head = &cpu_buffer->pages;
044fa782 334 struct buffer_page *bpage, *tmp;
7a8e76a3 335
3e89c7bb
SR
336 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
337 return -1;
338 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
339 return -1;
7a8e76a3 340
044fa782 341 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 342 if (RB_WARN_ON(cpu_buffer,
044fa782 343 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
344 return -1;
345 if (RB_WARN_ON(cpu_buffer,
044fa782 346 bpage->list.prev->next != &bpage->list))
3e89c7bb 347 return -1;
7a8e76a3
SR
348 }
349
350 return 0;
351}
352
7a8e76a3
SR
353static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
354 unsigned nr_pages)
355{
356 struct list_head *head = &cpu_buffer->pages;
044fa782 357 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
358 unsigned long addr;
359 LIST_HEAD(pages);
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
044fa782 363 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 364 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 365 if (!bpage)
e4c2ce82 366 goto free_pages;
044fa782 367 list_add(&bpage->list, &pages);
e4c2ce82 368
7a8e76a3
SR
369 addr = __get_free_page(GFP_KERNEL);
370 if (!addr)
371 goto free_pages;
044fa782
SR
372 bpage->page = (void *)addr;
373 rb_init_page(bpage->page);
7a8e76a3
SR
374 }
375
376 list_splice(&pages, head);
377
378 rb_check_pages(cpu_buffer);
379
380 return 0;
381
382 free_pages:
044fa782
SR
383 list_for_each_entry_safe(bpage, tmp, &pages, list) {
384 list_del_init(&bpage->list);
385 free_buffer_page(bpage);
7a8e76a3
SR
386 }
387 return -ENOMEM;
388}
389
390static struct ring_buffer_per_cpu *
391rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
392{
393 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 394 struct buffer_page *bpage;
d769041f 395 unsigned long addr;
7a8e76a3
SR
396 int ret;
397
398 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
399 GFP_KERNEL, cpu_to_node(cpu));
400 if (!cpu_buffer)
401 return NULL;
402
403 cpu_buffer->cpu = cpu;
404 cpu_buffer->buffer = buffer;
f83c9d0f 405 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 406 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
407 INIT_LIST_HEAD(&cpu_buffer->pages);
408
044fa782 409 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 410 GFP_KERNEL, cpu_to_node(cpu));
044fa782 411 if (!bpage)
e4c2ce82
SR
412 goto fail_free_buffer;
413
044fa782 414 cpu_buffer->reader_page = bpage;
d769041f
SR
415 addr = __get_free_page(GFP_KERNEL);
416 if (!addr)
e4c2ce82 417 goto fail_free_reader;
044fa782
SR
418 bpage->page = (void *)addr;
419 rb_init_page(bpage->page);
e4c2ce82 420
d769041f 421 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 422
7a8e76a3
SR
423 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
424 if (ret < 0)
d769041f 425 goto fail_free_reader;
7a8e76a3
SR
426
427 cpu_buffer->head_page
428 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 429 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
430
431 return cpu_buffer;
432
d769041f
SR
433 fail_free_reader:
434 free_buffer_page(cpu_buffer->reader_page);
435
7a8e76a3
SR
436 fail_free_buffer:
437 kfree(cpu_buffer);
438 return NULL;
439}
440
441static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
442{
443 struct list_head *head = &cpu_buffer->pages;
044fa782 444 struct buffer_page *bpage, *tmp;
7a8e76a3 445
d769041f
SR
446 list_del_init(&cpu_buffer->reader_page->list);
447 free_buffer_page(cpu_buffer->reader_page);
448
044fa782
SR
449 list_for_each_entry_safe(bpage, tmp, head, list) {
450 list_del_init(&bpage->list);
451 free_buffer_page(bpage);
7a8e76a3
SR
452 }
453 kfree(cpu_buffer);
454}
455
a7b13743
SR
456/*
457 * Causes compile errors if the struct buffer_page gets bigger
458 * than the struct page.
459 */
460extern int ring_buffer_page_too_big(void);
461
7a8e76a3
SR
462/**
463 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 464 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
465 * @flags: attributes to set for the ring buffer.
466 *
467 * Currently the only flag that is available is the RB_FL_OVERWRITE
468 * flag. This flag means that the buffer will overwrite old data
469 * when the buffer wraps. If this flag is not set, the buffer will
470 * drop data when the tail hits the head.
471 */
472struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
473{
474 struct ring_buffer *buffer;
475 int bsize;
476 int cpu;
477
a7b13743
SR
478 /* Paranoid! Optimizes out when all is well */
479 if (sizeof(struct buffer_page) > sizeof(struct page))
480 ring_buffer_page_too_big();
481
482
7a8e76a3
SR
483 /* keep it in its own cache line */
484 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
485 GFP_KERNEL);
486 if (!buffer)
487 return NULL;
488
9e01c1b7
RR
489 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
490 goto fail_free_buffer;
491
7a8e76a3
SR
492 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
493 buffer->flags = flags;
494
495 /* need at least two pages */
496 if (buffer->pages == 1)
497 buffer->pages++;
498
9e01c1b7 499 cpumask_copy(buffer->cpumask, cpu_possible_mask);
7a8e76a3
SR
500 buffer->cpus = nr_cpu_ids;
501
502 bsize = sizeof(void *) * nr_cpu_ids;
503 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
504 GFP_KERNEL);
505 if (!buffer->buffers)
9e01c1b7 506 goto fail_free_cpumask;
7a8e76a3
SR
507
508 for_each_buffer_cpu(buffer, cpu) {
509 buffer->buffers[cpu] =
510 rb_allocate_cpu_buffer(buffer, cpu);
511 if (!buffer->buffers[cpu])
512 goto fail_free_buffers;
513 }
514
515 mutex_init(&buffer->mutex);
516
517 return buffer;
518
519 fail_free_buffers:
520 for_each_buffer_cpu(buffer, cpu) {
521 if (buffer->buffers[cpu])
522 rb_free_cpu_buffer(buffer->buffers[cpu]);
523 }
524 kfree(buffer->buffers);
525
9e01c1b7
RR
526 fail_free_cpumask:
527 free_cpumask_var(buffer->cpumask);
528
7a8e76a3
SR
529 fail_free_buffer:
530 kfree(buffer);
531 return NULL;
532}
c4f50183 533EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
534
535/**
536 * ring_buffer_free - free a ring buffer.
537 * @buffer: the buffer to free.
538 */
539void
540ring_buffer_free(struct ring_buffer *buffer)
541{
542 int cpu;
543
544 for_each_buffer_cpu(buffer, cpu)
545 rb_free_cpu_buffer(buffer->buffers[cpu]);
546
9e01c1b7
RR
547 free_cpumask_var(buffer->cpumask);
548
7a8e76a3
SR
549 kfree(buffer);
550}
c4f50183 551EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3
SR
552
553static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
554
555static void
556rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
557{
044fa782 558 struct buffer_page *bpage;
7a8e76a3
SR
559 struct list_head *p;
560 unsigned i;
561
562 atomic_inc(&cpu_buffer->record_disabled);
563 synchronize_sched();
564
565 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
566 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
567 return;
7a8e76a3 568 p = cpu_buffer->pages.next;
044fa782
SR
569 bpage = list_entry(p, struct buffer_page, list);
570 list_del_init(&bpage->list);
571 free_buffer_page(bpage);
7a8e76a3 572 }
3e89c7bb
SR
573 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
574 return;
7a8e76a3
SR
575
576 rb_reset_cpu(cpu_buffer);
577
578 rb_check_pages(cpu_buffer);
579
580 atomic_dec(&cpu_buffer->record_disabled);
581
582}
583
584static void
585rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
586 struct list_head *pages, unsigned nr_pages)
587{
044fa782 588 struct buffer_page *bpage;
7a8e76a3
SR
589 struct list_head *p;
590 unsigned i;
591
592 atomic_inc(&cpu_buffer->record_disabled);
593 synchronize_sched();
594
595 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
596 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
597 return;
7a8e76a3 598 p = pages->next;
044fa782
SR
599 bpage = list_entry(p, struct buffer_page, list);
600 list_del_init(&bpage->list);
601 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
602 }
603 rb_reset_cpu(cpu_buffer);
604
605 rb_check_pages(cpu_buffer);
606
607 atomic_dec(&cpu_buffer->record_disabled);
608}
609
610/**
611 * ring_buffer_resize - resize the ring buffer
612 * @buffer: the buffer to resize.
613 * @size: the new size.
614 *
615 * The tracer is responsible for making sure that the buffer is
616 * not being used while changing the size.
617 * Note: We may be able to change the above requirement by using
618 * RCU synchronizations.
619 *
620 * Minimum size is 2 * BUF_PAGE_SIZE.
621 *
622 * Returns -1 on failure.
623 */
624int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
625{
626 struct ring_buffer_per_cpu *cpu_buffer;
627 unsigned nr_pages, rm_pages, new_pages;
044fa782 628 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
629 unsigned long buffer_size;
630 unsigned long addr;
631 LIST_HEAD(pages);
632 int i, cpu;
633
ee51a1de
IM
634 /*
635 * Always succeed at resizing a non-existent buffer:
636 */
637 if (!buffer)
638 return size;
639
7a8e76a3
SR
640 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
641 size *= BUF_PAGE_SIZE;
642 buffer_size = buffer->pages * BUF_PAGE_SIZE;
643
644 /* we need a minimum of two pages */
645 if (size < BUF_PAGE_SIZE * 2)
646 size = BUF_PAGE_SIZE * 2;
647
648 if (size == buffer_size)
649 return size;
650
651 mutex_lock(&buffer->mutex);
652
653 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
654
655 if (size < buffer_size) {
656
657 /* easy case, just free pages */
3e89c7bb
SR
658 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
659 mutex_unlock(&buffer->mutex);
660 return -1;
661 }
7a8e76a3
SR
662
663 rm_pages = buffer->pages - nr_pages;
664
665 for_each_buffer_cpu(buffer, cpu) {
666 cpu_buffer = buffer->buffers[cpu];
667 rb_remove_pages(cpu_buffer, rm_pages);
668 }
669 goto out;
670 }
671
672 /*
673 * This is a bit more difficult. We only want to add pages
674 * when we can allocate enough for all CPUs. We do this
675 * by allocating all the pages and storing them on a local
676 * link list. If we succeed in our allocation, then we
677 * add these pages to the cpu_buffers. Otherwise we just free
678 * them all and return -ENOMEM;
679 */
3e89c7bb
SR
680 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
681 mutex_unlock(&buffer->mutex);
682 return -1;
683 }
f536aafc 684
7a8e76a3
SR
685 new_pages = nr_pages - buffer->pages;
686
687 for_each_buffer_cpu(buffer, cpu) {
688 for (i = 0; i < new_pages; i++) {
044fa782 689 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
690 cache_line_size()),
691 GFP_KERNEL, cpu_to_node(cpu));
044fa782 692 if (!bpage)
e4c2ce82 693 goto free_pages;
044fa782 694 list_add(&bpage->list, &pages);
7a8e76a3
SR
695 addr = __get_free_page(GFP_KERNEL);
696 if (!addr)
697 goto free_pages;
044fa782
SR
698 bpage->page = (void *)addr;
699 rb_init_page(bpage->page);
7a8e76a3
SR
700 }
701 }
702
703 for_each_buffer_cpu(buffer, cpu) {
704 cpu_buffer = buffer->buffers[cpu];
705 rb_insert_pages(cpu_buffer, &pages, new_pages);
706 }
707
3e89c7bb
SR
708 if (RB_WARN_ON(buffer, !list_empty(&pages))) {
709 mutex_unlock(&buffer->mutex);
710 return -1;
711 }
7a8e76a3
SR
712
713 out:
714 buffer->pages = nr_pages;
715 mutex_unlock(&buffer->mutex);
716
717 return size;
718
719 free_pages:
044fa782
SR
720 list_for_each_entry_safe(bpage, tmp, &pages, list) {
721 list_del_init(&bpage->list);
722 free_buffer_page(bpage);
7a8e76a3 723 }
641d2f63 724 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
725 return -ENOMEM;
726}
c4f50183 727EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 728
7a8e76a3
SR
729static inline int rb_null_event(struct ring_buffer_event *event)
730{
731 return event->type == RINGBUF_TYPE_PADDING;
732}
733
8789a9e7 734static inline void *
044fa782 735__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 736{
044fa782 737 return bpage->data + index;
8789a9e7
SR
738}
739
044fa782 740static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 741{
044fa782 742 return bpage->page->data + index;
7a8e76a3
SR
743}
744
745static inline struct ring_buffer_event *
d769041f 746rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 747{
6f807acd
SR
748 return __rb_page_index(cpu_buffer->reader_page,
749 cpu_buffer->reader_page->read);
750}
751
752static inline struct ring_buffer_event *
753rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
754{
755 return __rb_page_index(cpu_buffer->head_page,
756 cpu_buffer->head_page->read);
7a8e76a3
SR
757}
758
759static inline struct ring_buffer_event *
760rb_iter_head_event(struct ring_buffer_iter *iter)
761{
6f807acd 762 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
763}
764
bf41a158
SR
765static inline unsigned rb_page_write(struct buffer_page *bpage)
766{
767 return local_read(&bpage->write);
768}
769
770static inline unsigned rb_page_commit(struct buffer_page *bpage)
771{
abc9b56d 772 return local_read(&bpage->page->commit);
bf41a158
SR
773}
774
775/* Size is determined by what has been commited */
776static inline unsigned rb_page_size(struct buffer_page *bpage)
777{
778 return rb_page_commit(bpage);
779}
780
781static inline unsigned
782rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
783{
784 return rb_page_commit(cpu_buffer->commit_page);
785}
786
787static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
788{
789 return rb_page_commit(cpu_buffer->head_page);
790}
791
7a8e76a3
SR
792/*
793 * When the tail hits the head and the buffer is in overwrite mode,
794 * the head jumps to the next page and all content on the previous
795 * page is discarded. But before doing so, we update the overrun
796 * variable of the buffer.
797 */
798static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
799{
800 struct ring_buffer_event *event;
801 unsigned long head;
802
803 for (head = 0; head < rb_head_size(cpu_buffer);
804 head += rb_event_length(event)) {
805
6f807acd 806 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
807 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
808 return;
7a8e76a3
SR
809 /* Only count data entries */
810 if (event->type != RINGBUF_TYPE_DATA)
811 continue;
812 cpu_buffer->overrun++;
813 cpu_buffer->entries--;
814 }
815}
816
817static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 818 struct buffer_page **bpage)
7a8e76a3 819{
044fa782 820 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
821
822 if (p == &cpu_buffer->pages)
823 p = p->next;
824
044fa782 825 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
826}
827
bf41a158
SR
828static inline unsigned
829rb_event_index(struct ring_buffer_event *event)
830{
831 unsigned long addr = (unsigned long)event;
832
833 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
834}
835
34a148bf 836static int
bf41a158
SR
837rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
838 struct ring_buffer_event *event)
839{
840 unsigned long addr = (unsigned long)event;
841 unsigned long index;
842
843 index = rb_event_index(event);
844 addr &= PAGE_MASK;
845
846 return cpu_buffer->commit_page->page == (void *)addr &&
847 rb_commit_index(cpu_buffer) == index;
848}
849
34a148bf 850static void
bf41a158
SR
851rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
852 struct ring_buffer_event *event)
7a8e76a3 853{
bf41a158
SR
854 unsigned long addr = (unsigned long)event;
855 unsigned long index;
856
857 index = rb_event_index(event);
858 addr &= PAGE_MASK;
859
860 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
861 if (RB_WARN_ON(cpu_buffer,
862 cpu_buffer->commit_page == cpu_buffer->tail_page))
863 return;
abc9b56d 864 cpu_buffer->commit_page->page->commit =
bf41a158
SR
865 cpu_buffer->commit_page->write;
866 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
867 cpu_buffer->write_stamp =
868 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
869 }
870
871 /* Now set the commit to the event's index */
abc9b56d 872 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
873}
874
34a148bf 875static void
bf41a158 876rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 877{
bf41a158
SR
878 /*
879 * We only race with interrupts and NMIs on this CPU.
880 * If we own the commit event, then we can commit
881 * all others that interrupted us, since the interruptions
882 * are in stack format (they finish before they come
883 * back to us). This allows us to do a simple loop to
884 * assign the commit to the tail.
885 */
a8ccf1d6 886 again:
bf41a158 887 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 888 cpu_buffer->commit_page->page->commit =
bf41a158
SR
889 cpu_buffer->commit_page->write;
890 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
891 cpu_buffer->write_stamp =
892 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
893 /* add barrier to keep gcc from optimizing too much */
894 barrier();
895 }
896 while (rb_commit_index(cpu_buffer) !=
897 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 898 cpu_buffer->commit_page->page->commit =
bf41a158
SR
899 cpu_buffer->commit_page->write;
900 barrier();
901 }
a8ccf1d6
SR
902
903 /* again, keep gcc from optimizing */
904 barrier();
905
906 /*
907 * If an interrupt came in just after the first while loop
908 * and pushed the tail page forward, we will be left with
909 * a dangling commit that will never go forward.
910 */
911 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
912 goto again;
7a8e76a3
SR
913}
914
d769041f 915static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 916{
abc9b56d 917 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 918 cpu_buffer->reader_page->read = 0;
d769041f
SR
919}
920
34a148bf 921static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
922{
923 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
924
925 /*
926 * The iterator could be on the reader page (it starts there).
927 * But the head could have moved, since the reader was
928 * found. Check for this case and assign the iterator
929 * to the head page instead of next.
930 */
931 if (iter->head_page == cpu_buffer->reader_page)
932 iter->head_page = cpu_buffer->head_page;
933 else
934 rb_inc_page(cpu_buffer, &iter->head_page);
935
abc9b56d 936 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
937 iter->head = 0;
938}
939
940/**
941 * ring_buffer_update_event - update event type and data
942 * @event: the even to update
943 * @type: the type of event
944 * @length: the size of the event field in the ring buffer
945 *
946 * Update the type and data fields of the event. The length
947 * is the actual size that is written to the ring buffer,
948 * and with this, we can determine what to place into the
949 * data field.
950 */
34a148bf 951static void
7a8e76a3
SR
952rb_update_event(struct ring_buffer_event *event,
953 unsigned type, unsigned length)
954{
955 event->type = type;
956
957 switch (type) {
958
959 case RINGBUF_TYPE_PADDING:
960 break;
961
962 case RINGBUF_TYPE_TIME_EXTEND:
67d34724 963 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
7a8e76a3
SR
964 break;
965
966 case RINGBUF_TYPE_TIME_STAMP:
67d34724 967 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
7a8e76a3
SR
968 break;
969
970 case RINGBUF_TYPE_DATA:
971 length -= RB_EVNT_HDR_SIZE;
972 if (length > RB_MAX_SMALL_DATA) {
973 event->len = 0;
974 event->array[0] = length;
975 } else
67d34724 976 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
977 break;
978 default:
979 BUG();
980 }
981}
982
34a148bf 983static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
984{
985 struct ring_buffer_event event; /* Used only for sizeof array */
986
987 /* zero length can cause confusions */
988 if (!length)
989 length = 1;
990
991 if (length > RB_MAX_SMALL_DATA)
992 length += sizeof(event.array[0]);
993
994 length += RB_EVNT_HDR_SIZE;
995 length = ALIGN(length, RB_ALIGNMENT);
996
997 return length;
998}
999
1000static struct ring_buffer_event *
1001__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1002 unsigned type, unsigned long length, u64 *ts)
1003{
98db8df7 1004 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
bf41a158 1005 unsigned long tail, write;
7a8e76a3
SR
1006 struct ring_buffer *buffer = cpu_buffer->buffer;
1007 struct ring_buffer_event *event;
bf41a158 1008 unsigned long flags;
78d904b4 1009 bool lock_taken = false;
7a8e76a3 1010
98db8df7
SR
1011 commit_page = cpu_buffer->commit_page;
1012 /* we just need to protect against interrupts */
1013 barrier();
7a8e76a3 1014 tail_page = cpu_buffer->tail_page;
bf41a158
SR
1015 write = local_add_return(length, &tail_page->write);
1016 tail = write - length;
7a8e76a3 1017
bf41a158
SR
1018 /* See if we shot pass the end of this buffer page */
1019 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
1020 struct buffer_page *next_page = tail_page;
1021
3e03fb7f 1022 local_irq_save(flags);
78d904b4 1023 /*
a81bd80a
SR
1024 * Since the write to the buffer is still not
1025 * fully lockless, we must be careful with NMIs.
1026 * The locks in the writers are taken when a write
1027 * crosses to a new page. The locks protect against
1028 * races with the readers (this will soon be fixed
1029 * with a lockless solution).
1030 *
1031 * Because we can not protect against NMIs, and we
1032 * want to keep traces reentrant, we need to manage
1033 * what happens when we are in an NMI.
1034 *
78d904b4
SR
1035 * NMIs can happen after we take the lock.
1036 * If we are in an NMI, only take the lock
1037 * if it is not already taken. Otherwise
1038 * simply fail.
1039 */
a81bd80a 1040 if (unlikely(in_nmi())) {
78d904b4 1041 if (!__raw_spin_trylock(&cpu_buffer->lock))
45141d46 1042 goto out_reset;
78d904b4
SR
1043 } else
1044 __raw_spin_lock(&cpu_buffer->lock);
1045
1046 lock_taken = true;
bf41a158 1047
7a8e76a3
SR
1048 rb_inc_page(cpu_buffer, &next_page);
1049
d769041f
SR
1050 head_page = cpu_buffer->head_page;
1051 reader_page = cpu_buffer->reader_page;
1052
1053 /* we grabbed the lock before incrementing */
3e89c7bb 1054 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
45141d46 1055 goto out_reset;
bf41a158
SR
1056
1057 /*
1058 * If for some reason, we had an interrupt storm that made
1059 * it all the way around the buffer, bail, and warn
1060 * about it.
1061 */
98db8df7 1062 if (unlikely(next_page == commit_page)) {
bf41a158 1063 WARN_ON_ONCE(1);
45141d46 1064 goto out_reset;
bf41a158 1065 }
d769041f 1066
7a8e76a3 1067 if (next_page == head_page) {
6f3b3440 1068 if (!(buffer->flags & RB_FL_OVERWRITE))
45141d46 1069 goto out_reset;
7a8e76a3 1070
bf41a158
SR
1071 /* tail_page has not moved yet? */
1072 if (tail_page == cpu_buffer->tail_page) {
1073 /* count overflows */
1074 rb_update_overflow(cpu_buffer);
1075
1076 rb_inc_page(cpu_buffer, &head_page);
1077 cpu_buffer->head_page = head_page;
1078 cpu_buffer->head_page->read = 0;
1079 }
1080 }
7a8e76a3 1081
bf41a158
SR
1082 /*
1083 * If the tail page is still the same as what we think
1084 * it is, then it is up to us to update the tail
1085 * pointer.
1086 */
1087 if (tail_page == cpu_buffer->tail_page) {
1088 local_set(&next_page->write, 0);
abc9b56d 1089 local_set(&next_page->page->commit, 0);
bf41a158
SR
1090 cpu_buffer->tail_page = next_page;
1091
1092 /* reread the time stamp */
1093 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
abc9b56d 1094 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1095 }
1096
bf41a158
SR
1097 /*
1098 * The actual tail page has moved forward.
1099 */
1100 if (tail < BUF_PAGE_SIZE) {
1101 /* Mark the rest of the page with padding */
6f807acd 1102 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1103 event->type = RINGBUF_TYPE_PADDING;
1104 }
1105
bf41a158
SR
1106 if (tail <= BUF_PAGE_SIZE)
1107 /* Set the write back to the previous setting */
1108 local_set(&tail_page->write, tail);
1109
1110 /*
1111 * If this was a commit entry that failed,
1112 * increment that too
1113 */
1114 if (tail_page == cpu_buffer->commit_page &&
1115 tail == rb_commit_index(cpu_buffer)) {
1116 rb_set_commit_to_write(cpu_buffer);
1117 }
1118
3e03fb7f
SR
1119 __raw_spin_unlock(&cpu_buffer->lock);
1120 local_irq_restore(flags);
bf41a158
SR
1121
1122 /* fail and let the caller try again */
1123 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1124 }
1125
bf41a158
SR
1126 /* We reserved something on the buffer */
1127
3e89c7bb
SR
1128 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1129 return NULL;
7a8e76a3 1130
6f807acd 1131 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1132 rb_update_event(event, type, length);
1133
bf41a158
SR
1134 /*
1135 * If this is a commit and the tail is zero, then update
1136 * this page's time stamp.
1137 */
1138 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1139 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1140
7a8e76a3 1141 return event;
bf41a158 1142
45141d46 1143 out_reset:
6f3b3440
LJ
1144 /* reset write */
1145 if (tail <= BUF_PAGE_SIZE)
1146 local_set(&tail_page->write, tail);
1147
78d904b4
SR
1148 if (likely(lock_taken))
1149 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1150 local_irq_restore(flags);
bf41a158 1151 return NULL;
7a8e76a3
SR
1152}
1153
1154static int
1155rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1156 u64 *ts, u64 *delta)
1157{
1158 struct ring_buffer_event *event;
1159 static int once;
bf41a158 1160 int ret;
7a8e76a3
SR
1161
1162 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1163 printk(KERN_WARNING "Delta way too big! %llu"
1164 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1165 (unsigned long long)*delta,
1166 (unsigned long long)*ts,
1167 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1168 WARN_ON(1);
1169 }
1170
1171 /*
1172 * The delta is too big, we to add a
1173 * new timestamp.
1174 */
1175 event = __rb_reserve_next(cpu_buffer,
1176 RINGBUF_TYPE_TIME_EXTEND,
1177 RB_LEN_TIME_EXTEND,
1178 ts);
1179 if (!event)
bf41a158 1180 return -EBUSY;
7a8e76a3 1181
bf41a158
SR
1182 if (PTR_ERR(event) == -EAGAIN)
1183 return -EAGAIN;
1184
1185 /* Only a commited time event can update the write stamp */
1186 if (rb_is_commit(cpu_buffer, event)) {
1187 /*
1188 * If this is the first on the page, then we need to
1189 * update the page itself, and just put in a zero.
1190 */
1191 if (rb_event_index(event)) {
1192 event->time_delta = *delta & TS_MASK;
1193 event->array[0] = *delta >> TS_SHIFT;
1194 } else {
abc9b56d 1195 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1196 event->time_delta = 0;
1197 event->array[0] = 0;
1198 }
7a8e76a3 1199 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1200 /* let the caller know this was the commit */
1201 ret = 1;
1202 } else {
1203 /* Darn, this is just wasted space */
1204 event->time_delta = 0;
1205 event->array[0] = 0;
1206 ret = 0;
7a8e76a3
SR
1207 }
1208
bf41a158
SR
1209 *delta = 0;
1210
1211 return ret;
7a8e76a3
SR
1212}
1213
1214static struct ring_buffer_event *
1215rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1216 unsigned type, unsigned long length)
1217{
1218 struct ring_buffer_event *event;
1219 u64 ts, delta;
bf41a158 1220 int commit = 0;
818e3dd3 1221 int nr_loops = 0;
7a8e76a3 1222
bf41a158 1223 again:
818e3dd3
SR
1224 /*
1225 * We allow for interrupts to reenter here and do a trace.
1226 * If one does, it will cause this original code to loop
1227 * back here. Even with heavy interrupts happening, this
1228 * should only happen a few times in a row. If this happens
1229 * 1000 times in a row, there must be either an interrupt
1230 * storm or we have something buggy.
1231 * Bail!
1232 */
3e89c7bb 1233 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1234 return NULL;
818e3dd3 1235
7a8e76a3
SR
1236 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1237
bf41a158
SR
1238 /*
1239 * Only the first commit can update the timestamp.
1240 * Yes there is a race here. If an interrupt comes in
1241 * just after the conditional and it traces too, then it
1242 * will also check the deltas. More than one timestamp may
1243 * also be made. But only the entry that did the actual
1244 * commit will be something other than zero.
1245 */
1246 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1247 rb_page_write(cpu_buffer->tail_page) ==
1248 rb_commit_index(cpu_buffer)) {
1249
7a8e76a3
SR
1250 delta = ts - cpu_buffer->write_stamp;
1251
bf41a158
SR
1252 /* make sure this delta is calculated here */
1253 barrier();
1254
1255 /* Did the write stamp get updated already? */
1256 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1257 delta = 0;
bf41a158 1258
7a8e76a3 1259 if (test_time_stamp(delta)) {
7a8e76a3 1260
bf41a158
SR
1261 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1262
1263 if (commit == -EBUSY)
7a8e76a3 1264 return NULL;
bf41a158
SR
1265
1266 if (commit == -EAGAIN)
1267 goto again;
1268
1269 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1270 }
bf41a158
SR
1271 } else
1272 /* Non commits have zero deltas */
7a8e76a3 1273 delta = 0;
7a8e76a3
SR
1274
1275 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1276 if (PTR_ERR(event) == -EAGAIN)
1277 goto again;
1278
1279 if (!event) {
1280 if (unlikely(commit))
1281 /*
1282 * Ouch! We needed a timestamp and it was commited. But
1283 * we didn't get our event reserved.
1284 */
1285 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1286 return NULL;
bf41a158 1287 }
7a8e76a3 1288
bf41a158
SR
1289 /*
1290 * If the timestamp was commited, make the commit our entry
1291 * now so that we will update it when needed.
1292 */
1293 if (commit)
1294 rb_set_commit_event(cpu_buffer, event);
1295 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1296 delta = 0;
1297
1298 event->time_delta = delta;
1299
1300 return event;
1301}
1302
bf41a158
SR
1303static DEFINE_PER_CPU(int, rb_need_resched);
1304
7a8e76a3
SR
1305/**
1306 * ring_buffer_lock_reserve - reserve a part of the buffer
1307 * @buffer: the ring buffer to reserve from
1308 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1309 *
1310 * Returns a reseverd event on the ring buffer to copy directly to.
1311 * The user of this interface will need to get the body to write into
1312 * and can use the ring_buffer_event_data() interface.
1313 *
1314 * The length is the length of the data needed, not the event length
1315 * which also includes the event header.
1316 *
1317 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1318 * If NULL is returned, then nothing has been allocated or locked.
1319 */
1320struct ring_buffer_event *
0a987751 1321ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1322{
1323 struct ring_buffer_per_cpu *cpu_buffer;
1324 struct ring_buffer_event *event;
bf41a158 1325 int cpu, resched;
7a8e76a3 1326
033601a3 1327 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1328 return NULL;
1329
7a8e76a3
SR
1330 if (atomic_read(&buffer->record_disabled))
1331 return NULL;
1332
bf41a158 1333 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1334 resched = ftrace_preempt_disable();
bf41a158 1335
7a8e76a3
SR
1336 cpu = raw_smp_processor_id();
1337
9e01c1b7 1338 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1339 goto out;
7a8e76a3
SR
1340
1341 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1342
1343 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1344 goto out;
7a8e76a3
SR
1345
1346 length = rb_calculate_event_length(length);
1347 if (length > BUF_PAGE_SIZE)
bf41a158 1348 goto out;
7a8e76a3
SR
1349
1350 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1351 if (!event)
d769041f 1352 goto out;
7a8e76a3 1353
bf41a158
SR
1354 /*
1355 * Need to store resched state on this cpu.
1356 * Only the first needs to.
1357 */
1358
1359 if (preempt_count() == 1)
1360 per_cpu(rb_need_resched, cpu) = resched;
1361
7a8e76a3
SR
1362 return event;
1363
d769041f 1364 out:
182e9f5f 1365 ftrace_preempt_enable(resched);
7a8e76a3
SR
1366 return NULL;
1367}
c4f50183 1368EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1369
1370static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1371 struct ring_buffer_event *event)
1372{
7a8e76a3 1373 cpu_buffer->entries++;
bf41a158
SR
1374
1375 /* Only process further if we own the commit */
1376 if (!rb_is_commit(cpu_buffer, event))
1377 return;
1378
1379 cpu_buffer->write_stamp += event->time_delta;
1380
1381 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1382}
1383
1384/**
1385 * ring_buffer_unlock_commit - commit a reserved
1386 * @buffer: The buffer to commit to
1387 * @event: The event pointer to commit.
7a8e76a3
SR
1388 *
1389 * This commits the data to the ring buffer, and releases any locks held.
1390 *
1391 * Must be paired with ring_buffer_lock_reserve.
1392 */
1393int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1394 struct ring_buffer_event *event)
7a8e76a3
SR
1395{
1396 struct ring_buffer_per_cpu *cpu_buffer;
1397 int cpu = raw_smp_processor_id();
1398
1399 cpu_buffer = buffer->buffers[cpu];
1400
7a8e76a3
SR
1401 rb_commit(cpu_buffer, event);
1402
bf41a158
SR
1403 /*
1404 * Only the last preempt count needs to restore preemption.
1405 */
182e9f5f
SR
1406 if (preempt_count() == 1)
1407 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1408 else
bf41a158 1409 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1410
1411 return 0;
1412}
c4f50183 1413EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3
SR
1414
1415/**
1416 * ring_buffer_write - write data to the buffer without reserving
1417 * @buffer: The ring buffer to write to.
1418 * @length: The length of the data being written (excluding the event header)
1419 * @data: The data to write to the buffer.
1420 *
1421 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1422 * one function. If you already have the data to write to the buffer, it
1423 * may be easier to simply call this function.
1424 *
1425 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1426 * and not the length of the event which would hold the header.
1427 */
1428int ring_buffer_write(struct ring_buffer *buffer,
1429 unsigned long length,
1430 void *data)
1431{
1432 struct ring_buffer_per_cpu *cpu_buffer;
1433 struct ring_buffer_event *event;
bf41a158 1434 unsigned long event_length;
7a8e76a3
SR
1435 void *body;
1436 int ret = -EBUSY;
bf41a158 1437 int cpu, resched;
7a8e76a3 1438
033601a3 1439 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1440 return -EBUSY;
1441
7a8e76a3
SR
1442 if (atomic_read(&buffer->record_disabled))
1443 return -EBUSY;
1444
182e9f5f 1445 resched = ftrace_preempt_disable();
bf41a158 1446
7a8e76a3
SR
1447 cpu = raw_smp_processor_id();
1448
9e01c1b7 1449 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1450 goto out;
7a8e76a3
SR
1451
1452 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1453
1454 if (atomic_read(&cpu_buffer->record_disabled))
1455 goto out;
1456
1457 event_length = rb_calculate_event_length(length);
1458 event = rb_reserve_next_event(cpu_buffer,
1459 RINGBUF_TYPE_DATA, event_length);
1460 if (!event)
1461 goto out;
1462
1463 body = rb_event_data(event);
1464
1465 memcpy(body, data, length);
1466
1467 rb_commit(cpu_buffer, event);
1468
1469 ret = 0;
1470 out:
182e9f5f 1471 ftrace_preempt_enable(resched);
7a8e76a3
SR
1472
1473 return ret;
1474}
c4f50183 1475EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1476
34a148bf 1477static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1478{
1479 struct buffer_page *reader = cpu_buffer->reader_page;
1480 struct buffer_page *head = cpu_buffer->head_page;
1481 struct buffer_page *commit = cpu_buffer->commit_page;
1482
1483 return reader->read == rb_page_commit(reader) &&
1484 (commit == reader ||
1485 (commit == head &&
1486 head->read == rb_page_commit(commit)));
1487}
1488
7a8e76a3
SR
1489/**
1490 * ring_buffer_record_disable - stop all writes into the buffer
1491 * @buffer: The ring buffer to stop writes to.
1492 *
1493 * This prevents all writes to the buffer. Any attempt to write
1494 * to the buffer after this will fail and return NULL.
1495 *
1496 * The caller should call synchronize_sched() after this.
1497 */
1498void ring_buffer_record_disable(struct ring_buffer *buffer)
1499{
1500 atomic_inc(&buffer->record_disabled);
1501}
c4f50183 1502EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1503
1504/**
1505 * ring_buffer_record_enable - enable writes to the buffer
1506 * @buffer: The ring buffer to enable writes
1507 *
1508 * Note, multiple disables will need the same number of enables
1509 * to truely enable the writing (much like preempt_disable).
1510 */
1511void ring_buffer_record_enable(struct ring_buffer *buffer)
1512{
1513 atomic_dec(&buffer->record_disabled);
1514}
c4f50183 1515EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1516
1517/**
1518 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1519 * @buffer: The ring buffer to stop writes to.
1520 * @cpu: The CPU buffer to stop
1521 *
1522 * This prevents all writes to the buffer. Any attempt to write
1523 * to the buffer after this will fail and return NULL.
1524 *
1525 * The caller should call synchronize_sched() after this.
1526 */
1527void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1528{
1529 struct ring_buffer_per_cpu *cpu_buffer;
1530
9e01c1b7 1531 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
1532 return;
1533
1534 cpu_buffer = buffer->buffers[cpu];
1535 atomic_inc(&cpu_buffer->record_disabled);
1536}
c4f50183 1537EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1538
1539/**
1540 * ring_buffer_record_enable_cpu - enable writes to the buffer
1541 * @buffer: The ring buffer to enable writes
1542 * @cpu: The CPU to enable.
1543 *
1544 * Note, multiple disables will need the same number of enables
1545 * to truely enable the writing (much like preempt_disable).
1546 */
1547void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1548{
1549 struct ring_buffer_per_cpu *cpu_buffer;
1550
9e01c1b7 1551 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
1552 return;
1553
1554 cpu_buffer = buffer->buffers[cpu];
1555 atomic_dec(&cpu_buffer->record_disabled);
1556}
c4f50183 1557EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1558
1559/**
1560 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1561 * @buffer: The ring buffer
1562 * @cpu: The per CPU buffer to get the entries from.
1563 */
1564unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1565{
1566 struct ring_buffer_per_cpu *cpu_buffer;
1567
9e01c1b7 1568 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
1569 return 0;
1570
1571 cpu_buffer = buffer->buffers[cpu];
1572 return cpu_buffer->entries;
1573}
c4f50183 1574EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1575
1576/**
1577 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1578 * @buffer: The ring buffer
1579 * @cpu: The per CPU buffer to get the number of overruns from
1580 */
1581unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1582{
1583 struct ring_buffer_per_cpu *cpu_buffer;
1584
9e01c1b7 1585 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
1586 return 0;
1587
1588 cpu_buffer = buffer->buffers[cpu];
1589 return cpu_buffer->overrun;
1590}
c4f50183 1591EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3
SR
1592
1593/**
1594 * ring_buffer_entries - get the number of entries in a buffer
1595 * @buffer: The ring buffer
1596 *
1597 * Returns the total number of entries in the ring buffer
1598 * (all CPU entries)
1599 */
1600unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1601{
1602 struct ring_buffer_per_cpu *cpu_buffer;
1603 unsigned long entries = 0;
1604 int cpu;
1605
1606 /* if you care about this being correct, lock the buffer */
1607 for_each_buffer_cpu(buffer, cpu) {
1608 cpu_buffer = buffer->buffers[cpu];
1609 entries += cpu_buffer->entries;
1610 }
1611
1612 return entries;
1613}
c4f50183 1614EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1615
1616/**
1617 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1618 * @buffer: The ring buffer
1619 *
1620 * Returns the total number of overruns in the ring buffer
1621 * (all CPU entries)
1622 */
1623unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1624{
1625 struct ring_buffer_per_cpu *cpu_buffer;
1626 unsigned long overruns = 0;
1627 int cpu;
1628
1629 /* if you care about this being correct, lock the buffer */
1630 for_each_buffer_cpu(buffer, cpu) {
1631 cpu_buffer = buffer->buffers[cpu];
1632 overruns += cpu_buffer->overrun;
1633 }
1634
1635 return overruns;
1636}
c4f50183 1637EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 1638
642edba5 1639static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1640{
1641 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1642
d769041f
SR
1643 /* Iterator usage is expected to have record disabled */
1644 if (list_empty(&cpu_buffer->reader_page->list)) {
1645 iter->head_page = cpu_buffer->head_page;
6f807acd 1646 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1647 } else {
1648 iter->head_page = cpu_buffer->reader_page;
6f807acd 1649 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1650 }
1651 if (iter->head)
1652 iter->read_stamp = cpu_buffer->read_stamp;
1653 else
abc9b56d 1654 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 1655}
f83c9d0f 1656
642edba5
SR
1657/**
1658 * ring_buffer_iter_reset - reset an iterator
1659 * @iter: The iterator to reset
1660 *
1661 * Resets the iterator, so that it will start from the beginning
1662 * again.
1663 */
1664void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1665{
1666 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1667 unsigned long flags;
1668
1669 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1670 rb_iter_reset(iter);
f83c9d0f 1671 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 1672}
c4f50183 1673EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
1674
1675/**
1676 * ring_buffer_iter_empty - check if an iterator has no more to read
1677 * @iter: The iterator to check
1678 */
1679int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1680{
1681 struct ring_buffer_per_cpu *cpu_buffer;
1682
1683 cpu_buffer = iter->cpu_buffer;
1684
bf41a158
SR
1685 return iter->head_page == cpu_buffer->commit_page &&
1686 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 1687}
c4f50183 1688EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
1689
1690static void
1691rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1692 struct ring_buffer_event *event)
1693{
1694 u64 delta;
1695
1696 switch (event->type) {
1697 case RINGBUF_TYPE_PADDING:
1698 return;
1699
1700 case RINGBUF_TYPE_TIME_EXTEND:
1701 delta = event->array[0];
1702 delta <<= TS_SHIFT;
1703 delta += event->time_delta;
1704 cpu_buffer->read_stamp += delta;
1705 return;
1706
1707 case RINGBUF_TYPE_TIME_STAMP:
1708 /* FIXME: not implemented */
1709 return;
1710
1711 case RINGBUF_TYPE_DATA:
1712 cpu_buffer->read_stamp += event->time_delta;
1713 return;
1714
1715 default:
1716 BUG();
1717 }
1718 return;
1719}
1720
1721static void
1722rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1723 struct ring_buffer_event *event)
1724{
1725 u64 delta;
1726
1727 switch (event->type) {
1728 case RINGBUF_TYPE_PADDING:
1729 return;
1730
1731 case RINGBUF_TYPE_TIME_EXTEND:
1732 delta = event->array[0];
1733 delta <<= TS_SHIFT;
1734 delta += event->time_delta;
1735 iter->read_stamp += delta;
1736 return;
1737
1738 case RINGBUF_TYPE_TIME_STAMP:
1739 /* FIXME: not implemented */
1740 return;
1741
1742 case RINGBUF_TYPE_DATA:
1743 iter->read_stamp += event->time_delta;
1744 return;
1745
1746 default:
1747 BUG();
1748 }
1749 return;
1750}
1751
d769041f
SR
1752static struct buffer_page *
1753rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1754{
d769041f
SR
1755 struct buffer_page *reader = NULL;
1756 unsigned long flags;
818e3dd3 1757 int nr_loops = 0;
d769041f 1758
3e03fb7f
SR
1759 local_irq_save(flags);
1760 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
1761
1762 again:
818e3dd3
SR
1763 /*
1764 * This should normally only loop twice. But because the
1765 * start of the reader inserts an empty page, it causes
1766 * a case where we will loop three times. There should be no
1767 * reason to loop four times (that I know of).
1768 */
3e89c7bb 1769 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
1770 reader = NULL;
1771 goto out;
1772 }
1773
d769041f
SR
1774 reader = cpu_buffer->reader_page;
1775
1776 /* If there's more to read, return this page */
bf41a158 1777 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
1778 goto out;
1779
1780 /* Never should we have an index greater than the size */
3e89c7bb
SR
1781 if (RB_WARN_ON(cpu_buffer,
1782 cpu_buffer->reader_page->read > rb_page_size(reader)))
1783 goto out;
d769041f
SR
1784
1785 /* check if we caught up to the tail */
1786 reader = NULL;
bf41a158 1787 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 1788 goto out;
7a8e76a3
SR
1789
1790 /*
d769041f
SR
1791 * Splice the empty reader page into the list around the head.
1792 * Reset the reader page to size zero.
7a8e76a3 1793 */
7a8e76a3 1794
d769041f
SR
1795 reader = cpu_buffer->head_page;
1796 cpu_buffer->reader_page->list.next = reader->list.next;
1797 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
1798
1799 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 1800 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 1801
d769041f
SR
1802 /* Make the reader page now replace the head */
1803 reader->list.prev->next = &cpu_buffer->reader_page->list;
1804 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1805
1806 /*
d769041f
SR
1807 * If the tail is on the reader, then we must set the head
1808 * to the inserted page, otherwise we set it one before.
7a8e76a3 1809 */
d769041f 1810 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1811
bf41a158 1812 if (cpu_buffer->commit_page != reader)
d769041f
SR
1813 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1814
1815 /* Finally update the reader page to the new head */
1816 cpu_buffer->reader_page = reader;
1817 rb_reset_reader_page(cpu_buffer);
1818
1819 goto again;
1820
1821 out:
3e03fb7f
SR
1822 __raw_spin_unlock(&cpu_buffer->lock);
1823 local_irq_restore(flags);
d769041f
SR
1824
1825 return reader;
1826}
1827
1828static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1829{
1830 struct ring_buffer_event *event;
1831 struct buffer_page *reader;
1832 unsigned length;
1833
1834 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1835
d769041f 1836 /* This function should not be called when buffer is empty */
3e89c7bb
SR
1837 if (RB_WARN_ON(cpu_buffer, !reader))
1838 return;
7a8e76a3 1839
d769041f
SR
1840 event = rb_reader_event(cpu_buffer);
1841
1842 if (event->type == RINGBUF_TYPE_DATA)
1843 cpu_buffer->entries--;
1844
1845 rb_update_read_stamp(cpu_buffer, event);
1846
1847 length = rb_event_length(event);
6f807acd 1848 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
1849}
1850
1851static void rb_advance_iter(struct ring_buffer_iter *iter)
1852{
1853 struct ring_buffer *buffer;
1854 struct ring_buffer_per_cpu *cpu_buffer;
1855 struct ring_buffer_event *event;
1856 unsigned length;
1857
1858 cpu_buffer = iter->cpu_buffer;
1859 buffer = cpu_buffer->buffer;
1860
1861 /*
1862 * Check if we are at the end of the buffer.
1863 */
bf41a158 1864 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
1865 if (RB_WARN_ON(buffer,
1866 iter->head_page == cpu_buffer->commit_page))
1867 return;
d769041f 1868 rb_inc_iter(iter);
7a8e76a3
SR
1869 return;
1870 }
1871
1872 event = rb_iter_head_event(iter);
1873
1874 length = rb_event_length(event);
1875
1876 /*
1877 * This should not be called to advance the header if we are
1878 * at the tail of the buffer.
1879 */
3e89c7bb 1880 if (RB_WARN_ON(cpu_buffer,
f536aafc 1881 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
1882 (iter->head + length > rb_commit_index(cpu_buffer))))
1883 return;
7a8e76a3
SR
1884
1885 rb_update_iter_read_stamp(iter, event);
1886
1887 iter->head += length;
1888
1889 /* check for end of page padding */
bf41a158
SR
1890 if ((iter->head >= rb_page_size(iter->head_page)) &&
1891 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
1892 rb_advance_iter(iter);
1893}
1894
f83c9d0f
SR
1895static struct ring_buffer_event *
1896rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
1897{
1898 struct ring_buffer_per_cpu *cpu_buffer;
1899 struct ring_buffer_event *event;
d769041f 1900 struct buffer_page *reader;
818e3dd3 1901 int nr_loops = 0;
7a8e76a3 1902
9e01c1b7 1903 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
1904 return NULL;
1905
1906 cpu_buffer = buffer->buffers[cpu];
1907
1908 again:
818e3dd3
SR
1909 /*
1910 * We repeat when a timestamp is encountered. It is possible
1911 * to get multiple timestamps from an interrupt entering just
1912 * as one timestamp is about to be written. The max times
1913 * that this can happen is the number of nested interrupts we
1914 * can have. Nesting 10 deep of interrupts is clearly
1915 * an anomaly.
1916 */
3e89c7bb 1917 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1918 return NULL;
818e3dd3 1919
d769041f
SR
1920 reader = rb_get_reader_page(cpu_buffer);
1921 if (!reader)
7a8e76a3
SR
1922 return NULL;
1923
d769041f 1924 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
1925
1926 switch (event->type) {
1927 case RINGBUF_TYPE_PADDING:
bf41a158 1928 RB_WARN_ON(cpu_buffer, 1);
d769041f
SR
1929 rb_advance_reader(cpu_buffer);
1930 return NULL;
7a8e76a3
SR
1931
1932 case RINGBUF_TYPE_TIME_EXTEND:
1933 /* Internal data, OK to advance */
d769041f 1934 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1935 goto again;
1936
1937 case RINGBUF_TYPE_TIME_STAMP:
1938 /* FIXME: not implemented */
d769041f 1939 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1940 goto again;
1941
1942 case RINGBUF_TYPE_DATA:
1943 if (ts) {
1944 *ts = cpu_buffer->read_stamp + event->time_delta;
1945 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1946 }
1947 return event;
1948
1949 default:
1950 BUG();
1951 }
1952
1953 return NULL;
1954}
c4f50183 1955EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 1956
f83c9d0f
SR
1957static struct ring_buffer_event *
1958rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
1959{
1960 struct ring_buffer *buffer;
1961 struct ring_buffer_per_cpu *cpu_buffer;
1962 struct ring_buffer_event *event;
818e3dd3 1963 int nr_loops = 0;
7a8e76a3
SR
1964
1965 if (ring_buffer_iter_empty(iter))
1966 return NULL;
1967
1968 cpu_buffer = iter->cpu_buffer;
1969 buffer = cpu_buffer->buffer;
1970
1971 again:
818e3dd3
SR
1972 /*
1973 * We repeat when a timestamp is encountered. It is possible
1974 * to get multiple timestamps from an interrupt entering just
1975 * as one timestamp is about to be written. The max times
1976 * that this can happen is the number of nested interrupts we
1977 * can have. Nesting 10 deep of interrupts is clearly
1978 * an anomaly.
1979 */
3e89c7bb 1980 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1981 return NULL;
818e3dd3 1982
7a8e76a3
SR
1983 if (rb_per_cpu_empty(cpu_buffer))
1984 return NULL;
1985
1986 event = rb_iter_head_event(iter);
1987
1988 switch (event->type) {
1989 case RINGBUF_TYPE_PADDING:
d769041f 1990 rb_inc_iter(iter);
7a8e76a3
SR
1991 goto again;
1992
1993 case RINGBUF_TYPE_TIME_EXTEND:
1994 /* Internal data, OK to advance */
1995 rb_advance_iter(iter);
1996 goto again;
1997
1998 case RINGBUF_TYPE_TIME_STAMP:
1999 /* FIXME: not implemented */
2000 rb_advance_iter(iter);
2001 goto again;
2002
2003 case RINGBUF_TYPE_DATA:
2004 if (ts) {
2005 *ts = iter->read_stamp + event->time_delta;
2006 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2007 }
2008 return event;
2009
2010 default:
2011 BUG();
2012 }
2013
2014 return NULL;
2015}
c4f50183 2016EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2017
f83c9d0f
SR
2018/**
2019 * ring_buffer_peek - peek at the next event to be read
2020 * @buffer: The ring buffer to read
2021 * @cpu: The cpu to peak at
2022 * @ts: The timestamp counter of this event.
2023 *
2024 * This will return the event that will be read next, but does
2025 * not consume the data.
2026 */
2027struct ring_buffer_event *
2028ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2029{
2030 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2031 struct ring_buffer_event *event;
2032 unsigned long flags;
2033
2034 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2035 event = rb_buffer_peek(buffer, cpu, ts);
2036 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2037
2038 return event;
2039}
2040
2041/**
2042 * ring_buffer_iter_peek - peek at the next event to be read
2043 * @iter: The ring buffer iterator
2044 * @ts: The timestamp counter of this event.
2045 *
2046 * This will return the event that will be read next, but does
2047 * not increment the iterator.
2048 */
2049struct ring_buffer_event *
2050ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2051{
2052 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2053 struct ring_buffer_event *event;
2054 unsigned long flags;
2055
2056 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2057 event = rb_iter_peek(iter, ts);
2058 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2059
2060 return event;
2061}
2062
7a8e76a3
SR
2063/**
2064 * ring_buffer_consume - return an event and consume it
2065 * @buffer: The ring buffer to get the next event from
2066 *
2067 * Returns the next event in the ring buffer, and that event is consumed.
2068 * Meaning, that sequential reads will keep returning a different event,
2069 * and eventually empty the ring buffer if the producer is slower.
2070 */
2071struct ring_buffer_event *
2072ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2073{
f83c9d0f 2074 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2075 struct ring_buffer_event *event;
f83c9d0f 2076 unsigned long flags;
7a8e76a3 2077
9e01c1b7 2078 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
2079 return NULL;
2080
f83c9d0f
SR
2081 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2082
2083 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2084 if (!event)
f83c9d0f 2085 goto out;
7a8e76a3 2086
d769041f 2087 rb_advance_reader(cpu_buffer);
7a8e76a3 2088
f83c9d0f
SR
2089 out:
2090 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2091
7a8e76a3
SR
2092 return event;
2093}
c4f50183 2094EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2095
2096/**
2097 * ring_buffer_read_start - start a non consuming read of the buffer
2098 * @buffer: The ring buffer to read from
2099 * @cpu: The cpu buffer to iterate over
2100 *
2101 * This starts up an iteration through the buffer. It also disables
2102 * the recording to the buffer until the reading is finished.
2103 * This prevents the reading from being corrupted. This is not
2104 * a consuming read, so a producer is not expected.
2105 *
2106 * Must be paired with ring_buffer_finish.
2107 */
2108struct ring_buffer_iter *
2109ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2110{
2111 struct ring_buffer_per_cpu *cpu_buffer;
2112 struct ring_buffer_iter *iter;
d769041f 2113 unsigned long flags;
7a8e76a3 2114
9e01c1b7 2115 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
2116 return NULL;
2117
2118 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2119 if (!iter)
2120 return NULL;
2121
2122 cpu_buffer = buffer->buffers[cpu];
2123
2124 iter->cpu_buffer = cpu_buffer;
2125
2126 atomic_inc(&cpu_buffer->record_disabled);
2127 synchronize_sched();
2128
f83c9d0f 2129 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2130 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2131 rb_iter_reset(iter);
3e03fb7f 2132 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2133 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2134
2135 return iter;
2136}
c4f50183 2137EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2138
2139/**
2140 * ring_buffer_finish - finish reading the iterator of the buffer
2141 * @iter: The iterator retrieved by ring_buffer_start
2142 *
2143 * This re-enables the recording to the buffer, and frees the
2144 * iterator.
2145 */
2146void
2147ring_buffer_read_finish(struct ring_buffer_iter *iter)
2148{
2149 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2150
2151 atomic_dec(&cpu_buffer->record_disabled);
2152 kfree(iter);
2153}
c4f50183 2154EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2155
2156/**
2157 * ring_buffer_read - read the next item in the ring buffer by the iterator
2158 * @iter: The ring buffer iterator
2159 * @ts: The time stamp of the event read.
2160 *
2161 * This reads the next event in the ring buffer and increments the iterator.
2162 */
2163struct ring_buffer_event *
2164ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2165{
2166 struct ring_buffer_event *event;
f83c9d0f
SR
2167 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2168 unsigned long flags;
7a8e76a3 2169
f83c9d0f
SR
2170 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2171 event = rb_iter_peek(iter, ts);
7a8e76a3 2172 if (!event)
f83c9d0f 2173 goto out;
7a8e76a3
SR
2174
2175 rb_advance_iter(iter);
f83c9d0f
SR
2176 out:
2177 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2178
2179 return event;
2180}
c4f50183 2181EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2182
2183/**
2184 * ring_buffer_size - return the size of the ring buffer (in bytes)
2185 * @buffer: The ring buffer.
2186 */
2187unsigned long ring_buffer_size(struct ring_buffer *buffer)
2188{
2189 return BUF_PAGE_SIZE * buffer->pages;
2190}
c4f50183 2191EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2192
2193static void
2194rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2195{
2196 cpu_buffer->head_page
2197 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2198 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2199 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2200
6f807acd 2201 cpu_buffer->head_page->read = 0;
bf41a158
SR
2202
2203 cpu_buffer->tail_page = cpu_buffer->head_page;
2204 cpu_buffer->commit_page = cpu_buffer->head_page;
2205
2206 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2207 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2208 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2209 cpu_buffer->reader_page->read = 0;
7a8e76a3 2210
7a8e76a3
SR
2211 cpu_buffer->overrun = 0;
2212 cpu_buffer->entries = 0;
69507c06
SR
2213
2214 cpu_buffer->write_stamp = 0;
2215 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2216}
2217
2218/**
2219 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2220 * @buffer: The ring buffer to reset a per cpu buffer of
2221 * @cpu: The CPU buffer to be reset
2222 */
2223void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2224{
2225 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2226 unsigned long flags;
2227
9e01c1b7 2228 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
2229 return;
2230
f83c9d0f
SR
2231 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2232
3e03fb7f 2233 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2234
2235 rb_reset_cpu(cpu_buffer);
2236
3e03fb7f 2237 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2238
2239 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2240}
c4f50183 2241EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2242
2243/**
2244 * ring_buffer_reset - reset a ring buffer
2245 * @buffer: The ring buffer to reset all cpu buffers
2246 */
2247void ring_buffer_reset(struct ring_buffer *buffer)
2248{
7a8e76a3
SR
2249 int cpu;
2250
7a8e76a3 2251 for_each_buffer_cpu(buffer, cpu)
d769041f 2252 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2253}
c4f50183 2254EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2255
2256/**
2257 * rind_buffer_empty - is the ring buffer empty?
2258 * @buffer: The ring buffer to test
2259 */
2260int ring_buffer_empty(struct ring_buffer *buffer)
2261{
2262 struct ring_buffer_per_cpu *cpu_buffer;
2263 int cpu;
2264
2265 /* yes this is racy, but if you don't like the race, lock the buffer */
2266 for_each_buffer_cpu(buffer, cpu) {
2267 cpu_buffer = buffer->buffers[cpu];
2268 if (!rb_per_cpu_empty(cpu_buffer))
2269 return 0;
2270 }
2271 return 1;
2272}
c4f50183 2273EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2274
2275/**
2276 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2277 * @buffer: The ring buffer
2278 * @cpu: The CPU buffer to test
2279 */
2280int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2281{
2282 struct ring_buffer_per_cpu *cpu_buffer;
2283
9e01c1b7 2284 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7a8e76a3
SR
2285 return 1;
2286
2287 cpu_buffer = buffer->buffers[cpu];
2288 return rb_per_cpu_empty(cpu_buffer);
2289}
c4f50183 2290EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2291
2292/**
2293 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2294 * @buffer_a: One buffer to swap with
2295 * @buffer_b: The other buffer to swap with
2296 *
2297 * This function is useful for tracers that want to take a "snapshot"
2298 * of a CPU buffer and has another back up buffer lying around.
2299 * it is expected that the tracer handles the cpu buffer not being
2300 * used at the moment.
2301 */
2302int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2303 struct ring_buffer *buffer_b, int cpu)
2304{
2305 struct ring_buffer_per_cpu *cpu_buffer_a;
2306 struct ring_buffer_per_cpu *cpu_buffer_b;
2307
9e01c1b7
RR
2308 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2309 !cpumask_test_cpu(cpu, buffer_b->cpumask))
7a8e76a3
SR
2310 return -EINVAL;
2311
2312 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2313 if (buffer_a->pages != buffer_b->pages)
7a8e76a3
SR
2314 return -EINVAL;
2315
97b17efe
SR
2316 if (ring_buffer_flags != RB_BUFFERS_ON)
2317 return -EAGAIN;
2318
2319 if (atomic_read(&buffer_a->record_disabled))
2320 return -EAGAIN;
2321
2322 if (atomic_read(&buffer_b->record_disabled))
2323 return -EAGAIN;
2324
7a8e76a3
SR
2325 cpu_buffer_a = buffer_a->buffers[cpu];
2326 cpu_buffer_b = buffer_b->buffers[cpu];
2327
97b17efe
SR
2328 if (atomic_read(&cpu_buffer_a->record_disabled))
2329 return -EAGAIN;
2330
2331 if (atomic_read(&cpu_buffer_b->record_disabled))
2332 return -EAGAIN;
2333
7a8e76a3
SR
2334 /*
2335 * We can't do a synchronize_sched here because this
2336 * function can be called in atomic context.
2337 * Normally this will be called from the same CPU as cpu.
2338 * If not it's up to the caller to protect this.
2339 */
2340 atomic_inc(&cpu_buffer_a->record_disabled);
2341 atomic_inc(&cpu_buffer_b->record_disabled);
2342
2343 buffer_a->buffers[cpu] = cpu_buffer_b;
2344 buffer_b->buffers[cpu] = cpu_buffer_a;
2345
2346 cpu_buffer_b->buffer = buffer_a;
2347 cpu_buffer_a->buffer = buffer_b;
2348
2349 atomic_dec(&cpu_buffer_a->record_disabled);
2350 atomic_dec(&cpu_buffer_b->record_disabled);
2351
2352 return 0;
2353}
c4f50183 2354EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2355
8789a9e7 2356static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
667d2412
LJ
2357 struct buffer_data_page *bpage,
2358 unsigned int offset)
8789a9e7
SR
2359{
2360 struct ring_buffer_event *event;
2361 unsigned long head;
2362
2363 __raw_spin_lock(&cpu_buffer->lock);
667d2412 2364 for (head = offset; head < local_read(&bpage->commit);
8789a9e7
SR
2365 head += rb_event_length(event)) {
2366
044fa782 2367 event = __rb_data_page_index(bpage, head);
8789a9e7
SR
2368 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2369 return;
2370 /* Only count data entries */
2371 if (event->type != RINGBUF_TYPE_DATA)
2372 continue;
2373 cpu_buffer->entries--;
2374 }
2375 __raw_spin_unlock(&cpu_buffer->lock);
2376}
2377
2378/**
2379 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2380 * @buffer: the buffer to allocate for.
2381 *
2382 * This function is used in conjunction with ring_buffer_read_page.
2383 * When reading a full page from the ring buffer, these functions
2384 * can be used to speed up the process. The calling function should
2385 * allocate a few pages first with this function. Then when it
2386 * needs to get pages from the ring buffer, it passes the result
2387 * of this function into ring_buffer_read_page, which will swap
2388 * the page that was allocated, with the read page of the buffer.
2389 *
2390 * Returns:
2391 * The page allocated, or NULL on error.
2392 */
2393void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2394{
044fa782 2395 struct buffer_data_page *bpage;
ef7a4a16 2396 unsigned long addr;
8789a9e7
SR
2397
2398 addr = __get_free_page(GFP_KERNEL);
2399 if (!addr)
2400 return NULL;
2401
044fa782 2402 bpage = (void *)addr;
8789a9e7 2403
ef7a4a16
SR
2404 rb_init_page(bpage);
2405
044fa782 2406 return bpage;
8789a9e7
SR
2407}
2408
2409/**
2410 * ring_buffer_free_read_page - free an allocated read page
2411 * @buffer: the buffer the page was allocate for
2412 * @data: the page to free
2413 *
2414 * Free a page allocated from ring_buffer_alloc_read_page.
2415 */
2416void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2417{
2418 free_page((unsigned long)data);
2419}
2420
2421/**
2422 * ring_buffer_read_page - extract a page from the ring buffer
2423 * @buffer: buffer to extract from
2424 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2425 * @len: amount to extract
8789a9e7
SR
2426 * @cpu: the cpu of the buffer to extract
2427 * @full: should the extraction only happen when the page is full.
2428 *
2429 * This function will pull out a page from the ring buffer and consume it.
2430 * @data_page must be the address of the variable that was returned
2431 * from ring_buffer_alloc_read_page. This is because the page might be used
2432 * to swap with a page in the ring buffer.
2433 *
2434 * for example:
b85fa01e 2435 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2436 * if (!rpage)
2437 * return error;
ef7a4a16 2438 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2439 * if (ret >= 0)
2440 * process_page(rpage, ret);
8789a9e7
SR
2441 *
2442 * When @full is set, the function will not return true unless
2443 * the writer is off the reader page.
2444 *
2445 * Note: it is up to the calling functions to handle sleeps and wakeups.
2446 * The ring buffer can be used anywhere in the kernel and can not
2447 * blindly call wake_up. The layer that uses the ring buffer must be
2448 * responsible for that.
2449 *
2450 * Returns:
667d2412
LJ
2451 * >=0 if data has been transferred, returns the offset of consumed data.
2452 * <0 if no data has been transferred.
8789a9e7
SR
2453 */
2454int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2455 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2456{
2457 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2458 struct ring_buffer_event *event;
044fa782 2459 struct buffer_data_page *bpage;
ef7a4a16 2460 struct buffer_page *reader;
8789a9e7 2461 unsigned long flags;
ef7a4a16 2462 unsigned int commit;
667d2412
LJ
2463 unsigned int read;
2464 int ret = -1;
8789a9e7 2465
474d32b6
SR
2466 /*
2467 * If len is not big enough to hold the page header, then
2468 * we can not copy anything.
2469 */
2470 if (len <= BUF_PAGE_HDR_SIZE)
2471 return -1;
2472
2473 len -= BUF_PAGE_HDR_SIZE;
2474
8789a9e7 2475 if (!data_page)
ef7a4a16 2476 return -1;
8789a9e7 2477
044fa782
SR
2478 bpage = *data_page;
2479 if (!bpage)
ef7a4a16 2480 return -1;
8789a9e7
SR
2481
2482 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2483
ef7a4a16
SR
2484 reader = rb_get_reader_page(cpu_buffer);
2485 if (!reader)
8789a9e7
SR
2486 goto out;
2487
ef7a4a16
SR
2488 event = rb_reader_event(cpu_buffer);
2489
2490 read = reader->read;
2491 commit = rb_page_commit(reader);
667d2412 2492
8789a9e7 2493 /*
474d32b6
SR
2494 * If this page has been partially read or
2495 * if len is not big enough to read the rest of the page or
2496 * a writer is still on the page, then
2497 * we must copy the data from the page to the buffer.
2498 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2499 */
474d32b6 2500 if (read || (len < (commit - read)) ||
ef7a4a16 2501 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2502 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2503 unsigned int rpos = read;
2504 unsigned int pos = 0;
ef7a4a16 2505 unsigned int size;
8789a9e7
SR
2506
2507 if (full)
2508 goto out;
8789a9e7 2509
ef7a4a16
SR
2510 if (len > (commit - read))
2511 len = (commit - read);
2512
2513 size = rb_event_length(event);
2514
2515 if (len < size)
2516 goto out;
2517
2518 /* Need to copy one event at a time */
2519 do {
474d32b6 2520 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2521
2522 len -= size;
2523
2524 rb_advance_reader(cpu_buffer);
474d32b6
SR
2525 rpos = reader->read;
2526 pos += size;
ef7a4a16
SR
2527
2528 event = rb_reader_event(cpu_buffer);
2529 size = rb_event_length(event);
2530 } while (len > size);
667d2412
LJ
2531
2532 /* update bpage */
ef7a4a16
SR
2533 local_set(&bpage->commit, pos);
2534 bpage->time_stamp = rpage->time_stamp;
2535
474d32b6
SR
2536 /* we copied everything to the beginning */
2537 read = 0;
8789a9e7
SR
2538 } else {
2539 /* swap the pages */
044fa782 2540 rb_init_page(bpage);
ef7a4a16
SR
2541 bpage = reader->page;
2542 reader->page = *data_page;
2543 local_set(&reader->write, 0);
2544 reader->read = 0;
044fa782 2545 *data_page = bpage;
ef7a4a16
SR
2546
2547 /* update the entry counter */
2548 rb_remove_entries(cpu_buffer, bpage, read);
8789a9e7 2549 }
667d2412 2550 ret = read;
8789a9e7 2551
8789a9e7
SR
2552 out:
2553 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2554
2555 return ret;
2556}
2557
a3583244
SR
2558static ssize_t
2559rb_simple_read(struct file *filp, char __user *ubuf,
2560 size_t cnt, loff_t *ppos)
2561{
5e39841c 2562 unsigned long *p = filp->private_data;
a3583244
SR
2563 char buf[64];
2564 int r;
2565
033601a3
SR
2566 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2567 r = sprintf(buf, "permanently disabled\n");
2568 else
2569 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2570
2571 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2572}
2573
2574static ssize_t
2575rb_simple_write(struct file *filp, const char __user *ubuf,
2576 size_t cnt, loff_t *ppos)
2577{
5e39841c 2578 unsigned long *p = filp->private_data;
a3583244 2579 char buf[64];
5e39841c 2580 unsigned long val;
a3583244
SR
2581 int ret;
2582
2583 if (cnt >= sizeof(buf))
2584 return -EINVAL;
2585
2586 if (copy_from_user(&buf, ubuf, cnt))
2587 return -EFAULT;
2588
2589 buf[cnt] = 0;
2590
2591 ret = strict_strtoul(buf, 10, &val);
2592 if (ret < 0)
2593 return ret;
2594
033601a3
SR
2595 if (val)
2596 set_bit(RB_BUFFERS_ON_BIT, p);
2597 else
2598 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
2599
2600 (*ppos)++;
2601
2602 return cnt;
2603}
2604
2605static struct file_operations rb_simple_fops = {
2606 .open = tracing_open_generic,
2607 .read = rb_simple_read,
2608 .write = rb_simple_write,
2609};
2610
2611
2612static __init int rb_init_debugfs(void)
2613{
2614 struct dentry *d_tracer;
2615 struct dentry *entry;
2616
2617 d_tracer = tracing_init_dentry();
2618
2619 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
033601a3 2620 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
2621 if (!entry)
2622 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2623
2624 return 0;
2625}
2626
2627fs_initcall(rb_init_debugfs);