]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/trace/ring_buffer.c
tracing: remove recursive test from ring_buffer_event_discard
[net-next-2.6.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
d1b182a8
SR
24/*
25 * The ring buffer header is special. We must manually up keep it.
26 */
27int ring_buffer_print_entry_header(struct trace_seq *s)
28{
29 int ret;
30
31 ret = trace_seq_printf(s, "\ttype : 2 bits\n");
32 ret = trace_seq_printf(s, "\tlen : 3 bits\n");
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
40 ret = trace_seq_printf(s, "\tdata : type == %d\n",
41 RINGBUF_TYPE_DATA);
42
43 return ret;
44}
45
5cc98548
SR
46/*
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
51 *
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
55 *
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
59 *
60 * Here's some silly ASCII art.
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
71 *
72 *
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
82 *
83 *
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
93 *
94 *
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
104 *
105 *
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
109 *
110 * We will be using cmpxchg soon to make all this lockless.
111 *
112 */
113
033601a3
SR
114/*
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
120 *
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
123 *
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
127 *
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
130 */
131
132/*
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
135 *
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
141 */
142
143enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
146};
147
148enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
151};
152
5e39841c 153static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 154
474d32b6
SR
155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
a3583244
SR
157/**
158 * tracing_on - enable all tracing buffers
159 *
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
162 */
163void tracing_on(void)
164{
033601a3 165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 166}
c4f50183 167EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
168
169/**
170 * tracing_off - turn off all tracing buffers
171 *
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
176 */
177void tracing_off(void)
178{
033601a3
SR
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180}
c4f50183 181EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
182
183/**
184 * tracing_off_permanent - permanently disable ring buffers
185 *
186 * This function, once called, will disable all ring buffers
c3706f00 187 * permanently.
033601a3
SR
188 */
189void tracing_off_permanent(void)
190{
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
192}
193
988ae9d6
SR
194/**
195 * tracing_is_on - show state of ring buffers enabled
196 */
197int tracing_is_on(void)
198{
199 return ring_buffer_flags == RB_BUFFERS_ON;
200}
201EXPORT_SYMBOL_GPL(tracing_is_on);
202
d06bbd66
IM
203#include "trace.h"
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
7a8e76a3
SR
207#define RB_MAX_SMALL_DATA 28
208
209enum {
210 RB_LEN_TIME_EXTEND = 8,
211 RB_LEN_TIME_STAMP = 16,
212};
213
2d622719
TZ
214static inline int rb_null_event(struct ring_buffer_event *event)
215{
216 return event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0;
217}
218
219static inline int rb_discarded_event(struct ring_buffer_event *event)
220{
221 return event->type == RINGBUF_TYPE_PADDING && event->time_delta;
222}
223
224static void rb_event_set_padding(struct ring_buffer_event *event)
225{
226 event->type = RINGBUF_TYPE_PADDING;
227 event->time_delta = 0;
228}
229
34a148bf 230static unsigned
2d622719 231rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
232{
233 unsigned length;
234
2d622719
TZ
235 if (event->len)
236 length = event->len * RB_ALIGNMENT;
237 else
238 length = event->array[0];
239 return length + RB_EVNT_HDR_SIZE;
240}
241
242/* inline for ring buffer fast paths */
243static unsigned
244rb_event_length(struct ring_buffer_event *event)
245{
7a8e76a3
SR
246 switch (event->type) {
247 case RINGBUF_TYPE_PADDING:
2d622719
TZ
248 if (rb_null_event(event))
249 /* undefined */
250 return -1;
251 return rb_event_data_length(event);
7a8e76a3
SR
252
253 case RINGBUF_TYPE_TIME_EXTEND:
254 return RB_LEN_TIME_EXTEND;
255
256 case RINGBUF_TYPE_TIME_STAMP:
257 return RB_LEN_TIME_STAMP;
258
259 case RINGBUF_TYPE_DATA:
2d622719 260 return rb_event_data_length(event);
7a8e76a3
SR
261 default:
262 BUG();
263 }
264 /* not hit */
265 return 0;
266}
267
268/**
269 * ring_buffer_event_length - return the length of the event
270 * @event: the event to get the length of
271 */
272unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273{
465634ad
RR
274 unsigned length = rb_event_length(event);
275 if (event->type != RINGBUF_TYPE_DATA)
276 return length;
277 length -= RB_EVNT_HDR_SIZE;
278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279 length -= sizeof(event->array[0]);
280 return length;
7a8e76a3 281}
c4f50183 282EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
283
284/* inline for ring buffer fast paths */
34a148bf 285static void *
7a8e76a3
SR
286rb_event_data(struct ring_buffer_event *event)
287{
288 BUG_ON(event->type != RINGBUF_TYPE_DATA);
289 /* If length is in len field, then array[0] has the data */
290 if (event->len)
291 return (void *)&event->array[0];
292 /* Otherwise length is in array[0] and array[1] has the data */
293 return (void *)&event->array[1];
294}
295
296/**
297 * ring_buffer_event_data - return the data of the event
298 * @event: the event to get the data from
299 */
300void *ring_buffer_event_data(struct ring_buffer_event *event)
301{
302 return rb_event_data(event);
303}
c4f50183 304EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
305
306#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 307 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
308
309#define TS_SHIFT 27
310#define TS_MASK ((1ULL << TS_SHIFT) - 1)
311#define TS_DELTA_TEST (~TS_MASK)
312
abc9b56d 313struct buffer_data_page {
e4c2ce82 314 u64 time_stamp; /* page time stamp */
c3706f00 315 local_t commit; /* write committed index */
abc9b56d
SR
316 unsigned char data[]; /* data of buffer page */
317};
318
319struct buffer_page {
320 local_t write; /* index for next write */
6f807acd 321 unsigned read; /* index for next read */
e4c2ce82 322 struct list_head list; /* list of free pages */
abc9b56d 323 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
324};
325
044fa782 326static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 327{
044fa782 328 local_set(&bpage->commit, 0);
abc9b56d
SR
329}
330
474d32b6
SR
331/**
332 * ring_buffer_page_len - the size of data on the page.
333 * @page: The page to read
334 *
335 * Returns the amount of data on the page, including buffer page header.
336 */
ef7a4a16
SR
337size_t ring_buffer_page_len(void *page)
338{
474d32b6
SR
339 return local_read(&((struct buffer_data_page *)page)->commit)
340 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
341}
342
ed56829c
SR
343/*
344 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
345 * this issue out.
346 */
34a148bf 347static void free_buffer_page(struct buffer_page *bpage)
ed56829c 348{
34a148bf 349 free_page((unsigned long)bpage->page);
e4c2ce82 350 kfree(bpage);
ed56829c
SR
351}
352
7a8e76a3
SR
353/*
354 * We need to fit the time_stamp delta into 27 bits.
355 */
356static inline int test_time_stamp(u64 delta)
357{
358 if (delta & TS_DELTA_TEST)
359 return 1;
360 return 0;
361}
362
474d32b6 363#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 364
d1b182a8
SR
365int ring_buffer_print_page_header(struct trace_seq *s)
366{
367 struct buffer_data_page field;
368 int ret;
369
370 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
371 "offset:0;\tsize:%u;\n",
372 (unsigned int)sizeof(field.time_stamp));
373
374 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
375 "offset:%u;\tsize:%u;\n",
376 (unsigned int)offsetof(typeof(field), commit),
377 (unsigned int)sizeof(field.commit));
378
379 ret = trace_seq_printf(s, "\tfield: char data;\t"
380 "offset:%u;\tsize:%u;\n",
381 (unsigned int)offsetof(typeof(field), data),
382 (unsigned int)BUF_PAGE_SIZE);
383
384 return ret;
385}
386
7a8e76a3
SR
387/*
388 * head_page == tail_page && head == tail then buffer is empty.
389 */
390struct ring_buffer_per_cpu {
391 int cpu;
392 struct ring_buffer *buffer;
f83c9d0f 393 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 394 raw_spinlock_t lock;
7a8e76a3
SR
395 struct lock_class_key lock_key;
396 struct list_head pages;
6f807acd
SR
397 struct buffer_page *head_page; /* read from head */
398 struct buffer_page *tail_page; /* write to tail */
c3706f00 399 struct buffer_page *commit_page; /* committed pages */
d769041f 400 struct buffer_page *reader_page;
7a8e76a3
SR
401 unsigned long overrun;
402 unsigned long entries;
403 u64 write_stamp;
404 u64 read_stamp;
405 atomic_t record_disabled;
406};
407
408struct ring_buffer {
7a8e76a3
SR
409 unsigned pages;
410 unsigned flags;
411 int cpus;
7a8e76a3 412 atomic_t record_disabled;
00f62f61 413 cpumask_var_t cpumask;
7a8e76a3
SR
414
415 struct mutex mutex;
416
417 struct ring_buffer_per_cpu **buffers;
554f786e 418
59222efe 419#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
420 struct notifier_block cpu_notify;
421#endif
37886f6a 422 u64 (*clock)(void);
7a8e76a3
SR
423};
424
425struct ring_buffer_iter {
426 struct ring_buffer_per_cpu *cpu_buffer;
427 unsigned long head;
428 struct buffer_page *head_page;
429 u64 read_stamp;
430};
431
f536aafc 432/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 433#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
434 ({ \
435 int _____ret = unlikely(cond); \
436 if (_____ret) { \
bf41a158
SR
437 atomic_inc(&buffer->record_disabled); \
438 WARN_ON(1); \
439 } \
3e89c7bb
SR
440 _____ret; \
441 })
f536aafc 442
37886f6a
SR
443/* Up this if you want to test the TIME_EXTENTS and normalization */
444#define DEBUG_SHIFT 0
445
446u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
447{
448 u64 time;
449
450 preempt_disable_notrace();
451 /* shift to debug/test normalization and TIME_EXTENTS */
452 time = buffer->clock() << DEBUG_SHIFT;
453 preempt_enable_no_resched_notrace();
454
455 return time;
456}
457EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
458
459void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
460 int cpu, u64 *ts)
461{
462 /* Just stupid testing the normalize function and deltas */
463 *ts >>= DEBUG_SHIFT;
464}
465EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
466
7a8e76a3
SR
467/**
468 * check_pages - integrity check of buffer pages
469 * @cpu_buffer: CPU buffer with pages to test
470 *
c3706f00 471 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
472 * been corrupted.
473 */
474static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
475{
476 struct list_head *head = &cpu_buffer->pages;
044fa782 477 struct buffer_page *bpage, *tmp;
7a8e76a3 478
3e89c7bb
SR
479 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
480 return -1;
481 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
482 return -1;
7a8e76a3 483
044fa782 484 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 485 if (RB_WARN_ON(cpu_buffer,
044fa782 486 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
487 return -1;
488 if (RB_WARN_ON(cpu_buffer,
044fa782 489 bpage->list.prev->next != &bpage->list))
3e89c7bb 490 return -1;
7a8e76a3
SR
491 }
492
493 return 0;
494}
495
7a8e76a3
SR
496static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
497 unsigned nr_pages)
498{
499 struct list_head *head = &cpu_buffer->pages;
044fa782 500 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
501 unsigned long addr;
502 LIST_HEAD(pages);
503 unsigned i;
504
505 for (i = 0; i < nr_pages; i++) {
044fa782 506 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 507 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 508 if (!bpage)
e4c2ce82 509 goto free_pages;
044fa782 510 list_add(&bpage->list, &pages);
e4c2ce82 511
7a8e76a3
SR
512 addr = __get_free_page(GFP_KERNEL);
513 if (!addr)
514 goto free_pages;
044fa782
SR
515 bpage->page = (void *)addr;
516 rb_init_page(bpage->page);
7a8e76a3
SR
517 }
518
519 list_splice(&pages, head);
520
521 rb_check_pages(cpu_buffer);
522
523 return 0;
524
525 free_pages:
044fa782
SR
526 list_for_each_entry_safe(bpage, tmp, &pages, list) {
527 list_del_init(&bpage->list);
528 free_buffer_page(bpage);
7a8e76a3
SR
529 }
530 return -ENOMEM;
531}
532
533static struct ring_buffer_per_cpu *
534rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
535{
536 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 537 struct buffer_page *bpage;
d769041f 538 unsigned long addr;
7a8e76a3
SR
539 int ret;
540
541 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
542 GFP_KERNEL, cpu_to_node(cpu));
543 if (!cpu_buffer)
544 return NULL;
545
546 cpu_buffer->cpu = cpu;
547 cpu_buffer->buffer = buffer;
f83c9d0f 548 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 549 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
550 INIT_LIST_HEAD(&cpu_buffer->pages);
551
044fa782 552 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 553 GFP_KERNEL, cpu_to_node(cpu));
044fa782 554 if (!bpage)
e4c2ce82
SR
555 goto fail_free_buffer;
556
044fa782 557 cpu_buffer->reader_page = bpage;
d769041f
SR
558 addr = __get_free_page(GFP_KERNEL);
559 if (!addr)
e4c2ce82 560 goto fail_free_reader;
044fa782
SR
561 bpage->page = (void *)addr;
562 rb_init_page(bpage->page);
e4c2ce82 563
d769041f 564 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 565
7a8e76a3
SR
566 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
567 if (ret < 0)
d769041f 568 goto fail_free_reader;
7a8e76a3
SR
569
570 cpu_buffer->head_page
571 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 572 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
573
574 return cpu_buffer;
575
d769041f
SR
576 fail_free_reader:
577 free_buffer_page(cpu_buffer->reader_page);
578
7a8e76a3
SR
579 fail_free_buffer:
580 kfree(cpu_buffer);
581 return NULL;
582}
583
584static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
585{
586 struct list_head *head = &cpu_buffer->pages;
044fa782 587 struct buffer_page *bpage, *tmp;
7a8e76a3 588
d769041f
SR
589 free_buffer_page(cpu_buffer->reader_page);
590
044fa782
SR
591 list_for_each_entry_safe(bpage, tmp, head, list) {
592 list_del_init(&bpage->list);
593 free_buffer_page(bpage);
7a8e76a3
SR
594 }
595 kfree(cpu_buffer);
596}
597
a7b13743
SR
598/*
599 * Causes compile errors if the struct buffer_page gets bigger
600 * than the struct page.
601 */
602extern int ring_buffer_page_too_big(void);
603
59222efe 604#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
605static int rb_cpu_notify(struct notifier_block *self,
606 unsigned long action, void *hcpu);
554f786e
SR
607#endif
608
7a8e76a3
SR
609/**
610 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 611 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
612 * @flags: attributes to set for the ring buffer.
613 *
614 * Currently the only flag that is available is the RB_FL_OVERWRITE
615 * flag. This flag means that the buffer will overwrite old data
616 * when the buffer wraps. If this flag is not set, the buffer will
617 * drop data when the tail hits the head.
618 */
619struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
620{
621 struct ring_buffer *buffer;
622 int bsize;
623 int cpu;
624
a7b13743
SR
625 /* Paranoid! Optimizes out when all is well */
626 if (sizeof(struct buffer_page) > sizeof(struct page))
627 ring_buffer_page_too_big();
628
629
7a8e76a3
SR
630 /* keep it in its own cache line */
631 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
632 GFP_KERNEL);
633 if (!buffer)
634 return NULL;
635
9e01c1b7
RR
636 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
637 goto fail_free_buffer;
638
7a8e76a3
SR
639 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
640 buffer->flags = flags;
37886f6a 641 buffer->clock = trace_clock_local;
7a8e76a3
SR
642
643 /* need at least two pages */
644 if (buffer->pages == 1)
645 buffer->pages++;
646
3bf832ce
FW
647 /*
648 * In case of non-hotplug cpu, if the ring-buffer is allocated
649 * in early initcall, it will not be notified of secondary cpus.
650 * In that off case, we need to allocate for all possible cpus.
651 */
652#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
653 get_online_cpus();
654 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
655#else
656 cpumask_copy(buffer->cpumask, cpu_possible_mask);
657#endif
7a8e76a3
SR
658 buffer->cpus = nr_cpu_ids;
659
660 bsize = sizeof(void *) * nr_cpu_ids;
661 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
662 GFP_KERNEL);
663 if (!buffer->buffers)
9e01c1b7 664 goto fail_free_cpumask;
7a8e76a3
SR
665
666 for_each_buffer_cpu(buffer, cpu) {
667 buffer->buffers[cpu] =
668 rb_allocate_cpu_buffer(buffer, cpu);
669 if (!buffer->buffers[cpu])
670 goto fail_free_buffers;
671 }
672
59222efe 673#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
674 buffer->cpu_notify.notifier_call = rb_cpu_notify;
675 buffer->cpu_notify.priority = 0;
676 register_cpu_notifier(&buffer->cpu_notify);
677#endif
678
679 put_online_cpus();
7a8e76a3
SR
680 mutex_init(&buffer->mutex);
681
682 return buffer;
683
684 fail_free_buffers:
685 for_each_buffer_cpu(buffer, cpu) {
686 if (buffer->buffers[cpu])
687 rb_free_cpu_buffer(buffer->buffers[cpu]);
688 }
689 kfree(buffer->buffers);
690
9e01c1b7
RR
691 fail_free_cpumask:
692 free_cpumask_var(buffer->cpumask);
554f786e 693 put_online_cpus();
9e01c1b7 694
7a8e76a3
SR
695 fail_free_buffer:
696 kfree(buffer);
697 return NULL;
698}
c4f50183 699EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
700
701/**
702 * ring_buffer_free - free a ring buffer.
703 * @buffer: the buffer to free.
704 */
705void
706ring_buffer_free(struct ring_buffer *buffer)
707{
708 int cpu;
709
554f786e
SR
710 get_online_cpus();
711
59222efe 712#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
713 unregister_cpu_notifier(&buffer->cpu_notify);
714#endif
715
7a8e76a3
SR
716 for_each_buffer_cpu(buffer, cpu)
717 rb_free_cpu_buffer(buffer->buffers[cpu]);
718
554f786e
SR
719 put_online_cpus();
720
9e01c1b7
RR
721 free_cpumask_var(buffer->cpumask);
722
7a8e76a3
SR
723 kfree(buffer);
724}
c4f50183 725EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 726
37886f6a
SR
727void ring_buffer_set_clock(struct ring_buffer *buffer,
728 u64 (*clock)(void))
729{
730 buffer->clock = clock;
731}
732
7a8e76a3
SR
733static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
734
735static void
736rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
737{
044fa782 738 struct buffer_page *bpage;
7a8e76a3
SR
739 struct list_head *p;
740 unsigned i;
741
742 atomic_inc(&cpu_buffer->record_disabled);
743 synchronize_sched();
744
745 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
746 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
747 return;
7a8e76a3 748 p = cpu_buffer->pages.next;
044fa782
SR
749 bpage = list_entry(p, struct buffer_page, list);
750 list_del_init(&bpage->list);
751 free_buffer_page(bpage);
7a8e76a3 752 }
3e89c7bb
SR
753 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
754 return;
7a8e76a3
SR
755
756 rb_reset_cpu(cpu_buffer);
757
758 rb_check_pages(cpu_buffer);
759
760 atomic_dec(&cpu_buffer->record_disabled);
761
762}
763
764static void
765rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
766 struct list_head *pages, unsigned nr_pages)
767{
044fa782 768 struct buffer_page *bpage;
7a8e76a3
SR
769 struct list_head *p;
770 unsigned i;
771
772 atomic_inc(&cpu_buffer->record_disabled);
773 synchronize_sched();
774
775 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
776 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
777 return;
7a8e76a3 778 p = pages->next;
044fa782
SR
779 bpage = list_entry(p, struct buffer_page, list);
780 list_del_init(&bpage->list);
781 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
782 }
783 rb_reset_cpu(cpu_buffer);
784
785 rb_check_pages(cpu_buffer);
786
787 atomic_dec(&cpu_buffer->record_disabled);
788}
789
790/**
791 * ring_buffer_resize - resize the ring buffer
792 * @buffer: the buffer to resize.
793 * @size: the new size.
794 *
795 * The tracer is responsible for making sure that the buffer is
796 * not being used while changing the size.
797 * Note: We may be able to change the above requirement by using
798 * RCU synchronizations.
799 *
800 * Minimum size is 2 * BUF_PAGE_SIZE.
801 *
802 * Returns -1 on failure.
803 */
804int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
805{
806 struct ring_buffer_per_cpu *cpu_buffer;
807 unsigned nr_pages, rm_pages, new_pages;
044fa782 808 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
809 unsigned long buffer_size;
810 unsigned long addr;
811 LIST_HEAD(pages);
812 int i, cpu;
813
ee51a1de
IM
814 /*
815 * Always succeed at resizing a non-existent buffer:
816 */
817 if (!buffer)
818 return size;
819
7a8e76a3
SR
820 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
821 size *= BUF_PAGE_SIZE;
822 buffer_size = buffer->pages * BUF_PAGE_SIZE;
823
824 /* we need a minimum of two pages */
825 if (size < BUF_PAGE_SIZE * 2)
826 size = BUF_PAGE_SIZE * 2;
827
828 if (size == buffer_size)
829 return size;
830
831 mutex_lock(&buffer->mutex);
554f786e 832 get_online_cpus();
7a8e76a3
SR
833
834 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
835
836 if (size < buffer_size) {
837
838 /* easy case, just free pages */
554f786e
SR
839 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
840 goto out_fail;
7a8e76a3
SR
841
842 rm_pages = buffer->pages - nr_pages;
843
844 for_each_buffer_cpu(buffer, cpu) {
845 cpu_buffer = buffer->buffers[cpu];
846 rb_remove_pages(cpu_buffer, rm_pages);
847 }
848 goto out;
849 }
850
851 /*
852 * This is a bit more difficult. We only want to add pages
853 * when we can allocate enough for all CPUs. We do this
854 * by allocating all the pages and storing them on a local
855 * link list. If we succeed in our allocation, then we
856 * add these pages to the cpu_buffers. Otherwise we just free
857 * them all and return -ENOMEM;
858 */
554f786e
SR
859 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
860 goto out_fail;
f536aafc 861
7a8e76a3
SR
862 new_pages = nr_pages - buffer->pages;
863
864 for_each_buffer_cpu(buffer, cpu) {
865 for (i = 0; i < new_pages; i++) {
044fa782 866 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
867 cache_line_size()),
868 GFP_KERNEL, cpu_to_node(cpu));
044fa782 869 if (!bpage)
e4c2ce82 870 goto free_pages;
044fa782 871 list_add(&bpage->list, &pages);
7a8e76a3
SR
872 addr = __get_free_page(GFP_KERNEL);
873 if (!addr)
874 goto free_pages;
044fa782
SR
875 bpage->page = (void *)addr;
876 rb_init_page(bpage->page);
7a8e76a3
SR
877 }
878 }
879
880 for_each_buffer_cpu(buffer, cpu) {
881 cpu_buffer = buffer->buffers[cpu];
882 rb_insert_pages(cpu_buffer, &pages, new_pages);
883 }
884
554f786e
SR
885 if (RB_WARN_ON(buffer, !list_empty(&pages)))
886 goto out_fail;
7a8e76a3
SR
887
888 out:
889 buffer->pages = nr_pages;
554f786e 890 put_online_cpus();
7a8e76a3
SR
891 mutex_unlock(&buffer->mutex);
892
893 return size;
894
895 free_pages:
044fa782
SR
896 list_for_each_entry_safe(bpage, tmp, &pages, list) {
897 list_del_init(&bpage->list);
898 free_buffer_page(bpage);
7a8e76a3 899 }
554f786e 900 put_online_cpus();
641d2f63 901 mutex_unlock(&buffer->mutex);
7a8e76a3 902 return -ENOMEM;
554f786e
SR
903
904 /*
905 * Something went totally wrong, and we are too paranoid
906 * to even clean up the mess.
907 */
908 out_fail:
909 put_online_cpus();
910 mutex_unlock(&buffer->mutex);
911 return -1;
7a8e76a3 912}
c4f50183 913EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 914
8789a9e7 915static inline void *
044fa782 916__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 917{
044fa782 918 return bpage->data + index;
8789a9e7
SR
919}
920
044fa782 921static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 922{
044fa782 923 return bpage->page->data + index;
7a8e76a3
SR
924}
925
926static inline struct ring_buffer_event *
d769041f 927rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 928{
6f807acd
SR
929 return __rb_page_index(cpu_buffer->reader_page,
930 cpu_buffer->reader_page->read);
931}
932
933static inline struct ring_buffer_event *
934rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
935{
936 return __rb_page_index(cpu_buffer->head_page,
937 cpu_buffer->head_page->read);
7a8e76a3
SR
938}
939
940static inline struct ring_buffer_event *
941rb_iter_head_event(struct ring_buffer_iter *iter)
942{
6f807acd 943 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
944}
945
bf41a158
SR
946static inline unsigned rb_page_write(struct buffer_page *bpage)
947{
948 return local_read(&bpage->write);
949}
950
951static inline unsigned rb_page_commit(struct buffer_page *bpage)
952{
abc9b56d 953 return local_read(&bpage->page->commit);
bf41a158
SR
954}
955
956/* Size is determined by what has been commited */
957static inline unsigned rb_page_size(struct buffer_page *bpage)
958{
959 return rb_page_commit(bpage);
960}
961
962static inline unsigned
963rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
964{
965 return rb_page_commit(cpu_buffer->commit_page);
966}
967
968static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
969{
970 return rb_page_commit(cpu_buffer->head_page);
971}
972
7a8e76a3
SR
973/*
974 * When the tail hits the head and the buffer is in overwrite mode,
975 * the head jumps to the next page and all content on the previous
976 * page is discarded. But before doing so, we update the overrun
977 * variable of the buffer.
978 */
979static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
980{
981 struct ring_buffer_event *event;
982 unsigned long head;
983
984 for (head = 0; head < rb_head_size(cpu_buffer);
985 head += rb_event_length(event)) {
986
6f807acd 987 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
988 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
989 return;
7a8e76a3
SR
990 /* Only count data entries */
991 if (event->type != RINGBUF_TYPE_DATA)
992 continue;
993 cpu_buffer->overrun++;
994 cpu_buffer->entries--;
995 }
996}
997
998static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 999 struct buffer_page **bpage)
7a8e76a3 1000{
044fa782 1001 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
1002
1003 if (p == &cpu_buffer->pages)
1004 p = p->next;
1005
044fa782 1006 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
1007}
1008
bf41a158
SR
1009static inline unsigned
1010rb_event_index(struct ring_buffer_event *event)
1011{
1012 unsigned long addr = (unsigned long)event;
1013
1014 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1015}
1016
34a148bf 1017static int
bf41a158
SR
1018rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1019 struct ring_buffer_event *event)
1020{
1021 unsigned long addr = (unsigned long)event;
1022 unsigned long index;
1023
1024 index = rb_event_index(event);
1025 addr &= PAGE_MASK;
1026
1027 return cpu_buffer->commit_page->page == (void *)addr &&
1028 rb_commit_index(cpu_buffer) == index;
1029}
1030
34a148bf 1031static void
bf41a158
SR
1032rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1033 struct ring_buffer_event *event)
7a8e76a3 1034{
bf41a158
SR
1035 unsigned long addr = (unsigned long)event;
1036 unsigned long index;
1037
1038 index = rb_event_index(event);
1039 addr &= PAGE_MASK;
1040
1041 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
1042 if (RB_WARN_ON(cpu_buffer,
1043 cpu_buffer->commit_page == cpu_buffer->tail_page))
1044 return;
abc9b56d 1045 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1046 cpu_buffer->commit_page->write;
1047 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1048 cpu_buffer->write_stamp =
1049 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1050 }
1051
1052 /* Now set the commit to the event's index */
abc9b56d 1053 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
1054}
1055
34a148bf 1056static void
bf41a158 1057rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1058{
bf41a158
SR
1059 /*
1060 * We only race with interrupts and NMIs on this CPU.
1061 * If we own the commit event, then we can commit
1062 * all others that interrupted us, since the interruptions
1063 * are in stack format (they finish before they come
1064 * back to us). This allows us to do a simple loop to
1065 * assign the commit to the tail.
1066 */
a8ccf1d6 1067 again:
bf41a158 1068 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1069 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1070 cpu_buffer->commit_page->write;
1071 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1072 cpu_buffer->write_stamp =
1073 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1074 /* add barrier to keep gcc from optimizing too much */
1075 barrier();
1076 }
1077 while (rb_commit_index(cpu_buffer) !=
1078 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1079 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1080 cpu_buffer->commit_page->write;
1081 barrier();
1082 }
a8ccf1d6
SR
1083
1084 /* again, keep gcc from optimizing */
1085 barrier();
1086
1087 /*
1088 * If an interrupt came in just after the first while loop
1089 * and pushed the tail page forward, we will be left with
1090 * a dangling commit that will never go forward.
1091 */
1092 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1093 goto again;
7a8e76a3
SR
1094}
1095
d769041f 1096static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1097{
abc9b56d 1098 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1099 cpu_buffer->reader_page->read = 0;
d769041f
SR
1100}
1101
34a148bf 1102static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1103{
1104 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1105
1106 /*
1107 * The iterator could be on the reader page (it starts there).
1108 * But the head could have moved, since the reader was
1109 * found. Check for this case and assign the iterator
1110 * to the head page instead of next.
1111 */
1112 if (iter->head_page == cpu_buffer->reader_page)
1113 iter->head_page = cpu_buffer->head_page;
1114 else
1115 rb_inc_page(cpu_buffer, &iter->head_page);
1116
abc9b56d 1117 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1118 iter->head = 0;
1119}
1120
1121/**
1122 * ring_buffer_update_event - update event type and data
1123 * @event: the even to update
1124 * @type: the type of event
1125 * @length: the size of the event field in the ring buffer
1126 *
1127 * Update the type and data fields of the event. The length
1128 * is the actual size that is written to the ring buffer,
1129 * and with this, we can determine what to place into the
1130 * data field.
1131 */
34a148bf 1132static void
7a8e76a3
SR
1133rb_update_event(struct ring_buffer_event *event,
1134 unsigned type, unsigned length)
1135{
1136 event->type = type;
1137
1138 switch (type) {
1139
1140 case RINGBUF_TYPE_PADDING:
1141 break;
1142
1143 case RINGBUF_TYPE_TIME_EXTEND:
67d34724 1144 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
7a8e76a3
SR
1145 break;
1146
1147 case RINGBUF_TYPE_TIME_STAMP:
67d34724 1148 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
7a8e76a3
SR
1149 break;
1150
1151 case RINGBUF_TYPE_DATA:
1152 length -= RB_EVNT_HDR_SIZE;
1153 if (length > RB_MAX_SMALL_DATA) {
1154 event->len = 0;
1155 event->array[0] = length;
1156 } else
67d34724 1157 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1158 break;
1159 default:
1160 BUG();
1161 }
1162}
1163
34a148bf 1164static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1165{
1166 struct ring_buffer_event event; /* Used only for sizeof array */
1167
1168 /* zero length can cause confusions */
1169 if (!length)
1170 length = 1;
1171
1172 if (length > RB_MAX_SMALL_DATA)
1173 length += sizeof(event.array[0]);
1174
1175 length += RB_EVNT_HDR_SIZE;
1176 length = ALIGN(length, RB_ALIGNMENT);
1177
1178 return length;
1179}
1180
1181static struct ring_buffer_event *
1182__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1183 unsigned type, unsigned long length, u64 *ts)
1184{
98db8df7 1185 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
bf41a158 1186 unsigned long tail, write;
7a8e76a3
SR
1187 struct ring_buffer *buffer = cpu_buffer->buffer;
1188 struct ring_buffer_event *event;
bf41a158 1189 unsigned long flags;
78d904b4 1190 bool lock_taken = false;
7a8e76a3 1191
98db8df7
SR
1192 commit_page = cpu_buffer->commit_page;
1193 /* we just need to protect against interrupts */
1194 barrier();
7a8e76a3 1195 tail_page = cpu_buffer->tail_page;
bf41a158
SR
1196 write = local_add_return(length, &tail_page->write);
1197 tail = write - length;
7a8e76a3 1198
bf41a158
SR
1199 /* See if we shot pass the end of this buffer page */
1200 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
1201 struct buffer_page *next_page = tail_page;
1202
3e03fb7f 1203 local_irq_save(flags);
78d904b4 1204 /*
a81bd80a
SR
1205 * Since the write to the buffer is still not
1206 * fully lockless, we must be careful with NMIs.
1207 * The locks in the writers are taken when a write
1208 * crosses to a new page. The locks protect against
1209 * races with the readers (this will soon be fixed
1210 * with a lockless solution).
1211 *
1212 * Because we can not protect against NMIs, and we
1213 * want to keep traces reentrant, we need to manage
1214 * what happens when we are in an NMI.
1215 *
78d904b4
SR
1216 * NMIs can happen after we take the lock.
1217 * If we are in an NMI, only take the lock
1218 * if it is not already taken. Otherwise
1219 * simply fail.
1220 */
a81bd80a 1221 if (unlikely(in_nmi())) {
78d904b4 1222 if (!__raw_spin_trylock(&cpu_buffer->lock))
45141d46 1223 goto out_reset;
78d904b4
SR
1224 } else
1225 __raw_spin_lock(&cpu_buffer->lock);
1226
1227 lock_taken = true;
bf41a158 1228
7a8e76a3
SR
1229 rb_inc_page(cpu_buffer, &next_page);
1230
d769041f
SR
1231 head_page = cpu_buffer->head_page;
1232 reader_page = cpu_buffer->reader_page;
1233
1234 /* we grabbed the lock before incrementing */
3e89c7bb 1235 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
45141d46 1236 goto out_reset;
bf41a158
SR
1237
1238 /*
1239 * If for some reason, we had an interrupt storm that made
1240 * it all the way around the buffer, bail, and warn
1241 * about it.
1242 */
98db8df7 1243 if (unlikely(next_page == commit_page)) {
bf41a158 1244 WARN_ON_ONCE(1);
45141d46 1245 goto out_reset;
bf41a158 1246 }
d769041f 1247
7a8e76a3 1248 if (next_page == head_page) {
6f3b3440 1249 if (!(buffer->flags & RB_FL_OVERWRITE))
45141d46 1250 goto out_reset;
7a8e76a3 1251
bf41a158
SR
1252 /* tail_page has not moved yet? */
1253 if (tail_page == cpu_buffer->tail_page) {
1254 /* count overflows */
1255 rb_update_overflow(cpu_buffer);
1256
1257 rb_inc_page(cpu_buffer, &head_page);
1258 cpu_buffer->head_page = head_page;
1259 cpu_buffer->head_page->read = 0;
1260 }
1261 }
7a8e76a3 1262
bf41a158
SR
1263 /*
1264 * If the tail page is still the same as what we think
1265 * it is, then it is up to us to update the tail
1266 * pointer.
1267 */
1268 if (tail_page == cpu_buffer->tail_page) {
1269 local_set(&next_page->write, 0);
abc9b56d 1270 local_set(&next_page->page->commit, 0);
bf41a158
SR
1271 cpu_buffer->tail_page = next_page;
1272
1273 /* reread the time stamp */
37886f6a 1274 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
abc9b56d 1275 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1276 }
1277
bf41a158
SR
1278 /*
1279 * The actual tail page has moved forward.
1280 */
1281 if (tail < BUF_PAGE_SIZE) {
1282 /* Mark the rest of the page with padding */
6f807acd 1283 event = __rb_page_index(tail_page, tail);
2d622719 1284 rb_event_set_padding(event);
7a8e76a3
SR
1285 }
1286
bf41a158
SR
1287 if (tail <= BUF_PAGE_SIZE)
1288 /* Set the write back to the previous setting */
1289 local_set(&tail_page->write, tail);
1290
1291 /*
1292 * If this was a commit entry that failed,
1293 * increment that too
1294 */
1295 if (tail_page == cpu_buffer->commit_page &&
1296 tail == rb_commit_index(cpu_buffer)) {
1297 rb_set_commit_to_write(cpu_buffer);
1298 }
1299
3e03fb7f
SR
1300 __raw_spin_unlock(&cpu_buffer->lock);
1301 local_irq_restore(flags);
bf41a158
SR
1302
1303 /* fail and let the caller try again */
1304 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1305 }
1306
bf41a158
SR
1307 /* We reserved something on the buffer */
1308
3e89c7bb
SR
1309 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1310 return NULL;
7a8e76a3 1311
6f807acd 1312 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1313 rb_update_event(event, type, length);
1314
bf41a158
SR
1315 /*
1316 * If this is a commit and the tail is zero, then update
1317 * this page's time stamp.
1318 */
1319 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1320 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1321
7a8e76a3 1322 return event;
bf41a158 1323
45141d46 1324 out_reset:
6f3b3440
LJ
1325 /* reset write */
1326 if (tail <= BUF_PAGE_SIZE)
1327 local_set(&tail_page->write, tail);
1328
78d904b4
SR
1329 if (likely(lock_taken))
1330 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1331 local_irq_restore(flags);
bf41a158 1332 return NULL;
7a8e76a3
SR
1333}
1334
1335static int
1336rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1337 u64 *ts, u64 *delta)
1338{
1339 struct ring_buffer_event *event;
1340 static int once;
bf41a158 1341 int ret;
7a8e76a3
SR
1342
1343 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1344 printk(KERN_WARNING "Delta way too big! %llu"
1345 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1346 (unsigned long long)*delta,
1347 (unsigned long long)*ts,
1348 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1349 WARN_ON(1);
1350 }
1351
1352 /*
1353 * The delta is too big, we to add a
1354 * new timestamp.
1355 */
1356 event = __rb_reserve_next(cpu_buffer,
1357 RINGBUF_TYPE_TIME_EXTEND,
1358 RB_LEN_TIME_EXTEND,
1359 ts);
1360 if (!event)
bf41a158 1361 return -EBUSY;
7a8e76a3 1362
bf41a158
SR
1363 if (PTR_ERR(event) == -EAGAIN)
1364 return -EAGAIN;
1365
1366 /* Only a commited time event can update the write stamp */
1367 if (rb_is_commit(cpu_buffer, event)) {
1368 /*
1369 * If this is the first on the page, then we need to
1370 * update the page itself, and just put in a zero.
1371 */
1372 if (rb_event_index(event)) {
1373 event->time_delta = *delta & TS_MASK;
1374 event->array[0] = *delta >> TS_SHIFT;
1375 } else {
abc9b56d 1376 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1377 event->time_delta = 0;
1378 event->array[0] = 0;
1379 }
7a8e76a3 1380 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1381 /* let the caller know this was the commit */
1382 ret = 1;
1383 } else {
1384 /* Darn, this is just wasted space */
1385 event->time_delta = 0;
1386 event->array[0] = 0;
1387 ret = 0;
7a8e76a3
SR
1388 }
1389
bf41a158
SR
1390 *delta = 0;
1391
1392 return ret;
7a8e76a3
SR
1393}
1394
1395static struct ring_buffer_event *
1396rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1397 unsigned type, unsigned long length)
1398{
1399 struct ring_buffer_event *event;
1400 u64 ts, delta;
bf41a158 1401 int commit = 0;
818e3dd3 1402 int nr_loops = 0;
7a8e76a3 1403
bf41a158 1404 again:
818e3dd3
SR
1405 /*
1406 * We allow for interrupts to reenter here and do a trace.
1407 * If one does, it will cause this original code to loop
1408 * back here. Even with heavy interrupts happening, this
1409 * should only happen a few times in a row. If this happens
1410 * 1000 times in a row, there must be either an interrupt
1411 * storm or we have something buggy.
1412 * Bail!
1413 */
3e89c7bb 1414 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1415 return NULL;
818e3dd3 1416
37886f6a 1417 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1418
bf41a158
SR
1419 /*
1420 * Only the first commit can update the timestamp.
1421 * Yes there is a race here. If an interrupt comes in
1422 * just after the conditional and it traces too, then it
1423 * will also check the deltas. More than one timestamp may
1424 * also be made. But only the entry that did the actual
1425 * commit will be something other than zero.
1426 */
1427 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1428 rb_page_write(cpu_buffer->tail_page) ==
1429 rb_commit_index(cpu_buffer)) {
1430
7a8e76a3
SR
1431 delta = ts - cpu_buffer->write_stamp;
1432
bf41a158
SR
1433 /* make sure this delta is calculated here */
1434 barrier();
1435
1436 /* Did the write stamp get updated already? */
1437 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1438 delta = 0;
bf41a158 1439
7a8e76a3 1440 if (test_time_stamp(delta)) {
7a8e76a3 1441
bf41a158
SR
1442 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1443
1444 if (commit == -EBUSY)
7a8e76a3 1445 return NULL;
bf41a158
SR
1446
1447 if (commit == -EAGAIN)
1448 goto again;
1449
1450 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1451 }
bf41a158
SR
1452 } else
1453 /* Non commits have zero deltas */
7a8e76a3 1454 delta = 0;
7a8e76a3
SR
1455
1456 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1457 if (PTR_ERR(event) == -EAGAIN)
1458 goto again;
1459
1460 if (!event) {
1461 if (unlikely(commit))
1462 /*
1463 * Ouch! We needed a timestamp and it was commited. But
1464 * we didn't get our event reserved.
1465 */
1466 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1467 return NULL;
bf41a158 1468 }
7a8e76a3 1469
bf41a158
SR
1470 /*
1471 * If the timestamp was commited, make the commit our entry
1472 * now so that we will update it when needed.
1473 */
1474 if (commit)
1475 rb_set_commit_event(cpu_buffer, event);
1476 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1477 delta = 0;
1478
1479 event->time_delta = delta;
1480
1481 return event;
1482}
1483
261842b7
SR
1484static int trace_irq_level(void)
1485{
17487bfe
SR
1486 return (hardirq_count() >> HARDIRQ_SHIFT) +
1487 (softirq_count() >> + SOFTIRQ_SHIFT) +
1488 !!in_nmi();
261842b7
SR
1489}
1490
1491static int trace_recursive_lock(void)
1492{
1493 int level;
1494
1495 level = trace_irq_level();
1496
1497 if (unlikely(current->trace_recursion & (1 << level))) {
1498 /* Disable all tracing before we do anything else */
1499 tracing_off_permanent();
e057a5e5
FW
1500
1501 printk_once(KERN_WARNING "Tracing recursion: "
1502 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1503 hardirq_count() >> HARDIRQ_SHIFT,
1504 softirq_count() >> SOFTIRQ_SHIFT,
1505 in_nmi());
1506
261842b7
SR
1507 WARN_ON_ONCE(1);
1508 return -1;
1509 }
1510
1511 current->trace_recursion |= 1 << level;
1512
1513 return 0;
1514}
1515
1516static void trace_recursive_unlock(void)
1517{
1518 int level;
1519
1520 level = trace_irq_level();
1521
1522 WARN_ON_ONCE(!current->trace_recursion & (1 << level));
1523
1524 current->trace_recursion &= ~(1 << level);
1525}
1526
bf41a158
SR
1527static DEFINE_PER_CPU(int, rb_need_resched);
1528
7a8e76a3
SR
1529/**
1530 * ring_buffer_lock_reserve - reserve a part of the buffer
1531 * @buffer: the ring buffer to reserve from
1532 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1533 *
1534 * Returns a reseverd event on the ring buffer to copy directly to.
1535 * The user of this interface will need to get the body to write into
1536 * and can use the ring_buffer_event_data() interface.
1537 *
1538 * The length is the length of the data needed, not the event length
1539 * which also includes the event header.
1540 *
1541 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1542 * If NULL is returned, then nothing has been allocated or locked.
1543 */
1544struct ring_buffer_event *
0a987751 1545ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1546{
1547 struct ring_buffer_per_cpu *cpu_buffer;
1548 struct ring_buffer_event *event;
bf41a158 1549 int cpu, resched;
7a8e76a3 1550
033601a3 1551 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1552 return NULL;
1553
7a8e76a3
SR
1554 if (atomic_read(&buffer->record_disabled))
1555 return NULL;
1556
bf41a158 1557 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1558 resched = ftrace_preempt_disable();
bf41a158 1559
261842b7
SR
1560 if (trace_recursive_lock())
1561 goto out_nocheck;
1562
7a8e76a3
SR
1563 cpu = raw_smp_processor_id();
1564
9e01c1b7 1565 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1566 goto out;
7a8e76a3
SR
1567
1568 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1569
1570 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1571 goto out;
7a8e76a3
SR
1572
1573 length = rb_calculate_event_length(length);
1574 if (length > BUF_PAGE_SIZE)
bf41a158 1575 goto out;
7a8e76a3
SR
1576
1577 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1578 if (!event)
d769041f 1579 goto out;
7a8e76a3 1580
bf41a158
SR
1581 /*
1582 * Need to store resched state on this cpu.
1583 * Only the first needs to.
1584 */
1585
1586 if (preempt_count() == 1)
1587 per_cpu(rb_need_resched, cpu) = resched;
1588
7a8e76a3
SR
1589 return event;
1590
d769041f 1591 out:
261842b7
SR
1592 trace_recursive_unlock();
1593
1594 out_nocheck:
182e9f5f 1595 ftrace_preempt_enable(resched);
7a8e76a3
SR
1596 return NULL;
1597}
c4f50183 1598EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1599
1600static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1601 struct ring_buffer_event *event)
1602{
7a8e76a3 1603 cpu_buffer->entries++;
bf41a158
SR
1604
1605 /* Only process further if we own the commit */
1606 if (!rb_is_commit(cpu_buffer, event))
1607 return;
1608
1609 cpu_buffer->write_stamp += event->time_delta;
1610
1611 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1612}
1613
1614/**
1615 * ring_buffer_unlock_commit - commit a reserved
1616 * @buffer: The buffer to commit to
1617 * @event: The event pointer to commit.
7a8e76a3
SR
1618 *
1619 * This commits the data to the ring buffer, and releases any locks held.
1620 *
1621 * Must be paired with ring_buffer_lock_reserve.
1622 */
1623int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1624 struct ring_buffer_event *event)
7a8e76a3
SR
1625{
1626 struct ring_buffer_per_cpu *cpu_buffer;
1627 int cpu = raw_smp_processor_id();
1628
1629 cpu_buffer = buffer->buffers[cpu];
1630
7a8e76a3
SR
1631 rb_commit(cpu_buffer, event);
1632
261842b7
SR
1633 trace_recursive_unlock();
1634
bf41a158
SR
1635 /*
1636 * Only the last preempt count needs to restore preemption.
1637 */
182e9f5f
SR
1638 if (preempt_count() == 1)
1639 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1640 else
bf41a158 1641 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1642
1643 return 0;
1644}
c4f50183 1645EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1646
f3b9aae1
FW
1647static inline void rb_event_discard(struct ring_buffer_event *event)
1648{
1649 event->type = RINGBUF_TYPE_PADDING;
1650 /* time delta must be non zero */
1651 if (!event->time_delta)
1652 event->time_delta = 1;
1653}
1654
fa1b47dd
SR
1655/**
1656 * ring_buffer_event_discard - discard any event in the ring buffer
1657 * @event: the event to discard
1658 *
1659 * Sometimes a event that is in the ring buffer needs to be ignored.
1660 * This function lets the user discard an event in the ring buffer
1661 * and then that event will not be read later.
1662 *
1663 * Note, it is up to the user to be careful with this, and protect
1664 * against races. If the user discards an event that has been consumed
1665 * it is possible that it could corrupt the ring buffer.
1666 */
1667void ring_buffer_event_discard(struct ring_buffer_event *event)
1668{
f3b9aae1 1669 rb_event_discard(event);
fa1b47dd
SR
1670}
1671EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1672
1673/**
1674 * ring_buffer_commit_discard - discard an event that has not been committed
1675 * @buffer: the ring buffer
1676 * @event: non committed event to discard
1677 *
1678 * This is similar to ring_buffer_event_discard but must only be
1679 * performed on an event that has not been committed yet. The difference
1680 * is that this will also try to free the event from the ring buffer
1681 * if another event has not been added behind it.
1682 *
1683 * If another event has been added behind it, it will set the event
1684 * up as discarded, and perform the commit.
1685 *
1686 * If this function is called, do not call ring_buffer_unlock_commit on
1687 * the event.
1688 */
1689void ring_buffer_discard_commit(struct ring_buffer *buffer,
1690 struct ring_buffer_event *event)
1691{
1692 struct ring_buffer_per_cpu *cpu_buffer;
1693 unsigned long new_index, old_index;
1694 struct buffer_page *bpage;
1695 unsigned long index;
1696 unsigned long addr;
1697 int cpu;
1698
1699 /* The event is discarded regardless */
f3b9aae1 1700 rb_event_discard(event);
fa1b47dd
SR
1701
1702 /*
1703 * This must only be called if the event has not been
1704 * committed yet. Thus we can assume that preemption
1705 * is still disabled.
1706 */
1707 RB_WARN_ON(buffer, !preempt_count());
1708
1709 cpu = smp_processor_id();
1710 cpu_buffer = buffer->buffers[cpu];
1711
1712 new_index = rb_event_index(event);
1713 old_index = new_index + rb_event_length(event);
1714 addr = (unsigned long)event;
1715 addr &= PAGE_MASK;
1716
1717 bpage = cpu_buffer->tail_page;
1718
1719 if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1720 /*
1721 * This is on the tail page. It is possible that
1722 * a write could come in and move the tail page
1723 * and write to the next page. That is fine
1724 * because we just shorten what is on this page.
1725 */
1726 index = local_cmpxchg(&bpage->write, old_index, new_index);
1727 if (index == old_index)
1728 goto out;
1729 }
1730
1731 /*
1732 * The commit is still visible by the reader, so we
1733 * must increment entries.
1734 */
1735 cpu_buffer->entries++;
1736 out:
1737 /*
1738 * If a write came in and pushed the tail page
1739 * we still need to update the commit pointer
1740 * if we were the commit.
1741 */
1742 if (rb_is_commit(cpu_buffer, event))
1743 rb_set_commit_to_write(cpu_buffer);
1744
f3b9aae1
FW
1745 trace_recursive_unlock();
1746
fa1b47dd
SR
1747 /*
1748 * Only the last preempt count needs to restore preemption.
1749 */
1750 if (preempt_count() == 1)
1751 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1752 else
1753 preempt_enable_no_resched_notrace();
1754
1755}
1756EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1757
7a8e76a3
SR
1758/**
1759 * ring_buffer_write - write data to the buffer without reserving
1760 * @buffer: The ring buffer to write to.
1761 * @length: The length of the data being written (excluding the event header)
1762 * @data: The data to write to the buffer.
1763 *
1764 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1765 * one function. If you already have the data to write to the buffer, it
1766 * may be easier to simply call this function.
1767 *
1768 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1769 * and not the length of the event which would hold the header.
1770 */
1771int ring_buffer_write(struct ring_buffer *buffer,
1772 unsigned long length,
1773 void *data)
1774{
1775 struct ring_buffer_per_cpu *cpu_buffer;
1776 struct ring_buffer_event *event;
bf41a158 1777 unsigned long event_length;
7a8e76a3
SR
1778 void *body;
1779 int ret = -EBUSY;
bf41a158 1780 int cpu, resched;
7a8e76a3 1781
033601a3 1782 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1783 return -EBUSY;
1784
7a8e76a3
SR
1785 if (atomic_read(&buffer->record_disabled))
1786 return -EBUSY;
1787
182e9f5f 1788 resched = ftrace_preempt_disable();
bf41a158 1789
7a8e76a3
SR
1790 cpu = raw_smp_processor_id();
1791
9e01c1b7 1792 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1793 goto out;
7a8e76a3
SR
1794
1795 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1796
1797 if (atomic_read(&cpu_buffer->record_disabled))
1798 goto out;
1799
1800 event_length = rb_calculate_event_length(length);
1801 event = rb_reserve_next_event(cpu_buffer,
1802 RINGBUF_TYPE_DATA, event_length);
1803 if (!event)
1804 goto out;
1805
1806 body = rb_event_data(event);
1807
1808 memcpy(body, data, length);
1809
1810 rb_commit(cpu_buffer, event);
1811
1812 ret = 0;
1813 out:
182e9f5f 1814 ftrace_preempt_enable(resched);
7a8e76a3
SR
1815
1816 return ret;
1817}
c4f50183 1818EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1819
34a148bf 1820static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1821{
1822 struct buffer_page *reader = cpu_buffer->reader_page;
1823 struct buffer_page *head = cpu_buffer->head_page;
1824 struct buffer_page *commit = cpu_buffer->commit_page;
1825
1826 return reader->read == rb_page_commit(reader) &&
1827 (commit == reader ||
1828 (commit == head &&
1829 head->read == rb_page_commit(commit)));
1830}
1831
7a8e76a3
SR
1832/**
1833 * ring_buffer_record_disable - stop all writes into the buffer
1834 * @buffer: The ring buffer to stop writes to.
1835 *
1836 * This prevents all writes to the buffer. Any attempt to write
1837 * to the buffer after this will fail and return NULL.
1838 *
1839 * The caller should call synchronize_sched() after this.
1840 */
1841void ring_buffer_record_disable(struct ring_buffer *buffer)
1842{
1843 atomic_inc(&buffer->record_disabled);
1844}
c4f50183 1845EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1846
1847/**
1848 * ring_buffer_record_enable - enable writes to the buffer
1849 * @buffer: The ring buffer to enable writes
1850 *
1851 * Note, multiple disables will need the same number of enables
1852 * to truely enable the writing (much like preempt_disable).
1853 */
1854void ring_buffer_record_enable(struct ring_buffer *buffer)
1855{
1856 atomic_dec(&buffer->record_disabled);
1857}
c4f50183 1858EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1859
1860/**
1861 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1862 * @buffer: The ring buffer to stop writes to.
1863 * @cpu: The CPU buffer to stop
1864 *
1865 * This prevents all writes to the buffer. Any attempt to write
1866 * to the buffer after this will fail and return NULL.
1867 *
1868 * The caller should call synchronize_sched() after this.
1869 */
1870void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1871{
1872 struct ring_buffer_per_cpu *cpu_buffer;
1873
9e01c1b7 1874 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1875 return;
7a8e76a3
SR
1876
1877 cpu_buffer = buffer->buffers[cpu];
1878 atomic_inc(&cpu_buffer->record_disabled);
1879}
c4f50183 1880EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1881
1882/**
1883 * ring_buffer_record_enable_cpu - enable writes to the buffer
1884 * @buffer: The ring buffer to enable writes
1885 * @cpu: The CPU to enable.
1886 *
1887 * Note, multiple disables will need the same number of enables
1888 * to truely enable the writing (much like preempt_disable).
1889 */
1890void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1891{
1892 struct ring_buffer_per_cpu *cpu_buffer;
1893
9e01c1b7 1894 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1895 return;
7a8e76a3
SR
1896
1897 cpu_buffer = buffer->buffers[cpu];
1898 atomic_dec(&cpu_buffer->record_disabled);
1899}
c4f50183 1900EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1901
1902/**
1903 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1904 * @buffer: The ring buffer
1905 * @cpu: The per CPU buffer to get the entries from.
1906 */
1907unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1908{
1909 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1910 unsigned long ret;
7a8e76a3 1911
9e01c1b7 1912 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1913 return 0;
7a8e76a3
SR
1914
1915 cpu_buffer = buffer->buffers[cpu];
554f786e 1916 ret = cpu_buffer->entries;
554f786e
SR
1917
1918 return ret;
7a8e76a3 1919}
c4f50183 1920EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1921
1922/**
1923 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1924 * @buffer: The ring buffer
1925 * @cpu: The per CPU buffer to get the number of overruns from
1926 */
1927unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1928{
1929 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1930 unsigned long ret;
7a8e76a3 1931
9e01c1b7 1932 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1933 return 0;
7a8e76a3
SR
1934
1935 cpu_buffer = buffer->buffers[cpu];
554f786e 1936 ret = cpu_buffer->overrun;
554f786e
SR
1937
1938 return ret;
7a8e76a3 1939}
c4f50183 1940EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3
SR
1941
1942/**
1943 * ring_buffer_entries - get the number of entries in a buffer
1944 * @buffer: The ring buffer
1945 *
1946 * Returns the total number of entries in the ring buffer
1947 * (all CPU entries)
1948 */
1949unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1950{
1951 struct ring_buffer_per_cpu *cpu_buffer;
1952 unsigned long entries = 0;
1953 int cpu;
1954
1955 /* if you care about this being correct, lock the buffer */
1956 for_each_buffer_cpu(buffer, cpu) {
1957 cpu_buffer = buffer->buffers[cpu];
1958 entries += cpu_buffer->entries;
1959 }
1960
1961 return entries;
1962}
c4f50183 1963EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1964
1965/**
1966 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1967 * @buffer: The ring buffer
1968 *
1969 * Returns the total number of overruns in the ring buffer
1970 * (all CPU entries)
1971 */
1972unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1973{
1974 struct ring_buffer_per_cpu *cpu_buffer;
1975 unsigned long overruns = 0;
1976 int cpu;
1977
1978 /* if you care about this being correct, lock the buffer */
1979 for_each_buffer_cpu(buffer, cpu) {
1980 cpu_buffer = buffer->buffers[cpu];
1981 overruns += cpu_buffer->overrun;
1982 }
1983
1984 return overruns;
1985}
c4f50183 1986EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 1987
642edba5 1988static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1989{
1990 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1991
d769041f
SR
1992 /* Iterator usage is expected to have record disabled */
1993 if (list_empty(&cpu_buffer->reader_page->list)) {
1994 iter->head_page = cpu_buffer->head_page;
6f807acd 1995 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1996 } else {
1997 iter->head_page = cpu_buffer->reader_page;
6f807acd 1998 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1999 }
2000 if (iter->head)
2001 iter->read_stamp = cpu_buffer->read_stamp;
2002 else
abc9b56d 2003 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2004}
f83c9d0f 2005
642edba5
SR
2006/**
2007 * ring_buffer_iter_reset - reset an iterator
2008 * @iter: The iterator to reset
2009 *
2010 * Resets the iterator, so that it will start from the beginning
2011 * again.
2012 */
2013void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2014{
554f786e 2015 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2016 unsigned long flags;
2017
554f786e
SR
2018 if (!iter)
2019 return;
2020
2021 cpu_buffer = iter->cpu_buffer;
2022
642edba5
SR
2023 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2024 rb_iter_reset(iter);
f83c9d0f 2025 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2026}
c4f50183 2027EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2028
2029/**
2030 * ring_buffer_iter_empty - check if an iterator has no more to read
2031 * @iter: The iterator to check
2032 */
2033int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2034{
2035 struct ring_buffer_per_cpu *cpu_buffer;
2036
2037 cpu_buffer = iter->cpu_buffer;
2038
bf41a158
SR
2039 return iter->head_page == cpu_buffer->commit_page &&
2040 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2041}
c4f50183 2042EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2043
2044static void
2045rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2046 struct ring_buffer_event *event)
2047{
2048 u64 delta;
2049
2050 switch (event->type) {
2051 case RINGBUF_TYPE_PADDING:
2052 return;
2053
2054 case RINGBUF_TYPE_TIME_EXTEND:
2055 delta = event->array[0];
2056 delta <<= TS_SHIFT;
2057 delta += event->time_delta;
2058 cpu_buffer->read_stamp += delta;
2059 return;
2060
2061 case RINGBUF_TYPE_TIME_STAMP:
2062 /* FIXME: not implemented */
2063 return;
2064
2065 case RINGBUF_TYPE_DATA:
2066 cpu_buffer->read_stamp += event->time_delta;
2067 return;
2068
2069 default:
2070 BUG();
2071 }
2072 return;
2073}
2074
2075static void
2076rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2077 struct ring_buffer_event *event)
2078{
2079 u64 delta;
2080
2081 switch (event->type) {
2082 case RINGBUF_TYPE_PADDING:
2083 return;
2084
2085 case RINGBUF_TYPE_TIME_EXTEND:
2086 delta = event->array[0];
2087 delta <<= TS_SHIFT;
2088 delta += event->time_delta;
2089 iter->read_stamp += delta;
2090 return;
2091
2092 case RINGBUF_TYPE_TIME_STAMP:
2093 /* FIXME: not implemented */
2094 return;
2095
2096 case RINGBUF_TYPE_DATA:
2097 iter->read_stamp += event->time_delta;
2098 return;
2099
2100 default:
2101 BUG();
2102 }
2103 return;
2104}
2105
d769041f
SR
2106static struct buffer_page *
2107rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2108{
d769041f
SR
2109 struct buffer_page *reader = NULL;
2110 unsigned long flags;
818e3dd3 2111 int nr_loops = 0;
d769041f 2112
3e03fb7f
SR
2113 local_irq_save(flags);
2114 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2115
2116 again:
818e3dd3
SR
2117 /*
2118 * This should normally only loop twice. But because the
2119 * start of the reader inserts an empty page, it causes
2120 * a case where we will loop three times. There should be no
2121 * reason to loop four times (that I know of).
2122 */
3e89c7bb 2123 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2124 reader = NULL;
2125 goto out;
2126 }
2127
d769041f
SR
2128 reader = cpu_buffer->reader_page;
2129
2130 /* If there's more to read, return this page */
bf41a158 2131 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2132 goto out;
2133
2134 /* Never should we have an index greater than the size */
3e89c7bb
SR
2135 if (RB_WARN_ON(cpu_buffer,
2136 cpu_buffer->reader_page->read > rb_page_size(reader)))
2137 goto out;
d769041f
SR
2138
2139 /* check if we caught up to the tail */
2140 reader = NULL;
bf41a158 2141 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2142 goto out;
7a8e76a3
SR
2143
2144 /*
d769041f
SR
2145 * Splice the empty reader page into the list around the head.
2146 * Reset the reader page to size zero.
7a8e76a3 2147 */
7a8e76a3 2148
d769041f
SR
2149 reader = cpu_buffer->head_page;
2150 cpu_buffer->reader_page->list.next = reader->list.next;
2151 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2152
2153 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2154 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2155
d769041f
SR
2156 /* Make the reader page now replace the head */
2157 reader->list.prev->next = &cpu_buffer->reader_page->list;
2158 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2159
2160 /*
d769041f
SR
2161 * If the tail is on the reader, then we must set the head
2162 * to the inserted page, otherwise we set it one before.
7a8e76a3 2163 */
d769041f 2164 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2165
bf41a158 2166 if (cpu_buffer->commit_page != reader)
d769041f
SR
2167 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2168
2169 /* Finally update the reader page to the new head */
2170 cpu_buffer->reader_page = reader;
2171 rb_reset_reader_page(cpu_buffer);
2172
2173 goto again;
2174
2175 out:
3e03fb7f
SR
2176 __raw_spin_unlock(&cpu_buffer->lock);
2177 local_irq_restore(flags);
d769041f
SR
2178
2179 return reader;
2180}
2181
2182static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2183{
2184 struct ring_buffer_event *event;
2185 struct buffer_page *reader;
2186 unsigned length;
2187
2188 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2189
d769041f 2190 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2191 if (RB_WARN_ON(cpu_buffer, !reader))
2192 return;
7a8e76a3 2193
d769041f
SR
2194 event = rb_reader_event(cpu_buffer);
2195
2d622719 2196 if (event->type == RINGBUF_TYPE_DATA || rb_discarded_event(event))
d769041f
SR
2197 cpu_buffer->entries--;
2198
2199 rb_update_read_stamp(cpu_buffer, event);
2200
2201 length = rb_event_length(event);
6f807acd 2202 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2203}
2204
2205static void rb_advance_iter(struct ring_buffer_iter *iter)
2206{
2207 struct ring_buffer *buffer;
2208 struct ring_buffer_per_cpu *cpu_buffer;
2209 struct ring_buffer_event *event;
2210 unsigned length;
2211
2212 cpu_buffer = iter->cpu_buffer;
2213 buffer = cpu_buffer->buffer;
2214
2215 /*
2216 * Check if we are at the end of the buffer.
2217 */
bf41a158 2218 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
2219 if (RB_WARN_ON(buffer,
2220 iter->head_page == cpu_buffer->commit_page))
2221 return;
d769041f 2222 rb_inc_iter(iter);
7a8e76a3
SR
2223 return;
2224 }
2225
2226 event = rb_iter_head_event(iter);
2227
2228 length = rb_event_length(event);
2229
2230 /*
2231 * This should not be called to advance the header if we are
2232 * at the tail of the buffer.
2233 */
3e89c7bb 2234 if (RB_WARN_ON(cpu_buffer,
f536aafc 2235 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2236 (iter->head + length > rb_commit_index(cpu_buffer))))
2237 return;
7a8e76a3
SR
2238
2239 rb_update_iter_read_stamp(iter, event);
2240
2241 iter->head += length;
2242
2243 /* check for end of page padding */
bf41a158
SR
2244 if ((iter->head >= rb_page_size(iter->head_page)) &&
2245 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2246 rb_advance_iter(iter);
2247}
2248
f83c9d0f
SR
2249static struct ring_buffer_event *
2250rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2251{
2252 struct ring_buffer_per_cpu *cpu_buffer;
2253 struct ring_buffer_event *event;
d769041f 2254 struct buffer_page *reader;
818e3dd3 2255 int nr_loops = 0;
7a8e76a3 2256
7a8e76a3
SR
2257 cpu_buffer = buffer->buffers[cpu];
2258
2259 again:
818e3dd3
SR
2260 /*
2261 * We repeat when a timestamp is encountered. It is possible
2262 * to get multiple timestamps from an interrupt entering just
2263 * as one timestamp is about to be written. The max times
2264 * that this can happen is the number of nested interrupts we
2265 * can have. Nesting 10 deep of interrupts is clearly
2266 * an anomaly.
2267 */
3e89c7bb 2268 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2269 return NULL;
818e3dd3 2270
d769041f
SR
2271 reader = rb_get_reader_page(cpu_buffer);
2272 if (!reader)
7a8e76a3
SR
2273 return NULL;
2274
d769041f 2275 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
2276
2277 switch (event->type) {
2278 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2279 if (rb_null_event(event))
2280 RB_WARN_ON(cpu_buffer, 1);
2281 /*
2282 * Because the writer could be discarding every
2283 * event it creates (which would probably be bad)
2284 * if we were to go back to "again" then we may never
2285 * catch up, and will trigger the warn on, or lock
2286 * the box. Return the padding, and we will release
2287 * the current locks, and try again.
2288 */
d769041f 2289 rb_advance_reader(cpu_buffer);
2d622719 2290 return event;
7a8e76a3
SR
2291
2292 case RINGBUF_TYPE_TIME_EXTEND:
2293 /* Internal data, OK to advance */
d769041f 2294 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2295 goto again;
2296
2297 case RINGBUF_TYPE_TIME_STAMP:
2298 /* FIXME: not implemented */
d769041f 2299 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2300 goto again;
2301
2302 case RINGBUF_TYPE_DATA:
2303 if (ts) {
2304 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2305 ring_buffer_normalize_time_stamp(buffer,
2306 cpu_buffer->cpu, ts);
7a8e76a3
SR
2307 }
2308 return event;
2309
2310 default:
2311 BUG();
2312 }
2313
2314 return NULL;
2315}
c4f50183 2316EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2317
f83c9d0f
SR
2318static struct ring_buffer_event *
2319rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2320{
2321 struct ring_buffer *buffer;
2322 struct ring_buffer_per_cpu *cpu_buffer;
2323 struct ring_buffer_event *event;
818e3dd3 2324 int nr_loops = 0;
7a8e76a3
SR
2325
2326 if (ring_buffer_iter_empty(iter))
2327 return NULL;
2328
2329 cpu_buffer = iter->cpu_buffer;
2330 buffer = cpu_buffer->buffer;
2331
2332 again:
818e3dd3
SR
2333 /*
2334 * We repeat when a timestamp is encountered. It is possible
2335 * to get multiple timestamps from an interrupt entering just
2336 * as one timestamp is about to be written. The max times
2337 * that this can happen is the number of nested interrupts we
2338 * can have. Nesting 10 deep of interrupts is clearly
2339 * an anomaly.
2340 */
3e89c7bb 2341 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2342 return NULL;
818e3dd3 2343
7a8e76a3
SR
2344 if (rb_per_cpu_empty(cpu_buffer))
2345 return NULL;
2346
2347 event = rb_iter_head_event(iter);
2348
2349 switch (event->type) {
2350 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2351 if (rb_null_event(event)) {
2352 rb_inc_iter(iter);
2353 goto again;
2354 }
2355 rb_advance_iter(iter);
2356 return event;
7a8e76a3
SR
2357
2358 case RINGBUF_TYPE_TIME_EXTEND:
2359 /* Internal data, OK to advance */
2360 rb_advance_iter(iter);
2361 goto again;
2362
2363 case RINGBUF_TYPE_TIME_STAMP:
2364 /* FIXME: not implemented */
2365 rb_advance_iter(iter);
2366 goto again;
2367
2368 case RINGBUF_TYPE_DATA:
2369 if (ts) {
2370 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2371 ring_buffer_normalize_time_stamp(buffer,
2372 cpu_buffer->cpu, ts);
7a8e76a3
SR
2373 }
2374 return event;
2375
2376 default:
2377 BUG();
2378 }
2379
2380 return NULL;
2381}
c4f50183 2382EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2383
f83c9d0f
SR
2384/**
2385 * ring_buffer_peek - peek at the next event to be read
2386 * @buffer: The ring buffer to read
2387 * @cpu: The cpu to peak at
2388 * @ts: The timestamp counter of this event.
2389 *
2390 * This will return the event that will be read next, but does
2391 * not consume the data.
2392 */
2393struct ring_buffer_event *
2394ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2395{
2396 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2397 struct ring_buffer_event *event;
f83c9d0f
SR
2398 unsigned long flags;
2399
554f786e 2400 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2401 return NULL;
554f786e 2402
2d622719 2403 again:
f83c9d0f
SR
2404 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2405 event = rb_buffer_peek(buffer, cpu, ts);
2406 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2407
2d622719
TZ
2408 if (event && event->type == RINGBUF_TYPE_PADDING) {
2409 cpu_relax();
2410 goto again;
2411 }
2412
f83c9d0f
SR
2413 return event;
2414}
2415
2416/**
2417 * ring_buffer_iter_peek - peek at the next event to be read
2418 * @iter: The ring buffer iterator
2419 * @ts: The timestamp counter of this event.
2420 *
2421 * This will return the event that will be read next, but does
2422 * not increment the iterator.
2423 */
2424struct ring_buffer_event *
2425ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2426{
2427 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2428 struct ring_buffer_event *event;
2429 unsigned long flags;
2430
2d622719 2431 again:
f83c9d0f
SR
2432 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2433 event = rb_iter_peek(iter, ts);
2434 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2435
2d622719
TZ
2436 if (event && event->type == RINGBUF_TYPE_PADDING) {
2437 cpu_relax();
2438 goto again;
2439 }
2440
f83c9d0f
SR
2441 return event;
2442}
2443
7a8e76a3
SR
2444/**
2445 * ring_buffer_consume - return an event and consume it
2446 * @buffer: The ring buffer to get the next event from
2447 *
2448 * Returns the next event in the ring buffer, and that event is consumed.
2449 * Meaning, that sequential reads will keep returning a different event,
2450 * and eventually empty the ring buffer if the producer is slower.
2451 */
2452struct ring_buffer_event *
2453ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2454{
554f786e
SR
2455 struct ring_buffer_per_cpu *cpu_buffer;
2456 struct ring_buffer_event *event = NULL;
f83c9d0f 2457 unsigned long flags;
7a8e76a3 2458
2d622719 2459 again:
554f786e
SR
2460 /* might be called in atomic */
2461 preempt_disable();
2462
9e01c1b7 2463 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2464 goto out;
7a8e76a3 2465
554f786e 2466 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2467 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2468
2469 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2470 if (!event)
554f786e 2471 goto out_unlock;
7a8e76a3 2472
d769041f 2473 rb_advance_reader(cpu_buffer);
7a8e76a3 2474
554f786e 2475 out_unlock:
f83c9d0f
SR
2476 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2477
554f786e
SR
2478 out:
2479 preempt_enable();
2480
2d622719
TZ
2481 if (event && event->type == RINGBUF_TYPE_PADDING) {
2482 cpu_relax();
2483 goto again;
2484 }
2485
7a8e76a3
SR
2486 return event;
2487}
c4f50183 2488EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2489
2490/**
2491 * ring_buffer_read_start - start a non consuming read of the buffer
2492 * @buffer: The ring buffer to read from
2493 * @cpu: The cpu buffer to iterate over
2494 *
2495 * This starts up an iteration through the buffer. It also disables
2496 * the recording to the buffer until the reading is finished.
2497 * This prevents the reading from being corrupted. This is not
2498 * a consuming read, so a producer is not expected.
2499 *
2500 * Must be paired with ring_buffer_finish.
2501 */
2502struct ring_buffer_iter *
2503ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2504{
2505 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2506 struct ring_buffer_iter *iter;
d769041f 2507 unsigned long flags;
7a8e76a3 2508
9e01c1b7 2509 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2510 return NULL;
7a8e76a3
SR
2511
2512 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2513 if (!iter)
8aabee57 2514 return NULL;
7a8e76a3
SR
2515
2516 cpu_buffer = buffer->buffers[cpu];
2517
2518 iter->cpu_buffer = cpu_buffer;
2519
2520 atomic_inc(&cpu_buffer->record_disabled);
2521 synchronize_sched();
2522
f83c9d0f 2523 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2524 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2525 rb_iter_reset(iter);
3e03fb7f 2526 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2527 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2528
2529 return iter;
2530}
c4f50183 2531EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2532
2533/**
2534 * ring_buffer_finish - finish reading the iterator of the buffer
2535 * @iter: The iterator retrieved by ring_buffer_start
2536 *
2537 * This re-enables the recording to the buffer, and frees the
2538 * iterator.
2539 */
2540void
2541ring_buffer_read_finish(struct ring_buffer_iter *iter)
2542{
2543 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2544
2545 atomic_dec(&cpu_buffer->record_disabled);
2546 kfree(iter);
2547}
c4f50183 2548EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2549
2550/**
2551 * ring_buffer_read - read the next item in the ring buffer by the iterator
2552 * @iter: The ring buffer iterator
2553 * @ts: The time stamp of the event read.
2554 *
2555 * This reads the next event in the ring buffer and increments the iterator.
2556 */
2557struct ring_buffer_event *
2558ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2559{
2560 struct ring_buffer_event *event;
f83c9d0f
SR
2561 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2562 unsigned long flags;
7a8e76a3 2563
2d622719 2564 again:
f83c9d0f
SR
2565 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2566 event = rb_iter_peek(iter, ts);
7a8e76a3 2567 if (!event)
f83c9d0f 2568 goto out;
7a8e76a3
SR
2569
2570 rb_advance_iter(iter);
f83c9d0f
SR
2571 out:
2572 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2573
2d622719
TZ
2574 if (event && event->type == RINGBUF_TYPE_PADDING) {
2575 cpu_relax();
2576 goto again;
2577 }
2578
7a8e76a3
SR
2579 return event;
2580}
c4f50183 2581EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2582
2583/**
2584 * ring_buffer_size - return the size of the ring buffer (in bytes)
2585 * @buffer: The ring buffer.
2586 */
2587unsigned long ring_buffer_size(struct ring_buffer *buffer)
2588{
2589 return BUF_PAGE_SIZE * buffer->pages;
2590}
c4f50183 2591EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2592
2593static void
2594rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2595{
2596 cpu_buffer->head_page
2597 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2598 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2599 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2600
6f807acd 2601 cpu_buffer->head_page->read = 0;
bf41a158
SR
2602
2603 cpu_buffer->tail_page = cpu_buffer->head_page;
2604 cpu_buffer->commit_page = cpu_buffer->head_page;
2605
2606 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2607 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2608 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2609 cpu_buffer->reader_page->read = 0;
7a8e76a3 2610
7a8e76a3
SR
2611 cpu_buffer->overrun = 0;
2612 cpu_buffer->entries = 0;
69507c06
SR
2613
2614 cpu_buffer->write_stamp = 0;
2615 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2616}
2617
2618/**
2619 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2620 * @buffer: The ring buffer to reset a per cpu buffer of
2621 * @cpu: The CPU buffer to be reset
2622 */
2623void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2624{
2625 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2626 unsigned long flags;
2627
9e01c1b7 2628 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2629 return;
7a8e76a3 2630
f83c9d0f
SR
2631 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2632
3e03fb7f 2633 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2634
2635 rb_reset_cpu(cpu_buffer);
2636
3e03fb7f 2637 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2638
2639 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2640}
c4f50183 2641EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2642
2643/**
2644 * ring_buffer_reset - reset a ring buffer
2645 * @buffer: The ring buffer to reset all cpu buffers
2646 */
2647void ring_buffer_reset(struct ring_buffer *buffer)
2648{
7a8e76a3
SR
2649 int cpu;
2650
7a8e76a3 2651 for_each_buffer_cpu(buffer, cpu)
d769041f 2652 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2653}
c4f50183 2654EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2655
2656/**
2657 * rind_buffer_empty - is the ring buffer empty?
2658 * @buffer: The ring buffer to test
2659 */
2660int ring_buffer_empty(struct ring_buffer *buffer)
2661{
2662 struct ring_buffer_per_cpu *cpu_buffer;
2663 int cpu;
2664
2665 /* yes this is racy, but if you don't like the race, lock the buffer */
2666 for_each_buffer_cpu(buffer, cpu) {
2667 cpu_buffer = buffer->buffers[cpu];
2668 if (!rb_per_cpu_empty(cpu_buffer))
2669 return 0;
2670 }
554f786e 2671
7a8e76a3
SR
2672 return 1;
2673}
c4f50183 2674EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2675
2676/**
2677 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2678 * @buffer: The ring buffer
2679 * @cpu: The CPU buffer to test
2680 */
2681int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2682{
2683 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2684 int ret;
7a8e76a3 2685
9e01c1b7 2686 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2687 return 1;
7a8e76a3
SR
2688
2689 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2690 ret = rb_per_cpu_empty(cpu_buffer);
2691
554f786e
SR
2692
2693 return ret;
7a8e76a3 2694}
c4f50183 2695EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2696
2697/**
2698 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2699 * @buffer_a: One buffer to swap with
2700 * @buffer_b: The other buffer to swap with
2701 *
2702 * This function is useful for tracers that want to take a "snapshot"
2703 * of a CPU buffer and has another back up buffer lying around.
2704 * it is expected that the tracer handles the cpu buffer not being
2705 * used at the moment.
2706 */
2707int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2708 struct ring_buffer *buffer_b, int cpu)
2709{
2710 struct ring_buffer_per_cpu *cpu_buffer_a;
2711 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2712 int ret = -EINVAL;
2713
9e01c1b7
RR
2714 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2715 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2716 goto out;
7a8e76a3
SR
2717
2718 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2719 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2720 goto out;
2721
2722 ret = -EAGAIN;
7a8e76a3 2723
97b17efe 2724 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2725 goto out;
97b17efe
SR
2726
2727 if (atomic_read(&buffer_a->record_disabled))
554f786e 2728 goto out;
97b17efe
SR
2729
2730 if (atomic_read(&buffer_b->record_disabled))
554f786e 2731 goto out;
97b17efe 2732
7a8e76a3
SR
2733 cpu_buffer_a = buffer_a->buffers[cpu];
2734 cpu_buffer_b = buffer_b->buffers[cpu];
2735
97b17efe 2736 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2737 goto out;
97b17efe
SR
2738
2739 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2740 goto out;
97b17efe 2741
7a8e76a3
SR
2742 /*
2743 * We can't do a synchronize_sched here because this
2744 * function can be called in atomic context.
2745 * Normally this will be called from the same CPU as cpu.
2746 * If not it's up to the caller to protect this.
2747 */
2748 atomic_inc(&cpu_buffer_a->record_disabled);
2749 atomic_inc(&cpu_buffer_b->record_disabled);
2750
2751 buffer_a->buffers[cpu] = cpu_buffer_b;
2752 buffer_b->buffers[cpu] = cpu_buffer_a;
2753
2754 cpu_buffer_b->buffer = buffer_a;
2755 cpu_buffer_a->buffer = buffer_b;
2756
2757 atomic_dec(&cpu_buffer_a->record_disabled);
2758 atomic_dec(&cpu_buffer_b->record_disabled);
2759
554f786e
SR
2760 ret = 0;
2761out:
554f786e 2762 return ret;
7a8e76a3 2763}
c4f50183 2764EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2765
8789a9e7 2766static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
667d2412
LJ
2767 struct buffer_data_page *bpage,
2768 unsigned int offset)
8789a9e7
SR
2769{
2770 struct ring_buffer_event *event;
2771 unsigned long head;
2772
2773 __raw_spin_lock(&cpu_buffer->lock);
667d2412 2774 for (head = offset; head < local_read(&bpage->commit);
8789a9e7
SR
2775 head += rb_event_length(event)) {
2776
044fa782 2777 event = __rb_data_page_index(bpage, head);
8789a9e7
SR
2778 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2779 return;
2780 /* Only count data entries */
2781 if (event->type != RINGBUF_TYPE_DATA)
2782 continue;
2783 cpu_buffer->entries--;
2784 }
2785 __raw_spin_unlock(&cpu_buffer->lock);
2786}
2787
2788/**
2789 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2790 * @buffer: the buffer to allocate for.
2791 *
2792 * This function is used in conjunction with ring_buffer_read_page.
2793 * When reading a full page from the ring buffer, these functions
2794 * can be used to speed up the process. The calling function should
2795 * allocate a few pages first with this function. Then when it
2796 * needs to get pages from the ring buffer, it passes the result
2797 * of this function into ring_buffer_read_page, which will swap
2798 * the page that was allocated, with the read page of the buffer.
2799 *
2800 * Returns:
2801 * The page allocated, or NULL on error.
2802 */
2803void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2804{
044fa782 2805 struct buffer_data_page *bpage;
ef7a4a16 2806 unsigned long addr;
8789a9e7
SR
2807
2808 addr = __get_free_page(GFP_KERNEL);
2809 if (!addr)
2810 return NULL;
2811
044fa782 2812 bpage = (void *)addr;
8789a9e7 2813
ef7a4a16
SR
2814 rb_init_page(bpage);
2815
044fa782 2816 return bpage;
8789a9e7
SR
2817}
2818
2819/**
2820 * ring_buffer_free_read_page - free an allocated read page
2821 * @buffer: the buffer the page was allocate for
2822 * @data: the page to free
2823 *
2824 * Free a page allocated from ring_buffer_alloc_read_page.
2825 */
2826void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2827{
2828 free_page((unsigned long)data);
2829}
2830
2831/**
2832 * ring_buffer_read_page - extract a page from the ring buffer
2833 * @buffer: buffer to extract from
2834 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2835 * @len: amount to extract
8789a9e7
SR
2836 * @cpu: the cpu of the buffer to extract
2837 * @full: should the extraction only happen when the page is full.
2838 *
2839 * This function will pull out a page from the ring buffer and consume it.
2840 * @data_page must be the address of the variable that was returned
2841 * from ring_buffer_alloc_read_page. This is because the page might be used
2842 * to swap with a page in the ring buffer.
2843 *
2844 * for example:
b85fa01e 2845 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2846 * if (!rpage)
2847 * return error;
ef7a4a16 2848 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2849 * if (ret >= 0)
2850 * process_page(rpage, ret);
8789a9e7
SR
2851 *
2852 * When @full is set, the function will not return true unless
2853 * the writer is off the reader page.
2854 *
2855 * Note: it is up to the calling functions to handle sleeps and wakeups.
2856 * The ring buffer can be used anywhere in the kernel and can not
2857 * blindly call wake_up. The layer that uses the ring buffer must be
2858 * responsible for that.
2859 *
2860 * Returns:
667d2412
LJ
2861 * >=0 if data has been transferred, returns the offset of consumed data.
2862 * <0 if no data has been transferred.
8789a9e7
SR
2863 */
2864int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2865 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2866{
2867 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2868 struct ring_buffer_event *event;
044fa782 2869 struct buffer_data_page *bpage;
ef7a4a16 2870 struct buffer_page *reader;
8789a9e7 2871 unsigned long flags;
ef7a4a16 2872 unsigned int commit;
667d2412 2873 unsigned int read;
4f3640f8 2874 u64 save_timestamp;
667d2412 2875 int ret = -1;
8789a9e7 2876
554f786e
SR
2877 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2878 goto out;
2879
474d32b6
SR
2880 /*
2881 * If len is not big enough to hold the page header, then
2882 * we can not copy anything.
2883 */
2884 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2885 goto out;
474d32b6
SR
2886
2887 len -= BUF_PAGE_HDR_SIZE;
2888
8789a9e7 2889 if (!data_page)
554f786e 2890 goto out;
8789a9e7 2891
044fa782
SR
2892 bpage = *data_page;
2893 if (!bpage)
554f786e 2894 goto out;
8789a9e7
SR
2895
2896 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2897
ef7a4a16
SR
2898 reader = rb_get_reader_page(cpu_buffer);
2899 if (!reader)
554f786e 2900 goto out_unlock;
8789a9e7 2901
ef7a4a16
SR
2902 event = rb_reader_event(cpu_buffer);
2903
2904 read = reader->read;
2905 commit = rb_page_commit(reader);
667d2412 2906
8789a9e7 2907 /*
474d32b6
SR
2908 * If this page has been partially read or
2909 * if len is not big enough to read the rest of the page or
2910 * a writer is still on the page, then
2911 * we must copy the data from the page to the buffer.
2912 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2913 */
474d32b6 2914 if (read || (len < (commit - read)) ||
ef7a4a16 2915 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2916 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2917 unsigned int rpos = read;
2918 unsigned int pos = 0;
ef7a4a16 2919 unsigned int size;
8789a9e7
SR
2920
2921 if (full)
554f786e 2922 goto out_unlock;
8789a9e7 2923
ef7a4a16
SR
2924 if (len > (commit - read))
2925 len = (commit - read);
2926
2927 size = rb_event_length(event);
2928
2929 if (len < size)
554f786e 2930 goto out_unlock;
ef7a4a16 2931
4f3640f8
SR
2932 /* save the current timestamp, since the user will need it */
2933 save_timestamp = cpu_buffer->read_stamp;
2934
ef7a4a16
SR
2935 /* Need to copy one event at a time */
2936 do {
474d32b6 2937 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2938
2939 len -= size;
2940
2941 rb_advance_reader(cpu_buffer);
474d32b6
SR
2942 rpos = reader->read;
2943 pos += size;
ef7a4a16
SR
2944
2945 event = rb_reader_event(cpu_buffer);
2946 size = rb_event_length(event);
2947 } while (len > size);
667d2412
LJ
2948
2949 /* update bpage */
ef7a4a16 2950 local_set(&bpage->commit, pos);
4f3640f8 2951 bpage->time_stamp = save_timestamp;
ef7a4a16 2952
474d32b6
SR
2953 /* we copied everything to the beginning */
2954 read = 0;
8789a9e7
SR
2955 } else {
2956 /* swap the pages */
044fa782 2957 rb_init_page(bpage);
ef7a4a16
SR
2958 bpage = reader->page;
2959 reader->page = *data_page;
2960 local_set(&reader->write, 0);
2961 reader->read = 0;
044fa782 2962 *data_page = bpage;
ef7a4a16
SR
2963
2964 /* update the entry counter */
2965 rb_remove_entries(cpu_buffer, bpage, read);
8789a9e7 2966 }
667d2412 2967 ret = read;
8789a9e7 2968
554f786e 2969 out_unlock:
8789a9e7
SR
2970 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2971
554f786e 2972 out:
8789a9e7
SR
2973 return ret;
2974}
2975
a3583244
SR
2976static ssize_t
2977rb_simple_read(struct file *filp, char __user *ubuf,
2978 size_t cnt, loff_t *ppos)
2979{
5e39841c 2980 unsigned long *p = filp->private_data;
a3583244
SR
2981 char buf[64];
2982 int r;
2983
033601a3
SR
2984 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2985 r = sprintf(buf, "permanently disabled\n");
2986 else
2987 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2988
2989 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2990}
2991
2992static ssize_t
2993rb_simple_write(struct file *filp, const char __user *ubuf,
2994 size_t cnt, loff_t *ppos)
2995{
5e39841c 2996 unsigned long *p = filp->private_data;
a3583244 2997 char buf[64];
5e39841c 2998 unsigned long val;
a3583244
SR
2999 int ret;
3000
3001 if (cnt >= sizeof(buf))
3002 return -EINVAL;
3003
3004 if (copy_from_user(&buf, ubuf, cnt))
3005 return -EFAULT;
3006
3007 buf[cnt] = 0;
3008
3009 ret = strict_strtoul(buf, 10, &val);
3010 if (ret < 0)
3011 return ret;
3012
033601a3
SR
3013 if (val)
3014 set_bit(RB_BUFFERS_ON_BIT, p);
3015 else
3016 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3017
3018 (*ppos)++;
3019
3020 return cnt;
3021}
3022
5e2336a0 3023static const struct file_operations rb_simple_fops = {
a3583244
SR
3024 .open = tracing_open_generic,
3025 .read = rb_simple_read,
3026 .write = rb_simple_write,
3027};
3028
3029
3030static __init int rb_init_debugfs(void)
3031{
3032 struct dentry *d_tracer;
a3583244
SR
3033
3034 d_tracer = tracing_init_dentry();
3035
5452af66
FW
3036 trace_create_file("tracing_on", 0644, d_tracer,
3037 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3038
3039 return 0;
3040}
3041
3042fs_initcall(rb_init_debugfs);
554f786e 3043
59222efe 3044#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3045static int rb_cpu_notify(struct notifier_block *self,
3046 unsigned long action, void *hcpu)
554f786e
SR
3047{
3048 struct ring_buffer *buffer =
3049 container_of(self, struct ring_buffer, cpu_notify);
3050 long cpu = (long)hcpu;
3051
3052 switch (action) {
3053 case CPU_UP_PREPARE:
3054 case CPU_UP_PREPARE_FROZEN:
3055 if (cpu_isset(cpu, *buffer->cpumask))
3056 return NOTIFY_OK;
3057
3058 buffer->buffers[cpu] =
3059 rb_allocate_cpu_buffer(buffer, cpu);
3060 if (!buffer->buffers[cpu]) {
3061 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3062 cpu);
3063 return NOTIFY_OK;
3064 }
3065 smp_wmb();
3066 cpu_set(cpu, *buffer->cpumask);
3067 break;
3068 case CPU_DOWN_PREPARE:
3069 case CPU_DOWN_PREPARE_FROZEN:
3070 /*
3071 * Do nothing.
3072 * If we were to free the buffer, then the user would
3073 * lose any trace that was in the buffer.
3074 */
3075 break;
3076 default:
3077 break;
3078 }
3079 return NOTIFY_OK;
3080}
3081#endif