]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/trace/ring_buffer.c
ring-buffer: fix dangling commit race
[net-next-2.6.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
7#include <linux/spinlock.h>
8#include <linux/debugfs.h>
9#include <linux/uaccess.h>
10#include <linux/module.h>
11#include <linux/percpu.h>
12#include <linux/mutex.h>
13#include <linux/sched.h> /* used for sched_clock() (for now) */
14#include <linux/init.h>
15#include <linux/hash.h>
16#include <linux/list.h>
17#include <linux/fs.h>
18
182e9f5f
SR
19#include "trace.h"
20
033601a3
SR
21/*
22 * A fast way to enable or disable all ring buffers is to
23 * call tracing_on or tracing_off. Turning off the ring buffers
24 * prevents all ring buffers from being recorded to.
25 * Turning this switch on, makes it OK to write to the
26 * ring buffer, if the ring buffer is enabled itself.
27 *
28 * There's three layers that must be on in order to write
29 * to the ring buffer.
30 *
31 * 1) This global flag must be set.
32 * 2) The ring buffer must be enabled for recording.
33 * 3) The per cpu buffer must be enabled for recording.
34 *
35 * In case of an anomaly, this global flag has a bit set that
36 * will permantly disable all ring buffers.
37 */
38
39/*
40 * Global flag to disable all recording to ring buffers
41 * This has two bits: ON, DISABLED
42 *
43 * ON DISABLED
44 * ---- ----------
45 * 0 0 : ring buffers are off
46 * 1 0 : ring buffers are on
47 * X 1 : ring buffers are permanently disabled
48 */
49
50enum {
51 RB_BUFFERS_ON_BIT = 0,
52 RB_BUFFERS_DISABLED_BIT = 1,
53};
54
55enum {
56 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
57 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
58};
59
60static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244
SR
61
62/**
63 * tracing_on - enable all tracing buffers
64 *
65 * This function enables all tracing buffers that may have been
66 * disabled with tracing_off.
67 */
68void tracing_on(void)
69{
033601a3 70 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244
SR
71}
72
73/**
74 * tracing_off - turn off all tracing buffers
75 *
76 * This function stops all tracing buffers from recording data.
77 * It does not disable any overhead the tracers themselves may
78 * be causing. This function simply causes all recording to
79 * the ring buffers to fail.
80 */
81void tracing_off(void)
82{
033601a3
SR
83 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
84}
85
86/**
87 * tracing_off_permanent - permanently disable ring buffers
88 *
89 * This function, once called, will disable all ring buffers
90 * permanenty.
91 */
92void tracing_off_permanent(void)
93{
94 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
95}
96
d06bbd66
IM
97#include "trace.h"
98
7a8e76a3
SR
99/* Up this if you want to test the TIME_EXTENTS and normalization */
100#define DEBUG_SHIFT 0
101
102/* FIXME!!! */
103u64 ring_buffer_time_stamp(int cpu)
104{
47e74f2b
SR
105 u64 time;
106
107 preempt_disable_notrace();
7a8e76a3 108 /* shift to debug/test normalization and TIME_EXTENTS */
47e74f2b 109 time = sched_clock() << DEBUG_SHIFT;
2c2d7329 110 preempt_enable_no_resched_notrace();
47e74f2b
SR
111
112 return time;
7a8e76a3
SR
113}
114
115void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
116{
117 /* Just stupid testing the normalize function and deltas */
118 *ts >>= DEBUG_SHIFT;
119}
120
121#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
122#define RB_ALIGNMENT_SHIFT 2
123#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
124#define RB_MAX_SMALL_DATA 28
125
126enum {
127 RB_LEN_TIME_EXTEND = 8,
128 RB_LEN_TIME_STAMP = 16,
129};
130
131/* inline for ring buffer fast paths */
132static inline unsigned
133rb_event_length(struct ring_buffer_event *event)
134{
135 unsigned length;
136
137 switch (event->type) {
138 case RINGBUF_TYPE_PADDING:
139 /* undefined */
140 return -1;
141
142 case RINGBUF_TYPE_TIME_EXTEND:
143 return RB_LEN_TIME_EXTEND;
144
145 case RINGBUF_TYPE_TIME_STAMP:
146 return RB_LEN_TIME_STAMP;
147
148 case RINGBUF_TYPE_DATA:
149 if (event->len)
150 length = event->len << RB_ALIGNMENT_SHIFT;
151 else
152 length = event->array[0];
153 return length + RB_EVNT_HDR_SIZE;
154 default:
155 BUG();
156 }
157 /* not hit */
158 return 0;
159}
160
161/**
162 * ring_buffer_event_length - return the length of the event
163 * @event: the event to get the length of
164 */
165unsigned ring_buffer_event_length(struct ring_buffer_event *event)
166{
167 return rb_event_length(event);
168}
169
170/* inline for ring buffer fast paths */
171static inline void *
172rb_event_data(struct ring_buffer_event *event)
173{
174 BUG_ON(event->type != RINGBUF_TYPE_DATA);
175 /* If length is in len field, then array[0] has the data */
176 if (event->len)
177 return (void *)&event->array[0];
178 /* Otherwise length is in array[0] and array[1] has the data */
179 return (void *)&event->array[1];
180}
181
182/**
183 * ring_buffer_event_data - return the data of the event
184 * @event: the event to get the data from
185 */
186void *ring_buffer_event_data(struct ring_buffer_event *event)
187{
188 return rb_event_data(event);
189}
190
191#define for_each_buffer_cpu(buffer, cpu) \
192 for_each_cpu_mask(cpu, buffer->cpumask)
193
194#define TS_SHIFT 27
195#define TS_MASK ((1ULL << TS_SHIFT) - 1)
196#define TS_DELTA_TEST (~TS_MASK)
197
abc9b56d 198struct buffer_data_page {
e4c2ce82 199 u64 time_stamp; /* page time stamp */
bf41a158 200 local_t commit; /* write commited index */
abc9b56d
SR
201 unsigned char data[]; /* data of buffer page */
202};
203
204struct buffer_page {
205 local_t write; /* index for next write */
6f807acd 206 unsigned read; /* index for next read */
e4c2ce82 207 struct list_head list; /* list of free pages */
abc9b56d 208 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
209};
210
044fa782 211static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 212{
044fa782 213 local_set(&bpage->commit, 0);
abc9b56d
SR
214}
215
ed56829c
SR
216/*
217 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
218 * this issue out.
219 */
220static inline void free_buffer_page(struct buffer_page *bpage)
221{
e4c2ce82 222 if (bpage->page)
6ae2a076 223 free_page((unsigned long)bpage->page);
e4c2ce82 224 kfree(bpage);
ed56829c
SR
225}
226
7a8e76a3
SR
227/*
228 * We need to fit the time_stamp delta into 27 bits.
229 */
230static inline int test_time_stamp(u64 delta)
231{
232 if (delta & TS_DELTA_TEST)
233 return 1;
234 return 0;
235}
236
abc9b56d 237#define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
7a8e76a3
SR
238
239/*
240 * head_page == tail_page && head == tail then buffer is empty.
241 */
242struct ring_buffer_per_cpu {
243 int cpu;
244 struct ring_buffer *buffer;
f83c9d0f 245 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 246 raw_spinlock_t lock;
7a8e76a3
SR
247 struct lock_class_key lock_key;
248 struct list_head pages;
6f807acd
SR
249 struct buffer_page *head_page; /* read from head */
250 struct buffer_page *tail_page; /* write to tail */
bf41a158 251 struct buffer_page *commit_page; /* commited pages */
d769041f 252 struct buffer_page *reader_page;
7a8e76a3
SR
253 unsigned long overrun;
254 unsigned long entries;
255 u64 write_stamp;
256 u64 read_stamp;
257 atomic_t record_disabled;
258};
259
260struct ring_buffer {
7a8e76a3
SR
261 unsigned pages;
262 unsigned flags;
263 int cpus;
264 cpumask_t cpumask;
265 atomic_t record_disabled;
266
267 struct mutex mutex;
268
269 struct ring_buffer_per_cpu **buffers;
270};
271
272struct ring_buffer_iter {
273 struct ring_buffer_per_cpu *cpu_buffer;
274 unsigned long head;
275 struct buffer_page *head_page;
276 u64 read_stamp;
277};
278
f536aafc 279/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 280#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
281 ({ \
282 int _____ret = unlikely(cond); \
283 if (_____ret) { \
bf41a158
SR
284 atomic_inc(&buffer->record_disabled); \
285 WARN_ON(1); \
286 } \
3e89c7bb
SR
287 _____ret; \
288 })
f536aafc 289
7a8e76a3
SR
290/**
291 * check_pages - integrity check of buffer pages
292 * @cpu_buffer: CPU buffer with pages to test
293 *
294 * As a safty measure we check to make sure the data pages have not
295 * been corrupted.
296 */
297static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
298{
299 struct list_head *head = &cpu_buffer->pages;
044fa782 300 struct buffer_page *bpage, *tmp;
7a8e76a3 301
3e89c7bb
SR
302 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
303 return -1;
304 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
305 return -1;
7a8e76a3 306
044fa782 307 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 308 if (RB_WARN_ON(cpu_buffer,
044fa782 309 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
310 return -1;
311 if (RB_WARN_ON(cpu_buffer,
044fa782 312 bpage->list.prev->next != &bpage->list))
3e89c7bb 313 return -1;
7a8e76a3
SR
314 }
315
316 return 0;
317}
318
7a8e76a3
SR
319static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
320 unsigned nr_pages)
321{
322 struct list_head *head = &cpu_buffer->pages;
044fa782 323 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
324 unsigned long addr;
325 LIST_HEAD(pages);
326 unsigned i;
327
328 for (i = 0; i < nr_pages; i++) {
044fa782 329 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 330 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 331 if (!bpage)
e4c2ce82 332 goto free_pages;
044fa782 333 list_add(&bpage->list, &pages);
e4c2ce82 334
7a8e76a3
SR
335 addr = __get_free_page(GFP_KERNEL);
336 if (!addr)
337 goto free_pages;
044fa782
SR
338 bpage->page = (void *)addr;
339 rb_init_page(bpage->page);
7a8e76a3
SR
340 }
341
342 list_splice(&pages, head);
343
344 rb_check_pages(cpu_buffer);
345
346 return 0;
347
348 free_pages:
044fa782
SR
349 list_for_each_entry_safe(bpage, tmp, &pages, list) {
350 list_del_init(&bpage->list);
351 free_buffer_page(bpage);
7a8e76a3
SR
352 }
353 return -ENOMEM;
354}
355
356static struct ring_buffer_per_cpu *
357rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
358{
359 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 360 struct buffer_page *bpage;
d769041f 361 unsigned long addr;
7a8e76a3
SR
362 int ret;
363
364 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
365 GFP_KERNEL, cpu_to_node(cpu));
366 if (!cpu_buffer)
367 return NULL;
368
369 cpu_buffer->cpu = cpu;
370 cpu_buffer->buffer = buffer;
f83c9d0f 371 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 372 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
373 INIT_LIST_HEAD(&cpu_buffer->pages);
374
044fa782 375 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 376 GFP_KERNEL, cpu_to_node(cpu));
044fa782 377 if (!bpage)
e4c2ce82
SR
378 goto fail_free_buffer;
379
044fa782 380 cpu_buffer->reader_page = bpage;
d769041f
SR
381 addr = __get_free_page(GFP_KERNEL);
382 if (!addr)
e4c2ce82 383 goto fail_free_reader;
044fa782
SR
384 bpage->page = (void *)addr;
385 rb_init_page(bpage->page);
e4c2ce82 386
d769041f 387 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 388
7a8e76a3
SR
389 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
390 if (ret < 0)
d769041f 391 goto fail_free_reader;
7a8e76a3
SR
392
393 cpu_buffer->head_page
394 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 395 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
396
397 return cpu_buffer;
398
d769041f
SR
399 fail_free_reader:
400 free_buffer_page(cpu_buffer->reader_page);
401
7a8e76a3
SR
402 fail_free_buffer:
403 kfree(cpu_buffer);
404 return NULL;
405}
406
407static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
408{
409 struct list_head *head = &cpu_buffer->pages;
044fa782 410 struct buffer_page *bpage, *tmp;
7a8e76a3 411
d769041f
SR
412 list_del_init(&cpu_buffer->reader_page->list);
413 free_buffer_page(cpu_buffer->reader_page);
414
044fa782
SR
415 list_for_each_entry_safe(bpage, tmp, head, list) {
416 list_del_init(&bpage->list);
417 free_buffer_page(bpage);
7a8e76a3
SR
418 }
419 kfree(cpu_buffer);
420}
421
a7b13743
SR
422/*
423 * Causes compile errors if the struct buffer_page gets bigger
424 * than the struct page.
425 */
426extern int ring_buffer_page_too_big(void);
427
7a8e76a3
SR
428/**
429 * ring_buffer_alloc - allocate a new ring_buffer
430 * @size: the size in bytes that is needed.
431 * @flags: attributes to set for the ring buffer.
432 *
433 * Currently the only flag that is available is the RB_FL_OVERWRITE
434 * flag. This flag means that the buffer will overwrite old data
435 * when the buffer wraps. If this flag is not set, the buffer will
436 * drop data when the tail hits the head.
437 */
438struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
439{
440 struct ring_buffer *buffer;
441 int bsize;
442 int cpu;
443
a7b13743
SR
444 /* Paranoid! Optimizes out when all is well */
445 if (sizeof(struct buffer_page) > sizeof(struct page))
446 ring_buffer_page_too_big();
447
448
7a8e76a3
SR
449 /* keep it in its own cache line */
450 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
451 GFP_KERNEL);
452 if (!buffer)
453 return NULL;
454
455 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
456 buffer->flags = flags;
457
458 /* need at least two pages */
459 if (buffer->pages == 1)
460 buffer->pages++;
461
462 buffer->cpumask = cpu_possible_map;
463 buffer->cpus = nr_cpu_ids;
464
465 bsize = sizeof(void *) * nr_cpu_ids;
466 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
467 GFP_KERNEL);
468 if (!buffer->buffers)
469 goto fail_free_buffer;
470
471 for_each_buffer_cpu(buffer, cpu) {
472 buffer->buffers[cpu] =
473 rb_allocate_cpu_buffer(buffer, cpu);
474 if (!buffer->buffers[cpu])
475 goto fail_free_buffers;
476 }
477
478 mutex_init(&buffer->mutex);
479
480 return buffer;
481
482 fail_free_buffers:
483 for_each_buffer_cpu(buffer, cpu) {
484 if (buffer->buffers[cpu])
485 rb_free_cpu_buffer(buffer->buffers[cpu]);
486 }
487 kfree(buffer->buffers);
488
489 fail_free_buffer:
490 kfree(buffer);
491 return NULL;
492}
493
494/**
495 * ring_buffer_free - free a ring buffer.
496 * @buffer: the buffer to free.
497 */
498void
499ring_buffer_free(struct ring_buffer *buffer)
500{
501 int cpu;
502
503 for_each_buffer_cpu(buffer, cpu)
504 rb_free_cpu_buffer(buffer->buffers[cpu]);
505
506 kfree(buffer);
507}
508
509static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
510
511static void
512rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
513{
044fa782 514 struct buffer_page *bpage;
7a8e76a3
SR
515 struct list_head *p;
516 unsigned i;
517
518 atomic_inc(&cpu_buffer->record_disabled);
519 synchronize_sched();
520
521 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
522 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
523 return;
7a8e76a3 524 p = cpu_buffer->pages.next;
044fa782
SR
525 bpage = list_entry(p, struct buffer_page, list);
526 list_del_init(&bpage->list);
527 free_buffer_page(bpage);
7a8e76a3 528 }
3e89c7bb
SR
529 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
530 return;
7a8e76a3
SR
531
532 rb_reset_cpu(cpu_buffer);
533
534 rb_check_pages(cpu_buffer);
535
536 atomic_dec(&cpu_buffer->record_disabled);
537
538}
539
540static void
541rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
542 struct list_head *pages, unsigned nr_pages)
543{
044fa782 544 struct buffer_page *bpage;
7a8e76a3
SR
545 struct list_head *p;
546 unsigned i;
547
548 atomic_inc(&cpu_buffer->record_disabled);
549 synchronize_sched();
550
551 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
552 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
553 return;
7a8e76a3 554 p = pages->next;
044fa782
SR
555 bpage = list_entry(p, struct buffer_page, list);
556 list_del_init(&bpage->list);
557 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
558 }
559 rb_reset_cpu(cpu_buffer);
560
561 rb_check_pages(cpu_buffer);
562
563 atomic_dec(&cpu_buffer->record_disabled);
564}
565
566/**
567 * ring_buffer_resize - resize the ring buffer
568 * @buffer: the buffer to resize.
569 * @size: the new size.
570 *
571 * The tracer is responsible for making sure that the buffer is
572 * not being used while changing the size.
573 * Note: We may be able to change the above requirement by using
574 * RCU synchronizations.
575 *
576 * Minimum size is 2 * BUF_PAGE_SIZE.
577 *
578 * Returns -1 on failure.
579 */
580int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
581{
582 struct ring_buffer_per_cpu *cpu_buffer;
583 unsigned nr_pages, rm_pages, new_pages;
044fa782 584 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
585 unsigned long buffer_size;
586 unsigned long addr;
587 LIST_HEAD(pages);
588 int i, cpu;
589
ee51a1de
IM
590 /*
591 * Always succeed at resizing a non-existent buffer:
592 */
593 if (!buffer)
594 return size;
595
7a8e76a3
SR
596 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
597 size *= BUF_PAGE_SIZE;
598 buffer_size = buffer->pages * BUF_PAGE_SIZE;
599
600 /* we need a minimum of two pages */
601 if (size < BUF_PAGE_SIZE * 2)
602 size = BUF_PAGE_SIZE * 2;
603
604 if (size == buffer_size)
605 return size;
606
607 mutex_lock(&buffer->mutex);
608
609 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
610
611 if (size < buffer_size) {
612
613 /* easy case, just free pages */
3e89c7bb
SR
614 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
615 mutex_unlock(&buffer->mutex);
616 return -1;
617 }
7a8e76a3
SR
618
619 rm_pages = buffer->pages - nr_pages;
620
621 for_each_buffer_cpu(buffer, cpu) {
622 cpu_buffer = buffer->buffers[cpu];
623 rb_remove_pages(cpu_buffer, rm_pages);
624 }
625 goto out;
626 }
627
628 /*
629 * This is a bit more difficult. We only want to add pages
630 * when we can allocate enough for all CPUs. We do this
631 * by allocating all the pages and storing them on a local
632 * link list. If we succeed in our allocation, then we
633 * add these pages to the cpu_buffers. Otherwise we just free
634 * them all and return -ENOMEM;
635 */
3e89c7bb
SR
636 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
637 mutex_unlock(&buffer->mutex);
638 return -1;
639 }
f536aafc 640
7a8e76a3
SR
641 new_pages = nr_pages - buffer->pages;
642
643 for_each_buffer_cpu(buffer, cpu) {
644 for (i = 0; i < new_pages; i++) {
044fa782 645 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
646 cache_line_size()),
647 GFP_KERNEL, cpu_to_node(cpu));
044fa782 648 if (!bpage)
e4c2ce82 649 goto free_pages;
044fa782 650 list_add(&bpage->list, &pages);
7a8e76a3
SR
651 addr = __get_free_page(GFP_KERNEL);
652 if (!addr)
653 goto free_pages;
044fa782
SR
654 bpage->page = (void *)addr;
655 rb_init_page(bpage->page);
7a8e76a3
SR
656 }
657 }
658
659 for_each_buffer_cpu(buffer, cpu) {
660 cpu_buffer = buffer->buffers[cpu];
661 rb_insert_pages(cpu_buffer, &pages, new_pages);
662 }
663
3e89c7bb
SR
664 if (RB_WARN_ON(buffer, !list_empty(&pages))) {
665 mutex_unlock(&buffer->mutex);
666 return -1;
667 }
7a8e76a3
SR
668
669 out:
670 buffer->pages = nr_pages;
671 mutex_unlock(&buffer->mutex);
672
673 return size;
674
675 free_pages:
044fa782
SR
676 list_for_each_entry_safe(bpage, tmp, &pages, list) {
677 list_del_init(&bpage->list);
678 free_buffer_page(bpage);
7a8e76a3 679 }
641d2f63 680 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
681 return -ENOMEM;
682}
683
7a8e76a3
SR
684static inline int rb_null_event(struct ring_buffer_event *event)
685{
686 return event->type == RINGBUF_TYPE_PADDING;
687}
688
8789a9e7 689static inline void *
044fa782 690__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 691{
044fa782 692 return bpage->data + index;
8789a9e7
SR
693}
694
044fa782 695static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 696{
044fa782 697 return bpage->page->data + index;
7a8e76a3
SR
698}
699
700static inline struct ring_buffer_event *
d769041f 701rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 702{
6f807acd
SR
703 return __rb_page_index(cpu_buffer->reader_page,
704 cpu_buffer->reader_page->read);
705}
706
707static inline struct ring_buffer_event *
708rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
709{
710 return __rb_page_index(cpu_buffer->head_page,
711 cpu_buffer->head_page->read);
7a8e76a3
SR
712}
713
714static inline struct ring_buffer_event *
715rb_iter_head_event(struct ring_buffer_iter *iter)
716{
6f807acd 717 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
718}
719
bf41a158
SR
720static inline unsigned rb_page_write(struct buffer_page *bpage)
721{
722 return local_read(&bpage->write);
723}
724
725static inline unsigned rb_page_commit(struct buffer_page *bpage)
726{
abc9b56d 727 return local_read(&bpage->page->commit);
bf41a158
SR
728}
729
730/* Size is determined by what has been commited */
731static inline unsigned rb_page_size(struct buffer_page *bpage)
732{
733 return rb_page_commit(bpage);
734}
735
736static inline unsigned
737rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
738{
739 return rb_page_commit(cpu_buffer->commit_page);
740}
741
742static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
743{
744 return rb_page_commit(cpu_buffer->head_page);
745}
746
7a8e76a3
SR
747/*
748 * When the tail hits the head and the buffer is in overwrite mode,
749 * the head jumps to the next page and all content on the previous
750 * page is discarded. But before doing so, we update the overrun
751 * variable of the buffer.
752 */
753static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
754{
755 struct ring_buffer_event *event;
756 unsigned long head;
757
758 for (head = 0; head < rb_head_size(cpu_buffer);
759 head += rb_event_length(event)) {
760
6f807acd 761 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
762 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
763 return;
7a8e76a3
SR
764 /* Only count data entries */
765 if (event->type != RINGBUF_TYPE_DATA)
766 continue;
767 cpu_buffer->overrun++;
768 cpu_buffer->entries--;
769 }
770}
771
772static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 773 struct buffer_page **bpage)
7a8e76a3 774{
044fa782 775 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
776
777 if (p == &cpu_buffer->pages)
778 p = p->next;
779
044fa782 780 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
781}
782
bf41a158
SR
783static inline unsigned
784rb_event_index(struct ring_buffer_event *event)
785{
786 unsigned long addr = (unsigned long)event;
787
788 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
789}
790
791static inline int
792rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
793 struct ring_buffer_event *event)
794{
795 unsigned long addr = (unsigned long)event;
796 unsigned long index;
797
798 index = rb_event_index(event);
799 addr &= PAGE_MASK;
800
801 return cpu_buffer->commit_page->page == (void *)addr &&
802 rb_commit_index(cpu_buffer) == index;
803}
804
7a8e76a3 805static inline void
bf41a158
SR
806rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
807 struct ring_buffer_event *event)
7a8e76a3 808{
bf41a158
SR
809 unsigned long addr = (unsigned long)event;
810 unsigned long index;
811
812 index = rb_event_index(event);
813 addr &= PAGE_MASK;
814
815 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
816 if (RB_WARN_ON(cpu_buffer,
817 cpu_buffer->commit_page == cpu_buffer->tail_page))
818 return;
abc9b56d 819 cpu_buffer->commit_page->page->commit =
bf41a158
SR
820 cpu_buffer->commit_page->write;
821 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
822 cpu_buffer->write_stamp =
823 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
824 }
825
826 /* Now set the commit to the event's index */
abc9b56d 827 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
828}
829
bf41a158
SR
830static inline void
831rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 832{
bf41a158
SR
833 /*
834 * We only race with interrupts and NMIs on this CPU.
835 * If we own the commit event, then we can commit
836 * all others that interrupted us, since the interruptions
837 * are in stack format (they finish before they come
838 * back to us). This allows us to do a simple loop to
839 * assign the commit to the tail.
840 */
a8ccf1d6 841 again:
bf41a158 842 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 843 cpu_buffer->commit_page->page->commit =
bf41a158
SR
844 cpu_buffer->commit_page->write;
845 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
846 cpu_buffer->write_stamp =
847 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
848 /* add barrier to keep gcc from optimizing too much */
849 barrier();
850 }
851 while (rb_commit_index(cpu_buffer) !=
852 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 853 cpu_buffer->commit_page->page->commit =
bf41a158
SR
854 cpu_buffer->commit_page->write;
855 barrier();
856 }
a8ccf1d6
SR
857
858 /* again, keep gcc from optimizing */
859 barrier();
860
861 /*
862 * If an interrupt came in just after the first while loop
863 * and pushed the tail page forward, we will be left with
864 * a dangling commit that will never go forward.
865 */
866 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
867 goto again;
7a8e76a3
SR
868}
869
d769041f 870static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 871{
abc9b56d 872 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 873 cpu_buffer->reader_page->read = 0;
d769041f
SR
874}
875
876static inline void rb_inc_iter(struct ring_buffer_iter *iter)
877{
878 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
879
880 /*
881 * The iterator could be on the reader page (it starts there).
882 * But the head could have moved, since the reader was
883 * found. Check for this case and assign the iterator
884 * to the head page instead of next.
885 */
886 if (iter->head_page == cpu_buffer->reader_page)
887 iter->head_page = cpu_buffer->head_page;
888 else
889 rb_inc_page(cpu_buffer, &iter->head_page);
890
abc9b56d 891 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
892 iter->head = 0;
893}
894
895/**
896 * ring_buffer_update_event - update event type and data
897 * @event: the even to update
898 * @type: the type of event
899 * @length: the size of the event field in the ring buffer
900 *
901 * Update the type and data fields of the event. The length
902 * is the actual size that is written to the ring buffer,
903 * and with this, we can determine what to place into the
904 * data field.
905 */
906static inline void
907rb_update_event(struct ring_buffer_event *event,
908 unsigned type, unsigned length)
909{
910 event->type = type;
911
912 switch (type) {
913
914 case RINGBUF_TYPE_PADDING:
915 break;
916
917 case RINGBUF_TYPE_TIME_EXTEND:
918 event->len =
919 (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
920 >> RB_ALIGNMENT_SHIFT;
921 break;
922
923 case RINGBUF_TYPE_TIME_STAMP:
924 event->len =
925 (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
926 >> RB_ALIGNMENT_SHIFT;
927 break;
928
929 case RINGBUF_TYPE_DATA:
930 length -= RB_EVNT_HDR_SIZE;
931 if (length > RB_MAX_SMALL_DATA) {
932 event->len = 0;
933 event->array[0] = length;
934 } else
935 event->len =
936 (length + (RB_ALIGNMENT-1))
937 >> RB_ALIGNMENT_SHIFT;
938 break;
939 default:
940 BUG();
941 }
942}
943
944static inline unsigned rb_calculate_event_length(unsigned length)
945{
946 struct ring_buffer_event event; /* Used only for sizeof array */
947
948 /* zero length can cause confusions */
949 if (!length)
950 length = 1;
951
952 if (length > RB_MAX_SMALL_DATA)
953 length += sizeof(event.array[0]);
954
955 length += RB_EVNT_HDR_SIZE;
956 length = ALIGN(length, RB_ALIGNMENT);
957
958 return length;
959}
960
961static struct ring_buffer_event *
962__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
963 unsigned type, unsigned long length, u64 *ts)
964{
d769041f 965 struct buffer_page *tail_page, *head_page, *reader_page;
bf41a158 966 unsigned long tail, write;
7a8e76a3
SR
967 struct ring_buffer *buffer = cpu_buffer->buffer;
968 struct ring_buffer_event *event;
bf41a158 969 unsigned long flags;
7a8e76a3
SR
970
971 tail_page = cpu_buffer->tail_page;
bf41a158
SR
972 write = local_add_return(length, &tail_page->write);
973 tail = write - length;
7a8e76a3 974
bf41a158
SR
975 /* See if we shot pass the end of this buffer page */
976 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
977 struct buffer_page *next_page = tail_page;
978
3e03fb7f
SR
979 local_irq_save(flags);
980 __raw_spin_lock(&cpu_buffer->lock);
bf41a158 981
7a8e76a3
SR
982 rb_inc_page(cpu_buffer, &next_page);
983
d769041f
SR
984 head_page = cpu_buffer->head_page;
985 reader_page = cpu_buffer->reader_page;
986
987 /* we grabbed the lock before incrementing */
3e89c7bb
SR
988 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
989 goto out_unlock;
bf41a158
SR
990
991 /*
992 * If for some reason, we had an interrupt storm that made
993 * it all the way around the buffer, bail, and warn
994 * about it.
995 */
996 if (unlikely(next_page == cpu_buffer->commit_page)) {
997 WARN_ON_ONCE(1);
998 goto out_unlock;
999 }
d769041f 1000
7a8e76a3 1001 if (next_page == head_page) {
d769041f 1002 if (!(buffer->flags & RB_FL_OVERWRITE)) {
bf41a158
SR
1003 /* reset write */
1004 if (tail <= BUF_PAGE_SIZE)
1005 local_set(&tail_page->write, tail);
1006 goto out_unlock;
d769041f 1007 }
7a8e76a3 1008
bf41a158
SR
1009 /* tail_page has not moved yet? */
1010 if (tail_page == cpu_buffer->tail_page) {
1011 /* count overflows */
1012 rb_update_overflow(cpu_buffer);
1013
1014 rb_inc_page(cpu_buffer, &head_page);
1015 cpu_buffer->head_page = head_page;
1016 cpu_buffer->head_page->read = 0;
1017 }
1018 }
7a8e76a3 1019
bf41a158
SR
1020 /*
1021 * If the tail page is still the same as what we think
1022 * it is, then it is up to us to update the tail
1023 * pointer.
1024 */
1025 if (tail_page == cpu_buffer->tail_page) {
1026 local_set(&next_page->write, 0);
abc9b56d 1027 local_set(&next_page->page->commit, 0);
bf41a158
SR
1028 cpu_buffer->tail_page = next_page;
1029
1030 /* reread the time stamp */
1031 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
abc9b56d 1032 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1033 }
1034
bf41a158
SR
1035 /*
1036 * The actual tail page has moved forward.
1037 */
1038 if (tail < BUF_PAGE_SIZE) {
1039 /* Mark the rest of the page with padding */
6f807acd 1040 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1041 event->type = RINGBUF_TYPE_PADDING;
1042 }
1043
bf41a158
SR
1044 if (tail <= BUF_PAGE_SIZE)
1045 /* Set the write back to the previous setting */
1046 local_set(&tail_page->write, tail);
1047
1048 /*
1049 * If this was a commit entry that failed,
1050 * increment that too
1051 */
1052 if (tail_page == cpu_buffer->commit_page &&
1053 tail == rb_commit_index(cpu_buffer)) {
1054 rb_set_commit_to_write(cpu_buffer);
1055 }
1056
3e03fb7f
SR
1057 __raw_spin_unlock(&cpu_buffer->lock);
1058 local_irq_restore(flags);
bf41a158
SR
1059
1060 /* fail and let the caller try again */
1061 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1062 }
1063
bf41a158
SR
1064 /* We reserved something on the buffer */
1065
3e89c7bb
SR
1066 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1067 return NULL;
7a8e76a3 1068
6f807acd 1069 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1070 rb_update_event(event, type, length);
1071
bf41a158
SR
1072 /*
1073 * If this is a commit and the tail is zero, then update
1074 * this page's time stamp.
1075 */
1076 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1077 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1078
7a8e76a3 1079 return event;
bf41a158
SR
1080
1081 out_unlock:
3e03fb7f
SR
1082 __raw_spin_unlock(&cpu_buffer->lock);
1083 local_irq_restore(flags);
bf41a158 1084 return NULL;
7a8e76a3
SR
1085}
1086
1087static int
1088rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1089 u64 *ts, u64 *delta)
1090{
1091 struct ring_buffer_event *event;
1092 static int once;
bf41a158 1093 int ret;
7a8e76a3
SR
1094
1095 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1096 printk(KERN_WARNING "Delta way too big! %llu"
1097 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1098 (unsigned long long)*delta,
1099 (unsigned long long)*ts,
1100 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1101 WARN_ON(1);
1102 }
1103
1104 /*
1105 * The delta is too big, we to add a
1106 * new timestamp.
1107 */
1108 event = __rb_reserve_next(cpu_buffer,
1109 RINGBUF_TYPE_TIME_EXTEND,
1110 RB_LEN_TIME_EXTEND,
1111 ts);
1112 if (!event)
bf41a158 1113 return -EBUSY;
7a8e76a3 1114
bf41a158
SR
1115 if (PTR_ERR(event) == -EAGAIN)
1116 return -EAGAIN;
1117
1118 /* Only a commited time event can update the write stamp */
1119 if (rb_is_commit(cpu_buffer, event)) {
1120 /*
1121 * If this is the first on the page, then we need to
1122 * update the page itself, and just put in a zero.
1123 */
1124 if (rb_event_index(event)) {
1125 event->time_delta = *delta & TS_MASK;
1126 event->array[0] = *delta >> TS_SHIFT;
1127 } else {
abc9b56d 1128 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1129 event->time_delta = 0;
1130 event->array[0] = 0;
1131 }
7a8e76a3 1132 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1133 /* let the caller know this was the commit */
1134 ret = 1;
1135 } else {
1136 /* Darn, this is just wasted space */
1137 event->time_delta = 0;
1138 event->array[0] = 0;
1139 ret = 0;
7a8e76a3
SR
1140 }
1141
bf41a158
SR
1142 *delta = 0;
1143
1144 return ret;
7a8e76a3
SR
1145}
1146
1147static struct ring_buffer_event *
1148rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1149 unsigned type, unsigned long length)
1150{
1151 struct ring_buffer_event *event;
1152 u64 ts, delta;
bf41a158 1153 int commit = 0;
818e3dd3 1154 int nr_loops = 0;
7a8e76a3 1155
bf41a158 1156 again:
818e3dd3
SR
1157 /*
1158 * We allow for interrupts to reenter here and do a trace.
1159 * If one does, it will cause this original code to loop
1160 * back here. Even with heavy interrupts happening, this
1161 * should only happen a few times in a row. If this happens
1162 * 1000 times in a row, there must be either an interrupt
1163 * storm or we have something buggy.
1164 * Bail!
1165 */
3e89c7bb 1166 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1167 return NULL;
818e3dd3 1168
7a8e76a3
SR
1169 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1170
bf41a158
SR
1171 /*
1172 * Only the first commit can update the timestamp.
1173 * Yes there is a race here. If an interrupt comes in
1174 * just after the conditional and it traces too, then it
1175 * will also check the deltas. More than one timestamp may
1176 * also be made. But only the entry that did the actual
1177 * commit will be something other than zero.
1178 */
1179 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1180 rb_page_write(cpu_buffer->tail_page) ==
1181 rb_commit_index(cpu_buffer)) {
1182
7a8e76a3
SR
1183 delta = ts - cpu_buffer->write_stamp;
1184
bf41a158
SR
1185 /* make sure this delta is calculated here */
1186 barrier();
1187
1188 /* Did the write stamp get updated already? */
1189 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1190 delta = 0;
bf41a158 1191
7a8e76a3 1192 if (test_time_stamp(delta)) {
7a8e76a3 1193
bf41a158
SR
1194 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1195
1196 if (commit == -EBUSY)
7a8e76a3 1197 return NULL;
bf41a158
SR
1198
1199 if (commit == -EAGAIN)
1200 goto again;
1201
1202 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1203 }
bf41a158
SR
1204 } else
1205 /* Non commits have zero deltas */
7a8e76a3 1206 delta = 0;
7a8e76a3
SR
1207
1208 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1209 if (PTR_ERR(event) == -EAGAIN)
1210 goto again;
1211
1212 if (!event) {
1213 if (unlikely(commit))
1214 /*
1215 * Ouch! We needed a timestamp and it was commited. But
1216 * we didn't get our event reserved.
1217 */
1218 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1219 return NULL;
bf41a158 1220 }
7a8e76a3 1221
bf41a158
SR
1222 /*
1223 * If the timestamp was commited, make the commit our entry
1224 * now so that we will update it when needed.
1225 */
1226 if (commit)
1227 rb_set_commit_event(cpu_buffer, event);
1228 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1229 delta = 0;
1230
1231 event->time_delta = delta;
1232
1233 return event;
1234}
1235
bf41a158
SR
1236static DEFINE_PER_CPU(int, rb_need_resched);
1237
7a8e76a3
SR
1238/**
1239 * ring_buffer_lock_reserve - reserve a part of the buffer
1240 * @buffer: the ring buffer to reserve from
1241 * @length: the length of the data to reserve (excluding event header)
1242 * @flags: a pointer to save the interrupt flags
1243 *
1244 * Returns a reseverd event on the ring buffer to copy directly to.
1245 * The user of this interface will need to get the body to write into
1246 * and can use the ring_buffer_event_data() interface.
1247 *
1248 * The length is the length of the data needed, not the event length
1249 * which also includes the event header.
1250 *
1251 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1252 * If NULL is returned, then nothing has been allocated or locked.
1253 */
1254struct ring_buffer_event *
1255ring_buffer_lock_reserve(struct ring_buffer *buffer,
1256 unsigned long length,
1257 unsigned long *flags)
1258{
1259 struct ring_buffer_per_cpu *cpu_buffer;
1260 struct ring_buffer_event *event;
bf41a158 1261 int cpu, resched;
7a8e76a3 1262
033601a3 1263 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1264 return NULL;
1265
7a8e76a3
SR
1266 if (atomic_read(&buffer->record_disabled))
1267 return NULL;
1268
bf41a158 1269 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1270 resched = ftrace_preempt_disable();
bf41a158 1271
7a8e76a3
SR
1272 cpu = raw_smp_processor_id();
1273
1274 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 1275 goto out;
7a8e76a3
SR
1276
1277 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1278
1279 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1280 goto out;
7a8e76a3
SR
1281
1282 length = rb_calculate_event_length(length);
1283 if (length > BUF_PAGE_SIZE)
bf41a158 1284 goto out;
7a8e76a3
SR
1285
1286 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1287 if (!event)
d769041f 1288 goto out;
7a8e76a3 1289
bf41a158
SR
1290 /*
1291 * Need to store resched state on this cpu.
1292 * Only the first needs to.
1293 */
1294
1295 if (preempt_count() == 1)
1296 per_cpu(rb_need_resched, cpu) = resched;
1297
7a8e76a3
SR
1298 return event;
1299
d769041f 1300 out:
182e9f5f 1301 ftrace_preempt_enable(resched);
7a8e76a3
SR
1302 return NULL;
1303}
1304
1305static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1306 struct ring_buffer_event *event)
1307{
7a8e76a3 1308 cpu_buffer->entries++;
bf41a158
SR
1309
1310 /* Only process further if we own the commit */
1311 if (!rb_is_commit(cpu_buffer, event))
1312 return;
1313
1314 cpu_buffer->write_stamp += event->time_delta;
1315
1316 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1317}
1318
1319/**
1320 * ring_buffer_unlock_commit - commit a reserved
1321 * @buffer: The buffer to commit to
1322 * @event: The event pointer to commit.
1323 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1324 *
1325 * This commits the data to the ring buffer, and releases any locks held.
1326 *
1327 * Must be paired with ring_buffer_lock_reserve.
1328 */
1329int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1330 struct ring_buffer_event *event,
1331 unsigned long flags)
1332{
1333 struct ring_buffer_per_cpu *cpu_buffer;
1334 int cpu = raw_smp_processor_id();
1335
1336 cpu_buffer = buffer->buffers[cpu];
1337
7a8e76a3
SR
1338 rb_commit(cpu_buffer, event);
1339
bf41a158
SR
1340 /*
1341 * Only the last preempt count needs to restore preemption.
1342 */
182e9f5f
SR
1343 if (preempt_count() == 1)
1344 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1345 else
bf41a158 1346 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1347
1348 return 0;
1349}
1350
1351/**
1352 * ring_buffer_write - write data to the buffer without reserving
1353 * @buffer: The ring buffer to write to.
1354 * @length: The length of the data being written (excluding the event header)
1355 * @data: The data to write to the buffer.
1356 *
1357 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1358 * one function. If you already have the data to write to the buffer, it
1359 * may be easier to simply call this function.
1360 *
1361 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1362 * and not the length of the event which would hold the header.
1363 */
1364int ring_buffer_write(struct ring_buffer *buffer,
1365 unsigned long length,
1366 void *data)
1367{
1368 struct ring_buffer_per_cpu *cpu_buffer;
1369 struct ring_buffer_event *event;
bf41a158 1370 unsigned long event_length;
7a8e76a3
SR
1371 void *body;
1372 int ret = -EBUSY;
bf41a158 1373 int cpu, resched;
7a8e76a3 1374
033601a3 1375 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1376 return -EBUSY;
1377
7a8e76a3
SR
1378 if (atomic_read(&buffer->record_disabled))
1379 return -EBUSY;
1380
182e9f5f 1381 resched = ftrace_preempt_disable();
bf41a158 1382
7a8e76a3
SR
1383 cpu = raw_smp_processor_id();
1384
1385 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 1386 goto out;
7a8e76a3
SR
1387
1388 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1389
1390 if (atomic_read(&cpu_buffer->record_disabled))
1391 goto out;
1392
1393 event_length = rb_calculate_event_length(length);
1394 event = rb_reserve_next_event(cpu_buffer,
1395 RINGBUF_TYPE_DATA, event_length);
1396 if (!event)
1397 goto out;
1398
1399 body = rb_event_data(event);
1400
1401 memcpy(body, data, length);
1402
1403 rb_commit(cpu_buffer, event);
1404
1405 ret = 0;
1406 out:
182e9f5f 1407 ftrace_preempt_enable(resched);
7a8e76a3
SR
1408
1409 return ret;
1410}
1411
bf41a158
SR
1412static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1413{
1414 struct buffer_page *reader = cpu_buffer->reader_page;
1415 struct buffer_page *head = cpu_buffer->head_page;
1416 struct buffer_page *commit = cpu_buffer->commit_page;
1417
1418 return reader->read == rb_page_commit(reader) &&
1419 (commit == reader ||
1420 (commit == head &&
1421 head->read == rb_page_commit(commit)));
1422}
1423
7a8e76a3
SR
1424/**
1425 * ring_buffer_record_disable - stop all writes into the buffer
1426 * @buffer: The ring buffer to stop writes to.
1427 *
1428 * This prevents all writes to the buffer. Any attempt to write
1429 * to the buffer after this will fail and return NULL.
1430 *
1431 * The caller should call synchronize_sched() after this.
1432 */
1433void ring_buffer_record_disable(struct ring_buffer *buffer)
1434{
1435 atomic_inc(&buffer->record_disabled);
1436}
1437
1438/**
1439 * ring_buffer_record_enable - enable writes to the buffer
1440 * @buffer: The ring buffer to enable writes
1441 *
1442 * Note, multiple disables will need the same number of enables
1443 * to truely enable the writing (much like preempt_disable).
1444 */
1445void ring_buffer_record_enable(struct ring_buffer *buffer)
1446{
1447 atomic_dec(&buffer->record_disabled);
1448}
1449
1450/**
1451 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1452 * @buffer: The ring buffer to stop writes to.
1453 * @cpu: The CPU buffer to stop
1454 *
1455 * This prevents all writes to the buffer. Any attempt to write
1456 * to the buffer after this will fail and return NULL.
1457 *
1458 * The caller should call synchronize_sched() after this.
1459 */
1460void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1461{
1462 struct ring_buffer_per_cpu *cpu_buffer;
1463
1464 if (!cpu_isset(cpu, buffer->cpumask))
1465 return;
1466
1467 cpu_buffer = buffer->buffers[cpu];
1468 atomic_inc(&cpu_buffer->record_disabled);
1469}
1470
1471/**
1472 * ring_buffer_record_enable_cpu - enable writes to the buffer
1473 * @buffer: The ring buffer to enable writes
1474 * @cpu: The CPU to enable.
1475 *
1476 * Note, multiple disables will need the same number of enables
1477 * to truely enable the writing (much like preempt_disable).
1478 */
1479void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1480{
1481 struct ring_buffer_per_cpu *cpu_buffer;
1482
1483 if (!cpu_isset(cpu, buffer->cpumask))
1484 return;
1485
1486 cpu_buffer = buffer->buffers[cpu];
1487 atomic_dec(&cpu_buffer->record_disabled);
1488}
1489
1490/**
1491 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1492 * @buffer: The ring buffer
1493 * @cpu: The per CPU buffer to get the entries from.
1494 */
1495unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1496{
1497 struct ring_buffer_per_cpu *cpu_buffer;
1498
1499 if (!cpu_isset(cpu, buffer->cpumask))
1500 return 0;
1501
1502 cpu_buffer = buffer->buffers[cpu];
1503 return cpu_buffer->entries;
1504}
1505
1506/**
1507 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1508 * @buffer: The ring buffer
1509 * @cpu: The per CPU buffer to get the number of overruns from
1510 */
1511unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1512{
1513 struct ring_buffer_per_cpu *cpu_buffer;
1514
1515 if (!cpu_isset(cpu, buffer->cpumask))
1516 return 0;
1517
1518 cpu_buffer = buffer->buffers[cpu];
1519 return cpu_buffer->overrun;
1520}
1521
1522/**
1523 * ring_buffer_entries - get the number of entries in a buffer
1524 * @buffer: The ring buffer
1525 *
1526 * Returns the total number of entries in the ring buffer
1527 * (all CPU entries)
1528 */
1529unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1530{
1531 struct ring_buffer_per_cpu *cpu_buffer;
1532 unsigned long entries = 0;
1533 int cpu;
1534
1535 /* if you care about this being correct, lock the buffer */
1536 for_each_buffer_cpu(buffer, cpu) {
1537 cpu_buffer = buffer->buffers[cpu];
1538 entries += cpu_buffer->entries;
1539 }
1540
1541 return entries;
1542}
1543
1544/**
1545 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1546 * @buffer: The ring buffer
1547 *
1548 * Returns the total number of overruns in the ring buffer
1549 * (all CPU entries)
1550 */
1551unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1552{
1553 struct ring_buffer_per_cpu *cpu_buffer;
1554 unsigned long overruns = 0;
1555 int cpu;
1556
1557 /* if you care about this being correct, lock the buffer */
1558 for_each_buffer_cpu(buffer, cpu) {
1559 cpu_buffer = buffer->buffers[cpu];
1560 overruns += cpu_buffer->overrun;
1561 }
1562
1563 return overruns;
1564}
1565
642edba5 1566static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1567{
1568 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1569
d769041f
SR
1570 /* Iterator usage is expected to have record disabled */
1571 if (list_empty(&cpu_buffer->reader_page->list)) {
1572 iter->head_page = cpu_buffer->head_page;
6f807acd 1573 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1574 } else {
1575 iter->head_page = cpu_buffer->reader_page;
6f807acd 1576 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1577 }
1578 if (iter->head)
1579 iter->read_stamp = cpu_buffer->read_stamp;
1580 else
abc9b56d 1581 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 1582}
f83c9d0f 1583
642edba5
SR
1584/**
1585 * ring_buffer_iter_reset - reset an iterator
1586 * @iter: The iterator to reset
1587 *
1588 * Resets the iterator, so that it will start from the beginning
1589 * again.
1590 */
1591void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1592{
1593 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1594 unsigned long flags;
1595
1596 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1597 rb_iter_reset(iter);
f83c9d0f 1598 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
1599}
1600
1601/**
1602 * ring_buffer_iter_empty - check if an iterator has no more to read
1603 * @iter: The iterator to check
1604 */
1605int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1606{
1607 struct ring_buffer_per_cpu *cpu_buffer;
1608
1609 cpu_buffer = iter->cpu_buffer;
1610
bf41a158
SR
1611 return iter->head_page == cpu_buffer->commit_page &&
1612 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3
SR
1613}
1614
1615static void
1616rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1617 struct ring_buffer_event *event)
1618{
1619 u64 delta;
1620
1621 switch (event->type) {
1622 case RINGBUF_TYPE_PADDING:
1623 return;
1624
1625 case RINGBUF_TYPE_TIME_EXTEND:
1626 delta = event->array[0];
1627 delta <<= TS_SHIFT;
1628 delta += event->time_delta;
1629 cpu_buffer->read_stamp += delta;
1630 return;
1631
1632 case RINGBUF_TYPE_TIME_STAMP:
1633 /* FIXME: not implemented */
1634 return;
1635
1636 case RINGBUF_TYPE_DATA:
1637 cpu_buffer->read_stamp += event->time_delta;
1638 return;
1639
1640 default:
1641 BUG();
1642 }
1643 return;
1644}
1645
1646static void
1647rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1648 struct ring_buffer_event *event)
1649{
1650 u64 delta;
1651
1652 switch (event->type) {
1653 case RINGBUF_TYPE_PADDING:
1654 return;
1655
1656 case RINGBUF_TYPE_TIME_EXTEND:
1657 delta = event->array[0];
1658 delta <<= TS_SHIFT;
1659 delta += event->time_delta;
1660 iter->read_stamp += delta;
1661 return;
1662
1663 case RINGBUF_TYPE_TIME_STAMP:
1664 /* FIXME: not implemented */
1665 return;
1666
1667 case RINGBUF_TYPE_DATA:
1668 iter->read_stamp += event->time_delta;
1669 return;
1670
1671 default:
1672 BUG();
1673 }
1674 return;
1675}
1676
d769041f
SR
1677static struct buffer_page *
1678rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1679{
d769041f
SR
1680 struct buffer_page *reader = NULL;
1681 unsigned long flags;
818e3dd3 1682 int nr_loops = 0;
d769041f 1683
3e03fb7f
SR
1684 local_irq_save(flags);
1685 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
1686
1687 again:
818e3dd3
SR
1688 /*
1689 * This should normally only loop twice. But because the
1690 * start of the reader inserts an empty page, it causes
1691 * a case where we will loop three times. There should be no
1692 * reason to loop four times (that I know of).
1693 */
3e89c7bb 1694 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
1695 reader = NULL;
1696 goto out;
1697 }
1698
d769041f
SR
1699 reader = cpu_buffer->reader_page;
1700
1701 /* If there's more to read, return this page */
bf41a158 1702 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
1703 goto out;
1704
1705 /* Never should we have an index greater than the size */
3e89c7bb
SR
1706 if (RB_WARN_ON(cpu_buffer,
1707 cpu_buffer->reader_page->read > rb_page_size(reader)))
1708 goto out;
d769041f
SR
1709
1710 /* check if we caught up to the tail */
1711 reader = NULL;
bf41a158 1712 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 1713 goto out;
7a8e76a3
SR
1714
1715 /*
d769041f
SR
1716 * Splice the empty reader page into the list around the head.
1717 * Reset the reader page to size zero.
7a8e76a3 1718 */
7a8e76a3 1719
d769041f
SR
1720 reader = cpu_buffer->head_page;
1721 cpu_buffer->reader_page->list.next = reader->list.next;
1722 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
1723
1724 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 1725 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 1726
d769041f
SR
1727 /* Make the reader page now replace the head */
1728 reader->list.prev->next = &cpu_buffer->reader_page->list;
1729 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1730
1731 /*
d769041f
SR
1732 * If the tail is on the reader, then we must set the head
1733 * to the inserted page, otherwise we set it one before.
7a8e76a3 1734 */
d769041f 1735 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1736
bf41a158 1737 if (cpu_buffer->commit_page != reader)
d769041f
SR
1738 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1739
1740 /* Finally update the reader page to the new head */
1741 cpu_buffer->reader_page = reader;
1742 rb_reset_reader_page(cpu_buffer);
1743
1744 goto again;
1745
1746 out:
3e03fb7f
SR
1747 __raw_spin_unlock(&cpu_buffer->lock);
1748 local_irq_restore(flags);
d769041f
SR
1749
1750 return reader;
1751}
1752
1753static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1754{
1755 struct ring_buffer_event *event;
1756 struct buffer_page *reader;
1757 unsigned length;
1758
1759 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1760
d769041f 1761 /* This function should not be called when buffer is empty */
3e89c7bb
SR
1762 if (RB_WARN_ON(cpu_buffer, !reader))
1763 return;
7a8e76a3 1764
d769041f
SR
1765 event = rb_reader_event(cpu_buffer);
1766
1767 if (event->type == RINGBUF_TYPE_DATA)
1768 cpu_buffer->entries--;
1769
1770 rb_update_read_stamp(cpu_buffer, event);
1771
1772 length = rb_event_length(event);
6f807acd 1773 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
1774}
1775
1776static void rb_advance_iter(struct ring_buffer_iter *iter)
1777{
1778 struct ring_buffer *buffer;
1779 struct ring_buffer_per_cpu *cpu_buffer;
1780 struct ring_buffer_event *event;
1781 unsigned length;
1782
1783 cpu_buffer = iter->cpu_buffer;
1784 buffer = cpu_buffer->buffer;
1785
1786 /*
1787 * Check if we are at the end of the buffer.
1788 */
bf41a158 1789 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
1790 if (RB_WARN_ON(buffer,
1791 iter->head_page == cpu_buffer->commit_page))
1792 return;
d769041f 1793 rb_inc_iter(iter);
7a8e76a3
SR
1794 return;
1795 }
1796
1797 event = rb_iter_head_event(iter);
1798
1799 length = rb_event_length(event);
1800
1801 /*
1802 * This should not be called to advance the header if we are
1803 * at the tail of the buffer.
1804 */
3e89c7bb 1805 if (RB_WARN_ON(cpu_buffer,
f536aafc 1806 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
1807 (iter->head + length > rb_commit_index(cpu_buffer))))
1808 return;
7a8e76a3
SR
1809
1810 rb_update_iter_read_stamp(iter, event);
1811
1812 iter->head += length;
1813
1814 /* check for end of page padding */
bf41a158
SR
1815 if ((iter->head >= rb_page_size(iter->head_page)) &&
1816 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
1817 rb_advance_iter(iter);
1818}
1819
f83c9d0f
SR
1820static struct ring_buffer_event *
1821rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
1822{
1823 struct ring_buffer_per_cpu *cpu_buffer;
1824 struct ring_buffer_event *event;
d769041f 1825 struct buffer_page *reader;
818e3dd3 1826 int nr_loops = 0;
7a8e76a3
SR
1827
1828 if (!cpu_isset(cpu, buffer->cpumask))
1829 return NULL;
1830
1831 cpu_buffer = buffer->buffers[cpu];
1832
1833 again:
818e3dd3
SR
1834 /*
1835 * We repeat when a timestamp is encountered. It is possible
1836 * to get multiple timestamps from an interrupt entering just
1837 * as one timestamp is about to be written. The max times
1838 * that this can happen is the number of nested interrupts we
1839 * can have. Nesting 10 deep of interrupts is clearly
1840 * an anomaly.
1841 */
3e89c7bb 1842 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1843 return NULL;
818e3dd3 1844
d769041f
SR
1845 reader = rb_get_reader_page(cpu_buffer);
1846 if (!reader)
7a8e76a3
SR
1847 return NULL;
1848
d769041f 1849 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
1850
1851 switch (event->type) {
1852 case RINGBUF_TYPE_PADDING:
bf41a158 1853 RB_WARN_ON(cpu_buffer, 1);
d769041f
SR
1854 rb_advance_reader(cpu_buffer);
1855 return NULL;
7a8e76a3
SR
1856
1857 case RINGBUF_TYPE_TIME_EXTEND:
1858 /* Internal data, OK to advance */
d769041f 1859 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1860 goto again;
1861
1862 case RINGBUF_TYPE_TIME_STAMP:
1863 /* FIXME: not implemented */
d769041f 1864 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1865 goto again;
1866
1867 case RINGBUF_TYPE_DATA:
1868 if (ts) {
1869 *ts = cpu_buffer->read_stamp + event->time_delta;
1870 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1871 }
1872 return event;
1873
1874 default:
1875 BUG();
1876 }
1877
1878 return NULL;
1879}
1880
f83c9d0f
SR
1881static struct ring_buffer_event *
1882rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
1883{
1884 struct ring_buffer *buffer;
1885 struct ring_buffer_per_cpu *cpu_buffer;
1886 struct ring_buffer_event *event;
818e3dd3 1887 int nr_loops = 0;
7a8e76a3
SR
1888
1889 if (ring_buffer_iter_empty(iter))
1890 return NULL;
1891
1892 cpu_buffer = iter->cpu_buffer;
1893 buffer = cpu_buffer->buffer;
1894
1895 again:
818e3dd3
SR
1896 /*
1897 * We repeat when a timestamp is encountered. It is possible
1898 * to get multiple timestamps from an interrupt entering just
1899 * as one timestamp is about to be written. The max times
1900 * that this can happen is the number of nested interrupts we
1901 * can have. Nesting 10 deep of interrupts is clearly
1902 * an anomaly.
1903 */
3e89c7bb 1904 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1905 return NULL;
818e3dd3 1906
7a8e76a3
SR
1907 if (rb_per_cpu_empty(cpu_buffer))
1908 return NULL;
1909
1910 event = rb_iter_head_event(iter);
1911
1912 switch (event->type) {
1913 case RINGBUF_TYPE_PADDING:
d769041f 1914 rb_inc_iter(iter);
7a8e76a3
SR
1915 goto again;
1916
1917 case RINGBUF_TYPE_TIME_EXTEND:
1918 /* Internal data, OK to advance */
1919 rb_advance_iter(iter);
1920 goto again;
1921
1922 case RINGBUF_TYPE_TIME_STAMP:
1923 /* FIXME: not implemented */
1924 rb_advance_iter(iter);
1925 goto again;
1926
1927 case RINGBUF_TYPE_DATA:
1928 if (ts) {
1929 *ts = iter->read_stamp + event->time_delta;
1930 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1931 }
1932 return event;
1933
1934 default:
1935 BUG();
1936 }
1937
1938 return NULL;
1939}
1940
f83c9d0f
SR
1941/**
1942 * ring_buffer_peek - peek at the next event to be read
1943 * @buffer: The ring buffer to read
1944 * @cpu: The cpu to peak at
1945 * @ts: The timestamp counter of this event.
1946 *
1947 * This will return the event that will be read next, but does
1948 * not consume the data.
1949 */
1950struct ring_buffer_event *
1951ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1952{
1953 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1954 struct ring_buffer_event *event;
1955 unsigned long flags;
1956
1957 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1958 event = rb_buffer_peek(buffer, cpu, ts);
1959 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1960
1961 return event;
1962}
1963
1964/**
1965 * ring_buffer_iter_peek - peek at the next event to be read
1966 * @iter: The ring buffer iterator
1967 * @ts: The timestamp counter of this event.
1968 *
1969 * This will return the event that will be read next, but does
1970 * not increment the iterator.
1971 */
1972struct ring_buffer_event *
1973ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1974{
1975 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1976 struct ring_buffer_event *event;
1977 unsigned long flags;
1978
1979 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1980 event = rb_iter_peek(iter, ts);
1981 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1982
1983 return event;
1984}
1985
7a8e76a3
SR
1986/**
1987 * ring_buffer_consume - return an event and consume it
1988 * @buffer: The ring buffer to get the next event from
1989 *
1990 * Returns the next event in the ring buffer, and that event is consumed.
1991 * Meaning, that sequential reads will keep returning a different event,
1992 * and eventually empty the ring buffer if the producer is slower.
1993 */
1994struct ring_buffer_event *
1995ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1996{
f83c9d0f 1997 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1998 struct ring_buffer_event *event;
f83c9d0f 1999 unsigned long flags;
7a8e76a3
SR
2000
2001 if (!cpu_isset(cpu, buffer->cpumask))
2002 return NULL;
2003
f83c9d0f
SR
2004 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2005
2006 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2007 if (!event)
f83c9d0f 2008 goto out;
7a8e76a3 2009
d769041f 2010 rb_advance_reader(cpu_buffer);
7a8e76a3 2011
f83c9d0f
SR
2012 out:
2013 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2014
7a8e76a3
SR
2015 return event;
2016}
2017
2018/**
2019 * ring_buffer_read_start - start a non consuming read of the buffer
2020 * @buffer: The ring buffer to read from
2021 * @cpu: The cpu buffer to iterate over
2022 *
2023 * This starts up an iteration through the buffer. It also disables
2024 * the recording to the buffer until the reading is finished.
2025 * This prevents the reading from being corrupted. This is not
2026 * a consuming read, so a producer is not expected.
2027 *
2028 * Must be paired with ring_buffer_finish.
2029 */
2030struct ring_buffer_iter *
2031ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2032{
2033 struct ring_buffer_per_cpu *cpu_buffer;
2034 struct ring_buffer_iter *iter;
d769041f 2035 unsigned long flags;
7a8e76a3
SR
2036
2037 if (!cpu_isset(cpu, buffer->cpumask))
2038 return NULL;
2039
2040 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2041 if (!iter)
2042 return NULL;
2043
2044 cpu_buffer = buffer->buffers[cpu];
2045
2046 iter->cpu_buffer = cpu_buffer;
2047
2048 atomic_inc(&cpu_buffer->record_disabled);
2049 synchronize_sched();
2050
f83c9d0f 2051 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2052 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2053 rb_iter_reset(iter);
3e03fb7f 2054 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2055 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2056
2057 return iter;
2058}
2059
2060/**
2061 * ring_buffer_finish - finish reading the iterator of the buffer
2062 * @iter: The iterator retrieved by ring_buffer_start
2063 *
2064 * This re-enables the recording to the buffer, and frees the
2065 * iterator.
2066 */
2067void
2068ring_buffer_read_finish(struct ring_buffer_iter *iter)
2069{
2070 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2071
2072 atomic_dec(&cpu_buffer->record_disabled);
2073 kfree(iter);
2074}
2075
2076/**
2077 * ring_buffer_read - read the next item in the ring buffer by the iterator
2078 * @iter: The ring buffer iterator
2079 * @ts: The time stamp of the event read.
2080 *
2081 * This reads the next event in the ring buffer and increments the iterator.
2082 */
2083struct ring_buffer_event *
2084ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2085{
2086 struct ring_buffer_event *event;
f83c9d0f
SR
2087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2088 unsigned long flags;
7a8e76a3 2089
f83c9d0f
SR
2090 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2091 event = rb_iter_peek(iter, ts);
7a8e76a3 2092 if (!event)
f83c9d0f 2093 goto out;
7a8e76a3
SR
2094
2095 rb_advance_iter(iter);
f83c9d0f
SR
2096 out:
2097 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2098
2099 return event;
2100}
2101
2102/**
2103 * ring_buffer_size - return the size of the ring buffer (in bytes)
2104 * @buffer: The ring buffer.
2105 */
2106unsigned long ring_buffer_size(struct ring_buffer *buffer)
2107{
2108 return BUF_PAGE_SIZE * buffer->pages;
2109}
2110
2111static void
2112rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2113{
2114 cpu_buffer->head_page
2115 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2116 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2117 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2118
6f807acd 2119 cpu_buffer->head_page->read = 0;
bf41a158
SR
2120
2121 cpu_buffer->tail_page = cpu_buffer->head_page;
2122 cpu_buffer->commit_page = cpu_buffer->head_page;
2123
2124 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2125 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2126 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2127 cpu_buffer->reader_page->read = 0;
7a8e76a3 2128
7a8e76a3
SR
2129 cpu_buffer->overrun = 0;
2130 cpu_buffer->entries = 0;
2131}
2132
2133/**
2134 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2135 * @buffer: The ring buffer to reset a per cpu buffer of
2136 * @cpu: The CPU buffer to be reset
2137 */
2138void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2139{
2140 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2141 unsigned long flags;
2142
2143 if (!cpu_isset(cpu, buffer->cpumask))
2144 return;
2145
f83c9d0f
SR
2146 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2147
3e03fb7f 2148 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2149
2150 rb_reset_cpu(cpu_buffer);
2151
3e03fb7f 2152 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2153
2154 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2155}
2156
2157/**
2158 * ring_buffer_reset - reset a ring buffer
2159 * @buffer: The ring buffer to reset all cpu buffers
2160 */
2161void ring_buffer_reset(struct ring_buffer *buffer)
2162{
7a8e76a3
SR
2163 int cpu;
2164
7a8e76a3 2165 for_each_buffer_cpu(buffer, cpu)
d769041f 2166 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3
SR
2167}
2168
2169/**
2170 * rind_buffer_empty - is the ring buffer empty?
2171 * @buffer: The ring buffer to test
2172 */
2173int ring_buffer_empty(struct ring_buffer *buffer)
2174{
2175 struct ring_buffer_per_cpu *cpu_buffer;
2176 int cpu;
2177
2178 /* yes this is racy, but if you don't like the race, lock the buffer */
2179 for_each_buffer_cpu(buffer, cpu) {
2180 cpu_buffer = buffer->buffers[cpu];
2181 if (!rb_per_cpu_empty(cpu_buffer))
2182 return 0;
2183 }
2184 return 1;
2185}
2186
2187/**
2188 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2189 * @buffer: The ring buffer
2190 * @cpu: The CPU buffer to test
2191 */
2192int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2193{
2194 struct ring_buffer_per_cpu *cpu_buffer;
2195
2196 if (!cpu_isset(cpu, buffer->cpumask))
2197 return 1;
2198
2199 cpu_buffer = buffer->buffers[cpu];
2200 return rb_per_cpu_empty(cpu_buffer);
2201}
2202
2203/**
2204 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2205 * @buffer_a: One buffer to swap with
2206 * @buffer_b: The other buffer to swap with
2207 *
2208 * This function is useful for tracers that want to take a "snapshot"
2209 * of a CPU buffer and has another back up buffer lying around.
2210 * it is expected that the tracer handles the cpu buffer not being
2211 * used at the moment.
2212 */
2213int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2214 struct ring_buffer *buffer_b, int cpu)
2215{
2216 struct ring_buffer_per_cpu *cpu_buffer_a;
2217 struct ring_buffer_per_cpu *cpu_buffer_b;
2218
2219 if (!cpu_isset(cpu, buffer_a->cpumask) ||
2220 !cpu_isset(cpu, buffer_b->cpumask))
2221 return -EINVAL;
2222
2223 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2224 if (buffer_a->pages != buffer_b->pages)
7a8e76a3
SR
2225 return -EINVAL;
2226
2227 cpu_buffer_a = buffer_a->buffers[cpu];
2228 cpu_buffer_b = buffer_b->buffers[cpu];
2229
2230 /*
2231 * We can't do a synchronize_sched here because this
2232 * function can be called in atomic context.
2233 * Normally this will be called from the same CPU as cpu.
2234 * If not it's up to the caller to protect this.
2235 */
2236 atomic_inc(&cpu_buffer_a->record_disabled);
2237 atomic_inc(&cpu_buffer_b->record_disabled);
2238
2239 buffer_a->buffers[cpu] = cpu_buffer_b;
2240 buffer_b->buffers[cpu] = cpu_buffer_a;
2241
2242 cpu_buffer_b->buffer = buffer_a;
2243 cpu_buffer_a->buffer = buffer_b;
2244
2245 atomic_dec(&cpu_buffer_a->record_disabled);
2246 atomic_dec(&cpu_buffer_b->record_disabled);
2247
2248 return 0;
2249}
2250
8789a9e7 2251static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 2252 struct buffer_data_page *bpage)
8789a9e7
SR
2253{
2254 struct ring_buffer_event *event;
2255 unsigned long head;
2256
2257 __raw_spin_lock(&cpu_buffer->lock);
044fa782 2258 for (head = 0; head < local_read(&bpage->commit);
8789a9e7
SR
2259 head += rb_event_length(event)) {
2260
044fa782 2261 event = __rb_data_page_index(bpage, head);
8789a9e7
SR
2262 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2263 return;
2264 /* Only count data entries */
2265 if (event->type != RINGBUF_TYPE_DATA)
2266 continue;
2267 cpu_buffer->entries--;
2268 }
2269 __raw_spin_unlock(&cpu_buffer->lock);
2270}
2271
2272/**
2273 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2274 * @buffer: the buffer to allocate for.
2275 *
2276 * This function is used in conjunction with ring_buffer_read_page.
2277 * When reading a full page from the ring buffer, these functions
2278 * can be used to speed up the process. The calling function should
2279 * allocate a few pages first with this function. Then when it
2280 * needs to get pages from the ring buffer, it passes the result
2281 * of this function into ring_buffer_read_page, which will swap
2282 * the page that was allocated, with the read page of the buffer.
2283 *
2284 * Returns:
2285 * The page allocated, or NULL on error.
2286 */
2287void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2288{
2289 unsigned long addr;
044fa782 2290 struct buffer_data_page *bpage;
8789a9e7
SR
2291
2292 addr = __get_free_page(GFP_KERNEL);
2293 if (!addr)
2294 return NULL;
2295
044fa782 2296 bpage = (void *)addr;
8789a9e7 2297
044fa782 2298 return bpage;
8789a9e7
SR
2299}
2300
2301/**
2302 * ring_buffer_free_read_page - free an allocated read page
2303 * @buffer: the buffer the page was allocate for
2304 * @data: the page to free
2305 *
2306 * Free a page allocated from ring_buffer_alloc_read_page.
2307 */
2308void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2309{
2310 free_page((unsigned long)data);
2311}
2312
2313/**
2314 * ring_buffer_read_page - extract a page from the ring buffer
2315 * @buffer: buffer to extract from
2316 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2317 * @cpu: the cpu of the buffer to extract
2318 * @full: should the extraction only happen when the page is full.
2319 *
2320 * This function will pull out a page from the ring buffer and consume it.
2321 * @data_page must be the address of the variable that was returned
2322 * from ring_buffer_alloc_read_page. This is because the page might be used
2323 * to swap with a page in the ring buffer.
2324 *
2325 * for example:
2326 * rpage = ring_buffer_alloc_page(buffer);
2327 * if (!rpage)
2328 * return error;
2329 * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2330 * if (ret)
2331 * process_page(rpage);
2332 *
2333 * When @full is set, the function will not return true unless
2334 * the writer is off the reader page.
2335 *
2336 * Note: it is up to the calling functions to handle sleeps and wakeups.
2337 * The ring buffer can be used anywhere in the kernel and can not
2338 * blindly call wake_up. The layer that uses the ring buffer must be
2339 * responsible for that.
2340 *
2341 * Returns:
2342 * 1 if data has been transferred
2343 * 0 if no data has been transferred.
2344 */
2345int ring_buffer_read_page(struct ring_buffer *buffer,
2346 void **data_page, int cpu, int full)
2347{
2348 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2349 struct ring_buffer_event *event;
044fa782 2350 struct buffer_data_page *bpage;
8789a9e7
SR
2351 unsigned long flags;
2352 int ret = 0;
2353
2354 if (!data_page)
2355 return 0;
2356
044fa782
SR
2357 bpage = *data_page;
2358 if (!bpage)
8789a9e7
SR
2359 return 0;
2360
2361 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2362
2363 /*
2364 * rb_buffer_peek will get the next ring buffer if
2365 * the current reader page is empty.
2366 */
2367 event = rb_buffer_peek(buffer, cpu, NULL);
2368 if (!event)
2369 goto out;
2370
2371 /* check for data */
2372 if (!local_read(&cpu_buffer->reader_page->page->commit))
2373 goto out;
2374 /*
2375 * If the writer is already off of the read page, then simply
2376 * switch the read page with the given page. Otherwise
2377 * we need to copy the data from the reader to the writer.
2378 */
2379 if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2380 unsigned int read = cpu_buffer->reader_page->read;
2381
2382 if (full)
2383 goto out;
2384 /* The writer is still on the reader page, we must copy */
044fa782
SR
2385 bpage = cpu_buffer->reader_page->page;
2386 memcpy(bpage->data,
8789a9e7 2387 cpu_buffer->reader_page->page->data + read,
044fa782 2388 local_read(&bpage->commit) - read);
8789a9e7
SR
2389
2390 /* consume what was read */
2391 cpu_buffer->reader_page += read;
2392
2393 } else {
2394 /* swap the pages */
044fa782
SR
2395 rb_init_page(bpage);
2396 bpage = cpu_buffer->reader_page->page;
8789a9e7
SR
2397 cpu_buffer->reader_page->page = *data_page;
2398 cpu_buffer->reader_page->read = 0;
044fa782 2399 *data_page = bpage;
8789a9e7
SR
2400 }
2401 ret = 1;
2402
2403 /* update the entry counter */
044fa782 2404 rb_remove_entries(cpu_buffer, bpage);
8789a9e7
SR
2405 out:
2406 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2407
2408 return ret;
2409}
2410
a3583244
SR
2411static ssize_t
2412rb_simple_read(struct file *filp, char __user *ubuf,
2413 size_t cnt, loff_t *ppos)
2414{
033601a3 2415 long *p = filp->private_data;
a3583244
SR
2416 char buf[64];
2417 int r;
2418
033601a3
SR
2419 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2420 r = sprintf(buf, "permanently disabled\n");
2421 else
2422 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2423
2424 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2425}
2426
2427static ssize_t
2428rb_simple_write(struct file *filp, const char __user *ubuf,
2429 size_t cnt, loff_t *ppos)
2430{
033601a3 2431 long *p = filp->private_data;
a3583244
SR
2432 char buf[64];
2433 long val;
2434 int ret;
2435
2436 if (cnt >= sizeof(buf))
2437 return -EINVAL;
2438
2439 if (copy_from_user(&buf, ubuf, cnt))
2440 return -EFAULT;
2441
2442 buf[cnt] = 0;
2443
2444 ret = strict_strtoul(buf, 10, &val);
2445 if (ret < 0)
2446 return ret;
2447
033601a3
SR
2448 if (val)
2449 set_bit(RB_BUFFERS_ON_BIT, p);
2450 else
2451 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
2452
2453 (*ppos)++;
2454
2455 return cnt;
2456}
2457
2458static struct file_operations rb_simple_fops = {
2459 .open = tracing_open_generic,
2460 .read = rb_simple_read,
2461 .write = rb_simple_write,
2462};
2463
2464
2465static __init int rb_init_debugfs(void)
2466{
2467 struct dentry *d_tracer;
2468 struct dentry *entry;
2469
2470 d_tracer = tracing_init_dentry();
2471
2472 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
033601a3 2473 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
2474 if (!entry)
2475 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2476
2477 return 0;
2478}
2479
2480fs_initcall(rb_init_debugfs);