]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
sched: fix checks
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
637f5085 15 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
637f5085 24 atomic_inc(&rq->rd->rto_count);
4fd29176 25}
84de4274 26
4fd29176
SR
27static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
637f5085
GH
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 32}
73fe6aae
GH
33
34static void update_rt_migration(struct rq *rq)
35{
637f5085 36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
73fe6aae 42 rt_clear_overload(rq);
637f5085
GH
43 rq->rt.overloaded = 0;
44 }
73fe6aae 45}
4fd29176
SR
46#endif /* CONFIG_SMP */
47
6f505b16 48static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 49{
6f505b16
PZ
50 return container_of(rt_se, struct task_struct, rt);
51}
52
53static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54{
55 return !list_empty(&rt_se->run_list);
56}
57
052f1dc7 58#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 59
9f0c1e56 60static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
61{
62 if (!rt_rq->tg)
9f0c1e56 63 return RUNTIME_INF;
6f505b16 64
ac086bc2
PZ
65 return rt_rq->rt_runtime;
66}
67
68static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69{
70 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
71}
72
73#define for_each_leaf_rt_rq(rt_rq, rq) \
74 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77{
78 return rt_rq->rq;
79}
80
81static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82{
83 return rt_se->rt_rq;
84}
85
86#define for_each_sched_rt_entity(rt_se) \
87 for (; rt_se; rt_se = rt_se->parent)
88
89static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90{
91 return rt_se->my_q;
92}
93
94static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
9f0c1e56 97static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
98{
99 struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
102 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
6f505b16 104 enqueue_rt_entity(rt_se);
1020387f
PZ
105 if (rt_rq->highest_prio < curr->prio)
106 resched_task(curr);
6f505b16
PZ
107 }
108}
109
9f0c1e56 110static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
111{
112 struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114 if (rt_se && on_rt_rq(rt_se))
115 dequeue_rt_entity(rt_se);
116}
117
23b0fdfc
PZ
118static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119{
120 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121}
122
123static int rt_se_boosted(struct sched_rt_entity *rt_se)
124{
125 struct rt_rq *rt_rq = group_rt_rq(rt_se);
126 struct task_struct *p;
127
128 if (rt_rq)
129 return !!rt_rq->rt_nr_boosted;
130
131 p = rt_task_of(rt_se);
132 return p->prio != p->normal_prio;
133}
134
d0b27fa7
PZ
135#ifdef CONFIG_SMP
136static inline cpumask_t sched_rt_period_mask(void)
137{
138 return cpu_rq(smp_processor_id())->rd->span;
139}
6f505b16 140#else
d0b27fa7
PZ
141static inline cpumask_t sched_rt_period_mask(void)
142{
143 return cpu_online_map;
144}
145#endif
6f505b16 146
d0b27fa7
PZ
147static inline
148struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 149{
d0b27fa7
PZ
150 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151}
9f0c1e56 152
ac086bc2
PZ
153static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154{
155 return &rt_rq->tg->rt_bandwidth;
156}
157
d0b27fa7
PZ
158#else
159
160static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161{
ac086bc2
PZ
162 return rt_rq->rt_runtime;
163}
164
165static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166{
167 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
168}
169
170#define for_each_leaf_rt_rq(rt_rq, rq) \
171 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174{
175 return container_of(rt_rq, struct rq, rt);
176}
177
178static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179{
180 struct task_struct *p = rt_task_of(rt_se);
181 struct rq *rq = task_rq(p);
182
183 return &rq->rt;
184}
185
186#define for_each_sched_rt_entity(rt_se) \
187 for (; rt_se; rt_se = NULL)
188
189static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190{
191 return NULL;
192}
193
9f0c1e56 194static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
195{
196}
197
9f0c1e56 198static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
199{
200}
201
23b0fdfc
PZ
202static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203{
204 return rt_rq->rt_throttled;
205}
d0b27fa7
PZ
206
207static inline cpumask_t sched_rt_period_mask(void)
208{
209 return cpu_online_map;
210}
211
212static inline
213struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214{
215 return &cpu_rq(cpu)->rt;
216}
217
ac086bc2
PZ
218static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219{
220 return &def_rt_bandwidth;
221}
222
6f505b16
PZ
223#endif
224
d0b27fa7
PZ
225static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226{
227 int i, idle = 1;
228 cpumask_t span;
229
230 if (rt_b->rt_runtime == RUNTIME_INF)
231 return 1;
232
233 span = sched_rt_period_mask();
234 for_each_cpu_mask(i, span) {
235 int enqueue = 0;
236 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239 spin_lock(&rq->lock);
240 if (rt_rq->rt_time) {
ac086bc2 241 u64 runtime;
d0b27fa7 242
ac086bc2
PZ
243 spin_lock(&rt_rq->rt_runtime_lock);
244 runtime = rt_rq->rt_runtime;
d0b27fa7
PZ
245 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247 rt_rq->rt_throttled = 0;
248 enqueue = 1;
249 }
250 if (rt_rq->rt_time || rt_rq->rt_nr_running)
251 idle = 0;
ac086bc2 252 spin_unlock(&rt_rq->rt_runtime_lock);
d0b27fa7
PZ
253 }
254
255 if (enqueue)
256 sched_rt_rq_enqueue(rt_rq);
257 spin_unlock(&rq->lock);
258 }
259
260 return idle;
261}
262
ac086bc2
PZ
263#ifdef CONFIG_SMP
264static int balance_runtime(struct rt_rq *rt_rq)
265{
266 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268 int i, weight, more = 0;
269 u64 rt_period;
270
271 weight = cpus_weight(rd->span);
272
273 spin_lock(&rt_b->rt_runtime_lock);
274 rt_period = ktime_to_ns(rt_b->rt_period);
275 for_each_cpu_mask(i, rd->span) {
276 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277 s64 diff;
278
279 if (iter == rt_rq)
280 continue;
281
282 spin_lock(&iter->rt_runtime_lock);
283 diff = iter->rt_runtime - iter->rt_time;
284 if (diff > 0) {
285 do_div(diff, weight);
286 if (rt_rq->rt_runtime + diff > rt_period)
287 diff = rt_period - rt_rq->rt_runtime;
288 iter->rt_runtime -= diff;
289 rt_rq->rt_runtime += diff;
290 more = 1;
291 if (rt_rq->rt_runtime == rt_period) {
292 spin_unlock(&iter->rt_runtime_lock);
293 break;
294 }
295 }
296 spin_unlock(&iter->rt_runtime_lock);
297 }
298 spin_unlock(&rt_b->rt_runtime_lock);
299
300 return more;
301}
302#endif
303
6f505b16
PZ
304static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305{
052f1dc7 306#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
307 struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309 if (rt_rq)
310 return rt_rq->highest_prio;
311#endif
312
313 return rt_task_of(rt_se)->prio;
314}
315
9f0c1e56 316static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 317{
9f0c1e56 318 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 319
9f0c1e56 320 if (runtime == RUNTIME_INF)
fa85ae24
PZ
321 return 0;
322
323 if (rt_rq->rt_throttled)
23b0fdfc 324 return rt_rq_throttled(rt_rq);
fa85ae24 325
ac086bc2
PZ
326 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327 return 0;
328
329#ifdef CONFIG_SMP
330 if (rt_rq->rt_time > runtime) {
331 int more;
332
333 spin_unlock(&rt_rq->rt_runtime_lock);
334 more = balance_runtime(rt_rq);
335 spin_lock(&rt_rq->rt_runtime_lock);
336
337 if (more)
338 runtime = sched_rt_runtime(rt_rq);
339 }
340#endif
341
9f0c1e56 342 if (rt_rq->rt_time > runtime) {
6f505b16 343 rt_rq->rt_throttled = 1;
23b0fdfc 344 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 345 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
346 return 1;
347 }
fa85ae24
PZ
348 }
349
350 return 0;
351}
352
bb44e5d1
IM
353/*
354 * Update the current task's runtime statistics. Skip current tasks that
355 * are not in our scheduling class.
356 */
a9957449 357static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
358{
359 struct task_struct *curr = rq->curr;
6f505b16
PZ
360 struct sched_rt_entity *rt_se = &curr->rt;
361 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
362 u64 delta_exec;
363
364 if (!task_has_rt_policy(curr))
365 return;
366
d281918d 367 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
368 if (unlikely((s64)delta_exec < 0))
369 delta_exec = 0;
6cfb0d5d
IM
370
371 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
372
373 curr->se.sum_exec_runtime += delta_exec;
d281918d 374 curr->se.exec_start = rq->clock;
d842de87 375 cpuacct_charge(curr, delta_exec);
fa85ae24 376
ac086bc2 377 spin_lock(&rt_rq->rt_runtime_lock);
6f505b16 378 rt_rq->rt_time += delta_exec;
9f0c1e56 379 if (sched_rt_runtime_exceeded(rt_rq))
fa85ae24 380 resched_task(curr);
ac086bc2 381 spin_unlock(&rt_rq->rt_runtime_lock);
bb44e5d1
IM
382}
383
6f505b16
PZ
384static inline
385void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 386{
6f505b16
PZ
387 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
388 rt_rq->rt_nr_running++;
052f1dc7 389#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
390 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
391 rt_rq->highest_prio = rt_se_prio(rt_se);
392#endif
764a9d6f 393#ifdef CONFIG_SMP
6f505b16
PZ
394 if (rt_se->nr_cpus_allowed > 1) {
395 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 396 rq->rt.rt_nr_migratory++;
6f505b16 397 }
73fe6aae 398
6f505b16
PZ
399 update_rt_migration(rq_of_rt_rq(rt_rq));
400#endif
052f1dc7 401#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
402 if (rt_se_boosted(rt_se))
403 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
404
405 if (rt_rq->tg)
406 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
407#else
408 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 409#endif
63489e45
SR
410}
411
6f505b16
PZ
412static inline
413void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 414{
6f505b16
PZ
415 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
416 WARN_ON(!rt_rq->rt_nr_running);
417 rt_rq->rt_nr_running--;
052f1dc7 418#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 419 if (rt_rq->rt_nr_running) {
764a9d6f
SR
420 struct rt_prio_array *array;
421
6f505b16
PZ
422 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
423 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 424 /* recalculate */
6f505b16
PZ
425 array = &rt_rq->active;
426 rt_rq->highest_prio =
764a9d6f
SR
427 sched_find_first_bit(array->bitmap);
428 } /* otherwise leave rq->highest prio alone */
429 } else
6f505b16
PZ
430 rt_rq->highest_prio = MAX_RT_PRIO;
431#endif
432#ifdef CONFIG_SMP
433 if (rt_se->nr_cpus_allowed > 1) {
434 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 435 rq->rt.rt_nr_migratory--;
6f505b16 436 }
73fe6aae 437
6f505b16 438 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 439#endif /* CONFIG_SMP */
052f1dc7 440#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
441 if (rt_se_boosted(rt_se))
442 rt_rq->rt_nr_boosted--;
443
444 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
445#endif
63489e45
SR
446}
447
6f505b16 448static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 449{
6f505b16
PZ
450 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
451 struct rt_prio_array *array = &rt_rq->active;
452 struct rt_rq *group_rq = group_rt_rq(rt_se);
bb44e5d1 453
23b0fdfc 454 if (group_rq && rt_rq_throttled(group_rq))
6f505b16 455 return;
63489e45 456
6f505b16
PZ
457 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
458 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 459
6f505b16
PZ
460 inc_rt_tasks(rt_se, rt_rq);
461}
462
463static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
464{
465 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
466 struct rt_prio_array *array = &rt_rq->active;
467
468 list_del_init(&rt_se->run_list);
469 if (list_empty(array->queue + rt_se_prio(rt_se)))
470 __clear_bit(rt_se_prio(rt_se), array->bitmap);
471
472 dec_rt_tasks(rt_se, rt_rq);
473}
474
475/*
476 * Because the prio of an upper entry depends on the lower
477 * entries, we must remove entries top - down.
478 *
479 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
480 * doesn't matter much for now, as h=2 for GROUP_SCHED.
481 */
482static void dequeue_rt_stack(struct task_struct *p)
483{
484 struct sched_rt_entity *rt_se, *top_se;
485
486 /*
487 * dequeue all, top - down.
488 */
489 do {
490 rt_se = &p->rt;
491 top_se = NULL;
492 for_each_sched_rt_entity(rt_se) {
493 if (on_rt_rq(rt_se))
494 top_se = rt_se;
495 }
496 if (top_se)
497 dequeue_rt_entity(top_se);
498 } while (top_se);
bb44e5d1
IM
499}
500
501/*
502 * Adding/removing a task to/from a priority array:
503 */
6f505b16
PZ
504static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
505{
506 struct sched_rt_entity *rt_se = &p->rt;
507
508 if (wakeup)
509 rt_se->timeout = 0;
510
511 dequeue_rt_stack(p);
512
513 /*
514 * enqueue everybody, bottom - up.
515 */
516 for_each_sched_rt_entity(rt_se)
517 enqueue_rt_entity(rt_se);
6f505b16
PZ
518}
519
f02231e5 520static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 521{
6f505b16
PZ
522 struct sched_rt_entity *rt_se = &p->rt;
523 struct rt_rq *rt_rq;
bb44e5d1 524
f1e14ef6 525 update_curr_rt(rq);
bb44e5d1 526
6f505b16
PZ
527 dequeue_rt_stack(p);
528
529 /*
530 * re-enqueue all non-empty rt_rq entities.
531 */
532 for_each_sched_rt_entity(rt_se) {
533 rt_rq = group_rt_rq(rt_se);
534 if (rt_rq && rt_rq->rt_nr_running)
535 enqueue_rt_entity(rt_se);
536 }
bb44e5d1
IM
537}
538
539/*
540 * Put task to the end of the run list without the overhead of dequeue
541 * followed by enqueue.
542 */
6f505b16
PZ
543static
544void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
545{
546 struct rt_prio_array *array = &rt_rq->active;
547
548 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
549}
550
bb44e5d1
IM
551static void requeue_task_rt(struct rq *rq, struct task_struct *p)
552{
6f505b16
PZ
553 struct sched_rt_entity *rt_se = &p->rt;
554 struct rt_rq *rt_rq;
bb44e5d1 555
6f505b16
PZ
556 for_each_sched_rt_entity(rt_se) {
557 rt_rq = rt_rq_of_se(rt_se);
558 requeue_rt_entity(rt_rq, rt_se);
559 }
bb44e5d1
IM
560}
561
6f505b16 562static void yield_task_rt(struct rq *rq)
bb44e5d1 563{
4530d7ab 564 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
565}
566
e7693a36 567#ifdef CONFIG_SMP
318e0893
GH
568static int find_lowest_rq(struct task_struct *task);
569
e7693a36
GH
570static int select_task_rq_rt(struct task_struct *p, int sync)
571{
318e0893
GH
572 struct rq *rq = task_rq(p);
573
574 /*
e1f47d89
SR
575 * If the current task is an RT task, then
576 * try to see if we can wake this RT task up on another
577 * runqueue. Otherwise simply start this RT task
578 * on its current runqueue.
579 *
580 * We want to avoid overloading runqueues. Even if
581 * the RT task is of higher priority than the current RT task.
582 * RT tasks behave differently than other tasks. If
583 * one gets preempted, we try to push it off to another queue.
584 * So trying to keep a preempting RT task on the same
585 * cache hot CPU will force the running RT task to
586 * a cold CPU. So we waste all the cache for the lower
587 * RT task in hopes of saving some of a RT task
588 * that is just being woken and probably will have
589 * cold cache anyway.
318e0893 590 */
17b3279b 591 if (unlikely(rt_task(rq->curr)) &&
6f505b16 592 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
593 int cpu = find_lowest_rq(p);
594
595 return (cpu == -1) ? task_cpu(p) : cpu;
596 }
597
598 /*
599 * Otherwise, just let it ride on the affined RQ and the
600 * post-schedule router will push the preempted task away
601 */
e7693a36
GH
602 return task_cpu(p);
603}
604#endif /* CONFIG_SMP */
605
bb44e5d1
IM
606/*
607 * Preempt the current task with a newly woken task if needed:
608 */
609static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
610{
611 if (p->prio < rq->curr->prio)
612 resched_task(rq->curr);
613}
614
6f505b16
PZ
615static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
616 struct rt_rq *rt_rq)
bb44e5d1 617{
6f505b16
PZ
618 struct rt_prio_array *array = &rt_rq->active;
619 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
620 struct list_head *queue;
621 int idx;
622
623 idx = sched_find_first_bit(array->bitmap);
6f505b16 624 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
625
626 queue = array->queue + idx;
6f505b16 627 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 628
6f505b16
PZ
629 return next;
630}
bb44e5d1 631
6f505b16
PZ
632static struct task_struct *pick_next_task_rt(struct rq *rq)
633{
634 struct sched_rt_entity *rt_se;
635 struct task_struct *p;
636 struct rt_rq *rt_rq;
bb44e5d1 637
6f505b16
PZ
638 rt_rq = &rq->rt;
639
640 if (unlikely(!rt_rq->rt_nr_running))
641 return NULL;
642
23b0fdfc 643 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
644 return NULL;
645
646 do {
647 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 648 BUG_ON(!rt_se);
6f505b16
PZ
649 rt_rq = group_rt_rq(rt_se);
650 } while (rt_rq);
651
652 p = rt_task_of(rt_se);
653 p->se.exec_start = rq->clock;
654 return p;
bb44e5d1
IM
655}
656
31ee529c 657static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 658{
f1e14ef6 659 update_curr_rt(rq);
bb44e5d1
IM
660 p->se.exec_start = 0;
661}
662
681f3e68 663#ifdef CONFIG_SMP
6f505b16 664
e8fa1362
SR
665/* Only try algorithms three times */
666#define RT_MAX_TRIES 3
667
668static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
669static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
670
f65eda4f
SR
671static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
672{
673 if (!task_running(rq, p) &&
73fe6aae 674 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 675 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
676 return 1;
677 return 0;
678}
679
e8fa1362 680/* Return the second highest RT task, NULL otherwise */
79064fbf 681static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 682{
6f505b16
PZ
683 struct task_struct *next = NULL;
684 struct sched_rt_entity *rt_se;
685 struct rt_prio_array *array;
686 struct rt_rq *rt_rq;
e8fa1362
SR
687 int idx;
688
6f505b16
PZ
689 for_each_leaf_rt_rq(rt_rq, rq) {
690 array = &rt_rq->active;
691 idx = sched_find_first_bit(array->bitmap);
692 next_idx:
693 if (idx >= MAX_RT_PRIO)
694 continue;
695 if (next && next->prio < idx)
696 continue;
697 list_for_each_entry(rt_se, array->queue + idx, run_list) {
698 struct task_struct *p = rt_task_of(rt_se);
699 if (pick_rt_task(rq, p, cpu)) {
700 next = p;
701 break;
702 }
703 }
704 if (!next) {
705 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
706 goto next_idx;
707 }
f65eda4f
SR
708 }
709
e8fa1362
SR
710 return next;
711}
712
713static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
714
6e1254d2 715static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 716{
6e1254d2 717 int lowest_prio = -1;
610bf056 718 int lowest_cpu = -1;
06f90dbd 719 int count = 0;
610bf056 720 int cpu;
e8fa1362 721
637f5085 722 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
e8fa1362 723
07b4032c
GH
724 /*
725 * Scan each rq for the lowest prio.
726 */
610bf056 727 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 728 struct rq *rq = cpu_rq(cpu);
e8fa1362 729
07b4032c
GH
730 /* We look for lowest RT prio or non-rt CPU */
731 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
732 /*
733 * if we already found a low RT queue
734 * and now we found this non-rt queue
735 * clear the mask and set our bit.
736 * Otherwise just return the queue as is
737 * and the count==1 will cause the algorithm
738 * to use the first bit found.
739 */
740 if (lowest_cpu != -1) {
6e1254d2 741 cpus_clear(*lowest_mask);
610bf056
SR
742 cpu_set(rq->cpu, *lowest_mask);
743 }
6e1254d2 744 return 1;
07b4032c
GH
745 }
746
747 /* no locking for now */
6e1254d2
GH
748 if ((rq->rt.highest_prio > task->prio)
749 && (rq->rt.highest_prio >= lowest_prio)) {
750 if (rq->rt.highest_prio > lowest_prio) {
751 /* new low - clear old data */
752 lowest_prio = rq->rt.highest_prio;
610bf056
SR
753 lowest_cpu = cpu;
754 count = 0;
6e1254d2 755 }
06f90dbd 756 count++;
610bf056
SR
757 } else
758 cpu_clear(cpu, *lowest_mask);
759 }
760
761 /*
762 * Clear out all the set bits that represent
763 * runqueues that were of higher prio than
764 * the lowest_prio.
765 */
766 if (lowest_cpu > 0) {
767 /*
768 * Perhaps we could add another cpumask op to
769 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
770 * Then that could be optimized to use memset and such.
771 */
772 for_each_cpu_mask(cpu, *lowest_mask) {
773 if (cpu >= lowest_cpu)
774 break;
775 cpu_clear(cpu, *lowest_mask);
e8fa1362 776 }
07b4032c
GH
777 }
778
06f90dbd 779 return count;
6e1254d2
GH
780}
781
782static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
783{
784 int first;
785
786 /* "this_cpu" is cheaper to preempt than a remote processor */
787 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
788 return this_cpu;
789
790 first = first_cpu(*mask);
791 if (first != NR_CPUS)
792 return first;
793
794 return -1;
795}
796
797static int find_lowest_rq(struct task_struct *task)
798{
799 struct sched_domain *sd;
800 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
801 int this_cpu = smp_processor_id();
802 int cpu = task_cpu(task);
06f90dbd
GH
803 int count = find_lowest_cpus(task, lowest_mask);
804
805 if (!count)
806 return -1; /* No targets found */
6e1254d2 807
06f90dbd
GH
808 /*
809 * There is no sense in performing an optimal search if only one
810 * target is found.
811 */
812 if (count == 1)
813 return first_cpu(*lowest_mask);
6e1254d2
GH
814
815 /*
816 * At this point we have built a mask of cpus representing the
817 * lowest priority tasks in the system. Now we want to elect
818 * the best one based on our affinity and topology.
819 *
820 * We prioritize the last cpu that the task executed on since
821 * it is most likely cache-hot in that location.
822 */
823 if (cpu_isset(cpu, *lowest_mask))
824 return cpu;
825
826 /*
827 * Otherwise, we consult the sched_domains span maps to figure
828 * out which cpu is logically closest to our hot cache data.
829 */
830 if (this_cpu == cpu)
831 this_cpu = -1; /* Skip this_cpu opt if the same */
832
833 for_each_domain(cpu, sd) {
834 if (sd->flags & SD_WAKE_AFFINE) {
835 cpumask_t domain_mask;
836 int best_cpu;
837
838 cpus_and(domain_mask, sd->span, *lowest_mask);
839
840 best_cpu = pick_optimal_cpu(this_cpu,
841 &domain_mask);
842 if (best_cpu != -1)
843 return best_cpu;
844 }
845 }
846
847 /*
848 * And finally, if there were no matches within the domains
849 * just give the caller *something* to work with from the compatible
850 * locations.
851 */
852 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
853}
854
855/* Will lock the rq it finds */
4df64c0b 856static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
857{
858 struct rq *lowest_rq = NULL;
07b4032c 859 int tries;
4df64c0b 860 int cpu;
e8fa1362 861
07b4032c
GH
862 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
863 cpu = find_lowest_rq(task);
864
2de0b463 865 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
866 break;
867
07b4032c
GH
868 lowest_rq = cpu_rq(cpu);
869
e8fa1362 870 /* if the prio of this runqueue changed, try again */
07b4032c 871 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
872 /*
873 * We had to unlock the run queue. In
874 * the mean time, task could have
875 * migrated already or had its affinity changed.
876 * Also make sure that it wasn't scheduled on its rq.
877 */
07b4032c 878 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
879 !cpu_isset(lowest_rq->cpu,
880 task->cpus_allowed) ||
07b4032c 881 task_running(rq, task) ||
e8fa1362 882 !task->se.on_rq)) {
4df64c0b 883
e8fa1362
SR
884 spin_unlock(&lowest_rq->lock);
885 lowest_rq = NULL;
886 break;
887 }
888 }
889
890 /* If this rq is still suitable use it. */
891 if (lowest_rq->rt.highest_prio > task->prio)
892 break;
893
894 /* try again */
895 spin_unlock(&lowest_rq->lock);
896 lowest_rq = NULL;
897 }
898
899 return lowest_rq;
900}
901
902/*
903 * If the current CPU has more than one RT task, see if the non
904 * running task can migrate over to a CPU that is running a task
905 * of lesser priority.
906 */
697f0a48 907static int push_rt_task(struct rq *rq)
e8fa1362
SR
908{
909 struct task_struct *next_task;
910 struct rq *lowest_rq;
911 int ret = 0;
912 int paranoid = RT_MAX_TRIES;
913
a22d7fc1
GH
914 if (!rq->rt.overloaded)
915 return 0;
916
697f0a48 917 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
918 if (!next_task)
919 return 0;
920
921 retry:
697f0a48 922 if (unlikely(next_task == rq->curr)) {
f65eda4f 923 WARN_ON(1);
e8fa1362 924 return 0;
f65eda4f 925 }
e8fa1362
SR
926
927 /*
928 * It's possible that the next_task slipped in of
929 * higher priority than current. If that's the case
930 * just reschedule current.
931 */
697f0a48
GH
932 if (unlikely(next_task->prio < rq->curr->prio)) {
933 resched_task(rq->curr);
e8fa1362
SR
934 return 0;
935 }
936
697f0a48 937 /* We might release rq lock */
e8fa1362
SR
938 get_task_struct(next_task);
939
940 /* find_lock_lowest_rq locks the rq if found */
697f0a48 941 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
942 if (!lowest_rq) {
943 struct task_struct *task;
944 /*
697f0a48 945 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
946 * so it is possible that next_task has changed.
947 * If it has, then try again.
948 */
697f0a48 949 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
950 if (unlikely(task != next_task) && task && paranoid--) {
951 put_task_struct(next_task);
952 next_task = task;
953 goto retry;
954 }
955 goto out;
956 }
957
697f0a48 958 deactivate_task(rq, next_task, 0);
e8fa1362
SR
959 set_task_cpu(next_task, lowest_rq->cpu);
960 activate_task(lowest_rq, next_task, 0);
961
962 resched_task(lowest_rq->curr);
963
964 spin_unlock(&lowest_rq->lock);
965
966 ret = 1;
967out:
968 put_task_struct(next_task);
969
970 return ret;
971}
972
973/*
974 * TODO: Currently we just use the second highest prio task on
975 * the queue, and stop when it can't migrate (or there's
976 * no more RT tasks). There may be a case where a lower
977 * priority RT task has a different affinity than the
978 * higher RT task. In this case the lower RT task could
979 * possibly be able to migrate where as the higher priority
980 * RT task could not. We currently ignore this issue.
981 * Enhancements are welcome!
982 */
983static void push_rt_tasks(struct rq *rq)
984{
985 /* push_rt_task will return true if it moved an RT */
986 while (push_rt_task(rq))
987 ;
988}
989
f65eda4f
SR
990static int pull_rt_task(struct rq *this_rq)
991{
80bf3171
IM
992 int this_cpu = this_rq->cpu, ret = 0, cpu;
993 struct task_struct *p, *next;
f65eda4f 994 struct rq *src_rq;
f65eda4f 995
637f5085 996 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
997 return 0;
998
999 next = pick_next_task_rt(this_rq);
1000
637f5085 1001 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1002 if (this_cpu == cpu)
1003 continue;
1004
1005 src_rq = cpu_rq(cpu);
f65eda4f
SR
1006 /*
1007 * We can potentially drop this_rq's lock in
1008 * double_lock_balance, and another CPU could
1009 * steal our next task - hence we must cause
1010 * the caller to recalculate the next task
1011 * in that case:
1012 */
1013 if (double_lock_balance(this_rq, src_rq)) {
1014 struct task_struct *old_next = next;
80bf3171 1015
f65eda4f
SR
1016 next = pick_next_task_rt(this_rq);
1017 if (next != old_next)
1018 ret = 1;
1019 }
1020
1021 /*
1022 * Are there still pullable RT tasks?
1023 */
614ee1f6
MG
1024 if (src_rq->rt.rt_nr_running <= 1)
1025 goto skip;
f65eda4f 1026
f65eda4f
SR
1027 p = pick_next_highest_task_rt(src_rq, this_cpu);
1028
1029 /*
1030 * Do we have an RT task that preempts
1031 * the to-be-scheduled task?
1032 */
1033 if (p && (!next || (p->prio < next->prio))) {
1034 WARN_ON(p == src_rq->curr);
1035 WARN_ON(!p->se.on_rq);
1036
1037 /*
1038 * There's a chance that p is higher in priority
1039 * than what's currently running on its cpu.
1040 * This is just that p is wakeing up and hasn't
1041 * had a chance to schedule. We only pull
1042 * p if it is lower in priority than the
1043 * current task on the run queue or
1044 * this_rq next task is lower in prio than
1045 * the current task on that rq.
1046 */
1047 if (p->prio < src_rq->curr->prio ||
1048 (next && next->prio < src_rq->curr->prio))
614ee1f6 1049 goto skip;
f65eda4f
SR
1050
1051 ret = 1;
1052
1053 deactivate_task(src_rq, p, 0);
1054 set_task_cpu(p, this_cpu);
1055 activate_task(this_rq, p, 0);
1056 /*
1057 * We continue with the search, just in
1058 * case there's an even higher prio task
1059 * in another runqueue. (low likelyhood
1060 * but possible)
80bf3171 1061 *
f65eda4f
SR
1062 * Update next so that we won't pick a task
1063 * on another cpu with a priority lower (or equal)
1064 * than the one we just picked.
1065 */
1066 next = p;
1067
1068 }
614ee1f6 1069 skip:
f65eda4f
SR
1070 spin_unlock(&src_rq->lock);
1071 }
1072
1073 return ret;
1074}
1075
9a897c5a 1076static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1077{
1078 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1079 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1080 pull_rt_task(rq);
1081}
1082
9a897c5a 1083static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1084{
1085 /*
1086 * If we have more than one rt_task queued, then
1087 * see if we can push the other rt_tasks off to other CPUS.
1088 * Note we may release the rq lock, and since
1089 * the lock was owned by prev, we need to release it
1090 * first via finish_lock_switch and then reaquire it here.
1091 */
a22d7fc1 1092 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1093 spin_lock_irq(&rq->lock);
1094 push_rt_tasks(rq);
1095 spin_unlock_irq(&rq->lock);
1096 }
1097}
1098
4642dafd 1099
9a897c5a 1100static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1101{
9a897c5a 1102 if (!task_running(rq, p) &&
a22d7fc1
GH
1103 (p->prio >= rq->rt.highest_prio) &&
1104 rq->rt.overloaded)
4642dafd
SR
1105 push_rt_tasks(rq);
1106}
1107
43010659 1108static unsigned long
bb44e5d1 1109load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1110 unsigned long max_load_move,
1111 struct sched_domain *sd, enum cpu_idle_type idle,
1112 int *all_pinned, int *this_best_prio)
bb44e5d1 1113{
c7a1e46a
SR
1114 /* don't touch RT tasks */
1115 return 0;
e1d1484f
PW
1116}
1117
1118static int
1119move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1120 struct sched_domain *sd, enum cpu_idle_type idle)
1121{
c7a1e46a
SR
1122 /* don't touch RT tasks */
1123 return 0;
bb44e5d1 1124}
deeeccd4 1125
cd8ba7cd
MT
1126static void set_cpus_allowed_rt(struct task_struct *p,
1127 const cpumask_t *new_mask)
73fe6aae
GH
1128{
1129 int weight = cpus_weight(*new_mask);
1130
1131 BUG_ON(!rt_task(p));
1132
1133 /*
1134 * Update the migration status of the RQ if we have an RT task
1135 * which is running AND changing its weight value.
1136 */
6f505b16 1137 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1138 struct rq *rq = task_rq(p);
1139
6f505b16 1140 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1141 rq->rt.rt_nr_migratory++;
6f505b16 1142 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1143 BUG_ON(!rq->rt.rt_nr_migratory);
1144 rq->rt.rt_nr_migratory--;
1145 }
1146
1147 update_rt_migration(rq);
1148 }
1149
1150 p->cpus_allowed = *new_mask;
6f505b16 1151 p->rt.nr_cpus_allowed = weight;
73fe6aae 1152}
deeeccd4 1153
bdd7c81b
IM
1154/* Assumes rq->lock is held */
1155static void join_domain_rt(struct rq *rq)
1156{
1157 if (rq->rt.overloaded)
1158 rt_set_overload(rq);
1159}
1160
1161/* Assumes rq->lock is held */
1162static void leave_domain_rt(struct rq *rq)
1163{
1164 if (rq->rt.overloaded)
1165 rt_clear_overload(rq);
1166}
cb469845
SR
1167
1168/*
1169 * When switch from the rt queue, we bring ourselves to a position
1170 * that we might want to pull RT tasks from other runqueues.
1171 */
1172static void switched_from_rt(struct rq *rq, struct task_struct *p,
1173 int running)
1174{
1175 /*
1176 * If there are other RT tasks then we will reschedule
1177 * and the scheduling of the other RT tasks will handle
1178 * the balancing. But if we are the last RT task
1179 * we may need to handle the pulling of RT tasks
1180 * now.
1181 */
1182 if (!rq->rt.rt_nr_running)
1183 pull_rt_task(rq);
1184}
1185#endif /* CONFIG_SMP */
1186
1187/*
1188 * When switching a task to RT, we may overload the runqueue
1189 * with RT tasks. In this case we try to push them off to
1190 * other runqueues.
1191 */
1192static void switched_to_rt(struct rq *rq, struct task_struct *p,
1193 int running)
1194{
1195 int check_resched = 1;
1196
1197 /*
1198 * If we are already running, then there's nothing
1199 * that needs to be done. But if we are not running
1200 * we may need to preempt the current running task.
1201 * If that current running task is also an RT task
1202 * then see if we can move to another run queue.
1203 */
1204 if (!running) {
1205#ifdef CONFIG_SMP
1206 if (rq->rt.overloaded && push_rt_task(rq) &&
1207 /* Don't resched if we changed runqueues */
1208 rq != task_rq(p))
1209 check_resched = 0;
1210#endif /* CONFIG_SMP */
1211 if (check_resched && p->prio < rq->curr->prio)
1212 resched_task(rq->curr);
1213 }
1214}
1215
1216/*
1217 * Priority of the task has changed. This may cause
1218 * us to initiate a push or pull.
1219 */
1220static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1221 int oldprio, int running)
1222{
1223 if (running) {
1224#ifdef CONFIG_SMP
1225 /*
1226 * If our priority decreases while running, we
1227 * may need to pull tasks to this runqueue.
1228 */
1229 if (oldprio < p->prio)
1230 pull_rt_task(rq);
1231 /*
1232 * If there's a higher priority task waiting to run
6fa46fa5
SR
1233 * then reschedule. Note, the above pull_rt_task
1234 * can release the rq lock and p could migrate.
1235 * Only reschedule if p is still on the same runqueue.
cb469845 1236 */
6fa46fa5 1237 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1238 resched_task(p);
1239#else
1240 /* For UP simply resched on drop of prio */
1241 if (oldprio < p->prio)
1242 resched_task(p);
e8fa1362 1243#endif /* CONFIG_SMP */
cb469845
SR
1244 } else {
1245 /*
1246 * This task is not running, but if it is
1247 * greater than the current running task
1248 * then reschedule.
1249 */
1250 if (p->prio < rq->curr->prio)
1251 resched_task(rq->curr);
1252 }
1253}
1254
78f2c7db
PZ
1255static void watchdog(struct rq *rq, struct task_struct *p)
1256{
1257 unsigned long soft, hard;
1258
1259 if (!p->signal)
1260 return;
1261
1262 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1263 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1264
1265 if (soft != RLIM_INFINITY) {
1266 unsigned long next;
1267
1268 p->rt.timeout++;
1269 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1270 if (p->rt.timeout > next)
78f2c7db
PZ
1271 p->it_sched_expires = p->se.sum_exec_runtime;
1272 }
1273}
bb44e5d1 1274
8f4d37ec 1275static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1276{
67e2be02
PZ
1277 update_curr_rt(rq);
1278
78f2c7db
PZ
1279 watchdog(rq, p);
1280
bb44e5d1
IM
1281 /*
1282 * RR tasks need a special form of timeslice management.
1283 * FIFO tasks have no timeslices.
1284 */
1285 if (p->policy != SCHED_RR)
1286 return;
1287
fa717060 1288 if (--p->rt.time_slice)
bb44e5d1
IM
1289 return;
1290
fa717060 1291 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1292
98fbc798
DA
1293 /*
1294 * Requeue to the end of queue if we are not the only element
1295 * on the queue:
1296 */
fa717060 1297 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1298 requeue_task_rt(rq, p);
1299 set_tsk_need_resched(p);
1300 }
bb44e5d1
IM
1301}
1302
83b699ed
SV
1303static void set_curr_task_rt(struct rq *rq)
1304{
1305 struct task_struct *p = rq->curr;
1306
1307 p->se.exec_start = rq->clock;
1308}
1309
5522d5d5
IM
1310const struct sched_class rt_sched_class = {
1311 .next = &fair_sched_class,
bb44e5d1
IM
1312 .enqueue_task = enqueue_task_rt,
1313 .dequeue_task = dequeue_task_rt,
1314 .yield_task = yield_task_rt,
e7693a36
GH
1315#ifdef CONFIG_SMP
1316 .select_task_rq = select_task_rq_rt,
1317#endif /* CONFIG_SMP */
bb44e5d1
IM
1318
1319 .check_preempt_curr = check_preempt_curr_rt,
1320
1321 .pick_next_task = pick_next_task_rt,
1322 .put_prev_task = put_prev_task_rt,
1323
681f3e68 1324#ifdef CONFIG_SMP
bb44e5d1 1325 .load_balance = load_balance_rt,
e1d1484f 1326 .move_one_task = move_one_task_rt,
73fe6aae 1327 .set_cpus_allowed = set_cpus_allowed_rt,
bdd7c81b
IM
1328 .join_domain = join_domain_rt,
1329 .leave_domain = leave_domain_rt,
9a897c5a
SR
1330 .pre_schedule = pre_schedule_rt,
1331 .post_schedule = post_schedule_rt,
1332 .task_wake_up = task_wake_up_rt,
cb469845 1333 .switched_from = switched_from_rt,
681f3e68 1334#endif
bb44e5d1 1335
83b699ed 1336 .set_curr_task = set_curr_task_rt,
bb44e5d1 1337 .task_tick = task_tick_rt,
cb469845
SR
1338
1339 .prio_changed = prio_changed_rt,
1340 .switched_to = switched_to_rt,
bb44e5d1 1341};