]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
sched: move weighted_cpuload into #ifdef CONFIG_SMP section
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
d0b27fa7
PZ
164#else
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
201{
202}
203
9f0c1e56 204static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
205{
206}
207
23b0fdfc
PZ
208static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209{
210 return rt_rq->rt_throttled;
211}
d0b27fa7
PZ
212
213static inline cpumask_t sched_rt_period_mask(void)
214{
215 return cpu_online_map;
216}
217
218static inline
219struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220{
221 return &cpu_rq(cpu)->rt;
222}
223
ac086bc2
PZ
224static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225{
226 return &def_rt_bandwidth;
227}
228
6f505b16
PZ
229#endif
230
d0b27fa7
PZ
231static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
232{
233 int i, idle = 1;
234 cpumask_t span;
235
236 if (rt_b->rt_runtime == RUNTIME_INF)
237 return 1;
238
239 span = sched_rt_period_mask();
240 for_each_cpu_mask(i, span) {
241 int enqueue = 0;
242 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
243 struct rq *rq = rq_of_rt_rq(rt_rq);
244
245 spin_lock(&rq->lock);
246 if (rt_rq->rt_time) {
ac086bc2 247 u64 runtime;
d0b27fa7 248
ac086bc2
PZ
249 spin_lock(&rt_rq->rt_runtime_lock);
250 runtime = rt_rq->rt_runtime;
d0b27fa7
PZ
251 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
252 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
253 rt_rq->rt_throttled = 0;
254 enqueue = 1;
255 }
256 if (rt_rq->rt_time || rt_rq->rt_nr_running)
257 idle = 0;
ac086bc2 258 spin_unlock(&rt_rq->rt_runtime_lock);
d0b27fa7
PZ
259 }
260
261 if (enqueue)
262 sched_rt_rq_enqueue(rt_rq);
263 spin_unlock(&rq->lock);
264 }
265
266 return idle;
267}
268
ac086bc2
PZ
269#ifdef CONFIG_SMP
270static int balance_runtime(struct rt_rq *rt_rq)
271{
272 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
273 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
274 int i, weight, more = 0;
275 u64 rt_period;
276
277 weight = cpus_weight(rd->span);
278
279 spin_lock(&rt_b->rt_runtime_lock);
280 rt_period = ktime_to_ns(rt_b->rt_period);
281 for_each_cpu_mask(i, rd->span) {
282 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
283 s64 diff;
284
285 if (iter == rt_rq)
286 continue;
287
288 spin_lock(&iter->rt_runtime_lock);
289 diff = iter->rt_runtime - iter->rt_time;
290 if (diff > 0) {
291 do_div(diff, weight);
292 if (rt_rq->rt_runtime + diff > rt_period)
293 diff = rt_period - rt_rq->rt_runtime;
294 iter->rt_runtime -= diff;
295 rt_rq->rt_runtime += diff;
296 more = 1;
297 if (rt_rq->rt_runtime == rt_period) {
298 spin_unlock(&iter->rt_runtime_lock);
299 break;
300 }
301 }
302 spin_unlock(&iter->rt_runtime_lock);
303 }
304 spin_unlock(&rt_b->rt_runtime_lock);
305
306 return more;
307}
308#endif
309
6f505b16
PZ
310static inline int rt_se_prio(struct sched_rt_entity *rt_se)
311{
052f1dc7 312#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
313 struct rt_rq *rt_rq = group_rt_rq(rt_se);
314
315 if (rt_rq)
316 return rt_rq->highest_prio;
317#endif
318
319 return rt_task_of(rt_se)->prio;
320}
321
9f0c1e56 322static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 323{
9f0c1e56 324 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 325
9f0c1e56 326 if (runtime == RUNTIME_INF)
fa85ae24
PZ
327 return 0;
328
329 if (rt_rq->rt_throttled)
23b0fdfc 330 return rt_rq_throttled(rt_rq);
fa85ae24 331
ac086bc2
PZ
332 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
333 return 0;
334
335#ifdef CONFIG_SMP
336 if (rt_rq->rt_time > runtime) {
337 int more;
338
339 spin_unlock(&rt_rq->rt_runtime_lock);
340 more = balance_runtime(rt_rq);
341 spin_lock(&rt_rq->rt_runtime_lock);
342
343 if (more)
344 runtime = sched_rt_runtime(rt_rq);
345 }
346#endif
347
9f0c1e56 348 if (rt_rq->rt_time > runtime) {
6f505b16 349 rt_rq->rt_throttled = 1;
23b0fdfc 350 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 351 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
352 return 1;
353 }
fa85ae24
PZ
354 }
355
356 return 0;
357}
358
bb44e5d1
IM
359/*
360 * Update the current task's runtime statistics. Skip current tasks that
361 * are not in our scheduling class.
362 */
a9957449 363static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
364{
365 struct task_struct *curr = rq->curr;
6f505b16
PZ
366 struct sched_rt_entity *rt_se = &curr->rt;
367 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
368 u64 delta_exec;
369
370 if (!task_has_rt_policy(curr))
371 return;
372
d281918d 373 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
374 if (unlikely((s64)delta_exec < 0))
375 delta_exec = 0;
6cfb0d5d
IM
376
377 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
378
379 curr->se.sum_exec_runtime += delta_exec;
d281918d 380 curr->se.exec_start = rq->clock;
d842de87 381 cpuacct_charge(curr, delta_exec);
fa85ae24 382
354d60c2
DG
383 for_each_sched_rt_entity(rt_se) {
384 rt_rq = rt_rq_of_se(rt_se);
385
386 spin_lock(&rt_rq->rt_runtime_lock);
387 rt_rq->rt_time += delta_exec;
388 if (sched_rt_runtime_exceeded(rt_rq))
389 resched_task(curr);
390 spin_unlock(&rt_rq->rt_runtime_lock);
391 }
bb44e5d1
IM
392}
393
6f505b16
PZ
394static inline
395void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 396{
6f505b16
PZ
397 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
398 rt_rq->rt_nr_running++;
052f1dc7 399#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2
GH
400 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
401 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 402
1100ac91
IM
403 rt_rq->highest_prio = rt_se_prio(rt_se);
404#ifdef CONFIG_SMP
1f11eb6a
GH
405 if (rq->online)
406 cpupri_set(&rq->rd->cpupri, rq->cpu,
407 rt_se_prio(rt_se));
1100ac91 408#endif
6e0534f2 409 }
6f505b16 410#endif
764a9d6f 411#ifdef CONFIG_SMP
6f505b16
PZ
412 if (rt_se->nr_cpus_allowed > 1) {
413 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 414
73fe6aae 415 rq->rt.rt_nr_migratory++;
6f505b16 416 }
73fe6aae 417
6f505b16
PZ
418 update_rt_migration(rq_of_rt_rq(rt_rq));
419#endif
052f1dc7 420#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
421 if (rt_se_boosted(rt_se))
422 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
423
424 if (rt_rq->tg)
425 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
426#else
427 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 428#endif
63489e45
SR
429}
430
6f505b16
PZ
431static inline
432void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 433{
6e0534f2
GH
434#ifdef CONFIG_SMP
435 int highest_prio = rt_rq->highest_prio;
436#endif
437
6f505b16
PZ
438 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
439 WARN_ON(!rt_rq->rt_nr_running);
440 rt_rq->rt_nr_running--;
052f1dc7 441#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 442 if (rt_rq->rt_nr_running) {
764a9d6f
SR
443 struct rt_prio_array *array;
444
6f505b16
PZ
445 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
446 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 447 /* recalculate */
6f505b16
PZ
448 array = &rt_rq->active;
449 rt_rq->highest_prio =
764a9d6f
SR
450 sched_find_first_bit(array->bitmap);
451 } /* otherwise leave rq->highest prio alone */
452 } else
6f505b16
PZ
453 rt_rq->highest_prio = MAX_RT_PRIO;
454#endif
455#ifdef CONFIG_SMP
456 if (rt_se->nr_cpus_allowed > 1) {
457 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 458 rq->rt.rt_nr_migratory--;
6f505b16 459 }
73fe6aae 460
6e0534f2
GH
461 if (rt_rq->highest_prio != highest_prio) {
462 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
463
464 if (rq->online)
465 cpupri_set(&rq->rd->cpupri, rq->cpu,
466 rt_rq->highest_prio);
6e0534f2
GH
467 }
468
6f505b16 469 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 470#endif /* CONFIG_SMP */
052f1dc7 471#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
472 if (rt_se_boosted(rt_se))
473 rt_rq->rt_nr_boosted--;
474
475 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
476#endif
63489e45
SR
477}
478
6f505b16 479static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 480{
6f505b16
PZ
481 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
482 struct rt_prio_array *array = &rt_rq->active;
483 struct rt_rq *group_rq = group_rt_rq(rt_se);
bb44e5d1 484
23b0fdfc 485 if (group_rq && rt_rq_throttled(group_rq))
6f505b16 486 return;
63489e45 487
45c01e82
GH
488 if (rt_se->nr_cpus_allowed == 1)
489 list_add_tail(&rt_se->run_list,
490 array->xqueue + rt_se_prio(rt_se));
491 else
492 list_add_tail(&rt_se->run_list,
493 array->squeue + rt_se_prio(rt_se));
494
6f505b16 495 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 496
6f505b16
PZ
497 inc_rt_tasks(rt_se, rt_rq);
498}
499
500static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
501{
502 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
503 struct rt_prio_array *array = &rt_rq->active;
504
505 list_del_init(&rt_se->run_list);
45c01e82
GH
506 if (list_empty(array->squeue + rt_se_prio(rt_se))
507 && list_empty(array->xqueue + rt_se_prio(rt_se)))
6f505b16
PZ
508 __clear_bit(rt_se_prio(rt_se), array->bitmap);
509
510 dec_rt_tasks(rt_se, rt_rq);
511}
512
513/*
514 * Because the prio of an upper entry depends on the lower
515 * entries, we must remove entries top - down.
6f505b16
PZ
516 */
517static void dequeue_rt_stack(struct task_struct *p)
518{
58d6c2d7 519 struct sched_rt_entity *rt_se, *back = NULL;
6f505b16 520
58d6c2d7
PZ
521 rt_se = &p->rt;
522 for_each_sched_rt_entity(rt_se) {
523 rt_se->back = back;
524 back = rt_se;
525 }
526
527 for (rt_se = back; rt_se; rt_se = rt_se->back) {
528 if (on_rt_rq(rt_se))
529 dequeue_rt_entity(rt_se);
530 }
bb44e5d1
IM
531}
532
533/*
534 * Adding/removing a task to/from a priority array:
535 */
6f505b16
PZ
536static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
537{
538 struct sched_rt_entity *rt_se = &p->rt;
539
540 if (wakeup)
541 rt_se->timeout = 0;
542
543 dequeue_rt_stack(p);
544
545 /*
546 * enqueue everybody, bottom - up.
547 */
548 for_each_sched_rt_entity(rt_se)
549 enqueue_rt_entity(rt_se);
6f505b16
PZ
550}
551
f02231e5 552static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 553{
6f505b16
PZ
554 struct sched_rt_entity *rt_se = &p->rt;
555 struct rt_rq *rt_rq;
bb44e5d1 556
f1e14ef6 557 update_curr_rt(rq);
bb44e5d1 558
6f505b16
PZ
559 dequeue_rt_stack(p);
560
561 /*
562 * re-enqueue all non-empty rt_rq entities.
563 */
564 for_each_sched_rt_entity(rt_se) {
565 rt_rq = group_rt_rq(rt_se);
566 if (rt_rq && rt_rq->rt_nr_running)
567 enqueue_rt_entity(rt_se);
568 }
bb44e5d1
IM
569}
570
571/*
572 * Put task to the end of the run list without the overhead of dequeue
573 * followed by enqueue.
45c01e82
GH
574 *
575 * Note: We always enqueue the task to the shared-queue, regardless of its
576 * previous position w.r.t. exclusive vs shared. This is so that exclusive RR
577 * tasks fairly round-robin with all tasks on the runqueue, not just other
578 * exclusive tasks.
bb44e5d1 579 */
6f505b16
PZ
580static
581void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
582{
583 struct rt_prio_array *array = &rt_rq->active;
584
45c01e82
GH
585 list_del_init(&rt_se->run_list);
586 list_add_tail(&rt_se->run_list, array->squeue + rt_se_prio(rt_se));
6f505b16
PZ
587}
588
bb44e5d1
IM
589static void requeue_task_rt(struct rq *rq, struct task_struct *p)
590{
6f505b16
PZ
591 struct sched_rt_entity *rt_se = &p->rt;
592 struct rt_rq *rt_rq;
bb44e5d1 593
6f505b16
PZ
594 for_each_sched_rt_entity(rt_se) {
595 rt_rq = rt_rq_of_se(rt_se);
596 requeue_rt_entity(rt_rq, rt_se);
597 }
bb44e5d1
IM
598}
599
6f505b16 600static void yield_task_rt(struct rq *rq)
bb44e5d1 601{
4530d7ab 602 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
603}
604
e7693a36 605#ifdef CONFIG_SMP
318e0893
GH
606static int find_lowest_rq(struct task_struct *task);
607
e7693a36
GH
608static int select_task_rq_rt(struct task_struct *p, int sync)
609{
318e0893
GH
610 struct rq *rq = task_rq(p);
611
612 /*
e1f47d89
SR
613 * If the current task is an RT task, then
614 * try to see if we can wake this RT task up on another
615 * runqueue. Otherwise simply start this RT task
616 * on its current runqueue.
617 *
618 * We want to avoid overloading runqueues. Even if
619 * the RT task is of higher priority than the current RT task.
620 * RT tasks behave differently than other tasks. If
621 * one gets preempted, we try to push it off to another queue.
622 * So trying to keep a preempting RT task on the same
623 * cache hot CPU will force the running RT task to
624 * a cold CPU. So we waste all the cache for the lower
625 * RT task in hopes of saving some of a RT task
626 * that is just being woken and probably will have
627 * cold cache anyway.
318e0893 628 */
17b3279b 629 if (unlikely(rt_task(rq->curr)) &&
6f505b16 630 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
631 int cpu = find_lowest_rq(p);
632
633 return (cpu == -1) ? task_cpu(p) : cpu;
634 }
635
636 /*
637 * Otherwise, just let it ride on the affined RQ and the
638 * post-schedule router will push the preempted task away
639 */
e7693a36
GH
640 return task_cpu(p);
641}
642#endif /* CONFIG_SMP */
643
45c01e82
GH
644static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
645 struct rt_rq *rt_rq);
646
bb44e5d1
IM
647/*
648 * Preempt the current task with a newly woken task if needed:
649 */
650static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
651{
45c01e82 652 if (p->prio < rq->curr->prio) {
bb44e5d1 653 resched_task(rq->curr);
45c01e82
GH
654 return;
655 }
656
657#ifdef CONFIG_SMP
658 /*
659 * If:
660 *
661 * - the newly woken task is of equal priority to the current task
662 * - the newly woken task is non-migratable while current is migratable
663 * - current will be preempted on the next reschedule
664 *
665 * we should check to see if current can readily move to a different
666 * cpu. If so, we will reschedule to allow the push logic to try
667 * to move current somewhere else, making room for our non-migratable
668 * task.
669 */
670 if((p->prio == rq->curr->prio)
671 && p->rt.nr_cpus_allowed == 1
672 && rq->curr->rt.nr_cpus_allowed != 1
673 && pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt) {
674 cpumask_t mask;
675
676 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
677 /*
678 * There appears to be other cpus that can accept
679 * current, so lets reschedule to try and push it away
680 */
681 resched_task(rq->curr);
682 }
683#endif
bb44e5d1
IM
684}
685
6f505b16
PZ
686static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
687 struct rt_rq *rt_rq)
bb44e5d1 688{
6f505b16
PZ
689 struct rt_prio_array *array = &rt_rq->active;
690 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
691 struct list_head *queue;
692 int idx;
693
694 idx = sched_find_first_bit(array->bitmap);
6f505b16 695 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1 696
45c01e82
GH
697 queue = array->xqueue + idx;
698 if (!list_empty(queue))
699 next = list_entry(queue->next, struct sched_rt_entity,
700 run_list);
701 else {
702 queue = array->squeue + idx;
703 next = list_entry(queue->next, struct sched_rt_entity,
704 run_list);
705 }
326587b8 706
6f505b16
PZ
707 return next;
708}
bb44e5d1 709
6f505b16
PZ
710static struct task_struct *pick_next_task_rt(struct rq *rq)
711{
712 struct sched_rt_entity *rt_se;
713 struct task_struct *p;
714 struct rt_rq *rt_rq;
bb44e5d1 715
6f505b16
PZ
716 rt_rq = &rq->rt;
717
718 if (unlikely(!rt_rq->rt_nr_running))
719 return NULL;
720
23b0fdfc 721 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
722 return NULL;
723
724 do {
725 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 726 BUG_ON(!rt_se);
6f505b16
PZ
727 rt_rq = group_rt_rq(rt_se);
728 } while (rt_rq);
729
730 p = rt_task_of(rt_se);
731 p->se.exec_start = rq->clock;
732 return p;
bb44e5d1
IM
733}
734
31ee529c 735static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 736{
f1e14ef6 737 update_curr_rt(rq);
bb44e5d1
IM
738 p->se.exec_start = 0;
739}
740
681f3e68 741#ifdef CONFIG_SMP
6f505b16 742
e8fa1362
SR
743/* Only try algorithms three times */
744#define RT_MAX_TRIES 3
745
746static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
747static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
748
f65eda4f
SR
749static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
750{
751 if (!task_running(rq, p) &&
73fe6aae 752 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 753 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
754 return 1;
755 return 0;
756}
757
e8fa1362 758/* Return the second highest RT task, NULL otherwise */
79064fbf 759static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 760{
6f505b16
PZ
761 struct task_struct *next = NULL;
762 struct sched_rt_entity *rt_se;
763 struct rt_prio_array *array;
764 struct rt_rq *rt_rq;
e8fa1362
SR
765 int idx;
766
6f505b16
PZ
767 for_each_leaf_rt_rq(rt_rq, rq) {
768 array = &rt_rq->active;
769 idx = sched_find_first_bit(array->bitmap);
770 next_idx:
771 if (idx >= MAX_RT_PRIO)
772 continue;
773 if (next && next->prio < idx)
774 continue;
45c01e82 775 list_for_each_entry(rt_se, array->squeue + idx, run_list) {
6f505b16
PZ
776 struct task_struct *p = rt_task_of(rt_se);
777 if (pick_rt_task(rq, p, cpu)) {
778 next = p;
779 break;
780 }
781 }
782 if (!next) {
783 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
784 goto next_idx;
785 }
f65eda4f
SR
786 }
787
e8fa1362
SR
788 return next;
789}
790
791static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
792
6e1254d2
GH
793static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
794{
795 int first;
796
797 /* "this_cpu" is cheaper to preempt than a remote processor */
798 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
799 return this_cpu;
800
801 first = first_cpu(*mask);
802 if (first != NR_CPUS)
803 return first;
804
805 return -1;
806}
807
808static int find_lowest_rq(struct task_struct *task)
809{
810 struct sched_domain *sd;
811 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
812 int this_cpu = smp_processor_id();
813 int cpu = task_cpu(task);
06f90dbd 814
6e0534f2
GH
815 if (task->rt.nr_cpus_allowed == 1)
816 return -1; /* No other targets possible */
6e1254d2 817
6e0534f2
GH
818 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
819 return -1; /* No targets found */
6e1254d2
GH
820
821 /*
822 * At this point we have built a mask of cpus representing the
823 * lowest priority tasks in the system. Now we want to elect
824 * the best one based on our affinity and topology.
825 *
826 * We prioritize the last cpu that the task executed on since
827 * it is most likely cache-hot in that location.
828 */
829 if (cpu_isset(cpu, *lowest_mask))
830 return cpu;
831
832 /*
833 * Otherwise, we consult the sched_domains span maps to figure
834 * out which cpu is logically closest to our hot cache data.
835 */
836 if (this_cpu == cpu)
837 this_cpu = -1; /* Skip this_cpu opt if the same */
838
839 for_each_domain(cpu, sd) {
840 if (sd->flags & SD_WAKE_AFFINE) {
841 cpumask_t domain_mask;
842 int best_cpu;
843
844 cpus_and(domain_mask, sd->span, *lowest_mask);
845
846 best_cpu = pick_optimal_cpu(this_cpu,
847 &domain_mask);
848 if (best_cpu != -1)
849 return best_cpu;
850 }
851 }
852
853 /*
854 * And finally, if there were no matches within the domains
855 * just give the caller *something* to work with from the compatible
856 * locations.
857 */
858 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
859}
860
861/* Will lock the rq it finds */
4df64c0b 862static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
863{
864 struct rq *lowest_rq = NULL;
07b4032c 865 int tries;
4df64c0b 866 int cpu;
e8fa1362 867
07b4032c
GH
868 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
869 cpu = find_lowest_rq(task);
870
2de0b463 871 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
872 break;
873
07b4032c
GH
874 lowest_rq = cpu_rq(cpu);
875
e8fa1362 876 /* if the prio of this runqueue changed, try again */
07b4032c 877 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
878 /*
879 * We had to unlock the run queue. In
880 * the mean time, task could have
881 * migrated already or had its affinity changed.
882 * Also make sure that it wasn't scheduled on its rq.
883 */
07b4032c 884 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
885 !cpu_isset(lowest_rq->cpu,
886 task->cpus_allowed) ||
07b4032c 887 task_running(rq, task) ||
e8fa1362 888 !task->se.on_rq)) {
4df64c0b 889
e8fa1362
SR
890 spin_unlock(&lowest_rq->lock);
891 lowest_rq = NULL;
892 break;
893 }
894 }
895
896 /* If this rq is still suitable use it. */
897 if (lowest_rq->rt.highest_prio > task->prio)
898 break;
899
900 /* try again */
901 spin_unlock(&lowest_rq->lock);
902 lowest_rq = NULL;
903 }
904
905 return lowest_rq;
906}
907
908/*
909 * If the current CPU has more than one RT task, see if the non
910 * running task can migrate over to a CPU that is running a task
911 * of lesser priority.
912 */
697f0a48 913static int push_rt_task(struct rq *rq)
e8fa1362
SR
914{
915 struct task_struct *next_task;
916 struct rq *lowest_rq;
917 int ret = 0;
918 int paranoid = RT_MAX_TRIES;
919
a22d7fc1
GH
920 if (!rq->rt.overloaded)
921 return 0;
922
697f0a48 923 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
924 if (!next_task)
925 return 0;
926
927 retry:
697f0a48 928 if (unlikely(next_task == rq->curr)) {
f65eda4f 929 WARN_ON(1);
e8fa1362 930 return 0;
f65eda4f 931 }
e8fa1362
SR
932
933 /*
934 * It's possible that the next_task slipped in of
935 * higher priority than current. If that's the case
936 * just reschedule current.
937 */
697f0a48
GH
938 if (unlikely(next_task->prio < rq->curr->prio)) {
939 resched_task(rq->curr);
e8fa1362
SR
940 return 0;
941 }
942
697f0a48 943 /* We might release rq lock */
e8fa1362
SR
944 get_task_struct(next_task);
945
946 /* find_lock_lowest_rq locks the rq if found */
697f0a48 947 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
948 if (!lowest_rq) {
949 struct task_struct *task;
950 /*
697f0a48 951 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
952 * so it is possible that next_task has changed.
953 * If it has, then try again.
954 */
697f0a48 955 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
956 if (unlikely(task != next_task) && task && paranoid--) {
957 put_task_struct(next_task);
958 next_task = task;
959 goto retry;
960 }
961 goto out;
962 }
963
697f0a48 964 deactivate_task(rq, next_task, 0);
e8fa1362
SR
965 set_task_cpu(next_task, lowest_rq->cpu);
966 activate_task(lowest_rq, next_task, 0);
967
968 resched_task(lowest_rq->curr);
969
970 spin_unlock(&lowest_rq->lock);
971
972 ret = 1;
973out:
974 put_task_struct(next_task);
975
976 return ret;
977}
978
979/*
980 * TODO: Currently we just use the second highest prio task on
981 * the queue, and stop when it can't migrate (or there's
982 * no more RT tasks). There may be a case where a lower
983 * priority RT task has a different affinity than the
984 * higher RT task. In this case the lower RT task could
985 * possibly be able to migrate where as the higher priority
986 * RT task could not. We currently ignore this issue.
987 * Enhancements are welcome!
988 */
989static void push_rt_tasks(struct rq *rq)
990{
991 /* push_rt_task will return true if it moved an RT */
992 while (push_rt_task(rq))
993 ;
994}
995
f65eda4f
SR
996static int pull_rt_task(struct rq *this_rq)
997{
80bf3171
IM
998 int this_cpu = this_rq->cpu, ret = 0, cpu;
999 struct task_struct *p, *next;
f65eda4f 1000 struct rq *src_rq;
f65eda4f 1001
637f5085 1002 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1003 return 0;
1004
1005 next = pick_next_task_rt(this_rq);
1006
637f5085 1007 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1008 if (this_cpu == cpu)
1009 continue;
1010
1011 src_rq = cpu_rq(cpu);
f65eda4f
SR
1012 /*
1013 * We can potentially drop this_rq's lock in
1014 * double_lock_balance, and another CPU could
1015 * steal our next task - hence we must cause
1016 * the caller to recalculate the next task
1017 * in that case:
1018 */
1019 if (double_lock_balance(this_rq, src_rq)) {
1020 struct task_struct *old_next = next;
80bf3171 1021
f65eda4f
SR
1022 next = pick_next_task_rt(this_rq);
1023 if (next != old_next)
1024 ret = 1;
1025 }
1026
1027 /*
1028 * Are there still pullable RT tasks?
1029 */
614ee1f6
MG
1030 if (src_rq->rt.rt_nr_running <= 1)
1031 goto skip;
f65eda4f 1032
f65eda4f
SR
1033 p = pick_next_highest_task_rt(src_rq, this_cpu);
1034
1035 /*
1036 * Do we have an RT task that preempts
1037 * the to-be-scheduled task?
1038 */
1039 if (p && (!next || (p->prio < next->prio))) {
1040 WARN_ON(p == src_rq->curr);
1041 WARN_ON(!p->se.on_rq);
1042
1043 /*
1044 * There's a chance that p is higher in priority
1045 * than what's currently running on its cpu.
1046 * This is just that p is wakeing up and hasn't
1047 * had a chance to schedule. We only pull
1048 * p if it is lower in priority than the
1049 * current task on the run queue or
1050 * this_rq next task is lower in prio than
1051 * the current task on that rq.
1052 */
1053 if (p->prio < src_rq->curr->prio ||
1054 (next && next->prio < src_rq->curr->prio))
614ee1f6 1055 goto skip;
f65eda4f
SR
1056
1057 ret = 1;
1058
1059 deactivate_task(src_rq, p, 0);
1060 set_task_cpu(p, this_cpu);
1061 activate_task(this_rq, p, 0);
1062 /*
1063 * We continue with the search, just in
1064 * case there's an even higher prio task
1065 * in another runqueue. (low likelyhood
1066 * but possible)
80bf3171 1067 *
f65eda4f
SR
1068 * Update next so that we won't pick a task
1069 * on another cpu with a priority lower (or equal)
1070 * than the one we just picked.
1071 */
1072 next = p;
1073
1074 }
614ee1f6 1075 skip:
f65eda4f
SR
1076 spin_unlock(&src_rq->lock);
1077 }
1078
1079 return ret;
1080}
1081
9a897c5a 1082static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1083{
1084 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1085 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1086 pull_rt_task(rq);
1087}
1088
9a897c5a 1089static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1090{
1091 /*
1092 * If we have more than one rt_task queued, then
1093 * see if we can push the other rt_tasks off to other CPUS.
1094 * Note we may release the rq lock, and since
1095 * the lock was owned by prev, we need to release it
1096 * first via finish_lock_switch and then reaquire it here.
1097 */
a22d7fc1 1098 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1099 spin_lock_irq(&rq->lock);
1100 push_rt_tasks(rq);
1101 spin_unlock_irq(&rq->lock);
1102 }
1103}
1104
8ae121ac
GH
1105/*
1106 * If we are not running and we are not going to reschedule soon, we should
1107 * try to push tasks away now
1108 */
9a897c5a 1109static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1110{
9a897c5a 1111 if (!task_running(rq, p) &&
8ae121ac 1112 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1113 rq->rt.overloaded)
4642dafd
SR
1114 push_rt_tasks(rq);
1115}
1116
43010659 1117static unsigned long
bb44e5d1 1118load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1119 unsigned long max_load_move,
1120 struct sched_domain *sd, enum cpu_idle_type idle,
1121 int *all_pinned, int *this_best_prio)
bb44e5d1 1122{
c7a1e46a
SR
1123 /* don't touch RT tasks */
1124 return 0;
e1d1484f
PW
1125}
1126
1127static int
1128move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1129 struct sched_domain *sd, enum cpu_idle_type idle)
1130{
c7a1e46a
SR
1131 /* don't touch RT tasks */
1132 return 0;
bb44e5d1 1133}
deeeccd4 1134
cd8ba7cd
MT
1135static void set_cpus_allowed_rt(struct task_struct *p,
1136 const cpumask_t *new_mask)
73fe6aae
GH
1137{
1138 int weight = cpus_weight(*new_mask);
1139
1140 BUG_ON(!rt_task(p));
1141
1142 /*
1143 * Update the migration status of the RQ if we have an RT task
1144 * which is running AND changing its weight value.
1145 */
6f505b16 1146 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1147 struct rq *rq = task_rq(p);
1148
6f505b16 1149 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1150 rq->rt.rt_nr_migratory++;
6f505b16 1151 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1152 BUG_ON(!rq->rt.rt_nr_migratory);
1153 rq->rt.rt_nr_migratory--;
1154 }
1155
1156 update_rt_migration(rq);
45c01e82
GH
1157
1158 if (unlikely(weight == 1 || p->rt.nr_cpus_allowed == 1))
1159 /*
1160 * If either the new or old weight is a "1", we need
1161 * to requeue to properly move between shared and
1162 * exclusive queues.
1163 */
1164 requeue_task_rt(rq, p);
73fe6aae
GH
1165 }
1166
1167 p->cpus_allowed = *new_mask;
6f505b16 1168 p->rt.nr_cpus_allowed = weight;
73fe6aae 1169}
deeeccd4 1170
bdd7c81b 1171/* Assumes rq->lock is held */
1f11eb6a 1172static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1173{
1174 if (rq->rt.overloaded)
1175 rt_set_overload(rq);
6e0534f2
GH
1176
1177 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1178}
1179
1180/* Assumes rq->lock is held */
1f11eb6a 1181static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1182{
1183 if (rq->rt.overloaded)
1184 rt_clear_overload(rq);
6e0534f2
GH
1185
1186 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1187}
cb469845
SR
1188
1189/*
1190 * When switch from the rt queue, we bring ourselves to a position
1191 * that we might want to pull RT tasks from other runqueues.
1192 */
1193static void switched_from_rt(struct rq *rq, struct task_struct *p,
1194 int running)
1195{
1196 /*
1197 * If there are other RT tasks then we will reschedule
1198 * and the scheduling of the other RT tasks will handle
1199 * the balancing. But if we are the last RT task
1200 * we may need to handle the pulling of RT tasks
1201 * now.
1202 */
1203 if (!rq->rt.rt_nr_running)
1204 pull_rt_task(rq);
1205}
1206#endif /* CONFIG_SMP */
1207
1208/*
1209 * When switching a task to RT, we may overload the runqueue
1210 * with RT tasks. In this case we try to push them off to
1211 * other runqueues.
1212 */
1213static void switched_to_rt(struct rq *rq, struct task_struct *p,
1214 int running)
1215{
1216 int check_resched = 1;
1217
1218 /*
1219 * If we are already running, then there's nothing
1220 * that needs to be done. But if we are not running
1221 * we may need to preempt the current running task.
1222 * If that current running task is also an RT task
1223 * then see if we can move to another run queue.
1224 */
1225 if (!running) {
1226#ifdef CONFIG_SMP
1227 if (rq->rt.overloaded && push_rt_task(rq) &&
1228 /* Don't resched if we changed runqueues */
1229 rq != task_rq(p))
1230 check_resched = 0;
1231#endif /* CONFIG_SMP */
1232 if (check_resched && p->prio < rq->curr->prio)
1233 resched_task(rq->curr);
1234 }
1235}
1236
1237/*
1238 * Priority of the task has changed. This may cause
1239 * us to initiate a push or pull.
1240 */
1241static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1242 int oldprio, int running)
1243{
1244 if (running) {
1245#ifdef CONFIG_SMP
1246 /*
1247 * If our priority decreases while running, we
1248 * may need to pull tasks to this runqueue.
1249 */
1250 if (oldprio < p->prio)
1251 pull_rt_task(rq);
1252 /*
1253 * If there's a higher priority task waiting to run
6fa46fa5
SR
1254 * then reschedule. Note, the above pull_rt_task
1255 * can release the rq lock and p could migrate.
1256 * Only reschedule if p is still on the same runqueue.
cb469845 1257 */
6fa46fa5 1258 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1259 resched_task(p);
1260#else
1261 /* For UP simply resched on drop of prio */
1262 if (oldprio < p->prio)
1263 resched_task(p);
e8fa1362 1264#endif /* CONFIG_SMP */
cb469845
SR
1265 } else {
1266 /*
1267 * This task is not running, but if it is
1268 * greater than the current running task
1269 * then reschedule.
1270 */
1271 if (p->prio < rq->curr->prio)
1272 resched_task(rq->curr);
1273 }
1274}
1275
78f2c7db
PZ
1276static void watchdog(struct rq *rq, struct task_struct *p)
1277{
1278 unsigned long soft, hard;
1279
1280 if (!p->signal)
1281 return;
1282
1283 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1284 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1285
1286 if (soft != RLIM_INFINITY) {
1287 unsigned long next;
1288
1289 p->rt.timeout++;
1290 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1291 if (p->rt.timeout > next)
78f2c7db
PZ
1292 p->it_sched_expires = p->se.sum_exec_runtime;
1293 }
1294}
bb44e5d1 1295
8f4d37ec 1296static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1297{
67e2be02
PZ
1298 update_curr_rt(rq);
1299
78f2c7db
PZ
1300 watchdog(rq, p);
1301
bb44e5d1
IM
1302 /*
1303 * RR tasks need a special form of timeslice management.
1304 * FIFO tasks have no timeslices.
1305 */
1306 if (p->policy != SCHED_RR)
1307 return;
1308
fa717060 1309 if (--p->rt.time_slice)
bb44e5d1
IM
1310 return;
1311
fa717060 1312 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1313
98fbc798
DA
1314 /*
1315 * Requeue to the end of queue if we are not the only element
1316 * on the queue:
1317 */
fa717060 1318 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1319 requeue_task_rt(rq, p);
1320 set_tsk_need_resched(p);
1321 }
bb44e5d1
IM
1322}
1323
83b699ed
SV
1324static void set_curr_task_rt(struct rq *rq)
1325{
1326 struct task_struct *p = rq->curr;
1327
1328 p->se.exec_start = rq->clock;
1329}
1330
2abdad0a 1331static const struct sched_class rt_sched_class = {
5522d5d5 1332 .next = &fair_sched_class,
bb44e5d1
IM
1333 .enqueue_task = enqueue_task_rt,
1334 .dequeue_task = dequeue_task_rt,
1335 .yield_task = yield_task_rt,
e7693a36
GH
1336#ifdef CONFIG_SMP
1337 .select_task_rq = select_task_rq_rt,
1338#endif /* CONFIG_SMP */
bb44e5d1
IM
1339
1340 .check_preempt_curr = check_preempt_curr_rt,
1341
1342 .pick_next_task = pick_next_task_rt,
1343 .put_prev_task = put_prev_task_rt,
1344
681f3e68 1345#ifdef CONFIG_SMP
bb44e5d1 1346 .load_balance = load_balance_rt,
e1d1484f 1347 .move_one_task = move_one_task_rt,
73fe6aae 1348 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1349 .rq_online = rq_online_rt,
1350 .rq_offline = rq_offline_rt,
9a897c5a
SR
1351 .pre_schedule = pre_schedule_rt,
1352 .post_schedule = post_schedule_rt,
1353 .task_wake_up = task_wake_up_rt,
cb469845 1354 .switched_from = switched_from_rt,
681f3e68 1355#endif
bb44e5d1 1356
83b699ed 1357 .set_curr_task = set_curr_task_rt,
bb44e5d1 1358 .task_tick = task_tick_rt,
cb469845
SR
1359
1360 .prio_changed = prio_changed_rt,
1361 .switched_to = switched_to_rt,
bb44e5d1 1362};