]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
sched: rt-group: synchonised bandwidth period
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
637f5085 15 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
637f5085 24 atomic_inc(&rq->rd->rto_count);
4fd29176 25}
84de4274 26
4fd29176
SR
27static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
637f5085
GH
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 32}
73fe6aae
GH
33
34static void update_rt_migration(struct rq *rq)
35{
637f5085 36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
73fe6aae 42 rt_clear_overload(rq);
637f5085
GH
43 rq->rt.overloaded = 0;
44 }
73fe6aae 45}
4fd29176
SR
46#endif /* CONFIG_SMP */
47
6f505b16 48static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 49{
6f505b16
PZ
50 return container_of(rt_se, struct task_struct, rt);
51}
52
53static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54{
55 return !list_empty(&rt_se->run_list);
56}
57
052f1dc7 58#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 59
9f0c1e56 60static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
61{
62 if (!rt_rq->tg)
9f0c1e56 63 return RUNTIME_INF;
6f505b16 64
d0b27fa7 65 return rt_rq->tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
66}
67
68#define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
70
71static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
72{
73 return rt_rq->rq;
74}
75
76static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
77{
78 return rt_se->rt_rq;
79}
80
81#define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
83
84static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
85{
86 return rt_se->my_q;
87}
88
89static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
91
9f0c1e56 92static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
93{
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
95
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
97 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
98
6f505b16 99 enqueue_rt_entity(rt_se);
1020387f
PZ
100 if (rt_rq->highest_prio < curr->prio)
101 resched_task(curr);
6f505b16
PZ
102 }
103}
104
9f0c1e56 105static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
106{
107 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108
109 if (rt_se && on_rt_rq(rt_se))
110 dequeue_rt_entity(rt_se);
111}
112
23b0fdfc
PZ
113static inline int rt_rq_throttled(struct rt_rq *rt_rq)
114{
115 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
116}
117
118static int rt_se_boosted(struct sched_rt_entity *rt_se)
119{
120 struct rt_rq *rt_rq = group_rt_rq(rt_se);
121 struct task_struct *p;
122
123 if (rt_rq)
124 return !!rt_rq->rt_nr_boosted;
125
126 p = rt_task_of(rt_se);
127 return p->prio != p->normal_prio;
128}
129
d0b27fa7
PZ
130#ifdef CONFIG_SMP
131static inline cpumask_t sched_rt_period_mask(void)
132{
133 return cpu_rq(smp_processor_id())->rd->span;
134}
6f505b16 135#else
d0b27fa7
PZ
136static inline cpumask_t sched_rt_period_mask(void)
137{
138 return cpu_online_map;
139}
140#endif
6f505b16 141
d0b27fa7
PZ
142static inline
143struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 144{
d0b27fa7
PZ
145 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
146}
9f0c1e56 147
d0b27fa7
PZ
148#else
149
150static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
151{
152 return def_rt_bandwidth.rt_runtime;
6f505b16
PZ
153}
154
155#define for_each_leaf_rt_rq(rt_rq, rq) \
156 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
157
158static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
159{
160 return container_of(rt_rq, struct rq, rt);
161}
162
163static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
164{
165 struct task_struct *p = rt_task_of(rt_se);
166 struct rq *rq = task_rq(p);
167
168 return &rq->rt;
169}
170
171#define for_each_sched_rt_entity(rt_se) \
172 for (; rt_se; rt_se = NULL)
173
174static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
175{
176 return NULL;
177}
178
9f0c1e56 179static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
180{
181}
182
9f0c1e56 183static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
184{
185}
186
23b0fdfc
PZ
187static inline int rt_rq_throttled(struct rt_rq *rt_rq)
188{
189 return rt_rq->rt_throttled;
190}
d0b27fa7
PZ
191
192static inline cpumask_t sched_rt_period_mask(void)
193{
194 return cpu_online_map;
195}
196
197static inline
198struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
199{
200 return &cpu_rq(cpu)->rt;
201}
202
6f505b16
PZ
203#endif
204
d0b27fa7
PZ
205static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
206{
207 int i, idle = 1;
208 cpumask_t span;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return 1;
212
213 span = sched_rt_period_mask();
214 for_each_cpu_mask(i, span) {
215 int enqueue = 0;
216 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
217 struct rq *rq = rq_of_rt_rq(rt_rq);
218
219 spin_lock(&rq->lock);
220 if (rt_rq->rt_time) {
221 u64 runtime = rt_b->rt_runtime;
222
223 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
224 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
225 rt_rq->rt_throttled = 0;
226 enqueue = 1;
227 }
228 if (rt_rq->rt_time || rt_rq->rt_nr_running)
229 idle = 0;
230 }
231
232 if (enqueue)
233 sched_rt_rq_enqueue(rt_rq);
234 spin_unlock(&rq->lock);
235 }
236
237 return idle;
238}
239
6f505b16
PZ
240static inline int rt_se_prio(struct sched_rt_entity *rt_se)
241{
052f1dc7 242#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
243 struct rt_rq *rt_rq = group_rt_rq(rt_se);
244
245 if (rt_rq)
246 return rt_rq->highest_prio;
247#endif
248
249 return rt_task_of(rt_se)->prio;
250}
251
9f0c1e56 252static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 253{
9f0c1e56 254 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 255
9f0c1e56 256 if (runtime == RUNTIME_INF)
fa85ae24
PZ
257 return 0;
258
259 if (rt_rq->rt_throttled)
23b0fdfc 260 return rt_rq_throttled(rt_rq);
fa85ae24 261
9f0c1e56 262 if (rt_rq->rt_time > runtime) {
6f505b16 263 rt_rq->rt_throttled = 1;
23b0fdfc 264 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 265 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
266 return 1;
267 }
fa85ae24
PZ
268 }
269
270 return 0;
271}
272
bb44e5d1
IM
273/*
274 * Update the current task's runtime statistics. Skip current tasks that
275 * are not in our scheduling class.
276 */
a9957449 277static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
278{
279 struct task_struct *curr = rq->curr;
6f505b16
PZ
280 struct sched_rt_entity *rt_se = &curr->rt;
281 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
282 u64 delta_exec;
283
284 if (!task_has_rt_policy(curr))
285 return;
286
d281918d 287 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
288 if (unlikely((s64)delta_exec < 0))
289 delta_exec = 0;
6cfb0d5d
IM
290
291 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
292
293 curr->se.sum_exec_runtime += delta_exec;
d281918d 294 curr->se.exec_start = rq->clock;
d842de87 295 cpuacct_charge(curr, delta_exec);
fa85ae24 296
6f505b16 297 rt_rq->rt_time += delta_exec;
9f0c1e56 298 if (sched_rt_runtime_exceeded(rt_rq))
fa85ae24 299 resched_task(curr);
bb44e5d1
IM
300}
301
6f505b16
PZ
302static inline
303void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 304{
6f505b16
PZ
305 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
306 rt_rq->rt_nr_running++;
052f1dc7 307#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
308 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
309 rt_rq->highest_prio = rt_se_prio(rt_se);
310#endif
764a9d6f 311#ifdef CONFIG_SMP
6f505b16
PZ
312 if (rt_se->nr_cpus_allowed > 1) {
313 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 314 rq->rt.rt_nr_migratory++;
6f505b16 315 }
73fe6aae 316
6f505b16
PZ
317 update_rt_migration(rq_of_rt_rq(rt_rq));
318#endif
052f1dc7 319#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
320 if (rt_se_boosted(rt_se))
321 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
322
323 if (rt_rq->tg)
324 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
325#else
326 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 327#endif
63489e45
SR
328}
329
6f505b16
PZ
330static inline
331void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 332{
6f505b16
PZ
333 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
334 WARN_ON(!rt_rq->rt_nr_running);
335 rt_rq->rt_nr_running--;
052f1dc7 336#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 337 if (rt_rq->rt_nr_running) {
764a9d6f
SR
338 struct rt_prio_array *array;
339
6f505b16
PZ
340 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
341 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 342 /* recalculate */
6f505b16
PZ
343 array = &rt_rq->active;
344 rt_rq->highest_prio =
764a9d6f
SR
345 sched_find_first_bit(array->bitmap);
346 } /* otherwise leave rq->highest prio alone */
347 } else
6f505b16
PZ
348 rt_rq->highest_prio = MAX_RT_PRIO;
349#endif
350#ifdef CONFIG_SMP
351 if (rt_se->nr_cpus_allowed > 1) {
352 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 353 rq->rt.rt_nr_migratory--;
6f505b16 354 }
73fe6aae 355
6f505b16 356 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 357#endif /* CONFIG_SMP */
052f1dc7 358#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
359 if (rt_se_boosted(rt_se))
360 rt_rq->rt_nr_boosted--;
361
362 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
363#endif
63489e45
SR
364}
365
6f505b16 366static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 367{
6f505b16
PZ
368 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
369 struct rt_prio_array *array = &rt_rq->active;
370 struct rt_rq *group_rq = group_rt_rq(rt_se);
bb44e5d1 371
23b0fdfc 372 if (group_rq && rt_rq_throttled(group_rq))
6f505b16 373 return;
63489e45 374
6f505b16
PZ
375 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
376 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 377
6f505b16
PZ
378 inc_rt_tasks(rt_se, rt_rq);
379}
380
381static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
382{
383 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
384 struct rt_prio_array *array = &rt_rq->active;
385
386 list_del_init(&rt_se->run_list);
387 if (list_empty(array->queue + rt_se_prio(rt_se)))
388 __clear_bit(rt_se_prio(rt_se), array->bitmap);
389
390 dec_rt_tasks(rt_se, rt_rq);
391}
392
393/*
394 * Because the prio of an upper entry depends on the lower
395 * entries, we must remove entries top - down.
396 *
397 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
398 * doesn't matter much for now, as h=2 for GROUP_SCHED.
399 */
400static void dequeue_rt_stack(struct task_struct *p)
401{
402 struct sched_rt_entity *rt_se, *top_se;
403
404 /*
405 * dequeue all, top - down.
406 */
407 do {
408 rt_se = &p->rt;
409 top_se = NULL;
410 for_each_sched_rt_entity(rt_se) {
411 if (on_rt_rq(rt_se))
412 top_se = rt_se;
413 }
414 if (top_se)
415 dequeue_rt_entity(top_se);
416 } while (top_se);
bb44e5d1
IM
417}
418
419/*
420 * Adding/removing a task to/from a priority array:
421 */
6f505b16
PZ
422static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
423{
424 struct sched_rt_entity *rt_se = &p->rt;
425
426 if (wakeup)
427 rt_se->timeout = 0;
428
429 dequeue_rt_stack(p);
430
431 /*
432 * enqueue everybody, bottom - up.
433 */
434 for_each_sched_rt_entity(rt_se)
435 enqueue_rt_entity(rt_se);
6f505b16
PZ
436}
437
f02231e5 438static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 439{
6f505b16
PZ
440 struct sched_rt_entity *rt_se = &p->rt;
441 struct rt_rq *rt_rq;
bb44e5d1 442
f1e14ef6 443 update_curr_rt(rq);
bb44e5d1 444
6f505b16
PZ
445 dequeue_rt_stack(p);
446
447 /*
448 * re-enqueue all non-empty rt_rq entities.
449 */
450 for_each_sched_rt_entity(rt_se) {
451 rt_rq = group_rt_rq(rt_se);
452 if (rt_rq && rt_rq->rt_nr_running)
453 enqueue_rt_entity(rt_se);
454 }
bb44e5d1
IM
455}
456
457/*
458 * Put task to the end of the run list without the overhead of dequeue
459 * followed by enqueue.
460 */
6f505b16
PZ
461static
462void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
463{
464 struct rt_prio_array *array = &rt_rq->active;
465
466 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
467}
468
bb44e5d1
IM
469static void requeue_task_rt(struct rq *rq, struct task_struct *p)
470{
6f505b16
PZ
471 struct sched_rt_entity *rt_se = &p->rt;
472 struct rt_rq *rt_rq;
bb44e5d1 473
6f505b16
PZ
474 for_each_sched_rt_entity(rt_se) {
475 rt_rq = rt_rq_of_se(rt_se);
476 requeue_rt_entity(rt_rq, rt_se);
477 }
bb44e5d1
IM
478}
479
6f505b16 480static void yield_task_rt(struct rq *rq)
bb44e5d1 481{
4530d7ab 482 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
483}
484
e7693a36 485#ifdef CONFIG_SMP
318e0893
GH
486static int find_lowest_rq(struct task_struct *task);
487
e7693a36
GH
488static int select_task_rq_rt(struct task_struct *p, int sync)
489{
318e0893
GH
490 struct rq *rq = task_rq(p);
491
492 /*
e1f47d89
SR
493 * If the current task is an RT task, then
494 * try to see if we can wake this RT task up on another
495 * runqueue. Otherwise simply start this RT task
496 * on its current runqueue.
497 *
498 * We want to avoid overloading runqueues. Even if
499 * the RT task is of higher priority than the current RT task.
500 * RT tasks behave differently than other tasks. If
501 * one gets preempted, we try to push it off to another queue.
502 * So trying to keep a preempting RT task on the same
503 * cache hot CPU will force the running RT task to
504 * a cold CPU. So we waste all the cache for the lower
505 * RT task in hopes of saving some of a RT task
506 * that is just being woken and probably will have
507 * cold cache anyway.
318e0893 508 */
17b3279b 509 if (unlikely(rt_task(rq->curr)) &&
6f505b16 510 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
511 int cpu = find_lowest_rq(p);
512
513 return (cpu == -1) ? task_cpu(p) : cpu;
514 }
515
516 /*
517 * Otherwise, just let it ride on the affined RQ and the
518 * post-schedule router will push the preempted task away
519 */
e7693a36
GH
520 return task_cpu(p);
521}
522#endif /* CONFIG_SMP */
523
bb44e5d1
IM
524/*
525 * Preempt the current task with a newly woken task if needed:
526 */
527static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
528{
529 if (p->prio < rq->curr->prio)
530 resched_task(rq->curr);
531}
532
6f505b16
PZ
533static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
534 struct rt_rq *rt_rq)
bb44e5d1 535{
6f505b16
PZ
536 struct rt_prio_array *array = &rt_rq->active;
537 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
538 struct list_head *queue;
539 int idx;
540
541 idx = sched_find_first_bit(array->bitmap);
6f505b16 542 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
543
544 queue = array->queue + idx;
6f505b16 545 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 546
6f505b16
PZ
547 return next;
548}
bb44e5d1 549
6f505b16
PZ
550static struct task_struct *pick_next_task_rt(struct rq *rq)
551{
552 struct sched_rt_entity *rt_se;
553 struct task_struct *p;
554 struct rt_rq *rt_rq;
bb44e5d1 555
6f505b16
PZ
556 rt_rq = &rq->rt;
557
558 if (unlikely(!rt_rq->rt_nr_running))
559 return NULL;
560
23b0fdfc 561 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
562 return NULL;
563
564 do {
565 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 566 BUG_ON(!rt_se);
6f505b16
PZ
567 rt_rq = group_rt_rq(rt_se);
568 } while (rt_rq);
569
570 p = rt_task_of(rt_se);
571 p->se.exec_start = rq->clock;
572 return p;
bb44e5d1
IM
573}
574
31ee529c 575static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 576{
f1e14ef6 577 update_curr_rt(rq);
bb44e5d1
IM
578 p->se.exec_start = 0;
579}
580
681f3e68 581#ifdef CONFIG_SMP
6f505b16 582
e8fa1362
SR
583/* Only try algorithms three times */
584#define RT_MAX_TRIES 3
585
586static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
587static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
588
f65eda4f
SR
589static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
590{
591 if (!task_running(rq, p) &&
73fe6aae 592 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 593 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
594 return 1;
595 return 0;
596}
597
e8fa1362 598/* Return the second highest RT task, NULL otherwise */
79064fbf 599static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 600{
6f505b16
PZ
601 struct task_struct *next = NULL;
602 struct sched_rt_entity *rt_se;
603 struct rt_prio_array *array;
604 struct rt_rq *rt_rq;
e8fa1362
SR
605 int idx;
606
6f505b16
PZ
607 for_each_leaf_rt_rq(rt_rq, rq) {
608 array = &rt_rq->active;
609 idx = sched_find_first_bit(array->bitmap);
610 next_idx:
611 if (idx >= MAX_RT_PRIO)
612 continue;
613 if (next && next->prio < idx)
614 continue;
615 list_for_each_entry(rt_se, array->queue + idx, run_list) {
616 struct task_struct *p = rt_task_of(rt_se);
617 if (pick_rt_task(rq, p, cpu)) {
618 next = p;
619 break;
620 }
621 }
622 if (!next) {
623 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
624 goto next_idx;
625 }
f65eda4f
SR
626 }
627
e8fa1362
SR
628 return next;
629}
630
631static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
632
6e1254d2 633static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 634{
6e1254d2 635 int lowest_prio = -1;
610bf056 636 int lowest_cpu = -1;
06f90dbd 637 int count = 0;
610bf056 638 int cpu;
e8fa1362 639
637f5085 640 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
e8fa1362 641
07b4032c
GH
642 /*
643 * Scan each rq for the lowest prio.
644 */
610bf056 645 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 646 struct rq *rq = cpu_rq(cpu);
e8fa1362 647
07b4032c
GH
648 /* We look for lowest RT prio or non-rt CPU */
649 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
650 /*
651 * if we already found a low RT queue
652 * and now we found this non-rt queue
653 * clear the mask and set our bit.
654 * Otherwise just return the queue as is
655 * and the count==1 will cause the algorithm
656 * to use the first bit found.
657 */
658 if (lowest_cpu != -1) {
6e1254d2 659 cpus_clear(*lowest_mask);
610bf056
SR
660 cpu_set(rq->cpu, *lowest_mask);
661 }
6e1254d2 662 return 1;
07b4032c
GH
663 }
664
665 /* no locking for now */
6e1254d2
GH
666 if ((rq->rt.highest_prio > task->prio)
667 && (rq->rt.highest_prio >= lowest_prio)) {
668 if (rq->rt.highest_prio > lowest_prio) {
669 /* new low - clear old data */
670 lowest_prio = rq->rt.highest_prio;
610bf056
SR
671 lowest_cpu = cpu;
672 count = 0;
6e1254d2 673 }
06f90dbd 674 count++;
610bf056
SR
675 } else
676 cpu_clear(cpu, *lowest_mask);
677 }
678
679 /*
680 * Clear out all the set bits that represent
681 * runqueues that were of higher prio than
682 * the lowest_prio.
683 */
684 if (lowest_cpu > 0) {
685 /*
686 * Perhaps we could add another cpumask op to
687 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
688 * Then that could be optimized to use memset and such.
689 */
690 for_each_cpu_mask(cpu, *lowest_mask) {
691 if (cpu >= lowest_cpu)
692 break;
693 cpu_clear(cpu, *lowest_mask);
e8fa1362 694 }
07b4032c
GH
695 }
696
06f90dbd 697 return count;
6e1254d2
GH
698}
699
700static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
701{
702 int first;
703
704 /* "this_cpu" is cheaper to preempt than a remote processor */
705 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
706 return this_cpu;
707
708 first = first_cpu(*mask);
709 if (first != NR_CPUS)
710 return first;
711
712 return -1;
713}
714
715static int find_lowest_rq(struct task_struct *task)
716{
717 struct sched_domain *sd;
718 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
719 int this_cpu = smp_processor_id();
720 int cpu = task_cpu(task);
06f90dbd
GH
721 int count = find_lowest_cpus(task, lowest_mask);
722
723 if (!count)
724 return -1; /* No targets found */
6e1254d2 725
06f90dbd
GH
726 /*
727 * There is no sense in performing an optimal search if only one
728 * target is found.
729 */
730 if (count == 1)
731 return first_cpu(*lowest_mask);
6e1254d2
GH
732
733 /*
734 * At this point we have built a mask of cpus representing the
735 * lowest priority tasks in the system. Now we want to elect
736 * the best one based on our affinity and topology.
737 *
738 * We prioritize the last cpu that the task executed on since
739 * it is most likely cache-hot in that location.
740 */
741 if (cpu_isset(cpu, *lowest_mask))
742 return cpu;
743
744 /*
745 * Otherwise, we consult the sched_domains span maps to figure
746 * out which cpu is logically closest to our hot cache data.
747 */
748 if (this_cpu == cpu)
749 this_cpu = -1; /* Skip this_cpu opt if the same */
750
751 for_each_domain(cpu, sd) {
752 if (sd->flags & SD_WAKE_AFFINE) {
753 cpumask_t domain_mask;
754 int best_cpu;
755
756 cpus_and(domain_mask, sd->span, *lowest_mask);
757
758 best_cpu = pick_optimal_cpu(this_cpu,
759 &domain_mask);
760 if (best_cpu != -1)
761 return best_cpu;
762 }
763 }
764
765 /*
766 * And finally, if there were no matches within the domains
767 * just give the caller *something* to work with from the compatible
768 * locations.
769 */
770 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
771}
772
773/* Will lock the rq it finds */
4df64c0b 774static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
775{
776 struct rq *lowest_rq = NULL;
07b4032c 777 int tries;
4df64c0b 778 int cpu;
e8fa1362 779
07b4032c
GH
780 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
781 cpu = find_lowest_rq(task);
782
2de0b463 783 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
784 break;
785
07b4032c
GH
786 lowest_rq = cpu_rq(cpu);
787
e8fa1362 788 /* if the prio of this runqueue changed, try again */
07b4032c 789 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
790 /*
791 * We had to unlock the run queue. In
792 * the mean time, task could have
793 * migrated already or had its affinity changed.
794 * Also make sure that it wasn't scheduled on its rq.
795 */
07b4032c 796 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
797 !cpu_isset(lowest_rq->cpu,
798 task->cpus_allowed) ||
07b4032c 799 task_running(rq, task) ||
e8fa1362 800 !task->se.on_rq)) {
4df64c0b 801
e8fa1362
SR
802 spin_unlock(&lowest_rq->lock);
803 lowest_rq = NULL;
804 break;
805 }
806 }
807
808 /* If this rq is still suitable use it. */
809 if (lowest_rq->rt.highest_prio > task->prio)
810 break;
811
812 /* try again */
813 spin_unlock(&lowest_rq->lock);
814 lowest_rq = NULL;
815 }
816
817 return lowest_rq;
818}
819
820/*
821 * If the current CPU has more than one RT task, see if the non
822 * running task can migrate over to a CPU that is running a task
823 * of lesser priority.
824 */
697f0a48 825static int push_rt_task(struct rq *rq)
e8fa1362
SR
826{
827 struct task_struct *next_task;
828 struct rq *lowest_rq;
829 int ret = 0;
830 int paranoid = RT_MAX_TRIES;
831
a22d7fc1
GH
832 if (!rq->rt.overloaded)
833 return 0;
834
697f0a48 835 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
836 if (!next_task)
837 return 0;
838
839 retry:
697f0a48 840 if (unlikely(next_task == rq->curr)) {
f65eda4f 841 WARN_ON(1);
e8fa1362 842 return 0;
f65eda4f 843 }
e8fa1362
SR
844
845 /*
846 * It's possible that the next_task slipped in of
847 * higher priority than current. If that's the case
848 * just reschedule current.
849 */
697f0a48
GH
850 if (unlikely(next_task->prio < rq->curr->prio)) {
851 resched_task(rq->curr);
e8fa1362
SR
852 return 0;
853 }
854
697f0a48 855 /* We might release rq lock */
e8fa1362
SR
856 get_task_struct(next_task);
857
858 /* find_lock_lowest_rq locks the rq if found */
697f0a48 859 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
860 if (!lowest_rq) {
861 struct task_struct *task;
862 /*
697f0a48 863 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
864 * so it is possible that next_task has changed.
865 * If it has, then try again.
866 */
697f0a48 867 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
868 if (unlikely(task != next_task) && task && paranoid--) {
869 put_task_struct(next_task);
870 next_task = task;
871 goto retry;
872 }
873 goto out;
874 }
875
697f0a48 876 deactivate_task(rq, next_task, 0);
e8fa1362
SR
877 set_task_cpu(next_task, lowest_rq->cpu);
878 activate_task(lowest_rq, next_task, 0);
879
880 resched_task(lowest_rq->curr);
881
882 spin_unlock(&lowest_rq->lock);
883
884 ret = 1;
885out:
886 put_task_struct(next_task);
887
888 return ret;
889}
890
891/*
892 * TODO: Currently we just use the second highest prio task on
893 * the queue, and stop when it can't migrate (or there's
894 * no more RT tasks). There may be a case where a lower
895 * priority RT task has a different affinity than the
896 * higher RT task. In this case the lower RT task could
897 * possibly be able to migrate where as the higher priority
898 * RT task could not. We currently ignore this issue.
899 * Enhancements are welcome!
900 */
901static void push_rt_tasks(struct rq *rq)
902{
903 /* push_rt_task will return true if it moved an RT */
904 while (push_rt_task(rq))
905 ;
906}
907
f65eda4f
SR
908static int pull_rt_task(struct rq *this_rq)
909{
80bf3171
IM
910 int this_cpu = this_rq->cpu, ret = 0, cpu;
911 struct task_struct *p, *next;
f65eda4f 912 struct rq *src_rq;
f65eda4f 913
637f5085 914 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
915 return 0;
916
917 next = pick_next_task_rt(this_rq);
918
637f5085 919 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
920 if (this_cpu == cpu)
921 continue;
922
923 src_rq = cpu_rq(cpu);
f65eda4f
SR
924 /*
925 * We can potentially drop this_rq's lock in
926 * double_lock_balance, and another CPU could
927 * steal our next task - hence we must cause
928 * the caller to recalculate the next task
929 * in that case:
930 */
931 if (double_lock_balance(this_rq, src_rq)) {
932 struct task_struct *old_next = next;
80bf3171 933
f65eda4f
SR
934 next = pick_next_task_rt(this_rq);
935 if (next != old_next)
936 ret = 1;
937 }
938
939 /*
940 * Are there still pullable RT tasks?
941 */
614ee1f6
MG
942 if (src_rq->rt.rt_nr_running <= 1)
943 goto skip;
f65eda4f 944
f65eda4f
SR
945 p = pick_next_highest_task_rt(src_rq, this_cpu);
946
947 /*
948 * Do we have an RT task that preempts
949 * the to-be-scheduled task?
950 */
951 if (p && (!next || (p->prio < next->prio))) {
952 WARN_ON(p == src_rq->curr);
953 WARN_ON(!p->se.on_rq);
954
955 /*
956 * There's a chance that p is higher in priority
957 * than what's currently running on its cpu.
958 * This is just that p is wakeing up and hasn't
959 * had a chance to schedule. We only pull
960 * p if it is lower in priority than the
961 * current task on the run queue or
962 * this_rq next task is lower in prio than
963 * the current task on that rq.
964 */
965 if (p->prio < src_rq->curr->prio ||
966 (next && next->prio < src_rq->curr->prio))
614ee1f6 967 goto skip;
f65eda4f
SR
968
969 ret = 1;
970
971 deactivate_task(src_rq, p, 0);
972 set_task_cpu(p, this_cpu);
973 activate_task(this_rq, p, 0);
974 /*
975 * We continue with the search, just in
976 * case there's an even higher prio task
977 * in another runqueue. (low likelyhood
978 * but possible)
80bf3171 979 *
f65eda4f
SR
980 * Update next so that we won't pick a task
981 * on another cpu with a priority lower (or equal)
982 * than the one we just picked.
983 */
984 next = p;
985
986 }
614ee1f6 987 skip:
f65eda4f
SR
988 spin_unlock(&src_rq->lock);
989 }
990
991 return ret;
992}
993
9a897c5a 994static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
995{
996 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 997 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
998 pull_rt_task(rq);
999}
1000
9a897c5a 1001static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1002{
1003 /*
1004 * If we have more than one rt_task queued, then
1005 * see if we can push the other rt_tasks off to other CPUS.
1006 * Note we may release the rq lock, and since
1007 * the lock was owned by prev, we need to release it
1008 * first via finish_lock_switch and then reaquire it here.
1009 */
a22d7fc1 1010 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1011 spin_lock_irq(&rq->lock);
1012 push_rt_tasks(rq);
1013 spin_unlock_irq(&rq->lock);
1014 }
1015}
1016
4642dafd 1017
9a897c5a 1018static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1019{
9a897c5a 1020 if (!task_running(rq, p) &&
a22d7fc1
GH
1021 (p->prio >= rq->rt.highest_prio) &&
1022 rq->rt.overloaded)
4642dafd
SR
1023 push_rt_tasks(rq);
1024}
1025
43010659 1026static unsigned long
bb44e5d1 1027load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1028 unsigned long max_load_move,
1029 struct sched_domain *sd, enum cpu_idle_type idle,
1030 int *all_pinned, int *this_best_prio)
bb44e5d1 1031{
c7a1e46a
SR
1032 /* don't touch RT tasks */
1033 return 0;
e1d1484f
PW
1034}
1035
1036static int
1037move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1038 struct sched_domain *sd, enum cpu_idle_type idle)
1039{
c7a1e46a
SR
1040 /* don't touch RT tasks */
1041 return 0;
bb44e5d1 1042}
deeeccd4 1043
73fe6aae
GH
1044static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
1045{
1046 int weight = cpus_weight(*new_mask);
1047
1048 BUG_ON(!rt_task(p));
1049
1050 /*
1051 * Update the migration status of the RQ if we have an RT task
1052 * which is running AND changing its weight value.
1053 */
6f505b16 1054 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1055 struct rq *rq = task_rq(p);
1056
6f505b16 1057 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1058 rq->rt.rt_nr_migratory++;
6f505b16 1059 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1060 BUG_ON(!rq->rt.rt_nr_migratory);
1061 rq->rt.rt_nr_migratory--;
1062 }
1063
1064 update_rt_migration(rq);
1065 }
1066
1067 p->cpus_allowed = *new_mask;
6f505b16 1068 p->rt.nr_cpus_allowed = weight;
73fe6aae 1069}
deeeccd4 1070
bdd7c81b
IM
1071/* Assumes rq->lock is held */
1072static void join_domain_rt(struct rq *rq)
1073{
1074 if (rq->rt.overloaded)
1075 rt_set_overload(rq);
1076}
1077
1078/* Assumes rq->lock is held */
1079static void leave_domain_rt(struct rq *rq)
1080{
1081 if (rq->rt.overloaded)
1082 rt_clear_overload(rq);
1083}
cb469845
SR
1084
1085/*
1086 * When switch from the rt queue, we bring ourselves to a position
1087 * that we might want to pull RT tasks from other runqueues.
1088 */
1089static void switched_from_rt(struct rq *rq, struct task_struct *p,
1090 int running)
1091{
1092 /*
1093 * If there are other RT tasks then we will reschedule
1094 * and the scheduling of the other RT tasks will handle
1095 * the balancing. But if we are the last RT task
1096 * we may need to handle the pulling of RT tasks
1097 * now.
1098 */
1099 if (!rq->rt.rt_nr_running)
1100 pull_rt_task(rq);
1101}
1102#endif /* CONFIG_SMP */
1103
1104/*
1105 * When switching a task to RT, we may overload the runqueue
1106 * with RT tasks. In this case we try to push them off to
1107 * other runqueues.
1108 */
1109static void switched_to_rt(struct rq *rq, struct task_struct *p,
1110 int running)
1111{
1112 int check_resched = 1;
1113
1114 /*
1115 * If we are already running, then there's nothing
1116 * that needs to be done. But if we are not running
1117 * we may need to preempt the current running task.
1118 * If that current running task is also an RT task
1119 * then see if we can move to another run queue.
1120 */
1121 if (!running) {
1122#ifdef CONFIG_SMP
1123 if (rq->rt.overloaded && push_rt_task(rq) &&
1124 /* Don't resched if we changed runqueues */
1125 rq != task_rq(p))
1126 check_resched = 0;
1127#endif /* CONFIG_SMP */
1128 if (check_resched && p->prio < rq->curr->prio)
1129 resched_task(rq->curr);
1130 }
1131}
1132
1133/*
1134 * Priority of the task has changed. This may cause
1135 * us to initiate a push or pull.
1136 */
1137static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1138 int oldprio, int running)
1139{
1140 if (running) {
1141#ifdef CONFIG_SMP
1142 /*
1143 * If our priority decreases while running, we
1144 * may need to pull tasks to this runqueue.
1145 */
1146 if (oldprio < p->prio)
1147 pull_rt_task(rq);
1148 /*
1149 * If there's a higher priority task waiting to run
6fa46fa5
SR
1150 * then reschedule. Note, the above pull_rt_task
1151 * can release the rq lock and p could migrate.
1152 * Only reschedule if p is still on the same runqueue.
cb469845 1153 */
6fa46fa5 1154 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1155 resched_task(p);
1156#else
1157 /* For UP simply resched on drop of prio */
1158 if (oldprio < p->prio)
1159 resched_task(p);
e8fa1362 1160#endif /* CONFIG_SMP */
cb469845
SR
1161 } else {
1162 /*
1163 * This task is not running, but if it is
1164 * greater than the current running task
1165 * then reschedule.
1166 */
1167 if (p->prio < rq->curr->prio)
1168 resched_task(rq->curr);
1169 }
1170}
1171
78f2c7db
PZ
1172static void watchdog(struct rq *rq, struct task_struct *p)
1173{
1174 unsigned long soft, hard;
1175
1176 if (!p->signal)
1177 return;
1178
1179 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1180 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1181
1182 if (soft != RLIM_INFINITY) {
1183 unsigned long next;
1184
1185 p->rt.timeout++;
1186 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1187 if (p->rt.timeout > next)
78f2c7db
PZ
1188 p->it_sched_expires = p->se.sum_exec_runtime;
1189 }
1190}
bb44e5d1 1191
8f4d37ec 1192static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1193{
67e2be02
PZ
1194 update_curr_rt(rq);
1195
78f2c7db
PZ
1196 watchdog(rq, p);
1197
bb44e5d1
IM
1198 /*
1199 * RR tasks need a special form of timeslice management.
1200 * FIFO tasks have no timeslices.
1201 */
1202 if (p->policy != SCHED_RR)
1203 return;
1204
fa717060 1205 if (--p->rt.time_slice)
bb44e5d1
IM
1206 return;
1207
fa717060 1208 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1209
98fbc798
DA
1210 /*
1211 * Requeue to the end of queue if we are not the only element
1212 * on the queue:
1213 */
fa717060 1214 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1215 requeue_task_rt(rq, p);
1216 set_tsk_need_resched(p);
1217 }
bb44e5d1
IM
1218}
1219
83b699ed
SV
1220static void set_curr_task_rt(struct rq *rq)
1221{
1222 struct task_struct *p = rq->curr;
1223
1224 p->se.exec_start = rq->clock;
1225}
1226
5522d5d5
IM
1227const struct sched_class rt_sched_class = {
1228 .next = &fair_sched_class,
bb44e5d1
IM
1229 .enqueue_task = enqueue_task_rt,
1230 .dequeue_task = dequeue_task_rt,
1231 .yield_task = yield_task_rt,
e7693a36
GH
1232#ifdef CONFIG_SMP
1233 .select_task_rq = select_task_rq_rt,
1234#endif /* CONFIG_SMP */
bb44e5d1
IM
1235
1236 .check_preempt_curr = check_preempt_curr_rt,
1237
1238 .pick_next_task = pick_next_task_rt,
1239 .put_prev_task = put_prev_task_rt,
1240
681f3e68 1241#ifdef CONFIG_SMP
bb44e5d1 1242 .load_balance = load_balance_rt,
e1d1484f 1243 .move_one_task = move_one_task_rt,
73fe6aae 1244 .set_cpus_allowed = set_cpus_allowed_rt,
bdd7c81b
IM
1245 .join_domain = join_domain_rt,
1246 .leave_domain = leave_domain_rt,
9a897c5a
SR
1247 .pre_schedule = pre_schedule_rt,
1248 .post_schedule = post_schedule_rt,
1249 .task_wake_up = task_wake_up_rt,
cb469845 1250 .switched_from = switched_from_rt,
681f3e68 1251#endif
bb44e5d1 1252
83b699ed 1253 .set_curr_task = set_curr_task_rt,
bb44e5d1 1254 .task_tick = task_tick_rt,
cb469845
SR
1255
1256 .prio_changed = prio_changed_rt,
1257 .switched_to = switched_to_rt,
bb44e5d1 1258};