]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
sched: Ensure the migration task doesn't go away during use
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
8f48894f
PZ
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
398a153b
GH
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
8f48894f
PZ
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
398a153b
GH
15 return container_of(rt_se, struct task_struct, rt);
16}
17
398a153b
GH
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else /* CONFIG_RT_GROUP_SCHED */
29
a1ba4d8b
PZ
30#define rt_entity_is_task(rt_se) (1)
31
8f48894f
PZ
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
398a153b
GH
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif /* CONFIG_RT_GROUP_SCHED */
51
4fd29176 52#ifdef CONFIG_SMP
84de4274 53
637f5085 54static inline int rt_overloaded(struct rq *rq)
4fd29176 55{
637f5085 56 return atomic_read(&rq->rd->rto_count);
4fd29176 57}
84de4274 58
4fd29176
SR
59static inline void rt_set_overload(struct rq *rq)
60{
1f11eb6a
GH
61 if (!rq->online)
62 return;
63
c6c4927b 64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
637f5085 73 atomic_inc(&rq->rd->rto_count);
4fd29176 74}
84de4274 75
4fd29176
SR
76static inline void rt_clear_overload(struct rq *rq)
77{
1f11eb6a
GH
78 if (!rq->online)
79 return;
80
4fd29176 81 /* the order here really doesn't matter */
637f5085 82 atomic_dec(&rq->rd->rto_count);
c6c4927b 83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 84}
73fe6aae 85
398a153b 86static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 87{
a1ba4d8b 88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
cdc8eb98 92 }
398a153b
GH
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
637f5085 96 }
73fe6aae 97}
4fd29176 98
398a153b
GH
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
a1ba4d8b
PZ
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
398a153b
GH
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
a1ba4d8b
PZ
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
398a153b
GH
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
917b627d
GH
127static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128{
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132}
133
134static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135{
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137}
138
139#else
140
ceacc2c1 141static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 142{
6f505b16
PZ
143}
144
ceacc2c1
PZ
145static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
146{
147}
148
b07430ac 149static inline
ceacc2c1
PZ
150void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
151{
152}
153
398a153b 154static inline
ceacc2c1
PZ
155void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156{
157}
917b627d 158
4fd29176
SR
159#endif /* CONFIG_SMP */
160
6f505b16
PZ
161static inline int on_rt_rq(struct sched_rt_entity *rt_se)
162{
163 return !list_empty(&rt_se->run_list);
164}
165
052f1dc7 166#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 167
9f0c1e56 168static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
169{
170 if (!rt_rq->tg)
9f0c1e56 171 return RUNTIME_INF;
6f505b16 172
ac086bc2
PZ
173 return rt_rq->rt_runtime;
174}
175
176static inline u64 sched_rt_period(struct rt_rq *rt_rq)
177{
178 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
179}
180
181#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 182 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 183
6f505b16
PZ
184#define for_each_sched_rt_entity(rt_se) \
185 for (; rt_se; rt_se = rt_se->parent)
186
187static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
188{
189 return rt_se->my_q;
190}
191
192static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
193static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
194
9f0c1e56 195static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 196{
f6121f4f 197 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
6f505b16
PZ
198 struct sched_rt_entity *rt_se = rt_rq->rt_se;
199
f6121f4f
DF
200 if (rt_rq->rt_nr_running) {
201 if (rt_se && !on_rt_rq(rt_se))
202 enqueue_rt_entity(rt_se);
e864c499 203 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 204 resched_task(curr);
6f505b16
PZ
205 }
206}
207
9f0c1e56 208static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
209{
210 struct sched_rt_entity *rt_se = rt_rq->rt_se;
211
212 if (rt_se && on_rt_rq(rt_se))
213 dequeue_rt_entity(rt_se);
214}
215
23b0fdfc
PZ
216static inline int rt_rq_throttled(struct rt_rq *rt_rq)
217{
218 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
219}
220
221static int rt_se_boosted(struct sched_rt_entity *rt_se)
222{
223 struct rt_rq *rt_rq = group_rt_rq(rt_se);
224 struct task_struct *p;
225
226 if (rt_rq)
227 return !!rt_rq->rt_nr_boosted;
228
229 p = rt_task_of(rt_se);
230 return p->prio != p->normal_prio;
231}
232
d0b27fa7 233#ifdef CONFIG_SMP
c6c4927b 234static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
235{
236 return cpu_rq(smp_processor_id())->rd->span;
237}
6f505b16 238#else
c6c4927b 239static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 240{
c6c4927b 241 return cpu_online_mask;
d0b27fa7
PZ
242}
243#endif
6f505b16 244
d0b27fa7
PZ
245static inline
246struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 247{
d0b27fa7
PZ
248 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
249}
9f0c1e56 250
ac086bc2
PZ
251static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
252{
253 return &rt_rq->tg->rt_bandwidth;
254}
255
55e12e5e 256#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
257
258static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
259{
ac086bc2
PZ
260 return rt_rq->rt_runtime;
261}
262
263static inline u64 sched_rt_period(struct rt_rq *rt_rq)
264{
265 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
266}
267
268#define for_each_leaf_rt_rq(rt_rq, rq) \
269 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
270
6f505b16
PZ
271#define for_each_sched_rt_entity(rt_se) \
272 for (; rt_se; rt_se = NULL)
273
274static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
275{
276 return NULL;
277}
278
9f0c1e56 279static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 280{
f3ade837
JB
281 if (rt_rq->rt_nr_running)
282 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
283}
284
9f0c1e56 285static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
286{
287}
288
23b0fdfc
PZ
289static inline int rt_rq_throttled(struct rt_rq *rt_rq)
290{
291 return rt_rq->rt_throttled;
292}
d0b27fa7 293
c6c4927b 294static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 295{
c6c4927b 296 return cpu_online_mask;
d0b27fa7
PZ
297}
298
299static inline
300struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
301{
302 return &cpu_rq(cpu)->rt;
303}
304
ac086bc2
PZ
305static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
306{
307 return &def_rt_bandwidth;
308}
309
55e12e5e 310#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 311
ac086bc2 312#ifdef CONFIG_SMP
78333cdd
PZ
313/*
314 * We ran out of runtime, see if we can borrow some from our neighbours.
315 */
b79f3833 316static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
317{
318 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
319 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
320 int i, weight, more = 0;
321 u64 rt_period;
322
c6c4927b 323 weight = cpumask_weight(rd->span);
ac086bc2
PZ
324
325 spin_lock(&rt_b->rt_runtime_lock);
326 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 327 for_each_cpu(i, rd->span) {
ac086bc2
PZ
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329 s64 diff;
330
331 if (iter == rt_rq)
332 continue;
333
334 spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
335 /*
336 * Either all rqs have inf runtime and there's nothing to steal
337 * or __disable_runtime() below sets a specific rq to inf to
338 * indicate its been disabled and disalow stealing.
339 */
7def2be1
PZ
340 if (iter->rt_runtime == RUNTIME_INF)
341 goto next;
342
78333cdd
PZ
343 /*
344 * From runqueues with spare time, take 1/n part of their
345 * spare time, but no more than our period.
346 */
ac086bc2
PZ
347 diff = iter->rt_runtime - iter->rt_time;
348 if (diff > 0) {
58838cf3 349 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
350 if (rt_rq->rt_runtime + diff > rt_period)
351 diff = rt_period - rt_rq->rt_runtime;
352 iter->rt_runtime -= diff;
353 rt_rq->rt_runtime += diff;
354 more = 1;
355 if (rt_rq->rt_runtime == rt_period) {
356 spin_unlock(&iter->rt_runtime_lock);
357 break;
358 }
359 }
7def2be1 360next:
ac086bc2
PZ
361 spin_unlock(&iter->rt_runtime_lock);
362 }
363 spin_unlock(&rt_b->rt_runtime_lock);
364
365 return more;
366}
7def2be1 367
78333cdd
PZ
368/*
369 * Ensure this RQ takes back all the runtime it lend to its neighbours.
370 */
7def2be1
PZ
371static void __disable_runtime(struct rq *rq)
372{
373 struct root_domain *rd = rq->rd;
374 struct rt_rq *rt_rq;
375
376 if (unlikely(!scheduler_running))
377 return;
378
379 for_each_leaf_rt_rq(rt_rq, rq) {
380 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
381 s64 want;
382 int i;
383
384 spin_lock(&rt_b->rt_runtime_lock);
385 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
386 /*
387 * Either we're all inf and nobody needs to borrow, or we're
388 * already disabled and thus have nothing to do, or we have
389 * exactly the right amount of runtime to take out.
390 */
7def2be1
PZ
391 if (rt_rq->rt_runtime == RUNTIME_INF ||
392 rt_rq->rt_runtime == rt_b->rt_runtime)
393 goto balanced;
394 spin_unlock(&rt_rq->rt_runtime_lock);
395
78333cdd
PZ
396 /*
397 * Calculate the difference between what we started out with
398 * and what we current have, that's the amount of runtime
399 * we lend and now have to reclaim.
400 */
7def2be1
PZ
401 want = rt_b->rt_runtime - rt_rq->rt_runtime;
402
78333cdd
PZ
403 /*
404 * Greedy reclaim, take back as much as we can.
405 */
c6c4927b 406 for_each_cpu(i, rd->span) {
7def2be1
PZ
407 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
408 s64 diff;
409
78333cdd
PZ
410 /*
411 * Can't reclaim from ourselves or disabled runqueues.
412 */
f1679d08 413 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
414 continue;
415
416 spin_lock(&iter->rt_runtime_lock);
417 if (want > 0) {
418 diff = min_t(s64, iter->rt_runtime, want);
419 iter->rt_runtime -= diff;
420 want -= diff;
421 } else {
422 iter->rt_runtime -= want;
423 want -= want;
424 }
425 spin_unlock(&iter->rt_runtime_lock);
426
427 if (!want)
428 break;
429 }
430
431 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
432 /*
433 * We cannot be left wanting - that would mean some runtime
434 * leaked out of the system.
435 */
7def2be1
PZ
436 BUG_ON(want);
437balanced:
78333cdd
PZ
438 /*
439 * Disable all the borrow logic by pretending we have inf
440 * runtime - in which case borrowing doesn't make sense.
441 */
7def2be1
PZ
442 rt_rq->rt_runtime = RUNTIME_INF;
443 spin_unlock(&rt_rq->rt_runtime_lock);
444 spin_unlock(&rt_b->rt_runtime_lock);
445 }
446}
447
448static void disable_runtime(struct rq *rq)
449{
450 unsigned long flags;
451
452 spin_lock_irqsave(&rq->lock, flags);
453 __disable_runtime(rq);
454 spin_unlock_irqrestore(&rq->lock, flags);
455}
456
457static void __enable_runtime(struct rq *rq)
458{
7def2be1
PZ
459 struct rt_rq *rt_rq;
460
461 if (unlikely(!scheduler_running))
462 return;
463
78333cdd
PZ
464 /*
465 * Reset each runqueue's bandwidth settings
466 */
7def2be1
PZ
467 for_each_leaf_rt_rq(rt_rq, rq) {
468 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
469
470 spin_lock(&rt_b->rt_runtime_lock);
471 spin_lock(&rt_rq->rt_runtime_lock);
472 rt_rq->rt_runtime = rt_b->rt_runtime;
473 rt_rq->rt_time = 0;
baf25731 474 rt_rq->rt_throttled = 0;
7def2be1
PZ
475 spin_unlock(&rt_rq->rt_runtime_lock);
476 spin_unlock(&rt_b->rt_runtime_lock);
477 }
478}
479
480static void enable_runtime(struct rq *rq)
481{
482 unsigned long flags;
483
484 spin_lock_irqsave(&rq->lock, flags);
485 __enable_runtime(rq);
486 spin_unlock_irqrestore(&rq->lock, flags);
487}
488
eff6549b
PZ
489static int balance_runtime(struct rt_rq *rt_rq)
490{
491 int more = 0;
492
493 if (rt_rq->rt_time > rt_rq->rt_runtime) {
494 spin_unlock(&rt_rq->rt_runtime_lock);
495 more = do_balance_runtime(rt_rq);
496 spin_lock(&rt_rq->rt_runtime_lock);
497 }
498
499 return more;
500}
55e12e5e 501#else /* !CONFIG_SMP */
eff6549b
PZ
502static inline int balance_runtime(struct rt_rq *rt_rq)
503{
504 return 0;
505}
55e12e5e 506#endif /* CONFIG_SMP */
ac086bc2 507
eff6549b
PZ
508static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
509{
510 int i, idle = 1;
c6c4927b 511 const struct cpumask *span;
eff6549b 512
0b148fa0 513 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
514 return 1;
515
516 span = sched_rt_period_mask();
c6c4927b 517 for_each_cpu(i, span) {
eff6549b
PZ
518 int enqueue = 0;
519 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
520 struct rq *rq = rq_of_rt_rq(rt_rq);
521
522 spin_lock(&rq->lock);
523 if (rt_rq->rt_time) {
524 u64 runtime;
525
526 spin_lock(&rt_rq->rt_runtime_lock);
527 if (rt_rq->rt_throttled)
528 balance_runtime(rt_rq);
529 runtime = rt_rq->rt_runtime;
530 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
531 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
532 rt_rq->rt_throttled = 0;
533 enqueue = 1;
534 }
535 if (rt_rq->rt_time || rt_rq->rt_nr_running)
536 idle = 0;
537 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
538 } else if (rt_rq->rt_nr_running)
539 idle = 0;
eff6549b
PZ
540
541 if (enqueue)
542 sched_rt_rq_enqueue(rt_rq);
543 spin_unlock(&rq->lock);
544 }
545
546 return idle;
547}
ac086bc2 548
6f505b16
PZ
549static inline int rt_se_prio(struct sched_rt_entity *rt_se)
550{
052f1dc7 551#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
552 struct rt_rq *rt_rq = group_rt_rq(rt_se);
553
554 if (rt_rq)
e864c499 555 return rt_rq->highest_prio.curr;
6f505b16
PZ
556#endif
557
558 return rt_task_of(rt_se)->prio;
559}
560
9f0c1e56 561static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 562{
9f0c1e56 563 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 564
fa85ae24 565 if (rt_rq->rt_throttled)
23b0fdfc 566 return rt_rq_throttled(rt_rq);
fa85ae24 567
ac086bc2
PZ
568 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
569 return 0;
570
b79f3833
PZ
571 balance_runtime(rt_rq);
572 runtime = sched_rt_runtime(rt_rq);
573 if (runtime == RUNTIME_INF)
574 return 0;
ac086bc2 575
9f0c1e56 576 if (rt_rq->rt_time > runtime) {
6f505b16 577 rt_rq->rt_throttled = 1;
23b0fdfc 578 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 579 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
580 return 1;
581 }
fa85ae24
PZ
582 }
583
584 return 0;
585}
586
bb44e5d1
IM
587/*
588 * Update the current task's runtime statistics. Skip current tasks that
589 * are not in our scheduling class.
590 */
a9957449 591static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
592{
593 struct task_struct *curr = rq->curr;
6f505b16
PZ
594 struct sched_rt_entity *rt_se = &curr->rt;
595 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
596 u64 delta_exec;
597
598 if (!task_has_rt_policy(curr))
599 return;
600
d281918d 601 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
602 if (unlikely((s64)delta_exec < 0))
603 delta_exec = 0;
6cfb0d5d
IM
604
605 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
606
607 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
608 account_group_exec_runtime(curr, delta_exec);
609
d281918d 610 curr->se.exec_start = rq->clock;
d842de87 611 cpuacct_charge(curr, delta_exec);
fa85ae24 612
0b148fa0
PZ
613 if (!rt_bandwidth_enabled())
614 return;
615
354d60c2
DG
616 for_each_sched_rt_entity(rt_se) {
617 rt_rq = rt_rq_of_se(rt_se);
618
cc2991cf 619 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
e113a745 620 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
621 rt_rq->rt_time += delta_exec;
622 if (sched_rt_runtime_exceeded(rt_rq))
623 resched_task(curr);
e113a745 624 spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 625 }
354d60c2 626 }
bb44e5d1
IM
627}
628
398a153b 629#if defined CONFIG_SMP
e864c499
GH
630
631static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
632
633static inline int next_prio(struct rq *rq)
63489e45 634{
e864c499
GH
635 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
636
637 if (next && rt_prio(next->prio))
638 return next->prio;
639 else
640 return MAX_RT_PRIO;
641}
e864c499 642
398a153b
GH
643static void
644inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 645{
4d984277 646 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 647
398a153b 648 if (prio < prev_prio) {
4d984277 649
e864c499
GH
650 /*
651 * If the new task is higher in priority than anything on the
398a153b
GH
652 * run-queue, we know that the previous high becomes our
653 * next-highest.
e864c499 654 */
398a153b 655 rt_rq->highest_prio.next = prev_prio;
1f11eb6a
GH
656
657 if (rq->online)
4d984277 658 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100ac91 659
e864c499
GH
660 } else if (prio == rt_rq->highest_prio.curr)
661 /*
662 * If the next task is equal in priority to the highest on
663 * the run-queue, then we implicitly know that the next highest
664 * task cannot be any lower than current
665 */
666 rt_rq->highest_prio.next = prio;
667 else if (prio < rt_rq->highest_prio.next)
668 /*
669 * Otherwise, we need to recompute next-highest
670 */
671 rt_rq->highest_prio.next = next_prio(rq);
398a153b 672}
73fe6aae 673
398a153b
GH
674static void
675dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
676{
677 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 678
398a153b
GH
679 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
680 rt_rq->highest_prio.next = next_prio(rq);
681
682 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
683 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
684}
685
398a153b
GH
686#else /* CONFIG_SMP */
687
6f505b16 688static inline
398a153b
GH
689void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
690static inline
691void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
692
693#endif /* CONFIG_SMP */
6e0534f2 694
052f1dc7 695#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
696static void
697inc_rt_prio(struct rt_rq *rt_rq, int prio)
698{
699 int prev_prio = rt_rq->highest_prio.curr;
700
701 if (prio < prev_prio)
702 rt_rq->highest_prio.curr = prio;
703
704 inc_rt_prio_smp(rt_rq, prio, prev_prio);
705}
706
707static void
708dec_rt_prio(struct rt_rq *rt_rq, int prio)
709{
710 int prev_prio = rt_rq->highest_prio.curr;
711
6f505b16 712 if (rt_rq->rt_nr_running) {
764a9d6f 713
398a153b 714 WARN_ON(prio < prev_prio);
764a9d6f 715
e864c499 716 /*
398a153b
GH
717 * This may have been our highest task, and therefore
718 * we may have some recomputation to do
e864c499 719 */
398a153b 720 if (prio == prev_prio) {
e864c499
GH
721 struct rt_prio_array *array = &rt_rq->active;
722
723 rt_rq->highest_prio.curr =
764a9d6f 724 sched_find_first_bit(array->bitmap);
e864c499
GH
725 }
726
764a9d6f 727 } else
e864c499 728 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 729
398a153b
GH
730 dec_rt_prio_smp(rt_rq, prio, prev_prio);
731}
1f11eb6a 732
398a153b
GH
733#else
734
735static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
736static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
737
738#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 739
052f1dc7 740#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
741
742static void
743inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
744{
745 if (rt_se_boosted(rt_se))
746 rt_rq->rt_nr_boosted++;
747
748 if (rt_rq->tg)
749 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
750}
751
752static void
753dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
754{
23b0fdfc
PZ
755 if (rt_se_boosted(rt_se))
756 rt_rq->rt_nr_boosted--;
757
758 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
759}
760
761#else /* CONFIG_RT_GROUP_SCHED */
762
763static void
764inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
765{
766 start_rt_bandwidth(&def_rt_bandwidth);
767}
768
769static inline
770void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
771
772#endif /* CONFIG_RT_GROUP_SCHED */
773
774static inline
775void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
776{
777 int prio = rt_se_prio(rt_se);
778
779 WARN_ON(!rt_prio(prio));
780 rt_rq->rt_nr_running++;
781
782 inc_rt_prio(rt_rq, prio);
783 inc_rt_migration(rt_se, rt_rq);
784 inc_rt_group(rt_se, rt_rq);
785}
786
787static inline
788void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
789{
790 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
791 WARN_ON(!rt_rq->rt_nr_running);
792 rt_rq->rt_nr_running--;
793
794 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
795 dec_rt_migration(rt_se, rt_rq);
796 dec_rt_group(rt_se, rt_rq);
63489e45
SR
797}
798
ad2a3f13 799static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 800{
6f505b16
PZ
801 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
802 struct rt_prio_array *array = &rt_rq->active;
803 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 804 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 805
ad2a3f13
PZ
806 /*
807 * Don't enqueue the group if its throttled, or when empty.
808 * The latter is a consequence of the former when a child group
809 * get throttled and the current group doesn't have any other
810 * active members.
811 */
812 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 813 return;
63489e45 814
7ebefa8c 815 list_add_tail(&rt_se->run_list, queue);
6f505b16 816 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 817
6f505b16
PZ
818 inc_rt_tasks(rt_se, rt_rq);
819}
820
ad2a3f13 821static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
822{
823 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
824 struct rt_prio_array *array = &rt_rq->active;
825
826 list_del_init(&rt_se->run_list);
827 if (list_empty(array->queue + rt_se_prio(rt_se)))
828 __clear_bit(rt_se_prio(rt_se), array->bitmap);
829
830 dec_rt_tasks(rt_se, rt_rq);
831}
832
833/*
834 * Because the prio of an upper entry depends on the lower
835 * entries, we must remove entries top - down.
6f505b16 836 */
ad2a3f13 837static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 838{
ad2a3f13 839 struct sched_rt_entity *back = NULL;
6f505b16 840
58d6c2d7
PZ
841 for_each_sched_rt_entity(rt_se) {
842 rt_se->back = back;
843 back = rt_se;
844 }
845
846 for (rt_se = back; rt_se; rt_se = rt_se->back) {
847 if (on_rt_rq(rt_se))
ad2a3f13
PZ
848 __dequeue_rt_entity(rt_se);
849 }
850}
851
852static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
853{
854 dequeue_rt_stack(rt_se);
855 for_each_sched_rt_entity(rt_se)
856 __enqueue_rt_entity(rt_se);
857}
858
859static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
860{
861 dequeue_rt_stack(rt_se);
862
863 for_each_sched_rt_entity(rt_se) {
864 struct rt_rq *rt_rq = group_rt_rq(rt_se);
865
866 if (rt_rq && rt_rq->rt_nr_running)
867 __enqueue_rt_entity(rt_se);
58d6c2d7 868 }
bb44e5d1
IM
869}
870
871/*
872 * Adding/removing a task to/from a priority array:
873 */
6f505b16
PZ
874static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
875{
876 struct sched_rt_entity *rt_se = &p->rt;
877
878 if (wakeup)
879 rt_se->timeout = 0;
880
ad2a3f13 881 enqueue_rt_entity(rt_se);
c09595f6 882
917b627d
GH
883 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
884 enqueue_pushable_task(rq, p);
885
c09595f6 886 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
887}
888
f02231e5 889static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 890{
6f505b16 891 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 892
f1e14ef6 893 update_curr_rt(rq);
ad2a3f13 894 dequeue_rt_entity(rt_se);
c09595f6 895
917b627d
GH
896 dequeue_pushable_task(rq, p);
897
c09595f6 898 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
899}
900
901/*
902 * Put task to the end of the run list without the overhead of dequeue
903 * followed by enqueue.
904 */
7ebefa8c
DA
905static void
906requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 907{
1cdad715 908 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
909 struct rt_prio_array *array = &rt_rq->active;
910 struct list_head *queue = array->queue + rt_se_prio(rt_se);
911
912 if (head)
913 list_move(&rt_se->run_list, queue);
914 else
915 list_move_tail(&rt_se->run_list, queue);
1cdad715 916 }
6f505b16
PZ
917}
918
7ebefa8c 919static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 920{
6f505b16
PZ
921 struct sched_rt_entity *rt_se = &p->rt;
922 struct rt_rq *rt_rq;
bb44e5d1 923
6f505b16
PZ
924 for_each_sched_rt_entity(rt_se) {
925 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 926 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 927 }
bb44e5d1
IM
928}
929
6f505b16 930static void yield_task_rt(struct rq *rq)
bb44e5d1 931{
7ebefa8c 932 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
933}
934
e7693a36 935#ifdef CONFIG_SMP
318e0893
GH
936static int find_lowest_rq(struct task_struct *task);
937
e7693a36
GH
938static int select_task_rq_rt(struct task_struct *p, int sync)
939{
318e0893
GH
940 struct rq *rq = task_rq(p);
941
942 /*
e1f47d89
SR
943 * If the current task is an RT task, then
944 * try to see if we can wake this RT task up on another
945 * runqueue. Otherwise simply start this RT task
946 * on its current runqueue.
947 *
948 * We want to avoid overloading runqueues. Even if
949 * the RT task is of higher priority than the current RT task.
950 * RT tasks behave differently than other tasks. If
951 * one gets preempted, we try to push it off to another queue.
952 * So trying to keep a preempting RT task on the same
953 * cache hot CPU will force the running RT task to
954 * a cold CPU. So we waste all the cache for the lower
955 * RT task in hopes of saving some of a RT task
956 * that is just being woken and probably will have
957 * cold cache anyway.
318e0893 958 */
17b3279b 959 if (unlikely(rt_task(rq->curr)) &&
6f505b16 960 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
961 int cpu = find_lowest_rq(p);
962
963 return (cpu == -1) ? task_cpu(p) : cpu;
964 }
965
966 /*
967 * Otherwise, just let it ride on the affined RQ and the
968 * post-schedule router will push the preempted task away
969 */
e7693a36
GH
970 return task_cpu(p);
971}
7ebefa8c
DA
972
973static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
974{
7ebefa8c
DA
975 if (rq->curr->rt.nr_cpus_allowed == 1)
976 return;
977
24600ce8 978 if (p->rt.nr_cpus_allowed != 1
13b8bd0a
RR
979 && cpupri_find(&rq->rd->cpupri, p, NULL))
980 return;
24600ce8 981
13b8bd0a
RR
982 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
983 return;
7ebefa8c
DA
984
985 /*
986 * There appears to be other cpus that can accept
987 * current and none to run 'p', so lets reschedule
988 * to try and push current away:
989 */
990 requeue_task_rt(rq, p, 1);
991 resched_task(rq->curr);
992}
993
e7693a36
GH
994#endif /* CONFIG_SMP */
995
bb44e5d1
IM
996/*
997 * Preempt the current task with a newly woken task if needed:
998 */
15afe09b 999static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 1000{
45c01e82 1001 if (p->prio < rq->curr->prio) {
bb44e5d1 1002 resched_task(rq->curr);
45c01e82
GH
1003 return;
1004 }
1005
1006#ifdef CONFIG_SMP
1007 /*
1008 * If:
1009 *
1010 * - the newly woken task is of equal priority to the current task
1011 * - the newly woken task is non-migratable while current is migratable
1012 * - current will be preempted on the next reschedule
1013 *
1014 * we should check to see if current can readily move to a different
1015 * cpu. If so, we will reschedule to allow the push logic to try
1016 * to move current somewhere else, making room for our non-migratable
1017 * task.
1018 */
7ebefa8c
DA
1019 if (p->prio == rq->curr->prio && !need_resched())
1020 check_preempt_equal_prio(rq, p);
45c01e82 1021#endif
bb44e5d1
IM
1022}
1023
6f505b16
PZ
1024static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1025 struct rt_rq *rt_rq)
bb44e5d1 1026{
6f505b16
PZ
1027 struct rt_prio_array *array = &rt_rq->active;
1028 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1029 struct list_head *queue;
1030 int idx;
1031
1032 idx = sched_find_first_bit(array->bitmap);
6f505b16 1033 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1034
1035 queue = array->queue + idx;
6f505b16 1036 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1037
6f505b16
PZ
1038 return next;
1039}
bb44e5d1 1040
917b627d 1041static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1042{
1043 struct sched_rt_entity *rt_se;
1044 struct task_struct *p;
1045 struct rt_rq *rt_rq;
bb44e5d1 1046
6f505b16
PZ
1047 rt_rq = &rq->rt;
1048
1049 if (unlikely(!rt_rq->rt_nr_running))
1050 return NULL;
1051
23b0fdfc 1052 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1053 return NULL;
1054
1055 do {
1056 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1057 BUG_ON(!rt_se);
6f505b16
PZ
1058 rt_rq = group_rt_rq(rt_se);
1059 } while (rt_rq);
1060
1061 p = rt_task_of(rt_se);
1062 p->se.exec_start = rq->clock;
917b627d
GH
1063
1064 return p;
1065}
1066
3f029d3c
GH
1067static inline int has_pushable_tasks(struct rq *rq)
1068{
1069 return !plist_head_empty(&rq->rt.pushable_tasks);
1070}
1071
917b627d
GH
1072static struct task_struct *pick_next_task_rt(struct rq *rq)
1073{
1074 struct task_struct *p = _pick_next_task_rt(rq);
1075
1076 /* The running task is never eligible for pushing */
1077 if (p)
1078 dequeue_pushable_task(rq, p);
1079
3f029d3c
GH
1080 /*
1081 * We detect this state here so that we can avoid taking the RQ
1082 * lock again later if there is no need to push
1083 */
1084 rq->post_schedule = has_pushable_tasks(rq);
1085
6f505b16 1086 return p;
bb44e5d1
IM
1087}
1088
31ee529c 1089static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1090{
f1e14ef6 1091 update_curr_rt(rq);
bb44e5d1 1092 p->se.exec_start = 0;
917b627d
GH
1093
1094 /*
1095 * The previous task needs to be made eligible for pushing
1096 * if it is still active
1097 */
1098 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1099 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1100}
1101
681f3e68 1102#ifdef CONFIG_SMP
6f505b16 1103
e8fa1362
SR
1104/* Only try algorithms three times */
1105#define RT_MAX_TRIES 3
1106
e8fa1362
SR
1107static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1108
f65eda4f
SR
1109static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1110{
1111 if (!task_running(rq, p) &&
96f874e2 1112 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 1113 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1114 return 1;
1115 return 0;
1116}
1117
e8fa1362 1118/* Return the second highest RT task, NULL otherwise */
79064fbf 1119static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1120{
6f505b16
PZ
1121 struct task_struct *next = NULL;
1122 struct sched_rt_entity *rt_se;
1123 struct rt_prio_array *array;
1124 struct rt_rq *rt_rq;
e8fa1362
SR
1125 int idx;
1126
6f505b16
PZ
1127 for_each_leaf_rt_rq(rt_rq, rq) {
1128 array = &rt_rq->active;
1129 idx = sched_find_first_bit(array->bitmap);
1130 next_idx:
1131 if (idx >= MAX_RT_PRIO)
1132 continue;
1133 if (next && next->prio < idx)
1134 continue;
1135 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1136 struct task_struct *p = rt_task_of(rt_se);
1137 if (pick_rt_task(rq, p, cpu)) {
1138 next = p;
1139 break;
1140 }
1141 }
1142 if (!next) {
1143 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1144 goto next_idx;
1145 }
f65eda4f
SR
1146 }
1147
e8fa1362
SR
1148 return next;
1149}
1150
0e3900e6 1151static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1152
d38b223c
MT
1153static inline int pick_optimal_cpu(int this_cpu,
1154 const struct cpumask *mask)
6e1254d2
GH
1155{
1156 int first;
1157
1158 /* "this_cpu" is cheaper to preempt than a remote processor */
d38b223c 1159 if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
6e1254d2
GH
1160 return this_cpu;
1161
3d398703
RR
1162 first = cpumask_first(mask);
1163 if (first < nr_cpu_ids)
6e1254d2
GH
1164 return first;
1165
1166 return -1;
1167}
1168
1169static int find_lowest_rq(struct task_struct *task)
1170{
1171 struct sched_domain *sd;
96f874e2 1172 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1173 int this_cpu = smp_processor_id();
1174 int cpu = task_cpu(task);
d38b223c 1175 cpumask_var_t domain_mask;
06f90dbd 1176
6e0534f2
GH
1177 if (task->rt.nr_cpus_allowed == 1)
1178 return -1; /* No other targets possible */
6e1254d2 1179
6e0534f2
GH
1180 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1181 return -1; /* No targets found */
6e1254d2
GH
1182
1183 /*
1184 * At this point we have built a mask of cpus representing the
1185 * lowest priority tasks in the system. Now we want to elect
1186 * the best one based on our affinity and topology.
1187 *
1188 * We prioritize the last cpu that the task executed on since
1189 * it is most likely cache-hot in that location.
1190 */
96f874e2 1191 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1192 return cpu;
1193
1194 /*
1195 * Otherwise, we consult the sched_domains span maps to figure
1196 * out which cpu is logically closest to our hot cache data.
1197 */
1198 if (this_cpu == cpu)
1199 this_cpu = -1; /* Skip this_cpu opt if the same */
1200
d38b223c
MT
1201 if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1202 for_each_domain(cpu, sd) {
1203 if (sd->flags & SD_WAKE_AFFINE) {
1204 int best_cpu;
6e1254d2 1205
d38b223c
MT
1206 cpumask_and(domain_mask,
1207 sched_domain_span(sd),
1208 lowest_mask);
6e1254d2 1209
d38b223c
MT
1210 best_cpu = pick_optimal_cpu(this_cpu,
1211 domain_mask);
6e1254d2 1212
d38b223c
MT
1213 if (best_cpu != -1) {
1214 free_cpumask_var(domain_mask);
1215 return best_cpu;
1216 }
1217 }
6e1254d2 1218 }
d38b223c 1219 free_cpumask_var(domain_mask);
6e1254d2
GH
1220 }
1221
1222 /*
1223 * And finally, if there were no matches within the domains
1224 * just give the caller *something* to work with from the compatible
1225 * locations.
1226 */
1227 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
1228}
1229
1230/* Will lock the rq it finds */
4df64c0b 1231static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1232{
1233 struct rq *lowest_rq = NULL;
07b4032c 1234 int tries;
4df64c0b 1235 int cpu;
e8fa1362 1236
07b4032c
GH
1237 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1238 cpu = find_lowest_rq(task);
1239
2de0b463 1240 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1241 break;
1242
07b4032c
GH
1243 lowest_rq = cpu_rq(cpu);
1244
e8fa1362 1245 /* if the prio of this runqueue changed, try again */
07b4032c 1246 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1247 /*
1248 * We had to unlock the run queue. In
1249 * the mean time, task could have
1250 * migrated already or had its affinity changed.
1251 * Also make sure that it wasn't scheduled on its rq.
1252 */
07b4032c 1253 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1254 !cpumask_test_cpu(lowest_rq->cpu,
1255 &task->cpus_allowed) ||
07b4032c 1256 task_running(rq, task) ||
e8fa1362 1257 !task->se.on_rq)) {
4df64c0b 1258
e8fa1362
SR
1259 spin_unlock(&lowest_rq->lock);
1260 lowest_rq = NULL;
1261 break;
1262 }
1263 }
1264
1265 /* If this rq is still suitable use it. */
e864c499 1266 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1267 break;
1268
1269 /* try again */
1b12bbc7 1270 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1271 lowest_rq = NULL;
1272 }
1273
1274 return lowest_rq;
1275}
1276
917b627d
GH
1277static struct task_struct *pick_next_pushable_task(struct rq *rq)
1278{
1279 struct task_struct *p;
1280
1281 if (!has_pushable_tasks(rq))
1282 return NULL;
1283
1284 p = plist_first_entry(&rq->rt.pushable_tasks,
1285 struct task_struct, pushable_tasks);
1286
1287 BUG_ON(rq->cpu != task_cpu(p));
1288 BUG_ON(task_current(rq, p));
1289 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1290
1291 BUG_ON(!p->se.on_rq);
1292 BUG_ON(!rt_task(p));
1293
1294 return p;
1295}
1296
e8fa1362
SR
1297/*
1298 * If the current CPU has more than one RT task, see if the non
1299 * running task can migrate over to a CPU that is running a task
1300 * of lesser priority.
1301 */
697f0a48 1302static int push_rt_task(struct rq *rq)
e8fa1362
SR
1303{
1304 struct task_struct *next_task;
1305 struct rq *lowest_rq;
e8fa1362 1306
a22d7fc1
GH
1307 if (!rq->rt.overloaded)
1308 return 0;
1309
917b627d 1310 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1311 if (!next_task)
1312 return 0;
1313
1314 retry:
697f0a48 1315 if (unlikely(next_task == rq->curr)) {
f65eda4f 1316 WARN_ON(1);
e8fa1362 1317 return 0;
f65eda4f 1318 }
e8fa1362
SR
1319
1320 /*
1321 * It's possible that the next_task slipped in of
1322 * higher priority than current. If that's the case
1323 * just reschedule current.
1324 */
697f0a48
GH
1325 if (unlikely(next_task->prio < rq->curr->prio)) {
1326 resched_task(rq->curr);
e8fa1362
SR
1327 return 0;
1328 }
1329
697f0a48 1330 /* We might release rq lock */
e8fa1362
SR
1331 get_task_struct(next_task);
1332
1333 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1334 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1335 if (!lowest_rq) {
1336 struct task_struct *task;
1337 /*
697f0a48 1338 * find lock_lowest_rq releases rq->lock
1563513d
GH
1339 * so it is possible that next_task has migrated.
1340 *
1341 * We need to make sure that the task is still on the same
1342 * run-queue and is also still the next task eligible for
1343 * pushing.
e8fa1362 1344 */
917b627d 1345 task = pick_next_pushable_task(rq);
1563513d
GH
1346 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1347 /*
1348 * If we get here, the task hasnt moved at all, but
1349 * it has failed to push. We will not try again,
1350 * since the other cpus will pull from us when they
1351 * are ready.
1352 */
1353 dequeue_pushable_task(rq, next_task);
1354 goto out;
e8fa1362 1355 }
917b627d 1356
1563513d
GH
1357 if (!task)
1358 /* No more tasks, just exit */
1359 goto out;
1360
917b627d 1361 /*
1563513d 1362 * Something has shifted, try again.
917b627d 1363 */
1563513d
GH
1364 put_task_struct(next_task);
1365 next_task = task;
1366 goto retry;
e8fa1362
SR
1367 }
1368
697f0a48 1369 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1370 set_task_cpu(next_task, lowest_rq->cpu);
1371 activate_task(lowest_rq, next_task, 0);
1372
1373 resched_task(lowest_rq->curr);
1374
1b12bbc7 1375 double_unlock_balance(rq, lowest_rq);
e8fa1362 1376
e8fa1362
SR
1377out:
1378 put_task_struct(next_task);
1379
917b627d 1380 return 1;
e8fa1362
SR
1381}
1382
e8fa1362
SR
1383static void push_rt_tasks(struct rq *rq)
1384{
1385 /* push_rt_task will return true if it moved an RT */
1386 while (push_rt_task(rq))
1387 ;
1388}
1389
f65eda4f
SR
1390static int pull_rt_task(struct rq *this_rq)
1391{
80bf3171 1392 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1393 struct task_struct *p;
f65eda4f 1394 struct rq *src_rq;
f65eda4f 1395
637f5085 1396 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1397 return 0;
1398
c6c4927b 1399 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1400 if (this_cpu == cpu)
1401 continue;
1402
1403 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1404
1405 /*
1406 * Don't bother taking the src_rq->lock if the next highest
1407 * task is known to be lower-priority than our current task.
1408 * This may look racy, but if this value is about to go
1409 * logically higher, the src_rq will push this task away.
1410 * And if its going logically lower, we do not care
1411 */
1412 if (src_rq->rt.highest_prio.next >=
1413 this_rq->rt.highest_prio.curr)
1414 continue;
1415
f65eda4f
SR
1416 /*
1417 * We can potentially drop this_rq's lock in
1418 * double_lock_balance, and another CPU could
a8728944 1419 * alter this_rq
f65eda4f 1420 */
a8728944 1421 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1422
1423 /*
1424 * Are there still pullable RT tasks?
1425 */
614ee1f6
MG
1426 if (src_rq->rt.rt_nr_running <= 1)
1427 goto skip;
f65eda4f 1428
f65eda4f
SR
1429 p = pick_next_highest_task_rt(src_rq, this_cpu);
1430
1431 /*
1432 * Do we have an RT task that preempts
1433 * the to-be-scheduled task?
1434 */
a8728944 1435 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f
SR
1436 WARN_ON(p == src_rq->curr);
1437 WARN_ON(!p->se.on_rq);
1438
1439 /*
1440 * There's a chance that p is higher in priority
1441 * than what's currently running on its cpu.
1442 * This is just that p is wakeing up and hasn't
1443 * had a chance to schedule. We only pull
1444 * p if it is lower in priority than the
a8728944 1445 * current task on the run queue
f65eda4f 1446 */
a8728944 1447 if (p->prio < src_rq->curr->prio)
614ee1f6 1448 goto skip;
f65eda4f
SR
1449
1450 ret = 1;
1451
1452 deactivate_task(src_rq, p, 0);
1453 set_task_cpu(p, this_cpu);
1454 activate_task(this_rq, p, 0);
1455 /*
1456 * We continue with the search, just in
1457 * case there's an even higher prio task
1458 * in another runqueue. (low likelyhood
1459 * but possible)
f65eda4f 1460 */
f65eda4f 1461 }
614ee1f6 1462 skip:
1b12bbc7 1463 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1464 }
1465
1466 return ret;
1467}
1468
9a897c5a 1469static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1470{
1471 /* Try to pull RT tasks here if we lower this rq's prio */
e864c499 1472 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1473 pull_rt_task(rq);
1474}
1475
9a897c5a 1476static void post_schedule_rt(struct rq *rq)
e8fa1362 1477{
967fc046 1478 push_rt_tasks(rq);
e8fa1362
SR
1479}
1480
8ae121ac
GH
1481/*
1482 * If we are not running and we are not going to reschedule soon, we should
1483 * try to push tasks away now
1484 */
9a897c5a 1485static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1486{
9a897c5a 1487 if (!task_running(rq, p) &&
8ae121ac 1488 !test_tsk_need_resched(rq->curr) &&
917b627d 1489 has_pushable_tasks(rq) &&
777c2f38 1490 p->rt.nr_cpus_allowed > 1)
4642dafd
SR
1491 push_rt_tasks(rq);
1492}
1493
43010659 1494static unsigned long
bb44e5d1 1495load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1496 unsigned long max_load_move,
1497 struct sched_domain *sd, enum cpu_idle_type idle,
1498 int *all_pinned, int *this_best_prio)
bb44e5d1 1499{
c7a1e46a
SR
1500 /* don't touch RT tasks */
1501 return 0;
e1d1484f
PW
1502}
1503
1504static int
1505move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1506 struct sched_domain *sd, enum cpu_idle_type idle)
1507{
c7a1e46a
SR
1508 /* don't touch RT tasks */
1509 return 0;
bb44e5d1 1510}
deeeccd4 1511
cd8ba7cd 1512static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1513 const struct cpumask *new_mask)
73fe6aae 1514{
96f874e2 1515 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1516
1517 BUG_ON(!rt_task(p));
1518
1519 /*
1520 * Update the migration status of the RQ if we have an RT task
1521 * which is running AND changing its weight value.
1522 */
6f505b16 1523 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1524 struct rq *rq = task_rq(p);
1525
917b627d
GH
1526 if (!task_current(rq, p)) {
1527 /*
1528 * Make sure we dequeue this task from the pushable list
1529 * before going further. It will either remain off of
1530 * the list because we are no longer pushable, or it
1531 * will be requeued.
1532 */
1533 if (p->rt.nr_cpus_allowed > 1)
1534 dequeue_pushable_task(rq, p);
1535
1536 /*
1537 * Requeue if our weight is changing and still > 1
1538 */
1539 if (weight > 1)
1540 enqueue_pushable_task(rq, p);
1541
1542 }
1543
6f505b16 1544 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1545 rq->rt.rt_nr_migratory++;
6f505b16 1546 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1547 BUG_ON(!rq->rt.rt_nr_migratory);
1548 rq->rt.rt_nr_migratory--;
1549 }
1550
398a153b 1551 update_rt_migration(&rq->rt);
73fe6aae
GH
1552 }
1553
96f874e2 1554 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1555 p->rt.nr_cpus_allowed = weight;
73fe6aae 1556}
deeeccd4 1557
bdd7c81b 1558/* Assumes rq->lock is held */
1f11eb6a 1559static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1560{
1561 if (rq->rt.overloaded)
1562 rt_set_overload(rq);
6e0534f2 1563
7def2be1
PZ
1564 __enable_runtime(rq);
1565
e864c499 1566 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1567}
1568
1569/* Assumes rq->lock is held */
1f11eb6a 1570static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1571{
1572 if (rq->rt.overloaded)
1573 rt_clear_overload(rq);
6e0534f2 1574
7def2be1
PZ
1575 __disable_runtime(rq);
1576
6e0534f2 1577 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1578}
cb469845
SR
1579
1580/*
1581 * When switch from the rt queue, we bring ourselves to a position
1582 * that we might want to pull RT tasks from other runqueues.
1583 */
1584static void switched_from_rt(struct rq *rq, struct task_struct *p,
1585 int running)
1586{
1587 /*
1588 * If there are other RT tasks then we will reschedule
1589 * and the scheduling of the other RT tasks will handle
1590 * the balancing. But if we are the last RT task
1591 * we may need to handle the pulling of RT tasks
1592 * now.
1593 */
1594 if (!rq->rt.rt_nr_running)
1595 pull_rt_task(rq);
1596}
3d8cbdf8
RR
1597
1598static inline void init_sched_rt_class(void)
1599{
1600 unsigned int i;
1601
1602 for_each_possible_cpu(i)
eaa95840 1603 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1604 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1605}
cb469845
SR
1606#endif /* CONFIG_SMP */
1607
1608/*
1609 * When switching a task to RT, we may overload the runqueue
1610 * with RT tasks. In this case we try to push them off to
1611 * other runqueues.
1612 */
1613static void switched_to_rt(struct rq *rq, struct task_struct *p,
1614 int running)
1615{
1616 int check_resched = 1;
1617
1618 /*
1619 * If we are already running, then there's nothing
1620 * that needs to be done. But if we are not running
1621 * we may need to preempt the current running task.
1622 * If that current running task is also an RT task
1623 * then see if we can move to another run queue.
1624 */
1625 if (!running) {
1626#ifdef CONFIG_SMP
1627 if (rq->rt.overloaded && push_rt_task(rq) &&
1628 /* Don't resched if we changed runqueues */
1629 rq != task_rq(p))
1630 check_resched = 0;
1631#endif /* CONFIG_SMP */
1632 if (check_resched && p->prio < rq->curr->prio)
1633 resched_task(rq->curr);
1634 }
1635}
1636
1637/*
1638 * Priority of the task has changed. This may cause
1639 * us to initiate a push or pull.
1640 */
1641static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1642 int oldprio, int running)
1643{
1644 if (running) {
1645#ifdef CONFIG_SMP
1646 /*
1647 * If our priority decreases while running, we
1648 * may need to pull tasks to this runqueue.
1649 */
1650 if (oldprio < p->prio)
1651 pull_rt_task(rq);
1652 /*
1653 * If there's a higher priority task waiting to run
6fa46fa5
SR
1654 * then reschedule. Note, the above pull_rt_task
1655 * can release the rq lock and p could migrate.
1656 * Only reschedule if p is still on the same runqueue.
cb469845 1657 */
e864c499 1658 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1659 resched_task(p);
1660#else
1661 /* For UP simply resched on drop of prio */
1662 if (oldprio < p->prio)
1663 resched_task(p);
e8fa1362 1664#endif /* CONFIG_SMP */
cb469845
SR
1665 } else {
1666 /*
1667 * This task is not running, but if it is
1668 * greater than the current running task
1669 * then reschedule.
1670 */
1671 if (p->prio < rq->curr->prio)
1672 resched_task(rq->curr);
1673 }
1674}
1675
78f2c7db
PZ
1676static void watchdog(struct rq *rq, struct task_struct *p)
1677{
1678 unsigned long soft, hard;
1679
1680 if (!p->signal)
1681 return;
1682
1683 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1684 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1685
1686 if (soft != RLIM_INFINITY) {
1687 unsigned long next;
1688
1689 p->rt.timeout++;
1690 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1691 if (p->rt.timeout > next)
f06febc9 1692 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1693 }
1694}
bb44e5d1 1695
8f4d37ec 1696static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1697{
67e2be02
PZ
1698 update_curr_rt(rq);
1699
78f2c7db
PZ
1700 watchdog(rq, p);
1701
bb44e5d1
IM
1702 /*
1703 * RR tasks need a special form of timeslice management.
1704 * FIFO tasks have no timeslices.
1705 */
1706 if (p->policy != SCHED_RR)
1707 return;
1708
fa717060 1709 if (--p->rt.time_slice)
bb44e5d1
IM
1710 return;
1711
fa717060 1712 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1713
98fbc798
DA
1714 /*
1715 * Requeue to the end of queue if we are not the only element
1716 * on the queue:
1717 */
fa717060 1718 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1719 requeue_task_rt(rq, p, 0);
98fbc798
DA
1720 set_tsk_need_resched(p);
1721 }
bb44e5d1
IM
1722}
1723
83b699ed
SV
1724static void set_curr_task_rt(struct rq *rq)
1725{
1726 struct task_struct *p = rq->curr;
1727
1728 p->se.exec_start = rq->clock;
917b627d
GH
1729
1730 /* The running task is never eligible for pushing */
1731 dequeue_pushable_task(rq, p);
83b699ed
SV
1732}
1733
2abdad0a 1734static const struct sched_class rt_sched_class = {
5522d5d5 1735 .next = &fair_sched_class,
bb44e5d1
IM
1736 .enqueue_task = enqueue_task_rt,
1737 .dequeue_task = dequeue_task_rt,
1738 .yield_task = yield_task_rt,
1739
1740 .check_preempt_curr = check_preempt_curr_rt,
1741
1742 .pick_next_task = pick_next_task_rt,
1743 .put_prev_task = put_prev_task_rt,
1744
681f3e68 1745#ifdef CONFIG_SMP
4ce72a2c
LZ
1746 .select_task_rq = select_task_rq_rt,
1747
bb44e5d1 1748 .load_balance = load_balance_rt,
e1d1484f 1749 .move_one_task = move_one_task_rt,
73fe6aae 1750 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1751 .rq_online = rq_online_rt,
1752 .rq_offline = rq_offline_rt,
9a897c5a
SR
1753 .pre_schedule = pre_schedule_rt,
1754 .post_schedule = post_schedule_rt,
1755 .task_wake_up = task_wake_up_rt,
cb469845 1756 .switched_from = switched_from_rt,
681f3e68 1757#endif
bb44e5d1 1758
83b699ed 1759 .set_curr_task = set_curr_task_rt,
bb44e5d1 1760 .task_tick = task_tick_rt,
cb469845
SR
1761
1762 .prio_changed = prio_changed_rt,
1763 .switched_to = switched_to_rt,
bb44e5d1 1764};
ada18de2
PZ
1765
1766#ifdef CONFIG_SCHED_DEBUG
1767extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1768
1769static void print_rt_stats(struct seq_file *m, int cpu)
1770{
1771 struct rt_rq *rt_rq;
1772
1773 rcu_read_lock();
1774 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1775 print_rt_rq(m, cpu, rt_rq);
1776 rcu_read_unlock();
1777}
55e12e5e 1778#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1779