]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
sched: RT balancing: include current CPU
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176
SR
6#ifdef CONFIG_SMP
7static cpumask_t rt_overload_mask;
8static atomic_t rto_count;
9static inline int rt_overloaded(void)
10{
11 return atomic_read(&rto_count);
12}
13static inline cpumask_t *rt_overload(void)
14{
15 return &rt_overload_mask;
16}
17static inline void rt_set_overload(struct rq *rq)
18{
19 cpu_set(rq->cpu, rt_overload_mask);
20 /*
21 * Make sure the mask is visible before we set
22 * the overload count. That is checked to determine
23 * if we should look at the mask. It would be a shame
24 * if we looked at the mask, but the mask was not
25 * updated yet.
26 */
27 wmb();
28 atomic_inc(&rto_count);
29}
30static inline void rt_clear_overload(struct rq *rq)
31{
32 /* the order here really doesn't matter */
33 atomic_dec(&rto_count);
34 cpu_clear(rq->cpu, rt_overload_mask);
35}
73fe6aae
GH
36
37static void update_rt_migration(struct rq *rq)
38{
39 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
40 rt_set_overload(rq);
41 else
42 rt_clear_overload(rq);
43}
4fd29176
SR
44#endif /* CONFIG_SMP */
45
bb44e5d1
IM
46/*
47 * Update the current task's runtime statistics. Skip current tasks that
48 * are not in our scheduling class.
49 */
a9957449 50static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
51{
52 struct task_struct *curr = rq->curr;
53 u64 delta_exec;
54
55 if (!task_has_rt_policy(curr))
56 return;
57
d281918d 58 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
59 if (unlikely((s64)delta_exec < 0))
60 delta_exec = 0;
6cfb0d5d
IM
61
62 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
63
64 curr->se.sum_exec_runtime += delta_exec;
d281918d 65 curr->se.exec_start = rq->clock;
d842de87 66 cpuacct_charge(curr, delta_exec);
bb44e5d1
IM
67}
68
63489e45
SR
69static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
70{
71 WARN_ON(!rt_task(p));
72 rq->rt.rt_nr_running++;
764a9d6f
SR
73#ifdef CONFIG_SMP
74 if (p->prio < rq->rt.highest_prio)
75 rq->rt.highest_prio = p->prio;
73fe6aae
GH
76 if (p->nr_cpus_allowed > 1)
77 rq->rt.rt_nr_migratory++;
78
79 update_rt_migration(rq);
764a9d6f 80#endif /* CONFIG_SMP */
63489e45
SR
81}
82
83static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
84{
85 WARN_ON(!rt_task(p));
86 WARN_ON(!rq->rt.rt_nr_running);
87 rq->rt.rt_nr_running--;
764a9d6f
SR
88#ifdef CONFIG_SMP
89 if (rq->rt.rt_nr_running) {
90 struct rt_prio_array *array;
91
92 WARN_ON(p->prio < rq->rt.highest_prio);
93 if (p->prio == rq->rt.highest_prio) {
94 /* recalculate */
95 array = &rq->rt.active;
96 rq->rt.highest_prio =
97 sched_find_first_bit(array->bitmap);
98 } /* otherwise leave rq->highest prio alone */
99 } else
100 rq->rt.highest_prio = MAX_RT_PRIO;
73fe6aae
GH
101 if (p->nr_cpus_allowed > 1)
102 rq->rt.rt_nr_migratory--;
103
104 update_rt_migration(rq);
764a9d6f 105#endif /* CONFIG_SMP */
63489e45
SR
106}
107
fd390f6a 108static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
bb44e5d1
IM
109{
110 struct rt_prio_array *array = &rq->rt.active;
111
112 list_add_tail(&p->run_list, array->queue + p->prio);
113 __set_bit(p->prio, array->bitmap);
58e2d4ca 114 inc_cpu_load(rq, p->se.load.weight);
63489e45
SR
115
116 inc_rt_tasks(p, rq);
bb44e5d1
IM
117}
118
119/*
120 * Adding/removing a task to/from a priority array:
121 */
f02231e5 122static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1
IM
123{
124 struct rt_prio_array *array = &rq->rt.active;
125
f1e14ef6 126 update_curr_rt(rq);
bb44e5d1
IM
127
128 list_del(&p->run_list);
129 if (list_empty(array->queue + p->prio))
130 __clear_bit(p->prio, array->bitmap);
58e2d4ca 131 dec_cpu_load(rq, p->se.load.weight);
63489e45
SR
132
133 dec_rt_tasks(p, rq);
bb44e5d1
IM
134}
135
136/*
137 * Put task to the end of the run list without the overhead of dequeue
138 * followed by enqueue.
139 */
140static void requeue_task_rt(struct rq *rq, struct task_struct *p)
141{
142 struct rt_prio_array *array = &rq->rt.active;
143
144 list_move_tail(&p->run_list, array->queue + p->prio);
145}
146
147static void
4530d7ab 148yield_task_rt(struct rq *rq)
bb44e5d1 149{
4530d7ab 150 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
151}
152
e7693a36
GH
153#ifdef CONFIG_SMP
154static int select_task_rq_rt(struct task_struct *p, int sync)
155{
156 return task_cpu(p);
157}
158#endif /* CONFIG_SMP */
159
bb44e5d1
IM
160/*
161 * Preempt the current task with a newly woken task if needed:
162 */
163static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
164{
165 if (p->prio < rq->curr->prio)
166 resched_task(rq->curr);
167}
168
fb8d4724 169static struct task_struct *pick_next_task_rt(struct rq *rq)
bb44e5d1
IM
170{
171 struct rt_prio_array *array = &rq->rt.active;
172 struct task_struct *next;
173 struct list_head *queue;
174 int idx;
175
176 idx = sched_find_first_bit(array->bitmap);
177 if (idx >= MAX_RT_PRIO)
178 return NULL;
179
180 queue = array->queue + idx;
181 next = list_entry(queue->next, struct task_struct, run_list);
182
d281918d 183 next->se.exec_start = rq->clock;
bb44e5d1
IM
184
185 return next;
186}
187
31ee529c 188static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 189{
f1e14ef6 190 update_curr_rt(rq);
bb44e5d1
IM
191 p->se.exec_start = 0;
192}
193
681f3e68 194#ifdef CONFIG_SMP
e8fa1362
SR
195/* Only try algorithms three times */
196#define RT_MAX_TRIES 3
197
198static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
199static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
200
f65eda4f
SR
201static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
202{
203 if (!task_running(rq, p) &&
73fe6aae
GH
204 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
205 (p->nr_cpus_allowed > 1))
f65eda4f
SR
206 return 1;
207 return 0;
208}
209
e8fa1362 210/* Return the second highest RT task, NULL otherwise */
f65eda4f
SR
211static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
212 int cpu)
e8fa1362
SR
213{
214 struct rt_prio_array *array = &rq->rt.active;
215 struct task_struct *next;
216 struct list_head *queue;
217 int idx;
218
219 assert_spin_locked(&rq->lock);
220
221 if (likely(rq->rt.rt_nr_running < 2))
222 return NULL;
223
224 idx = sched_find_first_bit(array->bitmap);
225 if (unlikely(idx >= MAX_RT_PRIO)) {
226 WARN_ON(1); /* rt_nr_running is bad */
227 return NULL;
228 }
229
230 queue = array->queue + idx;
f65eda4f
SR
231 BUG_ON(list_empty(queue));
232
e8fa1362 233 next = list_entry(queue->next, struct task_struct, run_list);
f65eda4f
SR
234 if (unlikely(pick_rt_task(rq, next, cpu)))
235 goto out;
e8fa1362
SR
236
237 if (queue->next->next != queue) {
238 /* same prio task */
239 next = list_entry(queue->next->next, struct task_struct, run_list);
f65eda4f
SR
240 if (pick_rt_task(rq, next, cpu))
241 goto out;
e8fa1362
SR
242 }
243
f65eda4f 244 retry:
e8fa1362
SR
245 /* slower, but more flexible */
246 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
f65eda4f 247 if (unlikely(idx >= MAX_RT_PRIO))
e8fa1362 248 return NULL;
e8fa1362
SR
249
250 queue = array->queue + idx;
f65eda4f
SR
251 BUG_ON(list_empty(queue));
252
253 list_for_each_entry(next, queue, run_list) {
254 if (pick_rt_task(rq, next, cpu))
255 goto out;
256 }
257
258 goto retry;
e8fa1362 259
f65eda4f 260 out:
e8fa1362
SR
261 return next;
262}
263
264static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
265
07b4032c 266static int find_lowest_rq(struct task_struct *task)
e8fa1362 267{
e8fa1362 268 int cpu;
e8fa1362 269 cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
07b4032c 270 struct rq *lowest_rq = NULL;
e8fa1362
SR
271
272 cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
273
07b4032c
GH
274 /*
275 * Scan each rq for the lowest prio.
276 */
277 for_each_cpu_mask(cpu, *cpu_mask) {
278 struct rq *rq = cpu_rq(cpu);
e8fa1362 279
07b4032c
GH
280 /* We look for lowest RT prio or non-rt CPU */
281 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
282 lowest_rq = rq;
283 break;
284 }
285
286 /* no locking for now */
287 if (rq->rt.highest_prio > task->prio &&
288 (!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
289 lowest_rq = rq;
e8fa1362 290 }
07b4032c
GH
291 }
292
293 return lowest_rq ? lowest_rq->cpu : -1;
294}
295
296/* Will lock the rq it finds */
297static struct rq *find_lock_lowest_rq(struct task_struct *task,
298 struct rq *rq)
299{
300 struct rq *lowest_rq = NULL;
301 int cpu;
302 int tries;
e8fa1362 303
07b4032c
GH
304 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
305 cpu = find_lowest_rq(task);
306
2de0b463 307 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
308 break;
309
07b4032c
GH
310 lowest_rq = cpu_rq(cpu);
311
e8fa1362 312 /* if the prio of this runqueue changed, try again */
07b4032c 313 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
314 /*
315 * We had to unlock the run queue. In
316 * the mean time, task could have
317 * migrated already or had its affinity changed.
318 * Also make sure that it wasn't scheduled on its rq.
319 */
07b4032c 320 if (unlikely(task_rq(task) != rq ||
e8fa1362 321 !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
07b4032c 322 task_running(rq, task) ||
e8fa1362
SR
323 !task->se.on_rq)) {
324 spin_unlock(&lowest_rq->lock);
325 lowest_rq = NULL;
326 break;
327 }
328 }
329
330 /* If this rq is still suitable use it. */
331 if (lowest_rq->rt.highest_prio > task->prio)
332 break;
333
334 /* try again */
335 spin_unlock(&lowest_rq->lock);
336 lowest_rq = NULL;
337 }
338
339 return lowest_rq;
340}
341
342/*
343 * If the current CPU has more than one RT task, see if the non
344 * running task can migrate over to a CPU that is running a task
345 * of lesser priority.
346 */
697f0a48 347static int push_rt_task(struct rq *rq)
e8fa1362
SR
348{
349 struct task_struct *next_task;
350 struct rq *lowest_rq;
351 int ret = 0;
352 int paranoid = RT_MAX_TRIES;
353
697f0a48 354 assert_spin_locked(&rq->lock);
e8fa1362 355
697f0a48 356 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
357 if (!next_task)
358 return 0;
359
360 retry:
697f0a48 361 if (unlikely(next_task == rq->curr)) {
f65eda4f 362 WARN_ON(1);
e8fa1362 363 return 0;
f65eda4f 364 }
e8fa1362
SR
365
366 /*
367 * It's possible that the next_task slipped in of
368 * higher priority than current. If that's the case
369 * just reschedule current.
370 */
697f0a48
GH
371 if (unlikely(next_task->prio < rq->curr->prio)) {
372 resched_task(rq->curr);
e8fa1362
SR
373 return 0;
374 }
375
697f0a48 376 /* We might release rq lock */
e8fa1362
SR
377 get_task_struct(next_task);
378
379 /* find_lock_lowest_rq locks the rq if found */
697f0a48 380 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
381 if (!lowest_rq) {
382 struct task_struct *task;
383 /*
697f0a48 384 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
385 * so it is possible that next_task has changed.
386 * If it has, then try again.
387 */
697f0a48 388 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
389 if (unlikely(task != next_task) && task && paranoid--) {
390 put_task_struct(next_task);
391 next_task = task;
392 goto retry;
393 }
394 goto out;
395 }
396
397 assert_spin_locked(&lowest_rq->lock);
398
697f0a48 399 deactivate_task(rq, next_task, 0);
e8fa1362
SR
400 set_task_cpu(next_task, lowest_rq->cpu);
401 activate_task(lowest_rq, next_task, 0);
402
403 resched_task(lowest_rq->curr);
404
405 spin_unlock(&lowest_rq->lock);
406
407 ret = 1;
408out:
409 put_task_struct(next_task);
410
411 return ret;
412}
413
414/*
415 * TODO: Currently we just use the second highest prio task on
416 * the queue, and stop when it can't migrate (or there's
417 * no more RT tasks). There may be a case where a lower
418 * priority RT task has a different affinity than the
419 * higher RT task. In this case the lower RT task could
420 * possibly be able to migrate where as the higher priority
421 * RT task could not. We currently ignore this issue.
422 * Enhancements are welcome!
423 */
424static void push_rt_tasks(struct rq *rq)
425{
426 /* push_rt_task will return true if it moved an RT */
427 while (push_rt_task(rq))
428 ;
429}
430
f65eda4f
SR
431static int pull_rt_task(struct rq *this_rq)
432{
433 struct task_struct *next;
434 struct task_struct *p;
435 struct rq *src_rq;
436 cpumask_t *rto_cpumask;
437 int this_cpu = this_rq->cpu;
438 int cpu;
439 int ret = 0;
440
441 assert_spin_locked(&this_rq->lock);
442
443 /*
444 * If cpusets are used, and we have overlapping
445 * run queue cpusets, then this algorithm may not catch all.
446 * This is just the price you pay on trying to keep
447 * dirtying caches down on large SMP machines.
448 */
449 if (likely(!rt_overloaded()))
450 return 0;
451
452 next = pick_next_task_rt(this_rq);
453
454 rto_cpumask = rt_overload();
455
456 for_each_cpu_mask(cpu, *rto_cpumask) {
457 if (this_cpu == cpu)
458 continue;
459
460 src_rq = cpu_rq(cpu);
461 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
462 /*
463 * It is possible that overlapping cpusets
464 * will miss clearing a non overloaded runqueue.
465 * Clear it now.
466 */
467 if (double_lock_balance(this_rq, src_rq)) {
468 /* unlocked our runqueue lock */
469 struct task_struct *old_next = next;
470 next = pick_next_task_rt(this_rq);
471 if (next != old_next)
472 ret = 1;
473 }
474 if (likely(src_rq->rt.rt_nr_running <= 1))
475 /*
476 * Small chance that this_rq->curr changed
477 * but it's really harmless here.
478 */
479 rt_clear_overload(this_rq);
480 else
481 /*
482 * Heh, the src_rq is now overloaded, since
483 * we already have the src_rq lock, go straight
484 * to pulling tasks from it.
485 */
486 goto try_pulling;
487 spin_unlock(&src_rq->lock);
488 continue;
489 }
490
491 /*
492 * We can potentially drop this_rq's lock in
493 * double_lock_balance, and another CPU could
494 * steal our next task - hence we must cause
495 * the caller to recalculate the next task
496 * in that case:
497 */
498 if (double_lock_balance(this_rq, src_rq)) {
499 struct task_struct *old_next = next;
500 next = pick_next_task_rt(this_rq);
501 if (next != old_next)
502 ret = 1;
503 }
504
505 /*
506 * Are there still pullable RT tasks?
507 */
508 if (src_rq->rt.rt_nr_running <= 1) {
509 spin_unlock(&src_rq->lock);
510 continue;
511 }
512
513 try_pulling:
514 p = pick_next_highest_task_rt(src_rq, this_cpu);
515
516 /*
517 * Do we have an RT task that preempts
518 * the to-be-scheduled task?
519 */
520 if (p && (!next || (p->prio < next->prio))) {
521 WARN_ON(p == src_rq->curr);
522 WARN_ON(!p->se.on_rq);
523
524 /*
525 * There's a chance that p is higher in priority
526 * than what's currently running on its cpu.
527 * This is just that p is wakeing up and hasn't
528 * had a chance to schedule. We only pull
529 * p if it is lower in priority than the
530 * current task on the run queue or
531 * this_rq next task is lower in prio than
532 * the current task on that rq.
533 */
534 if (p->prio < src_rq->curr->prio ||
535 (next && next->prio < src_rq->curr->prio))
536 goto bail;
537
538 ret = 1;
539
540 deactivate_task(src_rq, p, 0);
541 set_task_cpu(p, this_cpu);
542 activate_task(this_rq, p, 0);
543 /*
544 * We continue with the search, just in
545 * case there's an even higher prio task
546 * in another runqueue. (low likelyhood
547 * but possible)
548 */
549
550 /*
551 * Update next so that we won't pick a task
552 * on another cpu with a priority lower (or equal)
553 * than the one we just picked.
554 */
555 next = p;
556
557 }
558 bail:
559 spin_unlock(&src_rq->lock);
560 }
561
562 return ret;
563}
564
565static void schedule_balance_rt(struct rq *rq,
566 struct task_struct *prev)
567{
568 /* Try to pull RT tasks here if we lower this rq's prio */
569 if (unlikely(rt_task(prev)) &&
570 rq->rt.highest_prio > prev->prio)
571 pull_rt_task(rq);
572}
573
e8fa1362
SR
574static void schedule_tail_balance_rt(struct rq *rq)
575{
576 /*
577 * If we have more than one rt_task queued, then
578 * see if we can push the other rt_tasks off to other CPUS.
579 * Note we may release the rq lock, and since
580 * the lock was owned by prev, we need to release it
581 * first via finish_lock_switch and then reaquire it here.
582 */
583 if (unlikely(rq->rt.rt_nr_running > 1)) {
584 spin_lock_irq(&rq->lock);
585 push_rt_tasks(rq);
586 spin_unlock_irq(&rq->lock);
587 }
588}
589
4642dafd
SR
590
591static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
592{
593 if (unlikely(rt_task(p)) &&
594 !task_running(rq, p) &&
595 (p->prio >= rq->curr->prio))
596 push_rt_tasks(rq);
597}
598
43010659 599static unsigned long
bb44e5d1 600load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
601 unsigned long max_load_move,
602 struct sched_domain *sd, enum cpu_idle_type idle,
603 int *all_pinned, int *this_best_prio)
bb44e5d1 604{
c7a1e46a
SR
605 /* don't touch RT tasks */
606 return 0;
e1d1484f
PW
607}
608
609static int
610move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
611 struct sched_domain *sd, enum cpu_idle_type idle)
612{
c7a1e46a
SR
613 /* don't touch RT tasks */
614 return 0;
bb44e5d1 615}
73fe6aae
GH
616static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
617{
618 int weight = cpus_weight(*new_mask);
619
620 BUG_ON(!rt_task(p));
621
622 /*
623 * Update the migration status of the RQ if we have an RT task
624 * which is running AND changing its weight value.
625 */
626 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
627 struct rq *rq = task_rq(p);
628
629 if ((p->nr_cpus_allowed <= 1) && (weight > 1))
630 rq->rt.rt_nr_migratory++;
631 else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
632 BUG_ON(!rq->rt.rt_nr_migratory);
633 rq->rt.rt_nr_migratory--;
634 }
635
636 update_rt_migration(rq);
637 }
638
639 p->cpus_allowed = *new_mask;
640 p->nr_cpus_allowed = weight;
641}
e8fa1362
SR
642#else /* CONFIG_SMP */
643# define schedule_tail_balance_rt(rq) do { } while (0)
f65eda4f 644# define schedule_balance_rt(rq, prev) do { } while (0)
4642dafd 645# define wakeup_balance_rt(rq, p) do { } while (0)
e8fa1362 646#endif /* CONFIG_SMP */
bb44e5d1
IM
647
648static void task_tick_rt(struct rq *rq, struct task_struct *p)
649{
67e2be02
PZ
650 update_curr_rt(rq);
651
bb44e5d1
IM
652 /*
653 * RR tasks need a special form of timeslice management.
654 * FIFO tasks have no timeslices.
655 */
656 if (p->policy != SCHED_RR)
657 return;
658
659 if (--p->time_slice)
660 return;
661
a4ec24b4 662 p->time_slice = DEF_TIMESLICE;
bb44e5d1 663
98fbc798
DA
664 /*
665 * Requeue to the end of queue if we are not the only element
666 * on the queue:
667 */
668 if (p->run_list.prev != p->run_list.next) {
669 requeue_task_rt(rq, p);
670 set_tsk_need_resched(p);
671 }
bb44e5d1
IM
672}
673
83b699ed
SV
674static void set_curr_task_rt(struct rq *rq)
675{
676 struct task_struct *p = rq->curr;
677
678 p->se.exec_start = rq->clock;
679}
680
5522d5d5
IM
681const struct sched_class rt_sched_class = {
682 .next = &fair_sched_class,
bb44e5d1
IM
683 .enqueue_task = enqueue_task_rt,
684 .dequeue_task = dequeue_task_rt,
685 .yield_task = yield_task_rt,
e7693a36
GH
686#ifdef CONFIG_SMP
687 .select_task_rq = select_task_rq_rt,
688#endif /* CONFIG_SMP */
bb44e5d1
IM
689
690 .check_preempt_curr = check_preempt_curr_rt,
691
692 .pick_next_task = pick_next_task_rt,
693 .put_prev_task = put_prev_task_rt,
694
681f3e68 695#ifdef CONFIG_SMP
bb44e5d1 696 .load_balance = load_balance_rt,
e1d1484f 697 .move_one_task = move_one_task_rt,
73fe6aae 698 .set_cpus_allowed = set_cpus_allowed_rt,
681f3e68 699#endif
bb44e5d1 700
83b699ed 701 .set_curr_task = set_curr_task_rt,
bb44e5d1 702 .task_tick = task_tick_rt,
bb44e5d1 703};