]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
Merge branch 'sched' into sched-devel
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
d0b27fa7
PZ
164#else
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
201{
202}
203
9f0c1e56 204static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
205{
206}
207
23b0fdfc
PZ
208static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209{
210 return rt_rq->rt_throttled;
211}
d0b27fa7
PZ
212
213static inline cpumask_t sched_rt_period_mask(void)
214{
215 return cpu_online_map;
216}
217
218static inline
219struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220{
221 return &cpu_rq(cpu)->rt;
222}
223
ac086bc2
PZ
224static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225{
226 return &def_rt_bandwidth;
227}
228
6f505b16
PZ
229#endif
230
d0b27fa7
PZ
231static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
232{
233 int i, idle = 1;
234 cpumask_t span;
235
236 if (rt_b->rt_runtime == RUNTIME_INF)
237 return 1;
238
239 span = sched_rt_period_mask();
240 for_each_cpu_mask(i, span) {
241 int enqueue = 0;
242 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
243 struct rq *rq = rq_of_rt_rq(rt_rq);
244
245 spin_lock(&rq->lock);
246 if (rt_rq->rt_time) {
ac086bc2 247 u64 runtime;
d0b27fa7 248
ac086bc2
PZ
249 spin_lock(&rt_rq->rt_runtime_lock);
250 runtime = rt_rq->rt_runtime;
d0b27fa7
PZ
251 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
252 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
253 rt_rq->rt_throttled = 0;
254 enqueue = 1;
255 }
256 if (rt_rq->rt_time || rt_rq->rt_nr_running)
257 idle = 0;
ac086bc2 258 spin_unlock(&rt_rq->rt_runtime_lock);
d0b27fa7
PZ
259 }
260
261 if (enqueue)
262 sched_rt_rq_enqueue(rt_rq);
263 spin_unlock(&rq->lock);
264 }
265
266 return idle;
267}
268
ac086bc2
PZ
269#ifdef CONFIG_SMP
270static int balance_runtime(struct rt_rq *rt_rq)
271{
272 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
273 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
274 int i, weight, more = 0;
275 u64 rt_period;
276
277 weight = cpus_weight(rd->span);
278
279 spin_lock(&rt_b->rt_runtime_lock);
280 rt_period = ktime_to_ns(rt_b->rt_period);
281 for_each_cpu_mask(i, rd->span) {
282 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
283 s64 diff;
284
285 if (iter == rt_rq)
286 continue;
287
288 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
289 if (iter->rt_runtime == RUNTIME_INF)
290 goto next;
291
ac086bc2
PZ
292 diff = iter->rt_runtime - iter->rt_time;
293 if (diff > 0) {
294 do_div(diff, weight);
295 if (rt_rq->rt_runtime + diff > rt_period)
296 diff = rt_period - rt_rq->rt_runtime;
297 iter->rt_runtime -= diff;
298 rt_rq->rt_runtime += diff;
299 more = 1;
300 if (rt_rq->rt_runtime == rt_period) {
301 spin_unlock(&iter->rt_runtime_lock);
302 break;
303 }
304 }
7def2be1 305next:
ac086bc2
PZ
306 spin_unlock(&iter->rt_runtime_lock);
307 }
308 spin_unlock(&rt_b->rt_runtime_lock);
309
310 return more;
311}
7def2be1
PZ
312
313static void __disable_runtime(struct rq *rq)
314{
315 struct root_domain *rd = rq->rd;
316 struct rt_rq *rt_rq;
317
318 if (unlikely(!scheduler_running))
319 return;
320
321 for_each_leaf_rt_rq(rt_rq, rq) {
322 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
323 s64 want;
324 int i;
325
326 spin_lock(&rt_b->rt_runtime_lock);
327 spin_lock(&rt_rq->rt_runtime_lock);
328 if (rt_rq->rt_runtime == RUNTIME_INF ||
329 rt_rq->rt_runtime == rt_b->rt_runtime)
330 goto balanced;
331 spin_unlock(&rt_rq->rt_runtime_lock);
332
333 want = rt_b->rt_runtime - rt_rq->rt_runtime;
334
335 for_each_cpu_mask(i, rd->span) {
336 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
337 s64 diff;
338
339 if (iter == rt_rq)
340 continue;
341
342 spin_lock(&iter->rt_runtime_lock);
343 if (want > 0) {
344 diff = min_t(s64, iter->rt_runtime, want);
345 iter->rt_runtime -= diff;
346 want -= diff;
347 } else {
348 iter->rt_runtime -= want;
349 want -= want;
350 }
351 spin_unlock(&iter->rt_runtime_lock);
352
353 if (!want)
354 break;
355 }
356
357 spin_lock(&rt_rq->rt_runtime_lock);
358 BUG_ON(want);
359balanced:
360 rt_rq->rt_runtime = RUNTIME_INF;
361 spin_unlock(&rt_rq->rt_runtime_lock);
362 spin_unlock(&rt_b->rt_runtime_lock);
363 }
364}
365
366static void disable_runtime(struct rq *rq)
367{
368 unsigned long flags;
369
370 spin_lock_irqsave(&rq->lock, flags);
371 __disable_runtime(rq);
372 spin_unlock_irqrestore(&rq->lock, flags);
373}
374
375static void __enable_runtime(struct rq *rq)
376{
377 struct root_domain *rd = rq->rd;
378 struct rt_rq *rt_rq;
379
380 if (unlikely(!scheduler_running))
381 return;
382
383 for_each_leaf_rt_rq(rt_rq, rq) {
384 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
385
386 spin_lock(&rt_b->rt_runtime_lock);
387 spin_lock(&rt_rq->rt_runtime_lock);
388 rt_rq->rt_runtime = rt_b->rt_runtime;
389 rt_rq->rt_time = 0;
390 spin_unlock(&rt_rq->rt_runtime_lock);
391 spin_unlock(&rt_b->rt_runtime_lock);
392 }
393}
394
395static void enable_runtime(struct rq *rq)
396{
397 unsigned long flags;
398
399 spin_lock_irqsave(&rq->lock, flags);
400 __enable_runtime(rq);
401 spin_unlock_irqrestore(&rq->lock, flags);
402}
403
ac086bc2
PZ
404#endif
405
6f505b16
PZ
406static inline int rt_se_prio(struct sched_rt_entity *rt_se)
407{
052f1dc7 408#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
409 struct rt_rq *rt_rq = group_rt_rq(rt_se);
410
411 if (rt_rq)
412 return rt_rq->highest_prio;
413#endif
414
415 return rt_task_of(rt_se)->prio;
416}
417
9f0c1e56 418static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 419{
9f0c1e56 420 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 421
9f0c1e56 422 if (runtime == RUNTIME_INF)
fa85ae24
PZ
423 return 0;
424
425 if (rt_rq->rt_throttled)
23b0fdfc 426 return rt_rq_throttled(rt_rq);
fa85ae24 427
ac086bc2
PZ
428 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
429 return 0;
430
431#ifdef CONFIG_SMP
432 if (rt_rq->rt_time > runtime) {
ac086bc2 433 spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 434 balance_runtime(rt_rq);
ac086bc2
PZ
435 spin_lock(&rt_rq->rt_runtime_lock);
436
7def2be1
PZ
437 runtime = sched_rt_runtime(rt_rq);
438 if (runtime == RUNTIME_INF)
439 return 0;
ac086bc2
PZ
440 }
441#endif
442
9f0c1e56 443 if (rt_rq->rt_time > runtime) {
6f505b16 444 rt_rq->rt_throttled = 1;
23b0fdfc 445 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 446 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
447 return 1;
448 }
fa85ae24
PZ
449 }
450
451 return 0;
452}
453
bb44e5d1
IM
454/*
455 * Update the current task's runtime statistics. Skip current tasks that
456 * are not in our scheduling class.
457 */
a9957449 458static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
459{
460 struct task_struct *curr = rq->curr;
6f505b16
PZ
461 struct sched_rt_entity *rt_se = &curr->rt;
462 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
463 u64 delta_exec;
464
465 if (!task_has_rt_policy(curr))
466 return;
467
d281918d 468 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
469 if (unlikely((s64)delta_exec < 0))
470 delta_exec = 0;
6cfb0d5d
IM
471
472 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
473
474 curr->se.sum_exec_runtime += delta_exec;
d281918d 475 curr->se.exec_start = rq->clock;
d842de87 476 cpuacct_charge(curr, delta_exec);
fa85ae24 477
354d60c2
DG
478 for_each_sched_rt_entity(rt_se) {
479 rt_rq = rt_rq_of_se(rt_se);
480
481 spin_lock(&rt_rq->rt_runtime_lock);
482 rt_rq->rt_time += delta_exec;
483 if (sched_rt_runtime_exceeded(rt_rq))
484 resched_task(curr);
485 spin_unlock(&rt_rq->rt_runtime_lock);
486 }
bb44e5d1
IM
487}
488
6f505b16
PZ
489static inline
490void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 491{
6f505b16
PZ
492 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
493 rt_rq->rt_nr_running++;
052f1dc7 494#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2
GH
495 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
496 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 497
1100ac91
IM
498 rt_rq->highest_prio = rt_se_prio(rt_se);
499#ifdef CONFIG_SMP
1f11eb6a
GH
500 if (rq->online)
501 cpupri_set(&rq->rd->cpupri, rq->cpu,
502 rt_se_prio(rt_se));
1100ac91 503#endif
6e0534f2 504 }
6f505b16 505#endif
764a9d6f 506#ifdef CONFIG_SMP
6f505b16
PZ
507 if (rt_se->nr_cpus_allowed > 1) {
508 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 509
73fe6aae 510 rq->rt.rt_nr_migratory++;
6f505b16 511 }
73fe6aae 512
6f505b16
PZ
513 update_rt_migration(rq_of_rt_rq(rt_rq));
514#endif
052f1dc7 515#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
516 if (rt_se_boosted(rt_se))
517 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
518
519 if (rt_rq->tg)
520 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
521#else
522 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 523#endif
63489e45
SR
524}
525
6f505b16
PZ
526static inline
527void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 528{
6e0534f2
GH
529#ifdef CONFIG_SMP
530 int highest_prio = rt_rq->highest_prio;
531#endif
532
6f505b16
PZ
533 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
534 WARN_ON(!rt_rq->rt_nr_running);
535 rt_rq->rt_nr_running--;
052f1dc7 536#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 537 if (rt_rq->rt_nr_running) {
764a9d6f
SR
538 struct rt_prio_array *array;
539
6f505b16
PZ
540 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
541 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 542 /* recalculate */
6f505b16
PZ
543 array = &rt_rq->active;
544 rt_rq->highest_prio =
764a9d6f
SR
545 sched_find_first_bit(array->bitmap);
546 } /* otherwise leave rq->highest prio alone */
547 } else
6f505b16
PZ
548 rt_rq->highest_prio = MAX_RT_PRIO;
549#endif
550#ifdef CONFIG_SMP
551 if (rt_se->nr_cpus_allowed > 1) {
552 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 553 rq->rt.rt_nr_migratory--;
6f505b16 554 }
73fe6aae 555
6e0534f2
GH
556 if (rt_rq->highest_prio != highest_prio) {
557 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
558
559 if (rq->online)
560 cpupri_set(&rq->rd->cpupri, rq->cpu,
561 rt_rq->highest_prio);
6e0534f2
GH
562 }
563
6f505b16 564 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 565#endif /* CONFIG_SMP */
052f1dc7 566#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
567 if (rt_se_boosted(rt_se))
568 rt_rq->rt_nr_boosted--;
569
570 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
571#endif
63489e45
SR
572}
573
ad2a3f13 574static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 575{
6f505b16
PZ
576 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
577 struct rt_prio_array *array = &rt_rq->active;
578 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 579 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 580
ad2a3f13
PZ
581 /*
582 * Don't enqueue the group if its throttled, or when empty.
583 * The latter is a consequence of the former when a child group
584 * get throttled and the current group doesn't have any other
585 * active members.
586 */
587 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 588 return;
63489e45 589
45c01e82 590 if (rt_se->nr_cpus_allowed == 1)
20b6331b 591 list_add(&rt_se->run_list, queue);
45c01e82 592 else
20b6331b 593 list_add_tail(&rt_se->run_list, queue);
45c01e82 594
6f505b16 595 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 596
6f505b16
PZ
597 inc_rt_tasks(rt_se, rt_rq);
598}
599
ad2a3f13 600static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
601{
602 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
603 struct rt_prio_array *array = &rt_rq->active;
604
605 list_del_init(&rt_se->run_list);
20b6331b 606 if (list_empty(array->queue + rt_se_prio(rt_se)))
6f505b16
PZ
607 __clear_bit(rt_se_prio(rt_se), array->bitmap);
608
609 dec_rt_tasks(rt_se, rt_rq);
610}
611
612/*
613 * Because the prio of an upper entry depends on the lower
614 * entries, we must remove entries top - down.
6f505b16 615 */
ad2a3f13 616static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 617{
ad2a3f13 618 struct sched_rt_entity *back = NULL;
6f505b16 619
58d6c2d7
PZ
620 for_each_sched_rt_entity(rt_se) {
621 rt_se->back = back;
622 back = rt_se;
623 }
624
625 for (rt_se = back; rt_se; rt_se = rt_se->back) {
626 if (on_rt_rq(rt_se))
ad2a3f13
PZ
627 __dequeue_rt_entity(rt_se);
628 }
629}
630
631static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
632{
633 dequeue_rt_stack(rt_se);
634 for_each_sched_rt_entity(rt_se)
635 __enqueue_rt_entity(rt_se);
636}
637
638static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
639{
640 dequeue_rt_stack(rt_se);
641
642 for_each_sched_rt_entity(rt_se) {
643 struct rt_rq *rt_rq = group_rt_rq(rt_se);
644
645 if (rt_rq && rt_rq->rt_nr_running)
646 __enqueue_rt_entity(rt_se);
58d6c2d7 647 }
bb44e5d1
IM
648}
649
650/*
651 * Adding/removing a task to/from a priority array:
652 */
6f505b16
PZ
653static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
654{
655 struct sched_rt_entity *rt_se = &p->rt;
656
657 if (wakeup)
658 rt_se->timeout = 0;
659
ad2a3f13 660 enqueue_rt_entity(rt_se);
6f505b16
PZ
661}
662
f02231e5 663static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 664{
6f505b16 665 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 666
f1e14ef6 667 update_curr_rt(rq);
ad2a3f13 668 dequeue_rt_entity(rt_se);
bb44e5d1
IM
669}
670
671/*
672 * Put task to the end of the run list without the overhead of dequeue
673 * followed by enqueue.
674 */
6f505b16
PZ
675static
676void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
677{
678 struct rt_prio_array *array = &rt_rq->active;
15a8641e 679 struct list_head *queue = array->queue + rt_se_prio(rt_se);
6f505b16 680
1cdad715
IM
681 if (on_rt_rq(rt_se)) {
682 list_del_init(&rt_se->run_list);
683 list_add_tail(&rt_se->run_list,
684 array->queue + rt_se_prio(rt_se));
685 }
6f505b16
PZ
686}
687
bb44e5d1
IM
688static void requeue_task_rt(struct rq *rq, struct task_struct *p)
689{
6f505b16
PZ
690 struct sched_rt_entity *rt_se = &p->rt;
691 struct rt_rq *rt_rq;
bb44e5d1 692
6f505b16
PZ
693 for_each_sched_rt_entity(rt_se) {
694 rt_rq = rt_rq_of_se(rt_se);
695 requeue_rt_entity(rt_rq, rt_se);
696 }
bb44e5d1
IM
697}
698
6f505b16 699static void yield_task_rt(struct rq *rq)
bb44e5d1 700{
4530d7ab 701 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
702}
703
e7693a36 704#ifdef CONFIG_SMP
318e0893
GH
705static int find_lowest_rq(struct task_struct *task);
706
e7693a36
GH
707static int select_task_rq_rt(struct task_struct *p, int sync)
708{
318e0893
GH
709 struct rq *rq = task_rq(p);
710
711 /*
e1f47d89
SR
712 * If the current task is an RT task, then
713 * try to see if we can wake this RT task up on another
714 * runqueue. Otherwise simply start this RT task
715 * on its current runqueue.
716 *
717 * We want to avoid overloading runqueues. Even if
718 * the RT task is of higher priority than the current RT task.
719 * RT tasks behave differently than other tasks. If
720 * one gets preempted, we try to push it off to another queue.
721 * So trying to keep a preempting RT task on the same
722 * cache hot CPU will force the running RT task to
723 * a cold CPU. So we waste all the cache for the lower
724 * RT task in hopes of saving some of a RT task
725 * that is just being woken and probably will have
726 * cold cache anyway.
318e0893 727 */
17b3279b 728 if (unlikely(rt_task(rq->curr)) &&
6f505b16 729 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
730 int cpu = find_lowest_rq(p);
731
732 return (cpu == -1) ? task_cpu(p) : cpu;
733 }
734
735 /*
736 * Otherwise, just let it ride on the affined RQ and the
737 * post-schedule router will push the preempted task away
738 */
e7693a36
GH
739 return task_cpu(p);
740}
741#endif /* CONFIG_SMP */
742
bb44e5d1
IM
743/*
744 * Preempt the current task with a newly woken task if needed:
745 */
746static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
747{
45c01e82 748 if (p->prio < rq->curr->prio) {
bb44e5d1 749 resched_task(rq->curr);
45c01e82
GH
750 return;
751 }
752
753#ifdef CONFIG_SMP
754 /*
755 * If:
756 *
757 * - the newly woken task is of equal priority to the current task
758 * - the newly woken task is non-migratable while current is migratable
759 * - current will be preempted on the next reschedule
760 *
761 * we should check to see if current can readily move to a different
762 * cpu. If so, we will reschedule to allow the push logic to try
763 * to move current somewhere else, making room for our non-migratable
764 * task.
765 */
766 if((p->prio == rq->curr->prio)
767 && p->rt.nr_cpus_allowed == 1
20b6331b 768 && rq->curr->rt.nr_cpus_allowed != 1) {
45c01e82
GH
769 cpumask_t mask;
770
771 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
772 /*
773 * There appears to be other cpus that can accept
774 * current, so lets reschedule to try and push it away
775 */
776 resched_task(rq->curr);
777 }
778#endif
bb44e5d1
IM
779}
780
6f505b16
PZ
781static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
782 struct rt_rq *rt_rq)
bb44e5d1 783{
6f505b16
PZ
784 struct rt_prio_array *array = &rt_rq->active;
785 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
786 struct list_head *queue;
787 int idx;
788
789 idx = sched_find_first_bit(array->bitmap);
6f505b16 790 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1 791
20b6331b
DA
792 queue = array->queue + idx;
793 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 794
6f505b16
PZ
795 return next;
796}
bb44e5d1 797
6f505b16
PZ
798static struct task_struct *pick_next_task_rt(struct rq *rq)
799{
800 struct sched_rt_entity *rt_se;
801 struct task_struct *p;
802 struct rt_rq *rt_rq;
bb44e5d1 803
6f505b16
PZ
804 rt_rq = &rq->rt;
805
806 if (unlikely(!rt_rq->rt_nr_running))
807 return NULL;
808
23b0fdfc 809 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
810 return NULL;
811
812 do {
813 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 814 BUG_ON(!rt_se);
6f505b16
PZ
815 rt_rq = group_rt_rq(rt_se);
816 } while (rt_rq);
817
818 p = rt_task_of(rt_se);
819 p->se.exec_start = rq->clock;
820 return p;
bb44e5d1
IM
821}
822
31ee529c 823static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 824{
f1e14ef6 825 update_curr_rt(rq);
bb44e5d1
IM
826 p->se.exec_start = 0;
827}
828
681f3e68 829#ifdef CONFIG_SMP
6f505b16 830
e8fa1362
SR
831/* Only try algorithms three times */
832#define RT_MAX_TRIES 3
833
834static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
835static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
836
f65eda4f
SR
837static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
838{
839 if (!task_running(rq, p) &&
73fe6aae 840 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 841 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
842 return 1;
843 return 0;
844}
845
e8fa1362 846/* Return the second highest RT task, NULL otherwise */
79064fbf 847static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 848{
6f505b16
PZ
849 struct task_struct *next = NULL;
850 struct sched_rt_entity *rt_se;
851 struct rt_prio_array *array;
852 struct rt_rq *rt_rq;
e8fa1362
SR
853 int idx;
854
6f505b16
PZ
855 for_each_leaf_rt_rq(rt_rq, rq) {
856 array = &rt_rq->active;
857 idx = sched_find_first_bit(array->bitmap);
858 next_idx:
859 if (idx >= MAX_RT_PRIO)
860 continue;
861 if (next && next->prio < idx)
862 continue;
20b6331b 863 list_for_each_entry(rt_se, array->queue + idx, run_list) {
6f505b16
PZ
864 struct task_struct *p = rt_task_of(rt_se);
865 if (pick_rt_task(rq, p, cpu)) {
866 next = p;
867 break;
868 }
869 }
870 if (!next) {
871 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
872 goto next_idx;
873 }
f65eda4f
SR
874 }
875
e8fa1362
SR
876 return next;
877}
878
879static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
880
6e1254d2
GH
881static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
882{
883 int first;
884
885 /* "this_cpu" is cheaper to preempt than a remote processor */
886 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
887 return this_cpu;
888
889 first = first_cpu(*mask);
890 if (first != NR_CPUS)
891 return first;
892
893 return -1;
894}
895
896static int find_lowest_rq(struct task_struct *task)
897{
898 struct sched_domain *sd;
899 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
900 int this_cpu = smp_processor_id();
901 int cpu = task_cpu(task);
06f90dbd 902
6e0534f2
GH
903 if (task->rt.nr_cpus_allowed == 1)
904 return -1; /* No other targets possible */
6e1254d2 905
6e0534f2
GH
906 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
907 return -1; /* No targets found */
6e1254d2
GH
908
909 /*
910 * At this point we have built a mask of cpus representing the
911 * lowest priority tasks in the system. Now we want to elect
912 * the best one based on our affinity and topology.
913 *
914 * We prioritize the last cpu that the task executed on since
915 * it is most likely cache-hot in that location.
916 */
917 if (cpu_isset(cpu, *lowest_mask))
918 return cpu;
919
920 /*
921 * Otherwise, we consult the sched_domains span maps to figure
922 * out which cpu is logically closest to our hot cache data.
923 */
924 if (this_cpu == cpu)
925 this_cpu = -1; /* Skip this_cpu opt if the same */
926
927 for_each_domain(cpu, sd) {
928 if (sd->flags & SD_WAKE_AFFINE) {
929 cpumask_t domain_mask;
930 int best_cpu;
931
932 cpus_and(domain_mask, sd->span, *lowest_mask);
933
934 best_cpu = pick_optimal_cpu(this_cpu,
935 &domain_mask);
936 if (best_cpu != -1)
937 return best_cpu;
938 }
939 }
940
941 /*
942 * And finally, if there were no matches within the domains
943 * just give the caller *something* to work with from the compatible
944 * locations.
945 */
946 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
947}
948
949/* Will lock the rq it finds */
4df64c0b 950static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
951{
952 struct rq *lowest_rq = NULL;
07b4032c 953 int tries;
4df64c0b 954 int cpu;
e8fa1362 955
07b4032c
GH
956 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
957 cpu = find_lowest_rq(task);
958
2de0b463 959 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
960 break;
961
07b4032c
GH
962 lowest_rq = cpu_rq(cpu);
963
e8fa1362 964 /* if the prio of this runqueue changed, try again */
07b4032c 965 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
966 /*
967 * We had to unlock the run queue. In
968 * the mean time, task could have
969 * migrated already or had its affinity changed.
970 * Also make sure that it wasn't scheduled on its rq.
971 */
07b4032c 972 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
973 !cpu_isset(lowest_rq->cpu,
974 task->cpus_allowed) ||
07b4032c 975 task_running(rq, task) ||
e8fa1362 976 !task->se.on_rq)) {
4df64c0b 977
e8fa1362
SR
978 spin_unlock(&lowest_rq->lock);
979 lowest_rq = NULL;
980 break;
981 }
982 }
983
984 /* If this rq is still suitable use it. */
985 if (lowest_rq->rt.highest_prio > task->prio)
986 break;
987
988 /* try again */
989 spin_unlock(&lowest_rq->lock);
990 lowest_rq = NULL;
991 }
992
993 return lowest_rq;
994}
995
996/*
997 * If the current CPU has more than one RT task, see if the non
998 * running task can migrate over to a CPU that is running a task
999 * of lesser priority.
1000 */
697f0a48 1001static int push_rt_task(struct rq *rq)
e8fa1362
SR
1002{
1003 struct task_struct *next_task;
1004 struct rq *lowest_rq;
1005 int ret = 0;
1006 int paranoid = RT_MAX_TRIES;
1007
a22d7fc1
GH
1008 if (!rq->rt.overloaded)
1009 return 0;
1010
697f0a48 1011 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1012 if (!next_task)
1013 return 0;
1014
1015 retry:
697f0a48 1016 if (unlikely(next_task == rq->curr)) {
f65eda4f 1017 WARN_ON(1);
e8fa1362 1018 return 0;
f65eda4f 1019 }
e8fa1362
SR
1020
1021 /*
1022 * It's possible that the next_task slipped in of
1023 * higher priority than current. If that's the case
1024 * just reschedule current.
1025 */
697f0a48
GH
1026 if (unlikely(next_task->prio < rq->curr->prio)) {
1027 resched_task(rq->curr);
e8fa1362
SR
1028 return 0;
1029 }
1030
697f0a48 1031 /* We might release rq lock */
e8fa1362
SR
1032 get_task_struct(next_task);
1033
1034 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1035 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1036 if (!lowest_rq) {
1037 struct task_struct *task;
1038 /*
697f0a48 1039 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1040 * so it is possible that next_task has changed.
1041 * If it has, then try again.
1042 */
697f0a48 1043 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1044 if (unlikely(task != next_task) && task && paranoid--) {
1045 put_task_struct(next_task);
1046 next_task = task;
1047 goto retry;
1048 }
1049 goto out;
1050 }
1051
697f0a48 1052 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1053 set_task_cpu(next_task, lowest_rq->cpu);
1054 activate_task(lowest_rq, next_task, 0);
1055
1056 resched_task(lowest_rq->curr);
1057
1058 spin_unlock(&lowest_rq->lock);
1059
1060 ret = 1;
1061out:
1062 put_task_struct(next_task);
1063
1064 return ret;
1065}
1066
1067/*
1068 * TODO: Currently we just use the second highest prio task on
1069 * the queue, and stop when it can't migrate (or there's
1070 * no more RT tasks). There may be a case where a lower
1071 * priority RT task has a different affinity than the
1072 * higher RT task. In this case the lower RT task could
1073 * possibly be able to migrate where as the higher priority
1074 * RT task could not. We currently ignore this issue.
1075 * Enhancements are welcome!
1076 */
1077static void push_rt_tasks(struct rq *rq)
1078{
1079 /* push_rt_task will return true if it moved an RT */
1080 while (push_rt_task(rq))
1081 ;
1082}
1083
f65eda4f
SR
1084static int pull_rt_task(struct rq *this_rq)
1085{
80bf3171
IM
1086 int this_cpu = this_rq->cpu, ret = 0, cpu;
1087 struct task_struct *p, *next;
f65eda4f 1088 struct rq *src_rq;
f65eda4f 1089
637f5085 1090 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1091 return 0;
1092
1093 next = pick_next_task_rt(this_rq);
1094
637f5085 1095 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1096 if (this_cpu == cpu)
1097 continue;
1098
1099 src_rq = cpu_rq(cpu);
f65eda4f
SR
1100 /*
1101 * We can potentially drop this_rq's lock in
1102 * double_lock_balance, and another CPU could
1103 * steal our next task - hence we must cause
1104 * the caller to recalculate the next task
1105 * in that case:
1106 */
1107 if (double_lock_balance(this_rq, src_rq)) {
1108 struct task_struct *old_next = next;
80bf3171 1109
f65eda4f
SR
1110 next = pick_next_task_rt(this_rq);
1111 if (next != old_next)
1112 ret = 1;
1113 }
1114
1115 /*
1116 * Are there still pullable RT tasks?
1117 */
614ee1f6
MG
1118 if (src_rq->rt.rt_nr_running <= 1)
1119 goto skip;
f65eda4f 1120
f65eda4f
SR
1121 p = pick_next_highest_task_rt(src_rq, this_cpu);
1122
1123 /*
1124 * Do we have an RT task that preempts
1125 * the to-be-scheduled task?
1126 */
1127 if (p && (!next || (p->prio < next->prio))) {
1128 WARN_ON(p == src_rq->curr);
1129 WARN_ON(!p->se.on_rq);
1130
1131 /*
1132 * There's a chance that p is higher in priority
1133 * than what's currently running on its cpu.
1134 * This is just that p is wakeing up and hasn't
1135 * had a chance to schedule. We only pull
1136 * p if it is lower in priority than the
1137 * current task on the run queue or
1138 * this_rq next task is lower in prio than
1139 * the current task on that rq.
1140 */
1141 if (p->prio < src_rq->curr->prio ||
1142 (next && next->prio < src_rq->curr->prio))
614ee1f6 1143 goto skip;
f65eda4f
SR
1144
1145 ret = 1;
1146
1147 deactivate_task(src_rq, p, 0);
1148 set_task_cpu(p, this_cpu);
1149 activate_task(this_rq, p, 0);
1150 /*
1151 * We continue with the search, just in
1152 * case there's an even higher prio task
1153 * in another runqueue. (low likelyhood
1154 * but possible)
80bf3171 1155 *
f65eda4f
SR
1156 * Update next so that we won't pick a task
1157 * on another cpu with a priority lower (or equal)
1158 * than the one we just picked.
1159 */
1160 next = p;
1161
1162 }
614ee1f6 1163 skip:
f65eda4f
SR
1164 spin_unlock(&src_rq->lock);
1165 }
1166
1167 return ret;
1168}
1169
9a897c5a 1170static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1171{
1172 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1173 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1174 pull_rt_task(rq);
1175}
1176
9a897c5a 1177static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1178{
1179 /*
1180 * If we have more than one rt_task queued, then
1181 * see if we can push the other rt_tasks off to other CPUS.
1182 * Note we may release the rq lock, and since
1183 * the lock was owned by prev, we need to release it
1184 * first via finish_lock_switch and then reaquire it here.
1185 */
a22d7fc1 1186 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1187 spin_lock_irq(&rq->lock);
1188 push_rt_tasks(rq);
1189 spin_unlock_irq(&rq->lock);
1190 }
1191}
1192
8ae121ac
GH
1193/*
1194 * If we are not running and we are not going to reschedule soon, we should
1195 * try to push tasks away now
1196 */
9a897c5a 1197static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1198{
9a897c5a 1199 if (!task_running(rq, p) &&
8ae121ac 1200 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1201 rq->rt.overloaded)
4642dafd
SR
1202 push_rt_tasks(rq);
1203}
1204
43010659 1205static unsigned long
bb44e5d1 1206load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1207 unsigned long max_load_move,
1208 struct sched_domain *sd, enum cpu_idle_type idle,
1209 int *all_pinned, int *this_best_prio)
bb44e5d1 1210{
c7a1e46a
SR
1211 /* don't touch RT tasks */
1212 return 0;
e1d1484f
PW
1213}
1214
1215static int
1216move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1217 struct sched_domain *sd, enum cpu_idle_type idle)
1218{
c7a1e46a
SR
1219 /* don't touch RT tasks */
1220 return 0;
bb44e5d1 1221}
deeeccd4 1222
cd8ba7cd
MT
1223static void set_cpus_allowed_rt(struct task_struct *p,
1224 const cpumask_t *new_mask)
73fe6aae
GH
1225{
1226 int weight = cpus_weight(*new_mask);
1227
1228 BUG_ON(!rt_task(p));
1229
1230 /*
1231 * Update the migration status of the RQ if we have an RT task
1232 * which is running AND changing its weight value.
1233 */
6f505b16 1234 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1235 struct rq *rq = task_rq(p);
1236
6f505b16 1237 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1238 rq->rt.rt_nr_migratory++;
6f505b16 1239 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1240 BUG_ON(!rq->rt.rt_nr_migratory);
1241 rq->rt.rt_nr_migratory--;
1242 }
1243
1244 update_rt_migration(rq);
1245 }
1246
1247 p->cpus_allowed = *new_mask;
6f505b16 1248 p->rt.nr_cpus_allowed = weight;
73fe6aae 1249}
deeeccd4 1250
bdd7c81b 1251/* Assumes rq->lock is held */
1f11eb6a 1252static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1253{
1254 if (rq->rt.overloaded)
1255 rt_set_overload(rq);
6e0534f2 1256
7def2be1
PZ
1257 __enable_runtime(rq);
1258
6e0534f2 1259 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1260}
1261
1262/* Assumes rq->lock is held */
1f11eb6a 1263static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1264{
1265 if (rq->rt.overloaded)
1266 rt_clear_overload(rq);
6e0534f2 1267
7def2be1
PZ
1268 __disable_runtime(rq);
1269
6e0534f2 1270 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1271}
cb469845
SR
1272
1273/*
1274 * When switch from the rt queue, we bring ourselves to a position
1275 * that we might want to pull RT tasks from other runqueues.
1276 */
1277static void switched_from_rt(struct rq *rq, struct task_struct *p,
1278 int running)
1279{
1280 /*
1281 * If there are other RT tasks then we will reschedule
1282 * and the scheduling of the other RT tasks will handle
1283 * the balancing. But if we are the last RT task
1284 * we may need to handle the pulling of RT tasks
1285 * now.
1286 */
1287 if (!rq->rt.rt_nr_running)
1288 pull_rt_task(rq);
1289}
1290#endif /* CONFIG_SMP */
1291
1292/*
1293 * When switching a task to RT, we may overload the runqueue
1294 * with RT tasks. In this case we try to push them off to
1295 * other runqueues.
1296 */
1297static void switched_to_rt(struct rq *rq, struct task_struct *p,
1298 int running)
1299{
1300 int check_resched = 1;
1301
1302 /*
1303 * If we are already running, then there's nothing
1304 * that needs to be done. But if we are not running
1305 * we may need to preempt the current running task.
1306 * If that current running task is also an RT task
1307 * then see if we can move to another run queue.
1308 */
1309 if (!running) {
1310#ifdef CONFIG_SMP
1311 if (rq->rt.overloaded && push_rt_task(rq) &&
1312 /* Don't resched if we changed runqueues */
1313 rq != task_rq(p))
1314 check_resched = 0;
1315#endif /* CONFIG_SMP */
1316 if (check_resched && p->prio < rq->curr->prio)
1317 resched_task(rq->curr);
1318 }
1319}
1320
1321/*
1322 * Priority of the task has changed. This may cause
1323 * us to initiate a push or pull.
1324 */
1325static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1326 int oldprio, int running)
1327{
1328 if (running) {
1329#ifdef CONFIG_SMP
1330 /*
1331 * If our priority decreases while running, we
1332 * may need to pull tasks to this runqueue.
1333 */
1334 if (oldprio < p->prio)
1335 pull_rt_task(rq);
1336 /*
1337 * If there's a higher priority task waiting to run
6fa46fa5
SR
1338 * then reschedule. Note, the above pull_rt_task
1339 * can release the rq lock and p could migrate.
1340 * Only reschedule if p is still on the same runqueue.
cb469845 1341 */
6fa46fa5 1342 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1343 resched_task(p);
1344#else
1345 /* For UP simply resched on drop of prio */
1346 if (oldprio < p->prio)
1347 resched_task(p);
e8fa1362 1348#endif /* CONFIG_SMP */
cb469845
SR
1349 } else {
1350 /*
1351 * This task is not running, but if it is
1352 * greater than the current running task
1353 * then reschedule.
1354 */
1355 if (p->prio < rq->curr->prio)
1356 resched_task(rq->curr);
1357 }
1358}
1359
78f2c7db
PZ
1360static void watchdog(struct rq *rq, struct task_struct *p)
1361{
1362 unsigned long soft, hard;
1363
1364 if (!p->signal)
1365 return;
1366
1367 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1368 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1369
1370 if (soft != RLIM_INFINITY) {
1371 unsigned long next;
1372
1373 p->rt.timeout++;
1374 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1375 if (p->rt.timeout > next)
78f2c7db
PZ
1376 p->it_sched_expires = p->se.sum_exec_runtime;
1377 }
1378}
bb44e5d1 1379
8f4d37ec 1380static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1381{
67e2be02
PZ
1382 update_curr_rt(rq);
1383
78f2c7db
PZ
1384 watchdog(rq, p);
1385
bb44e5d1
IM
1386 /*
1387 * RR tasks need a special form of timeslice management.
1388 * FIFO tasks have no timeslices.
1389 */
1390 if (p->policy != SCHED_RR)
1391 return;
1392
fa717060 1393 if (--p->rt.time_slice)
bb44e5d1
IM
1394 return;
1395
fa717060 1396 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1397
98fbc798
DA
1398 /*
1399 * Requeue to the end of queue if we are not the only element
1400 * on the queue:
1401 */
fa717060 1402 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1403 requeue_task_rt(rq, p);
1404 set_tsk_need_resched(p);
1405 }
bb44e5d1
IM
1406}
1407
83b699ed
SV
1408static void set_curr_task_rt(struct rq *rq)
1409{
1410 struct task_struct *p = rq->curr;
1411
1412 p->se.exec_start = rq->clock;
1413}
1414
2abdad0a 1415static const struct sched_class rt_sched_class = {
5522d5d5 1416 .next = &fair_sched_class,
bb44e5d1
IM
1417 .enqueue_task = enqueue_task_rt,
1418 .dequeue_task = dequeue_task_rt,
1419 .yield_task = yield_task_rt,
e7693a36
GH
1420#ifdef CONFIG_SMP
1421 .select_task_rq = select_task_rq_rt,
1422#endif /* CONFIG_SMP */
bb44e5d1
IM
1423
1424 .check_preempt_curr = check_preempt_curr_rt,
1425
1426 .pick_next_task = pick_next_task_rt,
1427 .put_prev_task = put_prev_task_rt,
1428
681f3e68 1429#ifdef CONFIG_SMP
bb44e5d1 1430 .load_balance = load_balance_rt,
e1d1484f 1431 .move_one_task = move_one_task_rt,
73fe6aae 1432 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1433 .rq_online = rq_online_rt,
1434 .rq_offline = rq_offline_rt,
9a897c5a
SR
1435 .pre_schedule = pre_schedule_rt,
1436 .post_schedule = post_schedule_rt,
1437 .task_wake_up = task_wake_up_rt,
cb469845 1438 .switched_from = switched_from_rt,
681f3e68 1439#endif
bb44e5d1 1440
83b699ed 1441 .set_curr_task = set_curr_task_rt,
bb44e5d1 1442 .task_tick = task_tick_rt,
cb469845
SR
1443
1444 .prio_changed = prio_changed_rt,
1445 .switched_to = switched_to_rt,
bb44e5d1 1446};