]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_rt.c
sched: remove leftover debugging
[net-next-2.6.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274
IM
7
8/*
9 * The "RT overload" flag: it gets set if a CPU has more than
10 * one runnable RT task.
11 */
4fd29176
SR
12static cpumask_t rt_overload_mask;
13static atomic_t rto_count;
84de4274 14
4fd29176
SR
15static inline int rt_overloaded(void)
16{
17 return atomic_read(&rto_count);
18}
84de4274 19
4fd29176
SR
20static inline void rt_set_overload(struct rq *rq)
21{
a22d7fc1 22 rq->rt.overloaded = 1;
4fd29176
SR
23 cpu_set(rq->cpu, rt_overload_mask);
24 /*
25 * Make sure the mask is visible before we set
26 * the overload count. That is checked to determine
27 * if we should look at the mask. It would be a shame
28 * if we looked at the mask, but the mask was not
29 * updated yet.
30 */
31 wmb();
32 atomic_inc(&rto_count);
33}
84de4274 34
4fd29176
SR
35static inline void rt_clear_overload(struct rq *rq)
36{
37 /* the order here really doesn't matter */
38 atomic_dec(&rto_count);
39 cpu_clear(rq->cpu, rt_overload_mask);
a22d7fc1 40 rq->rt.overloaded = 0;
4fd29176 41}
73fe6aae
GH
42
43static void update_rt_migration(struct rq *rq)
44{
45 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
46 rt_set_overload(rq);
47 else
48 rt_clear_overload(rq);
49}
4fd29176
SR
50#endif /* CONFIG_SMP */
51
bb44e5d1
IM
52/*
53 * Update the current task's runtime statistics. Skip current tasks that
54 * are not in our scheduling class.
55 */
a9957449 56static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
57{
58 struct task_struct *curr = rq->curr;
59 u64 delta_exec;
60
61 if (!task_has_rt_policy(curr))
62 return;
63
d281918d 64 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
65 if (unlikely((s64)delta_exec < 0))
66 delta_exec = 0;
6cfb0d5d
IM
67
68 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
69
70 curr->se.sum_exec_runtime += delta_exec;
d281918d 71 curr->se.exec_start = rq->clock;
d842de87 72 cpuacct_charge(curr, delta_exec);
bb44e5d1
IM
73}
74
63489e45
SR
75static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
76{
77 WARN_ON(!rt_task(p));
78 rq->rt.rt_nr_running++;
764a9d6f
SR
79#ifdef CONFIG_SMP
80 if (p->prio < rq->rt.highest_prio)
81 rq->rt.highest_prio = p->prio;
73fe6aae
GH
82 if (p->nr_cpus_allowed > 1)
83 rq->rt.rt_nr_migratory++;
84
85 update_rt_migration(rq);
764a9d6f 86#endif /* CONFIG_SMP */
63489e45
SR
87}
88
89static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
90{
91 WARN_ON(!rt_task(p));
92 WARN_ON(!rq->rt.rt_nr_running);
93 rq->rt.rt_nr_running--;
764a9d6f
SR
94#ifdef CONFIG_SMP
95 if (rq->rt.rt_nr_running) {
96 struct rt_prio_array *array;
97
98 WARN_ON(p->prio < rq->rt.highest_prio);
99 if (p->prio == rq->rt.highest_prio) {
100 /* recalculate */
101 array = &rq->rt.active;
102 rq->rt.highest_prio =
103 sched_find_first_bit(array->bitmap);
104 } /* otherwise leave rq->highest prio alone */
105 } else
106 rq->rt.highest_prio = MAX_RT_PRIO;
73fe6aae
GH
107 if (p->nr_cpus_allowed > 1)
108 rq->rt.rt_nr_migratory--;
109
110 update_rt_migration(rq);
764a9d6f 111#endif /* CONFIG_SMP */
63489e45
SR
112}
113
fd390f6a 114static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
bb44e5d1
IM
115{
116 struct rt_prio_array *array = &rq->rt.active;
117
118 list_add_tail(&p->run_list, array->queue + p->prio);
119 __set_bit(p->prio, array->bitmap);
58e2d4ca 120 inc_cpu_load(rq, p->se.load.weight);
63489e45
SR
121
122 inc_rt_tasks(p, rq);
bb44e5d1
IM
123}
124
125/*
126 * Adding/removing a task to/from a priority array:
127 */
f02231e5 128static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1
IM
129{
130 struct rt_prio_array *array = &rq->rt.active;
131
f1e14ef6 132 update_curr_rt(rq);
bb44e5d1
IM
133
134 list_del(&p->run_list);
135 if (list_empty(array->queue + p->prio))
136 __clear_bit(p->prio, array->bitmap);
58e2d4ca 137 dec_cpu_load(rq, p->se.load.weight);
63489e45
SR
138
139 dec_rt_tasks(p, rq);
bb44e5d1
IM
140}
141
142/*
143 * Put task to the end of the run list without the overhead of dequeue
144 * followed by enqueue.
145 */
146static void requeue_task_rt(struct rq *rq, struct task_struct *p)
147{
148 struct rt_prio_array *array = &rq->rt.active;
149
150 list_move_tail(&p->run_list, array->queue + p->prio);
151}
152
153static void
4530d7ab 154yield_task_rt(struct rq *rq)
bb44e5d1 155{
4530d7ab 156 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
157}
158
e7693a36 159#ifdef CONFIG_SMP
318e0893
GH
160static int find_lowest_rq(struct task_struct *task);
161
e7693a36
GH
162static int select_task_rq_rt(struct task_struct *p, int sync)
163{
318e0893
GH
164 struct rq *rq = task_rq(p);
165
166 /*
e1f47d89
SR
167 * If the current task is an RT task, then
168 * try to see if we can wake this RT task up on another
169 * runqueue. Otherwise simply start this RT task
170 * on its current runqueue.
171 *
172 * We want to avoid overloading runqueues. Even if
173 * the RT task is of higher priority than the current RT task.
174 * RT tasks behave differently than other tasks. If
175 * one gets preempted, we try to push it off to another queue.
176 * So trying to keep a preempting RT task on the same
177 * cache hot CPU will force the running RT task to
178 * a cold CPU. So we waste all the cache for the lower
179 * RT task in hopes of saving some of a RT task
180 * that is just being woken and probably will have
181 * cold cache anyway.
318e0893 182 */
17b3279b
GH
183 if (unlikely(rt_task(rq->curr)) &&
184 (p->nr_cpus_allowed > 1)) {
318e0893
GH
185 int cpu = find_lowest_rq(p);
186
187 return (cpu == -1) ? task_cpu(p) : cpu;
188 }
189
190 /*
191 * Otherwise, just let it ride on the affined RQ and the
192 * post-schedule router will push the preempted task away
193 */
e7693a36
GH
194 return task_cpu(p);
195}
196#endif /* CONFIG_SMP */
197
bb44e5d1
IM
198/*
199 * Preempt the current task with a newly woken task if needed:
200 */
201static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
202{
203 if (p->prio < rq->curr->prio)
204 resched_task(rq->curr);
205}
206
fb8d4724 207static struct task_struct *pick_next_task_rt(struct rq *rq)
bb44e5d1
IM
208{
209 struct rt_prio_array *array = &rq->rt.active;
210 struct task_struct *next;
211 struct list_head *queue;
212 int idx;
213
214 idx = sched_find_first_bit(array->bitmap);
215 if (idx >= MAX_RT_PRIO)
216 return NULL;
217
218 queue = array->queue + idx;
219 next = list_entry(queue->next, struct task_struct, run_list);
220
d281918d 221 next->se.exec_start = rq->clock;
bb44e5d1
IM
222
223 return next;
224}
225
31ee529c 226static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 227{
f1e14ef6 228 update_curr_rt(rq);
bb44e5d1
IM
229 p->se.exec_start = 0;
230}
231
681f3e68 232#ifdef CONFIG_SMP
e8fa1362
SR
233/* Only try algorithms three times */
234#define RT_MAX_TRIES 3
235
236static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
237static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
238
f65eda4f
SR
239static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
240{
241 if (!task_running(rq, p) &&
73fe6aae
GH
242 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
243 (p->nr_cpus_allowed > 1))
f65eda4f
SR
244 return 1;
245 return 0;
246}
247
e8fa1362 248/* Return the second highest RT task, NULL otherwise */
79064fbf 249static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362
SR
250{
251 struct rt_prio_array *array = &rq->rt.active;
252 struct task_struct *next;
253 struct list_head *queue;
254 int idx;
255
e8fa1362
SR
256 if (likely(rq->rt.rt_nr_running < 2))
257 return NULL;
258
259 idx = sched_find_first_bit(array->bitmap);
260 if (unlikely(idx >= MAX_RT_PRIO)) {
261 WARN_ON(1); /* rt_nr_running is bad */
262 return NULL;
263 }
264
265 queue = array->queue + idx;
f65eda4f
SR
266 BUG_ON(list_empty(queue));
267
e8fa1362 268 next = list_entry(queue->next, struct task_struct, run_list);
f65eda4f
SR
269 if (unlikely(pick_rt_task(rq, next, cpu)))
270 goto out;
e8fa1362
SR
271
272 if (queue->next->next != queue) {
273 /* same prio task */
79064fbf
IM
274 next = list_entry(queue->next->next, struct task_struct,
275 run_list);
f65eda4f
SR
276 if (pick_rt_task(rq, next, cpu))
277 goto out;
e8fa1362
SR
278 }
279
f65eda4f 280 retry:
e8fa1362
SR
281 /* slower, but more flexible */
282 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
f65eda4f 283 if (unlikely(idx >= MAX_RT_PRIO))
e8fa1362 284 return NULL;
e8fa1362
SR
285
286 queue = array->queue + idx;
f65eda4f
SR
287 BUG_ON(list_empty(queue));
288
289 list_for_each_entry(next, queue, run_list) {
290 if (pick_rt_task(rq, next, cpu))
291 goto out;
292 }
293
294 goto retry;
e8fa1362 295
f65eda4f 296 out:
e8fa1362
SR
297 return next;
298}
299
300static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
301
6e1254d2 302static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 303{
6e1254d2 304 int lowest_prio = -1;
610bf056 305 int lowest_cpu = -1;
06f90dbd 306 int count = 0;
610bf056 307 int cpu;
e8fa1362 308
610bf056 309 cpus_and(*lowest_mask, cpu_online_map, task->cpus_allowed);
e8fa1362 310
07b4032c
GH
311 /*
312 * Scan each rq for the lowest prio.
313 */
610bf056 314 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 315 struct rq *rq = cpu_rq(cpu);
e8fa1362 316
07b4032c
GH
317 /* We look for lowest RT prio or non-rt CPU */
318 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
319 /*
320 * if we already found a low RT queue
321 * and now we found this non-rt queue
322 * clear the mask and set our bit.
323 * Otherwise just return the queue as is
324 * and the count==1 will cause the algorithm
325 * to use the first bit found.
326 */
327 if (lowest_cpu != -1) {
6e1254d2 328 cpus_clear(*lowest_mask);
610bf056
SR
329 cpu_set(rq->cpu, *lowest_mask);
330 }
6e1254d2 331 return 1;
07b4032c
GH
332 }
333
334 /* no locking for now */
6e1254d2
GH
335 if ((rq->rt.highest_prio > task->prio)
336 && (rq->rt.highest_prio >= lowest_prio)) {
337 if (rq->rt.highest_prio > lowest_prio) {
338 /* new low - clear old data */
339 lowest_prio = rq->rt.highest_prio;
610bf056
SR
340 lowest_cpu = cpu;
341 count = 0;
6e1254d2 342 }
06f90dbd 343 count++;
610bf056
SR
344 } else
345 cpu_clear(cpu, *lowest_mask);
346 }
347
348 /*
349 * Clear out all the set bits that represent
350 * runqueues that were of higher prio than
351 * the lowest_prio.
352 */
353 if (lowest_cpu > 0) {
354 /*
355 * Perhaps we could add another cpumask op to
356 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
357 * Then that could be optimized to use memset and such.
358 */
359 for_each_cpu_mask(cpu, *lowest_mask) {
360 if (cpu >= lowest_cpu)
361 break;
362 cpu_clear(cpu, *lowest_mask);
e8fa1362 363 }
07b4032c
GH
364 }
365
06f90dbd 366 return count;
6e1254d2
GH
367}
368
369static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
370{
371 int first;
372
373 /* "this_cpu" is cheaper to preempt than a remote processor */
374 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
375 return this_cpu;
376
377 first = first_cpu(*mask);
378 if (first != NR_CPUS)
379 return first;
380
381 return -1;
382}
383
384static int find_lowest_rq(struct task_struct *task)
385{
386 struct sched_domain *sd;
387 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
388 int this_cpu = smp_processor_id();
389 int cpu = task_cpu(task);
06f90dbd
GH
390 int count = find_lowest_cpus(task, lowest_mask);
391
392 if (!count)
393 return -1; /* No targets found */
6e1254d2 394
06f90dbd
GH
395 /*
396 * There is no sense in performing an optimal search if only one
397 * target is found.
398 */
399 if (count == 1)
400 return first_cpu(*lowest_mask);
6e1254d2
GH
401
402 /*
403 * At this point we have built a mask of cpus representing the
404 * lowest priority tasks in the system. Now we want to elect
405 * the best one based on our affinity and topology.
406 *
407 * We prioritize the last cpu that the task executed on since
408 * it is most likely cache-hot in that location.
409 */
410 if (cpu_isset(cpu, *lowest_mask))
411 return cpu;
412
413 /*
414 * Otherwise, we consult the sched_domains span maps to figure
415 * out which cpu is logically closest to our hot cache data.
416 */
417 if (this_cpu == cpu)
418 this_cpu = -1; /* Skip this_cpu opt if the same */
419
420 for_each_domain(cpu, sd) {
421 if (sd->flags & SD_WAKE_AFFINE) {
422 cpumask_t domain_mask;
423 int best_cpu;
424
425 cpus_and(domain_mask, sd->span, *lowest_mask);
426
427 best_cpu = pick_optimal_cpu(this_cpu,
428 &domain_mask);
429 if (best_cpu != -1)
430 return best_cpu;
431 }
432 }
433
434 /*
435 * And finally, if there were no matches within the domains
436 * just give the caller *something* to work with from the compatible
437 * locations.
438 */
439 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
440}
441
442/* Will lock the rq it finds */
4df64c0b 443static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
444{
445 struct rq *lowest_rq = NULL;
07b4032c 446 int tries;
4df64c0b 447 int cpu;
e8fa1362 448
07b4032c
GH
449 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
450 cpu = find_lowest_rq(task);
451
2de0b463 452 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
453 break;
454
07b4032c
GH
455 lowest_rq = cpu_rq(cpu);
456
e8fa1362 457 /* if the prio of this runqueue changed, try again */
07b4032c 458 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
459 /*
460 * We had to unlock the run queue. In
461 * the mean time, task could have
462 * migrated already or had its affinity changed.
463 * Also make sure that it wasn't scheduled on its rq.
464 */
07b4032c 465 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
466 !cpu_isset(lowest_rq->cpu,
467 task->cpus_allowed) ||
07b4032c 468 task_running(rq, task) ||
e8fa1362 469 !task->se.on_rq)) {
4df64c0b 470
e8fa1362
SR
471 spin_unlock(&lowest_rq->lock);
472 lowest_rq = NULL;
473 break;
474 }
475 }
476
477 /* If this rq is still suitable use it. */
478 if (lowest_rq->rt.highest_prio > task->prio)
479 break;
480
481 /* try again */
482 spin_unlock(&lowest_rq->lock);
483 lowest_rq = NULL;
484 }
485
486 return lowest_rq;
487}
488
489/*
490 * If the current CPU has more than one RT task, see if the non
491 * running task can migrate over to a CPU that is running a task
492 * of lesser priority.
493 */
697f0a48 494static int push_rt_task(struct rq *rq)
e8fa1362
SR
495{
496 struct task_struct *next_task;
497 struct rq *lowest_rq;
498 int ret = 0;
499 int paranoid = RT_MAX_TRIES;
500
a22d7fc1
GH
501 if (!rq->rt.overloaded)
502 return 0;
503
697f0a48 504 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
505 if (!next_task)
506 return 0;
507
508 retry:
697f0a48 509 if (unlikely(next_task == rq->curr)) {
f65eda4f 510 WARN_ON(1);
e8fa1362 511 return 0;
f65eda4f 512 }
e8fa1362
SR
513
514 /*
515 * It's possible that the next_task slipped in of
516 * higher priority than current. If that's the case
517 * just reschedule current.
518 */
697f0a48
GH
519 if (unlikely(next_task->prio < rq->curr->prio)) {
520 resched_task(rq->curr);
e8fa1362
SR
521 return 0;
522 }
523
697f0a48 524 /* We might release rq lock */
e8fa1362
SR
525 get_task_struct(next_task);
526
527 /* find_lock_lowest_rq locks the rq if found */
697f0a48 528 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
529 if (!lowest_rq) {
530 struct task_struct *task;
531 /*
697f0a48 532 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
533 * so it is possible that next_task has changed.
534 * If it has, then try again.
535 */
697f0a48 536 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
537 if (unlikely(task != next_task) && task && paranoid--) {
538 put_task_struct(next_task);
539 next_task = task;
540 goto retry;
541 }
542 goto out;
543 }
544
697f0a48 545 deactivate_task(rq, next_task, 0);
e8fa1362
SR
546 set_task_cpu(next_task, lowest_rq->cpu);
547 activate_task(lowest_rq, next_task, 0);
548
549 resched_task(lowest_rq->curr);
550
551 spin_unlock(&lowest_rq->lock);
552
553 ret = 1;
554out:
555 put_task_struct(next_task);
556
557 return ret;
558}
559
560/*
561 * TODO: Currently we just use the second highest prio task on
562 * the queue, and stop when it can't migrate (or there's
563 * no more RT tasks). There may be a case where a lower
564 * priority RT task has a different affinity than the
565 * higher RT task. In this case the lower RT task could
566 * possibly be able to migrate where as the higher priority
567 * RT task could not. We currently ignore this issue.
568 * Enhancements are welcome!
569 */
570static void push_rt_tasks(struct rq *rq)
571{
572 /* push_rt_task will return true if it moved an RT */
573 while (push_rt_task(rq))
574 ;
575}
576
f65eda4f
SR
577static int pull_rt_task(struct rq *this_rq)
578{
579 struct task_struct *next;
580 struct task_struct *p;
581 struct rq *src_rq;
f65eda4f
SR
582 int this_cpu = this_rq->cpu;
583 int cpu;
584 int ret = 0;
585
f65eda4f
SR
586 /*
587 * If cpusets are used, and we have overlapping
588 * run queue cpusets, then this algorithm may not catch all.
589 * This is just the price you pay on trying to keep
590 * dirtying caches down on large SMP machines.
591 */
592 if (likely(!rt_overloaded()))
593 return 0;
594
595 next = pick_next_task_rt(this_rq);
596
6e1938d3 597 for_each_cpu_mask(cpu, rt_overload_mask) {
f65eda4f
SR
598 if (this_cpu == cpu)
599 continue;
600
601 src_rq = cpu_rq(cpu);
602 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
603 /*
604 * It is possible that overlapping cpusets
605 * will miss clearing a non overloaded runqueue.
606 * Clear it now.
607 */
608 if (double_lock_balance(this_rq, src_rq)) {
609 /* unlocked our runqueue lock */
610 struct task_struct *old_next = next;
611 next = pick_next_task_rt(this_rq);
612 if (next != old_next)
613 ret = 1;
614 }
615 if (likely(src_rq->rt.rt_nr_running <= 1))
616 /*
617 * Small chance that this_rq->curr changed
618 * but it's really harmless here.
619 */
620 rt_clear_overload(this_rq);
621 else
622 /*
623 * Heh, the src_rq is now overloaded, since
624 * we already have the src_rq lock, go straight
625 * to pulling tasks from it.
626 */
627 goto try_pulling;
628 spin_unlock(&src_rq->lock);
629 continue;
630 }
631
632 /*
633 * We can potentially drop this_rq's lock in
634 * double_lock_balance, and another CPU could
635 * steal our next task - hence we must cause
636 * the caller to recalculate the next task
637 * in that case:
638 */
639 if (double_lock_balance(this_rq, src_rq)) {
640 struct task_struct *old_next = next;
641 next = pick_next_task_rt(this_rq);
642 if (next != old_next)
643 ret = 1;
644 }
645
646 /*
647 * Are there still pullable RT tasks?
648 */
649 if (src_rq->rt.rt_nr_running <= 1) {
650 spin_unlock(&src_rq->lock);
651 continue;
652 }
653
654 try_pulling:
655 p = pick_next_highest_task_rt(src_rq, this_cpu);
656
657 /*
658 * Do we have an RT task that preempts
659 * the to-be-scheduled task?
660 */
661 if (p && (!next || (p->prio < next->prio))) {
662 WARN_ON(p == src_rq->curr);
663 WARN_ON(!p->se.on_rq);
664
665 /*
666 * There's a chance that p is higher in priority
667 * than what's currently running on its cpu.
668 * This is just that p is wakeing up and hasn't
669 * had a chance to schedule. We only pull
670 * p if it is lower in priority than the
671 * current task on the run queue or
672 * this_rq next task is lower in prio than
673 * the current task on that rq.
674 */
675 if (p->prio < src_rq->curr->prio ||
676 (next && next->prio < src_rq->curr->prio))
677 goto bail;
678
679 ret = 1;
680
681 deactivate_task(src_rq, p, 0);
682 set_task_cpu(p, this_cpu);
683 activate_task(this_rq, p, 0);
684 /*
685 * We continue with the search, just in
686 * case there's an even higher prio task
687 * in another runqueue. (low likelyhood
688 * but possible)
689 */
690
691 /*
692 * Update next so that we won't pick a task
693 * on another cpu with a priority lower (or equal)
694 * than the one we just picked.
695 */
696 next = p;
697
698 }
699 bail:
700 spin_unlock(&src_rq->lock);
701 }
702
703 return ret;
704}
705
706static void schedule_balance_rt(struct rq *rq,
707 struct task_struct *prev)
708{
709 /* Try to pull RT tasks here if we lower this rq's prio */
710 if (unlikely(rt_task(prev)) &&
711 rq->rt.highest_prio > prev->prio)
712 pull_rt_task(rq);
713}
714
e8fa1362
SR
715static void schedule_tail_balance_rt(struct rq *rq)
716{
717 /*
718 * If we have more than one rt_task queued, then
719 * see if we can push the other rt_tasks off to other CPUS.
720 * Note we may release the rq lock, and since
721 * the lock was owned by prev, we need to release it
722 * first via finish_lock_switch and then reaquire it here.
723 */
a22d7fc1 724 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
725 spin_lock_irq(&rq->lock);
726 push_rt_tasks(rq);
727 spin_unlock_irq(&rq->lock);
728 }
729}
730
4642dafd
SR
731
732static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
733{
734 if (unlikely(rt_task(p)) &&
735 !task_running(rq, p) &&
a22d7fc1
GH
736 (p->prio >= rq->rt.highest_prio) &&
737 rq->rt.overloaded)
4642dafd
SR
738 push_rt_tasks(rq);
739}
740
43010659 741static unsigned long
bb44e5d1 742load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
743 unsigned long max_load_move,
744 struct sched_domain *sd, enum cpu_idle_type idle,
745 int *all_pinned, int *this_best_prio)
bb44e5d1 746{
c7a1e46a
SR
747 /* don't touch RT tasks */
748 return 0;
e1d1484f
PW
749}
750
751static int
752move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
753 struct sched_domain *sd, enum cpu_idle_type idle)
754{
c7a1e46a
SR
755 /* don't touch RT tasks */
756 return 0;
bb44e5d1 757}
deeeccd4 758
73fe6aae
GH
759static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
760{
761 int weight = cpus_weight(*new_mask);
762
763 BUG_ON(!rt_task(p));
764
765 /*
766 * Update the migration status of the RQ if we have an RT task
767 * which is running AND changing its weight value.
768 */
769 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
770 struct rq *rq = task_rq(p);
771
deeeccd4 772 if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 773 rq->rt.rt_nr_migratory++;
deeeccd4 774 } else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
775 BUG_ON(!rq->rt.rt_nr_migratory);
776 rq->rt.rt_nr_migratory--;
777 }
778
779 update_rt_migration(rq);
780 }
781
782 p->cpus_allowed = *new_mask;
783 p->nr_cpus_allowed = weight;
784}
deeeccd4 785
e8fa1362
SR
786#else /* CONFIG_SMP */
787# define schedule_tail_balance_rt(rq) do { } while (0)
f65eda4f 788# define schedule_balance_rt(rq, prev) do { } while (0)
4642dafd 789# define wakeup_balance_rt(rq, p) do { } while (0)
e8fa1362 790#endif /* CONFIG_SMP */
bb44e5d1
IM
791
792static void task_tick_rt(struct rq *rq, struct task_struct *p)
793{
67e2be02
PZ
794 update_curr_rt(rq);
795
bb44e5d1
IM
796 /*
797 * RR tasks need a special form of timeslice management.
798 * FIFO tasks have no timeslices.
799 */
800 if (p->policy != SCHED_RR)
801 return;
802
803 if (--p->time_slice)
804 return;
805
a4ec24b4 806 p->time_slice = DEF_TIMESLICE;
bb44e5d1 807
98fbc798
DA
808 /*
809 * Requeue to the end of queue if we are not the only element
810 * on the queue:
811 */
812 if (p->run_list.prev != p->run_list.next) {
813 requeue_task_rt(rq, p);
814 set_tsk_need_resched(p);
815 }
bb44e5d1
IM
816}
817
83b699ed
SV
818static void set_curr_task_rt(struct rq *rq)
819{
820 struct task_struct *p = rq->curr;
821
822 p->se.exec_start = rq->clock;
823}
824
5522d5d5
IM
825const struct sched_class rt_sched_class = {
826 .next = &fair_sched_class,
bb44e5d1
IM
827 .enqueue_task = enqueue_task_rt,
828 .dequeue_task = dequeue_task_rt,
829 .yield_task = yield_task_rt,
e7693a36
GH
830#ifdef CONFIG_SMP
831 .select_task_rq = select_task_rq_rt,
832#endif /* CONFIG_SMP */
bb44e5d1
IM
833
834 .check_preempt_curr = check_preempt_curr_rt,
835
836 .pick_next_task = pick_next_task_rt,
837 .put_prev_task = put_prev_task_rt,
838
681f3e68 839#ifdef CONFIG_SMP
bb44e5d1 840 .load_balance = load_balance_rt,
e1d1484f 841 .move_one_task = move_one_task_rt,
73fe6aae 842 .set_cpus_allowed = set_cpus_allowed_rt,
681f3e68 843#endif
bb44e5d1 844
83b699ed 845 .set_curr_task = set_curr_task_rt,
bb44e5d1 846 .task_tick = task_tick_rt,
bb44e5d1 847};