]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: speed up context-switches a bit
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085 27 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
bf0f6f24 31 *
d274a4ce
IM
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 34 */
2bd8e6d4
IM
35const_debug unsigned int sysctl_sched_latency = 20000000ULL;
36
37/*
38 * After fork, child runs first. (default) If set to 0 then
39 * parent will (try to) run first.
40 */
41const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
42
43/*
44 * Minimal preemption granularity for CPU-bound tasks:
45 * (default: 2 msec, units: nanoseconds)
46 */
5f6d858e 47const_debug unsigned int sysctl_sched_nr_latency = 20;
bf0f6f24 48
1799e35d
IM
49/*
50 * sys_sched_yield() compat mode
51 *
52 * This option switches the agressive yield implementation of the
53 * old scheduler back on.
54 */
55unsigned int __read_mostly sysctl_sched_compat_yield;
56
bf0f6f24
IM
57/*
58 * SCHED_BATCH wake-up granularity.
155bb293 59 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
60 *
61 * This option delays the preemption effects of decoupled workloads
62 * and reduces their over-scheduling. Synchronous workloads will still
63 * have immediate wakeup/sleep latencies.
64 */
155bb293 65const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
66
67/*
68 * SCHED_OTHER wake-up granularity.
155bb293 69 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
70 *
71 * This option delays the preemption effects of decoupled workloads
72 * and reduces their over-scheduling. Synchronous workloads will still
73 * have immediate wakeup/sleep latencies.
74 */
155bb293 75const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 76
bf0f6f24
IM
77/**************************************************************
78 * CFS operations on generic schedulable entities:
79 */
80
62160e3f 81#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 82
62160e3f 83/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
84static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
85{
62160e3f 86 return cfs_rq->rq;
bf0f6f24
IM
87}
88
62160e3f
IM
89/* An entity is a task if it doesn't "own" a runqueue */
90#define entity_is_task(se) (!se->my_q)
bf0f6f24 91
62160e3f 92#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 93
62160e3f
IM
94static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95{
96 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
97}
98
99#define entity_is_task(se) 1
100
bf0f6f24
IM
101#endif /* CONFIG_FAIR_GROUP_SCHED */
102
103static inline struct task_struct *task_of(struct sched_entity *se)
104{
105 return container_of(se, struct task_struct, se);
106}
107
108
109/**************************************************************
110 * Scheduling class tree data structure manipulation methods:
111 */
112
0702e3eb 113static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 114{
368059a9
PZ
115 s64 delta = (s64)(vruntime - min_vruntime);
116 if (delta > 0)
02e0431a
PZ
117 min_vruntime = vruntime;
118
119 return min_vruntime;
120}
121
0702e3eb 122static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
123{
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta < 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 132{
30cfdcfc 133 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
134}
135
bf0f6f24
IM
136/*
137 * Enqueue an entity into the rb-tree:
138 */
0702e3eb 139static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
140{
141 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
142 struct rb_node *parent = NULL;
143 struct sched_entity *entry;
9014623c 144 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
145 int leftmost = 1;
146
147 /*
148 * Find the right place in the rbtree:
149 */
150 while (*link) {
151 parent = *link;
152 entry = rb_entry(parent, struct sched_entity, run_node);
153 /*
154 * We dont care about collisions. Nodes with
155 * the same key stay together.
156 */
9014623c 157 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
158 link = &parent->rb_left;
159 } else {
160 link = &parent->rb_right;
161 leftmost = 0;
162 }
163 }
164
165 /*
166 * Maintain a cache of leftmost tree entries (it is frequently
167 * used):
168 */
169 if (leftmost)
57cb499d 170 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
171
172 rb_link_node(&se->run_node, parent, link);
173 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
174}
175
0702e3eb 176static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
177{
178 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 179 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 180
bf0f6f24 181 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
182}
183
184static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
185{
186 return cfs_rq->rb_leftmost;
187}
188
189static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
190{
191 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
192}
193
aeb73b04
PZ
194static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
195{
196 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
197 struct sched_entity *se = NULL;
198 struct rb_node *parent;
199
200 while (*link) {
201 parent = *link;
202 se = rb_entry(parent, struct sched_entity, run_node);
203 link = &parent->rb_right;
204 }
205
206 return se;
207}
208
bf0f6f24
IM
209/**************************************************************
210 * Scheduling class statistics methods:
211 */
212
647e7cac
IM
213
214/*
215 * The idea is to set a period in which each task runs once.
216 *
217 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
218 * this period because otherwise the slices get too small.
219 *
220 * p = (nr <= nl) ? l : l*nr/nl
221 */
4d78e7b6
PZ
222static u64 __sched_period(unsigned long nr_running)
223{
224 u64 period = sysctl_sched_latency;
5f6d858e 225 unsigned long nr_latency = sysctl_sched_nr_latency;
4d78e7b6
PZ
226
227 if (unlikely(nr_running > nr_latency)) {
228 period *= nr_running;
229 do_div(period, nr_latency);
230 }
231
232 return period;
233}
234
647e7cac
IM
235/*
236 * We calculate the wall-time slice from the period by taking a part
237 * proportional to the weight.
238 *
239 * s = p*w/rw
240 */
6d0f0ebd 241static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 242{
647e7cac 243 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 244
647e7cac
IM
245 slice *= se->load.weight;
246 do_div(slice, cfs_rq->load.weight);
21805085 247
647e7cac 248 return slice;
bf0f6f24
IM
249}
250
647e7cac
IM
251/*
252 * We calculate the vruntime slice.
253 *
254 * vs = s/w = p/rw
255 */
256static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 257{
647e7cac 258 u64 vslice = __sched_period(nr_running);
67e9fb2a 259
647e7cac 260 do_div(vslice, rq_weight);
67e9fb2a 261
647e7cac
IM
262 return vslice;
263}
5f6d858e 264
647e7cac
IM
265static u64 sched_vslice(struct cfs_rq *cfs_rq)
266{
267 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
268}
269
270static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
271{
272 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
273 cfs_rq->nr_running + 1);
67e9fb2a
PZ
274}
275
bf0f6f24
IM
276/*
277 * Update the current task's runtime statistics. Skip current tasks that
278 * are not in our scheduling class.
279 */
280static inline void
8ebc91d9
IM
281__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
282 unsigned long delta_exec)
bf0f6f24 283{
bbdba7c0 284 unsigned long delta_exec_weighted;
b0ffd246 285 u64 vruntime;
bf0f6f24 286
8179ca23 287 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
288
289 curr->sum_exec_runtime += delta_exec;
7a62eabc 290 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
291 delta_exec_weighted = delta_exec;
292 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
293 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
294 &curr->load);
295 }
296 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
297
298 /*
299 * maintain cfs_rq->min_vruntime to be a monotonic increasing
300 * value tracking the leftmost vruntime in the tree.
301 */
302 if (first_fair(cfs_rq)) {
b0ffd246
PZ
303 vruntime = min_vruntime(curr->vruntime,
304 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 305 } else
b0ffd246 306 vruntime = curr->vruntime;
02e0431a
PZ
307
308 cfs_rq->min_vruntime =
b0ffd246 309 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
310}
311
b7cc0896 312static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 313{
429d43bc 314 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 315 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
316 unsigned long delta_exec;
317
318 if (unlikely(!curr))
319 return;
320
321 /*
322 * Get the amount of time the current task was running
323 * since the last time we changed load (this cannot
324 * overflow on 32 bits):
325 */
8ebc91d9 326 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 327
8ebc91d9
IM
328 __update_curr(cfs_rq, curr, delta_exec);
329 curr->exec_start = now;
bf0f6f24
IM
330}
331
332static inline void
5870db5b 333update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 334{
d281918d 335 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
336}
337
bf0f6f24
IM
338/*
339 * Task is being enqueued - update stats:
340 */
d2417e5a 341static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 342{
bf0f6f24
IM
343 /*
344 * Are we enqueueing a waiting task? (for current tasks
345 * a dequeue/enqueue event is a NOP)
346 */
429d43bc 347 if (se != cfs_rq->curr)
5870db5b 348 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
349}
350
bf0f6f24 351static void
9ef0a961 352update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 353{
bbdba7c0
IM
354 schedstat_set(se->wait_max, max(se->wait_max,
355 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 356 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
357}
358
359static inline void
19b6a2e3 360update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 361{
bf0f6f24
IM
362 /*
363 * Mark the end of the wait period if dequeueing a
364 * waiting task:
365 */
429d43bc 366 if (se != cfs_rq->curr)
9ef0a961 367 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
368}
369
370/*
371 * We are picking a new current task - update its stats:
372 */
373static inline void
79303e9e 374update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
375{
376 /*
377 * We are starting a new run period:
378 */
d281918d 379 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
380}
381
bf0f6f24
IM
382/**************************************************
383 * Scheduling class queueing methods:
384 */
385
30cfdcfc
DA
386static void
387account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
388{
389 update_load_add(&cfs_rq->load, se->load.weight);
390 cfs_rq->nr_running++;
391 se->on_rq = 1;
392}
393
394static void
395account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
396{
397 update_load_sub(&cfs_rq->load, se->load.weight);
398 cfs_rq->nr_running--;
399 se->on_rq = 0;
400}
401
2396af69 402static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 403{
bf0f6f24
IM
404#ifdef CONFIG_SCHEDSTATS
405 if (se->sleep_start) {
d281918d 406 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
407
408 if ((s64)delta < 0)
409 delta = 0;
410
411 if (unlikely(delta > se->sleep_max))
412 se->sleep_max = delta;
413
414 se->sleep_start = 0;
415 se->sum_sleep_runtime += delta;
416 }
417 if (se->block_start) {
d281918d 418 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
419
420 if ((s64)delta < 0)
421 delta = 0;
422
423 if (unlikely(delta > se->block_max))
424 se->block_max = delta;
425
426 se->block_start = 0;
427 se->sum_sleep_runtime += delta;
30084fbd
IM
428
429 /*
430 * Blocking time is in units of nanosecs, so shift by 20 to
431 * get a milliseconds-range estimation of the amount of
432 * time that the task spent sleeping:
433 */
434 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
435 struct task_struct *tsk = task_of(se);
436
30084fbd
IM
437 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
438 delta >> 20);
439 }
bf0f6f24
IM
440 }
441#endif
442}
443
ddc97297
PZ
444static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
445{
446#ifdef CONFIG_SCHED_DEBUG
447 s64 d = se->vruntime - cfs_rq->min_vruntime;
448
449 if (d < 0)
450 d = -d;
451
452 if (d > 3*sysctl_sched_latency)
453 schedstat_inc(cfs_rq, nr_spread_over);
454#endif
455}
456
aeb73b04
PZ
457static void
458place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
459{
67e9fb2a 460 u64 vruntime;
aeb73b04 461
67e9fb2a 462 vruntime = cfs_rq->min_vruntime;
94dfb5e7 463
06877c33 464 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
465 struct sched_entity *last = __pick_last_entity(cfs_rq);
466 if (last) {
67e9fb2a
PZ
467 vruntime += last->vruntime;
468 vruntime >>= 1;
94dfb5e7 469 }
67e9fb2a 470 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 471 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7
PZ
472
473 if (initial && sched_feat(START_DEBIT))
647e7cac 474 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 475
8465e792 476 if (!initial) {
e62dd02e
DA
477 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
478 task_of(se)->policy != SCHED_BATCH)
94359f05
IM
479 vruntime -= sysctl_sched_latency;
480
b8487b92 481 vruntime = max_t(s64, vruntime, se->vruntime);
aeb73b04
PZ
482 }
483
67e9fb2a
PZ
484 se->vruntime = vruntime;
485
aeb73b04
PZ
486}
487
bf0f6f24 488static void
83b699ed 489enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
490{
491 /*
a2a2d680 492 * Update run-time statistics of the 'current'.
bf0f6f24 493 */
b7cc0896 494 update_curr(cfs_rq);
bf0f6f24 495
e9acbff6 496 if (wakeup) {
aeb73b04 497 place_entity(cfs_rq, se, 0);
2396af69 498 enqueue_sleeper(cfs_rq, se);
e9acbff6 499 }
bf0f6f24 500
d2417e5a 501 update_stats_enqueue(cfs_rq, se);
ddc97297 502 check_spread(cfs_rq, se);
83b699ed
SV
503 if (se != cfs_rq->curr)
504 __enqueue_entity(cfs_rq, se);
30cfdcfc 505 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
506}
507
508static void
525c2716 509dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 510{
a2a2d680
DA
511 /*
512 * Update run-time statistics of the 'current'.
513 */
514 update_curr(cfs_rq);
515
19b6a2e3 516 update_stats_dequeue(cfs_rq, se);
db36cc7d 517 if (sleep) {
95938a35 518 se->peer_preempt = 0;
67e9fb2a 519#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
520 if (entity_is_task(se)) {
521 struct task_struct *tsk = task_of(se);
522
523 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 524 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 525 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 526 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 527 }
db36cc7d 528#endif
67e9fb2a
PZ
529 }
530
83b699ed 531 if (se != cfs_rq->curr)
30cfdcfc
DA
532 __dequeue_entity(cfs_rq, se);
533 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
534}
535
536/*
537 * Preempt the current task with a newly woken task if needed:
538 */
7c92e54f 539static void
2e09bf55 540check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 541{
11697830
PZ
542 unsigned long ideal_runtime, delta_exec;
543
6d0f0ebd 544 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 545 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
95938a35
MG
546 if (delta_exec > ideal_runtime ||
547 (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
bf0f6f24 548 resched_task(rq_of(cfs_rq)->curr);
95938a35 549 curr->peer_preempt = 0;
bf0f6f24
IM
550}
551
83b699ed 552static void
8494f412 553set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 554{
83b699ed
SV
555 /* 'current' is not kept within the tree. */
556 if (se->on_rq) {
557 /*
558 * Any task has to be enqueued before it get to execute on
559 * a CPU. So account for the time it spent waiting on the
560 * runqueue.
561 */
562 update_stats_wait_end(cfs_rq, se);
563 __dequeue_entity(cfs_rq, se);
564 }
565
79303e9e 566 update_stats_curr_start(cfs_rq, se);
429d43bc 567 cfs_rq->curr = se;
eba1ed4b
IM
568#ifdef CONFIG_SCHEDSTATS
569 /*
570 * Track our maximum slice length, if the CPU's load is at
571 * least twice that of our own weight (i.e. dont track it
572 * when there are only lesser-weight tasks around):
573 */
495eca49 574 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
575 se->slice_max = max(se->slice_max,
576 se->sum_exec_runtime - se->prev_sum_exec_runtime);
577 }
578#endif
4a55b450 579 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
580}
581
9948f4b2 582static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 583{
08ec3df5 584 struct sched_entity *se = NULL;
bf0f6f24 585
08ec3df5
DA
586 if (first_fair(cfs_rq)) {
587 se = __pick_next_entity(cfs_rq);
588 set_next_entity(cfs_rq, se);
589 }
bf0f6f24
IM
590
591 return se;
592}
593
ab6cde26 594static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
595{
596 /*
597 * If still on the runqueue then deactivate_task()
598 * was not called and update_curr() has to be done:
599 */
600 if (prev->on_rq)
b7cc0896 601 update_curr(cfs_rq);
bf0f6f24 602
ddc97297 603 check_spread(cfs_rq, prev);
30cfdcfc 604 if (prev->on_rq) {
5870db5b 605 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
606 /* Put 'current' back into the tree. */
607 __enqueue_entity(cfs_rq, prev);
608 }
429d43bc 609 cfs_rq->curr = NULL;
bf0f6f24
IM
610}
611
612static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
613{
bf0f6f24 614 /*
30cfdcfc 615 * Update run-time statistics of the 'current'.
bf0f6f24 616 */
30cfdcfc 617 update_curr(cfs_rq);
bf0f6f24 618
ce6c1311 619 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 620 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
621}
622
623/**************************************************
624 * CFS operations on tasks:
625 */
626
627#ifdef CONFIG_FAIR_GROUP_SCHED
628
629/* Walk up scheduling entities hierarchy */
630#define for_each_sched_entity(se) \
631 for (; se; se = se->parent)
632
633static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
634{
635 return p->se.cfs_rq;
636}
637
638/* runqueue on which this entity is (to be) queued */
639static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
640{
641 return se->cfs_rq;
642}
643
644/* runqueue "owned" by this group */
645static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
646{
647 return grp->my_q;
648}
649
650/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
651 * another cpu ('this_cpu')
652 */
653static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
654{
29f59db3 655 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
656}
657
658/* Iterate thr' all leaf cfs_rq's on a runqueue */
659#define for_each_leaf_cfs_rq(rq, cfs_rq) \
660 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
661
fad095a7
SV
662/* Do the two (enqueued) entities belong to the same group ? */
663static inline int
664is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 665{
fad095a7 666 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
667 return 1;
668
669 return 0;
670}
671
fad095a7
SV
672static inline struct sched_entity *parent_entity(struct sched_entity *se)
673{
674 return se->parent;
675}
676
bf0f6f24
IM
677#else /* CONFIG_FAIR_GROUP_SCHED */
678
679#define for_each_sched_entity(se) \
680 for (; se; se = NULL)
681
682static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
683{
684 return &task_rq(p)->cfs;
685}
686
687static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
688{
689 struct task_struct *p = task_of(se);
690 struct rq *rq = task_rq(p);
691
692 return &rq->cfs;
693}
694
695/* runqueue "owned" by this group */
696static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
697{
698 return NULL;
699}
700
701static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
702{
703 return &cpu_rq(this_cpu)->cfs;
704}
705
706#define for_each_leaf_cfs_rq(rq, cfs_rq) \
707 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
708
fad095a7
SV
709static inline int
710is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
711{
712 return 1;
713}
714
fad095a7
SV
715static inline struct sched_entity *parent_entity(struct sched_entity *se)
716{
717 return NULL;
718}
719
bf0f6f24
IM
720#endif /* CONFIG_FAIR_GROUP_SCHED */
721
722/*
723 * The enqueue_task method is called before nr_running is
724 * increased. Here we update the fair scheduling stats and
725 * then put the task into the rbtree:
726 */
fd390f6a 727static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
728{
729 struct cfs_rq *cfs_rq;
730 struct sched_entity *se = &p->se;
731
732 for_each_sched_entity(se) {
733 if (se->on_rq)
734 break;
735 cfs_rq = cfs_rq_of(se);
83b699ed 736 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 737 wakeup = 1;
bf0f6f24
IM
738 }
739}
740
741/*
742 * The dequeue_task method is called before nr_running is
743 * decreased. We remove the task from the rbtree and
744 * update the fair scheduling stats:
745 */
f02231e5 746static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
747{
748 struct cfs_rq *cfs_rq;
749 struct sched_entity *se = &p->se;
750
751 for_each_sched_entity(se) {
752 cfs_rq = cfs_rq_of(se);
525c2716 753 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
754 /* Don't dequeue parent if it has other entities besides us */
755 if (cfs_rq->load.weight)
756 break;
b9fa3df3 757 sleep = 1;
bf0f6f24
IM
758 }
759}
760
761/*
1799e35d
IM
762 * sched_yield() support is very simple - we dequeue and enqueue.
763 *
764 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 765 */
4530d7ab 766static void yield_task_fair(struct rq *rq)
bf0f6f24 767{
72ea22f8 768 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 769 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
770
771 /*
1799e35d
IM
772 * Are we the only task in the tree?
773 */
774 if (unlikely(cfs_rq->nr_running == 1))
775 return;
776
777 if (likely(!sysctl_sched_compat_yield)) {
778 __update_rq_clock(rq);
779 /*
a2a2d680 780 * Update run-time statistics of the 'current'.
1799e35d 781 */
2b1e315d 782 update_curr(cfs_rq);
1799e35d
IM
783
784 return;
785 }
786 /*
787 * Find the rightmost entry in the rbtree:
bf0f6f24 788 */
2b1e315d 789 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
790 /*
791 * Already in the rightmost position?
792 */
2b1e315d 793 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
794 return;
795
796 /*
797 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
798 * Upon rescheduling, sched_class::put_prev_task() will place
799 * 'current' within the tree based on its new key value.
1799e35d 800 */
30cfdcfc 801 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
802}
803
804/*
805 * Preempt the current task with a newly woken task if needed:
806 */
2e09bf55 807static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
808{
809 struct task_struct *curr = rq->curr;
fad095a7 810 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 811 struct sched_entity *se = &curr->se, *pse = &p->se;
810e95cc 812 s64 delta, gran;
bf0f6f24
IM
813
814 if (unlikely(rt_prio(p->prio))) {
a8e504d2 815 update_rq_clock(rq);
b7cc0896 816 update_curr(cfs_rq);
bf0f6f24
IM
817 resched_task(curr);
818 return;
819 }
91c234b4
IM
820 /*
821 * Batch tasks do not preempt (their preemption is driven by
822 * the tick):
823 */
824 if (unlikely(p->policy == SCHED_BATCH))
825 return;
bf0f6f24 826
ce6c1311
PZ
827 if (sched_feat(WAKEUP_PREEMPT)) {
828 while (!is_same_group(se, pse)) {
829 se = parent_entity(se);
830 pse = parent_entity(pse);
831 }
8651a86c 832
ce6c1311
PZ
833 delta = se->vruntime - pse->vruntime;
834 gran = sysctl_sched_wakeup_granularity;
835 if (unlikely(se->load.weight != NICE_0_LOAD))
836 gran = calc_delta_fair(gran, &se->load);
8651a86c 837
95938a35
MG
838 if (delta > gran) {
839 int now = !sched_feat(PREEMPT_RESTRICT);
840
841 if (now || p->prio < curr->prio || !se->peer_preempt++)
842 resched_task(curr);
843 }
ce6c1311 844 }
bf0f6f24
IM
845}
846
fb8d4724 847static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
848{
849 struct cfs_rq *cfs_rq = &rq->cfs;
850 struct sched_entity *se;
851
852 if (unlikely(!cfs_rq->nr_running))
853 return NULL;
854
855 do {
9948f4b2 856 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
857 cfs_rq = group_cfs_rq(se);
858 } while (cfs_rq);
859
860 return task_of(se);
861}
862
863/*
864 * Account for a descheduled task:
865 */
31ee529c 866static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
867{
868 struct sched_entity *se = &prev->se;
869 struct cfs_rq *cfs_rq;
870
871 for_each_sched_entity(se) {
872 cfs_rq = cfs_rq_of(se);
ab6cde26 873 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
874 }
875}
876
877/**************************************************
878 * Fair scheduling class load-balancing methods:
879 */
880
881/*
882 * Load-balancing iterator. Note: while the runqueue stays locked
883 * during the whole iteration, the current task might be
884 * dequeued so the iterator has to be dequeue-safe. Here we
885 * achieve that by always pre-iterating before returning
886 * the current task:
887 */
a9957449 888static struct task_struct *
bf0f6f24
IM
889__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
890{
891 struct task_struct *p;
892
893 if (!curr)
894 return NULL;
895
896 p = rb_entry(curr, struct task_struct, se.run_node);
897 cfs_rq->rb_load_balance_curr = rb_next(curr);
898
899 return p;
900}
901
902static struct task_struct *load_balance_start_fair(void *arg)
903{
904 struct cfs_rq *cfs_rq = arg;
905
906 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
907}
908
909static struct task_struct *load_balance_next_fair(void *arg)
910{
911 struct cfs_rq *cfs_rq = arg;
912
913 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
914}
915
a4ac01c3 916#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
917static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
918{
919 struct sched_entity *curr;
920 struct task_struct *p;
921
922 if (!cfs_rq->nr_running)
923 return MAX_PRIO;
924
9b5b7751
SV
925 curr = cfs_rq->curr;
926 if (!curr)
927 curr = __pick_next_entity(cfs_rq);
928
bf0f6f24
IM
929 p = task_of(curr);
930
931 return p->prio;
932}
a4ac01c3 933#endif
bf0f6f24 934
43010659 935static unsigned long
bf0f6f24 936load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
937 unsigned long max_nr_move, unsigned long max_load_move,
938 struct sched_domain *sd, enum cpu_idle_type idle,
939 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
940{
941 struct cfs_rq *busy_cfs_rq;
942 unsigned long load_moved, total_nr_moved = 0, nr_moved;
943 long rem_load_move = max_load_move;
944 struct rq_iterator cfs_rq_iterator;
945
946 cfs_rq_iterator.start = load_balance_start_fair;
947 cfs_rq_iterator.next = load_balance_next_fair;
948
949 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 950#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 951 struct cfs_rq *this_cfs_rq;
e56f31aa 952 long imbalance;
bf0f6f24 953 unsigned long maxload;
bf0f6f24
IM
954
955 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
956
e56f31aa 957 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
958 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
959 if (imbalance <= 0)
960 continue;
961
962 /* Don't pull more than imbalance/2 */
963 imbalance /= 2;
964 maxload = min(rem_load_move, imbalance);
965
a4ac01c3
PW
966 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
967#else
e56f31aa 968# define maxload rem_load_move
a4ac01c3 969#endif
bf0f6f24
IM
970 /* pass busy_cfs_rq argument into
971 * load_balance_[start|next]_fair iterators
972 */
973 cfs_rq_iterator.arg = busy_cfs_rq;
974 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
975 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 976 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
977
978 total_nr_moved += nr_moved;
979 max_nr_move -= nr_moved;
980 rem_load_move -= load_moved;
981
982 if (max_nr_move <= 0 || rem_load_move <= 0)
983 break;
984 }
985
43010659 986 return max_load_move - rem_load_move;
bf0f6f24
IM
987}
988
989/*
990 * scheduler tick hitting a task of our scheduling class:
991 */
992static void task_tick_fair(struct rq *rq, struct task_struct *curr)
993{
994 struct cfs_rq *cfs_rq;
995 struct sched_entity *se = &curr->se;
996
997 for_each_sched_entity(se) {
998 cfs_rq = cfs_rq_of(se);
999 entity_tick(cfs_rq, se);
1000 }
1001}
1002
4d78e7b6
PZ
1003#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1004
bf0f6f24
IM
1005/*
1006 * Share the fairness runtime between parent and child, thus the
1007 * total amount of pressure for CPU stays equal - new tasks
1008 * get a chance to run but frequent forkers are not allowed to
1009 * monopolize the CPU. Note: the parent runqueue is locked,
1010 * the child is not running yet.
1011 */
ee0827d8 1012static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1013{
1014 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1015 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1016 int this_cpu = smp_processor_id();
bf0f6f24
IM
1017
1018 sched_info_queued(p);
1019
7109c442 1020 update_curr(cfs_rq);
aeb73b04 1021 place_entity(cfs_rq, se, 1);
4d78e7b6 1022
00bf7bfc 1023 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
4d78e7b6 1024 curr->vruntime < se->vruntime) {
87fefa38 1025 /*
edcb60a3
IM
1026 * Upon rescheduling, sched_class::put_prev_task() will place
1027 * 'current' within the tree based on its new key value.
1028 */
4d78e7b6 1029 swap(curr->vruntime, se->vruntime);
4d78e7b6 1030 }
bf0f6f24 1031
e9acbff6 1032 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1033 check_spread(cfs_rq, se);
1034 check_spread(cfs_rq, curr);
bf0f6f24 1035 __enqueue_entity(cfs_rq, se);
30cfdcfc 1036 account_entity_enqueue(cfs_rq, se);
95938a35 1037 se->peer_preempt = 0;
bb61c210 1038 resched_task(rq->curr);
bf0f6f24
IM
1039}
1040
83b699ed
SV
1041/* Account for a task changing its policy or group.
1042 *
1043 * This routine is mostly called to set cfs_rq->curr field when a task
1044 * migrates between groups/classes.
1045 */
1046static void set_curr_task_fair(struct rq *rq)
1047{
1048 struct sched_entity *se = &rq->curr->se;
1049
1050 for_each_sched_entity(se)
1051 set_next_entity(cfs_rq_of(se), se);
1052}
1053
bf0f6f24
IM
1054/*
1055 * All the scheduling class methods:
1056 */
5522d5d5
IM
1057static const struct sched_class fair_sched_class = {
1058 .next = &idle_sched_class,
bf0f6f24
IM
1059 .enqueue_task = enqueue_task_fair,
1060 .dequeue_task = dequeue_task_fair,
1061 .yield_task = yield_task_fair,
1062
2e09bf55 1063 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1064
1065 .pick_next_task = pick_next_task_fair,
1066 .put_prev_task = put_prev_task_fair,
1067
1068 .load_balance = load_balance_fair,
1069
83b699ed 1070 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1071 .task_tick = task_tick_fair,
1072 .task_new = task_new_fair,
1073};
1074
1075#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1076static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1077{
bf0f6f24
IM
1078 struct cfs_rq *cfs_rq;
1079
75c28ace
SV
1080#ifdef CONFIG_FAIR_GROUP_SCHED
1081 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1082#endif
c3b64f1e 1083 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1084 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1085}
1086#endif