]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
0702e3eb 269static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 270{
30cfdcfc 271 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
272}
273
1af5f730
PZ
274static void update_min_vruntime(struct cfs_rq *cfs_rq)
275{
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
286 if (vruntime == cfs_rq->min_vruntime)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293}
294
bf0f6f24
IM
295/*
296 * Enqueue an entity into the rb-tree:
297 */
0702e3eb 298static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
299{
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
9014623c 303 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
9014623c 316 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
1af5f730 328 if (leftmost)
57cb499d 329 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
333}
334
0702e3eb 335static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
3fe69747
PZ
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
3fe69747
PZ
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
3fe69747 342 }
e9acbff6 343
bf0f6f24 344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
345}
346
bf0f6f24
IM
347static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348{
f4b6755f
PZ
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
355}
356
f4b6755f 357static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 358{
7eee3e67 359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 360
70eee74b
BS
361 if (!last)
362 return NULL;
7eee3e67
IM
363
364 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
365}
366
bf0f6f24
IM
367/**************************************************************
368 * Scheduling class statistics methods:
369 */
370
b2be5e96
PZ
371#ifdef CONFIG_SCHED_DEBUG
372int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375{
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385}
386#endif
647e7cac 387
a7be37ac 388/*
f9c0b095 389 * delta *= P[w / rw]
a7be37ac
PZ
390 */
391static inline unsigned long
392calc_delta_weight(unsigned long delta, struct sched_entity *se)
393{
394 for_each_sched_entity(se) {
395 delta = calc_delta_mine(delta,
396 se->load.weight, &cfs_rq_of(se)->load);
397 }
398
399 return delta;
400}
401
402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
f9c0b095
PZ
443 unsigned long nr_running = cfs_rq->nr_running;
444
445 if (unlikely(!se->on_rq))
446 nr_running++;
447
448 return calc_delta_weight(__sched_period(nr_running), se);
bf0f6f24
IM
449}
450
647e7cac 451/*
ac884dec 452 * We calculate the vruntime slice of a to be inserted task
647e7cac 453 *
f9c0b095 454 * vs = s/w
647e7cac 455 */
f9c0b095 456static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 457{
f9c0b095 458 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
459}
460
bf0f6f24
IM
461/*
462 * Update the current task's runtime statistics. Skip current tasks that
463 * are not in our scheduling class.
464 */
465static inline void
8ebc91d9
IM
466__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
467 unsigned long delta_exec)
bf0f6f24 468{
bbdba7c0 469 unsigned long delta_exec_weighted;
bf0f6f24 470
8179ca23 471 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
472
473 curr->sum_exec_runtime += delta_exec;
7a62eabc 474 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 475 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 476 curr->vruntime += delta_exec_weighted;
1af5f730 477 update_min_vruntime(cfs_rq);
bf0f6f24
IM
478}
479
b7cc0896 480static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 481{
429d43bc 482 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 483 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
484 unsigned long delta_exec;
485
486 if (unlikely(!curr))
487 return;
488
489 /*
490 * Get the amount of time the current task was running
491 * since the last time we changed load (this cannot
492 * overflow on 32 bits):
493 */
8ebc91d9 494 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
495 if (!delta_exec)
496 return;
bf0f6f24 497
8ebc91d9
IM
498 __update_curr(cfs_rq, curr, delta_exec);
499 curr->exec_start = now;
d842de87
SV
500
501 if (entity_is_task(curr)) {
502 struct task_struct *curtask = task_of(curr);
503
504 cpuacct_charge(curtask, delta_exec);
f06febc9 505 account_group_exec_runtime(curtask, delta_exec);
d842de87 506 }
bf0f6f24
IM
507}
508
509static inline void
5870db5b 510update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 511{
d281918d 512 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
513}
514
bf0f6f24
IM
515/*
516 * Task is being enqueued - update stats:
517 */
d2417e5a 518static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 519{
bf0f6f24
IM
520 /*
521 * Are we enqueueing a waiting task? (for current tasks
522 * a dequeue/enqueue event is a NOP)
523 */
429d43bc 524 if (se != cfs_rq->curr)
5870db5b 525 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
526}
527
bf0f6f24 528static void
9ef0a961 529update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 530{
bbdba7c0
IM
531 schedstat_set(se->wait_max, max(se->wait_max,
532 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
533 schedstat_set(se->wait_count, se->wait_count + 1);
534 schedstat_set(se->wait_sum, se->wait_sum +
535 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 536 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
537}
538
539static inline void
19b6a2e3 540update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 541{
bf0f6f24
IM
542 /*
543 * Mark the end of the wait period if dequeueing a
544 * waiting task:
545 */
429d43bc 546 if (se != cfs_rq->curr)
9ef0a961 547 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
548}
549
550/*
551 * We are picking a new current task - update its stats:
552 */
553static inline void
79303e9e 554update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
555{
556 /*
557 * We are starting a new run period:
558 */
d281918d 559 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
560}
561
bf0f6f24
IM
562/**************************************************
563 * Scheduling class queueing methods:
564 */
565
c09595f6
PZ
566#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
567static void
568add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
569{
570 cfs_rq->task_weight += weight;
571}
572#else
573static inline void
574add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
575{
576}
577#endif
578
30cfdcfc
DA
579static void
580account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
581{
582 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
583 if (!parent_entity(se))
584 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 585 if (entity_is_task(se)) {
c09595f6 586 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
587 list_add(&se->group_node, &cfs_rq->tasks);
588 }
30cfdcfc
DA
589 cfs_rq->nr_running++;
590 se->on_rq = 1;
591}
592
593static void
594account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
595{
596 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
597 if (!parent_entity(se))
598 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 599 if (entity_is_task(se)) {
c09595f6 600 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
601 list_del_init(&se->group_node);
602 }
30cfdcfc
DA
603 cfs_rq->nr_running--;
604 se->on_rq = 0;
605}
606
2396af69 607static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
bf0f6f24
IM
609#ifdef CONFIG_SCHEDSTATS
610 if (se->sleep_start) {
d281918d 611 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 612 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
613
614 if ((s64)delta < 0)
615 delta = 0;
616
617 if (unlikely(delta > se->sleep_max))
618 se->sleep_max = delta;
619
620 se->sleep_start = 0;
621 se->sum_sleep_runtime += delta;
9745512c
AV
622
623 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
624 }
625 if (se->block_start) {
d281918d 626 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 627 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
628
629 if ((s64)delta < 0)
630 delta = 0;
631
632 if (unlikely(delta > se->block_max))
633 se->block_max = delta;
634
635 se->block_start = 0;
636 se->sum_sleep_runtime += delta;
30084fbd
IM
637
638 /*
639 * Blocking time is in units of nanosecs, so shift by 20 to
640 * get a milliseconds-range estimation of the amount of
641 * time that the task spent sleeping:
642 */
643 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 644
30084fbd
IM
645 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
646 delta >> 20);
647 }
9745512c 648 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
649 }
650#endif
651}
652
ddc97297
PZ
653static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
654{
655#ifdef CONFIG_SCHED_DEBUG
656 s64 d = se->vruntime - cfs_rq->min_vruntime;
657
658 if (d < 0)
659 d = -d;
660
661 if (d > 3*sysctl_sched_latency)
662 schedstat_inc(cfs_rq, nr_spread_over);
663#endif
664}
665
aeb73b04
PZ
666static void
667place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
668{
1af5f730 669 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 670
2cb8600e
PZ
671 /*
672 * The 'current' period is already promised to the current tasks,
673 * however the extra weight of the new task will slow them down a
674 * little, place the new task so that it fits in the slot that
675 * stays open at the end.
676 */
94dfb5e7 677 if (initial && sched_feat(START_DEBIT))
f9c0b095 678 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 679
8465e792 680 if (!initial) {
2cb8600e 681 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
682 if (sched_feat(NEW_FAIR_SLEEPERS)) {
683 unsigned long thresh = sysctl_sched_latency;
684
685 /*
686 * convert the sleeper threshold into virtual time
687 */
688 if (sched_feat(NORMALIZED_SLEEPER))
689 thresh = calc_delta_fair(thresh, se);
690
691 vruntime -= thresh;
692 }
94359f05 693
2cb8600e
PZ
694 /* ensure we never gain time by being placed backwards. */
695 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
696 }
697
67e9fb2a 698 se->vruntime = vruntime;
aeb73b04
PZ
699}
700
bf0f6f24 701static void
83b699ed 702enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
703{
704 /*
a2a2d680 705 * Update run-time statistics of the 'current'.
bf0f6f24 706 */
b7cc0896 707 update_curr(cfs_rq);
a992241d 708 account_entity_enqueue(cfs_rq, se);
bf0f6f24 709
e9acbff6 710 if (wakeup) {
aeb73b04 711 place_entity(cfs_rq, se, 0);
2396af69 712 enqueue_sleeper(cfs_rq, se);
e9acbff6 713 }
bf0f6f24 714
d2417e5a 715 update_stats_enqueue(cfs_rq, se);
ddc97297 716 check_spread(cfs_rq, se);
83b699ed
SV
717 if (se != cfs_rq->curr)
718 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
719}
720
2002c695
PZ
721static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
722{
723 if (cfs_rq->last == se)
724 cfs_rq->last = NULL;
725
726 if (cfs_rq->next == se)
727 cfs_rq->next = NULL;
728}
729
bf0f6f24 730static void
525c2716 731dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 732{
a2a2d680
DA
733 /*
734 * Update run-time statistics of the 'current'.
735 */
736 update_curr(cfs_rq);
737
19b6a2e3 738 update_stats_dequeue(cfs_rq, se);
db36cc7d 739 if (sleep) {
67e9fb2a 740#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
741 if (entity_is_task(se)) {
742 struct task_struct *tsk = task_of(se);
743
744 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 745 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 746 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 747 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 748 }
db36cc7d 749#endif
67e9fb2a
PZ
750 }
751
2002c695 752 clear_buddies(cfs_rq, se);
4793241b 753
83b699ed 754 if (se != cfs_rq->curr)
30cfdcfc
DA
755 __dequeue_entity(cfs_rq, se);
756 account_entity_dequeue(cfs_rq, se);
1af5f730 757 update_min_vruntime(cfs_rq);
bf0f6f24
IM
758}
759
760/*
761 * Preempt the current task with a newly woken task if needed:
762 */
7c92e54f 763static void
2e09bf55 764check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 765{
11697830
PZ
766 unsigned long ideal_runtime, delta_exec;
767
6d0f0ebd 768 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 769 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 770 if (delta_exec > ideal_runtime)
bf0f6f24
IM
771 resched_task(rq_of(cfs_rq)->curr);
772}
773
83b699ed 774static void
8494f412 775set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 776{
83b699ed
SV
777 /* 'current' is not kept within the tree. */
778 if (se->on_rq) {
779 /*
780 * Any task has to be enqueued before it get to execute on
781 * a CPU. So account for the time it spent waiting on the
782 * runqueue.
783 */
784 update_stats_wait_end(cfs_rq, se);
785 __dequeue_entity(cfs_rq, se);
786 }
787
79303e9e 788 update_stats_curr_start(cfs_rq, se);
429d43bc 789 cfs_rq->curr = se;
eba1ed4b
IM
790#ifdef CONFIG_SCHEDSTATS
791 /*
792 * Track our maximum slice length, if the CPU's load is at
793 * least twice that of our own weight (i.e. dont track it
794 * when there are only lesser-weight tasks around):
795 */
495eca49 796 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
797 se->slice_max = max(se->slice_max,
798 se->sum_exec_runtime - se->prev_sum_exec_runtime);
799 }
800#endif
4a55b450 801 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
802}
803
3f3a4904
PZ
804static int
805wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
806
f4b6755f 807static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 808{
f4b6755f
PZ
809 struct sched_entity *se = __pick_next_entity(cfs_rq);
810
4793241b
PZ
811 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
812 return cfs_rq->next;
aa2ac252 813
4793241b
PZ
814 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
815 return cfs_rq->last;
816
817 return se;
aa2ac252
PZ
818}
819
ab6cde26 820static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
821{
822 /*
823 * If still on the runqueue then deactivate_task()
824 * was not called and update_curr() has to be done:
825 */
826 if (prev->on_rq)
b7cc0896 827 update_curr(cfs_rq);
bf0f6f24 828
ddc97297 829 check_spread(cfs_rq, prev);
30cfdcfc 830 if (prev->on_rq) {
5870db5b 831 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
832 /* Put 'current' back into the tree. */
833 __enqueue_entity(cfs_rq, prev);
834 }
429d43bc 835 cfs_rq->curr = NULL;
bf0f6f24
IM
836}
837
8f4d37ec
PZ
838static void
839entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 840{
bf0f6f24 841 /*
30cfdcfc 842 * Update run-time statistics of the 'current'.
bf0f6f24 843 */
30cfdcfc 844 update_curr(cfs_rq);
bf0f6f24 845
8f4d37ec
PZ
846#ifdef CONFIG_SCHED_HRTICK
847 /*
848 * queued ticks are scheduled to match the slice, so don't bother
849 * validating it and just reschedule.
850 */
983ed7a6
HH
851 if (queued) {
852 resched_task(rq_of(cfs_rq)->curr);
853 return;
854 }
8f4d37ec
PZ
855 /*
856 * don't let the period tick interfere with the hrtick preemption
857 */
858 if (!sched_feat(DOUBLE_TICK) &&
859 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
860 return;
861#endif
862
ce6c1311 863 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 864 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
865}
866
867/**************************************************
868 * CFS operations on tasks:
869 */
870
8f4d37ec
PZ
871#ifdef CONFIG_SCHED_HRTICK
872static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
873{
8f4d37ec
PZ
874 struct sched_entity *se = &p->se;
875 struct cfs_rq *cfs_rq = cfs_rq_of(se);
876
877 WARN_ON(task_rq(p) != rq);
878
879 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
880 u64 slice = sched_slice(cfs_rq, se);
881 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
882 s64 delta = slice - ran;
883
884 if (delta < 0) {
885 if (rq->curr == p)
886 resched_task(p);
887 return;
888 }
889
890 /*
891 * Don't schedule slices shorter than 10000ns, that just
892 * doesn't make sense. Rely on vruntime for fairness.
893 */
31656519 894 if (rq->curr != p)
157124c1 895 delta = max_t(s64, 10000LL, delta);
8f4d37ec 896
31656519 897 hrtick_start(rq, delta);
8f4d37ec
PZ
898 }
899}
a4c2f00f
PZ
900
901/*
902 * called from enqueue/dequeue and updates the hrtick when the
903 * current task is from our class and nr_running is low enough
904 * to matter.
905 */
906static void hrtick_update(struct rq *rq)
907{
908 struct task_struct *curr = rq->curr;
909
910 if (curr->sched_class != &fair_sched_class)
911 return;
912
913 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
914 hrtick_start_fair(rq, curr);
915}
55e12e5e 916#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
917static inline void
918hrtick_start_fair(struct rq *rq, struct task_struct *p)
919{
920}
a4c2f00f
PZ
921
922static inline void hrtick_update(struct rq *rq)
923{
924}
8f4d37ec
PZ
925#endif
926
bf0f6f24
IM
927/*
928 * The enqueue_task method is called before nr_running is
929 * increased. Here we update the fair scheduling stats and
930 * then put the task into the rbtree:
931 */
fd390f6a 932static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
933{
934 struct cfs_rq *cfs_rq;
62fb1851 935 struct sched_entity *se = &p->se;
bf0f6f24
IM
936
937 for_each_sched_entity(se) {
62fb1851 938 if (se->on_rq)
bf0f6f24
IM
939 break;
940 cfs_rq = cfs_rq_of(se);
83b699ed 941 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 942 wakeup = 1;
bf0f6f24 943 }
8f4d37ec 944
a4c2f00f 945 hrtick_update(rq);
bf0f6f24
IM
946}
947
948/*
949 * The dequeue_task method is called before nr_running is
950 * decreased. We remove the task from the rbtree and
951 * update the fair scheduling stats:
952 */
f02231e5 953static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
954{
955 struct cfs_rq *cfs_rq;
62fb1851 956 struct sched_entity *se = &p->se;
bf0f6f24
IM
957
958 for_each_sched_entity(se) {
959 cfs_rq = cfs_rq_of(se);
525c2716 960 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 961 /* Don't dequeue parent if it has other entities besides us */
62fb1851 962 if (cfs_rq->load.weight)
bf0f6f24 963 break;
b9fa3df3 964 sleep = 1;
bf0f6f24 965 }
8f4d37ec 966
a4c2f00f 967 hrtick_update(rq);
bf0f6f24
IM
968}
969
970/*
1799e35d
IM
971 * sched_yield() support is very simple - we dequeue and enqueue.
972 *
973 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 974 */
4530d7ab 975static void yield_task_fair(struct rq *rq)
bf0f6f24 976{
db292ca3
IM
977 struct task_struct *curr = rq->curr;
978 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
979 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
980
981 /*
1799e35d
IM
982 * Are we the only task in the tree?
983 */
984 if (unlikely(cfs_rq->nr_running == 1))
985 return;
986
2002c695
PZ
987 clear_buddies(cfs_rq, se);
988
db292ca3 989 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 990 update_rq_clock(rq);
1799e35d 991 /*
a2a2d680 992 * Update run-time statistics of the 'current'.
1799e35d 993 */
2b1e315d 994 update_curr(cfs_rq);
1799e35d
IM
995
996 return;
997 }
998 /*
999 * Find the rightmost entry in the rbtree:
bf0f6f24 1000 */
2b1e315d 1001 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1002 /*
1003 * Already in the rightmost position?
1004 */
79b3feff 1005 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1006 return;
1007
1008 /*
1009 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1010 * Upon rescheduling, sched_class::put_prev_task() will place
1011 * 'current' within the tree based on its new key value.
1799e35d 1012 */
30cfdcfc 1013 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1014}
1015
e7693a36
GH
1016/*
1017 * wake_idle() will wake a task on an idle cpu if task->cpu is
1018 * not idle and an idle cpu is available. The span of cpus to
1019 * search starts with cpus closest then further out as needed,
1020 * so we always favor a closer, idle cpu.
e761b772
MK
1021 * Domains may include CPUs that are not usable for migration,
1022 * hence we need to mask them out (cpu_active_map)
e7693a36
GH
1023 *
1024 * Returns the CPU we should wake onto.
1025 */
1026#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1027static int wake_idle(int cpu, struct task_struct *p)
1028{
1029 cpumask_t tmp;
1030 struct sched_domain *sd;
1031 int i;
1032
1033 /*
1034 * If it is idle, then it is the best cpu to run this task.
1035 *
1036 * This cpu is also the best, if it has more than one task already.
1037 * Siblings must be also busy(in most cases) as they didn't already
1038 * pickup the extra load from this cpu and hence we need not check
1039 * sibling runqueue info. This will avoid the checks and cache miss
1040 * penalities associated with that.
1041 */
104f6454 1042 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1043 return cpu;
1044
1045 for_each_domain(cpu, sd) {
1d3504fc
HS
1046 if ((sd->flags & SD_WAKE_IDLE)
1047 || ((sd->flags & SD_WAKE_IDLE_FAR)
1048 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36 1049 cpus_and(tmp, sd->span, p->cpus_allowed);
e761b772 1050 cpus_and(tmp, tmp, cpu_active_map);
363ab6f1 1051 for_each_cpu_mask_nr(i, tmp) {
e7693a36
GH
1052 if (idle_cpu(i)) {
1053 if (i != task_cpu(p)) {
1054 schedstat_inc(p,
1055 se.nr_wakeups_idle);
1056 }
1057 return i;
1058 }
1059 }
1060 } else {
1061 break;
1062 }
1063 }
1064 return cpu;
1065}
55e12e5e 1066#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1067static inline int wake_idle(int cpu, struct task_struct *p)
1068{
1069 return cpu;
1070}
1071#endif
1072
1073#ifdef CONFIG_SMP
098fb9db 1074
bb3469ac 1075#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1076/*
1077 * effective_load() calculates the load change as seen from the root_task_group
1078 *
1079 * Adding load to a group doesn't make a group heavier, but can cause movement
1080 * of group shares between cpus. Assuming the shares were perfectly aligned one
1081 * can calculate the shift in shares.
1082 *
1083 * The problem is that perfectly aligning the shares is rather expensive, hence
1084 * we try to avoid doing that too often - see update_shares(), which ratelimits
1085 * this change.
1086 *
1087 * We compensate this by not only taking the current delta into account, but
1088 * also considering the delta between when the shares were last adjusted and
1089 * now.
1090 *
1091 * We still saw a performance dip, some tracing learned us that between
1092 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1093 * significantly. Therefore try to bias the error in direction of failing
1094 * the affine wakeup.
1095 *
1096 */
f1d239f7
PZ
1097static long effective_load(struct task_group *tg, int cpu,
1098 long wl, long wg)
bb3469ac 1099{
4be9daaa 1100 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1101
1102 if (!tg->parent)
1103 return wl;
1104
f5bfb7d9
PZ
1105 /*
1106 * By not taking the decrease of shares on the other cpu into
1107 * account our error leans towards reducing the affine wakeups.
1108 */
1109 if (!wl && sched_feat(ASYM_EFF_LOAD))
1110 return wl;
1111
4be9daaa 1112 for_each_sched_entity(se) {
cb5ef42a 1113 long S, rw, s, a, b;
940959e9
PZ
1114 long more_w;
1115
1116 /*
1117 * Instead of using this increment, also add the difference
1118 * between when the shares were last updated and now.
1119 */
1120 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1121 wl += more_w;
1122 wg += more_w;
4be9daaa
PZ
1123
1124 S = se->my_q->tg->shares;
1125 s = se->my_q->shares;
f1d239f7 1126 rw = se->my_q->rq_weight;
bb3469ac 1127
cb5ef42a
PZ
1128 a = S*(rw + wl);
1129 b = S*rw + s*wg;
4be9daaa 1130
940959e9
PZ
1131 wl = s*(a-b);
1132
1133 if (likely(b))
1134 wl /= b;
1135
83378269
PZ
1136 /*
1137 * Assume the group is already running and will
1138 * thus already be accounted for in the weight.
1139 *
1140 * That is, moving shares between CPUs, does not
1141 * alter the group weight.
1142 */
4be9daaa 1143 wg = 0;
4be9daaa 1144 }
bb3469ac 1145
4be9daaa 1146 return wl;
bb3469ac 1147}
4be9daaa 1148
bb3469ac 1149#else
4be9daaa 1150
83378269
PZ
1151static inline unsigned long effective_load(struct task_group *tg, int cpu,
1152 unsigned long wl, unsigned long wg)
4be9daaa 1153{
83378269 1154 return wl;
bb3469ac 1155}
4be9daaa 1156
bb3469ac
PZ
1157#endif
1158
098fb9db 1159static int
64b9e029 1160wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1161 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1162 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1163 unsigned int imbalance)
1164{
4ae7d5ce 1165 struct task_struct *curr = this_rq->curr;
83378269 1166 struct task_group *tg;
098fb9db
IM
1167 unsigned long tl = this_load;
1168 unsigned long tl_per_task;
83378269 1169 unsigned long weight;
b3137bc8 1170 int balanced;
098fb9db 1171
b3137bc8 1172 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1173 return 0;
1174
0d13033b
MG
1175 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1176 p->se.avg_overlap > sysctl_sched_migration_cost))
1177 sync = 0;
2fb7635c 1178
b3137bc8
MG
1179 /*
1180 * If sync wakeup then subtract the (maximum possible)
1181 * effect of the currently running task from the load
1182 * of the current CPU:
1183 */
83378269
PZ
1184 if (sync) {
1185 tg = task_group(current);
1186 weight = current->se.load.weight;
1187
1188 tl += effective_load(tg, this_cpu, -weight, -weight);
1189 load += effective_load(tg, prev_cpu, 0, -weight);
1190 }
b3137bc8 1191
83378269
PZ
1192 tg = task_group(p);
1193 weight = p->se.load.weight;
b3137bc8 1194
83378269
PZ
1195 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1196 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1197
098fb9db 1198 /*
4ae7d5ce
IM
1199 * If the currently running task will sleep within
1200 * a reasonable amount of time then attract this newly
1201 * woken task:
098fb9db 1202 */
2fb7635c
PZ
1203 if (sync && balanced)
1204 return 1;
098fb9db
IM
1205
1206 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1207 tl_per_task = cpu_avg_load_per_task(this_cpu);
1208
64b9e029
AA
1209 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1210 tl_per_task)) {
098fb9db
IM
1211 /*
1212 * This domain has SD_WAKE_AFFINE and
1213 * p is cache cold in this domain, and
1214 * there is no bad imbalance.
1215 */
1216 schedstat_inc(this_sd, ttwu_move_affine);
1217 schedstat_inc(p, se.nr_wakeups_affine);
1218
1219 return 1;
1220 }
1221 return 0;
1222}
1223
e7693a36
GH
1224static int select_task_rq_fair(struct task_struct *p, int sync)
1225{
e7693a36 1226 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1227 int prev_cpu, this_cpu, new_cpu;
098fb9db 1228 unsigned long load, this_load;
64b9e029 1229 struct rq *this_rq;
098fb9db 1230 unsigned int imbalance;
098fb9db 1231 int idx;
e7693a36 1232
ac192d39 1233 prev_cpu = task_cpu(p);
ac192d39 1234 this_cpu = smp_processor_id();
4ae7d5ce 1235 this_rq = cpu_rq(this_cpu);
ac192d39 1236 new_cpu = prev_cpu;
e7693a36 1237
64b9e029
AA
1238 if (prev_cpu == this_cpu)
1239 goto out;
ac192d39
IM
1240 /*
1241 * 'this_sd' is the first domain that both
1242 * this_cpu and prev_cpu are present in:
1243 */
e7693a36 1244 for_each_domain(this_cpu, sd) {
ac192d39 1245 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1246 this_sd = sd;
1247 break;
1248 }
1249 }
1250
1251 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1252 goto out;
e7693a36
GH
1253
1254 /*
1255 * Check for affine wakeup and passive balancing possibilities.
1256 */
098fb9db 1257 if (!this_sd)
f4827386 1258 goto out;
e7693a36 1259
098fb9db
IM
1260 idx = this_sd->wake_idx;
1261
1262 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1263
ac192d39 1264 load = source_load(prev_cpu, idx);
098fb9db
IM
1265 this_load = target_load(this_cpu, idx);
1266
64b9e029 1267 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1268 load, this_load, imbalance))
1269 return this_cpu;
1270
098fb9db
IM
1271 /*
1272 * Start passive balancing when half the imbalance_pct
1273 * limit is reached.
1274 */
1275 if (this_sd->flags & SD_WAKE_BALANCE) {
1276 if (imbalance*this_load <= 100*load) {
1277 schedstat_inc(this_sd, ttwu_move_balance);
1278 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1279 return this_cpu;
e7693a36
GH
1280 }
1281 }
1282
f4827386 1283out:
e7693a36
GH
1284 return wake_idle(new_cpu, p);
1285}
1286#endif /* CONFIG_SMP */
1287
0bbd3336
PZ
1288static unsigned long wakeup_gran(struct sched_entity *se)
1289{
1290 unsigned long gran = sysctl_sched_wakeup_granularity;
1291
1292 /*
a7be37ac
PZ
1293 * More easily preempt - nice tasks, while not making it harder for
1294 * + nice tasks.
0bbd3336 1295 */
464b7527
PZ
1296 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1297 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1298
1299 return gran;
1300}
1301
464b7527
PZ
1302/*
1303 * Should 'se' preempt 'curr'.
1304 *
1305 * |s1
1306 * |s2
1307 * |s3
1308 * g
1309 * |<--->|c
1310 *
1311 * w(c, s1) = -1
1312 * w(c, s2) = 0
1313 * w(c, s3) = 1
1314 *
1315 */
1316static int
1317wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1318{
1319 s64 gran, vdiff = curr->vruntime - se->vruntime;
1320
1321 if (vdiff <= 0)
1322 return -1;
1323
1324 gran = wakeup_gran(curr);
1325 if (vdiff > gran)
1326 return 1;
1327
1328 return 0;
1329}
1330
02479099
PZ
1331static void set_last_buddy(struct sched_entity *se)
1332{
1333 for_each_sched_entity(se)
1334 cfs_rq_of(se)->last = se;
1335}
1336
1337static void set_next_buddy(struct sched_entity *se)
1338{
1339 for_each_sched_entity(se)
1340 cfs_rq_of(se)->next = se;
1341}
1342
bf0f6f24
IM
1343/*
1344 * Preempt the current task with a newly woken task if needed:
1345 */
15afe09b 1346static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1347{
1348 struct task_struct *curr = rq->curr;
8651a86c 1349 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1350 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1351
03e89e45 1352 update_curr(cfs_rq);
4793241b 1353
03e89e45 1354 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1355 resched_task(curr);
1356 return;
1357 }
aa2ac252 1358
d95f98d0
PZ
1359 if (unlikely(p->sched_class != &fair_sched_class))
1360 return;
1361
4ae7d5ce
IM
1362 if (unlikely(se == pse))
1363 return;
1364
4793241b
PZ
1365 /*
1366 * Only set the backward buddy when the current task is still on the
1367 * rq. This can happen when a wakeup gets interleaved with schedule on
1368 * the ->pre_schedule() or idle_balance() point, either of which can
1369 * drop the rq lock.
1370 *
1371 * Also, during early boot the idle thread is in the fair class, for
1372 * obvious reasons its a bad idea to schedule back to the idle thread.
1373 */
1374 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1375 set_last_buddy(se);
1376 set_next_buddy(pse);
57fdc26d 1377
aec0a514
BR
1378 /*
1379 * We can come here with TIF_NEED_RESCHED already set from new task
1380 * wake up path.
1381 */
1382 if (test_tsk_need_resched(curr))
1383 return;
1384
91c234b4
IM
1385 /*
1386 * Batch tasks do not preempt (their preemption is driven by
1387 * the tick):
1388 */
1389 if (unlikely(p->policy == SCHED_BATCH))
1390 return;
bf0f6f24 1391
77d9cc44
IM
1392 if (!sched_feat(WAKEUP_PREEMPT))
1393 return;
8651a86c 1394
2fb7635c
PZ
1395 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1396 (se->avg_overlap < sysctl_sched_migration_cost &&
1397 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1398 resched_task(curr);
1399 return;
1400 }
1401
464b7527
PZ
1402 find_matching_se(&se, &pse);
1403
1404 while (se) {
1405 BUG_ON(!pse);
1406
1407 if (wakeup_preempt_entity(se, pse) == 1) {
1408 resched_task(curr);
1409 break;
1410 }
1411
1412 se = parent_entity(se);
1413 pse = parent_entity(pse);
1414 }
bf0f6f24
IM
1415}
1416
fb8d4724 1417static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1418{
8f4d37ec 1419 struct task_struct *p;
bf0f6f24
IM
1420 struct cfs_rq *cfs_rq = &rq->cfs;
1421 struct sched_entity *se;
1422
1423 if (unlikely(!cfs_rq->nr_running))
1424 return NULL;
1425
1426 do {
9948f4b2 1427 se = pick_next_entity(cfs_rq);
f4b6755f 1428 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1429 cfs_rq = group_cfs_rq(se);
1430 } while (cfs_rq);
1431
8f4d37ec
PZ
1432 p = task_of(se);
1433 hrtick_start_fair(rq, p);
1434
1435 return p;
bf0f6f24
IM
1436}
1437
1438/*
1439 * Account for a descheduled task:
1440 */
31ee529c 1441static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1442{
1443 struct sched_entity *se = &prev->se;
1444 struct cfs_rq *cfs_rq;
1445
1446 for_each_sched_entity(se) {
1447 cfs_rq = cfs_rq_of(se);
ab6cde26 1448 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1449 }
1450}
1451
681f3e68 1452#ifdef CONFIG_SMP
bf0f6f24
IM
1453/**************************************************
1454 * Fair scheduling class load-balancing methods:
1455 */
1456
1457/*
1458 * Load-balancing iterator. Note: while the runqueue stays locked
1459 * during the whole iteration, the current task might be
1460 * dequeued so the iterator has to be dequeue-safe. Here we
1461 * achieve that by always pre-iterating before returning
1462 * the current task:
1463 */
a9957449 1464static struct task_struct *
4a55bd5e 1465__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1466{
354d60c2
DG
1467 struct task_struct *p = NULL;
1468 struct sched_entity *se;
bf0f6f24 1469
77ae6513
MG
1470 if (next == &cfs_rq->tasks)
1471 return NULL;
1472
b87f1724
BR
1473 se = list_entry(next, struct sched_entity, group_node);
1474 p = task_of(se);
1475 cfs_rq->balance_iterator = next->next;
77ae6513 1476
bf0f6f24
IM
1477 return p;
1478}
1479
1480static struct task_struct *load_balance_start_fair(void *arg)
1481{
1482 struct cfs_rq *cfs_rq = arg;
1483
4a55bd5e 1484 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1485}
1486
1487static struct task_struct *load_balance_next_fair(void *arg)
1488{
1489 struct cfs_rq *cfs_rq = arg;
1490
4a55bd5e 1491 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1492}
1493
c09595f6
PZ
1494static unsigned long
1495__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1496 unsigned long max_load_move, struct sched_domain *sd,
1497 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1498 struct cfs_rq *cfs_rq)
62fb1851 1499{
c09595f6 1500 struct rq_iterator cfs_rq_iterator;
62fb1851 1501
c09595f6
PZ
1502 cfs_rq_iterator.start = load_balance_start_fair;
1503 cfs_rq_iterator.next = load_balance_next_fair;
1504 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1505
c09595f6
PZ
1506 return balance_tasks(this_rq, this_cpu, busiest,
1507 max_load_move, sd, idle, all_pinned,
1508 this_best_prio, &cfs_rq_iterator);
62fb1851 1509}
62fb1851 1510
c09595f6 1511#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1512static unsigned long
bf0f6f24 1513load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1514 unsigned long max_load_move,
a4ac01c3
PW
1515 struct sched_domain *sd, enum cpu_idle_type idle,
1516 int *all_pinned, int *this_best_prio)
bf0f6f24 1517{
bf0f6f24 1518 long rem_load_move = max_load_move;
c09595f6
PZ
1519 int busiest_cpu = cpu_of(busiest);
1520 struct task_group *tg;
18d95a28 1521
c09595f6 1522 rcu_read_lock();
c8cba857 1523 update_h_load(busiest_cpu);
18d95a28 1524
caea8a03 1525 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1526 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1527 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1528 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1529 u64 rem_load, moved_load;
18d95a28 1530
c09595f6
PZ
1531 /*
1532 * empty group
1533 */
c8cba857 1534 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1535 continue;
1536
243e0e7b
SV
1537 rem_load = (u64)rem_load_move * busiest_weight;
1538 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1539
c09595f6 1540 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1541 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1542 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1543
c09595f6 1544 if (!moved_load)
bf0f6f24
IM
1545 continue;
1546
42a3ac7d 1547 moved_load *= busiest_h_load;
243e0e7b 1548 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1549
c09595f6
PZ
1550 rem_load_move -= moved_load;
1551 if (rem_load_move < 0)
bf0f6f24
IM
1552 break;
1553 }
c09595f6 1554 rcu_read_unlock();
bf0f6f24 1555
43010659 1556 return max_load_move - rem_load_move;
bf0f6f24 1557}
c09595f6
PZ
1558#else
1559static unsigned long
1560load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1561 unsigned long max_load_move,
1562 struct sched_domain *sd, enum cpu_idle_type idle,
1563 int *all_pinned, int *this_best_prio)
1564{
1565 return __load_balance_fair(this_rq, this_cpu, busiest,
1566 max_load_move, sd, idle, all_pinned,
1567 this_best_prio, &busiest->cfs);
1568}
1569#endif
bf0f6f24 1570
e1d1484f
PW
1571static int
1572move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1573 struct sched_domain *sd, enum cpu_idle_type idle)
1574{
1575 struct cfs_rq *busy_cfs_rq;
1576 struct rq_iterator cfs_rq_iterator;
1577
1578 cfs_rq_iterator.start = load_balance_start_fair;
1579 cfs_rq_iterator.next = load_balance_next_fair;
1580
1581 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1582 /*
1583 * pass busy_cfs_rq argument into
1584 * load_balance_[start|next]_fair iterators
1585 */
1586 cfs_rq_iterator.arg = busy_cfs_rq;
1587 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1588 &cfs_rq_iterator))
1589 return 1;
1590 }
1591
1592 return 0;
1593}
55e12e5e 1594#endif /* CONFIG_SMP */
e1d1484f 1595
bf0f6f24
IM
1596/*
1597 * scheduler tick hitting a task of our scheduling class:
1598 */
8f4d37ec 1599static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1600{
1601 struct cfs_rq *cfs_rq;
1602 struct sched_entity *se = &curr->se;
1603
1604 for_each_sched_entity(se) {
1605 cfs_rq = cfs_rq_of(se);
8f4d37ec 1606 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1607 }
1608}
1609
8eb172d9 1610#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1611
bf0f6f24
IM
1612/*
1613 * Share the fairness runtime between parent and child, thus the
1614 * total amount of pressure for CPU stays equal - new tasks
1615 * get a chance to run but frequent forkers are not allowed to
1616 * monopolize the CPU. Note: the parent runqueue is locked,
1617 * the child is not running yet.
1618 */
ee0827d8 1619static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1620{
1621 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1622 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1623 int this_cpu = smp_processor_id();
bf0f6f24
IM
1624
1625 sched_info_queued(p);
1626
7109c442 1627 update_curr(cfs_rq);
aeb73b04 1628 place_entity(cfs_rq, se, 1);
4d78e7b6 1629
3c90e6e9 1630 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1631 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1632 curr && curr->vruntime < se->vruntime) {
87fefa38 1633 /*
edcb60a3
IM
1634 * Upon rescheduling, sched_class::put_prev_task() will place
1635 * 'current' within the tree based on its new key value.
1636 */
4d78e7b6 1637 swap(curr->vruntime, se->vruntime);
aec0a514 1638 resched_task(rq->curr);
4d78e7b6 1639 }
bf0f6f24 1640
b9dca1e0 1641 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1642}
1643
cb469845
SR
1644/*
1645 * Priority of the task has changed. Check to see if we preempt
1646 * the current task.
1647 */
1648static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1649 int oldprio, int running)
1650{
1651 /*
1652 * Reschedule if we are currently running on this runqueue and
1653 * our priority decreased, or if we are not currently running on
1654 * this runqueue and our priority is higher than the current's
1655 */
1656 if (running) {
1657 if (p->prio > oldprio)
1658 resched_task(rq->curr);
1659 } else
15afe09b 1660 check_preempt_curr(rq, p, 0);
cb469845
SR
1661}
1662
1663/*
1664 * We switched to the sched_fair class.
1665 */
1666static void switched_to_fair(struct rq *rq, struct task_struct *p,
1667 int running)
1668{
1669 /*
1670 * We were most likely switched from sched_rt, so
1671 * kick off the schedule if running, otherwise just see
1672 * if we can still preempt the current task.
1673 */
1674 if (running)
1675 resched_task(rq->curr);
1676 else
15afe09b 1677 check_preempt_curr(rq, p, 0);
cb469845
SR
1678}
1679
83b699ed
SV
1680/* Account for a task changing its policy or group.
1681 *
1682 * This routine is mostly called to set cfs_rq->curr field when a task
1683 * migrates between groups/classes.
1684 */
1685static void set_curr_task_fair(struct rq *rq)
1686{
1687 struct sched_entity *se = &rq->curr->se;
1688
1689 for_each_sched_entity(se)
1690 set_next_entity(cfs_rq_of(se), se);
1691}
1692
810b3817
PZ
1693#ifdef CONFIG_FAIR_GROUP_SCHED
1694static void moved_group_fair(struct task_struct *p)
1695{
1696 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1697
1698 update_curr(cfs_rq);
1699 place_entity(cfs_rq, &p->se, 1);
1700}
1701#endif
1702
bf0f6f24
IM
1703/*
1704 * All the scheduling class methods:
1705 */
5522d5d5
IM
1706static const struct sched_class fair_sched_class = {
1707 .next = &idle_sched_class,
bf0f6f24
IM
1708 .enqueue_task = enqueue_task_fair,
1709 .dequeue_task = dequeue_task_fair,
1710 .yield_task = yield_task_fair,
1711
2e09bf55 1712 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1713
1714 .pick_next_task = pick_next_task_fair,
1715 .put_prev_task = put_prev_task_fair,
1716
681f3e68 1717#ifdef CONFIG_SMP
4ce72a2c
LZ
1718 .select_task_rq = select_task_rq_fair,
1719
bf0f6f24 1720 .load_balance = load_balance_fair,
e1d1484f 1721 .move_one_task = move_one_task_fair,
681f3e68 1722#endif
bf0f6f24 1723
83b699ed 1724 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1725 .task_tick = task_tick_fair,
1726 .task_new = task_new_fair,
cb469845
SR
1727
1728 .prio_changed = prio_changed_fair,
1729 .switched_to = switched_to_fair,
810b3817
PZ
1730
1731#ifdef CONFIG_FAIR_GROUP_SCHED
1732 .moved_group = moved_group_fair,
1733#endif
bf0f6f24
IM
1734};
1735
1736#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1737static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1738{
bf0f6f24
IM
1739 struct cfs_rq *cfs_rq;
1740
5973e5b9 1741 rcu_read_lock();
c3b64f1e 1742 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1743 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1744 rcu_read_unlock();
bf0f6f24
IM
1745}
1746#endif