]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: cleanup, remove calc_weighted()
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
5f6d858e 49const_debug unsigned int sysctl_sched_nr_latency = 20;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
155bb293 61 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
155bb293 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
155bb293 71 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
155bb293 77const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 78
bf0f6f24
IM
79/**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
62160e3f 83#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 84
62160e3f 85/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
86static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87{
62160e3f 88 return cfs_rq->rq;
bf0f6f24
IM
89}
90
62160e3f
IM
91/* An entity is a task if it doesn't "own" a runqueue */
92#define entity_is_task(se) (!se->my_q)
bf0f6f24 93
62160e3f 94#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 95
62160e3f
IM
96static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97{
98 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
99}
100
101#define entity_is_task(se) 1
102
bf0f6f24
IM
103#endif /* CONFIG_FAIR_GROUP_SCHED */
104
105static inline struct task_struct *task_of(struct sched_entity *se)
106{
107 return container_of(se, struct task_struct, se);
108}
109
110
111/**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
02e0431a
PZ
115static inline u64
116max_vruntime(u64 min_vruntime, u64 vruntime)
117{
368059a9
PZ
118 s64 delta = (s64)(vruntime - min_vruntime);
119 if (delta > 0)
02e0431a
PZ
120 min_vruntime = vruntime;
121
122 return min_vruntime;
123}
124
b0ffd246
PZ
125static inline u64
126min_vruntime(u64 min_vruntime, u64 vruntime)
127{
128 s64 delta = (s64)(vruntime - min_vruntime);
129 if (delta < 0)
130 min_vruntime = vruntime;
131
132 return min_vruntime;
133}
134
02e0431a
PZ
135static inline s64
136entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 137{
30cfdcfc 138 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
139}
140
bf0f6f24
IM
141/*
142 * Enqueue an entity into the rb-tree:
143 */
19ccd97a 144static void
bf0f6f24
IM
145__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
146{
147 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
148 struct rb_node *parent = NULL;
149 struct sched_entity *entry;
9014623c 150 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
151 int leftmost = 1;
152
153 /*
154 * Find the right place in the rbtree:
155 */
156 while (*link) {
157 parent = *link;
158 entry = rb_entry(parent, struct sched_entity, run_node);
159 /*
160 * We dont care about collisions. Nodes with
161 * the same key stay together.
162 */
9014623c 163 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
164 link = &parent->rb_left;
165 } else {
166 link = &parent->rb_right;
167 leftmost = 0;
168 }
169 }
170
171 /*
172 * Maintain a cache of leftmost tree entries (it is frequently
173 * used):
174 */
175 if (leftmost)
57cb499d 176 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
177
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
180}
181
19ccd97a 182static void
bf0f6f24
IM
183__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184{
185 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 187
bf0f6f24 188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
189}
190
191static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192{
193 return cfs_rq->rb_leftmost;
194}
195
196static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197{
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199}
200
aeb73b04
PZ
201static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202{
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214}
215
bf0f6f24
IM
216/**************************************************************
217 * Scheduling class statistics methods:
218 */
219
647e7cac
IM
220
221/*
222 * The idea is to set a period in which each task runs once.
223 *
224 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
225 * this period because otherwise the slices get too small.
226 *
227 * p = (nr <= nl) ? l : l*nr/nl
228 */
4d78e7b6
PZ
229static u64 __sched_period(unsigned long nr_running)
230{
231 u64 period = sysctl_sched_latency;
5f6d858e 232 unsigned long nr_latency = sysctl_sched_nr_latency;
4d78e7b6
PZ
233
234 if (unlikely(nr_running > nr_latency)) {
235 period *= nr_running;
236 do_div(period, nr_latency);
237 }
238
239 return period;
240}
241
647e7cac
IM
242/*
243 * We calculate the wall-time slice from the period by taking a part
244 * proportional to the weight.
245 *
246 * s = p*w/rw
247 */
6d0f0ebd 248static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 249{
647e7cac 250 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 251
647e7cac
IM
252 slice *= se->load.weight;
253 do_div(slice, cfs_rq->load.weight);
21805085 254
647e7cac 255 return slice;
bf0f6f24
IM
256}
257
647e7cac
IM
258/*
259 * We calculate the vruntime slice.
260 *
261 * vs = s/w = p/rw
262 */
263static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 264{
647e7cac 265 u64 vslice = __sched_period(nr_running);
67e9fb2a 266
647e7cac 267 do_div(vslice, rq_weight);
67e9fb2a 268
647e7cac
IM
269 return vslice;
270}
5f6d858e 271
647e7cac
IM
272static u64 sched_vslice(struct cfs_rq *cfs_rq)
273{
274 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
275}
276
277static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
278{
279 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
280 cfs_rq->nr_running + 1);
67e9fb2a
PZ
281}
282
bf0f6f24
IM
283/*
284 * Update the current task's runtime statistics. Skip current tasks that
285 * are not in our scheduling class.
286 */
287static inline void
8ebc91d9
IM
288__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
289 unsigned long delta_exec)
bf0f6f24 290{
bbdba7c0 291 unsigned long delta_exec_weighted;
b0ffd246 292 u64 vruntime;
bf0f6f24 293
8179ca23 294 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
295
296 curr->sum_exec_runtime += delta_exec;
7a62eabc 297 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
298 delta_exec_weighted = delta_exec;
299 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
300 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
301 &curr->load);
302 }
303 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
304
305 /*
306 * maintain cfs_rq->min_vruntime to be a monotonic increasing
307 * value tracking the leftmost vruntime in the tree.
308 */
309 if (first_fair(cfs_rq)) {
b0ffd246
PZ
310 vruntime = min_vruntime(curr->vruntime,
311 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 312 } else
b0ffd246 313 vruntime = curr->vruntime;
02e0431a
PZ
314
315 cfs_rq->min_vruntime =
b0ffd246 316 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
317}
318
b7cc0896 319static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 320{
429d43bc 321 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 322 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
323 unsigned long delta_exec;
324
325 if (unlikely(!curr))
326 return;
327
328 /*
329 * Get the amount of time the current task was running
330 * since the last time we changed load (this cannot
331 * overflow on 32 bits):
332 */
8ebc91d9 333 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 334
8ebc91d9
IM
335 __update_curr(cfs_rq, curr, delta_exec);
336 curr->exec_start = now;
bf0f6f24
IM
337}
338
339static inline void
5870db5b 340update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 341{
d281918d 342 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
343}
344
bf0f6f24
IM
345/*
346 * Task is being enqueued - update stats:
347 */
d2417e5a 348static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 349{
bf0f6f24
IM
350 /*
351 * Are we enqueueing a waiting task? (for current tasks
352 * a dequeue/enqueue event is a NOP)
353 */
429d43bc 354 if (se != cfs_rq->curr)
5870db5b 355 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
356}
357
bf0f6f24 358static void
9ef0a961 359update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 360{
bbdba7c0
IM
361 schedstat_set(se->wait_max, max(se->wait_max,
362 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 363 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
364}
365
366static inline void
19b6a2e3 367update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 368{
b7cc0896 369 update_curr(cfs_rq);
bf0f6f24
IM
370 /*
371 * Mark the end of the wait period if dequeueing a
372 * waiting task:
373 */
429d43bc 374 if (se != cfs_rq->curr)
9ef0a961 375 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
376}
377
378/*
379 * We are picking a new current task - update its stats:
380 */
381static inline void
79303e9e 382update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
383{
384 /*
385 * We are starting a new run period:
386 */
d281918d 387 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
388}
389
390/*
391 * We are descheduling a task - update its stats:
392 */
393static inline void
c7e9b5b2 394update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
395{
396 se->exec_start = 0;
397}
398
399/**************************************************
400 * Scheduling class queueing methods:
401 */
402
30cfdcfc
DA
403static void
404account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
405{
406 update_load_add(&cfs_rq->load, se->load.weight);
407 cfs_rq->nr_running++;
408 se->on_rq = 1;
409}
410
411static void
412account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
413{
414 update_load_sub(&cfs_rq->load, se->load.weight);
415 cfs_rq->nr_running--;
416 se->on_rq = 0;
417}
418
2396af69 419static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 420{
bf0f6f24
IM
421#ifdef CONFIG_SCHEDSTATS
422 if (se->sleep_start) {
d281918d 423 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
424
425 if ((s64)delta < 0)
426 delta = 0;
427
428 if (unlikely(delta > se->sleep_max))
429 se->sleep_max = delta;
430
431 se->sleep_start = 0;
432 se->sum_sleep_runtime += delta;
433 }
434 if (se->block_start) {
d281918d 435 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
436
437 if ((s64)delta < 0)
438 delta = 0;
439
440 if (unlikely(delta > se->block_max))
441 se->block_max = delta;
442
443 se->block_start = 0;
444 se->sum_sleep_runtime += delta;
30084fbd
IM
445
446 /*
447 * Blocking time is in units of nanosecs, so shift by 20 to
448 * get a milliseconds-range estimation of the amount of
449 * time that the task spent sleeping:
450 */
451 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
452 struct task_struct *tsk = task_of(se);
453
30084fbd
IM
454 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
455 delta >> 20);
456 }
bf0f6f24
IM
457 }
458#endif
459}
460
ddc97297
PZ
461static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
462{
463#ifdef CONFIG_SCHED_DEBUG
464 s64 d = se->vruntime - cfs_rq->min_vruntime;
465
466 if (d < 0)
467 d = -d;
468
469 if (d > 3*sysctl_sched_latency)
470 schedstat_inc(cfs_rq, nr_spread_over);
471#endif
472}
473
aeb73b04
PZ
474static void
475place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
476{
67e9fb2a 477 u64 vruntime;
aeb73b04 478
67e9fb2a 479 vruntime = cfs_rq->min_vruntime;
94dfb5e7
PZ
480
481 if (sched_feat(USE_TREE_AVG)) {
482 struct sched_entity *last = __pick_last_entity(cfs_rq);
483 if (last) {
67e9fb2a
PZ
484 vruntime += last->vruntime;
485 vruntime >>= 1;
94dfb5e7 486 }
67e9fb2a 487 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 488 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7
PZ
489
490 if (initial && sched_feat(START_DEBIT))
647e7cac 491 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 492
8465e792 493 if (!initial) {
94359f05
IM
494 if (sched_feat(NEW_FAIR_SLEEPERS))
495 vruntime -= sysctl_sched_latency;
496
b8487b92 497 vruntime = max_t(s64, vruntime, se->vruntime);
aeb73b04
PZ
498 }
499
67e9fb2a
PZ
500 se->vruntime = vruntime;
501
aeb73b04
PZ
502}
503
bf0f6f24 504static void
83b699ed 505enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
506{
507 /*
508 * Update the fair clock.
509 */
b7cc0896 510 update_curr(cfs_rq);
bf0f6f24 511
e9acbff6 512 if (wakeup) {
aeb73b04 513 place_entity(cfs_rq, se, 0);
2396af69 514 enqueue_sleeper(cfs_rq, se);
e9acbff6 515 }
bf0f6f24 516
d2417e5a 517 update_stats_enqueue(cfs_rq, se);
ddc97297 518 check_spread(cfs_rq, se);
83b699ed
SV
519 if (se != cfs_rq->curr)
520 __enqueue_entity(cfs_rq, se);
30cfdcfc 521 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
522}
523
524static void
525c2716 525dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 526{
19b6a2e3 527 update_stats_dequeue(cfs_rq, se);
db36cc7d 528 if (sleep) {
67e9fb2a 529#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
530 if (entity_is_task(se)) {
531 struct task_struct *tsk = task_of(se);
532
533 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 534 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 535 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 536 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 537 }
db36cc7d 538#endif
67e9fb2a
PZ
539 }
540
83b699ed 541 if (se != cfs_rq->curr)
30cfdcfc
DA
542 __dequeue_entity(cfs_rq, se);
543 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
544}
545
546/*
547 * Preempt the current task with a newly woken task if needed:
548 */
7c92e54f 549static void
2e09bf55 550check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 551{
11697830
PZ
552 unsigned long ideal_runtime, delta_exec;
553
6d0f0ebd 554 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
555 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
556 if (delta_exec > ideal_runtime)
bf0f6f24
IM
557 resched_task(rq_of(cfs_rq)->curr);
558}
559
83b699ed 560static void
8494f412 561set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 562{
83b699ed
SV
563 /* 'current' is not kept within the tree. */
564 if (se->on_rq) {
565 /*
566 * Any task has to be enqueued before it get to execute on
567 * a CPU. So account for the time it spent waiting on the
568 * runqueue.
569 */
570 update_stats_wait_end(cfs_rq, se);
571 __dequeue_entity(cfs_rq, se);
572 }
573
79303e9e 574 update_stats_curr_start(cfs_rq, se);
429d43bc 575 cfs_rq->curr = se;
eba1ed4b
IM
576#ifdef CONFIG_SCHEDSTATS
577 /*
578 * Track our maximum slice length, if the CPU's load is at
579 * least twice that of our own weight (i.e. dont track it
580 * when there are only lesser-weight tasks around):
581 */
495eca49 582 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
583 se->slice_max = max(se->slice_max,
584 se->sum_exec_runtime - se->prev_sum_exec_runtime);
585 }
586#endif
4a55b450 587 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
588}
589
9948f4b2 590static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 591{
08ec3df5 592 struct sched_entity *se = NULL;
bf0f6f24 593
08ec3df5
DA
594 if (first_fair(cfs_rq)) {
595 se = __pick_next_entity(cfs_rq);
596 set_next_entity(cfs_rq, se);
597 }
bf0f6f24
IM
598
599 return se;
600}
601
ab6cde26 602static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
603{
604 /*
605 * If still on the runqueue then deactivate_task()
606 * was not called and update_curr() has to be done:
607 */
608 if (prev->on_rq)
b7cc0896 609 update_curr(cfs_rq);
bf0f6f24 610
c7e9b5b2 611 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 612
ddc97297 613 check_spread(cfs_rq, prev);
30cfdcfc 614 if (prev->on_rq) {
5870db5b 615 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
616 /* Put 'current' back into the tree. */
617 __enqueue_entity(cfs_rq, prev);
618 }
429d43bc 619 cfs_rq->curr = NULL;
bf0f6f24
IM
620}
621
622static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
623{
bf0f6f24 624 /*
30cfdcfc 625 * Update run-time statistics of the 'current'.
bf0f6f24 626 */
30cfdcfc 627 update_curr(cfs_rq);
bf0f6f24 628
2e09bf55
IM
629 if (cfs_rq->nr_running > 1)
630 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
631}
632
633/**************************************************
634 * CFS operations on tasks:
635 */
636
637#ifdef CONFIG_FAIR_GROUP_SCHED
638
639/* Walk up scheduling entities hierarchy */
640#define for_each_sched_entity(se) \
641 for (; se; se = se->parent)
642
643static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
644{
645 return p->se.cfs_rq;
646}
647
648/* runqueue on which this entity is (to be) queued */
649static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
650{
651 return se->cfs_rq;
652}
653
654/* runqueue "owned" by this group */
655static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
656{
657 return grp->my_q;
658}
659
660/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
661 * another cpu ('this_cpu')
662 */
663static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
664{
29f59db3 665 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
666}
667
668/* Iterate thr' all leaf cfs_rq's on a runqueue */
669#define for_each_leaf_cfs_rq(rq, cfs_rq) \
670 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
671
fad095a7
SV
672/* Do the two (enqueued) entities belong to the same group ? */
673static inline int
674is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 675{
fad095a7 676 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
677 return 1;
678
679 return 0;
680}
681
fad095a7
SV
682static inline struct sched_entity *parent_entity(struct sched_entity *se)
683{
684 return se->parent;
685}
686
bf0f6f24
IM
687#else /* CONFIG_FAIR_GROUP_SCHED */
688
689#define for_each_sched_entity(se) \
690 for (; se; se = NULL)
691
692static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
693{
694 return &task_rq(p)->cfs;
695}
696
697static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
698{
699 struct task_struct *p = task_of(se);
700 struct rq *rq = task_rq(p);
701
702 return &rq->cfs;
703}
704
705/* runqueue "owned" by this group */
706static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
707{
708 return NULL;
709}
710
711static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
712{
713 return &cpu_rq(this_cpu)->cfs;
714}
715
716#define for_each_leaf_cfs_rq(rq, cfs_rq) \
717 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
718
fad095a7
SV
719static inline int
720is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
721{
722 return 1;
723}
724
fad095a7
SV
725static inline struct sched_entity *parent_entity(struct sched_entity *se)
726{
727 return NULL;
728}
729
bf0f6f24
IM
730#endif /* CONFIG_FAIR_GROUP_SCHED */
731
732/*
733 * The enqueue_task method is called before nr_running is
734 * increased. Here we update the fair scheduling stats and
735 * then put the task into the rbtree:
736 */
fd390f6a 737static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
738{
739 struct cfs_rq *cfs_rq;
740 struct sched_entity *se = &p->se;
741
742 for_each_sched_entity(se) {
743 if (se->on_rq)
744 break;
745 cfs_rq = cfs_rq_of(se);
83b699ed 746 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 747 wakeup = 1;
bf0f6f24
IM
748 }
749}
750
751/*
752 * The dequeue_task method is called before nr_running is
753 * decreased. We remove the task from the rbtree and
754 * update the fair scheduling stats:
755 */
f02231e5 756static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
757{
758 struct cfs_rq *cfs_rq;
759 struct sched_entity *se = &p->se;
760
761 for_each_sched_entity(se) {
762 cfs_rq = cfs_rq_of(se);
525c2716 763 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
764 /* Don't dequeue parent if it has other entities besides us */
765 if (cfs_rq->load.weight)
766 break;
b9fa3df3 767 sleep = 1;
bf0f6f24
IM
768 }
769}
770
771/*
1799e35d
IM
772 * sched_yield() support is very simple - we dequeue and enqueue.
773 *
774 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 775 */
4530d7ab 776static void yield_task_fair(struct rq *rq)
bf0f6f24 777{
72ea22f8 778 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 779 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
780
781 /*
1799e35d
IM
782 * Are we the only task in the tree?
783 */
784 if (unlikely(cfs_rq->nr_running == 1))
785 return;
786
787 if (likely(!sysctl_sched_compat_yield)) {
788 __update_rq_clock(rq);
789 /*
790 * Dequeue and enqueue the task to update its
791 * position within the tree:
792 */
2b1e315d 793 update_curr(cfs_rq);
1799e35d
IM
794
795 return;
796 }
797 /*
798 * Find the rightmost entry in the rbtree:
bf0f6f24 799 */
2b1e315d 800 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
801 /*
802 * Already in the rightmost position?
803 */
2b1e315d 804 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
805 return;
806
807 /*
808 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
809 * Upon rescheduling, sched_class::put_prev_task() will place
810 * 'current' within the tree based on its new key value.
1799e35d 811 */
30cfdcfc 812 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
813}
814
815/*
816 * Preempt the current task with a newly woken task if needed:
817 */
2e09bf55 818static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
819{
820 struct task_struct *curr = rq->curr;
fad095a7 821 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 822 struct sched_entity *se = &curr->se, *pse = &p->se;
fad095a7 823 s64 delta;
bf0f6f24
IM
824
825 if (unlikely(rt_prio(p->prio))) {
a8e504d2 826 update_rq_clock(rq);
b7cc0896 827 update_curr(cfs_rq);
bf0f6f24
IM
828 resched_task(curr);
829 return;
830 }
831
fad095a7
SV
832 while (!is_same_group(se, pse)) {
833 se = parent_entity(se);
834 pse = parent_entity(pse);
835 }
8651a86c 836
fad095a7 837 delta = se->vruntime - pse->vruntime;
8651a86c 838
fad095a7
SV
839 if (delta > (s64)sysctl_sched_wakeup_granularity)
840 resched_task(curr);
bf0f6f24
IM
841}
842
fb8d4724 843static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
844{
845 struct cfs_rq *cfs_rq = &rq->cfs;
846 struct sched_entity *se;
847
848 if (unlikely(!cfs_rq->nr_running))
849 return NULL;
850
851 do {
9948f4b2 852 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
853 cfs_rq = group_cfs_rq(se);
854 } while (cfs_rq);
855
856 return task_of(se);
857}
858
859/*
860 * Account for a descheduled task:
861 */
31ee529c 862static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
863{
864 struct sched_entity *se = &prev->se;
865 struct cfs_rq *cfs_rq;
866
867 for_each_sched_entity(se) {
868 cfs_rq = cfs_rq_of(se);
ab6cde26 869 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
870 }
871}
872
873/**************************************************
874 * Fair scheduling class load-balancing methods:
875 */
876
877/*
878 * Load-balancing iterator. Note: while the runqueue stays locked
879 * during the whole iteration, the current task might be
880 * dequeued so the iterator has to be dequeue-safe. Here we
881 * achieve that by always pre-iterating before returning
882 * the current task:
883 */
a9957449 884static struct task_struct *
bf0f6f24
IM
885__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
886{
887 struct task_struct *p;
888
889 if (!curr)
890 return NULL;
891
892 p = rb_entry(curr, struct task_struct, se.run_node);
893 cfs_rq->rb_load_balance_curr = rb_next(curr);
894
895 return p;
896}
897
898static struct task_struct *load_balance_start_fair(void *arg)
899{
900 struct cfs_rq *cfs_rq = arg;
901
902 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
903}
904
905static struct task_struct *load_balance_next_fair(void *arg)
906{
907 struct cfs_rq *cfs_rq = arg;
908
909 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
910}
911
a4ac01c3 912#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
913static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
914{
915 struct sched_entity *curr;
916 struct task_struct *p;
917
918 if (!cfs_rq->nr_running)
919 return MAX_PRIO;
920
9b5b7751
SV
921 curr = cfs_rq->curr;
922 if (!curr)
923 curr = __pick_next_entity(cfs_rq);
924
bf0f6f24
IM
925 p = task_of(curr);
926
927 return p->prio;
928}
a4ac01c3 929#endif
bf0f6f24 930
43010659 931static unsigned long
bf0f6f24 932load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
933 unsigned long max_nr_move, unsigned long max_load_move,
934 struct sched_domain *sd, enum cpu_idle_type idle,
935 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
936{
937 struct cfs_rq *busy_cfs_rq;
938 unsigned long load_moved, total_nr_moved = 0, nr_moved;
939 long rem_load_move = max_load_move;
940 struct rq_iterator cfs_rq_iterator;
941
942 cfs_rq_iterator.start = load_balance_start_fair;
943 cfs_rq_iterator.next = load_balance_next_fair;
944
945 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 946#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 947 struct cfs_rq *this_cfs_rq;
e56f31aa 948 long imbalance;
bf0f6f24 949 unsigned long maxload;
bf0f6f24
IM
950
951 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
952
e56f31aa 953 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
954 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
955 if (imbalance <= 0)
956 continue;
957
958 /* Don't pull more than imbalance/2 */
959 imbalance /= 2;
960 maxload = min(rem_load_move, imbalance);
961
a4ac01c3
PW
962 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
963#else
e56f31aa 964# define maxload rem_load_move
a4ac01c3 965#endif
bf0f6f24
IM
966 /* pass busy_cfs_rq argument into
967 * load_balance_[start|next]_fair iterators
968 */
969 cfs_rq_iterator.arg = busy_cfs_rq;
970 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
971 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 972 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
973
974 total_nr_moved += nr_moved;
975 max_nr_move -= nr_moved;
976 rem_load_move -= load_moved;
977
978 if (max_nr_move <= 0 || rem_load_move <= 0)
979 break;
980 }
981
43010659 982 return max_load_move - rem_load_move;
bf0f6f24
IM
983}
984
985/*
986 * scheduler tick hitting a task of our scheduling class:
987 */
988static void task_tick_fair(struct rq *rq, struct task_struct *curr)
989{
990 struct cfs_rq *cfs_rq;
991 struct sched_entity *se = &curr->se;
992
993 for_each_sched_entity(se) {
994 cfs_rq = cfs_rq_of(se);
995 entity_tick(cfs_rq, se);
996 }
997}
998
4d78e7b6
PZ
999#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1000
bf0f6f24
IM
1001/*
1002 * Share the fairness runtime between parent and child, thus the
1003 * total amount of pressure for CPU stays equal - new tasks
1004 * get a chance to run but frequent forkers are not allowed to
1005 * monopolize the CPU. Note: the parent runqueue is locked,
1006 * the child is not running yet.
1007 */
ee0827d8 1008static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1009{
1010 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1011 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
1012
1013 sched_info_queued(p);
1014
7109c442 1015 update_curr(cfs_rq);
aeb73b04 1016 place_entity(cfs_rq, se, 1);
4d78e7b6 1017
4d78e7b6
PZ
1018 if (sysctl_sched_child_runs_first &&
1019 curr->vruntime < se->vruntime) {
87fefa38 1020 /*
edcb60a3
IM
1021 * Upon rescheduling, sched_class::put_prev_task() will place
1022 * 'current' within the tree based on its new key value.
1023 */
4d78e7b6 1024 swap(curr->vruntime, se->vruntime);
4d78e7b6 1025 }
bf0f6f24 1026
e9acbff6 1027 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1028 check_spread(cfs_rq, se);
1029 check_spread(cfs_rq, curr);
bf0f6f24 1030 __enqueue_entity(cfs_rq, se);
30cfdcfc 1031 account_entity_enqueue(cfs_rq, se);
bb61c210 1032 resched_task(rq->curr);
bf0f6f24
IM
1033}
1034
83b699ed
SV
1035/* Account for a task changing its policy or group.
1036 *
1037 * This routine is mostly called to set cfs_rq->curr field when a task
1038 * migrates between groups/classes.
1039 */
1040static void set_curr_task_fair(struct rq *rq)
1041{
1042 struct sched_entity *se = &rq->curr->se;
1043
1044 for_each_sched_entity(se)
1045 set_next_entity(cfs_rq_of(se), se);
1046}
1047
bf0f6f24
IM
1048/*
1049 * All the scheduling class methods:
1050 */
5522d5d5
IM
1051static const struct sched_class fair_sched_class = {
1052 .next = &idle_sched_class,
bf0f6f24
IM
1053 .enqueue_task = enqueue_task_fair,
1054 .dequeue_task = dequeue_task_fair,
1055 .yield_task = yield_task_fair,
1056
2e09bf55 1057 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1058
1059 .pick_next_task = pick_next_task_fair,
1060 .put_prev_task = put_prev_task_fair,
1061
1062 .load_balance = load_balance_fair,
1063
83b699ed 1064 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1065 .task_tick = task_tick_fair,
1066 .task_new = task_new_fair,
1067};
1068
1069#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1070static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1071{
bf0f6f24
IM
1072 struct cfs_rq *cfs_rq;
1073
75c28ace
SV
1074#ifdef CONFIG_FAIR_GROUP_SCHED
1075 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1076#endif
c3b64f1e 1077 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1078 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1079}
1080#endif