]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Preempt-RCU: update RCU Documentation.
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
1da177e4 68
5517d86b 69#include <asm/tlb.h>
838225b4 70#include <asm/irq_regs.h>
1da177e4 71
b035b6de
AD
72/*
73 * Scheduler clock - returns current time in nanosec units.
74 * This is default implementation.
75 * Architectures and sub-architectures can override this.
76 */
77unsigned long long __attribute__((weak)) sched_clock(void)
78{
d6322faf 79 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
80}
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
29f59db3
SV
157#ifdef CONFIG_FAIR_GROUP_SCHED
158
68318b8e
SV
159#include <linux/cgroup.h>
160
29f59db3
SV
161struct cfs_rq;
162
163/* task group related information */
4cf86d77 164struct task_group {
68318b8e
SV
165#ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167#endif
29f59db3
SV
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
6b2d7700
SV
172
173 /*
174 * shares assigned to a task group governs how much of cpu bandwidth
175 * is allocated to the group. The more shares a group has, the more is
176 * the cpu bandwidth allocated to it.
177 *
178 * For ex, lets say that there are three task groups, A, B and C which
179 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
180 * cpu bandwidth allocated by the scheduler to task groups A, B and C
181 * should be:
182 *
183 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
184 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
185 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
186 *
187 * The weight assigned to a task group's schedulable entities on every
188 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
189 * group's shares. For ex: lets say that task group A has been
190 * assigned shares of 1000 and there are two CPUs in a system. Then,
191 *
192 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
193 *
194 * Note: It's not necessary that each of a task's group schedulable
195 * entity have the same weight on all CPUs. If the group
196 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
197 * better distribution of weight could be:
198 *
199 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
200 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
201 *
202 * rebalance_shares() is responsible for distributing the shares of a
203 * task groups like this among the group's schedulable entities across
204 * cpus.
205 *
206 */
29f59db3 207 unsigned long shares;
6b2d7700 208
ae8393e5 209 struct rcu_head rcu;
29f59db3
SV
210};
211
212/* Default task group's sched entity on each cpu */
213static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
214/* Default task group's cfs_rq on each cpu */
215static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
216
9b5b7751
SV
217static struct sched_entity *init_sched_entity_p[NR_CPUS];
218static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 219
ec2c507f
SV
220/* task_group_mutex serializes add/remove of task groups and also changes to
221 * a task group's cpu shares.
222 */
223static DEFINE_MUTEX(task_group_mutex);
224
a1835615
SV
225/* doms_cur_mutex serializes access to doms_cur[] array */
226static DEFINE_MUTEX(doms_cur_mutex);
227
6b2d7700
SV
228#ifdef CONFIG_SMP
229/* kernel thread that runs rebalance_shares() periodically */
230static struct task_struct *lb_monitor_task;
231static int load_balance_monitor(void *unused);
232#endif
233
234static void set_se_shares(struct sched_entity *se, unsigned long shares);
235
29f59db3 236/* Default task group.
3a252015 237 * Every task in system belong to this group at bootup.
29f59db3 238 */
4cf86d77 239struct task_group init_task_group = {
0eab9146 240 .se = init_sched_entity_p,
3a252015
IM
241 .cfs_rq = init_cfs_rq_p,
242};
9b5b7751 243
24e377a8 244#ifdef CONFIG_FAIR_USER_SCHED
0eab9146 245# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
24e377a8 246#else
93f992cc 247# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
248#endif
249
0eab9146 250#define MIN_GROUP_SHARES 2
6b2d7700 251
93f992cc 252static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
253
254/* return group to which a task belongs */
4cf86d77 255static inline struct task_group *task_group(struct task_struct *p)
29f59db3 256{
4cf86d77 257 struct task_group *tg;
9b5b7751 258
24e377a8
SV
259#ifdef CONFIG_FAIR_USER_SCHED
260 tg = p->user->tg;
68318b8e
SV
261#elif defined(CONFIG_FAIR_CGROUP_SCHED)
262 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
263 struct task_group, css);
24e377a8 264#else
41a2d6cf 265 tg = &init_task_group;
24e377a8 266#endif
9b5b7751 267 return tg;
29f59db3
SV
268}
269
270/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 271static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 272{
ce96b5ac
DA
273 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
274 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
275}
276
ec2c507f
SV
277static inline void lock_task_group_list(void)
278{
279 mutex_lock(&task_group_mutex);
280}
281
282static inline void unlock_task_group_list(void)
283{
284 mutex_unlock(&task_group_mutex);
285}
286
a1835615
SV
287static inline void lock_doms_cur(void)
288{
289 mutex_lock(&doms_cur_mutex);
290}
291
292static inline void unlock_doms_cur(void)
293{
294 mutex_unlock(&doms_cur_mutex);
295}
296
29f59db3
SV
297#else
298
ce96b5ac 299static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
300static inline void lock_task_group_list(void) { }
301static inline void unlock_task_group_list(void) { }
a1835615
SV
302static inline void lock_doms_cur(void) { }
303static inline void unlock_doms_cur(void) { }
29f59db3
SV
304
305#endif /* CONFIG_FAIR_GROUP_SCHED */
306
6aa645ea
IM
307/* CFS-related fields in a runqueue */
308struct cfs_rq {
309 struct load_weight load;
310 unsigned long nr_running;
311
6aa645ea 312 u64 exec_clock;
e9acbff6 313 u64 min_vruntime;
6aa645ea
IM
314
315 struct rb_root tasks_timeline;
316 struct rb_node *rb_leftmost;
317 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
318 /* 'curr' points to currently running entity on this cfs_rq.
319 * It is set to NULL otherwise (i.e when none are currently running).
320 */
321 struct sched_entity *curr;
ddc97297
PZ
322
323 unsigned long nr_spread_over;
324
62160e3f 325#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
326 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
327
41a2d6cf
IM
328 /*
329 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
330 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
331 * (like users, containers etc.)
332 *
333 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
334 * list is used during load balance.
335 */
41a2d6cf
IM
336 struct list_head leaf_cfs_rq_list;
337 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
338#endif
339};
1da177e4 340
6aa645ea
IM
341/* Real-Time classes' related field in a runqueue: */
342struct rt_rq {
343 struct rt_prio_array active;
344 int rt_load_balance_idx;
345 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 346 unsigned long rt_nr_running;
73fe6aae 347 unsigned long rt_nr_migratory;
764a9d6f
SR
348 /* highest queued rt task prio */
349 int highest_prio;
a22d7fc1 350 int overloaded;
6aa645ea
IM
351};
352
57d885fe
GH
353#ifdef CONFIG_SMP
354
355/*
356 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
357 * variables. Each exclusive cpuset essentially defines an island domain by
358 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
359 * exclusive cpuset is created, we also create and attach a new root-domain
360 * object.
361 *
362 * By default the system creates a single root-domain with all cpus as
363 * members (mimicking the global state we have today).
364 */
365struct root_domain {
366 atomic_t refcount;
367 cpumask_t span;
368 cpumask_t online;
637f5085 369
0eab9146 370 /*
637f5085
GH
371 * The "RT overload" flag: it gets set if a CPU has more than
372 * one runnable RT task.
373 */
374 cpumask_t rto_mask;
0eab9146 375 atomic_t rto_count;
57d885fe
GH
376};
377
378static struct root_domain def_root_domain;
379
380#endif
381
1da177e4
LT
382/*
383 * This is the main, per-CPU runqueue data structure.
384 *
385 * Locking rule: those places that want to lock multiple runqueues
386 * (such as the load balancing or the thread migration code), lock
387 * acquire operations must be ordered by ascending &runqueue.
388 */
70b97a7f 389struct rq {
d8016491
IM
390 /* runqueue lock: */
391 spinlock_t lock;
1da177e4
LT
392
393 /*
394 * nr_running and cpu_load should be in the same cacheline because
395 * remote CPUs use both these fields when doing load calculation.
396 */
397 unsigned long nr_running;
6aa645ea
IM
398 #define CPU_LOAD_IDX_MAX 5
399 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 400 unsigned char idle_at_tick;
46cb4b7c
SS
401#ifdef CONFIG_NO_HZ
402 unsigned char in_nohz_recently;
403#endif
d8016491
IM
404 /* capture load from *all* tasks on this cpu: */
405 struct load_weight load;
6aa645ea
IM
406 unsigned long nr_load_updates;
407 u64 nr_switches;
408
409 struct cfs_rq cfs;
410#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
411 /* list of leaf cfs_rq on this cpu: */
412 struct list_head leaf_cfs_rq_list;
1da177e4 413#endif
41a2d6cf 414 struct rt_rq rt;
1da177e4
LT
415
416 /*
417 * This is part of a global counter where only the total sum
418 * over all CPUs matters. A task can increase this counter on
419 * one CPU and if it got migrated afterwards it may decrease
420 * it on another CPU. Always updated under the runqueue lock:
421 */
422 unsigned long nr_uninterruptible;
423
36c8b586 424 struct task_struct *curr, *idle;
c9819f45 425 unsigned long next_balance;
1da177e4 426 struct mm_struct *prev_mm;
6aa645ea 427
6aa645ea
IM
428 u64 clock, prev_clock_raw;
429 s64 clock_max_delta;
430
431 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
432 u64 idle_clock;
433 unsigned int clock_deep_idle_events;
529c7726 434 u64 tick_timestamp;
6aa645ea 435
1da177e4
LT
436 atomic_t nr_iowait;
437
438#ifdef CONFIG_SMP
0eab9146 439 struct root_domain *rd;
1da177e4
LT
440 struct sched_domain *sd;
441
442 /* For active balancing */
443 int active_balance;
444 int push_cpu;
d8016491
IM
445 /* cpu of this runqueue: */
446 int cpu;
1da177e4 447
36c8b586 448 struct task_struct *migration_thread;
1da177e4
LT
449 struct list_head migration_queue;
450#endif
451
452#ifdef CONFIG_SCHEDSTATS
453 /* latency stats */
454 struct sched_info rq_sched_info;
455
456 /* sys_sched_yield() stats */
480b9434
KC
457 unsigned int yld_exp_empty;
458 unsigned int yld_act_empty;
459 unsigned int yld_both_empty;
460 unsigned int yld_count;
1da177e4
LT
461
462 /* schedule() stats */
480b9434
KC
463 unsigned int sched_switch;
464 unsigned int sched_count;
465 unsigned int sched_goidle;
1da177e4
LT
466
467 /* try_to_wake_up() stats */
480b9434
KC
468 unsigned int ttwu_count;
469 unsigned int ttwu_local;
b8efb561
IM
470
471 /* BKL stats */
480b9434 472 unsigned int bkl_count;
1da177e4 473#endif
fcb99371 474 struct lock_class_key rq_lock_key;
1da177e4
LT
475};
476
f34e3b61 477static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 478
dd41f596
IM
479static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
480{
481 rq->curr->sched_class->check_preempt_curr(rq, p);
482}
483
0a2966b4
CL
484static inline int cpu_of(struct rq *rq)
485{
486#ifdef CONFIG_SMP
487 return rq->cpu;
488#else
489 return 0;
490#endif
491}
492
20d315d4 493/*
b04a0f4c
IM
494 * Update the per-runqueue clock, as finegrained as the platform can give
495 * us, but without assuming monotonicity, etc.:
20d315d4 496 */
b04a0f4c 497static void __update_rq_clock(struct rq *rq)
20d315d4
IM
498{
499 u64 prev_raw = rq->prev_clock_raw;
500 u64 now = sched_clock();
501 s64 delta = now - prev_raw;
502 u64 clock = rq->clock;
503
b04a0f4c
IM
504#ifdef CONFIG_SCHED_DEBUG
505 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
506#endif
20d315d4
IM
507 /*
508 * Protect against sched_clock() occasionally going backwards:
509 */
510 if (unlikely(delta < 0)) {
511 clock++;
512 rq->clock_warps++;
513 } else {
514 /*
515 * Catch too large forward jumps too:
516 */
529c7726
IM
517 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
518 if (clock < rq->tick_timestamp + TICK_NSEC)
519 clock = rq->tick_timestamp + TICK_NSEC;
520 else
521 clock++;
20d315d4
IM
522 rq->clock_overflows++;
523 } else {
524 if (unlikely(delta > rq->clock_max_delta))
525 rq->clock_max_delta = delta;
526 clock += delta;
527 }
528 }
529
530 rq->prev_clock_raw = now;
531 rq->clock = clock;
b04a0f4c 532}
20d315d4 533
b04a0f4c
IM
534static void update_rq_clock(struct rq *rq)
535{
536 if (likely(smp_processor_id() == cpu_of(rq)))
537 __update_rq_clock(rq);
20d315d4
IM
538}
539
674311d5
NP
540/*
541 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 542 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
543 *
544 * The domain tree of any CPU may only be accessed from within
545 * preempt-disabled sections.
546 */
48f24c4d
IM
547#define for_each_domain(cpu, __sd) \
548 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
549
550#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
551#define this_rq() (&__get_cpu_var(runqueues))
552#define task_rq(p) cpu_rq(task_cpu(p))
553#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
554
bf5c91ba
IM
555/*
556 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
557 */
558#ifdef CONFIG_SCHED_DEBUG
559# define const_debug __read_mostly
560#else
561# define const_debug static const
562#endif
563
564/*
565 * Debugging: various feature bits
566 */
567enum {
bbdba7c0 568 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
569 SCHED_FEAT_WAKEUP_PREEMPT = 2,
570 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
571 SCHED_FEAT_TREE_AVG = 8,
572 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
573};
574
575const_debug unsigned int sysctl_sched_features =
8401f775 576 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 577 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
578 SCHED_FEAT_START_DEBIT * 1 |
579 SCHED_FEAT_TREE_AVG * 0 |
9612633a 580 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
581
582#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
583
b82d9fdd
PZ
584/*
585 * Number of tasks to iterate in a single balance run.
586 * Limited because this is done with IRQs disabled.
587 */
588const_debug unsigned int sysctl_sched_nr_migrate = 32;
589
e436d800
IM
590/*
591 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
592 * clock constructed from sched_clock():
593 */
594unsigned long long cpu_clock(int cpu)
595{
e436d800
IM
596 unsigned long long now;
597 unsigned long flags;
b04a0f4c 598 struct rq *rq;
e436d800 599
2cd4d0ea 600 local_irq_save(flags);
b04a0f4c 601 rq = cpu_rq(cpu);
8ced5f69
IM
602 /*
603 * Only call sched_clock() if the scheduler has already been
604 * initialized (some code might call cpu_clock() very early):
605 */
606 if (rq->idle)
607 update_rq_clock(rq);
b04a0f4c 608 now = rq->clock;
2cd4d0ea 609 local_irq_restore(flags);
e436d800
IM
610
611 return now;
612}
a58f6f25 613EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 614
1da177e4 615#ifndef prepare_arch_switch
4866cde0
NP
616# define prepare_arch_switch(next) do { } while (0)
617#endif
618#ifndef finish_arch_switch
619# define finish_arch_switch(prev) do { } while (0)
620#endif
621
051a1d1a
DA
622static inline int task_current(struct rq *rq, struct task_struct *p)
623{
624 return rq->curr == p;
625}
626
4866cde0 627#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 628static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 629{
051a1d1a 630 return task_current(rq, p);
4866cde0
NP
631}
632
70b97a7f 633static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
634{
635}
636
70b97a7f 637static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 638{
da04c035
IM
639#ifdef CONFIG_DEBUG_SPINLOCK
640 /* this is a valid case when another task releases the spinlock */
641 rq->lock.owner = current;
642#endif
8a25d5de
IM
643 /*
644 * If we are tracking spinlock dependencies then we have to
645 * fix up the runqueue lock - which gets 'carried over' from
646 * prev into current:
647 */
648 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
649
4866cde0
NP
650 spin_unlock_irq(&rq->lock);
651}
652
653#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 654static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
655{
656#ifdef CONFIG_SMP
657 return p->oncpu;
658#else
051a1d1a 659 return task_current(rq, p);
4866cde0
NP
660#endif
661}
662
70b97a7f 663static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
664{
665#ifdef CONFIG_SMP
666 /*
667 * We can optimise this out completely for !SMP, because the
668 * SMP rebalancing from interrupt is the only thing that cares
669 * here.
670 */
671 next->oncpu = 1;
672#endif
673#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
674 spin_unlock_irq(&rq->lock);
675#else
676 spin_unlock(&rq->lock);
677#endif
678}
679
70b97a7f 680static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
681{
682#ifdef CONFIG_SMP
683 /*
684 * After ->oncpu is cleared, the task can be moved to a different CPU.
685 * We must ensure this doesn't happen until the switch is completely
686 * finished.
687 */
688 smp_wmb();
689 prev->oncpu = 0;
690#endif
691#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
692 local_irq_enable();
1da177e4 693#endif
4866cde0
NP
694}
695#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 696
b29739f9
IM
697/*
698 * __task_rq_lock - lock the runqueue a given task resides on.
699 * Must be called interrupts disabled.
700 */
70b97a7f 701static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
702 __acquires(rq->lock)
703{
3a5c359a
AK
704 for (;;) {
705 struct rq *rq = task_rq(p);
706 spin_lock(&rq->lock);
707 if (likely(rq == task_rq(p)))
708 return rq;
b29739f9 709 spin_unlock(&rq->lock);
b29739f9 710 }
b29739f9
IM
711}
712
1da177e4
LT
713/*
714 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 715 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
716 * explicitly disabling preemption.
717 */
70b97a7f 718static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
719 __acquires(rq->lock)
720{
70b97a7f 721 struct rq *rq;
1da177e4 722
3a5c359a
AK
723 for (;;) {
724 local_irq_save(*flags);
725 rq = task_rq(p);
726 spin_lock(&rq->lock);
727 if (likely(rq == task_rq(p)))
728 return rq;
1da177e4 729 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 730 }
1da177e4
LT
731}
732
a9957449 733static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
734 __releases(rq->lock)
735{
736 spin_unlock(&rq->lock);
737}
738
70b97a7f 739static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
740 __releases(rq->lock)
741{
742 spin_unlock_irqrestore(&rq->lock, *flags);
743}
744
1da177e4 745/*
cc2a73b5 746 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 747 */
a9957449 748static struct rq *this_rq_lock(void)
1da177e4
LT
749 __acquires(rq->lock)
750{
70b97a7f 751 struct rq *rq;
1da177e4
LT
752
753 local_irq_disable();
754 rq = this_rq();
755 spin_lock(&rq->lock);
756
757 return rq;
758}
759
1b9f19c2 760/*
2aa44d05 761 * We are going deep-idle (irqs are disabled):
1b9f19c2 762 */
2aa44d05 763void sched_clock_idle_sleep_event(void)
1b9f19c2 764{
2aa44d05
IM
765 struct rq *rq = cpu_rq(smp_processor_id());
766
767 spin_lock(&rq->lock);
768 __update_rq_clock(rq);
769 spin_unlock(&rq->lock);
770 rq->clock_deep_idle_events++;
771}
772EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
773
774/*
775 * We just idled delta nanoseconds (called with irqs disabled):
776 */
777void sched_clock_idle_wakeup_event(u64 delta_ns)
778{
779 struct rq *rq = cpu_rq(smp_processor_id());
780 u64 now = sched_clock();
1b9f19c2 781
2bacec8c 782 touch_softlockup_watchdog();
2aa44d05
IM
783 rq->idle_clock += delta_ns;
784 /*
785 * Override the previous timestamp and ignore all
786 * sched_clock() deltas that occured while we idled,
787 * and use the PM-provided delta_ns to advance the
788 * rq clock:
789 */
790 spin_lock(&rq->lock);
791 rq->prev_clock_raw = now;
792 rq->clock += delta_ns;
793 spin_unlock(&rq->lock);
1b9f19c2 794}
2aa44d05 795EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 796
c24d20db
IM
797/*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804#ifdef CONFIG_SMP
805
806#ifndef tsk_is_polling
807#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
808#endif
809
810static void resched_task(struct task_struct *p)
811{
812 int cpu;
813
814 assert_spin_locked(&task_rq(p)->lock);
815
816 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
817 return;
818
819 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
820
821 cpu = task_cpu(p);
822 if (cpu == smp_processor_id())
823 return;
824
825 /* NEED_RESCHED must be visible before we test polling */
826 smp_mb();
827 if (!tsk_is_polling(p))
828 smp_send_reschedule(cpu);
829}
830
831static void resched_cpu(int cpu)
832{
833 struct rq *rq = cpu_rq(cpu);
834 unsigned long flags;
835
836 if (!spin_trylock_irqsave(&rq->lock, flags))
837 return;
838 resched_task(cpu_curr(cpu));
839 spin_unlock_irqrestore(&rq->lock, flags);
840}
841#else
842static inline void resched_task(struct task_struct *p)
843{
844 assert_spin_locked(&task_rq(p)->lock);
845 set_tsk_need_resched(p);
846}
847#endif
848
45bf76df
IM
849#if BITS_PER_LONG == 32
850# define WMULT_CONST (~0UL)
851#else
852# define WMULT_CONST (1UL << 32)
853#endif
854
855#define WMULT_SHIFT 32
856
194081eb
IM
857/*
858 * Shift right and round:
859 */
cf2ab469 860#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 861
cb1c4fc9 862static unsigned long
45bf76df
IM
863calc_delta_mine(unsigned long delta_exec, unsigned long weight,
864 struct load_weight *lw)
865{
866 u64 tmp;
867
868 if (unlikely(!lw->inv_weight))
194081eb 869 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
870
871 tmp = (u64)delta_exec * weight;
872 /*
873 * Check whether we'd overflow the 64-bit multiplication:
874 */
194081eb 875 if (unlikely(tmp > WMULT_CONST))
cf2ab469 876 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
877 WMULT_SHIFT/2);
878 else
cf2ab469 879 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 880
ecf691da 881 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
882}
883
884static inline unsigned long
885calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
886{
887 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
888}
889
1091985b 890static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
891{
892 lw->weight += inc;
45bf76df
IM
893}
894
1091985b 895static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
896{
897 lw->weight -= dec;
45bf76df
IM
898}
899
2dd73a4f
PW
900/*
901 * To aid in avoiding the subversion of "niceness" due to uneven distribution
902 * of tasks with abnormal "nice" values across CPUs the contribution that
903 * each task makes to its run queue's load is weighted according to its
41a2d6cf 904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
905 * scaled version of the new time slice allocation that they receive on time
906 * slice expiry etc.
907 */
908
dd41f596
IM
909#define WEIGHT_IDLEPRIO 2
910#define WMULT_IDLEPRIO (1 << 31)
911
912/*
913 * Nice levels are multiplicative, with a gentle 10% change for every
914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
916 * that remained on nice 0.
917 *
918 * The "10% effect" is relative and cumulative: from _any_ nice level,
919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
921 * If a task goes up by ~10% and another task goes down by ~10% then
922 * the relative distance between them is ~25%.)
dd41f596
IM
923 */
924static const int prio_to_weight[40] = {
254753dc
IM
925 /* -20 */ 88761, 71755, 56483, 46273, 36291,
926 /* -15 */ 29154, 23254, 18705, 14949, 11916,
927 /* -10 */ 9548, 7620, 6100, 4904, 3906,
928 /* -5 */ 3121, 2501, 1991, 1586, 1277,
929 /* 0 */ 1024, 820, 655, 526, 423,
930 /* 5 */ 335, 272, 215, 172, 137,
931 /* 10 */ 110, 87, 70, 56, 45,
932 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
933};
934
5714d2de
IM
935/*
936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
937 *
938 * In cases where the weight does not change often, we can use the
939 * precalculated inverse to speed up arithmetics by turning divisions
940 * into multiplications:
941 */
dd41f596 942static const u32 prio_to_wmult[40] = {
254753dc
IM
943 /* -20 */ 48388, 59856, 76040, 92818, 118348,
944 /* -15 */ 147320, 184698, 229616, 287308, 360437,
945 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 951};
2dd73a4f 952
dd41f596
IM
953static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
954
955/*
956 * runqueue iterator, to support SMP load-balancing between different
957 * scheduling classes, without having to expose their internal data
958 * structures to the load-balancing proper:
959 */
960struct rq_iterator {
961 void *arg;
962 struct task_struct *(*start)(void *);
963 struct task_struct *(*next)(void *);
964};
965
e1d1484f
PW
966#ifdef CONFIG_SMP
967static unsigned long
968balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
969 unsigned long max_load_move, struct sched_domain *sd,
970 enum cpu_idle_type idle, int *all_pinned,
971 int *this_best_prio, struct rq_iterator *iterator);
972
973static int
974iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
975 struct sched_domain *sd, enum cpu_idle_type idle,
976 struct rq_iterator *iterator);
e1d1484f 977#endif
dd41f596 978
d842de87
SV
979#ifdef CONFIG_CGROUP_CPUACCT
980static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
981#else
982static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
983#endif
984
58e2d4ca
SV
985static inline void inc_cpu_load(struct rq *rq, unsigned long load)
986{
987 update_load_add(&rq->load, load);
988}
989
990static inline void dec_cpu_load(struct rq *rq, unsigned long load)
991{
992 update_load_sub(&rq->load, load);
993}
994
e7693a36
GH
995#ifdef CONFIG_SMP
996static unsigned long source_load(int cpu, int type);
997static unsigned long target_load(int cpu, int type);
998static unsigned long cpu_avg_load_per_task(int cpu);
999static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1000#endif /* CONFIG_SMP */
1001
dd41f596 1002#include "sched_stats.h"
dd41f596 1003#include "sched_idletask.c"
5522d5d5
IM
1004#include "sched_fair.c"
1005#include "sched_rt.c"
dd41f596
IM
1006#ifdef CONFIG_SCHED_DEBUG
1007# include "sched_debug.c"
1008#endif
1009
1010#define sched_class_highest (&rt_sched_class)
1011
e5fa2237 1012static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1013{
1014 rq->nr_running++;
9c217245
IM
1015}
1016
db53181e 1017static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1018{
1019 rq->nr_running--;
9c217245
IM
1020}
1021
45bf76df
IM
1022static void set_load_weight(struct task_struct *p)
1023{
1024 if (task_has_rt_policy(p)) {
dd41f596
IM
1025 p->se.load.weight = prio_to_weight[0] * 2;
1026 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1027 return;
1028 }
45bf76df 1029
dd41f596
IM
1030 /*
1031 * SCHED_IDLE tasks get minimal weight:
1032 */
1033 if (p->policy == SCHED_IDLE) {
1034 p->se.load.weight = WEIGHT_IDLEPRIO;
1035 p->se.load.inv_weight = WMULT_IDLEPRIO;
1036 return;
1037 }
71f8bd46 1038
dd41f596
IM
1039 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1040 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1041}
1042
8159f87e 1043static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1044{
dd41f596 1045 sched_info_queued(p);
fd390f6a 1046 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1047 p->se.on_rq = 1;
71f8bd46
IM
1048}
1049
69be72c1 1050static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1051{
f02231e5 1052 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1053 p->se.on_rq = 0;
71f8bd46
IM
1054}
1055
14531189 1056/*
dd41f596 1057 * __normal_prio - return the priority that is based on the static prio
14531189 1058 */
14531189
IM
1059static inline int __normal_prio(struct task_struct *p)
1060{
dd41f596 1061 return p->static_prio;
14531189
IM
1062}
1063
b29739f9
IM
1064/*
1065 * Calculate the expected normal priority: i.e. priority
1066 * without taking RT-inheritance into account. Might be
1067 * boosted by interactivity modifiers. Changes upon fork,
1068 * setprio syscalls, and whenever the interactivity
1069 * estimator recalculates.
1070 */
36c8b586 1071static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1072{
1073 int prio;
1074
e05606d3 1075 if (task_has_rt_policy(p))
b29739f9
IM
1076 prio = MAX_RT_PRIO-1 - p->rt_priority;
1077 else
1078 prio = __normal_prio(p);
1079 return prio;
1080}
1081
1082/*
1083 * Calculate the current priority, i.e. the priority
1084 * taken into account by the scheduler. This value might
1085 * be boosted by RT tasks, or might be boosted by
1086 * interactivity modifiers. Will be RT if the task got
1087 * RT-boosted. If not then it returns p->normal_prio.
1088 */
36c8b586 1089static int effective_prio(struct task_struct *p)
b29739f9
IM
1090{
1091 p->normal_prio = normal_prio(p);
1092 /*
1093 * If we are RT tasks or we were boosted to RT priority,
1094 * keep the priority unchanged. Otherwise, update priority
1095 * to the normal priority:
1096 */
1097 if (!rt_prio(p->prio))
1098 return p->normal_prio;
1099 return p->prio;
1100}
1101
1da177e4 1102/*
dd41f596 1103 * activate_task - move a task to the runqueue.
1da177e4 1104 */
dd41f596 1105static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1106{
dd41f596
IM
1107 if (p->state == TASK_UNINTERRUPTIBLE)
1108 rq->nr_uninterruptible--;
1da177e4 1109
8159f87e 1110 enqueue_task(rq, p, wakeup);
e5fa2237 1111 inc_nr_running(p, rq);
1da177e4
LT
1112}
1113
1da177e4
LT
1114/*
1115 * deactivate_task - remove a task from the runqueue.
1116 */
2e1cb74a 1117static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1118{
dd41f596
IM
1119 if (p->state == TASK_UNINTERRUPTIBLE)
1120 rq->nr_uninterruptible++;
1121
69be72c1 1122 dequeue_task(rq, p, sleep);
db53181e 1123 dec_nr_running(p, rq);
1da177e4
LT
1124}
1125
1da177e4
LT
1126/**
1127 * task_curr - is this task currently executing on a CPU?
1128 * @p: the task in question.
1129 */
36c8b586 1130inline int task_curr(const struct task_struct *p)
1da177e4
LT
1131{
1132 return cpu_curr(task_cpu(p)) == p;
1133}
1134
2dd73a4f
PW
1135/* Used instead of source_load when we know the type == 0 */
1136unsigned long weighted_cpuload(const int cpu)
1137{
495eca49 1138 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1139}
1140
1141static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1142{
ce96b5ac 1143 set_task_cfs_rq(p, cpu);
dd41f596 1144#ifdef CONFIG_SMP
ce96b5ac
DA
1145 /*
1146 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1147 * successfuly executed on another CPU. We must ensure that updates of
1148 * per-task data have been completed by this moment.
1149 */
1150 smp_wmb();
dd41f596 1151 task_thread_info(p)->cpu = cpu;
dd41f596 1152#endif
2dd73a4f
PW
1153}
1154
cb469845
SR
1155static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1156 const struct sched_class *prev_class,
1157 int oldprio, int running)
1158{
1159 if (prev_class != p->sched_class) {
1160 if (prev_class->switched_from)
1161 prev_class->switched_from(rq, p, running);
1162 p->sched_class->switched_to(rq, p, running);
1163 } else
1164 p->sched_class->prio_changed(rq, p, oldprio, running);
1165}
1166
1da177e4 1167#ifdef CONFIG_SMP
c65cc870 1168
cc367732
IM
1169/*
1170 * Is this task likely cache-hot:
1171 */
e7693a36 1172static int
cc367732
IM
1173task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1174{
1175 s64 delta;
1176
1177 if (p->sched_class != &fair_sched_class)
1178 return 0;
1179
6bc1665b
IM
1180 if (sysctl_sched_migration_cost == -1)
1181 return 1;
1182 if (sysctl_sched_migration_cost == 0)
1183 return 0;
1184
cc367732
IM
1185 delta = now - p->se.exec_start;
1186
1187 return delta < (s64)sysctl_sched_migration_cost;
1188}
1189
1190
dd41f596 1191void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1192{
dd41f596
IM
1193 int old_cpu = task_cpu(p);
1194 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1195 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1196 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1197 u64 clock_offset;
dd41f596
IM
1198
1199 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1200
1201#ifdef CONFIG_SCHEDSTATS
1202 if (p->se.wait_start)
1203 p->se.wait_start -= clock_offset;
dd41f596
IM
1204 if (p->se.sleep_start)
1205 p->se.sleep_start -= clock_offset;
1206 if (p->se.block_start)
1207 p->se.block_start -= clock_offset;
cc367732
IM
1208 if (old_cpu != new_cpu) {
1209 schedstat_inc(p, se.nr_migrations);
1210 if (task_hot(p, old_rq->clock, NULL))
1211 schedstat_inc(p, se.nr_forced2_migrations);
1212 }
6cfb0d5d 1213#endif
2830cf8c
SV
1214 p->se.vruntime -= old_cfsrq->min_vruntime -
1215 new_cfsrq->min_vruntime;
dd41f596
IM
1216
1217 __set_task_cpu(p, new_cpu);
c65cc870
IM
1218}
1219
70b97a7f 1220struct migration_req {
1da177e4 1221 struct list_head list;
1da177e4 1222
36c8b586 1223 struct task_struct *task;
1da177e4
LT
1224 int dest_cpu;
1225
1da177e4 1226 struct completion done;
70b97a7f 1227};
1da177e4
LT
1228
1229/*
1230 * The task's runqueue lock must be held.
1231 * Returns true if you have to wait for migration thread.
1232 */
36c8b586 1233static int
70b97a7f 1234migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1235{
70b97a7f 1236 struct rq *rq = task_rq(p);
1da177e4
LT
1237
1238 /*
1239 * If the task is not on a runqueue (and not running), then
1240 * it is sufficient to simply update the task's cpu field.
1241 */
dd41f596 1242 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1243 set_task_cpu(p, dest_cpu);
1244 return 0;
1245 }
1246
1247 init_completion(&req->done);
1da177e4
LT
1248 req->task = p;
1249 req->dest_cpu = dest_cpu;
1250 list_add(&req->list, &rq->migration_queue);
48f24c4d 1251
1da177e4
LT
1252 return 1;
1253}
1254
1255/*
1256 * wait_task_inactive - wait for a thread to unschedule.
1257 *
1258 * The caller must ensure that the task *will* unschedule sometime soon,
1259 * else this function might spin for a *long* time. This function can't
1260 * be called with interrupts off, or it may introduce deadlock with
1261 * smp_call_function() if an IPI is sent by the same process we are
1262 * waiting to become inactive.
1263 */
36c8b586 1264void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1265{
1266 unsigned long flags;
dd41f596 1267 int running, on_rq;
70b97a7f 1268 struct rq *rq;
1da177e4 1269
3a5c359a
AK
1270 for (;;) {
1271 /*
1272 * We do the initial early heuristics without holding
1273 * any task-queue locks at all. We'll only try to get
1274 * the runqueue lock when things look like they will
1275 * work out!
1276 */
1277 rq = task_rq(p);
fa490cfd 1278
3a5c359a
AK
1279 /*
1280 * If the task is actively running on another CPU
1281 * still, just relax and busy-wait without holding
1282 * any locks.
1283 *
1284 * NOTE! Since we don't hold any locks, it's not
1285 * even sure that "rq" stays as the right runqueue!
1286 * But we don't care, since "task_running()" will
1287 * return false if the runqueue has changed and p
1288 * is actually now running somewhere else!
1289 */
1290 while (task_running(rq, p))
1291 cpu_relax();
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ok, time to look more closely! We need the rq
1295 * lock now, to be *sure*. If we're wrong, we'll
1296 * just go back and repeat.
1297 */
1298 rq = task_rq_lock(p, &flags);
1299 running = task_running(rq, p);
1300 on_rq = p->se.on_rq;
1301 task_rq_unlock(rq, &flags);
fa490cfd 1302
3a5c359a
AK
1303 /*
1304 * Was it really running after all now that we
1305 * checked with the proper locks actually held?
1306 *
1307 * Oops. Go back and try again..
1308 */
1309 if (unlikely(running)) {
1310 cpu_relax();
1311 continue;
1312 }
fa490cfd 1313
3a5c359a
AK
1314 /*
1315 * It's not enough that it's not actively running,
1316 * it must be off the runqueue _entirely_, and not
1317 * preempted!
1318 *
1319 * So if it wa still runnable (but just not actively
1320 * running right now), it's preempted, and we should
1321 * yield - it could be a while.
1322 */
1323 if (unlikely(on_rq)) {
1324 schedule_timeout_uninterruptible(1);
1325 continue;
1326 }
fa490cfd 1327
3a5c359a
AK
1328 /*
1329 * Ahh, all good. It wasn't running, and it wasn't
1330 * runnable, which means that it will never become
1331 * running in the future either. We're all done!
1332 */
1333 break;
1334 }
1da177e4
LT
1335}
1336
1337/***
1338 * kick_process - kick a running thread to enter/exit the kernel
1339 * @p: the to-be-kicked thread
1340 *
1341 * Cause a process which is running on another CPU to enter
1342 * kernel-mode, without any delay. (to get signals handled.)
1343 *
1344 * NOTE: this function doesnt have to take the runqueue lock,
1345 * because all it wants to ensure is that the remote task enters
1346 * the kernel. If the IPI races and the task has been migrated
1347 * to another CPU then no harm is done and the purpose has been
1348 * achieved as well.
1349 */
36c8b586 1350void kick_process(struct task_struct *p)
1da177e4
LT
1351{
1352 int cpu;
1353
1354 preempt_disable();
1355 cpu = task_cpu(p);
1356 if ((cpu != smp_processor_id()) && task_curr(p))
1357 smp_send_reschedule(cpu);
1358 preempt_enable();
1359}
1360
1361/*
2dd73a4f
PW
1362 * Return a low guess at the load of a migration-source cpu weighted
1363 * according to the scheduling class and "nice" value.
1da177e4
LT
1364 *
1365 * We want to under-estimate the load of migration sources, to
1366 * balance conservatively.
1367 */
a9957449 1368static unsigned long source_load(int cpu, int type)
1da177e4 1369{
70b97a7f 1370 struct rq *rq = cpu_rq(cpu);
dd41f596 1371 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1372
3b0bd9bc 1373 if (type == 0)
dd41f596 1374 return total;
b910472d 1375
dd41f596 1376 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1377}
1378
1379/*
2dd73a4f
PW
1380 * Return a high guess at the load of a migration-target cpu weighted
1381 * according to the scheduling class and "nice" value.
1da177e4 1382 */
a9957449 1383static unsigned long target_load(int cpu, int type)
1da177e4 1384{
70b97a7f 1385 struct rq *rq = cpu_rq(cpu);
dd41f596 1386 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1387
7897986b 1388 if (type == 0)
dd41f596 1389 return total;
3b0bd9bc 1390
dd41f596 1391 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1392}
1393
1394/*
1395 * Return the average load per task on the cpu's run queue
1396 */
e7693a36 1397static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1398{
70b97a7f 1399 struct rq *rq = cpu_rq(cpu);
dd41f596 1400 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1401 unsigned long n = rq->nr_running;
1402
dd41f596 1403 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1404}
1405
147cbb4b
NP
1406/*
1407 * find_idlest_group finds and returns the least busy CPU group within the
1408 * domain.
1409 */
1410static struct sched_group *
1411find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1412{
1413 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1414 unsigned long min_load = ULONG_MAX, this_load = 0;
1415 int load_idx = sd->forkexec_idx;
1416 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1417
1418 do {
1419 unsigned long load, avg_load;
1420 int local_group;
1421 int i;
1422
da5a5522
BD
1423 /* Skip over this group if it has no CPUs allowed */
1424 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1425 continue;
da5a5522 1426
147cbb4b 1427 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1428
1429 /* Tally up the load of all CPUs in the group */
1430 avg_load = 0;
1431
1432 for_each_cpu_mask(i, group->cpumask) {
1433 /* Bias balancing toward cpus of our domain */
1434 if (local_group)
1435 load = source_load(i, load_idx);
1436 else
1437 load = target_load(i, load_idx);
1438
1439 avg_load += load;
1440 }
1441
1442 /* Adjust by relative CPU power of the group */
5517d86b
ED
1443 avg_load = sg_div_cpu_power(group,
1444 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1445
1446 if (local_group) {
1447 this_load = avg_load;
1448 this = group;
1449 } else if (avg_load < min_load) {
1450 min_load = avg_load;
1451 idlest = group;
1452 }
3a5c359a 1453 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1454
1455 if (!idlest || 100*this_load < imbalance*min_load)
1456 return NULL;
1457 return idlest;
1458}
1459
1460/*
0feaece9 1461 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1462 */
95cdf3b7
IM
1463static int
1464find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1465{
da5a5522 1466 cpumask_t tmp;
147cbb4b
NP
1467 unsigned long load, min_load = ULONG_MAX;
1468 int idlest = -1;
1469 int i;
1470
da5a5522
BD
1471 /* Traverse only the allowed CPUs */
1472 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1473
1474 for_each_cpu_mask(i, tmp) {
2dd73a4f 1475 load = weighted_cpuload(i);
147cbb4b
NP
1476
1477 if (load < min_load || (load == min_load && i == this_cpu)) {
1478 min_load = load;
1479 idlest = i;
1480 }
1481 }
1482
1483 return idlest;
1484}
1485
476d139c
NP
1486/*
1487 * sched_balance_self: balance the current task (running on cpu) in domains
1488 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1489 * SD_BALANCE_EXEC.
1490 *
1491 * Balance, ie. select the least loaded group.
1492 *
1493 * Returns the target CPU number, or the same CPU if no balancing is needed.
1494 *
1495 * preempt must be disabled.
1496 */
1497static int sched_balance_self(int cpu, int flag)
1498{
1499 struct task_struct *t = current;
1500 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1501
c96d145e 1502 for_each_domain(cpu, tmp) {
9761eea8
IM
1503 /*
1504 * If power savings logic is enabled for a domain, stop there.
1505 */
5c45bf27
SS
1506 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1507 break;
476d139c
NP
1508 if (tmp->flags & flag)
1509 sd = tmp;
c96d145e 1510 }
476d139c
NP
1511
1512 while (sd) {
1513 cpumask_t span;
1514 struct sched_group *group;
1a848870
SS
1515 int new_cpu, weight;
1516
1517 if (!(sd->flags & flag)) {
1518 sd = sd->child;
1519 continue;
1520 }
476d139c
NP
1521
1522 span = sd->span;
1523 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1524 if (!group) {
1525 sd = sd->child;
1526 continue;
1527 }
476d139c 1528
da5a5522 1529 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1530 if (new_cpu == -1 || new_cpu == cpu) {
1531 /* Now try balancing at a lower domain level of cpu */
1532 sd = sd->child;
1533 continue;
1534 }
476d139c 1535
1a848870 1536 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1537 cpu = new_cpu;
476d139c
NP
1538 sd = NULL;
1539 weight = cpus_weight(span);
1540 for_each_domain(cpu, tmp) {
1541 if (weight <= cpus_weight(tmp->span))
1542 break;
1543 if (tmp->flags & flag)
1544 sd = tmp;
1545 }
1546 /* while loop will break here if sd == NULL */
1547 }
1548
1549 return cpu;
1550}
1551
1552#endif /* CONFIG_SMP */
1da177e4 1553
1da177e4
LT
1554/***
1555 * try_to_wake_up - wake up a thread
1556 * @p: the to-be-woken-up thread
1557 * @state: the mask of task states that can be woken
1558 * @sync: do a synchronous wakeup?
1559 *
1560 * Put it on the run-queue if it's not already there. The "current"
1561 * thread is always on the run-queue (except when the actual
1562 * re-schedule is in progress), and as such you're allowed to do
1563 * the simpler "current->state = TASK_RUNNING" to mark yourself
1564 * runnable without the overhead of this.
1565 *
1566 * returns failure only if the task is already active.
1567 */
36c8b586 1568static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1569{
cc367732 1570 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1571 unsigned long flags;
1572 long old_state;
70b97a7f 1573 struct rq *rq;
1da177e4
LT
1574
1575 rq = task_rq_lock(p, &flags);
1576 old_state = p->state;
1577 if (!(old_state & state))
1578 goto out;
1579
dd41f596 1580 if (p->se.on_rq)
1da177e4
LT
1581 goto out_running;
1582
1583 cpu = task_cpu(p);
cc367732 1584 orig_cpu = cpu;
1da177e4
LT
1585 this_cpu = smp_processor_id();
1586
1587#ifdef CONFIG_SMP
1588 if (unlikely(task_running(rq, p)))
1589 goto out_activate;
1590
5d2f5a61
DA
1591 cpu = p->sched_class->select_task_rq(p, sync);
1592 if (cpu != orig_cpu) {
1593 set_task_cpu(p, cpu);
1da177e4
LT
1594 task_rq_unlock(rq, &flags);
1595 /* might preempt at this point */
1596 rq = task_rq_lock(p, &flags);
1597 old_state = p->state;
1598 if (!(old_state & state))
1599 goto out;
dd41f596 1600 if (p->se.on_rq)
1da177e4
LT
1601 goto out_running;
1602
1603 this_cpu = smp_processor_id();
1604 cpu = task_cpu(p);
1605 }
1606
e7693a36
GH
1607#ifdef CONFIG_SCHEDSTATS
1608 schedstat_inc(rq, ttwu_count);
1609 if (cpu == this_cpu)
1610 schedstat_inc(rq, ttwu_local);
1611 else {
1612 struct sched_domain *sd;
1613 for_each_domain(this_cpu, sd) {
1614 if (cpu_isset(cpu, sd->span)) {
1615 schedstat_inc(sd, ttwu_wake_remote);
1616 break;
1617 }
1618 }
1619 }
e7693a36
GH
1620#endif
1621
1da177e4
LT
1622out_activate:
1623#endif /* CONFIG_SMP */
cc367732
IM
1624 schedstat_inc(p, se.nr_wakeups);
1625 if (sync)
1626 schedstat_inc(p, se.nr_wakeups_sync);
1627 if (orig_cpu != cpu)
1628 schedstat_inc(p, se.nr_wakeups_migrate);
1629 if (cpu == this_cpu)
1630 schedstat_inc(p, se.nr_wakeups_local);
1631 else
1632 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1633 update_rq_clock(rq);
dd41f596 1634 activate_task(rq, p, 1);
9c63d9c0 1635 check_preempt_curr(rq, p);
1da177e4
LT
1636 success = 1;
1637
1638out_running:
1639 p->state = TASK_RUNNING;
9a897c5a
SR
1640#ifdef CONFIG_SMP
1641 if (p->sched_class->task_wake_up)
1642 p->sched_class->task_wake_up(rq, p);
1643#endif
1da177e4
LT
1644out:
1645 task_rq_unlock(rq, &flags);
1646
1647 return success;
1648}
1649
36c8b586 1650int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1651{
1652 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1653 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1654}
1da177e4
LT
1655EXPORT_SYMBOL(wake_up_process);
1656
36c8b586 1657int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1658{
1659 return try_to_wake_up(p, state, 0);
1660}
1661
1da177e4
LT
1662/*
1663 * Perform scheduler related setup for a newly forked process p.
1664 * p is forked by current.
dd41f596
IM
1665 *
1666 * __sched_fork() is basic setup used by init_idle() too:
1667 */
1668static void __sched_fork(struct task_struct *p)
1669{
dd41f596
IM
1670 p->se.exec_start = 0;
1671 p->se.sum_exec_runtime = 0;
f6cf891c 1672 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1673
1674#ifdef CONFIG_SCHEDSTATS
1675 p->se.wait_start = 0;
dd41f596
IM
1676 p->se.sum_sleep_runtime = 0;
1677 p->se.sleep_start = 0;
dd41f596
IM
1678 p->se.block_start = 0;
1679 p->se.sleep_max = 0;
1680 p->se.block_max = 0;
1681 p->se.exec_max = 0;
eba1ed4b 1682 p->se.slice_max = 0;
dd41f596 1683 p->se.wait_max = 0;
6cfb0d5d 1684#endif
476d139c 1685
dd41f596
IM
1686 INIT_LIST_HEAD(&p->run_list);
1687 p->se.on_rq = 0;
476d139c 1688
e107be36
AK
1689#ifdef CONFIG_PREEMPT_NOTIFIERS
1690 INIT_HLIST_HEAD(&p->preempt_notifiers);
1691#endif
1692
1da177e4
LT
1693 /*
1694 * We mark the process as running here, but have not actually
1695 * inserted it onto the runqueue yet. This guarantees that
1696 * nobody will actually run it, and a signal or other external
1697 * event cannot wake it up and insert it on the runqueue either.
1698 */
1699 p->state = TASK_RUNNING;
dd41f596
IM
1700}
1701
1702/*
1703 * fork()/clone()-time setup:
1704 */
1705void sched_fork(struct task_struct *p, int clone_flags)
1706{
1707 int cpu = get_cpu();
1708
1709 __sched_fork(p);
1710
1711#ifdef CONFIG_SMP
1712 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1713#endif
02e4bac2 1714 set_task_cpu(p, cpu);
b29739f9
IM
1715
1716 /*
1717 * Make sure we do not leak PI boosting priority to the child:
1718 */
1719 p->prio = current->normal_prio;
2ddbf952
HS
1720 if (!rt_prio(p->prio))
1721 p->sched_class = &fair_sched_class;
b29739f9 1722
52f17b6c 1723#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1724 if (likely(sched_info_on()))
52f17b6c 1725 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1726#endif
d6077cb8 1727#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1728 p->oncpu = 0;
1729#endif
1da177e4 1730#ifdef CONFIG_PREEMPT
4866cde0 1731 /* Want to start with kernel preemption disabled. */
a1261f54 1732 task_thread_info(p)->preempt_count = 1;
1da177e4 1733#endif
476d139c 1734 put_cpu();
1da177e4
LT
1735}
1736
1737/*
1738 * wake_up_new_task - wake up a newly created task for the first time.
1739 *
1740 * This function will do some initial scheduler statistics housekeeping
1741 * that must be done for every newly created context, then puts the task
1742 * on the runqueue and wakes it.
1743 */
36c8b586 1744void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1745{
1746 unsigned long flags;
dd41f596 1747 struct rq *rq;
1da177e4
LT
1748
1749 rq = task_rq_lock(p, &flags);
147cbb4b 1750 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1751 update_rq_clock(rq);
1da177e4
LT
1752
1753 p->prio = effective_prio(p);
1754
b9dca1e0 1755 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1756 activate_task(rq, p, 0);
1da177e4 1757 } else {
1da177e4 1758 /*
dd41f596
IM
1759 * Let the scheduling class do new task startup
1760 * management (if any):
1da177e4 1761 */
ee0827d8 1762 p->sched_class->task_new(rq, p);
e5fa2237 1763 inc_nr_running(p, rq);
1da177e4 1764 }
dd41f596 1765 check_preempt_curr(rq, p);
9a897c5a
SR
1766#ifdef CONFIG_SMP
1767 if (p->sched_class->task_wake_up)
1768 p->sched_class->task_wake_up(rq, p);
1769#endif
dd41f596 1770 task_rq_unlock(rq, &flags);
1da177e4
LT
1771}
1772
e107be36
AK
1773#ifdef CONFIG_PREEMPT_NOTIFIERS
1774
1775/**
421cee29
RD
1776 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1777 * @notifier: notifier struct to register
e107be36
AK
1778 */
1779void preempt_notifier_register(struct preempt_notifier *notifier)
1780{
1781 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1782}
1783EXPORT_SYMBOL_GPL(preempt_notifier_register);
1784
1785/**
1786 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1787 * @notifier: notifier struct to unregister
e107be36
AK
1788 *
1789 * This is safe to call from within a preemption notifier.
1790 */
1791void preempt_notifier_unregister(struct preempt_notifier *notifier)
1792{
1793 hlist_del(&notifier->link);
1794}
1795EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1796
1797static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1798{
1799 struct preempt_notifier *notifier;
1800 struct hlist_node *node;
1801
1802 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1803 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1804}
1805
1806static void
1807fire_sched_out_preempt_notifiers(struct task_struct *curr,
1808 struct task_struct *next)
1809{
1810 struct preempt_notifier *notifier;
1811 struct hlist_node *node;
1812
1813 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1814 notifier->ops->sched_out(notifier, next);
1815}
1816
1817#else
1818
1819static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1820{
1821}
1822
1823static void
1824fire_sched_out_preempt_notifiers(struct task_struct *curr,
1825 struct task_struct *next)
1826{
1827}
1828
1829#endif
1830
4866cde0
NP
1831/**
1832 * prepare_task_switch - prepare to switch tasks
1833 * @rq: the runqueue preparing to switch
421cee29 1834 * @prev: the current task that is being switched out
4866cde0
NP
1835 * @next: the task we are going to switch to.
1836 *
1837 * This is called with the rq lock held and interrupts off. It must
1838 * be paired with a subsequent finish_task_switch after the context
1839 * switch.
1840 *
1841 * prepare_task_switch sets up locking and calls architecture specific
1842 * hooks.
1843 */
e107be36
AK
1844static inline void
1845prepare_task_switch(struct rq *rq, struct task_struct *prev,
1846 struct task_struct *next)
4866cde0 1847{
e107be36 1848 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1849 prepare_lock_switch(rq, next);
1850 prepare_arch_switch(next);
1851}
1852
1da177e4
LT
1853/**
1854 * finish_task_switch - clean up after a task-switch
344babaa 1855 * @rq: runqueue associated with task-switch
1da177e4
LT
1856 * @prev: the thread we just switched away from.
1857 *
4866cde0
NP
1858 * finish_task_switch must be called after the context switch, paired
1859 * with a prepare_task_switch call before the context switch.
1860 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1861 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1862 *
1863 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1864 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1865 * with the lock held can cause deadlocks; see schedule() for
1866 * details.)
1867 */
a9957449 1868static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1869 __releases(rq->lock)
1870{
1da177e4 1871 struct mm_struct *mm = rq->prev_mm;
55a101f8 1872 long prev_state;
1da177e4
LT
1873
1874 rq->prev_mm = NULL;
1875
1876 /*
1877 * A task struct has one reference for the use as "current".
c394cc9f 1878 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1879 * schedule one last time. The schedule call will never return, and
1880 * the scheduled task must drop that reference.
c394cc9f 1881 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1882 * still held, otherwise prev could be scheduled on another cpu, die
1883 * there before we look at prev->state, and then the reference would
1884 * be dropped twice.
1885 * Manfred Spraul <manfred@colorfullife.com>
1886 */
55a101f8 1887 prev_state = prev->state;
4866cde0
NP
1888 finish_arch_switch(prev);
1889 finish_lock_switch(rq, prev);
9a897c5a
SR
1890#ifdef CONFIG_SMP
1891 if (current->sched_class->post_schedule)
1892 current->sched_class->post_schedule(rq);
1893#endif
e8fa1362 1894
e107be36 1895 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1896 if (mm)
1897 mmdrop(mm);
c394cc9f 1898 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1899 /*
1900 * Remove function-return probe instances associated with this
1901 * task and put them back on the free list.
9761eea8 1902 */
c6fd91f0 1903 kprobe_flush_task(prev);
1da177e4 1904 put_task_struct(prev);
c6fd91f0 1905 }
1da177e4
LT
1906}
1907
1908/**
1909 * schedule_tail - first thing a freshly forked thread must call.
1910 * @prev: the thread we just switched away from.
1911 */
36c8b586 1912asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1913 __releases(rq->lock)
1914{
70b97a7f
IM
1915 struct rq *rq = this_rq();
1916
4866cde0
NP
1917 finish_task_switch(rq, prev);
1918#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1919 /* In this case, finish_task_switch does not reenable preemption */
1920 preempt_enable();
1921#endif
1da177e4 1922 if (current->set_child_tid)
b488893a 1923 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1924}
1925
1926/*
1927 * context_switch - switch to the new MM and the new
1928 * thread's register state.
1929 */
dd41f596 1930static inline void
70b97a7f 1931context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1932 struct task_struct *next)
1da177e4 1933{
dd41f596 1934 struct mm_struct *mm, *oldmm;
1da177e4 1935
e107be36 1936 prepare_task_switch(rq, prev, next);
dd41f596
IM
1937 mm = next->mm;
1938 oldmm = prev->active_mm;
9226d125
ZA
1939 /*
1940 * For paravirt, this is coupled with an exit in switch_to to
1941 * combine the page table reload and the switch backend into
1942 * one hypercall.
1943 */
1944 arch_enter_lazy_cpu_mode();
1945
dd41f596 1946 if (unlikely(!mm)) {
1da177e4
LT
1947 next->active_mm = oldmm;
1948 atomic_inc(&oldmm->mm_count);
1949 enter_lazy_tlb(oldmm, next);
1950 } else
1951 switch_mm(oldmm, mm, next);
1952
dd41f596 1953 if (unlikely(!prev->mm)) {
1da177e4 1954 prev->active_mm = NULL;
1da177e4
LT
1955 rq->prev_mm = oldmm;
1956 }
3a5f5e48
IM
1957 /*
1958 * Since the runqueue lock will be released by the next
1959 * task (which is an invalid locking op but in the case
1960 * of the scheduler it's an obvious special-case), so we
1961 * do an early lockdep release here:
1962 */
1963#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1964 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1965#endif
1da177e4
LT
1966
1967 /* Here we just switch the register state and the stack. */
1968 switch_to(prev, next, prev);
1969
dd41f596
IM
1970 barrier();
1971 /*
1972 * this_rq must be evaluated again because prev may have moved
1973 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 * frame will be invalid.
1975 */
1976 finish_task_switch(this_rq(), prev);
1da177e4
LT
1977}
1978
1979/*
1980 * nr_running, nr_uninterruptible and nr_context_switches:
1981 *
1982 * externally visible scheduler statistics: current number of runnable
1983 * threads, current number of uninterruptible-sleeping threads, total
1984 * number of context switches performed since bootup.
1985 */
1986unsigned long nr_running(void)
1987{
1988 unsigned long i, sum = 0;
1989
1990 for_each_online_cpu(i)
1991 sum += cpu_rq(i)->nr_running;
1992
1993 return sum;
1994}
1995
1996unsigned long nr_uninterruptible(void)
1997{
1998 unsigned long i, sum = 0;
1999
0a945022 2000 for_each_possible_cpu(i)
1da177e4
LT
2001 sum += cpu_rq(i)->nr_uninterruptible;
2002
2003 /*
2004 * Since we read the counters lockless, it might be slightly
2005 * inaccurate. Do not allow it to go below zero though:
2006 */
2007 if (unlikely((long)sum < 0))
2008 sum = 0;
2009
2010 return sum;
2011}
2012
2013unsigned long long nr_context_switches(void)
2014{
cc94abfc
SR
2015 int i;
2016 unsigned long long sum = 0;
1da177e4 2017
0a945022 2018 for_each_possible_cpu(i)
1da177e4
LT
2019 sum += cpu_rq(i)->nr_switches;
2020
2021 return sum;
2022}
2023
2024unsigned long nr_iowait(void)
2025{
2026 unsigned long i, sum = 0;
2027
0a945022 2028 for_each_possible_cpu(i)
1da177e4
LT
2029 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2030
2031 return sum;
2032}
2033
db1b1fef
JS
2034unsigned long nr_active(void)
2035{
2036 unsigned long i, running = 0, uninterruptible = 0;
2037
2038 for_each_online_cpu(i) {
2039 running += cpu_rq(i)->nr_running;
2040 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2041 }
2042
2043 if (unlikely((long)uninterruptible < 0))
2044 uninterruptible = 0;
2045
2046 return running + uninterruptible;
2047}
2048
48f24c4d 2049/*
dd41f596
IM
2050 * Update rq->cpu_load[] statistics. This function is usually called every
2051 * scheduler tick (TICK_NSEC).
48f24c4d 2052 */
dd41f596 2053static void update_cpu_load(struct rq *this_rq)
48f24c4d 2054{
495eca49 2055 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2056 int i, scale;
2057
2058 this_rq->nr_load_updates++;
dd41f596
IM
2059
2060 /* Update our load: */
2061 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2062 unsigned long old_load, new_load;
2063
2064 /* scale is effectively 1 << i now, and >> i divides by scale */
2065
2066 old_load = this_rq->cpu_load[i];
2067 new_load = this_load;
a25707f3
IM
2068 /*
2069 * Round up the averaging division if load is increasing. This
2070 * prevents us from getting stuck on 9 if the load is 10, for
2071 * example.
2072 */
2073 if (new_load > old_load)
2074 new_load += scale-1;
dd41f596
IM
2075 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2076 }
48f24c4d
IM
2077}
2078
dd41f596
IM
2079#ifdef CONFIG_SMP
2080
1da177e4
LT
2081/*
2082 * double_rq_lock - safely lock two runqueues
2083 *
2084 * Note this does not disable interrupts like task_rq_lock,
2085 * you need to do so manually before calling.
2086 */
70b97a7f 2087static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2088 __acquires(rq1->lock)
2089 __acquires(rq2->lock)
2090{
054b9108 2091 BUG_ON(!irqs_disabled());
1da177e4
LT
2092 if (rq1 == rq2) {
2093 spin_lock(&rq1->lock);
2094 __acquire(rq2->lock); /* Fake it out ;) */
2095 } else {
c96d145e 2096 if (rq1 < rq2) {
1da177e4
LT
2097 spin_lock(&rq1->lock);
2098 spin_lock(&rq2->lock);
2099 } else {
2100 spin_lock(&rq2->lock);
2101 spin_lock(&rq1->lock);
2102 }
2103 }
6e82a3be
IM
2104 update_rq_clock(rq1);
2105 update_rq_clock(rq2);
1da177e4
LT
2106}
2107
2108/*
2109 * double_rq_unlock - safely unlock two runqueues
2110 *
2111 * Note this does not restore interrupts like task_rq_unlock,
2112 * you need to do so manually after calling.
2113 */
70b97a7f 2114static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2115 __releases(rq1->lock)
2116 __releases(rq2->lock)
2117{
2118 spin_unlock(&rq1->lock);
2119 if (rq1 != rq2)
2120 spin_unlock(&rq2->lock);
2121 else
2122 __release(rq2->lock);
2123}
2124
2125/*
2126 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2127 */
e8fa1362 2128static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2129 __releases(this_rq->lock)
2130 __acquires(busiest->lock)
2131 __acquires(this_rq->lock)
2132{
e8fa1362
SR
2133 int ret = 0;
2134
054b9108
KK
2135 if (unlikely(!irqs_disabled())) {
2136 /* printk() doesn't work good under rq->lock */
2137 spin_unlock(&this_rq->lock);
2138 BUG_ON(1);
2139 }
1da177e4 2140 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2141 if (busiest < this_rq) {
1da177e4
LT
2142 spin_unlock(&this_rq->lock);
2143 spin_lock(&busiest->lock);
2144 spin_lock(&this_rq->lock);
e8fa1362 2145 ret = 1;
1da177e4
LT
2146 } else
2147 spin_lock(&busiest->lock);
2148 }
e8fa1362 2149 return ret;
1da177e4
LT
2150}
2151
1da177e4
LT
2152/*
2153 * If dest_cpu is allowed for this process, migrate the task to it.
2154 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2155 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2156 * the cpu_allowed mask is restored.
2157 */
36c8b586 2158static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2159{
70b97a7f 2160 struct migration_req req;
1da177e4 2161 unsigned long flags;
70b97a7f 2162 struct rq *rq;
1da177e4
LT
2163
2164 rq = task_rq_lock(p, &flags);
2165 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2166 || unlikely(cpu_is_offline(dest_cpu)))
2167 goto out;
2168
2169 /* force the process onto the specified CPU */
2170 if (migrate_task(p, dest_cpu, &req)) {
2171 /* Need to wait for migration thread (might exit: take ref). */
2172 struct task_struct *mt = rq->migration_thread;
36c8b586 2173
1da177e4
LT
2174 get_task_struct(mt);
2175 task_rq_unlock(rq, &flags);
2176 wake_up_process(mt);
2177 put_task_struct(mt);
2178 wait_for_completion(&req.done);
36c8b586 2179
1da177e4
LT
2180 return;
2181 }
2182out:
2183 task_rq_unlock(rq, &flags);
2184}
2185
2186/*
476d139c
NP
2187 * sched_exec - execve() is a valuable balancing opportunity, because at
2188 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2189 */
2190void sched_exec(void)
2191{
1da177e4 2192 int new_cpu, this_cpu = get_cpu();
476d139c 2193 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2194 put_cpu();
476d139c
NP
2195 if (new_cpu != this_cpu)
2196 sched_migrate_task(current, new_cpu);
1da177e4
LT
2197}
2198
2199/*
2200 * pull_task - move a task from a remote runqueue to the local runqueue.
2201 * Both runqueues must be locked.
2202 */
dd41f596
IM
2203static void pull_task(struct rq *src_rq, struct task_struct *p,
2204 struct rq *this_rq, int this_cpu)
1da177e4 2205{
2e1cb74a 2206 deactivate_task(src_rq, p, 0);
1da177e4 2207 set_task_cpu(p, this_cpu);
dd41f596 2208 activate_task(this_rq, p, 0);
1da177e4
LT
2209 /*
2210 * Note that idle threads have a prio of MAX_PRIO, for this test
2211 * to be always true for them.
2212 */
dd41f596 2213 check_preempt_curr(this_rq, p);
1da177e4
LT
2214}
2215
2216/*
2217 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2218 */
858119e1 2219static
70b97a7f 2220int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2221 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2222 int *all_pinned)
1da177e4
LT
2223{
2224 /*
2225 * We do not migrate tasks that are:
2226 * 1) running (obviously), or
2227 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2228 * 3) are cache-hot on their current CPU.
2229 */
cc367732
IM
2230 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2231 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2232 return 0;
cc367732 2233 }
81026794
NP
2234 *all_pinned = 0;
2235
cc367732
IM
2236 if (task_running(rq, p)) {
2237 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2238 return 0;
cc367732 2239 }
1da177e4 2240
da84d961
IM
2241 /*
2242 * Aggressive migration if:
2243 * 1) task is cache cold, or
2244 * 2) too many balance attempts have failed.
2245 */
2246
6bc1665b
IM
2247 if (!task_hot(p, rq->clock, sd) ||
2248 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2249#ifdef CONFIG_SCHEDSTATS
cc367732 2250 if (task_hot(p, rq->clock, sd)) {
da84d961 2251 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2252 schedstat_inc(p, se.nr_forced_migrations);
2253 }
da84d961
IM
2254#endif
2255 return 1;
2256 }
2257
cc367732
IM
2258 if (task_hot(p, rq->clock, sd)) {
2259 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2260 return 0;
cc367732 2261 }
1da177e4
LT
2262 return 1;
2263}
2264
e1d1484f
PW
2265static unsigned long
2266balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2267 unsigned long max_load_move, struct sched_domain *sd,
2268 enum cpu_idle_type idle, int *all_pinned,
2269 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2270{
b82d9fdd 2271 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2272 struct task_struct *p;
2273 long rem_load_move = max_load_move;
1da177e4 2274
e1d1484f 2275 if (max_load_move == 0)
1da177e4
LT
2276 goto out;
2277
81026794
NP
2278 pinned = 1;
2279
1da177e4 2280 /*
dd41f596 2281 * Start the load-balancing iterator:
1da177e4 2282 */
dd41f596
IM
2283 p = iterator->start(iterator->arg);
2284next:
b82d9fdd 2285 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2286 goto out;
50ddd969 2287 /*
b82d9fdd 2288 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2289 * skip a task if it will be the highest priority task (i.e. smallest
2290 * prio value) on its new queue regardless of its load weight
2291 */
dd41f596
IM
2292 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2293 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2294 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2295 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2296 p = iterator->next(iterator->arg);
2297 goto next;
1da177e4
LT
2298 }
2299
dd41f596 2300 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2301 pulled++;
dd41f596 2302 rem_load_move -= p->se.load.weight;
1da177e4 2303
2dd73a4f 2304 /*
b82d9fdd 2305 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2306 */
e1d1484f 2307 if (rem_load_move > 0) {
a4ac01c3
PW
2308 if (p->prio < *this_best_prio)
2309 *this_best_prio = p->prio;
dd41f596
IM
2310 p = iterator->next(iterator->arg);
2311 goto next;
1da177e4
LT
2312 }
2313out:
2314 /*
e1d1484f 2315 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2316 * so we can safely collect pull_task() stats here rather than
2317 * inside pull_task().
2318 */
2319 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2320
2321 if (all_pinned)
2322 *all_pinned = pinned;
e1d1484f
PW
2323
2324 return max_load_move - rem_load_move;
1da177e4
LT
2325}
2326
dd41f596 2327/*
43010659
PW
2328 * move_tasks tries to move up to max_load_move weighted load from busiest to
2329 * this_rq, as part of a balancing operation within domain "sd".
2330 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2331 *
2332 * Called with both runqueues locked.
2333 */
2334static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2335 unsigned long max_load_move,
dd41f596
IM
2336 struct sched_domain *sd, enum cpu_idle_type idle,
2337 int *all_pinned)
2338{
5522d5d5 2339 const struct sched_class *class = sched_class_highest;
43010659 2340 unsigned long total_load_moved = 0;
a4ac01c3 2341 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2342
2343 do {
43010659
PW
2344 total_load_moved +=
2345 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2346 max_load_move - total_load_moved,
a4ac01c3 2347 sd, idle, all_pinned, &this_best_prio);
dd41f596 2348 class = class->next;
43010659 2349 } while (class && max_load_move > total_load_moved);
dd41f596 2350
43010659
PW
2351 return total_load_moved > 0;
2352}
2353
e1d1484f
PW
2354static int
2355iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2356 struct sched_domain *sd, enum cpu_idle_type idle,
2357 struct rq_iterator *iterator)
2358{
2359 struct task_struct *p = iterator->start(iterator->arg);
2360 int pinned = 0;
2361
2362 while (p) {
2363 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2364 pull_task(busiest, p, this_rq, this_cpu);
2365 /*
2366 * Right now, this is only the second place pull_task()
2367 * is called, so we can safely collect pull_task()
2368 * stats here rather than inside pull_task().
2369 */
2370 schedstat_inc(sd, lb_gained[idle]);
2371
2372 return 1;
2373 }
2374 p = iterator->next(iterator->arg);
2375 }
2376
2377 return 0;
2378}
2379
43010659
PW
2380/*
2381 * move_one_task tries to move exactly one task from busiest to this_rq, as
2382 * part of active balancing operations within "domain".
2383 * Returns 1 if successful and 0 otherwise.
2384 *
2385 * Called with both runqueues locked.
2386 */
2387static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2388 struct sched_domain *sd, enum cpu_idle_type idle)
2389{
5522d5d5 2390 const struct sched_class *class;
43010659
PW
2391
2392 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2393 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2394 return 1;
2395
2396 return 0;
dd41f596
IM
2397}
2398
1da177e4
LT
2399/*
2400 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2401 * domain. It calculates and returns the amount of weighted load which
2402 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2403 */
2404static struct sched_group *
2405find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2406 unsigned long *imbalance, enum cpu_idle_type idle,
2407 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2408{
2409 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2410 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2411 unsigned long max_pull;
2dd73a4f
PW
2412 unsigned long busiest_load_per_task, busiest_nr_running;
2413 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2414 int load_idx, group_imb = 0;
5c45bf27
SS
2415#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2416 int power_savings_balance = 1;
2417 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2418 unsigned long min_nr_running = ULONG_MAX;
2419 struct sched_group *group_min = NULL, *group_leader = NULL;
2420#endif
1da177e4
LT
2421
2422 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2423 busiest_load_per_task = busiest_nr_running = 0;
2424 this_load_per_task = this_nr_running = 0;
d15bcfdb 2425 if (idle == CPU_NOT_IDLE)
7897986b 2426 load_idx = sd->busy_idx;
d15bcfdb 2427 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2428 load_idx = sd->newidle_idx;
2429 else
2430 load_idx = sd->idle_idx;
1da177e4
LT
2431
2432 do {
908a7c1b 2433 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2434 int local_group;
2435 int i;
908a7c1b 2436 int __group_imb = 0;
783609c6 2437 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2438 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2439
2440 local_group = cpu_isset(this_cpu, group->cpumask);
2441
783609c6
SS
2442 if (local_group)
2443 balance_cpu = first_cpu(group->cpumask);
2444
1da177e4 2445 /* Tally up the load of all CPUs in the group */
2dd73a4f 2446 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2447 max_cpu_load = 0;
2448 min_cpu_load = ~0UL;
1da177e4
LT
2449
2450 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2451 struct rq *rq;
2452
2453 if (!cpu_isset(i, *cpus))
2454 continue;
2455
2456 rq = cpu_rq(i);
2dd73a4f 2457
9439aab8 2458 if (*sd_idle && rq->nr_running)
5969fe06
NP
2459 *sd_idle = 0;
2460
1da177e4 2461 /* Bias balancing toward cpus of our domain */
783609c6
SS
2462 if (local_group) {
2463 if (idle_cpu(i) && !first_idle_cpu) {
2464 first_idle_cpu = 1;
2465 balance_cpu = i;
2466 }
2467
a2000572 2468 load = target_load(i, load_idx);
908a7c1b 2469 } else {
a2000572 2470 load = source_load(i, load_idx);
908a7c1b
KC
2471 if (load > max_cpu_load)
2472 max_cpu_load = load;
2473 if (min_cpu_load > load)
2474 min_cpu_load = load;
2475 }
1da177e4
LT
2476
2477 avg_load += load;
2dd73a4f 2478 sum_nr_running += rq->nr_running;
dd41f596 2479 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2480 }
2481
783609c6
SS
2482 /*
2483 * First idle cpu or the first cpu(busiest) in this sched group
2484 * is eligible for doing load balancing at this and above
9439aab8
SS
2485 * domains. In the newly idle case, we will allow all the cpu's
2486 * to do the newly idle load balance.
783609c6 2487 */
9439aab8
SS
2488 if (idle != CPU_NEWLY_IDLE && local_group &&
2489 balance_cpu != this_cpu && balance) {
783609c6
SS
2490 *balance = 0;
2491 goto ret;
2492 }
2493
1da177e4 2494 total_load += avg_load;
5517d86b 2495 total_pwr += group->__cpu_power;
1da177e4
LT
2496
2497 /* Adjust by relative CPU power of the group */
5517d86b
ED
2498 avg_load = sg_div_cpu_power(group,
2499 avg_load * SCHED_LOAD_SCALE);
1da177e4 2500
908a7c1b
KC
2501 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2502 __group_imb = 1;
2503
5517d86b 2504 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2505
1da177e4
LT
2506 if (local_group) {
2507 this_load = avg_load;
2508 this = group;
2dd73a4f
PW
2509 this_nr_running = sum_nr_running;
2510 this_load_per_task = sum_weighted_load;
2511 } else if (avg_load > max_load &&
908a7c1b 2512 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2513 max_load = avg_load;
2514 busiest = group;
2dd73a4f
PW
2515 busiest_nr_running = sum_nr_running;
2516 busiest_load_per_task = sum_weighted_load;
908a7c1b 2517 group_imb = __group_imb;
1da177e4 2518 }
5c45bf27
SS
2519
2520#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2521 /*
2522 * Busy processors will not participate in power savings
2523 * balance.
2524 */
dd41f596
IM
2525 if (idle == CPU_NOT_IDLE ||
2526 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2527 goto group_next;
5c45bf27
SS
2528
2529 /*
2530 * If the local group is idle or completely loaded
2531 * no need to do power savings balance at this domain
2532 */
2533 if (local_group && (this_nr_running >= group_capacity ||
2534 !this_nr_running))
2535 power_savings_balance = 0;
2536
dd41f596 2537 /*
5c45bf27
SS
2538 * If a group is already running at full capacity or idle,
2539 * don't include that group in power savings calculations
dd41f596
IM
2540 */
2541 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2542 || !sum_nr_running)
dd41f596 2543 goto group_next;
5c45bf27 2544
dd41f596 2545 /*
5c45bf27 2546 * Calculate the group which has the least non-idle load.
dd41f596
IM
2547 * This is the group from where we need to pick up the load
2548 * for saving power
2549 */
2550 if ((sum_nr_running < min_nr_running) ||
2551 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2552 first_cpu(group->cpumask) <
2553 first_cpu(group_min->cpumask))) {
dd41f596
IM
2554 group_min = group;
2555 min_nr_running = sum_nr_running;
5c45bf27
SS
2556 min_load_per_task = sum_weighted_load /
2557 sum_nr_running;
dd41f596 2558 }
5c45bf27 2559
dd41f596 2560 /*
5c45bf27 2561 * Calculate the group which is almost near its
dd41f596
IM
2562 * capacity but still has some space to pick up some load
2563 * from other group and save more power
2564 */
2565 if (sum_nr_running <= group_capacity - 1) {
2566 if (sum_nr_running > leader_nr_running ||
2567 (sum_nr_running == leader_nr_running &&
2568 first_cpu(group->cpumask) >
2569 first_cpu(group_leader->cpumask))) {
2570 group_leader = group;
2571 leader_nr_running = sum_nr_running;
2572 }
48f24c4d 2573 }
5c45bf27
SS
2574group_next:
2575#endif
1da177e4
LT
2576 group = group->next;
2577 } while (group != sd->groups);
2578
2dd73a4f 2579 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2580 goto out_balanced;
2581
2582 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2583
2584 if (this_load >= avg_load ||
2585 100*max_load <= sd->imbalance_pct*this_load)
2586 goto out_balanced;
2587
2dd73a4f 2588 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2589 if (group_imb)
2590 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2591
1da177e4
LT
2592 /*
2593 * We're trying to get all the cpus to the average_load, so we don't
2594 * want to push ourselves above the average load, nor do we wish to
2595 * reduce the max loaded cpu below the average load, as either of these
2596 * actions would just result in more rebalancing later, and ping-pong
2597 * tasks around. Thus we look for the minimum possible imbalance.
2598 * Negative imbalances (*we* are more loaded than anyone else) will
2599 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2600 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2601 * appear as very large values with unsigned longs.
2602 */
2dd73a4f
PW
2603 if (max_load <= busiest_load_per_task)
2604 goto out_balanced;
2605
2606 /*
2607 * In the presence of smp nice balancing, certain scenarios can have
2608 * max load less than avg load(as we skip the groups at or below
2609 * its cpu_power, while calculating max_load..)
2610 */
2611 if (max_load < avg_load) {
2612 *imbalance = 0;
2613 goto small_imbalance;
2614 }
0c117f1b
SS
2615
2616 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2617 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2618
1da177e4 2619 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2620 *imbalance = min(max_pull * busiest->__cpu_power,
2621 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2622 / SCHED_LOAD_SCALE;
2623
2dd73a4f
PW
2624 /*
2625 * if *imbalance is less than the average load per runnable task
2626 * there is no gaurantee that any tasks will be moved so we'll have
2627 * a think about bumping its value to force at least one task to be
2628 * moved
2629 */
7fd0d2dd 2630 if (*imbalance < busiest_load_per_task) {
48f24c4d 2631 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2632 unsigned int imbn;
2633
2634small_imbalance:
2635 pwr_move = pwr_now = 0;
2636 imbn = 2;
2637 if (this_nr_running) {
2638 this_load_per_task /= this_nr_running;
2639 if (busiest_load_per_task > this_load_per_task)
2640 imbn = 1;
2641 } else
2642 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2643
dd41f596
IM
2644 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2645 busiest_load_per_task * imbn) {
2dd73a4f 2646 *imbalance = busiest_load_per_task;
1da177e4
LT
2647 return busiest;
2648 }
2649
2650 /*
2651 * OK, we don't have enough imbalance to justify moving tasks,
2652 * however we may be able to increase total CPU power used by
2653 * moving them.
2654 */
2655
5517d86b
ED
2656 pwr_now += busiest->__cpu_power *
2657 min(busiest_load_per_task, max_load);
2658 pwr_now += this->__cpu_power *
2659 min(this_load_per_task, this_load);
1da177e4
LT
2660 pwr_now /= SCHED_LOAD_SCALE;
2661
2662 /* Amount of load we'd subtract */
5517d86b
ED
2663 tmp = sg_div_cpu_power(busiest,
2664 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2665 if (max_load > tmp)
5517d86b 2666 pwr_move += busiest->__cpu_power *
2dd73a4f 2667 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2668
2669 /* Amount of load we'd add */
5517d86b 2670 if (max_load * busiest->__cpu_power <
33859f7f 2671 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2672 tmp = sg_div_cpu_power(this,
2673 max_load * busiest->__cpu_power);
1da177e4 2674 else
5517d86b
ED
2675 tmp = sg_div_cpu_power(this,
2676 busiest_load_per_task * SCHED_LOAD_SCALE);
2677 pwr_move += this->__cpu_power *
2678 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2679 pwr_move /= SCHED_LOAD_SCALE;
2680
2681 /* Move if we gain throughput */
7fd0d2dd
SS
2682 if (pwr_move > pwr_now)
2683 *imbalance = busiest_load_per_task;
1da177e4
LT
2684 }
2685
1da177e4
LT
2686 return busiest;
2687
2688out_balanced:
5c45bf27 2689#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2690 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2691 goto ret;
1da177e4 2692
5c45bf27
SS
2693 if (this == group_leader && group_leader != group_min) {
2694 *imbalance = min_load_per_task;
2695 return group_min;
2696 }
5c45bf27 2697#endif
783609c6 2698ret:
1da177e4
LT
2699 *imbalance = 0;
2700 return NULL;
2701}
2702
2703/*
2704 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2705 */
70b97a7f 2706static struct rq *
d15bcfdb 2707find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2708 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2709{
70b97a7f 2710 struct rq *busiest = NULL, *rq;
2dd73a4f 2711 unsigned long max_load = 0;
1da177e4
LT
2712 int i;
2713
2714 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2715 unsigned long wl;
0a2966b4
CL
2716
2717 if (!cpu_isset(i, *cpus))
2718 continue;
2719
48f24c4d 2720 rq = cpu_rq(i);
dd41f596 2721 wl = weighted_cpuload(i);
2dd73a4f 2722
dd41f596 2723 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2724 continue;
1da177e4 2725
dd41f596
IM
2726 if (wl > max_load) {
2727 max_load = wl;
48f24c4d 2728 busiest = rq;
1da177e4
LT
2729 }
2730 }
2731
2732 return busiest;
2733}
2734
77391d71
NP
2735/*
2736 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2737 * so long as it is large enough.
2738 */
2739#define MAX_PINNED_INTERVAL 512
2740
1da177e4
LT
2741/*
2742 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2743 * tasks if there is an imbalance.
1da177e4 2744 */
70b97a7f 2745static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2746 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2747 int *balance)
1da177e4 2748{
43010659 2749 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2750 struct sched_group *group;
1da177e4 2751 unsigned long imbalance;
70b97a7f 2752 struct rq *busiest;
0a2966b4 2753 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2754 unsigned long flags;
5969fe06 2755
89c4710e
SS
2756 /*
2757 * When power savings policy is enabled for the parent domain, idle
2758 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2759 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2760 * portraying it as CPU_NOT_IDLE.
89c4710e 2761 */
d15bcfdb 2762 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2763 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2764 sd_idle = 1;
1da177e4 2765
2d72376b 2766 schedstat_inc(sd, lb_count[idle]);
1da177e4 2767
0a2966b4
CL
2768redo:
2769 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2770 &cpus, balance);
2771
06066714 2772 if (*balance == 0)
783609c6 2773 goto out_balanced;
783609c6 2774
1da177e4
LT
2775 if (!group) {
2776 schedstat_inc(sd, lb_nobusyg[idle]);
2777 goto out_balanced;
2778 }
2779
0a2966b4 2780 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2781 if (!busiest) {
2782 schedstat_inc(sd, lb_nobusyq[idle]);
2783 goto out_balanced;
2784 }
2785
db935dbd 2786 BUG_ON(busiest == this_rq);
1da177e4
LT
2787
2788 schedstat_add(sd, lb_imbalance[idle], imbalance);
2789
43010659 2790 ld_moved = 0;
1da177e4
LT
2791 if (busiest->nr_running > 1) {
2792 /*
2793 * Attempt to move tasks. If find_busiest_group has found
2794 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2795 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2796 * correctly treated as an imbalance.
2797 */
fe2eea3f 2798 local_irq_save(flags);
e17224bf 2799 double_rq_lock(this_rq, busiest);
43010659 2800 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2801 imbalance, sd, idle, &all_pinned);
e17224bf 2802 double_rq_unlock(this_rq, busiest);
fe2eea3f 2803 local_irq_restore(flags);
81026794 2804
46cb4b7c
SS
2805 /*
2806 * some other cpu did the load balance for us.
2807 */
43010659 2808 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2809 resched_cpu(this_cpu);
2810
81026794 2811 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2812 if (unlikely(all_pinned)) {
2813 cpu_clear(cpu_of(busiest), cpus);
2814 if (!cpus_empty(cpus))
2815 goto redo;
81026794 2816 goto out_balanced;
0a2966b4 2817 }
1da177e4 2818 }
81026794 2819
43010659 2820 if (!ld_moved) {
1da177e4
LT
2821 schedstat_inc(sd, lb_failed[idle]);
2822 sd->nr_balance_failed++;
2823
2824 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2825
fe2eea3f 2826 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2827
2828 /* don't kick the migration_thread, if the curr
2829 * task on busiest cpu can't be moved to this_cpu
2830 */
2831 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2832 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2833 all_pinned = 1;
2834 goto out_one_pinned;
2835 }
2836
1da177e4
LT
2837 if (!busiest->active_balance) {
2838 busiest->active_balance = 1;
2839 busiest->push_cpu = this_cpu;
81026794 2840 active_balance = 1;
1da177e4 2841 }
fe2eea3f 2842 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2843 if (active_balance)
1da177e4
LT
2844 wake_up_process(busiest->migration_thread);
2845
2846 /*
2847 * We've kicked active balancing, reset the failure
2848 * counter.
2849 */
39507451 2850 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2851 }
81026794 2852 } else
1da177e4
LT
2853 sd->nr_balance_failed = 0;
2854
81026794 2855 if (likely(!active_balance)) {
1da177e4
LT
2856 /* We were unbalanced, so reset the balancing interval */
2857 sd->balance_interval = sd->min_interval;
81026794
NP
2858 } else {
2859 /*
2860 * If we've begun active balancing, start to back off. This
2861 * case may not be covered by the all_pinned logic if there
2862 * is only 1 task on the busy runqueue (because we don't call
2863 * move_tasks).
2864 */
2865 if (sd->balance_interval < sd->max_interval)
2866 sd->balance_interval *= 2;
1da177e4
LT
2867 }
2868
43010659 2869 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2870 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2871 return -1;
43010659 2872 return ld_moved;
1da177e4
LT
2873
2874out_balanced:
1da177e4
LT
2875 schedstat_inc(sd, lb_balanced[idle]);
2876
16cfb1c0 2877 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2878
2879out_one_pinned:
1da177e4 2880 /* tune up the balancing interval */
77391d71
NP
2881 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2882 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2883 sd->balance_interval *= 2;
2884
48f24c4d 2885 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2886 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2887 return -1;
1da177e4
LT
2888 return 0;
2889}
2890
2891/*
2892 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2893 * tasks if there is an imbalance.
2894 *
d15bcfdb 2895 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2896 * this_rq is locked.
2897 */
48f24c4d 2898static int
70b97a7f 2899load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2900{
2901 struct sched_group *group;
70b97a7f 2902 struct rq *busiest = NULL;
1da177e4 2903 unsigned long imbalance;
43010659 2904 int ld_moved = 0;
5969fe06 2905 int sd_idle = 0;
969bb4e4 2906 int all_pinned = 0;
0a2966b4 2907 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2908
89c4710e
SS
2909 /*
2910 * When power savings policy is enabled for the parent domain, idle
2911 * sibling can pick up load irrespective of busy siblings. In this case,
2912 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2913 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2914 */
2915 if (sd->flags & SD_SHARE_CPUPOWER &&
2916 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2917 sd_idle = 1;
1da177e4 2918
2d72376b 2919 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2920redo:
d15bcfdb 2921 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2922 &sd_idle, &cpus, NULL);
1da177e4 2923 if (!group) {
d15bcfdb 2924 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2925 goto out_balanced;
1da177e4
LT
2926 }
2927
d15bcfdb 2928 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2929 &cpus);
db935dbd 2930 if (!busiest) {
d15bcfdb 2931 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2932 goto out_balanced;
1da177e4
LT
2933 }
2934
db935dbd
NP
2935 BUG_ON(busiest == this_rq);
2936
d15bcfdb 2937 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2938
43010659 2939 ld_moved = 0;
d6d5cfaf
NP
2940 if (busiest->nr_running > 1) {
2941 /* Attempt to move tasks */
2942 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2943 /* this_rq->clock is already updated */
2944 update_rq_clock(busiest);
43010659 2945 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2946 imbalance, sd, CPU_NEWLY_IDLE,
2947 &all_pinned);
d6d5cfaf 2948 spin_unlock(&busiest->lock);
0a2966b4 2949
969bb4e4 2950 if (unlikely(all_pinned)) {
0a2966b4
CL
2951 cpu_clear(cpu_of(busiest), cpus);
2952 if (!cpus_empty(cpus))
2953 goto redo;
2954 }
d6d5cfaf
NP
2955 }
2956
43010659 2957 if (!ld_moved) {
d15bcfdb 2958 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2959 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2960 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2961 return -1;
2962 } else
16cfb1c0 2963 sd->nr_balance_failed = 0;
1da177e4 2964
43010659 2965 return ld_moved;
16cfb1c0
NP
2966
2967out_balanced:
d15bcfdb 2968 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2969 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2970 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2971 return -1;
16cfb1c0 2972 sd->nr_balance_failed = 0;
48f24c4d 2973
16cfb1c0 2974 return 0;
1da177e4
LT
2975}
2976
2977/*
2978 * idle_balance is called by schedule() if this_cpu is about to become
2979 * idle. Attempts to pull tasks from other CPUs.
2980 */
70b97a7f 2981static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2982{
2983 struct sched_domain *sd;
dd41f596
IM
2984 int pulled_task = -1;
2985 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2986
2987 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2988 unsigned long interval;
2989
2990 if (!(sd->flags & SD_LOAD_BALANCE))
2991 continue;
2992
2993 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2994 /* If we've pulled tasks over stop searching: */
1bd77f2d 2995 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2996 this_rq, sd);
2997
2998 interval = msecs_to_jiffies(sd->balance_interval);
2999 if (time_after(next_balance, sd->last_balance + interval))
3000 next_balance = sd->last_balance + interval;
3001 if (pulled_task)
3002 break;
1da177e4 3003 }
dd41f596 3004 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3005 /*
3006 * We are going idle. next_balance may be set based on
3007 * a busy processor. So reset next_balance.
3008 */
3009 this_rq->next_balance = next_balance;
dd41f596 3010 }
1da177e4
LT
3011}
3012
3013/*
3014 * active_load_balance is run by migration threads. It pushes running tasks
3015 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3016 * running on each physical CPU where possible, and avoids physical /
3017 * logical imbalances.
3018 *
3019 * Called with busiest_rq locked.
3020 */
70b97a7f 3021static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3022{
39507451 3023 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3024 struct sched_domain *sd;
3025 struct rq *target_rq;
39507451 3026
48f24c4d 3027 /* Is there any task to move? */
39507451 3028 if (busiest_rq->nr_running <= 1)
39507451
NP
3029 return;
3030
3031 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3032
3033 /*
39507451 3034 * This condition is "impossible", if it occurs
41a2d6cf 3035 * we need to fix it. Originally reported by
39507451 3036 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3037 */
39507451 3038 BUG_ON(busiest_rq == target_rq);
1da177e4 3039
39507451
NP
3040 /* move a task from busiest_rq to target_rq */
3041 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3042 update_rq_clock(busiest_rq);
3043 update_rq_clock(target_rq);
39507451
NP
3044
3045 /* Search for an sd spanning us and the target CPU. */
c96d145e 3046 for_each_domain(target_cpu, sd) {
39507451 3047 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3048 cpu_isset(busiest_cpu, sd->span))
39507451 3049 break;
c96d145e 3050 }
39507451 3051
48f24c4d 3052 if (likely(sd)) {
2d72376b 3053 schedstat_inc(sd, alb_count);
39507451 3054
43010659
PW
3055 if (move_one_task(target_rq, target_cpu, busiest_rq,
3056 sd, CPU_IDLE))
48f24c4d
IM
3057 schedstat_inc(sd, alb_pushed);
3058 else
3059 schedstat_inc(sd, alb_failed);
3060 }
39507451 3061 spin_unlock(&target_rq->lock);
1da177e4
LT
3062}
3063
46cb4b7c
SS
3064#ifdef CONFIG_NO_HZ
3065static struct {
3066 atomic_t load_balancer;
41a2d6cf 3067 cpumask_t cpu_mask;
46cb4b7c
SS
3068} nohz ____cacheline_aligned = {
3069 .load_balancer = ATOMIC_INIT(-1),
3070 .cpu_mask = CPU_MASK_NONE,
3071};
3072
7835b98b 3073/*
46cb4b7c
SS
3074 * This routine will try to nominate the ilb (idle load balancing)
3075 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3076 * load balancing on behalf of all those cpus. If all the cpus in the system
3077 * go into this tickless mode, then there will be no ilb owner (as there is
3078 * no need for one) and all the cpus will sleep till the next wakeup event
3079 * arrives...
3080 *
3081 * For the ilb owner, tick is not stopped. And this tick will be used
3082 * for idle load balancing. ilb owner will still be part of
3083 * nohz.cpu_mask..
7835b98b 3084 *
46cb4b7c
SS
3085 * While stopping the tick, this cpu will become the ilb owner if there
3086 * is no other owner. And will be the owner till that cpu becomes busy
3087 * or if all cpus in the system stop their ticks at which point
3088 * there is no need for ilb owner.
3089 *
3090 * When the ilb owner becomes busy, it nominates another owner, during the
3091 * next busy scheduler_tick()
3092 */
3093int select_nohz_load_balancer(int stop_tick)
3094{
3095 int cpu = smp_processor_id();
3096
3097 if (stop_tick) {
3098 cpu_set(cpu, nohz.cpu_mask);
3099 cpu_rq(cpu)->in_nohz_recently = 1;
3100
3101 /*
3102 * If we are going offline and still the leader, give up!
3103 */
3104 if (cpu_is_offline(cpu) &&
3105 atomic_read(&nohz.load_balancer) == cpu) {
3106 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3107 BUG();
3108 return 0;
3109 }
3110
3111 /* time for ilb owner also to sleep */
3112 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3113 if (atomic_read(&nohz.load_balancer) == cpu)
3114 atomic_set(&nohz.load_balancer, -1);
3115 return 0;
3116 }
3117
3118 if (atomic_read(&nohz.load_balancer) == -1) {
3119 /* make me the ilb owner */
3120 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3121 return 1;
3122 } else if (atomic_read(&nohz.load_balancer) == cpu)
3123 return 1;
3124 } else {
3125 if (!cpu_isset(cpu, nohz.cpu_mask))
3126 return 0;
3127
3128 cpu_clear(cpu, nohz.cpu_mask);
3129
3130 if (atomic_read(&nohz.load_balancer) == cpu)
3131 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3132 BUG();
3133 }
3134 return 0;
3135}
3136#endif
3137
3138static DEFINE_SPINLOCK(balancing);
3139
3140/*
7835b98b
CL
3141 * It checks each scheduling domain to see if it is due to be balanced,
3142 * and initiates a balancing operation if so.
3143 *
3144 * Balancing parameters are set up in arch_init_sched_domains.
3145 */
a9957449 3146static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3147{
46cb4b7c
SS
3148 int balance = 1;
3149 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3150 unsigned long interval;
3151 struct sched_domain *sd;
46cb4b7c 3152 /* Earliest time when we have to do rebalance again */
c9819f45 3153 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3154 int update_next_balance = 0;
1da177e4 3155
46cb4b7c 3156 for_each_domain(cpu, sd) {
1da177e4
LT
3157 if (!(sd->flags & SD_LOAD_BALANCE))
3158 continue;
3159
3160 interval = sd->balance_interval;
d15bcfdb 3161 if (idle != CPU_IDLE)
1da177e4
LT
3162 interval *= sd->busy_factor;
3163
3164 /* scale ms to jiffies */
3165 interval = msecs_to_jiffies(interval);
3166 if (unlikely(!interval))
3167 interval = 1;
dd41f596
IM
3168 if (interval > HZ*NR_CPUS/10)
3169 interval = HZ*NR_CPUS/10;
3170
1da177e4 3171
08c183f3
CL
3172 if (sd->flags & SD_SERIALIZE) {
3173 if (!spin_trylock(&balancing))
3174 goto out;
3175 }
3176
c9819f45 3177 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3178 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3179 /*
3180 * We've pulled tasks over so either we're no
5969fe06
NP
3181 * longer idle, or one of our SMT siblings is
3182 * not idle.
3183 */
d15bcfdb 3184 idle = CPU_NOT_IDLE;
1da177e4 3185 }
1bd77f2d 3186 sd->last_balance = jiffies;
1da177e4 3187 }
08c183f3
CL
3188 if (sd->flags & SD_SERIALIZE)
3189 spin_unlock(&balancing);
3190out:
f549da84 3191 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3192 next_balance = sd->last_balance + interval;
f549da84
SS
3193 update_next_balance = 1;
3194 }
783609c6
SS
3195
3196 /*
3197 * Stop the load balance at this level. There is another
3198 * CPU in our sched group which is doing load balancing more
3199 * actively.
3200 */
3201 if (!balance)
3202 break;
1da177e4 3203 }
f549da84
SS
3204
3205 /*
3206 * next_balance will be updated only when there is a need.
3207 * When the cpu is attached to null domain for ex, it will not be
3208 * updated.
3209 */
3210 if (likely(update_next_balance))
3211 rq->next_balance = next_balance;
46cb4b7c
SS
3212}
3213
3214/*
3215 * run_rebalance_domains is triggered when needed from the scheduler tick.
3216 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3217 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3218 */
3219static void run_rebalance_domains(struct softirq_action *h)
3220{
dd41f596
IM
3221 int this_cpu = smp_processor_id();
3222 struct rq *this_rq = cpu_rq(this_cpu);
3223 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3224 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3225
dd41f596 3226 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3227
3228#ifdef CONFIG_NO_HZ
3229 /*
3230 * If this cpu is the owner for idle load balancing, then do the
3231 * balancing on behalf of the other idle cpus whose ticks are
3232 * stopped.
3233 */
dd41f596
IM
3234 if (this_rq->idle_at_tick &&
3235 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3236 cpumask_t cpus = nohz.cpu_mask;
3237 struct rq *rq;
3238 int balance_cpu;
3239
dd41f596 3240 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3241 for_each_cpu_mask(balance_cpu, cpus) {
3242 /*
3243 * If this cpu gets work to do, stop the load balancing
3244 * work being done for other cpus. Next load
3245 * balancing owner will pick it up.
3246 */
3247 if (need_resched())
3248 break;
3249
de0cf899 3250 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3251
3252 rq = cpu_rq(balance_cpu);
dd41f596
IM
3253 if (time_after(this_rq->next_balance, rq->next_balance))
3254 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3255 }
3256 }
3257#endif
3258}
3259
3260/*
3261 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3262 *
3263 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3264 * idle load balancing owner or decide to stop the periodic load balancing,
3265 * if the whole system is idle.
3266 */
dd41f596 3267static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3268{
46cb4b7c
SS
3269#ifdef CONFIG_NO_HZ
3270 /*
3271 * If we were in the nohz mode recently and busy at the current
3272 * scheduler tick, then check if we need to nominate new idle
3273 * load balancer.
3274 */
3275 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3276 rq->in_nohz_recently = 0;
3277
3278 if (atomic_read(&nohz.load_balancer) == cpu) {
3279 cpu_clear(cpu, nohz.cpu_mask);
3280 atomic_set(&nohz.load_balancer, -1);
3281 }
3282
3283 if (atomic_read(&nohz.load_balancer) == -1) {
3284 /*
3285 * simple selection for now: Nominate the
3286 * first cpu in the nohz list to be the next
3287 * ilb owner.
3288 *
3289 * TBD: Traverse the sched domains and nominate
3290 * the nearest cpu in the nohz.cpu_mask.
3291 */
3292 int ilb = first_cpu(nohz.cpu_mask);
3293
3294 if (ilb != NR_CPUS)
3295 resched_cpu(ilb);
3296 }
3297 }
3298
3299 /*
3300 * If this cpu is idle and doing idle load balancing for all the
3301 * cpus with ticks stopped, is it time for that to stop?
3302 */
3303 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3304 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3305 resched_cpu(cpu);
3306 return;
3307 }
3308
3309 /*
3310 * If this cpu is idle and the idle load balancing is done by
3311 * someone else, then no need raise the SCHED_SOFTIRQ
3312 */
3313 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3314 cpu_isset(cpu, nohz.cpu_mask))
3315 return;
3316#endif
3317 if (time_after_eq(jiffies, rq->next_balance))
3318 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3319}
dd41f596
IM
3320
3321#else /* CONFIG_SMP */
3322
1da177e4
LT
3323/*
3324 * on UP we do not need to balance between CPUs:
3325 */
70b97a7f 3326static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3327{
3328}
dd41f596 3329
1da177e4
LT
3330#endif
3331
1da177e4
LT
3332DEFINE_PER_CPU(struct kernel_stat, kstat);
3333
3334EXPORT_PER_CPU_SYMBOL(kstat);
3335
3336/*
41b86e9c
IM
3337 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3338 * that have not yet been banked in case the task is currently running.
1da177e4 3339 */
41b86e9c 3340unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3341{
1da177e4 3342 unsigned long flags;
41b86e9c
IM
3343 u64 ns, delta_exec;
3344 struct rq *rq;
48f24c4d 3345
41b86e9c
IM
3346 rq = task_rq_lock(p, &flags);
3347 ns = p->se.sum_exec_runtime;
051a1d1a 3348 if (task_current(rq, p)) {
a8e504d2
IM
3349 update_rq_clock(rq);
3350 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3351 if ((s64)delta_exec > 0)
3352 ns += delta_exec;
3353 }
3354 task_rq_unlock(rq, &flags);
48f24c4d 3355
1da177e4
LT
3356 return ns;
3357}
3358
1da177e4
LT
3359/*
3360 * Account user cpu time to a process.
3361 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3362 * @cputime: the cpu time spent in user space since the last update
3363 */
3364void account_user_time(struct task_struct *p, cputime_t cputime)
3365{
3366 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3367 cputime64_t tmp;
3368
3369 p->utime = cputime_add(p->utime, cputime);
3370
3371 /* Add user time to cpustat. */
3372 tmp = cputime_to_cputime64(cputime);
3373 if (TASK_NICE(p) > 0)
3374 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3375 else
3376 cpustat->user = cputime64_add(cpustat->user, tmp);
3377}
3378
94886b84
LV
3379/*
3380 * Account guest cpu time to a process.
3381 * @p: the process that the cpu time gets accounted to
3382 * @cputime: the cpu time spent in virtual machine since the last update
3383 */
f7402e03 3384static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3385{
3386 cputime64_t tmp;
3387 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3388
3389 tmp = cputime_to_cputime64(cputime);
3390
3391 p->utime = cputime_add(p->utime, cputime);
3392 p->gtime = cputime_add(p->gtime, cputime);
3393
3394 cpustat->user = cputime64_add(cpustat->user, tmp);
3395 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3396}
3397
c66f08be
MN
3398/*
3399 * Account scaled user cpu time to a process.
3400 * @p: the process that the cpu time gets accounted to
3401 * @cputime: the cpu time spent in user space since the last update
3402 */
3403void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3404{
3405 p->utimescaled = cputime_add(p->utimescaled, cputime);
3406}
3407
1da177e4
LT
3408/*
3409 * Account system cpu time to a process.
3410 * @p: the process that the cpu time gets accounted to
3411 * @hardirq_offset: the offset to subtract from hardirq_count()
3412 * @cputime: the cpu time spent in kernel space since the last update
3413 */
3414void account_system_time(struct task_struct *p, int hardirq_offset,
3415 cputime_t cputime)
3416{
3417 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3418 struct rq *rq = this_rq();
1da177e4
LT
3419 cputime64_t tmp;
3420
9778385d
CB
3421 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3422 return account_guest_time(p, cputime);
94886b84 3423
1da177e4
LT
3424 p->stime = cputime_add(p->stime, cputime);
3425
3426 /* Add system time to cpustat. */
3427 tmp = cputime_to_cputime64(cputime);
3428 if (hardirq_count() - hardirq_offset)
3429 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3430 else if (softirq_count())
3431 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3432 else if (p != rq->idle)
1da177e4 3433 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3434 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3435 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3436 else
3437 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3438 /* Account for system time used */
3439 acct_update_integrals(p);
1da177e4
LT
3440}
3441
c66f08be
MN
3442/*
3443 * Account scaled system cpu time to a process.
3444 * @p: the process that the cpu time gets accounted to
3445 * @hardirq_offset: the offset to subtract from hardirq_count()
3446 * @cputime: the cpu time spent in kernel space since the last update
3447 */
3448void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3449{
3450 p->stimescaled = cputime_add(p->stimescaled, cputime);
3451}
3452
1da177e4
LT
3453/*
3454 * Account for involuntary wait time.
3455 * @p: the process from which the cpu time has been stolen
3456 * @steal: the cpu time spent in involuntary wait
3457 */
3458void account_steal_time(struct task_struct *p, cputime_t steal)
3459{
3460 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3461 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3462 struct rq *rq = this_rq();
1da177e4
LT
3463
3464 if (p == rq->idle) {
3465 p->stime = cputime_add(p->stime, steal);
3466 if (atomic_read(&rq->nr_iowait) > 0)
3467 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3468 else
3469 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3470 } else
1da177e4
LT
3471 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3472}
3473
7835b98b
CL
3474/*
3475 * This function gets called by the timer code, with HZ frequency.
3476 * We call it with interrupts disabled.
3477 *
3478 * It also gets called by the fork code, when changing the parent's
3479 * timeslices.
3480 */
3481void scheduler_tick(void)
3482{
7835b98b
CL
3483 int cpu = smp_processor_id();
3484 struct rq *rq = cpu_rq(cpu);
dd41f596 3485 struct task_struct *curr = rq->curr;
529c7726 3486 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3487
3488 spin_lock(&rq->lock);
546fe3c9 3489 __update_rq_clock(rq);
529c7726
IM
3490 /*
3491 * Let rq->clock advance by at least TICK_NSEC:
3492 */
3493 if (unlikely(rq->clock < next_tick))
3494 rq->clock = next_tick;
3495 rq->tick_timestamp = rq->clock;
f1a438d8 3496 update_cpu_load(rq);
dd41f596
IM
3497 if (curr != rq->idle) /* FIXME: needed? */
3498 curr->sched_class->task_tick(rq, curr);
dd41f596 3499 spin_unlock(&rq->lock);
7835b98b 3500
e418e1c2 3501#ifdef CONFIG_SMP
dd41f596
IM
3502 rq->idle_at_tick = idle_cpu(cpu);
3503 trigger_load_balance(rq, cpu);
e418e1c2 3504#endif
1da177e4
LT
3505}
3506
1da177e4
LT
3507#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3508
3509void fastcall add_preempt_count(int val)
3510{
3511 /*
3512 * Underflow?
3513 */
9a11b49a
IM
3514 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3515 return;
1da177e4
LT
3516 preempt_count() += val;
3517 /*
3518 * Spinlock count overflowing soon?
3519 */
33859f7f
MOS
3520 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3521 PREEMPT_MASK - 10);
1da177e4
LT
3522}
3523EXPORT_SYMBOL(add_preempt_count);
3524
3525void fastcall sub_preempt_count(int val)
3526{
3527 /*
3528 * Underflow?
3529 */
9a11b49a
IM
3530 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3531 return;
1da177e4
LT
3532 /*
3533 * Is the spinlock portion underflowing?
3534 */
9a11b49a
IM
3535 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3536 !(preempt_count() & PREEMPT_MASK)))
3537 return;
3538
1da177e4
LT
3539 preempt_count() -= val;
3540}
3541EXPORT_SYMBOL(sub_preempt_count);
3542
3543#endif
3544
3545/*
dd41f596 3546 * Print scheduling while atomic bug:
1da177e4 3547 */
dd41f596 3548static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3549{
838225b4
SS
3550 struct pt_regs *regs = get_irq_regs();
3551
3552 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3553 prev->comm, prev->pid, preempt_count());
3554
dd41f596
IM
3555 debug_show_held_locks(prev);
3556 if (irqs_disabled())
3557 print_irqtrace_events(prev);
838225b4
SS
3558
3559 if (regs)
3560 show_regs(regs);
3561 else
3562 dump_stack();
dd41f596 3563}
1da177e4 3564
dd41f596
IM
3565/*
3566 * Various schedule()-time debugging checks and statistics:
3567 */
3568static inline void schedule_debug(struct task_struct *prev)
3569{
1da177e4 3570 /*
41a2d6cf 3571 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3572 * schedule() atomically, we ignore that path for now.
3573 * Otherwise, whine if we are scheduling when we should not be.
3574 */
dd41f596
IM
3575 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3576 __schedule_bug(prev);
3577
1da177e4
LT
3578 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3579
2d72376b 3580 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3581#ifdef CONFIG_SCHEDSTATS
3582 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3583 schedstat_inc(this_rq(), bkl_count);
3584 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3585 }
3586#endif
dd41f596
IM
3587}
3588
3589/*
3590 * Pick up the highest-prio task:
3591 */
3592static inline struct task_struct *
ff95f3df 3593pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3594{
5522d5d5 3595 const struct sched_class *class;
dd41f596 3596 struct task_struct *p;
1da177e4
LT
3597
3598 /*
dd41f596
IM
3599 * Optimization: we know that if all tasks are in
3600 * the fair class we can call that function directly:
1da177e4 3601 */
dd41f596 3602 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3603 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3604 if (likely(p))
3605 return p;
1da177e4
LT
3606 }
3607
dd41f596
IM
3608 class = sched_class_highest;
3609 for ( ; ; ) {
fb8d4724 3610 p = class->pick_next_task(rq);
dd41f596
IM
3611 if (p)
3612 return p;
3613 /*
3614 * Will never be NULL as the idle class always
3615 * returns a non-NULL p:
3616 */
3617 class = class->next;
3618 }
3619}
1da177e4 3620
dd41f596
IM
3621/*
3622 * schedule() is the main scheduler function.
3623 */
3624asmlinkage void __sched schedule(void)
3625{
3626 struct task_struct *prev, *next;
3627 long *switch_count;
3628 struct rq *rq;
dd41f596
IM
3629 int cpu;
3630
3631need_resched:
3632 preempt_disable();
3633 cpu = smp_processor_id();
3634 rq = cpu_rq(cpu);
3635 rcu_qsctr_inc(cpu);
3636 prev = rq->curr;
3637 switch_count = &prev->nivcsw;
3638
3639 release_kernel_lock(prev);
3640need_resched_nonpreemptible:
3641
3642 schedule_debug(prev);
1da177e4 3643
1e819950
IM
3644 /*
3645 * Do the rq-clock update outside the rq lock:
3646 */
3647 local_irq_disable();
c1b3da3e 3648 __update_rq_clock(rq);
1e819950
IM
3649 spin_lock(&rq->lock);
3650 clear_tsk_need_resched(prev);
1da177e4 3651
1da177e4 3652 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3653 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3654 unlikely(signal_pending(prev)))) {
1da177e4 3655 prev->state = TASK_RUNNING;
dd41f596 3656 } else {
2e1cb74a 3657 deactivate_task(rq, prev, 1);
1da177e4 3658 }
dd41f596 3659 switch_count = &prev->nvcsw;
1da177e4
LT
3660 }
3661
9a897c5a
SR
3662#ifdef CONFIG_SMP
3663 if (prev->sched_class->pre_schedule)
3664 prev->sched_class->pre_schedule(rq, prev);
3665#endif
f65eda4f 3666
dd41f596 3667 if (unlikely(!rq->nr_running))
1da177e4 3668 idle_balance(cpu, rq);
1da177e4 3669
31ee529c 3670 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3671 next = pick_next_task(rq, prev);
1da177e4
LT
3672
3673 sched_info_switch(prev, next);
dd41f596 3674
1da177e4 3675 if (likely(prev != next)) {
1da177e4
LT
3676 rq->nr_switches++;
3677 rq->curr = next;
3678 ++*switch_count;
3679
dd41f596 3680 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3681 } else
3682 spin_unlock_irq(&rq->lock);
3683
dd41f596
IM
3684 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3685 cpu = smp_processor_id();
3686 rq = cpu_rq(cpu);
1da177e4 3687 goto need_resched_nonpreemptible;
dd41f596 3688 }
1da177e4
LT
3689 preempt_enable_no_resched();
3690 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3691 goto need_resched;
3692}
1da177e4
LT
3693EXPORT_SYMBOL(schedule);
3694
3695#ifdef CONFIG_PREEMPT
3696/*
2ed6e34f 3697 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3698 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3699 * occur there and call schedule directly.
3700 */
3701asmlinkage void __sched preempt_schedule(void)
3702{
3703 struct thread_info *ti = current_thread_info();
3704#ifdef CONFIG_PREEMPT_BKL
3705 struct task_struct *task = current;
3706 int saved_lock_depth;
3707#endif
3708 /*
3709 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3710 * we do not want to preempt the current task. Just return..
1da177e4 3711 */
beed33a8 3712 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3713 return;
3714
3a5c359a
AK
3715 do {
3716 add_preempt_count(PREEMPT_ACTIVE);
3717
3718 /*
3719 * We keep the big kernel semaphore locked, but we
3720 * clear ->lock_depth so that schedule() doesnt
3721 * auto-release the semaphore:
3722 */
1da177e4 3723#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3724 saved_lock_depth = task->lock_depth;
3725 task->lock_depth = -1;
1da177e4 3726#endif
3a5c359a 3727 schedule();
1da177e4 3728#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3729 task->lock_depth = saved_lock_depth;
1da177e4 3730#endif
3a5c359a 3731 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3732
3a5c359a
AK
3733 /*
3734 * Check again in case we missed a preemption opportunity
3735 * between schedule and now.
3736 */
3737 barrier();
3738 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3739}
1da177e4
LT
3740EXPORT_SYMBOL(preempt_schedule);
3741
3742/*
2ed6e34f 3743 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3744 * off of irq context.
3745 * Note, that this is called and return with irqs disabled. This will
3746 * protect us against recursive calling from irq.
3747 */
3748asmlinkage void __sched preempt_schedule_irq(void)
3749{
3750 struct thread_info *ti = current_thread_info();
3751#ifdef CONFIG_PREEMPT_BKL
3752 struct task_struct *task = current;
3753 int saved_lock_depth;
3754#endif
2ed6e34f 3755 /* Catch callers which need to be fixed */
1da177e4
LT
3756 BUG_ON(ti->preempt_count || !irqs_disabled());
3757
3a5c359a
AK
3758 do {
3759 add_preempt_count(PREEMPT_ACTIVE);
3760
3761 /*
3762 * We keep the big kernel semaphore locked, but we
3763 * clear ->lock_depth so that schedule() doesnt
3764 * auto-release the semaphore:
3765 */
1da177e4 3766#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3767 saved_lock_depth = task->lock_depth;
3768 task->lock_depth = -1;
1da177e4 3769#endif
3a5c359a
AK
3770 local_irq_enable();
3771 schedule();
3772 local_irq_disable();
1da177e4 3773#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3774 task->lock_depth = saved_lock_depth;
1da177e4 3775#endif
3a5c359a 3776 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3777
3a5c359a
AK
3778 /*
3779 * Check again in case we missed a preemption opportunity
3780 * between schedule and now.
3781 */
3782 barrier();
3783 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3784}
3785
3786#endif /* CONFIG_PREEMPT */
3787
95cdf3b7
IM
3788int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3789 void *key)
1da177e4 3790{
48f24c4d 3791 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3792}
1da177e4
LT
3793EXPORT_SYMBOL(default_wake_function);
3794
3795/*
41a2d6cf
IM
3796 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3797 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3798 * number) then we wake all the non-exclusive tasks and one exclusive task.
3799 *
3800 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3801 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3802 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3803 */
3804static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3805 int nr_exclusive, int sync, void *key)
3806{
2e45874c 3807 wait_queue_t *curr, *next;
1da177e4 3808
2e45874c 3809 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3810 unsigned flags = curr->flags;
3811
1da177e4 3812 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3813 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3814 break;
3815 }
3816}
3817
3818/**
3819 * __wake_up - wake up threads blocked on a waitqueue.
3820 * @q: the waitqueue
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3823 * @key: is directly passed to the wakeup function
1da177e4
LT
3824 */
3825void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3826 int nr_exclusive, void *key)
1da177e4
LT
3827{
3828 unsigned long flags;
3829
3830 spin_lock_irqsave(&q->lock, flags);
3831 __wake_up_common(q, mode, nr_exclusive, 0, key);
3832 spin_unlock_irqrestore(&q->lock, flags);
3833}
1da177e4
LT
3834EXPORT_SYMBOL(__wake_up);
3835
3836/*
3837 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3838 */
3839void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3840{
3841 __wake_up_common(q, mode, 1, 0, NULL);
3842}
3843
3844/**
67be2dd1 3845 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3846 * @q: the waitqueue
3847 * @mode: which threads
3848 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3849 *
3850 * The sync wakeup differs that the waker knows that it will schedule
3851 * away soon, so while the target thread will be woken up, it will not
3852 * be migrated to another CPU - ie. the two threads are 'synchronized'
3853 * with each other. This can prevent needless bouncing between CPUs.
3854 *
3855 * On UP it can prevent extra preemption.
3856 */
95cdf3b7
IM
3857void fastcall
3858__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3859{
3860 unsigned long flags;
3861 int sync = 1;
3862
3863 if (unlikely(!q))
3864 return;
3865
3866 if (unlikely(!nr_exclusive))
3867 sync = 0;
3868
3869 spin_lock_irqsave(&q->lock, flags);
3870 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3871 spin_unlock_irqrestore(&q->lock, flags);
3872}
3873EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3874
b15136e9 3875void complete(struct completion *x)
1da177e4
LT
3876{
3877 unsigned long flags;
3878
3879 spin_lock_irqsave(&x->wait.lock, flags);
3880 x->done++;
3881 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3882 1, 0, NULL);
3883 spin_unlock_irqrestore(&x->wait.lock, flags);
3884}
3885EXPORT_SYMBOL(complete);
3886
b15136e9 3887void complete_all(struct completion *x)
1da177e4
LT
3888{
3889 unsigned long flags;
3890
3891 spin_lock_irqsave(&x->wait.lock, flags);
3892 x->done += UINT_MAX/2;
3893 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3894 0, 0, NULL);
3895 spin_unlock_irqrestore(&x->wait.lock, flags);
3896}
3897EXPORT_SYMBOL(complete_all);
3898
8cbbe86d
AK
3899static inline long __sched
3900do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3901{
1da177e4
LT
3902 if (!x->done) {
3903 DECLARE_WAITQUEUE(wait, current);
3904
3905 wait.flags |= WQ_FLAG_EXCLUSIVE;
3906 __add_wait_queue_tail(&x->wait, &wait);
3907 do {
8cbbe86d
AK
3908 if (state == TASK_INTERRUPTIBLE &&
3909 signal_pending(current)) {
3910 __remove_wait_queue(&x->wait, &wait);
3911 return -ERESTARTSYS;
3912 }
3913 __set_current_state(state);
1da177e4
LT
3914 spin_unlock_irq(&x->wait.lock);
3915 timeout = schedule_timeout(timeout);
3916 spin_lock_irq(&x->wait.lock);
3917 if (!timeout) {
3918 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3919 return timeout;
1da177e4
LT
3920 }
3921 } while (!x->done);
3922 __remove_wait_queue(&x->wait, &wait);
3923 }
3924 x->done--;
1da177e4
LT
3925 return timeout;
3926}
1da177e4 3927
8cbbe86d
AK
3928static long __sched
3929wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3930{
1da177e4
LT
3931 might_sleep();
3932
3933 spin_lock_irq(&x->wait.lock);
8cbbe86d 3934 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3935 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3936 return timeout;
3937}
1da177e4 3938
b15136e9 3939void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3940{
3941 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3942}
8cbbe86d 3943EXPORT_SYMBOL(wait_for_completion);
1da177e4 3944
b15136e9 3945unsigned long __sched
8cbbe86d 3946wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3947{
8cbbe86d 3948 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3949}
8cbbe86d 3950EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3951
8cbbe86d 3952int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3953{
51e97990
AK
3954 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3955 if (t == -ERESTARTSYS)
3956 return t;
3957 return 0;
0fec171c 3958}
8cbbe86d 3959EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3960
b15136e9 3961unsigned long __sched
8cbbe86d
AK
3962wait_for_completion_interruptible_timeout(struct completion *x,
3963 unsigned long timeout)
0fec171c 3964{
8cbbe86d 3965 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3966}
8cbbe86d 3967EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3968
8cbbe86d
AK
3969static long __sched
3970sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3971{
0fec171c
IM
3972 unsigned long flags;
3973 wait_queue_t wait;
3974
3975 init_waitqueue_entry(&wait, current);
1da177e4 3976
8cbbe86d 3977 __set_current_state(state);
1da177e4 3978
8cbbe86d
AK
3979 spin_lock_irqsave(&q->lock, flags);
3980 __add_wait_queue(q, &wait);
3981 spin_unlock(&q->lock);
3982 timeout = schedule_timeout(timeout);
3983 spin_lock_irq(&q->lock);
3984 __remove_wait_queue(q, &wait);
3985 spin_unlock_irqrestore(&q->lock, flags);
3986
3987 return timeout;
3988}
3989
3990void __sched interruptible_sleep_on(wait_queue_head_t *q)
3991{
3992 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3993}
1da177e4
LT
3994EXPORT_SYMBOL(interruptible_sleep_on);
3995
0fec171c 3996long __sched
95cdf3b7 3997interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3998{
8cbbe86d 3999 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4000}
1da177e4
LT
4001EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4002
0fec171c 4003void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4004{
8cbbe86d 4005 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4006}
1da177e4
LT
4007EXPORT_SYMBOL(sleep_on);
4008
0fec171c 4009long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4010{
8cbbe86d 4011 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4012}
1da177e4
LT
4013EXPORT_SYMBOL(sleep_on_timeout);
4014
b29739f9
IM
4015#ifdef CONFIG_RT_MUTEXES
4016
4017/*
4018 * rt_mutex_setprio - set the current priority of a task
4019 * @p: task
4020 * @prio: prio value (kernel-internal form)
4021 *
4022 * This function changes the 'effective' priority of a task. It does
4023 * not touch ->normal_prio like __setscheduler().
4024 *
4025 * Used by the rt_mutex code to implement priority inheritance logic.
4026 */
36c8b586 4027void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4028{
4029 unsigned long flags;
83b699ed 4030 int oldprio, on_rq, running;
70b97a7f 4031 struct rq *rq;
cb469845 4032 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4033
4034 BUG_ON(prio < 0 || prio > MAX_PRIO);
4035
4036 rq = task_rq_lock(p, &flags);
a8e504d2 4037 update_rq_clock(rq);
b29739f9 4038
d5f9f942 4039 oldprio = p->prio;
dd41f596 4040 on_rq = p->se.on_rq;
051a1d1a 4041 running = task_current(rq, p);
83b699ed 4042 if (on_rq) {
69be72c1 4043 dequeue_task(rq, p, 0);
83b699ed
SV
4044 if (running)
4045 p->sched_class->put_prev_task(rq, p);
4046 }
dd41f596
IM
4047
4048 if (rt_prio(prio))
4049 p->sched_class = &rt_sched_class;
4050 else
4051 p->sched_class = &fair_sched_class;
4052
b29739f9
IM
4053 p->prio = prio;
4054
dd41f596 4055 if (on_rq) {
83b699ed
SV
4056 if (running)
4057 p->sched_class->set_curr_task(rq);
cb469845 4058
8159f87e 4059 enqueue_task(rq, p, 0);
cb469845
SR
4060
4061 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4062 }
4063 task_rq_unlock(rq, &flags);
4064}
4065
4066#endif
4067
36c8b586 4068void set_user_nice(struct task_struct *p, long nice)
1da177e4 4069{
dd41f596 4070 int old_prio, delta, on_rq;
1da177e4 4071 unsigned long flags;
70b97a7f 4072 struct rq *rq;
1da177e4
LT
4073
4074 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4075 return;
4076 /*
4077 * We have to be careful, if called from sys_setpriority(),
4078 * the task might be in the middle of scheduling on another CPU.
4079 */
4080 rq = task_rq_lock(p, &flags);
a8e504d2 4081 update_rq_clock(rq);
1da177e4
LT
4082 /*
4083 * The RT priorities are set via sched_setscheduler(), but we still
4084 * allow the 'normal' nice value to be set - but as expected
4085 * it wont have any effect on scheduling until the task is
dd41f596 4086 * SCHED_FIFO/SCHED_RR:
1da177e4 4087 */
e05606d3 4088 if (task_has_rt_policy(p)) {
1da177e4
LT
4089 p->static_prio = NICE_TO_PRIO(nice);
4090 goto out_unlock;
4091 }
dd41f596 4092 on_rq = p->se.on_rq;
58e2d4ca 4093 if (on_rq)
69be72c1 4094 dequeue_task(rq, p, 0);
1da177e4 4095
1da177e4 4096 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4097 set_load_weight(p);
b29739f9
IM
4098 old_prio = p->prio;
4099 p->prio = effective_prio(p);
4100 delta = p->prio - old_prio;
1da177e4 4101
dd41f596 4102 if (on_rq) {
8159f87e 4103 enqueue_task(rq, p, 0);
1da177e4 4104 /*
d5f9f942
AM
4105 * If the task increased its priority or is running and
4106 * lowered its priority, then reschedule its CPU:
1da177e4 4107 */
d5f9f942 4108 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4109 resched_task(rq->curr);
4110 }
4111out_unlock:
4112 task_rq_unlock(rq, &flags);
4113}
1da177e4
LT
4114EXPORT_SYMBOL(set_user_nice);
4115
e43379f1
MM
4116/*
4117 * can_nice - check if a task can reduce its nice value
4118 * @p: task
4119 * @nice: nice value
4120 */
36c8b586 4121int can_nice(const struct task_struct *p, const int nice)
e43379f1 4122{
024f4747
MM
4123 /* convert nice value [19,-20] to rlimit style value [1,40] */
4124 int nice_rlim = 20 - nice;
48f24c4d 4125
e43379f1
MM
4126 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4127 capable(CAP_SYS_NICE));
4128}
4129
1da177e4
LT
4130#ifdef __ARCH_WANT_SYS_NICE
4131
4132/*
4133 * sys_nice - change the priority of the current process.
4134 * @increment: priority increment
4135 *
4136 * sys_setpriority is a more generic, but much slower function that
4137 * does similar things.
4138 */
4139asmlinkage long sys_nice(int increment)
4140{
48f24c4d 4141 long nice, retval;
1da177e4
LT
4142
4143 /*
4144 * Setpriority might change our priority at the same moment.
4145 * We don't have to worry. Conceptually one call occurs first
4146 * and we have a single winner.
4147 */
e43379f1
MM
4148 if (increment < -40)
4149 increment = -40;
1da177e4
LT
4150 if (increment > 40)
4151 increment = 40;
4152
4153 nice = PRIO_TO_NICE(current->static_prio) + increment;
4154 if (nice < -20)
4155 nice = -20;
4156 if (nice > 19)
4157 nice = 19;
4158
e43379f1
MM
4159 if (increment < 0 && !can_nice(current, nice))
4160 return -EPERM;
4161
1da177e4
LT
4162 retval = security_task_setnice(current, nice);
4163 if (retval)
4164 return retval;
4165
4166 set_user_nice(current, nice);
4167 return 0;
4168}
4169
4170#endif
4171
4172/**
4173 * task_prio - return the priority value of a given task.
4174 * @p: the task in question.
4175 *
4176 * This is the priority value as seen by users in /proc.
4177 * RT tasks are offset by -200. Normal tasks are centered
4178 * around 0, value goes from -16 to +15.
4179 */
36c8b586 4180int task_prio(const struct task_struct *p)
1da177e4
LT
4181{
4182 return p->prio - MAX_RT_PRIO;
4183}
4184
4185/**
4186 * task_nice - return the nice value of a given task.
4187 * @p: the task in question.
4188 */
36c8b586 4189int task_nice(const struct task_struct *p)
1da177e4
LT
4190{
4191 return TASK_NICE(p);
4192}
1da177e4 4193EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4194
4195/**
4196 * idle_cpu - is a given cpu idle currently?
4197 * @cpu: the processor in question.
4198 */
4199int idle_cpu(int cpu)
4200{
4201 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4202}
4203
1da177e4
LT
4204/**
4205 * idle_task - return the idle task for a given cpu.
4206 * @cpu: the processor in question.
4207 */
36c8b586 4208struct task_struct *idle_task(int cpu)
1da177e4
LT
4209{
4210 return cpu_rq(cpu)->idle;
4211}
4212
4213/**
4214 * find_process_by_pid - find a process with a matching PID value.
4215 * @pid: the pid in question.
4216 */
a9957449 4217static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4218{
228ebcbe 4219 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4220}
4221
4222/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4223static void
4224__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4225{
dd41f596 4226 BUG_ON(p->se.on_rq);
48f24c4d 4227
1da177e4 4228 p->policy = policy;
dd41f596
IM
4229 switch (p->policy) {
4230 case SCHED_NORMAL:
4231 case SCHED_BATCH:
4232 case SCHED_IDLE:
4233 p->sched_class = &fair_sched_class;
4234 break;
4235 case SCHED_FIFO:
4236 case SCHED_RR:
4237 p->sched_class = &rt_sched_class;
4238 break;
4239 }
4240
1da177e4 4241 p->rt_priority = prio;
b29739f9
IM
4242 p->normal_prio = normal_prio(p);
4243 /* we are holding p->pi_lock already */
4244 p->prio = rt_mutex_getprio(p);
2dd73a4f 4245 set_load_weight(p);
1da177e4
LT
4246}
4247
4248/**
72fd4a35 4249 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4250 * @p: the task in question.
4251 * @policy: new policy.
4252 * @param: structure containing the new RT priority.
5fe1d75f 4253 *
72fd4a35 4254 * NOTE that the task may be already dead.
1da177e4 4255 */
95cdf3b7
IM
4256int sched_setscheduler(struct task_struct *p, int policy,
4257 struct sched_param *param)
1da177e4 4258{
83b699ed 4259 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4260 unsigned long flags;
cb469845 4261 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4262 struct rq *rq;
1da177e4 4263
66e5393a
SR
4264 /* may grab non-irq protected spin_locks */
4265 BUG_ON(in_interrupt());
1da177e4
LT
4266recheck:
4267 /* double check policy once rq lock held */
4268 if (policy < 0)
4269 policy = oldpolicy = p->policy;
4270 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4271 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4272 policy != SCHED_IDLE)
b0a9499c 4273 return -EINVAL;
1da177e4
LT
4274 /*
4275 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4276 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4277 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4278 */
4279 if (param->sched_priority < 0 ||
95cdf3b7 4280 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4281 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4282 return -EINVAL;
e05606d3 4283 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4284 return -EINVAL;
4285
37e4ab3f
OC
4286 /*
4287 * Allow unprivileged RT tasks to decrease priority:
4288 */
4289 if (!capable(CAP_SYS_NICE)) {
e05606d3 4290 if (rt_policy(policy)) {
8dc3e909 4291 unsigned long rlim_rtprio;
8dc3e909
ON
4292
4293 if (!lock_task_sighand(p, &flags))
4294 return -ESRCH;
4295 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4296 unlock_task_sighand(p, &flags);
4297
4298 /* can't set/change the rt policy */
4299 if (policy != p->policy && !rlim_rtprio)
4300 return -EPERM;
4301
4302 /* can't increase priority */
4303 if (param->sched_priority > p->rt_priority &&
4304 param->sched_priority > rlim_rtprio)
4305 return -EPERM;
4306 }
dd41f596
IM
4307 /*
4308 * Like positive nice levels, dont allow tasks to
4309 * move out of SCHED_IDLE either:
4310 */
4311 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4312 return -EPERM;
5fe1d75f 4313
37e4ab3f
OC
4314 /* can't change other user's priorities */
4315 if ((current->euid != p->euid) &&
4316 (current->euid != p->uid))
4317 return -EPERM;
4318 }
1da177e4
LT
4319
4320 retval = security_task_setscheduler(p, policy, param);
4321 if (retval)
4322 return retval;
b29739f9
IM
4323 /*
4324 * make sure no PI-waiters arrive (or leave) while we are
4325 * changing the priority of the task:
4326 */
4327 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4328 /*
4329 * To be able to change p->policy safely, the apropriate
4330 * runqueue lock must be held.
4331 */
b29739f9 4332 rq = __task_rq_lock(p);
1da177e4
LT
4333 /* recheck policy now with rq lock held */
4334 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4335 policy = oldpolicy = -1;
b29739f9
IM
4336 __task_rq_unlock(rq);
4337 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4338 goto recheck;
4339 }
2daa3577 4340 update_rq_clock(rq);
dd41f596 4341 on_rq = p->se.on_rq;
051a1d1a 4342 running = task_current(rq, p);
83b699ed 4343 if (on_rq) {
2e1cb74a 4344 deactivate_task(rq, p, 0);
83b699ed
SV
4345 if (running)
4346 p->sched_class->put_prev_task(rq, p);
4347 }
f6b53205 4348
1da177e4 4349 oldprio = p->prio;
dd41f596 4350 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4351
dd41f596 4352 if (on_rq) {
83b699ed
SV
4353 if (running)
4354 p->sched_class->set_curr_task(rq);
cb469845 4355
dd41f596 4356 activate_task(rq, p, 0);
cb469845
SR
4357
4358 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4359 }
b29739f9
IM
4360 __task_rq_unlock(rq);
4361 spin_unlock_irqrestore(&p->pi_lock, flags);
4362
95e02ca9
TG
4363 rt_mutex_adjust_pi(p);
4364
1da177e4
LT
4365 return 0;
4366}
4367EXPORT_SYMBOL_GPL(sched_setscheduler);
4368
95cdf3b7
IM
4369static int
4370do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4371{
1da177e4
LT
4372 struct sched_param lparam;
4373 struct task_struct *p;
36c8b586 4374 int retval;
1da177e4
LT
4375
4376 if (!param || pid < 0)
4377 return -EINVAL;
4378 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4379 return -EFAULT;
5fe1d75f
ON
4380
4381 rcu_read_lock();
4382 retval = -ESRCH;
1da177e4 4383 p = find_process_by_pid(pid);
5fe1d75f
ON
4384 if (p != NULL)
4385 retval = sched_setscheduler(p, policy, &lparam);
4386 rcu_read_unlock();
36c8b586 4387
1da177e4
LT
4388 return retval;
4389}
4390
4391/**
4392 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4393 * @pid: the pid in question.
4394 * @policy: new policy.
4395 * @param: structure containing the new RT priority.
4396 */
41a2d6cf
IM
4397asmlinkage long
4398sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4399{
c21761f1
JB
4400 /* negative values for policy are not valid */
4401 if (policy < 0)
4402 return -EINVAL;
4403
1da177e4
LT
4404 return do_sched_setscheduler(pid, policy, param);
4405}
4406
4407/**
4408 * sys_sched_setparam - set/change the RT priority of a thread
4409 * @pid: the pid in question.
4410 * @param: structure containing the new RT priority.
4411 */
4412asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4413{
4414 return do_sched_setscheduler(pid, -1, param);
4415}
4416
4417/**
4418 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4419 * @pid: the pid in question.
4420 */
4421asmlinkage long sys_sched_getscheduler(pid_t pid)
4422{
36c8b586 4423 struct task_struct *p;
3a5c359a 4424 int retval;
1da177e4
LT
4425
4426 if (pid < 0)
3a5c359a 4427 return -EINVAL;
1da177e4
LT
4428
4429 retval = -ESRCH;
4430 read_lock(&tasklist_lock);
4431 p = find_process_by_pid(pid);
4432 if (p) {
4433 retval = security_task_getscheduler(p);
4434 if (!retval)
4435 retval = p->policy;
4436 }
4437 read_unlock(&tasklist_lock);
1da177e4
LT
4438 return retval;
4439}
4440
4441/**
4442 * sys_sched_getscheduler - get the RT priority of a thread
4443 * @pid: the pid in question.
4444 * @param: structure containing the RT priority.
4445 */
4446asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4447{
4448 struct sched_param lp;
36c8b586 4449 struct task_struct *p;
3a5c359a 4450 int retval;
1da177e4
LT
4451
4452 if (!param || pid < 0)
3a5c359a 4453 return -EINVAL;
1da177e4
LT
4454
4455 read_lock(&tasklist_lock);
4456 p = find_process_by_pid(pid);
4457 retval = -ESRCH;
4458 if (!p)
4459 goto out_unlock;
4460
4461 retval = security_task_getscheduler(p);
4462 if (retval)
4463 goto out_unlock;
4464
4465 lp.sched_priority = p->rt_priority;
4466 read_unlock(&tasklist_lock);
4467
4468 /*
4469 * This one might sleep, we cannot do it with a spinlock held ...
4470 */
4471 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4472
1da177e4
LT
4473 return retval;
4474
4475out_unlock:
4476 read_unlock(&tasklist_lock);
4477 return retval;
4478}
4479
4480long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4481{
1da177e4 4482 cpumask_t cpus_allowed;
36c8b586
IM
4483 struct task_struct *p;
4484 int retval;
1da177e4 4485
95402b38 4486 get_online_cpus();
1da177e4
LT
4487 read_lock(&tasklist_lock);
4488
4489 p = find_process_by_pid(pid);
4490 if (!p) {
4491 read_unlock(&tasklist_lock);
95402b38 4492 put_online_cpus();
1da177e4
LT
4493 return -ESRCH;
4494 }
4495
4496 /*
4497 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4498 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4499 * usage count and then drop tasklist_lock.
4500 */
4501 get_task_struct(p);
4502 read_unlock(&tasklist_lock);
4503
4504 retval = -EPERM;
4505 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4506 !capable(CAP_SYS_NICE))
4507 goto out_unlock;
4508
e7834f8f
DQ
4509 retval = security_task_setscheduler(p, 0, NULL);
4510 if (retval)
4511 goto out_unlock;
4512
1da177e4
LT
4513 cpus_allowed = cpuset_cpus_allowed(p);
4514 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4515 again:
1da177e4
LT
4516 retval = set_cpus_allowed(p, new_mask);
4517
8707d8b8
PM
4518 if (!retval) {
4519 cpus_allowed = cpuset_cpus_allowed(p);
4520 if (!cpus_subset(new_mask, cpus_allowed)) {
4521 /*
4522 * We must have raced with a concurrent cpuset
4523 * update. Just reset the cpus_allowed to the
4524 * cpuset's cpus_allowed
4525 */
4526 new_mask = cpus_allowed;
4527 goto again;
4528 }
4529 }
1da177e4
LT
4530out_unlock:
4531 put_task_struct(p);
95402b38 4532 put_online_cpus();
1da177e4
LT
4533 return retval;
4534}
4535
4536static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4537 cpumask_t *new_mask)
4538{
4539 if (len < sizeof(cpumask_t)) {
4540 memset(new_mask, 0, sizeof(cpumask_t));
4541 } else if (len > sizeof(cpumask_t)) {
4542 len = sizeof(cpumask_t);
4543 }
4544 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4545}
4546
4547/**
4548 * sys_sched_setaffinity - set the cpu affinity of a process
4549 * @pid: pid of the process
4550 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4551 * @user_mask_ptr: user-space pointer to the new cpu mask
4552 */
4553asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4554 unsigned long __user *user_mask_ptr)
4555{
4556 cpumask_t new_mask;
4557 int retval;
4558
4559 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4560 if (retval)
4561 return retval;
4562
4563 return sched_setaffinity(pid, new_mask);
4564}
4565
4566/*
4567 * Represents all cpu's present in the system
4568 * In systems capable of hotplug, this map could dynamically grow
4569 * as new cpu's are detected in the system via any platform specific
4570 * method, such as ACPI for e.g.
4571 */
4572
4cef0c61 4573cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4574EXPORT_SYMBOL(cpu_present_map);
4575
4576#ifndef CONFIG_SMP
4cef0c61 4577cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4578EXPORT_SYMBOL(cpu_online_map);
4579
4cef0c61 4580cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4581EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4582#endif
4583
4584long sched_getaffinity(pid_t pid, cpumask_t *mask)
4585{
36c8b586 4586 struct task_struct *p;
1da177e4 4587 int retval;
1da177e4 4588
95402b38 4589 get_online_cpus();
1da177e4
LT
4590 read_lock(&tasklist_lock);
4591
4592 retval = -ESRCH;
4593 p = find_process_by_pid(pid);
4594 if (!p)
4595 goto out_unlock;
4596
e7834f8f
DQ
4597 retval = security_task_getscheduler(p);
4598 if (retval)
4599 goto out_unlock;
4600
2f7016d9 4601 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4602
4603out_unlock:
4604 read_unlock(&tasklist_lock);
95402b38 4605 put_online_cpus();
1da177e4 4606
9531b62f 4607 return retval;
1da177e4
LT
4608}
4609
4610/**
4611 * sys_sched_getaffinity - get the cpu affinity of a process
4612 * @pid: pid of the process
4613 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4614 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4615 */
4616asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4617 unsigned long __user *user_mask_ptr)
4618{
4619 int ret;
4620 cpumask_t mask;
4621
4622 if (len < sizeof(cpumask_t))
4623 return -EINVAL;
4624
4625 ret = sched_getaffinity(pid, &mask);
4626 if (ret < 0)
4627 return ret;
4628
4629 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4630 return -EFAULT;
4631
4632 return sizeof(cpumask_t);
4633}
4634
4635/**
4636 * sys_sched_yield - yield the current processor to other threads.
4637 *
dd41f596
IM
4638 * This function yields the current CPU to other tasks. If there are no
4639 * other threads running on this CPU then this function will return.
1da177e4
LT
4640 */
4641asmlinkage long sys_sched_yield(void)
4642{
70b97a7f 4643 struct rq *rq = this_rq_lock();
1da177e4 4644
2d72376b 4645 schedstat_inc(rq, yld_count);
4530d7ab 4646 current->sched_class->yield_task(rq);
1da177e4
LT
4647
4648 /*
4649 * Since we are going to call schedule() anyway, there's
4650 * no need to preempt or enable interrupts:
4651 */
4652 __release(rq->lock);
8a25d5de 4653 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4654 _raw_spin_unlock(&rq->lock);
4655 preempt_enable_no_resched();
4656
4657 schedule();
4658
4659 return 0;
4660}
4661
e7b38404 4662static void __cond_resched(void)
1da177e4 4663{
8e0a43d8
IM
4664#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4665 __might_sleep(__FILE__, __LINE__);
4666#endif
5bbcfd90
IM
4667 /*
4668 * The BKS might be reacquired before we have dropped
4669 * PREEMPT_ACTIVE, which could trigger a second
4670 * cond_resched() call.
4671 */
1da177e4
LT
4672 do {
4673 add_preempt_count(PREEMPT_ACTIVE);
4674 schedule();
4675 sub_preempt_count(PREEMPT_ACTIVE);
4676 } while (need_resched());
4677}
4678
4679int __sched cond_resched(void)
4680{
9414232f
IM
4681 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4682 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4683 __cond_resched();
4684 return 1;
4685 }
4686 return 0;
4687}
1da177e4
LT
4688EXPORT_SYMBOL(cond_resched);
4689
4690/*
4691 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4692 * call schedule, and on return reacquire the lock.
4693 *
41a2d6cf 4694 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4695 * operations here to prevent schedule() from being called twice (once via
4696 * spin_unlock(), once by hand).
4697 */
95cdf3b7 4698int cond_resched_lock(spinlock_t *lock)
1da177e4 4699{
6df3cecb
JK
4700 int ret = 0;
4701
1da177e4
LT
4702 if (need_lockbreak(lock)) {
4703 spin_unlock(lock);
4704 cpu_relax();
6df3cecb 4705 ret = 1;
1da177e4
LT
4706 spin_lock(lock);
4707 }
9414232f 4708 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4709 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4710 _raw_spin_unlock(lock);
4711 preempt_enable_no_resched();
4712 __cond_resched();
6df3cecb 4713 ret = 1;
1da177e4 4714 spin_lock(lock);
1da177e4 4715 }
6df3cecb 4716 return ret;
1da177e4 4717}
1da177e4
LT
4718EXPORT_SYMBOL(cond_resched_lock);
4719
4720int __sched cond_resched_softirq(void)
4721{
4722 BUG_ON(!in_softirq());
4723
9414232f 4724 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4725 local_bh_enable();
1da177e4
LT
4726 __cond_resched();
4727 local_bh_disable();
4728 return 1;
4729 }
4730 return 0;
4731}
1da177e4
LT
4732EXPORT_SYMBOL(cond_resched_softirq);
4733
1da177e4
LT
4734/**
4735 * yield - yield the current processor to other threads.
4736 *
72fd4a35 4737 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4738 * thread runnable and calls sys_sched_yield().
4739 */
4740void __sched yield(void)
4741{
4742 set_current_state(TASK_RUNNING);
4743 sys_sched_yield();
4744}
1da177e4
LT
4745EXPORT_SYMBOL(yield);
4746
4747/*
41a2d6cf 4748 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4749 * that process accounting knows that this is a task in IO wait state.
4750 *
4751 * But don't do that if it is a deliberate, throttling IO wait (this task
4752 * has set its backing_dev_info: the queue against which it should throttle)
4753 */
4754void __sched io_schedule(void)
4755{
70b97a7f 4756 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4757
0ff92245 4758 delayacct_blkio_start();
1da177e4
LT
4759 atomic_inc(&rq->nr_iowait);
4760 schedule();
4761 atomic_dec(&rq->nr_iowait);
0ff92245 4762 delayacct_blkio_end();
1da177e4 4763}
1da177e4
LT
4764EXPORT_SYMBOL(io_schedule);
4765
4766long __sched io_schedule_timeout(long timeout)
4767{
70b97a7f 4768 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4769 long ret;
4770
0ff92245 4771 delayacct_blkio_start();
1da177e4
LT
4772 atomic_inc(&rq->nr_iowait);
4773 ret = schedule_timeout(timeout);
4774 atomic_dec(&rq->nr_iowait);
0ff92245 4775 delayacct_blkio_end();
1da177e4
LT
4776 return ret;
4777}
4778
4779/**
4780 * sys_sched_get_priority_max - return maximum RT priority.
4781 * @policy: scheduling class.
4782 *
4783 * this syscall returns the maximum rt_priority that can be used
4784 * by a given scheduling class.
4785 */
4786asmlinkage long sys_sched_get_priority_max(int policy)
4787{
4788 int ret = -EINVAL;
4789
4790 switch (policy) {
4791 case SCHED_FIFO:
4792 case SCHED_RR:
4793 ret = MAX_USER_RT_PRIO-1;
4794 break;
4795 case SCHED_NORMAL:
b0a9499c 4796 case SCHED_BATCH:
dd41f596 4797 case SCHED_IDLE:
1da177e4
LT
4798 ret = 0;
4799 break;
4800 }
4801 return ret;
4802}
4803
4804/**
4805 * sys_sched_get_priority_min - return minimum RT priority.
4806 * @policy: scheduling class.
4807 *
4808 * this syscall returns the minimum rt_priority that can be used
4809 * by a given scheduling class.
4810 */
4811asmlinkage long sys_sched_get_priority_min(int policy)
4812{
4813 int ret = -EINVAL;
4814
4815 switch (policy) {
4816 case SCHED_FIFO:
4817 case SCHED_RR:
4818 ret = 1;
4819 break;
4820 case SCHED_NORMAL:
b0a9499c 4821 case SCHED_BATCH:
dd41f596 4822 case SCHED_IDLE:
1da177e4
LT
4823 ret = 0;
4824 }
4825 return ret;
4826}
4827
4828/**
4829 * sys_sched_rr_get_interval - return the default timeslice of a process.
4830 * @pid: pid of the process.
4831 * @interval: userspace pointer to the timeslice value.
4832 *
4833 * this syscall writes the default timeslice value of a given process
4834 * into the user-space timespec buffer. A value of '0' means infinity.
4835 */
4836asmlinkage
4837long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4838{
36c8b586 4839 struct task_struct *p;
a4ec24b4 4840 unsigned int time_slice;
3a5c359a 4841 int retval;
1da177e4 4842 struct timespec t;
1da177e4
LT
4843
4844 if (pid < 0)
3a5c359a 4845 return -EINVAL;
1da177e4
LT
4846
4847 retval = -ESRCH;
4848 read_lock(&tasklist_lock);
4849 p = find_process_by_pid(pid);
4850 if (!p)
4851 goto out_unlock;
4852
4853 retval = security_task_getscheduler(p);
4854 if (retval)
4855 goto out_unlock;
4856
77034937
IM
4857 /*
4858 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4859 * tasks that are on an otherwise idle runqueue:
4860 */
4861 time_slice = 0;
4862 if (p->policy == SCHED_RR) {
a4ec24b4 4863 time_slice = DEF_TIMESLICE;
77034937 4864 } else {
a4ec24b4
DA
4865 struct sched_entity *se = &p->se;
4866 unsigned long flags;
4867 struct rq *rq;
4868
4869 rq = task_rq_lock(p, &flags);
77034937
IM
4870 if (rq->cfs.load.weight)
4871 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4872 task_rq_unlock(rq, &flags);
4873 }
1da177e4 4874 read_unlock(&tasklist_lock);
a4ec24b4 4875 jiffies_to_timespec(time_slice, &t);
1da177e4 4876 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4877 return retval;
3a5c359a 4878
1da177e4
LT
4879out_unlock:
4880 read_unlock(&tasklist_lock);
4881 return retval;
4882}
4883
2ed6e34f 4884static const char stat_nam[] = "RSDTtZX";
36c8b586 4885
82a1fcb9 4886void sched_show_task(struct task_struct *p)
1da177e4 4887{
1da177e4 4888 unsigned long free = 0;
36c8b586 4889 unsigned state;
1da177e4 4890
1da177e4 4891 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4892 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4893 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4894#if BITS_PER_LONG == 32
1da177e4 4895 if (state == TASK_RUNNING)
cc4ea795 4896 printk(KERN_CONT " running ");
1da177e4 4897 else
cc4ea795 4898 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4899#else
4900 if (state == TASK_RUNNING)
cc4ea795 4901 printk(KERN_CONT " running task ");
1da177e4 4902 else
cc4ea795 4903 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4904#endif
4905#ifdef CONFIG_DEBUG_STACK_USAGE
4906 {
10ebffde 4907 unsigned long *n = end_of_stack(p);
1da177e4
LT
4908 while (!*n)
4909 n++;
10ebffde 4910 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4911 }
4912#endif
ba25f9dc 4913 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4914 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4915
4916 if (state != TASK_RUNNING)
4917 show_stack(p, NULL);
4918}
4919
e59e2ae2 4920void show_state_filter(unsigned long state_filter)
1da177e4 4921{
36c8b586 4922 struct task_struct *g, *p;
1da177e4 4923
4bd77321
IM
4924#if BITS_PER_LONG == 32
4925 printk(KERN_INFO
4926 " task PC stack pid father\n");
1da177e4 4927#else
4bd77321
IM
4928 printk(KERN_INFO
4929 " task PC stack pid father\n");
1da177e4
LT
4930#endif
4931 read_lock(&tasklist_lock);
4932 do_each_thread(g, p) {
4933 /*
4934 * reset the NMI-timeout, listing all files on a slow
4935 * console might take alot of time:
4936 */
4937 touch_nmi_watchdog();
39bc89fd 4938 if (!state_filter || (p->state & state_filter))
82a1fcb9 4939 sched_show_task(p);
1da177e4
LT
4940 } while_each_thread(g, p);
4941
04c9167f
JF
4942 touch_all_softlockup_watchdogs();
4943
dd41f596
IM
4944#ifdef CONFIG_SCHED_DEBUG
4945 sysrq_sched_debug_show();
4946#endif
1da177e4 4947 read_unlock(&tasklist_lock);
e59e2ae2
IM
4948 /*
4949 * Only show locks if all tasks are dumped:
4950 */
4951 if (state_filter == -1)
4952 debug_show_all_locks();
1da177e4
LT
4953}
4954
1df21055
IM
4955void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4956{
dd41f596 4957 idle->sched_class = &idle_sched_class;
1df21055
IM
4958}
4959
f340c0d1
IM
4960/**
4961 * init_idle - set up an idle thread for a given CPU
4962 * @idle: task in question
4963 * @cpu: cpu the idle task belongs to
4964 *
4965 * NOTE: this function does not set the idle thread's NEED_RESCHED
4966 * flag, to make booting more robust.
4967 */
5c1e1767 4968void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4969{
70b97a7f 4970 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4971 unsigned long flags;
4972
dd41f596
IM
4973 __sched_fork(idle);
4974 idle->se.exec_start = sched_clock();
4975
b29739f9 4976 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4977 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4978 __set_task_cpu(idle, cpu);
1da177e4
LT
4979
4980 spin_lock_irqsave(&rq->lock, flags);
4981 rq->curr = rq->idle = idle;
4866cde0
NP
4982#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4983 idle->oncpu = 1;
4984#endif
1da177e4
LT
4985 spin_unlock_irqrestore(&rq->lock, flags);
4986
4987 /* Set the preempt count _outside_ the spinlocks! */
4988#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4989 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4990#else
a1261f54 4991 task_thread_info(idle)->preempt_count = 0;
1da177e4 4992#endif
dd41f596
IM
4993 /*
4994 * The idle tasks have their own, simple scheduling class:
4995 */
4996 idle->sched_class = &idle_sched_class;
1da177e4
LT
4997}
4998
4999/*
5000 * In a system that switches off the HZ timer nohz_cpu_mask
5001 * indicates which cpus entered this state. This is used
5002 * in the rcu update to wait only for active cpus. For system
5003 * which do not switch off the HZ timer nohz_cpu_mask should
5004 * always be CPU_MASK_NONE.
5005 */
5006cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5007
19978ca6
IM
5008/*
5009 * Increase the granularity value when there are more CPUs,
5010 * because with more CPUs the 'effective latency' as visible
5011 * to users decreases. But the relationship is not linear,
5012 * so pick a second-best guess by going with the log2 of the
5013 * number of CPUs.
5014 *
5015 * This idea comes from the SD scheduler of Con Kolivas:
5016 */
5017static inline void sched_init_granularity(void)
5018{
5019 unsigned int factor = 1 + ilog2(num_online_cpus());
5020 const unsigned long limit = 200000000;
5021
5022 sysctl_sched_min_granularity *= factor;
5023 if (sysctl_sched_min_granularity > limit)
5024 sysctl_sched_min_granularity = limit;
5025
5026 sysctl_sched_latency *= factor;
5027 if (sysctl_sched_latency > limit)
5028 sysctl_sched_latency = limit;
5029
5030 sysctl_sched_wakeup_granularity *= factor;
5031 sysctl_sched_batch_wakeup_granularity *= factor;
5032}
5033
1da177e4
LT
5034#ifdef CONFIG_SMP
5035/*
5036 * This is how migration works:
5037 *
70b97a7f 5038 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5039 * runqueue and wake up that CPU's migration thread.
5040 * 2) we down() the locked semaphore => thread blocks.
5041 * 3) migration thread wakes up (implicitly it forces the migrated
5042 * thread off the CPU)
5043 * 4) it gets the migration request and checks whether the migrated
5044 * task is still in the wrong runqueue.
5045 * 5) if it's in the wrong runqueue then the migration thread removes
5046 * it and puts it into the right queue.
5047 * 6) migration thread up()s the semaphore.
5048 * 7) we wake up and the migration is done.
5049 */
5050
5051/*
5052 * Change a given task's CPU affinity. Migrate the thread to a
5053 * proper CPU and schedule it away if the CPU it's executing on
5054 * is removed from the allowed bitmask.
5055 *
5056 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5057 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5058 * call is not atomic; no spinlocks may be held.
5059 */
36c8b586 5060int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5061{
70b97a7f 5062 struct migration_req req;
1da177e4 5063 unsigned long flags;
70b97a7f 5064 struct rq *rq;
48f24c4d 5065 int ret = 0;
1da177e4
LT
5066
5067 rq = task_rq_lock(p, &flags);
5068 if (!cpus_intersects(new_mask, cpu_online_map)) {
5069 ret = -EINVAL;
5070 goto out;
5071 }
5072
73fe6aae
GH
5073 if (p->sched_class->set_cpus_allowed)
5074 p->sched_class->set_cpus_allowed(p, &new_mask);
5075 else {
0eab9146 5076 p->cpus_allowed = new_mask;
73fe6aae
GH
5077 p->nr_cpus_allowed = cpus_weight(new_mask);
5078 }
5079
1da177e4
LT
5080 /* Can the task run on the task's current CPU? If so, we're done */
5081 if (cpu_isset(task_cpu(p), new_mask))
5082 goto out;
5083
5084 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5085 /* Need help from migration thread: drop lock and wait. */
5086 task_rq_unlock(rq, &flags);
5087 wake_up_process(rq->migration_thread);
5088 wait_for_completion(&req.done);
5089 tlb_migrate_finish(p->mm);
5090 return 0;
5091 }
5092out:
5093 task_rq_unlock(rq, &flags);
48f24c4d 5094
1da177e4
LT
5095 return ret;
5096}
1da177e4
LT
5097EXPORT_SYMBOL_GPL(set_cpus_allowed);
5098
5099/*
41a2d6cf 5100 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5101 * this because either it can't run here any more (set_cpus_allowed()
5102 * away from this CPU, or CPU going down), or because we're
5103 * attempting to rebalance this task on exec (sched_exec).
5104 *
5105 * So we race with normal scheduler movements, but that's OK, as long
5106 * as the task is no longer on this CPU.
efc30814
KK
5107 *
5108 * Returns non-zero if task was successfully migrated.
1da177e4 5109 */
efc30814 5110static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5111{
70b97a7f 5112 struct rq *rq_dest, *rq_src;
dd41f596 5113 int ret = 0, on_rq;
1da177e4
LT
5114
5115 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5116 return ret;
1da177e4
LT
5117
5118 rq_src = cpu_rq(src_cpu);
5119 rq_dest = cpu_rq(dest_cpu);
5120
5121 double_rq_lock(rq_src, rq_dest);
5122 /* Already moved. */
5123 if (task_cpu(p) != src_cpu)
5124 goto out;
5125 /* Affinity changed (again). */
5126 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5127 goto out;
5128
dd41f596 5129 on_rq = p->se.on_rq;
6e82a3be 5130 if (on_rq)
2e1cb74a 5131 deactivate_task(rq_src, p, 0);
6e82a3be 5132
1da177e4 5133 set_task_cpu(p, dest_cpu);
dd41f596
IM
5134 if (on_rq) {
5135 activate_task(rq_dest, p, 0);
5136 check_preempt_curr(rq_dest, p);
1da177e4 5137 }
efc30814 5138 ret = 1;
1da177e4
LT
5139out:
5140 double_rq_unlock(rq_src, rq_dest);
efc30814 5141 return ret;
1da177e4
LT
5142}
5143
5144/*
5145 * migration_thread - this is a highprio system thread that performs
5146 * thread migration by bumping thread off CPU then 'pushing' onto
5147 * another runqueue.
5148 */
95cdf3b7 5149static int migration_thread(void *data)
1da177e4 5150{
1da177e4 5151 int cpu = (long)data;
70b97a7f 5152 struct rq *rq;
1da177e4
LT
5153
5154 rq = cpu_rq(cpu);
5155 BUG_ON(rq->migration_thread != current);
5156
5157 set_current_state(TASK_INTERRUPTIBLE);
5158 while (!kthread_should_stop()) {
70b97a7f 5159 struct migration_req *req;
1da177e4 5160 struct list_head *head;
1da177e4 5161
1da177e4
LT
5162 spin_lock_irq(&rq->lock);
5163
5164 if (cpu_is_offline(cpu)) {
5165 spin_unlock_irq(&rq->lock);
5166 goto wait_to_die;
5167 }
5168
5169 if (rq->active_balance) {
5170 active_load_balance(rq, cpu);
5171 rq->active_balance = 0;
5172 }
5173
5174 head = &rq->migration_queue;
5175
5176 if (list_empty(head)) {
5177 spin_unlock_irq(&rq->lock);
5178 schedule();
5179 set_current_state(TASK_INTERRUPTIBLE);
5180 continue;
5181 }
70b97a7f 5182 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5183 list_del_init(head->next);
5184
674311d5
NP
5185 spin_unlock(&rq->lock);
5186 __migrate_task(req->task, cpu, req->dest_cpu);
5187 local_irq_enable();
1da177e4
LT
5188
5189 complete(&req->done);
5190 }
5191 __set_current_state(TASK_RUNNING);
5192 return 0;
5193
5194wait_to_die:
5195 /* Wait for kthread_stop */
5196 set_current_state(TASK_INTERRUPTIBLE);
5197 while (!kthread_should_stop()) {
5198 schedule();
5199 set_current_state(TASK_INTERRUPTIBLE);
5200 }
5201 __set_current_state(TASK_RUNNING);
5202 return 0;
5203}
5204
5205#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5206
5207static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5208{
5209 int ret;
5210
5211 local_irq_disable();
5212 ret = __migrate_task(p, src_cpu, dest_cpu);
5213 local_irq_enable();
5214 return ret;
5215}
5216
054b9108 5217/*
3a4fa0a2 5218 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5219 * NOTE: interrupts should be disabled by the caller
5220 */
48f24c4d 5221static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5222{
efc30814 5223 unsigned long flags;
1da177e4 5224 cpumask_t mask;
70b97a7f
IM
5225 struct rq *rq;
5226 int dest_cpu;
1da177e4 5227
3a5c359a
AK
5228 do {
5229 /* On same node? */
5230 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5231 cpus_and(mask, mask, p->cpus_allowed);
5232 dest_cpu = any_online_cpu(mask);
5233
5234 /* On any allowed CPU? */
5235 if (dest_cpu == NR_CPUS)
5236 dest_cpu = any_online_cpu(p->cpus_allowed);
5237
5238 /* No more Mr. Nice Guy. */
5239 if (dest_cpu == NR_CPUS) {
470fd646
CW
5240 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5241 /*
5242 * Try to stay on the same cpuset, where the
5243 * current cpuset may be a subset of all cpus.
5244 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5245 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5246 * called within calls to cpuset_lock/cpuset_unlock.
5247 */
3a5c359a 5248 rq = task_rq_lock(p, &flags);
470fd646 5249 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5250 dest_cpu = any_online_cpu(p->cpus_allowed);
5251 task_rq_unlock(rq, &flags);
1da177e4 5252
3a5c359a
AK
5253 /*
5254 * Don't tell them about moving exiting tasks or
5255 * kernel threads (both mm NULL), since they never
5256 * leave kernel.
5257 */
41a2d6cf 5258 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5259 printk(KERN_INFO "process %d (%s) no "
5260 "longer affine to cpu%d\n",
41a2d6cf
IM
5261 task_pid_nr(p), p->comm, dead_cpu);
5262 }
3a5c359a 5263 }
f7b4cddc 5264 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5265}
5266
5267/*
5268 * While a dead CPU has no uninterruptible tasks queued at this point,
5269 * it might still have a nonzero ->nr_uninterruptible counter, because
5270 * for performance reasons the counter is not stricly tracking tasks to
5271 * their home CPUs. So we just add the counter to another CPU's counter,
5272 * to keep the global sum constant after CPU-down:
5273 */
70b97a7f 5274static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5275{
70b97a7f 5276 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5277 unsigned long flags;
5278
5279 local_irq_save(flags);
5280 double_rq_lock(rq_src, rq_dest);
5281 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5282 rq_src->nr_uninterruptible = 0;
5283 double_rq_unlock(rq_src, rq_dest);
5284 local_irq_restore(flags);
5285}
5286
5287/* Run through task list and migrate tasks from the dead cpu. */
5288static void migrate_live_tasks(int src_cpu)
5289{
48f24c4d 5290 struct task_struct *p, *t;
1da177e4 5291
f7b4cddc 5292 read_lock(&tasklist_lock);
1da177e4 5293
48f24c4d
IM
5294 do_each_thread(t, p) {
5295 if (p == current)
1da177e4
LT
5296 continue;
5297
48f24c4d
IM
5298 if (task_cpu(p) == src_cpu)
5299 move_task_off_dead_cpu(src_cpu, p);
5300 } while_each_thread(t, p);
1da177e4 5301
f7b4cddc 5302 read_unlock(&tasklist_lock);
1da177e4
LT
5303}
5304
dd41f596
IM
5305/*
5306 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5307 * It does so by boosting its priority to highest possible.
5308 * Used by CPU offline code.
1da177e4
LT
5309 */
5310void sched_idle_next(void)
5311{
48f24c4d 5312 int this_cpu = smp_processor_id();
70b97a7f 5313 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5314 struct task_struct *p = rq->idle;
5315 unsigned long flags;
5316
5317 /* cpu has to be offline */
48f24c4d 5318 BUG_ON(cpu_online(this_cpu));
1da177e4 5319
48f24c4d
IM
5320 /*
5321 * Strictly not necessary since rest of the CPUs are stopped by now
5322 * and interrupts disabled on the current cpu.
1da177e4
LT
5323 */
5324 spin_lock_irqsave(&rq->lock, flags);
5325
dd41f596 5326 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5327
94bc9a7b
DA
5328 update_rq_clock(rq);
5329 activate_task(rq, p, 0);
1da177e4
LT
5330
5331 spin_unlock_irqrestore(&rq->lock, flags);
5332}
5333
48f24c4d
IM
5334/*
5335 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5336 * offline.
5337 */
5338void idle_task_exit(void)
5339{
5340 struct mm_struct *mm = current->active_mm;
5341
5342 BUG_ON(cpu_online(smp_processor_id()));
5343
5344 if (mm != &init_mm)
5345 switch_mm(mm, &init_mm, current);
5346 mmdrop(mm);
5347}
5348
054b9108 5349/* called under rq->lock with disabled interrupts */
36c8b586 5350static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5351{
70b97a7f 5352 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5353
5354 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5355 BUG_ON(!p->exit_state);
1da177e4
LT
5356
5357 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5358 BUG_ON(p->state == TASK_DEAD);
1da177e4 5359
48f24c4d 5360 get_task_struct(p);
1da177e4
LT
5361
5362 /*
5363 * Drop lock around migration; if someone else moves it,
41a2d6cf 5364 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5365 * fine.
5366 */
f7b4cddc 5367 spin_unlock_irq(&rq->lock);
48f24c4d 5368 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5369 spin_lock_irq(&rq->lock);
1da177e4 5370
48f24c4d 5371 put_task_struct(p);
1da177e4
LT
5372}
5373
5374/* release_task() removes task from tasklist, so we won't find dead tasks. */
5375static void migrate_dead_tasks(unsigned int dead_cpu)
5376{
70b97a7f 5377 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5378 struct task_struct *next;
48f24c4d 5379
dd41f596
IM
5380 for ( ; ; ) {
5381 if (!rq->nr_running)
5382 break;
a8e504d2 5383 update_rq_clock(rq);
ff95f3df 5384 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5385 if (!next)
5386 break;
5387 migrate_dead(dead_cpu, next);
e692ab53 5388
1da177e4
LT
5389 }
5390}
5391#endif /* CONFIG_HOTPLUG_CPU */
5392
e692ab53
NP
5393#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5394
5395static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5396 {
5397 .procname = "sched_domain",
c57baf1e 5398 .mode = 0555,
e0361851 5399 },
38605cae 5400 {0, },
e692ab53
NP
5401};
5402
5403static struct ctl_table sd_ctl_root[] = {
e0361851 5404 {
c57baf1e 5405 .ctl_name = CTL_KERN,
e0361851 5406 .procname = "kernel",
c57baf1e 5407 .mode = 0555,
e0361851
AD
5408 .child = sd_ctl_dir,
5409 },
38605cae 5410 {0, },
e692ab53
NP
5411};
5412
5413static struct ctl_table *sd_alloc_ctl_entry(int n)
5414{
5415 struct ctl_table *entry =
5cf9f062 5416 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5417
e692ab53
NP
5418 return entry;
5419}
5420
6382bc90
MM
5421static void sd_free_ctl_entry(struct ctl_table **tablep)
5422{
cd790076 5423 struct ctl_table *entry;
6382bc90 5424
cd790076
MM
5425 /*
5426 * In the intermediate directories, both the child directory and
5427 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5428 * will always be set. In the lowest directory the names are
cd790076
MM
5429 * static strings and all have proc handlers.
5430 */
5431 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5432 if (entry->child)
5433 sd_free_ctl_entry(&entry->child);
cd790076
MM
5434 if (entry->proc_handler == NULL)
5435 kfree(entry->procname);
5436 }
6382bc90
MM
5437
5438 kfree(*tablep);
5439 *tablep = NULL;
5440}
5441
e692ab53 5442static void
e0361851 5443set_table_entry(struct ctl_table *entry,
e692ab53
NP
5444 const char *procname, void *data, int maxlen,
5445 mode_t mode, proc_handler *proc_handler)
5446{
e692ab53
NP
5447 entry->procname = procname;
5448 entry->data = data;
5449 entry->maxlen = maxlen;
5450 entry->mode = mode;
5451 entry->proc_handler = proc_handler;
5452}
5453
5454static struct ctl_table *
5455sd_alloc_ctl_domain_table(struct sched_domain *sd)
5456{
ace8b3d6 5457 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5458
ad1cdc1d
MM
5459 if (table == NULL)
5460 return NULL;
5461
e0361851 5462 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5463 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5464 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5465 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5466 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5467 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5468 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5469 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5470 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5471 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5472 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5473 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5474 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5475 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5476 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5477 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5478 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5479 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5480 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5481 &sd->cache_nice_tries,
5482 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5483 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5484 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5485 /* &table[11] is terminator */
e692ab53
NP
5486
5487 return table;
5488}
5489
9a4e7159 5490static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5491{
5492 struct ctl_table *entry, *table;
5493 struct sched_domain *sd;
5494 int domain_num = 0, i;
5495 char buf[32];
5496
5497 for_each_domain(cpu, sd)
5498 domain_num++;
5499 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5500 if (table == NULL)
5501 return NULL;
e692ab53
NP
5502
5503 i = 0;
5504 for_each_domain(cpu, sd) {
5505 snprintf(buf, 32, "domain%d", i);
e692ab53 5506 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5507 entry->mode = 0555;
e692ab53
NP
5508 entry->child = sd_alloc_ctl_domain_table(sd);
5509 entry++;
5510 i++;
5511 }
5512 return table;
5513}
5514
5515static struct ctl_table_header *sd_sysctl_header;
6382bc90 5516static void register_sched_domain_sysctl(void)
e692ab53
NP
5517{
5518 int i, cpu_num = num_online_cpus();
5519 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5520 char buf[32];
5521
7378547f
MM
5522 WARN_ON(sd_ctl_dir[0].child);
5523 sd_ctl_dir[0].child = entry;
5524
ad1cdc1d
MM
5525 if (entry == NULL)
5526 return;
5527
97b6ea7b 5528 for_each_online_cpu(i) {
e692ab53 5529 snprintf(buf, 32, "cpu%d", i);
e692ab53 5530 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5531 entry->mode = 0555;
e692ab53 5532 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5533 entry++;
e692ab53 5534 }
7378547f
MM
5535
5536 WARN_ON(sd_sysctl_header);
e692ab53
NP
5537 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5538}
6382bc90 5539
7378547f 5540/* may be called multiple times per register */
6382bc90
MM
5541static void unregister_sched_domain_sysctl(void)
5542{
7378547f
MM
5543 if (sd_sysctl_header)
5544 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5545 sd_sysctl_header = NULL;
7378547f
MM
5546 if (sd_ctl_dir[0].child)
5547 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5548}
e692ab53 5549#else
6382bc90
MM
5550static void register_sched_domain_sysctl(void)
5551{
5552}
5553static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5554{
5555}
5556#endif
5557
1da177e4
LT
5558/*
5559 * migration_call - callback that gets triggered when a CPU is added.
5560 * Here we can start up the necessary migration thread for the new CPU.
5561 */
48f24c4d
IM
5562static int __cpuinit
5563migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5564{
1da177e4 5565 struct task_struct *p;
48f24c4d 5566 int cpu = (long)hcpu;
1da177e4 5567 unsigned long flags;
70b97a7f 5568 struct rq *rq;
1da177e4
LT
5569
5570 switch (action) {
5be9361c 5571
1da177e4 5572 case CPU_UP_PREPARE:
8bb78442 5573 case CPU_UP_PREPARE_FROZEN:
dd41f596 5574 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5575 if (IS_ERR(p))
5576 return NOTIFY_BAD;
1da177e4
LT
5577 kthread_bind(p, cpu);
5578 /* Must be high prio: stop_machine expects to yield to it. */
5579 rq = task_rq_lock(p, &flags);
dd41f596 5580 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5581 task_rq_unlock(rq, &flags);
5582 cpu_rq(cpu)->migration_thread = p;
5583 break;
48f24c4d 5584
1da177e4 5585 case CPU_ONLINE:
8bb78442 5586 case CPU_ONLINE_FROZEN:
3a4fa0a2 5587 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5588 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5589
5590 /* Update our root-domain */
5591 rq = cpu_rq(cpu);
5592 spin_lock_irqsave(&rq->lock, flags);
5593 if (rq->rd) {
5594 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5595 cpu_set(cpu, rq->rd->online);
5596 }
5597 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5598 break;
48f24c4d 5599
1da177e4
LT
5600#ifdef CONFIG_HOTPLUG_CPU
5601 case CPU_UP_CANCELED:
8bb78442 5602 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5603 if (!cpu_rq(cpu)->migration_thread)
5604 break;
41a2d6cf 5605 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5606 kthread_bind(cpu_rq(cpu)->migration_thread,
5607 any_online_cpu(cpu_online_map));
1da177e4
LT
5608 kthread_stop(cpu_rq(cpu)->migration_thread);
5609 cpu_rq(cpu)->migration_thread = NULL;
5610 break;
48f24c4d 5611
1da177e4 5612 case CPU_DEAD:
8bb78442 5613 case CPU_DEAD_FROZEN:
470fd646 5614 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5615 migrate_live_tasks(cpu);
5616 rq = cpu_rq(cpu);
5617 kthread_stop(rq->migration_thread);
5618 rq->migration_thread = NULL;
5619 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5620 spin_lock_irq(&rq->lock);
a8e504d2 5621 update_rq_clock(rq);
2e1cb74a 5622 deactivate_task(rq, rq->idle, 0);
1da177e4 5623 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5624 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5625 rq->idle->sched_class = &idle_sched_class;
1da177e4 5626 migrate_dead_tasks(cpu);
d2da272a 5627 spin_unlock_irq(&rq->lock);
470fd646 5628 cpuset_unlock();
1da177e4
LT
5629 migrate_nr_uninterruptible(rq);
5630 BUG_ON(rq->nr_running != 0);
5631
41a2d6cf
IM
5632 /*
5633 * No need to migrate the tasks: it was best-effort if
5634 * they didn't take sched_hotcpu_mutex. Just wake up
5635 * the requestors.
5636 */
1da177e4
LT
5637 spin_lock_irq(&rq->lock);
5638 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5639 struct migration_req *req;
5640
1da177e4 5641 req = list_entry(rq->migration_queue.next,
70b97a7f 5642 struct migration_req, list);
1da177e4
LT
5643 list_del_init(&req->list);
5644 complete(&req->done);
5645 }
5646 spin_unlock_irq(&rq->lock);
5647 break;
57d885fe
GH
5648
5649 case CPU_DOWN_PREPARE:
5650 /* Update our root-domain */
5651 rq = cpu_rq(cpu);
5652 spin_lock_irqsave(&rq->lock, flags);
5653 if (rq->rd) {
5654 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5655 cpu_clear(cpu, rq->rd->online);
5656 }
5657 spin_unlock_irqrestore(&rq->lock, flags);
5658 break;
1da177e4
LT
5659#endif
5660 }
5661 return NOTIFY_OK;
5662}
5663
5664/* Register at highest priority so that task migration (migrate_all_tasks)
5665 * happens before everything else.
5666 */
26c2143b 5667static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5668 .notifier_call = migration_call,
5669 .priority = 10
5670};
5671
e6fe6649 5672void __init migration_init(void)
1da177e4
LT
5673{
5674 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5675 int err;
48f24c4d
IM
5676
5677 /* Start one for the boot CPU: */
07dccf33
AM
5678 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5679 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5680 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5681 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5682}
5683#endif
5684
5685#ifdef CONFIG_SMP
476f3534
CL
5686
5687/* Number of possible processor ids */
5688int nr_cpu_ids __read_mostly = NR_CPUS;
5689EXPORT_SYMBOL(nr_cpu_ids);
5690
3e9830dc 5691#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5692
5693static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5694{
4dcf6aff
IM
5695 struct sched_group *group = sd->groups;
5696 cpumask_t groupmask;
5697 char str[NR_CPUS];
1da177e4 5698
4dcf6aff
IM
5699 cpumask_scnprintf(str, NR_CPUS, sd->span);
5700 cpus_clear(groupmask);
5701
5702 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5703
5704 if (!(sd->flags & SD_LOAD_BALANCE)) {
5705 printk("does not load-balance\n");
5706 if (sd->parent)
5707 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5708 " has parent");
5709 return -1;
41c7ce9a
NP
5710 }
5711
4dcf6aff
IM
5712 printk(KERN_CONT "span %s\n", str);
5713
5714 if (!cpu_isset(cpu, sd->span)) {
5715 printk(KERN_ERR "ERROR: domain->span does not contain "
5716 "CPU%d\n", cpu);
5717 }
5718 if (!cpu_isset(cpu, group->cpumask)) {
5719 printk(KERN_ERR "ERROR: domain->groups does not contain"
5720 " CPU%d\n", cpu);
5721 }
1da177e4 5722
4dcf6aff 5723 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5724 do {
4dcf6aff
IM
5725 if (!group) {
5726 printk("\n");
5727 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5728 break;
5729 }
5730
4dcf6aff
IM
5731 if (!group->__cpu_power) {
5732 printk(KERN_CONT "\n");
5733 printk(KERN_ERR "ERROR: domain->cpu_power not "
5734 "set\n");
5735 break;
5736 }
1da177e4 5737
4dcf6aff
IM
5738 if (!cpus_weight(group->cpumask)) {
5739 printk(KERN_CONT "\n");
5740 printk(KERN_ERR "ERROR: empty group\n");
5741 break;
5742 }
1da177e4 5743
4dcf6aff
IM
5744 if (cpus_intersects(groupmask, group->cpumask)) {
5745 printk(KERN_CONT "\n");
5746 printk(KERN_ERR "ERROR: repeated CPUs\n");
5747 break;
5748 }
1da177e4 5749
4dcf6aff 5750 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5751
4dcf6aff
IM
5752 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5753 printk(KERN_CONT " %s", str);
1da177e4 5754
4dcf6aff
IM
5755 group = group->next;
5756 } while (group != sd->groups);
5757 printk(KERN_CONT "\n");
1da177e4 5758
4dcf6aff
IM
5759 if (!cpus_equal(sd->span, groupmask))
5760 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5761
4dcf6aff
IM
5762 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5763 printk(KERN_ERR "ERROR: parent span is not a superset "
5764 "of domain->span\n");
5765 return 0;
5766}
1da177e4 5767
4dcf6aff
IM
5768static void sched_domain_debug(struct sched_domain *sd, int cpu)
5769{
5770 int level = 0;
1da177e4 5771
4dcf6aff
IM
5772 if (!sd) {
5773 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5774 return;
5775 }
1da177e4 5776
4dcf6aff
IM
5777 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5778
5779 for (;;) {
5780 if (sched_domain_debug_one(sd, cpu, level))
5781 break;
1da177e4
LT
5782 level++;
5783 sd = sd->parent;
33859f7f 5784 if (!sd)
4dcf6aff
IM
5785 break;
5786 }
1da177e4
LT
5787}
5788#else
48f24c4d 5789# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5790#endif
5791
1a20ff27 5792static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5793{
5794 if (cpus_weight(sd->span) == 1)
5795 return 1;
5796
5797 /* Following flags need at least 2 groups */
5798 if (sd->flags & (SD_LOAD_BALANCE |
5799 SD_BALANCE_NEWIDLE |
5800 SD_BALANCE_FORK |
89c4710e
SS
5801 SD_BALANCE_EXEC |
5802 SD_SHARE_CPUPOWER |
5803 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5804 if (sd->groups != sd->groups->next)
5805 return 0;
5806 }
5807
5808 /* Following flags don't use groups */
5809 if (sd->flags & (SD_WAKE_IDLE |
5810 SD_WAKE_AFFINE |
5811 SD_WAKE_BALANCE))
5812 return 0;
5813
5814 return 1;
5815}
5816
48f24c4d
IM
5817static int
5818sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5819{
5820 unsigned long cflags = sd->flags, pflags = parent->flags;
5821
5822 if (sd_degenerate(parent))
5823 return 1;
5824
5825 if (!cpus_equal(sd->span, parent->span))
5826 return 0;
5827
5828 /* Does parent contain flags not in child? */
5829 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5830 if (cflags & SD_WAKE_AFFINE)
5831 pflags &= ~SD_WAKE_BALANCE;
5832 /* Flags needing groups don't count if only 1 group in parent */
5833 if (parent->groups == parent->groups->next) {
5834 pflags &= ~(SD_LOAD_BALANCE |
5835 SD_BALANCE_NEWIDLE |
5836 SD_BALANCE_FORK |
89c4710e
SS
5837 SD_BALANCE_EXEC |
5838 SD_SHARE_CPUPOWER |
5839 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5840 }
5841 if (~cflags & pflags)
5842 return 0;
5843
5844 return 1;
5845}
5846
57d885fe
GH
5847static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5848{
5849 unsigned long flags;
5850 const struct sched_class *class;
5851
5852 spin_lock_irqsave(&rq->lock, flags);
5853
5854 if (rq->rd) {
5855 struct root_domain *old_rd = rq->rd;
5856
0eab9146 5857 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5858 if (class->leave_domain)
5859 class->leave_domain(rq);
0eab9146 5860 }
57d885fe
GH
5861
5862 if (atomic_dec_and_test(&old_rd->refcount))
5863 kfree(old_rd);
5864 }
5865
5866 atomic_inc(&rd->refcount);
5867 rq->rd = rd;
5868
0eab9146 5869 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5870 if (class->join_domain)
5871 class->join_domain(rq);
0eab9146 5872 }
57d885fe
GH
5873
5874 spin_unlock_irqrestore(&rq->lock, flags);
5875}
5876
5877static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
5878{
5879 memset(rd, 0, sizeof(*rd));
5880
5881 rd->span = *map;
5882 cpus_and(rd->online, rd->span, cpu_online_map);
5883}
5884
5885static void init_defrootdomain(void)
5886{
5887 cpumask_t cpus = CPU_MASK_ALL;
5888
5889 init_rootdomain(&def_root_domain, &cpus);
5890 atomic_set(&def_root_domain.refcount, 1);
5891}
5892
5893static struct root_domain *alloc_rootdomain(const cpumask_t *map)
5894{
5895 struct root_domain *rd;
5896
5897 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5898 if (!rd)
5899 return NULL;
5900
5901 init_rootdomain(rd, map);
5902
5903 return rd;
5904}
5905
1da177e4 5906/*
0eab9146 5907 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5908 * hold the hotplug lock.
5909 */
0eab9146
IM
5910static void
5911cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5912{
70b97a7f 5913 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5914 struct sched_domain *tmp;
5915
5916 /* Remove the sched domains which do not contribute to scheduling. */
5917 for (tmp = sd; tmp; tmp = tmp->parent) {
5918 struct sched_domain *parent = tmp->parent;
5919 if (!parent)
5920 break;
1a848870 5921 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5922 tmp->parent = parent->parent;
1a848870
SS
5923 if (parent->parent)
5924 parent->parent->child = tmp;
5925 }
245af2c7
SS
5926 }
5927
1a848870 5928 if (sd && sd_degenerate(sd)) {
245af2c7 5929 sd = sd->parent;
1a848870
SS
5930 if (sd)
5931 sd->child = NULL;
5932 }
1da177e4
LT
5933
5934 sched_domain_debug(sd, cpu);
5935
57d885fe 5936 rq_attach_root(rq, rd);
674311d5 5937 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5938}
5939
5940/* cpus with isolated domains */
67af63a6 5941static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5942
5943/* Setup the mask of cpus configured for isolated domains */
5944static int __init isolated_cpu_setup(char *str)
5945{
5946 int ints[NR_CPUS], i;
5947
5948 str = get_options(str, ARRAY_SIZE(ints), ints);
5949 cpus_clear(cpu_isolated_map);
5950 for (i = 1; i <= ints[0]; i++)
5951 if (ints[i] < NR_CPUS)
5952 cpu_set(ints[i], cpu_isolated_map);
5953 return 1;
5954}
5955
8927f494 5956__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5957
5958/*
6711cab4
SS
5959 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5960 * to a function which identifies what group(along with sched group) a CPU
5961 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5962 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5963 *
5964 * init_sched_build_groups will build a circular linked list of the groups
5965 * covered by the given span, and will set each group's ->cpumask correctly,
5966 * and ->cpu_power to 0.
5967 */
a616058b 5968static void
6711cab4
SS
5969init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5970 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5971 struct sched_group **sg))
1da177e4
LT
5972{
5973 struct sched_group *first = NULL, *last = NULL;
5974 cpumask_t covered = CPU_MASK_NONE;
5975 int i;
5976
5977 for_each_cpu_mask(i, span) {
6711cab4
SS
5978 struct sched_group *sg;
5979 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5980 int j;
5981
5982 if (cpu_isset(i, covered))
5983 continue;
5984
5985 sg->cpumask = CPU_MASK_NONE;
5517d86b 5986 sg->__cpu_power = 0;
1da177e4
LT
5987
5988 for_each_cpu_mask(j, span) {
6711cab4 5989 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5990 continue;
5991
5992 cpu_set(j, covered);
5993 cpu_set(j, sg->cpumask);
5994 }
5995 if (!first)
5996 first = sg;
5997 if (last)
5998 last->next = sg;
5999 last = sg;
6000 }
6001 last->next = first;
6002}
6003
9c1cfda2 6004#define SD_NODES_PER_DOMAIN 16
1da177e4 6005
9c1cfda2 6006#ifdef CONFIG_NUMA
198e2f18 6007
9c1cfda2
JH
6008/**
6009 * find_next_best_node - find the next node to include in a sched_domain
6010 * @node: node whose sched_domain we're building
6011 * @used_nodes: nodes already in the sched_domain
6012 *
41a2d6cf 6013 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6014 * finds the closest node not already in the @used_nodes map.
6015 *
6016 * Should use nodemask_t.
6017 */
6018static int find_next_best_node(int node, unsigned long *used_nodes)
6019{
6020 int i, n, val, min_val, best_node = 0;
6021
6022 min_val = INT_MAX;
6023
6024 for (i = 0; i < MAX_NUMNODES; i++) {
6025 /* Start at @node */
6026 n = (node + i) % MAX_NUMNODES;
6027
6028 if (!nr_cpus_node(n))
6029 continue;
6030
6031 /* Skip already used nodes */
6032 if (test_bit(n, used_nodes))
6033 continue;
6034
6035 /* Simple min distance search */
6036 val = node_distance(node, n);
6037
6038 if (val < min_val) {
6039 min_val = val;
6040 best_node = n;
6041 }
6042 }
6043
6044 set_bit(best_node, used_nodes);
6045 return best_node;
6046}
6047
6048/**
6049 * sched_domain_node_span - get a cpumask for a node's sched_domain
6050 * @node: node whose cpumask we're constructing
6051 * @size: number of nodes to include in this span
6052 *
41a2d6cf 6053 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6054 * should be one that prevents unnecessary balancing, but also spreads tasks
6055 * out optimally.
6056 */
6057static cpumask_t sched_domain_node_span(int node)
6058{
9c1cfda2 6059 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6060 cpumask_t span, nodemask;
6061 int i;
9c1cfda2
JH
6062
6063 cpus_clear(span);
6064 bitmap_zero(used_nodes, MAX_NUMNODES);
6065
6066 nodemask = node_to_cpumask(node);
6067 cpus_or(span, span, nodemask);
6068 set_bit(node, used_nodes);
6069
6070 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6071 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6072
9c1cfda2
JH
6073 nodemask = node_to_cpumask(next_node);
6074 cpus_or(span, span, nodemask);
6075 }
6076
6077 return span;
6078}
6079#endif
6080
5c45bf27 6081int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6082
9c1cfda2 6083/*
48f24c4d 6084 * SMT sched-domains:
9c1cfda2 6085 */
1da177e4
LT
6086#ifdef CONFIG_SCHED_SMT
6087static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6088static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6089
41a2d6cf
IM
6090static int
6091cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6092{
6711cab4
SS
6093 if (sg)
6094 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6095 return cpu;
6096}
6097#endif
6098
48f24c4d
IM
6099/*
6100 * multi-core sched-domains:
6101 */
1e9f28fa
SS
6102#ifdef CONFIG_SCHED_MC
6103static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6104static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6105#endif
6106
6107#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6108static int
6109cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6110{
6711cab4 6111 int group;
d5a7430d 6112 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6113 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6114 group = first_cpu(mask);
6115 if (sg)
6116 *sg = &per_cpu(sched_group_core, group);
6117 return group;
1e9f28fa
SS
6118}
6119#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6120static int
6121cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6122{
6711cab4
SS
6123 if (sg)
6124 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6125 return cpu;
6126}
6127#endif
6128
1da177e4 6129static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6130static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6131
41a2d6cf
IM
6132static int
6133cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6134{
6711cab4 6135 int group;
48f24c4d 6136#ifdef CONFIG_SCHED_MC
1e9f28fa 6137 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6138 cpus_and(mask, mask, *cpu_map);
6711cab4 6139 group = first_cpu(mask);
1e9f28fa 6140#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6141 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6142 cpus_and(mask, mask, *cpu_map);
6711cab4 6143 group = first_cpu(mask);
1da177e4 6144#else
6711cab4 6145 group = cpu;
1da177e4 6146#endif
6711cab4
SS
6147 if (sg)
6148 *sg = &per_cpu(sched_group_phys, group);
6149 return group;
1da177e4
LT
6150}
6151
6152#ifdef CONFIG_NUMA
1da177e4 6153/*
9c1cfda2
JH
6154 * The init_sched_build_groups can't handle what we want to do with node
6155 * groups, so roll our own. Now each node has its own list of groups which
6156 * gets dynamically allocated.
1da177e4 6157 */
9c1cfda2 6158static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6159static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6160
9c1cfda2 6161static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6162static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6163
6711cab4
SS
6164static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6165 struct sched_group **sg)
9c1cfda2 6166{
6711cab4
SS
6167 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6168 int group;
6169
6170 cpus_and(nodemask, nodemask, *cpu_map);
6171 group = first_cpu(nodemask);
6172
6173 if (sg)
6174 *sg = &per_cpu(sched_group_allnodes, group);
6175 return group;
1da177e4 6176}
6711cab4 6177
08069033
SS
6178static void init_numa_sched_groups_power(struct sched_group *group_head)
6179{
6180 struct sched_group *sg = group_head;
6181 int j;
6182
6183 if (!sg)
6184 return;
3a5c359a
AK
6185 do {
6186 for_each_cpu_mask(j, sg->cpumask) {
6187 struct sched_domain *sd;
08069033 6188
3a5c359a
AK
6189 sd = &per_cpu(phys_domains, j);
6190 if (j != first_cpu(sd->groups->cpumask)) {
6191 /*
6192 * Only add "power" once for each
6193 * physical package.
6194 */
6195 continue;
6196 }
08069033 6197
3a5c359a
AK
6198 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6199 }
6200 sg = sg->next;
6201 } while (sg != group_head);
08069033 6202}
1da177e4
LT
6203#endif
6204
a616058b 6205#ifdef CONFIG_NUMA
51888ca2
SV
6206/* Free memory allocated for various sched_group structures */
6207static void free_sched_groups(const cpumask_t *cpu_map)
6208{
a616058b 6209 int cpu, i;
51888ca2
SV
6210
6211 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6212 struct sched_group **sched_group_nodes
6213 = sched_group_nodes_bycpu[cpu];
6214
51888ca2
SV
6215 if (!sched_group_nodes)
6216 continue;
6217
6218 for (i = 0; i < MAX_NUMNODES; i++) {
6219 cpumask_t nodemask = node_to_cpumask(i);
6220 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6221
6222 cpus_and(nodemask, nodemask, *cpu_map);
6223 if (cpus_empty(nodemask))
6224 continue;
6225
6226 if (sg == NULL)
6227 continue;
6228 sg = sg->next;
6229next_sg:
6230 oldsg = sg;
6231 sg = sg->next;
6232 kfree(oldsg);
6233 if (oldsg != sched_group_nodes[i])
6234 goto next_sg;
6235 }
6236 kfree(sched_group_nodes);
6237 sched_group_nodes_bycpu[cpu] = NULL;
6238 }
51888ca2 6239}
a616058b
SS
6240#else
6241static void free_sched_groups(const cpumask_t *cpu_map)
6242{
6243}
6244#endif
51888ca2 6245
89c4710e
SS
6246/*
6247 * Initialize sched groups cpu_power.
6248 *
6249 * cpu_power indicates the capacity of sched group, which is used while
6250 * distributing the load between different sched groups in a sched domain.
6251 * Typically cpu_power for all the groups in a sched domain will be same unless
6252 * there are asymmetries in the topology. If there are asymmetries, group
6253 * having more cpu_power will pickup more load compared to the group having
6254 * less cpu_power.
6255 *
6256 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6257 * the maximum number of tasks a group can handle in the presence of other idle
6258 * or lightly loaded groups in the same sched domain.
6259 */
6260static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6261{
6262 struct sched_domain *child;
6263 struct sched_group *group;
6264
6265 WARN_ON(!sd || !sd->groups);
6266
6267 if (cpu != first_cpu(sd->groups->cpumask))
6268 return;
6269
6270 child = sd->child;
6271
5517d86b
ED
6272 sd->groups->__cpu_power = 0;
6273
89c4710e
SS
6274 /*
6275 * For perf policy, if the groups in child domain share resources
6276 * (for example cores sharing some portions of the cache hierarchy
6277 * or SMT), then set this domain groups cpu_power such that each group
6278 * can handle only one task, when there are other idle groups in the
6279 * same sched domain.
6280 */
6281 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6282 (child->flags &
6283 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6284 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6285 return;
6286 }
6287
89c4710e
SS
6288 /*
6289 * add cpu_power of each child group to this groups cpu_power
6290 */
6291 group = child->groups;
6292 do {
5517d86b 6293 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6294 group = group->next;
6295 } while (group != child->groups);
6296}
6297
1da177e4 6298/*
1a20ff27
DG
6299 * Build sched domains for a given set of cpus and attach the sched domains
6300 * to the individual cpus
1da177e4 6301 */
51888ca2 6302static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6303{
6304 int i;
57d885fe 6305 struct root_domain *rd;
d1b55138
JH
6306#ifdef CONFIG_NUMA
6307 struct sched_group **sched_group_nodes = NULL;
6711cab4 6308 int sd_allnodes = 0;
d1b55138
JH
6309
6310 /*
6311 * Allocate the per-node list of sched groups
6312 */
5cf9f062 6313 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6314 GFP_KERNEL);
d1b55138
JH
6315 if (!sched_group_nodes) {
6316 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6317 return -ENOMEM;
d1b55138
JH
6318 }
6319 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6320#endif
1da177e4 6321
57d885fe
GH
6322 rd = alloc_rootdomain(cpu_map);
6323 if (!rd) {
6324 printk(KERN_WARNING "Cannot alloc root domain\n");
6325 return -ENOMEM;
6326 }
6327
1da177e4 6328 /*
1a20ff27 6329 * Set up domains for cpus specified by the cpu_map.
1da177e4 6330 */
1a20ff27 6331 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6332 struct sched_domain *sd = NULL, *p;
6333 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6334
1a20ff27 6335 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6336
6337#ifdef CONFIG_NUMA
dd41f596
IM
6338 if (cpus_weight(*cpu_map) >
6339 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6340 sd = &per_cpu(allnodes_domains, i);
6341 *sd = SD_ALLNODES_INIT;
6342 sd->span = *cpu_map;
6711cab4 6343 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6344 p = sd;
6711cab4 6345 sd_allnodes = 1;
9c1cfda2
JH
6346 } else
6347 p = NULL;
6348
1da177e4 6349 sd = &per_cpu(node_domains, i);
1da177e4 6350 *sd = SD_NODE_INIT;
9c1cfda2
JH
6351 sd->span = sched_domain_node_span(cpu_to_node(i));
6352 sd->parent = p;
1a848870
SS
6353 if (p)
6354 p->child = sd;
9c1cfda2 6355 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6356#endif
6357
6358 p = sd;
6359 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6360 *sd = SD_CPU_INIT;
6361 sd->span = nodemask;
6362 sd->parent = p;
1a848870
SS
6363 if (p)
6364 p->child = sd;
6711cab4 6365 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6366
1e9f28fa
SS
6367#ifdef CONFIG_SCHED_MC
6368 p = sd;
6369 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6370 *sd = SD_MC_INIT;
6371 sd->span = cpu_coregroup_map(i);
6372 cpus_and(sd->span, sd->span, *cpu_map);
6373 sd->parent = p;
1a848870 6374 p->child = sd;
6711cab4 6375 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6376#endif
6377
1da177e4
LT
6378#ifdef CONFIG_SCHED_SMT
6379 p = sd;
6380 sd = &per_cpu(cpu_domains, i);
1da177e4 6381 *sd = SD_SIBLING_INIT;
d5a7430d 6382 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6383 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6384 sd->parent = p;
1a848870 6385 p->child = sd;
6711cab4 6386 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6387#endif
6388 }
6389
6390#ifdef CONFIG_SCHED_SMT
6391 /* Set up CPU (sibling) groups */
9c1cfda2 6392 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6393 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6394 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6395 if (i != first_cpu(this_sibling_map))
6396 continue;
6397
dd41f596
IM
6398 init_sched_build_groups(this_sibling_map, cpu_map,
6399 &cpu_to_cpu_group);
1da177e4
LT
6400 }
6401#endif
6402
1e9f28fa
SS
6403#ifdef CONFIG_SCHED_MC
6404 /* Set up multi-core groups */
6405 for_each_cpu_mask(i, *cpu_map) {
6406 cpumask_t this_core_map = cpu_coregroup_map(i);
6407 cpus_and(this_core_map, this_core_map, *cpu_map);
6408 if (i != first_cpu(this_core_map))
6409 continue;
dd41f596
IM
6410 init_sched_build_groups(this_core_map, cpu_map,
6411 &cpu_to_core_group);
1e9f28fa
SS
6412 }
6413#endif
6414
1da177e4
LT
6415 /* Set up physical groups */
6416 for (i = 0; i < MAX_NUMNODES; i++) {
6417 cpumask_t nodemask = node_to_cpumask(i);
6418
1a20ff27 6419 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6420 if (cpus_empty(nodemask))
6421 continue;
6422
6711cab4 6423 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6424 }
6425
6426#ifdef CONFIG_NUMA
6427 /* Set up node groups */
6711cab4 6428 if (sd_allnodes)
dd41f596
IM
6429 init_sched_build_groups(*cpu_map, cpu_map,
6430 &cpu_to_allnodes_group);
9c1cfda2
JH
6431
6432 for (i = 0; i < MAX_NUMNODES; i++) {
6433 /* Set up node groups */
6434 struct sched_group *sg, *prev;
6435 cpumask_t nodemask = node_to_cpumask(i);
6436 cpumask_t domainspan;
6437 cpumask_t covered = CPU_MASK_NONE;
6438 int j;
6439
6440 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6441 if (cpus_empty(nodemask)) {
6442 sched_group_nodes[i] = NULL;
9c1cfda2 6443 continue;
d1b55138 6444 }
9c1cfda2
JH
6445
6446 domainspan = sched_domain_node_span(i);
6447 cpus_and(domainspan, domainspan, *cpu_map);
6448
15f0b676 6449 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6450 if (!sg) {
6451 printk(KERN_WARNING "Can not alloc domain group for "
6452 "node %d\n", i);
6453 goto error;
6454 }
9c1cfda2
JH
6455 sched_group_nodes[i] = sg;
6456 for_each_cpu_mask(j, nodemask) {
6457 struct sched_domain *sd;
9761eea8 6458
9c1cfda2
JH
6459 sd = &per_cpu(node_domains, j);
6460 sd->groups = sg;
9c1cfda2 6461 }
5517d86b 6462 sg->__cpu_power = 0;
9c1cfda2 6463 sg->cpumask = nodemask;
51888ca2 6464 sg->next = sg;
9c1cfda2
JH
6465 cpus_or(covered, covered, nodemask);
6466 prev = sg;
6467
6468 for (j = 0; j < MAX_NUMNODES; j++) {
6469 cpumask_t tmp, notcovered;
6470 int n = (i + j) % MAX_NUMNODES;
6471
6472 cpus_complement(notcovered, covered);
6473 cpus_and(tmp, notcovered, *cpu_map);
6474 cpus_and(tmp, tmp, domainspan);
6475 if (cpus_empty(tmp))
6476 break;
6477
6478 nodemask = node_to_cpumask(n);
6479 cpus_and(tmp, tmp, nodemask);
6480 if (cpus_empty(tmp))
6481 continue;
6482
15f0b676
SV
6483 sg = kmalloc_node(sizeof(struct sched_group),
6484 GFP_KERNEL, i);
9c1cfda2
JH
6485 if (!sg) {
6486 printk(KERN_WARNING
6487 "Can not alloc domain group for node %d\n", j);
51888ca2 6488 goto error;
9c1cfda2 6489 }
5517d86b 6490 sg->__cpu_power = 0;
9c1cfda2 6491 sg->cpumask = tmp;
51888ca2 6492 sg->next = prev->next;
9c1cfda2
JH
6493 cpus_or(covered, covered, tmp);
6494 prev->next = sg;
6495 prev = sg;
6496 }
9c1cfda2 6497 }
1da177e4
LT
6498#endif
6499
6500 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6501#ifdef CONFIG_SCHED_SMT
1a20ff27 6502 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6503 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6504
89c4710e 6505 init_sched_groups_power(i, sd);
5c45bf27 6506 }
1da177e4 6507#endif
1e9f28fa 6508#ifdef CONFIG_SCHED_MC
5c45bf27 6509 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6510 struct sched_domain *sd = &per_cpu(core_domains, i);
6511
89c4710e 6512 init_sched_groups_power(i, sd);
5c45bf27
SS
6513 }
6514#endif
1e9f28fa 6515
5c45bf27 6516 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6517 struct sched_domain *sd = &per_cpu(phys_domains, i);
6518
89c4710e 6519 init_sched_groups_power(i, sd);
1da177e4
LT
6520 }
6521
9c1cfda2 6522#ifdef CONFIG_NUMA
08069033
SS
6523 for (i = 0; i < MAX_NUMNODES; i++)
6524 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6525
6711cab4
SS
6526 if (sd_allnodes) {
6527 struct sched_group *sg;
f712c0c7 6528
6711cab4 6529 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6530 init_numa_sched_groups_power(sg);
6531 }
9c1cfda2
JH
6532#endif
6533
1da177e4 6534 /* Attach the domains */
1a20ff27 6535 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6536 struct sched_domain *sd;
6537#ifdef CONFIG_SCHED_SMT
6538 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6539#elif defined(CONFIG_SCHED_MC)
6540 sd = &per_cpu(core_domains, i);
1da177e4
LT
6541#else
6542 sd = &per_cpu(phys_domains, i);
6543#endif
57d885fe 6544 cpu_attach_domain(sd, rd, i);
1da177e4 6545 }
51888ca2
SV
6546
6547 return 0;
6548
a616058b 6549#ifdef CONFIG_NUMA
51888ca2
SV
6550error:
6551 free_sched_groups(cpu_map);
6552 return -ENOMEM;
a616058b 6553#endif
1da177e4 6554}
029190c5
PJ
6555
6556static cpumask_t *doms_cur; /* current sched domains */
6557static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6558
6559/*
6560 * Special case: If a kmalloc of a doms_cur partition (array of
6561 * cpumask_t) fails, then fallback to a single sched domain,
6562 * as determined by the single cpumask_t fallback_doms.
6563 */
6564static cpumask_t fallback_doms;
6565
1a20ff27 6566/*
41a2d6cf 6567 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6568 * For now this just excludes isolated cpus, but could be used to
6569 * exclude other special cases in the future.
1a20ff27 6570 */
51888ca2 6571static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6572{
7378547f
MM
6573 int err;
6574
029190c5
PJ
6575 ndoms_cur = 1;
6576 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6577 if (!doms_cur)
6578 doms_cur = &fallback_doms;
6579 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6580 err = build_sched_domains(doms_cur);
6382bc90 6581 register_sched_domain_sysctl();
7378547f
MM
6582
6583 return err;
1a20ff27
DG
6584}
6585
6586static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6587{
51888ca2 6588 free_sched_groups(cpu_map);
9c1cfda2 6589}
1da177e4 6590
1a20ff27
DG
6591/*
6592 * Detach sched domains from a group of cpus specified in cpu_map
6593 * These cpus will now be attached to the NULL domain
6594 */
858119e1 6595static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6596{
6597 int i;
6598
6382bc90
MM
6599 unregister_sched_domain_sysctl();
6600
1a20ff27 6601 for_each_cpu_mask(i, *cpu_map)
57d885fe 6602 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6603 synchronize_sched();
6604 arch_destroy_sched_domains(cpu_map);
6605}
6606
029190c5
PJ
6607/*
6608 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6609 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6610 * doms_new[] to the current sched domain partitioning, doms_cur[].
6611 * It destroys each deleted domain and builds each new domain.
6612 *
6613 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6614 * The masks don't intersect (don't overlap.) We should setup one
6615 * sched domain for each mask. CPUs not in any of the cpumasks will
6616 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6617 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6618 * it as it is.
6619 *
41a2d6cf
IM
6620 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6621 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6622 * failed the kmalloc call, then it can pass in doms_new == NULL,
6623 * and partition_sched_domains() will fallback to the single partition
6624 * 'fallback_doms'.
6625 *
6626 * Call with hotplug lock held
6627 */
6628void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6629{
6630 int i, j;
6631
a1835615
SV
6632 lock_doms_cur();
6633
7378547f
MM
6634 /* always unregister in case we don't destroy any domains */
6635 unregister_sched_domain_sysctl();
6636
029190c5
PJ
6637 if (doms_new == NULL) {
6638 ndoms_new = 1;
6639 doms_new = &fallback_doms;
6640 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6641 }
6642
6643 /* Destroy deleted domains */
6644 for (i = 0; i < ndoms_cur; i++) {
6645 for (j = 0; j < ndoms_new; j++) {
6646 if (cpus_equal(doms_cur[i], doms_new[j]))
6647 goto match1;
6648 }
6649 /* no match - a current sched domain not in new doms_new[] */
6650 detach_destroy_domains(doms_cur + i);
6651match1:
6652 ;
6653 }
6654
6655 /* Build new domains */
6656 for (i = 0; i < ndoms_new; i++) {
6657 for (j = 0; j < ndoms_cur; j++) {
6658 if (cpus_equal(doms_new[i], doms_cur[j]))
6659 goto match2;
6660 }
6661 /* no match - add a new doms_new */
6662 build_sched_domains(doms_new + i);
6663match2:
6664 ;
6665 }
6666
6667 /* Remember the new sched domains */
6668 if (doms_cur != &fallback_doms)
6669 kfree(doms_cur);
6670 doms_cur = doms_new;
6671 ndoms_cur = ndoms_new;
7378547f
MM
6672
6673 register_sched_domain_sysctl();
a1835615
SV
6674
6675 unlock_doms_cur();
029190c5
PJ
6676}
6677
5c45bf27 6678#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6679static int arch_reinit_sched_domains(void)
5c45bf27
SS
6680{
6681 int err;
6682
95402b38 6683 get_online_cpus();
5c45bf27
SS
6684 detach_destroy_domains(&cpu_online_map);
6685 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6686 put_online_cpus();
5c45bf27
SS
6687
6688 return err;
6689}
6690
6691static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6692{
6693 int ret;
6694
6695 if (buf[0] != '0' && buf[0] != '1')
6696 return -EINVAL;
6697
6698 if (smt)
6699 sched_smt_power_savings = (buf[0] == '1');
6700 else
6701 sched_mc_power_savings = (buf[0] == '1');
6702
6703 ret = arch_reinit_sched_domains();
6704
6705 return ret ? ret : count;
6706}
6707
5c45bf27
SS
6708#ifdef CONFIG_SCHED_MC
6709static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6710{
6711 return sprintf(page, "%u\n", sched_mc_power_savings);
6712}
48f24c4d
IM
6713static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6714 const char *buf, size_t count)
5c45bf27
SS
6715{
6716 return sched_power_savings_store(buf, count, 0);
6717}
6707de00
AB
6718static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6719 sched_mc_power_savings_store);
5c45bf27
SS
6720#endif
6721
6722#ifdef CONFIG_SCHED_SMT
6723static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6724{
6725 return sprintf(page, "%u\n", sched_smt_power_savings);
6726}
48f24c4d
IM
6727static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6728 const char *buf, size_t count)
5c45bf27
SS
6729{
6730 return sched_power_savings_store(buf, count, 1);
6731}
6707de00
AB
6732static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6733 sched_smt_power_savings_store);
6734#endif
6735
6736int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6737{
6738 int err = 0;
6739
6740#ifdef CONFIG_SCHED_SMT
6741 if (smt_capable())
6742 err = sysfs_create_file(&cls->kset.kobj,
6743 &attr_sched_smt_power_savings.attr);
6744#endif
6745#ifdef CONFIG_SCHED_MC
6746 if (!err && mc_capable())
6747 err = sysfs_create_file(&cls->kset.kobj,
6748 &attr_sched_mc_power_savings.attr);
6749#endif
6750 return err;
6751}
5c45bf27
SS
6752#endif
6753
1da177e4 6754/*
41a2d6cf 6755 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6756 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6757 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6758 * which will prevent rebalancing while the sched domains are recalculated.
6759 */
6760static int update_sched_domains(struct notifier_block *nfb,
6761 unsigned long action, void *hcpu)
6762{
1da177e4
LT
6763 switch (action) {
6764 case CPU_UP_PREPARE:
8bb78442 6765 case CPU_UP_PREPARE_FROZEN:
1da177e4 6766 case CPU_DOWN_PREPARE:
8bb78442 6767 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6768 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6769 return NOTIFY_OK;
6770
6771 case CPU_UP_CANCELED:
8bb78442 6772 case CPU_UP_CANCELED_FROZEN:
1da177e4 6773 case CPU_DOWN_FAILED:
8bb78442 6774 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6775 case CPU_ONLINE:
8bb78442 6776 case CPU_ONLINE_FROZEN:
1da177e4 6777 case CPU_DEAD:
8bb78442 6778 case CPU_DEAD_FROZEN:
1da177e4
LT
6779 /*
6780 * Fall through and re-initialise the domains.
6781 */
6782 break;
6783 default:
6784 return NOTIFY_DONE;
6785 }
6786
6787 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6788 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6789
6790 return NOTIFY_OK;
6791}
1da177e4
LT
6792
6793void __init sched_init_smp(void)
6794{
5c1e1767
NP
6795 cpumask_t non_isolated_cpus;
6796
95402b38 6797 get_online_cpus();
1a20ff27 6798 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6799 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6800 if (cpus_empty(non_isolated_cpus))
6801 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6802 put_online_cpus();
1da177e4
LT
6803 /* XXX: Theoretical race here - CPU may be hotplugged now */
6804 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6805
6806 /* Move init over to a non-isolated CPU */
6807 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6808 BUG();
19978ca6 6809 sched_init_granularity();
6b2d7700
SV
6810
6811#ifdef CONFIG_FAIR_GROUP_SCHED
6812 if (nr_cpu_ids == 1)
6813 return;
6814
6815 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6816 "group_balance");
6817 if (!IS_ERR(lb_monitor_task)) {
6818 lb_monitor_task->flags |= PF_NOFREEZE;
6819 wake_up_process(lb_monitor_task);
6820 } else {
6821 printk(KERN_ERR "Could not create load balance monitor thread"
6822 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6823 }
6824#endif
1da177e4
LT
6825}
6826#else
6827void __init sched_init_smp(void)
6828{
19978ca6 6829 sched_init_granularity();
1da177e4
LT
6830}
6831#endif /* CONFIG_SMP */
6832
6833int in_sched_functions(unsigned long addr)
6834{
1da177e4
LT
6835 return in_lock_functions(addr) ||
6836 (addr >= (unsigned long)__sched_text_start
6837 && addr < (unsigned long)__sched_text_end);
6838}
6839
a9957449 6840static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6841{
6842 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6843#ifdef CONFIG_FAIR_GROUP_SCHED
6844 cfs_rq->rq = rq;
6845#endif
67e9fb2a 6846 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6847}
6848
1da177e4
LT
6849void __init sched_init(void)
6850{
476f3534 6851 int highest_cpu = 0;
dd41f596
IM
6852 int i, j;
6853
57d885fe
GH
6854#ifdef CONFIG_SMP
6855 init_defrootdomain();
6856#endif
6857
0a945022 6858 for_each_possible_cpu(i) {
dd41f596 6859 struct rt_prio_array *array;
70b97a7f 6860 struct rq *rq;
1da177e4
LT
6861
6862 rq = cpu_rq(i);
6863 spin_lock_init(&rq->lock);
fcb99371 6864 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6865 rq->nr_running = 0;
dd41f596
IM
6866 rq->clock = 1;
6867 init_cfs_rq(&rq->cfs, rq);
6868#ifdef CONFIG_FAIR_GROUP_SCHED
6869 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6870 {
6871 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6872 struct sched_entity *se =
6873 &per_cpu(init_sched_entity, i);
6874
6875 init_cfs_rq_p[i] = cfs_rq;
6876 init_cfs_rq(cfs_rq, rq);
4cf86d77 6877 cfs_rq->tg = &init_task_group;
3a252015 6878 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6879 &rq->leaf_cfs_rq_list);
6880
3a252015
IM
6881 init_sched_entity_p[i] = se;
6882 se->cfs_rq = &rq->cfs;
6883 se->my_q = cfs_rq;
4cf86d77 6884 se->load.weight = init_task_group_load;
9b5b7751 6885 se->load.inv_weight =
4cf86d77 6886 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6887 se->parent = NULL;
6888 }
4cf86d77 6889 init_task_group.shares = init_task_group_load;
dd41f596 6890#endif
1da177e4 6891
dd41f596
IM
6892 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6893 rq->cpu_load[j] = 0;
1da177e4 6894#ifdef CONFIG_SMP
41c7ce9a 6895 rq->sd = NULL;
57d885fe
GH
6896 rq->rd = NULL;
6897 rq_attach_root(rq, &def_root_domain);
1da177e4 6898 rq->active_balance = 0;
dd41f596 6899 rq->next_balance = jiffies;
1da177e4 6900 rq->push_cpu = 0;
0a2966b4 6901 rq->cpu = i;
1da177e4
LT
6902 rq->migration_thread = NULL;
6903 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6904 rq->rt.highest_prio = MAX_RT_PRIO;
a22d7fc1 6905 rq->rt.overloaded = 0;
1da177e4
LT
6906#endif
6907 atomic_set(&rq->nr_iowait, 0);
6908
dd41f596
IM
6909 array = &rq->rt.active;
6910 for (j = 0; j < MAX_RT_PRIO; j++) {
6911 INIT_LIST_HEAD(array->queue + j);
6912 __clear_bit(j, array->bitmap);
1da177e4 6913 }
476f3534 6914 highest_cpu = i;
dd41f596
IM
6915 /* delimiter for bitsearch: */
6916 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6917 }
6918
2dd73a4f 6919 set_load_weight(&init_task);
b50f60ce 6920
e107be36
AK
6921#ifdef CONFIG_PREEMPT_NOTIFIERS
6922 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6923#endif
6924
c9819f45 6925#ifdef CONFIG_SMP
476f3534 6926 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6927 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6928#endif
6929
b50f60ce
HC
6930#ifdef CONFIG_RT_MUTEXES
6931 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6932#endif
6933
1da177e4
LT
6934 /*
6935 * The boot idle thread does lazy MMU switching as well:
6936 */
6937 atomic_inc(&init_mm.mm_count);
6938 enter_lazy_tlb(&init_mm, current);
6939
6940 /*
6941 * Make us the idle thread. Technically, schedule() should not be
6942 * called from this thread, however somewhere below it might be,
6943 * but because we are the idle thread, we just pick up running again
6944 * when this runqueue becomes "idle".
6945 */
6946 init_idle(current, smp_processor_id());
dd41f596
IM
6947 /*
6948 * During early bootup we pretend to be a normal task:
6949 */
6950 current->sched_class = &fair_sched_class;
1da177e4
LT
6951}
6952
6953#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6954void __might_sleep(char *file, int line)
6955{
48f24c4d 6956#ifdef in_atomic
1da177e4
LT
6957 static unsigned long prev_jiffy; /* ratelimiting */
6958
6959 if ((in_atomic() || irqs_disabled()) &&
6960 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6961 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6962 return;
6963 prev_jiffy = jiffies;
91368d73 6964 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6965 " context at %s:%d\n", file, line);
6966 printk("in_atomic():%d, irqs_disabled():%d\n",
6967 in_atomic(), irqs_disabled());
a4c410f0 6968 debug_show_held_locks(current);
3117df04
IM
6969 if (irqs_disabled())
6970 print_irqtrace_events(current);
1da177e4
LT
6971 dump_stack();
6972 }
6973#endif
6974}
6975EXPORT_SYMBOL(__might_sleep);
6976#endif
6977
6978#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6979static void normalize_task(struct rq *rq, struct task_struct *p)
6980{
6981 int on_rq;
6982 update_rq_clock(rq);
6983 on_rq = p->se.on_rq;
6984 if (on_rq)
6985 deactivate_task(rq, p, 0);
6986 __setscheduler(rq, p, SCHED_NORMAL, 0);
6987 if (on_rq) {
6988 activate_task(rq, p, 0);
6989 resched_task(rq->curr);
6990 }
6991}
6992
1da177e4
LT
6993void normalize_rt_tasks(void)
6994{
a0f98a1c 6995 struct task_struct *g, *p;
1da177e4 6996 unsigned long flags;
70b97a7f 6997 struct rq *rq;
1da177e4
LT
6998
6999 read_lock_irq(&tasklist_lock);
a0f98a1c 7000 do_each_thread(g, p) {
178be793
IM
7001 /*
7002 * Only normalize user tasks:
7003 */
7004 if (!p->mm)
7005 continue;
7006
6cfb0d5d 7007 p->se.exec_start = 0;
6cfb0d5d 7008#ifdef CONFIG_SCHEDSTATS
dd41f596 7009 p->se.wait_start = 0;
dd41f596 7010 p->se.sleep_start = 0;
dd41f596 7011 p->se.block_start = 0;
6cfb0d5d 7012#endif
dd41f596
IM
7013 task_rq(p)->clock = 0;
7014
7015 if (!rt_task(p)) {
7016 /*
7017 * Renice negative nice level userspace
7018 * tasks back to 0:
7019 */
7020 if (TASK_NICE(p) < 0 && p->mm)
7021 set_user_nice(p, 0);
1da177e4 7022 continue;
dd41f596 7023 }
1da177e4 7024
b29739f9
IM
7025 spin_lock_irqsave(&p->pi_lock, flags);
7026 rq = __task_rq_lock(p);
1da177e4 7027
178be793 7028 normalize_task(rq, p);
3a5e4dc1 7029
b29739f9
IM
7030 __task_rq_unlock(rq);
7031 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7032 } while_each_thread(g, p);
7033
1da177e4
LT
7034 read_unlock_irq(&tasklist_lock);
7035}
7036
7037#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7038
7039#ifdef CONFIG_IA64
7040/*
7041 * These functions are only useful for the IA64 MCA handling.
7042 *
7043 * They can only be called when the whole system has been
7044 * stopped - every CPU needs to be quiescent, and no scheduling
7045 * activity can take place. Using them for anything else would
7046 * be a serious bug, and as a result, they aren't even visible
7047 * under any other configuration.
7048 */
7049
7050/**
7051 * curr_task - return the current task for a given cpu.
7052 * @cpu: the processor in question.
7053 *
7054 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7055 */
36c8b586 7056struct task_struct *curr_task(int cpu)
1df5c10a
LT
7057{
7058 return cpu_curr(cpu);
7059}
7060
7061/**
7062 * set_curr_task - set the current task for a given cpu.
7063 * @cpu: the processor in question.
7064 * @p: the task pointer to set.
7065 *
7066 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7067 * are serviced on a separate stack. It allows the architecture to switch the
7068 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7069 * must be called with all CPU's synchronized, and interrupts disabled, the
7070 * and caller must save the original value of the current task (see
7071 * curr_task() above) and restore that value before reenabling interrupts and
7072 * re-starting the system.
7073 *
7074 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7075 */
36c8b586 7076void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7077{
7078 cpu_curr(cpu) = p;
7079}
7080
7081#endif
29f59db3
SV
7082
7083#ifdef CONFIG_FAIR_GROUP_SCHED
7084
6b2d7700
SV
7085#ifdef CONFIG_SMP
7086/*
7087 * distribute shares of all task groups among their schedulable entities,
7088 * to reflect load distrbution across cpus.
7089 */
7090static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7091{
7092 struct cfs_rq *cfs_rq;
7093 struct rq *rq = cpu_rq(this_cpu);
7094 cpumask_t sdspan = sd->span;
7095 int balanced = 1;
7096
7097 /* Walk thr' all the task groups that we have */
7098 for_each_leaf_cfs_rq(rq, cfs_rq) {
7099 int i;
7100 unsigned long total_load = 0, total_shares;
7101 struct task_group *tg = cfs_rq->tg;
7102
7103 /* Gather total task load of this group across cpus */
7104 for_each_cpu_mask(i, sdspan)
7105 total_load += tg->cfs_rq[i]->load.weight;
7106
0eab9146 7107 /* Nothing to do if this group has no load */
6b2d7700
SV
7108 if (!total_load)
7109 continue;
7110
7111 /*
7112 * tg->shares represents the number of cpu shares the task group
7113 * is eligible to hold on a single cpu. On N cpus, it is
7114 * eligible to hold (N * tg->shares) number of cpu shares.
7115 */
7116 total_shares = tg->shares * cpus_weight(sdspan);
7117
7118 /*
7119 * redistribute total_shares across cpus as per the task load
7120 * distribution.
7121 */
7122 for_each_cpu_mask(i, sdspan) {
7123 unsigned long local_load, local_shares;
7124
7125 local_load = tg->cfs_rq[i]->load.weight;
7126 local_shares = (local_load * total_shares) / total_load;
7127 if (!local_shares)
7128 local_shares = MIN_GROUP_SHARES;
7129 if (local_shares == tg->se[i]->load.weight)
7130 continue;
7131
7132 spin_lock_irq(&cpu_rq(i)->lock);
7133 set_se_shares(tg->se[i], local_shares);
7134 spin_unlock_irq(&cpu_rq(i)->lock);
7135 balanced = 0;
7136 }
7137 }
7138
7139 return balanced;
7140}
7141
7142/*
7143 * How frequently should we rebalance_shares() across cpus?
7144 *
7145 * The more frequently we rebalance shares, the more accurate is the fairness
7146 * of cpu bandwidth distribution between task groups. However higher frequency
7147 * also implies increased scheduling overhead.
7148 *
7149 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7150 * consecutive calls to rebalance_shares() in the same sched domain.
7151 *
7152 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7153 * consecutive calls to rebalance_shares() in the same sched domain.
7154 *
7155 * These settings allows for the appropriate tradeoff between accuracy of
7156 * fairness and the associated overhead.
7157 *
7158 */
7159
7160/* default: 8ms, units: milliseconds */
7161const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7162
7163/* default: 128ms, units: milliseconds */
7164const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7165
7166/* kernel thread that runs rebalance_shares() periodically */
7167static int load_balance_monitor(void *unused)
7168{
7169 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7170 struct sched_param schedparm;
7171 int ret;
7172
7173 /*
7174 * We don't want this thread's execution to be limited by the shares
7175 * assigned to default group (init_task_group). Hence make it run
7176 * as a SCHED_RR RT task at the lowest priority.
7177 */
7178 schedparm.sched_priority = 1;
7179 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7180 if (ret)
7181 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7182 " monitor thread (error = %d) \n", ret);
7183
7184 while (!kthread_should_stop()) {
7185 int i, cpu, balanced = 1;
7186
7187 /* Prevent cpus going down or coming up */
86ef5c9a 7188 get_online_cpus();
6b2d7700
SV
7189 /* lockout changes to doms_cur[] array */
7190 lock_doms_cur();
7191 /*
7192 * Enter a rcu read-side critical section to safely walk rq->sd
7193 * chain on various cpus and to walk task group list
7194 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7195 */
7196 rcu_read_lock();
7197
7198 for (i = 0; i < ndoms_cur; i++) {
7199 cpumask_t cpumap = doms_cur[i];
7200 struct sched_domain *sd = NULL, *sd_prev = NULL;
7201
7202 cpu = first_cpu(cpumap);
7203
7204 /* Find the highest domain at which to balance shares */
7205 for_each_domain(cpu, sd) {
7206 if (!(sd->flags & SD_LOAD_BALANCE))
7207 continue;
7208 sd_prev = sd;
7209 }
7210
7211 sd = sd_prev;
7212 /* sd == NULL? No load balance reqd in this domain */
7213 if (!sd)
7214 continue;
7215
7216 balanced &= rebalance_shares(sd, cpu);
7217 }
7218
7219 rcu_read_unlock();
7220
7221 unlock_doms_cur();
86ef5c9a 7222 put_online_cpus();
6b2d7700
SV
7223
7224 if (!balanced)
7225 timeout = sysctl_sched_min_bal_int_shares;
7226 else if (timeout < sysctl_sched_max_bal_int_shares)
7227 timeout *= 2;
7228
7229 msleep_interruptible(timeout);
7230 }
7231
7232 return 0;
7233}
7234#endif /* CONFIG_SMP */
7235
29f59db3 7236/* allocate runqueue etc for a new task group */
4cf86d77 7237struct task_group *sched_create_group(void)
29f59db3 7238{
4cf86d77 7239 struct task_group *tg;
29f59db3
SV
7240 struct cfs_rq *cfs_rq;
7241 struct sched_entity *se;
9b5b7751 7242 struct rq *rq;
29f59db3
SV
7243 int i;
7244
29f59db3
SV
7245 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7246 if (!tg)
7247 return ERR_PTR(-ENOMEM);
7248
9b5b7751 7249 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7250 if (!tg->cfs_rq)
7251 goto err;
9b5b7751 7252 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7253 if (!tg->se)
7254 goto err;
7255
7256 for_each_possible_cpu(i) {
9b5b7751 7257 rq = cpu_rq(i);
29f59db3
SV
7258
7259 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7260 cpu_to_node(i));
7261 if (!cfs_rq)
7262 goto err;
7263
7264 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7265 cpu_to_node(i));
7266 if (!se)
7267 goto err;
7268
7269 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7270 memset(se, 0, sizeof(struct sched_entity));
7271
7272 tg->cfs_rq[i] = cfs_rq;
7273 init_cfs_rq(cfs_rq, rq);
7274 cfs_rq->tg = tg;
29f59db3
SV
7275
7276 tg->se[i] = se;
7277 se->cfs_rq = &rq->cfs;
7278 se->my_q = cfs_rq;
7279 se->load.weight = NICE_0_LOAD;
7280 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7281 se->parent = NULL;
7282 }
7283
ec2c507f
SV
7284 tg->shares = NICE_0_LOAD;
7285
7286 lock_task_group_list();
9b5b7751
SV
7287 for_each_possible_cpu(i) {
7288 rq = cpu_rq(i);
7289 cfs_rq = tg->cfs_rq[i];
7290 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7291 }
ec2c507f 7292 unlock_task_group_list();
29f59db3 7293
9b5b7751 7294 return tg;
29f59db3
SV
7295
7296err:
7297 for_each_possible_cpu(i) {
a65914b3 7298 if (tg->cfs_rq)
29f59db3 7299 kfree(tg->cfs_rq[i]);
a65914b3 7300 if (tg->se)
29f59db3
SV
7301 kfree(tg->se[i]);
7302 }
a65914b3
IM
7303 kfree(tg->cfs_rq);
7304 kfree(tg->se);
7305 kfree(tg);
29f59db3
SV
7306
7307 return ERR_PTR(-ENOMEM);
7308}
7309
9b5b7751
SV
7310/* rcu callback to free various structures associated with a task group */
7311static void free_sched_group(struct rcu_head *rhp)
29f59db3 7312{
ae8393e5
SV
7313 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7314 struct cfs_rq *cfs_rq;
29f59db3
SV
7315 struct sched_entity *se;
7316 int i;
7317
29f59db3
SV
7318 /* now it should be safe to free those cfs_rqs */
7319 for_each_possible_cpu(i) {
7320 cfs_rq = tg->cfs_rq[i];
7321 kfree(cfs_rq);
7322
7323 se = tg->se[i];
7324 kfree(se);
7325 }
7326
7327 kfree(tg->cfs_rq);
7328 kfree(tg->se);
7329 kfree(tg);
7330}
7331
9b5b7751 7332/* Destroy runqueue etc associated with a task group */
4cf86d77 7333void sched_destroy_group(struct task_group *tg)
29f59db3 7334{
7bae49d4 7335 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7336 int i;
29f59db3 7337
ec2c507f 7338 lock_task_group_list();
9b5b7751
SV
7339 for_each_possible_cpu(i) {
7340 cfs_rq = tg->cfs_rq[i];
7341 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7342 }
ec2c507f 7343 unlock_task_group_list();
9b5b7751 7344
7bae49d4 7345 BUG_ON(!cfs_rq);
9b5b7751
SV
7346
7347 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7348 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7349}
7350
9b5b7751 7351/* change task's runqueue when it moves between groups.
3a252015
IM
7352 * The caller of this function should have put the task in its new group
7353 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7354 * reflect its new group.
9b5b7751
SV
7355 */
7356void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7357{
7358 int on_rq, running;
7359 unsigned long flags;
7360 struct rq *rq;
7361
7362 rq = task_rq_lock(tsk, &flags);
7363
dae51f56 7364 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7365 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7366 goto done;
dae51f56 7367 }
29f59db3
SV
7368
7369 update_rq_clock(rq);
7370
051a1d1a 7371 running = task_current(rq, tsk);
29f59db3
SV
7372 on_rq = tsk->se.on_rq;
7373
83b699ed 7374 if (on_rq) {
29f59db3 7375 dequeue_task(rq, tsk, 0);
83b699ed
SV
7376 if (unlikely(running))
7377 tsk->sched_class->put_prev_task(rq, tsk);
7378 }
29f59db3 7379
ce96b5ac 7380 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7381
83b699ed
SV
7382 if (on_rq) {
7383 if (unlikely(running))
7384 tsk->sched_class->set_curr_task(rq);
7074badb 7385 enqueue_task(rq, tsk, 0);
83b699ed 7386 }
29f59db3
SV
7387
7388done:
7389 task_rq_unlock(rq, &flags);
7390}
7391
6b2d7700 7392/* rq->lock to be locked by caller */
29f59db3
SV
7393static void set_se_shares(struct sched_entity *se, unsigned long shares)
7394{
7395 struct cfs_rq *cfs_rq = se->cfs_rq;
7396 struct rq *rq = cfs_rq->rq;
7397 int on_rq;
7398
6b2d7700
SV
7399 if (!shares)
7400 shares = MIN_GROUP_SHARES;
29f59db3
SV
7401
7402 on_rq = se->on_rq;
6b2d7700 7403 if (on_rq) {
29f59db3 7404 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7405 dec_cpu_load(rq, se->load.weight);
7406 }
29f59db3
SV
7407
7408 se->load.weight = shares;
7409 se->load.inv_weight = div64_64((1ULL<<32), shares);
7410
6b2d7700 7411 if (on_rq) {
29f59db3 7412 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7413 inc_cpu_load(rq, se->load.weight);
7414 }
29f59db3
SV
7415}
7416
4cf86d77 7417int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7418{
7419 int i;
6b2d7700
SV
7420 struct cfs_rq *cfs_rq;
7421 struct rq *rq;
c61935fd 7422
ec2c507f 7423 lock_task_group_list();
9b5b7751 7424 if (tg->shares == shares)
5cb350ba 7425 goto done;
29f59db3 7426
6b2d7700
SV
7427 if (shares < MIN_GROUP_SHARES)
7428 shares = MIN_GROUP_SHARES;
7429
7430 /*
7431 * Prevent any load balance activity (rebalance_shares,
7432 * load_balance_fair) from referring to this group first,
7433 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7434 */
7435 for_each_possible_cpu(i) {
7436 cfs_rq = tg->cfs_rq[i];
7437 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7438 }
7439
7440 /* wait for any ongoing reference to this group to finish */
7441 synchronize_sched();
7442
7443 /*
7444 * Now we are free to modify the group's share on each cpu
7445 * w/o tripping rebalance_share or load_balance_fair.
7446 */
9b5b7751 7447 tg->shares = shares;
6b2d7700
SV
7448 for_each_possible_cpu(i) {
7449 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7450 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7451 spin_unlock_irq(&cpu_rq(i)->lock);
7452 }
29f59db3 7453
6b2d7700
SV
7454 /*
7455 * Enable load balance activity on this group, by inserting it back on
7456 * each cpu's rq->leaf_cfs_rq_list.
7457 */
7458 for_each_possible_cpu(i) {
7459 rq = cpu_rq(i);
7460 cfs_rq = tg->cfs_rq[i];
7461 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7462 }
5cb350ba 7463done:
ec2c507f 7464 unlock_task_group_list();
9b5b7751 7465 return 0;
29f59db3
SV
7466}
7467
5cb350ba
DG
7468unsigned long sched_group_shares(struct task_group *tg)
7469{
7470 return tg->shares;
7471}
7472
3a252015 7473#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7474
7475#ifdef CONFIG_FAIR_CGROUP_SCHED
7476
7477/* return corresponding task_group object of a cgroup */
2b01dfe3 7478static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7479{
2b01dfe3
PM
7480 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7481 struct task_group, css);
68318b8e
SV
7482}
7483
7484static struct cgroup_subsys_state *
2b01dfe3 7485cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7486{
7487 struct task_group *tg;
7488
2b01dfe3 7489 if (!cgrp->parent) {
68318b8e 7490 /* This is early initialization for the top cgroup */
2b01dfe3 7491 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7492 return &init_task_group.css;
7493 }
7494
7495 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7496 if (cgrp->parent->parent)
68318b8e
SV
7497 return ERR_PTR(-EINVAL);
7498
7499 tg = sched_create_group();
7500 if (IS_ERR(tg))
7501 return ERR_PTR(-ENOMEM);
7502
7503 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7504 tg->css.cgroup = cgrp;
68318b8e
SV
7505
7506 return &tg->css;
7507}
7508
41a2d6cf
IM
7509static void
7510cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7511{
2b01dfe3 7512 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7513
7514 sched_destroy_group(tg);
7515}
7516
41a2d6cf
IM
7517static int
7518cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7519 struct task_struct *tsk)
68318b8e
SV
7520{
7521 /* We don't support RT-tasks being in separate groups */
7522 if (tsk->sched_class != &fair_sched_class)
7523 return -EINVAL;
7524
7525 return 0;
7526}
7527
7528static void
2b01dfe3 7529cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7530 struct cgroup *old_cont, struct task_struct *tsk)
7531{
7532 sched_move_task(tsk);
7533}
7534
2b01dfe3
PM
7535static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7536 u64 shareval)
68318b8e 7537{
2b01dfe3 7538 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7539}
7540
2b01dfe3 7541static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7542{
2b01dfe3 7543 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7544
7545 return (u64) tg->shares;
7546}
7547
fe5c7cc2
PM
7548static struct cftype cpu_files[] = {
7549 {
7550 .name = "shares",
7551 .read_uint = cpu_shares_read_uint,
7552 .write_uint = cpu_shares_write_uint,
7553 },
68318b8e
SV
7554};
7555
7556static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7557{
fe5c7cc2 7558 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7559}
7560
7561struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7562 .name = "cpu",
7563 .create = cpu_cgroup_create,
7564 .destroy = cpu_cgroup_destroy,
7565 .can_attach = cpu_cgroup_can_attach,
7566 .attach = cpu_cgroup_attach,
7567 .populate = cpu_cgroup_populate,
7568 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7569 .early_init = 1,
7570};
7571
7572#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7573
7574#ifdef CONFIG_CGROUP_CPUACCT
7575
7576/*
7577 * CPU accounting code for task groups.
7578 *
7579 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7580 * (balbir@in.ibm.com).
7581 */
7582
7583/* track cpu usage of a group of tasks */
7584struct cpuacct {
7585 struct cgroup_subsys_state css;
7586 /* cpuusage holds pointer to a u64-type object on every cpu */
7587 u64 *cpuusage;
7588};
7589
7590struct cgroup_subsys cpuacct_subsys;
7591
7592/* return cpu accounting group corresponding to this container */
7593static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7594{
7595 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7596 struct cpuacct, css);
7597}
7598
7599/* return cpu accounting group to which this task belongs */
7600static inline struct cpuacct *task_ca(struct task_struct *tsk)
7601{
7602 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7603 struct cpuacct, css);
7604}
7605
7606/* create a new cpu accounting group */
7607static struct cgroup_subsys_state *cpuacct_create(
7608 struct cgroup_subsys *ss, struct cgroup *cont)
7609{
7610 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7611
7612 if (!ca)
7613 return ERR_PTR(-ENOMEM);
7614
7615 ca->cpuusage = alloc_percpu(u64);
7616 if (!ca->cpuusage) {
7617 kfree(ca);
7618 return ERR_PTR(-ENOMEM);
7619 }
7620
7621 return &ca->css;
7622}
7623
7624/* destroy an existing cpu accounting group */
41a2d6cf
IM
7625static void
7626cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7627{
7628 struct cpuacct *ca = cgroup_ca(cont);
7629
7630 free_percpu(ca->cpuusage);
7631 kfree(ca);
7632}
7633
7634/* return total cpu usage (in nanoseconds) of a group */
7635static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7636{
7637 struct cpuacct *ca = cgroup_ca(cont);
7638 u64 totalcpuusage = 0;
7639 int i;
7640
7641 for_each_possible_cpu(i) {
7642 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7643
7644 /*
7645 * Take rq->lock to make 64-bit addition safe on 32-bit
7646 * platforms.
7647 */
7648 spin_lock_irq(&cpu_rq(i)->lock);
7649 totalcpuusage += *cpuusage;
7650 spin_unlock_irq(&cpu_rq(i)->lock);
7651 }
7652
7653 return totalcpuusage;
7654}
7655
7656static struct cftype files[] = {
7657 {
7658 .name = "usage",
7659 .read_uint = cpuusage_read,
7660 },
7661};
7662
7663static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7664{
7665 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7666}
7667
7668/*
7669 * charge this task's execution time to its accounting group.
7670 *
7671 * called with rq->lock held.
7672 */
7673static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7674{
7675 struct cpuacct *ca;
7676
7677 if (!cpuacct_subsys.active)
7678 return;
7679
7680 ca = task_ca(tsk);
7681 if (ca) {
7682 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7683
7684 *cpuusage += cputime;
7685 }
7686}
7687
7688struct cgroup_subsys cpuacct_subsys = {
7689 .name = "cpuacct",
7690 .create = cpuacct_create,
7691 .destroy = cpuacct_destroy,
7692 .populate = cpuacct_populate,
7693 .subsys_id = cpuacct_subsys_id,
7694};
7695#endif /* CONFIG_CGROUP_CPUACCT */