]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Add pre and post wakeup hooks
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
0986b11b 475 raw_spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491 529 /* runqueue lock: */
05fa785c 530 raw_spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
05fa785c 898 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 922 raw_spin_unlock_irq(&rq->lock);
4866cde0 923#else
05fa785c 924 raw_spin_unlock(&rq->lock);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
3a5c359a
AK
955 if (likely(rq == task_rq(p)))
956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
05fa785c 974 raw_spin_lock(&rq->lock);
3a5c359a
AK
975 if (likely(rq == task_rq(p)))
976 return rq;
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 986 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
05fa785c 992 raw_spin_unlock(&rq->lock);
b29739f9
IM
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
05fa785c 998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
05fa785c 1011 raw_spin_lock(&rq->lock);
1da177e4
LT
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
05fa785c 1058 raw_spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec 1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1061 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
05fa785c 1074 raw_spin_lock(&rq->lock);
31656519
PZ
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
05fa785c 1077 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
05fa785c 1184 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
05fa785c 1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1207 return;
1208 resched_task(cpu_curr(cpu));
05fa785c 1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
05fa785c 1605 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1608 __set_se_shares(tg->se[cpu], shares);
05fa785c 1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
05fa785c 1711 raw_spin_unlock(&rq->lock);
3e5459b4 1712 update_shares(sd);
05fa785c 1713 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
05fa785c 1753 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
05fa785c 1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1775 if (busiest < this_rq) {
05fa785c
TG
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
70574a99
AD
1780 ret = 1;
1781 } else
05fa785c
TG
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
70574a99
AD
1784 }
1785 return ret;
1786}
1787
8f45e2b5
GH
1788#endif /* CONFIG_PREEMPT */
1789
1790/*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794{
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
05fa785c 1797 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802}
1803
70574a99
AD
1804static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806{
05fa785c 1807 raw_spin_unlock(&busiest->lock);
70574a99
AD
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809}
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
dd41f596 1839#include "sched_stats.h"
dd41f596 1840#include "sched_idletask.c"
5522d5d5
IM
1841#include "sched_fair.c"
1842#include "sched_rt.c"
dd41f596
IM
1843#ifdef CONFIG_SCHED_DEBUG
1844# include "sched_debug.c"
1845#endif
1846
1847#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
8159f87e 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1889{
831451ac
PZ
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
dd41f596 1893 sched_info_queued(p);
fd390f6a 1894 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1895 p->se.on_rq = 1;
71f8bd46
IM
1896}
1897
69be72c1 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1899{
831451ac
PZ
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
2087a1ad
GH
1909 }
1910
46ac22ba 1911 sched_info_dequeued(p);
f02231e5 1912 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1913 p->se.on_rq = 0;
71f8bd46
IM
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4 1962/*
dd41f596 1963 * activate_task - move a task to the runqueue.
1da177e4 1964 */
dd41f596 1965static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1966{
d9514f6c 1967 if (task_contributes_to_load(p))
dd41f596 1968 rq->nr_uninterruptible--;
1da177e4 1969
8159f87e 1970 enqueue_task(rq, p, wakeup);
c09595f6 1971 inc_nr_running(rq);
1da177e4
LT
1972}
1973
1da177e4
LT
1974/*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
2e1cb74a 1977static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1978{
d9514f6c 1979 if (task_contributes_to_load(p))
dd41f596
IM
1980 rq->nr_uninterruptible++;
1981
69be72c1 1982 dequeue_task(rq, p, sleep);
c09595f6 1983 dec_nr_running(rq);
1da177e4
LT
1984}
1985
1da177e4
LT
1986/**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
36c8b586 1990inline int task_curr(const struct task_struct *p)
1da177e4
LT
1991{
1992 return cpu_curr(task_cpu(p)) == p;
1993}
1994
cb469845
SR
1995static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998{
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005}
2006
1da177e4 2007#ifdef CONFIG_SMP
cc367732
IM
2008/*
2009 * Is this task likely cache-hot:
2010 */
e7693a36 2011static int
cc367732
IM
2012task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013{
2014 s64 delta;
2015
e6c8fba7
PZ
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
f540a608
IM
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
f685ceac 2022 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2025 return 1;
2026
6bc1665b
IM
2027 if (sysctl_sched_migration_cost == -1)
2028 return 1;
2029 if (sysctl_sched_migration_cost == 0)
2030 return 0;
2031
cc367732
IM
2032 delta = now - p->se.exec_start;
2033
2034 return delta < (s64)sysctl_sched_migration_cost;
2035}
2036
2037
dd41f596 2038void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2039{
dd41f596 2040 int old_cpu = task_cpu(p);
2830cf8c
SV
2041 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2042 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2043
e2912009
PZ
2044#ifdef CONFIG_SCHED_DEBUG
2045 /*
2046 * We should never call set_task_cpu() on a blocked task,
2047 * ttwu() will sort out the placement.
2048 */
2049 WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
2050#endif
2051
de1d7286 2052 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2053
cc367732 2054 if (old_cpu != new_cpu) {
6c594c21 2055 p->se.nr_migrations++;
cdd6c482 2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2057 1, 1, NULL, 0);
6c594c21 2058 }
2830cf8c
SV
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
dd41f596
IM
2061
2062 __set_task_cpu(p, new_cpu);
c65cc870
IM
2063}
2064
70b97a7f 2065struct migration_req {
1da177e4 2066 struct list_head list;
1da177e4 2067
36c8b586 2068 struct task_struct *task;
1da177e4
LT
2069 int dest_cpu;
2070
1da177e4 2071 struct completion done;
70b97a7f 2072};
1da177e4
LT
2073
2074/*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
36c8b586 2078static int
70b97a7f 2079migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2080{
70b97a7f 2081 struct rq *rq = task_rq(p);
1da177e4
LT
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
e2912009 2085 * the next wake-up will properly place the task.
1da177e4 2086 */
e2912009 2087 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2088 return 0;
1da177e4
LT
2089
2090 init_completion(&req->done);
1da177e4
LT
2091 req->task = p;
2092 req->dest_cpu = dest_cpu;
2093 list_add(&req->list, &rq->migration_queue);
48f24c4d 2094
1da177e4
LT
2095 return 1;
2096}
2097
a26b89f0
MM
2098/*
2099 * wait_task_context_switch - wait for a thread to complete at least one
2100 * context switch.
2101 *
2102 * @p must not be current.
2103 */
2104void wait_task_context_switch(struct task_struct *p)
2105{
2106 unsigned long nvcsw, nivcsw, flags;
2107 int running;
2108 struct rq *rq;
2109
2110 nvcsw = p->nvcsw;
2111 nivcsw = p->nivcsw;
2112 for (;;) {
2113 /*
2114 * The runqueue is assigned before the actual context
2115 * switch. We need to take the runqueue lock.
2116 *
2117 * We could check initially without the lock but it is
2118 * very likely that we need to take the lock in every
2119 * iteration.
2120 */
2121 rq = task_rq_lock(p, &flags);
2122 running = task_running(rq, p);
2123 task_rq_unlock(rq, &flags);
2124
2125 if (likely(!running))
2126 break;
2127 /*
2128 * The switch count is incremented before the actual
2129 * context switch. We thus wait for two switches to be
2130 * sure at least one completed.
2131 */
2132 if ((p->nvcsw - nvcsw) > 1)
2133 break;
2134 if ((p->nivcsw - nivcsw) > 1)
2135 break;
2136
2137 cpu_relax();
2138 }
2139}
2140
1da177e4
LT
2141/*
2142 * wait_task_inactive - wait for a thread to unschedule.
2143 *
85ba2d86
RM
2144 * If @match_state is nonzero, it's the @p->state value just checked and
2145 * not expected to change. If it changes, i.e. @p might have woken up,
2146 * then return zero. When we succeed in waiting for @p to be off its CPU,
2147 * we return a positive number (its total switch count). If a second call
2148 * a short while later returns the same number, the caller can be sure that
2149 * @p has remained unscheduled the whole time.
2150 *
1da177e4
LT
2151 * The caller must ensure that the task *will* unschedule sometime soon,
2152 * else this function might spin for a *long* time. This function can't
2153 * be called with interrupts off, or it may introduce deadlock with
2154 * smp_call_function() if an IPI is sent by the same process we are
2155 * waiting to become inactive.
2156 */
85ba2d86 2157unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2158{
2159 unsigned long flags;
dd41f596 2160 int running, on_rq;
85ba2d86 2161 unsigned long ncsw;
70b97a7f 2162 struct rq *rq;
1da177e4 2163
3a5c359a
AK
2164 for (;;) {
2165 /*
2166 * We do the initial early heuristics without holding
2167 * any task-queue locks at all. We'll only try to get
2168 * the runqueue lock when things look like they will
2169 * work out!
2170 */
2171 rq = task_rq(p);
fa490cfd 2172
3a5c359a
AK
2173 /*
2174 * If the task is actively running on another CPU
2175 * still, just relax and busy-wait without holding
2176 * any locks.
2177 *
2178 * NOTE! Since we don't hold any locks, it's not
2179 * even sure that "rq" stays as the right runqueue!
2180 * But we don't care, since "task_running()" will
2181 * return false if the runqueue has changed and p
2182 * is actually now running somewhere else!
2183 */
85ba2d86
RM
2184 while (task_running(rq, p)) {
2185 if (match_state && unlikely(p->state != match_state))
2186 return 0;
3a5c359a 2187 cpu_relax();
85ba2d86 2188 }
fa490cfd 2189
3a5c359a
AK
2190 /*
2191 * Ok, time to look more closely! We need the rq
2192 * lock now, to be *sure*. If we're wrong, we'll
2193 * just go back and repeat.
2194 */
2195 rq = task_rq_lock(p, &flags);
0a16b607 2196 trace_sched_wait_task(rq, p);
3a5c359a
AK
2197 running = task_running(rq, p);
2198 on_rq = p->se.on_rq;
85ba2d86 2199 ncsw = 0;
f31e11d8 2200 if (!match_state || p->state == match_state)
93dcf55f 2201 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2202 task_rq_unlock(rq, &flags);
fa490cfd 2203
85ba2d86
RM
2204 /*
2205 * If it changed from the expected state, bail out now.
2206 */
2207 if (unlikely(!ncsw))
2208 break;
2209
3a5c359a
AK
2210 /*
2211 * Was it really running after all now that we
2212 * checked with the proper locks actually held?
2213 *
2214 * Oops. Go back and try again..
2215 */
2216 if (unlikely(running)) {
2217 cpu_relax();
2218 continue;
2219 }
fa490cfd 2220
3a5c359a
AK
2221 /*
2222 * It's not enough that it's not actively running,
2223 * it must be off the runqueue _entirely_, and not
2224 * preempted!
2225 *
80dd99b3 2226 * So if it was still runnable (but just not actively
3a5c359a
AK
2227 * running right now), it's preempted, and we should
2228 * yield - it could be a while.
2229 */
2230 if (unlikely(on_rq)) {
2231 schedule_timeout_uninterruptible(1);
2232 continue;
2233 }
fa490cfd 2234
3a5c359a
AK
2235 /*
2236 * Ahh, all good. It wasn't running, and it wasn't
2237 * runnable, which means that it will never become
2238 * running in the future either. We're all done!
2239 */
2240 break;
2241 }
85ba2d86
RM
2242
2243 return ncsw;
1da177e4
LT
2244}
2245
2246/***
2247 * kick_process - kick a running thread to enter/exit the kernel
2248 * @p: the to-be-kicked thread
2249 *
2250 * Cause a process which is running on another CPU to enter
2251 * kernel-mode, without any delay. (to get signals handled.)
2252 *
2253 * NOTE: this function doesnt have to take the runqueue lock,
2254 * because all it wants to ensure is that the remote task enters
2255 * the kernel. If the IPI races and the task has been migrated
2256 * to another CPU then no harm is done and the purpose has been
2257 * achieved as well.
2258 */
36c8b586 2259void kick_process(struct task_struct *p)
1da177e4
LT
2260{
2261 int cpu;
2262
2263 preempt_disable();
2264 cpu = task_cpu(p);
2265 if ((cpu != smp_processor_id()) && task_curr(p))
2266 smp_send_reschedule(cpu);
2267 preempt_enable();
2268}
b43e3521 2269EXPORT_SYMBOL_GPL(kick_process);
476d139c 2270#endif /* CONFIG_SMP */
1da177e4 2271
0793a61d
TG
2272/**
2273 * task_oncpu_function_call - call a function on the cpu on which a task runs
2274 * @p: the task to evaluate
2275 * @func: the function to be called
2276 * @info: the function call argument
2277 *
2278 * Calls the function @func when the task is currently running. This might
2279 * be on the current CPU, which just calls the function directly
2280 */
2281void task_oncpu_function_call(struct task_struct *p,
2282 void (*func) (void *info), void *info)
2283{
2284 int cpu;
2285
2286 preempt_disable();
2287 cpu = task_cpu(p);
2288 if (task_curr(p))
2289 smp_call_function_single(cpu, func, info, 1);
2290 preempt_enable();
2291}
2292
970b13ba 2293#ifdef CONFIG_SMP
5da9a0fb
PZ
2294static int select_fallback_rq(int cpu, struct task_struct *p)
2295{
2296 int dest_cpu;
2297 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2298
2299 /* Look for allowed, online CPU in same node. */
2300 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2301 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2302 return dest_cpu;
2303
2304 /* Any allowed, online CPU? */
2305 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2306 if (dest_cpu < nr_cpu_ids)
2307 return dest_cpu;
2308
2309 /* No more Mr. Nice Guy. */
2310 if (dest_cpu >= nr_cpu_ids) {
2311 rcu_read_lock();
2312 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2313 rcu_read_unlock();
2314 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2315
2316 /*
2317 * Don't tell them about moving exiting tasks or
2318 * kernel threads (both mm NULL), since they never
2319 * leave kernel.
2320 */
2321 if (p->mm && printk_ratelimit()) {
2322 printk(KERN_INFO "process %d (%s) no "
2323 "longer affine to cpu%d\n",
2324 task_pid_nr(p), p->comm, cpu);
2325 }
2326 }
2327
2328 return dest_cpu;
2329}
2330
e2912009
PZ
2331/*
2332 * Called from:
2333 *
2334 * - fork, @p is stable because it isn't on the tasklist yet
2335 *
38022906 2336 * - exec, @p is unstable, retry loop
e2912009
PZ
2337 *
2338 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2339 * we should be good.
2340 */
970b13ba
PZ
2341static inline
2342int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2343{
e2912009
PZ
2344 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2345
2346 /*
2347 * In order not to call set_task_cpu() on a blocking task we need
2348 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2349 * cpu.
2350 *
2351 * Since this is common to all placement strategies, this lives here.
2352 *
2353 * [ this allows ->select_task() to simply return task_cpu(p) and
2354 * not worry about this generic constraint ]
2355 */
2356 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
5da9a0fb
PZ
2357 !cpu_active(cpu)))
2358 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2359
2360 return cpu;
970b13ba
PZ
2361}
2362#endif
2363
1da177e4
LT
2364/***
2365 * try_to_wake_up - wake up a thread
2366 * @p: the to-be-woken-up thread
2367 * @state: the mask of task states that can be woken
2368 * @sync: do a synchronous wakeup?
2369 *
2370 * Put it on the run-queue if it's not already there. The "current"
2371 * thread is always on the run-queue (except when the actual
2372 * re-schedule is in progress), and as such you're allowed to do
2373 * the simpler "current->state = TASK_RUNNING" to mark yourself
2374 * runnable without the overhead of this.
2375 *
2376 * returns failure only if the task is already active.
2377 */
7d478721
PZ
2378static int try_to_wake_up(struct task_struct *p, unsigned int state,
2379 int wake_flags)
1da177e4 2380{
cc367732 2381 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2382 unsigned long flags;
f5dc3753 2383 struct rq *rq, *orig_rq;
1da177e4 2384
b85d0667 2385 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2386 wake_flags &= ~WF_SYNC;
2398f2c6 2387
e9c84311 2388 this_cpu = get_cpu();
2398f2c6 2389
04e2f174 2390 smp_wmb();
f5dc3753 2391 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2392 update_rq_clock(rq);
e9c84311 2393 if (!(p->state & state))
1da177e4
LT
2394 goto out;
2395
dd41f596 2396 if (p->se.on_rq)
1da177e4
LT
2397 goto out_running;
2398
2399 cpu = task_cpu(p);
cc367732 2400 orig_cpu = cpu;
1da177e4
LT
2401
2402#ifdef CONFIG_SMP
2403 if (unlikely(task_running(rq, p)))
2404 goto out_activate;
2405
e9c84311
PZ
2406 /*
2407 * In order to handle concurrent wakeups and release the rq->lock
2408 * we put the task in TASK_WAKING state.
eb24073b
IM
2409 *
2410 * First fix up the nr_uninterruptible count:
e9c84311 2411 */
eb24073b
IM
2412 if (task_contributes_to_load(p))
2413 rq->nr_uninterruptible--;
e9c84311 2414 p->state = TASK_WAKING;
efbbd05a
PZ
2415
2416 if (p->sched_class->task_waking)
2417 p->sched_class->task_waking(rq, p);
2418
ab19cb23 2419 __task_rq_unlock(rq);
e9c84311 2420
970b13ba 2421 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2422 if (cpu != orig_cpu)
5d2f5a61 2423 set_task_cpu(p, cpu);
ab19cb23
PZ
2424
2425 rq = __task_rq_lock(p);
2426 update_rq_clock(rq);
f5dc3753 2427
e9c84311
PZ
2428 WARN_ON(p->state != TASK_WAKING);
2429 cpu = task_cpu(p);
1da177e4 2430
e7693a36
GH
2431#ifdef CONFIG_SCHEDSTATS
2432 schedstat_inc(rq, ttwu_count);
2433 if (cpu == this_cpu)
2434 schedstat_inc(rq, ttwu_local);
2435 else {
2436 struct sched_domain *sd;
2437 for_each_domain(this_cpu, sd) {
758b2cdc 2438 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2439 schedstat_inc(sd, ttwu_wake_remote);
2440 break;
2441 }
2442 }
2443 }
6d6bc0ad 2444#endif /* CONFIG_SCHEDSTATS */
e7693a36 2445
1da177e4
LT
2446out_activate:
2447#endif /* CONFIG_SMP */
cc367732 2448 schedstat_inc(p, se.nr_wakeups);
7d478721 2449 if (wake_flags & WF_SYNC)
cc367732
IM
2450 schedstat_inc(p, se.nr_wakeups_sync);
2451 if (orig_cpu != cpu)
2452 schedstat_inc(p, se.nr_wakeups_migrate);
2453 if (cpu == this_cpu)
2454 schedstat_inc(p, se.nr_wakeups_local);
2455 else
2456 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2457 activate_task(rq, p, 1);
1da177e4
LT
2458 success = 1;
2459
831451ac
PZ
2460 /*
2461 * Only attribute actual wakeups done by this task.
2462 */
2463 if (!in_interrupt()) {
2464 struct sched_entity *se = &current->se;
2465 u64 sample = se->sum_exec_runtime;
2466
2467 if (se->last_wakeup)
2468 sample -= se->last_wakeup;
2469 else
2470 sample -= se->start_runtime;
2471 update_avg(&se->avg_wakeup, sample);
2472
2473 se->last_wakeup = se->sum_exec_runtime;
2474 }
2475
1da177e4 2476out_running:
468a15bb 2477 trace_sched_wakeup(rq, p, success);
7d478721 2478 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2479
1da177e4 2480 p->state = TASK_RUNNING;
9a897c5a 2481#ifdef CONFIG_SMP
efbbd05a
PZ
2482 if (p->sched_class->task_woken)
2483 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2484
2485 if (unlikely(rq->idle_stamp)) {
2486 u64 delta = rq->clock - rq->idle_stamp;
2487 u64 max = 2*sysctl_sched_migration_cost;
2488
2489 if (delta > max)
2490 rq->avg_idle = max;
2491 else
2492 update_avg(&rq->avg_idle, delta);
2493 rq->idle_stamp = 0;
2494 }
9a897c5a 2495#endif
1da177e4
LT
2496out:
2497 task_rq_unlock(rq, &flags);
e9c84311 2498 put_cpu();
1da177e4
LT
2499
2500 return success;
2501}
2502
50fa610a
DH
2503/**
2504 * wake_up_process - Wake up a specific process
2505 * @p: The process to be woken up.
2506 *
2507 * Attempt to wake up the nominated process and move it to the set of runnable
2508 * processes. Returns 1 if the process was woken up, 0 if it was already
2509 * running.
2510 *
2511 * It may be assumed that this function implies a write memory barrier before
2512 * changing the task state if and only if any tasks are woken up.
2513 */
7ad5b3a5 2514int wake_up_process(struct task_struct *p)
1da177e4 2515{
d9514f6c 2516 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2517}
1da177e4
LT
2518EXPORT_SYMBOL(wake_up_process);
2519
7ad5b3a5 2520int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2521{
2522 return try_to_wake_up(p, state, 0);
2523}
2524
1da177e4
LT
2525/*
2526 * Perform scheduler related setup for a newly forked process p.
2527 * p is forked by current.
dd41f596
IM
2528 *
2529 * __sched_fork() is basic setup used by init_idle() too:
2530 */
2531static void __sched_fork(struct task_struct *p)
2532{
dd41f596
IM
2533 p->se.exec_start = 0;
2534 p->se.sum_exec_runtime = 0;
f6cf891c 2535 p->se.prev_sum_exec_runtime = 0;
6c594c21 2536 p->se.nr_migrations = 0;
4ae7d5ce
IM
2537 p->se.last_wakeup = 0;
2538 p->se.avg_overlap = 0;
831451ac
PZ
2539 p->se.start_runtime = 0;
2540 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2541
2542#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2543 p->se.wait_start = 0;
2544 p->se.wait_max = 0;
2545 p->se.wait_count = 0;
2546 p->se.wait_sum = 0;
2547
2548 p->se.sleep_start = 0;
2549 p->se.sleep_max = 0;
2550 p->se.sum_sleep_runtime = 0;
2551
2552 p->se.block_start = 0;
2553 p->se.block_max = 0;
2554 p->se.exec_max = 0;
2555 p->se.slice_max = 0;
2556
2557 p->se.nr_migrations_cold = 0;
2558 p->se.nr_failed_migrations_affine = 0;
2559 p->se.nr_failed_migrations_running = 0;
2560 p->se.nr_failed_migrations_hot = 0;
2561 p->se.nr_forced_migrations = 0;
7793527b
LDM
2562
2563 p->se.nr_wakeups = 0;
2564 p->se.nr_wakeups_sync = 0;
2565 p->se.nr_wakeups_migrate = 0;
2566 p->se.nr_wakeups_local = 0;
2567 p->se.nr_wakeups_remote = 0;
2568 p->se.nr_wakeups_affine = 0;
2569 p->se.nr_wakeups_affine_attempts = 0;
2570 p->se.nr_wakeups_passive = 0;
2571 p->se.nr_wakeups_idle = 0;
2572
6cfb0d5d 2573#endif
476d139c 2574
fa717060 2575 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2576 p->se.on_rq = 0;
4a55bd5e 2577 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2578
e107be36
AK
2579#ifdef CONFIG_PREEMPT_NOTIFIERS
2580 INIT_HLIST_HEAD(&p->preempt_notifiers);
2581#endif
dd41f596
IM
2582}
2583
2584/*
2585 * fork()/clone()-time setup:
2586 */
2587void sched_fork(struct task_struct *p, int clone_flags)
2588{
2589 int cpu = get_cpu();
2590
2591 __sched_fork(p);
06b83b5f
PZ
2592 /*
2593 * We mark the process as waking here. This guarantees that
2594 * nobody will actually run it, and a signal or other external
2595 * event cannot wake it up and insert it on the runqueue either.
2596 */
2597 p->state = TASK_WAKING;
dd41f596 2598
b9dc29e7
MG
2599 /*
2600 * Revert to default priority/policy on fork if requested.
2601 */
2602 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2603 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2604 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2605 p->normal_prio = p->static_prio;
2606 }
b9dc29e7 2607
6c697bdf
MG
2608 if (PRIO_TO_NICE(p->static_prio) < 0) {
2609 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2610 p->normal_prio = p->static_prio;
6c697bdf
MG
2611 set_load_weight(p);
2612 }
2613
b9dc29e7
MG
2614 /*
2615 * We don't need the reset flag anymore after the fork. It has
2616 * fulfilled its duty:
2617 */
2618 p->sched_reset_on_fork = 0;
2619 }
ca94c442 2620
f83f9ac2
PW
2621 /*
2622 * Make sure we do not leak PI boosting priority to the child.
2623 */
2624 p->prio = current->normal_prio;
2625
2ddbf952
HS
2626 if (!rt_prio(p->prio))
2627 p->sched_class = &fair_sched_class;
b29739f9 2628
cd29fe6f
PZ
2629 if (p->sched_class->task_fork)
2630 p->sched_class->task_fork(p);
2631
5f3edc1b 2632#ifdef CONFIG_SMP
970b13ba 2633 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2634#endif
2635 set_task_cpu(p, cpu);
2636
52f17b6c 2637#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2638 if (likely(sched_info_on()))
52f17b6c 2639 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2640#endif
d6077cb8 2641#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2642 p->oncpu = 0;
2643#endif
1da177e4 2644#ifdef CONFIG_PREEMPT
4866cde0 2645 /* Want to start with kernel preemption disabled. */
a1261f54 2646 task_thread_info(p)->preempt_count = 1;
1da177e4 2647#endif
917b627d
GH
2648 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2649
476d139c 2650 put_cpu();
1da177e4
LT
2651}
2652
2653/*
2654 * wake_up_new_task - wake up a newly created task for the first time.
2655 *
2656 * This function will do some initial scheduler statistics housekeeping
2657 * that must be done for every newly created context, then puts the task
2658 * on the runqueue and wakes it.
2659 */
7ad5b3a5 2660void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2661{
2662 unsigned long flags;
dd41f596 2663 struct rq *rq;
1da177e4
LT
2664
2665 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2666 BUG_ON(p->state != TASK_WAKING);
2667 p->state = TASK_RUNNING;
a8e504d2 2668 update_rq_clock(rq);
cd29fe6f 2669 activate_task(rq, p, 0);
c71dd42d 2670 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2671 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2672#ifdef CONFIG_SMP
efbbd05a
PZ
2673 if (p->sched_class->task_woken)
2674 p->sched_class->task_woken(rq, p);
9a897c5a 2675#endif
dd41f596 2676 task_rq_unlock(rq, &flags);
1da177e4
LT
2677}
2678
e107be36
AK
2679#ifdef CONFIG_PREEMPT_NOTIFIERS
2680
2681/**
80dd99b3 2682 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2683 * @notifier: notifier struct to register
e107be36
AK
2684 */
2685void preempt_notifier_register(struct preempt_notifier *notifier)
2686{
2687 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2688}
2689EXPORT_SYMBOL_GPL(preempt_notifier_register);
2690
2691/**
2692 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2693 * @notifier: notifier struct to unregister
e107be36
AK
2694 *
2695 * This is safe to call from within a preemption notifier.
2696 */
2697void preempt_notifier_unregister(struct preempt_notifier *notifier)
2698{
2699 hlist_del(&notifier->link);
2700}
2701EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2702
2703static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2704{
2705 struct preempt_notifier *notifier;
2706 struct hlist_node *node;
2707
2708 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2709 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2710}
2711
2712static void
2713fire_sched_out_preempt_notifiers(struct task_struct *curr,
2714 struct task_struct *next)
2715{
2716 struct preempt_notifier *notifier;
2717 struct hlist_node *node;
2718
2719 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2720 notifier->ops->sched_out(notifier, next);
2721}
2722
6d6bc0ad 2723#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2724
2725static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2726{
2727}
2728
2729static void
2730fire_sched_out_preempt_notifiers(struct task_struct *curr,
2731 struct task_struct *next)
2732{
2733}
2734
6d6bc0ad 2735#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2736
4866cde0
NP
2737/**
2738 * prepare_task_switch - prepare to switch tasks
2739 * @rq: the runqueue preparing to switch
421cee29 2740 * @prev: the current task that is being switched out
4866cde0
NP
2741 * @next: the task we are going to switch to.
2742 *
2743 * This is called with the rq lock held and interrupts off. It must
2744 * be paired with a subsequent finish_task_switch after the context
2745 * switch.
2746 *
2747 * prepare_task_switch sets up locking and calls architecture specific
2748 * hooks.
2749 */
e107be36
AK
2750static inline void
2751prepare_task_switch(struct rq *rq, struct task_struct *prev,
2752 struct task_struct *next)
4866cde0 2753{
e107be36 2754 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2755 prepare_lock_switch(rq, next);
2756 prepare_arch_switch(next);
2757}
2758
1da177e4
LT
2759/**
2760 * finish_task_switch - clean up after a task-switch
344babaa 2761 * @rq: runqueue associated with task-switch
1da177e4
LT
2762 * @prev: the thread we just switched away from.
2763 *
4866cde0
NP
2764 * finish_task_switch must be called after the context switch, paired
2765 * with a prepare_task_switch call before the context switch.
2766 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2767 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2768 *
2769 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2770 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2771 * with the lock held can cause deadlocks; see schedule() for
2772 * details.)
2773 */
a9957449 2774static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2775 __releases(rq->lock)
2776{
1da177e4 2777 struct mm_struct *mm = rq->prev_mm;
55a101f8 2778 long prev_state;
1da177e4
LT
2779
2780 rq->prev_mm = NULL;
2781
2782 /*
2783 * A task struct has one reference for the use as "current".
c394cc9f 2784 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2785 * schedule one last time. The schedule call will never return, and
2786 * the scheduled task must drop that reference.
c394cc9f 2787 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2788 * still held, otherwise prev could be scheduled on another cpu, die
2789 * there before we look at prev->state, and then the reference would
2790 * be dropped twice.
2791 * Manfred Spraul <manfred@colorfullife.com>
2792 */
55a101f8 2793 prev_state = prev->state;
4866cde0 2794 finish_arch_switch(prev);
cdd6c482 2795 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2796 finish_lock_switch(rq, prev);
e8fa1362 2797
e107be36 2798 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2799 if (mm)
2800 mmdrop(mm);
c394cc9f 2801 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2802 /*
2803 * Remove function-return probe instances associated with this
2804 * task and put them back on the free list.
9761eea8 2805 */
c6fd91f0 2806 kprobe_flush_task(prev);
1da177e4 2807 put_task_struct(prev);
c6fd91f0 2808 }
1da177e4
LT
2809}
2810
3f029d3c
GH
2811#ifdef CONFIG_SMP
2812
2813/* assumes rq->lock is held */
2814static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2815{
2816 if (prev->sched_class->pre_schedule)
2817 prev->sched_class->pre_schedule(rq, prev);
2818}
2819
2820/* rq->lock is NOT held, but preemption is disabled */
2821static inline void post_schedule(struct rq *rq)
2822{
2823 if (rq->post_schedule) {
2824 unsigned long flags;
2825
05fa785c 2826 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2827 if (rq->curr->sched_class->post_schedule)
2828 rq->curr->sched_class->post_schedule(rq);
05fa785c 2829 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2830
2831 rq->post_schedule = 0;
2832 }
2833}
2834
2835#else
da19ab51 2836
3f029d3c
GH
2837static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2838{
2839}
2840
2841static inline void post_schedule(struct rq *rq)
2842{
1da177e4
LT
2843}
2844
3f029d3c
GH
2845#endif
2846
1da177e4
LT
2847/**
2848 * schedule_tail - first thing a freshly forked thread must call.
2849 * @prev: the thread we just switched away from.
2850 */
36c8b586 2851asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2852 __releases(rq->lock)
2853{
70b97a7f
IM
2854 struct rq *rq = this_rq();
2855
4866cde0 2856 finish_task_switch(rq, prev);
da19ab51 2857
3f029d3c
GH
2858 /*
2859 * FIXME: do we need to worry about rq being invalidated by the
2860 * task_switch?
2861 */
2862 post_schedule(rq);
70b97a7f 2863
4866cde0
NP
2864#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2865 /* In this case, finish_task_switch does not reenable preemption */
2866 preempt_enable();
2867#endif
1da177e4 2868 if (current->set_child_tid)
b488893a 2869 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2870}
2871
2872/*
2873 * context_switch - switch to the new MM and the new
2874 * thread's register state.
2875 */
dd41f596 2876static inline void
70b97a7f 2877context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2878 struct task_struct *next)
1da177e4 2879{
dd41f596 2880 struct mm_struct *mm, *oldmm;
1da177e4 2881
e107be36 2882 prepare_task_switch(rq, prev, next);
0a16b607 2883 trace_sched_switch(rq, prev, next);
dd41f596
IM
2884 mm = next->mm;
2885 oldmm = prev->active_mm;
9226d125
ZA
2886 /*
2887 * For paravirt, this is coupled with an exit in switch_to to
2888 * combine the page table reload and the switch backend into
2889 * one hypercall.
2890 */
224101ed 2891 arch_start_context_switch(prev);
9226d125 2892
710390d9 2893 if (likely(!mm)) {
1da177e4
LT
2894 next->active_mm = oldmm;
2895 atomic_inc(&oldmm->mm_count);
2896 enter_lazy_tlb(oldmm, next);
2897 } else
2898 switch_mm(oldmm, mm, next);
2899
710390d9 2900 if (likely(!prev->mm)) {
1da177e4 2901 prev->active_mm = NULL;
1da177e4
LT
2902 rq->prev_mm = oldmm;
2903 }
3a5f5e48
IM
2904 /*
2905 * Since the runqueue lock will be released by the next
2906 * task (which is an invalid locking op but in the case
2907 * of the scheduler it's an obvious special-case), so we
2908 * do an early lockdep release here:
2909 */
2910#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2911 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2912#endif
1da177e4
LT
2913
2914 /* Here we just switch the register state and the stack. */
2915 switch_to(prev, next, prev);
2916
dd41f596
IM
2917 barrier();
2918 /*
2919 * this_rq must be evaluated again because prev may have moved
2920 * CPUs since it called schedule(), thus the 'rq' on its stack
2921 * frame will be invalid.
2922 */
2923 finish_task_switch(this_rq(), prev);
1da177e4
LT
2924}
2925
2926/*
2927 * nr_running, nr_uninterruptible and nr_context_switches:
2928 *
2929 * externally visible scheduler statistics: current number of runnable
2930 * threads, current number of uninterruptible-sleeping threads, total
2931 * number of context switches performed since bootup.
2932 */
2933unsigned long nr_running(void)
2934{
2935 unsigned long i, sum = 0;
2936
2937 for_each_online_cpu(i)
2938 sum += cpu_rq(i)->nr_running;
2939
2940 return sum;
2941}
2942
2943unsigned long nr_uninterruptible(void)
2944{
2945 unsigned long i, sum = 0;
2946
0a945022 2947 for_each_possible_cpu(i)
1da177e4
LT
2948 sum += cpu_rq(i)->nr_uninterruptible;
2949
2950 /*
2951 * Since we read the counters lockless, it might be slightly
2952 * inaccurate. Do not allow it to go below zero though:
2953 */
2954 if (unlikely((long)sum < 0))
2955 sum = 0;
2956
2957 return sum;
2958}
2959
2960unsigned long long nr_context_switches(void)
2961{
cc94abfc
SR
2962 int i;
2963 unsigned long long sum = 0;
1da177e4 2964
0a945022 2965 for_each_possible_cpu(i)
1da177e4
LT
2966 sum += cpu_rq(i)->nr_switches;
2967
2968 return sum;
2969}
2970
2971unsigned long nr_iowait(void)
2972{
2973 unsigned long i, sum = 0;
2974
0a945022 2975 for_each_possible_cpu(i)
1da177e4
LT
2976 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2977
2978 return sum;
2979}
2980
69d25870
AV
2981unsigned long nr_iowait_cpu(void)
2982{
2983 struct rq *this = this_rq();
2984 return atomic_read(&this->nr_iowait);
2985}
2986
2987unsigned long this_cpu_load(void)
2988{
2989 struct rq *this = this_rq();
2990 return this->cpu_load[0];
2991}
2992
2993
dce48a84
TG
2994/* Variables and functions for calc_load */
2995static atomic_long_t calc_load_tasks;
2996static unsigned long calc_load_update;
2997unsigned long avenrun[3];
2998EXPORT_SYMBOL(avenrun);
2999
2d02494f
TG
3000/**
3001 * get_avenrun - get the load average array
3002 * @loads: pointer to dest load array
3003 * @offset: offset to add
3004 * @shift: shift count to shift the result left
3005 *
3006 * These values are estimates at best, so no need for locking.
3007 */
3008void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3009{
3010 loads[0] = (avenrun[0] + offset) << shift;
3011 loads[1] = (avenrun[1] + offset) << shift;
3012 loads[2] = (avenrun[2] + offset) << shift;
3013}
3014
dce48a84
TG
3015static unsigned long
3016calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3017{
dce48a84
TG
3018 load *= exp;
3019 load += active * (FIXED_1 - exp);
3020 return load >> FSHIFT;
3021}
db1b1fef 3022
dce48a84
TG
3023/*
3024 * calc_load - update the avenrun load estimates 10 ticks after the
3025 * CPUs have updated calc_load_tasks.
3026 */
3027void calc_global_load(void)
3028{
3029 unsigned long upd = calc_load_update + 10;
3030 long active;
3031
3032 if (time_before(jiffies, upd))
3033 return;
db1b1fef 3034
dce48a84
TG
3035 active = atomic_long_read(&calc_load_tasks);
3036 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3037
dce48a84
TG
3038 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3039 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3040 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3041
3042 calc_load_update += LOAD_FREQ;
3043}
3044
3045/*
3046 * Either called from update_cpu_load() or from a cpu going idle
3047 */
3048static void calc_load_account_active(struct rq *this_rq)
3049{
3050 long nr_active, delta;
3051
3052 nr_active = this_rq->nr_running;
3053 nr_active += (long) this_rq->nr_uninterruptible;
3054
3055 if (nr_active != this_rq->calc_load_active) {
3056 delta = nr_active - this_rq->calc_load_active;
3057 this_rq->calc_load_active = nr_active;
3058 atomic_long_add(delta, &calc_load_tasks);
3059 }
db1b1fef
JS
3060}
3061
48f24c4d 3062/*
dd41f596
IM
3063 * Update rq->cpu_load[] statistics. This function is usually called every
3064 * scheduler tick (TICK_NSEC).
48f24c4d 3065 */
dd41f596 3066static void update_cpu_load(struct rq *this_rq)
48f24c4d 3067{
495eca49 3068 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3069 int i, scale;
3070
3071 this_rq->nr_load_updates++;
dd41f596
IM
3072
3073 /* Update our load: */
3074 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3075 unsigned long old_load, new_load;
3076
3077 /* scale is effectively 1 << i now, and >> i divides by scale */
3078
3079 old_load = this_rq->cpu_load[i];
3080 new_load = this_load;
a25707f3
IM
3081 /*
3082 * Round up the averaging division if load is increasing. This
3083 * prevents us from getting stuck on 9 if the load is 10, for
3084 * example.
3085 */
3086 if (new_load > old_load)
3087 new_load += scale-1;
dd41f596
IM
3088 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3089 }
dce48a84
TG
3090
3091 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3092 this_rq->calc_load_update += LOAD_FREQ;
3093 calc_load_account_active(this_rq);
3094 }
48f24c4d
IM
3095}
3096
dd41f596
IM
3097#ifdef CONFIG_SMP
3098
1da177e4
LT
3099/*
3100 * double_rq_lock - safely lock two runqueues
3101 *
3102 * Note this does not disable interrupts like task_rq_lock,
3103 * you need to do so manually before calling.
3104 */
70b97a7f 3105static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3106 __acquires(rq1->lock)
3107 __acquires(rq2->lock)
3108{
054b9108 3109 BUG_ON(!irqs_disabled());
1da177e4 3110 if (rq1 == rq2) {
05fa785c 3111 raw_spin_lock(&rq1->lock);
1da177e4
LT
3112 __acquire(rq2->lock); /* Fake it out ;) */
3113 } else {
c96d145e 3114 if (rq1 < rq2) {
05fa785c
TG
3115 raw_spin_lock(&rq1->lock);
3116 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3117 } else {
05fa785c
TG
3118 raw_spin_lock(&rq2->lock);
3119 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3120 }
3121 }
6e82a3be
IM
3122 update_rq_clock(rq1);
3123 update_rq_clock(rq2);
1da177e4
LT
3124}
3125
3126/*
3127 * double_rq_unlock - safely unlock two runqueues
3128 *
3129 * Note this does not restore interrupts like task_rq_unlock,
3130 * you need to do so manually after calling.
3131 */
70b97a7f 3132static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3133 __releases(rq1->lock)
3134 __releases(rq2->lock)
3135{
05fa785c 3136 raw_spin_unlock(&rq1->lock);
1da177e4 3137 if (rq1 != rq2)
05fa785c 3138 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3139 else
3140 __release(rq2->lock);
3141}
3142
1da177e4 3143/*
38022906
PZ
3144 * sched_exec - execve() is a valuable balancing opportunity, because at
3145 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3146 */
38022906 3147void sched_exec(void)
1da177e4 3148{
38022906 3149 struct task_struct *p = current;
70b97a7f 3150 struct migration_req req;
38022906 3151 int dest_cpu, this_cpu;
1da177e4 3152 unsigned long flags;
70b97a7f 3153 struct rq *rq;
1da177e4 3154
38022906
PZ
3155again:
3156 this_cpu = get_cpu();
3157 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3158 if (dest_cpu == this_cpu) {
3159 put_cpu();
3160 return;
3161 }
3162
1da177e4 3163 rq = task_rq_lock(p, &flags);
38022906
PZ
3164 put_cpu();
3165
3166 /*
3167 * select_task_rq() can race against ->cpus_allowed
3168 */
96f874e2 3169 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3170 || unlikely(!cpu_active(dest_cpu))) {
3171 task_rq_unlock(rq, &flags);
3172 goto again;
3173 }
1da177e4
LT
3174
3175 /* force the process onto the specified CPU */
3176 if (migrate_task(p, dest_cpu, &req)) {
3177 /* Need to wait for migration thread (might exit: take ref). */
3178 struct task_struct *mt = rq->migration_thread;
36c8b586 3179
1da177e4
LT
3180 get_task_struct(mt);
3181 task_rq_unlock(rq, &flags);
3182 wake_up_process(mt);
3183 put_task_struct(mt);
3184 wait_for_completion(&req.done);
36c8b586 3185
1da177e4
LT
3186 return;
3187 }
1da177e4
LT
3188 task_rq_unlock(rq, &flags);
3189}
3190
1da177e4
LT
3191/*
3192 * pull_task - move a task from a remote runqueue to the local runqueue.
3193 * Both runqueues must be locked.
3194 */
dd41f596
IM
3195static void pull_task(struct rq *src_rq, struct task_struct *p,
3196 struct rq *this_rq, int this_cpu)
1da177e4 3197{
2e1cb74a 3198 deactivate_task(src_rq, p, 0);
1da177e4 3199 set_task_cpu(p, this_cpu);
dd41f596 3200 activate_task(this_rq, p, 0);
15afe09b 3201 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3202}
3203
3204/*
3205 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3206 */
858119e1 3207static
70b97a7f 3208int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3209 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3210 int *all_pinned)
1da177e4 3211{
708dc512 3212 int tsk_cache_hot = 0;
1da177e4
LT
3213 /*
3214 * We do not migrate tasks that are:
3215 * 1) running (obviously), or
3216 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3217 * 3) are cache-hot on their current CPU.
3218 */
96f874e2 3219 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3220 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3221 return 0;
cc367732 3222 }
81026794
NP
3223 *all_pinned = 0;
3224
cc367732
IM
3225 if (task_running(rq, p)) {
3226 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3227 return 0;
cc367732 3228 }
1da177e4 3229
da84d961
IM
3230 /*
3231 * Aggressive migration if:
3232 * 1) task is cache cold, or
3233 * 2) too many balance attempts have failed.
3234 */
3235
708dc512
LH
3236 tsk_cache_hot = task_hot(p, rq->clock, sd);
3237 if (!tsk_cache_hot ||
3238 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3239#ifdef CONFIG_SCHEDSTATS
708dc512 3240 if (tsk_cache_hot) {
da84d961 3241 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3242 schedstat_inc(p, se.nr_forced_migrations);
3243 }
da84d961
IM
3244#endif
3245 return 1;
3246 }
3247
708dc512 3248 if (tsk_cache_hot) {
cc367732 3249 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3250 return 0;
cc367732 3251 }
1da177e4
LT
3252 return 1;
3253}
3254
e1d1484f
PW
3255static unsigned long
3256balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3257 unsigned long max_load_move, struct sched_domain *sd,
3258 enum cpu_idle_type idle, int *all_pinned,
3259 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3260{
051c6764 3261 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3262 struct task_struct *p;
3263 long rem_load_move = max_load_move;
1da177e4 3264
e1d1484f 3265 if (max_load_move == 0)
1da177e4
LT
3266 goto out;
3267
81026794
NP
3268 pinned = 1;
3269
1da177e4 3270 /*
dd41f596 3271 * Start the load-balancing iterator:
1da177e4 3272 */
dd41f596
IM
3273 p = iterator->start(iterator->arg);
3274next:
b82d9fdd 3275 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3276 goto out;
051c6764
PZ
3277
3278 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3279 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3280 p = iterator->next(iterator->arg);
3281 goto next;
1da177e4
LT
3282 }
3283
dd41f596 3284 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3285 pulled++;
dd41f596 3286 rem_load_move -= p->se.load.weight;
1da177e4 3287
7e96fa58
GH
3288#ifdef CONFIG_PREEMPT
3289 /*
3290 * NEWIDLE balancing is a source of latency, so preemptible kernels
3291 * will stop after the first task is pulled to minimize the critical
3292 * section.
3293 */
3294 if (idle == CPU_NEWLY_IDLE)
3295 goto out;
3296#endif
3297
2dd73a4f 3298 /*
b82d9fdd 3299 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3300 */
e1d1484f 3301 if (rem_load_move > 0) {
a4ac01c3
PW
3302 if (p->prio < *this_best_prio)
3303 *this_best_prio = p->prio;
dd41f596
IM
3304 p = iterator->next(iterator->arg);
3305 goto next;
1da177e4
LT
3306 }
3307out:
3308 /*
e1d1484f 3309 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3310 * so we can safely collect pull_task() stats here rather than
3311 * inside pull_task().
3312 */
3313 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3314
3315 if (all_pinned)
3316 *all_pinned = pinned;
e1d1484f
PW
3317
3318 return max_load_move - rem_load_move;
1da177e4
LT
3319}
3320
dd41f596 3321/*
43010659
PW
3322 * move_tasks tries to move up to max_load_move weighted load from busiest to
3323 * this_rq, as part of a balancing operation within domain "sd".
3324 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3325 *
3326 * Called with both runqueues locked.
3327 */
3328static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3329 unsigned long max_load_move,
dd41f596
IM
3330 struct sched_domain *sd, enum cpu_idle_type idle,
3331 int *all_pinned)
3332{
5522d5d5 3333 const struct sched_class *class = sched_class_highest;
43010659 3334 unsigned long total_load_moved = 0;
a4ac01c3 3335 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3336
3337 do {
43010659
PW
3338 total_load_moved +=
3339 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3340 max_load_move - total_load_moved,
a4ac01c3 3341 sd, idle, all_pinned, &this_best_prio);
dd41f596 3342 class = class->next;
c4acb2c0 3343
7e96fa58
GH
3344#ifdef CONFIG_PREEMPT
3345 /*
3346 * NEWIDLE balancing is a source of latency, so preemptible
3347 * kernels will stop after the first task is pulled to minimize
3348 * the critical section.
3349 */
c4acb2c0
GH
3350 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3351 break;
7e96fa58 3352#endif
43010659 3353 } while (class && max_load_move > total_load_moved);
dd41f596 3354
43010659
PW
3355 return total_load_moved > 0;
3356}
3357
e1d1484f
PW
3358static int
3359iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3360 struct sched_domain *sd, enum cpu_idle_type idle,
3361 struct rq_iterator *iterator)
3362{
3363 struct task_struct *p = iterator->start(iterator->arg);
3364 int pinned = 0;
3365
3366 while (p) {
3367 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3368 pull_task(busiest, p, this_rq, this_cpu);
3369 /*
3370 * Right now, this is only the second place pull_task()
3371 * is called, so we can safely collect pull_task()
3372 * stats here rather than inside pull_task().
3373 */
3374 schedstat_inc(sd, lb_gained[idle]);
3375
3376 return 1;
3377 }
3378 p = iterator->next(iterator->arg);
3379 }
3380
3381 return 0;
3382}
3383
43010659
PW
3384/*
3385 * move_one_task tries to move exactly one task from busiest to this_rq, as
3386 * part of active balancing operations within "domain".
3387 * Returns 1 if successful and 0 otherwise.
3388 *
3389 * Called with both runqueues locked.
3390 */
3391static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3392 struct sched_domain *sd, enum cpu_idle_type idle)
3393{
5522d5d5 3394 const struct sched_class *class;
43010659 3395
cde7e5ca 3396 for_each_class(class) {
e1d1484f 3397 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3398 return 1;
cde7e5ca 3399 }
43010659
PW
3400
3401 return 0;
dd41f596 3402}
67bb6c03 3403/********** Helpers for find_busiest_group ************************/
1da177e4 3404/*
222d656d
GS
3405 * sd_lb_stats - Structure to store the statistics of a sched_domain
3406 * during load balancing.
1da177e4 3407 */
222d656d
GS
3408struct sd_lb_stats {
3409 struct sched_group *busiest; /* Busiest group in this sd */
3410 struct sched_group *this; /* Local group in this sd */
3411 unsigned long total_load; /* Total load of all groups in sd */
3412 unsigned long total_pwr; /* Total power of all groups in sd */
3413 unsigned long avg_load; /* Average load across all groups in sd */
3414
3415 /** Statistics of this group */
3416 unsigned long this_load;
3417 unsigned long this_load_per_task;
3418 unsigned long this_nr_running;
3419
3420 /* Statistics of the busiest group */
3421 unsigned long max_load;
3422 unsigned long busiest_load_per_task;
3423 unsigned long busiest_nr_running;
3424
3425 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3426#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3427 int power_savings_balance; /* Is powersave balance needed for this sd */
3428 struct sched_group *group_min; /* Least loaded group in sd */
3429 struct sched_group *group_leader; /* Group which relieves group_min */
3430 unsigned long min_load_per_task; /* load_per_task in group_min */
3431 unsigned long leader_nr_running; /* Nr running of group_leader */
3432 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3433#endif
222d656d 3434};
1da177e4 3435
d5ac537e 3436/*
381be78f
GS
3437 * sg_lb_stats - stats of a sched_group required for load_balancing
3438 */
3439struct sg_lb_stats {
3440 unsigned long avg_load; /*Avg load across the CPUs of the group */
3441 unsigned long group_load; /* Total load over the CPUs of the group */
3442 unsigned long sum_nr_running; /* Nr tasks running in the group */
3443 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3444 unsigned long group_capacity;
3445 int group_imb; /* Is there an imbalance in the group ? */
3446};
408ed066 3447
67bb6c03
GS
3448/**
3449 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3450 * @group: The group whose first cpu is to be returned.
3451 */
3452static inline unsigned int group_first_cpu(struct sched_group *group)
3453{
3454 return cpumask_first(sched_group_cpus(group));
3455}
3456
3457/**
3458 * get_sd_load_idx - Obtain the load index for a given sched domain.
3459 * @sd: The sched_domain whose load_idx is to be obtained.
3460 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3461 */
3462static inline int get_sd_load_idx(struct sched_domain *sd,
3463 enum cpu_idle_type idle)
3464{
3465 int load_idx;
3466
3467 switch (idle) {
3468 case CPU_NOT_IDLE:
7897986b 3469 load_idx = sd->busy_idx;
67bb6c03
GS
3470 break;
3471
3472 case CPU_NEWLY_IDLE:
7897986b 3473 load_idx = sd->newidle_idx;
67bb6c03
GS
3474 break;
3475 default:
7897986b 3476 load_idx = sd->idle_idx;
67bb6c03
GS
3477 break;
3478 }
1da177e4 3479
67bb6c03
GS
3480 return load_idx;
3481}
1da177e4 3482
1da177e4 3483
c071df18
GS
3484#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3485/**
3486 * init_sd_power_savings_stats - Initialize power savings statistics for
3487 * the given sched_domain, during load balancing.
3488 *
3489 * @sd: Sched domain whose power-savings statistics are to be initialized.
3490 * @sds: Variable containing the statistics for sd.
3491 * @idle: Idle status of the CPU at which we're performing load-balancing.
3492 */
3493static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3494 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3495{
3496 /*
3497 * Busy processors will not participate in power savings
3498 * balance.
3499 */
3500 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3501 sds->power_savings_balance = 0;
3502 else {
3503 sds->power_savings_balance = 1;
3504 sds->min_nr_running = ULONG_MAX;
3505 sds->leader_nr_running = 0;
3506 }
3507}
783609c6 3508
c071df18
GS
3509/**
3510 * update_sd_power_savings_stats - Update the power saving stats for a
3511 * sched_domain while performing load balancing.
3512 *
3513 * @group: sched_group belonging to the sched_domain under consideration.
3514 * @sds: Variable containing the statistics of the sched_domain
3515 * @local_group: Does group contain the CPU for which we're performing
3516 * load balancing ?
3517 * @sgs: Variable containing the statistics of the group.
3518 */
3519static inline void update_sd_power_savings_stats(struct sched_group *group,
3520 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3521{
408ed066 3522
c071df18
GS
3523 if (!sds->power_savings_balance)
3524 return;
1da177e4 3525
c071df18
GS
3526 /*
3527 * If the local group is idle or completely loaded
3528 * no need to do power savings balance at this domain
3529 */
3530 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3531 !sds->this_nr_running))
3532 sds->power_savings_balance = 0;
2dd73a4f 3533
c071df18
GS
3534 /*
3535 * If a group is already running at full capacity or idle,
3536 * don't include that group in power savings calculations
3537 */
3538 if (!sds->power_savings_balance ||
3539 sgs->sum_nr_running >= sgs->group_capacity ||
3540 !sgs->sum_nr_running)
3541 return;
5969fe06 3542
c071df18
GS
3543 /*
3544 * Calculate the group which has the least non-idle load.
3545 * This is the group from where we need to pick up the load
3546 * for saving power
3547 */
3548 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3549 (sgs->sum_nr_running == sds->min_nr_running &&
3550 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3551 sds->group_min = group;
3552 sds->min_nr_running = sgs->sum_nr_running;
3553 sds->min_load_per_task = sgs->sum_weighted_load /
3554 sgs->sum_nr_running;
3555 }
783609c6 3556
c071df18
GS
3557 /*
3558 * Calculate the group which is almost near its
3559 * capacity but still has some space to pick up some load
3560 * from other group and save more power
3561 */
d899a789 3562 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3563 return;
1da177e4 3564
c071df18
GS
3565 if (sgs->sum_nr_running > sds->leader_nr_running ||
3566 (sgs->sum_nr_running == sds->leader_nr_running &&
3567 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3568 sds->group_leader = group;
3569 sds->leader_nr_running = sgs->sum_nr_running;
3570 }
3571}
408ed066 3572
c071df18 3573/**
d5ac537e 3574 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3575 * @sds: Variable containing the statistics of the sched_domain
3576 * under consideration.
3577 * @this_cpu: Cpu at which we're currently performing load-balancing.
3578 * @imbalance: Variable to store the imbalance.
3579 *
d5ac537e
RD
3580 * Description:
3581 * Check if we have potential to perform some power-savings balance.
3582 * If yes, set the busiest group to be the least loaded group in the
3583 * sched_domain, so that it's CPUs can be put to idle.
3584 *
c071df18
GS
3585 * Returns 1 if there is potential to perform power-savings balance.
3586 * Else returns 0.
3587 */
3588static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3589 int this_cpu, unsigned long *imbalance)
3590{
3591 if (!sds->power_savings_balance)
3592 return 0;
1da177e4 3593
c071df18
GS
3594 if (sds->this != sds->group_leader ||
3595 sds->group_leader == sds->group_min)
3596 return 0;
783609c6 3597
c071df18
GS
3598 *imbalance = sds->min_load_per_task;
3599 sds->busiest = sds->group_min;
1da177e4 3600
c071df18 3601 return 1;
1da177e4 3602
c071df18
GS
3603}
3604#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3605static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3606 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3607{
3608 return;
3609}
408ed066 3610
c071df18
GS
3611static inline void update_sd_power_savings_stats(struct sched_group *group,
3612 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3613{
3614 return;
3615}
3616
3617static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3618 int this_cpu, unsigned long *imbalance)
3619{
3620 return 0;
3621}
3622#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3623
d6a59aa3
PZ
3624
3625unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3626{
3627 return SCHED_LOAD_SCALE;
3628}
3629
3630unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3631{
3632 return default_scale_freq_power(sd, cpu);
3633}
3634
3635unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3636{
3637 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3638 unsigned long smt_gain = sd->smt_gain;
3639
3640 smt_gain /= weight;
3641
3642 return smt_gain;
3643}
3644
d6a59aa3
PZ
3645unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3646{
3647 return default_scale_smt_power(sd, cpu);
3648}
3649
e9e9250b
PZ
3650unsigned long scale_rt_power(int cpu)
3651{
3652 struct rq *rq = cpu_rq(cpu);
3653 u64 total, available;
3654
3655 sched_avg_update(rq);
3656
3657 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3658 available = total - rq->rt_avg;
3659
3660 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3661 total = SCHED_LOAD_SCALE;
3662
3663 total >>= SCHED_LOAD_SHIFT;
3664
3665 return div_u64(available, total);
3666}
3667
ab29230e
PZ
3668static void update_cpu_power(struct sched_domain *sd, int cpu)
3669{
3670 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3671 unsigned long power = SCHED_LOAD_SCALE;
3672 struct sched_group *sdg = sd->groups;
ab29230e 3673
8e6598af
PZ
3674 if (sched_feat(ARCH_POWER))
3675 power *= arch_scale_freq_power(sd, cpu);
3676 else
3677 power *= default_scale_freq_power(sd, cpu);
3678
d6a59aa3 3679 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3680
3681 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3682 if (sched_feat(ARCH_POWER))
3683 power *= arch_scale_smt_power(sd, cpu);
3684 else
3685 power *= default_scale_smt_power(sd, cpu);
3686
ab29230e
PZ
3687 power >>= SCHED_LOAD_SHIFT;
3688 }
3689
e9e9250b
PZ
3690 power *= scale_rt_power(cpu);
3691 power >>= SCHED_LOAD_SHIFT;
3692
3693 if (!power)
3694 power = 1;
ab29230e 3695
18a3885f 3696 sdg->cpu_power = power;
ab29230e
PZ
3697}
3698
3699static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3700{
3701 struct sched_domain *child = sd->child;
3702 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3703 unsigned long power;
cc9fba7d
PZ
3704
3705 if (!child) {
ab29230e 3706 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3707 return;
3708 }
3709
d7ea17a7 3710 power = 0;
cc9fba7d
PZ
3711
3712 group = child->groups;
3713 do {
d7ea17a7 3714 power += group->cpu_power;
cc9fba7d
PZ
3715 group = group->next;
3716 } while (group != child->groups);
d7ea17a7
IM
3717
3718 sdg->cpu_power = power;
cc9fba7d 3719}
c071df18 3720
1f8c553d
GS
3721/**
3722 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3723 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3724 * @group: sched_group whose statistics are to be updated.
3725 * @this_cpu: Cpu for which load balance is currently performed.
3726 * @idle: Idle status of this_cpu
3727 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3728 * @sd_idle: Idle status of the sched_domain containing group.
3729 * @local_group: Does group contain this_cpu.
3730 * @cpus: Set of cpus considered for load balancing.
3731 * @balance: Should we balance.
3732 * @sgs: variable to hold the statistics for this group.
3733 */
cc9fba7d
PZ
3734static inline void update_sg_lb_stats(struct sched_domain *sd,
3735 struct sched_group *group, int this_cpu,
1f8c553d
GS
3736 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3737 int local_group, const struct cpumask *cpus,
3738 int *balance, struct sg_lb_stats *sgs)
3739{
3740 unsigned long load, max_cpu_load, min_cpu_load;
3741 int i;
3742 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3743 unsigned long sum_avg_load_per_task;
3744 unsigned long avg_load_per_task;
3745
cc9fba7d 3746 if (local_group) {
1f8c553d 3747 balance_cpu = group_first_cpu(group);
cc9fba7d 3748 if (balance_cpu == this_cpu)
ab29230e 3749 update_group_power(sd, this_cpu);
cc9fba7d 3750 }
1f8c553d
GS
3751
3752 /* Tally up the load of all CPUs in the group */
3753 sum_avg_load_per_task = avg_load_per_task = 0;
3754 max_cpu_load = 0;
3755 min_cpu_load = ~0UL;
408ed066 3756
1f8c553d
GS
3757 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3758 struct rq *rq = cpu_rq(i);
908a7c1b 3759
1f8c553d
GS
3760 if (*sd_idle && rq->nr_running)
3761 *sd_idle = 0;
5c45bf27 3762
1f8c553d 3763 /* Bias balancing toward cpus of our domain */
1da177e4 3764 if (local_group) {
1f8c553d
GS
3765 if (idle_cpu(i) && !first_idle_cpu) {
3766 first_idle_cpu = 1;
3767 balance_cpu = i;
3768 }
3769
3770 load = target_load(i, load_idx);
3771 } else {
3772 load = source_load(i, load_idx);
3773 if (load > max_cpu_load)
3774 max_cpu_load = load;
3775 if (min_cpu_load > load)
3776 min_cpu_load = load;
1da177e4 3777 }
5c45bf27 3778
1f8c553d
GS
3779 sgs->group_load += load;
3780 sgs->sum_nr_running += rq->nr_running;
3781 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3782
1f8c553d
GS
3783 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3784 }
5c45bf27 3785
1f8c553d
GS
3786 /*
3787 * First idle cpu or the first cpu(busiest) in this sched group
3788 * is eligible for doing load balancing at this and above
3789 * domains. In the newly idle case, we will allow all the cpu's
3790 * to do the newly idle load balance.
3791 */
3792 if (idle != CPU_NEWLY_IDLE && local_group &&
3793 balance_cpu != this_cpu && balance) {
3794 *balance = 0;
3795 return;
3796 }
5c45bf27 3797
1f8c553d 3798 /* Adjust by relative CPU power of the group */
18a3885f 3799 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3800
1f8c553d
GS
3801
3802 /*
3803 * Consider the group unbalanced when the imbalance is larger
3804 * than the average weight of two tasks.
3805 *
3806 * APZ: with cgroup the avg task weight can vary wildly and
3807 * might not be a suitable number - should we keep a
3808 * normalized nr_running number somewhere that negates
3809 * the hierarchy?
3810 */
18a3885f
PZ
3811 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3812 group->cpu_power;
1f8c553d
GS
3813
3814 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3815 sgs->group_imb = 1;
3816
bdb94aa5 3817 sgs->group_capacity =
18a3885f 3818 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3819}
dd41f596 3820
37abe198
GS
3821/**
3822 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3823 * @sd: sched_domain whose statistics are to be updated.
3824 * @this_cpu: Cpu for which load balance is currently performed.
3825 * @idle: Idle status of this_cpu
3826 * @sd_idle: Idle status of the sched_domain containing group.
3827 * @cpus: Set of cpus considered for load balancing.
3828 * @balance: Should we balance.
3829 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3830 */
37abe198
GS
3831static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3832 enum cpu_idle_type idle, int *sd_idle,
3833 const struct cpumask *cpus, int *balance,
3834 struct sd_lb_stats *sds)
1da177e4 3835{
b5d978e0 3836 struct sched_domain *child = sd->child;
222d656d 3837 struct sched_group *group = sd->groups;
37abe198 3838 struct sg_lb_stats sgs;
b5d978e0
PZ
3839 int load_idx, prefer_sibling = 0;
3840
3841 if (child && child->flags & SD_PREFER_SIBLING)
3842 prefer_sibling = 1;
222d656d 3843
c071df18 3844 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3845 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3846
3847 do {
1da177e4 3848 int local_group;
1da177e4 3849
758b2cdc
RR
3850 local_group = cpumask_test_cpu(this_cpu,
3851 sched_group_cpus(group));
381be78f 3852 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3853 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3854 local_group, cpus, balance, &sgs);
1da177e4 3855
37abe198
GS
3856 if (local_group && balance && !(*balance))
3857 return;
783609c6 3858
37abe198 3859 sds->total_load += sgs.group_load;
18a3885f 3860 sds->total_pwr += group->cpu_power;
1da177e4 3861
b5d978e0
PZ
3862 /*
3863 * In case the child domain prefers tasks go to siblings
3864 * first, lower the group capacity to one so that we'll try
3865 * and move all the excess tasks away.
3866 */
3867 if (prefer_sibling)
bdb94aa5 3868 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3869
1da177e4 3870 if (local_group) {
37abe198
GS
3871 sds->this_load = sgs.avg_load;
3872 sds->this = group;
3873 sds->this_nr_running = sgs.sum_nr_running;
3874 sds->this_load_per_task = sgs.sum_weighted_load;
3875 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3876 (sgs.sum_nr_running > sgs.group_capacity ||
3877 sgs.group_imb)) {
37abe198
GS
3878 sds->max_load = sgs.avg_load;
3879 sds->busiest = group;
3880 sds->busiest_nr_running = sgs.sum_nr_running;
3881 sds->busiest_load_per_task = sgs.sum_weighted_load;
3882 sds->group_imb = sgs.group_imb;
48f24c4d 3883 }
5c45bf27 3884
c071df18 3885 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3886 group = group->next;
3887 } while (group != sd->groups);
37abe198 3888}
1da177e4 3889
2e6f44ae
GS
3890/**
3891 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3892 * amongst the groups of a sched_domain, during
3893 * load balancing.
2e6f44ae
GS
3894 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3895 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3896 * @imbalance: Variable to store the imbalance.
3897 */
3898static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3899 int this_cpu, unsigned long *imbalance)
3900{
3901 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3902 unsigned int imbn = 2;
3903
3904 if (sds->this_nr_running) {
3905 sds->this_load_per_task /= sds->this_nr_running;
3906 if (sds->busiest_load_per_task >
3907 sds->this_load_per_task)
3908 imbn = 1;
3909 } else
3910 sds->this_load_per_task =
3911 cpu_avg_load_per_task(this_cpu);
1da177e4 3912
2e6f44ae
GS
3913 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3914 sds->busiest_load_per_task * imbn) {
3915 *imbalance = sds->busiest_load_per_task;
3916 return;
3917 }
908a7c1b 3918
1da177e4 3919 /*
2e6f44ae
GS
3920 * OK, we don't have enough imbalance to justify moving tasks,
3921 * however we may be able to increase total CPU power used by
3922 * moving them.
1da177e4 3923 */
2dd73a4f 3924
18a3885f 3925 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3926 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3927 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3928 min(sds->this_load_per_task, sds->this_load);
3929 pwr_now /= SCHED_LOAD_SCALE;
3930
3931 /* Amount of load we'd subtract */
18a3885f
PZ
3932 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3933 sds->busiest->cpu_power;
2e6f44ae 3934 if (sds->max_load > tmp)
18a3885f 3935 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3936 min(sds->busiest_load_per_task, sds->max_load - tmp);
3937
3938 /* Amount of load we'd add */
18a3885f 3939 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3940 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3941 tmp = (sds->max_load * sds->busiest->cpu_power) /
3942 sds->this->cpu_power;
2e6f44ae 3943 else
18a3885f
PZ
3944 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3945 sds->this->cpu_power;
3946 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3947 min(sds->this_load_per_task, sds->this_load + tmp);
3948 pwr_move /= SCHED_LOAD_SCALE;
3949
3950 /* Move if we gain throughput */
3951 if (pwr_move > pwr_now)
3952 *imbalance = sds->busiest_load_per_task;
3953}
dbc523a3
GS
3954
3955/**
3956 * calculate_imbalance - Calculate the amount of imbalance present within the
3957 * groups of a given sched_domain during load balance.
3958 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3959 * @this_cpu: Cpu for which currently load balance is being performed.
3960 * @imbalance: The variable to store the imbalance.
3961 */
3962static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3963 unsigned long *imbalance)
3964{
3965 unsigned long max_pull;
2dd73a4f
PW
3966 /*
3967 * In the presence of smp nice balancing, certain scenarios can have
3968 * max load less than avg load(as we skip the groups at or below
3969 * its cpu_power, while calculating max_load..)
3970 */
dbc523a3 3971 if (sds->max_load < sds->avg_load) {
2dd73a4f 3972 *imbalance = 0;
dbc523a3 3973 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3974 }
0c117f1b
SS
3975
3976 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3977 max_pull = min(sds->max_load - sds->avg_load,
3978 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3979
1da177e4 3980 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3981 *imbalance = min(max_pull * sds->busiest->cpu_power,
3982 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3983 / SCHED_LOAD_SCALE;
3984
2dd73a4f
PW
3985 /*
3986 * if *imbalance is less than the average load per runnable task
3987 * there is no gaurantee that any tasks will be moved so we'll have
3988 * a think about bumping its value to force at least one task to be
3989 * moved
3990 */
dbc523a3
GS
3991 if (*imbalance < sds->busiest_load_per_task)
3992 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3993
dbc523a3 3994}
37abe198 3995/******* find_busiest_group() helpers end here *********************/
1da177e4 3996
b7bb4c9b
GS
3997/**
3998 * find_busiest_group - Returns the busiest group within the sched_domain
3999 * if there is an imbalance. If there isn't an imbalance, and
4000 * the user has opted for power-savings, it returns a group whose
4001 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4002 * such a group exists.
4003 *
4004 * Also calculates the amount of weighted load which should be moved
4005 * to restore balance.
4006 *
4007 * @sd: The sched_domain whose busiest group is to be returned.
4008 * @this_cpu: The cpu for which load balancing is currently being performed.
4009 * @imbalance: Variable which stores amount of weighted load which should
4010 * be moved to restore balance/put a group to idle.
4011 * @idle: The idle status of this_cpu.
4012 * @sd_idle: The idleness of sd
4013 * @cpus: The set of CPUs under consideration for load-balancing.
4014 * @balance: Pointer to a variable indicating if this_cpu
4015 * is the appropriate cpu to perform load balancing at this_level.
4016 *
4017 * Returns: - the busiest group if imbalance exists.
4018 * - If no imbalance and user has opted for power-savings balance,
4019 * return the least loaded group whose CPUs can be
4020 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4021 */
4022static struct sched_group *
4023find_busiest_group(struct sched_domain *sd, int this_cpu,
4024 unsigned long *imbalance, enum cpu_idle_type idle,
4025 int *sd_idle, const struct cpumask *cpus, int *balance)
4026{
4027 struct sd_lb_stats sds;
1da177e4 4028
37abe198 4029 memset(&sds, 0, sizeof(sds));
1da177e4 4030
37abe198
GS
4031 /*
4032 * Compute the various statistics relavent for load balancing at
4033 * this level.
4034 */
4035 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4036 balance, &sds);
4037
b7bb4c9b
GS
4038 /* Cases where imbalance does not exist from POV of this_cpu */
4039 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4040 * at this level.
4041 * 2) There is no busy sibling group to pull from.
4042 * 3) This group is the busiest group.
4043 * 4) This group is more busy than the avg busieness at this
4044 * sched_domain.
4045 * 5) The imbalance is within the specified limit.
4046 * 6) Any rebalance would lead to ping-pong
4047 */
37abe198
GS
4048 if (balance && !(*balance))
4049 goto ret;
1da177e4 4050
b7bb4c9b
GS
4051 if (!sds.busiest || sds.busiest_nr_running == 0)
4052 goto out_balanced;
1da177e4 4053
b7bb4c9b 4054 if (sds.this_load >= sds.max_load)
1da177e4 4055 goto out_balanced;
1da177e4 4056
222d656d 4057 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4058
b7bb4c9b
GS
4059 if (sds.this_load >= sds.avg_load)
4060 goto out_balanced;
4061
4062 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4063 goto out_balanced;
4064
222d656d
GS
4065 sds.busiest_load_per_task /= sds.busiest_nr_running;
4066 if (sds.group_imb)
4067 sds.busiest_load_per_task =
4068 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4069
1da177e4
LT
4070 /*
4071 * We're trying to get all the cpus to the average_load, so we don't
4072 * want to push ourselves above the average load, nor do we wish to
4073 * reduce the max loaded cpu below the average load, as either of these
4074 * actions would just result in more rebalancing later, and ping-pong
4075 * tasks around. Thus we look for the minimum possible imbalance.
4076 * Negative imbalances (*we* are more loaded than anyone else) will
4077 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4078 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4079 * appear as very large values with unsigned longs.
4080 */
222d656d 4081 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4082 goto out_balanced;
4083
dbc523a3
GS
4084 /* Looks like there is an imbalance. Compute it */
4085 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4086 return sds.busiest;
1da177e4
LT
4087
4088out_balanced:
c071df18
GS
4089 /*
4090 * There is no obvious imbalance. But check if we can do some balancing
4091 * to save power.
4092 */
4093 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4094 return sds.busiest;
783609c6 4095ret:
1da177e4
LT
4096 *imbalance = 0;
4097 return NULL;
4098}
4099
4100/*
4101 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4102 */
70b97a7f 4103static struct rq *
d15bcfdb 4104find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4105 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4106{
70b97a7f 4107 struct rq *busiest = NULL, *rq;
2dd73a4f 4108 unsigned long max_load = 0;
1da177e4
LT
4109 int i;
4110
758b2cdc 4111 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4112 unsigned long power = power_of(i);
4113 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4114 unsigned long wl;
0a2966b4 4115
96f874e2 4116 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4117 continue;
4118
48f24c4d 4119 rq = cpu_rq(i);
bdb94aa5
PZ
4120 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4121 wl /= power;
2dd73a4f 4122
bdb94aa5 4123 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4124 continue;
1da177e4 4125
dd41f596
IM
4126 if (wl > max_load) {
4127 max_load = wl;
48f24c4d 4128 busiest = rq;
1da177e4
LT
4129 }
4130 }
4131
4132 return busiest;
4133}
4134
77391d71
NP
4135/*
4136 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4137 * so long as it is large enough.
4138 */
4139#define MAX_PINNED_INTERVAL 512
4140
df7c8e84
RR
4141/* Working cpumask for load_balance and load_balance_newidle. */
4142static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4143
1da177e4
LT
4144/*
4145 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4146 * tasks if there is an imbalance.
1da177e4 4147 */
70b97a7f 4148static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4149 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4150 int *balance)
1da177e4 4151{
43010659 4152 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4153 struct sched_group *group;
1da177e4 4154 unsigned long imbalance;
70b97a7f 4155 struct rq *busiest;
fe2eea3f 4156 unsigned long flags;
df7c8e84 4157 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4158
6ad4c188 4159 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4160
89c4710e
SS
4161 /*
4162 * When power savings policy is enabled for the parent domain, idle
4163 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4164 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4165 * portraying it as CPU_NOT_IDLE.
89c4710e 4166 */
d15bcfdb 4167 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4168 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4169 sd_idle = 1;
1da177e4 4170
2d72376b 4171 schedstat_inc(sd, lb_count[idle]);
1da177e4 4172
0a2966b4 4173redo:
c8cba857 4174 update_shares(sd);
0a2966b4 4175 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4176 cpus, balance);
783609c6 4177
06066714 4178 if (*balance == 0)
783609c6 4179 goto out_balanced;
783609c6 4180
1da177e4
LT
4181 if (!group) {
4182 schedstat_inc(sd, lb_nobusyg[idle]);
4183 goto out_balanced;
4184 }
4185
7c16ec58 4186 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4187 if (!busiest) {
4188 schedstat_inc(sd, lb_nobusyq[idle]);
4189 goto out_balanced;
4190 }
4191
db935dbd 4192 BUG_ON(busiest == this_rq);
1da177e4
LT
4193
4194 schedstat_add(sd, lb_imbalance[idle], imbalance);
4195
43010659 4196 ld_moved = 0;
1da177e4
LT
4197 if (busiest->nr_running > 1) {
4198 /*
4199 * Attempt to move tasks. If find_busiest_group has found
4200 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4201 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4202 * correctly treated as an imbalance.
4203 */
fe2eea3f 4204 local_irq_save(flags);
e17224bf 4205 double_rq_lock(this_rq, busiest);
43010659 4206 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4207 imbalance, sd, idle, &all_pinned);
e17224bf 4208 double_rq_unlock(this_rq, busiest);
fe2eea3f 4209 local_irq_restore(flags);
81026794 4210
46cb4b7c
SS
4211 /*
4212 * some other cpu did the load balance for us.
4213 */
43010659 4214 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4215 resched_cpu(this_cpu);
4216
81026794 4217 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4218 if (unlikely(all_pinned)) {
96f874e2
RR
4219 cpumask_clear_cpu(cpu_of(busiest), cpus);
4220 if (!cpumask_empty(cpus))
0a2966b4 4221 goto redo;
81026794 4222 goto out_balanced;
0a2966b4 4223 }
1da177e4 4224 }
81026794 4225
43010659 4226 if (!ld_moved) {
1da177e4
LT
4227 schedstat_inc(sd, lb_failed[idle]);
4228 sd->nr_balance_failed++;
4229
4230 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4231
05fa785c 4232 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4233
4234 /* don't kick the migration_thread, if the curr
4235 * task on busiest cpu can't be moved to this_cpu
4236 */
96f874e2
RR
4237 if (!cpumask_test_cpu(this_cpu,
4238 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4239 raw_spin_unlock_irqrestore(&busiest->lock,
4240 flags);
fa3b6ddc
SS
4241 all_pinned = 1;
4242 goto out_one_pinned;
4243 }
4244
1da177e4
LT
4245 if (!busiest->active_balance) {
4246 busiest->active_balance = 1;
4247 busiest->push_cpu = this_cpu;
81026794 4248 active_balance = 1;
1da177e4 4249 }
05fa785c 4250 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4251 if (active_balance)
1da177e4
LT
4252 wake_up_process(busiest->migration_thread);
4253
4254 /*
4255 * We've kicked active balancing, reset the failure
4256 * counter.
4257 */
39507451 4258 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4259 }
81026794 4260 } else
1da177e4
LT
4261 sd->nr_balance_failed = 0;
4262
81026794 4263 if (likely(!active_balance)) {
1da177e4
LT
4264 /* We were unbalanced, so reset the balancing interval */
4265 sd->balance_interval = sd->min_interval;
81026794
NP
4266 } else {
4267 /*
4268 * If we've begun active balancing, start to back off. This
4269 * case may not be covered by the all_pinned logic if there
4270 * is only 1 task on the busy runqueue (because we don't call
4271 * move_tasks).
4272 */
4273 if (sd->balance_interval < sd->max_interval)
4274 sd->balance_interval *= 2;
1da177e4
LT
4275 }
4276
43010659 4277 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4278 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4279 ld_moved = -1;
4280
4281 goto out;
1da177e4
LT
4282
4283out_balanced:
1da177e4
LT
4284 schedstat_inc(sd, lb_balanced[idle]);
4285
16cfb1c0 4286 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4287
4288out_one_pinned:
1da177e4 4289 /* tune up the balancing interval */
77391d71
NP
4290 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4291 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4292 sd->balance_interval *= 2;
4293
48f24c4d 4294 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4295 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4296 ld_moved = -1;
4297 else
4298 ld_moved = 0;
4299out:
c8cba857
PZ
4300 if (ld_moved)
4301 update_shares(sd);
c09595f6 4302 return ld_moved;
1da177e4
LT
4303}
4304
4305/*
4306 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4307 * tasks if there is an imbalance.
4308 *
d15bcfdb 4309 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4310 * this_rq is locked.
4311 */
48f24c4d 4312static int
df7c8e84 4313load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4314{
4315 struct sched_group *group;
70b97a7f 4316 struct rq *busiest = NULL;
1da177e4 4317 unsigned long imbalance;
43010659 4318 int ld_moved = 0;
5969fe06 4319 int sd_idle = 0;
969bb4e4 4320 int all_pinned = 0;
df7c8e84 4321 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4322
6ad4c188 4323 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4324
89c4710e
SS
4325 /*
4326 * When power savings policy is enabled for the parent domain, idle
4327 * sibling can pick up load irrespective of busy siblings. In this case,
4328 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4329 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4330 */
4331 if (sd->flags & SD_SHARE_CPUPOWER &&
4332 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4333 sd_idle = 1;
1da177e4 4334
2d72376b 4335 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4336redo:
3e5459b4 4337 update_shares_locked(this_rq, sd);
d15bcfdb 4338 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4339 &sd_idle, cpus, NULL);
1da177e4 4340 if (!group) {
d15bcfdb 4341 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4342 goto out_balanced;
1da177e4
LT
4343 }
4344
7c16ec58 4345 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4346 if (!busiest) {
d15bcfdb 4347 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4348 goto out_balanced;
1da177e4
LT
4349 }
4350
db935dbd
NP
4351 BUG_ON(busiest == this_rq);
4352
d15bcfdb 4353 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4354
43010659 4355 ld_moved = 0;
d6d5cfaf
NP
4356 if (busiest->nr_running > 1) {
4357 /* Attempt to move tasks */
4358 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4359 /* this_rq->clock is already updated */
4360 update_rq_clock(busiest);
43010659 4361 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4362 imbalance, sd, CPU_NEWLY_IDLE,
4363 &all_pinned);
1b12bbc7 4364 double_unlock_balance(this_rq, busiest);
0a2966b4 4365
969bb4e4 4366 if (unlikely(all_pinned)) {
96f874e2
RR
4367 cpumask_clear_cpu(cpu_of(busiest), cpus);
4368 if (!cpumask_empty(cpus))
0a2966b4
CL
4369 goto redo;
4370 }
d6d5cfaf
NP
4371 }
4372
43010659 4373 if (!ld_moved) {
36dffab6 4374 int active_balance = 0;
ad273b32 4375
d15bcfdb 4376 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4377 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4378 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4379 return -1;
ad273b32
VS
4380
4381 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4382 return -1;
4383
4384 if (sd->nr_balance_failed++ < 2)
4385 return -1;
4386
4387 /*
4388 * The only task running in a non-idle cpu can be moved to this
4389 * cpu in an attempt to completely freeup the other CPU
4390 * package. The same method used to move task in load_balance()
4391 * have been extended for load_balance_newidle() to speedup
4392 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4393 *
4394 * The package power saving logic comes from
4395 * find_busiest_group(). If there are no imbalance, then
4396 * f_b_g() will return NULL. However when sched_mc={1,2} then
4397 * f_b_g() will select a group from which a running task may be
4398 * pulled to this cpu in order to make the other package idle.
4399 * If there is no opportunity to make a package idle and if
4400 * there are no imbalance, then f_b_g() will return NULL and no
4401 * action will be taken in load_balance_newidle().
4402 *
4403 * Under normal task pull operation due to imbalance, there
4404 * will be more than one task in the source run queue and
4405 * move_tasks() will succeed. ld_moved will be true and this
4406 * active balance code will not be triggered.
4407 */
4408
4409 /* Lock busiest in correct order while this_rq is held */
4410 double_lock_balance(this_rq, busiest);
4411
4412 /*
4413 * don't kick the migration_thread, if the curr
4414 * task on busiest cpu can't be moved to this_cpu
4415 */
6ca09dfc 4416 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4417 double_unlock_balance(this_rq, busiest);
4418 all_pinned = 1;
4419 return ld_moved;
4420 }
4421
4422 if (!busiest->active_balance) {
4423 busiest->active_balance = 1;
4424 busiest->push_cpu = this_cpu;
4425 active_balance = 1;
4426 }
4427
4428 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4429 /*
4430 * Should not call ttwu while holding a rq->lock
4431 */
05fa785c 4432 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4433 if (active_balance)
4434 wake_up_process(busiest->migration_thread);
05fa785c 4435 raw_spin_lock(&this_rq->lock);
ad273b32 4436
5969fe06 4437 } else
16cfb1c0 4438 sd->nr_balance_failed = 0;
1da177e4 4439
3e5459b4 4440 update_shares_locked(this_rq, sd);
43010659 4441 return ld_moved;
16cfb1c0
NP
4442
4443out_balanced:
d15bcfdb 4444 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4445 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4446 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4447 return -1;
16cfb1c0 4448 sd->nr_balance_failed = 0;
48f24c4d 4449
16cfb1c0 4450 return 0;
1da177e4
LT
4451}
4452
4453/*
4454 * idle_balance is called by schedule() if this_cpu is about to become
4455 * idle. Attempts to pull tasks from other CPUs.
4456 */
70b97a7f 4457static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4458{
4459 struct sched_domain *sd;
efbe027e 4460 int pulled_task = 0;
dd41f596 4461 unsigned long next_balance = jiffies + HZ;
1da177e4 4462
1b9508f6
MG
4463 this_rq->idle_stamp = this_rq->clock;
4464
4465 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4466 return;
4467
1da177e4 4468 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4469 unsigned long interval;
4470
4471 if (!(sd->flags & SD_LOAD_BALANCE))
4472 continue;
4473
4474 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4475 /* If we've pulled tasks over stop searching: */
7c16ec58 4476 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4477 sd);
92c4ca5c
CL
4478
4479 interval = msecs_to_jiffies(sd->balance_interval);
4480 if (time_after(next_balance, sd->last_balance + interval))
4481 next_balance = sd->last_balance + interval;
1b9508f6
MG
4482 if (pulled_task) {
4483 this_rq->idle_stamp = 0;
92c4ca5c 4484 break;
1b9508f6 4485 }
1da177e4 4486 }
dd41f596 4487 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4488 /*
4489 * We are going idle. next_balance may be set based on
4490 * a busy processor. So reset next_balance.
4491 */
4492 this_rq->next_balance = next_balance;
dd41f596 4493 }
1da177e4
LT
4494}
4495
4496/*
4497 * active_load_balance is run by migration threads. It pushes running tasks
4498 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4499 * running on each physical CPU where possible, and avoids physical /
4500 * logical imbalances.
4501 *
4502 * Called with busiest_rq locked.
4503 */
70b97a7f 4504static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4505{
39507451 4506 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4507 struct sched_domain *sd;
4508 struct rq *target_rq;
39507451 4509
48f24c4d 4510 /* Is there any task to move? */
39507451 4511 if (busiest_rq->nr_running <= 1)
39507451
NP
4512 return;
4513
4514 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4515
4516 /*
39507451 4517 * This condition is "impossible", if it occurs
41a2d6cf 4518 * we need to fix it. Originally reported by
39507451 4519 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4520 */
39507451 4521 BUG_ON(busiest_rq == target_rq);
1da177e4 4522
39507451
NP
4523 /* move a task from busiest_rq to target_rq */
4524 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4525 update_rq_clock(busiest_rq);
4526 update_rq_clock(target_rq);
39507451
NP
4527
4528 /* Search for an sd spanning us and the target CPU. */
c96d145e 4529 for_each_domain(target_cpu, sd) {
39507451 4530 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4531 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4532 break;
c96d145e 4533 }
39507451 4534
48f24c4d 4535 if (likely(sd)) {
2d72376b 4536 schedstat_inc(sd, alb_count);
39507451 4537
43010659
PW
4538 if (move_one_task(target_rq, target_cpu, busiest_rq,
4539 sd, CPU_IDLE))
48f24c4d
IM
4540 schedstat_inc(sd, alb_pushed);
4541 else
4542 schedstat_inc(sd, alb_failed);
4543 }
1b12bbc7 4544 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4545}
4546
46cb4b7c
SS
4547#ifdef CONFIG_NO_HZ
4548static struct {
4549 atomic_t load_balancer;
7d1e6a9b 4550 cpumask_var_t cpu_mask;
f711f609 4551 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4552} nohz ____cacheline_aligned = {
4553 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4554};
4555
eea08f32
AB
4556int get_nohz_load_balancer(void)
4557{
4558 return atomic_read(&nohz.load_balancer);
4559}
4560
f711f609
GS
4561#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4562/**
4563 * lowest_flag_domain - Return lowest sched_domain containing flag.
4564 * @cpu: The cpu whose lowest level of sched domain is to
4565 * be returned.
4566 * @flag: The flag to check for the lowest sched_domain
4567 * for the given cpu.
4568 *
4569 * Returns the lowest sched_domain of a cpu which contains the given flag.
4570 */
4571static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4572{
4573 struct sched_domain *sd;
4574
4575 for_each_domain(cpu, sd)
4576 if (sd && (sd->flags & flag))
4577 break;
4578
4579 return sd;
4580}
4581
4582/**
4583 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4584 * @cpu: The cpu whose domains we're iterating over.
4585 * @sd: variable holding the value of the power_savings_sd
4586 * for cpu.
4587 * @flag: The flag to filter the sched_domains to be iterated.
4588 *
4589 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4590 * set, starting from the lowest sched_domain to the highest.
4591 */
4592#define for_each_flag_domain(cpu, sd, flag) \
4593 for (sd = lowest_flag_domain(cpu, flag); \
4594 (sd && (sd->flags & flag)); sd = sd->parent)
4595
4596/**
4597 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4598 * @ilb_group: group to be checked for semi-idleness
4599 *
4600 * Returns: 1 if the group is semi-idle. 0 otherwise.
4601 *
4602 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4603 * and atleast one non-idle CPU. This helper function checks if the given
4604 * sched_group is semi-idle or not.
4605 */
4606static inline int is_semi_idle_group(struct sched_group *ilb_group)
4607{
4608 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4609 sched_group_cpus(ilb_group));
4610
4611 /*
4612 * A sched_group is semi-idle when it has atleast one busy cpu
4613 * and atleast one idle cpu.
4614 */
4615 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4616 return 0;
4617
4618 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4619 return 0;
4620
4621 return 1;
4622}
4623/**
4624 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4625 * @cpu: The cpu which is nominating a new idle_load_balancer.
4626 *
4627 * Returns: Returns the id of the idle load balancer if it exists,
4628 * Else, returns >= nr_cpu_ids.
4629 *
4630 * This algorithm picks the idle load balancer such that it belongs to a
4631 * semi-idle powersavings sched_domain. The idea is to try and avoid
4632 * completely idle packages/cores just for the purpose of idle load balancing
4633 * when there are other idle cpu's which are better suited for that job.
4634 */
4635static int find_new_ilb(int cpu)
4636{
4637 struct sched_domain *sd;
4638 struct sched_group *ilb_group;
4639
4640 /*
4641 * Have idle load balancer selection from semi-idle packages only
4642 * when power-aware load balancing is enabled
4643 */
4644 if (!(sched_smt_power_savings || sched_mc_power_savings))
4645 goto out_done;
4646
4647 /*
4648 * Optimize for the case when we have no idle CPUs or only one
4649 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4650 */
4651 if (cpumask_weight(nohz.cpu_mask) < 2)
4652 goto out_done;
4653
4654 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4655 ilb_group = sd->groups;
4656
4657 do {
4658 if (is_semi_idle_group(ilb_group))
4659 return cpumask_first(nohz.ilb_grp_nohz_mask);
4660
4661 ilb_group = ilb_group->next;
4662
4663 } while (ilb_group != sd->groups);
4664 }
4665
4666out_done:
4667 return cpumask_first(nohz.cpu_mask);
4668}
4669#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4670static inline int find_new_ilb(int call_cpu)
4671{
6e29ec57 4672 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4673}
4674#endif
4675
7835b98b 4676/*
46cb4b7c
SS
4677 * This routine will try to nominate the ilb (idle load balancing)
4678 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4679 * load balancing on behalf of all those cpus. If all the cpus in the system
4680 * go into this tickless mode, then there will be no ilb owner (as there is
4681 * no need for one) and all the cpus will sleep till the next wakeup event
4682 * arrives...
4683 *
4684 * For the ilb owner, tick is not stopped. And this tick will be used
4685 * for idle load balancing. ilb owner will still be part of
4686 * nohz.cpu_mask..
7835b98b 4687 *
46cb4b7c
SS
4688 * While stopping the tick, this cpu will become the ilb owner if there
4689 * is no other owner. And will be the owner till that cpu becomes busy
4690 * or if all cpus in the system stop their ticks at which point
4691 * there is no need for ilb owner.
4692 *
4693 * When the ilb owner becomes busy, it nominates another owner, during the
4694 * next busy scheduler_tick()
4695 */
4696int select_nohz_load_balancer(int stop_tick)
4697{
4698 int cpu = smp_processor_id();
4699
4700 if (stop_tick) {
46cb4b7c
SS
4701 cpu_rq(cpu)->in_nohz_recently = 1;
4702
483b4ee6
SS
4703 if (!cpu_active(cpu)) {
4704 if (atomic_read(&nohz.load_balancer) != cpu)
4705 return 0;
4706
4707 /*
4708 * If we are going offline and still the leader,
4709 * give up!
4710 */
46cb4b7c
SS
4711 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4712 BUG();
483b4ee6 4713
46cb4b7c
SS
4714 return 0;
4715 }
4716
483b4ee6
SS
4717 cpumask_set_cpu(cpu, nohz.cpu_mask);
4718
46cb4b7c 4719 /* time for ilb owner also to sleep */
6ad4c188 4720 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4721 if (atomic_read(&nohz.load_balancer) == cpu)
4722 atomic_set(&nohz.load_balancer, -1);
4723 return 0;
4724 }
4725
4726 if (atomic_read(&nohz.load_balancer) == -1) {
4727 /* make me the ilb owner */
4728 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4729 return 1;
e790fb0b
GS
4730 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4731 int new_ilb;
4732
4733 if (!(sched_smt_power_savings ||
4734 sched_mc_power_savings))
4735 return 1;
4736 /*
4737 * Check to see if there is a more power-efficient
4738 * ilb.
4739 */
4740 new_ilb = find_new_ilb(cpu);
4741 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4742 atomic_set(&nohz.load_balancer, -1);
4743 resched_cpu(new_ilb);
4744 return 0;
4745 }
46cb4b7c 4746 return 1;
e790fb0b 4747 }
46cb4b7c 4748 } else {
7d1e6a9b 4749 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4750 return 0;
4751
7d1e6a9b 4752 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4753
4754 if (atomic_read(&nohz.load_balancer) == cpu)
4755 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4756 BUG();
4757 }
4758 return 0;
4759}
4760#endif
4761
4762static DEFINE_SPINLOCK(balancing);
4763
4764/*
7835b98b
CL
4765 * It checks each scheduling domain to see if it is due to be balanced,
4766 * and initiates a balancing operation if so.
4767 *
4768 * Balancing parameters are set up in arch_init_sched_domains.
4769 */
a9957449 4770static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4771{
46cb4b7c
SS
4772 int balance = 1;
4773 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4774 unsigned long interval;
4775 struct sched_domain *sd;
46cb4b7c 4776 /* Earliest time when we have to do rebalance again */
c9819f45 4777 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4778 int update_next_balance = 0;
d07355f5 4779 int need_serialize;
1da177e4 4780
46cb4b7c 4781 for_each_domain(cpu, sd) {
1da177e4
LT
4782 if (!(sd->flags & SD_LOAD_BALANCE))
4783 continue;
4784
4785 interval = sd->balance_interval;
d15bcfdb 4786 if (idle != CPU_IDLE)
1da177e4
LT
4787 interval *= sd->busy_factor;
4788
4789 /* scale ms to jiffies */
4790 interval = msecs_to_jiffies(interval);
4791 if (unlikely(!interval))
4792 interval = 1;
dd41f596
IM
4793 if (interval > HZ*NR_CPUS/10)
4794 interval = HZ*NR_CPUS/10;
4795
d07355f5 4796 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4797
d07355f5 4798 if (need_serialize) {
08c183f3
CL
4799 if (!spin_trylock(&balancing))
4800 goto out;
4801 }
4802
c9819f45 4803 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4804 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4805 /*
4806 * We've pulled tasks over so either we're no
5969fe06
NP
4807 * longer idle, or one of our SMT siblings is
4808 * not idle.
4809 */
d15bcfdb 4810 idle = CPU_NOT_IDLE;
1da177e4 4811 }
1bd77f2d 4812 sd->last_balance = jiffies;
1da177e4 4813 }
d07355f5 4814 if (need_serialize)
08c183f3
CL
4815 spin_unlock(&balancing);
4816out:
f549da84 4817 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4818 next_balance = sd->last_balance + interval;
f549da84
SS
4819 update_next_balance = 1;
4820 }
783609c6
SS
4821
4822 /*
4823 * Stop the load balance at this level. There is another
4824 * CPU in our sched group which is doing load balancing more
4825 * actively.
4826 */
4827 if (!balance)
4828 break;
1da177e4 4829 }
f549da84
SS
4830
4831 /*
4832 * next_balance will be updated only when there is a need.
4833 * When the cpu is attached to null domain for ex, it will not be
4834 * updated.
4835 */
4836 if (likely(update_next_balance))
4837 rq->next_balance = next_balance;
46cb4b7c
SS
4838}
4839
4840/*
4841 * run_rebalance_domains is triggered when needed from the scheduler tick.
4842 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4843 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4844 */
4845static void run_rebalance_domains(struct softirq_action *h)
4846{
dd41f596
IM
4847 int this_cpu = smp_processor_id();
4848 struct rq *this_rq = cpu_rq(this_cpu);
4849 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4850 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4851
dd41f596 4852 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4853
4854#ifdef CONFIG_NO_HZ
4855 /*
4856 * If this cpu is the owner for idle load balancing, then do the
4857 * balancing on behalf of the other idle cpus whose ticks are
4858 * stopped.
4859 */
dd41f596
IM
4860 if (this_rq->idle_at_tick &&
4861 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4862 struct rq *rq;
4863 int balance_cpu;
4864
7d1e6a9b
RR
4865 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4866 if (balance_cpu == this_cpu)
4867 continue;
4868
46cb4b7c
SS
4869 /*
4870 * If this cpu gets work to do, stop the load balancing
4871 * work being done for other cpus. Next load
4872 * balancing owner will pick it up.
4873 */
4874 if (need_resched())
4875 break;
4876
de0cf899 4877 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4878
4879 rq = cpu_rq(balance_cpu);
dd41f596
IM
4880 if (time_after(this_rq->next_balance, rq->next_balance))
4881 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4882 }
4883 }
4884#endif
4885}
4886
8a0be9ef
FW
4887static inline int on_null_domain(int cpu)
4888{
4889 return !rcu_dereference(cpu_rq(cpu)->sd);
4890}
4891
46cb4b7c
SS
4892/*
4893 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4894 *
4895 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4896 * idle load balancing owner or decide to stop the periodic load balancing,
4897 * if the whole system is idle.
4898 */
dd41f596 4899static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4900{
46cb4b7c
SS
4901#ifdef CONFIG_NO_HZ
4902 /*
4903 * If we were in the nohz mode recently and busy at the current
4904 * scheduler tick, then check if we need to nominate new idle
4905 * load balancer.
4906 */
4907 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4908 rq->in_nohz_recently = 0;
4909
4910 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4911 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4912 atomic_set(&nohz.load_balancer, -1);
4913 }
4914
4915 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4916 int ilb = find_new_ilb(cpu);
46cb4b7c 4917
434d53b0 4918 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4919 resched_cpu(ilb);
4920 }
4921 }
4922
4923 /*
4924 * If this cpu is idle and doing idle load balancing for all the
4925 * cpus with ticks stopped, is it time for that to stop?
4926 */
4927 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4928 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4929 resched_cpu(cpu);
4930 return;
4931 }
4932
4933 /*
4934 * If this cpu is idle and the idle load balancing is done by
4935 * someone else, then no need raise the SCHED_SOFTIRQ
4936 */
4937 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4938 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4939 return;
4940#endif
8a0be9ef
FW
4941 /* Don't need to rebalance while attached to NULL domain */
4942 if (time_after_eq(jiffies, rq->next_balance) &&
4943 likely(!on_null_domain(cpu)))
46cb4b7c 4944 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4945}
dd41f596
IM
4946
4947#else /* CONFIG_SMP */
4948
1da177e4
LT
4949/*
4950 * on UP we do not need to balance between CPUs:
4951 */
70b97a7f 4952static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4953{
4954}
dd41f596 4955
1da177e4
LT
4956#endif
4957
1da177e4
LT
4958DEFINE_PER_CPU(struct kernel_stat, kstat);
4959
4960EXPORT_PER_CPU_SYMBOL(kstat);
4961
4962/*
c5f8d995 4963 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4964 * @p in case that task is currently running.
c5f8d995
HS
4965 *
4966 * Called with task_rq_lock() held on @rq.
1da177e4 4967 */
c5f8d995
HS
4968static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4969{
4970 u64 ns = 0;
4971
4972 if (task_current(rq, p)) {
4973 update_rq_clock(rq);
4974 ns = rq->clock - p->se.exec_start;
4975 if ((s64)ns < 0)
4976 ns = 0;
4977 }
4978
4979 return ns;
4980}
4981
bb34d92f 4982unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4983{
1da177e4 4984 unsigned long flags;
41b86e9c 4985 struct rq *rq;
bb34d92f 4986 u64 ns = 0;
48f24c4d 4987
41b86e9c 4988 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4989 ns = do_task_delta_exec(p, rq);
4990 task_rq_unlock(rq, &flags);
1508487e 4991
c5f8d995
HS
4992 return ns;
4993}
f06febc9 4994
c5f8d995
HS
4995/*
4996 * Return accounted runtime for the task.
4997 * In case the task is currently running, return the runtime plus current's
4998 * pending runtime that have not been accounted yet.
4999 */
5000unsigned long long task_sched_runtime(struct task_struct *p)
5001{
5002 unsigned long flags;
5003 struct rq *rq;
5004 u64 ns = 0;
5005
5006 rq = task_rq_lock(p, &flags);
5007 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5008 task_rq_unlock(rq, &flags);
5009
5010 return ns;
5011}
48f24c4d 5012
c5f8d995
HS
5013/*
5014 * Return sum_exec_runtime for the thread group.
5015 * In case the task is currently running, return the sum plus current's
5016 * pending runtime that have not been accounted yet.
5017 *
5018 * Note that the thread group might have other running tasks as well,
5019 * so the return value not includes other pending runtime that other
5020 * running tasks might have.
5021 */
5022unsigned long long thread_group_sched_runtime(struct task_struct *p)
5023{
5024 struct task_cputime totals;
5025 unsigned long flags;
5026 struct rq *rq;
5027 u64 ns;
5028
5029 rq = task_rq_lock(p, &flags);
5030 thread_group_cputime(p, &totals);
5031 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5032 task_rq_unlock(rq, &flags);
48f24c4d 5033
1da177e4
LT
5034 return ns;
5035}
5036
1da177e4
LT
5037/*
5038 * Account user cpu time to a process.
5039 * @p: the process that the cpu time gets accounted to
1da177e4 5040 * @cputime: the cpu time spent in user space since the last update
457533a7 5041 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5042 */
457533a7
MS
5043void account_user_time(struct task_struct *p, cputime_t cputime,
5044 cputime_t cputime_scaled)
1da177e4
LT
5045{
5046 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5047 cputime64_t tmp;
5048
457533a7 5049 /* Add user time to process. */
1da177e4 5050 p->utime = cputime_add(p->utime, cputime);
457533a7 5051 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5052 account_group_user_time(p, cputime);
1da177e4
LT
5053
5054 /* Add user time to cpustat. */
5055 tmp = cputime_to_cputime64(cputime);
5056 if (TASK_NICE(p) > 0)
5057 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5058 else
5059 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5060
5061 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5062 /* Account for user time used */
5063 acct_update_integrals(p);
1da177e4
LT
5064}
5065
94886b84
LV
5066/*
5067 * Account guest cpu time to a process.
5068 * @p: the process that the cpu time gets accounted to
5069 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5070 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5071 */
457533a7
MS
5072static void account_guest_time(struct task_struct *p, cputime_t cputime,
5073 cputime_t cputime_scaled)
94886b84
LV
5074{
5075 cputime64_t tmp;
5076 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5077
5078 tmp = cputime_to_cputime64(cputime);
5079
457533a7 5080 /* Add guest time to process. */
94886b84 5081 p->utime = cputime_add(p->utime, cputime);
457533a7 5082 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5083 account_group_user_time(p, cputime);
94886b84
LV
5084 p->gtime = cputime_add(p->gtime, cputime);
5085
457533a7 5086 /* Add guest time to cpustat. */
ce0e7b28
RO
5087 if (TASK_NICE(p) > 0) {
5088 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5089 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5090 } else {
5091 cpustat->user = cputime64_add(cpustat->user, tmp);
5092 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5093 }
94886b84
LV
5094}
5095
1da177e4
LT
5096/*
5097 * Account system cpu time to a process.
5098 * @p: the process that the cpu time gets accounted to
5099 * @hardirq_offset: the offset to subtract from hardirq_count()
5100 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5101 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5102 */
5103void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5104 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5105{
5106 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5107 cputime64_t tmp;
5108
983ed7a6 5109 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5110 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5111 return;
5112 }
94886b84 5113
457533a7 5114 /* Add system time to process. */
1da177e4 5115 p->stime = cputime_add(p->stime, cputime);
457533a7 5116 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5117 account_group_system_time(p, cputime);
1da177e4
LT
5118
5119 /* Add system time to cpustat. */
5120 tmp = cputime_to_cputime64(cputime);
5121 if (hardirq_count() - hardirq_offset)
5122 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5123 else if (softirq_count())
5124 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5125 else
79741dd3
MS
5126 cpustat->system = cputime64_add(cpustat->system, tmp);
5127
ef12fefa
BR
5128 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5129
1da177e4
LT
5130 /* Account for system time used */
5131 acct_update_integrals(p);
1da177e4
LT
5132}
5133
c66f08be 5134/*
1da177e4 5135 * Account for involuntary wait time.
1da177e4 5136 * @steal: the cpu time spent in involuntary wait
c66f08be 5137 */
79741dd3 5138void account_steal_time(cputime_t cputime)
c66f08be 5139{
79741dd3
MS
5140 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5141 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5142
5143 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5144}
5145
1da177e4 5146/*
79741dd3
MS
5147 * Account for idle time.
5148 * @cputime: the cpu time spent in idle wait
1da177e4 5149 */
79741dd3 5150void account_idle_time(cputime_t cputime)
1da177e4
LT
5151{
5152 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5153 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5154 struct rq *rq = this_rq();
1da177e4 5155
79741dd3
MS
5156 if (atomic_read(&rq->nr_iowait) > 0)
5157 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5158 else
5159 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5160}
5161
79741dd3
MS
5162#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5163
5164/*
5165 * Account a single tick of cpu time.
5166 * @p: the process that the cpu time gets accounted to
5167 * @user_tick: indicates if the tick is a user or a system tick
5168 */
5169void account_process_tick(struct task_struct *p, int user_tick)
5170{
a42548a1 5171 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5172 struct rq *rq = this_rq();
5173
5174 if (user_tick)
a42548a1 5175 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5176 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5177 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5178 one_jiffy_scaled);
5179 else
a42548a1 5180 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5181}
5182
5183/*
5184 * Account multiple ticks of steal time.
5185 * @p: the process from which the cpu time has been stolen
5186 * @ticks: number of stolen ticks
5187 */
5188void account_steal_ticks(unsigned long ticks)
5189{
5190 account_steal_time(jiffies_to_cputime(ticks));
5191}
5192
5193/*
5194 * Account multiple ticks of idle time.
5195 * @ticks: number of stolen ticks
5196 */
5197void account_idle_ticks(unsigned long ticks)
5198{
5199 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5200}
5201
79741dd3
MS
5202#endif
5203
49048622
BS
5204/*
5205 * Use precise platform statistics if available:
5206 */
5207#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5208void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5209{
d99ca3b9
HS
5210 *ut = p->utime;
5211 *st = p->stime;
49048622
BS
5212}
5213
0cf55e1e 5214void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5215{
0cf55e1e
HS
5216 struct task_cputime cputime;
5217
5218 thread_group_cputime(p, &cputime);
5219
5220 *ut = cputime.utime;
5221 *st = cputime.stime;
49048622
BS
5222}
5223#else
761b1d26
HS
5224
5225#ifndef nsecs_to_cputime
b7b20df9 5226# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5227#endif
5228
d180c5bc 5229void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5230{
d99ca3b9 5231 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5232
5233 /*
5234 * Use CFS's precise accounting:
5235 */
d180c5bc 5236 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5237
5238 if (total) {
d180c5bc
HS
5239 u64 temp;
5240
5241 temp = (u64)(rtime * utime);
49048622 5242 do_div(temp, total);
d180c5bc
HS
5243 utime = (cputime_t)temp;
5244 } else
5245 utime = rtime;
49048622 5246
d180c5bc
HS
5247 /*
5248 * Compare with previous values, to keep monotonicity:
5249 */
761b1d26 5250 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5251 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5252
d99ca3b9
HS
5253 *ut = p->prev_utime;
5254 *st = p->prev_stime;
49048622
BS
5255}
5256
0cf55e1e
HS
5257/*
5258 * Must be called with siglock held.
5259 */
5260void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5261{
0cf55e1e
HS
5262 struct signal_struct *sig = p->signal;
5263 struct task_cputime cputime;
5264 cputime_t rtime, utime, total;
49048622 5265
0cf55e1e 5266 thread_group_cputime(p, &cputime);
49048622 5267
0cf55e1e
HS
5268 total = cputime_add(cputime.utime, cputime.stime);
5269 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5270
0cf55e1e
HS
5271 if (total) {
5272 u64 temp;
49048622 5273
0cf55e1e
HS
5274 temp = (u64)(rtime * cputime.utime);
5275 do_div(temp, total);
5276 utime = (cputime_t)temp;
5277 } else
5278 utime = rtime;
5279
5280 sig->prev_utime = max(sig->prev_utime, utime);
5281 sig->prev_stime = max(sig->prev_stime,
5282 cputime_sub(rtime, sig->prev_utime));
5283
5284 *ut = sig->prev_utime;
5285 *st = sig->prev_stime;
49048622 5286}
49048622 5287#endif
49048622 5288
7835b98b
CL
5289/*
5290 * This function gets called by the timer code, with HZ frequency.
5291 * We call it with interrupts disabled.
5292 *
5293 * It also gets called by the fork code, when changing the parent's
5294 * timeslices.
5295 */
5296void scheduler_tick(void)
5297{
7835b98b
CL
5298 int cpu = smp_processor_id();
5299 struct rq *rq = cpu_rq(cpu);
dd41f596 5300 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5301
5302 sched_clock_tick();
dd41f596 5303
05fa785c 5304 raw_spin_lock(&rq->lock);
3e51f33f 5305 update_rq_clock(rq);
f1a438d8 5306 update_cpu_load(rq);
fa85ae24 5307 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5308 raw_spin_unlock(&rq->lock);
7835b98b 5309
cdd6c482 5310 perf_event_task_tick(curr, cpu);
e220d2dc 5311
e418e1c2 5312#ifdef CONFIG_SMP
dd41f596
IM
5313 rq->idle_at_tick = idle_cpu(cpu);
5314 trigger_load_balance(rq, cpu);
e418e1c2 5315#endif
1da177e4
LT
5316}
5317
132380a0 5318notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5319{
5320 if (in_lock_functions(addr)) {
5321 addr = CALLER_ADDR2;
5322 if (in_lock_functions(addr))
5323 addr = CALLER_ADDR3;
5324 }
5325 return addr;
5326}
1da177e4 5327
7e49fcce
SR
5328#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5329 defined(CONFIG_PREEMPT_TRACER))
5330
43627582 5331void __kprobes add_preempt_count(int val)
1da177e4 5332{
6cd8a4bb 5333#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5334 /*
5335 * Underflow?
5336 */
9a11b49a
IM
5337 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5338 return;
6cd8a4bb 5339#endif
1da177e4 5340 preempt_count() += val;
6cd8a4bb 5341#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5342 /*
5343 * Spinlock count overflowing soon?
5344 */
33859f7f
MOS
5345 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5346 PREEMPT_MASK - 10);
6cd8a4bb
SR
5347#endif
5348 if (preempt_count() == val)
5349 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5350}
5351EXPORT_SYMBOL(add_preempt_count);
5352
43627582 5353void __kprobes sub_preempt_count(int val)
1da177e4 5354{
6cd8a4bb 5355#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5356 /*
5357 * Underflow?
5358 */
01e3eb82 5359 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5360 return;
1da177e4
LT
5361 /*
5362 * Is the spinlock portion underflowing?
5363 */
9a11b49a
IM
5364 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5365 !(preempt_count() & PREEMPT_MASK)))
5366 return;
6cd8a4bb 5367#endif
9a11b49a 5368
6cd8a4bb
SR
5369 if (preempt_count() == val)
5370 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5371 preempt_count() -= val;
5372}
5373EXPORT_SYMBOL(sub_preempt_count);
5374
5375#endif
5376
5377/*
dd41f596 5378 * Print scheduling while atomic bug:
1da177e4 5379 */
dd41f596 5380static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5381{
838225b4
SS
5382 struct pt_regs *regs = get_irq_regs();
5383
663997d4
JP
5384 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5385 prev->comm, prev->pid, preempt_count());
838225b4 5386
dd41f596 5387 debug_show_held_locks(prev);
e21f5b15 5388 print_modules();
dd41f596
IM
5389 if (irqs_disabled())
5390 print_irqtrace_events(prev);
838225b4
SS
5391
5392 if (regs)
5393 show_regs(regs);
5394 else
5395 dump_stack();
dd41f596 5396}
1da177e4 5397
dd41f596
IM
5398/*
5399 * Various schedule()-time debugging checks and statistics:
5400 */
5401static inline void schedule_debug(struct task_struct *prev)
5402{
1da177e4 5403 /*
41a2d6cf 5404 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5405 * schedule() atomically, we ignore that path for now.
5406 * Otherwise, whine if we are scheduling when we should not be.
5407 */
3f33a7ce 5408 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5409 __schedule_bug(prev);
5410
1da177e4
LT
5411 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5412
2d72376b 5413 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5414#ifdef CONFIG_SCHEDSTATS
5415 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5416 schedstat_inc(this_rq(), bkl_count);
5417 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5418 }
5419#endif
dd41f596
IM
5420}
5421
6cecd084 5422static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5423{
6cecd084
PZ
5424 if (prev->state == TASK_RUNNING) {
5425 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5426
6cecd084
PZ
5427 runtime -= prev->se.prev_sum_exec_runtime;
5428 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5429
5430 /*
5431 * In order to avoid avg_overlap growing stale when we are
5432 * indeed overlapping and hence not getting put to sleep, grow
5433 * the avg_overlap on preemption.
5434 *
5435 * We use the average preemption runtime because that
5436 * correlates to the amount of cache footprint a task can
5437 * build up.
5438 */
6cecd084 5439 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5440 }
6cecd084 5441 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5442}
5443
dd41f596
IM
5444/*
5445 * Pick up the highest-prio task:
5446 */
5447static inline struct task_struct *
b67802ea 5448pick_next_task(struct rq *rq)
dd41f596 5449{
5522d5d5 5450 const struct sched_class *class;
dd41f596 5451 struct task_struct *p;
1da177e4
LT
5452
5453 /*
dd41f596
IM
5454 * Optimization: we know that if all tasks are in
5455 * the fair class we can call that function directly:
1da177e4 5456 */
dd41f596 5457 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5458 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5459 if (likely(p))
5460 return p;
1da177e4
LT
5461 }
5462
dd41f596
IM
5463 class = sched_class_highest;
5464 for ( ; ; ) {
fb8d4724 5465 p = class->pick_next_task(rq);
dd41f596
IM
5466 if (p)
5467 return p;
5468 /*
5469 * Will never be NULL as the idle class always
5470 * returns a non-NULL p:
5471 */
5472 class = class->next;
5473 }
5474}
1da177e4 5475
dd41f596
IM
5476/*
5477 * schedule() is the main scheduler function.
5478 */
ff743345 5479asmlinkage void __sched schedule(void)
dd41f596
IM
5480{
5481 struct task_struct *prev, *next;
67ca7bde 5482 unsigned long *switch_count;
dd41f596 5483 struct rq *rq;
31656519 5484 int cpu;
dd41f596 5485
ff743345
PZ
5486need_resched:
5487 preempt_disable();
dd41f596
IM
5488 cpu = smp_processor_id();
5489 rq = cpu_rq(cpu);
d6714c22 5490 rcu_sched_qs(cpu);
dd41f596
IM
5491 prev = rq->curr;
5492 switch_count = &prev->nivcsw;
5493
5494 release_kernel_lock(prev);
5495need_resched_nonpreemptible:
5496
5497 schedule_debug(prev);
1da177e4 5498
31656519 5499 if (sched_feat(HRTICK))
f333fdc9 5500 hrtick_clear(rq);
8f4d37ec 5501
05fa785c 5502 raw_spin_lock_irq(&rq->lock);
3e51f33f 5503 update_rq_clock(rq);
1e819950 5504 clear_tsk_need_resched(prev);
1da177e4 5505
1da177e4 5506 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5507 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5508 prev->state = TASK_RUNNING;
16882c1e 5509 else
2e1cb74a 5510 deactivate_task(rq, prev, 1);
dd41f596 5511 switch_count = &prev->nvcsw;
1da177e4
LT
5512 }
5513
3f029d3c 5514 pre_schedule(rq, prev);
f65eda4f 5515
dd41f596 5516 if (unlikely(!rq->nr_running))
1da177e4 5517 idle_balance(cpu, rq);
1da177e4 5518
df1c99d4 5519 put_prev_task(rq, prev);
b67802ea 5520 next = pick_next_task(rq);
1da177e4 5521
1da177e4 5522 if (likely(prev != next)) {
673a90a1 5523 sched_info_switch(prev, next);
cdd6c482 5524 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5525
1da177e4
LT
5526 rq->nr_switches++;
5527 rq->curr = next;
5528 ++*switch_count;
5529
dd41f596 5530 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5531 /*
5532 * the context switch might have flipped the stack from under
5533 * us, hence refresh the local variables.
5534 */
5535 cpu = smp_processor_id();
5536 rq = cpu_rq(cpu);
1da177e4 5537 } else
05fa785c 5538 raw_spin_unlock_irq(&rq->lock);
1da177e4 5539
3f029d3c 5540 post_schedule(rq);
1da177e4 5541
8f4d37ec 5542 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5543 goto need_resched_nonpreemptible;
8f4d37ec 5544
1da177e4 5545 preempt_enable_no_resched();
ff743345 5546 if (need_resched())
1da177e4
LT
5547 goto need_resched;
5548}
1da177e4
LT
5549EXPORT_SYMBOL(schedule);
5550
c08f7829 5551#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5552/*
5553 * Look out! "owner" is an entirely speculative pointer
5554 * access and not reliable.
5555 */
5556int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5557{
5558 unsigned int cpu;
5559 struct rq *rq;
5560
5561 if (!sched_feat(OWNER_SPIN))
5562 return 0;
5563
5564#ifdef CONFIG_DEBUG_PAGEALLOC
5565 /*
5566 * Need to access the cpu field knowing that
5567 * DEBUG_PAGEALLOC could have unmapped it if
5568 * the mutex owner just released it and exited.
5569 */
5570 if (probe_kernel_address(&owner->cpu, cpu))
5571 goto out;
5572#else
5573 cpu = owner->cpu;
5574#endif
5575
5576 /*
5577 * Even if the access succeeded (likely case),
5578 * the cpu field may no longer be valid.
5579 */
5580 if (cpu >= nr_cpumask_bits)
5581 goto out;
5582
5583 /*
5584 * We need to validate that we can do a
5585 * get_cpu() and that we have the percpu area.
5586 */
5587 if (!cpu_online(cpu))
5588 goto out;
5589
5590 rq = cpu_rq(cpu);
5591
5592 for (;;) {
5593 /*
5594 * Owner changed, break to re-assess state.
5595 */
5596 if (lock->owner != owner)
5597 break;
5598
5599 /*
5600 * Is that owner really running on that cpu?
5601 */
5602 if (task_thread_info(rq->curr) != owner || need_resched())
5603 return 0;
5604
5605 cpu_relax();
5606 }
5607out:
5608 return 1;
5609}
5610#endif
5611
1da177e4
LT
5612#ifdef CONFIG_PREEMPT
5613/*
2ed6e34f 5614 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5615 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5616 * occur there and call schedule directly.
5617 */
5618asmlinkage void __sched preempt_schedule(void)
5619{
5620 struct thread_info *ti = current_thread_info();
6478d880 5621
1da177e4
LT
5622 /*
5623 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5624 * we do not want to preempt the current task. Just return..
1da177e4 5625 */
beed33a8 5626 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5627 return;
5628
3a5c359a
AK
5629 do {
5630 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5631 schedule();
3a5c359a 5632 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5633
3a5c359a
AK
5634 /*
5635 * Check again in case we missed a preemption opportunity
5636 * between schedule and now.
5637 */
5638 barrier();
5ed0cec0 5639 } while (need_resched());
1da177e4 5640}
1da177e4
LT
5641EXPORT_SYMBOL(preempt_schedule);
5642
5643/*
2ed6e34f 5644 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5645 * off of irq context.
5646 * Note, that this is called and return with irqs disabled. This will
5647 * protect us against recursive calling from irq.
5648 */
5649asmlinkage void __sched preempt_schedule_irq(void)
5650{
5651 struct thread_info *ti = current_thread_info();
6478d880 5652
2ed6e34f 5653 /* Catch callers which need to be fixed */
1da177e4
LT
5654 BUG_ON(ti->preempt_count || !irqs_disabled());
5655
3a5c359a
AK
5656 do {
5657 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5658 local_irq_enable();
5659 schedule();
5660 local_irq_disable();
3a5c359a 5661 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5662
3a5c359a
AK
5663 /*
5664 * Check again in case we missed a preemption opportunity
5665 * between schedule and now.
5666 */
5667 barrier();
5ed0cec0 5668 } while (need_resched());
1da177e4
LT
5669}
5670
5671#endif /* CONFIG_PREEMPT */
5672
63859d4f 5673int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5674 void *key)
1da177e4 5675{
63859d4f 5676 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5677}
1da177e4
LT
5678EXPORT_SYMBOL(default_wake_function);
5679
5680/*
41a2d6cf
IM
5681 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5682 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5683 * number) then we wake all the non-exclusive tasks and one exclusive task.
5684 *
5685 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5686 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5687 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5688 */
78ddb08f 5689static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5690 int nr_exclusive, int wake_flags, void *key)
1da177e4 5691{
2e45874c 5692 wait_queue_t *curr, *next;
1da177e4 5693
2e45874c 5694 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5695 unsigned flags = curr->flags;
5696
63859d4f 5697 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5698 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5699 break;
5700 }
5701}
5702
5703/**
5704 * __wake_up - wake up threads blocked on a waitqueue.
5705 * @q: the waitqueue
5706 * @mode: which threads
5707 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5708 * @key: is directly passed to the wakeup function
50fa610a
DH
5709 *
5710 * It may be assumed that this function implies a write memory barrier before
5711 * changing the task state if and only if any tasks are woken up.
1da177e4 5712 */
7ad5b3a5 5713void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5714 int nr_exclusive, void *key)
1da177e4
LT
5715{
5716 unsigned long flags;
5717
5718 spin_lock_irqsave(&q->lock, flags);
5719 __wake_up_common(q, mode, nr_exclusive, 0, key);
5720 spin_unlock_irqrestore(&q->lock, flags);
5721}
1da177e4
LT
5722EXPORT_SYMBOL(__wake_up);
5723
5724/*
5725 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5726 */
7ad5b3a5 5727void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5728{
5729 __wake_up_common(q, mode, 1, 0, NULL);
5730}
5731
4ede816a
DL
5732void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5733{
5734 __wake_up_common(q, mode, 1, 0, key);
5735}
5736
1da177e4 5737/**
4ede816a 5738 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5739 * @q: the waitqueue
5740 * @mode: which threads
5741 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5742 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5743 *
5744 * The sync wakeup differs that the waker knows that it will schedule
5745 * away soon, so while the target thread will be woken up, it will not
5746 * be migrated to another CPU - ie. the two threads are 'synchronized'
5747 * with each other. This can prevent needless bouncing between CPUs.
5748 *
5749 * On UP it can prevent extra preemption.
50fa610a
DH
5750 *
5751 * It may be assumed that this function implies a write memory barrier before
5752 * changing the task state if and only if any tasks are woken up.
1da177e4 5753 */
4ede816a
DL
5754void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5755 int nr_exclusive, void *key)
1da177e4
LT
5756{
5757 unsigned long flags;
7d478721 5758 int wake_flags = WF_SYNC;
1da177e4
LT
5759
5760 if (unlikely(!q))
5761 return;
5762
5763 if (unlikely(!nr_exclusive))
7d478721 5764 wake_flags = 0;
1da177e4
LT
5765
5766 spin_lock_irqsave(&q->lock, flags);
7d478721 5767 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5768 spin_unlock_irqrestore(&q->lock, flags);
5769}
4ede816a
DL
5770EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5771
5772/*
5773 * __wake_up_sync - see __wake_up_sync_key()
5774 */
5775void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5776{
5777 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5778}
1da177e4
LT
5779EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5780
65eb3dc6
KD
5781/**
5782 * complete: - signals a single thread waiting on this completion
5783 * @x: holds the state of this particular completion
5784 *
5785 * This will wake up a single thread waiting on this completion. Threads will be
5786 * awakened in the same order in which they were queued.
5787 *
5788 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5789 *
5790 * It may be assumed that this function implies a write memory barrier before
5791 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5792 */
b15136e9 5793void complete(struct completion *x)
1da177e4
LT
5794{
5795 unsigned long flags;
5796
5797 spin_lock_irqsave(&x->wait.lock, flags);
5798 x->done++;
d9514f6c 5799 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5800 spin_unlock_irqrestore(&x->wait.lock, flags);
5801}
5802EXPORT_SYMBOL(complete);
5803
65eb3dc6
KD
5804/**
5805 * complete_all: - signals all threads waiting on this completion
5806 * @x: holds the state of this particular completion
5807 *
5808 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5809 *
5810 * It may be assumed that this function implies a write memory barrier before
5811 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5812 */
b15136e9 5813void complete_all(struct completion *x)
1da177e4
LT
5814{
5815 unsigned long flags;
5816
5817 spin_lock_irqsave(&x->wait.lock, flags);
5818 x->done += UINT_MAX/2;
d9514f6c 5819 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5820 spin_unlock_irqrestore(&x->wait.lock, flags);
5821}
5822EXPORT_SYMBOL(complete_all);
5823
8cbbe86d
AK
5824static inline long __sched
5825do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5826{
1da177e4
LT
5827 if (!x->done) {
5828 DECLARE_WAITQUEUE(wait, current);
5829
5830 wait.flags |= WQ_FLAG_EXCLUSIVE;
5831 __add_wait_queue_tail(&x->wait, &wait);
5832 do {
94d3d824 5833 if (signal_pending_state(state, current)) {
ea71a546
ON
5834 timeout = -ERESTARTSYS;
5835 break;
8cbbe86d
AK
5836 }
5837 __set_current_state(state);
1da177e4
LT
5838 spin_unlock_irq(&x->wait.lock);
5839 timeout = schedule_timeout(timeout);
5840 spin_lock_irq(&x->wait.lock);
ea71a546 5841 } while (!x->done && timeout);
1da177e4 5842 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5843 if (!x->done)
5844 return timeout;
1da177e4
LT
5845 }
5846 x->done--;
ea71a546 5847 return timeout ?: 1;
1da177e4 5848}
1da177e4 5849
8cbbe86d
AK
5850static long __sched
5851wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5852{
1da177e4
LT
5853 might_sleep();
5854
5855 spin_lock_irq(&x->wait.lock);
8cbbe86d 5856 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5857 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5858 return timeout;
5859}
1da177e4 5860
65eb3dc6
KD
5861/**
5862 * wait_for_completion: - waits for completion of a task
5863 * @x: holds the state of this particular completion
5864 *
5865 * This waits to be signaled for completion of a specific task. It is NOT
5866 * interruptible and there is no timeout.
5867 *
5868 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5869 * and interrupt capability. Also see complete().
5870 */
b15136e9 5871void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5872{
5873 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5874}
8cbbe86d 5875EXPORT_SYMBOL(wait_for_completion);
1da177e4 5876
65eb3dc6
KD
5877/**
5878 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5879 * @x: holds the state of this particular completion
5880 * @timeout: timeout value in jiffies
5881 *
5882 * This waits for either a completion of a specific task to be signaled or for a
5883 * specified timeout to expire. The timeout is in jiffies. It is not
5884 * interruptible.
5885 */
b15136e9 5886unsigned long __sched
8cbbe86d 5887wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5888{
8cbbe86d 5889 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5890}
8cbbe86d 5891EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5892
65eb3dc6
KD
5893/**
5894 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5895 * @x: holds the state of this particular completion
5896 *
5897 * This waits for completion of a specific task to be signaled. It is
5898 * interruptible.
5899 */
8cbbe86d 5900int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5901{
51e97990
AK
5902 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5903 if (t == -ERESTARTSYS)
5904 return t;
5905 return 0;
0fec171c 5906}
8cbbe86d 5907EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5908
65eb3dc6
KD
5909/**
5910 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5911 * @x: holds the state of this particular completion
5912 * @timeout: timeout value in jiffies
5913 *
5914 * This waits for either a completion of a specific task to be signaled or for a
5915 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5916 */
b15136e9 5917unsigned long __sched
8cbbe86d
AK
5918wait_for_completion_interruptible_timeout(struct completion *x,
5919 unsigned long timeout)
0fec171c 5920{
8cbbe86d 5921 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5922}
8cbbe86d 5923EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5924
65eb3dc6
KD
5925/**
5926 * wait_for_completion_killable: - waits for completion of a task (killable)
5927 * @x: holds the state of this particular completion
5928 *
5929 * This waits to be signaled for completion of a specific task. It can be
5930 * interrupted by a kill signal.
5931 */
009e577e
MW
5932int __sched wait_for_completion_killable(struct completion *x)
5933{
5934 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5935 if (t == -ERESTARTSYS)
5936 return t;
5937 return 0;
5938}
5939EXPORT_SYMBOL(wait_for_completion_killable);
5940
be4de352
DC
5941/**
5942 * try_wait_for_completion - try to decrement a completion without blocking
5943 * @x: completion structure
5944 *
5945 * Returns: 0 if a decrement cannot be done without blocking
5946 * 1 if a decrement succeeded.
5947 *
5948 * If a completion is being used as a counting completion,
5949 * attempt to decrement the counter without blocking. This
5950 * enables us to avoid waiting if the resource the completion
5951 * is protecting is not available.
5952 */
5953bool try_wait_for_completion(struct completion *x)
5954{
7539a3b3 5955 unsigned long flags;
be4de352
DC
5956 int ret = 1;
5957
7539a3b3 5958 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5959 if (!x->done)
5960 ret = 0;
5961 else
5962 x->done--;
7539a3b3 5963 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5964 return ret;
5965}
5966EXPORT_SYMBOL(try_wait_for_completion);
5967
5968/**
5969 * completion_done - Test to see if a completion has any waiters
5970 * @x: completion structure
5971 *
5972 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5973 * 1 if there are no waiters.
5974 *
5975 */
5976bool completion_done(struct completion *x)
5977{
7539a3b3 5978 unsigned long flags;
be4de352
DC
5979 int ret = 1;
5980
7539a3b3 5981 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5982 if (!x->done)
5983 ret = 0;
7539a3b3 5984 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5985 return ret;
5986}
5987EXPORT_SYMBOL(completion_done);
5988
8cbbe86d
AK
5989static long __sched
5990sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5991{
0fec171c
IM
5992 unsigned long flags;
5993 wait_queue_t wait;
5994
5995 init_waitqueue_entry(&wait, current);
1da177e4 5996
8cbbe86d 5997 __set_current_state(state);
1da177e4 5998
8cbbe86d
AK
5999 spin_lock_irqsave(&q->lock, flags);
6000 __add_wait_queue(q, &wait);
6001 spin_unlock(&q->lock);
6002 timeout = schedule_timeout(timeout);
6003 spin_lock_irq(&q->lock);
6004 __remove_wait_queue(q, &wait);
6005 spin_unlock_irqrestore(&q->lock, flags);
6006
6007 return timeout;
6008}
6009
6010void __sched interruptible_sleep_on(wait_queue_head_t *q)
6011{
6012 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6013}
1da177e4
LT
6014EXPORT_SYMBOL(interruptible_sleep_on);
6015
0fec171c 6016long __sched
95cdf3b7 6017interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6018{
8cbbe86d 6019 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6020}
1da177e4
LT
6021EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6022
0fec171c 6023void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6024{
8cbbe86d 6025 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6026}
1da177e4
LT
6027EXPORT_SYMBOL(sleep_on);
6028
0fec171c 6029long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6030{
8cbbe86d 6031 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6032}
1da177e4
LT
6033EXPORT_SYMBOL(sleep_on_timeout);
6034
b29739f9
IM
6035#ifdef CONFIG_RT_MUTEXES
6036
6037/*
6038 * rt_mutex_setprio - set the current priority of a task
6039 * @p: task
6040 * @prio: prio value (kernel-internal form)
6041 *
6042 * This function changes the 'effective' priority of a task. It does
6043 * not touch ->normal_prio like __setscheduler().
6044 *
6045 * Used by the rt_mutex code to implement priority inheritance logic.
6046 */
36c8b586 6047void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6048{
6049 unsigned long flags;
83b699ed 6050 int oldprio, on_rq, running;
70b97a7f 6051 struct rq *rq;
cb469845 6052 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6053
6054 BUG_ON(prio < 0 || prio > MAX_PRIO);
6055
6056 rq = task_rq_lock(p, &flags);
a8e504d2 6057 update_rq_clock(rq);
b29739f9 6058
d5f9f942 6059 oldprio = p->prio;
dd41f596 6060 on_rq = p->se.on_rq;
051a1d1a 6061 running = task_current(rq, p);
0e1f3483 6062 if (on_rq)
69be72c1 6063 dequeue_task(rq, p, 0);
0e1f3483
HS
6064 if (running)
6065 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6066
6067 if (rt_prio(prio))
6068 p->sched_class = &rt_sched_class;
6069 else
6070 p->sched_class = &fair_sched_class;
6071
b29739f9
IM
6072 p->prio = prio;
6073
0e1f3483
HS
6074 if (running)
6075 p->sched_class->set_curr_task(rq);
dd41f596 6076 if (on_rq) {
8159f87e 6077 enqueue_task(rq, p, 0);
cb469845
SR
6078
6079 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6080 }
6081 task_rq_unlock(rq, &flags);
6082}
6083
6084#endif
6085
36c8b586 6086void set_user_nice(struct task_struct *p, long nice)
1da177e4 6087{
dd41f596 6088 int old_prio, delta, on_rq;
1da177e4 6089 unsigned long flags;
70b97a7f 6090 struct rq *rq;
1da177e4
LT
6091
6092 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6093 return;
6094 /*
6095 * We have to be careful, if called from sys_setpriority(),
6096 * the task might be in the middle of scheduling on another CPU.
6097 */
6098 rq = task_rq_lock(p, &flags);
a8e504d2 6099 update_rq_clock(rq);
1da177e4
LT
6100 /*
6101 * The RT priorities are set via sched_setscheduler(), but we still
6102 * allow the 'normal' nice value to be set - but as expected
6103 * it wont have any effect on scheduling until the task is
dd41f596 6104 * SCHED_FIFO/SCHED_RR:
1da177e4 6105 */
e05606d3 6106 if (task_has_rt_policy(p)) {
1da177e4
LT
6107 p->static_prio = NICE_TO_PRIO(nice);
6108 goto out_unlock;
6109 }
dd41f596 6110 on_rq = p->se.on_rq;
c09595f6 6111 if (on_rq)
69be72c1 6112 dequeue_task(rq, p, 0);
1da177e4 6113
1da177e4 6114 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6115 set_load_weight(p);
b29739f9
IM
6116 old_prio = p->prio;
6117 p->prio = effective_prio(p);
6118 delta = p->prio - old_prio;
1da177e4 6119
dd41f596 6120 if (on_rq) {
8159f87e 6121 enqueue_task(rq, p, 0);
1da177e4 6122 /*
d5f9f942
AM
6123 * If the task increased its priority or is running and
6124 * lowered its priority, then reschedule its CPU:
1da177e4 6125 */
d5f9f942 6126 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6127 resched_task(rq->curr);
6128 }
6129out_unlock:
6130 task_rq_unlock(rq, &flags);
6131}
1da177e4
LT
6132EXPORT_SYMBOL(set_user_nice);
6133
e43379f1
MM
6134/*
6135 * can_nice - check if a task can reduce its nice value
6136 * @p: task
6137 * @nice: nice value
6138 */
36c8b586 6139int can_nice(const struct task_struct *p, const int nice)
e43379f1 6140{
024f4747
MM
6141 /* convert nice value [19,-20] to rlimit style value [1,40] */
6142 int nice_rlim = 20 - nice;
48f24c4d 6143
e43379f1
MM
6144 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6145 capable(CAP_SYS_NICE));
6146}
6147
1da177e4
LT
6148#ifdef __ARCH_WANT_SYS_NICE
6149
6150/*
6151 * sys_nice - change the priority of the current process.
6152 * @increment: priority increment
6153 *
6154 * sys_setpriority is a more generic, but much slower function that
6155 * does similar things.
6156 */
5add95d4 6157SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6158{
48f24c4d 6159 long nice, retval;
1da177e4
LT
6160
6161 /*
6162 * Setpriority might change our priority at the same moment.
6163 * We don't have to worry. Conceptually one call occurs first
6164 * and we have a single winner.
6165 */
e43379f1
MM
6166 if (increment < -40)
6167 increment = -40;
1da177e4
LT
6168 if (increment > 40)
6169 increment = 40;
6170
2b8f836f 6171 nice = TASK_NICE(current) + increment;
1da177e4
LT
6172 if (nice < -20)
6173 nice = -20;
6174 if (nice > 19)
6175 nice = 19;
6176
e43379f1
MM
6177 if (increment < 0 && !can_nice(current, nice))
6178 return -EPERM;
6179
1da177e4
LT
6180 retval = security_task_setnice(current, nice);
6181 if (retval)
6182 return retval;
6183
6184 set_user_nice(current, nice);
6185 return 0;
6186}
6187
6188#endif
6189
6190/**
6191 * task_prio - return the priority value of a given task.
6192 * @p: the task in question.
6193 *
6194 * This is the priority value as seen by users in /proc.
6195 * RT tasks are offset by -200. Normal tasks are centered
6196 * around 0, value goes from -16 to +15.
6197 */
36c8b586 6198int task_prio(const struct task_struct *p)
1da177e4
LT
6199{
6200 return p->prio - MAX_RT_PRIO;
6201}
6202
6203/**
6204 * task_nice - return the nice value of a given task.
6205 * @p: the task in question.
6206 */
36c8b586 6207int task_nice(const struct task_struct *p)
1da177e4
LT
6208{
6209 return TASK_NICE(p);
6210}
150d8bed 6211EXPORT_SYMBOL(task_nice);
1da177e4
LT
6212
6213/**
6214 * idle_cpu - is a given cpu idle currently?
6215 * @cpu: the processor in question.
6216 */
6217int idle_cpu(int cpu)
6218{
6219 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6220}
6221
1da177e4
LT
6222/**
6223 * idle_task - return the idle task for a given cpu.
6224 * @cpu: the processor in question.
6225 */
36c8b586 6226struct task_struct *idle_task(int cpu)
1da177e4
LT
6227{
6228 return cpu_rq(cpu)->idle;
6229}
6230
6231/**
6232 * find_process_by_pid - find a process with a matching PID value.
6233 * @pid: the pid in question.
6234 */
a9957449 6235static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6236{
228ebcbe 6237 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6238}
6239
6240/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6241static void
6242__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6243{
dd41f596 6244 BUG_ON(p->se.on_rq);
48f24c4d 6245
1da177e4
LT
6246 p->policy = policy;
6247 p->rt_priority = prio;
b29739f9
IM
6248 p->normal_prio = normal_prio(p);
6249 /* we are holding p->pi_lock already */
6250 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6251 if (rt_prio(p->prio))
6252 p->sched_class = &rt_sched_class;
6253 else
6254 p->sched_class = &fair_sched_class;
2dd73a4f 6255 set_load_weight(p);
1da177e4
LT
6256}
6257
c69e8d9c
DH
6258/*
6259 * check the target process has a UID that matches the current process's
6260 */
6261static bool check_same_owner(struct task_struct *p)
6262{
6263 const struct cred *cred = current_cred(), *pcred;
6264 bool match;
6265
6266 rcu_read_lock();
6267 pcred = __task_cred(p);
6268 match = (cred->euid == pcred->euid ||
6269 cred->euid == pcred->uid);
6270 rcu_read_unlock();
6271 return match;
6272}
6273
961ccddd
RR
6274static int __sched_setscheduler(struct task_struct *p, int policy,
6275 struct sched_param *param, bool user)
1da177e4 6276{
83b699ed 6277 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6278 unsigned long flags;
cb469845 6279 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6280 struct rq *rq;
ca94c442 6281 int reset_on_fork;
1da177e4 6282
66e5393a
SR
6283 /* may grab non-irq protected spin_locks */
6284 BUG_ON(in_interrupt());
1da177e4
LT
6285recheck:
6286 /* double check policy once rq lock held */
ca94c442
LP
6287 if (policy < 0) {
6288 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6289 policy = oldpolicy = p->policy;
ca94c442
LP
6290 } else {
6291 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6292 policy &= ~SCHED_RESET_ON_FORK;
6293
6294 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6295 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6296 policy != SCHED_IDLE)
6297 return -EINVAL;
6298 }
6299
1da177e4
LT
6300 /*
6301 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6302 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6303 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6304 */
6305 if (param->sched_priority < 0 ||
95cdf3b7 6306 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6307 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6308 return -EINVAL;
e05606d3 6309 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6310 return -EINVAL;
6311
37e4ab3f
OC
6312 /*
6313 * Allow unprivileged RT tasks to decrease priority:
6314 */
961ccddd 6315 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6316 if (rt_policy(policy)) {
8dc3e909 6317 unsigned long rlim_rtprio;
8dc3e909
ON
6318
6319 if (!lock_task_sighand(p, &flags))
6320 return -ESRCH;
6321 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6322 unlock_task_sighand(p, &flags);
6323
6324 /* can't set/change the rt policy */
6325 if (policy != p->policy && !rlim_rtprio)
6326 return -EPERM;
6327
6328 /* can't increase priority */
6329 if (param->sched_priority > p->rt_priority &&
6330 param->sched_priority > rlim_rtprio)
6331 return -EPERM;
6332 }
dd41f596
IM
6333 /*
6334 * Like positive nice levels, dont allow tasks to
6335 * move out of SCHED_IDLE either:
6336 */
6337 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6338 return -EPERM;
5fe1d75f 6339
37e4ab3f 6340 /* can't change other user's priorities */
c69e8d9c 6341 if (!check_same_owner(p))
37e4ab3f 6342 return -EPERM;
ca94c442
LP
6343
6344 /* Normal users shall not reset the sched_reset_on_fork flag */
6345 if (p->sched_reset_on_fork && !reset_on_fork)
6346 return -EPERM;
37e4ab3f 6347 }
1da177e4 6348
725aad24 6349 if (user) {
b68aa230 6350#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6351 /*
6352 * Do not allow realtime tasks into groups that have no runtime
6353 * assigned.
6354 */
9a7e0b18
PZ
6355 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6356 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6357 return -EPERM;
b68aa230
PZ
6358#endif
6359
725aad24
JF
6360 retval = security_task_setscheduler(p, policy, param);
6361 if (retval)
6362 return retval;
6363 }
6364
b29739f9
IM
6365 /*
6366 * make sure no PI-waiters arrive (or leave) while we are
6367 * changing the priority of the task:
6368 */
1d615482 6369 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6370 /*
6371 * To be able to change p->policy safely, the apropriate
6372 * runqueue lock must be held.
6373 */
b29739f9 6374 rq = __task_rq_lock(p);
1da177e4
LT
6375 /* recheck policy now with rq lock held */
6376 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6377 policy = oldpolicy = -1;
b29739f9 6378 __task_rq_unlock(rq);
1d615482 6379 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6380 goto recheck;
6381 }
2daa3577 6382 update_rq_clock(rq);
dd41f596 6383 on_rq = p->se.on_rq;
051a1d1a 6384 running = task_current(rq, p);
0e1f3483 6385 if (on_rq)
2e1cb74a 6386 deactivate_task(rq, p, 0);
0e1f3483
HS
6387 if (running)
6388 p->sched_class->put_prev_task(rq, p);
f6b53205 6389
ca94c442
LP
6390 p->sched_reset_on_fork = reset_on_fork;
6391
1da177e4 6392 oldprio = p->prio;
dd41f596 6393 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6394
0e1f3483
HS
6395 if (running)
6396 p->sched_class->set_curr_task(rq);
dd41f596
IM
6397 if (on_rq) {
6398 activate_task(rq, p, 0);
cb469845
SR
6399
6400 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6401 }
b29739f9 6402 __task_rq_unlock(rq);
1d615482 6403 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6404
95e02ca9
TG
6405 rt_mutex_adjust_pi(p);
6406
1da177e4
LT
6407 return 0;
6408}
961ccddd
RR
6409
6410/**
6411 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6412 * @p: the task in question.
6413 * @policy: new policy.
6414 * @param: structure containing the new RT priority.
6415 *
6416 * NOTE that the task may be already dead.
6417 */
6418int sched_setscheduler(struct task_struct *p, int policy,
6419 struct sched_param *param)
6420{
6421 return __sched_setscheduler(p, policy, param, true);
6422}
1da177e4
LT
6423EXPORT_SYMBOL_GPL(sched_setscheduler);
6424
961ccddd
RR
6425/**
6426 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6427 * @p: the task in question.
6428 * @policy: new policy.
6429 * @param: structure containing the new RT priority.
6430 *
6431 * Just like sched_setscheduler, only don't bother checking if the
6432 * current context has permission. For example, this is needed in
6433 * stop_machine(): we create temporary high priority worker threads,
6434 * but our caller might not have that capability.
6435 */
6436int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6437 struct sched_param *param)
6438{
6439 return __sched_setscheduler(p, policy, param, false);
6440}
6441
95cdf3b7
IM
6442static int
6443do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6444{
1da177e4
LT
6445 struct sched_param lparam;
6446 struct task_struct *p;
36c8b586 6447 int retval;
1da177e4
LT
6448
6449 if (!param || pid < 0)
6450 return -EINVAL;
6451 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6452 return -EFAULT;
5fe1d75f
ON
6453
6454 rcu_read_lock();
6455 retval = -ESRCH;
1da177e4 6456 p = find_process_by_pid(pid);
5fe1d75f
ON
6457 if (p != NULL)
6458 retval = sched_setscheduler(p, policy, &lparam);
6459 rcu_read_unlock();
36c8b586 6460
1da177e4
LT
6461 return retval;
6462}
6463
6464/**
6465 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6466 * @pid: the pid in question.
6467 * @policy: new policy.
6468 * @param: structure containing the new RT priority.
6469 */
5add95d4
HC
6470SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6471 struct sched_param __user *, param)
1da177e4 6472{
c21761f1
JB
6473 /* negative values for policy are not valid */
6474 if (policy < 0)
6475 return -EINVAL;
6476
1da177e4
LT
6477 return do_sched_setscheduler(pid, policy, param);
6478}
6479
6480/**
6481 * sys_sched_setparam - set/change the RT priority of a thread
6482 * @pid: the pid in question.
6483 * @param: structure containing the new RT priority.
6484 */
5add95d4 6485SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6486{
6487 return do_sched_setscheduler(pid, -1, param);
6488}
6489
6490/**
6491 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6492 * @pid: the pid in question.
6493 */
5add95d4 6494SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6495{
36c8b586 6496 struct task_struct *p;
3a5c359a 6497 int retval;
1da177e4
LT
6498
6499 if (pid < 0)
3a5c359a 6500 return -EINVAL;
1da177e4
LT
6501
6502 retval = -ESRCH;
5fe85be0 6503 rcu_read_lock();
1da177e4
LT
6504 p = find_process_by_pid(pid);
6505 if (p) {
6506 retval = security_task_getscheduler(p);
6507 if (!retval)
ca94c442
LP
6508 retval = p->policy
6509 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6510 }
5fe85be0 6511 rcu_read_unlock();
1da177e4
LT
6512 return retval;
6513}
6514
6515/**
ca94c442 6516 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6517 * @pid: the pid in question.
6518 * @param: structure containing the RT priority.
6519 */
5add95d4 6520SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6521{
6522 struct sched_param lp;
36c8b586 6523 struct task_struct *p;
3a5c359a 6524 int retval;
1da177e4
LT
6525
6526 if (!param || pid < 0)
3a5c359a 6527 return -EINVAL;
1da177e4 6528
5fe85be0 6529 rcu_read_lock();
1da177e4
LT
6530 p = find_process_by_pid(pid);
6531 retval = -ESRCH;
6532 if (!p)
6533 goto out_unlock;
6534
6535 retval = security_task_getscheduler(p);
6536 if (retval)
6537 goto out_unlock;
6538
6539 lp.sched_priority = p->rt_priority;
5fe85be0 6540 rcu_read_unlock();
1da177e4
LT
6541
6542 /*
6543 * This one might sleep, we cannot do it with a spinlock held ...
6544 */
6545 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6546
1da177e4
LT
6547 return retval;
6548
6549out_unlock:
5fe85be0 6550 rcu_read_unlock();
1da177e4
LT
6551 return retval;
6552}
6553
96f874e2 6554long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6555{
5a16f3d3 6556 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6557 struct task_struct *p;
6558 int retval;
1da177e4 6559
95402b38 6560 get_online_cpus();
23f5d142 6561 rcu_read_lock();
1da177e4
LT
6562
6563 p = find_process_by_pid(pid);
6564 if (!p) {
23f5d142 6565 rcu_read_unlock();
95402b38 6566 put_online_cpus();
1da177e4
LT
6567 return -ESRCH;
6568 }
6569
23f5d142 6570 /* Prevent p going away */
1da177e4 6571 get_task_struct(p);
23f5d142 6572 rcu_read_unlock();
1da177e4 6573
5a16f3d3
RR
6574 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6575 retval = -ENOMEM;
6576 goto out_put_task;
6577 }
6578 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6579 retval = -ENOMEM;
6580 goto out_free_cpus_allowed;
6581 }
1da177e4 6582 retval = -EPERM;
c69e8d9c 6583 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6584 goto out_unlock;
6585
e7834f8f
DQ
6586 retval = security_task_setscheduler(p, 0, NULL);
6587 if (retval)
6588 goto out_unlock;
6589
5a16f3d3
RR
6590 cpuset_cpus_allowed(p, cpus_allowed);
6591 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6592 again:
5a16f3d3 6593 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6594
8707d8b8 6595 if (!retval) {
5a16f3d3
RR
6596 cpuset_cpus_allowed(p, cpus_allowed);
6597 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6598 /*
6599 * We must have raced with a concurrent cpuset
6600 * update. Just reset the cpus_allowed to the
6601 * cpuset's cpus_allowed
6602 */
5a16f3d3 6603 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6604 goto again;
6605 }
6606 }
1da177e4 6607out_unlock:
5a16f3d3
RR
6608 free_cpumask_var(new_mask);
6609out_free_cpus_allowed:
6610 free_cpumask_var(cpus_allowed);
6611out_put_task:
1da177e4 6612 put_task_struct(p);
95402b38 6613 put_online_cpus();
1da177e4
LT
6614 return retval;
6615}
6616
6617static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6618 struct cpumask *new_mask)
1da177e4 6619{
96f874e2
RR
6620 if (len < cpumask_size())
6621 cpumask_clear(new_mask);
6622 else if (len > cpumask_size())
6623 len = cpumask_size();
6624
1da177e4
LT
6625 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6626}
6627
6628/**
6629 * sys_sched_setaffinity - set the cpu affinity of a process
6630 * @pid: pid of the process
6631 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6632 * @user_mask_ptr: user-space pointer to the new cpu mask
6633 */
5add95d4
HC
6634SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6635 unsigned long __user *, user_mask_ptr)
1da177e4 6636{
5a16f3d3 6637 cpumask_var_t new_mask;
1da177e4
LT
6638 int retval;
6639
5a16f3d3
RR
6640 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6641 return -ENOMEM;
1da177e4 6642
5a16f3d3
RR
6643 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6644 if (retval == 0)
6645 retval = sched_setaffinity(pid, new_mask);
6646 free_cpumask_var(new_mask);
6647 return retval;
1da177e4
LT
6648}
6649
96f874e2 6650long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6651{
36c8b586 6652 struct task_struct *p;
31605683
TG
6653 unsigned long flags;
6654 struct rq *rq;
1da177e4 6655 int retval;
1da177e4 6656
95402b38 6657 get_online_cpus();
23f5d142 6658 rcu_read_lock();
1da177e4
LT
6659
6660 retval = -ESRCH;
6661 p = find_process_by_pid(pid);
6662 if (!p)
6663 goto out_unlock;
6664
e7834f8f
DQ
6665 retval = security_task_getscheduler(p);
6666 if (retval)
6667 goto out_unlock;
6668
31605683 6669 rq = task_rq_lock(p, &flags);
96f874e2 6670 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6671 task_rq_unlock(rq, &flags);
1da177e4
LT
6672
6673out_unlock:
23f5d142 6674 rcu_read_unlock();
95402b38 6675 put_online_cpus();
1da177e4 6676
9531b62f 6677 return retval;
1da177e4
LT
6678}
6679
6680/**
6681 * sys_sched_getaffinity - get the cpu affinity of a process
6682 * @pid: pid of the process
6683 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6684 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6685 */
5add95d4
HC
6686SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6687 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6688{
6689 int ret;
f17c8607 6690 cpumask_var_t mask;
1da177e4 6691
f17c8607 6692 if (len < cpumask_size())
1da177e4
LT
6693 return -EINVAL;
6694
f17c8607
RR
6695 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6696 return -ENOMEM;
1da177e4 6697
f17c8607
RR
6698 ret = sched_getaffinity(pid, mask);
6699 if (ret == 0) {
6700 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6701 ret = -EFAULT;
6702 else
6703 ret = cpumask_size();
6704 }
6705 free_cpumask_var(mask);
1da177e4 6706
f17c8607 6707 return ret;
1da177e4
LT
6708}
6709
6710/**
6711 * sys_sched_yield - yield the current processor to other threads.
6712 *
dd41f596
IM
6713 * This function yields the current CPU to other tasks. If there are no
6714 * other threads running on this CPU then this function will return.
1da177e4 6715 */
5add95d4 6716SYSCALL_DEFINE0(sched_yield)
1da177e4 6717{
70b97a7f 6718 struct rq *rq = this_rq_lock();
1da177e4 6719
2d72376b 6720 schedstat_inc(rq, yld_count);
4530d7ab 6721 current->sched_class->yield_task(rq);
1da177e4
LT
6722
6723 /*
6724 * Since we are going to call schedule() anyway, there's
6725 * no need to preempt or enable interrupts:
6726 */
6727 __release(rq->lock);
8a25d5de 6728 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6729 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6730 preempt_enable_no_resched();
6731
6732 schedule();
6733
6734 return 0;
6735}
6736
d86ee480
PZ
6737static inline int should_resched(void)
6738{
6739 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6740}
6741
e7b38404 6742static void __cond_resched(void)
1da177e4 6743{
e7aaaa69
FW
6744 add_preempt_count(PREEMPT_ACTIVE);
6745 schedule();
6746 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6747}
6748
02b67cc3 6749int __sched _cond_resched(void)
1da177e4 6750{
d86ee480 6751 if (should_resched()) {
1da177e4
LT
6752 __cond_resched();
6753 return 1;
6754 }
6755 return 0;
6756}
02b67cc3 6757EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6758
6759/*
613afbf8 6760 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6761 * call schedule, and on return reacquire the lock.
6762 *
41a2d6cf 6763 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6764 * operations here to prevent schedule() from being called twice (once via
6765 * spin_unlock(), once by hand).
6766 */
613afbf8 6767int __cond_resched_lock(spinlock_t *lock)
1da177e4 6768{
d86ee480 6769 int resched = should_resched();
6df3cecb
JK
6770 int ret = 0;
6771
f607c668
PZ
6772 lockdep_assert_held(lock);
6773
95c354fe 6774 if (spin_needbreak(lock) || resched) {
1da177e4 6775 spin_unlock(lock);
d86ee480 6776 if (resched)
95c354fe
NP
6777 __cond_resched();
6778 else
6779 cpu_relax();
6df3cecb 6780 ret = 1;
1da177e4 6781 spin_lock(lock);
1da177e4 6782 }
6df3cecb 6783 return ret;
1da177e4 6784}
613afbf8 6785EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6786
613afbf8 6787int __sched __cond_resched_softirq(void)
1da177e4
LT
6788{
6789 BUG_ON(!in_softirq());
6790
d86ee480 6791 if (should_resched()) {
98d82567 6792 local_bh_enable();
1da177e4
LT
6793 __cond_resched();
6794 local_bh_disable();
6795 return 1;
6796 }
6797 return 0;
6798}
613afbf8 6799EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6800
1da177e4
LT
6801/**
6802 * yield - yield the current processor to other threads.
6803 *
72fd4a35 6804 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6805 * thread runnable and calls sys_sched_yield().
6806 */
6807void __sched yield(void)
6808{
6809 set_current_state(TASK_RUNNING);
6810 sys_sched_yield();
6811}
1da177e4
LT
6812EXPORT_SYMBOL(yield);
6813
6814/*
41a2d6cf 6815 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6816 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6817 */
6818void __sched io_schedule(void)
6819{
54d35f29 6820 struct rq *rq = raw_rq();
1da177e4 6821
0ff92245 6822 delayacct_blkio_start();
1da177e4 6823 atomic_inc(&rq->nr_iowait);
8f0dfc34 6824 current->in_iowait = 1;
1da177e4 6825 schedule();
8f0dfc34 6826 current->in_iowait = 0;
1da177e4 6827 atomic_dec(&rq->nr_iowait);
0ff92245 6828 delayacct_blkio_end();
1da177e4 6829}
1da177e4
LT
6830EXPORT_SYMBOL(io_schedule);
6831
6832long __sched io_schedule_timeout(long timeout)
6833{
54d35f29 6834 struct rq *rq = raw_rq();
1da177e4
LT
6835 long ret;
6836
0ff92245 6837 delayacct_blkio_start();
1da177e4 6838 atomic_inc(&rq->nr_iowait);
8f0dfc34 6839 current->in_iowait = 1;
1da177e4 6840 ret = schedule_timeout(timeout);
8f0dfc34 6841 current->in_iowait = 0;
1da177e4 6842 atomic_dec(&rq->nr_iowait);
0ff92245 6843 delayacct_blkio_end();
1da177e4
LT
6844 return ret;
6845}
6846
6847/**
6848 * sys_sched_get_priority_max - return maximum RT priority.
6849 * @policy: scheduling class.
6850 *
6851 * this syscall returns the maximum rt_priority that can be used
6852 * by a given scheduling class.
6853 */
5add95d4 6854SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6855{
6856 int ret = -EINVAL;
6857
6858 switch (policy) {
6859 case SCHED_FIFO:
6860 case SCHED_RR:
6861 ret = MAX_USER_RT_PRIO-1;
6862 break;
6863 case SCHED_NORMAL:
b0a9499c 6864 case SCHED_BATCH:
dd41f596 6865 case SCHED_IDLE:
1da177e4
LT
6866 ret = 0;
6867 break;
6868 }
6869 return ret;
6870}
6871
6872/**
6873 * sys_sched_get_priority_min - return minimum RT priority.
6874 * @policy: scheduling class.
6875 *
6876 * this syscall returns the minimum rt_priority that can be used
6877 * by a given scheduling class.
6878 */
5add95d4 6879SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6880{
6881 int ret = -EINVAL;
6882
6883 switch (policy) {
6884 case SCHED_FIFO:
6885 case SCHED_RR:
6886 ret = 1;
6887 break;
6888 case SCHED_NORMAL:
b0a9499c 6889 case SCHED_BATCH:
dd41f596 6890 case SCHED_IDLE:
1da177e4
LT
6891 ret = 0;
6892 }
6893 return ret;
6894}
6895
6896/**
6897 * sys_sched_rr_get_interval - return the default timeslice of a process.
6898 * @pid: pid of the process.
6899 * @interval: userspace pointer to the timeslice value.
6900 *
6901 * this syscall writes the default timeslice value of a given process
6902 * into the user-space timespec buffer. A value of '0' means infinity.
6903 */
17da2bd9 6904SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6905 struct timespec __user *, interval)
1da177e4 6906{
36c8b586 6907 struct task_struct *p;
a4ec24b4 6908 unsigned int time_slice;
dba091b9
TG
6909 unsigned long flags;
6910 struct rq *rq;
3a5c359a 6911 int retval;
1da177e4 6912 struct timespec t;
1da177e4
LT
6913
6914 if (pid < 0)
3a5c359a 6915 return -EINVAL;
1da177e4
LT
6916
6917 retval = -ESRCH;
1a551ae7 6918 rcu_read_lock();
1da177e4
LT
6919 p = find_process_by_pid(pid);
6920 if (!p)
6921 goto out_unlock;
6922
6923 retval = security_task_getscheduler(p);
6924 if (retval)
6925 goto out_unlock;
6926
dba091b9
TG
6927 rq = task_rq_lock(p, &flags);
6928 time_slice = p->sched_class->get_rr_interval(rq, p);
6929 task_rq_unlock(rq, &flags);
a4ec24b4 6930
1a551ae7 6931 rcu_read_unlock();
a4ec24b4 6932 jiffies_to_timespec(time_slice, &t);
1da177e4 6933 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6934 return retval;
3a5c359a 6935
1da177e4 6936out_unlock:
1a551ae7 6937 rcu_read_unlock();
1da177e4
LT
6938 return retval;
6939}
6940
7c731e0a 6941static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6942
82a1fcb9 6943void sched_show_task(struct task_struct *p)
1da177e4 6944{
1da177e4 6945 unsigned long free = 0;
36c8b586 6946 unsigned state;
1da177e4 6947
1da177e4 6948 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6949 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6950 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6951#if BITS_PER_LONG == 32
1da177e4 6952 if (state == TASK_RUNNING)
663997d4 6953 pr_cont(" running ");
1da177e4 6954 else
663997d4 6955 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6956#else
6957 if (state == TASK_RUNNING)
663997d4 6958 pr_cont(" running task ");
1da177e4 6959 else
663997d4 6960 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6961#endif
6962#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6963 free = stack_not_used(p);
1da177e4 6964#endif
663997d4 6965 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6966 task_pid_nr(p), task_pid_nr(p->real_parent),
6967 (unsigned long)task_thread_info(p)->flags);
1da177e4 6968
5fb5e6de 6969 show_stack(p, NULL);
1da177e4
LT
6970}
6971
e59e2ae2 6972void show_state_filter(unsigned long state_filter)
1da177e4 6973{
36c8b586 6974 struct task_struct *g, *p;
1da177e4 6975
4bd77321 6976#if BITS_PER_LONG == 32
663997d4 6977 pr_info(" task PC stack pid father\n");
1da177e4 6978#else
663997d4 6979 pr_info(" task PC stack pid father\n");
1da177e4
LT
6980#endif
6981 read_lock(&tasklist_lock);
6982 do_each_thread(g, p) {
6983 /*
6984 * reset the NMI-timeout, listing all files on a slow
6985 * console might take alot of time:
6986 */
6987 touch_nmi_watchdog();
39bc89fd 6988 if (!state_filter || (p->state & state_filter))
82a1fcb9 6989 sched_show_task(p);
1da177e4
LT
6990 } while_each_thread(g, p);
6991
04c9167f
JF
6992 touch_all_softlockup_watchdogs();
6993
dd41f596
IM
6994#ifdef CONFIG_SCHED_DEBUG
6995 sysrq_sched_debug_show();
6996#endif
1da177e4 6997 read_unlock(&tasklist_lock);
e59e2ae2
IM
6998 /*
6999 * Only show locks if all tasks are dumped:
7000 */
93335a21 7001 if (!state_filter)
e59e2ae2 7002 debug_show_all_locks();
1da177e4
LT
7003}
7004
1df21055
IM
7005void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7006{
dd41f596 7007 idle->sched_class = &idle_sched_class;
1df21055
IM
7008}
7009
f340c0d1
IM
7010/**
7011 * init_idle - set up an idle thread for a given CPU
7012 * @idle: task in question
7013 * @cpu: cpu the idle task belongs to
7014 *
7015 * NOTE: this function does not set the idle thread's NEED_RESCHED
7016 * flag, to make booting more robust.
7017 */
5c1e1767 7018void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7019{
70b97a7f 7020 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7021 unsigned long flags;
7022
05fa785c 7023 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7024
dd41f596 7025 __sched_fork(idle);
06b83b5f 7026 idle->state = TASK_RUNNING;
dd41f596
IM
7027 idle->se.exec_start = sched_clock();
7028
96f874e2 7029 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7030 __set_task_cpu(idle, cpu);
1da177e4 7031
1da177e4 7032 rq->curr = rq->idle = idle;
4866cde0
NP
7033#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7034 idle->oncpu = 1;
7035#endif
05fa785c 7036 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7037
7038 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7039#if defined(CONFIG_PREEMPT)
7040 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7041#else
a1261f54 7042 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7043#endif
dd41f596
IM
7044 /*
7045 * The idle tasks have their own, simple scheduling class:
7046 */
7047 idle->sched_class = &idle_sched_class;
fb52607a 7048 ftrace_graph_init_task(idle);
1da177e4
LT
7049}
7050
7051/*
7052 * In a system that switches off the HZ timer nohz_cpu_mask
7053 * indicates which cpus entered this state. This is used
7054 * in the rcu update to wait only for active cpus. For system
7055 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7056 * always be CPU_BITS_NONE.
1da177e4 7057 */
6a7b3dc3 7058cpumask_var_t nohz_cpu_mask;
1da177e4 7059
19978ca6
IM
7060/*
7061 * Increase the granularity value when there are more CPUs,
7062 * because with more CPUs the 'effective latency' as visible
7063 * to users decreases. But the relationship is not linear,
7064 * so pick a second-best guess by going with the log2 of the
7065 * number of CPUs.
7066 *
7067 * This idea comes from the SD scheduler of Con Kolivas:
7068 */
acb4a848 7069static int get_update_sysctl_factor(void)
19978ca6 7070{
4ca3ef71 7071 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7072 unsigned int factor;
7073
7074 switch (sysctl_sched_tunable_scaling) {
7075 case SCHED_TUNABLESCALING_NONE:
7076 factor = 1;
7077 break;
7078 case SCHED_TUNABLESCALING_LINEAR:
7079 factor = cpus;
7080 break;
7081 case SCHED_TUNABLESCALING_LOG:
7082 default:
7083 factor = 1 + ilog2(cpus);
7084 break;
7085 }
19978ca6 7086
acb4a848
CE
7087 return factor;
7088}
19978ca6 7089
acb4a848
CE
7090static void update_sysctl(void)
7091{
7092 unsigned int factor = get_update_sysctl_factor();
19978ca6 7093
0bcdcf28
CE
7094#define SET_SYSCTL(name) \
7095 (sysctl_##name = (factor) * normalized_sysctl_##name)
7096 SET_SYSCTL(sched_min_granularity);
7097 SET_SYSCTL(sched_latency);
7098 SET_SYSCTL(sched_wakeup_granularity);
7099 SET_SYSCTL(sched_shares_ratelimit);
7100#undef SET_SYSCTL
7101}
55cd5340 7102
0bcdcf28
CE
7103static inline void sched_init_granularity(void)
7104{
7105 update_sysctl();
19978ca6
IM
7106}
7107
1da177e4
LT
7108#ifdef CONFIG_SMP
7109/*
7110 * This is how migration works:
7111 *
70b97a7f 7112 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7113 * runqueue and wake up that CPU's migration thread.
7114 * 2) we down() the locked semaphore => thread blocks.
7115 * 3) migration thread wakes up (implicitly it forces the migrated
7116 * thread off the CPU)
7117 * 4) it gets the migration request and checks whether the migrated
7118 * task is still in the wrong runqueue.
7119 * 5) if it's in the wrong runqueue then the migration thread removes
7120 * it and puts it into the right queue.
7121 * 6) migration thread up()s the semaphore.
7122 * 7) we wake up and the migration is done.
7123 */
7124
7125/*
7126 * Change a given task's CPU affinity. Migrate the thread to a
7127 * proper CPU and schedule it away if the CPU it's executing on
7128 * is removed from the allowed bitmask.
7129 *
7130 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7131 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7132 * call is not atomic; no spinlocks may be held.
7133 */
96f874e2 7134int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7135{
70b97a7f 7136 struct migration_req req;
1da177e4 7137 unsigned long flags;
70b97a7f 7138 struct rq *rq;
48f24c4d 7139 int ret = 0;
1da177e4 7140
e2912009
PZ
7141 /*
7142 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7143 * the ->cpus_allowed mask from under waking tasks, which would be
7144 * possible when we change rq->lock in ttwu(), so synchronize against
7145 * TASK_WAKING to avoid that.
7146 */
7147again:
7148 while (p->state == TASK_WAKING)
7149 cpu_relax();
7150
1da177e4 7151 rq = task_rq_lock(p, &flags);
e2912009
PZ
7152
7153 if (p->state == TASK_WAKING) {
7154 task_rq_unlock(rq, &flags);
7155 goto again;
7156 }
7157
6ad4c188 7158 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7159 ret = -EINVAL;
7160 goto out;
7161 }
7162
9985b0ba 7163 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7164 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7165 ret = -EINVAL;
7166 goto out;
7167 }
7168
73fe6aae 7169 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7170 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7171 else {
96f874e2
RR
7172 cpumask_copy(&p->cpus_allowed, new_mask);
7173 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7174 }
7175
1da177e4 7176 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7177 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7178 goto out;
7179
6ad4c188 7180 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7181 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7182 struct task_struct *mt = rq->migration_thread;
7183
7184 get_task_struct(mt);
1da177e4
LT
7185 task_rq_unlock(rq, &flags);
7186 wake_up_process(rq->migration_thread);
693525e3 7187 put_task_struct(mt);
1da177e4
LT
7188 wait_for_completion(&req.done);
7189 tlb_migrate_finish(p->mm);
7190 return 0;
7191 }
7192out:
7193 task_rq_unlock(rq, &flags);
48f24c4d 7194
1da177e4
LT
7195 return ret;
7196}
cd8ba7cd 7197EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7198
7199/*
41a2d6cf 7200 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7201 * this because either it can't run here any more (set_cpus_allowed()
7202 * away from this CPU, or CPU going down), or because we're
7203 * attempting to rebalance this task on exec (sched_exec).
7204 *
7205 * So we race with normal scheduler movements, but that's OK, as long
7206 * as the task is no longer on this CPU.
efc30814
KK
7207 *
7208 * Returns non-zero if task was successfully migrated.
1da177e4 7209 */
efc30814 7210static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7211{
70b97a7f 7212 struct rq *rq_dest, *rq_src;
e2912009 7213 int ret = 0;
1da177e4 7214
e761b772 7215 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7216 return ret;
1da177e4
LT
7217
7218 rq_src = cpu_rq(src_cpu);
7219 rq_dest = cpu_rq(dest_cpu);
7220
7221 double_rq_lock(rq_src, rq_dest);
7222 /* Already moved. */
7223 if (task_cpu(p) != src_cpu)
b1e38734 7224 goto done;
1da177e4 7225 /* Affinity changed (again). */
96f874e2 7226 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7227 goto fail;
1da177e4 7228
e2912009
PZ
7229 /*
7230 * If we're not on a rq, the next wake-up will ensure we're
7231 * placed properly.
7232 */
7233 if (p->se.on_rq) {
2e1cb74a 7234 deactivate_task(rq_src, p, 0);
e2912009 7235 set_task_cpu(p, dest_cpu);
dd41f596 7236 activate_task(rq_dest, p, 0);
15afe09b 7237 check_preempt_curr(rq_dest, p, 0);
1da177e4 7238 }
b1e38734 7239done:
efc30814 7240 ret = 1;
b1e38734 7241fail:
1da177e4 7242 double_rq_unlock(rq_src, rq_dest);
efc30814 7243 return ret;
1da177e4
LT
7244}
7245
03b042bf
PM
7246#define RCU_MIGRATION_IDLE 0
7247#define RCU_MIGRATION_NEED_QS 1
7248#define RCU_MIGRATION_GOT_QS 2
7249#define RCU_MIGRATION_MUST_SYNC 3
7250
1da177e4
LT
7251/*
7252 * migration_thread - this is a highprio system thread that performs
7253 * thread migration by bumping thread off CPU then 'pushing' onto
7254 * another runqueue.
7255 */
95cdf3b7 7256static int migration_thread(void *data)
1da177e4 7257{
03b042bf 7258 int badcpu;
1da177e4 7259 int cpu = (long)data;
70b97a7f 7260 struct rq *rq;
1da177e4
LT
7261
7262 rq = cpu_rq(cpu);
7263 BUG_ON(rq->migration_thread != current);
7264
7265 set_current_state(TASK_INTERRUPTIBLE);
7266 while (!kthread_should_stop()) {
70b97a7f 7267 struct migration_req *req;
1da177e4 7268 struct list_head *head;
1da177e4 7269
05fa785c 7270 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7271
7272 if (cpu_is_offline(cpu)) {
05fa785c 7273 raw_spin_unlock_irq(&rq->lock);
371cbb38 7274 break;
1da177e4
LT
7275 }
7276
7277 if (rq->active_balance) {
7278 active_load_balance(rq, cpu);
7279 rq->active_balance = 0;
7280 }
7281
7282 head = &rq->migration_queue;
7283
7284 if (list_empty(head)) {
05fa785c 7285 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7286 schedule();
7287 set_current_state(TASK_INTERRUPTIBLE);
7288 continue;
7289 }
70b97a7f 7290 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7291 list_del_init(head->next);
7292
03b042bf 7293 if (req->task != NULL) {
05fa785c 7294 raw_spin_unlock(&rq->lock);
03b042bf
PM
7295 __migrate_task(req->task, cpu, req->dest_cpu);
7296 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7297 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7298 raw_spin_unlock(&rq->lock);
03b042bf
PM
7299 } else {
7300 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7301 raw_spin_unlock(&rq->lock);
03b042bf
PM
7302 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7303 }
674311d5 7304 local_irq_enable();
1da177e4
LT
7305
7306 complete(&req->done);
7307 }
7308 __set_current_state(TASK_RUNNING);
1da177e4 7309
1da177e4
LT
7310 return 0;
7311}
7312
7313#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7314
7315static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7316{
7317 int ret;
7318
7319 local_irq_disable();
7320 ret = __migrate_task(p, src_cpu, dest_cpu);
7321 local_irq_enable();
7322 return ret;
7323}
7324
054b9108 7325/*
3a4fa0a2 7326 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7327 */
48f24c4d 7328static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7329{
70b97a7f 7330 int dest_cpu;
e76bd8d9
RR
7331
7332again:
5da9a0fb 7333 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7334
e76bd8d9
RR
7335 /* It can have affinity changed while we were choosing. */
7336 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7337 goto again;
1da177e4
LT
7338}
7339
7340/*
7341 * While a dead CPU has no uninterruptible tasks queued at this point,
7342 * it might still have a nonzero ->nr_uninterruptible counter, because
7343 * for performance reasons the counter is not stricly tracking tasks to
7344 * their home CPUs. So we just add the counter to another CPU's counter,
7345 * to keep the global sum constant after CPU-down:
7346 */
70b97a7f 7347static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7348{
6ad4c188 7349 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7350 unsigned long flags;
7351
7352 local_irq_save(flags);
7353 double_rq_lock(rq_src, rq_dest);
7354 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7355 rq_src->nr_uninterruptible = 0;
7356 double_rq_unlock(rq_src, rq_dest);
7357 local_irq_restore(flags);
7358}
7359
7360/* Run through task list and migrate tasks from the dead cpu. */
7361static void migrate_live_tasks(int src_cpu)
7362{
48f24c4d 7363 struct task_struct *p, *t;
1da177e4 7364
f7b4cddc 7365 read_lock(&tasklist_lock);
1da177e4 7366
48f24c4d
IM
7367 do_each_thread(t, p) {
7368 if (p == current)
1da177e4
LT
7369 continue;
7370
48f24c4d
IM
7371 if (task_cpu(p) == src_cpu)
7372 move_task_off_dead_cpu(src_cpu, p);
7373 } while_each_thread(t, p);
1da177e4 7374
f7b4cddc 7375 read_unlock(&tasklist_lock);
1da177e4
LT
7376}
7377
dd41f596
IM
7378/*
7379 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7380 * It does so by boosting its priority to highest possible.
7381 * Used by CPU offline code.
1da177e4
LT
7382 */
7383void sched_idle_next(void)
7384{
48f24c4d 7385 int this_cpu = smp_processor_id();
70b97a7f 7386 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7387 struct task_struct *p = rq->idle;
7388 unsigned long flags;
7389
7390 /* cpu has to be offline */
48f24c4d 7391 BUG_ON(cpu_online(this_cpu));
1da177e4 7392
48f24c4d
IM
7393 /*
7394 * Strictly not necessary since rest of the CPUs are stopped by now
7395 * and interrupts disabled on the current cpu.
1da177e4 7396 */
05fa785c 7397 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7398
dd41f596 7399 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7400
94bc9a7b
DA
7401 update_rq_clock(rq);
7402 activate_task(rq, p, 0);
1da177e4 7403
05fa785c 7404 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7405}
7406
48f24c4d
IM
7407/*
7408 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7409 * offline.
7410 */
7411void idle_task_exit(void)
7412{
7413 struct mm_struct *mm = current->active_mm;
7414
7415 BUG_ON(cpu_online(smp_processor_id()));
7416
7417 if (mm != &init_mm)
7418 switch_mm(mm, &init_mm, current);
7419 mmdrop(mm);
7420}
7421
054b9108 7422/* called under rq->lock with disabled interrupts */
36c8b586 7423static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7424{
70b97a7f 7425 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7426
7427 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7428 BUG_ON(!p->exit_state);
1da177e4
LT
7429
7430 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7431 BUG_ON(p->state == TASK_DEAD);
1da177e4 7432
48f24c4d 7433 get_task_struct(p);
1da177e4
LT
7434
7435 /*
7436 * Drop lock around migration; if someone else moves it,
41a2d6cf 7437 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7438 * fine.
7439 */
05fa785c 7440 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7441 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7442 raw_spin_lock_irq(&rq->lock);
1da177e4 7443
48f24c4d 7444 put_task_struct(p);
1da177e4
LT
7445}
7446
7447/* release_task() removes task from tasklist, so we won't find dead tasks. */
7448static void migrate_dead_tasks(unsigned int dead_cpu)
7449{
70b97a7f 7450 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7451 struct task_struct *next;
48f24c4d 7452
dd41f596
IM
7453 for ( ; ; ) {
7454 if (!rq->nr_running)
7455 break;
a8e504d2 7456 update_rq_clock(rq);
b67802ea 7457 next = pick_next_task(rq);
dd41f596
IM
7458 if (!next)
7459 break;
79c53799 7460 next->sched_class->put_prev_task(rq, next);
dd41f596 7461 migrate_dead(dead_cpu, next);
e692ab53 7462
1da177e4
LT
7463 }
7464}
dce48a84
TG
7465
7466/*
7467 * remove the tasks which were accounted by rq from calc_load_tasks.
7468 */
7469static void calc_global_load_remove(struct rq *rq)
7470{
7471 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7472 rq->calc_load_active = 0;
dce48a84 7473}
1da177e4
LT
7474#endif /* CONFIG_HOTPLUG_CPU */
7475
e692ab53
NP
7476#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7477
7478static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7479 {
7480 .procname = "sched_domain",
c57baf1e 7481 .mode = 0555,
e0361851 7482 },
56992309 7483 {}
e692ab53
NP
7484};
7485
7486static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7487 {
7488 .procname = "kernel",
c57baf1e 7489 .mode = 0555,
e0361851
AD
7490 .child = sd_ctl_dir,
7491 },
56992309 7492 {}
e692ab53
NP
7493};
7494
7495static struct ctl_table *sd_alloc_ctl_entry(int n)
7496{
7497 struct ctl_table *entry =
5cf9f062 7498 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7499
e692ab53
NP
7500 return entry;
7501}
7502
6382bc90
MM
7503static void sd_free_ctl_entry(struct ctl_table **tablep)
7504{
cd790076 7505 struct ctl_table *entry;
6382bc90 7506
cd790076
MM
7507 /*
7508 * In the intermediate directories, both the child directory and
7509 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7510 * will always be set. In the lowest directory the names are
cd790076
MM
7511 * static strings and all have proc handlers.
7512 */
7513 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7514 if (entry->child)
7515 sd_free_ctl_entry(&entry->child);
cd790076
MM
7516 if (entry->proc_handler == NULL)
7517 kfree(entry->procname);
7518 }
6382bc90
MM
7519
7520 kfree(*tablep);
7521 *tablep = NULL;
7522}
7523
e692ab53 7524static void
e0361851 7525set_table_entry(struct ctl_table *entry,
e692ab53
NP
7526 const char *procname, void *data, int maxlen,
7527 mode_t mode, proc_handler *proc_handler)
7528{
e692ab53
NP
7529 entry->procname = procname;
7530 entry->data = data;
7531 entry->maxlen = maxlen;
7532 entry->mode = mode;
7533 entry->proc_handler = proc_handler;
7534}
7535
7536static struct ctl_table *
7537sd_alloc_ctl_domain_table(struct sched_domain *sd)
7538{
a5d8c348 7539 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7540
ad1cdc1d
MM
7541 if (table == NULL)
7542 return NULL;
7543
e0361851 7544 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7545 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7546 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7547 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7548 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7549 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7550 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7551 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7552 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7553 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7554 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7555 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7556 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7557 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7558 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7559 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7560 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7561 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7562 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7563 &sd->cache_nice_tries,
7564 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7565 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7566 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7567 set_table_entry(&table[11], "name", sd->name,
7568 CORENAME_MAX_SIZE, 0444, proc_dostring);
7569 /* &table[12] is terminator */
e692ab53
NP
7570
7571 return table;
7572}
7573
9a4e7159 7574static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7575{
7576 struct ctl_table *entry, *table;
7577 struct sched_domain *sd;
7578 int domain_num = 0, i;
7579 char buf[32];
7580
7581 for_each_domain(cpu, sd)
7582 domain_num++;
7583 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7584 if (table == NULL)
7585 return NULL;
e692ab53
NP
7586
7587 i = 0;
7588 for_each_domain(cpu, sd) {
7589 snprintf(buf, 32, "domain%d", i);
e692ab53 7590 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7591 entry->mode = 0555;
e692ab53
NP
7592 entry->child = sd_alloc_ctl_domain_table(sd);
7593 entry++;
7594 i++;
7595 }
7596 return table;
7597}
7598
7599static struct ctl_table_header *sd_sysctl_header;
6382bc90 7600static void register_sched_domain_sysctl(void)
e692ab53 7601{
6ad4c188 7602 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7603 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7604 char buf[32];
7605
7378547f
MM
7606 WARN_ON(sd_ctl_dir[0].child);
7607 sd_ctl_dir[0].child = entry;
7608
ad1cdc1d
MM
7609 if (entry == NULL)
7610 return;
7611
6ad4c188 7612 for_each_possible_cpu(i) {
e692ab53 7613 snprintf(buf, 32, "cpu%d", i);
e692ab53 7614 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7615 entry->mode = 0555;
e692ab53 7616 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7617 entry++;
e692ab53 7618 }
7378547f
MM
7619
7620 WARN_ON(sd_sysctl_header);
e692ab53
NP
7621 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7622}
6382bc90 7623
7378547f 7624/* may be called multiple times per register */
6382bc90
MM
7625static void unregister_sched_domain_sysctl(void)
7626{
7378547f
MM
7627 if (sd_sysctl_header)
7628 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7629 sd_sysctl_header = NULL;
7378547f
MM
7630 if (sd_ctl_dir[0].child)
7631 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7632}
e692ab53 7633#else
6382bc90
MM
7634static void register_sched_domain_sysctl(void)
7635{
7636}
7637static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7638{
7639}
7640#endif
7641
1f11eb6a
GH
7642static void set_rq_online(struct rq *rq)
7643{
7644 if (!rq->online) {
7645 const struct sched_class *class;
7646
c6c4927b 7647 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7648 rq->online = 1;
7649
7650 for_each_class(class) {
7651 if (class->rq_online)
7652 class->rq_online(rq);
7653 }
7654 }
7655}
7656
7657static void set_rq_offline(struct rq *rq)
7658{
7659 if (rq->online) {
7660 const struct sched_class *class;
7661
7662 for_each_class(class) {
7663 if (class->rq_offline)
7664 class->rq_offline(rq);
7665 }
7666
c6c4927b 7667 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7668 rq->online = 0;
7669 }
7670}
7671
1da177e4
LT
7672/*
7673 * migration_call - callback that gets triggered when a CPU is added.
7674 * Here we can start up the necessary migration thread for the new CPU.
7675 */
48f24c4d
IM
7676static int __cpuinit
7677migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7678{
1da177e4 7679 struct task_struct *p;
48f24c4d 7680 int cpu = (long)hcpu;
1da177e4 7681 unsigned long flags;
70b97a7f 7682 struct rq *rq;
1da177e4
LT
7683
7684 switch (action) {
5be9361c 7685
1da177e4 7686 case CPU_UP_PREPARE:
8bb78442 7687 case CPU_UP_PREPARE_FROZEN:
dd41f596 7688 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7689 if (IS_ERR(p))
7690 return NOTIFY_BAD;
1da177e4
LT
7691 kthread_bind(p, cpu);
7692 /* Must be high prio: stop_machine expects to yield to it. */
7693 rq = task_rq_lock(p, &flags);
dd41f596 7694 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7695 task_rq_unlock(rq, &flags);
371cbb38 7696 get_task_struct(p);
1da177e4 7697 cpu_rq(cpu)->migration_thread = p;
a468d389 7698 rq->calc_load_update = calc_load_update;
1da177e4 7699 break;
48f24c4d 7700
1da177e4 7701 case CPU_ONLINE:
8bb78442 7702 case CPU_ONLINE_FROZEN:
3a4fa0a2 7703 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7704 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7705
7706 /* Update our root-domain */
7707 rq = cpu_rq(cpu);
05fa785c 7708 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7709 if (rq->rd) {
c6c4927b 7710 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7711
7712 set_rq_online(rq);
1f94ef59 7713 }
05fa785c 7714 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7715 break;
48f24c4d 7716
1da177e4
LT
7717#ifdef CONFIG_HOTPLUG_CPU
7718 case CPU_UP_CANCELED:
8bb78442 7719 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7720 if (!cpu_rq(cpu)->migration_thread)
7721 break;
41a2d6cf 7722 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7723 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7724 cpumask_any(cpu_online_mask));
1da177e4 7725 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7726 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7727 cpu_rq(cpu)->migration_thread = NULL;
7728 break;
48f24c4d 7729
1da177e4 7730 case CPU_DEAD:
8bb78442 7731 case CPU_DEAD_FROZEN:
470fd646 7732 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7733 migrate_live_tasks(cpu);
7734 rq = cpu_rq(cpu);
7735 kthread_stop(rq->migration_thread);
371cbb38 7736 put_task_struct(rq->migration_thread);
1da177e4
LT
7737 rq->migration_thread = NULL;
7738 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7739 raw_spin_lock_irq(&rq->lock);
a8e504d2 7740 update_rq_clock(rq);
2e1cb74a 7741 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7742 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7743 rq->idle->sched_class = &idle_sched_class;
1da177e4 7744 migrate_dead_tasks(cpu);
05fa785c 7745 raw_spin_unlock_irq(&rq->lock);
470fd646 7746 cpuset_unlock();
1da177e4
LT
7747 migrate_nr_uninterruptible(rq);
7748 BUG_ON(rq->nr_running != 0);
dce48a84 7749 calc_global_load_remove(rq);
41a2d6cf
IM
7750 /*
7751 * No need to migrate the tasks: it was best-effort if
7752 * they didn't take sched_hotcpu_mutex. Just wake up
7753 * the requestors.
7754 */
05fa785c 7755 raw_spin_lock_irq(&rq->lock);
1da177e4 7756 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7757 struct migration_req *req;
7758
1da177e4 7759 req = list_entry(rq->migration_queue.next,
70b97a7f 7760 struct migration_req, list);
1da177e4 7761 list_del_init(&req->list);
05fa785c 7762 raw_spin_unlock_irq(&rq->lock);
1da177e4 7763 complete(&req->done);
05fa785c 7764 raw_spin_lock_irq(&rq->lock);
1da177e4 7765 }
05fa785c 7766 raw_spin_unlock_irq(&rq->lock);
1da177e4 7767 break;
57d885fe 7768
08f503b0
GH
7769 case CPU_DYING:
7770 case CPU_DYING_FROZEN:
57d885fe
GH
7771 /* Update our root-domain */
7772 rq = cpu_rq(cpu);
05fa785c 7773 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7774 if (rq->rd) {
c6c4927b 7775 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7776 set_rq_offline(rq);
57d885fe 7777 }
05fa785c 7778 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7779 break;
1da177e4
LT
7780#endif
7781 }
7782 return NOTIFY_OK;
7783}
7784
f38b0820
PM
7785/*
7786 * Register at high priority so that task migration (migrate_all_tasks)
7787 * happens before everything else. This has to be lower priority than
cdd6c482 7788 * the notifier in the perf_event subsystem, though.
1da177e4 7789 */
26c2143b 7790static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7791 .notifier_call = migration_call,
7792 .priority = 10
7793};
7794
7babe8db 7795static int __init migration_init(void)
1da177e4
LT
7796{
7797 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7798 int err;
48f24c4d
IM
7799
7800 /* Start one for the boot CPU: */
07dccf33
AM
7801 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7802 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7803 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7804 register_cpu_notifier(&migration_notifier);
7babe8db 7805
a004cd42 7806 return 0;
1da177e4 7807}
7babe8db 7808early_initcall(migration_init);
1da177e4
LT
7809#endif
7810
7811#ifdef CONFIG_SMP
476f3534 7812
3e9830dc 7813#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7814
f6630114
MT
7815static __read_mostly int sched_domain_debug_enabled;
7816
7817static int __init sched_domain_debug_setup(char *str)
7818{
7819 sched_domain_debug_enabled = 1;
7820
7821 return 0;
7822}
7823early_param("sched_debug", sched_domain_debug_setup);
7824
7c16ec58 7825static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7826 struct cpumask *groupmask)
1da177e4 7827{
4dcf6aff 7828 struct sched_group *group = sd->groups;
434d53b0 7829 char str[256];
1da177e4 7830
968ea6d8 7831 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7832 cpumask_clear(groupmask);
4dcf6aff
IM
7833
7834 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7835
7836 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7837 pr_cont("does not load-balance\n");
4dcf6aff 7838 if (sd->parent)
663997d4 7839 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7840 return -1;
41c7ce9a
NP
7841 }
7842
663997d4 7843 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7844
758b2cdc 7845 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7846 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7847 }
758b2cdc 7848 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7849 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7850 }
1da177e4 7851
4dcf6aff 7852 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7853 do {
4dcf6aff 7854 if (!group) {
663997d4
JP
7855 pr_cont("\n");
7856 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7857 break;
7858 }
7859
18a3885f 7860 if (!group->cpu_power) {
663997d4
JP
7861 pr_cont("\n");
7862 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7863 break;
7864 }
1da177e4 7865
758b2cdc 7866 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7867 pr_cont("\n");
7868 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7869 break;
7870 }
1da177e4 7871
758b2cdc 7872 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7873 pr_cont("\n");
7874 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7875 break;
7876 }
1da177e4 7877
758b2cdc 7878 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7879
968ea6d8 7880 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7881
663997d4 7882 pr_cont(" %s", str);
18a3885f 7883 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7884 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7885 }
1da177e4 7886
4dcf6aff
IM
7887 group = group->next;
7888 } while (group != sd->groups);
663997d4 7889 pr_cont("\n");
1da177e4 7890
758b2cdc 7891 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7892 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7893
758b2cdc
RR
7894 if (sd->parent &&
7895 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7896 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7897 return 0;
7898}
1da177e4 7899
4dcf6aff
IM
7900static void sched_domain_debug(struct sched_domain *sd, int cpu)
7901{
d5dd3db1 7902 cpumask_var_t groupmask;
4dcf6aff 7903 int level = 0;
1da177e4 7904
f6630114
MT
7905 if (!sched_domain_debug_enabled)
7906 return;
7907
4dcf6aff
IM
7908 if (!sd) {
7909 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7910 return;
7911 }
1da177e4 7912
4dcf6aff
IM
7913 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7914
d5dd3db1 7915 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7916 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7917 return;
7918 }
7919
4dcf6aff 7920 for (;;) {
7c16ec58 7921 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7922 break;
1da177e4
LT
7923 level++;
7924 sd = sd->parent;
33859f7f 7925 if (!sd)
4dcf6aff
IM
7926 break;
7927 }
d5dd3db1 7928 free_cpumask_var(groupmask);
1da177e4 7929}
6d6bc0ad 7930#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7931# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7932#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7933
1a20ff27 7934static int sd_degenerate(struct sched_domain *sd)
245af2c7 7935{
758b2cdc 7936 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7937 return 1;
7938
7939 /* Following flags need at least 2 groups */
7940 if (sd->flags & (SD_LOAD_BALANCE |
7941 SD_BALANCE_NEWIDLE |
7942 SD_BALANCE_FORK |
89c4710e
SS
7943 SD_BALANCE_EXEC |
7944 SD_SHARE_CPUPOWER |
7945 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7946 if (sd->groups != sd->groups->next)
7947 return 0;
7948 }
7949
7950 /* Following flags don't use groups */
c88d5910 7951 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7952 return 0;
7953
7954 return 1;
7955}
7956
48f24c4d
IM
7957static int
7958sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7959{
7960 unsigned long cflags = sd->flags, pflags = parent->flags;
7961
7962 if (sd_degenerate(parent))
7963 return 1;
7964
758b2cdc 7965 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7966 return 0;
7967
245af2c7
SS
7968 /* Flags needing groups don't count if only 1 group in parent */
7969 if (parent->groups == parent->groups->next) {
7970 pflags &= ~(SD_LOAD_BALANCE |
7971 SD_BALANCE_NEWIDLE |
7972 SD_BALANCE_FORK |
89c4710e
SS
7973 SD_BALANCE_EXEC |
7974 SD_SHARE_CPUPOWER |
7975 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7976 if (nr_node_ids == 1)
7977 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7978 }
7979 if (~cflags & pflags)
7980 return 0;
7981
7982 return 1;
7983}
7984
c6c4927b
RR
7985static void free_rootdomain(struct root_domain *rd)
7986{
047106ad
PZ
7987 synchronize_sched();
7988
68e74568
RR
7989 cpupri_cleanup(&rd->cpupri);
7990
c6c4927b
RR
7991 free_cpumask_var(rd->rto_mask);
7992 free_cpumask_var(rd->online);
7993 free_cpumask_var(rd->span);
7994 kfree(rd);
7995}
7996
57d885fe
GH
7997static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7998{
a0490fa3 7999 struct root_domain *old_rd = NULL;
57d885fe 8000 unsigned long flags;
57d885fe 8001
05fa785c 8002 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8003
8004 if (rq->rd) {
a0490fa3 8005 old_rd = rq->rd;
57d885fe 8006
c6c4927b 8007 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8008 set_rq_offline(rq);
57d885fe 8009
c6c4927b 8010 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8011
a0490fa3
IM
8012 /*
8013 * If we dont want to free the old_rt yet then
8014 * set old_rd to NULL to skip the freeing later
8015 * in this function:
8016 */
8017 if (!atomic_dec_and_test(&old_rd->refcount))
8018 old_rd = NULL;
57d885fe
GH
8019 }
8020
8021 atomic_inc(&rd->refcount);
8022 rq->rd = rd;
8023
c6c4927b 8024 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8025 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8026 set_rq_online(rq);
57d885fe 8027
05fa785c 8028 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8029
8030 if (old_rd)
8031 free_rootdomain(old_rd);
57d885fe
GH
8032}
8033
fd5e1b5d 8034static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8035{
36b7b6d4
PE
8036 gfp_t gfp = GFP_KERNEL;
8037
57d885fe
GH
8038 memset(rd, 0, sizeof(*rd));
8039
36b7b6d4
PE
8040 if (bootmem)
8041 gfp = GFP_NOWAIT;
c6c4927b 8042
36b7b6d4 8043 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8044 goto out;
36b7b6d4 8045 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8046 goto free_span;
36b7b6d4 8047 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8048 goto free_online;
6e0534f2 8049
0fb53029 8050 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8051 goto free_rto_mask;
c6c4927b 8052 return 0;
6e0534f2 8053
68e74568
RR
8054free_rto_mask:
8055 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8056free_online:
8057 free_cpumask_var(rd->online);
8058free_span:
8059 free_cpumask_var(rd->span);
0c910d28 8060out:
c6c4927b 8061 return -ENOMEM;
57d885fe
GH
8062}
8063
8064static void init_defrootdomain(void)
8065{
c6c4927b
RR
8066 init_rootdomain(&def_root_domain, true);
8067
57d885fe
GH
8068 atomic_set(&def_root_domain.refcount, 1);
8069}
8070
dc938520 8071static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8072{
8073 struct root_domain *rd;
8074
8075 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8076 if (!rd)
8077 return NULL;
8078
c6c4927b
RR
8079 if (init_rootdomain(rd, false) != 0) {
8080 kfree(rd);
8081 return NULL;
8082 }
57d885fe
GH
8083
8084 return rd;
8085}
8086
1da177e4 8087/*
0eab9146 8088 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8089 * hold the hotplug lock.
8090 */
0eab9146
IM
8091static void
8092cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8093{
70b97a7f 8094 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8095 struct sched_domain *tmp;
8096
8097 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8098 for (tmp = sd; tmp; ) {
245af2c7
SS
8099 struct sched_domain *parent = tmp->parent;
8100 if (!parent)
8101 break;
f29c9b1c 8102
1a848870 8103 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8104 tmp->parent = parent->parent;
1a848870
SS
8105 if (parent->parent)
8106 parent->parent->child = tmp;
f29c9b1c
LZ
8107 } else
8108 tmp = tmp->parent;
245af2c7
SS
8109 }
8110
1a848870 8111 if (sd && sd_degenerate(sd)) {
245af2c7 8112 sd = sd->parent;
1a848870
SS
8113 if (sd)
8114 sd->child = NULL;
8115 }
1da177e4
LT
8116
8117 sched_domain_debug(sd, cpu);
8118
57d885fe 8119 rq_attach_root(rq, rd);
674311d5 8120 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8121}
8122
8123/* cpus with isolated domains */
dcc30a35 8124static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8125
8126/* Setup the mask of cpus configured for isolated domains */
8127static int __init isolated_cpu_setup(char *str)
8128{
bdddd296 8129 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8130 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8131 return 1;
8132}
8133
8927f494 8134__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8135
8136/*
6711cab4
SS
8137 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8138 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8139 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8140 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8141 *
8142 * init_sched_build_groups will build a circular linked list of the groups
8143 * covered by the given span, and will set each group's ->cpumask correctly,
8144 * and ->cpu_power to 0.
8145 */
a616058b 8146static void
96f874e2
RR
8147init_sched_build_groups(const struct cpumask *span,
8148 const struct cpumask *cpu_map,
8149 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8150 struct sched_group **sg,
96f874e2
RR
8151 struct cpumask *tmpmask),
8152 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8153{
8154 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8155 int i;
8156
96f874e2 8157 cpumask_clear(covered);
7c16ec58 8158
abcd083a 8159 for_each_cpu(i, span) {
6711cab4 8160 struct sched_group *sg;
7c16ec58 8161 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8162 int j;
8163
758b2cdc 8164 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8165 continue;
8166
758b2cdc 8167 cpumask_clear(sched_group_cpus(sg));
18a3885f 8168 sg->cpu_power = 0;
1da177e4 8169
abcd083a 8170 for_each_cpu(j, span) {
7c16ec58 8171 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8172 continue;
8173
96f874e2 8174 cpumask_set_cpu(j, covered);
758b2cdc 8175 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8176 }
8177 if (!first)
8178 first = sg;
8179 if (last)
8180 last->next = sg;
8181 last = sg;
8182 }
8183 last->next = first;
8184}
8185
9c1cfda2 8186#define SD_NODES_PER_DOMAIN 16
1da177e4 8187
9c1cfda2 8188#ifdef CONFIG_NUMA
198e2f18 8189
9c1cfda2
JH
8190/**
8191 * find_next_best_node - find the next node to include in a sched_domain
8192 * @node: node whose sched_domain we're building
8193 * @used_nodes: nodes already in the sched_domain
8194 *
41a2d6cf 8195 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8196 * finds the closest node not already in the @used_nodes map.
8197 *
8198 * Should use nodemask_t.
8199 */
c5f59f08 8200static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8201{
8202 int i, n, val, min_val, best_node = 0;
8203
8204 min_val = INT_MAX;
8205
076ac2af 8206 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8207 /* Start at @node */
076ac2af 8208 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8209
8210 if (!nr_cpus_node(n))
8211 continue;
8212
8213 /* Skip already used nodes */
c5f59f08 8214 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8215 continue;
8216
8217 /* Simple min distance search */
8218 val = node_distance(node, n);
8219
8220 if (val < min_val) {
8221 min_val = val;
8222 best_node = n;
8223 }
8224 }
8225
c5f59f08 8226 node_set(best_node, *used_nodes);
9c1cfda2
JH
8227 return best_node;
8228}
8229
8230/**
8231 * sched_domain_node_span - get a cpumask for a node's sched_domain
8232 * @node: node whose cpumask we're constructing
73486722 8233 * @span: resulting cpumask
9c1cfda2 8234 *
41a2d6cf 8235 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8236 * should be one that prevents unnecessary balancing, but also spreads tasks
8237 * out optimally.
8238 */
96f874e2 8239static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8240{
c5f59f08 8241 nodemask_t used_nodes;
48f24c4d 8242 int i;
9c1cfda2 8243
6ca09dfc 8244 cpumask_clear(span);
c5f59f08 8245 nodes_clear(used_nodes);
9c1cfda2 8246
6ca09dfc 8247 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8248 node_set(node, used_nodes);
9c1cfda2
JH
8249
8250 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8251 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8252
6ca09dfc 8253 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8254 }
9c1cfda2 8255}
6d6bc0ad 8256#endif /* CONFIG_NUMA */
9c1cfda2 8257
5c45bf27 8258int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8259
6c99e9ad
RR
8260/*
8261 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8262 *
8263 * ( See the the comments in include/linux/sched.h:struct sched_group
8264 * and struct sched_domain. )
6c99e9ad
RR
8265 */
8266struct static_sched_group {
8267 struct sched_group sg;
8268 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8269};
8270
8271struct static_sched_domain {
8272 struct sched_domain sd;
8273 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8274};
8275
49a02c51
AH
8276struct s_data {
8277#ifdef CONFIG_NUMA
8278 int sd_allnodes;
8279 cpumask_var_t domainspan;
8280 cpumask_var_t covered;
8281 cpumask_var_t notcovered;
8282#endif
8283 cpumask_var_t nodemask;
8284 cpumask_var_t this_sibling_map;
8285 cpumask_var_t this_core_map;
8286 cpumask_var_t send_covered;
8287 cpumask_var_t tmpmask;
8288 struct sched_group **sched_group_nodes;
8289 struct root_domain *rd;
8290};
8291
2109b99e
AH
8292enum s_alloc {
8293 sa_sched_groups = 0,
8294 sa_rootdomain,
8295 sa_tmpmask,
8296 sa_send_covered,
8297 sa_this_core_map,
8298 sa_this_sibling_map,
8299 sa_nodemask,
8300 sa_sched_group_nodes,
8301#ifdef CONFIG_NUMA
8302 sa_notcovered,
8303 sa_covered,
8304 sa_domainspan,
8305#endif
8306 sa_none,
8307};
8308
9c1cfda2 8309/*
48f24c4d 8310 * SMT sched-domains:
9c1cfda2 8311 */
1da177e4 8312#ifdef CONFIG_SCHED_SMT
6c99e9ad 8313static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8314static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8315
41a2d6cf 8316static int
96f874e2
RR
8317cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8318 struct sched_group **sg, struct cpumask *unused)
1da177e4 8319{
6711cab4 8320 if (sg)
1871e52c 8321 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8322 return cpu;
8323}
6d6bc0ad 8324#endif /* CONFIG_SCHED_SMT */
1da177e4 8325
48f24c4d
IM
8326/*
8327 * multi-core sched-domains:
8328 */
1e9f28fa 8329#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8330static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8331static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8332#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8333
8334#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8335static int
96f874e2
RR
8336cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8337 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8338{
6711cab4 8339 int group;
7c16ec58 8340
c69fc56d 8341 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8342 group = cpumask_first(mask);
6711cab4 8343 if (sg)
6c99e9ad 8344 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8345 return group;
1e9f28fa
SS
8346}
8347#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8348static int
96f874e2
RR
8349cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8350 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8351{
6711cab4 8352 if (sg)
6c99e9ad 8353 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8354 return cpu;
8355}
8356#endif
8357
6c99e9ad
RR
8358static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8359static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8360
41a2d6cf 8361static int
96f874e2
RR
8362cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8363 struct sched_group **sg, struct cpumask *mask)
1da177e4 8364{
6711cab4 8365 int group;
48f24c4d 8366#ifdef CONFIG_SCHED_MC
6ca09dfc 8367 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8368 group = cpumask_first(mask);
1e9f28fa 8369#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8370 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8371 group = cpumask_first(mask);
1da177e4 8372#else
6711cab4 8373 group = cpu;
1da177e4 8374#endif
6711cab4 8375 if (sg)
6c99e9ad 8376 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8377 return group;
1da177e4
LT
8378}
8379
8380#ifdef CONFIG_NUMA
1da177e4 8381/*
9c1cfda2
JH
8382 * The init_sched_build_groups can't handle what we want to do with node
8383 * groups, so roll our own. Now each node has its own list of groups which
8384 * gets dynamically allocated.
1da177e4 8385 */
62ea9ceb 8386static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8387static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8388
62ea9ceb 8389static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8390static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8391
96f874e2
RR
8392static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8393 struct sched_group **sg,
8394 struct cpumask *nodemask)
9c1cfda2 8395{
6711cab4
SS
8396 int group;
8397
6ca09dfc 8398 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8399 group = cpumask_first(nodemask);
6711cab4
SS
8400
8401 if (sg)
6c99e9ad 8402 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8403 return group;
1da177e4 8404}
6711cab4 8405
08069033
SS
8406static void init_numa_sched_groups_power(struct sched_group *group_head)
8407{
8408 struct sched_group *sg = group_head;
8409 int j;
8410
8411 if (!sg)
8412 return;
3a5c359a 8413 do {
758b2cdc 8414 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8415 struct sched_domain *sd;
08069033 8416
6c99e9ad 8417 sd = &per_cpu(phys_domains, j).sd;
13318a71 8418 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8419 /*
8420 * Only add "power" once for each
8421 * physical package.
8422 */
8423 continue;
8424 }
08069033 8425
18a3885f 8426 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8427 }
8428 sg = sg->next;
8429 } while (sg != group_head);
08069033 8430}
0601a88d
AH
8431
8432static int build_numa_sched_groups(struct s_data *d,
8433 const struct cpumask *cpu_map, int num)
8434{
8435 struct sched_domain *sd;
8436 struct sched_group *sg, *prev;
8437 int n, j;
8438
8439 cpumask_clear(d->covered);
8440 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8441 if (cpumask_empty(d->nodemask)) {
8442 d->sched_group_nodes[num] = NULL;
8443 goto out;
8444 }
8445
8446 sched_domain_node_span(num, d->domainspan);
8447 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8448
8449 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8450 GFP_KERNEL, num);
8451 if (!sg) {
663997d4 8452 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8453 return -ENOMEM;
8454 }
8455 d->sched_group_nodes[num] = sg;
8456
8457 for_each_cpu(j, d->nodemask) {
8458 sd = &per_cpu(node_domains, j).sd;
8459 sd->groups = sg;
8460 }
8461
18a3885f 8462 sg->cpu_power = 0;
0601a88d
AH
8463 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8464 sg->next = sg;
8465 cpumask_or(d->covered, d->covered, d->nodemask);
8466
8467 prev = sg;
8468 for (j = 0; j < nr_node_ids; j++) {
8469 n = (num + j) % nr_node_ids;
8470 cpumask_complement(d->notcovered, d->covered);
8471 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8472 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8473 if (cpumask_empty(d->tmpmask))
8474 break;
8475 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8476 if (cpumask_empty(d->tmpmask))
8477 continue;
8478 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8479 GFP_KERNEL, num);
8480 if (!sg) {
663997d4
JP
8481 pr_warning("Can not alloc domain group for node %d\n",
8482 j);
0601a88d
AH
8483 return -ENOMEM;
8484 }
18a3885f 8485 sg->cpu_power = 0;
0601a88d
AH
8486 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8487 sg->next = prev->next;
8488 cpumask_or(d->covered, d->covered, d->tmpmask);
8489 prev->next = sg;
8490 prev = sg;
8491 }
8492out:
8493 return 0;
8494}
6d6bc0ad 8495#endif /* CONFIG_NUMA */
1da177e4 8496
a616058b 8497#ifdef CONFIG_NUMA
51888ca2 8498/* Free memory allocated for various sched_group structures */
96f874e2
RR
8499static void free_sched_groups(const struct cpumask *cpu_map,
8500 struct cpumask *nodemask)
51888ca2 8501{
a616058b 8502 int cpu, i;
51888ca2 8503
abcd083a 8504 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8505 struct sched_group **sched_group_nodes
8506 = sched_group_nodes_bycpu[cpu];
8507
51888ca2
SV
8508 if (!sched_group_nodes)
8509 continue;
8510
076ac2af 8511 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8512 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8513
6ca09dfc 8514 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8515 if (cpumask_empty(nodemask))
51888ca2
SV
8516 continue;
8517
8518 if (sg == NULL)
8519 continue;
8520 sg = sg->next;
8521next_sg:
8522 oldsg = sg;
8523 sg = sg->next;
8524 kfree(oldsg);
8525 if (oldsg != sched_group_nodes[i])
8526 goto next_sg;
8527 }
8528 kfree(sched_group_nodes);
8529 sched_group_nodes_bycpu[cpu] = NULL;
8530 }
51888ca2 8531}
6d6bc0ad 8532#else /* !CONFIG_NUMA */
96f874e2
RR
8533static void free_sched_groups(const struct cpumask *cpu_map,
8534 struct cpumask *nodemask)
a616058b
SS
8535{
8536}
6d6bc0ad 8537#endif /* CONFIG_NUMA */
51888ca2 8538
89c4710e
SS
8539/*
8540 * Initialize sched groups cpu_power.
8541 *
8542 * cpu_power indicates the capacity of sched group, which is used while
8543 * distributing the load between different sched groups in a sched domain.
8544 * Typically cpu_power for all the groups in a sched domain will be same unless
8545 * there are asymmetries in the topology. If there are asymmetries, group
8546 * having more cpu_power will pickup more load compared to the group having
8547 * less cpu_power.
89c4710e
SS
8548 */
8549static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8550{
8551 struct sched_domain *child;
8552 struct sched_group *group;
f93e65c1
PZ
8553 long power;
8554 int weight;
89c4710e
SS
8555
8556 WARN_ON(!sd || !sd->groups);
8557
13318a71 8558 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8559 return;
8560
8561 child = sd->child;
8562
18a3885f 8563 sd->groups->cpu_power = 0;
5517d86b 8564
f93e65c1
PZ
8565 if (!child) {
8566 power = SCHED_LOAD_SCALE;
8567 weight = cpumask_weight(sched_domain_span(sd));
8568 /*
8569 * SMT siblings share the power of a single core.
a52bfd73
PZ
8570 * Usually multiple threads get a better yield out of
8571 * that one core than a single thread would have,
8572 * reflect that in sd->smt_gain.
f93e65c1 8573 */
a52bfd73
PZ
8574 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8575 power *= sd->smt_gain;
f93e65c1 8576 power /= weight;
a52bfd73
PZ
8577 power >>= SCHED_LOAD_SHIFT;
8578 }
18a3885f 8579 sd->groups->cpu_power += power;
89c4710e
SS
8580 return;
8581 }
8582
89c4710e 8583 /*
f93e65c1 8584 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8585 */
8586 group = child->groups;
8587 do {
18a3885f 8588 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8589 group = group->next;
8590 } while (group != child->groups);
8591}
8592
7c16ec58
MT
8593/*
8594 * Initializers for schedule domains
8595 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8596 */
8597
a5d8c348
IM
8598#ifdef CONFIG_SCHED_DEBUG
8599# define SD_INIT_NAME(sd, type) sd->name = #type
8600#else
8601# define SD_INIT_NAME(sd, type) do { } while (0)
8602#endif
8603
7c16ec58 8604#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8605
7c16ec58
MT
8606#define SD_INIT_FUNC(type) \
8607static noinline void sd_init_##type(struct sched_domain *sd) \
8608{ \
8609 memset(sd, 0, sizeof(*sd)); \
8610 *sd = SD_##type##_INIT; \
1d3504fc 8611 sd->level = SD_LV_##type; \
a5d8c348 8612 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8613}
8614
8615SD_INIT_FUNC(CPU)
8616#ifdef CONFIG_NUMA
8617 SD_INIT_FUNC(ALLNODES)
8618 SD_INIT_FUNC(NODE)
8619#endif
8620#ifdef CONFIG_SCHED_SMT
8621 SD_INIT_FUNC(SIBLING)
8622#endif
8623#ifdef CONFIG_SCHED_MC
8624 SD_INIT_FUNC(MC)
8625#endif
8626
1d3504fc
HS
8627static int default_relax_domain_level = -1;
8628
8629static int __init setup_relax_domain_level(char *str)
8630{
30e0e178
LZ
8631 unsigned long val;
8632
8633 val = simple_strtoul(str, NULL, 0);
8634 if (val < SD_LV_MAX)
8635 default_relax_domain_level = val;
8636
1d3504fc
HS
8637 return 1;
8638}
8639__setup("relax_domain_level=", setup_relax_domain_level);
8640
8641static void set_domain_attribute(struct sched_domain *sd,
8642 struct sched_domain_attr *attr)
8643{
8644 int request;
8645
8646 if (!attr || attr->relax_domain_level < 0) {
8647 if (default_relax_domain_level < 0)
8648 return;
8649 else
8650 request = default_relax_domain_level;
8651 } else
8652 request = attr->relax_domain_level;
8653 if (request < sd->level) {
8654 /* turn off idle balance on this domain */
c88d5910 8655 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8656 } else {
8657 /* turn on idle balance on this domain */
c88d5910 8658 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8659 }
8660}
8661
2109b99e
AH
8662static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8663 const struct cpumask *cpu_map)
8664{
8665 switch (what) {
8666 case sa_sched_groups:
8667 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8668 d->sched_group_nodes = NULL;
8669 case sa_rootdomain:
8670 free_rootdomain(d->rd); /* fall through */
8671 case sa_tmpmask:
8672 free_cpumask_var(d->tmpmask); /* fall through */
8673 case sa_send_covered:
8674 free_cpumask_var(d->send_covered); /* fall through */
8675 case sa_this_core_map:
8676 free_cpumask_var(d->this_core_map); /* fall through */
8677 case sa_this_sibling_map:
8678 free_cpumask_var(d->this_sibling_map); /* fall through */
8679 case sa_nodemask:
8680 free_cpumask_var(d->nodemask); /* fall through */
8681 case sa_sched_group_nodes:
d1b55138 8682#ifdef CONFIG_NUMA
2109b99e
AH
8683 kfree(d->sched_group_nodes); /* fall through */
8684 case sa_notcovered:
8685 free_cpumask_var(d->notcovered); /* fall through */
8686 case sa_covered:
8687 free_cpumask_var(d->covered); /* fall through */
8688 case sa_domainspan:
8689 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8690#endif
2109b99e
AH
8691 case sa_none:
8692 break;
8693 }
8694}
3404c8d9 8695
2109b99e
AH
8696static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8697 const struct cpumask *cpu_map)
8698{
3404c8d9 8699#ifdef CONFIG_NUMA
2109b99e
AH
8700 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8701 return sa_none;
8702 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8703 return sa_domainspan;
8704 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8705 return sa_covered;
8706 /* Allocate the per-node list of sched groups */
8707 d->sched_group_nodes = kcalloc(nr_node_ids,
8708 sizeof(struct sched_group *), GFP_KERNEL);
8709 if (!d->sched_group_nodes) {
663997d4 8710 pr_warning("Can not alloc sched group node list\n");
2109b99e 8711 return sa_notcovered;
d1b55138 8712 }
2109b99e 8713 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8714#endif
2109b99e
AH
8715 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8716 return sa_sched_group_nodes;
8717 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8718 return sa_nodemask;
8719 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8720 return sa_this_sibling_map;
8721 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8722 return sa_this_core_map;
8723 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8724 return sa_send_covered;
8725 d->rd = alloc_rootdomain();
8726 if (!d->rd) {
663997d4 8727 pr_warning("Cannot alloc root domain\n");
2109b99e 8728 return sa_tmpmask;
57d885fe 8729 }
2109b99e
AH
8730 return sa_rootdomain;
8731}
57d885fe 8732
7f4588f3
AH
8733static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8734 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8735{
8736 struct sched_domain *sd = NULL;
7c16ec58 8737#ifdef CONFIG_NUMA
7f4588f3 8738 struct sched_domain *parent;
1da177e4 8739
7f4588f3
AH
8740 d->sd_allnodes = 0;
8741 if (cpumask_weight(cpu_map) >
8742 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8743 sd = &per_cpu(allnodes_domains, i).sd;
8744 SD_INIT(sd, ALLNODES);
1d3504fc 8745 set_domain_attribute(sd, attr);
7f4588f3
AH
8746 cpumask_copy(sched_domain_span(sd), cpu_map);
8747 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8748 d->sd_allnodes = 1;
8749 }
8750 parent = sd;
8751
8752 sd = &per_cpu(node_domains, i).sd;
8753 SD_INIT(sd, NODE);
8754 set_domain_attribute(sd, attr);
8755 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8756 sd->parent = parent;
8757 if (parent)
8758 parent->child = sd;
8759 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8760#endif
7f4588f3
AH
8761 return sd;
8762}
1da177e4 8763
87cce662
AH
8764static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8765 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8766 struct sched_domain *parent, int i)
8767{
8768 struct sched_domain *sd;
8769 sd = &per_cpu(phys_domains, i).sd;
8770 SD_INIT(sd, CPU);
8771 set_domain_attribute(sd, attr);
8772 cpumask_copy(sched_domain_span(sd), d->nodemask);
8773 sd->parent = parent;
8774 if (parent)
8775 parent->child = sd;
8776 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8777 return sd;
8778}
1da177e4 8779
410c4081
AH
8780static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8781 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8782 struct sched_domain *parent, int i)
8783{
8784 struct sched_domain *sd = parent;
1e9f28fa 8785#ifdef CONFIG_SCHED_MC
410c4081
AH
8786 sd = &per_cpu(core_domains, i).sd;
8787 SD_INIT(sd, MC);
8788 set_domain_attribute(sd, attr);
8789 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8790 sd->parent = parent;
8791 parent->child = sd;
8792 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8793#endif
410c4081
AH
8794 return sd;
8795}
1e9f28fa 8796
d8173535
AH
8797static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8798 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8799 struct sched_domain *parent, int i)
8800{
8801 struct sched_domain *sd = parent;
1da177e4 8802#ifdef CONFIG_SCHED_SMT
d8173535
AH
8803 sd = &per_cpu(cpu_domains, i).sd;
8804 SD_INIT(sd, SIBLING);
8805 set_domain_attribute(sd, attr);
8806 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8807 sd->parent = parent;
8808 parent->child = sd;
8809 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8810#endif
d8173535
AH
8811 return sd;
8812}
1da177e4 8813
0e8e85c9
AH
8814static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8815 const struct cpumask *cpu_map, int cpu)
8816{
8817 switch (l) {
1da177e4 8818#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8819 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8820 cpumask_and(d->this_sibling_map, cpu_map,
8821 topology_thread_cpumask(cpu));
8822 if (cpu == cpumask_first(d->this_sibling_map))
8823 init_sched_build_groups(d->this_sibling_map, cpu_map,
8824 &cpu_to_cpu_group,
8825 d->send_covered, d->tmpmask);
8826 break;
1da177e4 8827#endif
1e9f28fa 8828#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8829 case SD_LV_MC: /* set up multi-core groups */
8830 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8831 if (cpu == cpumask_first(d->this_core_map))
8832 init_sched_build_groups(d->this_core_map, cpu_map,
8833 &cpu_to_core_group,
8834 d->send_covered, d->tmpmask);
8835 break;
1e9f28fa 8836#endif
86548096
AH
8837 case SD_LV_CPU: /* set up physical groups */
8838 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8839 if (!cpumask_empty(d->nodemask))
8840 init_sched_build_groups(d->nodemask, cpu_map,
8841 &cpu_to_phys_group,
8842 d->send_covered, d->tmpmask);
8843 break;
1da177e4 8844#ifdef CONFIG_NUMA
de616e36
AH
8845 case SD_LV_ALLNODES:
8846 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8847 d->send_covered, d->tmpmask);
8848 break;
8849#endif
0e8e85c9
AH
8850 default:
8851 break;
7c16ec58 8852 }
0e8e85c9 8853}
9c1cfda2 8854
2109b99e
AH
8855/*
8856 * Build sched domains for a given set of cpus and attach the sched domains
8857 * to the individual cpus
8858 */
8859static int __build_sched_domains(const struct cpumask *cpu_map,
8860 struct sched_domain_attr *attr)
8861{
8862 enum s_alloc alloc_state = sa_none;
8863 struct s_data d;
294b0c96 8864 struct sched_domain *sd;
2109b99e 8865 int i;
7c16ec58 8866#ifdef CONFIG_NUMA
2109b99e 8867 d.sd_allnodes = 0;
7c16ec58 8868#endif
9c1cfda2 8869
2109b99e
AH
8870 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8871 if (alloc_state != sa_rootdomain)
8872 goto error;
8873 alloc_state = sa_sched_groups;
9c1cfda2 8874
1da177e4 8875 /*
1a20ff27 8876 * Set up domains for cpus specified by the cpu_map.
1da177e4 8877 */
abcd083a 8878 for_each_cpu(i, cpu_map) {
49a02c51
AH
8879 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8880 cpu_map);
9761eea8 8881
7f4588f3 8882 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8883 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8884 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8885 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8886 }
9c1cfda2 8887
abcd083a 8888 for_each_cpu(i, cpu_map) {
0e8e85c9 8889 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8890 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8891 }
9c1cfda2 8892
1da177e4 8893 /* Set up physical groups */
86548096
AH
8894 for (i = 0; i < nr_node_ids; i++)
8895 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8896
1da177e4
LT
8897#ifdef CONFIG_NUMA
8898 /* Set up node groups */
de616e36
AH
8899 if (d.sd_allnodes)
8900 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8901
0601a88d
AH
8902 for (i = 0; i < nr_node_ids; i++)
8903 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8904 goto error;
1da177e4
LT
8905#endif
8906
8907 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8908#ifdef CONFIG_SCHED_SMT
abcd083a 8909 for_each_cpu(i, cpu_map) {
294b0c96 8910 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8911 init_sched_groups_power(i, sd);
5c45bf27 8912 }
1da177e4 8913#endif
1e9f28fa 8914#ifdef CONFIG_SCHED_MC
abcd083a 8915 for_each_cpu(i, cpu_map) {
294b0c96 8916 sd = &per_cpu(core_domains, i).sd;
89c4710e 8917 init_sched_groups_power(i, sd);
5c45bf27
SS
8918 }
8919#endif
1e9f28fa 8920
abcd083a 8921 for_each_cpu(i, cpu_map) {
294b0c96 8922 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8923 init_sched_groups_power(i, sd);
1da177e4
LT
8924 }
8925
9c1cfda2 8926#ifdef CONFIG_NUMA
076ac2af 8927 for (i = 0; i < nr_node_ids; i++)
49a02c51 8928 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8929
49a02c51 8930 if (d.sd_allnodes) {
6711cab4 8931 struct sched_group *sg;
f712c0c7 8932
96f874e2 8933 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8934 d.tmpmask);
f712c0c7
SS
8935 init_numa_sched_groups_power(sg);
8936 }
9c1cfda2
JH
8937#endif
8938
1da177e4 8939 /* Attach the domains */
abcd083a 8940 for_each_cpu(i, cpu_map) {
1da177e4 8941#ifdef CONFIG_SCHED_SMT
6c99e9ad 8942 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8943#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8944 sd = &per_cpu(core_domains, i).sd;
1da177e4 8945#else
6c99e9ad 8946 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8947#endif
49a02c51 8948 cpu_attach_domain(sd, d.rd, i);
1da177e4 8949 }
51888ca2 8950
2109b99e
AH
8951 d.sched_group_nodes = NULL; /* don't free this we still need it */
8952 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8953 return 0;
51888ca2 8954
51888ca2 8955error:
2109b99e
AH
8956 __free_domain_allocs(&d, alloc_state, cpu_map);
8957 return -ENOMEM;
1da177e4 8958}
029190c5 8959
96f874e2 8960static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8961{
8962 return __build_sched_domains(cpu_map, NULL);
8963}
8964
acc3f5d7 8965static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8966static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8967static struct sched_domain_attr *dattr_cur;
8968 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8969
8970/*
8971 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8972 * cpumask) fails, then fallback to a single sched domain,
8973 * as determined by the single cpumask fallback_doms.
029190c5 8974 */
4212823f 8975static cpumask_var_t fallback_doms;
029190c5 8976
ee79d1bd
HC
8977/*
8978 * arch_update_cpu_topology lets virtualized architectures update the
8979 * cpu core maps. It is supposed to return 1 if the topology changed
8980 * or 0 if it stayed the same.
8981 */
8982int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8983{
ee79d1bd 8984 return 0;
22e52b07
HC
8985}
8986
acc3f5d7
RR
8987cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8988{
8989 int i;
8990 cpumask_var_t *doms;
8991
8992 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8993 if (!doms)
8994 return NULL;
8995 for (i = 0; i < ndoms; i++) {
8996 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8997 free_sched_domains(doms, i);
8998 return NULL;
8999 }
9000 }
9001 return doms;
9002}
9003
9004void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9005{
9006 unsigned int i;
9007 for (i = 0; i < ndoms; i++)
9008 free_cpumask_var(doms[i]);
9009 kfree(doms);
9010}
9011
1a20ff27 9012/*
41a2d6cf 9013 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9014 * For now this just excludes isolated cpus, but could be used to
9015 * exclude other special cases in the future.
1a20ff27 9016 */
96f874e2 9017static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9018{
7378547f
MM
9019 int err;
9020
22e52b07 9021 arch_update_cpu_topology();
029190c5 9022 ndoms_cur = 1;
acc3f5d7 9023 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9024 if (!doms_cur)
acc3f5d7
RR
9025 doms_cur = &fallback_doms;
9026 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9027 dattr_cur = NULL;
acc3f5d7 9028 err = build_sched_domains(doms_cur[0]);
6382bc90 9029 register_sched_domain_sysctl();
7378547f
MM
9030
9031 return err;
1a20ff27
DG
9032}
9033
96f874e2
RR
9034static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9035 struct cpumask *tmpmask)
1da177e4 9036{
7c16ec58 9037 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9038}
1da177e4 9039
1a20ff27
DG
9040/*
9041 * Detach sched domains from a group of cpus specified in cpu_map
9042 * These cpus will now be attached to the NULL domain
9043 */
96f874e2 9044static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9045{
96f874e2
RR
9046 /* Save because hotplug lock held. */
9047 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9048 int i;
9049
abcd083a 9050 for_each_cpu(i, cpu_map)
57d885fe 9051 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9052 synchronize_sched();
96f874e2 9053 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9054}
9055
1d3504fc
HS
9056/* handle null as "default" */
9057static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9058 struct sched_domain_attr *new, int idx_new)
9059{
9060 struct sched_domain_attr tmp;
9061
9062 /* fast path */
9063 if (!new && !cur)
9064 return 1;
9065
9066 tmp = SD_ATTR_INIT;
9067 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9068 new ? (new + idx_new) : &tmp,
9069 sizeof(struct sched_domain_attr));
9070}
9071
029190c5
PJ
9072/*
9073 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9074 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9075 * doms_new[] to the current sched domain partitioning, doms_cur[].
9076 * It destroys each deleted domain and builds each new domain.
9077 *
acc3f5d7 9078 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9079 * The masks don't intersect (don't overlap.) We should setup one
9080 * sched domain for each mask. CPUs not in any of the cpumasks will
9081 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9082 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9083 * it as it is.
9084 *
acc3f5d7
RR
9085 * The passed in 'doms_new' should be allocated using
9086 * alloc_sched_domains. This routine takes ownership of it and will
9087 * free_sched_domains it when done with it. If the caller failed the
9088 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9089 * and partition_sched_domains() will fallback to the single partition
9090 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9091 *
96f874e2 9092 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9093 * ndoms_new == 0 is a special case for destroying existing domains,
9094 * and it will not create the default domain.
dfb512ec 9095 *
029190c5
PJ
9096 * Call with hotplug lock held
9097 */
acc3f5d7 9098void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9099 struct sched_domain_attr *dattr_new)
029190c5 9100{
dfb512ec 9101 int i, j, n;
d65bd5ec 9102 int new_topology;
029190c5 9103
712555ee 9104 mutex_lock(&sched_domains_mutex);
a1835615 9105
7378547f
MM
9106 /* always unregister in case we don't destroy any domains */
9107 unregister_sched_domain_sysctl();
9108
d65bd5ec
HC
9109 /* Let architecture update cpu core mappings. */
9110 new_topology = arch_update_cpu_topology();
9111
dfb512ec 9112 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9113
9114 /* Destroy deleted domains */
9115 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9116 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9117 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9118 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9119 goto match1;
9120 }
9121 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9122 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9123match1:
9124 ;
9125 }
9126
e761b772
MK
9127 if (doms_new == NULL) {
9128 ndoms_cur = 0;
acc3f5d7 9129 doms_new = &fallback_doms;
6ad4c188 9130 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9131 WARN_ON_ONCE(dattr_new);
e761b772
MK
9132 }
9133
029190c5
PJ
9134 /* Build new domains */
9135 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9136 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9137 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9138 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9139 goto match2;
9140 }
9141 /* no match - add a new doms_new */
acc3f5d7 9142 __build_sched_domains(doms_new[i],
1d3504fc 9143 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9144match2:
9145 ;
9146 }
9147
9148 /* Remember the new sched domains */
acc3f5d7
RR
9149 if (doms_cur != &fallback_doms)
9150 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9151 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9152 doms_cur = doms_new;
1d3504fc 9153 dattr_cur = dattr_new;
029190c5 9154 ndoms_cur = ndoms_new;
7378547f
MM
9155
9156 register_sched_domain_sysctl();
a1835615 9157
712555ee 9158 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9159}
9160
5c45bf27 9161#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9162static void arch_reinit_sched_domains(void)
5c45bf27 9163{
95402b38 9164 get_online_cpus();
dfb512ec
MK
9165
9166 /* Destroy domains first to force the rebuild */
9167 partition_sched_domains(0, NULL, NULL);
9168
e761b772 9169 rebuild_sched_domains();
95402b38 9170 put_online_cpus();
5c45bf27
SS
9171}
9172
9173static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9174{
afb8a9b7 9175 unsigned int level = 0;
5c45bf27 9176
afb8a9b7
GS
9177 if (sscanf(buf, "%u", &level) != 1)
9178 return -EINVAL;
9179
9180 /*
9181 * level is always be positive so don't check for
9182 * level < POWERSAVINGS_BALANCE_NONE which is 0
9183 * What happens on 0 or 1 byte write,
9184 * need to check for count as well?
9185 */
9186
9187 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9188 return -EINVAL;
9189
9190 if (smt)
afb8a9b7 9191 sched_smt_power_savings = level;
5c45bf27 9192 else
afb8a9b7 9193 sched_mc_power_savings = level;
5c45bf27 9194
c70f22d2 9195 arch_reinit_sched_domains();
5c45bf27 9196
c70f22d2 9197 return count;
5c45bf27
SS
9198}
9199
5c45bf27 9200#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9201static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9202 char *page)
5c45bf27
SS
9203{
9204 return sprintf(page, "%u\n", sched_mc_power_savings);
9205}
f718cd4a 9206static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9207 const char *buf, size_t count)
5c45bf27
SS
9208{
9209 return sched_power_savings_store(buf, count, 0);
9210}
f718cd4a
AK
9211static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9212 sched_mc_power_savings_show,
9213 sched_mc_power_savings_store);
5c45bf27
SS
9214#endif
9215
9216#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9217static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9218 char *page)
5c45bf27
SS
9219{
9220 return sprintf(page, "%u\n", sched_smt_power_savings);
9221}
f718cd4a 9222static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9223 const char *buf, size_t count)
5c45bf27
SS
9224{
9225 return sched_power_savings_store(buf, count, 1);
9226}
f718cd4a
AK
9227static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9228 sched_smt_power_savings_show,
6707de00
AB
9229 sched_smt_power_savings_store);
9230#endif
9231
39aac648 9232int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9233{
9234 int err = 0;
9235
9236#ifdef CONFIG_SCHED_SMT
9237 if (smt_capable())
9238 err = sysfs_create_file(&cls->kset.kobj,
9239 &attr_sched_smt_power_savings.attr);
9240#endif
9241#ifdef CONFIG_SCHED_MC
9242 if (!err && mc_capable())
9243 err = sysfs_create_file(&cls->kset.kobj,
9244 &attr_sched_mc_power_savings.attr);
9245#endif
9246 return err;
9247}
6d6bc0ad 9248#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9249
e761b772 9250#ifndef CONFIG_CPUSETS
1da177e4 9251/*
e761b772
MK
9252 * Add online and remove offline CPUs from the scheduler domains.
9253 * When cpusets are enabled they take over this function.
1da177e4
LT
9254 */
9255static int update_sched_domains(struct notifier_block *nfb,
9256 unsigned long action, void *hcpu)
e761b772
MK
9257{
9258 switch (action) {
9259 case CPU_ONLINE:
9260 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9261 case CPU_DOWN_PREPARE:
9262 case CPU_DOWN_PREPARE_FROZEN:
9263 case CPU_DOWN_FAILED:
9264 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9265 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9266 return NOTIFY_OK;
9267
9268 default:
9269 return NOTIFY_DONE;
9270 }
9271}
9272#endif
9273
9274static int update_runtime(struct notifier_block *nfb,
9275 unsigned long action, void *hcpu)
1da177e4 9276{
7def2be1
PZ
9277 int cpu = (int)(long)hcpu;
9278
1da177e4 9279 switch (action) {
1da177e4 9280 case CPU_DOWN_PREPARE:
8bb78442 9281 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9282 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9283 return NOTIFY_OK;
9284
1da177e4 9285 case CPU_DOWN_FAILED:
8bb78442 9286 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9287 case CPU_ONLINE:
8bb78442 9288 case CPU_ONLINE_FROZEN:
7def2be1 9289 enable_runtime(cpu_rq(cpu));
e761b772
MK
9290 return NOTIFY_OK;
9291
1da177e4
LT
9292 default:
9293 return NOTIFY_DONE;
9294 }
1da177e4 9295}
1da177e4
LT
9296
9297void __init sched_init_smp(void)
9298{
dcc30a35
RR
9299 cpumask_var_t non_isolated_cpus;
9300
9301 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9302 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9303
434d53b0
MT
9304#if defined(CONFIG_NUMA)
9305 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9306 GFP_KERNEL);
9307 BUG_ON(sched_group_nodes_bycpu == NULL);
9308#endif
95402b38 9309 get_online_cpus();
712555ee 9310 mutex_lock(&sched_domains_mutex);
6ad4c188 9311 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9312 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9313 if (cpumask_empty(non_isolated_cpus))
9314 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9315 mutex_unlock(&sched_domains_mutex);
95402b38 9316 put_online_cpus();
e761b772
MK
9317
9318#ifndef CONFIG_CPUSETS
1da177e4
LT
9319 /* XXX: Theoretical race here - CPU may be hotplugged now */
9320 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9321#endif
9322
9323 /* RT runtime code needs to handle some hotplug events */
9324 hotcpu_notifier(update_runtime, 0);
9325
b328ca18 9326 init_hrtick();
5c1e1767
NP
9327
9328 /* Move init over to a non-isolated CPU */
dcc30a35 9329 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9330 BUG();
19978ca6 9331 sched_init_granularity();
dcc30a35 9332 free_cpumask_var(non_isolated_cpus);
4212823f 9333
0e3900e6 9334 init_sched_rt_class();
1da177e4
LT
9335}
9336#else
9337void __init sched_init_smp(void)
9338{
19978ca6 9339 sched_init_granularity();
1da177e4
LT
9340}
9341#endif /* CONFIG_SMP */
9342
cd1bb94b
AB
9343const_debug unsigned int sysctl_timer_migration = 1;
9344
1da177e4
LT
9345int in_sched_functions(unsigned long addr)
9346{
1da177e4
LT
9347 return in_lock_functions(addr) ||
9348 (addr >= (unsigned long)__sched_text_start
9349 && addr < (unsigned long)__sched_text_end);
9350}
9351
a9957449 9352static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9353{
9354 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9355 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9356#ifdef CONFIG_FAIR_GROUP_SCHED
9357 cfs_rq->rq = rq;
9358#endif
67e9fb2a 9359 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9360}
9361
fa85ae24
PZ
9362static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9363{
9364 struct rt_prio_array *array;
9365 int i;
9366
9367 array = &rt_rq->active;
9368 for (i = 0; i < MAX_RT_PRIO; i++) {
9369 INIT_LIST_HEAD(array->queue + i);
9370 __clear_bit(i, array->bitmap);
9371 }
9372 /* delimiter for bitsearch: */
9373 __set_bit(MAX_RT_PRIO, array->bitmap);
9374
052f1dc7 9375#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9376 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9377#ifdef CONFIG_SMP
e864c499 9378 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9379#endif
48d5e258 9380#endif
fa85ae24
PZ
9381#ifdef CONFIG_SMP
9382 rt_rq->rt_nr_migratory = 0;
fa85ae24 9383 rt_rq->overloaded = 0;
05fa785c 9384 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9385#endif
9386
9387 rt_rq->rt_time = 0;
9388 rt_rq->rt_throttled = 0;
ac086bc2 9389 rt_rq->rt_runtime = 0;
0986b11b 9390 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9391
052f1dc7 9392#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9393 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9394 rt_rq->rq = rq;
9395#endif
fa85ae24
PZ
9396}
9397
6f505b16 9398#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9399static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9400 struct sched_entity *se, int cpu, int add,
9401 struct sched_entity *parent)
6f505b16 9402{
ec7dc8ac 9403 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9404 tg->cfs_rq[cpu] = cfs_rq;
9405 init_cfs_rq(cfs_rq, rq);
9406 cfs_rq->tg = tg;
9407 if (add)
9408 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9409
9410 tg->se[cpu] = se;
354d60c2
DG
9411 /* se could be NULL for init_task_group */
9412 if (!se)
9413 return;
9414
ec7dc8ac
DG
9415 if (!parent)
9416 se->cfs_rq = &rq->cfs;
9417 else
9418 se->cfs_rq = parent->my_q;
9419
6f505b16
PZ
9420 se->my_q = cfs_rq;
9421 se->load.weight = tg->shares;
e05510d0 9422 se->load.inv_weight = 0;
ec7dc8ac 9423 se->parent = parent;
6f505b16 9424}
052f1dc7 9425#endif
6f505b16 9426
052f1dc7 9427#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9428static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9429 struct sched_rt_entity *rt_se, int cpu, int add,
9430 struct sched_rt_entity *parent)
6f505b16 9431{
ec7dc8ac
DG
9432 struct rq *rq = cpu_rq(cpu);
9433
6f505b16
PZ
9434 tg->rt_rq[cpu] = rt_rq;
9435 init_rt_rq(rt_rq, rq);
9436 rt_rq->tg = tg;
9437 rt_rq->rt_se = rt_se;
ac086bc2 9438 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9439 if (add)
9440 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9441
9442 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9443 if (!rt_se)
9444 return;
9445
ec7dc8ac
DG
9446 if (!parent)
9447 rt_se->rt_rq = &rq->rt;
9448 else
9449 rt_se->rt_rq = parent->my_q;
9450
6f505b16 9451 rt_se->my_q = rt_rq;
ec7dc8ac 9452 rt_se->parent = parent;
6f505b16
PZ
9453 INIT_LIST_HEAD(&rt_se->run_list);
9454}
9455#endif
9456
1da177e4
LT
9457void __init sched_init(void)
9458{
dd41f596 9459 int i, j;
434d53b0
MT
9460 unsigned long alloc_size = 0, ptr;
9461
9462#ifdef CONFIG_FAIR_GROUP_SCHED
9463 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9464#endif
9465#ifdef CONFIG_RT_GROUP_SCHED
9466 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9467#endif
9468#ifdef CONFIG_USER_SCHED
9469 alloc_size *= 2;
df7c8e84
RR
9470#endif
9471#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9472 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9473#endif
434d53b0 9474 if (alloc_size) {
36b7b6d4 9475 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9476
9477#ifdef CONFIG_FAIR_GROUP_SCHED
9478 init_task_group.se = (struct sched_entity **)ptr;
9479 ptr += nr_cpu_ids * sizeof(void **);
9480
9481 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9482 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9483
9484#ifdef CONFIG_USER_SCHED
9485 root_task_group.se = (struct sched_entity **)ptr;
9486 ptr += nr_cpu_ids * sizeof(void **);
9487
9488 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9489 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9490#endif /* CONFIG_USER_SCHED */
9491#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9492#ifdef CONFIG_RT_GROUP_SCHED
9493 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9494 ptr += nr_cpu_ids * sizeof(void **);
9495
9496 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9497 ptr += nr_cpu_ids * sizeof(void **);
9498
9499#ifdef CONFIG_USER_SCHED
9500 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9501 ptr += nr_cpu_ids * sizeof(void **);
9502
9503 root_task_group.rt_rq = (struct rt_rq **)ptr;
9504 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9505#endif /* CONFIG_USER_SCHED */
9506#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9507#ifdef CONFIG_CPUMASK_OFFSTACK
9508 for_each_possible_cpu(i) {
9509 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9510 ptr += cpumask_size();
9511 }
9512#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9513 }
dd41f596 9514
57d885fe
GH
9515#ifdef CONFIG_SMP
9516 init_defrootdomain();
9517#endif
9518
d0b27fa7
PZ
9519 init_rt_bandwidth(&def_rt_bandwidth,
9520 global_rt_period(), global_rt_runtime());
9521
9522#ifdef CONFIG_RT_GROUP_SCHED
9523 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9524 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9525#ifdef CONFIG_USER_SCHED
9526 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9527 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9528#endif /* CONFIG_USER_SCHED */
9529#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9530
052f1dc7 9531#ifdef CONFIG_GROUP_SCHED
6f505b16 9532 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9533 INIT_LIST_HEAD(&init_task_group.children);
9534
9535#ifdef CONFIG_USER_SCHED
9536 INIT_LIST_HEAD(&root_task_group.children);
9537 init_task_group.parent = &root_task_group;
9538 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9539#endif /* CONFIG_USER_SCHED */
9540#endif /* CONFIG_GROUP_SCHED */
6f505b16 9541
4a6cc4bd
JK
9542#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9543 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9544 __alignof__(unsigned long));
9545#endif
0a945022 9546 for_each_possible_cpu(i) {
70b97a7f 9547 struct rq *rq;
1da177e4
LT
9548
9549 rq = cpu_rq(i);
05fa785c 9550 raw_spin_lock_init(&rq->lock);
7897986b 9551 rq->nr_running = 0;
dce48a84
TG
9552 rq->calc_load_active = 0;
9553 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9554 init_cfs_rq(&rq->cfs, rq);
6f505b16 9555 init_rt_rq(&rq->rt, rq);
dd41f596 9556#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9557 init_task_group.shares = init_task_group_load;
6f505b16 9558 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9559#ifdef CONFIG_CGROUP_SCHED
9560 /*
9561 * How much cpu bandwidth does init_task_group get?
9562 *
9563 * In case of task-groups formed thr' the cgroup filesystem, it
9564 * gets 100% of the cpu resources in the system. This overall
9565 * system cpu resource is divided among the tasks of
9566 * init_task_group and its child task-groups in a fair manner,
9567 * based on each entity's (task or task-group's) weight
9568 * (se->load.weight).
9569 *
9570 * In other words, if init_task_group has 10 tasks of weight
9571 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9572 * then A0's share of the cpu resource is:
9573 *
0d905bca 9574 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9575 *
9576 * We achieve this by letting init_task_group's tasks sit
9577 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9578 */
ec7dc8ac 9579 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9580#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9581 root_task_group.shares = NICE_0_LOAD;
9582 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9583 /*
9584 * In case of task-groups formed thr' the user id of tasks,
9585 * init_task_group represents tasks belonging to root user.
9586 * Hence it forms a sibling of all subsequent groups formed.
9587 * In this case, init_task_group gets only a fraction of overall
9588 * system cpu resource, based on the weight assigned to root
9589 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9590 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9591 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9592 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9593 */
ec7dc8ac 9594 init_tg_cfs_entry(&init_task_group,
84e9dabf 9595 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9596 &per_cpu(init_sched_entity, i), i, 1,
9597 root_task_group.se[i]);
6f505b16 9598
052f1dc7 9599#endif
354d60c2
DG
9600#endif /* CONFIG_FAIR_GROUP_SCHED */
9601
9602 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9603#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9604 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9605#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9606 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9607#elif defined CONFIG_USER_SCHED
eff766a6 9608 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9609 init_tg_rt_entry(&init_task_group,
1871e52c 9610 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9611 &per_cpu(init_sched_rt_entity, i), i, 1,
9612 root_task_group.rt_se[i]);
354d60c2 9613#endif
dd41f596 9614#endif
1da177e4 9615
dd41f596
IM
9616 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9617 rq->cpu_load[j] = 0;
1da177e4 9618#ifdef CONFIG_SMP
41c7ce9a 9619 rq->sd = NULL;
57d885fe 9620 rq->rd = NULL;
3f029d3c 9621 rq->post_schedule = 0;
1da177e4 9622 rq->active_balance = 0;
dd41f596 9623 rq->next_balance = jiffies;
1da177e4 9624 rq->push_cpu = 0;
0a2966b4 9625 rq->cpu = i;
1f11eb6a 9626 rq->online = 0;
1da177e4 9627 rq->migration_thread = NULL;
eae0c9df
MG
9628 rq->idle_stamp = 0;
9629 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9630 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9631 rq_attach_root(rq, &def_root_domain);
1da177e4 9632#endif
8f4d37ec 9633 init_rq_hrtick(rq);
1da177e4 9634 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9635 }
9636
2dd73a4f 9637 set_load_weight(&init_task);
b50f60ce 9638
e107be36
AK
9639#ifdef CONFIG_PREEMPT_NOTIFIERS
9640 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9641#endif
9642
c9819f45 9643#ifdef CONFIG_SMP
962cf36c 9644 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9645#endif
9646
b50f60ce 9647#ifdef CONFIG_RT_MUTEXES
1d615482 9648 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9649#endif
9650
1da177e4
LT
9651 /*
9652 * The boot idle thread does lazy MMU switching as well:
9653 */
9654 atomic_inc(&init_mm.mm_count);
9655 enter_lazy_tlb(&init_mm, current);
9656
9657 /*
9658 * Make us the idle thread. Technically, schedule() should not be
9659 * called from this thread, however somewhere below it might be,
9660 * but because we are the idle thread, we just pick up running again
9661 * when this runqueue becomes "idle".
9662 */
9663 init_idle(current, smp_processor_id());
dce48a84
TG
9664
9665 calc_load_update = jiffies + LOAD_FREQ;
9666
dd41f596
IM
9667 /*
9668 * During early bootup we pretend to be a normal task:
9669 */
9670 current->sched_class = &fair_sched_class;
6892b75e 9671
6a7b3dc3 9672 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9673 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9674#ifdef CONFIG_SMP
7d1e6a9b 9675#ifdef CONFIG_NO_HZ
49557e62 9676 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9677 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9678#endif
bdddd296
RR
9679 /* May be allocated at isolcpus cmdline parse time */
9680 if (cpu_isolated_map == NULL)
9681 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9682#endif /* SMP */
6a7b3dc3 9683
cdd6c482 9684 perf_event_init();
0d905bca 9685
6892b75e 9686 scheduler_running = 1;
1da177e4
LT
9687}
9688
9689#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9690static inline int preempt_count_equals(int preempt_offset)
9691{
9692 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9693
9694 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9695}
9696
9697void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9698{
48f24c4d 9699#ifdef in_atomic
1da177e4
LT
9700 static unsigned long prev_jiffy; /* ratelimiting */
9701
e4aafea2
FW
9702 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9703 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9704 return;
9705 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9706 return;
9707 prev_jiffy = jiffies;
9708
663997d4
JP
9709 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9710 file, line);
9711 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9712 in_atomic(), irqs_disabled(),
9713 current->pid, current->comm);
aef745fc
IM
9714
9715 debug_show_held_locks(current);
9716 if (irqs_disabled())
9717 print_irqtrace_events(current);
9718 dump_stack();
1da177e4
LT
9719#endif
9720}
9721EXPORT_SYMBOL(__might_sleep);
9722#endif
9723
9724#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9725static void normalize_task(struct rq *rq, struct task_struct *p)
9726{
9727 int on_rq;
3e51f33f 9728
3a5e4dc1
AK
9729 update_rq_clock(rq);
9730 on_rq = p->se.on_rq;
9731 if (on_rq)
9732 deactivate_task(rq, p, 0);
9733 __setscheduler(rq, p, SCHED_NORMAL, 0);
9734 if (on_rq) {
9735 activate_task(rq, p, 0);
9736 resched_task(rq->curr);
9737 }
9738}
9739
1da177e4
LT
9740void normalize_rt_tasks(void)
9741{
a0f98a1c 9742 struct task_struct *g, *p;
1da177e4 9743 unsigned long flags;
70b97a7f 9744 struct rq *rq;
1da177e4 9745
4cf5d77a 9746 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9747 do_each_thread(g, p) {
178be793
IM
9748 /*
9749 * Only normalize user tasks:
9750 */
9751 if (!p->mm)
9752 continue;
9753
6cfb0d5d 9754 p->se.exec_start = 0;
6cfb0d5d 9755#ifdef CONFIG_SCHEDSTATS
dd41f596 9756 p->se.wait_start = 0;
dd41f596 9757 p->se.sleep_start = 0;
dd41f596 9758 p->se.block_start = 0;
6cfb0d5d 9759#endif
dd41f596
IM
9760
9761 if (!rt_task(p)) {
9762 /*
9763 * Renice negative nice level userspace
9764 * tasks back to 0:
9765 */
9766 if (TASK_NICE(p) < 0 && p->mm)
9767 set_user_nice(p, 0);
1da177e4 9768 continue;
dd41f596 9769 }
1da177e4 9770
1d615482 9771 raw_spin_lock(&p->pi_lock);
b29739f9 9772 rq = __task_rq_lock(p);
1da177e4 9773
178be793 9774 normalize_task(rq, p);
3a5e4dc1 9775
b29739f9 9776 __task_rq_unlock(rq);
1d615482 9777 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9778 } while_each_thread(g, p);
9779
4cf5d77a 9780 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9781}
9782
9783#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9784
9785#ifdef CONFIG_IA64
9786/*
9787 * These functions are only useful for the IA64 MCA handling.
9788 *
9789 * They can only be called when the whole system has been
9790 * stopped - every CPU needs to be quiescent, and no scheduling
9791 * activity can take place. Using them for anything else would
9792 * be a serious bug, and as a result, they aren't even visible
9793 * under any other configuration.
9794 */
9795
9796/**
9797 * curr_task - return the current task for a given cpu.
9798 * @cpu: the processor in question.
9799 *
9800 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9801 */
36c8b586 9802struct task_struct *curr_task(int cpu)
1df5c10a
LT
9803{
9804 return cpu_curr(cpu);
9805}
9806
9807/**
9808 * set_curr_task - set the current task for a given cpu.
9809 * @cpu: the processor in question.
9810 * @p: the task pointer to set.
9811 *
9812 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9813 * are serviced on a separate stack. It allows the architecture to switch the
9814 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9815 * must be called with all CPU's synchronized, and interrupts disabled, the
9816 * and caller must save the original value of the current task (see
9817 * curr_task() above) and restore that value before reenabling interrupts and
9818 * re-starting the system.
9819 *
9820 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9821 */
36c8b586 9822void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9823{
9824 cpu_curr(cpu) = p;
9825}
9826
9827#endif
29f59db3 9828
bccbe08a
PZ
9829#ifdef CONFIG_FAIR_GROUP_SCHED
9830static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9831{
9832 int i;
9833
9834 for_each_possible_cpu(i) {
9835 if (tg->cfs_rq)
9836 kfree(tg->cfs_rq[i]);
9837 if (tg->se)
9838 kfree(tg->se[i]);
6f505b16
PZ
9839 }
9840
9841 kfree(tg->cfs_rq);
9842 kfree(tg->se);
6f505b16
PZ
9843}
9844
ec7dc8ac
DG
9845static
9846int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9847{
29f59db3 9848 struct cfs_rq *cfs_rq;
eab17229 9849 struct sched_entity *se;
9b5b7751 9850 struct rq *rq;
29f59db3
SV
9851 int i;
9852
434d53b0 9853 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9854 if (!tg->cfs_rq)
9855 goto err;
434d53b0 9856 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9857 if (!tg->se)
9858 goto err;
052f1dc7
PZ
9859
9860 tg->shares = NICE_0_LOAD;
29f59db3
SV
9861
9862 for_each_possible_cpu(i) {
9b5b7751 9863 rq = cpu_rq(i);
29f59db3 9864
eab17229
LZ
9865 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9866 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9867 if (!cfs_rq)
9868 goto err;
9869
eab17229
LZ
9870 se = kzalloc_node(sizeof(struct sched_entity),
9871 GFP_KERNEL, cpu_to_node(i));
29f59db3 9872 if (!se)
dfc12eb2 9873 goto err_free_rq;
29f59db3 9874
eab17229 9875 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9876 }
9877
9878 return 1;
9879
dfc12eb2
PC
9880 err_free_rq:
9881 kfree(cfs_rq);
bccbe08a
PZ
9882 err:
9883 return 0;
9884}
9885
9886static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9887{
9888 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9889 &cpu_rq(cpu)->leaf_cfs_rq_list);
9890}
9891
9892static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9893{
9894 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9895}
6d6bc0ad 9896#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9897static inline void free_fair_sched_group(struct task_group *tg)
9898{
9899}
9900
ec7dc8ac
DG
9901static inline
9902int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9903{
9904 return 1;
9905}
9906
9907static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9908{
9909}
9910
9911static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9912{
9913}
6d6bc0ad 9914#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9915
9916#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9917static void free_rt_sched_group(struct task_group *tg)
9918{
9919 int i;
9920
d0b27fa7
PZ
9921 destroy_rt_bandwidth(&tg->rt_bandwidth);
9922
bccbe08a
PZ
9923 for_each_possible_cpu(i) {
9924 if (tg->rt_rq)
9925 kfree(tg->rt_rq[i]);
9926 if (tg->rt_se)
9927 kfree(tg->rt_se[i]);
9928 }
9929
9930 kfree(tg->rt_rq);
9931 kfree(tg->rt_se);
9932}
9933
ec7dc8ac
DG
9934static
9935int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9936{
9937 struct rt_rq *rt_rq;
eab17229 9938 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9939 struct rq *rq;
9940 int i;
9941
434d53b0 9942 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9943 if (!tg->rt_rq)
9944 goto err;
434d53b0 9945 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9946 if (!tg->rt_se)
9947 goto err;
9948
d0b27fa7
PZ
9949 init_rt_bandwidth(&tg->rt_bandwidth,
9950 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9951
9952 for_each_possible_cpu(i) {
9953 rq = cpu_rq(i);
9954
eab17229
LZ
9955 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9956 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9957 if (!rt_rq)
9958 goto err;
29f59db3 9959
eab17229
LZ
9960 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9961 GFP_KERNEL, cpu_to_node(i));
6f505b16 9962 if (!rt_se)
dfc12eb2 9963 goto err_free_rq;
29f59db3 9964
eab17229 9965 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9966 }
9967
bccbe08a
PZ
9968 return 1;
9969
dfc12eb2
PC
9970 err_free_rq:
9971 kfree(rt_rq);
bccbe08a
PZ
9972 err:
9973 return 0;
9974}
9975
9976static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9977{
9978 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9979 &cpu_rq(cpu)->leaf_rt_rq_list);
9980}
9981
9982static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9983{
9984 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9985}
6d6bc0ad 9986#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9987static inline void free_rt_sched_group(struct task_group *tg)
9988{
9989}
9990
ec7dc8ac
DG
9991static inline
9992int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9993{
9994 return 1;
9995}
9996
9997static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9998{
9999}
10000
10001static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10002{
10003}
6d6bc0ad 10004#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10005
d0b27fa7 10006#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10007static void free_sched_group(struct task_group *tg)
10008{
10009 free_fair_sched_group(tg);
10010 free_rt_sched_group(tg);
10011 kfree(tg);
10012}
10013
10014/* allocate runqueue etc for a new task group */
ec7dc8ac 10015struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10016{
10017 struct task_group *tg;
10018 unsigned long flags;
10019 int i;
10020
10021 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10022 if (!tg)
10023 return ERR_PTR(-ENOMEM);
10024
ec7dc8ac 10025 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10026 goto err;
10027
ec7dc8ac 10028 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10029 goto err;
10030
8ed36996 10031 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10032 for_each_possible_cpu(i) {
bccbe08a
PZ
10033 register_fair_sched_group(tg, i);
10034 register_rt_sched_group(tg, i);
9b5b7751 10035 }
6f505b16 10036 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10037
10038 WARN_ON(!parent); /* root should already exist */
10039
10040 tg->parent = parent;
f473aa5e 10041 INIT_LIST_HEAD(&tg->children);
09f2724a 10042 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10043 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10044
9b5b7751 10045 return tg;
29f59db3
SV
10046
10047err:
6f505b16 10048 free_sched_group(tg);
29f59db3
SV
10049 return ERR_PTR(-ENOMEM);
10050}
10051
9b5b7751 10052/* rcu callback to free various structures associated with a task group */
6f505b16 10053static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10054{
29f59db3 10055 /* now it should be safe to free those cfs_rqs */
6f505b16 10056 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10057}
10058
9b5b7751 10059/* Destroy runqueue etc associated with a task group */
4cf86d77 10060void sched_destroy_group(struct task_group *tg)
29f59db3 10061{
8ed36996 10062 unsigned long flags;
9b5b7751 10063 int i;
29f59db3 10064
8ed36996 10065 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10066 for_each_possible_cpu(i) {
bccbe08a
PZ
10067 unregister_fair_sched_group(tg, i);
10068 unregister_rt_sched_group(tg, i);
9b5b7751 10069 }
6f505b16 10070 list_del_rcu(&tg->list);
f473aa5e 10071 list_del_rcu(&tg->siblings);
8ed36996 10072 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10073
9b5b7751 10074 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10075 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10076}
10077
9b5b7751 10078/* change task's runqueue when it moves between groups.
3a252015
IM
10079 * The caller of this function should have put the task in its new group
10080 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10081 * reflect its new group.
9b5b7751
SV
10082 */
10083void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10084{
10085 int on_rq, running;
10086 unsigned long flags;
10087 struct rq *rq;
10088
10089 rq = task_rq_lock(tsk, &flags);
10090
29f59db3
SV
10091 update_rq_clock(rq);
10092
051a1d1a 10093 running = task_current(rq, tsk);
29f59db3
SV
10094 on_rq = tsk->se.on_rq;
10095
0e1f3483 10096 if (on_rq)
29f59db3 10097 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10098 if (unlikely(running))
10099 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10100
6f505b16 10101 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10102
810b3817
PZ
10103#ifdef CONFIG_FAIR_GROUP_SCHED
10104 if (tsk->sched_class->moved_group)
10105 tsk->sched_class->moved_group(tsk);
10106#endif
10107
0e1f3483
HS
10108 if (unlikely(running))
10109 tsk->sched_class->set_curr_task(rq);
10110 if (on_rq)
7074badb 10111 enqueue_task(rq, tsk, 0);
29f59db3 10112
29f59db3
SV
10113 task_rq_unlock(rq, &flags);
10114}
6d6bc0ad 10115#endif /* CONFIG_GROUP_SCHED */
29f59db3 10116
052f1dc7 10117#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10118static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10119{
10120 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10121 int on_rq;
10122
29f59db3 10123 on_rq = se->on_rq;
62fb1851 10124 if (on_rq)
29f59db3
SV
10125 dequeue_entity(cfs_rq, se, 0);
10126
10127 se->load.weight = shares;
e05510d0 10128 se->load.inv_weight = 0;
29f59db3 10129
62fb1851 10130 if (on_rq)
29f59db3 10131 enqueue_entity(cfs_rq, se, 0);
c09595f6 10132}
62fb1851 10133
c09595f6
PZ
10134static void set_se_shares(struct sched_entity *se, unsigned long shares)
10135{
10136 struct cfs_rq *cfs_rq = se->cfs_rq;
10137 struct rq *rq = cfs_rq->rq;
10138 unsigned long flags;
10139
05fa785c 10140 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10141 __set_se_shares(se, shares);
05fa785c 10142 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10143}
10144
8ed36996
PZ
10145static DEFINE_MUTEX(shares_mutex);
10146
4cf86d77 10147int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10148{
10149 int i;
8ed36996 10150 unsigned long flags;
c61935fd 10151
ec7dc8ac
DG
10152 /*
10153 * We can't change the weight of the root cgroup.
10154 */
10155 if (!tg->se[0])
10156 return -EINVAL;
10157
18d95a28
PZ
10158 if (shares < MIN_SHARES)
10159 shares = MIN_SHARES;
cb4ad1ff
MX
10160 else if (shares > MAX_SHARES)
10161 shares = MAX_SHARES;
62fb1851 10162
8ed36996 10163 mutex_lock(&shares_mutex);
9b5b7751 10164 if (tg->shares == shares)
5cb350ba 10165 goto done;
29f59db3 10166
8ed36996 10167 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10168 for_each_possible_cpu(i)
10169 unregister_fair_sched_group(tg, i);
f473aa5e 10170 list_del_rcu(&tg->siblings);
8ed36996 10171 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10172
10173 /* wait for any ongoing reference to this group to finish */
10174 synchronize_sched();
10175
10176 /*
10177 * Now we are free to modify the group's share on each cpu
10178 * w/o tripping rebalance_share or load_balance_fair.
10179 */
9b5b7751 10180 tg->shares = shares;
c09595f6
PZ
10181 for_each_possible_cpu(i) {
10182 /*
10183 * force a rebalance
10184 */
10185 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10186 set_se_shares(tg->se[i], shares);
c09595f6 10187 }
29f59db3 10188
6b2d7700
SV
10189 /*
10190 * Enable load balance activity on this group, by inserting it back on
10191 * each cpu's rq->leaf_cfs_rq_list.
10192 */
8ed36996 10193 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10194 for_each_possible_cpu(i)
10195 register_fair_sched_group(tg, i);
f473aa5e 10196 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10197 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10198done:
8ed36996 10199 mutex_unlock(&shares_mutex);
9b5b7751 10200 return 0;
29f59db3
SV
10201}
10202
5cb350ba
DG
10203unsigned long sched_group_shares(struct task_group *tg)
10204{
10205 return tg->shares;
10206}
052f1dc7 10207#endif
5cb350ba 10208
052f1dc7 10209#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10210/*
9f0c1e56 10211 * Ensure that the real time constraints are schedulable.
6f505b16 10212 */
9f0c1e56
PZ
10213static DEFINE_MUTEX(rt_constraints_mutex);
10214
10215static unsigned long to_ratio(u64 period, u64 runtime)
10216{
10217 if (runtime == RUNTIME_INF)
9a7e0b18 10218 return 1ULL << 20;
9f0c1e56 10219
9a7e0b18 10220 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10221}
10222
9a7e0b18
PZ
10223/* Must be called with tasklist_lock held */
10224static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10225{
9a7e0b18 10226 struct task_struct *g, *p;
b40b2e8e 10227
9a7e0b18
PZ
10228 do_each_thread(g, p) {
10229 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10230 return 1;
10231 } while_each_thread(g, p);
b40b2e8e 10232
9a7e0b18
PZ
10233 return 0;
10234}
b40b2e8e 10235
9a7e0b18
PZ
10236struct rt_schedulable_data {
10237 struct task_group *tg;
10238 u64 rt_period;
10239 u64 rt_runtime;
10240};
b40b2e8e 10241
9a7e0b18
PZ
10242static int tg_schedulable(struct task_group *tg, void *data)
10243{
10244 struct rt_schedulable_data *d = data;
10245 struct task_group *child;
10246 unsigned long total, sum = 0;
10247 u64 period, runtime;
b40b2e8e 10248
9a7e0b18
PZ
10249 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10250 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10251
9a7e0b18
PZ
10252 if (tg == d->tg) {
10253 period = d->rt_period;
10254 runtime = d->rt_runtime;
b40b2e8e 10255 }
b40b2e8e 10256
98a4826b
PZ
10257#ifdef CONFIG_USER_SCHED
10258 if (tg == &root_task_group) {
10259 period = global_rt_period();
10260 runtime = global_rt_runtime();
10261 }
10262#endif
10263
4653f803
PZ
10264 /*
10265 * Cannot have more runtime than the period.
10266 */
10267 if (runtime > period && runtime != RUNTIME_INF)
10268 return -EINVAL;
6f505b16 10269
4653f803
PZ
10270 /*
10271 * Ensure we don't starve existing RT tasks.
10272 */
9a7e0b18
PZ
10273 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10274 return -EBUSY;
6f505b16 10275
9a7e0b18 10276 total = to_ratio(period, runtime);
6f505b16 10277
4653f803
PZ
10278 /*
10279 * Nobody can have more than the global setting allows.
10280 */
10281 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10282 return -EINVAL;
6f505b16 10283
4653f803
PZ
10284 /*
10285 * The sum of our children's runtime should not exceed our own.
10286 */
9a7e0b18
PZ
10287 list_for_each_entry_rcu(child, &tg->children, siblings) {
10288 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10289 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10290
9a7e0b18
PZ
10291 if (child == d->tg) {
10292 period = d->rt_period;
10293 runtime = d->rt_runtime;
10294 }
6f505b16 10295
9a7e0b18 10296 sum += to_ratio(period, runtime);
9f0c1e56 10297 }
6f505b16 10298
9a7e0b18
PZ
10299 if (sum > total)
10300 return -EINVAL;
10301
10302 return 0;
6f505b16
PZ
10303}
10304
9a7e0b18 10305static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10306{
9a7e0b18
PZ
10307 struct rt_schedulable_data data = {
10308 .tg = tg,
10309 .rt_period = period,
10310 .rt_runtime = runtime,
10311 };
10312
10313 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10314}
10315
d0b27fa7
PZ
10316static int tg_set_bandwidth(struct task_group *tg,
10317 u64 rt_period, u64 rt_runtime)
6f505b16 10318{
ac086bc2 10319 int i, err = 0;
9f0c1e56 10320
9f0c1e56 10321 mutex_lock(&rt_constraints_mutex);
521f1a24 10322 read_lock(&tasklist_lock);
9a7e0b18
PZ
10323 err = __rt_schedulable(tg, rt_period, rt_runtime);
10324 if (err)
9f0c1e56 10325 goto unlock;
ac086bc2 10326
0986b11b 10327 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10328 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10329 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10330
10331 for_each_possible_cpu(i) {
10332 struct rt_rq *rt_rq = tg->rt_rq[i];
10333
0986b11b 10334 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10335 rt_rq->rt_runtime = rt_runtime;
0986b11b 10336 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10337 }
0986b11b 10338 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10339 unlock:
521f1a24 10340 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10341 mutex_unlock(&rt_constraints_mutex);
10342
10343 return err;
6f505b16
PZ
10344}
10345
d0b27fa7
PZ
10346int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10347{
10348 u64 rt_runtime, rt_period;
10349
10350 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10351 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10352 if (rt_runtime_us < 0)
10353 rt_runtime = RUNTIME_INF;
10354
10355 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10356}
10357
9f0c1e56
PZ
10358long sched_group_rt_runtime(struct task_group *tg)
10359{
10360 u64 rt_runtime_us;
10361
d0b27fa7 10362 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10363 return -1;
10364
d0b27fa7 10365 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10366 do_div(rt_runtime_us, NSEC_PER_USEC);
10367 return rt_runtime_us;
10368}
d0b27fa7
PZ
10369
10370int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10371{
10372 u64 rt_runtime, rt_period;
10373
10374 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10375 rt_runtime = tg->rt_bandwidth.rt_runtime;
10376
619b0488
R
10377 if (rt_period == 0)
10378 return -EINVAL;
10379
d0b27fa7
PZ
10380 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10381}
10382
10383long sched_group_rt_period(struct task_group *tg)
10384{
10385 u64 rt_period_us;
10386
10387 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10388 do_div(rt_period_us, NSEC_PER_USEC);
10389 return rt_period_us;
10390}
10391
10392static int sched_rt_global_constraints(void)
10393{
4653f803 10394 u64 runtime, period;
d0b27fa7
PZ
10395 int ret = 0;
10396
ec5d4989
HS
10397 if (sysctl_sched_rt_period <= 0)
10398 return -EINVAL;
10399
4653f803
PZ
10400 runtime = global_rt_runtime();
10401 period = global_rt_period();
10402
10403 /*
10404 * Sanity check on the sysctl variables.
10405 */
10406 if (runtime > period && runtime != RUNTIME_INF)
10407 return -EINVAL;
10b612f4 10408
d0b27fa7 10409 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10410 read_lock(&tasklist_lock);
4653f803 10411 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10412 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10413 mutex_unlock(&rt_constraints_mutex);
10414
10415 return ret;
10416}
54e99124
DG
10417
10418int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10419{
10420 /* Don't accept realtime tasks when there is no way for them to run */
10421 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10422 return 0;
10423
10424 return 1;
10425}
10426
6d6bc0ad 10427#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10428static int sched_rt_global_constraints(void)
10429{
ac086bc2
PZ
10430 unsigned long flags;
10431 int i;
10432
ec5d4989
HS
10433 if (sysctl_sched_rt_period <= 0)
10434 return -EINVAL;
10435
60aa605d
PZ
10436 /*
10437 * There's always some RT tasks in the root group
10438 * -- migration, kstopmachine etc..
10439 */
10440 if (sysctl_sched_rt_runtime == 0)
10441 return -EBUSY;
10442
0986b11b 10443 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10444 for_each_possible_cpu(i) {
10445 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10446
0986b11b 10447 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10448 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10449 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10450 }
0986b11b 10451 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10452
d0b27fa7
PZ
10453 return 0;
10454}
6d6bc0ad 10455#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10456
10457int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10458 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10459 loff_t *ppos)
10460{
10461 int ret;
10462 int old_period, old_runtime;
10463 static DEFINE_MUTEX(mutex);
10464
10465 mutex_lock(&mutex);
10466 old_period = sysctl_sched_rt_period;
10467 old_runtime = sysctl_sched_rt_runtime;
10468
8d65af78 10469 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10470
10471 if (!ret && write) {
10472 ret = sched_rt_global_constraints();
10473 if (ret) {
10474 sysctl_sched_rt_period = old_period;
10475 sysctl_sched_rt_runtime = old_runtime;
10476 } else {
10477 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10478 def_rt_bandwidth.rt_period =
10479 ns_to_ktime(global_rt_period());
10480 }
10481 }
10482 mutex_unlock(&mutex);
10483
10484 return ret;
10485}
68318b8e 10486
052f1dc7 10487#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10488
10489/* return corresponding task_group object of a cgroup */
2b01dfe3 10490static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10491{
2b01dfe3
PM
10492 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10493 struct task_group, css);
68318b8e
SV
10494}
10495
10496static struct cgroup_subsys_state *
2b01dfe3 10497cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10498{
ec7dc8ac 10499 struct task_group *tg, *parent;
68318b8e 10500
2b01dfe3 10501 if (!cgrp->parent) {
68318b8e 10502 /* This is early initialization for the top cgroup */
68318b8e
SV
10503 return &init_task_group.css;
10504 }
10505
ec7dc8ac
DG
10506 parent = cgroup_tg(cgrp->parent);
10507 tg = sched_create_group(parent);
68318b8e
SV
10508 if (IS_ERR(tg))
10509 return ERR_PTR(-ENOMEM);
10510
68318b8e
SV
10511 return &tg->css;
10512}
10513
41a2d6cf
IM
10514static void
10515cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10516{
2b01dfe3 10517 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10518
10519 sched_destroy_group(tg);
10520}
10521
41a2d6cf 10522static int
be367d09 10523cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10524{
b68aa230 10525#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10526 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10527 return -EINVAL;
10528#else
68318b8e
SV
10529 /* We don't support RT-tasks being in separate groups */
10530 if (tsk->sched_class != &fair_sched_class)
10531 return -EINVAL;
b68aa230 10532#endif
be367d09
BB
10533 return 0;
10534}
68318b8e 10535
be367d09
BB
10536static int
10537cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10538 struct task_struct *tsk, bool threadgroup)
10539{
10540 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10541 if (retval)
10542 return retval;
10543 if (threadgroup) {
10544 struct task_struct *c;
10545 rcu_read_lock();
10546 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10547 retval = cpu_cgroup_can_attach_task(cgrp, c);
10548 if (retval) {
10549 rcu_read_unlock();
10550 return retval;
10551 }
10552 }
10553 rcu_read_unlock();
10554 }
68318b8e
SV
10555 return 0;
10556}
10557
10558static void
2b01dfe3 10559cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10560 struct cgroup *old_cont, struct task_struct *tsk,
10561 bool threadgroup)
68318b8e
SV
10562{
10563 sched_move_task(tsk);
be367d09
BB
10564 if (threadgroup) {
10565 struct task_struct *c;
10566 rcu_read_lock();
10567 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10568 sched_move_task(c);
10569 }
10570 rcu_read_unlock();
10571 }
68318b8e
SV
10572}
10573
052f1dc7 10574#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10575static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10576 u64 shareval)
68318b8e 10577{
2b01dfe3 10578 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10579}
10580
f4c753b7 10581static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10582{
2b01dfe3 10583 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10584
10585 return (u64) tg->shares;
10586}
6d6bc0ad 10587#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10588
052f1dc7 10589#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10590static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10591 s64 val)
6f505b16 10592{
06ecb27c 10593 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10594}
10595
06ecb27c 10596static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10597{
06ecb27c 10598 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10599}
d0b27fa7
PZ
10600
10601static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10602 u64 rt_period_us)
10603{
10604 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10605}
10606
10607static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10608{
10609 return sched_group_rt_period(cgroup_tg(cgrp));
10610}
6d6bc0ad 10611#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10612
fe5c7cc2 10613static struct cftype cpu_files[] = {
052f1dc7 10614#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10615 {
10616 .name = "shares",
f4c753b7
PM
10617 .read_u64 = cpu_shares_read_u64,
10618 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10619 },
052f1dc7
PZ
10620#endif
10621#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10622 {
9f0c1e56 10623 .name = "rt_runtime_us",
06ecb27c
PM
10624 .read_s64 = cpu_rt_runtime_read,
10625 .write_s64 = cpu_rt_runtime_write,
6f505b16 10626 },
d0b27fa7
PZ
10627 {
10628 .name = "rt_period_us",
f4c753b7
PM
10629 .read_u64 = cpu_rt_period_read_uint,
10630 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10631 },
052f1dc7 10632#endif
68318b8e
SV
10633};
10634
10635static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10636{
fe5c7cc2 10637 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10638}
10639
10640struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10641 .name = "cpu",
10642 .create = cpu_cgroup_create,
10643 .destroy = cpu_cgroup_destroy,
10644 .can_attach = cpu_cgroup_can_attach,
10645 .attach = cpu_cgroup_attach,
10646 .populate = cpu_cgroup_populate,
10647 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10648 .early_init = 1,
10649};
10650
052f1dc7 10651#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10652
10653#ifdef CONFIG_CGROUP_CPUACCT
10654
10655/*
10656 * CPU accounting code for task groups.
10657 *
10658 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10659 * (balbir@in.ibm.com).
10660 */
10661
934352f2 10662/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10663struct cpuacct {
10664 struct cgroup_subsys_state css;
10665 /* cpuusage holds pointer to a u64-type object on every cpu */
10666 u64 *cpuusage;
ef12fefa 10667 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10668 struct cpuacct *parent;
d842de87
SV
10669};
10670
10671struct cgroup_subsys cpuacct_subsys;
10672
10673/* return cpu accounting group corresponding to this container */
32cd756a 10674static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10675{
32cd756a 10676 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10677 struct cpuacct, css);
10678}
10679
10680/* return cpu accounting group to which this task belongs */
10681static inline struct cpuacct *task_ca(struct task_struct *tsk)
10682{
10683 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10684 struct cpuacct, css);
10685}
10686
10687/* create a new cpu accounting group */
10688static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10689 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10690{
10691 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10692 int i;
d842de87
SV
10693
10694 if (!ca)
ef12fefa 10695 goto out;
d842de87
SV
10696
10697 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10698 if (!ca->cpuusage)
10699 goto out_free_ca;
10700
10701 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10702 if (percpu_counter_init(&ca->cpustat[i], 0))
10703 goto out_free_counters;
d842de87 10704
934352f2
BR
10705 if (cgrp->parent)
10706 ca->parent = cgroup_ca(cgrp->parent);
10707
d842de87 10708 return &ca->css;
ef12fefa
BR
10709
10710out_free_counters:
10711 while (--i >= 0)
10712 percpu_counter_destroy(&ca->cpustat[i]);
10713 free_percpu(ca->cpuusage);
10714out_free_ca:
10715 kfree(ca);
10716out:
10717 return ERR_PTR(-ENOMEM);
d842de87
SV
10718}
10719
10720/* destroy an existing cpu accounting group */
41a2d6cf 10721static void
32cd756a 10722cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10723{
32cd756a 10724 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10725 int i;
d842de87 10726
ef12fefa
BR
10727 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10728 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10729 free_percpu(ca->cpuusage);
10730 kfree(ca);
10731}
10732
720f5498
KC
10733static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10734{
b36128c8 10735 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10736 u64 data;
10737
10738#ifndef CONFIG_64BIT
10739 /*
10740 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10741 */
05fa785c 10742 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10743 data = *cpuusage;
05fa785c 10744 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10745#else
10746 data = *cpuusage;
10747#endif
10748
10749 return data;
10750}
10751
10752static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10753{
b36128c8 10754 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10755
10756#ifndef CONFIG_64BIT
10757 /*
10758 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10759 */
05fa785c 10760 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10761 *cpuusage = val;
05fa785c 10762 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10763#else
10764 *cpuusage = val;
10765#endif
10766}
10767
d842de87 10768/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10769static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10770{
32cd756a 10771 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10772 u64 totalcpuusage = 0;
10773 int i;
10774
720f5498
KC
10775 for_each_present_cpu(i)
10776 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10777
10778 return totalcpuusage;
10779}
10780
0297b803
DG
10781static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10782 u64 reset)
10783{
10784 struct cpuacct *ca = cgroup_ca(cgrp);
10785 int err = 0;
10786 int i;
10787
10788 if (reset) {
10789 err = -EINVAL;
10790 goto out;
10791 }
10792
720f5498
KC
10793 for_each_present_cpu(i)
10794 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10795
0297b803
DG
10796out:
10797 return err;
10798}
10799
e9515c3c
KC
10800static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10801 struct seq_file *m)
10802{
10803 struct cpuacct *ca = cgroup_ca(cgroup);
10804 u64 percpu;
10805 int i;
10806
10807 for_each_present_cpu(i) {
10808 percpu = cpuacct_cpuusage_read(ca, i);
10809 seq_printf(m, "%llu ", (unsigned long long) percpu);
10810 }
10811 seq_printf(m, "\n");
10812 return 0;
10813}
10814
ef12fefa
BR
10815static const char *cpuacct_stat_desc[] = {
10816 [CPUACCT_STAT_USER] = "user",
10817 [CPUACCT_STAT_SYSTEM] = "system",
10818};
10819
10820static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10821 struct cgroup_map_cb *cb)
10822{
10823 struct cpuacct *ca = cgroup_ca(cgrp);
10824 int i;
10825
10826 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10827 s64 val = percpu_counter_read(&ca->cpustat[i]);
10828 val = cputime64_to_clock_t(val);
10829 cb->fill(cb, cpuacct_stat_desc[i], val);
10830 }
10831 return 0;
10832}
10833
d842de87
SV
10834static struct cftype files[] = {
10835 {
10836 .name = "usage",
f4c753b7
PM
10837 .read_u64 = cpuusage_read,
10838 .write_u64 = cpuusage_write,
d842de87 10839 },
e9515c3c
KC
10840 {
10841 .name = "usage_percpu",
10842 .read_seq_string = cpuacct_percpu_seq_read,
10843 },
ef12fefa
BR
10844 {
10845 .name = "stat",
10846 .read_map = cpuacct_stats_show,
10847 },
d842de87
SV
10848};
10849
32cd756a 10850static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10851{
32cd756a 10852 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10853}
10854
10855/*
10856 * charge this task's execution time to its accounting group.
10857 *
10858 * called with rq->lock held.
10859 */
10860static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10861{
10862 struct cpuacct *ca;
934352f2 10863 int cpu;
d842de87 10864
c40c6f85 10865 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10866 return;
10867
934352f2 10868 cpu = task_cpu(tsk);
a18b83b7
BR
10869
10870 rcu_read_lock();
10871
d842de87 10872 ca = task_ca(tsk);
d842de87 10873
934352f2 10874 for (; ca; ca = ca->parent) {
b36128c8 10875 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10876 *cpuusage += cputime;
10877 }
a18b83b7
BR
10878
10879 rcu_read_unlock();
d842de87
SV
10880}
10881
ef12fefa
BR
10882/*
10883 * Charge the system/user time to the task's accounting group.
10884 */
10885static void cpuacct_update_stats(struct task_struct *tsk,
10886 enum cpuacct_stat_index idx, cputime_t val)
10887{
10888 struct cpuacct *ca;
10889
10890 if (unlikely(!cpuacct_subsys.active))
10891 return;
10892
10893 rcu_read_lock();
10894 ca = task_ca(tsk);
10895
10896 do {
10897 percpu_counter_add(&ca->cpustat[idx], val);
10898 ca = ca->parent;
10899 } while (ca);
10900 rcu_read_unlock();
10901}
10902
d842de87
SV
10903struct cgroup_subsys cpuacct_subsys = {
10904 .name = "cpuacct",
10905 .create = cpuacct_create,
10906 .destroy = cpuacct_destroy,
10907 .populate = cpuacct_populate,
10908 .subsys_id = cpuacct_subsys_id,
10909};
10910#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10911
10912#ifndef CONFIG_SMP
10913
10914int rcu_expedited_torture_stats(char *page)
10915{
10916 return 0;
10917}
10918EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10919
10920void synchronize_sched_expedited(void)
10921{
10922}
10923EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10924
10925#else /* #ifndef CONFIG_SMP */
10926
10927static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10928static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10929
10930#define RCU_EXPEDITED_STATE_POST -2
10931#define RCU_EXPEDITED_STATE_IDLE -1
10932
10933static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10934
10935int rcu_expedited_torture_stats(char *page)
10936{
10937 int cnt = 0;
10938 int cpu;
10939
10940 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10941 for_each_online_cpu(cpu) {
10942 cnt += sprintf(&page[cnt], " %d:%d",
10943 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10944 }
10945 cnt += sprintf(&page[cnt], "\n");
10946 return cnt;
10947}
10948EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10949
10950static long synchronize_sched_expedited_count;
10951
10952/*
10953 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10954 * approach to force grace period to end quickly. This consumes
10955 * significant time on all CPUs, and is thus not recommended for
10956 * any sort of common-case code.
10957 *
10958 * Note that it is illegal to call this function while holding any
10959 * lock that is acquired by a CPU-hotplug notifier. Failing to
10960 * observe this restriction will result in deadlock.
10961 */
10962void synchronize_sched_expedited(void)
10963{
10964 int cpu;
10965 unsigned long flags;
10966 bool need_full_sync = 0;
10967 struct rq *rq;
10968 struct migration_req *req;
10969 long snap;
10970 int trycount = 0;
10971
10972 smp_mb(); /* ensure prior mod happens before capturing snap. */
10973 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10974 get_online_cpus();
10975 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10976 put_online_cpus();
10977 if (trycount++ < 10)
10978 udelay(trycount * num_online_cpus());
10979 else {
10980 synchronize_sched();
10981 return;
10982 }
10983 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10984 smp_mb(); /* ensure test happens before caller kfree */
10985 return;
10986 }
10987 get_online_cpus();
10988 }
10989 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10990 for_each_online_cpu(cpu) {
10991 rq = cpu_rq(cpu);
10992 req = &per_cpu(rcu_migration_req, cpu);
10993 init_completion(&req->done);
10994 req->task = NULL;
10995 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 10996 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 10997 list_add(&req->list, &rq->migration_queue);
05fa785c 10998 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
10999 wake_up_process(rq->migration_thread);
11000 }
11001 for_each_online_cpu(cpu) {
11002 rcu_expedited_state = cpu;
11003 req = &per_cpu(rcu_migration_req, cpu);
11004 rq = cpu_rq(cpu);
11005 wait_for_completion(&req->done);
05fa785c 11006 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11007 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11008 need_full_sync = 1;
11009 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11010 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11011 }
11012 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11013 synchronize_sched_expedited_count++;
03b042bf
PM
11014 mutex_unlock(&rcu_sched_expedited_mutex);
11015 put_online_cpus();
11016 if (need_full_sync)
11017 synchronize_sched();
11018}
11019EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11020
11021#endif /* #else #ifndef CONFIG_SMP */