]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
tracing/events: fix lockdep system name
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0
SR
81#define CREATE_TRACE_POINTS
82#include <trace/sched.h>
83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a22d7fc1 496 int overloaded;
917b627d 497 struct plist_head pushable_tasks;
fa85ae24 498#endif
6f505b16 499 int rt_throttled;
fa85ae24 500 u64 rt_time;
ac086bc2 501 u64 rt_runtime;
ea736ed5 502 /* Nests inside the rq lock: */
ac086bc2 503 spinlock_t rt_runtime_lock;
6f505b16 504
052f1dc7 505#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
506 unsigned long rt_nr_boosted;
507
6f505b16
PZ
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512#endif
6aa645ea
IM
513};
514
57d885fe
GH
515#ifdef CONFIG_SMP
516
517/*
518 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
57d885fe
GH
524 */
525struct root_domain {
526 atomic_t refcount;
c6c4927b
RR
527 cpumask_var_t span;
528 cpumask_var_t online;
637f5085 529
0eab9146 530 /*
637f5085
GH
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
c6c4927b 534 cpumask_var_t rto_mask;
0eab9146 535 atomic_t rto_count;
6e0534f2
GH
536#ifdef CONFIG_SMP
537 struct cpupri cpupri;
538#endif
7a09b1a2
VS
539#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546#endif
57d885fe
GH
547};
548
dc938520
GH
549/*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
57d885fe
GH
553static struct root_domain def_root_domain;
554
555#endif
556
1da177e4
LT
557/*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
70b97a7f 564struct rq {
d8016491
IM
565 /* runqueue lock: */
566 spinlock_t lock;
1da177e4
LT
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
6aa645ea
IM
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 575#ifdef CONFIG_NO_HZ
15934a37 576 unsigned long last_tick_seen;
46cb4b7c
SS
577 unsigned char in_nohz_recently;
578#endif
d8016491
IM
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
6aa645ea
IM
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583
584 struct cfs_rq cfs;
6f505b16 585 struct rt_rq rt;
6f505b16 586
6aa645ea 587#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
588 /* list of leaf cfs_rq on this cpu: */
589 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
590#endif
591#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 592 struct list_head leaf_rt_rq_list;
1da177e4 593#endif
1da177e4
LT
594
595 /*
596 * This is part of a global counter where only the total sum
597 * over all CPUs matters. A task can increase this counter on
598 * one CPU and if it got migrated afterwards it may decrease
599 * it on another CPU. Always updated under the runqueue lock:
600 */
601 unsigned long nr_uninterruptible;
602
36c8b586 603 struct task_struct *curr, *idle;
c9819f45 604 unsigned long next_balance;
1da177e4 605 struct mm_struct *prev_mm;
6aa645ea 606
3e51f33f 607 u64 clock;
6aa645ea 608
1da177e4
LT
609 atomic_t nr_iowait;
610
611#ifdef CONFIG_SMP
0eab9146 612 struct root_domain *rd;
1da177e4
LT
613 struct sched_domain *sd;
614
a0a522ce 615 unsigned char idle_at_tick;
1da177e4
LT
616 /* For active balancing */
617 int active_balance;
618 int push_cpu;
d8016491
IM
619 /* cpu of this runqueue: */
620 int cpu;
1f11eb6a 621 int online;
1da177e4 622
a8a51d5e 623 unsigned long avg_load_per_task;
1da177e4 624
36c8b586 625 struct task_struct *migration_thread;
1da177e4
LT
626 struct list_head migration_queue;
627#endif
628
8f4d37ec 629#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
630#ifdef CONFIG_SMP
631 int hrtick_csd_pending;
632 struct call_single_data hrtick_csd;
633#endif
8f4d37ec
PZ
634 struct hrtimer hrtick_timer;
635#endif
636
1da177e4
LT
637#ifdef CONFIG_SCHEDSTATS
638 /* latency stats */
639 struct sched_info rq_sched_info;
9c2c4802
KC
640 unsigned long long rq_cpu_time;
641 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
642
643 /* sys_sched_yield() stats */
480b9434 644 unsigned int yld_count;
1da177e4
LT
645
646 /* schedule() stats */
480b9434
KC
647 unsigned int sched_switch;
648 unsigned int sched_count;
649 unsigned int sched_goidle;
1da177e4
LT
650
651 /* try_to_wake_up() stats */
480b9434
KC
652 unsigned int ttwu_count;
653 unsigned int ttwu_local;
b8efb561
IM
654
655 /* BKL stats */
480b9434 656 unsigned int bkl_count;
1da177e4
LT
657#endif
658};
659
f34e3b61 660static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 661
15afe09b 662static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 663{
15afe09b 664 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
665}
666
0a2966b4
CL
667static inline int cpu_of(struct rq *rq)
668{
669#ifdef CONFIG_SMP
670 return rq->cpu;
671#else
672 return 0;
673#endif
674}
675
674311d5
NP
676/*
677 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 678 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
679 *
680 * The domain tree of any CPU may only be accessed from within
681 * preempt-disabled sections.
682 */
48f24c4d
IM
683#define for_each_domain(cpu, __sd) \
684 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
685
686#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
687#define this_rq() (&__get_cpu_var(runqueues))
688#define task_rq(p) cpu_rq(task_cpu(p))
689#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
690
3e51f33f
PZ
691static inline void update_rq_clock(struct rq *rq)
692{
693 rq->clock = sched_clock_cpu(cpu_of(rq));
694}
695
bf5c91ba
IM
696/*
697 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
698 */
699#ifdef CONFIG_SCHED_DEBUG
700# define const_debug __read_mostly
701#else
702# define const_debug static const
703#endif
704
017730c1
IM
705/**
706 * runqueue_is_locked
707 *
708 * Returns true if the current cpu runqueue is locked.
709 * This interface allows printk to be called with the runqueue lock
710 * held and know whether or not it is OK to wake up the klogd.
711 */
712int runqueue_is_locked(void)
713{
714 int cpu = get_cpu();
715 struct rq *rq = cpu_rq(cpu);
716 int ret;
717
718 ret = spin_is_locked(&rq->lock);
719 put_cpu();
720 return ret;
721}
722
bf5c91ba
IM
723/*
724 * Debugging: various feature bits
725 */
f00b45c1
PZ
726
727#define SCHED_FEAT(name, enabled) \
728 __SCHED_FEAT_##name ,
729
bf5c91ba 730enum {
f00b45c1 731#include "sched_features.h"
bf5c91ba
IM
732};
733
f00b45c1
PZ
734#undef SCHED_FEAT
735
736#define SCHED_FEAT(name, enabled) \
737 (1UL << __SCHED_FEAT_##name) * enabled |
738
bf5c91ba 739const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
740#include "sched_features.h"
741 0;
742
743#undef SCHED_FEAT
744
745#ifdef CONFIG_SCHED_DEBUG
746#define SCHED_FEAT(name, enabled) \
747 #name ,
748
983ed7a6 749static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
750#include "sched_features.h"
751 NULL
752};
753
754#undef SCHED_FEAT
755
34f3a814 756static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 757{
f00b45c1
PZ
758 int i;
759
760 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
761 if (!(sysctl_sched_features & (1UL << i)))
762 seq_puts(m, "NO_");
763 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 764 }
34f3a814 765 seq_puts(m, "\n");
f00b45c1 766
34f3a814 767 return 0;
f00b45c1
PZ
768}
769
770static ssize_t
771sched_feat_write(struct file *filp, const char __user *ubuf,
772 size_t cnt, loff_t *ppos)
773{
774 char buf[64];
775 char *cmp = buf;
776 int neg = 0;
777 int i;
778
779 if (cnt > 63)
780 cnt = 63;
781
782 if (copy_from_user(&buf, ubuf, cnt))
783 return -EFAULT;
784
785 buf[cnt] = 0;
786
c24b7c52 787 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
788 neg = 1;
789 cmp += 3;
790 }
791
792 for (i = 0; sched_feat_names[i]; i++) {
793 int len = strlen(sched_feat_names[i]);
794
795 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
796 if (neg)
797 sysctl_sched_features &= ~(1UL << i);
798 else
799 sysctl_sched_features |= (1UL << i);
800 break;
801 }
802 }
803
804 if (!sched_feat_names[i])
805 return -EINVAL;
806
807 filp->f_pos += cnt;
808
809 return cnt;
810}
811
34f3a814
LZ
812static int sched_feat_open(struct inode *inode, struct file *filp)
813{
814 return single_open(filp, sched_feat_show, NULL);
815}
816
f00b45c1 817static struct file_operations sched_feat_fops = {
34f3a814
LZ
818 .open = sched_feat_open,
819 .write = sched_feat_write,
820 .read = seq_read,
821 .llseek = seq_lseek,
822 .release = single_release,
f00b45c1
PZ
823};
824
825static __init int sched_init_debug(void)
826{
f00b45c1
PZ
827 debugfs_create_file("sched_features", 0644, NULL, NULL,
828 &sched_feat_fops);
829
830 return 0;
831}
832late_initcall(sched_init_debug);
833
834#endif
835
836#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 837
b82d9fdd
PZ
838/*
839 * Number of tasks to iterate in a single balance run.
840 * Limited because this is done with IRQs disabled.
841 */
842const_debug unsigned int sysctl_sched_nr_migrate = 32;
843
2398f2c6
PZ
844/*
845 * ratelimit for updating the group shares.
55cd5340 846 * default: 0.25ms
2398f2c6 847 */
55cd5340 848unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 849
ffda12a1
PZ
850/*
851 * Inject some fuzzyness into changing the per-cpu group shares
852 * this avoids remote rq-locks at the expense of fairness.
853 * default: 4
854 */
855unsigned int sysctl_sched_shares_thresh = 4;
856
fa85ae24 857/*
9f0c1e56 858 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
859 * default: 1s
860 */
9f0c1e56 861unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 862
6892b75e
IM
863static __read_mostly int scheduler_running;
864
9f0c1e56
PZ
865/*
866 * part of the period that we allow rt tasks to run in us.
867 * default: 0.95s
868 */
869int sysctl_sched_rt_runtime = 950000;
fa85ae24 870
d0b27fa7
PZ
871static inline u64 global_rt_period(void)
872{
873 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
874}
875
876static inline u64 global_rt_runtime(void)
877{
e26873bb 878 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
879 return RUNTIME_INF;
880
881 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
882}
fa85ae24 883
1da177e4 884#ifndef prepare_arch_switch
4866cde0
NP
885# define prepare_arch_switch(next) do { } while (0)
886#endif
887#ifndef finish_arch_switch
888# define finish_arch_switch(prev) do { } while (0)
889#endif
890
051a1d1a
DA
891static inline int task_current(struct rq *rq, struct task_struct *p)
892{
893 return rq->curr == p;
894}
895
4866cde0 896#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 898{
051a1d1a 899 return task_current(rq, p);
4866cde0
NP
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 907{
da04c035
IM
908#ifdef CONFIG_DEBUG_SPINLOCK
909 /* this is a valid case when another task releases the spinlock */
910 rq->lock.owner = current;
911#endif
8a25d5de
IM
912 /*
913 * If we are tracking spinlock dependencies then we have to
914 * fix up the runqueue lock - which gets 'carried over' from
915 * prev into current:
916 */
917 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
918
4866cde0
NP
919 spin_unlock_irq(&rq->lock);
920}
921
922#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 923static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 return p->oncpu;
927#else
051a1d1a 928 return task_current(rq, p);
4866cde0
NP
929#endif
930}
931
70b97a7f 932static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
933{
934#ifdef CONFIG_SMP
935 /*
936 * We can optimise this out completely for !SMP, because the
937 * SMP rebalancing from interrupt is the only thing that cares
938 * here.
939 */
940 next->oncpu = 1;
941#endif
942#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
943 spin_unlock_irq(&rq->lock);
944#else
945 spin_unlock(&rq->lock);
946#endif
947}
948
70b97a7f 949static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
950{
951#ifdef CONFIG_SMP
952 /*
953 * After ->oncpu is cleared, the task can be moved to a different CPU.
954 * We must ensure this doesn't happen until the switch is completely
955 * finished.
956 */
957 smp_wmb();
958 prev->oncpu = 0;
959#endif
960#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
961 local_irq_enable();
1da177e4 962#endif
4866cde0
NP
963}
964#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 965
b29739f9
IM
966/*
967 * __task_rq_lock - lock the runqueue a given task resides on.
968 * Must be called interrupts disabled.
969 */
70b97a7f 970static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
971 __acquires(rq->lock)
972{
3a5c359a
AK
973 for (;;) {
974 struct rq *rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
b29739f9 978 spin_unlock(&rq->lock);
b29739f9 979 }
b29739f9
IM
980}
981
1da177e4
LT
982/*
983 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 984 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
985 * explicitly disabling preemption.
986 */
70b97a7f 987static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4 991
3a5c359a
AK
992 for (;;) {
993 local_irq_save(*flags);
994 rq = task_rq(p);
995 spin_lock(&rq->lock);
996 if (likely(rq == task_rq(p)))
997 return rq;
1da177e4 998 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 999 }
1da177e4
LT
1000}
1001
ad474cac
ON
1002void task_rq_unlock_wait(struct task_struct *p)
1003{
1004 struct rq *rq = task_rq(p);
1005
1006 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1007 spin_unlock_wait(&rq->lock);
1008}
1009
a9957449 1010static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1011 __releases(rq->lock)
1012{
1013 spin_unlock(&rq->lock);
1014}
1015
70b97a7f 1016static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1017 __releases(rq->lock)
1018{
1019 spin_unlock_irqrestore(&rq->lock, *flags);
1020}
1021
1da177e4 1022/*
cc2a73b5 1023 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1024 */
a9957449 1025static struct rq *this_rq_lock(void)
1da177e4
LT
1026 __acquires(rq->lock)
1027{
70b97a7f 1028 struct rq *rq;
1da177e4
LT
1029
1030 local_irq_disable();
1031 rq = this_rq();
1032 spin_lock(&rq->lock);
1033
1034 return rq;
1035}
1036
8f4d37ec
PZ
1037#ifdef CONFIG_SCHED_HRTICK
1038/*
1039 * Use HR-timers to deliver accurate preemption points.
1040 *
1041 * Its all a bit involved since we cannot program an hrt while holding the
1042 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1043 * reschedule event.
1044 *
1045 * When we get rescheduled we reprogram the hrtick_timer outside of the
1046 * rq->lock.
1047 */
8f4d37ec
PZ
1048
1049/*
1050 * Use hrtick when:
1051 * - enabled by features
1052 * - hrtimer is actually high res
1053 */
1054static inline int hrtick_enabled(struct rq *rq)
1055{
1056 if (!sched_feat(HRTICK))
1057 return 0;
ba42059f 1058 if (!cpu_active(cpu_of(rq)))
b328ca18 1059 return 0;
8f4d37ec
PZ
1060 return hrtimer_is_hres_active(&rq->hrtick_timer);
1061}
1062
8f4d37ec
PZ
1063static void hrtick_clear(struct rq *rq)
1064{
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067}
1068
8f4d37ec
PZ
1069/*
1070 * High-resolution timer tick.
1071 * Runs from hardirq context with interrupts disabled.
1072 */
1073static enum hrtimer_restart hrtick(struct hrtimer *timer)
1074{
1075 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1076
1077 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1078
1079 spin_lock(&rq->lock);
3e51f33f 1080 update_rq_clock(rq);
8f4d37ec
PZ
1081 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1082 spin_unlock(&rq->lock);
1083
1084 return HRTIMER_NORESTART;
1085}
1086
95e904c7 1087#ifdef CONFIG_SMP
31656519
PZ
1088/*
1089 * called from hardirq (IPI) context
1090 */
1091static void __hrtick_start(void *arg)
b328ca18 1092{
31656519 1093 struct rq *rq = arg;
b328ca18 1094
31656519
PZ
1095 spin_lock(&rq->lock);
1096 hrtimer_restart(&rq->hrtick_timer);
1097 rq->hrtick_csd_pending = 0;
1098 spin_unlock(&rq->lock);
b328ca18
PZ
1099}
1100
31656519
PZ
1101/*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1107{
31656519
PZ
1108 struct hrtimer *timer = &rq->hrtick_timer;
1109 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1110
cc584b21 1111 hrtimer_set_expires(timer, time);
31656519
PZ
1112
1113 if (rq == this_rq()) {
1114 hrtimer_restart(timer);
1115 } else if (!rq->hrtick_csd_pending) {
6e275637 1116 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1117 rq->hrtick_csd_pending = 1;
1118 }
b328ca18
PZ
1119}
1120
1121static int
1122hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1123{
1124 int cpu = (int)(long)hcpu;
1125
1126 switch (action) {
1127 case CPU_UP_CANCELED:
1128 case CPU_UP_CANCELED_FROZEN:
1129 case CPU_DOWN_PREPARE:
1130 case CPU_DOWN_PREPARE_FROZEN:
1131 case CPU_DEAD:
1132 case CPU_DEAD_FROZEN:
31656519 1133 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1134 return NOTIFY_OK;
1135 }
1136
1137 return NOTIFY_DONE;
1138}
1139
fa748203 1140static __init void init_hrtick(void)
b328ca18
PZ
1141{
1142 hotcpu_notifier(hotplug_hrtick, 0);
1143}
31656519
PZ
1144#else
1145/*
1146 * Called to set the hrtick timer state.
1147 *
1148 * called with rq->lock held and irqs disabled
1149 */
1150static void hrtick_start(struct rq *rq, u64 delay)
1151{
7f1e2ca9
PZ
1152 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1153 HRTIMER_MODE_REL, 0);
31656519 1154}
b328ca18 1155
006c75f1 1156static inline void init_hrtick(void)
8f4d37ec 1157{
8f4d37ec 1158}
31656519 1159#endif /* CONFIG_SMP */
8f4d37ec 1160
31656519 1161static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1162{
31656519
PZ
1163#ifdef CONFIG_SMP
1164 rq->hrtick_csd_pending = 0;
8f4d37ec 1165
31656519
PZ
1166 rq->hrtick_csd.flags = 0;
1167 rq->hrtick_csd.func = __hrtick_start;
1168 rq->hrtick_csd.info = rq;
1169#endif
8f4d37ec 1170
31656519
PZ
1171 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1172 rq->hrtick_timer.function = hrtick;
8f4d37ec 1173}
006c75f1 1174#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1175static inline void hrtick_clear(struct rq *rq)
1176{
1177}
1178
8f4d37ec
PZ
1179static inline void init_rq_hrtick(struct rq *rq)
1180{
1181}
1182
b328ca18
PZ
1183static inline void init_hrtick(void)
1184{
1185}
006c75f1 1186#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1187
c24d20db
IM
1188/*
1189 * resched_task - mark a task 'to be rescheduled now'.
1190 *
1191 * On UP this means the setting of the need_resched flag, on SMP it
1192 * might also involve a cross-CPU call to trigger the scheduler on
1193 * the target CPU.
1194 */
1195#ifdef CONFIG_SMP
1196
1197#ifndef tsk_is_polling
1198#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1199#endif
1200
31656519 1201static void resched_task(struct task_struct *p)
c24d20db
IM
1202{
1203 int cpu;
1204
1205 assert_spin_locked(&task_rq(p)->lock);
1206
5ed0cec0 1207 if (test_tsk_need_resched(p))
c24d20db
IM
1208 return;
1209
5ed0cec0 1210 set_tsk_need_resched(p);
c24d20db
IM
1211
1212 cpu = task_cpu(p);
1213 if (cpu == smp_processor_id())
1214 return;
1215
1216 /* NEED_RESCHED must be visible before we test polling */
1217 smp_mb();
1218 if (!tsk_is_polling(p))
1219 smp_send_reschedule(cpu);
1220}
1221
1222static void resched_cpu(int cpu)
1223{
1224 struct rq *rq = cpu_rq(cpu);
1225 unsigned long flags;
1226
1227 if (!spin_trylock_irqsave(&rq->lock, flags))
1228 return;
1229 resched_task(cpu_curr(cpu));
1230 spin_unlock_irqrestore(&rq->lock, flags);
1231}
06d8308c
TG
1232
1233#ifdef CONFIG_NO_HZ
1234/*
1235 * When add_timer_on() enqueues a timer into the timer wheel of an
1236 * idle CPU then this timer might expire before the next timer event
1237 * which is scheduled to wake up that CPU. In case of a completely
1238 * idle system the next event might even be infinite time into the
1239 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1240 * leaves the inner idle loop so the newly added timer is taken into
1241 * account when the CPU goes back to idle and evaluates the timer
1242 * wheel for the next timer event.
1243 */
1244void wake_up_idle_cpu(int cpu)
1245{
1246 struct rq *rq = cpu_rq(cpu);
1247
1248 if (cpu == smp_processor_id())
1249 return;
1250
1251 /*
1252 * This is safe, as this function is called with the timer
1253 * wheel base lock of (cpu) held. When the CPU is on the way
1254 * to idle and has not yet set rq->curr to idle then it will
1255 * be serialized on the timer wheel base lock and take the new
1256 * timer into account automatically.
1257 */
1258 if (rq->curr != rq->idle)
1259 return;
1260
1261 /*
1262 * We can set TIF_RESCHED on the idle task of the other CPU
1263 * lockless. The worst case is that the other CPU runs the
1264 * idle task through an additional NOOP schedule()
1265 */
5ed0cec0 1266 set_tsk_need_resched(rq->idle);
06d8308c
TG
1267
1268 /* NEED_RESCHED must be visible before we test polling */
1269 smp_mb();
1270 if (!tsk_is_polling(rq->idle))
1271 smp_send_reschedule(cpu);
1272}
6d6bc0ad 1273#endif /* CONFIG_NO_HZ */
06d8308c 1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db
IM
1277{
1278 assert_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
6d6bc0ad 1281#endif /* CONFIG_SMP */
c24d20db 1282
45bf76df
IM
1283#if BITS_PER_LONG == 32
1284# define WMULT_CONST (~0UL)
1285#else
1286# define WMULT_CONST (1UL << 32)
1287#endif
1288
1289#define WMULT_SHIFT 32
1290
194081eb
IM
1291/*
1292 * Shift right and round:
1293 */
cf2ab469 1294#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1295
a7be37ac
PZ
1296/*
1297 * delta *= weight / lw
1298 */
cb1c4fc9 1299static unsigned long
45bf76df
IM
1300calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302{
1303 u64 tmp;
1304
7a232e03
LJ
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
45bf76df
IM
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
194081eb 1317 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1319 WMULT_SHIFT/2);
1320 else
cf2ab469 1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1322
ecf691da 1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1327{
1328 lw->weight += inc;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1333{
1334 lw->weight -= dec;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
2dd73a4f
PW
1338/*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
cce7ade8
PZ
1347#define WEIGHT_IDLEPRIO 3
1348#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1349
1350/*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
dd41f596
IM
1361 */
1362static const int prio_to_weight[40] = {
254753dc
IM
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1371};
1372
5714d2de
IM
1373/*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
dd41f596 1380static const u32 prio_to_wmult[40] = {
254753dc
IM
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1389};
2dd73a4f 1390
dd41f596
IM
1391static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393/*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402};
1403
e1d1484f
PW
1404#ifdef CONFIG_SMP
1405static unsigned long
1406balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411static int
1412iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
e1d1484f 1415#endif
dd41f596 1416
ef12fefa
BR
1417/* Time spent by the tasks of the cpu accounting group executing in ... */
1418enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423};
1424
d842de87
SV
1425#ifdef CONFIG_CGROUP_CPUACCT
1426static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1427static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1429#else
1430static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1431static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1433#endif
1434
18d95a28
PZ
1435static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_add(&rq->load, load);
1438}
1439
1440static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_sub(&rq->load, load);
1443}
1444
7940ca36 1445#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1446typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
eb755805 1452static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1453{
1454 struct task_group *parent, *child;
eb755805 1455 int ret;
c09595f6
PZ
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
eb755805
PZ
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467up:
1468 continue;
1469 }
eb755805
PZ
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
c09595f6
PZ
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
eb755805 1478out_unlock:
c09595f6 1479 rcu_read_unlock();
eb755805
PZ
1480
1481 return ret;
c09595f6
PZ
1482}
1483
eb755805
PZ
1484static int tg_nop(struct task_group *tg, void *data)
1485{
1486 return 0;
c09595f6 1487}
eb755805
PZ
1488#endif
1489
1490#ifdef CONFIG_SMP
1491static unsigned long source_load(int cpu, int type);
1492static unsigned long target_load(int cpu, int type);
1493static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1494
1495static unsigned long cpu_avg_load_per_task(int cpu)
1496{
1497 struct rq *rq = cpu_rq(cpu);
af6d596f 1498 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1499
4cd42620
SR
1500 if (nr_running)
1501 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1502 else
1503 rq->avg_load_per_task = 0;
eb755805
PZ
1504
1505 return rq->avg_load_per_task;
1506}
1507
1508#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1509
c09595f6
PZ
1510static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1511
1512/*
1513 * Calculate and set the cpu's group shares.
1514 */
1515static void
ffda12a1
PZ
1516update_group_shares_cpu(struct task_group *tg, int cpu,
1517 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1518{
c09595f6
PZ
1519 unsigned long shares;
1520 unsigned long rq_weight;
1521
c8cba857 1522 if (!tg->se[cpu])
c09595f6
PZ
1523 return;
1524
ec4e0e2f 1525 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1526
c09595f6
PZ
1527 /*
1528 * \Sum shares * rq_weight
1529 * shares = -----------------------
1530 * \Sum rq_weight
1531 *
1532 */
ec4e0e2f 1533 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1534 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1535
ffda12a1
PZ
1536 if (abs(shares - tg->se[cpu]->load.weight) >
1537 sysctl_sched_shares_thresh) {
1538 struct rq *rq = cpu_rq(cpu);
1539 unsigned long flags;
c09595f6 1540
ffda12a1 1541 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1542 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1543
ffda12a1
PZ
1544 __set_se_shares(tg->se[cpu], shares);
1545 spin_unlock_irqrestore(&rq->lock, flags);
1546 }
18d95a28 1547}
c09595f6
PZ
1548
1549/*
c8cba857
PZ
1550 * Re-compute the task group their per cpu shares over the given domain.
1551 * This needs to be done in a bottom-up fashion because the rq weight of a
1552 * parent group depends on the shares of its child groups.
c09595f6 1553 */
eb755805 1554static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1555{
ec4e0e2f 1556 unsigned long weight, rq_weight = 0;
c8cba857 1557 unsigned long shares = 0;
eb755805 1558 struct sched_domain *sd = data;
c8cba857 1559 int i;
c09595f6 1560
758b2cdc 1561 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1562 /*
1563 * If there are currently no tasks on the cpu pretend there
1564 * is one of average load so that when a new task gets to
1565 * run here it will not get delayed by group starvation.
1566 */
1567 weight = tg->cfs_rq[i]->load.weight;
1568 if (!weight)
1569 weight = NICE_0_LOAD;
1570
1571 tg->cfs_rq[i]->rq_weight = weight;
1572 rq_weight += weight;
c8cba857 1573 shares += tg->cfs_rq[i]->shares;
c09595f6 1574 }
c09595f6 1575
c8cba857
PZ
1576 if ((!shares && rq_weight) || shares > tg->shares)
1577 shares = tg->shares;
1578
1579 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1580 shares = tg->shares;
c09595f6 1581
758b2cdc 1582 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1583 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1584
1585 return 0;
c09595f6
PZ
1586}
1587
1588/*
c8cba857
PZ
1589 * Compute the cpu's hierarchical load factor for each task group.
1590 * This needs to be done in a top-down fashion because the load of a child
1591 * group is a fraction of its parents load.
c09595f6 1592 */
eb755805 1593static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1594{
c8cba857 1595 unsigned long load;
eb755805 1596 long cpu = (long)data;
c09595f6 1597
c8cba857
PZ
1598 if (!tg->parent) {
1599 load = cpu_rq(cpu)->load.weight;
1600 } else {
1601 load = tg->parent->cfs_rq[cpu]->h_load;
1602 load *= tg->cfs_rq[cpu]->shares;
1603 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1604 }
c09595f6 1605
c8cba857 1606 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1607
eb755805 1608 return 0;
c09595f6
PZ
1609}
1610
c8cba857 1611static void update_shares(struct sched_domain *sd)
4d8d595d 1612{
2398f2c6
PZ
1613 u64 now = cpu_clock(raw_smp_processor_id());
1614 s64 elapsed = now - sd->last_update;
1615
1616 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1617 sd->last_update = now;
eb755805 1618 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1619 }
4d8d595d
PZ
1620}
1621
3e5459b4
PZ
1622static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1623{
1624 spin_unlock(&rq->lock);
1625 update_shares(sd);
1626 spin_lock(&rq->lock);
1627}
1628
eb755805 1629static void update_h_load(long cpu)
c09595f6 1630{
eb755805 1631 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1632}
1633
c09595f6
PZ
1634#else
1635
c8cba857 1636static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1637{
1638}
1639
3e5459b4
PZ
1640static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1641{
1642}
1643
18d95a28
PZ
1644#endif
1645
8f45e2b5
GH
1646#ifdef CONFIG_PREEMPT
1647
70574a99 1648/*
8f45e2b5
GH
1649 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1650 * way at the expense of forcing extra atomic operations in all
1651 * invocations. This assures that the double_lock is acquired using the
1652 * same underlying policy as the spinlock_t on this architecture, which
1653 * reduces latency compared to the unfair variant below. However, it
1654 * also adds more overhead and therefore may reduce throughput.
70574a99 1655 */
8f45e2b5
GH
1656static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1657 __releases(this_rq->lock)
1658 __acquires(busiest->lock)
1659 __acquires(this_rq->lock)
1660{
1661 spin_unlock(&this_rq->lock);
1662 double_rq_lock(this_rq, busiest);
1663
1664 return 1;
1665}
1666
1667#else
1668/*
1669 * Unfair double_lock_balance: Optimizes throughput at the expense of
1670 * latency by eliminating extra atomic operations when the locks are
1671 * already in proper order on entry. This favors lower cpu-ids and will
1672 * grant the double lock to lower cpus over higher ids under contention,
1673 * regardless of entry order into the function.
1674 */
1675static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1676 __releases(this_rq->lock)
1677 __acquires(busiest->lock)
1678 __acquires(this_rq->lock)
1679{
1680 int ret = 0;
1681
70574a99
AD
1682 if (unlikely(!spin_trylock(&busiest->lock))) {
1683 if (busiest < this_rq) {
1684 spin_unlock(&this_rq->lock);
1685 spin_lock(&busiest->lock);
1686 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1687 ret = 1;
1688 } else
1689 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1690 }
1691 return ret;
1692}
1693
8f45e2b5
GH
1694#endif /* CONFIG_PREEMPT */
1695
1696/*
1697 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1698 */
1699static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1700{
1701 if (unlikely(!irqs_disabled())) {
1702 /* printk() doesn't work good under rq->lock */
1703 spin_unlock(&this_rq->lock);
1704 BUG_ON(1);
1705 }
1706
1707 return _double_lock_balance(this_rq, busiest);
1708}
1709
70574a99
AD
1710static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(busiest->lock)
1712{
1713 spin_unlock(&busiest->lock);
1714 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1715}
18d95a28
PZ
1716#endif
1717
30432094 1718#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1719static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1720{
30432094 1721#ifdef CONFIG_SMP
34e83e85
IM
1722 cfs_rq->shares = shares;
1723#endif
1724}
30432094 1725#endif
e7693a36 1726
dd41f596 1727#include "sched_stats.h"
dd41f596 1728#include "sched_idletask.c"
5522d5d5
IM
1729#include "sched_fair.c"
1730#include "sched_rt.c"
dd41f596
IM
1731#ifdef CONFIG_SCHED_DEBUG
1732# include "sched_debug.c"
1733#endif
1734
1735#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1736#define for_each_class(class) \
1737 for (class = sched_class_highest; class; class = class->next)
dd41f596 1738
c09595f6 1739static void inc_nr_running(struct rq *rq)
9c217245
IM
1740{
1741 rq->nr_running++;
9c217245
IM
1742}
1743
c09595f6 1744static void dec_nr_running(struct rq *rq)
9c217245
IM
1745{
1746 rq->nr_running--;
9c217245
IM
1747}
1748
45bf76df
IM
1749static void set_load_weight(struct task_struct *p)
1750{
1751 if (task_has_rt_policy(p)) {
dd41f596
IM
1752 p->se.load.weight = prio_to_weight[0] * 2;
1753 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1754 return;
1755 }
45bf76df 1756
dd41f596
IM
1757 /*
1758 * SCHED_IDLE tasks get minimal weight:
1759 */
1760 if (p->policy == SCHED_IDLE) {
1761 p->se.load.weight = WEIGHT_IDLEPRIO;
1762 p->se.load.inv_weight = WMULT_IDLEPRIO;
1763 return;
1764 }
71f8bd46 1765
dd41f596
IM
1766 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1767 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1768}
1769
2087a1ad
GH
1770static void update_avg(u64 *avg, u64 sample)
1771{
1772 s64 diff = sample - *avg;
1773 *avg += diff >> 3;
1774}
1775
8159f87e 1776static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1777{
831451ac
PZ
1778 if (wakeup)
1779 p->se.start_runtime = p->se.sum_exec_runtime;
1780
dd41f596 1781 sched_info_queued(p);
fd390f6a 1782 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1783 p->se.on_rq = 1;
71f8bd46
IM
1784}
1785
69be72c1 1786static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1787{
831451ac
PZ
1788 if (sleep) {
1789 if (p->se.last_wakeup) {
1790 update_avg(&p->se.avg_overlap,
1791 p->se.sum_exec_runtime - p->se.last_wakeup);
1792 p->se.last_wakeup = 0;
1793 } else {
1794 update_avg(&p->se.avg_wakeup,
1795 sysctl_sched_wakeup_granularity);
1796 }
2087a1ad
GH
1797 }
1798
46ac22ba 1799 sched_info_dequeued(p);
f02231e5 1800 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1801 p->se.on_rq = 0;
71f8bd46
IM
1802}
1803
14531189 1804/*
dd41f596 1805 * __normal_prio - return the priority that is based on the static prio
14531189 1806 */
14531189
IM
1807static inline int __normal_prio(struct task_struct *p)
1808{
dd41f596 1809 return p->static_prio;
14531189
IM
1810}
1811
b29739f9
IM
1812/*
1813 * Calculate the expected normal priority: i.e. priority
1814 * without taking RT-inheritance into account. Might be
1815 * boosted by interactivity modifiers. Changes upon fork,
1816 * setprio syscalls, and whenever the interactivity
1817 * estimator recalculates.
1818 */
36c8b586 1819static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1820{
1821 int prio;
1822
e05606d3 1823 if (task_has_rt_policy(p))
b29739f9
IM
1824 prio = MAX_RT_PRIO-1 - p->rt_priority;
1825 else
1826 prio = __normal_prio(p);
1827 return prio;
1828}
1829
1830/*
1831 * Calculate the current priority, i.e. the priority
1832 * taken into account by the scheduler. This value might
1833 * be boosted by RT tasks, or might be boosted by
1834 * interactivity modifiers. Will be RT if the task got
1835 * RT-boosted. If not then it returns p->normal_prio.
1836 */
36c8b586 1837static int effective_prio(struct task_struct *p)
b29739f9
IM
1838{
1839 p->normal_prio = normal_prio(p);
1840 /*
1841 * If we are RT tasks or we were boosted to RT priority,
1842 * keep the priority unchanged. Otherwise, update priority
1843 * to the normal priority:
1844 */
1845 if (!rt_prio(p->prio))
1846 return p->normal_prio;
1847 return p->prio;
1848}
1849
1da177e4 1850/*
dd41f596 1851 * activate_task - move a task to the runqueue.
1da177e4 1852 */
dd41f596 1853static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1854{
d9514f6c 1855 if (task_contributes_to_load(p))
dd41f596 1856 rq->nr_uninterruptible--;
1da177e4 1857
8159f87e 1858 enqueue_task(rq, p, wakeup);
c09595f6 1859 inc_nr_running(rq);
1da177e4
LT
1860}
1861
1da177e4
LT
1862/*
1863 * deactivate_task - remove a task from the runqueue.
1864 */
2e1cb74a 1865static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1866{
d9514f6c 1867 if (task_contributes_to_load(p))
dd41f596
IM
1868 rq->nr_uninterruptible++;
1869
69be72c1 1870 dequeue_task(rq, p, sleep);
c09595f6 1871 dec_nr_running(rq);
1da177e4
LT
1872}
1873
1da177e4
LT
1874/**
1875 * task_curr - is this task currently executing on a CPU?
1876 * @p: the task in question.
1877 */
36c8b586 1878inline int task_curr(const struct task_struct *p)
1da177e4
LT
1879{
1880 return cpu_curr(task_cpu(p)) == p;
1881}
1882
dd41f596
IM
1883static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1884{
6f505b16 1885 set_task_rq(p, cpu);
dd41f596 1886#ifdef CONFIG_SMP
ce96b5ac
DA
1887 /*
1888 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1889 * successfuly executed on another CPU. We must ensure that updates of
1890 * per-task data have been completed by this moment.
1891 */
1892 smp_wmb();
dd41f596 1893 task_thread_info(p)->cpu = cpu;
dd41f596 1894#endif
2dd73a4f
PW
1895}
1896
cb469845
SR
1897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1898 const struct sched_class *prev_class,
1899 int oldprio, int running)
1900{
1901 if (prev_class != p->sched_class) {
1902 if (prev_class->switched_from)
1903 prev_class->switched_from(rq, p, running);
1904 p->sched_class->switched_to(rq, p, running);
1905 } else
1906 p->sched_class->prio_changed(rq, p, oldprio, running);
1907}
1908
1da177e4 1909#ifdef CONFIG_SMP
c65cc870 1910
e958b360
TG
1911/* Used instead of source_load when we know the type == 0 */
1912static unsigned long weighted_cpuload(const int cpu)
1913{
1914 return cpu_rq(cpu)->load.weight;
1915}
1916
cc367732
IM
1917/*
1918 * Is this task likely cache-hot:
1919 */
e7693a36 1920static int
cc367732
IM
1921task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1922{
1923 s64 delta;
1924
f540a608
IM
1925 /*
1926 * Buddy candidates are cache hot:
1927 */
4793241b
PZ
1928 if (sched_feat(CACHE_HOT_BUDDY) &&
1929 (&p->se == cfs_rq_of(&p->se)->next ||
1930 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1931 return 1;
1932
cc367732
IM
1933 if (p->sched_class != &fair_sched_class)
1934 return 0;
1935
6bc1665b
IM
1936 if (sysctl_sched_migration_cost == -1)
1937 return 1;
1938 if (sysctl_sched_migration_cost == 0)
1939 return 0;
1940
cc367732
IM
1941 delta = now - p->se.exec_start;
1942
1943 return delta < (s64)sysctl_sched_migration_cost;
1944}
1945
1946
dd41f596 1947void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1948{
dd41f596
IM
1949 int old_cpu = task_cpu(p);
1950 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1951 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1952 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1953 u64 clock_offset;
dd41f596
IM
1954
1955 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1956
cbc34ed1
PZ
1957 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1958
6cfb0d5d
IM
1959#ifdef CONFIG_SCHEDSTATS
1960 if (p->se.wait_start)
1961 p->se.wait_start -= clock_offset;
dd41f596
IM
1962 if (p->se.sleep_start)
1963 p->se.sleep_start -= clock_offset;
1964 if (p->se.block_start)
1965 p->se.block_start -= clock_offset;
cc367732
IM
1966 if (old_cpu != new_cpu) {
1967 schedstat_inc(p, se.nr_migrations);
1968 if (task_hot(p, old_rq->clock, NULL))
1969 schedstat_inc(p, se.nr_forced2_migrations);
1970 }
6cfb0d5d 1971#endif
2830cf8c
SV
1972 p->se.vruntime -= old_cfsrq->min_vruntime -
1973 new_cfsrq->min_vruntime;
dd41f596
IM
1974
1975 __set_task_cpu(p, new_cpu);
c65cc870
IM
1976}
1977
70b97a7f 1978struct migration_req {
1da177e4 1979 struct list_head list;
1da177e4 1980
36c8b586 1981 struct task_struct *task;
1da177e4
LT
1982 int dest_cpu;
1983
1da177e4 1984 struct completion done;
70b97a7f 1985};
1da177e4
LT
1986
1987/*
1988 * The task's runqueue lock must be held.
1989 * Returns true if you have to wait for migration thread.
1990 */
36c8b586 1991static int
70b97a7f 1992migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1993{
70b97a7f 1994 struct rq *rq = task_rq(p);
1da177e4
LT
1995
1996 /*
1997 * If the task is not on a runqueue (and not running), then
1998 * it is sufficient to simply update the task's cpu field.
1999 */
dd41f596 2000 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2001 set_task_cpu(p, dest_cpu);
2002 return 0;
2003 }
2004
2005 init_completion(&req->done);
1da177e4
LT
2006 req->task = p;
2007 req->dest_cpu = dest_cpu;
2008 list_add(&req->list, &rq->migration_queue);
48f24c4d 2009
1da177e4
LT
2010 return 1;
2011}
2012
2013/*
2014 * wait_task_inactive - wait for a thread to unschedule.
2015 *
85ba2d86
RM
2016 * If @match_state is nonzero, it's the @p->state value just checked and
2017 * not expected to change. If it changes, i.e. @p might have woken up,
2018 * then return zero. When we succeed in waiting for @p to be off its CPU,
2019 * we return a positive number (its total switch count). If a second call
2020 * a short while later returns the same number, the caller can be sure that
2021 * @p has remained unscheduled the whole time.
2022 *
1da177e4
LT
2023 * The caller must ensure that the task *will* unschedule sometime soon,
2024 * else this function might spin for a *long* time. This function can't
2025 * be called with interrupts off, or it may introduce deadlock with
2026 * smp_call_function() if an IPI is sent by the same process we are
2027 * waiting to become inactive.
2028 */
85ba2d86 2029unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2030{
2031 unsigned long flags;
dd41f596 2032 int running, on_rq;
85ba2d86 2033 unsigned long ncsw;
70b97a7f 2034 struct rq *rq;
1da177e4 2035
3a5c359a
AK
2036 for (;;) {
2037 /*
2038 * We do the initial early heuristics without holding
2039 * any task-queue locks at all. We'll only try to get
2040 * the runqueue lock when things look like they will
2041 * work out!
2042 */
2043 rq = task_rq(p);
fa490cfd 2044
3a5c359a
AK
2045 /*
2046 * If the task is actively running on another CPU
2047 * still, just relax and busy-wait without holding
2048 * any locks.
2049 *
2050 * NOTE! Since we don't hold any locks, it's not
2051 * even sure that "rq" stays as the right runqueue!
2052 * But we don't care, since "task_running()" will
2053 * return false if the runqueue has changed and p
2054 * is actually now running somewhere else!
2055 */
85ba2d86
RM
2056 while (task_running(rq, p)) {
2057 if (match_state && unlikely(p->state != match_state))
2058 return 0;
3a5c359a 2059 cpu_relax();
85ba2d86 2060 }
fa490cfd 2061
3a5c359a
AK
2062 /*
2063 * Ok, time to look more closely! We need the rq
2064 * lock now, to be *sure*. If we're wrong, we'll
2065 * just go back and repeat.
2066 */
2067 rq = task_rq_lock(p, &flags);
0a16b607 2068 trace_sched_wait_task(rq, p);
3a5c359a
AK
2069 running = task_running(rq, p);
2070 on_rq = p->se.on_rq;
85ba2d86 2071 ncsw = 0;
f31e11d8 2072 if (!match_state || p->state == match_state)
93dcf55f 2073 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2074 task_rq_unlock(rq, &flags);
fa490cfd 2075
85ba2d86
RM
2076 /*
2077 * If it changed from the expected state, bail out now.
2078 */
2079 if (unlikely(!ncsw))
2080 break;
2081
3a5c359a
AK
2082 /*
2083 * Was it really running after all now that we
2084 * checked with the proper locks actually held?
2085 *
2086 * Oops. Go back and try again..
2087 */
2088 if (unlikely(running)) {
2089 cpu_relax();
2090 continue;
2091 }
fa490cfd 2092
3a5c359a
AK
2093 /*
2094 * It's not enough that it's not actively running,
2095 * it must be off the runqueue _entirely_, and not
2096 * preempted!
2097 *
80dd99b3 2098 * So if it was still runnable (but just not actively
3a5c359a
AK
2099 * running right now), it's preempted, and we should
2100 * yield - it could be a while.
2101 */
2102 if (unlikely(on_rq)) {
2103 schedule_timeout_uninterruptible(1);
2104 continue;
2105 }
fa490cfd 2106
3a5c359a
AK
2107 /*
2108 * Ahh, all good. It wasn't running, and it wasn't
2109 * runnable, which means that it will never become
2110 * running in the future either. We're all done!
2111 */
2112 break;
2113 }
85ba2d86
RM
2114
2115 return ncsw;
1da177e4
LT
2116}
2117
2118/***
2119 * kick_process - kick a running thread to enter/exit the kernel
2120 * @p: the to-be-kicked thread
2121 *
2122 * Cause a process which is running on another CPU to enter
2123 * kernel-mode, without any delay. (to get signals handled.)
2124 *
2125 * NOTE: this function doesnt have to take the runqueue lock,
2126 * because all it wants to ensure is that the remote task enters
2127 * the kernel. If the IPI races and the task has been migrated
2128 * to another CPU then no harm is done and the purpose has been
2129 * achieved as well.
2130 */
36c8b586 2131void kick_process(struct task_struct *p)
1da177e4
LT
2132{
2133 int cpu;
2134
2135 preempt_disable();
2136 cpu = task_cpu(p);
2137 if ((cpu != smp_processor_id()) && task_curr(p))
2138 smp_send_reschedule(cpu);
2139 preempt_enable();
2140}
2141
2142/*
2dd73a4f
PW
2143 * Return a low guess at the load of a migration-source cpu weighted
2144 * according to the scheduling class and "nice" value.
1da177e4
LT
2145 *
2146 * We want to under-estimate the load of migration sources, to
2147 * balance conservatively.
2148 */
a9957449 2149static unsigned long source_load(int cpu, int type)
1da177e4 2150{
70b97a7f 2151 struct rq *rq = cpu_rq(cpu);
dd41f596 2152 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2153
93b75217 2154 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2155 return total;
b910472d 2156
dd41f596 2157 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2158}
2159
2160/*
2dd73a4f
PW
2161 * Return a high guess at the load of a migration-target cpu weighted
2162 * according to the scheduling class and "nice" value.
1da177e4 2163 */
a9957449 2164static unsigned long target_load(int cpu, int type)
1da177e4 2165{
70b97a7f 2166 struct rq *rq = cpu_rq(cpu);
dd41f596 2167 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2168
93b75217 2169 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2170 return total;
3b0bd9bc 2171
dd41f596 2172 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2173}
2174
147cbb4b
NP
2175/*
2176 * find_idlest_group finds and returns the least busy CPU group within the
2177 * domain.
2178 */
2179static struct sched_group *
2180find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2181{
2182 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2183 unsigned long min_load = ULONG_MAX, this_load = 0;
2184 int load_idx = sd->forkexec_idx;
2185 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2186
2187 do {
2188 unsigned long load, avg_load;
2189 int local_group;
2190 int i;
2191
da5a5522 2192 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2193 if (!cpumask_intersects(sched_group_cpus(group),
2194 &p->cpus_allowed))
3a5c359a 2195 continue;
da5a5522 2196
758b2cdc
RR
2197 local_group = cpumask_test_cpu(this_cpu,
2198 sched_group_cpus(group));
147cbb4b
NP
2199
2200 /* Tally up the load of all CPUs in the group */
2201 avg_load = 0;
2202
758b2cdc 2203 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2204 /* Bias balancing toward cpus of our domain */
2205 if (local_group)
2206 load = source_load(i, load_idx);
2207 else
2208 load = target_load(i, load_idx);
2209
2210 avg_load += load;
2211 }
2212
2213 /* Adjust by relative CPU power of the group */
5517d86b
ED
2214 avg_load = sg_div_cpu_power(group,
2215 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2216
2217 if (local_group) {
2218 this_load = avg_load;
2219 this = group;
2220 } else if (avg_load < min_load) {
2221 min_load = avg_load;
2222 idlest = group;
2223 }
3a5c359a 2224 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2225
2226 if (!idlest || 100*this_load < imbalance*min_load)
2227 return NULL;
2228 return idlest;
2229}
2230
2231/*
0feaece9 2232 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2233 */
95cdf3b7 2234static int
758b2cdc 2235find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2236{
2237 unsigned long load, min_load = ULONG_MAX;
2238 int idlest = -1;
2239 int i;
2240
da5a5522 2241 /* Traverse only the allowed CPUs */
758b2cdc 2242 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2243 load = weighted_cpuload(i);
147cbb4b
NP
2244
2245 if (load < min_load || (load == min_load && i == this_cpu)) {
2246 min_load = load;
2247 idlest = i;
2248 }
2249 }
2250
2251 return idlest;
2252}
2253
476d139c
NP
2254/*
2255 * sched_balance_self: balance the current task (running on cpu) in domains
2256 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2257 * SD_BALANCE_EXEC.
2258 *
2259 * Balance, ie. select the least loaded group.
2260 *
2261 * Returns the target CPU number, or the same CPU if no balancing is needed.
2262 *
2263 * preempt must be disabled.
2264 */
2265static int sched_balance_self(int cpu, int flag)
2266{
2267 struct task_struct *t = current;
2268 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2269
c96d145e 2270 for_each_domain(cpu, tmp) {
9761eea8
IM
2271 /*
2272 * If power savings logic is enabled for a domain, stop there.
2273 */
5c45bf27
SS
2274 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2275 break;
476d139c
NP
2276 if (tmp->flags & flag)
2277 sd = tmp;
c96d145e 2278 }
476d139c 2279
039a1c41
PZ
2280 if (sd)
2281 update_shares(sd);
2282
476d139c 2283 while (sd) {
476d139c 2284 struct sched_group *group;
1a848870
SS
2285 int new_cpu, weight;
2286
2287 if (!(sd->flags & flag)) {
2288 sd = sd->child;
2289 continue;
2290 }
476d139c 2291
476d139c 2292 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2293 if (!group) {
2294 sd = sd->child;
2295 continue;
2296 }
476d139c 2297
758b2cdc 2298 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2299 if (new_cpu == -1 || new_cpu == cpu) {
2300 /* Now try balancing at a lower domain level of cpu */
2301 sd = sd->child;
2302 continue;
2303 }
476d139c 2304
1a848870 2305 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2306 cpu = new_cpu;
758b2cdc 2307 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2308 sd = NULL;
476d139c 2309 for_each_domain(cpu, tmp) {
758b2cdc 2310 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2311 break;
2312 if (tmp->flags & flag)
2313 sd = tmp;
2314 }
2315 /* while loop will break here if sd == NULL */
2316 }
2317
2318 return cpu;
2319}
2320
2321#endif /* CONFIG_SMP */
1da177e4 2322
1da177e4
LT
2323/***
2324 * try_to_wake_up - wake up a thread
2325 * @p: the to-be-woken-up thread
2326 * @state: the mask of task states that can be woken
2327 * @sync: do a synchronous wakeup?
2328 *
2329 * Put it on the run-queue if it's not already there. The "current"
2330 * thread is always on the run-queue (except when the actual
2331 * re-schedule is in progress), and as such you're allowed to do
2332 * the simpler "current->state = TASK_RUNNING" to mark yourself
2333 * runnable without the overhead of this.
2334 *
2335 * returns failure only if the task is already active.
2336 */
36c8b586 2337static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2338{
cc367732 2339 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2340 unsigned long flags;
2341 long old_state;
70b97a7f 2342 struct rq *rq;
1da177e4 2343
b85d0667
IM
2344 if (!sched_feat(SYNC_WAKEUPS))
2345 sync = 0;
2346
2398f2c6 2347#ifdef CONFIG_SMP
57310a98 2348 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2349 struct sched_domain *sd;
2350
2351 this_cpu = raw_smp_processor_id();
2352 cpu = task_cpu(p);
2353
2354 for_each_domain(this_cpu, sd) {
758b2cdc 2355 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2356 update_shares(sd);
2357 break;
2358 }
2359 }
2360 }
2361#endif
2362
04e2f174 2363 smp_wmb();
1da177e4 2364 rq = task_rq_lock(p, &flags);
03e89e45 2365 update_rq_clock(rq);
1da177e4
LT
2366 old_state = p->state;
2367 if (!(old_state & state))
2368 goto out;
2369
dd41f596 2370 if (p->se.on_rq)
1da177e4
LT
2371 goto out_running;
2372
2373 cpu = task_cpu(p);
cc367732 2374 orig_cpu = cpu;
1da177e4
LT
2375 this_cpu = smp_processor_id();
2376
2377#ifdef CONFIG_SMP
2378 if (unlikely(task_running(rq, p)))
2379 goto out_activate;
2380
5d2f5a61
DA
2381 cpu = p->sched_class->select_task_rq(p, sync);
2382 if (cpu != orig_cpu) {
2383 set_task_cpu(p, cpu);
1da177e4
LT
2384 task_rq_unlock(rq, &flags);
2385 /* might preempt at this point */
2386 rq = task_rq_lock(p, &flags);
2387 old_state = p->state;
2388 if (!(old_state & state))
2389 goto out;
dd41f596 2390 if (p->se.on_rq)
1da177e4
LT
2391 goto out_running;
2392
2393 this_cpu = smp_processor_id();
2394 cpu = task_cpu(p);
2395 }
2396
e7693a36
GH
2397#ifdef CONFIG_SCHEDSTATS
2398 schedstat_inc(rq, ttwu_count);
2399 if (cpu == this_cpu)
2400 schedstat_inc(rq, ttwu_local);
2401 else {
2402 struct sched_domain *sd;
2403 for_each_domain(this_cpu, sd) {
758b2cdc 2404 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2405 schedstat_inc(sd, ttwu_wake_remote);
2406 break;
2407 }
2408 }
2409 }
6d6bc0ad 2410#endif /* CONFIG_SCHEDSTATS */
e7693a36 2411
1da177e4
LT
2412out_activate:
2413#endif /* CONFIG_SMP */
cc367732
IM
2414 schedstat_inc(p, se.nr_wakeups);
2415 if (sync)
2416 schedstat_inc(p, se.nr_wakeups_sync);
2417 if (orig_cpu != cpu)
2418 schedstat_inc(p, se.nr_wakeups_migrate);
2419 if (cpu == this_cpu)
2420 schedstat_inc(p, se.nr_wakeups_local);
2421 else
2422 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2423 activate_task(rq, p, 1);
1da177e4
LT
2424 success = 1;
2425
831451ac
PZ
2426 /*
2427 * Only attribute actual wakeups done by this task.
2428 */
2429 if (!in_interrupt()) {
2430 struct sched_entity *se = &current->se;
2431 u64 sample = se->sum_exec_runtime;
2432
2433 if (se->last_wakeup)
2434 sample -= se->last_wakeup;
2435 else
2436 sample -= se->start_runtime;
2437 update_avg(&se->avg_wakeup, sample);
2438
2439 se->last_wakeup = se->sum_exec_runtime;
2440 }
2441
1da177e4 2442out_running:
468a15bb 2443 trace_sched_wakeup(rq, p, success);
15afe09b 2444 check_preempt_curr(rq, p, sync);
4ae7d5ce 2445
1da177e4 2446 p->state = TASK_RUNNING;
9a897c5a
SR
2447#ifdef CONFIG_SMP
2448 if (p->sched_class->task_wake_up)
2449 p->sched_class->task_wake_up(rq, p);
2450#endif
1da177e4
LT
2451out:
2452 task_rq_unlock(rq, &flags);
2453
2454 return success;
2455}
2456
7ad5b3a5 2457int wake_up_process(struct task_struct *p)
1da177e4 2458{
d9514f6c 2459 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2460}
1da177e4
LT
2461EXPORT_SYMBOL(wake_up_process);
2462
7ad5b3a5 2463int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2464{
2465 return try_to_wake_up(p, state, 0);
2466}
2467
1da177e4
LT
2468/*
2469 * Perform scheduler related setup for a newly forked process p.
2470 * p is forked by current.
dd41f596
IM
2471 *
2472 * __sched_fork() is basic setup used by init_idle() too:
2473 */
2474static void __sched_fork(struct task_struct *p)
2475{
dd41f596
IM
2476 p->se.exec_start = 0;
2477 p->se.sum_exec_runtime = 0;
f6cf891c 2478 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2479 p->se.last_wakeup = 0;
2480 p->se.avg_overlap = 0;
831451ac
PZ
2481 p->se.start_runtime = 0;
2482 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2483
2484#ifdef CONFIG_SCHEDSTATS
2485 p->se.wait_start = 0;
dd41f596
IM
2486 p->se.sum_sleep_runtime = 0;
2487 p->se.sleep_start = 0;
dd41f596
IM
2488 p->se.block_start = 0;
2489 p->se.sleep_max = 0;
2490 p->se.block_max = 0;
2491 p->se.exec_max = 0;
eba1ed4b 2492 p->se.slice_max = 0;
dd41f596 2493 p->se.wait_max = 0;
6cfb0d5d 2494#endif
476d139c 2495
fa717060 2496 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2497 p->se.on_rq = 0;
4a55bd5e 2498 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2499
e107be36
AK
2500#ifdef CONFIG_PREEMPT_NOTIFIERS
2501 INIT_HLIST_HEAD(&p->preempt_notifiers);
2502#endif
2503
1da177e4
LT
2504 /*
2505 * We mark the process as running here, but have not actually
2506 * inserted it onto the runqueue yet. This guarantees that
2507 * nobody will actually run it, and a signal or other external
2508 * event cannot wake it up and insert it on the runqueue either.
2509 */
2510 p->state = TASK_RUNNING;
dd41f596
IM
2511}
2512
2513/*
2514 * fork()/clone()-time setup:
2515 */
2516void sched_fork(struct task_struct *p, int clone_flags)
2517{
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
2521
2522#ifdef CONFIG_SMP
2523 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2524#endif
02e4bac2 2525 set_task_cpu(p, cpu);
b29739f9
IM
2526
2527 /*
2528 * Make sure we do not leak PI boosting priority to the child:
2529 */
2530 p->prio = current->normal_prio;
2ddbf952
HS
2531 if (!rt_prio(p->prio))
2532 p->sched_class = &fair_sched_class;
b29739f9 2533
52f17b6c 2534#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2535 if (likely(sched_info_on()))
52f17b6c 2536 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2537#endif
d6077cb8 2538#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2539 p->oncpu = 0;
2540#endif
1da177e4 2541#ifdef CONFIG_PREEMPT
4866cde0 2542 /* Want to start with kernel preemption disabled. */
a1261f54 2543 task_thread_info(p)->preempt_count = 1;
1da177e4 2544#endif
917b627d
GH
2545 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2546
476d139c 2547 put_cpu();
1da177e4
LT
2548}
2549
2550/*
2551 * wake_up_new_task - wake up a newly created task for the first time.
2552 *
2553 * This function will do some initial scheduler statistics housekeeping
2554 * that must be done for every newly created context, then puts the task
2555 * on the runqueue and wakes it.
2556 */
7ad5b3a5 2557void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2558{
2559 unsigned long flags;
dd41f596 2560 struct rq *rq;
1da177e4
LT
2561
2562 rq = task_rq_lock(p, &flags);
147cbb4b 2563 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2564 update_rq_clock(rq);
1da177e4
LT
2565
2566 p->prio = effective_prio(p);
2567
b9dca1e0 2568 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2569 activate_task(rq, p, 0);
1da177e4 2570 } else {
1da177e4 2571 /*
dd41f596
IM
2572 * Let the scheduling class do new task startup
2573 * management (if any):
1da177e4 2574 */
ee0827d8 2575 p->sched_class->task_new(rq, p);
c09595f6 2576 inc_nr_running(rq);
1da177e4 2577 }
c71dd42d 2578 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2579 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2580#ifdef CONFIG_SMP
2581 if (p->sched_class->task_wake_up)
2582 p->sched_class->task_wake_up(rq, p);
2583#endif
dd41f596 2584 task_rq_unlock(rq, &flags);
1da177e4
LT
2585}
2586
e107be36
AK
2587#ifdef CONFIG_PREEMPT_NOTIFIERS
2588
2589/**
80dd99b3 2590 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2591 * @notifier: notifier struct to register
e107be36
AK
2592 */
2593void preempt_notifier_register(struct preempt_notifier *notifier)
2594{
2595 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2596}
2597EXPORT_SYMBOL_GPL(preempt_notifier_register);
2598
2599/**
2600 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2601 * @notifier: notifier struct to unregister
e107be36
AK
2602 *
2603 * This is safe to call from within a preemption notifier.
2604 */
2605void preempt_notifier_unregister(struct preempt_notifier *notifier)
2606{
2607 hlist_del(&notifier->link);
2608}
2609EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2610
2611static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2612{
2613 struct preempt_notifier *notifier;
2614 struct hlist_node *node;
2615
2616 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2617 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2618}
2619
2620static void
2621fire_sched_out_preempt_notifiers(struct task_struct *curr,
2622 struct task_struct *next)
2623{
2624 struct preempt_notifier *notifier;
2625 struct hlist_node *node;
2626
2627 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2628 notifier->ops->sched_out(notifier, next);
2629}
2630
6d6bc0ad 2631#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2632
2633static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2634{
2635}
2636
2637static void
2638fire_sched_out_preempt_notifiers(struct task_struct *curr,
2639 struct task_struct *next)
2640{
2641}
2642
6d6bc0ad 2643#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2644
4866cde0
NP
2645/**
2646 * prepare_task_switch - prepare to switch tasks
2647 * @rq: the runqueue preparing to switch
421cee29 2648 * @prev: the current task that is being switched out
4866cde0
NP
2649 * @next: the task we are going to switch to.
2650 *
2651 * This is called with the rq lock held and interrupts off. It must
2652 * be paired with a subsequent finish_task_switch after the context
2653 * switch.
2654 *
2655 * prepare_task_switch sets up locking and calls architecture specific
2656 * hooks.
2657 */
e107be36
AK
2658static inline void
2659prepare_task_switch(struct rq *rq, struct task_struct *prev,
2660 struct task_struct *next)
4866cde0 2661{
e107be36 2662 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2663 prepare_lock_switch(rq, next);
2664 prepare_arch_switch(next);
2665}
2666
1da177e4
LT
2667/**
2668 * finish_task_switch - clean up after a task-switch
344babaa 2669 * @rq: runqueue associated with task-switch
1da177e4
LT
2670 * @prev: the thread we just switched away from.
2671 *
4866cde0
NP
2672 * finish_task_switch must be called after the context switch, paired
2673 * with a prepare_task_switch call before the context switch.
2674 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2675 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2676 *
2677 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2678 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2679 * with the lock held can cause deadlocks; see schedule() for
2680 * details.)
2681 */
a9957449 2682static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2683 __releases(rq->lock)
2684{
1da177e4 2685 struct mm_struct *mm = rq->prev_mm;
55a101f8 2686 long prev_state;
967fc046
GH
2687#ifdef CONFIG_SMP
2688 int post_schedule = 0;
2689
2690 if (current->sched_class->needs_post_schedule)
2691 post_schedule = current->sched_class->needs_post_schedule(rq);
2692#endif
1da177e4
LT
2693
2694 rq->prev_mm = NULL;
2695
2696 /*
2697 * A task struct has one reference for the use as "current".
c394cc9f 2698 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2699 * schedule one last time. The schedule call will never return, and
2700 * the scheduled task must drop that reference.
c394cc9f 2701 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2702 * still held, otherwise prev could be scheduled on another cpu, die
2703 * there before we look at prev->state, and then the reference would
2704 * be dropped twice.
2705 * Manfred Spraul <manfred@colorfullife.com>
2706 */
55a101f8 2707 prev_state = prev->state;
4866cde0
NP
2708 finish_arch_switch(prev);
2709 finish_lock_switch(rq, prev);
9a897c5a 2710#ifdef CONFIG_SMP
967fc046 2711 if (post_schedule)
9a897c5a
SR
2712 current->sched_class->post_schedule(rq);
2713#endif
e8fa1362 2714
e107be36 2715 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2716 if (mm)
2717 mmdrop(mm);
c394cc9f 2718 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2719 /*
2720 * Remove function-return probe instances associated with this
2721 * task and put them back on the free list.
9761eea8 2722 */
c6fd91f0 2723 kprobe_flush_task(prev);
1da177e4 2724 put_task_struct(prev);
c6fd91f0 2725 }
1da177e4
LT
2726}
2727
2728/**
2729 * schedule_tail - first thing a freshly forked thread must call.
2730 * @prev: the thread we just switched away from.
2731 */
36c8b586 2732asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2733 __releases(rq->lock)
2734{
70b97a7f
IM
2735 struct rq *rq = this_rq();
2736
4866cde0
NP
2737 finish_task_switch(rq, prev);
2738#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2739 /* In this case, finish_task_switch does not reenable preemption */
2740 preempt_enable();
2741#endif
1da177e4 2742 if (current->set_child_tid)
b488893a 2743 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2744}
2745
2746/*
2747 * context_switch - switch to the new MM and the new
2748 * thread's register state.
2749 */
dd41f596 2750static inline void
70b97a7f 2751context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2752 struct task_struct *next)
1da177e4 2753{
dd41f596 2754 struct mm_struct *mm, *oldmm;
1da177e4 2755
e107be36 2756 prepare_task_switch(rq, prev, next);
0a16b607 2757 trace_sched_switch(rq, prev, next);
dd41f596
IM
2758 mm = next->mm;
2759 oldmm = prev->active_mm;
9226d125
ZA
2760 /*
2761 * For paravirt, this is coupled with an exit in switch_to to
2762 * combine the page table reload and the switch backend into
2763 * one hypercall.
2764 */
2765 arch_enter_lazy_cpu_mode();
2766
dd41f596 2767 if (unlikely(!mm)) {
1da177e4
LT
2768 next->active_mm = oldmm;
2769 atomic_inc(&oldmm->mm_count);
2770 enter_lazy_tlb(oldmm, next);
2771 } else
2772 switch_mm(oldmm, mm, next);
2773
dd41f596 2774 if (unlikely(!prev->mm)) {
1da177e4 2775 prev->active_mm = NULL;
1da177e4
LT
2776 rq->prev_mm = oldmm;
2777 }
3a5f5e48
IM
2778 /*
2779 * Since the runqueue lock will be released by the next
2780 * task (which is an invalid locking op but in the case
2781 * of the scheduler it's an obvious special-case), so we
2782 * do an early lockdep release here:
2783 */
2784#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2785 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2786#endif
1da177e4
LT
2787
2788 /* Here we just switch the register state and the stack. */
2789 switch_to(prev, next, prev);
2790
dd41f596
IM
2791 barrier();
2792 /*
2793 * this_rq must be evaluated again because prev may have moved
2794 * CPUs since it called schedule(), thus the 'rq' on its stack
2795 * frame will be invalid.
2796 */
2797 finish_task_switch(this_rq(), prev);
1da177e4
LT
2798}
2799
2800/*
2801 * nr_running, nr_uninterruptible and nr_context_switches:
2802 *
2803 * externally visible scheduler statistics: current number of runnable
2804 * threads, current number of uninterruptible-sleeping threads, total
2805 * number of context switches performed since bootup.
2806 */
2807unsigned long nr_running(void)
2808{
2809 unsigned long i, sum = 0;
2810
2811 for_each_online_cpu(i)
2812 sum += cpu_rq(i)->nr_running;
2813
2814 return sum;
2815}
2816
2817unsigned long nr_uninterruptible(void)
2818{
2819 unsigned long i, sum = 0;
2820
0a945022 2821 for_each_possible_cpu(i)
1da177e4
LT
2822 sum += cpu_rq(i)->nr_uninterruptible;
2823
2824 /*
2825 * Since we read the counters lockless, it might be slightly
2826 * inaccurate. Do not allow it to go below zero though:
2827 */
2828 if (unlikely((long)sum < 0))
2829 sum = 0;
2830
2831 return sum;
2832}
2833
2834unsigned long long nr_context_switches(void)
2835{
cc94abfc
SR
2836 int i;
2837 unsigned long long sum = 0;
1da177e4 2838
0a945022 2839 for_each_possible_cpu(i)
1da177e4
LT
2840 sum += cpu_rq(i)->nr_switches;
2841
2842 return sum;
2843}
2844
2845unsigned long nr_iowait(void)
2846{
2847 unsigned long i, sum = 0;
2848
0a945022 2849 for_each_possible_cpu(i)
1da177e4
LT
2850 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2851
2852 return sum;
2853}
2854
db1b1fef
JS
2855unsigned long nr_active(void)
2856{
2857 unsigned long i, running = 0, uninterruptible = 0;
2858
2859 for_each_online_cpu(i) {
2860 running += cpu_rq(i)->nr_running;
2861 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2862 }
2863
2864 if (unlikely((long)uninterruptible < 0))
2865 uninterruptible = 0;
2866
2867 return running + uninterruptible;
2868}
2869
48f24c4d 2870/*
dd41f596
IM
2871 * Update rq->cpu_load[] statistics. This function is usually called every
2872 * scheduler tick (TICK_NSEC).
48f24c4d 2873 */
dd41f596 2874static void update_cpu_load(struct rq *this_rq)
48f24c4d 2875{
495eca49 2876 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2877 int i, scale;
2878
2879 this_rq->nr_load_updates++;
dd41f596
IM
2880
2881 /* Update our load: */
2882 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2883 unsigned long old_load, new_load;
2884
2885 /* scale is effectively 1 << i now, and >> i divides by scale */
2886
2887 old_load = this_rq->cpu_load[i];
2888 new_load = this_load;
a25707f3
IM
2889 /*
2890 * Round up the averaging division if load is increasing. This
2891 * prevents us from getting stuck on 9 if the load is 10, for
2892 * example.
2893 */
2894 if (new_load > old_load)
2895 new_load += scale-1;
dd41f596
IM
2896 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2897 }
48f24c4d
IM
2898}
2899
dd41f596
IM
2900#ifdef CONFIG_SMP
2901
1da177e4
LT
2902/*
2903 * double_rq_lock - safely lock two runqueues
2904 *
2905 * Note this does not disable interrupts like task_rq_lock,
2906 * you need to do so manually before calling.
2907 */
70b97a7f 2908static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2909 __acquires(rq1->lock)
2910 __acquires(rq2->lock)
2911{
054b9108 2912 BUG_ON(!irqs_disabled());
1da177e4
LT
2913 if (rq1 == rq2) {
2914 spin_lock(&rq1->lock);
2915 __acquire(rq2->lock); /* Fake it out ;) */
2916 } else {
c96d145e 2917 if (rq1 < rq2) {
1da177e4 2918 spin_lock(&rq1->lock);
5e710e37 2919 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2920 } else {
2921 spin_lock(&rq2->lock);
5e710e37 2922 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2923 }
2924 }
6e82a3be
IM
2925 update_rq_clock(rq1);
2926 update_rq_clock(rq2);
1da177e4
LT
2927}
2928
2929/*
2930 * double_rq_unlock - safely unlock two runqueues
2931 *
2932 * Note this does not restore interrupts like task_rq_unlock,
2933 * you need to do so manually after calling.
2934 */
70b97a7f 2935static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2936 __releases(rq1->lock)
2937 __releases(rq2->lock)
2938{
2939 spin_unlock(&rq1->lock);
2940 if (rq1 != rq2)
2941 spin_unlock(&rq2->lock);
2942 else
2943 __release(rq2->lock);
2944}
2945
1da177e4
LT
2946/*
2947 * If dest_cpu is allowed for this process, migrate the task to it.
2948 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2949 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2950 * the cpu_allowed mask is restored.
2951 */
36c8b586 2952static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2953{
70b97a7f 2954 struct migration_req req;
1da177e4 2955 unsigned long flags;
70b97a7f 2956 struct rq *rq;
1da177e4
LT
2957
2958 rq = task_rq_lock(p, &flags);
96f874e2 2959 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2960 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2961 goto out;
2962
2963 /* force the process onto the specified CPU */
2964 if (migrate_task(p, dest_cpu, &req)) {
2965 /* Need to wait for migration thread (might exit: take ref). */
2966 struct task_struct *mt = rq->migration_thread;
36c8b586 2967
1da177e4
LT
2968 get_task_struct(mt);
2969 task_rq_unlock(rq, &flags);
2970 wake_up_process(mt);
2971 put_task_struct(mt);
2972 wait_for_completion(&req.done);
36c8b586 2973
1da177e4
LT
2974 return;
2975 }
2976out:
2977 task_rq_unlock(rq, &flags);
2978}
2979
2980/*
476d139c
NP
2981 * sched_exec - execve() is a valuable balancing opportunity, because at
2982 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2983 */
2984void sched_exec(void)
2985{
1da177e4 2986 int new_cpu, this_cpu = get_cpu();
476d139c 2987 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2988 put_cpu();
476d139c
NP
2989 if (new_cpu != this_cpu)
2990 sched_migrate_task(current, new_cpu);
1da177e4
LT
2991}
2992
2993/*
2994 * pull_task - move a task from a remote runqueue to the local runqueue.
2995 * Both runqueues must be locked.
2996 */
dd41f596
IM
2997static void pull_task(struct rq *src_rq, struct task_struct *p,
2998 struct rq *this_rq, int this_cpu)
1da177e4 2999{
2e1cb74a 3000 deactivate_task(src_rq, p, 0);
1da177e4 3001 set_task_cpu(p, this_cpu);
dd41f596 3002 activate_task(this_rq, p, 0);
1da177e4
LT
3003 /*
3004 * Note that idle threads have a prio of MAX_PRIO, for this test
3005 * to be always true for them.
3006 */
15afe09b 3007 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3008}
3009
3010/*
3011 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3012 */
858119e1 3013static
70b97a7f 3014int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3015 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3016 int *all_pinned)
1da177e4 3017{
708dc512 3018 int tsk_cache_hot = 0;
1da177e4
LT
3019 /*
3020 * We do not migrate tasks that are:
3021 * 1) running (obviously), or
3022 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3023 * 3) are cache-hot on their current CPU.
3024 */
96f874e2 3025 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3026 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3027 return 0;
cc367732 3028 }
81026794
NP
3029 *all_pinned = 0;
3030
cc367732
IM
3031 if (task_running(rq, p)) {
3032 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3033 return 0;
cc367732 3034 }
1da177e4 3035
da84d961
IM
3036 /*
3037 * Aggressive migration if:
3038 * 1) task is cache cold, or
3039 * 2) too many balance attempts have failed.
3040 */
3041
708dc512
LH
3042 tsk_cache_hot = task_hot(p, rq->clock, sd);
3043 if (!tsk_cache_hot ||
3044 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3045#ifdef CONFIG_SCHEDSTATS
708dc512 3046 if (tsk_cache_hot) {
da84d961 3047 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3048 schedstat_inc(p, se.nr_forced_migrations);
3049 }
da84d961
IM
3050#endif
3051 return 1;
3052 }
3053
708dc512 3054 if (tsk_cache_hot) {
cc367732 3055 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3056 return 0;
cc367732 3057 }
1da177e4
LT
3058 return 1;
3059}
3060
e1d1484f
PW
3061static unsigned long
3062balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3063 unsigned long max_load_move, struct sched_domain *sd,
3064 enum cpu_idle_type idle, int *all_pinned,
3065 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3066{
051c6764 3067 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3068 struct task_struct *p;
3069 long rem_load_move = max_load_move;
1da177e4 3070
e1d1484f 3071 if (max_load_move == 0)
1da177e4
LT
3072 goto out;
3073
81026794
NP
3074 pinned = 1;
3075
1da177e4 3076 /*
dd41f596 3077 * Start the load-balancing iterator:
1da177e4 3078 */
dd41f596
IM
3079 p = iterator->start(iterator->arg);
3080next:
b82d9fdd 3081 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3082 goto out;
051c6764
PZ
3083
3084 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3085 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3086 p = iterator->next(iterator->arg);
3087 goto next;
1da177e4
LT
3088 }
3089
dd41f596 3090 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3091 pulled++;
dd41f596 3092 rem_load_move -= p->se.load.weight;
1da177e4 3093
7e96fa58
GH
3094#ifdef CONFIG_PREEMPT
3095 /*
3096 * NEWIDLE balancing is a source of latency, so preemptible kernels
3097 * will stop after the first task is pulled to minimize the critical
3098 * section.
3099 */
3100 if (idle == CPU_NEWLY_IDLE)
3101 goto out;
3102#endif
3103
2dd73a4f 3104 /*
b82d9fdd 3105 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3106 */
e1d1484f 3107 if (rem_load_move > 0) {
a4ac01c3
PW
3108 if (p->prio < *this_best_prio)
3109 *this_best_prio = p->prio;
dd41f596
IM
3110 p = iterator->next(iterator->arg);
3111 goto next;
1da177e4
LT
3112 }
3113out:
3114 /*
e1d1484f 3115 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3116 * so we can safely collect pull_task() stats here rather than
3117 * inside pull_task().
3118 */
3119 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3120
3121 if (all_pinned)
3122 *all_pinned = pinned;
e1d1484f
PW
3123
3124 return max_load_move - rem_load_move;
1da177e4
LT
3125}
3126
dd41f596 3127/*
43010659
PW
3128 * move_tasks tries to move up to max_load_move weighted load from busiest to
3129 * this_rq, as part of a balancing operation within domain "sd".
3130 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3131 *
3132 * Called with both runqueues locked.
3133 */
3134static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3135 unsigned long max_load_move,
dd41f596
IM
3136 struct sched_domain *sd, enum cpu_idle_type idle,
3137 int *all_pinned)
3138{
5522d5d5 3139 const struct sched_class *class = sched_class_highest;
43010659 3140 unsigned long total_load_moved = 0;
a4ac01c3 3141 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3142
3143 do {
43010659
PW
3144 total_load_moved +=
3145 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3146 max_load_move - total_load_moved,
a4ac01c3 3147 sd, idle, all_pinned, &this_best_prio);
dd41f596 3148 class = class->next;
c4acb2c0 3149
7e96fa58
GH
3150#ifdef CONFIG_PREEMPT
3151 /*
3152 * NEWIDLE balancing is a source of latency, so preemptible
3153 * kernels will stop after the first task is pulled to minimize
3154 * the critical section.
3155 */
c4acb2c0
GH
3156 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3157 break;
7e96fa58 3158#endif
43010659 3159 } while (class && max_load_move > total_load_moved);
dd41f596 3160
43010659
PW
3161 return total_load_moved > 0;
3162}
3163
e1d1484f
PW
3164static int
3165iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3166 struct sched_domain *sd, enum cpu_idle_type idle,
3167 struct rq_iterator *iterator)
3168{
3169 struct task_struct *p = iterator->start(iterator->arg);
3170 int pinned = 0;
3171
3172 while (p) {
3173 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3174 pull_task(busiest, p, this_rq, this_cpu);
3175 /*
3176 * Right now, this is only the second place pull_task()
3177 * is called, so we can safely collect pull_task()
3178 * stats here rather than inside pull_task().
3179 */
3180 schedstat_inc(sd, lb_gained[idle]);
3181
3182 return 1;
3183 }
3184 p = iterator->next(iterator->arg);
3185 }
3186
3187 return 0;
3188}
3189
43010659
PW
3190/*
3191 * move_one_task tries to move exactly one task from busiest to this_rq, as
3192 * part of active balancing operations within "domain".
3193 * Returns 1 if successful and 0 otherwise.
3194 *
3195 * Called with both runqueues locked.
3196 */
3197static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3198 struct sched_domain *sd, enum cpu_idle_type idle)
3199{
5522d5d5 3200 const struct sched_class *class;
43010659
PW
3201
3202 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3203 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3204 return 1;
3205
3206 return 0;
dd41f596 3207}
67bb6c03 3208/********** Helpers for find_busiest_group ************************/
1da177e4 3209/*
222d656d
GS
3210 * sd_lb_stats - Structure to store the statistics of a sched_domain
3211 * during load balancing.
1da177e4 3212 */
222d656d
GS
3213struct sd_lb_stats {
3214 struct sched_group *busiest; /* Busiest group in this sd */
3215 struct sched_group *this; /* Local group in this sd */
3216 unsigned long total_load; /* Total load of all groups in sd */
3217 unsigned long total_pwr; /* Total power of all groups in sd */
3218 unsigned long avg_load; /* Average load across all groups in sd */
3219
3220 /** Statistics of this group */
3221 unsigned long this_load;
3222 unsigned long this_load_per_task;
3223 unsigned long this_nr_running;
3224
3225 /* Statistics of the busiest group */
3226 unsigned long max_load;
3227 unsigned long busiest_load_per_task;
3228 unsigned long busiest_nr_running;
3229
3230 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3231#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3232 int power_savings_balance; /* Is powersave balance needed for this sd */
3233 struct sched_group *group_min; /* Least loaded group in sd */
3234 struct sched_group *group_leader; /* Group which relieves group_min */
3235 unsigned long min_load_per_task; /* load_per_task in group_min */
3236 unsigned long leader_nr_running; /* Nr running of group_leader */
3237 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3238#endif
222d656d 3239};
1da177e4 3240
d5ac537e 3241/*
381be78f
GS
3242 * sg_lb_stats - stats of a sched_group required for load_balancing
3243 */
3244struct sg_lb_stats {
3245 unsigned long avg_load; /*Avg load across the CPUs of the group */
3246 unsigned long group_load; /* Total load over the CPUs of the group */
3247 unsigned long sum_nr_running; /* Nr tasks running in the group */
3248 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3249 unsigned long group_capacity;
3250 int group_imb; /* Is there an imbalance in the group ? */
3251};
408ed066 3252
67bb6c03
GS
3253/**
3254 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3255 * @group: The group whose first cpu is to be returned.
3256 */
3257static inline unsigned int group_first_cpu(struct sched_group *group)
3258{
3259 return cpumask_first(sched_group_cpus(group));
3260}
3261
3262/**
3263 * get_sd_load_idx - Obtain the load index for a given sched domain.
3264 * @sd: The sched_domain whose load_idx is to be obtained.
3265 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3266 */
3267static inline int get_sd_load_idx(struct sched_domain *sd,
3268 enum cpu_idle_type idle)
3269{
3270 int load_idx;
3271
3272 switch (idle) {
3273 case CPU_NOT_IDLE:
7897986b 3274 load_idx = sd->busy_idx;
67bb6c03
GS
3275 break;
3276
3277 case CPU_NEWLY_IDLE:
7897986b 3278 load_idx = sd->newidle_idx;
67bb6c03
GS
3279 break;
3280 default:
7897986b 3281 load_idx = sd->idle_idx;
67bb6c03
GS
3282 break;
3283 }
1da177e4 3284
67bb6c03
GS
3285 return load_idx;
3286}
1da177e4 3287
1da177e4 3288
c071df18
GS
3289#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3290/**
3291 * init_sd_power_savings_stats - Initialize power savings statistics for
3292 * the given sched_domain, during load balancing.
3293 *
3294 * @sd: Sched domain whose power-savings statistics are to be initialized.
3295 * @sds: Variable containing the statistics for sd.
3296 * @idle: Idle status of the CPU at which we're performing load-balancing.
3297 */
3298static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3299 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3300{
3301 /*
3302 * Busy processors will not participate in power savings
3303 * balance.
3304 */
3305 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3306 sds->power_savings_balance = 0;
3307 else {
3308 sds->power_savings_balance = 1;
3309 sds->min_nr_running = ULONG_MAX;
3310 sds->leader_nr_running = 0;
3311 }
3312}
783609c6 3313
c071df18
GS
3314/**
3315 * update_sd_power_savings_stats - Update the power saving stats for a
3316 * sched_domain while performing load balancing.
3317 *
3318 * @group: sched_group belonging to the sched_domain under consideration.
3319 * @sds: Variable containing the statistics of the sched_domain
3320 * @local_group: Does group contain the CPU for which we're performing
3321 * load balancing ?
3322 * @sgs: Variable containing the statistics of the group.
3323 */
3324static inline void update_sd_power_savings_stats(struct sched_group *group,
3325 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3326{
408ed066 3327
c071df18
GS
3328 if (!sds->power_savings_balance)
3329 return;
1da177e4 3330
c071df18
GS
3331 /*
3332 * If the local group is idle or completely loaded
3333 * no need to do power savings balance at this domain
3334 */
3335 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3336 !sds->this_nr_running))
3337 sds->power_savings_balance = 0;
2dd73a4f 3338
c071df18
GS
3339 /*
3340 * If a group is already running at full capacity or idle,
3341 * don't include that group in power savings calculations
3342 */
3343 if (!sds->power_savings_balance ||
3344 sgs->sum_nr_running >= sgs->group_capacity ||
3345 !sgs->sum_nr_running)
3346 return;
5969fe06 3347
c071df18
GS
3348 /*
3349 * Calculate the group which has the least non-idle load.
3350 * This is the group from where we need to pick up the load
3351 * for saving power
3352 */
3353 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3354 (sgs->sum_nr_running == sds->min_nr_running &&
3355 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3356 sds->group_min = group;
3357 sds->min_nr_running = sgs->sum_nr_running;
3358 sds->min_load_per_task = sgs->sum_weighted_load /
3359 sgs->sum_nr_running;
3360 }
783609c6 3361
c071df18
GS
3362 /*
3363 * Calculate the group which is almost near its
3364 * capacity but still has some space to pick up some load
3365 * from other group and save more power
3366 */
3367 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3368 return;
1da177e4 3369
c071df18
GS
3370 if (sgs->sum_nr_running > sds->leader_nr_running ||
3371 (sgs->sum_nr_running == sds->leader_nr_running &&
3372 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3373 sds->group_leader = group;
3374 sds->leader_nr_running = sgs->sum_nr_running;
3375 }
3376}
408ed066 3377
c071df18 3378/**
d5ac537e 3379 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3380 * @sds: Variable containing the statistics of the sched_domain
3381 * under consideration.
3382 * @this_cpu: Cpu at which we're currently performing load-balancing.
3383 * @imbalance: Variable to store the imbalance.
3384 *
d5ac537e
RD
3385 * Description:
3386 * Check if we have potential to perform some power-savings balance.
3387 * If yes, set the busiest group to be the least loaded group in the
3388 * sched_domain, so that it's CPUs can be put to idle.
3389 *
c071df18
GS
3390 * Returns 1 if there is potential to perform power-savings balance.
3391 * Else returns 0.
3392 */
3393static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3394 int this_cpu, unsigned long *imbalance)
3395{
3396 if (!sds->power_savings_balance)
3397 return 0;
1da177e4 3398
c071df18
GS
3399 if (sds->this != sds->group_leader ||
3400 sds->group_leader == sds->group_min)
3401 return 0;
783609c6 3402
c071df18
GS
3403 *imbalance = sds->min_load_per_task;
3404 sds->busiest = sds->group_min;
1da177e4 3405
c071df18
GS
3406 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3407 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3408 group_first_cpu(sds->group_leader);
3409 }
3410
3411 return 1;
1da177e4 3412
c071df18
GS
3413}
3414#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3415static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3416 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3417{
3418 return;
3419}
408ed066 3420
c071df18
GS
3421static inline void update_sd_power_savings_stats(struct sched_group *group,
3422 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3423{
3424 return;
3425}
3426
3427static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3428 int this_cpu, unsigned long *imbalance)
3429{
3430 return 0;
3431}
3432#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3433
3434
1f8c553d
GS
3435/**
3436 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3437 * @group: sched_group whose statistics are to be updated.
3438 * @this_cpu: Cpu for which load balance is currently performed.
3439 * @idle: Idle status of this_cpu
3440 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3441 * @sd_idle: Idle status of the sched_domain containing group.
3442 * @local_group: Does group contain this_cpu.
3443 * @cpus: Set of cpus considered for load balancing.
3444 * @balance: Should we balance.
3445 * @sgs: variable to hold the statistics for this group.
3446 */
3447static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3448 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3449 int local_group, const struct cpumask *cpus,
3450 int *balance, struct sg_lb_stats *sgs)
3451{
3452 unsigned long load, max_cpu_load, min_cpu_load;
3453 int i;
3454 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3455 unsigned long sum_avg_load_per_task;
3456 unsigned long avg_load_per_task;
3457
3458 if (local_group)
3459 balance_cpu = group_first_cpu(group);
3460
3461 /* Tally up the load of all CPUs in the group */
3462 sum_avg_load_per_task = avg_load_per_task = 0;
3463 max_cpu_load = 0;
3464 min_cpu_load = ~0UL;
408ed066 3465
1f8c553d
GS
3466 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3467 struct rq *rq = cpu_rq(i);
908a7c1b 3468
1f8c553d
GS
3469 if (*sd_idle && rq->nr_running)
3470 *sd_idle = 0;
5c45bf27 3471
1f8c553d 3472 /* Bias balancing toward cpus of our domain */
1da177e4 3473 if (local_group) {
1f8c553d
GS
3474 if (idle_cpu(i) && !first_idle_cpu) {
3475 first_idle_cpu = 1;
3476 balance_cpu = i;
3477 }
3478
3479 load = target_load(i, load_idx);
3480 } else {
3481 load = source_load(i, load_idx);
3482 if (load > max_cpu_load)
3483 max_cpu_load = load;
3484 if (min_cpu_load > load)
3485 min_cpu_load = load;
1da177e4 3486 }
5c45bf27 3487
1f8c553d
GS
3488 sgs->group_load += load;
3489 sgs->sum_nr_running += rq->nr_running;
3490 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3491
1f8c553d
GS
3492 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3493 }
5c45bf27 3494
1f8c553d
GS
3495 /*
3496 * First idle cpu or the first cpu(busiest) in this sched group
3497 * is eligible for doing load balancing at this and above
3498 * domains. In the newly idle case, we will allow all the cpu's
3499 * to do the newly idle load balance.
3500 */
3501 if (idle != CPU_NEWLY_IDLE && local_group &&
3502 balance_cpu != this_cpu && balance) {
3503 *balance = 0;
3504 return;
3505 }
5c45bf27 3506
1f8c553d
GS
3507 /* Adjust by relative CPU power of the group */
3508 sgs->avg_load = sg_div_cpu_power(group,
3509 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3510
1f8c553d
GS
3511
3512 /*
3513 * Consider the group unbalanced when the imbalance is larger
3514 * than the average weight of two tasks.
3515 *
3516 * APZ: with cgroup the avg task weight can vary wildly and
3517 * might not be a suitable number - should we keep a
3518 * normalized nr_running number somewhere that negates
3519 * the hierarchy?
3520 */
3521 avg_load_per_task = sg_div_cpu_power(group,
3522 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3523
3524 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3525 sgs->group_imb = 1;
3526
3527 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3528
3529}
dd41f596 3530
37abe198
GS
3531/**
3532 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3533 * @sd: sched_domain whose statistics are to be updated.
3534 * @this_cpu: Cpu for which load balance is currently performed.
3535 * @idle: Idle status of this_cpu
3536 * @sd_idle: Idle status of the sched_domain containing group.
3537 * @cpus: Set of cpus considered for load balancing.
3538 * @balance: Should we balance.
3539 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3540 */
37abe198
GS
3541static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3542 enum cpu_idle_type idle, int *sd_idle,
3543 const struct cpumask *cpus, int *balance,
3544 struct sd_lb_stats *sds)
1da177e4 3545{
222d656d 3546 struct sched_group *group = sd->groups;
37abe198 3547 struct sg_lb_stats sgs;
222d656d
GS
3548 int load_idx;
3549
c071df18 3550 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3551 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3552
3553 do {
1da177e4 3554 int local_group;
1da177e4 3555
758b2cdc
RR
3556 local_group = cpumask_test_cpu(this_cpu,
3557 sched_group_cpus(group));
381be78f 3558 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3559 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3560 local_group, cpus, balance, &sgs);
1da177e4 3561
37abe198
GS
3562 if (local_group && balance && !(*balance))
3563 return;
783609c6 3564
37abe198
GS
3565 sds->total_load += sgs.group_load;
3566 sds->total_pwr += group->__cpu_power;
1da177e4 3567
1da177e4 3568 if (local_group) {
37abe198
GS
3569 sds->this_load = sgs.avg_load;
3570 sds->this = group;
3571 sds->this_nr_running = sgs.sum_nr_running;
3572 sds->this_load_per_task = sgs.sum_weighted_load;
3573 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3574 (sgs.sum_nr_running > sgs.group_capacity ||
3575 sgs.group_imb)) {
37abe198
GS
3576 sds->max_load = sgs.avg_load;
3577 sds->busiest = group;
3578 sds->busiest_nr_running = sgs.sum_nr_running;
3579 sds->busiest_load_per_task = sgs.sum_weighted_load;
3580 sds->group_imb = sgs.group_imb;
48f24c4d 3581 }
5c45bf27 3582
c071df18 3583 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3584 group = group->next;
3585 } while (group != sd->groups);
3586
37abe198 3587}
1da177e4 3588
2e6f44ae
GS
3589/**
3590 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3591 * amongst the groups of a sched_domain, during
3592 * load balancing.
2e6f44ae
GS
3593 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3594 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3595 * @imbalance: Variable to store the imbalance.
3596 */
3597static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3598 int this_cpu, unsigned long *imbalance)
3599{
3600 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3601 unsigned int imbn = 2;
3602
3603 if (sds->this_nr_running) {
3604 sds->this_load_per_task /= sds->this_nr_running;
3605 if (sds->busiest_load_per_task >
3606 sds->this_load_per_task)
3607 imbn = 1;
3608 } else
3609 sds->this_load_per_task =
3610 cpu_avg_load_per_task(this_cpu);
1da177e4 3611
2e6f44ae
GS
3612 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3613 sds->busiest_load_per_task * imbn) {
3614 *imbalance = sds->busiest_load_per_task;
3615 return;
3616 }
908a7c1b 3617
1da177e4 3618 /*
2e6f44ae
GS
3619 * OK, we don't have enough imbalance to justify moving tasks,
3620 * however we may be able to increase total CPU power used by
3621 * moving them.
1da177e4 3622 */
2dd73a4f 3623
2e6f44ae
GS
3624 pwr_now += sds->busiest->__cpu_power *
3625 min(sds->busiest_load_per_task, sds->max_load);
3626 pwr_now += sds->this->__cpu_power *
3627 min(sds->this_load_per_task, sds->this_load);
3628 pwr_now /= SCHED_LOAD_SCALE;
3629
3630 /* Amount of load we'd subtract */
3631 tmp = sg_div_cpu_power(sds->busiest,
3632 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3633 if (sds->max_load > tmp)
3634 pwr_move += sds->busiest->__cpu_power *
3635 min(sds->busiest_load_per_task, sds->max_load - tmp);
3636
3637 /* Amount of load we'd add */
3638 if (sds->max_load * sds->busiest->__cpu_power <
3639 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3640 tmp = sg_div_cpu_power(sds->this,
3641 sds->max_load * sds->busiest->__cpu_power);
3642 else
3643 tmp = sg_div_cpu_power(sds->this,
3644 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3645 pwr_move += sds->this->__cpu_power *
3646 min(sds->this_load_per_task, sds->this_load + tmp);
3647 pwr_move /= SCHED_LOAD_SCALE;
3648
3649 /* Move if we gain throughput */
3650 if (pwr_move > pwr_now)
3651 *imbalance = sds->busiest_load_per_task;
3652}
dbc523a3
GS
3653
3654/**
3655 * calculate_imbalance - Calculate the amount of imbalance present within the
3656 * groups of a given sched_domain during load balance.
3657 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3658 * @this_cpu: Cpu for which currently load balance is being performed.
3659 * @imbalance: The variable to store the imbalance.
3660 */
3661static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3662 unsigned long *imbalance)
3663{
3664 unsigned long max_pull;
2dd73a4f
PW
3665 /*
3666 * In the presence of smp nice balancing, certain scenarios can have
3667 * max load less than avg load(as we skip the groups at or below
3668 * its cpu_power, while calculating max_load..)
3669 */
dbc523a3 3670 if (sds->max_load < sds->avg_load) {
2dd73a4f 3671 *imbalance = 0;
dbc523a3 3672 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3673 }
0c117f1b
SS
3674
3675 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3676 max_pull = min(sds->max_load - sds->avg_load,
3677 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3678
1da177e4 3679 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3680 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3681 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3682 / SCHED_LOAD_SCALE;
3683
2dd73a4f
PW
3684 /*
3685 * if *imbalance is less than the average load per runnable task
3686 * there is no gaurantee that any tasks will be moved so we'll have
3687 * a think about bumping its value to force at least one task to be
3688 * moved
3689 */
dbc523a3
GS
3690 if (*imbalance < sds->busiest_load_per_task)
3691 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3692
dbc523a3 3693}
37abe198 3694/******* find_busiest_group() helpers end here *********************/
1da177e4 3695
b7bb4c9b
GS
3696/**
3697 * find_busiest_group - Returns the busiest group within the sched_domain
3698 * if there is an imbalance. If there isn't an imbalance, and
3699 * the user has opted for power-savings, it returns a group whose
3700 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3701 * such a group exists.
3702 *
3703 * Also calculates the amount of weighted load which should be moved
3704 * to restore balance.
3705 *
3706 * @sd: The sched_domain whose busiest group is to be returned.
3707 * @this_cpu: The cpu for which load balancing is currently being performed.
3708 * @imbalance: Variable which stores amount of weighted load which should
3709 * be moved to restore balance/put a group to idle.
3710 * @idle: The idle status of this_cpu.
3711 * @sd_idle: The idleness of sd
3712 * @cpus: The set of CPUs under consideration for load-balancing.
3713 * @balance: Pointer to a variable indicating if this_cpu
3714 * is the appropriate cpu to perform load balancing at this_level.
3715 *
3716 * Returns: - the busiest group if imbalance exists.
3717 * - If no imbalance and user has opted for power-savings balance,
3718 * return the least loaded group whose CPUs can be
3719 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3720 */
3721static struct sched_group *
3722find_busiest_group(struct sched_domain *sd, int this_cpu,
3723 unsigned long *imbalance, enum cpu_idle_type idle,
3724 int *sd_idle, const struct cpumask *cpus, int *balance)
3725{
3726 struct sd_lb_stats sds;
1da177e4 3727
37abe198 3728 memset(&sds, 0, sizeof(sds));
1da177e4 3729
37abe198
GS
3730 /*
3731 * Compute the various statistics relavent for load balancing at
3732 * this level.
3733 */
3734 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3735 balance, &sds);
3736
b7bb4c9b
GS
3737 /* Cases where imbalance does not exist from POV of this_cpu */
3738 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3739 * at this level.
3740 * 2) There is no busy sibling group to pull from.
3741 * 3) This group is the busiest group.
3742 * 4) This group is more busy than the avg busieness at this
3743 * sched_domain.
3744 * 5) The imbalance is within the specified limit.
3745 * 6) Any rebalance would lead to ping-pong
3746 */
37abe198
GS
3747 if (balance && !(*balance))
3748 goto ret;
1da177e4 3749
b7bb4c9b
GS
3750 if (!sds.busiest || sds.busiest_nr_running == 0)
3751 goto out_balanced;
1da177e4 3752
b7bb4c9b 3753 if (sds.this_load >= sds.max_load)
1da177e4 3754 goto out_balanced;
1da177e4 3755
222d656d 3756 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3757
b7bb4c9b
GS
3758 if (sds.this_load >= sds.avg_load)
3759 goto out_balanced;
3760
3761 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3762 goto out_balanced;
3763
222d656d
GS
3764 sds.busiest_load_per_task /= sds.busiest_nr_running;
3765 if (sds.group_imb)
3766 sds.busiest_load_per_task =
3767 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3768
1da177e4
LT
3769 /*
3770 * We're trying to get all the cpus to the average_load, so we don't
3771 * want to push ourselves above the average load, nor do we wish to
3772 * reduce the max loaded cpu below the average load, as either of these
3773 * actions would just result in more rebalancing later, and ping-pong
3774 * tasks around. Thus we look for the minimum possible imbalance.
3775 * Negative imbalances (*we* are more loaded than anyone else) will
3776 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3777 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3778 * appear as very large values with unsigned longs.
3779 */
222d656d 3780 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3781 goto out_balanced;
3782
dbc523a3
GS
3783 /* Looks like there is an imbalance. Compute it */
3784 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3785 return sds.busiest;
1da177e4
LT
3786
3787out_balanced:
c071df18
GS
3788 /*
3789 * There is no obvious imbalance. But check if we can do some balancing
3790 * to save power.
3791 */
3792 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3793 return sds.busiest;
783609c6 3794ret:
1da177e4
LT
3795 *imbalance = 0;
3796 return NULL;
3797}
3798
3799/*
3800 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3801 */
70b97a7f 3802static struct rq *
d15bcfdb 3803find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3804 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3805{
70b97a7f 3806 struct rq *busiest = NULL, *rq;
2dd73a4f 3807 unsigned long max_load = 0;
1da177e4
LT
3808 int i;
3809
758b2cdc 3810 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3811 unsigned long wl;
0a2966b4 3812
96f874e2 3813 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3814 continue;
3815
48f24c4d 3816 rq = cpu_rq(i);
dd41f596 3817 wl = weighted_cpuload(i);
2dd73a4f 3818
dd41f596 3819 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3820 continue;
1da177e4 3821
dd41f596
IM
3822 if (wl > max_load) {
3823 max_load = wl;
48f24c4d 3824 busiest = rq;
1da177e4
LT
3825 }
3826 }
3827
3828 return busiest;
3829}
3830
77391d71
NP
3831/*
3832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3833 * so long as it is large enough.
3834 */
3835#define MAX_PINNED_INTERVAL 512
3836
df7c8e84
RR
3837/* Working cpumask for load_balance and load_balance_newidle. */
3838static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3839
1da177e4
LT
3840/*
3841 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3842 * tasks if there is an imbalance.
1da177e4 3843 */
70b97a7f 3844static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3845 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3846 int *balance)
1da177e4 3847{
43010659 3848 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3849 struct sched_group *group;
1da177e4 3850 unsigned long imbalance;
70b97a7f 3851 struct rq *busiest;
fe2eea3f 3852 unsigned long flags;
df7c8e84 3853 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3854
96f874e2 3855 cpumask_setall(cpus);
7c16ec58 3856
89c4710e
SS
3857 /*
3858 * When power savings policy is enabled for the parent domain, idle
3859 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3860 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3861 * portraying it as CPU_NOT_IDLE.
89c4710e 3862 */
d15bcfdb 3863 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3864 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3865 sd_idle = 1;
1da177e4 3866
2d72376b 3867 schedstat_inc(sd, lb_count[idle]);
1da177e4 3868
0a2966b4 3869redo:
c8cba857 3870 update_shares(sd);
0a2966b4 3871 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3872 cpus, balance);
783609c6 3873
06066714 3874 if (*balance == 0)
783609c6 3875 goto out_balanced;
783609c6 3876
1da177e4
LT
3877 if (!group) {
3878 schedstat_inc(sd, lb_nobusyg[idle]);
3879 goto out_balanced;
3880 }
3881
7c16ec58 3882 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3883 if (!busiest) {
3884 schedstat_inc(sd, lb_nobusyq[idle]);
3885 goto out_balanced;
3886 }
3887
db935dbd 3888 BUG_ON(busiest == this_rq);
1da177e4
LT
3889
3890 schedstat_add(sd, lb_imbalance[idle], imbalance);
3891
43010659 3892 ld_moved = 0;
1da177e4
LT
3893 if (busiest->nr_running > 1) {
3894 /*
3895 * Attempt to move tasks. If find_busiest_group has found
3896 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3897 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3898 * correctly treated as an imbalance.
3899 */
fe2eea3f 3900 local_irq_save(flags);
e17224bf 3901 double_rq_lock(this_rq, busiest);
43010659 3902 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3903 imbalance, sd, idle, &all_pinned);
e17224bf 3904 double_rq_unlock(this_rq, busiest);
fe2eea3f 3905 local_irq_restore(flags);
81026794 3906
46cb4b7c
SS
3907 /*
3908 * some other cpu did the load balance for us.
3909 */
43010659 3910 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3911 resched_cpu(this_cpu);
3912
81026794 3913 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3914 if (unlikely(all_pinned)) {
96f874e2
RR
3915 cpumask_clear_cpu(cpu_of(busiest), cpus);
3916 if (!cpumask_empty(cpus))
0a2966b4 3917 goto redo;
81026794 3918 goto out_balanced;
0a2966b4 3919 }
1da177e4 3920 }
81026794 3921
43010659 3922 if (!ld_moved) {
1da177e4
LT
3923 schedstat_inc(sd, lb_failed[idle]);
3924 sd->nr_balance_failed++;
3925
3926 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3927
fe2eea3f 3928 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3929
3930 /* don't kick the migration_thread, if the curr
3931 * task on busiest cpu can't be moved to this_cpu
3932 */
96f874e2
RR
3933 if (!cpumask_test_cpu(this_cpu,
3934 &busiest->curr->cpus_allowed)) {
fe2eea3f 3935 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3936 all_pinned = 1;
3937 goto out_one_pinned;
3938 }
3939
1da177e4
LT
3940 if (!busiest->active_balance) {
3941 busiest->active_balance = 1;
3942 busiest->push_cpu = this_cpu;
81026794 3943 active_balance = 1;
1da177e4 3944 }
fe2eea3f 3945 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3946 if (active_balance)
1da177e4
LT
3947 wake_up_process(busiest->migration_thread);
3948
3949 /*
3950 * We've kicked active balancing, reset the failure
3951 * counter.
3952 */
39507451 3953 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3954 }
81026794 3955 } else
1da177e4
LT
3956 sd->nr_balance_failed = 0;
3957
81026794 3958 if (likely(!active_balance)) {
1da177e4
LT
3959 /* We were unbalanced, so reset the balancing interval */
3960 sd->balance_interval = sd->min_interval;
81026794
NP
3961 } else {
3962 /*
3963 * If we've begun active balancing, start to back off. This
3964 * case may not be covered by the all_pinned logic if there
3965 * is only 1 task on the busy runqueue (because we don't call
3966 * move_tasks).
3967 */
3968 if (sd->balance_interval < sd->max_interval)
3969 sd->balance_interval *= 2;
1da177e4
LT
3970 }
3971
43010659 3972 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3973 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3974 ld_moved = -1;
3975
3976 goto out;
1da177e4
LT
3977
3978out_balanced:
1da177e4
LT
3979 schedstat_inc(sd, lb_balanced[idle]);
3980
16cfb1c0 3981 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3982
3983out_one_pinned:
1da177e4 3984 /* tune up the balancing interval */
77391d71
NP
3985 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3986 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3987 sd->balance_interval *= 2;
3988
48f24c4d 3989 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3990 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3991 ld_moved = -1;
3992 else
3993 ld_moved = 0;
3994out:
c8cba857
PZ
3995 if (ld_moved)
3996 update_shares(sd);
c09595f6 3997 return ld_moved;
1da177e4
LT
3998}
3999
4000/*
4001 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4002 * tasks if there is an imbalance.
4003 *
d15bcfdb 4004 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4005 * this_rq is locked.
4006 */
48f24c4d 4007static int
df7c8e84 4008load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4009{
4010 struct sched_group *group;
70b97a7f 4011 struct rq *busiest = NULL;
1da177e4 4012 unsigned long imbalance;
43010659 4013 int ld_moved = 0;
5969fe06 4014 int sd_idle = 0;
969bb4e4 4015 int all_pinned = 0;
df7c8e84 4016 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4017
96f874e2 4018 cpumask_setall(cpus);
5969fe06 4019
89c4710e
SS
4020 /*
4021 * When power savings policy is enabled for the parent domain, idle
4022 * sibling can pick up load irrespective of busy siblings. In this case,
4023 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4024 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4025 */
4026 if (sd->flags & SD_SHARE_CPUPOWER &&
4027 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4028 sd_idle = 1;
1da177e4 4029
2d72376b 4030 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4031redo:
3e5459b4 4032 update_shares_locked(this_rq, sd);
d15bcfdb 4033 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4034 &sd_idle, cpus, NULL);
1da177e4 4035 if (!group) {
d15bcfdb 4036 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4037 goto out_balanced;
1da177e4
LT
4038 }
4039
7c16ec58 4040 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4041 if (!busiest) {
d15bcfdb 4042 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4043 goto out_balanced;
1da177e4
LT
4044 }
4045
db935dbd
NP
4046 BUG_ON(busiest == this_rq);
4047
d15bcfdb 4048 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4049
43010659 4050 ld_moved = 0;
d6d5cfaf
NP
4051 if (busiest->nr_running > 1) {
4052 /* Attempt to move tasks */
4053 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4054 /* this_rq->clock is already updated */
4055 update_rq_clock(busiest);
43010659 4056 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4057 imbalance, sd, CPU_NEWLY_IDLE,
4058 &all_pinned);
1b12bbc7 4059 double_unlock_balance(this_rq, busiest);
0a2966b4 4060
969bb4e4 4061 if (unlikely(all_pinned)) {
96f874e2
RR
4062 cpumask_clear_cpu(cpu_of(busiest), cpus);
4063 if (!cpumask_empty(cpus))
0a2966b4
CL
4064 goto redo;
4065 }
d6d5cfaf
NP
4066 }
4067
43010659 4068 if (!ld_moved) {
36dffab6 4069 int active_balance = 0;
ad273b32 4070
d15bcfdb 4071 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4072 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4073 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4074 return -1;
ad273b32
VS
4075
4076 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4077 return -1;
4078
4079 if (sd->nr_balance_failed++ < 2)
4080 return -1;
4081
4082 /*
4083 * The only task running in a non-idle cpu can be moved to this
4084 * cpu in an attempt to completely freeup the other CPU
4085 * package. The same method used to move task in load_balance()
4086 * have been extended for load_balance_newidle() to speedup
4087 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4088 *
4089 * The package power saving logic comes from
4090 * find_busiest_group(). If there are no imbalance, then
4091 * f_b_g() will return NULL. However when sched_mc={1,2} then
4092 * f_b_g() will select a group from which a running task may be
4093 * pulled to this cpu in order to make the other package idle.
4094 * If there is no opportunity to make a package idle and if
4095 * there are no imbalance, then f_b_g() will return NULL and no
4096 * action will be taken in load_balance_newidle().
4097 *
4098 * Under normal task pull operation due to imbalance, there
4099 * will be more than one task in the source run queue and
4100 * move_tasks() will succeed. ld_moved will be true and this
4101 * active balance code will not be triggered.
4102 */
4103
4104 /* Lock busiest in correct order while this_rq is held */
4105 double_lock_balance(this_rq, busiest);
4106
4107 /*
4108 * don't kick the migration_thread, if the curr
4109 * task on busiest cpu can't be moved to this_cpu
4110 */
6ca09dfc 4111 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4112 double_unlock_balance(this_rq, busiest);
4113 all_pinned = 1;
4114 return ld_moved;
4115 }
4116
4117 if (!busiest->active_balance) {
4118 busiest->active_balance = 1;
4119 busiest->push_cpu = this_cpu;
4120 active_balance = 1;
4121 }
4122
4123 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4124 /*
4125 * Should not call ttwu while holding a rq->lock
4126 */
4127 spin_unlock(&this_rq->lock);
ad273b32
VS
4128 if (active_balance)
4129 wake_up_process(busiest->migration_thread);
da8d5089 4130 spin_lock(&this_rq->lock);
ad273b32 4131
5969fe06 4132 } else
16cfb1c0 4133 sd->nr_balance_failed = 0;
1da177e4 4134
3e5459b4 4135 update_shares_locked(this_rq, sd);
43010659 4136 return ld_moved;
16cfb1c0
NP
4137
4138out_balanced:
d15bcfdb 4139 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4140 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4141 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4142 return -1;
16cfb1c0 4143 sd->nr_balance_failed = 0;
48f24c4d 4144
16cfb1c0 4145 return 0;
1da177e4
LT
4146}
4147
4148/*
4149 * idle_balance is called by schedule() if this_cpu is about to become
4150 * idle. Attempts to pull tasks from other CPUs.
4151 */
70b97a7f 4152static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4153{
4154 struct sched_domain *sd;
efbe027e 4155 int pulled_task = 0;
dd41f596 4156 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4157
4158 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4159 unsigned long interval;
4160
4161 if (!(sd->flags & SD_LOAD_BALANCE))
4162 continue;
4163
4164 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4165 /* If we've pulled tasks over stop searching: */
7c16ec58 4166 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4167 sd);
92c4ca5c
CL
4168
4169 interval = msecs_to_jiffies(sd->balance_interval);
4170 if (time_after(next_balance, sd->last_balance + interval))
4171 next_balance = sd->last_balance + interval;
4172 if (pulled_task)
4173 break;
1da177e4 4174 }
dd41f596 4175 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4176 /*
4177 * We are going idle. next_balance may be set based on
4178 * a busy processor. So reset next_balance.
4179 */
4180 this_rq->next_balance = next_balance;
dd41f596 4181 }
1da177e4
LT
4182}
4183
4184/*
4185 * active_load_balance is run by migration threads. It pushes running tasks
4186 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4187 * running on each physical CPU where possible, and avoids physical /
4188 * logical imbalances.
4189 *
4190 * Called with busiest_rq locked.
4191 */
70b97a7f 4192static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4193{
39507451 4194 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4195 struct sched_domain *sd;
4196 struct rq *target_rq;
39507451 4197
48f24c4d 4198 /* Is there any task to move? */
39507451 4199 if (busiest_rq->nr_running <= 1)
39507451
NP
4200 return;
4201
4202 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4203
4204 /*
39507451 4205 * This condition is "impossible", if it occurs
41a2d6cf 4206 * we need to fix it. Originally reported by
39507451 4207 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4208 */
39507451 4209 BUG_ON(busiest_rq == target_rq);
1da177e4 4210
39507451
NP
4211 /* move a task from busiest_rq to target_rq */
4212 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4213 update_rq_clock(busiest_rq);
4214 update_rq_clock(target_rq);
39507451
NP
4215
4216 /* Search for an sd spanning us and the target CPU. */
c96d145e 4217 for_each_domain(target_cpu, sd) {
39507451 4218 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4219 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4220 break;
c96d145e 4221 }
39507451 4222
48f24c4d 4223 if (likely(sd)) {
2d72376b 4224 schedstat_inc(sd, alb_count);
39507451 4225
43010659
PW
4226 if (move_one_task(target_rq, target_cpu, busiest_rq,
4227 sd, CPU_IDLE))
48f24c4d
IM
4228 schedstat_inc(sd, alb_pushed);
4229 else
4230 schedstat_inc(sd, alb_failed);
4231 }
1b12bbc7 4232 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4233}
4234
46cb4b7c
SS
4235#ifdef CONFIG_NO_HZ
4236static struct {
4237 atomic_t load_balancer;
7d1e6a9b 4238 cpumask_var_t cpu_mask;
46cb4b7c
SS
4239} nohz ____cacheline_aligned = {
4240 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4241};
4242
7835b98b 4243/*
46cb4b7c
SS
4244 * This routine will try to nominate the ilb (idle load balancing)
4245 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4246 * load balancing on behalf of all those cpus. If all the cpus in the system
4247 * go into this tickless mode, then there will be no ilb owner (as there is
4248 * no need for one) and all the cpus will sleep till the next wakeup event
4249 * arrives...
4250 *
4251 * For the ilb owner, tick is not stopped. And this tick will be used
4252 * for idle load balancing. ilb owner will still be part of
4253 * nohz.cpu_mask..
7835b98b 4254 *
46cb4b7c
SS
4255 * While stopping the tick, this cpu will become the ilb owner if there
4256 * is no other owner. And will be the owner till that cpu becomes busy
4257 * or if all cpus in the system stop their ticks at which point
4258 * there is no need for ilb owner.
4259 *
4260 * When the ilb owner becomes busy, it nominates another owner, during the
4261 * next busy scheduler_tick()
4262 */
4263int select_nohz_load_balancer(int stop_tick)
4264{
4265 int cpu = smp_processor_id();
4266
4267 if (stop_tick) {
46cb4b7c
SS
4268 cpu_rq(cpu)->in_nohz_recently = 1;
4269
483b4ee6
SS
4270 if (!cpu_active(cpu)) {
4271 if (atomic_read(&nohz.load_balancer) != cpu)
4272 return 0;
4273
4274 /*
4275 * If we are going offline and still the leader,
4276 * give up!
4277 */
46cb4b7c
SS
4278 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4279 BUG();
483b4ee6 4280
46cb4b7c
SS
4281 return 0;
4282 }
4283
483b4ee6
SS
4284 cpumask_set_cpu(cpu, nohz.cpu_mask);
4285
46cb4b7c 4286 /* time for ilb owner also to sleep */
7d1e6a9b 4287 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4288 if (atomic_read(&nohz.load_balancer) == cpu)
4289 atomic_set(&nohz.load_balancer, -1);
4290 return 0;
4291 }
4292
4293 if (atomic_read(&nohz.load_balancer) == -1) {
4294 /* make me the ilb owner */
4295 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4296 return 1;
4297 } else if (atomic_read(&nohz.load_balancer) == cpu)
4298 return 1;
4299 } else {
7d1e6a9b 4300 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4301 return 0;
4302
7d1e6a9b 4303 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4304
4305 if (atomic_read(&nohz.load_balancer) == cpu)
4306 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4307 BUG();
4308 }
4309 return 0;
4310}
4311#endif
4312
4313static DEFINE_SPINLOCK(balancing);
4314
4315/*
7835b98b
CL
4316 * It checks each scheduling domain to see if it is due to be balanced,
4317 * and initiates a balancing operation if so.
4318 *
4319 * Balancing parameters are set up in arch_init_sched_domains.
4320 */
a9957449 4321static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4322{
46cb4b7c
SS
4323 int balance = 1;
4324 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4325 unsigned long interval;
4326 struct sched_domain *sd;
46cb4b7c 4327 /* Earliest time when we have to do rebalance again */
c9819f45 4328 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4329 int update_next_balance = 0;
d07355f5 4330 int need_serialize;
1da177e4 4331
46cb4b7c 4332 for_each_domain(cpu, sd) {
1da177e4
LT
4333 if (!(sd->flags & SD_LOAD_BALANCE))
4334 continue;
4335
4336 interval = sd->balance_interval;
d15bcfdb 4337 if (idle != CPU_IDLE)
1da177e4
LT
4338 interval *= sd->busy_factor;
4339
4340 /* scale ms to jiffies */
4341 interval = msecs_to_jiffies(interval);
4342 if (unlikely(!interval))
4343 interval = 1;
dd41f596
IM
4344 if (interval > HZ*NR_CPUS/10)
4345 interval = HZ*NR_CPUS/10;
4346
d07355f5 4347 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4348
d07355f5 4349 if (need_serialize) {
08c183f3
CL
4350 if (!spin_trylock(&balancing))
4351 goto out;
4352 }
4353
c9819f45 4354 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4355 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4356 /*
4357 * We've pulled tasks over so either we're no
5969fe06
NP
4358 * longer idle, or one of our SMT siblings is
4359 * not idle.
4360 */
d15bcfdb 4361 idle = CPU_NOT_IDLE;
1da177e4 4362 }
1bd77f2d 4363 sd->last_balance = jiffies;
1da177e4 4364 }
d07355f5 4365 if (need_serialize)
08c183f3
CL
4366 spin_unlock(&balancing);
4367out:
f549da84 4368 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4369 next_balance = sd->last_balance + interval;
f549da84
SS
4370 update_next_balance = 1;
4371 }
783609c6
SS
4372
4373 /*
4374 * Stop the load balance at this level. There is another
4375 * CPU in our sched group which is doing load balancing more
4376 * actively.
4377 */
4378 if (!balance)
4379 break;
1da177e4 4380 }
f549da84
SS
4381
4382 /*
4383 * next_balance will be updated only when there is a need.
4384 * When the cpu is attached to null domain for ex, it will not be
4385 * updated.
4386 */
4387 if (likely(update_next_balance))
4388 rq->next_balance = next_balance;
46cb4b7c
SS
4389}
4390
4391/*
4392 * run_rebalance_domains is triggered when needed from the scheduler tick.
4393 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4394 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4395 */
4396static void run_rebalance_domains(struct softirq_action *h)
4397{
dd41f596
IM
4398 int this_cpu = smp_processor_id();
4399 struct rq *this_rq = cpu_rq(this_cpu);
4400 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4401 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4402
dd41f596 4403 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4404
4405#ifdef CONFIG_NO_HZ
4406 /*
4407 * If this cpu is the owner for idle load balancing, then do the
4408 * balancing on behalf of the other idle cpus whose ticks are
4409 * stopped.
4410 */
dd41f596
IM
4411 if (this_rq->idle_at_tick &&
4412 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4413 struct rq *rq;
4414 int balance_cpu;
4415
7d1e6a9b
RR
4416 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4417 if (balance_cpu == this_cpu)
4418 continue;
4419
46cb4b7c
SS
4420 /*
4421 * If this cpu gets work to do, stop the load balancing
4422 * work being done for other cpus. Next load
4423 * balancing owner will pick it up.
4424 */
4425 if (need_resched())
4426 break;
4427
de0cf899 4428 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4429
4430 rq = cpu_rq(balance_cpu);
dd41f596
IM
4431 if (time_after(this_rq->next_balance, rq->next_balance))
4432 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4433 }
4434 }
4435#endif
4436}
4437
8a0be9ef
FW
4438static inline int on_null_domain(int cpu)
4439{
4440 return !rcu_dereference(cpu_rq(cpu)->sd);
4441}
4442
46cb4b7c
SS
4443/*
4444 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4445 *
4446 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4447 * idle load balancing owner or decide to stop the periodic load balancing,
4448 * if the whole system is idle.
4449 */
dd41f596 4450static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4451{
46cb4b7c
SS
4452#ifdef CONFIG_NO_HZ
4453 /*
4454 * If we were in the nohz mode recently and busy at the current
4455 * scheduler tick, then check if we need to nominate new idle
4456 * load balancer.
4457 */
4458 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4459 rq->in_nohz_recently = 0;
4460
4461 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4462 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4463 atomic_set(&nohz.load_balancer, -1);
4464 }
4465
4466 if (atomic_read(&nohz.load_balancer) == -1) {
4467 /*
4468 * simple selection for now: Nominate the
4469 * first cpu in the nohz list to be the next
4470 * ilb owner.
4471 *
4472 * TBD: Traverse the sched domains and nominate
4473 * the nearest cpu in the nohz.cpu_mask.
4474 */
7d1e6a9b 4475 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4476
434d53b0 4477 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4478 resched_cpu(ilb);
4479 }
4480 }
4481
4482 /*
4483 * If this cpu is idle and doing idle load balancing for all the
4484 * cpus with ticks stopped, is it time for that to stop?
4485 */
4486 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4487 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4488 resched_cpu(cpu);
4489 return;
4490 }
4491
4492 /*
4493 * If this cpu is idle and the idle load balancing is done by
4494 * someone else, then no need raise the SCHED_SOFTIRQ
4495 */
4496 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4497 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4498 return;
4499#endif
8a0be9ef
FW
4500 /* Don't need to rebalance while attached to NULL domain */
4501 if (time_after_eq(jiffies, rq->next_balance) &&
4502 likely(!on_null_domain(cpu)))
46cb4b7c 4503 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4504}
dd41f596
IM
4505
4506#else /* CONFIG_SMP */
4507
1da177e4
LT
4508/*
4509 * on UP we do not need to balance between CPUs:
4510 */
70b97a7f 4511static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4512{
4513}
dd41f596 4514
1da177e4
LT
4515#endif
4516
1da177e4
LT
4517DEFINE_PER_CPU(struct kernel_stat, kstat);
4518
4519EXPORT_PER_CPU_SYMBOL(kstat);
4520
4521/*
c5f8d995 4522 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4523 * @p in case that task is currently running.
c5f8d995
HS
4524 *
4525 * Called with task_rq_lock() held on @rq.
1da177e4 4526 */
c5f8d995
HS
4527static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4528{
4529 u64 ns = 0;
4530
4531 if (task_current(rq, p)) {
4532 update_rq_clock(rq);
4533 ns = rq->clock - p->se.exec_start;
4534 if ((s64)ns < 0)
4535 ns = 0;
4536 }
4537
4538 return ns;
4539}
4540
bb34d92f 4541unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4542{
1da177e4 4543 unsigned long flags;
41b86e9c 4544 struct rq *rq;
bb34d92f 4545 u64 ns = 0;
48f24c4d 4546
41b86e9c 4547 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4548 ns = do_task_delta_exec(p, rq);
4549 task_rq_unlock(rq, &flags);
1508487e 4550
c5f8d995
HS
4551 return ns;
4552}
f06febc9 4553
c5f8d995
HS
4554/*
4555 * Return accounted runtime for the task.
4556 * In case the task is currently running, return the runtime plus current's
4557 * pending runtime that have not been accounted yet.
4558 */
4559unsigned long long task_sched_runtime(struct task_struct *p)
4560{
4561 unsigned long flags;
4562 struct rq *rq;
4563 u64 ns = 0;
4564
4565 rq = task_rq_lock(p, &flags);
4566 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4567 task_rq_unlock(rq, &flags);
4568
4569 return ns;
4570}
48f24c4d 4571
c5f8d995
HS
4572/*
4573 * Return sum_exec_runtime for the thread group.
4574 * In case the task is currently running, return the sum plus current's
4575 * pending runtime that have not been accounted yet.
4576 *
4577 * Note that the thread group might have other running tasks as well,
4578 * so the return value not includes other pending runtime that other
4579 * running tasks might have.
4580 */
4581unsigned long long thread_group_sched_runtime(struct task_struct *p)
4582{
4583 struct task_cputime totals;
4584 unsigned long flags;
4585 struct rq *rq;
4586 u64 ns;
4587
4588 rq = task_rq_lock(p, &flags);
4589 thread_group_cputime(p, &totals);
4590 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4591 task_rq_unlock(rq, &flags);
48f24c4d 4592
1da177e4
LT
4593 return ns;
4594}
4595
1da177e4
LT
4596/*
4597 * Account user cpu time to a process.
4598 * @p: the process that the cpu time gets accounted to
1da177e4 4599 * @cputime: the cpu time spent in user space since the last update
457533a7 4600 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4601 */
457533a7
MS
4602void account_user_time(struct task_struct *p, cputime_t cputime,
4603 cputime_t cputime_scaled)
1da177e4
LT
4604{
4605 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4606 cputime64_t tmp;
4607
457533a7 4608 /* Add user time to process. */
1da177e4 4609 p->utime = cputime_add(p->utime, cputime);
457533a7 4610 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4611 account_group_user_time(p, cputime);
1da177e4
LT
4612
4613 /* Add user time to cpustat. */
4614 tmp = cputime_to_cputime64(cputime);
4615 if (TASK_NICE(p) > 0)
4616 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4617 else
4618 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4619
4620 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4621 /* Account for user time used */
4622 acct_update_integrals(p);
1da177e4
LT
4623}
4624
94886b84
LV
4625/*
4626 * Account guest cpu time to a process.
4627 * @p: the process that the cpu time gets accounted to
4628 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4629 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4630 */
457533a7
MS
4631static void account_guest_time(struct task_struct *p, cputime_t cputime,
4632 cputime_t cputime_scaled)
94886b84
LV
4633{
4634 cputime64_t tmp;
4635 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4636
4637 tmp = cputime_to_cputime64(cputime);
4638
457533a7 4639 /* Add guest time to process. */
94886b84 4640 p->utime = cputime_add(p->utime, cputime);
457533a7 4641 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4642 account_group_user_time(p, cputime);
94886b84
LV
4643 p->gtime = cputime_add(p->gtime, cputime);
4644
457533a7 4645 /* Add guest time to cpustat. */
94886b84
LV
4646 cpustat->user = cputime64_add(cpustat->user, tmp);
4647 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4648}
4649
1da177e4
LT
4650/*
4651 * Account system cpu time to a process.
4652 * @p: the process that the cpu time gets accounted to
4653 * @hardirq_offset: the offset to subtract from hardirq_count()
4654 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4655 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4656 */
4657void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4658 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4659{
4660 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4661 cputime64_t tmp;
4662
983ed7a6 4663 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4664 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4665 return;
4666 }
94886b84 4667
457533a7 4668 /* Add system time to process. */
1da177e4 4669 p->stime = cputime_add(p->stime, cputime);
457533a7 4670 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4671 account_group_system_time(p, cputime);
1da177e4
LT
4672
4673 /* Add system time to cpustat. */
4674 tmp = cputime_to_cputime64(cputime);
4675 if (hardirq_count() - hardirq_offset)
4676 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4677 else if (softirq_count())
4678 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4679 else
79741dd3
MS
4680 cpustat->system = cputime64_add(cpustat->system, tmp);
4681
ef12fefa
BR
4682 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4683
1da177e4
LT
4684 /* Account for system time used */
4685 acct_update_integrals(p);
1da177e4
LT
4686}
4687
c66f08be 4688/*
1da177e4 4689 * Account for involuntary wait time.
1da177e4 4690 * @steal: the cpu time spent in involuntary wait
c66f08be 4691 */
79741dd3 4692void account_steal_time(cputime_t cputime)
c66f08be 4693{
79741dd3
MS
4694 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4695 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4696
4697 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4698}
4699
1da177e4 4700/*
79741dd3
MS
4701 * Account for idle time.
4702 * @cputime: the cpu time spent in idle wait
1da177e4 4703 */
79741dd3 4704void account_idle_time(cputime_t cputime)
1da177e4
LT
4705{
4706 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4707 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4708 struct rq *rq = this_rq();
1da177e4 4709
79741dd3
MS
4710 if (atomic_read(&rq->nr_iowait) > 0)
4711 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4712 else
4713 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4714}
4715
79741dd3
MS
4716#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4717
4718/*
4719 * Account a single tick of cpu time.
4720 * @p: the process that the cpu time gets accounted to
4721 * @user_tick: indicates if the tick is a user or a system tick
4722 */
4723void account_process_tick(struct task_struct *p, int user_tick)
4724{
4725 cputime_t one_jiffy = jiffies_to_cputime(1);
4726 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4727 struct rq *rq = this_rq();
4728
4729 if (user_tick)
4730 account_user_time(p, one_jiffy, one_jiffy_scaled);
4731 else if (p != rq->idle)
4732 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4733 one_jiffy_scaled);
4734 else
4735 account_idle_time(one_jiffy);
4736}
4737
4738/*
4739 * Account multiple ticks of steal time.
4740 * @p: the process from which the cpu time has been stolen
4741 * @ticks: number of stolen ticks
4742 */
4743void account_steal_ticks(unsigned long ticks)
4744{
4745 account_steal_time(jiffies_to_cputime(ticks));
4746}
4747
4748/*
4749 * Account multiple ticks of idle time.
4750 * @ticks: number of stolen ticks
4751 */
4752void account_idle_ticks(unsigned long ticks)
4753{
4754 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4755}
4756
79741dd3
MS
4757#endif
4758
49048622
BS
4759/*
4760 * Use precise platform statistics if available:
4761 */
4762#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4763cputime_t task_utime(struct task_struct *p)
4764{
4765 return p->utime;
4766}
4767
4768cputime_t task_stime(struct task_struct *p)
4769{
4770 return p->stime;
4771}
4772#else
4773cputime_t task_utime(struct task_struct *p)
4774{
4775 clock_t utime = cputime_to_clock_t(p->utime),
4776 total = utime + cputime_to_clock_t(p->stime);
4777 u64 temp;
4778
4779 /*
4780 * Use CFS's precise accounting:
4781 */
4782 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4783
4784 if (total) {
4785 temp *= utime;
4786 do_div(temp, total);
4787 }
4788 utime = (clock_t)temp;
4789
4790 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4791 return p->prev_utime;
4792}
4793
4794cputime_t task_stime(struct task_struct *p)
4795{
4796 clock_t stime;
4797
4798 /*
4799 * Use CFS's precise accounting. (we subtract utime from
4800 * the total, to make sure the total observed by userspace
4801 * grows monotonically - apps rely on that):
4802 */
4803 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4804 cputime_to_clock_t(task_utime(p));
4805
4806 if (stime >= 0)
4807 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4808
4809 return p->prev_stime;
4810}
4811#endif
4812
4813inline cputime_t task_gtime(struct task_struct *p)
4814{
4815 return p->gtime;
4816}
4817
7835b98b
CL
4818/*
4819 * This function gets called by the timer code, with HZ frequency.
4820 * We call it with interrupts disabled.
4821 *
4822 * It also gets called by the fork code, when changing the parent's
4823 * timeslices.
4824 */
4825void scheduler_tick(void)
4826{
7835b98b
CL
4827 int cpu = smp_processor_id();
4828 struct rq *rq = cpu_rq(cpu);
dd41f596 4829 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4830
4831 sched_clock_tick();
dd41f596
IM
4832
4833 spin_lock(&rq->lock);
3e51f33f 4834 update_rq_clock(rq);
f1a438d8 4835 update_cpu_load(rq);
fa85ae24 4836 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4837 spin_unlock(&rq->lock);
7835b98b 4838
e418e1c2 4839#ifdef CONFIG_SMP
dd41f596
IM
4840 rq->idle_at_tick = idle_cpu(cpu);
4841 trigger_load_balance(rq, cpu);
e418e1c2 4842#endif
1da177e4
LT
4843}
4844
7e49fcce 4845unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4846{
4847 if (in_lock_functions(addr)) {
4848 addr = CALLER_ADDR2;
4849 if (in_lock_functions(addr))
4850 addr = CALLER_ADDR3;
4851 }
4852 return addr;
4853}
1da177e4 4854
7e49fcce
SR
4855#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4856 defined(CONFIG_PREEMPT_TRACER))
4857
43627582 4858void __kprobes add_preempt_count(int val)
1da177e4 4859{
6cd8a4bb 4860#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4861 /*
4862 * Underflow?
4863 */
9a11b49a
IM
4864 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4865 return;
6cd8a4bb 4866#endif
1da177e4 4867 preempt_count() += val;
6cd8a4bb 4868#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4869 /*
4870 * Spinlock count overflowing soon?
4871 */
33859f7f
MOS
4872 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4873 PREEMPT_MASK - 10);
6cd8a4bb
SR
4874#endif
4875 if (preempt_count() == val)
4876 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4877}
4878EXPORT_SYMBOL(add_preempt_count);
4879
43627582 4880void __kprobes sub_preempt_count(int val)
1da177e4 4881{
6cd8a4bb 4882#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4883 /*
4884 * Underflow?
4885 */
01e3eb82 4886 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4887 return;
1da177e4
LT
4888 /*
4889 * Is the spinlock portion underflowing?
4890 */
9a11b49a
IM
4891 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4892 !(preempt_count() & PREEMPT_MASK)))
4893 return;
6cd8a4bb 4894#endif
9a11b49a 4895
6cd8a4bb
SR
4896 if (preempt_count() == val)
4897 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4898 preempt_count() -= val;
4899}
4900EXPORT_SYMBOL(sub_preempt_count);
4901
4902#endif
4903
4904/*
dd41f596 4905 * Print scheduling while atomic bug:
1da177e4 4906 */
dd41f596 4907static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4908{
838225b4
SS
4909 struct pt_regs *regs = get_irq_regs();
4910
4911 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4912 prev->comm, prev->pid, preempt_count());
4913
dd41f596 4914 debug_show_held_locks(prev);
e21f5b15 4915 print_modules();
dd41f596
IM
4916 if (irqs_disabled())
4917 print_irqtrace_events(prev);
838225b4
SS
4918
4919 if (regs)
4920 show_regs(regs);
4921 else
4922 dump_stack();
dd41f596 4923}
1da177e4 4924
dd41f596
IM
4925/*
4926 * Various schedule()-time debugging checks and statistics:
4927 */
4928static inline void schedule_debug(struct task_struct *prev)
4929{
1da177e4 4930 /*
41a2d6cf 4931 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4932 * schedule() atomically, we ignore that path for now.
4933 * Otherwise, whine if we are scheduling when we should not be.
4934 */
3f33a7ce 4935 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4936 __schedule_bug(prev);
4937
1da177e4
LT
4938 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4939
2d72376b 4940 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4941#ifdef CONFIG_SCHEDSTATS
4942 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4943 schedstat_inc(this_rq(), bkl_count);
4944 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4945 }
4946#endif
dd41f596
IM
4947}
4948
df1c99d4
MG
4949static void put_prev_task(struct rq *rq, struct task_struct *prev)
4950{
4951 if (prev->state == TASK_RUNNING) {
4952 u64 runtime = prev->se.sum_exec_runtime;
4953
4954 runtime -= prev->se.prev_sum_exec_runtime;
4955 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4956
4957 /*
4958 * In order to avoid avg_overlap growing stale when we are
4959 * indeed overlapping and hence not getting put to sleep, grow
4960 * the avg_overlap on preemption.
4961 *
4962 * We use the average preemption runtime because that
4963 * correlates to the amount of cache footprint a task can
4964 * build up.
4965 */
4966 update_avg(&prev->se.avg_overlap, runtime);
4967 }
4968 prev->sched_class->put_prev_task(rq, prev);
4969}
4970
dd41f596
IM
4971/*
4972 * Pick up the highest-prio task:
4973 */
4974static inline struct task_struct *
b67802ea 4975pick_next_task(struct rq *rq)
dd41f596 4976{
5522d5d5 4977 const struct sched_class *class;
dd41f596 4978 struct task_struct *p;
1da177e4
LT
4979
4980 /*
dd41f596
IM
4981 * Optimization: we know that if all tasks are in
4982 * the fair class we can call that function directly:
1da177e4 4983 */
dd41f596 4984 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4985 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4986 if (likely(p))
4987 return p;
1da177e4
LT
4988 }
4989
dd41f596
IM
4990 class = sched_class_highest;
4991 for ( ; ; ) {
fb8d4724 4992 p = class->pick_next_task(rq);
dd41f596
IM
4993 if (p)
4994 return p;
4995 /*
4996 * Will never be NULL as the idle class always
4997 * returns a non-NULL p:
4998 */
4999 class = class->next;
5000 }
5001}
1da177e4 5002
dd41f596
IM
5003/*
5004 * schedule() is the main scheduler function.
5005 */
41719b03 5006asmlinkage void __sched __schedule(void)
dd41f596
IM
5007{
5008 struct task_struct *prev, *next;
67ca7bde 5009 unsigned long *switch_count;
dd41f596 5010 struct rq *rq;
31656519 5011 int cpu;
dd41f596 5012
dd41f596
IM
5013 cpu = smp_processor_id();
5014 rq = cpu_rq(cpu);
5015 rcu_qsctr_inc(cpu);
5016 prev = rq->curr;
5017 switch_count = &prev->nivcsw;
5018
5019 release_kernel_lock(prev);
5020need_resched_nonpreemptible:
5021
5022 schedule_debug(prev);
1da177e4 5023
31656519 5024 if (sched_feat(HRTICK))
f333fdc9 5025 hrtick_clear(rq);
8f4d37ec 5026
8cd162ce 5027 spin_lock_irq(&rq->lock);
3e51f33f 5028 update_rq_clock(rq);
1e819950 5029 clear_tsk_need_resched(prev);
1da177e4 5030
1da177e4 5031 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5032 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5033 prev->state = TASK_RUNNING;
16882c1e 5034 else
2e1cb74a 5035 deactivate_task(rq, prev, 1);
dd41f596 5036 switch_count = &prev->nvcsw;
1da177e4
LT
5037 }
5038
9a897c5a
SR
5039#ifdef CONFIG_SMP
5040 if (prev->sched_class->pre_schedule)
5041 prev->sched_class->pre_schedule(rq, prev);
5042#endif
f65eda4f 5043
dd41f596 5044 if (unlikely(!rq->nr_running))
1da177e4 5045 idle_balance(cpu, rq);
1da177e4 5046
df1c99d4 5047 put_prev_task(rq, prev);
b67802ea 5048 next = pick_next_task(rq);
1da177e4 5049
1da177e4 5050 if (likely(prev != next)) {
673a90a1
DS
5051 sched_info_switch(prev, next);
5052
1da177e4
LT
5053 rq->nr_switches++;
5054 rq->curr = next;
5055 ++*switch_count;
5056
dd41f596 5057 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5058 /*
5059 * the context switch might have flipped the stack from under
5060 * us, hence refresh the local variables.
5061 */
5062 cpu = smp_processor_id();
5063 rq = cpu_rq(cpu);
1da177e4
LT
5064 } else
5065 spin_unlock_irq(&rq->lock);
5066
8f4d37ec 5067 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5068 goto need_resched_nonpreemptible;
41719b03 5069}
8f4d37ec 5070
41719b03
PZ
5071asmlinkage void __sched schedule(void)
5072{
5073need_resched:
5074 preempt_disable();
5075 __schedule();
1da177e4
LT
5076 preempt_enable_no_resched();
5077 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5078 goto need_resched;
5079}
1da177e4
LT
5080EXPORT_SYMBOL(schedule);
5081
0d66bf6d
PZ
5082#ifdef CONFIG_SMP
5083/*
5084 * Look out! "owner" is an entirely speculative pointer
5085 * access and not reliable.
5086 */
5087int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5088{
5089 unsigned int cpu;
5090 struct rq *rq;
5091
5092 if (!sched_feat(OWNER_SPIN))
5093 return 0;
5094
5095#ifdef CONFIG_DEBUG_PAGEALLOC
5096 /*
5097 * Need to access the cpu field knowing that
5098 * DEBUG_PAGEALLOC could have unmapped it if
5099 * the mutex owner just released it and exited.
5100 */
5101 if (probe_kernel_address(&owner->cpu, cpu))
5102 goto out;
5103#else
5104 cpu = owner->cpu;
5105#endif
5106
5107 /*
5108 * Even if the access succeeded (likely case),
5109 * the cpu field may no longer be valid.
5110 */
5111 if (cpu >= nr_cpumask_bits)
5112 goto out;
5113
5114 /*
5115 * We need to validate that we can do a
5116 * get_cpu() and that we have the percpu area.
5117 */
5118 if (!cpu_online(cpu))
5119 goto out;
5120
5121 rq = cpu_rq(cpu);
5122
5123 for (;;) {
5124 /*
5125 * Owner changed, break to re-assess state.
5126 */
5127 if (lock->owner != owner)
5128 break;
5129
5130 /*
5131 * Is that owner really running on that cpu?
5132 */
5133 if (task_thread_info(rq->curr) != owner || need_resched())
5134 return 0;
5135
5136 cpu_relax();
5137 }
5138out:
5139 return 1;
5140}
5141#endif
5142
1da177e4
LT
5143#ifdef CONFIG_PREEMPT
5144/*
2ed6e34f 5145 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5146 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5147 * occur there and call schedule directly.
5148 */
5149asmlinkage void __sched preempt_schedule(void)
5150{
5151 struct thread_info *ti = current_thread_info();
6478d880 5152
1da177e4
LT
5153 /*
5154 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5155 * we do not want to preempt the current task. Just return..
1da177e4 5156 */
beed33a8 5157 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5158 return;
5159
3a5c359a
AK
5160 do {
5161 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5162 schedule();
3a5c359a 5163 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5164
3a5c359a
AK
5165 /*
5166 * Check again in case we missed a preemption opportunity
5167 * between schedule and now.
5168 */
5169 barrier();
5ed0cec0 5170 } while (need_resched());
1da177e4 5171}
1da177e4
LT
5172EXPORT_SYMBOL(preempt_schedule);
5173
5174/*
2ed6e34f 5175 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5176 * off of irq context.
5177 * Note, that this is called and return with irqs disabled. This will
5178 * protect us against recursive calling from irq.
5179 */
5180asmlinkage void __sched preempt_schedule_irq(void)
5181{
5182 struct thread_info *ti = current_thread_info();
6478d880 5183
2ed6e34f 5184 /* Catch callers which need to be fixed */
1da177e4
LT
5185 BUG_ON(ti->preempt_count || !irqs_disabled());
5186
3a5c359a
AK
5187 do {
5188 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5189 local_irq_enable();
5190 schedule();
5191 local_irq_disable();
3a5c359a 5192 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5193
3a5c359a
AK
5194 /*
5195 * Check again in case we missed a preemption opportunity
5196 * between schedule and now.
5197 */
5198 barrier();
5ed0cec0 5199 } while (need_resched());
1da177e4
LT
5200}
5201
5202#endif /* CONFIG_PREEMPT */
5203
95cdf3b7
IM
5204int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5205 void *key)
1da177e4 5206{
48f24c4d 5207 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5208}
1da177e4
LT
5209EXPORT_SYMBOL(default_wake_function);
5210
5211/*
41a2d6cf
IM
5212 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5213 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5214 * number) then we wake all the non-exclusive tasks and one exclusive task.
5215 *
5216 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5217 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5218 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5219 */
777c6c5f
JW
5220void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5221 int nr_exclusive, int sync, void *key)
1da177e4 5222{
2e45874c 5223 wait_queue_t *curr, *next;
1da177e4 5224
2e45874c 5225 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5226 unsigned flags = curr->flags;
5227
1da177e4 5228 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5229 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5230 break;
5231 }
5232}
5233
5234/**
5235 * __wake_up - wake up threads blocked on a waitqueue.
5236 * @q: the waitqueue
5237 * @mode: which threads
5238 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5239 * @key: is directly passed to the wakeup function
1da177e4 5240 */
7ad5b3a5 5241void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5242 int nr_exclusive, void *key)
1da177e4
LT
5243{
5244 unsigned long flags;
5245
5246 spin_lock_irqsave(&q->lock, flags);
5247 __wake_up_common(q, mode, nr_exclusive, 0, key);
5248 spin_unlock_irqrestore(&q->lock, flags);
5249}
1da177e4
LT
5250EXPORT_SYMBOL(__wake_up);
5251
5252/*
5253 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5254 */
7ad5b3a5 5255void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5256{
5257 __wake_up_common(q, mode, 1, 0, NULL);
5258}
5259
4ede816a
DL
5260void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5261{
5262 __wake_up_common(q, mode, 1, 0, key);
5263}
5264
1da177e4 5265/**
4ede816a 5266 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5267 * @q: the waitqueue
5268 * @mode: which threads
5269 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5270 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5271 *
5272 * The sync wakeup differs that the waker knows that it will schedule
5273 * away soon, so while the target thread will be woken up, it will not
5274 * be migrated to another CPU - ie. the two threads are 'synchronized'
5275 * with each other. This can prevent needless bouncing between CPUs.
5276 *
5277 * On UP it can prevent extra preemption.
5278 */
4ede816a
DL
5279void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5280 int nr_exclusive, void *key)
1da177e4
LT
5281{
5282 unsigned long flags;
5283 int sync = 1;
5284
5285 if (unlikely(!q))
5286 return;
5287
5288 if (unlikely(!nr_exclusive))
5289 sync = 0;
5290
5291 spin_lock_irqsave(&q->lock, flags);
4ede816a 5292 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5293 spin_unlock_irqrestore(&q->lock, flags);
5294}
4ede816a
DL
5295EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5296
5297/*
5298 * __wake_up_sync - see __wake_up_sync_key()
5299 */
5300void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5301{
5302 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5303}
1da177e4
LT
5304EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5305
65eb3dc6
KD
5306/**
5307 * complete: - signals a single thread waiting on this completion
5308 * @x: holds the state of this particular completion
5309 *
5310 * This will wake up a single thread waiting on this completion. Threads will be
5311 * awakened in the same order in which they were queued.
5312 *
5313 * See also complete_all(), wait_for_completion() and related routines.
5314 */
b15136e9 5315void complete(struct completion *x)
1da177e4
LT
5316{
5317 unsigned long flags;
5318
5319 spin_lock_irqsave(&x->wait.lock, flags);
5320 x->done++;
d9514f6c 5321 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5322 spin_unlock_irqrestore(&x->wait.lock, flags);
5323}
5324EXPORT_SYMBOL(complete);
5325
65eb3dc6
KD
5326/**
5327 * complete_all: - signals all threads waiting on this completion
5328 * @x: holds the state of this particular completion
5329 *
5330 * This will wake up all threads waiting on this particular completion event.
5331 */
b15136e9 5332void complete_all(struct completion *x)
1da177e4
LT
5333{
5334 unsigned long flags;
5335
5336 spin_lock_irqsave(&x->wait.lock, flags);
5337 x->done += UINT_MAX/2;
d9514f6c 5338 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5339 spin_unlock_irqrestore(&x->wait.lock, flags);
5340}
5341EXPORT_SYMBOL(complete_all);
5342
8cbbe86d
AK
5343static inline long __sched
5344do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5345{
1da177e4
LT
5346 if (!x->done) {
5347 DECLARE_WAITQUEUE(wait, current);
5348
5349 wait.flags |= WQ_FLAG_EXCLUSIVE;
5350 __add_wait_queue_tail(&x->wait, &wait);
5351 do {
94d3d824 5352 if (signal_pending_state(state, current)) {
ea71a546
ON
5353 timeout = -ERESTARTSYS;
5354 break;
8cbbe86d
AK
5355 }
5356 __set_current_state(state);
1da177e4
LT
5357 spin_unlock_irq(&x->wait.lock);
5358 timeout = schedule_timeout(timeout);
5359 spin_lock_irq(&x->wait.lock);
ea71a546 5360 } while (!x->done && timeout);
1da177e4 5361 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5362 if (!x->done)
5363 return timeout;
1da177e4
LT
5364 }
5365 x->done--;
ea71a546 5366 return timeout ?: 1;
1da177e4 5367}
1da177e4 5368
8cbbe86d
AK
5369static long __sched
5370wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5371{
1da177e4
LT
5372 might_sleep();
5373
5374 spin_lock_irq(&x->wait.lock);
8cbbe86d 5375 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5376 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5377 return timeout;
5378}
1da177e4 5379
65eb3dc6
KD
5380/**
5381 * wait_for_completion: - waits for completion of a task
5382 * @x: holds the state of this particular completion
5383 *
5384 * This waits to be signaled for completion of a specific task. It is NOT
5385 * interruptible and there is no timeout.
5386 *
5387 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5388 * and interrupt capability. Also see complete().
5389 */
b15136e9 5390void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5391{
5392 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5393}
8cbbe86d 5394EXPORT_SYMBOL(wait_for_completion);
1da177e4 5395
65eb3dc6
KD
5396/**
5397 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5398 * @x: holds the state of this particular completion
5399 * @timeout: timeout value in jiffies
5400 *
5401 * This waits for either a completion of a specific task to be signaled or for a
5402 * specified timeout to expire. The timeout is in jiffies. It is not
5403 * interruptible.
5404 */
b15136e9 5405unsigned long __sched
8cbbe86d 5406wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5407{
8cbbe86d 5408 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5409}
8cbbe86d 5410EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5411
65eb3dc6
KD
5412/**
5413 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5414 * @x: holds the state of this particular completion
5415 *
5416 * This waits for completion of a specific task to be signaled. It is
5417 * interruptible.
5418 */
8cbbe86d 5419int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5420{
51e97990
AK
5421 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5422 if (t == -ERESTARTSYS)
5423 return t;
5424 return 0;
0fec171c 5425}
8cbbe86d 5426EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5427
65eb3dc6
KD
5428/**
5429 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5430 * @x: holds the state of this particular completion
5431 * @timeout: timeout value in jiffies
5432 *
5433 * This waits for either a completion of a specific task to be signaled or for a
5434 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5435 */
b15136e9 5436unsigned long __sched
8cbbe86d
AK
5437wait_for_completion_interruptible_timeout(struct completion *x,
5438 unsigned long timeout)
0fec171c 5439{
8cbbe86d 5440 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5441}
8cbbe86d 5442EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5443
65eb3dc6
KD
5444/**
5445 * wait_for_completion_killable: - waits for completion of a task (killable)
5446 * @x: holds the state of this particular completion
5447 *
5448 * This waits to be signaled for completion of a specific task. It can be
5449 * interrupted by a kill signal.
5450 */
009e577e
MW
5451int __sched wait_for_completion_killable(struct completion *x)
5452{
5453 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5454 if (t == -ERESTARTSYS)
5455 return t;
5456 return 0;
5457}
5458EXPORT_SYMBOL(wait_for_completion_killable);
5459
be4de352
DC
5460/**
5461 * try_wait_for_completion - try to decrement a completion without blocking
5462 * @x: completion structure
5463 *
5464 * Returns: 0 if a decrement cannot be done without blocking
5465 * 1 if a decrement succeeded.
5466 *
5467 * If a completion is being used as a counting completion,
5468 * attempt to decrement the counter without blocking. This
5469 * enables us to avoid waiting if the resource the completion
5470 * is protecting is not available.
5471 */
5472bool try_wait_for_completion(struct completion *x)
5473{
5474 int ret = 1;
5475
5476 spin_lock_irq(&x->wait.lock);
5477 if (!x->done)
5478 ret = 0;
5479 else
5480 x->done--;
5481 spin_unlock_irq(&x->wait.lock);
5482 return ret;
5483}
5484EXPORT_SYMBOL(try_wait_for_completion);
5485
5486/**
5487 * completion_done - Test to see if a completion has any waiters
5488 * @x: completion structure
5489 *
5490 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5491 * 1 if there are no waiters.
5492 *
5493 */
5494bool completion_done(struct completion *x)
5495{
5496 int ret = 1;
5497
5498 spin_lock_irq(&x->wait.lock);
5499 if (!x->done)
5500 ret = 0;
5501 spin_unlock_irq(&x->wait.lock);
5502 return ret;
5503}
5504EXPORT_SYMBOL(completion_done);
5505
8cbbe86d
AK
5506static long __sched
5507sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5508{
0fec171c
IM
5509 unsigned long flags;
5510 wait_queue_t wait;
5511
5512 init_waitqueue_entry(&wait, current);
1da177e4 5513
8cbbe86d 5514 __set_current_state(state);
1da177e4 5515
8cbbe86d
AK
5516 spin_lock_irqsave(&q->lock, flags);
5517 __add_wait_queue(q, &wait);
5518 spin_unlock(&q->lock);
5519 timeout = schedule_timeout(timeout);
5520 spin_lock_irq(&q->lock);
5521 __remove_wait_queue(q, &wait);
5522 spin_unlock_irqrestore(&q->lock, flags);
5523
5524 return timeout;
5525}
5526
5527void __sched interruptible_sleep_on(wait_queue_head_t *q)
5528{
5529 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5530}
1da177e4
LT
5531EXPORT_SYMBOL(interruptible_sleep_on);
5532
0fec171c 5533long __sched
95cdf3b7 5534interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5535{
8cbbe86d 5536 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5537}
1da177e4
LT
5538EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5539
0fec171c 5540void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5541{
8cbbe86d 5542 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5543}
1da177e4
LT
5544EXPORT_SYMBOL(sleep_on);
5545
0fec171c 5546long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5547{
8cbbe86d 5548 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5549}
1da177e4
LT
5550EXPORT_SYMBOL(sleep_on_timeout);
5551
b29739f9
IM
5552#ifdef CONFIG_RT_MUTEXES
5553
5554/*
5555 * rt_mutex_setprio - set the current priority of a task
5556 * @p: task
5557 * @prio: prio value (kernel-internal form)
5558 *
5559 * This function changes the 'effective' priority of a task. It does
5560 * not touch ->normal_prio like __setscheduler().
5561 *
5562 * Used by the rt_mutex code to implement priority inheritance logic.
5563 */
36c8b586 5564void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5565{
5566 unsigned long flags;
83b699ed 5567 int oldprio, on_rq, running;
70b97a7f 5568 struct rq *rq;
cb469845 5569 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5570
5571 BUG_ON(prio < 0 || prio > MAX_PRIO);
5572
5573 rq = task_rq_lock(p, &flags);
a8e504d2 5574 update_rq_clock(rq);
b29739f9 5575
d5f9f942 5576 oldprio = p->prio;
dd41f596 5577 on_rq = p->se.on_rq;
051a1d1a 5578 running = task_current(rq, p);
0e1f3483 5579 if (on_rq)
69be72c1 5580 dequeue_task(rq, p, 0);
0e1f3483
HS
5581 if (running)
5582 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5583
5584 if (rt_prio(prio))
5585 p->sched_class = &rt_sched_class;
5586 else
5587 p->sched_class = &fair_sched_class;
5588
b29739f9
IM
5589 p->prio = prio;
5590
0e1f3483
HS
5591 if (running)
5592 p->sched_class->set_curr_task(rq);
dd41f596 5593 if (on_rq) {
8159f87e 5594 enqueue_task(rq, p, 0);
cb469845
SR
5595
5596 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5597 }
5598 task_rq_unlock(rq, &flags);
5599}
5600
5601#endif
5602
36c8b586 5603void set_user_nice(struct task_struct *p, long nice)
1da177e4 5604{
dd41f596 5605 int old_prio, delta, on_rq;
1da177e4 5606 unsigned long flags;
70b97a7f 5607 struct rq *rq;
1da177e4
LT
5608
5609 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5610 return;
5611 /*
5612 * We have to be careful, if called from sys_setpriority(),
5613 * the task might be in the middle of scheduling on another CPU.
5614 */
5615 rq = task_rq_lock(p, &flags);
a8e504d2 5616 update_rq_clock(rq);
1da177e4
LT
5617 /*
5618 * The RT priorities are set via sched_setscheduler(), but we still
5619 * allow the 'normal' nice value to be set - but as expected
5620 * it wont have any effect on scheduling until the task is
dd41f596 5621 * SCHED_FIFO/SCHED_RR:
1da177e4 5622 */
e05606d3 5623 if (task_has_rt_policy(p)) {
1da177e4
LT
5624 p->static_prio = NICE_TO_PRIO(nice);
5625 goto out_unlock;
5626 }
dd41f596 5627 on_rq = p->se.on_rq;
c09595f6 5628 if (on_rq)
69be72c1 5629 dequeue_task(rq, p, 0);
1da177e4 5630
1da177e4 5631 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5632 set_load_weight(p);
b29739f9
IM
5633 old_prio = p->prio;
5634 p->prio = effective_prio(p);
5635 delta = p->prio - old_prio;
1da177e4 5636
dd41f596 5637 if (on_rq) {
8159f87e 5638 enqueue_task(rq, p, 0);
1da177e4 5639 /*
d5f9f942
AM
5640 * If the task increased its priority or is running and
5641 * lowered its priority, then reschedule its CPU:
1da177e4 5642 */
d5f9f942 5643 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5644 resched_task(rq->curr);
5645 }
5646out_unlock:
5647 task_rq_unlock(rq, &flags);
5648}
1da177e4
LT
5649EXPORT_SYMBOL(set_user_nice);
5650
e43379f1
MM
5651/*
5652 * can_nice - check if a task can reduce its nice value
5653 * @p: task
5654 * @nice: nice value
5655 */
36c8b586 5656int can_nice(const struct task_struct *p, const int nice)
e43379f1 5657{
024f4747
MM
5658 /* convert nice value [19,-20] to rlimit style value [1,40] */
5659 int nice_rlim = 20 - nice;
48f24c4d 5660
e43379f1
MM
5661 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5662 capable(CAP_SYS_NICE));
5663}
5664
1da177e4
LT
5665#ifdef __ARCH_WANT_SYS_NICE
5666
5667/*
5668 * sys_nice - change the priority of the current process.
5669 * @increment: priority increment
5670 *
5671 * sys_setpriority is a more generic, but much slower function that
5672 * does similar things.
5673 */
5add95d4 5674SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5675{
48f24c4d 5676 long nice, retval;
1da177e4
LT
5677
5678 /*
5679 * Setpriority might change our priority at the same moment.
5680 * We don't have to worry. Conceptually one call occurs first
5681 * and we have a single winner.
5682 */
e43379f1
MM
5683 if (increment < -40)
5684 increment = -40;
1da177e4
LT
5685 if (increment > 40)
5686 increment = 40;
5687
2b8f836f 5688 nice = TASK_NICE(current) + increment;
1da177e4
LT
5689 if (nice < -20)
5690 nice = -20;
5691 if (nice > 19)
5692 nice = 19;
5693
e43379f1
MM
5694 if (increment < 0 && !can_nice(current, nice))
5695 return -EPERM;
5696
1da177e4
LT
5697 retval = security_task_setnice(current, nice);
5698 if (retval)
5699 return retval;
5700
5701 set_user_nice(current, nice);
5702 return 0;
5703}
5704
5705#endif
5706
5707/**
5708 * task_prio - return the priority value of a given task.
5709 * @p: the task in question.
5710 *
5711 * This is the priority value as seen by users in /proc.
5712 * RT tasks are offset by -200. Normal tasks are centered
5713 * around 0, value goes from -16 to +15.
5714 */
36c8b586 5715int task_prio(const struct task_struct *p)
1da177e4
LT
5716{
5717 return p->prio - MAX_RT_PRIO;
5718}
5719
5720/**
5721 * task_nice - return the nice value of a given task.
5722 * @p: the task in question.
5723 */
36c8b586 5724int task_nice(const struct task_struct *p)
1da177e4
LT
5725{
5726 return TASK_NICE(p);
5727}
150d8bed 5728EXPORT_SYMBOL(task_nice);
1da177e4
LT
5729
5730/**
5731 * idle_cpu - is a given cpu idle currently?
5732 * @cpu: the processor in question.
5733 */
5734int idle_cpu(int cpu)
5735{
5736 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5737}
5738
1da177e4
LT
5739/**
5740 * idle_task - return the idle task for a given cpu.
5741 * @cpu: the processor in question.
5742 */
36c8b586 5743struct task_struct *idle_task(int cpu)
1da177e4
LT
5744{
5745 return cpu_rq(cpu)->idle;
5746}
5747
5748/**
5749 * find_process_by_pid - find a process with a matching PID value.
5750 * @pid: the pid in question.
5751 */
a9957449 5752static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5753{
228ebcbe 5754 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5755}
5756
5757/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5758static void
5759__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5760{
dd41f596 5761 BUG_ON(p->se.on_rq);
48f24c4d 5762
1da177e4 5763 p->policy = policy;
dd41f596
IM
5764 switch (p->policy) {
5765 case SCHED_NORMAL:
5766 case SCHED_BATCH:
5767 case SCHED_IDLE:
5768 p->sched_class = &fair_sched_class;
5769 break;
5770 case SCHED_FIFO:
5771 case SCHED_RR:
5772 p->sched_class = &rt_sched_class;
5773 break;
5774 }
5775
1da177e4 5776 p->rt_priority = prio;
b29739f9
IM
5777 p->normal_prio = normal_prio(p);
5778 /* we are holding p->pi_lock already */
5779 p->prio = rt_mutex_getprio(p);
2dd73a4f 5780 set_load_weight(p);
1da177e4
LT
5781}
5782
c69e8d9c
DH
5783/*
5784 * check the target process has a UID that matches the current process's
5785 */
5786static bool check_same_owner(struct task_struct *p)
5787{
5788 const struct cred *cred = current_cred(), *pcred;
5789 bool match;
5790
5791 rcu_read_lock();
5792 pcred = __task_cred(p);
5793 match = (cred->euid == pcred->euid ||
5794 cred->euid == pcred->uid);
5795 rcu_read_unlock();
5796 return match;
5797}
5798
961ccddd
RR
5799static int __sched_setscheduler(struct task_struct *p, int policy,
5800 struct sched_param *param, bool user)
1da177e4 5801{
83b699ed 5802 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5803 unsigned long flags;
cb469845 5804 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5805 struct rq *rq;
1da177e4 5806
66e5393a
SR
5807 /* may grab non-irq protected spin_locks */
5808 BUG_ON(in_interrupt());
1da177e4
LT
5809recheck:
5810 /* double check policy once rq lock held */
5811 if (policy < 0)
5812 policy = oldpolicy = p->policy;
5813 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5814 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5815 policy != SCHED_IDLE)
b0a9499c 5816 return -EINVAL;
1da177e4
LT
5817 /*
5818 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5819 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5820 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5821 */
5822 if (param->sched_priority < 0 ||
95cdf3b7 5823 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5824 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5825 return -EINVAL;
e05606d3 5826 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5827 return -EINVAL;
5828
37e4ab3f
OC
5829 /*
5830 * Allow unprivileged RT tasks to decrease priority:
5831 */
961ccddd 5832 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5833 if (rt_policy(policy)) {
8dc3e909 5834 unsigned long rlim_rtprio;
8dc3e909
ON
5835
5836 if (!lock_task_sighand(p, &flags))
5837 return -ESRCH;
5838 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5839 unlock_task_sighand(p, &flags);
5840
5841 /* can't set/change the rt policy */
5842 if (policy != p->policy && !rlim_rtprio)
5843 return -EPERM;
5844
5845 /* can't increase priority */
5846 if (param->sched_priority > p->rt_priority &&
5847 param->sched_priority > rlim_rtprio)
5848 return -EPERM;
5849 }
dd41f596
IM
5850 /*
5851 * Like positive nice levels, dont allow tasks to
5852 * move out of SCHED_IDLE either:
5853 */
5854 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5855 return -EPERM;
5fe1d75f 5856
37e4ab3f 5857 /* can't change other user's priorities */
c69e8d9c 5858 if (!check_same_owner(p))
37e4ab3f
OC
5859 return -EPERM;
5860 }
1da177e4 5861
725aad24 5862 if (user) {
b68aa230 5863#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5864 /*
5865 * Do not allow realtime tasks into groups that have no runtime
5866 * assigned.
5867 */
9a7e0b18
PZ
5868 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5869 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5870 return -EPERM;
b68aa230
PZ
5871#endif
5872
725aad24
JF
5873 retval = security_task_setscheduler(p, policy, param);
5874 if (retval)
5875 return retval;
5876 }
5877
b29739f9
IM
5878 /*
5879 * make sure no PI-waiters arrive (or leave) while we are
5880 * changing the priority of the task:
5881 */
5882 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5883 /*
5884 * To be able to change p->policy safely, the apropriate
5885 * runqueue lock must be held.
5886 */
b29739f9 5887 rq = __task_rq_lock(p);
1da177e4
LT
5888 /* recheck policy now with rq lock held */
5889 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5890 policy = oldpolicy = -1;
b29739f9
IM
5891 __task_rq_unlock(rq);
5892 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5893 goto recheck;
5894 }
2daa3577 5895 update_rq_clock(rq);
dd41f596 5896 on_rq = p->se.on_rq;
051a1d1a 5897 running = task_current(rq, p);
0e1f3483 5898 if (on_rq)
2e1cb74a 5899 deactivate_task(rq, p, 0);
0e1f3483
HS
5900 if (running)
5901 p->sched_class->put_prev_task(rq, p);
f6b53205 5902
1da177e4 5903 oldprio = p->prio;
dd41f596 5904 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5905
0e1f3483
HS
5906 if (running)
5907 p->sched_class->set_curr_task(rq);
dd41f596
IM
5908 if (on_rq) {
5909 activate_task(rq, p, 0);
cb469845
SR
5910
5911 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5912 }
b29739f9
IM
5913 __task_rq_unlock(rq);
5914 spin_unlock_irqrestore(&p->pi_lock, flags);
5915
95e02ca9
TG
5916 rt_mutex_adjust_pi(p);
5917
1da177e4
LT
5918 return 0;
5919}
961ccddd
RR
5920
5921/**
5922 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5923 * @p: the task in question.
5924 * @policy: new policy.
5925 * @param: structure containing the new RT priority.
5926 *
5927 * NOTE that the task may be already dead.
5928 */
5929int sched_setscheduler(struct task_struct *p, int policy,
5930 struct sched_param *param)
5931{
5932 return __sched_setscheduler(p, policy, param, true);
5933}
1da177e4
LT
5934EXPORT_SYMBOL_GPL(sched_setscheduler);
5935
961ccddd
RR
5936/**
5937 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5938 * @p: the task in question.
5939 * @policy: new policy.
5940 * @param: structure containing the new RT priority.
5941 *
5942 * Just like sched_setscheduler, only don't bother checking if the
5943 * current context has permission. For example, this is needed in
5944 * stop_machine(): we create temporary high priority worker threads,
5945 * but our caller might not have that capability.
5946 */
5947int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5948 struct sched_param *param)
5949{
5950 return __sched_setscheduler(p, policy, param, false);
5951}
5952
95cdf3b7
IM
5953static int
5954do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5955{
1da177e4
LT
5956 struct sched_param lparam;
5957 struct task_struct *p;
36c8b586 5958 int retval;
1da177e4
LT
5959
5960 if (!param || pid < 0)
5961 return -EINVAL;
5962 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5963 return -EFAULT;
5fe1d75f
ON
5964
5965 rcu_read_lock();
5966 retval = -ESRCH;
1da177e4 5967 p = find_process_by_pid(pid);
5fe1d75f
ON
5968 if (p != NULL)
5969 retval = sched_setscheduler(p, policy, &lparam);
5970 rcu_read_unlock();
36c8b586 5971
1da177e4
LT
5972 return retval;
5973}
5974
5975/**
5976 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5977 * @pid: the pid in question.
5978 * @policy: new policy.
5979 * @param: structure containing the new RT priority.
5980 */
5add95d4
HC
5981SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5982 struct sched_param __user *, param)
1da177e4 5983{
c21761f1
JB
5984 /* negative values for policy are not valid */
5985 if (policy < 0)
5986 return -EINVAL;
5987
1da177e4
LT
5988 return do_sched_setscheduler(pid, policy, param);
5989}
5990
5991/**
5992 * sys_sched_setparam - set/change the RT priority of a thread
5993 * @pid: the pid in question.
5994 * @param: structure containing the new RT priority.
5995 */
5add95d4 5996SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5997{
5998 return do_sched_setscheduler(pid, -1, param);
5999}
6000
6001/**
6002 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6003 * @pid: the pid in question.
6004 */
5add95d4 6005SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6006{
36c8b586 6007 struct task_struct *p;
3a5c359a 6008 int retval;
1da177e4
LT
6009
6010 if (pid < 0)
3a5c359a 6011 return -EINVAL;
1da177e4
LT
6012
6013 retval = -ESRCH;
6014 read_lock(&tasklist_lock);
6015 p = find_process_by_pid(pid);
6016 if (p) {
6017 retval = security_task_getscheduler(p);
6018 if (!retval)
6019 retval = p->policy;
6020 }
6021 read_unlock(&tasklist_lock);
1da177e4
LT
6022 return retval;
6023}
6024
6025/**
6026 * sys_sched_getscheduler - get the RT priority of a thread
6027 * @pid: the pid in question.
6028 * @param: structure containing the RT priority.
6029 */
5add95d4 6030SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6031{
6032 struct sched_param lp;
36c8b586 6033 struct task_struct *p;
3a5c359a 6034 int retval;
1da177e4
LT
6035
6036 if (!param || pid < 0)
3a5c359a 6037 return -EINVAL;
1da177e4
LT
6038
6039 read_lock(&tasklist_lock);
6040 p = find_process_by_pid(pid);
6041 retval = -ESRCH;
6042 if (!p)
6043 goto out_unlock;
6044
6045 retval = security_task_getscheduler(p);
6046 if (retval)
6047 goto out_unlock;
6048
6049 lp.sched_priority = p->rt_priority;
6050 read_unlock(&tasklist_lock);
6051
6052 /*
6053 * This one might sleep, we cannot do it with a spinlock held ...
6054 */
6055 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6056
1da177e4
LT
6057 return retval;
6058
6059out_unlock:
6060 read_unlock(&tasklist_lock);
6061 return retval;
6062}
6063
96f874e2 6064long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6065{
5a16f3d3 6066 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6067 struct task_struct *p;
6068 int retval;
1da177e4 6069
95402b38 6070 get_online_cpus();
1da177e4
LT
6071 read_lock(&tasklist_lock);
6072
6073 p = find_process_by_pid(pid);
6074 if (!p) {
6075 read_unlock(&tasklist_lock);
95402b38 6076 put_online_cpus();
1da177e4
LT
6077 return -ESRCH;
6078 }
6079
6080 /*
6081 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6082 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6083 * usage count and then drop tasklist_lock.
6084 */
6085 get_task_struct(p);
6086 read_unlock(&tasklist_lock);
6087
5a16f3d3
RR
6088 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6089 retval = -ENOMEM;
6090 goto out_put_task;
6091 }
6092 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6093 retval = -ENOMEM;
6094 goto out_free_cpus_allowed;
6095 }
1da177e4 6096 retval = -EPERM;
c69e8d9c 6097 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6098 goto out_unlock;
6099
e7834f8f
DQ
6100 retval = security_task_setscheduler(p, 0, NULL);
6101 if (retval)
6102 goto out_unlock;
6103
5a16f3d3
RR
6104 cpuset_cpus_allowed(p, cpus_allowed);
6105 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6106 again:
5a16f3d3 6107 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6108
8707d8b8 6109 if (!retval) {
5a16f3d3
RR
6110 cpuset_cpus_allowed(p, cpus_allowed);
6111 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6112 /*
6113 * We must have raced with a concurrent cpuset
6114 * update. Just reset the cpus_allowed to the
6115 * cpuset's cpus_allowed
6116 */
5a16f3d3 6117 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6118 goto again;
6119 }
6120 }
1da177e4 6121out_unlock:
5a16f3d3
RR
6122 free_cpumask_var(new_mask);
6123out_free_cpus_allowed:
6124 free_cpumask_var(cpus_allowed);
6125out_put_task:
1da177e4 6126 put_task_struct(p);
95402b38 6127 put_online_cpus();
1da177e4
LT
6128 return retval;
6129}
6130
6131static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6132 struct cpumask *new_mask)
1da177e4 6133{
96f874e2
RR
6134 if (len < cpumask_size())
6135 cpumask_clear(new_mask);
6136 else if (len > cpumask_size())
6137 len = cpumask_size();
6138
1da177e4
LT
6139 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6140}
6141
6142/**
6143 * sys_sched_setaffinity - set the cpu affinity of a process
6144 * @pid: pid of the process
6145 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6146 * @user_mask_ptr: user-space pointer to the new cpu mask
6147 */
5add95d4
HC
6148SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6149 unsigned long __user *, user_mask_ptr)
1da177e4 6150{
5a16f3d3 6151 cpumask_var_t new_mask;
1da177e4
LT
6152 int retval;
6153
5a16f3d3
RR
6154 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6155 return -ENOMEM;
1da177e4 6156
5a16f3d3
RR
6157 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6158 if (retval == 0)
6159 retval = sched_setaffinity(pid, new_mask);
6160 free_cpumask_var(new_mask);
6161 return retval;
1da177e4
LT
6162}
6163
96f874e2 6164long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6165{
36c8b586 6166 struct task_struct *p;
1da177e4 6167 int retval;
1da177e4 6168
95402b38 6169 get_online_cpus();
1da177e4
LT
6170 read_lock(&tasklist_lock);
6171
6172 retval = -ESRCH;
6173 p = find_process_by_pid(pid);
6174 if (!p)
6175 goto out_unlock;
6176
e7834f8f
DQ
6177 retval = security_task_getscheduler(p);
6178 if (retval)
6179 goto out_unlock;
6180
96f874e2 6181 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6182
6183out_unlock:
6184 read_unlock(&tasklist_lock);
95402b38 6185 put_online_cpus();
1da177e4 6186
9531b62f 6187 return retval;
1da177e4
LT
6188}
6189
6190/**
6191 * sys_sched_getaffinity - get the cpu affinity of a process
6192 * @pid: pid of the process
6193 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6194 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6195 */
5add95d4
HC
6196SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6197 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6198{
6199 int ret;
f17c8607 6200 cpumask_var_t mask;
1da177e4 6201
f17c8607 6202 if (len < cpumask_size())
1da177e4
LT
6203 return -EINVAL;
6204
f17c8607
RR
6205 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6206 return -ENOMEM;
1da177e4 6207
f17c8607
RR
6208 ret = sched_getaffinity(pid, mask);
6209 if (ret == 0) {
6210 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6211 ret = -EFAULT;
6212 else
6213 ret = cpumask_size();
6214 }
6215 free_cpumask_var(mask);
1da177e4 6216
f17c8607 6217 return ret;
1da177e4
LT
6218}
6219
6220/**
6221 * sys_sched_yield - yield the current processor to other threads.
6222 *
dd41f596
IM
6223 * This function yields the current CPU to other tasks. If there are no
6224 * other threads running on this CPU then this function will return.
1da177e4 6225 */
5add95d4 6226SYSCALL_DEFINE0(sched_yield)
1da177e4 6227{
70b97a7f 6228 struct rq *rq = this_rq_lock();
1da177e4 6229
2d72376b 6230 schedstat_inc(rq, yld_count);
4530d7ab 6231 current->sched_class->yield_task(rq);
1da177e4
LT
6232
6233 /*
6234 * Since we are going to call schedule() anyway, there's
6235 * no need to preempt or enable interrupts:
6236 */
6237 __release(rq->lock);
8a25d5de 6238 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6239 _raw_spin_unlock(&rq->lock);
6240 preempt_enable_no_resched();
6241
6242 schedule();
6243
6244 return 0;
6245}
6246
e7b38404 6247static void __cond_resched(void)
1da177e4 6248{
8e0a43d8
IM
6249#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6250 __might_sleep(__FILE__, __LINE__);
6251#endif
5bbcfd90
IM
6252 /*
6253 * The BKS might be reacquired before we have dropped
6254 * PREEMPT_ACTIVE, which could trigger a second
6255 * cond_resched() call.
6256 */
1da177e4
LT
6257 do {
6258 add_preempt_count(PREEMPT_ACTIVE);
6259 schedule();
6260 sub_preempt_count(PREEMPT_ACTIVE);
6261 } while (need_resched());
6262}
6263
02b67cc3 6264int __sched _cond_resched(void)
1da177e4 6265{
9414232f
IM
6266 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6267 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6268 __cond_resched();
6269 return 1;
6270 }
6271 return 0;
6272}
02b67cc3 6273EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6274
6275/*
6276 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6277 * call schedule, and on return reacquire the lock.
6278 *
41a2d6cf 6279 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6280 * operations here to prevent schedule() from being called twice (once via
6281 * spin_unlock(), once by hand).
6282 */
95cdf3b7 6283int cond_resched_lock(spinlock_t *lock)
1da177e4 6284{
95c354fe 6285 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6286 int ret = 0;
6287
95c354fe 6288 if (spin_needbreak(lock) || resched) {
1da177e4 6289 spin_unlock(lock);
95c354fe
NP
6290 if (resched && need_resched())
6291 __cond_resched();
6292 else
6293 cpu_relax();
6df3cecb 6294 ret = 1;
1da177e4 6295 spin_lock(lock);
1da177e4 6296 }
6df3cecb 6297 return ret;
1da177e4 6298}
1da177e4
LT
6299EXPORT_SYMBOL(cond_resched_lock);
6300
6301int __sched cond_resched_softirq(void)
6302{
6303 BUG_ON(!in_softirq());
6304
9414232f 6305 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6306 local_bh_enable();
1da177e4
LT
6307 __cond_resched();
6308 local_bh_disable();
6309 return 1;
6310 }
6311 return 0;
6312}
1da177e4
LT
6313EXPORT_SYMBOL(cond_resched_softirq);
6314
1da177e4
LT
6315/**
6316 * yield - yield the current processor to other threads.
6317 *
72fd4a35 6318 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6319 * thread runnable and calls sys_sched_yield().
6320 */
6321void __sched yield(void)
6322{
6323 set_current_state(TASK_RUNNING);
6324 sys_sched_yield();
6325}
1da177e4
LT
6326EXPORT_SYMBOL(yield);
6327
6328/*
41a2d6cf 6329 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6330 * that process accounting knows that this is a task in IO wait state.
6331 *
6332 * But don't do that if it is a deliberate, throttling IO wait (this task
6333 * has set its backing_dev_info: the queue against which it should throttle)
6334 */
6335void __sched io_schedule(void)
6336{
70b97a7f 6337 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6338
0ff92245 6339 delayacct_blkio_start();
1da177e4
LT
6340 atomic_inc(&rq->nr_iowait);
6341 schedule();
6342 atomic_dec(&rq->nr_iowait);
0ff92245 6343 delayacct_blkio_end();
1da177e4 6344}
1da177e4
LT
6345EXPORT_SYMBOL(io_schedule);
6346
6347long __sched io_schedule_timeout(long timeout)
6348{
70b97a7f 6349 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6350 long ret;
6351
0ff92245 6352 delayacct_blkio_start();
1da177e4
LT
6353 atomic_inc(&rq->nr_iowait);
6354 ret = schedule_timeout(timeout);
6355 atomic_dec(&rq->nr_iowait);
0ff92245 6356 delayacct_blkio_end();
1da177e4
LT
6357 return ret;
6358}
6359
6360/**
6361 * sys_sched_get_priority_max - return maximum RT priority.
6362 * @policy: scheduling class.
6363 *
6364 * this syscall returns the maximum rt_priority that can be used
6365 * by a given scheduling class.
6366 */
5add95d4 6367SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6368{
6369 int ret = -EINVAL;
6370
6371 switch (policy) {
6372 case SCHED_FIFO:
6373 case SCHED_RR:
6374 ret = MAX_USER_RT_PRIO-1;
6375 break;
6376 case SCHED_NORMAL:
b0a9499c 6377 case SCHED_BATCH:
dd41f596 6378 case SCHED_IDLE:
1da177e4
LT
6379 ret = 0;
6380 break;
6381 }
6382 return ret;
6383}
6384
6385/**
6386 * sys_sched_get_priority_min - return minimum RT priority.
6387 * @policy: scheduling class.
6388 *
6389 * this syscall returns the minimum rt_priority that can be used
6390 * by a given scheduling class.
6391 */
5add95d4 6392SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6393{
6394 int ret = -EINVAL;
6395
6396 switch (policy) {
6397 case SCHED_FIFO:
6398 case SCHED_RR:
6399 ret = 1;
6400 break;
6401 case SCHED_NORMAL:
b0a9499c 6402 case SCHED_BATCH:
dd41f596 6403 case SCHED_IDLE:
1da177e4
LT
6404 ret = 0;
6405 }
6406 return ret;
6407}
6408
6409/**
6410 * sys_sched_rr_get_interval - return the default timeslice of a process.
6411 * @pid: pid of the process.
6412 * @interval: userspace pointer to the timeslice value.
6413 *
6414 * this syscall writes the default timeslice value of a given process
6415 * into the user-space timespec buffer. A value of '0' means infinity.
6416 */
17da2bd9 6417SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6418 struct timespec __user *, interval)
1da177e4 6419{
36c8b586 6420 struct task_struct *p;
a4ec24b4 6421 unsigned int time_slice;
3a5c359a 6422 int retval;
1da177e4 6423 struct timespec t;
1da177e4
LT
6424
6425 if (pid < 0)
3a5c359a 6426 return -EINVAL;
1da177e4
LT
6427
6428 retval = -ESRCH;
6429 read_lock(&tasklist_lock);
6430 p = find_process_by_pid(pid);
6431 if (!p)
6432 goto out_unlock;
6433
6434 retval = security_task_getscheduler(p);
6435 if (retval)
6436 goto out_unlock;
6437
77034937
IM
6438 /*
6439 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6440 * tasks that are on an otherwise idle runqueue:
6441 */
6442 time_slice = 0;
6443 if (p->policy == SCHED_RR) {
a4ec24b4 6444 time_slice = DEF_TIMESLICE;
1868f958 6445 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6446 struct sched_entity *se = &p->se;
6447 unsigned long flags;
6448 struct rq *rq;
6449
6450 rq = task_rq_lock(p, &flags);
77034937
IM
6451 if (rq->cfs.load.weight)
6452 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6453 task_rq_unlock(rq, &flags);
6454 }
1da177e4 6455 read_unlock(&tasklist_lock);
a4ec24b4 6456 jiffies_to_timespec(time_slice, &t);
1da177e4 6457 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6458 return retval;
3a5c359a 6459
1da177e4
LT
6460out_unlock:
6461 read_unlock(&tasklist_lock);
6462 return retval;
6463}
6464
7c731e0a 6465static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6466
82a1fcb9 6467void sched_show_task(struct task_struct *p)
1da177e4 6468{
1da177e4 6469 unsigned long free = 0;
36c8b586 6470 unsigned state;
1da177e4 6471
1da177e4 6472 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6473 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6474 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6475#if BITS_PER_LONG == 32
1da177e4 6476 if (state == TASK_RUNNING)
cc4ea795 6477 printk(KERN_CONT " running ");
1da177e4 6478 else
cc4ea795 6479 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6480#else
6481 if (state == TASK_RUNNING)
cc4ea795 6482 printk(KERN_CONT " running task ");
1da177e4 6483 else
cc4ea795 6484 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6485#endif
6486#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6487 free = stack_not_used(p);
1da177e4 6488#endif
ba25f9dc 6489 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6490 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6491
5fb5e6de 6492 show_stack(p, NULL);
1da177e4
LT
6493}
6494
e59e2ae2 6495void show_state_filter(unsigned long state_filter)
1da177e4 6496{
36c8b586 6497 struct task_struct *g, *p;
1da177e4 6498
4bd77321
IM
6499#if BITS_PER_LONG == 32
6500 printk(KERN_INFO
6501 " task PC stack pid father\n");
1da177e4 6502#else
4bd77321
IM
6503 printk(KERN_INFO
6504 " task PC stack pid father\n");
1da177e4
LT
6505#endif
6506 read_lock(&tasklist_lock);
6507 do_each_thread(g, p) {
6508 /*
6509 * reset the NMI-timeout, listing all files on a slow
6510 * console might take alot of time:
6511 */
6512 touch_nmi_watchdog();
39bc89fd 6513 if (!state_filter || (p->state & state_filter))
82a1fcb9 6514 sched_show_task(p);
1da177e4
LT
6515 } while_each_thread(g, p);
6516
04c9167f
JF
6517 touch_all_softlockup_watchdogs();
6518
dd41f596
IM
6519#ifdef CONFIG_SCHED_DEBUG
6520 sysrq_sched_debug_show();
6521#endif
1da177e4 6522 read_unlock(&tasklist_lock);
e59e2ae2
IM
6523 /*
6524 * Only show locks if all tasks are dumped:
6525 */
6526 if (state_filter == -1)
6527 debug_show_all_locks();
1da177e4
LT
6528}
6529
1df21055
IM
6530void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6531{
dd41f596 6532 idle->sched_class = &idle_sched_class;
1df21055
IM
6533}
6534
f340c0d1
IM
6535/**
6536 * init_idle - set up an idle thread for a given CPU
6537 * @idle: task in question
6538 * @cpu: cpu the idle task belongs to
6539 *
6540 * NOTE: this function does not set the idle thread's NEED_RESCHED
6541 * flag, to make booting more robust.
6542 */
5c1e1767 6543void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6544{
70b97a7f 6545 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6546 unsigned long flags;
6547
5cbd54ef
IM
6548 spin_lock_irqsave(&rq->lock, flags);
6549
dd41f596
IM
6550 __sched_fork(idle);
6551 idle->se.exec_start = sched_clock();
6552
b29739f9 6553 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6554 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6555 __set_task_cpu(idle, cpu);
1da177e4 6556
1da177e4 6557 rq->curr = rq->idle = idle;
4866cde0
NP
6558#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6559 idle->oncpu = 1;
6560#endif
1da177e4
LT
6561 spin_unlock_irqrestore(&rq->lock, flags);
6562
6563 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6564#if defined(CONFIG_PREEMPT)
6565 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6566#else
a1261f54 6567 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6568#endif
dd41f596
IM
6569 /*
6570 * The idle tasks have their own, simple scheduling class:
6571 */
6572 idle->sched_class = &idle_sched_class;
fb52607a 6573 ftrace_graph_init_task(idle);
1da177e4
LT
6574}
6575
6576/*
6577 * In a system that switches off the HZ timer nohz_cpu_mask
6578 * indicates which cpus entered this state. This is used
6579 * in the rcu update to wait only for active cpus. For system
6580 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6581 * always be CPU_BITS_NONE.
1da177e4 6582 */
6a7b3dc3 6583cpumask_var_t nohz_cpu_mask;
1da177e4 6584
19978ca6
IM
6585/*
6586 * Increase the granularity value when there are more CPUs,
6587 * because with more CPUs the 'effective latency' as visible
6588 * to users decreases. But the relationship is not linear,
6589 * so pick a second-best guess by going with the log2 of the
6590 * number of CPUs.
6591 *
6592 * This idea comes from the SD scheduler of Con Kolivas:
6593 */
6594static inline void sched_init_granularity(void)
6595{
6596 unsigned int factor = 1 + ilog2(num_online_cpus());
6597 const unsigned long limit = 200000000;
6598
6599 sysctl_sched_min_granularity *= factor;
6600 if (sysctl_sched_min_granularity > limit)
6601 sysctl_sched_min_granularity = limit;
6602
6603 sysctl_sched_latency *= factor;
6604 if (sysctl_sched_latency > limit)
6605 sysctl_sched_latency = limit;
6606
6607 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6608
6609 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6610}
6611
1da177e4
LT
6612#ifdef CONFIG_SMP
6613/*
6614 * This is how migration works:
6615 *
70b97a7f 6616 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6617 * runqueue and wake up that CPU's migration thread.
6618 * 2) we down() the locked semaphore => thread blocks.
6619 * 3) migration thread wakes up (implicitly it forces the migrated
6620 * thread off the CPU)
6621 * 4) it gets the migration request and checks whether the migrated
6622 * task is still in the wrong runqueue.
6623 * 5) if it's in the wrong runqueue then the migration thread removes
6624 * it and puts it into the right queue.
6625 * 6) migration thread up()s the semaphore.
6626 * 7) we wake up and the migration is done.
6627 */
6628
6629/*
6630 * Change a given task's CPU affinity. Migrate the thread to a
6631 * proper CPU and schedule it away if the CPU it's executing on
6632 * is removed from the allowed bitmask.
6633 *
6634 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6635 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6636 * call is not atomic; no spinlocks may be held.
6637 */
96f874e2 6638int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6639{
70b97a7f 6640 struct migration_req req;
1da177e4 6641 unsigned long flags;
70b97a7f 6642 struct rq *rq;
48f24c4d 6643 int ret = 0;
1da177e4
LT
6644
6645 rq = task_rq_lock(p, &flags);
96f874e2 6646 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6647 ret = -EINVAL;
6648 goto out;
6649 }
6650
9985b0ba 6651 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6652 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6653 ret = -EINVAL;
6654 goto out;
6655 }
6656
73fe6aae 6657 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6658 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6659 else {
96f874e2
RR
6660 cpumask_copy(&p->cpus_allowed, new_mask);
6661 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6662 }
6663
1da177e4 6664 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6665 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6666 goto out;
6667
1e5ce4f4 6668 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6669 /* Need help from migration thread: drop lock and wait. */
6670 task_rq_unlock(rq, &flags);
6671 wake_up_process(rq->migration_thread);
6672 wait_for_completion(&req.done);
6673 tlb_migrate_finish(p->mm);
6674 return 0;
6675 }
6676out:
6677 task_rq_unlock(rq, &flags);
48f24c4d 6678
1da177e4
LT
6679 return ret;
6680}
cd8ba7cd 6681EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6682
6683/*
41a2d6cf 6684 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6685 * this because either it can't run here any more (set_cpus_allowed()
6686 * away from this CPU, or CPU going down), or because we're
6687 * attempting to rebalance this task on exec (sched_exec).
6688 *
6689 * So we race with normal scheduler movements, but that's OK, as long
6690 * as the task is no longer on this CPU.
efc30814
KK
6691 *
6692 * Returns non-zero if task was successfully migrated.
1da177e4 6693 */
efc30814 6694static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6695{
70b97a7f 6696 struct rq *rq_dest, *rq_src;
dd41f596 6697 int ret = 0, on_rq;
1da177e4 6698
e761b772 6699 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6700 return ret;
1da177e4
LT
6701
6702 rq_src = cpu_rq(src_cpu);
6703 rq_dest = cpu_rq(dest_cpu);
6704
6705 double_rq_lock(rq_src, rq_dest);
6706 /* Already moved. */
6707 if (task_cpu(p) != src_cpu)
b1e38734 6708 goto done;
1da177e4 6709 /* Affinity changed (again). */
96f874e2 6710 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6711 goto fail;
1da177e4 6712
dd41f596 6713 on_rq = p->se.on_rq;
6e82a3be 6714 if (on_rq)
2e1cb74a 6715 deactivate_task(rq_src, p, 0);
6e82a3be 6716
1da177e4 6717 set_task_cpu(p, dest_cpu);
dd41f596
IM
6718 if (on_rq) {
6719 activate_task(rq_dest, p, 0);
15afe09b 6720 check_preempt_curr(rq_dest, p, 0);
1da177e4 6721 }
b1e38734 6722done:
efc30814 6723 ret = 1;
b1e38734 6724fail:
1da177e4 6725 double_rq_unlock(rq_src, rq_dest);
efc30814 6726 return ret;
1da177e4
LT
6727}
6728
6729/*
6730 * migration_thread - this is a highprio system thread that performs
6731 * thread migration by bumping thread off CPU then 'pushing' onto
6732 * another runqueue.
6733 */
95cdf3b7 6734static int migration_thread(void *data)
1da177e4 6735{
1da177e4 6736 int cpu = (long)data;
70b97a7f 6737 struct rq *rq;
1da177e4
LT
6738
6739 rq = cpu_rq(cpu);
6740 BUG_ON(rq->migration_thread != current);
6741
6742 set_current_state(TASK_INTERRUPTIBLE);
6743 while (!kthread_should_stop()) {
70b97a7f 6744 struct migration_req *req;
1da177e4 6745 struct list_head *head;
1da177e4 6746
1da177e4
LT
6747 spin_lock_irq(&rq->lock);
6748
6749 if (cpu_is_offline(cpu)) {
6750 spin_unlock_irq(&rq->lock);
6751 goto wait_to_die;
6752 }
6753
6754 if (rq->active_balance) {
6755 active_load_balance(rq, cpu);
6756 rq->active_balance = 0;
6757 }
6758
6759 head = &rq->migration_queue;
6760
6761 if (list_empty(head)) {
6762 spin_unlock_irq(&rq->lock);
6763 schedule();
6764 set_current_state(TASK_INTERRUPTIBLE);
6765 continue;
6766 }
70b97a7f 6767 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6768 list_del_init(head->next);
6769
674311d5
NP
6770 spin_unlock(&rq->lock);
6771 __migrate_task(req->task, cpu, req->dest_cpu);
6772 local_irq_enable();
1da177e4
LT
6773
6774 complete(&req->done);
6775 }
6776 __set_current_state(TASK_RUNNING);
6777 return 0;
6778
6779wait_to_die:
6780 /* Wait for kthread_stop */
6781 set_current_state(TASK_INTERRUPTIBLE);
6782 while (!kthread_should_stop()) {
6783 schedule();
6784 set_current_state(TASK_INTERRUPTIBLE);
6785 }
6786 __set_current_state(TASK_RUNNING);
6787 return 0;
6788}
6789
6790#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6791
6792static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6793{
6794 int ret;
6795
6796 local_irq_disable();
6797 ret = __migrate_task(p, src_cpu, dest_cpu);
6798 local_irq_enable();
6799 return ret;
6800}
6801
054b9108 6802/*
3a4fa0a2 6803 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6804 */
48f24c4d 6805static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6806{
70b97a7f 6807 int dest_cpu;
6ca09dfc 6808 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6809
6810again:
6811 /* Look for allowed, online CPU in same node. */
6812 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6813 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6814 goto move;
6815
6816 /* Any allowed, online CPU? */
6817 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6818 if (dest_cpu < nr_cpu_ids)
6819 goto move;
6820
6821 /* No more Mr. Nice Guy. */
6822 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6823 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6824 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6825
e76bd8d9
RR
6826 /*
6827 * Don't tell them about moving exiting tasks or
6828 * kernel threads (both mm NULL), since they never
6829 * leave kernel.
6830 */
6831 if (p->mm && printk_ratelimit()) {
6832 printk(KERN_INFO "process %d (%s) no "
6833 "longer affine to cpu%d\n",
6834 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6835 }
e76bd8d9
RR
6836 }
6837
6838move:
6839 /* It can have affinity changed while we were choosing. */
6840 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6841 goto again;
1da177e4
LT
6842}
6843
6844/*
6845 * While a dead CPU has no uninterruptible tasks queued at this point,
6846 * it might still have a nonzero ->nr_uninterruptible counter, because
6847 * for performance reasons the counter is not stricly tracking tasks to
6848 * their home CPUs. So we just add the counter to another CPU's counter,
6849 * to keep the global sum constant after CPU-down:
6850 */
70b97a7f 6851static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6852{
1e5ce4f4 6853 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6854 unsigned long flags;
6855
6856 local_irq_save(flags);
6857 double_rq_lock(rq_src, rq_dest);
6858 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6859 rq_src->nr_uninterruptible = 0;
6860 double_rq_unlock(rq_src, rq_dest);
6861 local_irq_restore(flags);
6862}
6863
6864/* Run through task list and migrate tasks from the dead cpu. */
6865static void migrate_live_tasks(int src_cpu)
6866{
48f24c4d 6867 struct task_struct *p, *t;
1da177e4 6868
f7b4cddc 6869 read_lock(&tasklist_lock);
1da177e4 6870
48f24c4d
IM
6871 do_each_thread(t, p) {
6872 if (p == current)
1da177e4
LT
6873 continue;
6874
48f24c4d
IM
6875 if (task_cpu(p) == src_cpu)
6876 move_task_off_dead_cpu(src_cpu, p);
6877 } while_each_thread(t, p);
1da177e4 6878
f7b4cddc 6879 read_unlock(&tasklist_lock);
1da177e4
LT
6880}
6881
dd41f596
IM
6882/*
6883 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6884 * It does so by boosting its priority to highest possible.
6885 * Used by CPU offline code.
1da177e4
LT
6886 */
6887void sched_idle_next(void)
6888{
48f24c4d 6889 int this_cpu = smp_processor_id();
70b97a7f 6890 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6891 struct task_struct *p = rq->idle;
6892 unsigned long flags;
6893
6894 /* cpu has to be offline */
48f24c4d 6895 BUG_ON(cpu_online(this_cpu));
1da177e4 6896
48f24c4d
IM
6897 /*
6898 * Strictly not necessary since rest of the CPUs are stopped by now
6899 * and interrupts disabled on the current cpu.
1da177e4
LT
6900 */
6901 spin_lock_irqsave(&rq->lock, flags);
6902
dd41f596 6903 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6904
94bc9a7b
DA
6905 update_rq_clock(rq);
6906 activate_task(rq, p, 0);
1da177e4
LT
6907
6908 spin_unlock_irqrestore(&rq->lock, flags);
6909}
6910
48f24c4d
IM
6911/*
6912 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6913 * offline.
6914 */
6915void idle_task_exit(void)
6916{
6917 struct mm_struct *mm = current->active_mm;
6918
6919 BUG_ON(cpu_online(smp_processor_id()));
6920
6921 if (mm != &init_mm)
6922 switch_mm(mm, &init_mm, current);
6923 mmdrop(mm);
6924}
6925
054b9108 6926/* called under rq->lock with disabled interrupts */
36c8b586 6927static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6928{
70b97a7f 6929 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6930
6931 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6932 BUG_ON(!p->exit_state);
1da177e4
LT
6933
6934 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6935 BUG_ON(p->state == TASK_DEAD);
1da177e4 6936
48f24c4d 6937 get_task_struct(p);
1da177e4
LT
6938
6939 /*
6940 * Drop lock around migration; if someone else moves it,
41a2d6cf 6941 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6942 * fine.
6943 */
f7b4cddc 6944 spin_unlock_irq(&rq->lock);
48f24c4d 6945 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6946 spin_lock_irq(&rq->lock);
1da177e4 6947
48f24c4d 6948 put_task_struct(p);
1da177e4
LT
6949}
6950
6951/* release_task() removes task from tasklist, so we won't find dead tasks. */
6952static void migrate_dead_tasks(unsigned int dead_cpu)
6953{
70b97a7f 6954 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6955 struct task_struct *next;
48f24c4d 6956
dd41f596
IM
6957 for ( ; ; ) {
6958 if (!rq->nr_running)
6959 break;
a8e504d2 6960 update_rq_clock(rq);
b67802ea 6961 next = pick_next_task(rq);
dd41f596
IM
6962 if (!next)
6963 break;
79c53799 6964 next->sched_class->put_prev_task(rq, next);
dd41f596 6965 migrate_dead(dead_cpu, next);
e692ab53 6966
1da177e4
LT
6967 }
6968}
6969#endif /* CONFIG_HOTPLUG_CPU */
6970
e692ab53
NP
6971#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6972
6973static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6974 {
6975 .procname = "sched_domain",
c57baf1e 6976 .mode = 0555,
e0361851 6977 },
38605cae 6978 {0, },
e692ab53
NP
6979};
6980
6981static struct ctl_table sd_ctl_root[] = {
e0361851 6982 {
c57baf1e 6983 .ctl_name = CTL_KERN,
e0361851 6984 .procname = "kernel",
c57baf1e 6985 .mode = 0555,
e0361851
AD
6986 .child = sd_ctl_dir,
6987 },
38605cae 6988 {0, },
e692ab53
NP
6989};
6990
6991static struct ctl_table *sd_alloc_ctl_entry(int n)
6992{
6993 struct ctl_table *entry =
5cf9f062 6994 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6995
e692ab53
NP
6996 return entry;
6997}
6998
6382bc90
MM
6999static void sd_free_ctl_entry(struct ctl_table **tablep)
7000{
cd790076 7001 struct ctl_table *entry;
6382bc90 7002
cd790076
MM
7003 /*
7004 * In the intermediate directories, both the child directory and
7005 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7006 * will always be set. In the lowest directory the names are
cd790076
MM
7007 * static strings and all have proc handlers.
7008 */
7009 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7010 if (entry->child)
7011 sd_free_ctl_entry(&entry->child);
cd790076
MM
7012 if (entry->proc_handler == NULL)
7013 kfree(entry->procname);
7014 }
6382bc90
MM
7015
7016 kfree(*tablep);
7017 *tablep = NULL;
7018}
7019
e692ab53 7020static void
e0361851 7021set_table_entry(struct ctl_table *entry,
e692ab53
NP
7022 const char *procname, void *data, int maxlen,
7023 mode_t mode, proc_handler *proc_handler)
7024{
e692ab53
NP
7025 entry->procname = procname;
7026 entry->data = data;
7027 entry->maxlen = maxlen;
7028 entry->mode = mode;
7029 entry->proc_handler = proc_handler;
7030}
7031
7032static struct ctl_table *
7033sd_alloc_ctl_domain_table(struct sched_domain *sd)
7034{
a5d8c348 7035 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7036
ad1cdc1d
MM
7037 if (table == NULL)
7038 return NULL;
7039
e0361851 7040 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7041 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7042 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7043 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7044 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7045 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7046 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7047 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7048 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7049 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7050 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7051 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7052 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7053 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7054 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7055 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7056 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7057 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7058 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7059 &sd->cache_nice_tries,
7060 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7061 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7062 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7063 set_table_entry(&table[11], "name", sd->name,
7064 CORENAME_MAX_SIZE, 0444, proc_dostring);
7065 /* &table[12] is terminator */
e692ab53
NP
7066
7067 return table;
7068}
7069
9a4e7159 7070static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7071{
7072 struct ctl_table *entry, *table;
7073 struct sched_domain *sd;
7074 int domain_num = 0, i;
7075 char buf[32];
7076
7077 for_each_domain(cpu, sd)
7078 domain_num++;
7079 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7080 if (table == NULL)
7081 return NULL;
e692ab53
NP
7082
7083 i = 0;
7084 for_each_domain(cpu, sd) {
7085 snprintf(buf, 32, "domain%d", i);
e692ab53 7086 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7087 entry->mode = 0555;
e692ab53
NP
7088 entry->child = sd_alloc_ctl_domain_table(sd);
7089 entry++;
7090 i++;
7091 }
7092 return table;
7093}
7094
7095static struct ctl_table_header *sd_sysctl_header;
6382bc90 7096static void register_sched_domain_sysctl(void)
e692ab53
NP
7097{
7098 int i, cpu_num = num_online_cpus();
7099 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7100 char buf[32];
7101
7378547f
MM
7102 WARN_ON(sd_ctl_dir[0].child);
7103 sd_ctl_dir[0].child = entry;
7104
ad1cdc1d
MM
7105 if (entry == NULL)
7106 return;
7107
97b6ea7b 7108 for_each_online_cpu(i) {
e692ab53 7109 snprintf(buf, 32, "cpu%d", i);
e692ab53 7110 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7111 entry->mode = 0555;
e692ab53 7112 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7113 entry++;
e692ab53 7114 }
7378547f
MM
7115
7116 WARN_ON(sd_sysctl_header);
e692ab53
NP
7117 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7118}
6382bc90 7119
7378547f 7120/* may be called multiple times per register */
6382bc90
MM
7121static void unregister_sched_domain_sysctl(void)
7122{
7378547f
MM
7123 if (sd_sysctl_header)
7124 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7125 sd_sysctl_header = NULL;
7378547f
MM
7126 if (sd_ctl_dir[0].child)
7127 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7128}
e692ab53 7129#else
6382bc90
MM
7130static void register_sched_domain_sysctl(void)
7131{
7132}
7133static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7134{
7135}
7136#endif
7137
1f11eb6a
GH
7138static void set_rq_online(struct rq *rq)
7139{
7140 if (!rq->online) {
7141 const struct sched_class *class;
7142
c6c4927b 7143 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7144 rq->online = 1;
7145
7146 for_each_class(class) {
7147 if (class->rq_online)
7148 class->rq_online(rq);
7149 }
7150 }
7151}
7152
7153static void set_rq_offline(struct rq *rq)
7154{
7155 if (rq->online) {
7156 const struct sched_class *class;
7157
7158 for_each_class(class) {
7159 if (class->rq_offline)
7160 class->rq_offline(rq);
7161 }
7162
c6c4927b 7163 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7164 rq->online = 0;
7165 }
7166}
7167
1da177e4
LT
7168/*
7169 * migration_call - callback that gets triggered when a CPU is added.
7170 * Here we can start up the necessary migration thread for the new CPU.
7171 */
48f24c4d
IM
7172static int __cpuinit
7173migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7174{
1da177e4 7175 struct task_struct *p;
48f24c4d 7176 int cpu = (long)hcpu;
1da177e4 7177 unsigned long flags;
70b97a7f 7178 struct rq *rq;
1da177e4
LT
7179
7180 switch (action) {
5be9361c 7181
1da177e4 7182 case CPU_UP_PREPARE:
8bb78442 7183 case CPU_UP_PREPARE_FROZEN:
dd41f596 7184 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7185 if (IS_ERR(p))
7186 return NOTIFY_BAD;
1da177e4
LT
7187 kthread_bind(p, cpu);
7188 /* Must be high prio: stop_machine expects to yield to it. */
7189 rq = task_rq_lock(p, &flags);
dd41f596 7190 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7191 task_rq_unlock(rq, &flags);
7192 cpu_rq(cpu)->migration_thread = p;
7193 break;
48f24c4d 7194
1da177e4 7195 case CPU_ONLINE:
8bb78442 7196 case CPU_ONLINE_FROZEN:
3a4fa0a2 7197 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7198 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7199
7200 /* Update our root-domain */
7201 rq = cpu_rq(cpu);
7202 spin_lock_irqsave(&rq->lock, flags);
7203 if (rq->rd) {
c6c4927b 7204 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7205
7206 set_rq_online(rq);
1f94ef59
GH
7207 }
7208 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7209 break;
48f24c4d 7210
1da177e4
LT
7211#ifdef CONFIG_HOTPLUG_CPU
7212 case CPU_UP_CANCELED:
8bb78442 7213 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7214 if (!cpu_rq(cpu)->migration_thread)
7215 break;
41a2d6cf 7216 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7217 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7218 cpumask_any(cpu_online_mask));
1da177e4
LT
7219 kthread_stop(cpu_rq(cpu)->migration_thread);
7220 cpu_rq(cpu)->migration_thread = NULL;
7221 break;
48f24c4d 7222
1da177e4 7223 case CPU_DEAD:
8bb78442 7224 case CPU_DEAD_FROZEN:
470fd646 7225 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7226 migrate_live_tasks(cpu);
7227 rq = cpu_rq(cpu);
7228 kthread_stop(rq->migration_thread);
7229 rq->migration_thread = NULL;
7230 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7231 spin_lock_irq(&rq->lock);
a8e504d2 7232 update_rq_clock(rq);
2e1cb74a 7233 deactivate_task(rq, rq->idle, 0);
1da177e4 7234 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7235 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7236 rq->idle->sched_class = &idle_sched_class;
1da177e4 7237 migrate_dead_tasks(cpu);
d2da272a 7238 spin_unlock_irq(&rq->lock);
470fd646 7239 cpuset_unlock();
1da177e4
LT
7240 migrate_nr_uninterruptible(rq);
7241 BUG_ON(rq->nr_running != 0);
7242
41a2d6cf
IM
7243 /*
7244 * No need to migrate the tasks: it was best-effort if
7245 * they didn't take sched_hotcpu_mutex. Just wake up
7246 * the requestors.
7247 */
1da177e4
LT
7248 spin_lock_irq(&rq->lock);
7249 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7250 struct migration_req *req;
7251
1da177e4 7252 req = list_entry(rq->migration_queue.next,
70b97a7f 7253 struct migration_req, list);
1da177e4 7254 list_del_init(&req->list);
9a2bd244 7255 spin_unlock_irq(&rq->lock);
1da177e4 7256 complete(&req->done);
9a2bd244 7257 spin_lock_irq(&rq->lock);
1da177e4
LT
7258 }
7259 spin_unlock_irq(&rq->lock);
7260 break;
57d885fe 7261
08f503b0
GH
7262 case CPU_DYING:
7263 case CPU_DYING_FROZEN:
57d885fe
GH
7264 /* Update our root-domain */
7265 rq = cpu_rq(cpu);
7266 spin_lock_irqsave(&rq->lock, flags);
7267 if (rq->rd) {
c6c4927b 7268 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7269 set_rq_offline(rq);
57d885fe
GH
7270 }
7271 spin_unlock_irqrestore(&rq->lock, flags);
7272 break;
1da177e4
LT
7273#endif
7274 }
7275 return NOTIFY_OK;
7276}
7277
7278/* Register at highest priority so that task migration (migrate_all_tasks)
7279 * happens before everything else.
7280 */
26c2143b 7281static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7282 .notifier_call = migration_call,
7283 .priority = 10
7284};
7285
7babe8db 7286static int __init migration_init(void)
1da177e4
LT
7287{
7288 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7289 int err;
48f24c4d
IM
7290
7291 /* Start one for the boot CPU: */
07dccf33
AM
7292 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7293 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7294 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7295 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7296
7297 return err;
1da177e4 7298}
7babe8db 7299early_initcall(migration_init);
1da177e4
LT
7300#endif
7301
7302#ifdef CONFIG_SMP
476f3534 7303
3e9830dc 7304#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7305
7c16ec58 7306static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7307 struct cpumask *groupmask)
1da177e4 7308{
4dcf6aff 7309 struct sched_group *group = sd->groups;
434d53b0 7310 char str[256];
1da177e4 7311
968ea6d8 7312 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7313 cpumask_clear(groupmask);
4dcf6aff
IM
7314
7315 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7316
7317 if (!(sd->flags & SD_LOAD_BALANCE)) {
7318 printk("does not load-balance\n");
7319 if (sd->parent)
7320 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7321 " has parent");
7322 return -1;
41c7ce9a
NP
7323 }
7324
eefd796a 7325 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7326
758b2cdc 7327 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7328 printk(KERN_ERR "ERROR: domain->span does not contain "
7329 "CPU%d\n", cpu);
7330 }
758b2cdc 7331 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7332 printk(KERN_ERR "ERROR: domain->groups does not contain"
7333 " CPU%d\n", cpu);
7334 }
1da177e4 7335
4dcf6aff 7336 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7337 do {
4dcf6aff
IM
7338 if (!group) {
7339 printk("\n");
7340 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7341 break;
7342 }
7343
4dcf6aff
IM
7344 if (!group->__cpu_power) {
7345 printk(KERN_CONT "\n");
7346 printk(KERN_ERR "ERROR: domain->cpu_power not "
7347 "set\n");
7348 break;
7349 }
1da177e4 7350
758b2cdc 7351 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7352 printk(KERN_CONT "\n");
7353 printk(KERN_ERR "ERROR: empty group\n");
7354 break;
7355 }
1da177e4 7356
758b2cdc 7357 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7358 printk(KERN_CONT "\n");
7359 printk(KERN_ERR "ERROR: repeated CPUs\n");
7360 break;
7361 }
1da177e4 7362
758b2cdc 7363 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7364
968ea6d8 7365 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
46e0bb9c
GS
7366 printk(KERN_CONT " %s (__cpu_power = %d)", str,
7367 group->__cpu_power);
1da177e4 7368
4dcf6aff
IM
7369 group = group->next;
7370 } while (group != sd->groups);
7371 printk(KERN_CONT "\n");
1da177e4 7372
758b2cdc 7373 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7374 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7375
758b2cdc
RR
7376 if (sd->parent &&
7377 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7378 printk(KERN_ERR "ERROR: parent span is not a superset "
7379 "of domain->span\n");
7380 return 0;
7381}
1da177e4 7382
4dcf6aff
IM
7383static void sched_domain_debug(struct sched_domain *sd, int cpu)
7384{
d5dd3db1 7385 cpumask_var_t groupmask;
4dcf6aff 7386 int level = 0;
1da177e4 7387
4dcf6aff
IM
7388 if (!sd) {
7389 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7390 return;
7391 }
1da177e4 7392
4dcf6aff
IM
7393 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7394
d5dd3db1 7395 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7396 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7397 return;
7398 }
7399
4dcf6aff 7400 for (;;) {
7c16ec58 7401 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7402 break;
1da177e4
LT
7403 level++;
7404 sd = sd->parent;
33859f7f 7405 if (!sd)
4dcf6aff
IM
7406 break;
7407 }
d5dd3db1 7408 free_cpumask_var(groupmask);
1da177e4 7409}
6d6bc0ad 7410#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7411# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7412#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7413
1a20ff27 7414static int sd_degenerate(struct sched_domain *sd)
245af2c7 7415{
758b2cdc 7416 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7417 return 1;
7418
7419 /* Following flags need at least 2 groups */
7420 if (sd->flags & (SD_LOAD_BALANCE |
7421 SD_BALANCE_NEWIDLE |
7422 SD_BALANCE_FORK |
89c4710e
SS
7423 SD_BALANCE_EXEC |
7424 SD_SHARE_CPUPOWER |
7425 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7426 if (sd->groups != sd->groups->next)
7427 return 0;
7428 }
7429
7430 /* Following flags don't use groups */
7431 if (sd->flags & (SD_WAKE_IDLE |
7432 SD_WAKE_AFFINE |
7433 SD_WAKE_BALANCE))
7434 return 0;
7435
7436 return 1;
7437}
7438
48f24c4d
IM
7439static int
7440sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7441{
7442 unsigned long cflags = sd->flags, pflags = parent->flags;
7443
7444 if (sd_degenerate(parent))
7445 return 1;
7446
758b2cdc 7447 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7448 return 0;
7449
7450 /* Does parent contain flags not in child? */
7451 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7452 if (cflags & SD_WAKE_AFFINE)
7453 pflags &= ~SD_WAKE_BALANCE;
7454 /* Flags needing groups don't count if only 1 group in parent */
7455 if (parent->groups == parent->groups->next) {
7456 pflags &= ~(SD_LOAD_BALANCE |
7457 SD_BALANCE_NEWIDLE |
7458 SD_BALANCE_FORK |
89c4710e
SS
7459 SD_BALANCE_EXEC |
7460 SD_SHARE_CPUPOWER |
7461 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7462 if (nr_node_ids == 1)
7463 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7464 }
7465 if (~cflags & pflags)
7466 return 0;
7467
7468 return 1;
7469}
7470
c6c4927b
RR
7471static void free_rootdomain(struct root_domain *rd)
7472{
68e74568
RR
7473 cpupri_cleanup(&rd->cpupri);
7474
c6c4927b
RR
7475 free_cpumask_var(rd->rto_mask);
7476 free_cpumask_var(rd->online);
7477 free_cpumask_var(rd->span);
7478 kfree(rd);
7479}
7480
57d885fe
GH
7481static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7482{
a0490fa3 7483 struct root_domain *old_rd = NULL;
57d885fe 7484 unsigned long flags;
57d885fe
GH
7485
7486 spin_lock_irqsave(&rq->lock, flags);
7487
7488 if (rq->rd) {
a0490fa3 7489 old_rd = rq->rd;
57d885fe 7490
c6c4927b 7491 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7492 set_rq_offline(rq);
57d885fe 7493
c6c4927b 7494 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7495
a0490fa3
IM
7496 /*
7497 * If we dont want to free the old_rt yet then
7498 * set old_rd to NULL to skip the freeing later
7499 * in this function:
7500 */
7501 if (!atomic_dec_and_test(&old_rd->refcount))
7502 old_rd = NULL;
57d885fe
GH
7503 }
7504
7505 atomic_inc(&rd->refcount);
7506 rq->rd = rd;
7507
c6c4927b
RR
7508 cpumask_set_cpu(rq->cpu, rd->span);
7509 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7510 set_rq_online(rq);
57d885fe
GH
7511
7512 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7513
7514 if (old_rd)
7515 free_rootdomain(old_rd);
57d885fe
GH
7516}
7517
db2f59c8 7518static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7519{
7520 memset(rd, 0, sizeof(*rd));
7521
c6c4927b
RR
7522 if (bootmem) {
7523 alloc_bootmem_cpumask_var(&def_root_domain.span);
7524 alloc_bootmem_cpumask_var(&def_root_domain.online);
7525 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7526 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7527 return 0;
7528 }
7529
7530 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7531 goto out;
c6c4927b
RR
7532 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7533 goto free_span;
7534 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7535 goto free_online;
6e0534f2 7536
68e74568
RR
7537 if (cpupri_init(&rd->cpupri, false) != 0)
7538 goto free_rto_mask;
c6c4927b 7539 return 0;
6e0534f2 7540
68e74568
RR
7541free_rto_mask:
7542 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7543free_online:
7544 free_cpumask_var(rd->online);
7545free_span:
7546 free_cpumask_var(rd->span);
0c910d28 7547out:
c6c4927b 7548 return -ENOMEM;
57d885fe
GH
7549}
7550
7551static void init_defrootdomain(void)
7552{
c6c4927b
RR
7553 init_rootdomain(&def_root_domain, true);
7554
57d885fe
GH
7555 atomic_set(&def_root_domain.refcount, 1);
7556}
7557
dc938520 7558static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7559{
7560 struct root_domain *rd;
7561
7562 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7563 if (!rd)
7564 return NULL;
7565
c6c4927b
RR
7566 if (init_rootdomain(rd, false) != 0) {
7567 kfree(rd);
7568 return NULL;
7569 }
57d885fe
GH
7570
7571 return rd;
7572}
7573
1da177e4 7574/*
0eab9146 7575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7576 * hold the hotplug lock.
7577 */
0eab9146
IM
7578static void
7579cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7580{
70b97a7f 7581 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7582 struct sched_domain *tmp;
7583
7584 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7585 for (tmp = sd; tmp; ) {
245af2c7
SS
7586 struct sched_domain *parent = tmp->parent;
7587 if (!parent)
7588 break;
f29c9b1c 7589
1a848870 7590 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7591 tmp->parent = parent->parent;
1a848870
SS
7592 if (parent->parent)
7593 parent->parent->child = tmp;
f29c9b1c
LZ
7594 } else
7595 tmp = tmp->parent;
245af2c7
SS
7596 }
7597
1a848870 7598 if (sd && sd_degenerate(sd)) {
245af2c7 7599 sd = sd->parent;
1a848870
SS
7600 if (sd)
7601 sd->child = NULL;
7602 }
1da177e4
LT
7603
7604 sched_domain_debug(sd, cpu);
7605
57d885fe 7606 rq_attach_root(rq, rd);
674311d5 7607 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7608}
7609
7610/* cpus with isolated domains */
dcc30a35 7611static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7612
7613/* Setup the mask of cpus configured for isolated domains */
7614static int __init isolated_cpu_setup(char *str)
7615{
968ea6d8 7616 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7617 return 1;
7618}
7619
8927f494 7620__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7621
7622/*
6711cab4
SS
7623 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7624 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7625 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7626 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7627 *
7628 * init_sched_build_groups will build a circular linked list of the groups
7629 * covered by the given span, and will set each group's ->cpumask correctly,
7630 * and ->cpu_power to 0.
7631 */
a616058b 7632static void
96f874e2
RR
7633init_sched_build_groups(const struct cpumask *span,
7634 const struct cpumask *cpu_map,
7635 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7636 struct sched_group **sg,
96f874e2
RR
7637 struct cpumask *tmpmask),
7638 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7639{
7640 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7641 int i;
7642
96f874e2 7643 cpumask_clear(covered);
7c16ec58 7644
abcd083a 7645 for_each_cpu(i, span) {
6711cab4 7646 struct sched_group *sg;
7c16ec58 7647 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7648 int j;
7649
758b2cdc 7650 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7651 continue;
7652
758b2cdc 7653 cpumask_clear(sched_group_cpus(sg));
5517d86b 7654 sg->__cpu_power = 0;
1da177e4 7655
abcd083a 7656 for_each_cpu(j, span) {
7c16ec58 7657 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7658 continue;
7659
96f874e2 7660 cpumask_set_cpu(j, covered);
758b2cdc 7661 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7662 }
7663 if (!first)
7664 first = sg;
7665 if (last)
7666 last->next = sg;
7667 last = sg;
7668 }
7669 last->next = first;
7670}
7671
9c1cfda2 7672#define SD_NODES_PER_DOMAIN 16
1da177e4 7673
9c1cfda2 7674#ifdef CONFIG_NUMA
198e2f18 7675
9c1cfda2
JH
7676/**
7677 * find_next_best_node - find the next node to include in a sched_domain
7678 * @node: node whose sched_domain we're building
7679 * @used_nodes: nodes already in the sched_domain
7680 *
41a2d6cf 7681 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7682 * finds the closest node not already in the @used_nodes map.
7683 *
7684 * Should use nodemask_t.
7685 */
c5f59f08 7686static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7687{
7688 int i, n, val, min_val, best_node = 0;
7689
7690 min_val = INT_MAX;
7691
076ac2af 7692 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7693 /* Start at @node */
076ac2af 7694 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7695
7696 if (!nr_cpus_node(n))
7697 continue;
7698
7699 /* Skip already used nodes */
c5f59f08 7700 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7701 continue;
7702
7703 /* Simple min distance search */
7704 val = node_distance(node, n);
7705
7706 if (val < min_val) {
7707 min_val = val;
7708 best_node = n;
7709 }
7710 }
7711
c5f59f08 7712 node_set(best_node, *used_nodes);
9c1cfda2
JH
7713 return best_node;
7714}
7715
7716/**
7717 * sched_domain_node_span - get a cpumask for a node's sched_domain
7718 * @node: node whose cpumask we're constructing
73486722 7719 * @span: resulting cpumask
9c1cfda2 7720 *
41a2d6cf 7721 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7722 * should be one that prevents unnecessary balancing, but also spreads tasks
7723 * out optimally.
7724 */
96f874e2 7725static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7726{
c5f59f08 7727 nodemask_t used_nodes;
48f24c4d 7728 int i;
9c1cfda2 7729
6ca09dfc 7730 cpumask_clear(span);
c5f59f08 7731 nodes_clear(used_nodes);
9c1cfda2 7732
6ca09dfc 7733 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7734 node_set(node, used_nodes);
9c1cfda2
JH
7735
7736 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7737 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7738
6ca09dfc 7739 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7740 }
9c1cfda2 7741}
6d6bc0ad 7742#endif /* CONFIG_NUMA */
9c1cfda2 7743
5c45bf27 7744int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7745
6c99e9ad
RR
7746/*
7747 * The cpus mask in sched_group and sched_domain hangs off the end.
7748 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7749 * for nr_cpu_ids < CONFIG_NR_CPUS.
7750 */
7751struct static_sched_group {
7752 struct sched_group sg;
7753 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7754};
7755
7756struct static_sched_domain {
7757 struct sched_domain sd;
7758 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7759};
7760
9c1cfda2 7761/*
48f24c4d 7762 * SMT sched-domains:
9c1cfda2 7763 */
1da177e4 7764#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7765static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7766static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7767
41a2d6cf 7768static int
96f874e2
RR
7769cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7770 struct sched_group **sg, struct cpumask *unused)
1da177e4 7771{
6711cab4 7772 if (sg)
6c99e9ad 7773 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7774 return cpu;
7775}
6d6bc0ad 7776#endif /* CONFIG_SCHED_SMT */
1da177e4 7777
48f24c4d
IM
7778/*
7779 * multi-core sched-domains:
7780 */
1e9f28fa 7781#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7782static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7783static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7784#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7785
7786#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7787static int
96f874e2
RR
7788cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7789 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7790{
6711cab4 7791 int group;
7c16ec58 7792
c69fc56d 7793 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7794 group = cpumask_first(mask);
6711cab4 7795 if (sg)
6c99e9ad 7796 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7797 return group;
1e9f28fa
SS
7798}
7799#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7800static int
96f874e2
RR
7801cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7802 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7803{
6711cab4 7804 if (sg)
6c99e9ad 7805 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7806 return cpu;
7807}
7808#endif
7809
6c99e9ad
RR
7810static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7811static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7812
41a2d6cf 7813static int
96f874e2
RR
7814cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7815 struct sched_group **sg, struct cpumask *mask)
1da177e4 7816{
6711cab4 7817 int group;
48f24c4d 7818#ifdef CONFIG_SCHED_MC
6ca09dfc 7819 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7820 group = cpumask_first(mask);
1e9f28fa 7821#elif defined(CONFIG_SCHED_SMT)
c69fc56d 7822 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7823 group = cpumask_first(mask);
1da177e4 7824#else
6711cab4 7825 group = cpu;
1da177e4 7826#endif
6711cab4 7827 if (sg)
6c99e9ad 7828 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7829 return group;
1da177e4
LT
7830}
7831
7832#ifdef CONFIG_NUMA
1da177e4 7833/*
9c1cfda2
JH
7834 * The init_sched_build_groups can't handle what we want to do with node
7835 * groups, so roll our own. Now each node has its own list of groups which
7836 * gets dynamically allocated.
1da177e4 7837 */
62ea9ceb 7838static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7839static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7840
62ea9ceb 7841static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7842static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7843
96f874e2
RR
7844static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7845 struct sched_group **sg,
7846 struct cpumask *nodemask)
9c1cfda2 7847{
6711cab4
SS
7848 int group;
7849
6ca09dfc 7850 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7851 group = cpumask_first(nodemask);
6711cab4
SS
7852
7853 if (sg)
6c99e9ad 7854 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7855 return group;
1da177e4 7856}
6711cab4 7857
08069033
SS
7858static void init_numa_sched_groups_power(struct sched_group *group_head)
7859{
7860 struct sched_group *sg = group_head;
7861 int j;
7862
7863 if (!sg)
7864 return;
3a5c359a 7865 do {
758b2cdc 7866 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7867 struct sched_domain *sd;
08069033 7868
6c99e9ad 7869 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7870 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7871 /*
7872 * Only add "power" once for each
7873 * physical package.
7874 */
7875 continue;
7876 }
08069033 7877
3a5c359a
AK
7878 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7879 }
7880 sg = sg->next;
7881 } while (sg != group_head);
08069033 7882}
6d6bc0ad 7883#endif /* CONFIG_NUMA */
1da177e4 7884
a616058b 7885#ifdef CONFIG_NUMA
51888ca2 7886/* Free memory allocated for various sched_group structures */
96f874e2
RR
7887static void free_sched_groups(const struct cpumask *cpu_map,
7888 struct cpumask *nodemask)
51888ca2 7889{
a616058b 7890 int cpu, i;
51888ca2 7891
abcd083a 7892 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7893 struct sched_group **sched_group_nodes
7894 = sched_group_nodes_bycpu[cpu];
7895
51888ca2
SV
7896 if (!sched_group_nodes)
7897 continue;
7898
076ac2af 7899 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7900 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7901
6ca09dfc 7902 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7903 if (cpumask_empty(nodemask))
51888ca2
SV
7904 continue;
7905
7906 if (sg == NULL)
7907 continue;
7908 sg = sg->next;
7909next_sg:
7910 oldsg = sg;
7911 sg = sg->next;
7912 kfree(oldsg);
7913 if (oldsg != sched_group_nodes[i])
7914 goto next_sg;
7915 }
7916 kfree(sched_group_nodes);
7917 sched_group_nodes_bycpu[cpu] = NULL;
7918 }
51888ca2 7919}
6d6bc0ad 7920#else /* !CONFIG_NUMA */
96f874e2
RR
7921static void free_sched_groups(const struct cpumask *cpu_map,
7922 struct cpumask *nodemask)
a616058b
SS
7923{
7924}
6d6bc0ad 7925#endif /* CONFIG_NUMA */
51888ca2 7926
89c4710e
SS
7927/*
7928 * Initialize sched groups cpu_power.
7929 *
7930 * cpu_power indicates the capacity of sched group, which is used while
7931 * distributing the load between different sched groups in a sched domain.
7932 * Typically cpu_power for all the groups in a sched domain will be same unless
7933 * there are asymmetries in the topology. If there are asymmetries, group
7934 * having more cpu_power will pickup more load compared to the group having
7935 * less cpu_power.
7936 *
7937 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7938 * the maximum number of tasks a group can handle in the presence of other idle
7939 * or lightly loaded groups in the same sched domain.
7940 */
7941static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7942{
7943 struct sched_domain *child;
7944 struct sched_group *group;
7945
7946 WARN_ON(!sd || !sd->groups);
7947
758b2cdc 7948 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7949 return;
7950
7951 child = sd->child;
7952
5517d86b
ED
7953 sd->groups->__cpu_power = 0;
7954
89c4710e
SS
7955 /*
7956 * For perf policy, if the groups in child domain share resources
7957 * (for example cores sharing some portions of the cache hierarchy
7958 * or SMT), then set this domain groups cpu_power such that each group
7959 * can handle only one task, when there are other idle groups in the
7960 * same sched domain.
7961 */
7962 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7963 (child->flags &
7964 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7965 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7966 return;
7967 }
7968
89c4710e
SS
7969 /*
7970 * add cpu_power of each child group to this groups cpu_power
7971 */
7972 group = child->groups;
7973 do {
5517d86b 7974 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7975 group = group->next;
7976 } while (group != child->groups);
7977}
7978
7c16ec58
MT
7979/*
7980 * Initializers for schedule domains
7981 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7982 */
7983
a5d8c348
IM
7984#ifdef CONFIG_SCHED_DEBUG
7985# define SD_INIT_NAME(sd, type) sd->name = #type
7986#else
7987# define SD_INIT_NAME(sd, type) do { } while (0)
7988#endif
7989
7c16ec58 7990#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7991
7c16ec58
MT
7992#define SD_INIT_FUNC(type) \
7993static noinline void sd_init_##type(struct sched_domain *sd) \
7994{ \
7995 memset(sd, 0, sizeof(*sd)); \
7996 *sd = SD_##type##_INIT; \
1d3504fc 7997 sd->level = SD_LV_##type; \
a5d8c348 7998 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7999}
8000
8001SD_INIT_FUNC(CPU)
8002#ifdef CONFIG_NUMA
8003 SD_INIT_FUNC(ALLNODES)
8004 SD_INIT_FUNC(NODE)
8005#endif
8006#ifdef CONFIG_SCHED_SMT
8007 SD_INIT_FUNC(SIBLING)
8008#endif
8009#ifdef CONFIG_SCHED_MC
8010 SD_INIT_FUNC(MC)
8011#endif
8012
1d3504fc
HS
8013static int default_relax_domain_level = -1;
8014
8015static int __init setup_relax_domain_level(char *str)
8016{
30e0e178
LZ
8017 unsigned long val;
8018
8019 val = simple_strtoul(str, NULL, 0);
8020 if (val < SD_LV_MAX)
8021 default_relax_domain_level = val;
8022
1d3504fc
HS
8023 return 1;
8024}
8025__setup("relax_domain_level=", setup_relax_domain_level);
8026
8027static void set_domain_attribute(struct sched_domain *sd,
8028 struct sched_domain_attr *attr)
8029{
8030 int request;
8031
8032 if (!attr || attr->relax_domain_level < 0) {
8033 if (default_relax_domain_level < 0)
8034 return;
8035 else
8036 request = default_relax_domain_level;
8037 } else
8038 request = attr->relax_domain_level;
8039 if (request < sd->level) {
8040 /* turn off idle balance on this domain */
8041 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8042 } else {
8043 /* turn on idle balance on this domain */
8044 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8045 }
8046}
8047
1da177e4 8048/*
1a20ff27
DG
8049 * Build sched domains for a given set of cpus and attach the sched domains
8050 * to the individual cpus
1da177e4 8051 */
96f874e2 8052static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8053 struct sched_domain_attr *attr)
1da177e4 8054{
3404c8d9 8055 int i, err = -ENOMEM;
57d885fe 8056 struct root_domain *rd;
3404c8d9
RR
8057 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8058 tmpmask;
d1b55138 8059#ifdef CONFIG_NUMA
3404c8d9 8060 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8061 struct sched_group **sched_group_nodes = NULL;
6711cab4 8062 int sd_allnodes = 0;
d1b55138 8063
3404c8d9
RR
8064 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8065 goto out;
8066 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8067 goto free_domainspan;
8068 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8069 goto free_covered;
8070#endif
8071
8072 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8073 goto free_notcovered;
8074 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8075 goto free_nodemask;
8076 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8077 goto free_this_sibling_map;
8078 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8079 goto free_this_core_map;
8080 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8081 goto free_send_covered;
8082
8083#ifdef CONFIG_NUMA
d1b55138
JH
8084 /*
8085 * Allocate the per-node list of sched groups
8086 */
076ac2af 8087 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8088 GFP_KERNEL);
d1b55138
JH
8089 if (!sched_group_nodes) {
8090 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8091 goto free_tmpmask;
d1b55138 8092 }
d1b55138 8093#endif
1da177e4 8094
dc938520 8095 rd = alloc_rootdomain();
57d885fe
GH
8096 if (!rd) {
8097 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8098 goto free_sched_groups;
57d885fe
GH
8099 }
8100
7c16ec58 8101#ifdef CONFIG_NUMA
96f874e2 8102 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8103#endif
8104
1da177e4 8105 /*
1a20ff27 8106 * Set up domains for cpus specified by the cpu_map.
1da177e4 8107 */
abcd083a 8108 for_each_cpu(i, cpu_map) {
1da177e4 8109 struct sched_domain *sd = NULL, *p;
1da177e4 8110
6ca09dfc 8111 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8112
8113#ifdef CONFIG_NUMA
96f874e2
RR
8114 if (cpumask_weight(cpu_map) >
8115 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8116 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8117 SD_INIT(sd, ALLNODES);
1d3504fc 8118 set_domain_attribute(sd, attr);
758b2cdc 8119 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8120 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8121 p = sd;
6711cab4 8122 sd_allnodes = 1;
9c1cfda2
JH
8123 } else
8124 p = NULL;
8125
62ea9ceb 8126 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8127 SD_INIT(sd, NODE);
1d3504fc 8128 set_domain_attribute(sd, attr);
758b2cdc 8129 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8130 sd->parent = p;
1a848870
SS
8131 if (p)
8132 p->child = sd;
758b2cdc
RR
8133 cpumask_and(sched_domain_span(sd),
8134 sched_domain_span(sd), cpu_map);
1da177e4
LT
8135#endif
8136
8137 p = sd;
6c99e9ad 8138 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8139 SD_INIT(sd, CPU);
1d3504fc 8140 set_domain_attribute(sd, attr);
758b2cdc 8141 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8142 sd->parent = p;
1a848870
SS
8143 if (p)
8144 p->child = sd;
7c16ec58 8145 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8146
1e9f28fa
SS
8147#ifdef CONFIG_SCHED_MC
8148 p = sd;
6c99e9ad 8149 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8150 SD_INIT(sd, MC);
1d3504fc 8151 set_domain_attribute(sd, attr);
6ca09dfc
MT
8152 cpumask_and(sched_domain_span(sd), cpu_map,
8153 cpu_coregroup_mask(i));
1e9f28fa 8154 sd->parent = p;
1a848870 8155 p->child = sd;
7c16ec58 8156 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8157#endif
8158
1da177e4
LT
8159#ifdef CONFIG_SCHED_SMT
8160 p = sd;
6c99e9ad 8161 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8162 SD_INIT(sd, SIBLING);
1d3504fc 8163 set_domain_attribute(sd, attr);
758b2cdc 8164 cpumask_and(sched_domain_span(sd),
c69fc56d 8165 topology_thread_cpumask(i), cpu_map);
1da177e4 8166 sd->parent = p;
1a848870 8167 p->child = sd;
7c16ec58 8168 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8169#endif
8170 }
8171
8172#ifdef CONFIG_SCHED_SMT
8173 /* Set up CPU (sibling) groups */
abcd083a 8174 for_each_cpu(i, cpu_map) {
96f874e2 8175 cpumask_and(this_sibling_map,
c69fc56d 8176 topology_thread_cpumask(i), cpu_map);
96f874e2 8177 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8178 continue;
8179
dd41f596 8180 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8181 &cpu_to_cpu_group,
8182 send_covered, tmpmask);
1da177e4
LT
8183 }
8184#endif
8185
1e9f28fa
SS
8186#ifdef CONFIG_SCHED_MC
8187 /* Set up multi-core groups */
abcd083a 8188 for_each_cpu(i, cpu_map) {
6ca09dfc 8189 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8190 if (i != cpumask_first(this_core_map))
1e9f28fa 8191 continue;
7c16ec58 8192
dd41f596 8193 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8194 &cpu_to_core_group,
8195 send_covered, tmpmask);
1e9f28fa
SS
8196 }
8197#endif
8198
1da177e4 8199 /* Set up physical groups */
076ac2af 8200 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8201 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8202 if (cpumask_empty(nodemask))
1da177e4
LT
8203 continue;
8204
7c16ec58
MT
8205 init_sched_build_groups(nodemask, cpu_map,
8206 &cpu_to_phys_group,
8207 send_covered, tmpmask);
1da177e4
LT
8208 }
8209
8210#ifdef CONFIG_NUMA
8211 /* Set up node groups */
7c16ec58 8212 if (sd_allnodes) {
7c16ec58
MT
8213 init_sched_build_groups(cpu_map, cpu_map,
8214 &cpu_to_allnodes_group,
8215 send_covered, tmpmask);
8216 }
9c1cfda2 8217
076ac2af 8218 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8219 /* Set up node groups */
8220 struct sched_group *sg, *prev;
9c1cfda2
JH
8221 int j;
8222
96f874e2 8223 cpumask_clear(covered);
6ca09dfc 8224 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8225 if (cpumask_empty(nodemask)) {
d1b55138 8226 sched_group_nodes[i] = NULL;
9c1cfda2 8227 continue;
d1b55138 8228 }
9c1cfda2 8229
4bdbaad3 8230 sched_domain_node_span(i, domainspan);
96f874e2 8231 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8232
6c99e9ad
RR
8233 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8234 GFP_KERNEL, i);
51888ca2
SV
8235 if (!sg) {
8236 printk(KERN_WARNING "Can not alloc domain group for "
8237 "node %d\n", i);
8238 goto error;
8239 }
9c1cfda2 8240 sched_group_nodes[i] = sg;
abcd083a 8241 for_each_cpu(j, nodemask) {
9c1cfda2 8242 struct sched_domain *sd;
9761eea8 8243
62ea9ceb 8244 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8245 sd->groups = sg;
9c1cfda2 8246 }
5517d86b 8247 sg->__cpu_power = 0;
758b2cdc 8248 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8249 sg->next = sg;
96f874e2 8250 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8251 prev = sg;
8252
076ac2af 8253 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8254 int n = (i + j) % nr_node_ids;
9c1cfda2 8255
96f874e2
RR
8256 cpumask_complement(notcovered, covered);
8257 cpumask_and(tmpmask, notcovered, cpu_map);
8258 cpumask_and(tmpmask, tmpmask, domainspan);
8259 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8260 break;
8261
6ca09dfc 8262 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8263 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8264 continue;
8265
6c99e9ad
RR
8266 sg = kmalloc_node(sizeof(struct sched_group) +
8267 cpumask_size(),
15f0b676 8268 GFP_KERNEL, i);
9c1cfda2
JH
8269 if (!sg) {
8270 printk(KERN_WARNING
8271 "Can not alloc domain group for node %d\n", j);
51888ca2 8272 goto error;
9c1cfda2 8273 }
5517d86b 8274 sg->__cpu_power = 0;
758b2cdc 8275 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8276 sg->next = prev->next;
96f874e2 8277 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8278 prev->next = sg;
8279 prev = sg;
8280 }
9c1cfda2 8281 }
1da177e4
LT
8282#endif
8283
8284 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8285#ifdef CONFIG_SCHED_SMT
abcd083a 8286 for_each_cpu(i, cpu_map) {
6c99e9ad 8287 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8288
89c4710e 8289 init_sched_groups_power(i, sd);
5c45bf27 8290 }
1da177e4 8291#endif
1e9f28fa 8292#ifdef CONFIG_SCHED_MC
abcd083a 8293 for_each_cpu(i, cpu_map) {
6c99e9ad 8294 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8295
89c4710e 8296 init_sched_groups_power(i, sd);
5c45bf27
SS
8297 }
8298#endif
1e9f28fa 8299
abcd083a 8300 for_each_cpu(i, cpu_map) {
6c99e9ad 8301 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8302
89c4710e 8303 init_sched_groups_power(i, sd);
1da177e4
LT
8304 }
8305
9c1cfda2 8306#ifdef CONFIG_NUMA
076ac2af 8307 for (i = 0; i < nr_node_ids; i++)
08069033 8308 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8309
6711cab4
SS
8310 if (sd_allnodes) {
8311 struct sched_group *sg;
f712c0c7 8312
96f874e2 8313 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8314 tmpmask);
f712c0c7
SS
8315 init_numa_sched_groups_power(sg);
8316 }
9c1cfda2
JH
8317#endif
8318
1da177e4 8319 /* Attach the domains */
abcd083a 8320 for_each_cpu(i, cpu_map) {
1da177e4
LT
8321 struct sched_domain *sd;
8322#ifdef CONFIG_SCHED_SMT
6c99e9ad 8323 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8324#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8325 sd = &per_cpu(core_domains, i).sd;
1da177e4 8326#else
6c99e9ad 8327 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8328#endif
57d885fe 8329 cpu_attach_domain(sd, rd, i);
1da177e4 8330 }
51888ca2 8331
3404c8d9
RR
8332 err = 0;
8333
8334free_tmpmask:
8335 free_cpumask_var(tmpmask);
8336free_send_covered:
8337 free_cpumask_var(send_covered);
8338free_this_core_map:
8339 free_cpumask_var(this_core_map);
8340free_this_sibling_map:
8341 free_cpumask_var(this_sibling_map);
8342free_nodemask:
8343 free_cpumask_var(nodemask);
8344free_notcovered:
8345#ifdef CONFIG_NUMA
8346 free_cpumask_var(notcovered);
8347free_covered:
8348 free_cpumask_var(covered);
8349free_domainspan:
8350 free_cpumask_var(domainspan);
8351out:
8352#endif
8353 return err;
8354
8355free_sched_groups:
8356#ifdef CONFIG_NUMA
8357 kfree(sched_group_nodes);
8358#endif
8359 goto free_tmpmask;
51888ca2 8360
a616058b 8361#ifdef CONFIG_NUMA
51888ca2 8362error:
7c16ec58 8363 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8364 free_rootdomain(rd);
3404c8d9 8365 goto free_tmpmask;
a616058b 8366#endif
1da177e4 8367}
029190c5 8368
96f874e2 8369static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8370{
8371 return __build_sched_domains(cpu_map, NULL);
8372}
8373
96f874e2 8374static struct cpumask *doms_cur; /* current sched domains */
029190c5 8375static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8376static struct sched_domain_attr *dattr_cur;
8377 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8378
8379/*
8380 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8381 * cpumask) fails, then fallback to a single sched domain,
8382 * as determined by the single cpumask fallback_doms.
029190c5 8383 */
4212823f 8384static cpumask_var_t fallback_doms;
029190c5 8385
ee79d1bd
HC
8386/*
8387 * arch_update_cpu_topology lets virtualized architectures update the
8388 * cpu core maps. It is supposed to return 1 if the topology changed
8389 * or 0 if it stayed the same.
8390 */
8391int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8392{
ee79d1bd 8393 return 0;
22e52b07
HC
8394}
8395
1a20ff27 8396/*
41a2d6cf 8397 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8398 * For now this just excludes isolated cpus, but could be used to
8399 * exclude other special cases in the future.
1a20ff27 8400 */
96f874e2 8401static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8402{
7378547f
MM
8403 int err;
8404
22e52b07 8405 arch_update_cpu_topology();
029190c5 8406 ndoms_cur = 1;
96f874e2 8407 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8408 if (!doms_cur)
4212823f 8409 doms_cur = fallback_doms;
dcc30a35 8410 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8411 dattr_cur = NULL;
7378547f 8412 err = build_sched_domains(doms_cur);
6382bc90 8413 register_sched_domain_sysctl();
7378547f
MM
8414
8415 return err;
1a20ff27
DG
8416}
8417
96f874e2
RR
8418static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8419 struct cpumask *tmpmask)
1da177e4 8420{
7c16ec58 8421 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8422}
1da177e4 8423
1a20ff27
DG
8424/*
8425 * Detach sched domains from a group of cpus specified in cpu_map
8426 * These cpus will now be attached to the NULL domain
8427 */
96f874e2 8428static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8429{
96f874e2
RR
8430 /* Save because hotplug lock held. */
8431 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8432 int i;
8433
abcd083a 8434 for_each_cpu(i, cpu_map)
57d885fe 8435 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8436 synchronize_sched();
96f874e2 8437 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8438}
8439
1d3504fc
HS
8440/* handle null as "default" */
8441static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8442 struct sched_domain_attr *new, int idx_new)
8443{
8444 struct sched_domain_attr tmp;
8445
8446 /* fast path */
8447 if (!new && !cur)
8448 return 1;
8449
8450 tmp = SD_ATTR_INIT;
8451 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8452 new ? (new + idx_new) : &tmp,
8453 sizeof(struct sched_domain_attr));
8454}
8455
029190c5
PJ
8456/*
8457 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8458 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8459 * doms_new[] to the current sched domain partitioning, doms_cur[].
8460 * It destroys each deleted domain and builds each new domain.
8461 *
96f874e2 8462 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8463 * The masks don't intersect (don't overlap.) We should setup one
8464 * sched domain for each mask. CPUs not in any of the cpumasks will
8465 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8466 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8467 * it as it is.
8468 *
41a2d6cf
IM
8469 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8470 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8471 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8472 * ndoms_new == 1, and partition_sched_domains() will fallback to
8473 * the single partition 'fallback_doms', it also forces the domains
8474 * to be rebuilt.
029190c5 8475 *
96f874e2 8476 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8477 * ndoms_new == 0 is a special case for destroying existing domains,
8478 * and it will not create the default domain.
dfb512ec 8479 *
029190c5
PJ
8480 * Call with hotplug lock held
8481 */
96f874e2
RR
8482/* FIXME: Change to struct cpumask *doms_new[] */
8483void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8484 struct sched_domain_attr *dattr_new)
029190c5 8485{
dfb512ec 8486 int i, j, n;
d65bd5ec 8487 int new_topology;
029190c5 8488
712555ee 8489 mutex_lock(&sched_domains_mutex);
a1835615 8490
7378547f
MM
8491 /* always unregister in case we don't destroy any domains */
8492 unregister_sched_domain_sysctl();
8493
d65bd5ec
HC
8494 /* Let architecture update cpu core mappings. */
8495 new_topology = arch_update_cpu_topology();
8496
dfb512ec 8497 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8498
8499 /* Destroy deleted domains */
8500 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8501 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8502 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8503 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8504 goto match1;
8505 }
8506 /* no match - a current sched domain not in new doms_new[] */
8507 detach_destroy_domains(doms_cur + i);
8508match1:
8509 ;
8510 }
8511
e761b772
MK
8512 if (doms_new == NULL) {
8513 ndoms_cur = 0;
4212823f 8514 doms_new = fallback_doms;
dcc30a35 8515 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8516 WARN_ON_ONCE(dattr_new);
e761b772
MK
8517 }
8518
029190c5
PJ
8519 /* Build new domains */
8520 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8521 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8522 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8523 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8524 goto match2;
8525 }
8526 /* no match - add a new doms_new */
1d3504fc
HS
8527 __build_sched_domains(doms_new + i,
8528 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8529match2:
8530 ;
8531 }
8532
8533 /* Remember the new sched domains */
4212823f 8534 if (doms_cur != fallback_doms)
029190c5 8535 kfree(doms_cur);
1d3504fc 8536 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8537 doms_cur = doms_new;
1d3504fc 8538 dattr_cur = dattr_new;
029190c5 8539 ndoms_cur = ndoms_new;
7378547f
MM
8540
8541 register_sched_domain_sysctl();
a1835615 8542
712555ee 8543 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8544}
8545
5c45bf27 8546#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8547static void arch_reinit_sched_domains(void)
5c45bf27 8548{
95402b38 8549 get_online_cpus();
dfb512ec
MK
8550
8551 /* Destroy domains first to force the rebuild */
8552 partition_sched_domains(0, NULL, NULL);
8553
e761b772 8554 rebuild_sched_domains();
95402b38 8555 put_online_cpus();
5c45bf27
SS
8556}
8557
8558static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8559{
afb8a9b7 8560 unsigned int level = 0;
5c45bf27 8561
afb8a9b7
GS
8562 if (sscanf(buf, "%u", &level) != 1)
8563 return -EINVAL;
8564
8565 /*
8566 * level is always be positive so don't check for
8567 * level < POWERSAVINGS_BALANCE_NONE which is 0
8568 * What happens on 0 or 1 byte write,
8569 * need to check for count as well?
8570 */
8571
8572 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8573 return -EINVAL;
8574
8575 if (smt)
afb8a9b7 8576 sched_smt_power_savings = level;
5c45bf27 8577 else
afb8a9b7 8578 sched_mc_power_savings = level;
5c45bf27 8579
c70f22d2 8580 arch_reinit_sched_domains();
5c45bf27 8581
c70f22d2 8582 return count;
5c45bf27
SS
8583}
8584
5c45bf27 8585#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8586static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8587 char *page)
5c45bf27
SS
8588{
8589 return sprintf(page, "%u\n", sched_mc_power_savings);
8590}
f718cd4a 8591static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8592 const char *buf, size_t count)
5c45bf27
SS
8593{
8594 return sched_power_savings_store(buf, count, 0);
8595}
f718cd4a
AK
8596static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8597 sched_mc_power_savings_show,
8598 sched_mc_power_savings_store);
5c45bf27
SS
8599#endif
8600
8601#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8602static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8603 char *page)
5c45bf27
SS
8604{
8605 return sprintf(page, "%u\n", sched_smt_power_savings);
8606}
f718cd4a 8607static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8608 const char *buf, size_t count)
5c45bf27
SS
8609{
8610 return sched_power_savings_store(buf, count, 1);
8611}
f718cd4a
AK
8612static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8613 sched_smt_power_savings_show,
6707de00
AB
8614 sched_smt_power_savings_store);
8615#endif
8616
39aac648 8617int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8618{
8619 int err = 0;
8620
8621#ifdef CONFIG_SCHED_SMT
8622 if (smt_capable())
8623 err = sysfs_create_file(&cls->kset.kobj,
8624 &attr_sched_smt_power_savings.attr);
8625#endif
8626#ifdef CONFIG_SCHED_MC
8627 if (!err && mc_capable())
8628 err = sysfs_create_file(&cls->kset.kobj,
8629 &attr_sched_mc_power_savings.attr);
8630#endif
8631 return err;
8632}
6d6bc0ad 8633#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8634
e761b772 8635#ifndef CONFIG_CPUSETS
1da177e4 8636/*
e761b772
MK
8637 * Add online and remove offline CPUs from the scheduler domains.
8638 * When cpusets are enabled they take over this function.
1da177e4
LT
8639 */
8640static int update_sched_domains(struct notifier_block *nfb,
8641 unsigned long action, void *hcpu)
e761b772
MK
8642{
8643 switch (action) {
8644 case CPU_ONLINE:
8645 case CPU_ONLINE_FROZEN:
8646 case CPU_DEAD:
8647 case CPU_DEAD_FROZEN:
dfb512ec 8648 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8649 return NOTIFY_OK;
8650
8651 default:
8652 return NOTIFY_DONE;
8653 }
8654}
8655#endif
8656
8657static int update_runtime(struct notifier_block *nfb,
8658 unsigned long action, void *hcpu)
1da177e4 8659{
7def2be1
PZ
8660 int cpu = (int)(long)hcpu;
8661
1da177e4 8662 switch (action) {
1da177e4 8663 case CPU_DOWN_PREPARE:
8bb78442 8664 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8665 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8666 return NOTIFY_OK;
8667
1da177e4 8668 case CPU_DOWN_FAILED:
8bb78442 8669 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8670 case CPU_ONLINE:
8bb78442 8671 case CPU_ONLINE_FROZEN:
7def2be1 8672 enable_runtime(cpu_rq(cpu));
e761b772
MK
8673 return NOTIFY_OK;
8674
1da177e4
LT
8675 default:
8676 return NOTIFY_DONE;
8677 }
1da177e4 8678}
1da177e4
LT
8679
8680void __init sched_init_smp(void)
8681{
dcc30a35
RR
8682 cpumask_var_t non_isolated_cpus;
8683
8684 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8685
434d53b0
MT
8686#if defined(CONFIG_NUMA)
8687 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8688 GFP_KERNEL);
8689 BUG_ON(sched_group_nodes_bycpu == NULL);
8690#endif
95402b38 8691 get_online_cpus();
712555ee 8692 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8693 arch_init_sched_domains(cpu_online_mask);
8694 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8695 if (cpumask_empty(non_isolated_cpus))
8696 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8697 mutex_unlock(&sched_domains_mutex);
95402b38 8698 put_online_cpus();
e761b772
MK
8699
8700#ifndef CONFIG_CPUSETS
1da177e4
LT
8701 /* XXX: Theoretical race here - CPU may be hotplugged now */
8702 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8703#endif
8704
8705 /* RT runtime code needs to handle some hotplug events */
8706 hotcpu_notifier(update_runtime, 0);
8707
b328ca18 8708 init_hrtick();
5c1e1767
NP
8709
8710 /* Move init over to a non-isolated CPU */
dcc30a35 8711 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8712 BUG();
19978ca6 8713 sched_init_granularity();
dcc30a35 8714 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8715
8716 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8717 init_sched_rt_class();
1da177e4
LT
8718}
8719#else
8720void __init sched_init_smp(void)
8721{
19978ca6 8722 sched_init_granularity();
1da177e4
LT
8723}
8724#endif /* CONFIG_SMP */
8725
8726int in_sched_functions(unsigned long addr)
8727{
1da177e4
LT
8728 return in_lock_functions(addr) ||
8729 (addr >= (unsigned long)__sched_text_start
8730 && addr < (unsigned long)__sched_text_end);
8731}
8732
a9957449 8733static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8734{
8735 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8736 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8737#ifdef CONFIG_FAIR_GROUP_SCHED
8738 cfs_rq->rq = rq;
8739#endif
67e9fb2a 8740 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8741}
8742
fa85ae24
PZ
8743static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8744{
8745 struct rt_prio_array *array;
8746 int i;
8747
8748 array = &rt_rq->active;
8749 for (i = 0; i < MAX_RT_PRIO; i++) {
8750 INIT_LIST_HEAD(array->queue + i);
8751 __clear_bit(i, array->bitmap);
8752 }
8753 /* delimiter for bitsearch: */
8754 __set_bit(MAX_RT_PRIO, array->bitmap);
8755
052f1dc7 8756#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8757 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8758#ifdef CONFIG_SMP
e864c499 8759 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8760#endif
48d5e258 8761#endif
fa85ae24
PZ
8762#ifdef CONFIG_SMP
8763 rt_rq->rt_nr_migratory = 0;
fa85ae24 8764 rt_rq->overloaded = 0;
917b627d 8765 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8766#endif
8767
8768 rt_rq->rt_time = 0;
8769 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8770 rt_rq->rt_runtime = 0;
8771 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8772
052f1dc7 8773#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8774 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8775 rt_rq->rq = rq;
8776#endif
fa85ae24
PZ
8777}
8778
6f505b16 8779#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8780static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8781 struct sched_entity *se, int cpu, int add,
8782 struct sched_entity *parent)
6f505b16 8783{
ec7dc8ac 8784 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8785 tg->cfs_rq[cpu] = cfs_rq;
8786 init_cfs_rq(cfs_rq, rq);
8787 cfs_rq->tg = tg;
8788 if (add)
8789 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8790
8791 tg->se[cpu] = se;
354d60c2
DG
8792 /* se could be NULL for init_task_group */
8793 if (!se)
8794 return;
8795
ec7dc8ac
DG
8796 if (!parent)
8797 se->cfs_rq = &rq->cfs;
8798 else
8799 se->cfs_rq = parent->my_q;
8800
6f505b16
PZ
8801 se->my_q = cfs_rq;
8802 se->load.weight = tg->shares;
e05510d0 8803 se->load.inv_weight = 0;
ec7dc8ac 8804 se->parent = parent;
6f505b16 8805}
052f1dc7 8806#endif
6f505b16 8807
052f1dc7 8808#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8809static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8810 struct sched_rt_entity *rt_se, int cpu, int add,
8811 struct sched_rt_entity *parent)
6f505b16 8812{
ec7dc8ac
DG
8813 struct rq *rq = cpu_rq(cpu);
8814
6f505b16
PZ
8815 tg->rt_rq[cpu] = rt_rq;
8816 init_rt_rq(rt_rq, rq);
8817 rt_rq->tg = tg;
8818 rt_rq->rt_se = rt_se;
ac086bc2 8819 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8820 if (add)
8821 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8822
8823 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8824 if (!rt_se)
8825 return;
8826
ec7dc8ac
DG
8827 if (!parent)
8828 rt_se->rt_rq = &rq->rt;
8829 else
8830 rt_se->rt_rq = parent->my_q;
8831
6f505b16 8832 rt_se->my_q = rt_rq;
ec7dc8ac 8833 rt_se->parent = parent;
6f505b16
PZ
8834 INIT_LIST_HEAD(&rt_se->run_list);
8835}
8836#endif
8837
1da177e4
LT
8838void __init sched_init(void)
8839{
dd41f596 8840 int i, j;
434d53b0
MT
8841 unsigned long alloc_size = 0, ptr;
8842
8843#ifdef CONFIG_FAIR_GROUP_SCHED
8844 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8845#endif
8846#ifdef CONFIG_RT_GROUP_SCHED
8847 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8848#endif
8849#ifdef CONFIG_USER_SCHED
8850 alloc_size *= 2;
df7c8e84
RR
8851#endif
8852#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8853 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
8854#endif
8855 /*
8856 * As sched_init() is called before page_alloc is setup,
8857 * we use alloc_bootmem().
8858 */
8859 if (alloc_size) {
5a9d3225 8860 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8861
8862#ifdef CONFIG_FAIR_GROUP_SCHED
8863 init_task_group.se = (struct sched_entity **)ptr;
8864 ptr += nr_cpu_ids * sizeof(void **);
8865
8866 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8867 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8868
8869#ifdef CONFIG_USER_SCHED
8870 root_task_group.se = (struct sched_entity **)ptr;
8871 ptr += nr_cpu_ids * sizeof(void **);
8872
8873 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8874 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8875#endif /* CONFIG_USER_SCHED */
8876#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8877#ifdef CONFIG_RT_GROUP_SCHED
8878 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8879 ptr += nr_cpu_ids * sizeof(void **);
8880
8881 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8882 ptr += nr_cpu_ids * sizeof(void **);
8883
8884#ifdef CONFIG_USER_SCHED
8885 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8886 ptr += nr_cpu_ids * sizeof(void **);
8887
8888 root_task_group.rt_rq = (struct rt_rq **)ptr;
8889 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8890#endif /* CONFIG_USER_SCHED */
8891#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8892#ifdef CONFIG_CPUMASK_OFFSTACK
8893 for_each_possible_cpu(i) {
8894 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8895 ptr += cpumask_size();
8896 }
8897#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8898 }
dd41f596 8899
57d885fe
GH
8900#ifdef CONFIG_SMP
8901 init_defrootdomain();
8902#endif
8903
d0b27fa7
PZ
8904 init_rt_bandwidth(&def_rt_bandwidth,
8905 global_rt_period(), global_rt_runtime());
8906
8907#ifdef CONFIG_RT_GROUP_SCHED
8908 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8909 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8910#ifdef CONFIG_USER_SCHED
8911 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8912 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8913#endif /* CONFIG_USER_SCHED */
8914#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8915
052f1dc7 8916#ifdef CONFIG_GROUP_SCHED
6f505b16 8917 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8918 INIT_LIST_HEAD(&init_task_group.children);
8919
8920#ifdef CONFIG_USER_SCHED
8921 INIT_LIST_HEAD(&root_task_group.children);
8922 init_task_group.parent = &root_task_group;
8923 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8924#endif /* CONFIG_USER_SCHED */
8925#endif /* CONFIG_GROUP_SCHED */
6f505b16 8926
0a945022 8927 for_each_possible_cpu(i) {
70b97a7f 8928 struct rq *rq;
1da177e4
LT
8929
8930 rq = cpu_rq(i);
8931 spin_lock_init(&rq->lock);
7897986b 8932 rq->nr_running = 0;
dd41f596 8933 init_cfs_rq(&rq->cfs, rq);
6f505b16 8934 init_rt_rq(&rq->rt, rq);
dd41f596 8935#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8936 init_task_group.shares = init_task_group_load;
6f505b16 8937 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8938#ifdef CONFIG_CGROUP_SCHED
8939 /*
8940 * How much cpu bandwidth does init_task_group get?
8941 *
8942 * In case of task-groups formed thr' the cgroup filesystem, it
8943 * gets 100% of the cpu resources in the system. This overall
8944 * system cpu resource is divided among the tasks of
8945 * init_task_group and its child task-groups in a fair manner,
8946 * based on each entity's (task or task-group's) weight
8947 * (se->load.weight).
8948 *
8949 * In other words, if init_task_group has 10 tasks of weight
8950 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8951 * then A0's share of the cpu resource is:
8952 *
8953 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8954 *
8955 * We achieve this by letting init_task_group's tasks sit
8956 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8957 */
ec7dc8ac 8958 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8959#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8960 root_task_group.shares = NICE_0_LOAD;
8961 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8962 /*
8963 * In case of task-groups formed thr' the user id of tasks,
8964 * init_task_group represents tasks belonging to root user.
8965 * Hence it forms a sibling of all subsequent groups formed.
8966 * In this case, init_task_group gets only a fraction of overall
8967 * system cpu resource, based on the weight assigned to root
8968 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8969 * by letting tasks of init_task_group sit in a separate cfs_rq
8970 * (init_cfs_rq) and having one entity represent this group of
8971 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8972 */
ec7dc8ac 8973 init_tg_cfs_entry(&init_task_group,
6f505b16 8974 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8975 &per_cpu(init_sched_entity, i), i, 1,
8976 root_task_group.se[i]);
6f505b16 8977
052f1dc7 8978#endif
354d60c2
DG
8979#endif /* CONFIG_FAIR_GROUP_SCHED */
8980
8981 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8982#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8983 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8984#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8985 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8986#elif defined CONFIG_USER_SCHED
eff766a6 8987 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8988 init_tg_rt_entry(&init_task_group,
6f505b16 8989 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8990 &per_cpu(init_sched_rt_entity, i), i, 1,
8991 root_task_group.rt_se[i]);
354d60c2 8992#endif
dd41f596 8993#endif
1da177e4 8994
dd41f596
IM
8995 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8996 rq->cpu_load[j] = 0;
1da177e4 8997#ifdef CONFIG_SMP
41c7ce9a 8998 rq->sd = NULL;
57d885fe 8999 rq->rd = NULL;
1da177e4 9000 rq->active_balance = 0;
dd41f596 9001 rq->next_balance = jiffies;
1da177e4 9002 rq->push_cpu = 0;
0a2966b4 9003 rq->cpu = i;
1f11eb6a 9004 rq->online = 0;
1da177e4
LT
9005 rq->migration_thread = NULL;
9006 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9007 rq_attach_root(rq, &def_root_domain);
1da177e4 9008#endif
8f4d37ec 9009 init_rq_hrtick(rq);
1da177e4 9010 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9011 }
9012
2dd73a4f 9013 set_load_weight(&init_task);
b50f60ce 9014
e107be36
AK
9015#ifdef CONFIG_PREEMPT_NOTIFIERS
9016 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9017#endif
9018
c9819f45 9019#ifdef CONFIG_SMP
962cf36c 9020 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9021#endif
9022
b50f60ce
HC
9023#ifdef CONFIG_RT_MUTEXES
9024 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9025#endif
9026
1da177e4
LT
9027 /*
9028 * The boot idle thread does lazy MMU switching as well:
9029 */
9030 atomic_inc(&init_mm.mm_count);
9031 enter_lazy_tlb(&init_mm, current);
9032
9033 /*
9034 * Make us the idle thread. Technically, schedule() should not be
9035 * called from this thread, however somewhere below it might be,
9036 * but because we are the idle thread, we just pick up running again
9037 * when this runqueue becomes "idle".
9038 */
9039 init_idle(current, smp_processor_id());
dd41f596
IM
9040 /*
9041 * During early bootup we pretend to be a normal task:
9042 */
9043 current->sched_class = &fair_sched_class;
6892b75e 9044
6a7b3dc3
RR
9045 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9046 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 9047#ifdef CONFIG_SMP
7d1e6a9b
RR
9048#ifdef CONFIG_NO_HZ
9049 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9050#endif
dcc30a35 9051 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 9052#endif /* SMP */
6a7b3dc3 9053
6892b75e 9054 scheduler_running = 1;
1da177e4
LT
9055}
9056
9057#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9058void __might_sleep(char *file, int line)
9059{
48f24c4d 9060#ifdef in_atomic
1da177e4
LT
9061 static unsigned long prev_jiffy; /* ratelimiting */
9062
aef745fc
IM
9063 if ((!in_atomic() && !irqs_disabled()) ||
9064 system_state != SYSTEM_RUNNING || oops_in_progress)
9065 return;
9066 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9067 return;
9068 prev_jiffy = jiffies;
9069
9070 printk(KERN_ERR
9071 "BUG: sleeping function called from invalid context at %s:%d\n",
9072 file, line);
9073 printk(KERN_ERR
9074 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9075 in_atomic(), irqs_disabled(),
9076 current->pid, current->comm);
9077
9078 debug_show_held_locks(current);
9079 if (irqs_disabled())
9080 print_irqtrace_events(current);
9081 dump_stack();
1da177e4
LT
9082#endif
9083}
9084EXPORT_SYMBOL(__might_sleep);
9085#endif
9086
9087#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9088static void normalize_task(struct rq *rq, struct task_struct *p)
9089{
9090 int on_rq;
3e51f33f 9091
3a5e4dc1
AK
9092 update_rq_clock(rq);
9093 on_rq = p->se.on_rq;
9094 if (on_rq)
9095 deactivate_task(rq, p, 0);
9096 __setscheduler(rq, p, SCHED_NORMAL, 0);
9097 if (on_rq) {
9098 activate_task(rq, p, 0);
9099 resched_task(rq->curr);
9100 }
9101}
9102
1da177e4
LT
9103void normalize_rt_tasks(void)
9104{
a0f98a1c 9105 struct task_struct *g, *p;
1da177e4 9106 unsigned long flags;
70b97a7f 9107 struct rq *rq;
1da177e4 9108
4cf5d77a 9109 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9110 do_each_thread(g, p) {
178be793
IM
9111 /*
9112 * Only normalize user tasks:
9113 */
9114 if (!p->mm)
9115 continue;
9116
6cfb0d5d 9117 p->se.exec_start = 0;
6cfb0d5d 9118#ifdef CONFIG_SCHEDSTATS
dd41f596 9119 p->se.wait_start = 0;
dd41f596 9120 p->se.sleep_start = 0;
dd41f596 9121 p->se.block_start = 0;
6cfb0d5d 9122#endif
dd41f596
IM
9123
9124 if (!rt_task(p)) {
9125 /*
9126 * Renice negative nice level userspace
9127 * tasks back to 0:
9128 */
9129 if (TASK_NICE(p) < 0 && p->mm)
9130 set_user_nice(p, 0);
1da177e4 9131 continue;
dd41f596 9132 }
1da177e4 9133
4cf5d77a 9134 spin_lock(&p->pi_lock);
b29739f9 9135 rq = __task_rq_lock(p);
1da177e4 9136
178be793 9137 normalize_task(rq, p);
3a5e4dc1 9138
b29739f9 9139 __task_rq_unlock(rq);
4cf5d77a 9140 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9141 } while_each_thread(g, p);
9142
4cf5d77a 9143 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9144}
9145
9146#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9147
9148#ifdef CONFIG_IA64
9149/*
9150 * These functions are only useful for the IA64 MCA handling.
9151 *
9152 * They can only be called when the whole system has been
9153 * stopped - every CPU needs to be quiescent, and no scheduling
9154 * activity can take place. Using them for anything else would
9155 * be a serious bug, and as a result, they aren't even visible
9156 * under any other configuration.
9157 */
9158
9159/**
9160 * curr_task - return the current task for a given cpu.
9161 * @cpu: the processor in question.
9162 *
9163 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9164 */
36c8b586 9165struct task_struct *curr_task(int cpu)
1df5c10a
LT
9166{
9167 return cpu_curr(cpu);
9168}
9169
9170/**
9171 * set_curr_task - set the current task for a given cpu.
9172 * @cpu: the processor in question.
9173 * @p: the task pointer to set.
9174 *
9175 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9176 * are serviced on a separate stack. It allows the architecture to switch the
9177 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9178 * must be called with all CPU's synchronized, and interrupts disabled, the
9179 * and caller must save the original value of the current task (see
9180 * curr_task() above) and restore that value before reenabling interrupts and
9181 * re-starting the system.
9182 *
9183 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9184 */
36c8b586 9185void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9186{
9187 cpu_curr(cpu) = p;
9188}
9189
9190#endif
29f59db3 9191
bccbe08a
PZ
9192#ifdef CONFIG_FAIR_GROUP_SCHED
9193static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9194{
9195 int i;
9196
9197 for_each_possible_cpu(i) {
9198 if (tg->cfs_rq)
9199 kfree(tg->cfs_rq[i]);
9200 if (tg->se)
9201 kfree(tg->se[i]);
6f505b16
PZ
9202 }
9203
9204 kfree(tg->cfs_rq);
9205 kfree(tg->se);
6f505b16
PZ
9206}
9207
ec7dc8ac
DG
9208static
9209int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9210{
29f59db3 9211 struct cfs_rq *cfs_rq;
eab17229 9212 struct sched_entity *se;
9b5b7751 9213 struct rq *rq;
29f59db3
SV
9214 int i;
9215
434d53b0 9216 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9217 if (!tg->cfs_rq)
9218 goto err;
434d53b0 9219 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9220 if (!tg->se)
9221 goto err;
052f1dc7
PZ
9222
9223 tg->shares = NICE_0_LOAD;
29f59db3
SV
9224
9225 for_each_possible_cpu(i) {
9b5b7751 9226 rq = cpu_rq(i);
29f59db3 9227
eab17229
LZ
9228 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9229 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9230 if (!cfs_rq)
9231 goto err;
9232
eab17229
LZ
9233 se = kzalloc_node(sizeof(struct sched_entity),
9234 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9235 if (!se)
9236 goto err;
9237
eab17229 9238 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9239 }
9240
9241 return 1;
9242
9243 err:
9244 return 0;
9245}
9246
9247static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9248{
9249 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9250 &cpu_rq(cpu)->leaf_cfs_rq_list);
9251}
9252
9253static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9254{
9255 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9256}
6d6bc0ad 9257#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9258static inline void free_fair_sched_group(struct task_group *tg)
9259{
9260}
9261
ec7dc8ac
DG
9262static inline
9263int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9264{
9265 return 1;
9266}
9267
9268static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9269{
9270}
9271
9272static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9273{
9274}
6d6bc0ad 9275#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9276
9277#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9278static void free_rt_sched_group(struct task_group *tg)
9279{
9280 int i;
9281
d0b27fa7
PZ
9282 destroy_rt_bandwidth(&tg->rt_bandwidth);
9283
bccbe08a
PZ
9284 for_each_possible_cpu(i) {
9285 if (tg->rt_rq)
9286 kfree(tg->rt_rq[i]);
9287 if (tg->rt_se)
9288 kfree(tg->rt_se[i]);
9289 }
9290
9291 kfree(tg->rt_rq);
9292 kfree(tg->rt_se);
9293}
9294
ec7dc8ac
DG
9295static
9296int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9297{
9298 struct rt_rq *rt_rq;
eab17229 9299 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9300 struct rq *rq;
9301 int i;
9302
434d53b0 9303 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9304 if (!tg->rt_rq)
9305 goto err;
434d53b0 9306 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9307 if (!tg->rt_se)
9308 goto err;
9309
d0b27fa7
PZ
9310 init_rt_bandwidth(&tg->rt_bandwidth,
9311 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9312
9313 for_each_possible_cpu(i) {
9314 rq = cpu_rq(i);
9315
eab17229
LZ
9316 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9317 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9318 if (!rt_rq)
9319 goto err;
29f59db3 9320
eab17229
LZ
9321 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9322 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9323 if (!rt_se)
9324 goto err;
29f59db3 9325
eab17229 9326 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9327 }
9328
bccbe08a
PZ
9329 return 1;
9330
9331 err:
9332 return 0;
9333}
9334
9335static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9336{
9337 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9338 &cpu_rq(cpu)->leaf_rt_rq_list);
9339}
9340
9341static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9342{
9343 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9344}
6d6bc0ad 9345#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9346static inline void free_rt_sched_group(struct task_group *tg)
9347{
9348}
9349
ec7dc8ac
DG
9350static inline
9351int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9352{
9353 return 1;
9354}
9355
9356static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9357{
9358}
9359
9360static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9361{
9362}
6d6bc0ad 9363#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9364
d0b27fa7 9365#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9366static void free_sched_group(struct task_group *tg)
9367{
9368 free_fair_sched_group(tg);
9369 free_rt_sched_group(tg);
9370 kfree(tg);
9371}
9372
9373/* allocate runqueue etc for a new task group */
ec7dc8ac 9374struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9375{
9376 struct task_group *tg;
9377 unsigned long flags;
9378 int i;
9379
9380 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9381 if (!tg)
9382 return ERR_PTR(-ENOMEM);
9383
ec7dc8ac 9384 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9385 goto err;
9386
ec7dc8ac 9387 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9388 goto err;
9389
8ed36996 9390 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9391 for_each_possible_cpu(i) {
bccbe08a
PZ
9392 register_fair_sched_group(tg, i);
9393 register_rt_sched_group(tg, i);
9b5b7751 9394 }
6f505b16 9395 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9396
9397 WARN_ON(!parent); /* root should already exist */
9398
9399 tg->parent = parent;
f473aa5e 9400 INIT_LIST_HEAD(&tg->children);
09f2724a 9401 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9402 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9403
9b5b7751 9404 return tg;
29f59db3
SV
9405
9406err:
6f505b16 9407 free_sched_group(tg);
29f59db3
SV
9408 return ERR_PTR(-ENOMEM);
9409}
9410
9b5b7751 9411/* rcu callback to free various structures associated with a task group */
6f505b16 9412static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9413{
29f59db3 9414 /* now it should be safe to free those cfs_rqs */
6f505b16 9415 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9416}
9417
9b5b7751 9418/* Destroy runqueue etc associated with a task group */
4cf86d77 9419void sched_destroy_group(struct task_group *tg)
29f59db3 9420{
8ed36996 9421 unsigned long flags;
9b5b7751 9422 int i;
29f59db3 9423
8ed36996 9424 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9425 for_each_possible_cpu(i) {
bccbe08a
PZ
9426 unregister_fair_sched_group(tg, i);
9427 unregister_rt_sched_group(tg, i);
9b5b7751 9428 }
6f505b16 9429 list_del_rcu(&tg->list);
f473aa5e 9430 list_del_rcu(&tg->siblings);
8ed36996 9431 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9432
9b5b7751 9433 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9434 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9435}
9436
9b5b7751 9437/* change task's runqueue when it moves between groups.
3a252015
IM
9438 * The caller of this function should have put the task in its new group
9439 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9440 * reflect its new group.
9b5b7751
SV
9441 */
9442void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9443{
9444 int on_rq, running;
9445 unsigned long flags;
9446 struct rq *rq;
9447
9448 rq = task_rq_lock(tsk, &flags);
9449
29f59db3
SV
9450 update_rq_clock(rq);
9451
051a1d1a 9452 running = task_current(rq, tsk);
29f59db3
SV
9453 on_rq = tsk->se.on_rq;
9454
0e1f3483 9455 if (on_rq)
29f59db3 9456 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9457 if (unlikely(running))
9458 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9459
6f505b16 9460 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9461
810b3817
PZ
9462#ifdef CONFIG_FAIR_GROUP_SCHED
9463 if (tsk->sched_class->moved_group)
9464 tsk->sched_class->moved_group(tsk);
9465#endif
9466
0e1f3483
HS
9467 if (unlikely(running))
9468 tsk->sched_class->set_curr_task(rq);
9469 if (on_rq)
7074badb 9470 enqueue_task(rq, tsk, 0);
29f59db3 9471
29f59db3
SV
9472 task_rq_unlock(rq, &flags);
9473}
6d6bc0ad 9474#endif /* CONFIG_GROUP_SCHED */
29f59db3 9475
052f1dc7 9476#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9477static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9478{
9479 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9480 int on_rq;
9481
29f59db3 9482 on_rq = se->on_rq;
62fb1851 9483 if (on_rq)
29f59db3
SV
9484 dequeue_entity(cfs_rq, se, 0);
9485
9486 se->load.weight = shares;
e05510d0 9487 se->load.inv_weight = 0;
29f59db3 9488
62fb1851 9489 if (on_rq)
29f59db3 9490 enqueue_entity(cfs_rq, se, 0);
c09595f6 9491}
62fb1851 9492
c09595f6
PZ
9493static void set_se_shares(struct sched_entity *se, unsigned long shares)
9494{
9495 struct cfs_rq *cfs_rq = se->cfs_rq;
9496 struct rq *rq = cfs_rq->rq;
9497 unsigned long flags;
9498
9499 spin_lock_irqsave(&rq->lock, flags);
9500 __set_se_shares(se, shares);
9501 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9502}
9503
8ed36996
PZ
9504static DEFINE_MUTEX(shares_mutex);
9505
4cf86d77 9506int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9507{
9508 int i;
8ed36996 9509 unsigned long flags;
c61935fd 9510
ec7dc8ac
DG
9511 /*
9512 * We can't change the weight of the root cgroup.
9513 */
9514 if (!tg->se[0])
9515 return -EINVAL;
9516
18d95a28
PZ
9517 if (shares < MIN_SHARES)
9518 shares = MIN_SHARES;
cb4ad1ff
MX
9519 else if (shares > MAX_SHARES)
9520 shares = MAX_SHARES;
62fb1851 9521
8ed36996 9522 mutex_lock(&shares_mutex);
9b5b7751 9523 if (tg->shares == shares)
5cb350ba 9524 goto done;
29f59db3 9525
8ed36996 9526 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9527 for_each_possible_cpu(i)
9528 unregister_fair_sched_group(tg, i);
f473aa5e 9529 list_del_rcu(&tg->siblings);
8ed36996 9530 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9531
9532 /* wait for any ongoing reference to this group to finish */
9533 synchronize_sched();
9534
9535 /*
9536 * Now we are free to modify the group's share on each cpu
9537 * w/o tripping rebalance_share or load_balance_fair.
9538 */
9b5b7751 9539 tg->shares = shares;
c09595f6
PZ
9540 for_each_possible_cpu(i) {
9541 /*
9542 * force a rebalance
9543 */
9544 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9545 set_se_shares(tg->se[i], shares);
c09595f6 9546 }
29f59db3 9547
6b2d7700
SV
9548 /*
9549 * Enable load balance activity on this group, by inserting it back on
9550 * each cpu's rq->leaf_cfs_rq_list.
9551 */
8ed36996 9552 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9553 for_each_possible_cpu(i)
9554 register_fair_sched_group(tg, i);
f473aa5e 9555 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9556 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9557done:
8ed36996 9558 mutex_unlock(&shares_mutex);
9b5b7751 9559 return 0;
29f59db3
SV
9560}
9561
5cb350ba
DG
9562unsigned long sched_group_shares(struct task_group *tg)
9563{
9564 return tg->shares;
9565}
052f1dc7 9566#endif
5cb350ba 9567
052f1dc7 9568#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9569/*
9f0c1e56 9570 * Ensure that the real time constraints are schedulable.
6f505b16 9571 */
9f0c1e56
PZ
9572static DEFINE_MUTEX(rt_constraints_mutex);
9573
9574static unsigned long to_ratio(u64 period, u64 runtime)
9575{
9576 if (runtime == RUNTIME_INF)
9a7e0b18 9577 return 1ULL << 20;
9f0c1e56 9578
9a7e0b18 9579 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9580}
9581
9a7e0b18
PZ
9582/* Must be called with tasklist_lock held */
9583static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9584{
9a7e0b18 9585 struct task_struct *g, *p;
b40b2e8e 9586
9a7e0b18
PZ
9587 do_each_thread(g, p) {
9588 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9589 return 1;
9590 } while_each_thread(g, p);
b40b2e8e 9591
9a7e0b18
PZ
9592 return 0;
9593}
b40b2e8e 9594
9a7e0b18
PZ
9595struct rt_schedulable_data {
9596 struct task_group *tg;
9597 u64 rt_period;
9598 u64 rt_runtime;
9599};
b40b2e8e 9600
9a7e0b18
PZ
9601static int tg_schedulable(struct task_group *tg, void *data)
9602{
9603 struct rt_schedulable_data *d = data;
9604 struct task_group *child;
9605 unsigned long total, sum = 0;
9606 u64 period, runtime;
b40b2e8e 9607
9a7e0b18
PZ
9608 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9609 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9610
9a7e0b18
PZ
9611 if (tg == d->tg) {
9612 period = d->rt_period;
9613 runtime = d->rt_runtime;
b40b2e8e 9614 }
b40b2e8e 9615
98a4826b
PZ
9616#ifdef CONFIG_USER_SCHED
9617 if (tg == &root_task_group) {
9618 period = global_rt_period();
9619 runtime = global_rt_runtime();
9620 }
9621#endif
9622
4653f803
PZ
9623 /*
9624 * Cannot have more runtime than the period.
9625 */
9626 if (runtime > period && runtime != RUNTIME_INF)
9627 return -EINVAL;
6f505b16 9628
4653f803
PZ
9629 /*
9630 * Ensure we don't starve existing RT tasks.
9631 */
9a7e0b18
PZ
9632 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9633 return -EBUSY;
6f505b16 9634
9a7e0b18 9635 total = to_ratio(period, runtime);
6f505b16 9636
4653f803
PZ
9637 /*
9638 * Nobody can have more than the global setting allows.
9639 */
9640 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9641 return -EINVAL;
6f505b16 9642
4653f803
PZ
9643 /*
9644 * The sum of our children's runtime should not exceed our own.
9645 */
9a7e0b18
PZ
9646 list_for_each_entry_rcu(child, &tg->children, siblings) {
9647 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9648 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9649
9a7e0b18
PZ
9650 if (child == d->tg) {
9651 period = d->rt_period;
9652 runtime = d->rt_runtime;
9653 }
6f505b16 9654
9a7e0b18 9655 sum += to_ratio(period, runtime);
9f0c1e56 9656 }
6f505b16 9657
9a7e0b18
PZ
9658 if (sum > total)
9659 return -EINVAL;
9660
9661 return 0;
6f505b16
PZ
9662}
9663
9a7e0b18 9664static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9665{
9a7e0b18
PZ
9666 struct rt_schedulable_data data = {
9667 .tg = tg,
9668 .rt_period = period,
9669 .rt_runtime = runtime,
9670 };
9671
9672 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9673}
9674
d0b27fa7
PZ
9675static int tg_set_bandwidth(struct task_group *tg,
9676 u64 rt_period, u64 rt_runtime)
6f505b16 9677{
ac086bc2 9678 int i, err = 0;
9f0c1e56 9679
9f0c1e56 9680 mutex_lock(&rt_constraints_mutex);
521f1a24 9681 read_lock(&tasklist_lock);
9a7e0b18
PZ
9682 err = __rt_schedulable(tg, rt_period, rt_runtime);
9683 if (err)
9f0c1e56 9684 goto unlock;
ac086bc2
PZ
9685
9686 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9687 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9688 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9689
9690 for_each_possible_cpu(i) {
9691 struct rt_rq *rt_rq = tg->rt_rq[i];
9692
9693 spin_lock(&rt_rq->rt_runtime_lock);
9694 rt_rq->rt_runtime = rt_runtime;
9695 spin_unlock(&rt_rq->rt_runtime_lock);
9696 }
9697 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9698 unlock:
521f1a24 9699 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9700 mutex_unlock(&rt_constraints_mutex);
9701
9702 return err;
6f505b16
PZ
9703}
9704
d0b27fa7
PZ
9705int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9706{
9707 u64 rt_runtime, rt_period;
9708
9709 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9710 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9711 if (rt_runtime_us < 0)
9712 rt_runtime = RUNTIME_INF;
9713
9714 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9715}
9716
9f0c1e56
PZ
9717long sched_group_rt_runtime(struct task_group *tg)
9718{
9719 u64 rt_runtime_us;
9720
d0b27fa7 9721 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9722 return -1;
9723
d0b27fa7 9724 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9725 do_div(rt_runtime_us, NSEC_PER_USEC);
9726 return rt_runtime_us;
9727}
d0b27fa7
PZ
9728
9729int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9730{
9731 u64 rt_runtime, rt_period;
9732
9733 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9734 rt_runtime = tg->rt_bandwidth.rt_runtime;
9735
619b0488
R
9736 if (rt_period == 0)
9737 return -EINVAL;
9738
d0b27fa7
PZ
9739 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9740}
9741
9742long sched_group_rt_period(struct task_group *tg)
9743{
9744 u64 rt_period_us;
9745
9746 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9747 do_div(rt_period_us, NSEC_PER_USEC);
9748 return rt_period_us;
9749}
9750
9751static int sched_rt_global_constraints(void)
9752{
4653f803 9753 u64 runtime, period;
d0b27fa7
PZ
9754 int ret = 0;
9755
ec5d4989
HS
9756 if (sysctl_sched_rt_period <= 0)
9757 return -EINVAL;
9758
4653f803
PZ
9759 runtime = global_rt_runtime();
9760 period = global_rt_period();
9761
9762 /*
9763 * Sanity check on the sysctl variables.
9764 */
9765 if (runtime > period && runtime != RUNTIME_INF)
9766 return -EINVAL;
10b612f4 9767
d0b27fa7 9768 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9769 read_lock(&tasklist_lock);
4653f803 9770 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9771 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9772 mutex_unlock(&rt_constraints_mutex);
9773
9774 return ret;
9775}
54e99124
DG
9776
9777int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9778{
9779 /* Don't accept realtime tasks when there is no way for them to run */
9780 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9781 return 0;
9782
9783 return 1;
9784}
9785
6d6bc0ad 9786#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9787static int sched_rt_global_constraints(void)
9788{
ac086bc2
PZ
9789 unsigned long flags;
9790 int i;
9791
ec5d4989
HS
9792 if (sysctl_sched_rt_period <= 0)
9793 return -EINVAL;
9794
ac086bc2
PZ
9795 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9796 for_each_possible_cpu(i) {
9797 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9798
9799 spin_lock(&rt_rq->rt_runtime_lock);
9800 rt_rq->rt_runtime = global_rt_runtime();
9801 spin_unlock(&rt_rq->rt_runtime_lock);
9802 }
9803 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9804
d0b27fa7
PZ
9805 return 0;
9806}
6d6bc0ad 9807#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9808
9809int sched_rt_handler(struct ctl_table *table, int write,
9810 struct file *filp, void __user *buffer, size_t *lenp,
9811 loff_t *ppos)
9812{
9813 int ret;
9814 int old_period, old_runtime;
9815 static DEFINE_MUTEX(mutex);
9816
9817 mutex_lock(&mutex);
9818 old_period = sysctl_sched_rt_period;
9819 old_runtime = sysctl_sched_rt_runtime;
9820
9821 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9822
9823 if (!ret && write) {
9824 ret = sched_rt_global_constraints();
9825 if (ret) {
9826 sysctl_sched_rt_period = old_period;
9827 sysctl_sched_rt_runtime = old_runtime;
9828 } else {
9829 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9830 def_rt_bandwidth.rt_period =
9831 ns_to_ktime(global_rt_period());
9832 }
9833 }
9834 mutex_unlock(&mutex);
9835
9836 return ret;
9837}
68318b8e 9838
052f1dc7 9839#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9840
9841/* return corresponding task_group object of a cgroup */
2b01dfe3 9842static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9843{
2b01dfe3
PM
9844 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9845 struct task_group, css);
68318b8e
SV
9846}
9847
9848static struct cgroup_subsys_state *
2b01dfe3 9849cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9850{
ec7dc8ac 9851 struct task_group *tg, *parent;
68318b8e 9852
2b01dfe3 9853 if (!cgrp->parent) {
68318b8e 9854 /* This is early initialization for the top cgroup */
68318b8e
SV
9855 return &init_task_group.css;
9856 }
9857
ec7dc8ac
DG
9858 parent = cgroup_tg(cgrp->parent);
9859 tg = sched_create_group(parent);
68318b8e
SV
9860 if (IS_ERR(tg))
9861 return ERR_PTR(-ENOMEM);
9862
68318b8e
SV
9863 return &tg->css;
9864}
9865
41a2d6cf
IM
9866static void
9867cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9868{
2b01dfe3 9869 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9870
9871 sched_destroy_group(tg);
9872}
9873
41a2d6cf
IM
9874static int
9875cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9876 struct task_struct *tsk)
68318b8e 9877{
b68aa230 9878#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9879 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9880 return -EINVAL;
9881#else
68318b8e
SV
9882 /* We don't support RT-tasks being in separate groups */
9883 if (tsk->sched_class != &fair_sched_class)
9884 return -EINVAL;
b68aa230 9885#endif
68318b8e
SV
9886
9887 return 0;
9888}
9889
9890static void
2b01dfe3 9891cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9892 struct cgroup *old_cont, struct task_struct *tsk)
9893{
9894 sched_move_task(tsk);
9895}
9896
052f1dc7 9897#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9898static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9899 u64 shareval)
68318b8e 9900{
2b01dfe3 9901 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9902}
9903
f4c753b7 9904static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9905{
2b01dfe3 9906 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9907
9908 return (u64) tg->shares;
9909}
6d6bc0ad 9910#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9911
052f1dc7 9912#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9913static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9914 s64 val)
6f505b16 9915{
06ecb27c 9916 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9917}
9918
06ecb27c 9919static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9920{
06ecb27c 9921 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9922}
d0b27fa7
PZ
9923
9924static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9925 u64 rt_period_us)
9926{
9927 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9928}
9929
9930static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9931{
9932 return sched_group_rt_period(cgroup_tg(cgrp));
9933}
6d6bc0ad 9934#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9935
fe5c7cc2 9936static struct cftype cpu_files[] = {
052f1dc7 9937#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9938 {
9939 .name = "shares",
f4c753b7
PM
9940 .read_u64 = cpu_shares_read_u64,
9941 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9942 },
052f1dc7
PZ
9943#endif
9944#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9945 {
9f0c1e56 9946 .name = "rt_runtime_us",
06ecb27c
PM
9947 .read_s64 = cpu_rt_runtime_read,
9948 .write_s64 = cpu_rt_runtime_write,
6f505b16 9949 },
d0b27fa7
PZ
9950 {
9951 .name = "rt_period_us",
f4c753b7
PM
9952 .read_u64 = cpu_rt_period_read_uint,
9953 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9954 },
052f1dc7 9955#endif
68318b8e
SV
9956};
9957
9958static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9959{
fe5c7cc2 9960 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9961}
9962
9963struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9964 .name = "cpu",
9965 .create = cpu_cgroup_create,
9966 .destroy = cpu_cgroup_destroy,
9967 .can_attach = cpu_cgroup_can_attach,
9968 .attach = cpu_cgroup_attach,
9969 .populate = cpu_cgroup_populate,
9970 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9971 .early_init = 1,
9972};
9973
052f1dc7 9974#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9975
9976#ifdef CONFIG_CGROUP_CPUACCT
9977
9978/*
9979 * CPU accounting code for task groups.
9980 *
9981 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9982 * (balbir@in.ibm.com).
9983 */
9984
934352f2 9985/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9986struct cpuacct {
9987 struct cgroup_subsys_state css;
9988 /* cpuusage holds pointer to a u64-type object on every cpu */
9989 u64 *cpuusage;
ef12fefa 9990 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9991 struct cpuacct *parent;
d842de87
SV
9992};
9993
9994struct cgroup_subsys cpuacct_subsys;
9995
9996/* return cpu accounting group corresponding to this container */
32cd756a 9997static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9998{
32cd756a 9999 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10000 struct cpuacct, css);
10001}
10002
10003/* return cpu accounting group to which this task belongs */
10004static inline struct cpuacct *task_ca(struct task_struct *tsk)
10005{
10006 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10007 struct cpuacct, css);
10008}
10009
10010/* create a new cpu accounting group */
10011static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10012 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10013{
10014 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10015 int i;
d842de87
SV
10016
10017 if (!ca)
ef12fefa 10018 goto out;
d842de87
SV
10019
10020 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10021 if (!ca->cpuusage)
10022 goto out_free_ca;
10023
10024 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10025 if (percpu_counter_init(&ca->cpustat[i], 0))
10026 goto out_free_counters;
d842de87 10027
934352f2
BR
10028 if (cgrp->parent)
10029 ca->parent = cgroup_ca(cgrp->parent);
10030
d842de87 10031 return &ca->css;
ef12fefa
BR
10032
10033out_free_counters:
10034 while (--i >= 0)
10035 percpu_counter_destroy(&ca->cpustat[i]);
10036 free_percpu(ca->cpuusage);
10037out_free_ca:
10038 kfree(ca);
10039out:
10040 return ERR_PTR(-ENOMEM);
d842de87
SV
10041}
10042
10043/* destroy an existing cpu accounting group */
41a2d6cf 10044static void
32cd756a 10045cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10046{
32cd756a 10047 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10048 int i;
d842de87 10049
ef12fefa
BR
10050 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10051 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10052 free_percpu(ca->cpuusage);
10053 kfree(ca);
10054}
10055
720f5498
KC
10056static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10057{
b36128c8 10058 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10059 u64 data;
10060
10061#ifndef CONFIG_64BIT
10062 /*
10063 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10064 */
10065 spin_lock_irq(&cpu_rq(cpu)->lock);
10066 data = *cpuusage;
10067 spin_unlock_irq(&cpu_rq(cpu)->lock);
10068#else
10069 data = *cpuusage;
10070#endif
10071
10072 return data;
10073}
10074
10075static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10076{
b36128c8 10077 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10078
10079#ifndef CONFIG_64BIT
10080 /*
10081 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10082 */
10083 spin_lock_irq(&cpu_rq(cpu)->lock);
10084 *cpuusage = val;
10085 spin_unlock_irq(&cpu_rq(cpu)->lock);
10086#else
10087 *cpuusage = val;
10088#endif
10089}
10090
d842de87 10091/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10092static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10093{
32cd756a 10094 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10095 u64 totalcpuusage = 0;
10096 int i;
10097
720f5498
KC
10098 for_each_present_cpu(i)
10099 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10100
10101 return totalcpuusage;
10102}
10103
0297b803
DG
10104static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10105 u64 reset)
10106{
10107 struct cpuacct *ca = cgroup_ca(cgrp);
10108 int err = 0;
10109 int i;
10110
10111 if (reset) {
10112 err = -EINVAL;
10113 goto out;
10114 }
10115
720f5498
KC
10116 for_each_present_cpu(i)
10117 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10118
0297b803
DG
10119out:
10120 return err;
10121}
10122
e9515c3c
KC
10123static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10124 struct seq_file *m)
10125{
10126 struct cpuacct *ca = cgroup_ca(cgroup);
10127 u64 percpu;
10128 int i;
10129
10130 for_each_present_cpu(i) {
10131 percpu = cpuacct_cpuusage_read(ca, i);
10132 seq_printf(m, "%llu ", (unsigned long long) percpu);
10133 }
10134 seq_printf(m, "\n");
10135 return 0;
10136}
10137
ef12fefa
BR
10138static const char *cpuacct_stat_desc[] = {
10139 [CPUACCT_STAT_USER] = "user",
10140 [CPUACCT_STAT_SYSTEM] = "system",
10141};
10142
10143static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10144 struct cgroup_map_cb *cb)
10145{
10146 struct cpuacct *ca = cgroup_ca(cgrp);
10147 int i;
10148
10149 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10150 s64 val = percpu_counter_read(&ca->cpustat[i]);
10151 val = cputime64_to_clock_t(val);
10152 cb->fill(cb, cpuacct_stat_desc[i], val);
10153 }
10154 return 0;
10155}
10156
d842de87
SV
10157static struct cftype files[] = {
10158 {
10159 .name = "usage",
f4c753b7
PM
10160 .read_u64 = cpuusage_read,
10161 .write_u64 = cpuusage_write,
d842de87 10162 },
e9515c3c
KC
10163 {
10164 .name = "usage_percpu",
10165 .read_seq_string = cpuacct_percpu_seq_read,
10166 },
ef12fefa
BR
10167 {
10168 .name = "stat",
10169 .read_map = cpuacct_stats_show,
10170 },
d842de87
SV
10171};
10172
32cd756a 10173static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10174{
32cd756a 10175 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10176}
10177
10178/*
10179 * charge this task's execution time to its accounting group.
10180 *
10181 * called with rq->lock held.
10182 */
10183static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10184{
10185 struct cpuacct *ca;
934352f2 10186 int cpu;
d842de87 10187
c40c6f85 10188 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10189 return;
10190
934352f2 10191 cpu = task_cpu(tsk);
a18b83b7
BR
10192
10193 rcu_read_lock();
10194
d842de87 10195 ca = task_ca(tsk);
d842de87 10196
934352f2 10197 for (; ca; ca = ca->parent) {
b36128c8 10198 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10199 *cpuusage += cputime;
10200 }
a18b83b7
BR
10201
10202 rcu_read_unlock();
d842de87
SV
10203}
10204
ef12fefa
BR
10205/*
10206 * Charge the system/user time to the task's accounting group.
10207 */
10208static void cpuacct_update_stats(struct task_struct *tsk,
10209 enum cpuacct_stat_index idx, cputime_t val)
10210{
10211 struct cpuacct *ca;
10212
10213 if (unlikely(!cpuacct_subsys.active))
10214 return;
10215
10216 rcu_read_lock();
10217 ca = task_ca(tsk);
10218
10219 do {
10220 percpu_counter_add(&ca->cpustat[idx], val);
10221 ca = ca->parent;
10222 } while (ca);
10223 rcu_read_unlock();
10224}
10225
d842de87
SV
10226struct cgroup_subsys cpuacct_subsys = {
10227 .name = "cpuacct",
10228 .create = cpuacct_create,
10229 .destroy = cpuacct_destroy,
10230 .populate = cpuacct_populate,
10231 .subsys_id = cpuacct_subsys_id,
10232};
10233#endif /* CONFIG_CGROUP_CPUACCT */