]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: move weighted_cpuload into #ifdef CONFIG_SMP section
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
45c01e82
GH
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
6aa645ea
IM
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229}
230
231#ifdef CONFIG_RT_GROUP_SCHED
232static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233{
234 hrtimer_cancel(&rt_b->rt_period_timer);
235}
236#endif
237
712555ee
HC
238/*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242static DEFINE_MUTEX(sched_domains_mutex);
243
052f1dc7 244#ifdef CONFIG_GROUP_SCHED
29f59db3 245
68318b8e
SV
246#include <linux/cgroup.h>
247
29f59db3
SV
248struct cfs_rq;
249
6f505b16
PZ
250static LIST_HEAD(task_groups);
251
29f59db3 252/* task group related information */
4cf86d77 253struct task_group {
052f1dc7 254#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
255 struct cgroup_subsys_state css;
256#endif
052f1dc7
PZ
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
052f1dc7
PZ
264#endif
265
266#ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
d0b27fa7 270 struct rt_bandwidth rt_bandwidth;
052f1dc7 271#endif
6b2d7700 272
ae8393e5 273 struct rcu_head rcu;
6f505b16 274 struct list_head list;
f473aa5e
PZ
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
29f59db3
SV
279};
280
354d60c2 281#ifdef CONFIG_USER_SCHED
eff766a6
PZ
282
283/*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288struct task_group root_task_group;
289
052f1dc7 290#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
291/* Default task group's sched entity on each cpu */
292static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293/* Default task group's cfs_rq on each cpu */
294static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 295#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
296
297#ifdef CONFIG_RT_GROUP_SCHED
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
300#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 302#define root_task_group init_task_group
6d6bc0ad 303#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 304
8ed36996 305/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
306 * a task group's cpu shares.
307 */
8ed36996 308static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 309
052f1dc7 310#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
311#ifdef CONFIG_USER_SCHED
312# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 313#else /* !CONFIG_USER_SCHED */
052f1dc7 314# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 315#endif /* CONFIG_USER_SCHED */
052f1dc7 316
cb4ad1ff
MX
317/*
318 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
18d95a28 322#define MIN_SHARES 2
cb4ad1ff 323#define MAX_SHARES (ULONG_MAX - 1)
18d95a28 324
052f1dc7
PZ
325static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326#endif
327
29f59db3 328/* Default task group.
3a252015 329 * Every task in system belong to this group at bootup.
29f59db3 330 */
434d53b0 331struct task_group init_task_group;
29f59db3
SV
332
333/* return group to which a task belongs */
4cf86d77 334static inline struct task_group *task_group(struct task_struct *p)
29f59db3 335{
4cf86d77 336 struct task_group *tg;
9b5b7751 337
052f1dc7 338#ifdef CONFIG_USER_SCHED
24e377a8 339 tg = p->user->tg;
052f1dc7 340#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
24e377a8 343#else
41a2d6cf 344 tg = &init_task_group;
24e377a8 345#endif
9b5b7751 346 return tg;
29f59db3
SV
347}
348
349/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 350static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 351{
052f1dc7 352#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
052f1dc7 355#endif
6f505b16 356
052f1dc7 357#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 360#endif
29f59db3
SV
361}
362
363#else
364
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 366
052f1dc7 367#endif /* CONFIG_GROUP_SCHED */
29f59db3 368
6aa645ea
IM
369/* CFS-related fields in a runqueue */
370struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
373
6aa645ea 374 u64 exec_clock;
e9acbff6 375 u64 min_vruntime;
6aa645ea
IM
376
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
4a55bd5e
PZ
379
380 struct list_head tasks;
381 struct list_head *balance_iterator;
382
383 /*
384 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
385 * It is set to NULL otherwise (i.e when none are currently running).
386 */
aa2ac252 387 struct sched_entity *curr, *next;
ddc97297
PZ
388
389 unsigned long nr_spread_over;
390
62160e3f 391#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
393
41a2d6cf
IM
394 /*
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
398 *
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
401 */
41a2d6cf
IM
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
404#endif
405};
1da177e4 406
6aa645ea
IM
407/* Real-Time classes' related field in a runqueue: */
408struct rt_rq {
409 struct rt_prio_array active;
63489e45 410 unsigned long rt_nr_running;
052f1dc7 411#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
412 int highest_prio; /* highest queued rt task prio */
413#endif
fa85ae24 414#ifdef CONFIG_SMP
73fe6aae 415 unsigned long rt_nr_migratory;
a22d7fc1 416 int overloaded;
fa85ae24 417#endif
6f505b16 418 int rt_throttled;
fa85ae24 419 u64 rt_time;
ac086bc2 420 u64 rt_runtime;
ea736ed5 421 /* Nests inside the rq lock: */
ac086bc2 422 spinlock_t rt_runtime_lock;
6f505b16 423
052f1dc7 424#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
425 unsigned long rt_nr_boosted;
426
6f505b16
PZ
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431#endif
6aa645ea
IM
432};
433
57d885fe
GH
434#ifdef CONFIG_SMP
435
436/*
437 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
442 *
57d885fe
GH
443 */
444struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
637f5085 448
0eab9146 449 /*
637f5085
GH
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
452 */
453 cpumask_t rto_mask;
0eab9146 454 atomic_t rto_count;
6e0534f2
GH
455#ifdef CONFIG_SMP
456 struct cpupri cpupri;
457#endif
57d885fe
GH
458};
459
dc938520
GH
460/*
461 * By default the system creates a single root-domain with all cpus as
462 * members (mimicking the global state we have today).
463 */
57d885fe
GH
464static struct root_domain def_root_domain;
465
466#endif
467
1da177e4
LT
468/*
469 * This is the main, per-CPU runqueue data structure.
470 *
471 * Locking rule: those places that want to lock multiple runqueues
472 * (such as the load balancing or the thread migration code), lock
473 * acquire operations must be ordered by ascending &runqueue.
474 */
70b97a7f 475struct rq {
d8016491
IM
476 /* runqueue lock: */
477 spinlock_t lock;
1da177e4
LT
478
479 /*
480 * nr_running and cpu_load should be in the same cacheline because
481 * remote CPUs use both these fields when doing load calculation.
482 */
483 unsigned long nr_running;
6aa645ea
IM
484 #define CPU_LOAD_IDX_MAX 5
485 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 486 unsigned char idle_at_tick;
46cb4b7c 487#ifdef CONFIG_NO_HZ
15934a37 488 unsigned long last_tick_seen;
46cb4b7c
SS
489 unsigned char in_nohz_recently;
490#endif
d8016491
IM
491 /* capture load from *all* tasks on this cpu: */
492 struct load_weight load;
6aa645ea
IM
493 unsigned long nr_load_updates;
494 u64 nr_switches;
495
496 struct cfs_rq cfs;
6f505b16 497 struct rt_rq rt;
6f505b16 498
6aa645ea 499#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
500 /* list of leaf cfs_rq on this cpu: */
501 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
502#endif
503#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 504 struct list_head leaf_rt_rq_list;
1da177e4 505#endif
1da177e4
LT
506
507 /*
508 * This is part of a global counter where only the total sum
509 * over all CPUs matters. A task can increase this counter on
510 * one CPU and if it got migrated afterwards it may decrease
511 * it on another CPU. Always updated under the runqueue lock:
512 */
513 unsigned long nr_uninterruptible;
514
36c8b586 515 struct task_struct *curr, *idle;
c9819f45 516 unsigned long next_balance;
1da177e4 517 struct mm_struct *prev_mm;
6aa645ea 518
3e51f33f 519 u64 clock;
6aa645ea 520
1da177e4
LT
521 atomic_t nr_iowait;
522
523#ifdef CONFIG_SMP
0eab9146 524 struct root_domain *rd;
1da177e4
LT
525 struct sched_domain *sd;
526
527 /* For active balancing */
528 int active_balance;
529 int push_cpu;
d8016491
IM
530 /* cpu of this runqueue: */
531 int cpu;
1f11eb6a 532 int online;
1da177e4 533
36c8b586 534 struct task_struct *migration_thread;
1da177e4
LT
535 struct list_head migration_queue;
536#endif
537
8f4d37ec
PZ
538#ifdef CONFIG_SCHED_HRTICK
539 unsigned long hrtick_flags;
540 ktime_t hrtick_expire;
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547
548 /* sys_sched_yield() stats */
480b9434
KC
549 unsigned int yld_exp_empty;
550 unsigned int yld_act_empty;
551 unsigned int yld_both_empty;
552 unsigned int yld_count;
1da177e4
LT
553
554 /* schedule() stats */
480b9434
KC
555 unsigned int sched_switch;
556 unsigned int sched_count;
557 unsigned int sched_goidle;
1da177e4
LT
558
559 /* try_to_wake_up() stats */
480b9434
KC
560 unsigned int ttwu_count;
561 unsigned int ttwu_local;
b8efb561
IM
562
563 /* BKL stats */
480b9434 564 unsigned int bkl_count;
1da177e4 565#endif
fcb99371 566 struct lock_class_key rq_lock_key;
1da177e4
LT
567};
568
f34e3b61 569static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 570
dd41f596
IM
571static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
572{
573 rq->curr->sched_class->check_preempt_curr(rq, p);
574}
575
0a2966b4
CL
576static inline int cpu_of(struct rq *rq)
577{
578#ifdef CONFIG_SMP
579 return rq->cpu;
580#else
581 return 0;
582#endif
583}
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d
IM
592#define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599
3e51f33f
PZ
600static inline void update_rq_clock(struct rq *rq)
601{
602 rq->clock = sched_clock_cpu(cpu_of(rq));
603}
604
bf5c91ba
IM
605/*
606 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
607 */
608#ifdef CONFIG_SCHED_DEBUG
609# define const_debug __read_mostly
610#else
611# define const_debug static const
612#endif
613
614/*
615 * Debugging: various feature bits
616 */
f00b45c1
PZ
617
618#define SCHED_FEAT(name, enabled) \
619 __SCHED_FEAT_##name ,
620
bf5c91ba 621enum {
f00b45c1 622#include "sched_features.h"
bf5c91ba
IM
623};
624
f00b45c1
PZ
625#undef SCHED_FEAT
626
627#define SCHED_FEAT(name, enabled) \
628 (1UL << __SCHED_FEAT_##name) * enabled |
629
bf5c91ba 630const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
631#include "sched_features.h"
632 0;
633
634#undef SCHED_FEAT
635
636#ifdef CONFIG_SCHED_DEBUG
637#define SCHED_FEAT(name, enabled) \
638 #name ,
639
983ed7a6 640static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
641#include "sched_features.h"
642 NULL
643};
644
645#undef SCHED_FEAT
646
983ed7a6 647static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
648{
649 filp->private_data = inode->i_private;
650 return 0;
651}
652
653static ssize_t
654sched_feat_read(struct file *filp, char __user *ubuf,
655 size_t cnt, loff_t *ppos)
656{
657 char *buf;
658 int r = 0;
659 int len = 0;
660 int i;
661
662 for (i = 0; sched_feat_names[i]; i++) {
663 len += strlen(sched_feat_names[i]);
664 len += 4;
665 }
666
667 buf = kmalloc(len + 2, GFP_KERNEL);
668 if (!buf)
669 return -ENOMEM;
670
671 for (i = 0; sched_feat_names[i]; i++) {
672 if (sysctl_sched_features & (1UL << i))
673 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
674 else
c24b7c52 675 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
676 }
677
678 r += sprintf(buf + r, "\n");
679 WARN_ON(r >= len + 2);
680
681 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
682
683 kfree(buf);
684
685 return r;
686}
687
688static ssize_t
689sched_feat_write(struct file *filp, const char __user *ubuf,
690 size_t cnt, loff_t *ppos)
691{
692 char buf[64];
693 char *cmp = buf;
694 int neg = 0;
695 int i;
696
697 if (cnt > 63)
698 cnt = 63;
699
700 if (copy_from_user(&buf, ubuf, cnt))
701 return -EFAULT;
702
703 buf[cnt] = 0;
704
c24b7c52 705 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
706 neg = 1;
707 cmp += 3;
708 }
709
710 for (i = 0; sched_feat_names[i]; i++) {
711 int len = strlen(sched_feat_names[i]);
712
713 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
714 if (neg)
715 sysctl_sched_features &= ~(1UL << i);
716 else
717 sysctl_sched_features |= (1UL << i);
718 break;
719 }
720 }
721
722 if (!sched_feat_names[i])
723 return -EINVAL;
724
725 filp->f_pos += cnt;
726
727 return cnt;
728}
729
730static struct file_operations sched_feat_fops = {
731 .open = sched_feat_open,
732 .read = sched_feat_read,
733 .write = sched_feat_write,
734};
735
736static __init int sched_init_debug(void)
737{
f00b45c1
PZ
738 debugfs_create_file("sched_features", 0644, NULL, NULL,
739 &sched_feat_fops);
740
741 return 0;
742}
743late_initcall(sched_init_debug);
744
745#endif
746
747#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 748
b82d9fdd
PZ
749/*
750 * Number of tasks to iterate in a single balance run.
751 * Limited because this is done with IRQs disabled.
752 */
753const_debug unsigned int sysctl_sched_nr_migrate = 32;
754
fa85ae24 755/*
9f0c1e56 756 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
757 * default: 1s
758 */
9f0c1e56 759unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 760
6892b75e
IM
761static __read_mostly int scheduler_running;
762
9f0c1e56
PZ
763/*
764 * part of the period that we allow rt tasks to run in us.
765 * default: 0.95s
766 */
767int sysctl_sched_rt_runtime = 950000;
fa85ae24 768
d0b27fa7
PZ
769static inline u64 global_rt_period(void)
770{
771 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
772}
773
774static inline u64 global_rt_runtime(void)
775{
776 if (sysctl_sched_rt_period < 0)
777 return RUNTIME_INF;
778
779 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
780}
fa85ae24 781
690229a0 782unsigned long long time_sync_thresh = 100000;
27ec4407
IM
783
784static DEFINE_PER_CPU(unsigned long long, time_offset);
785static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
786
e436d800 787/*
27ec4407
IM
788 * Global lock which we take every now and then to synchronize
789 * the CPUs time. This method is not warp-safe, but it's good
790 * enough to synchronize slowly diverging time sources and thus
791 * it's good enough for tracing:
e436d800 792 */
27ec4407
IM
793static DEFINE_SPINLOCK(time_sync_lock);
794static unsigned long long prev_global_time;
795
dfbf4a1b 796static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
27ec4407 797{
dfbf4a1b
IM
798 /*
799 * We want this inlined, to not get tracer function calls
800 * in this critical section:
801 */
802 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
803 __raw_spin_lock(&time_sync_lock.raw_lock);
27ec4407
IM
804
805 if (time < prev_global_time) {
806 per_cpu(time_offset, cpu) += prev_global_time - time;
807 time = prev_global_time;
808 } else {
809 prev_global_time = time;
810 }
811
dfbf4a1b
IM
812 __raw_spin_unlock(&time_sync_lock.raw_lock);
813 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
27ec4407
IM
814
815 return time;
816}
817
818static unsigned long long __cpu_clock(int cpu)
e436d800 819{
e436d800 820 unsigned long long now;
e436d800 821
8ced5f69
IM
822 /*
823 * Only call sched_clock() if the scheduler has already been
824 * initialized (some code might call cpu_clock() very early):
825 */
6892b75e
IM
826 if (unlikely(!scheduler_running))
827 return 0;
828
3e51f33f 829 now = sched_clock_cpu(cpu);
e436d800
IM
830
831 return now;
832}
27ec4407
IM
833
834/*
835 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
836 * clock constructed from sched_clock():
837 */
838unsigned long long cpu_clock(int cpu)
839{
840 unsigned long long prev_cpu_time, time, delta_time;
dfbf4a1b 841 unsigned long flags;
27ec4407 842
dfbf4a1b 843 local_irq_save(flags);
27ec4407
IM
844 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
845 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
846 delta_time = time-prev_cpu_time;
847
dfbf4a1b 848 if (unlikely(delta_time > time_sync_thresh)) {
27ec4407 849 time = __sync_cpu_clock(time, cpu);
dfbf4a1b
IM
850 per_cpu(prev_cpu_time, cpu) = time;
851 }
852 local_irq_restore(flags);
27ec4407
IM
853
854 return time;
855}
a58f6f25 856EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 857
1da177e4 858#ifndef prepare_arch_switch
4866cde0
NP
859# define prepare_arch_switch(next) do { } while (0)
860#endif
861#ifndef finish_arch_switch
862# define finish_arch_switch(prev) do { } while (0)
863#endif
864
051a1d1a
DA
865static inline int task_current(struct rq *rq, struct task_struct *p)
866{
867 return rq->curr == p;
868}
869
4866cde0 870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 871static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 872{
051a1d1a 873 return task_current(rq, p);
4866cde0
NP
874}
875
70b97a7f 876static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
877{
878}
879
70b97a7f 880static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 881{
da04c035
IM
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
8a25d5de
IM
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
4866cde0
NP
893 spin_unlock_irq(&rq->lock);
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 return p->oncpu;
901#else
051a1d1a 902 return task_current(rq, p);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918#else
919 spin_unlock(&rq->lock);
920#endif
921}
922
70b97a7f 923static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933#endif
934#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
1da177e4 936#endif
4866cde0
NP
937}
938#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 939
b29739f9
IM
940/*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
70b97a7f 944static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
945 __acquires(rq->lock)
946{
3a5c359a
AK
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
b29739f9 952 spin_unlock(&rq->lock);
b29739f9 953 }
b29739f9
IM
954}
955
1da177e4
LT
956/*
957 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 958 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
959 * explicitly disabling preemption.
960 */
70b97a7f 961static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
962 __acquires(rq->lock)
963{
70b97a7f 964 struct rq *rq;
1da177e4 965
3a5c359a
AK
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
1da177e4 972 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 973 }
1da177e4
LT
974}
975
a9957449 976static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
977 __releases(rq->lock)
978{
979 spin_unlock(&rq->lock);
980}
981
70b97a7f 982static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
983 __releases(rq->lock)
984{
985 spin_unlock_irqrestore(&rq->lock, *flags);
986}
987
1da177e4 988/*
cc2a73b5 989 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 990 */
a9957449 991static struct rq *this_rq_lock(void)
1da177e4
LT
992 __acquires(rq->lock)
993{
70b97a7f 994 struct rq *rq;
1da177e4
LT
995
996 local_irq_disable();
997 rq = this_rq();
998 spin_lock(&rq->lock);
999
1000 return rq;
1001}
1002
8f4d37ec
PZ
1003static void __resched_task(struct task_struct *p, int tif_bit);
1004
1005static inline void resched_task(struct task_struct *p)
1006{
1007 __resched_task(p, TIF_NEED_RESCHED);
1008}
1009
1010#ifdef CONFIG_SCHED_HRTICK
1011/*
1012 * Use HR-timers to deliver accurate preemption points.
1013 *
1014 * Its all a bit involved since we cannot program an hrt while holding the
1015 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1016 * reschedule event.
1017 *
1018 * When we get rescheduled we reprogram the hrtick_timer outside of the
1019 * rq->lock.
1020 */
1021static inline void resched_hrt(struct task_struct *p)
1022{
1023 __resched_task(p, TIF_HRTICK_RESCHED);
1024}
1025
1026static inline void resched_rq(struct rq *rq)
1027{
1028 unsigned long flags;
1029
1030 spin_lock_irqsave(&rq->lock, flags);
1031 resched_task(rq->curr);
1032 spin_unlock_irqrestore(&rq->lock, flags);
1033}
1034
1035enum {
1036 HRTICK_SET, /* re-programm hrtick_timer */
1037 HRTICK_RESET, /* not a new slice */
b328ca18 1038 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1039};
1040
1041/*
1042 * Use hrtick when:
1043 * - enabled by features
1044 * - hrtimer is actually high res
1045 */
1046static inline int hrtick_enabled(struct rq *rq)
1047{
1048 if (!sched_feat(HRTICK))
1049 return 0;
b328ca18
PZ
1050 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1051 return 0;
8f4d37ec
PZ
1052 return hrtimer_is_hres_active(&rq->hrtick_timer);
1053}
1054
1055/*
1056 * Called to set the hrtick timer state.
1057 *
1058 * called with rq->lock held and irqs disabled
1059 */
1060static void hrtick_start(struct rq *rq, u64 delay, int reset)
1061{
1062 assert_spin_locked(&rq->lock);
1063
1064 /*
1065 * preempt at: now + delay
1066 */
1067 rq->hrtick_expire =
1068 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1069 /*
1070 * indicate we need to program the timer
1071 */
1072 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1073 if (reset)
1074 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1075
1076 /*
1077 * New slices are called from the schedule path and don't need a
1078 * forced reschedule.
1079 */
1080 if (reset)
1081 resched_hrt(rq->curr);
1082}
1083
1084static void hrtick_clear(struct rq *rq)
1085{
1086 if (hrtimer_active(&rq->hrtick_timer))
1087 hrtimer_cancel(&rq->hrtick_timer);
1088}
1089
1090/*
1091 * Update the timer from the possible pending state.
1092 */
1093static void hrtick_set(struct rq *rq)
1094{
1095 ktime_t time;
1096 int set, reset;
1097 unsigned long flags;
1098
1099 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1100
1101 spin_lock_irqsave(&rq->lock, flags);
1102 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1103 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1104 time = rq->hrtick_expire;
1105 clear_thread_flag(TIF_HRTICK_RESCHED);
1106 spin_unlock_irqrestore(&rq->lock, flags);
1107
1108 if (set) {
1109 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1110 if (reset && !hrtimer_active(&rq->hrtick_timer))
1111 resched_rq(rq);
1112 } else
1113 hrtick_clear(rq);
1114}
1115
1116/*
1117 * High-resolution timer tick.
1118 * Runs from hardirq context with interrupts disabled.
1119 */
1120static enum hrtimer_restart hrtick(struct hrtimer *timer)
1121{
1122 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1123
1124 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1125
1126 spin_lock(&rq->lock);
3e51f33f 1127 update_rq_clock(rq);
8f4d37ec
PZ
1128 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1129 spin_unlock(&rq->lock);
1130
1131 return HRTIMER_NORESTART;
1132}
1133
81d41d7e 1134#ifdef CONFIG_SMP
b328ca18
PZ
1135static void hotplug_hrtick_disable(int cpu)
1136{
1137 struct rq *rq = cpu_rq(cpu);
1138 unsigned long flags;
1139
1140 spin_lock_irqsave(&rq->lock, flags);
1141 rq->hrtick_flags = 0;
1142 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1143 spin_unlock_irqrestore(&rq->lock, flags);
1144
1145 hrtick_clear(rq);
1146}
1147
1148static void hotplug_hrtick_enable(int cpu)
1149{
1150 struct rq *rq = cpu_rq(cpu);
1151 unsigned long flags;
1152
1153 spin_lock_irqsave(&rq->lock, flags);
1154 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1155 spin_unlock_irqrestore(&rq->lock, flags);
1156}
1157
1158static int
1159hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1160{
1161 int cpu = (int)(long)hcpu;
1162
1163 switch (action) {
1164 case CPU_UP_CANCELED:
1165 case CPU_UP_CANCELED_FROZEN:
1166 case CPU_DOWN_PREPARE:
1167 case CPU_DOWN_PREPARE_FROZEN:
1168 case CPU_DEAD:
1169 case CPU_DEAD_FROZEN:
1170 hotplug_hrtick_disable(cpu);
1171 return NOTIFY_OK;
1172
1173 case CPU_UP_PREPARE:
1174 case CPU_UP_PREPARE_FROZEN:
1175 case CPU_DOWN_FAILED:
1176 case CPU_DOWN_FAILED_FROZEN:
1177 case CPU_ONLINE:
1178 case CPU_ONLINE_FROZEN:
1179 hotplug_hrtick_enable(cpu);
1180 return NOTIFY_OK;
1181 }
1182
1183 return NOTIFY_DONE;
1184}
1185
1186static void init_hrtick(void)
1187{
1188 hotcpu_notifier(hotplug_hrtick, 0);
1189}
81d41d7e 1190#endif /* CONFIG_SMP */
b328ca18
PZ
1191
1192static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1193{
1194 rq->hrtick_flags = 0;
1195 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1196 rq->hrtick_timer.function = hrtick;
1197 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1198}
1199
1200void hrtick_resched(void)
1201{
1202 struct rq *rq;
1203 unsigned long flags;
1204
1205 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1206 return;
1207
1208 local_irq_save(flags);
1209 rq = cpu_rq(smp_processor_id());
1210 hrtick_set(rq);
1211 local_irq_restore(flags);
1212}
1213#else
1214static inline void hrtick_clear(struct rq *rq)
1215{
1216}
1217
1218static inline void hrtick_set(struct rq *rq)
1219{
1220}
1221
1222static inline void init_rq_hrtick(struct rq *rq)
1223{
1224}
1225
1226void hrtick_resched(void)
1227{
1228}
b328ca18
PZ
1229
1230static inline void init_hrtick(void)
1231{
1232}
8f4d37ec
PZ
1233#endif
1234
c24d20db
IM
1235/*
1236 * resched_task - mark a task 'to be rescheduled now'.
1237 *
1238 * On UP this means the setting of the need_resched flag, on SMP it
1239 * might also involve a cross-CPU call to trigger the scheduler on
1240 * the target CPU.
1241 */
1242#ifdef CONFIG_SMP
1243
1244#ifndef tsk_is_polling
1245#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1246#endif
1247
8f4d37ec 1248static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1249{
1250 int cpu;
1251
1252 assert_spin_locked(&task_rq(p)->lock);
1253
8f4d37ec 1254 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1255 return;
1256
8f4d37ec 1257 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1258
1259 cpu = task_cpu(p);
1260 if (cpu == smp_processor_id())
1261 return;
1262
1263 /* NEED_RESCHED must be visible before we test polling */
1264 smp_mb();
1265 if (!tsk_is_polling(p))
1266 smp_send_reschedule(cpu);
1267}
1268
1269static void resched_cpu(int cpu)
1270{
1271 struct rq *rq = cpu_rq(cpu);
1272 unsigned long flags;
1273
1274 if (!spin_trylock_irqsave(&rq->lock, flags))
1275 return;
1276 resched_task(cpu_curr(cpu));
1277 spin_unlock_irqrestore(&rq->lock, flags);
1278}
06d8308c
TG
1279
1280#ifdef CONFIG_NO_HZ
1281/*
1282 * When add_timer_on() enqueues a timer into the timer wheel of an
1283 * idle CPU then this timer might expire before the next timer event
1284 * which is scheduled to wake up that CPU. In case of a completely
1285 * idle system the next event might even be infinite time into the
1286 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1287 * leaves the inner idle loop so the newly added timer is taken into
1288 * account when the CPU goes back to idle and evaluates the timer
1289 * wheel for the next timer event.
1290 */
1291void wake_up_idle_cpu(int cpu)
1292{
1293 struct rq *rq = cpu_rq(cpu);
1294
1295 if (cpu == smp_processor_id())
1296 return;
1297
1298 /*
1299 * This is safe, as this function is called with the timer
1300 * wheel base lock of (cpu) held. When the CPU is on the way
1301 * to idle and has not yet set rq->curr to idle then it will
1302 * be serialized on the timer wheel base lock and take the new
1303 * timer into account automatically.
1304 */
1305 if (rq->curr != rq->idle)
1306 return;
1307
1308 /*
1309 * We can set TIF_RESCHED on the idle task of the other CPU
1310 * lockless. The worst case is that the other CPU runs the
1311 * idle task through an additional NOOP schedule()
1312 */
1313 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1314
1315 /* NEED_RESCHED must be visible before we test polling */
1316 smp_mb();
1317 if (!tsk_is_polling(rq->idle))
1318 smp_send_reschedule(cpu);
1319}
6d6bc0ad 1320#endif /* CONFIG_NO_HZ */
06d8308c 1321
6d6bc0ad 1322#else /* !CONFIG_SMP */
8f4d37ec 1323static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1324{
1325 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1326 set_tsk_thread_flag(p, tif_bit);
c24d20db 1327}
6d6bc0ad 1328#endif /* CONFIG_SMP */
c24d20db 1329
45bf76df
IM
1330#if BITS_PER_LONG == 32
1331# define WMULT_CONST (~0UL)
1332#else
1333# define WMULT_CONST (1UL << 32)
1334#endif
1335
1336#define WMULT_SHIFT 32
1337
194081eb
IM
1338/*
1339 * Shift right and round:
1340 */
cf2ab469 1341#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1342
cb1c4fc9 1343static unsigned long
45bf76df
IM
1344calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1345 struct load_weight *lw)
1346{
1347 u64 tmp;
1348
e05510d0
PZ
1349 if (!lw->inv_weight)
1350 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1351
1352 tmp = (u64)delta_exec * weight;
1353 /*
1354 * Check whether we'd overflow the 64-bit multiplication:
1355 */
194081eb 1356 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1357 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1358 WMULT_SHIFT/2);
1359 else
cf2ab469 1360 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1361
ecf691da 1362 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1363}
1364
f9305d4a
IM
1365static inline unsigned long
1366calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1367{
1368 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1369}
1370
1091985b 1371static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1372{
1373 lw->weight += inc;
e89996ae 1374 lw->inv_weight = 0;
45bf76df
IM
1375}
1376
1091985b 1377static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1378{
1379 lw->weight -= dec;
e89996ae 1380 lw->inv_weight = 0;
45bf76df
IM
1381}
1382
2dd73a4f
PW
1383/*
1384 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1385 * of tasks with abnormal "nice" values across CPUs the contribution that
1386 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1387 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1388 * scaled version of the new time slice allocation that they receive on time
1389 * slice expiry etc.
1390 */
1391
dd41f596
IM
1392#define WEIGHT_IDLEPRIO 2
1393#define WMULT_IDLEPRIO (1 << 31)
1394
1395/*
1396 * Nice levels are multiplicative, with a gentle 10% change for every
1397 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1398 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1399 * that remained on nice 0.
1400 *
1401 * The "10% effect" is relative and cumulative: from _any_ nice level,
1402 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1403 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1404 * If a task goes up by ~10% and another task goes down by ~10% then
1405 * the relative distance between them is ~25%.)
dd41f596
IM
1406 */
1407static const int prio_to_weight[40] = {
254753dc
IM
1408 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1409 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1410 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1411 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1412 /* 0 */ 1024, 820, 655, 526, 423,
1413 /* 5 */ 335, 272, 215, 172, 137,
1414 /* 10 */ 110, 87, 70, 56, 45,
1415 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1416};
1417
5714d2de
IM
1418/*
1419 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1420 *
1421 * In cases where the weight does not change often, we can use the
1422 * precalculated inverse to speed up arithmetics by turning divisions
1423 * into multiplications:
1424 */
dd41f596 1425static const u32 prio_to_wmult[40] = {
254753dc
IM
1426 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1427 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1428 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1429 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1430 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1431 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1432 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1433 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1434};
2dd73a4f 1435
dd41f596
IM
1436static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1437
1438/*
1439 * runqueue iterator, to support SMP load-balancing between different
1440 * scheduling classes, without having to expose their internal data
1441 * structures to the load-balancing proper:
1442 */
1443struct rq_iterator {
1444 void *arg;
1445 struct task_struct *(*start)(void *);
1446 struct task_struct *(*next)(void *);
1447};
1448
e1d1484f
PW
1449#ifdef CONFIG_SMP
1450static unsigned long
1451balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1452 unsigned long max_load_move, struct sched_domain *sd,
1453 enum cpu_idle_type idle, int *all_pinned,
1454 int *this_best_prio, struct rq_iterator *iterator);
1455
1456static int
1457iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1458 struct sched_domain *sd, enum cpu_idle_type idle,
1459 struct rq_iterator *iterator);
e1d1484f 1460#endif
dd41f596 1461
d842de87
SV
1462#ifdef CONFIG_CGROUP_CPUACCT
1463static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1464#else
1465static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1466#endif
1467
18d95a28
PZ
1468static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1469{
1470 update_load_add(&rq->load, load);
1471}
1472
1473static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1474{
1475 update_load_sub(&rq->load, load);
1476}
1477
e7693a36
GH
1478#ifdef CONFIG_SMP
1479static unsigned long source_load(int cpu, int type);
1480static unsigned long target_load(int cpu, int type);
1481static unsigned long cpu_avg_load_per_task(int cpu);
1482static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1483#else /* CONFIG_SMP */
1484
1485#ifdef CONFIG_FAIR_GROUP_SCHED
1486static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1487{
1488}
1489#endif
1490
e7693a36
GH
1491#endif /* CONFIG_SMP */
1492
dd41f596 1493#include "sched_stats.h"
dd41f596 1494#include "sched_idletask.c"
5522d5d5
IM
1495#include "sched_fair.c"
1496#include "sched_rt.c"
dd41f596
IM
1497#ifdef CONFIG_SCHED_DEBUG
1498# include "sched_debug.c"
1499#endif
1500
1501#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1502#define for_each_class(class) \
1503 for (class = sched_class_highest; class; class = class->next)
dd41f596 1504
6363ca57
IM
1505static inline void inc_load(struct rq *rq, const struct task_struct *p)
1506{
1507 update_load_add(&rq->load, p->se.load.weight);
1508}
1509
1510static inline void dec_load(struct rq *rq, const struct task_struct *p)
1511{
1512 update_load_sub(&rq->load, p->se.load.weight);
1513}
1514
1515static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1516{
1517 rq->nr_running++;
6363ca57 1518 inc_load(rq, p);
9c217245
IM
1519}
1520
6363ca57 1521static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1522{
1523 rq->nr_running--;
6363ca57 1524 dec_load(rq, p);
9c217245
IM
1525}
1526
45bf76df
IM
1527static void set_load_weight(struct task_struct *p)
1528{
1529 if (task_has_rt_policy(p)) {
dd41f596
IM
1530 p->se.load.weight = prio_to_weight[0] * 2;
1531 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1532 return;
1533 }
45bf76df 1534
dd41f596
IM
1535 /*
1536 * SCHED_IDLE tasks get minimal weight:
1537 */
1538 if (p->policy == SCHED_IDLE) {
1539 p->se.load.weight = WEIGHT_IDLEPRIO;
1540 p->se.load.inv_weight = WMULT_IDLEPRIO;
1541 return;
1542 }
71f8bd46 1543
dd41f596
IM
1544 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1545 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1546}
1547
8159f87e 1548static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1549{
dd41f596 1550 sched_info_queued(p);
fd390f6a 1551 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1552 p->se.on_rq = 1;
71f8bd46
IM
1553}
1554
69be72c1 1555static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1556{
f02231e5 1557 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1558 p->se.on_rq = 0;
71f8bd46
IM
1559}
1560
14531189 1561/*
dd41f596 1562 * __normal_prio - return the priority that is based on the static prio
14531189 1563 */
14531189
IM
1564static inline int __normal_prio(struct task_struct *p)
1565{
dd41f596 1566 return p->static_prio;
14531189
IM
1567}
1568
b29739f9
IM
1569/*
1570 * Calculate the expected normal priority: i.e. priority
1571 * without taking RT-inheritance into account. Might be
1572 * boosted by interactivity modifiers. Changes upon fork,
1573 * setprio syscalls, and whenever the interactivity
1574 * estimator recalculates.
1575 */
36c8b586 1576static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1577{
1578 int prio;
1579
e05606d3 1580 if (task_has_rt_policy(p))
b29739f9
IM
1581 prio = MAX_RT_PRIO-1 - p->rt_priority;
1582 else
1583 prio = __normal_prio(p);
1584 return prio;
1585}
1586
1587/*
1588 * Calculate the current priority, i.e. the priority
1589 * taken into account by the scheduler. This value might
1590 * be boosted by RT tasks, or might be boosted by
1591 * interactivity modifiers. Will be RT if the task got
1592 * RT-boosted. If not then it returns p->normal_prio.
1593 */
36c8b586 1594static int effective_prio(struct task_struct *p)
b29739f9
IM
1595{
1596 p->normal_prio = normal_prio(p);
1597 /*
1598 * If we are RT tasks or we were boosted to RT priority,
1599 * keep the priority unchanged. Otherwise, update priority
1600 * to the normal priority:
1601 */
1602 if (!rt_prio(p->prio))
1603 return p->normal_prio;
1604 return p->prio;
1605}
1606
1da177e4 1607/*
dd41f596 1608 * activate_task - move a task to the runqueue.
1da177e4 1609 */
dd41f596 1610static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1611{
d9514f6c 1612 if (task_contributes_to_load(p))
dd41f596 1613 rq->nr_uninterruptible--;
1da177e4 1614
8159f87e 1615 enqueue_task(rq, p, wakeup);
6363ca57 1616 inc_nr_running(p, rq);
1da177e4
LT
1617}
1618
1da177e4
LT
1619/*
1620 * deactivate_task - remove a task from the runqueue.
1621 */
2e1cb74a 1622static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1623{
d9514f6c 1624 if (task_contributes_to_load(p))
dd41f596
IM
1625 rq->nr_uninterruptible++;
1626
69be72c1 1627 dequeue_task(rq, p, sleep);
6363ca57 1628 dec_nr_running(p, rq);
1da177e4
LT
1629}
1630
1da177e4
LT
1631/**
1632 * task_curr - is this task currently executing on a CPU?
1633 * @p: the task in question.
1634 */
36c8b586 1635inline int task_curr(const struct task_struct *p)
1da177e4
LT
1636{
1637 return cpu_curr(task_cpu(p)) == p;
1638}
1639
dd41f596
IM
1640static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1641{
6f505b16 1642 set_task_rq(p, cpu);
dd41f596 1643#ifdef CONFIG_SMP
ce96b5ac
DA
1644 /*
1645 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1646 * successfuly executed on another CPU. We must ensure that updates of
1647 * per-task data have been completed by this moment.
1648 */
1649 smp_wmb();
dd41f596 1650 task_thread_info(p)->cpu = cpu;
dd41f596 1651#endif
2dd73a4f
PW
1652}
1653
cb469845
SR
1654static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1655 const struct sched_class *prev_class,
1656 int oldprio, int running)
1657{
1658 if (prev_class != p->sched_class) {
1659 if (prev_class->switched_from)
1660 prev_class->switched_from(rq, p, running);
1661 p->sched_class->switched_to(rq, p, running);
1662 } else
1663 p->sched_class->prio_changed(rq, p, oldprio, running);
1664}
1665
1da177e4 1666#ifdef CONFIG_SMP
c65cc870 1667
e958b360
TG
1668/* Used instead of source_load when we know the type == 0 */
1669static unsigned long weighted_cpuload(const int cpu)
1670{
1671 return cpu_rq(cpu)->load.weight;
1672}
1673
cc367732
IM
1674/*
1675 * Is this task likely cache-hot:
1676 */
e7693a36 1677static int
cc367732
IM
1678task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1679{
1680 s64 delta;
1681
f540a608
IM
1682 /*
1683 * Buddy candidates are cache hot:
1684 */
d25ce4cd 1685 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1686 return 1;
1687
cc367732
IM
1688 if (p->sched_class != &fair_sched_class)
1689 return 0;
1690
6bc1665b
IM
1691 if (sysctl_sched_migration_cost == -1)
1692 return 1;
1693 if (sysctl_sched_migration_cost == 0)
1694 return 0;
1695
cc367732
IM
1696 delta = now - p->se.exec_start;
1697
1698 return delta < (s64)sysctl_sched_migration_cost;
1699}
1700
1701
dd41f596 1702void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1703{
dd41f596
IM
1704 int old_cpu = task_cpu(p);
1705 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1706 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1707 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1708 u64 clock_offset;
dd41f596
IM
1709
1710 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1711
1712#ifdef CONFIG_SCHEDSTATS
1713 if (p->se.wait_start)
1714 p->se.wait_start -= clock_offset;
dd41f596
IM
1715 if (p->se.sleep_start)
1716 p->se.sleep_start -= clock_offset;
1717 if (p->se.block_start)
1718 p->se.block_start -= clock_offset;
cc367732
IM
1719 if (old_cpu != new_cpu) {
1720 schedstat_inc(p, se.nr_migrations);
1721 if (task_hot(p, old_rq->clock, NULL))
1722 schedstat_inc(p, se.nr_forced2_migrations);
1723 }
6cfb0d5d 1724#endif
2830cf8c
SV
1725 p->se.vruntime -= old_cfsrq->min_vruntime -
1726 new_cfsrq->min_vruntime;
dd41f596
IM
1727
1728 __set_task_cpu(p, new_cpu);
c65cc870
IM
1729}
1730
70b97a7f 1731struct migration_req {
1da177e4 1732 struct list_head list;
1da177e4 1733
36c8b586 1734 struct task_struct *task;
1da177e4
LT
1735 int dest_cpu;
1736
1da177e4 1737 struct completion done;
70b97a7f 1738};
1da177e4
LT
1739
1740/*
1741 * The task's runqueue lock must be held.
1742 * Returns true if you have to wait for migration thread.
1743 */
36c8b586 1744static int
70b97a7f 1745migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1746{
70b97a7f 1747 struct rq *rq = task_rq(p);
1da177e4
LT
1748
1749 /*
1750 * If the task is not on a runqueue (and not running), then
1751 * it is sufficient to simply update the task's cpu field.
1752 */
dd41f596 1753 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1754 set_task_cpu(p, dest_cpu);
1755 return 0;
1756 }
1757
1758 init_completion(&req->done);
1da177e4
LT
1759 req->task = p;
1760 req->dest_cpu = dest_cpu;
1761 list_add(&req->list, &rq->migration_queue);
48f24c4d 1762
1da177e4
LT
1763 return 1;
1764}
1765
1766/*
1767 * wait_task_inactive - wait for a thread to unschedule.
1768 *
1769 * The caller must ensure that the task *will* unschedule sometime soon,
1770 * else this function might spin for a *long* time. This function can't
1771 * be called with interrupts off, or it may introduce deadlock with
1772 * smp_call_function() if an IPI is sent by the same process we are
1773 * waiting to become inactive.
1774 */
36c8b586 1775void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1776{
1777 unsigned long flags;
dd41f596 1778 int running, on_rq;
70b97a7f 1779 struct rq *rq;
1da177e4 1780
3a5c359a
AK
1781 for (;;) {
1782 /*
1783 * We do the initial early heuristics without holding
1784 * any task-queue locks at all. We'll only try to get
1785 * the runqueue lock when things look like they will
1786 * work out!
1787 */
1788 rq = task_rq(p);
fa490cfd 1789
3a5c359a
AK
1790 /*
1791 * If the task is actively running on another CPU
1792 * still, just relax and busy-wait without holding
1793 * any locks.
1794 *
1795 * NOTE! Since we don't hold any locks, it's not
1796 * even sure that "rq" stays as the right runqueue!
1797 * But we don't care, since "task_running()" will
1798 * return false if the runqueue has changed and p
1799 * is actually now running somewhere else!
1800 */
1801 while (task_running(rq, p))
1802 cpu_relax();
fa490cfd 1803
3a5c359a
AK
1804 /*
1805 * Ok, time to look more closely! We need the rq
1806 * lock now, to be *sure*. If we're wrong, we'll
1807 * just go back and repeat.
1808 */
1809 rq = task_rq_lock(p, &flags);
1810 running = task_running(rq, p);
1811 on_rq = p->se.on_rq;
1812 task_rq_unlock(rq, &flags);
fa490cfd 1813
3a5c359a
AK
1814 /*
1815 * Was it really running after all now that we
1816 * checked with the proper locks actually held?
1817 *
1818 * Oops. Go back and try again..
1819 */
1820 if (unlikely(running)) {
1821 cpu_relax();
1822 continue;
1823 }
fa490cfd 1824
3a5c359a
AK
1825 /*
1826 * It's not enough that it's not actively running,
1827 * it must be off the runqueue _entirely_, and not
1828 * preempted!
1829 *
1830 * So if it wa still runnable (but just not actively
1831 * running right now), it's preempted, and we should
1832 * yield - it could be a while.
1833 */
1834 if (unlikely(on_rq)) {
1835 schedule_timeout_uninterruptible(1);
1836 continue;
1837 }
fa490cfd 1838
3a5c359a
AK
1839 /*
1840 * Ahh, all good. It wasn't running, and it wasn't
1841 * runnable, which means that it will never become
1842 * running in the future either. We're all done!
1843 */
1844 break;
1845 }
1da177e4
LT
1846}
1847
1848/***
1849 * kick_process - kick a running thread to enter/exit the kernel
1850 * @p: the to-be-kicked thread
1851 *
1852 * Cause a process which is running on another CPU to enter
1853 * kernel-mode, without any delay. (to get signals handled.)
1854 *
1855 * NOTE: this function doesnt have to take the runqueue lock,
1856 * because all it wants to ensure is that the remote task enters
1857 * the kernel. If the IPI races and the task has been migrated
1858 * to another CPU then no harm is done and the purpose has been
1859 * achieved as well.
1860 */
36c8b586 1861void kick_process(struct task_struct *p)
1da177e4
LT
1862{
1863 int cpu;
1864
1865 preempt_disable();
1866 cpu = task_cpu(p);
1867 if ((cpu != smp_processor_id()) && task_curr(p))
1868 smp_send_reschedule(cpu);
1869 preempt_enable();
1870}
1871
1872/*
2dd73a4f
PW
1873 * Return a low guess at the load of a migration-source cpu weighted
1874 * according to the scheduling class and "nice" value.
1da177e4
LT
1875 *
1876 * We want to under-estimate the load of migration sources, to
1877 * balance conservatively.
1878 */
a9957449 1879static unsigned long source_load(int cpu, int type)
1da177e4 1880{
70b97a7f 1881 struct rq *rq = cpu_rq(cpu);
dd41f596 1882 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1883
3b0bd9bc 1884 if (type == 0)
dd41f596 1885 return total;
b910472d 1886
dd41f596 1887 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1888}
1889
1890/*
2dd73a4f
PW
1891 * Return a high guess at the load of a migration-target cpu weighted
1892 * according to the scheduling class and "nice" value.
1da177e4 1893 */
a9957449 1894static unsigned long target_load(int cpu, int type)
1da177e4 1895{
70b97a7f 1896 struct rq *rq = cpu_rq(cpu);
dd41f596 1897 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1898
7897986b 1899 if (type == 0)
dd41f596 1900 return total;
3b0bd9bc 1901
dd41f596 1902 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1903}
1904
1905/*
1906 * Return the average load per task on the cpu's run queue
1907 */
e7693a36 1908static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1909{
70b97a7f 1910 struct rq *rq = cpu_rq(cpu);
dd41f596 1911 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1912 unsigned long n = rq->nr_running;
1913
dd41f596 1914 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1915}
1916
147cbb4b
NP
1917/*
1918 * find_idlest_group finds and returns the least busy CPU group within the
1919 * domain.
1920 */
1921static struct sched_group *
1922find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1923{
1924 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1925 unsigned long min_load = ULONG_MAX, this_load = 0;
1926 int load_idx = sd->forkexec_idx;
1927 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1928
1929 do {
1930 unsigned long load, avg_load;
1931 int local_group;
1932 int i;
1933
da5a5522
BD
1934 /* Skip over this group if it has no CPUs allowed */
1935 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1936 continue;
da5a5522 1937
147cbb4b 1938 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1939
1940 /* Tally up the load of all CPUs in the group */
1941 avg_load = 0;
1942
1943 for_each_cpu_mask(i, group->cpumask) {
1944 /* Bias balancing toward cpus of our domain */
1945 if (local_group)
1946 load = source_load(i, load_idx);
1947 else
1948 load = target_load(i, load_idx);
1949
1950 avg_load += load;
1951 }
1952
1953 /* Adjust by relative CPU power of the group */
5517d86b
ED
1954 avg_load = sg_div_cpu_power(group,
1955 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1956
1957 if (local_group) {
1958 this_load = avg_load;
1959 this = group;
1960 } else if (avg_load < min_load) {
1961 min_load = avg_load;
1962 idlest = group;
1963 }
3a5c359a 1964 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1965
1966 if (!idlest || 100*this_load < imbalance*min_load)
1967 return NULL;
1968 return idlest;
1969}
1970
1971/*
0feaece9 1972 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1973 */
95cdf3b7 1974static int
7c16ec58
MT
1975find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1976 cpumask_t *tmp)
147cbb4b
NP
1977{
1978 unsigned long load, min_load = ULONG_MAX;
1979 int idlest = -1;
1980 int i;
1981
da5a5522 1982 /* Traverse only the allowed CPUs */
7c16ec58 1983 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1984
7c16ec58 1985 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1986 load = weighted_cpuload(i);
147cbb4b
NP
1987
1988 if (load < min_load || (load == min_load && i == this_cpu)) {
1989 min_load = load;
1990 idlest = i;
1991 }
1992 }
1993
1994 return idlest;
1995}
1996
476d139c
NP
1997/*
1998 * sched_balance_self: balance the current task (running on cpu) in domains
1999 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2000 * SD_BALANCE_EXEC.
2001 *
2002 * Balance, ie. select the least loaded group.
2003 *
2004 * Returns the target CPU number, or the same CPU if no balancing is needed.
2005 *
2006 * preempt must be disabled.
2007 */
2008static int sched_balance_self(int cpu, int flag)
2009{
2010 struct task_struct *t = current;
2011 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2012
c96d145e 2013 for_each_domain(cpu, tmp) {
9761eea8
IM
2014 /*
2015 * If power savings logic is enabled for a domain, stop there.
2016 */
5c45bf27
SS
2017 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2018 break;
476d139c
NP
2019 if (tmp->flags & flag)
2020 sd = tmp;
c96d145e 2021 }
476d139c
NP
2022
2023 while (sd) {
7c16ec58 2024 cpumask_t span, tmpmask;
476d139c 2025 struct sched_group *group;
1a848870
SS
2026 int new_cpu, weight;
2027
2028 if (!(sd->flags & flag)) {
2029 sd = sd->child;
2030 continue;
2031 }
476d139c
NP
2032
2033 span = sd->span;
2034 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2035 if (!group) {
2036 sd = sd->child;
2037 continue;
2038 }
476d139c 2039
7c16ec58 2040 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2041 if (new_cpu == -1 || new_cpu == cpu) {
2042 /* Now try balancing at a lower domain level of cpu */
2043 sd = sd->child;
2044 continue;
2045 }
476d139c 2046
1a848870 2047 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2048 cpu = new_cpu;
476d139c
NP
2049 sd = NULL;
2050 weight = cpus_weight(span);
2051 for_each_domain(cpu, tmp) {
2052 if (weight <= cpus_weight(tmp->span))
2053 break;
2054 if (tmp->flags & flag)
2055 sd = tmp;
2056 }
2057 /* while loop will break here if sd == NULL */
2058 }
2059
2060 return cpu;
2061}
2062
2063#endif /* CONFIG_SMP */
1da177e4 2064
1da177e4
LT
2065/***
2066 * try_to_wake_up - wake up a thread
2067 * @p: the to-be-woken-up thread
2068 * @state: the mask of task states that can be woken
2069 * @sync: do a synchronous wakeup?
2070 *
2071 * Put it on the run-queue if it's not already there. The "current"
2072 * thread is always on the run-queue (except when the actual
2073 * re-schedule is in progress), and as such you're allowed to do
2074 * the simpler "current->state = TASK_RUNNING" to mark yourself
2075 * runnable without the overhead of this.
2076 *
2077 * returns failure only if the task is already active.
2078 */
36c8b586 2079static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2080{
cc367732 2081 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2082 unsigned long flags;
2083 long old_state;
70b97a7f 2084 struct rq *rq;
1da177e4 2085
b85d0667
IM
2086 if (!sched_feat(SYNC_WAKEUPS))
2087 sync = 0;
2088
04e2f174 2089 smp_wmb();
1da177e4
LT
2090 rq = task_rq_lock(p, &flags);
2091 old_state = p->state;
2092 if (!(old_state & state))
2093 goto out;
2094
dd41f596 2095 if (p->se.on_rq)
1da177e4
LT
2096 goto out_running;
2097
2098 cpu = task_cpu(p);
cc367732 2099 orig_cpu = cpu;
1da177e4
LT
2100 this_cpu = smp_processor_id();
2101
2102#ifdef CONFIG_SMP
2103 if (unlikely(task_running(rq, p)))
2104 goto out_activate;
2105
5d2f5a61
DA
2106 cpu = p->sched_class->select_task_rq(p, sync);
2107 if (cpu != orig_cpu) {
2108 set_task_cpu(p, cpu);
1da177e4
LT
2109 task_rq_unlock(rq, &flags);
2110 /* might preempt at this point */
2111 rq = task_rq_lock(p, &flags);
2112 old_state = p->state;
2113 if (!(old_state & state))
2114 goto out;
dd41f596 2115 if (p->se.on_rq)
1da177e4
LT
2116 goto out_running;
2117
2118 this_cpu = smp_processor_id();
2119 cpu = task_cpu(p);
2120 }
2121
e7693a36
GH
2122#ifdef CONFIG_SCHEDSTATS
2123 schedstat_inc(rq, ttwu_count);
2124 if (cpu == this_cpu)
2125 schedstat_inc(rq, ttwu_local);
2126 else {
2127 struct sched_domain *sd;
2128 for_each_domain(this_cpu, sd) {
2129 if (cpu_isset(cpu, sd->span)) {
2130 schedstat_inc(sd, ttwu_wake_remote);
2131 break;
2132 }
2133 }
2134 }
6d6bc0ad 2135#endif /* CONFIG_SCHEDSTATS */
e7693a36 2136
1da177e4
LT
2137out_activate:
2138#endif /* CONFIG_SMP */
cc367732
IM
2139 schedstat_inc(p, se.nr_wakeups);
2140 if (sync)
2141 schedstat_inc(p, se.nr_wakeups_sync);
2142 if (orig_cpu != cpu)
2143 schedstat_inc(p, se.nr_wakeups_migrate);
2144 if (cpu == this_cpu)
2145 schedstat_inc(p, se.nr_wakeups_local);
2146 else
2147 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2148 update_rq_clock(rq);
dd41f596 2149 activate_task(rq, p, 1);
1da177e4
LT
2150 success = 1;
2151
2152out_running:
4ae7d5ce
IM
2153 check_preempt_curr(rq, p);
2154
1da177e4 2155 p->state = TASK_RUNNING;
9a897c5a
SR
2156#ifdef CONFIG_SMP
2157 if (p->sched_class->task_wake_up)
2158 p->sched_class->task_wake_up(rq, p);
2159#endif
1da177e4
LT
2160out:
2161 task_rq_unlock(rq, &flags);
2162
2163 return success;
2164}
2165
7ad5b3a5 2166int wake_up_process(struct task_struct *p)
1da177e4 2167{
d9514f6c 2168 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2169}
1da177e4
LT
2170EXPORT_SYMBOL(wake_up_process);
2171
7ad5b3a5 2172int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2173{
2174 return try_to_wake_up(p, state, 0);
2175}
2176
1da177e4
LT
2177/*
2178 * Perform scheduler related setup for a newly forked process p.
2179 * p is forked by current.
dd41f596
IM
2180 *
2181 * __sched_fork() is basic setup used by init_idle() too:
2182 */
2183static void __sched_fork(struct task_struct *p)
2184{
dd41f596
IM
2185 p->se.exec_start = 0;
2186 p->se.sum_exec_runtime = 0;
f6cf891c 2187 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2188 p->se.last_wakeup = 0;
2189 p->se.avg_overlap = 0;
6cfb0d5d
IM
2190
2191#ifdef CONFIG_SCHEDSTATS
2192 p->se.wait_start = 0;
dd41f596
IM
2193 p->se.sum_sleep_runtime = 0;
2194 p->se.sleep_start = 0;
dd41f596
IM
2195 p->se.block_start = 0;
2196 p->se.sleep_max = 0;
2197 p->se.block_max = 0;
2198 p->se.exec_max = 0;
eba1ed4b 2199 p->se.slice_max = 0;
dd41f596 2200 p->se.wait_max = 0;
6cfb0d5d 2201#endif
476d139c 2202
fa717060 2203 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2204 p->se.on_rq = 0;
4a55bd5e 2205 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2206
e107be36
AK
2207#ifdef CONFIG_PREEMPT_NOTIFIERS
2208 INIT_HLIST_HEAD(&p->preempt_notifiers);
2209#endif
2210
1da177e4
LT
2211 /*
2212 * We mark the process as running here, but have not actually
2213 * inserted it onto the runqueue yet. This guarantees that
2214 * nobody will actually run it, and a signal or other external
2215 * event cannot wake it up and insert it on the runqueue either.
2216 */
2217 p->state = TASK_RUNNING;
dd41f596
IM
2218}
2219
2220/*
2221 * fork()/clone()-time setup:
2222 */
2223void sched_fork(struct task_struct *p, int clone_flags)
2224{
2225 int cpu = get_cpu();
2226
2227 __sched_fork(p);
2228
2229#ifdef CONFIG_SMP
2230 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2231#endif
02e4bac2 2232 set_task_cpu(p, cpu);
b29739f9
IM
2233
2234 /*
2235 * Make sure we do not leak PI boosting priority to the child:
2236 */
2237 p->prio = current->normal_prio;
2ddbf952
HS
2238 if (!rt_prio(p->prio))
2239 p->sched_class = &fair_sched_class;
b29739f9 2240
52f17b6c 2241#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2242 if (likely(sched_info_on()))
52f17b6c 2243 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2244#endif
d6077cb8 2245#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2246 p->oncpu = 0;
2247#endif
1da177e4 2248#ifdef CONFIG_PREEMPT
4866cde0 2249 /* Want to start with kernel preemption disabled. */
a1261f54 2250 task_thread_info(p)->preempt_count = 1;
1da177e4 2251#endif
476d139c 2252 put_cpu();
1da177e4
LT
2253}
2254
2255/*
2256 * wake_up_new_task - wake up a newly created task for the first time.
2257 *
2258 * This function will do some initial scheduler statistics housekeeping
2259 * that must be done for every newly created context, then puts the task
2260 * on the runqueue and wakes it.
2261 */
7ad5b3a5 2262void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2263{
2264 unsigned long flags;
dd41f596 2265 struct rq *rq;
1da177e4
LT
2266
2267 rq = task_rq_lock(p, &flags);
147cbb4b 2268 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2269 update_rq_clock(rq);
1da177e4
LT
2270
2271 p->prio = effective_prio(p);
2272
b9dca1e0 2273 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2274 activate_task(rq, p, 0);
1da177e4 2275 } else {
1da177e4 2276 /*
dd41f596
IM
2277 * Let the scheduling class do new task startup
2278 * management (if any):
1da177e4 2279 */
ee0827d8 2280 p->sched_class->task_new(rq, p);
6363ca57 2281 inc_nr_running(p, rq);
1da177e4 2282 }
dd41f596 2283 check_preempt_curr(rq, p);
9a897c5a
SR
2284#ifdef CONFIG_SMP
2285 if (p->sched_class->task_wake_up)
2286 p->sched_class->task_wake_up(rq, p);
2287#endif
dd41f596 2288 task_rq_unlock(rq, &flags);
1da177e4
LT
2289}
2290
e107be36
AK
2291#ifdef CONFIG_PREEMPT_NOTIFIERS
2292
2293/**
421cee29
RD
2294 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2295 * @notifier: notifier struct to register
e107be36
AK
2296 */
2297void preempt_notifier_register(struct preempt_notifier *notifier)
2298{
2299 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2300}
2301EXPORT_SYMBOL_GPL(preempt_notifier_register);
2302
2303/**
2304 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2305 * @notifier: notifier struct to unregister
e107be36
AK
2306 *
2307 * This is safe to call from within a preemption notifier.
2308 */
2309void preempt_notifier_unregister(struct preempt_notifier *notifier)
2310{
2311 hlist_del(&notifier->link);
2312}
2313EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2314
2315static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2316{
2317 struct preempt_notifier *notifier;
2318 struct hlist_node *node;
2319
2320 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2321 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2322}
2323
2324static void
2325fire_sched_out_preempt_notifiers(struct task_struct *curr,
2326 struct task_struct *next)
2327{
2328 struct preempt_notifier *notifier;
2329 struct hlist_node *node;
2330
2331 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2332 notifier->ops->sched_out(notifier, next);
2333}
2334
6d6bc0ad 2335#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2336
2337static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2338{
2339}
2340
2341static void
2342fire_sched_out_preempt_notifiers(struct task_struct *curr,
2343 struct task_struct *next)
2344{
2345}
2346
6d6bc0ad 2347#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2348
4866cde0
NP
2349/**
2350 * prepare_task_switch - prepare to switch tasks
2351 * @rq: the runqueue preparing to switch
421cee29 2352 * @prev: the current task that is being switched out
4866cde0
NP
2353 * @next: the task we are going to switch to.
2354 *
2355 * This is called with the rq lock held and interrupts off. It must
2356 * be paired with a subsequent finish_task_switch after the context
2357 * switch.
2358 *
2359 * prepare_task_switch sets up locking and calls architecture specific
2360 * hooks.
2361 */
e107be36
AK
2362static inline void
2363prepare_task_switch(struct rq *rq, struct task_struct *prev,
2364 struct task_struct *next)
4866cde0 2365{
e107be36 2366 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2367 prepare_lock_switch(rq, next);
2368 prepare_arch_switch(next);
2369}
2370
1da177e4
LT
2371/**
2372 * finish_task_switch - clean up after a task-switch
344babaa 2373 * @rq: runqueue associated with task-switch
1da177e4
LT
2374 * @prev: the thread we just switched away from.
2375 *
4866cde0
NP
2376 * finish_task_switch must be called after the context switch, paired
2377 * with a prepare_task_switch call before the context switch.
2378 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2379 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2380 *
2381 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2382 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2383 * with the lock held can cause deadlocks; see schedule() for
2384 * details.)
2385 */
a9957449 2386static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2387 __releases(rq->lock)
2388{
1da177e4 2389 struct mm_struct *mm = rq->prev_mm;
55a101f8 2390 long prev_state;
1da177e4
LT
2391
2392 rq->prev_mm = NULL;
2393
2394 /*
2395 * A task struct has one reference for the use as "current".
c394cc9f 2396 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2397 * schedule one last time. The schedule call will never return, and
2398 * the scheduled task must drop that reference.
c394cc9f 2399 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2400 * still held, otherwise prev could be scheduled on another cpu, die
2401 * there before we look at prev->state, and then the reference would
2402 * be dropped twice.
2403 * Manfred Spraul <manfred@colorfullife.com>
2404 */
55a101f8 2405 prev_state = prev->state;
4866cde0
NP
2406 finish_arch_switch(prev);
2407 finish_lock_switch(rq, prev);
9a897c5a
SR
2408#ifdef CONFIG_SMP
2409 if (current->sched_class->post_schedule)
2410 current->sched_class->post_schedule(rq);
2411#endif
e8fa1362 2412
e107be36 2413 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2414 if (mm)
2415 mmdrop(mm);
c394cc9f 2416 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2417 /*
2418 * Remove function-return probe instances associated with this
2419 * task and put them back on the free list.
9761eea8 2420 */
c6fd91f0 2421 kprobe_flush_task(prev);
1da177e4 2422 put_task_struct(prev);
c6fd91f0 2423 }
1da177e4
LT
2424}
2425
2426/**
2427 * schedule_tail - first thing a freshly forked thread must call.
2428 * @prev: the thread we just switched away from.
2429 */
36c8b586 2430asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2431 __releases(rq->lock)
2432{
70b97a7f
IM
2433 struct rq *rq = this_rq();
2434
4866cde0
NP
2435 finish_task_switch(rq, prev);
2436#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2437 /* In this case, finish_task_switch does not reenable preemption */
2438 preempt_enable();
2439#endif
1da177e4 2440 if (current->set_child_tid)
b488893a 2441 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2442}
2443
2444/*
2445 * context_switch - switch to the new MM and the new
2446 * thread's register state.
2447 */
dd41f596 2448static inline void
70b97a7f 2449context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2450 struct task_struct *next)
1da177e4 2451{
dd41f596 2452 struct mm_struct *mm, *oldmm;
1da177e4 2453
e107be36 2454 prepare_task_switch(rq, prev, next);
dd41f596
IM
2455 mm = next->mm;
2456 oldmm = prev->active_mm;
9226d125
ZA
2457 /*
2458 * For paravirt, this is coupled with an exit in switch_to to
2459 * combine the page table reload and the switch backend into
2460 * one hypercall.
2461 */
2462 arch_enter_lazy_cpu_mode();
2463
dd41f596 2464 if (unlikely(!mm)) {
1da177e4
LT
2465 next->active_mm = oldmm;
2466 atomic_inc(&oldmm->mm_count);
2467 enter_lazy_tlb(oldmm, next);
2468 } else
2469 switch_mm(oldmm, mm, next);
2470
dd41f596 2471 if (unlikely(!prev->mm)) {
1da177e4 2472 prev->active_mm = NULL;
1da177e4
LT
2473 rq->prev_mm = oldmm;
2474 }
3a5f5e48
IM
2475 /*
2476 * Since the runqueue lock will be released by the next
2477 * task (which is an invalid locking op but in the case
2478 * of the scheduler it's an obvious special-case), so we
2479 * do an early lockdep release here:
2480 */
2481#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2482 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2483#endif
1da177e4
LT
2484
2485 /* Here we just switch the register state and the stack. */
2486 switch_to(prev, next, prev);
2487
dd41f596
IM
2488 barrier();
2489 /*
2490 * this_rq must be evaluated again because prev may have moved
2491 * CPUs since it called schedule(), thus the 'rq' on its stack
2492 * frame will be invalid.
2493 */
2494 finish_task_switch(this_rq(), prev);
1da177e4
LT
2495}
2496
2497/*
2498 * nr_running, nr_uninterruptible and nr_context_switches:
2499 *
2500 * externally visible scheduler statistics: current number of runnable
2501 * threads, current number of uninterruptible-sleeping threads, total
2502 * number of context switches performed since bootup.
2503 */
2504unsigned long nr_running(void)
2505{
2506 unsigned long i, sum = 0;
2507
2508 for_each_online_cpu(i)
2509 sum += cpu_rq(i)->nr_running;
2510
2511 return sum;
2512}
2513
2514unsigned long nr_uninterruptible(void)
2515{
2516 unsigned long i, sum = 0;
2517
0a945022 2518 for_each_possible_cpu(i)
1da177e4
LT
2519 sum += cpu_rq(i)->nr_uninterruptible;
2520
2521 /*
2522 * Since we read the counters lockless, it might be slightly
2523 * inaccurate. Do not allow it to go below zero though:
2524 */
2525 if (unlikely((long)sum < 0))
2526 sum = 0;
2527
2528 return sum;
2529}
2530
2531unsigned long long nr_context_switches(void)
2532{
cc94abfc
SR
2533 int i;
2534 unsigned long long sum = 0;
1da177e4 2535
0a945022 2536 for_each_possible_cpu(i)
1da177e4
LT
2537 sum += cpu_rq(i)->nr_switches;
2538
2539 return sum;
2540}
2541
2542unsigned long nr_iowait(void)
2543{
2544 unsigned long i, sum = 0;
2545
0a945022 2546 for_each_possible_cpu(i)
1da177e4
LT
2547 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2548
2549 return sum;
2550}
2551
db1b1fef
JS
2552unsigned long nr_active(void)
2553{
2554 unsigned long i, running = 0, uninterruptible = 0;
2555
2556 for_each_online_cpu(i) {
2557 running += cpu_rq(i)->nr_running;
2558 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2559 }
2560
2561 if (unlikely((long)uninterruptible < 0))
2562 uninterruptible = 0;
2563
2564 return running + uninterruptible;
2565}
2566
48f24c4d 2567/*
dd41f596
IM
2568 * Update rq->cpu_load[] statistics. This function is usually called every
2569 * scheduler tick (TICK_NSEC).
48f24c4d 2570 */
dd41f596 2571static void update_cpu_load(struct rq *this_rq)
48f24c4d 2572{
495eca49 2573 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2574 int i, scale;
2575
2576 this_rq->nr_load_updates++;
dd41f596
IM
2577
2578 /* Update our load: */
2579 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2580 unsigned long old_load, new_load;
2581
2582 /* scale is effectively 1 << i now, and >> i divides by scale */
2583
2584 old_load = this_rq->cpu_load[i];
2585 new_load = this_load;
a25707f3
IM
2586 /*
2587 * Round up the averaging division if load is increasing. This
2588 * prevents us from getting stuck on 9 if the load is 10, for
2589 * example.
2590 */
2591 if (new_load > old_load)
2592 new_load += scale-1;
dd41f596
IM
2593 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2594 }
48f24c4d
IM
2595}
2596
dd41f596
IM
2597#ifdef CONFIG_SMP
2598
1da177e4
LT
2599/*
2600 * double_rq_lock - safely lock two runqueues
2601 *
2602 * Note this does not disable interrupts like task_rq_lock,
2603 * you need to do so manually before calling.
2604 */
70b97a7f 2605static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2606 __acquires(rq1->lock)
2607 __acquires(rq2->lock)
2608{
054b9108 2609 BUG_ON(!irqs_disabled());
1da177e4
LT
2610 if (rq1 == rq2) {
2611 spin_lock(&rq1->lock);
2612 __acquire(rq2->lock); /* Fake it out ;) */
2613 } else {
c96d145e 2614 if (rq1 < rq2) {
1da177e4
LT
2615 spin_lock(&rq1->lock);
2616 spin_lock(&rq2->lock);
2617 } else {
2618 spin_lock(&rq2->lock);
2619 spin_lock(&rq1->lock);
2620 }
2621 }
6e82a3be
IM
2622 update_rq_clock(rq1);
2623 update_rq_clock(rq2);
1da177e4
LT
2624}
2625
2626/*
2627 * double_rq_unlock - safely unlock two runqueues
2628 *
2629 * Note this does not restore interrupts like task_rq_unlock,
2630 * you need to do so manually after calling.
2631 */
70b97a7f 2632static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2633 __releases(rq1->lock)
2634 __releases(rq2->lock)
2635{
2636 spin_unlock(&rq1->lock);
2637 if (rq1 != rq2)
2638 spin_unlock(&rq2->lock);
2639 else
2640 __release(rq2->lock);
2641}
2642
2643/*
2644 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2645 */
e8fa1362 2646static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2647 __releases(this_rq->lock)
2648 __acquires(busiest->lock)
2649 __acquires(this_rq->lock)
2650{
e8fa1362
SR
2651 int ret = 0;
2652
054b9108
KK
2653 if (unlikely(!irqs_disabled())) {
2654 /* printk() doesn't work good under rq->lock */
2655 spin_unlock(&this_rq->lock);
2656 BUG_ON(1);
2657 }
1da177e4 2658 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2659 if (busiest < this_rq) {
1da177e4
LT
2660 spin_unlock(&this_rq->lock);
2661 spin_lock(&busiest->lock);
2662 spin_lock(&this_rq->lock);
e8fa1362 2663 ret = 1;
1da177e4
LT
2664 } else
2665 spin_lock(&busiest->lock);
2666 }
e8fa1362 2667 return ret;
1da177e4
LT
2668}
2669
1da177e4
LT
2670/*
2671 * If dest_cpu is allowed for this process, migrate the task to it.
2672 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2673 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2674 * the cpu_allowed mask is restored.
2675 */
36c8b586 2676static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2677{
70b97a7f 2678 struct migration_req req;
1da177e4 2679 unsigned long flags;
70b97a7f 2680 struct rq *rq;
1da177e4
LT
2681
2682 rq = task_rq_lock(p, &flags);
2683 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2684 || unlikely(cpu_is_offline(dest_cpu)))
2685 goto out;
2686
2687 /* force the process onto the specified CPU */
2688 if (migrate_task(p, dest_cpu, &req)) {
2689 /* Need to wait for migration thread (might exit: take ref). */
2690 struct task_struct *mt = rq->migration_thread;
36c8b586 2691
1da177e4
LT
2692 get_task_struct(mt);
2693 task_rq_unlock(rq, &flags);
2694 wake_up_process(mt);
2695 put_task_struct(mt);
2696 wait_for_completion(&req.done);
36c8b586 2697
1da177e4
LT
2698 return;
2699 }
2700out:
2701 task_rq_unlock(rq, &flags);
2702}
2703
2704/*
476d139c
NP
2705 * sched_exec - execve() is a valuable balancing opportunity, because at
2706 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2707 */
2708void sched_exec(void)
2709{
1da177e4 2710 int new_cpu, this_cpu = get_cpu();
476d139c 2711 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2712 put_cpu();
476d139c
NP
2713 if (new_cpu != this_cpu)
2714 sched_migrate_task(current, new_cpu);
1da177e4
LT
2715}
2716
2717/*
2718 * pull_task - move a task from a remote runqueue to the local runqueue.
2719 * Both runqueues must be locked.
2720 */
dd41f596
IM
2721static void pull_task(struct rq *src_rq, struct task_struct *p,
2722 struct rq *this_rq, int this_cpu)
1da177e4 2723{
2e1cb74a 2724 deactivate_task(src_rq, p, 0);
1da177e4 2725 set_task_cpu(p, this_cpu);
dd41f596 2726 activate_task(this_rq, p, 0);
1da177e4
LT
2727 /*
2728 * Note that idle threads have a prio of MAX_PRIO, for this test
2729 * to be always true for them.
2730 */
dd41f596 2731 check_preempt_curr(this_rq, p);
1da177e4
LT
2732}
2733
2734/*
2735 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2736 */
858119e1 2737static
70b97a7f 2738int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2739 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2740 int *all_pinned)
1da177e4
LT
2741{
2742 /*
2743 * We do not migrate tasks that are:
2744 * 1) running (obviously), or
2745 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2746 * 3) are cache-hot on their current CPU.
2747 */
cc367732
IM
2748 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2749 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2750 return 0;
cc367732 2751 }
81026794
NP
2752 *all_pinned = 0;
2753
cc367732
IM
2754 if (task_running(rq, p)) {
2755 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2756 return 0;
cc367732 2757 }
1da177e4 2758
da84d961
IM
2759 /*
2760 * Aggressive migration if:
2761 * 1) task is cache cold, or
2762 * 2) too many balance attempts have failed.
2763 */
2764
6bc1665b
IM
2765 if (!task_hot(p, rq->clock, sd) ||
2766 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2767#ifdef CONFIG_SCHEDSTATS
cc367732 2768 if (task_hot(p, rq->clock, sd)) {
da84d961 2769 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2770 schedstat_inc(p, se.nr_forced_migrations);
2771 }
da84d961
IM
2772#endif
2773 return 1;
2774 }
2775
cc367732
IM
2776 if (task_hot(p, rq->clock, sd)) {
2777 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2778 return 0;
cc367732 2779 }
1da177e4
LT
2780 return 1;
2781}
2782
e1d1484f
PW
2783static unsigned long
2784balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2785 unsigned long max_load_move, struct sched_domain *sd,
2786 enum cpu_idle_type idle, int *all_pinned,
2787 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2788{
b82d9fdd 2789 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2790 struct task_struct *p;
2791 long rem_load_move = max_load_move;
1da177e4 2792
e1d1484f 2793 if (max_load_move == 0)
1da177e4
LT
2794 goto out;
2795
81026794
NP
2796 pinned = 1;
2797
1da177e4 2798 /*
dd41f596 2799 * Start the load-balancing iterator:
1da177e4 2800 */
dd41f596
IM
2801 p = iterator->start(iterator->arg);
2802next:
b82d9fdd 2803 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2804 goto out;
50ddd969 2805 /*
b82d9fdd 2806 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2807 * skip a task if it will be the highest priority task (i.e. smallest
2808 * prio value) on its new queue regardless of its load weight
2809 */
dd41f596
IM
2810 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2811 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2812 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2813 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2814 p = iterator->next(iterator->arg);
2815 goto next;
1da177e4
LT
2816 }
2817
dd41f596 2818 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2819 pulled++;
dd41f596 2820 rem_load_move -= p->se.load.weight;
1da177e4 2821
2dd73a4f 2822 /*
b82d9fdd 2823 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2824 */
e1d1484f 2825 if (rem_load_move > 0) {
a4ac01c3
PW
2826 if (p->prio < *this_best_prio)
2827 *this_best_prio = p->prio;
dd41f596
IM
2828 p = iterator->next(iterator->arg);
2829 goto next;
1da177e4
LT
2830 }
2831out:
2832 /*
e1d1484f 2833 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2834 * so we can safely collect pull_task() stats here rather than
2835 * inside pull_task().
2836 */
2837 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2838
2839 if (all_pinned)
2840 *all_pinned = pinned;
e1d1484f
PW
2841
2842 return max_load_move - rem_load_move;
1da177e4
LT
2843}
2844
dd41f596 2845/*
43010659
PW
2846 * move_tasks tries to move up to max_load_move weighted load from busiest to
2847 * this_rq, as part of a balancing operation within domain "sd".
2848 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2849 *
2850 * Called with both runqueues locked.
2851 */
2852static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2853 unsigned long max_load_move,
dd41f596
IM
2854 struct sched_domain *sd, enum cpu_idle_type idle,
2855 int *all_pinned)
2856{
5522d5d5 2857 const struct sched_class *class = sched_class_highest;
43010659 2858 unsigned long total_load_moved = 0;
a4ac01c3 2859 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2860
2861 do {
43010659
PW
2862 total_load_moved +=
2863 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2864 max_load_move - total_load_moved,
a4ac01c3 2865 sd, idle, all_pinned, &this_best_prio);
dd41f596 2866 class = class->next;
43010659 2867 } while (class && max_load_move > total_load_moved);
dd41f596 2868
43010659
PW
2869 return total_load_moved > 0;
2870}
2871
e1d1484f
PW
2872static int
2873iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2874 struct sched_domain *sd, enum cpu_idle_type idle,
2875 struct rq_iterator *iterator)
2876{
2877 struct task_struct *p = iterator->start(iterator->arg);
2878 int pinned = 0;
2879
2880 while (p) {
2881 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2882 pull_task(busiest, p, this_rq, this_cpu);
2883 /*
2884 * Right now, this is only the second place pull_task()
2885 * is called, so we can safely collect pull_task()
2886 * stats here rather than inside pull_task().
2887 */
2888 schedstat_inc(sd, lb_gained[idle]);
2889
2890 return 1;
2891 }
2892 p = iterator->next(iterator->arg);
2893 }
2894
2895 return 0;
2896}
2897
43010659
PW
2898/*
2899 * move_one_task tries to move exactly one task from busiest to this_rq, as
2900 * part of active balancing operations within "domain".
2901 * Returns 1 if successful and 0 otherwise.
2902 *
2903 * Called with both runqueues locked.
2904 */
2905static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2906 struct sched_domain *sd, enum cpu_idle_type idle)
2907{
5522d5d5 2908 const struct sched_class *class;
43010659
PW
2909
2910 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2911 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2912 return 1;
2913
2914 return 0;
dd41f596
IM
2915}
2916
1da177e4
LT
2917/*
2918 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2919 * domain. It calculates and returns the amount of weighted load which
2920 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2921 */
2922static struct sched_group *
2923find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2924 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2925 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2926{
2927 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2928 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2929 unsigned long max_pull;
2dd73a4f
PW
2930 unsigned long busiest_load_per_task, busiest_nr_running;
2931 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2932 int load_idx, group_imb = 0;
5c45bf27
SS
2933#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2934 int power_savings_balance = 1;
2935 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2936 unsigned long min_nr_running = ULONG_MAX;
2937 struct sched_group *group_min = NULL, *group_leader = NULL;
2938#endif
1da177e4
LT
2939
2940 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2941 busiest_load_per_task = busiest_nr_running = 0;
2942 this_load_per_task = this_nr_running = 0;
d15bcfdb 2943 if (idle == CPU_NOT_IDLE)
7897986b 2944 load_idx = sd->busy_idx;
d15bcfdb 2945 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2946 load_idx = sd->newidle_idx;
2947 else
2948 load_idx = sd->idle_idx;
1da177e4
LT
2949
2950 do {
908a7c1b 2951 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2952 int local_group;
2953 int i;
908a7c1b 2954 int __group_imb = 0;
783609c6 2955 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2956 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2957
2958 local_group = cpu_isset(this_cpu, group->cpumask);
2959
783609c6
SS
2960 if (local_group)
2961 balance_cpu = first_cpu(group->cpumask);
2962
1da177e4 2963 /* Tally up the load of all CPUs in the group */
2dd73a4f 2964 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2965 max_cpu_load = 0;
2966 min_cpu_load = ~0UL;
1da177e4
LT
2967
2968 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2969 struct rq *rq;
2970
2971 if (!cpu_isset(i, *cpus))
2972 continue;
2973
2974 rq = cpu_rq(i);
2dd73a4f 2975
9439aab8 2976 if (*sd_idle && rq->nr_running)
5969fe06
NP
2977 *sd_idle = 0;
2978
1da177e4 2979 /* Bias balancing toward cpus of our domain */
783609c6
SS
2980 if (local_group) {
2981 if (idle_cpu(i) && !first_idle_cpu) {
2982 first_idle_cpu = 1;
2983 balance_cpu = i;
2984 }
2985
a2000572 2986 load = target_load(i, load_idx);
908a7c1b 2987 } else {
a2000572 2988 load = source_load(i, load_idx);
908a7c1b
KC
2989 if (load > max_cpu_load)
2990 max_cpu_load = load;
2991 if (min_cpu_load > load)
2992 min_cpu_load = load;
2993 }
1da177e4
LT
2994
2995 avg_load += load;
2dd73a4f 2996 sum_nr_running += rq->nr_running;
dd41f596 2997 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2998 }
2999
783609c6
SS
3000 /*
3001 * First idle cpu or the first cpu(busiest) in this sched group
3002 * is eligible for doing load balancing at this and above
9439aab8
SS
3003 * domains. In the newly idle case, we will allow all the cpu's
3004 * to do the newly idle load balance.
783609c6 3005 */
9439aab8
SS
3006 if (idle != CPU_NEWLY_IDLE && local_group &&
3007 balance_cpu != this_cpu && balance) {
783609c6
SS
3008 *balance = 0;
3009 goto ret;
3010 }
3011
1da177e4 3012 total_load += avg_load;
5517d86b 3013 total_pwr += group->__cpu_power;
1da177e4
LT
3014
3015 /* Adjust by relative CPU power of the group */
5517d86b
ED
3016 avg_load = sg_div_cpu_power(group,
3017 avg_load * SCHED_LOAD_SCALE);
1da177e4 3018
908a7c1b
KC
3019 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3020 __group_imb = 1;
3021
5517d86b 3022 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3023
1da177e4
LT
3024 if (local_group) {
3025 this_load = avg_load;
3026 this = group;
2dd73a4f
PW
3027 this_nr_running = sum_nr_running;
3028 this_load_per_task = sum_weighted_load;
3029 } else if (avg_load > max_load &&
908a7c1b 3030 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3031 max_load = avg_load;
3032 busiest = group;
2dd73a4f
PW
3033 busiest_nr_running = sum_nr_running;
3034 busiest_load_per_task = sum_weighted_load;
908a7c1b 3035 group_imb = __group_imb;
1da177e4 3036 }
5c45bf27
SS
3037
3038#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3039 /*
3040 * Busy processors will not participate in power savings
3041 * balance.
3042 */
dd41f596
IM
3043 if (idle == CPU_NOT_IDLE ||
3044 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3045 goto group_next;
5c45bf27
SS
3046
3047 /*
3048 * If the local group is idle or completely loaded
3049 * no need to do power savings balance at this domain
3050 */
3051 if (local_group && (this_nr_running >= group_capacity ||
3052 !this_nr_running))
3053 power_savings_balance = 0;
3054
dd41f596 3055 /*
5c45bf27
SS
3056 * If a group is already running at full capacity or idle,
3057 * don't include that group in power savings calculations
dd41f596
IM
3058 */
3059 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3060 || !sum_nr_running)
dd41f596 3061 goto group_next;
5c45bf27 3062
dd41f596 3063 /*
5c45bf27 3064 * Calculate the group which has the least non-idle load.
dd41f596
IM
3065 * This is the group from where we need to pick up the load
3066 * for saving power
3067 */
3068 if ((sum_nr_running < min_nr_running) ||
3069 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3070 first_cpu(group->cpumask) <
3071 first_cpu(group_min->cpumask))) {
dd41f596
IM
3072 group_min = group;
3073 min_nr_running = sum_nr_running;
5c45bf27
SS
3074 min_load_per_task = sum_weighted_load /
3075 sum_nr_running;
dd41f596 3076 }
5c45bf27 3077
dd41f596 3078 /*
5c45bf27 3079 * Calculate the group which is almost near its
dd41f596
IM
3080 * capacity but still has some space to pick up some load
3081 * from other group and save more power
3082 */
3083 if (sum_nr_running <= group_capacity - 1) {
3084 if (sum_nr_running > leader_nr_running ||
3085 (sum_nr_running == leader_nr_running &&
3086 first_cpu(group->cpumask) >
3087 first_cpu(group_leader->cpumask))) {
3088 group_leader = group;
3089 leader_nr_running = sum_nr_running;
3090 }
48f24c4d 3091 }
5c45bf27
SS
3092group_next:
3093#endif
1da177e4
LT
3094 group = group->next;
3095 } while (group != sd->groups);
3096
2dd73a4f 3097 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3098 goto out_balanced;
3099
3100 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3101
3102 if (this_load >= avg_load ||
3103 100*max_load <= sd->imbalance_pct*this_load)
3104 goto out_balanced;
3105
2dd73a4f 3106 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3107 if (group_imb)
3108 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3109
1da177e4
LT
3110 /*
3111 * We're trying to get all the cpus to the average_load, so we don't
3112 * want to push ourselves above the average load, nor do we wish to
3113 * reduce the max loaded cpu below the average load, as either of these
3114 * actions would just result in more rebalancing later, and ping-pong
3115 * tasks around. Thus we look for the minimum possible imbalance.
3116 * Negative imbalances (*we* are more loaded than anyone else) will
3117 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3118 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3119 * appear as very large values with unsigned longs.
3120 */
2dd73a4f
PW
3121 if (max_load <= busiest_load_per_task)
3122 goto out_balanced;
3123
3124 /*
3125 * In the presence of smp nice balancing, certain scenarios can have
3126 * max load less than avg load(as we skip the groups at or below
3127 * its cpu_power, while calculating max_load..)
3128 */
3129 if (max_load < avg_load) {
3130 *imbalance = 0;
3131 goto small_imbalance;
3132 }
0c117f1b
SS
3133
3134 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3135 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3136
1da177e4 3137 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3138 *imbalance = min(max_pull * busiest->__cpu_power,
3139 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3140 / SCHED_LOAD_SCALE;
3141
2dd73a4f
PW
3142 /*
3143 * if *imbalance is less than the average load per runnable task
3144 * there is no gaurantee that any tasks will be moved so we'll have
3145 * a think about bumping its value to force at least one task to be
3146 * moved
3147 */
7fd0d2dd 3148 if (*imbalance < busiest_load_per_task) {
48f24c4d 3149 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3150 unsigned int imbn;
3151
3152small_imbalance:
3153 pwr_move = pwr_now = 0;
3154 imbn = 2;
3155 if (this_nr_running) {
3156 this_load_per_task /= this_nr_running;
3157 if (busiest_load_per_task > this_load_per_task)
3158 imbn = 1;
3159 } else
3160 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3161
dd41f596
IM
3162 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3163 busiest_load_per_task * imbn) {
2dd73a4f 3164 *imbalance = busiest_load_per_task;
1da177e4
LT
3165 return busiest;
3166 }
3167
3168 /*
3169 * OK, we don't have enough imbalance to justify moving tasks,
3170 * however we may be able to increase total CPU power used by
3171 * moving them.
3172 */
3173
5517d86b
ED
3174 pwr_now += busiest->__cpu_power *
3175 min(busiest_load_per_task, max_load);
3176 pwr_now += this->__cpu_power *
3177 min(this_load_per_task, this_load);
1da177e4
LT
3178 pwr_now /= SCHED_LOAD_SCALE;
3179
3180 /* Amount of load we'd subtract */
5517d86b
ED
3181 tmp = sg_div_cpu_power(busiest,
3182 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3183 if (max_load > tmp)
5517d86b 3184 pwr_move += busiest->__cpu_power *
2dd73a4f 3185 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3186
3187 /* Amount of load we'd add */
5517d86b 3188 if (max_load * busiest->__cpu_power <
33859f7f 3189 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3190 tmp = sg_div_cpu_power(this,
3191 max_load * busiest->__cpu_power);
1da177e4 3192 else
5517d86b
ED
3193 tmp = sg_div_cpu_power(this,
3194 busiest_load_per_task * SCHED_LOAD_SCALE);
3195 pwr_move += this->__cpu_power *
3196 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3197 pwr_move /= SCHED_LOAD_SCALE;
3198
3199 /* Move if we gain throughput */
7fd0d2dd
SS
3200 if (pwr_move > pwr_now)
3201 *imbalance = busiest_load_per_task;
1da177e4
LT
3202 }
3203
1da177e4
LT
3204 return busiest;
3205
3206out_balanced:
5c45bf27 3207#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3208 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3209 goto ret;
1da177e4 3210
5c45bf27
SS
3211 if (this == group_leader && group_leader != group_min) {
3212 *imbalance = min_load_per_task;
3213 return group_min;
3214 }
5c45bf27 3215#endif
783609c6 3216ret:
1da177e4
LT
3217 *imbalance = 0;
3218 return NULL;
3219}
3220
3221/*
3222 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3223 */
70b97a7f 3224static struct rq *
d15bcfdb 3225find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3226 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3227{
70b97a7f 3228 struct rq *busiest = NULL, *rq;
2dd73a4f 3229 unsigned long max_load = 0;
1da177e4
LT
3230 int i;
3231
3232 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3233 unsigned long wl;
0a2966b4
CL
3234
3235 if (!cpu_isset(i, *cpus))
3236 continue;
3237
48f24c4d 3238 rq = cpu_rq(i);
dd41f596 3239 wl = weighted_cpuload(i);
2dd73a4f 3240
dd41f596 3241 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3242 continue;
1da177e4 3243
dd41f596
IM
3244 if (wl > max_load) {
3245 max_load = wl;
48f24c4d 3246 busiest = rq;
1da177e4
LT
3247 }
3248 }
3249
3250 return busiest;
3251}
3252
77391d71
NP
3253/*
3254 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3255 * so long as it is large enough.
3256 */
3257#define MAX_PINNED_INTERVAL 512
3258
1da177e4
LT
3259/*
3260 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3261 * tasks if there is an imbalance.
1da177e4 3262 */
70b97a7f 3263static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3264 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3265 int *balance, cpumask_t *cpus)
1da177e4 3266{
43010659 3267 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3268 struct sched_group *group;
1da177e4 3269 unsigned long imbalance;
70b97a7f 3270 struct rq *busiest;
fe2eea3f 3271 unsigned long flags;
5969fe06 3272
7c16ec58
MT
3273 cpus_setall(*cpus);
3274
89c4710e
SS
3275 /*
3276 * When power savings policy is enabled for the parent domain, idle
3277 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3278 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3279 * portraying it as CPU_NOT_IDLE.
89c4710e 3280 */
d15bcfdb 3281 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3282 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3283 sd_idle = 1;
1da177e4 3284
2d72376b 3285 schedstat_inc(sd, lb_count[idle]);
1da177e4 3286
0a2966b4
CL
3287redo:
3288 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3289 cpus, balance);
783609c6 3290
06066714 3291 if (*balance == 0)
783609c6 3292 goto out_balanced;
783609c6 3293
1da177e4
LT
3294 if (!group) {
3295 schedstat_inc(sd, lb_nobusyg[idle]);
3296 goto out_balanced;
3297 }
3298
7c16ec58 3299 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3300 if (!busiest) {
3301 schedstat_inc(sd, lb_nobusyq[idle]);
3302 goto out_balanced;
3303 }
3304
db935dbd 3305 BUG_ON(busiest == this_rq);
1da177e4
LT
3306
3307 schedstat_add(sd, lb_imbalance[idle], imbalance);
3308
43010659 3309 ld_moved = 0;
1da177e4
LT
3310 if (busiest->nr_running > 1) {
3311 /*
3312 * Attempt to move tasks. If find_busiest_group has found
3313 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3314 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3315 * correctly treated as an imbalance.
3316 */
fe2eea3f 3317 local_irq_save(flags);
e17224bf 3318 double_rq_lock(this_rq, busiest);
43010659 3319 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3320 imbalance, sd, idle, &all_pinned);
e17224bf 3321 double_rq_unlock(this_rq, busiest);
fe2eea3f 3322 local_irq_restore(flags);
81026794 3323
46cb4b7c
SS
3324 /*
3325 * some other cpu did the load balance for us.
3326 */
43010659 3327 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3328 resched_cpu(this_cpu);
3329
81026794 3330 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3331 if (unlikely(all_pinned)) {
7c16ec58
MT
3332 cpu_clear(cpu_of(busiest), *cpus);
3333 if (!cpus_empty(*cpus))
0a2966b4 3334 goto redo;
81026794 3335 goto out_balanced;
0a2966b4 3336 }
1da177e4 3337 }
81026794 3338
43010659 3339 if (!ld_moved) {
1da177e4
LT
3340 schedstat_inc(sd, lb_failed[idle]);
3341 sd->nr_balance_failed++;
3342
3343 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3344
fe2eea3f 3345 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3346
3347 /* don't kick the migration_thread, if the curr
3348 * task on busiest cpu can't be moved to this_cpu
3349 */
3350 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3351 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3352 all_pinned = 1;
3353 goto out_one_pinned;
3354 }
3355
1da177e4
LT
3356 if (!busiest->active_balance) {
3357 busiest->active_balance = 1;
3358 busiest->push_cpu = this_cpu;
81026794 3359 active_balance = 1;
1da177e4 3360 }
fe2eea3f 3361 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3362 if (active_balance)
1da177e4
LT
3363 wake_up_process(busiest->migration_thread);
3364
3365 /*
3366 * We've kicked active balancing, reset the failure
3367 * counter.
3368 */
39507451 3369 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3370 }
81026794 3371 } else
1da177e4
LT
3372 sd->nr_balance_failed = 0;
3373
81026794 3374 if (likely(!active_balance)) {
1da177e4
LT
3375 /* We were unbalanced, so reset the balancing interval */
3376 sd->balance_interval = sd->min_interval;
81026794
NP
3377 } else {
3378 /*
3379 * If we've begun active balancing, start to back off. This
3380 * case may not be covered by the all_pinned logic if there
3381 * is only 1 task on the busy runqueue (because we don't call
3382 * move_tasks).
3383 */
3384 if (sd->balance_interval < sd->max_interval)
3385 sd->balance_interval *= 2;
1da177e4
LT
3386 }
3387
43010659 3388 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3389 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3390 return -1;
3391 return ld_moved;
1da177e4
LT
3392
3393out_balanced:
1da177e4
LT
3394 schedstat_inc(sd, lb_balanced[idle]);
3395
16cfb1c0 3396 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3397
3398out_one_pinned:
1da177e4 3399 /* tune up the balancing interval */
77391d71
NP
3400 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3401 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3402 sd->balance_interval *= 2;
3403
48f24c4d 3404 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3405 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
6363ca57
IM
3406 return -1;
3407 return 0;
1da177e4
LT
3408}
3409
3410/*
3411 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3412 * tasks if there is an imbalance.
3413 *
d15bcfdb 3414 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3415 * this_rq is locked.
3416 */
48f24c4d 3417static int
7c16ec58
MT
3418load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3419 cpumask_t *cpus)
1da177e4
LT
3420{
3421 struct sched_group *group;
70b97a7f 3422 struct rq *busiest = NULL;
1da177e4 3423 unsigned long imbalance;
43010659 3424 int ld_moved = 0;
5969fe06 3425 int sd_idle = 0;
969bb4e4 3426 int all_pinned = 0;
7c16ec58
MT
3427
3428 cpus_setall(*cpus);
5969fe06 3429
89c4710e
SS
3430 /*
3431 * When power savings policy is enabled for the parent domain, idle
3432 * sibling can pick up load irrespective of busy siblings. In this case,
3433 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3434 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3435 */
3436 if (sd->flags & SD_SHARE_CPUPOWER &&
3437 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3438 sd_idle = 1;
1da177e4 3439
2d72376b 3440 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3441redo:
d15bcfdb 3442 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3443 &sd_idle, cpus, NULL);
1da177e4 3444 if (!group) {
d15bcfdb 3445 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3446 goto out_balanced;
1da177e4
LT
3447 }
3448
7c16ec58 3449 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3450 if (!busiest) {
d15bcfdb 3451 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3452 goto out_balanced;
1da177e4
LT
3453 }
3454
db935dbd
NP
3455 BUG_ON(busiest == this_rq);
3456
d15bcfdb 3457 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3458
43010659 3459 ld_moved = 0;
d6d5cfaf
NP
3460 if (busiest->nr_running > 1) {
3461 /* Attempt to move tasks */
3462 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3463 /* this_rq->clock is already updated */
3464 update_rq_clock(busiest);
43010659 3465 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3466 imbalance, sd, CPU_NEWLY_IDLE,
3467 &all_pinned);
d6d5cfaf 3468 spin_unlock(&busiest->lock);
0a2966b4 3469
969bb4e4 3470 if (unlikely(all_pinned)) {
7c16ec58
MT
3471 cpu_clear(cpu_of(busiest), *cpus);
3472 if (!cpus_empty(*cpus))
0a2966b4
CL
3473 goto redo;
3474 }
d6d5cfaf
NP
3475 }
3476
43010659 3477 if (!ld_moved) {
d15bcfdb 3478 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3479 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3480 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3481 return -1;
3482 } else
16cfb1c0 3483 sd->nr_balance_failed = 0;
1da177e4 3484
43010659 3485 return ld_moved;
16cfb1c0
NP
3486
3487out_balanced:
d15bcfdb 3488 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3489 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3490 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3491 return -1;
16cfb1c0 3492 sd->nr_balance_failed = 0;
48f24c4d 3493
16cfb1c0 3494 return 0;
1da177e4
LT
3495}
3496
3497/*
3498 * idle_balance is called by schedule() if this_cpu is about to become
3499 * idle. Attempts to pull tasks from other CPUs.
3500 */
70b97a7f 3501static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3502{
3503 struct sched_domain *sd;
dd41f596
IM
3504 int pulled_task = -1;
3505 unsigned long next_balance = jiffies + HZ;
7c16ec58 3506 cpumask_t tmpmask;
1da177e4
LT
3507
3508 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3509 unsigned long interval;
3510
3511 if (!(sd->flags & SD_LOAD_BALANCE))
3512 continue;
3513
3514 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3515 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3516 pulled_task = load_balance_newidle(this_cpu, this_rq,
3517 sd, &tmpmask);
92c4ca5c
CL
3518
3519 interval = msecs_to_jiffies(sd->balance_interval);
3520 if (time_after(next_balance, sd->last_balance + interval))
3521 next_balance = sd->last_balance + interval;
3522 if (pulled_task)
3523 break;
1da177e4 3524 }
dd41f596 3525 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3526 /*
3527 * We are going idle. next_balance may be set based on
3528 * a busy processor. So reset next_balance.
3529 */
3530 this_rq->next_balance = next_balance;
dd41f596 3531 }
1da177e4
LT
3532}
3533
3534/*
3535 * active_load_balance is run by migration threads. It pushes running tasks
3536 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3537 * running on each physical CPU where possible, and avoids physical /
3538 * logical imbalances.
3539 *
3540 * Called with busiest_rq locked.
3541 */
70b97a7f 3542static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3543{
39507451 3544 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3545 struct sched_domain *sd;
3546 struct rq *target_rq;
39507451 3547
48f24c4d 3548 /* Is there any task to move? */
39507451 3549 if (busiest_rq->nr_running <= 1)
39507451
NP
3550 return;
3551
3552 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3553
3554 /*
39507451 3555 * This condition is "impossible", if it occurs
41a2d6cf 3556 * we need to fix it. Originally reported by
39507451 3557 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3558 */
39507451 3559 BUG_ON(busiest_rq == target_rq);
1da177e4 3560
39507451
NP
3561 /* move a task from busiest_rq to target_rq */
3562 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3563 update_rq_clock(busiest_rq);
3564 update_rq_clock(target_rq);
39507451
NP
3565
3566 /* Search for an sd spanning us and the target CPU. */
c96d145e 3567 for_each_domain(target_cpu, sd) {
39507451 3568 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3569 cpu_isset(busiest_cpu, sd->span))
39507451 3570 break;
c96d145e 3571 }
39507451 3572
48f24c4d 3573 if (likely(sd)) {
2d72376b 3574 schedstat_inc(sd, alb_count);
39507451 3575
43010659
PW
3576 if (move_one_task(target_rq, target_cpu, busiest_rq,
3577 sd, CPU_IDLE))
48f24c4d
IM
3578 schedstat_inc(sd, alb_pushed);
3579 else
3580 schedstat_inc(sd, alb_failed);
3581 }
39507451 3582 spin_unlock(&target_rq->lock);
1da177e4
LT
3583}
3584
46cb4b7c
SS
3585#ifdef CONFIG_NO_HZ
3586static struct {
3587 atomic_t load_balancer;
41a2d6cf 3588 cpumask_t cpu_mask;
46cb4b7c
SS
3589} nohz ____cacheline_aligned = {
3590 .load_balancer = ATOMIC_INIT(-1),
3591 .cpu_mask = CPU_MASK_NONE,
3592};
3593
7835b98b 3594/*
46cb4b7c
SS
3595 * This routine will try to nominate the ilb (idle load balancing)
3596 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3597 * load balancing on behalf of all those cpus. If all the cpus in the system
3598 * go into this tickless mode, then there will be no ilb owner (as there is
3599 * no need for one) and all the cpus will sleep till the next wakeup event
3600 * arrives...
3601 *
3602 * For the ilb owner, tick is not stopped. And this tick will be used
3603 * for idle load balancing. ilb owner will still be part of
3604 * nohz.cpu_mask..
7835b98b 3605 *
46cb4b7c
SS
3606 * While stopping the tick, this cpu will become the ilb owner if there
3607 * is no other owner. And will be the owner till that cpu becomes busy
3608 * or if all cpus in the system stop their ticks at which point
3609 * there is no need for ilb owner.
3610 *
3611 * When the ilb owner becomes busy, it nominates another owner, during the
3612 * next busy scheduler_tick()
3613 */
3614int select_nohz_load_balancer(int stop_tick)
3615{
3616 int cpu = smp_processor_id();
3617
3618 if (stop_tick) {
3619 cpu_set(cpu, nohz.cpu_mask);
3620 cpu_rq(cpu)->in_nohz_recently = 1;
3621
3622 /*
3623 * If we are going offline and still the leader, give up!
3624 */
3625 if (cpu_is_offline(cpu) &&
3626 atomic_read(&nohz.load_balancer) == cpu) {
3627 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3628 BUG();
3629 return 0;
3630 }
3631
3632 /* time for ilb owner also to sleep */
3633 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3634 if (atomic_read(&nohz.load_balancer) == cpu)
3635 atomic_set(&nohz.load_balancer, -1);
3636 return 0;
3637 }
3638
3639 if (atomic_read(&nohz.load_balancer) == -1) {
3640 /* make me the ilb owner */
3641 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3642 return 1;
3643 } else if (atomic_read(&nohz.load_balancer) == cpu)
3644 return 1;
3645 } else {
3646 if (!cpu_isset(cpu, nohz.cpu_mask))
3647 return 0;
3648
3649 cpu_clear(cpu, nohz.cpu_mask);
3650
3651 if (atomic_read(&nohz.load_balancer) == cpu)
3652 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3653 BUG();
3654 }
3655 return 0;
3656}
3657#endif
3658
3659static DEFINE_SPINLOCK(balancing);
3660
3661/*
7835b98b
CL
3662 * It checks each scheduling domain to see if it is due to be balanced,
3663 * and initiates a balancing operation if so.
3664 *
3665 * Balancing parameters are set up in arch_init_sched_domains.
3666 */
a9957449 3667static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3668{
46cb4b7c
SS
3669 int balance = 1;
3670 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3671 unsigned long interval;
3672 struct sched_domain *sd;
46cb4b7c 3673 /* Earliest time when we have to do rebalance again */
c9819f45 3674 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3675 int update_next_balance = 0;
d07355f5 3676 int need_serialize;
7c16ec58 3677 cpumask_t tmp;
1da177e4 3678
46cb4b7c 3679 for_each_domain(cpu, sd) {
1da177e4
LT
3680 if (!(sd->flags & SD_LOAD_BALANCE))
3681 continue;
3682
3683 interval = sd->balance_interval;
d15bcfdb 3684 if (idle != CPU_IDLE)
1da177e4
LT
3685 interval *= sd->busy_factor;
3686
3687 /* scale ms to jiffies */
3688 interval = msecs_to_jiffies(interval);
3689 if (unlikely(!interval))
3690 interval = 1;
dd41f596
IM
3691 if (interval > HZ*NR_CPUS/10)
3692 interval = HZ*NR_CPUS/10;
3693
d07355f5 3694 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3695
d07355f5 3696 if (need_serialize) {
08c183f3
CL
3697 if (!spin_trylock(&balancing))
3698 goto out;
3699 }
3700
c9819f45 3701 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3702 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3703 /*
3704 * We've pulled tasks over so either we're no
5969fe06
NP
3705 * longer idle, or one of our SMT siblings is
3706 * not idle.
3707 */
d15bcfdb 3708 idle = CPU_NOT_IDLE;
1da177e4 3709 }
1bd77f2d 3710 sd->last_balance = jiffies;
1da177e4 3711 }
d07355f5 3712 if (need_serialize)
08c183f3
CL
3713 spin_unlock(&balancing);
3714out:
f549da84 3715 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3716 next_balance = sd->last_balance + interval;
f549da84
SS
3717 update_next_balance = 1;
3718 }
783609c6
SS
3719
3720 /*
3721 * Stop the load balance at this level. There is another
3722 * CPU in our sched group which is doing load balancing more
3723 * actively.
3724 */
3725 if (!balance)
3726 break;
1da177e4 3727 }
f549da84
SS
3728
3729 /*
3730 * next_balance will be updated only when there is a need.
3731 * When the cpu is attached to null domain for ex, it will not be
3732 * updated.
3733 */
3734 if (likely(update_next_balance))
3735 rq->next_balance = next_balance;
46cb4b7c
SS
3736}
3737
3738/*
3739 * run_rebalance_domains is triggered when needed from the scheduler tick.
3740 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3741 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3742 */
3743static void run_rebalance_domains(struct softirq_action *h)
3744{
dd41f596
IM
3745 int this_cpu = smp_processor_id();
3746 struct rq *this_rq = cpu_rq(this_cpu);
3747 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3748 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3749
dd41f596 3750 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3751
3752#ifdef CONFIG_NO_HZ
3753 /*
3754 * If this cpu is the owner for idle load balancing, then do the
3755 * balancing on behalf of the other idle cpus whose ticks are
3756 * stopped.
3757 */
dd41f596
IM
3758 if (this_rq->idle_at_tick &&
3759 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3760 cpumask_t cpus = nohz.cpu_mask;
3761 struct rq *rq;
3762 int balance_cpu;
3763
dd41f596 3764 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3765 for_each_cpu_mask(balance_cpu, cpus) {
3766 /*
3767 * If this cpu gets work to do, stop the load balancing
3768 * work being done for other cpus. Next load
3769 * balancing owner will pick it up.
3770 */
3771 if (need_resched())
3772 break;
3773
de0cf899 3774 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3775
3776 rq = cpu_rq(balance_cpu);
dd41f596
IM
3777 if (time_after(this_rq->next_balance, rq->next_balance))
3778 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3779 }
3780 }
3781#endif
3782}
3783
3784/*
3785 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3786 *
3787 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3788 * idle load balancing owner or decide to stop the periodic load balancing,
3789 * if the whole system is idle.
3790 */
dd41f596 3791static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3792{
46cb4b7c
SS
3793#ifdef CONFIG_NO_HZ
3794 /*
3795 * If we were in the nohz mode recently and busy at the current
3796 * scheduler tick, then check if we need to nominate new idle
3797 * load balancer.
3798 */
3799 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3800 rq->in_nohz_recently = 0;
3801
3802 if (atomic_read(&nohz.load_balancer) == cpu) {
3803 cpu_clear(cpu, nohz.cpu_mask);
3804 atomic_set(&nohz.load_balancer, -1);
3805 }
3806
3807 if (atomic_read(&nohz.load_balancer) == -1) {
3808 /*
3809 * simple selection for now: Nominate the
3810 * first cpu in the nohz list to be the next
3811 * ilb owner.
3812 *
3813 * TBD: Traverse the sched domains and nominate
3814 * the nearest cpu in the nohz.cpu_mask.
3815 */
3816 int ilb = first_cpu(nohz.cpu_mask);
3817
434d53b0 3818 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3819 resched_cpu(ilb);
3820 }
3821 }
3822
3823 /*
3824 * If this cpu is idle and doing idle load balancing for all the
3825 * cpus with ticks stopped, is it time for that to stop?
3826 */
3827 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3828 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3829 resched_cpu(cpu);
3830 return;
3831 }
3832
3833 /*
3834 * If this cpu is idle and the idle load balancing is done by
3835 * someone else, then no need raise the SCHED_SOFTIRQ
3836 */
3837 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3838 cpu_isset(cpu, nohz.cpu_mask))
3839 return;
3840#endif
3841 if (time_after_eq(jiffies, rq->next_balance))
3842 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3843}
dd41f596
IM
3844
3845#else /* CONFIG_SMP */
3846
1da177e4
LT
3847/*
3848 * on UP we do not need to balance between CPUs:
3849 */
70b97a7f 3850static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3851{
3852}
dd41f596 3853
1da177e4
LT
3854#endif
3855
1da177e4
LT
3856DEFINE_PER_CPU(struct kernel_stat, kstat);
3857
3858EXPORT_PER_CPU_SYMBOL(kstat);
3859
3860/*
41b86e9c
IM
3861 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3862 * that have not yet been banked in case the task is currently running.
1da177e4 3863 */
41b86e9c 3864unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3865{
1da177e4 3866 unsigned long flags;
41b86e9c
IM
3867 u64 ns, delta_exec;
3868 struct rq *rq;
48f24c4d 3869
41b86e9c
IM
3870 rq = task_rq_lock(p, &flags);
3871 ns = p->se.sum_exec_runtime;
051a1d1a 3872 if (task_current(rq, p)) {
a8e504d2
IM
3873 update_rq_clock(rq);
3874 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3875 if ((s64)delta_exec > 0)
3876 ns += delta_exec;
3877 }
3878 task_rq_unlock(rq, &flags);
48f24c4d 3879
1da177e4
LT
3880 return ns;
3881}
3882
1da177e4
LT
3883/*
3884 * Account user cpu time to a process.
3885 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3886 * @cputime: the cpu time spent in user space since the last update
3887 */
3888void account_user_time(struct task_struct *p, cputime_t cputime)
3889{
3890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3891 cputime64_t tmp;
3892
3893 p->utime = cputime_add(p->utime, cputime);
3894
3895 /* Add user time to cpustat. */
3896 tmp = cputime_to_cputime64(cputime);
3897 if (TASK_NICE(p) > 0)
3898 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3899 else
3900 cpustat->user = cputime64_add(cpustat->user, tmp);
3901}
3902
94886b84
LV
3903/*
3904 * Account guest cpu time to a process.
3905 * @p: the process that the cpu time gets accounted to
3906 * @cputime: the cpu time spent in virtual machine since the last update
3907 */
f7402e03 3908static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3909{
3910 cputime64_t tmp;
3911 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3912
3913 tmp = cputime_to_cputime64(cputime);
3914
3915 p->utime = cputime_add(p->utime, cputime);
3916 p->gtime = cputime_add(p->gtime, cputime);
3917
3918 cpustat->user = cputime64_add(cpustat->user, tmp);
3919 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3920}
3921
c66f08be
MN
3922/*
3923 * Account scaled user cpu time to a process.
3924 * @p: the process that the cpu time gets accounted to
3925 * @cputime: the cpu time spent in user space since the last update
3926 */
3927void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3928{
3929 p->utimescaled = cputime_add(p->utimescaled, cputime);
3930}
3931
1da177e4
LT
3932/*
3933 * Account system cpu time to a process.
3934 * @p: the process that the cpu time gets accounted to
3935 * @hardirq_offset: the offset to subtract from hardirq_count()
3936 * @cputime: the cpu time spent in kernel space since the last update
3937 */
3938void account_system_time(struct task_struct *p, int hardirq_offset,
3939 cputime_t cputime)
3940{
3941 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3942 struct rq *rq = this_rq();
1da177e4
LT
3943 cputime64_t tmp;
3944
983ed7a6
HH
3945 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3946 account_guest_time(p, cputime);
3947 return;
3948 }
94886b84 3949
1da177e4
LT
3950 p->stime = cputime_add(p->stime, cputime);
3951
3952 /* Add system time to cpustat. */
3953 tmp = cputime_to_cputime64(cputime);
3954 if (hardirq_count() - hardirq_offset)
3955 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3956 else if (softirq_count())
3957 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3958 else if (p != rq->idle)
1da177e4 3959 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3960 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3961 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3962 else
3963 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3964 /* Account for system time used */
3965 acct_update_integrals(p);
1da177e4
LT
3966}
3967
c66f08be
MN
3968/*
3969 * Account scaled system cpu time to a process.
3970 * @p: the process that the cpu time gets accounted to
3971 * @hardirq_offset: the offset to subtract from hardirq_count()
3972 * @cputime: the cpu time spent in kernel space since the last update
3973 */
3974void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3975{
3976 p->stimescaled = cputime_add(p->stimescaled, cputime);
3977}
3978
1da177e4
LT
3979/*
3980 * Account for involuntary wait time.
3981 * @p: the process from which the cpu time has been stolen
3982 * @steal: the cpu time spent in involuntary wait
3983 */
3984void account_steal_time(struct task_struct *p, cputime_t steal)
3985{
3986 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3987 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3988 struct rq *rq = this_rq();
1da177e4
LT
3989
3990 if (p == rq->idle) {
3991 p->stime = cputime_add(p->stime, steal);
3992 if (atomic_read(&rq->nr_iowait) > 0)
3993 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3994 else
3995 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3996 } else
1da177e4
LT
3997 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3998}
3999
7835b98b
CL
4000/*
4001 * This function gets called by the timer code, with HZ frequency.
4002 * We call it with interrupts disabled.
4003 *
4004 * It also gets called by the fork code, when changing the parent's
4005 * timeslices.
4006 */
4007void scheduler_tick(void)
4008{
7835b98b
CL
4009 int cpu = smp_processor_id();
4010 struct rq *rq = cpu_rq(cpu);
dd41f596 4011 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4012
4013 sched_clock_tick();
dd41f596
IM
4014
4015 spin_lock(&rq->lock);
3e51f33f 4016 update_rq_clock(rq);
f1a438d8 4017 update_cpu_load(rq);
fa85ae24 4018 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4019 spin_unlock(&rq->lock);
7835b98b 4020
e418e1c2 4021#ifdef CONFIG_SMP
dd41f596
IM
4022 rq->idle_at_tick = idle_cpu(cpu);
4023 trigger_load_balance(rq, cpu);
e418e1c2 4024#endif
1da177e4
LT
4025}
4026
1da177e4
LT
4027#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4028
43627582 4029void __kprobes add_preempt_count(int val)
1da177e4
LT
4030{
4031 /*
4032 * Underflow?
4033 */
9a11b49a
IM
4034 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4035 return;
1da177e4
LT
4036 preempt_count() += val;
4037 /*
4038 * Spinlock count overflowing soon?
4039 */
33859f7f
MOS
4040 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4041 PREEMPT_MASK - 10);
1da177e4
LT
4042}
4043EXPORT_SYMBOL(add_preempt_count);
4044
43627582 4045void __kprobes sub_preempt_count(int val)
1da177e4
LT
4046{
4047 /*
4048 * Underflow?
4049 */
9a11b49a
IM
4050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4051 return;
1da177e4
LT
4052 /*
4053 * Is the spinlock portion underflowing?
4054 */
9a11b49a
IM
4055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4056 !(preempt_count() & PREEMPT_MASK)))
4057 return;
4058
1da177e4
LT
4059 preempt_count() -= val;
4060}
4061EXPORT_SYMBOL(sub_preempt_count);
4062
4063#endif
4064
4065/*
dd41f596 4066 * Print scheduling while atomic bug:
1da177e4 4067 */
dd41f596 4068static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4069{
838225b4
SS
4070 struct pt_regs *regs = get_irq_regs();
4071
4072 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4073 prev->comm, prev->pid, preempt_count());
4074
dd41f596 4075 debug_show_held_locks(prev);
e21f5b15 4076 print_modules();
dd41f596
IM
4077 if (irqs_disabled())
4078 print_irqtrace_events(prev);
838225b4
SS
4079
4080 if (regs)
4081 show_regs(regs);
4082 else
4083 dump_stack();
dd41f596 4084}
1da177e4 4085
dd41f596
IM
4086/*
4087 * Various schedule()-time debugging checks and statistics:
4088 */
4089static inline void schedule_debug(struct task_struct *prev)
4090{
1da177e4 4091 /*
41a2d6cf 4092 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4093 * schedule() atomically, we ignore that path for now.
4094 * Otherwise, whine if we are scheduling when we should not be.
4095 */
3f33a7ce 4096 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4097 __schedule_bug(prev);
4098
1da177e4
LT
4099 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4100
2d72376b 4101 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4102#ifdef CONFIG_SCHEDSTATS
4103 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4104 schedstat_inc(this_rq(), bkl_count);
4105 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4106 }
4107#endif
dd41f596
IM
4108}
4109
4110/*
4111 * Pick up the highest-prio task:
4112 */
4113static inline struct task_struct *
ff95f3df 4114pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4115{
5522d5d5 4116 const struct sched_class *class;
dd41f596 4117 struct task_struct *p;
1da177e4
LT
4118
4119 /*
dd41f596
IM
4120 * Optimization: we know that if all tasks are in
4121 * the fair class we can call that function directly:
1da177e4 4122 */
dd41f596 4123 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4124 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4125 if (likely(p))
4126 return p;
1da177e4
LT
4127 }
4128
dd41f596
IM
4129 class = sched_class_highest;
4130 for ( ; ; ) {
fb8d4724 4131 p = class->pick_next_task(rq);
dd41f596
IM
4132 if (p)
4133 return p;
4134 /*
4135 * Will never be NULL as the idle class always
4136 * returns a non-NULL p:
4137 */
4138 class = class->next;
4139 }
4140}
1da177e4 4141
dd41f596
IM
4142/*
4143 * schedule() is the main scheduler function.
4144 */
4145asmlinkage void __sched schedule(void)
4146{
4147 struct task_struct *prev, *next;
67ca7bde 4148 unsigned long *switch_count;
dd41f596 4149 struct rq *rq;
f333fdc9 4150 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4151
4152need_resched:
4153 preempt_disable();
4154 cpu = smp_processor_id();
4155 rq = cpu_rq(cpu);
4156 rcu_qsctr_inc(cpu);
4157 prev = rq->curr;
4158 switch_count = &prev->nivcsw;
4159
4160 release_kernel_lock(prev);
4161need_resched_nonpreemptible:
4162
4163 schedule_debug(prev);
1da177e4 4164
f333fdc9
MG
4165 if (hrtick)
4166 hrtick_clear(rq);
8f4d37ec 4167
1e819950
IM
4168 /*
4169 * Do the rq-clock update outside the rq lock:
4170 */
4171 local_irq_disable();
3e51f33f 4172 update_rq_clock(rq);
1e819950
IM
4173 spin_lock(&rq->lock);
4174 clear_tsk_need_resched(prev);
1da177e4 4175
1da177e4 4176 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4177 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4178 signal_pending(prev))) {
1da177e4 4179 prev->state = TASK_RUNNING;
dd41f596 4180 } else {
2e1cb74a 4181 deactivate_task(rq, prev, 1);
1da177e4 4182 }
dd41f596 4183 switch_count = &prev->nvcsw;
1da177e4
LT
4184 }
4185
9a897c5a
SR
4186#ifdef CONFIG_SMP
4187 if (prev->sched_class->pre_schedule)
4188 prev->sched_class->pre_schedule(rq, prev);
4189#endif
f65eda4f 4190
dd41f596 4191 if (unlikely(!rq->nr_running))
1da177e4 4192 idle_balance(cpu, rq);
1da177e4 4193
31ee529c 4194 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4195 next = pick_next_task(rq, prev);
1da177e4 4196
1da177e4 4197 if (likely(prev != next)) {
673a90a1
DS
4198 sched_info_switch(prev, next);
4199
1da177e4
LT
4200 rq->nr_switches++;
4201 rq->curr = next;
4202 ++*switch_count;
4203
dd41f596 4204 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4205 /*
4206 * the context switch might have flipped the stack from under
4207 * us, hence refresh the local variables.
4208 */
4209 cpu = smp_processor_id();
4210 rq = cpu_rq(cpu);
1da177e4
LT
4211 } else
4212 spin_unlock_irq(&rq->lock);
4213
f333fdc9
MG
4214 if (hrtick)
4215 hrtick_set(rq);
8f4d37ec
PZ
4216
4217 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4218 goto need_resched_nonpreemptible;
8f4d37ec 4219
1da177e4
LT
4220 preempt_enable_no_resched();
4221 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4222 goto need_resched;
4223}
1da177e4
LT
4224EXPORT_SYMBOL(schedule);
4225
4226#ifdef CONFIG_PREEMPT
4227/*
2ed6e34f 4228 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4229 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4230 * occur there and call schedule directly.
4231 */
4232asmlinkage void __sched preempt_schedule(void)
4233{
4234 struct thread_info *ti = current_thread_info();
6478d880 4235
1da177e4
LT
4236 /*
4237 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4238 * we do not want to preempt the current task. Just return..
1da177e4 4239 */
beed33a8 4240 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4241 return;
4242
3a5c359a
AK
4243 do {
4244 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4245 schedule();
3a5c359a 4246 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4247
3a5c359a
AK
4248 /*
4249 * Check again in case we missed a preemption opportunity
4250 * between schedule and now.
4251 */
4252 barrier();
4253 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4254}
1da177e4
LT
4255EXPORT_SYMBOL(preempt_schedule);
4256
4257/*
2ed6e34f 4258 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4259 * off of irq context.
4260 * Note, that this is called and return with irqs disabled. This will
4261 * protect us against recursive calling from irq.
4262 */
4263asmlinkage void __sched preempt_schedule_irq(void)
4264{
4265 struct thread_info *ti = current_thread_info();
6478d880 4266
2ed6e34f 4267 /* Catch callers which need to be fixed */
1da177e4
LT
4268 BUG_ON(ti->preempt_count || !irqs_disabled());
4269
3a5c359a
AK
4270 do {
4271 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4272 local_irq_enable();
4273 schedule();
4274 local_irq_disable();
3a5c359a 4275 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4276
3a5c359a
AK
4277 /*
4278 * Check again in case we missed a preemption opportunity
4279 * between schedule and now.
4280 */
4281 barrier();
4282 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4283}
4284
4285#endif /* CONFIG_PREEMPT */
4286
95cdf3b7
IM
4287int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4288 void *key)
1da177e4 4289{
48f24c4d 4290 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4291}
1da177e4
LT
4292EXPORT_SYMBOL(default_wake_function);
4293
4294/*
41a2d6cf
IM
4295 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4296 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4297 * number) then we wake all the non-exclusive tasks and one exclusive task.
4298 *
4299 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4300 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4301 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4302 */
4303static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4304 int nr_exclusive, int sync, void *key)
4305{
2e45874c 4306 wait_queue_t *curr, *next;
1da177e4 4307
2e45874c 4308 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4309 unsigned flags = curr->flags;
4310
1da177e4 4311 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4312 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4313 break;
4314 }
4315}
4316
4317/**
4318 * __wake_up - wake up threads blocked on a waitqueue.
4319 * @q: the waitqueue
4320 * @mode: which threads
4321 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4322 * @key: is directly passed to the wakeup function
1da177e4 4323 */
7ad5b3a5 4324void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4325 int nr_exclusive, void *key)
1da177e4
LT
4326{
4327 unsigned long flags;
4328
4329 spin_lock_irqsave(&q->lock, flags);
4330 __wake_up_common(q, mode, nr_exclusive, 0, key);
4331 spin_unlock_irqrestore(&q->lock, flags);
4332}
1da177e4
LT
4333EXPORT_SYMBOL(__wake_up);
4334
4335/*
4336 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4337 */
7ad5b3a5 4338void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4339{
4340 __wake_up_common(q, mode, 1, 0, NULL);
4341}
4342
4343/**
67be2dd1 4344 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4345 * @q: the waitqueue
4346 * @mode: which threads
4347 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4348 *
4349 * The sync wakeup differs that the waker knows that it will schedule
4350 * away soon, so while the target thread will be woken up, it will not
4351 * be migrated to another CPU - ie. the two threads are 'synchronized'
4352 * with each other. This can prevent needless bouncing between CPUs.
4353 *
4354 * On UP it can prevent extra preemption.
4355 */
7ad5b3a5 4356void
95cdf3b7 4357__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4358{
4359 unsigned long flags;
4360 int sync = 1;
4361
4362 if (unlikely(!q))
4363 return;
4364
4365 if (unlikely(!nr_exclusive))
4366 sync = 0;
4367
4368 spin_lock_irqsave(&q->lock, flags);
4369 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4370 spin_unlock_irqrestore(&q->lock, flags);
4371}
4372EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4373
b15136e9 4374void complete(struct completion *x)
1da177e4
LT
4375{
4376 unsigned long flags;
4377
4378 spin_lock_irqsave(&x->wait.lock, flags);
4379 x->done++;
d9514f6c 4380 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4381 spin_unlock_irqrestore(&x->wait.lock, flags);
4382}
4383EXPORT_SYMBOL(complete);
4384
b15136e9 4385void complete_all(struct completion *x)
1da177e4
LT
4386{
4387 unsigned long flags;
4388
4389 spin_lock_irqsave(&x->wait.lock, flags);
4390 x->done += UINT_MAX/2;
d9514f6c 4391 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4392 spin_unlock_irqrestore(&x->wait.lock, flags);
4393}
4394EXPORT_SYMBOL(complete_all);
4395
8cbbe86d
AK
4396static inline long __sched
4397do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4398{
1da177e4
LT
4399 if (!x->done) {
4400 DECLARE_WAITQUEUE(wait, current);
4401
4402 wait.flags |= WQ_FLAG_EXCLUSIVE;
4403 __add_wait_queue_tail(&x->wait, &wait);
4404 do {
009e577e
MW
4405 if ((state == TASK_INTERRUPTIBLE &&
4406 signal_pending(current)) ||
4407 (state == TASK_KILLABLE &&
4408 fatal_signal_pending(current))) {
8cbbe86d
AK
4409 __remove_wait_queue(&x->wait, &wait);
4410 return -ERESTARTSYS;
4411 }
4412 __set_current_state(state);
1da177e4
LT
4413 spin_unlock_irq(&x->wait.lock);
4414 timeout = schedule_timeout(timeout);
4415 spin_lock_irq(&x->wait.lock);
4416 if (!timeout) {
4417 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4418 return timeout;
1da177e4
LT
4419 }
4420 } while (!x->done);
4421 __remove_wait_queue(&x->wait, &wait);
4422 }
4423 x->done--;
1da177e4
LT
4424 return timeout;
4425}
1da177e4 4426
8cbbe86d
AK
4427static long __sched
4428wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4429{
1da177e4
LT
4430 might_sleep();
4431
4432 spin_lock_irq(&x->wait.lock);
8cbbe86d 4433 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4434 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4435 return timeout;
4436}
1da177e4 4437
b15136e9 4438void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4439{
4440 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4441}
8cbbe86d 4442EXPORT_SYMBOL(wait_for_completion);
1da177e4 4443
b15136e9 4444unsigned long __sched
8cbbe86d 4445wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4446{
8cbbe86d 4447 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4448}
8cbbe86d 4449EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4450
8cbbe86d 4451int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4452{
51e97990
AK
4453 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4454 if (t == -ERESTARTSYS)
4455 return t;
4456 return 0;
0fec171c 4457}
8cbbe86d 4458EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4459
b15136e9 4460unsigned long __sched
8cbbe86d
AK
4461wait_for_completion_interruptible_timeout(struct completion *x,
4462 unsigned long timeout)
0fec171c 4463{
8cbbe86d 4464 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4465}
8cbbe86d 4466EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4467
009e577e
MW
4468int __sched wait_for_completion_killable(struct completion *x)
4469{
4470 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4471 if (t == -ERESTARTSYS)
4472 return t;
4473 return 0;
4474}
4475EXPORT_SYMBOL(wait_for_completion_killable);
4476
8cbbe86d
AK
4477static long __sched
4478sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4479{
0fec171c
IM
4480 unsigned long flags;
4481 wait_queue_t wait;
4482
4483 init_waitqueue_entry(&wait, current);
1da177e4 4484
8cbbe86d 4485 __set_current_state(state);
1da177e4 4486
8cbbe86d
AK
4487 spin_lock_irqsave(&q->lock, flags);
4488 __add_wait_queue(q, &wait);
4489 spin_unlock(&q->lock);
4490 timeout = schedule_timeout(timeout);
4491 spin_lock_irq(&q->lock);
4492 __remove_wait_queue(q, &wait);
4493 spin_unlock_irqrestore(&q->lock, flags);
4494
4495 return timeout;
4496}
4497
4498void __sched interruptible_sleep_on(wait_queue_head_t *q)
4499{
4500 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4501}
1da177e4
LT
4502EXPORT_SYMBOL(interruptible_sleep_on);
4503
0fec171c 4504long __sched
95cdf3b7 4505interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4506{
8cbbe86d 4507 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4508}
1da177e4
LT
4509EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4510
0fec171c 4511void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4512{
8cbbe86d 4513 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4514}
1da177e4
LT
4515EXPORT_SYMBOL(sleep_on);
4516
0fec171c 4517long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4518{
8cbbe86d 4519 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4520}
1da177e4
LT
4521EXPORT_SYMBOL(sleep_on_timeout);
4522
b29739f9
IM
4523#ifdef CONFIG_RT_MUTEXES
4524
4525/*
4526 * rt_mutex_setprio - set the current priority of a task
4527 * @p: task
4528 * @prio: prio value (kernel-internal form)
4529 *
4530 * This function changes the 'effective' priority of a task. It does
4531 * not touch ->normal_prio like __setscheduler().
4532 *
4533 * Used by the rt_mutex code to implement priority inheritance logic.
4534 */
36c8b586 4535void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4536{
4537 unsigned long flags;
83b699ed 4538 int oldprio, on_rq, running;
70b97a7f 4539 struct rq *rq;
cb469845 4540 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4541
4542 BUG_ON(prio < 0 || prio > MAX_PRIO);
4543
4544 rq = task_rq_lock(p, &flags);
a8e504d2 4545 update_rq_clock(rq);
b29739f9 4546
d5f9f942 4547 oldprio = p->prio;
dd41f596 4548 on_rq = p->se.on_rq;
051a1d1a 4549 running = task_current(rq, p);
0e1f3483 4550 if (on_rq)
69be72c1 4551 dequeue_task(rq, p, 0);
0e1f3483
HS
4552 if (running)
4553 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4554
4555 if (rt_prio(prio))
4556 p->sched_class = &rt_sched_class;
4557 else
4558 p->sched_class = &fair_sched_class;
4559
b29739f9
IM
4560 p->prio = prio;
4561
0e1f3483
HS
4562 if (running)
4563 p->sched_class->set_curr_task(rq);
dd41f596 4564 if (on_rq) {
8159f87e 4565 enqueue_task(rq, p, 0);
cb469845
SR
4566
4567 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4568 }
4569 task_rq_unlock(rq, &flags);
4570}
4571
4572#endif
4573
36c8b586 4574void set_user_nice(struct task_struct *p, long nice)
1da177e4 4575{
dd41f596 4576 int old_prio, delta, on_rq;
1da177e4 4577 unsigned long flags;
70b97a7f 4578 struct rq *rq;
1da177e4
LT
4579
4580 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4581 return;
4582 /*
4583 * We have to be careful, if called from sys_setpriority(),
4584 * the task might be in the middle of scheduling on another CPU.
4585 */
4586 rq = task_rq_lock(p, &flags);
a8e504d2 4587 update_rq_clock(rq);
1da177e4
LT
4588 /*
4589 * The RT priorities are set via sched_setscheduler(), but we still
4590 * allow the 'normal' nice value to be set - but as expected
4591 * it wont have any effect on scheduling until the task is
dd41f596 4592 * SCHED_FIFO/SCHED_RR:
1da177e4 4593 */
e05606d3 4594 if (task_has_rt_policy(p)) {
1da177e4
LT
4595 p->static_prio = NICE_TO_PRIO(nice);
4596 goto out_unlock;
4597 }
dd41f596 4598 on_rq = p->se.on_rq;
6363ca57 4599 if (on_rq) {
69be72c1 4600 dequeue_task(rq, p, 0);
6363ca57
IM
4601 dec_load(rq, p);
4602 }
1da177e4 4603
1da177e4 4604 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4605 set_load_weight(p);
b29739f9
IM
4606 old_prio = p->prio;
4607 p->prio = effective_prio(p);
4608 delta = p->prio - old_prio;
1da177e4 4609
dd41f596 4610 if (on_rq) {
8159f87e 4611 enqueue_task(rq, p, 0);
6363ca57 4612 inc_load(rq, p);
1da177e4 4613 /*
d5f9f942
AM
4614 * If the task increased its priority or is running and
4615 * lowered its priority, then reschedule its CPU:
1da177e4 4616 */
d5f9f942 4617 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4618 resched_task(rq->curr);
4619 }
4620out_unlock:
4621 task_rq_unlock(rq, &flags);
4622}
1da177e4
LT
4623EXPORT_SYMBOL(set_user_nice);
4624
e43379f1
MM
4625/*
4626 * can_nice - check if a task can reduce its nice value
4627 * @p: task
4628 * @nice: nice value
4629 */
36c8b586 4630int can_nice(const struct task_struct *p, const int nice)
e43379f1 4631{
024f4747
MM
4632 /* convert nice value [19,-20] to rlimit style value [1,40] */
4633 int nice_rlim = 20 - nice;
48f24c4d 4634
e43379f1
MM
4635 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4636 capable(CAP_SYS_NICE));
4637}
4638
1da177e4
LT
4639#ifdef __ARCH_WANT_SYS_NICE
4640
4641/*
4642 * sys_nice - change the priority of the current process.
4643 * @increment: priority increment
4644 *
4645 * sys_setpriority is a more generic, but much slower function that
4646 * does similar things.
4647 */
4648asmlinkage long sys_nice(int increment)
4649{
48f24c4d 4650 long nice, retval;
1da177e4
LT
4651
4652 /*
4653 * Setpriority might change our priority at the same moment.
4654 * We don't have to worry. Conceptually one call occurs first
4655 * and we have a single winner.
4656 */
e43379f1
MM
4657 if (increment < -40)
4658 increment = -40;
1da177e4
LT
4659 if (increment > 40)
4660 increment = 40;
4661
4662 nice = PRIO_TO_NICE(current->static_prio) + increment;
4663 if (nice < -20)
4664 nice = -20;
4665 if (nice > 19)
4666 nice = 19;
4667
e43379f1
MM
4668 if (increment < 0 && !can_nice(current, nice))
4669 return -EPERM;
4670
1da177e4
LT
4671 retval = security_task_setnice(current, nice);
4672 if (retval)
4673 return retval;
4674
4675 set_user_nice(current, nice);
4676 return 0;
4677}
4678
4679#endif
4680
4681/**
4682 * task_prio - return the priority value of a given task.
4683 * @p: the task in question.
4684 *
4685 * This is the priority value as seen by users in /proc.
4686 * RT tasks are offset by -200. Normal tasks are centered
4687 * around 0, value goes from -16 to +15.
4688 */
36c8b586 4689int task_prio(const struct task_struct *p)
1da177e4
LT
4690{
4691 return p->prio - MAX_RT_PRIO;
4692}
4693
4694/**
4695 * task_nice - return the nice value of a given task.
4696 * @p: the task in question.
4697 */
36c8b586 4698int task_nice(const struct task_struct *p)
1da177e4
LT
4699{
4700 return TASK_NICE(p);
4701}
150d8bed 4702EXPORT_SYMBOL(task_nice);
1da177e4
LT
4703
4704/**
4705 * idle_cpu - is a given cpu idle currently?
4706 * @cpu: the processor in question.
4707 */
4708int idle_cpu(int cpu)
4709{
4710 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4711}
4712
1da177e4
LT
4713/**
4714 * idle_task - return the idle task for a given cpu.
4715 * @cpu: the processor in question.
4716 */
36c8b586 4717struct task_struct *idle_task(int cpu)
1da177e4
LT
4718{
4719 return cpu_rq(cpu)->idle;
4720}
4721
4722/**
4723 * find_process_by_pid - find a process with a matching PID value.
4724 * @pid: the pid in question.
4725 */
a9957449 4726static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4727{
228ebcbe 4728 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4729}
4730
4731/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4732static void
4733__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4734{
dd41f596 4735 BUG_ON(p->se.on_rq);
48f24c4d 4736
1da177e4 4737 p->policy = policy;
dd41f596
IM
4738 switch (p->policy) {
4739 case SCHED_NORMAL:
4740 case SCHED_BATCH:
4741 case SCHED_IDLE:
4742 p->sched_class = &fair_sched_class;
4743 break;
4744 case SCHED_FIFO:
4745 case SCHED_RR:
4746 p->sched_class = &rt_sched_class;
4747 break;
4748 }
4749
1da177e4 4750 p->rt_priority = prio;
b29739f9
IM
4751 p->normal_prio = normal_prio(p);
4752 /* we are holding p->pi_lock already */
4753 p->prio = rt_mutex_getprio(p);
2dd73a4f 4754 set_load_weight(p);
1da177e4
LT
4755}
4756
4757/**
72fd4a35 4758 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4759 * @p: the task in question.
4760 * @policy: new policy.
4761 * @param: structure containing the new RT priority.
5fe1d75f 4762 *
72fd4a35 4763 * NOTE that the task may be already dead.
1da177e4 4764 */
95cdf3b7
IM
4765int sched_setscheduler(struct task_struct *p, int policy,
4766 struct sched_param *param)
1da177e4 4767{
83b699ed 4768 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4769 unsigned long flags;
cb469845 4770 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4771 struct rq *rq;
1da177e4 4772
66e5393a
SR
4773 /* may grab non-irq protected spin_locks */
4774 BUG_ON(in_interrupt());
1da177e4
LT
4775recheck:
4776 /* double check policy once rq lock held */
4777 if (policy < 0)
4778 policy = oldpolicy = p->policy;
4779 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4780 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4781 policy != SCHED_IDLE)
b0a9499c 4782 return -EINVAL;
1da177e4
LT
4783 /*
4784 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4785 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4786 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4787 */
4788 if (param->sched_priority < 0 ||
95cdf3b7 4789 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4790 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4791 return -EINVAL;
e05606d3 4792 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4793 return -EINVAL;
4794
37e4ab3f
OC
4795 /*
4796 * Allow unprivileged RT tasks to decrease priority:
4797 */
4798 if (!capable(CAP_SYS_NICE)) {
e05606d3 4799 if (rt_policy(policy)) {
8dc3e909 4800 unsigned long rlim_rtprio;
8dc3e909
ON
4801
4802 if (!lock_task_sighand(p, &flags))
4803 return -ESRCH;
4804 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4805 unlock_task_sighand(p, &flags);
4806
4807 /* can't set/change the rt policy */
4808 if (policy != p->policy && !rlim_rtprio)
4809 return -EPERM;
4810
4811 /* can't increase priority */
4812 if (param->sched_priority > p->rt_priority &&
4813 param->sched_priority > rlim_rtprio)
4814 return -EPERM;
4815 }
dd41f596
IM
4816 /*
4817 * Like positive nice levels, dont allow tasks to
4818 * move out of SCHED_IDLE either:
4819 */
4820 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4821 return -EPERM;
5fe1d75f 4822
37e4ab3f
OC
4823 /* can't change other user's priorities */
4824 if ((current->euid != p->euid) &&
4825 (current->euid != p->uid))
4826 return -EPERM;
4827 }
1da177e4 4828
b68aa230
PZ
4829#ifdef CONFIG_RT_GROUP_SCHED
4830 /*
4831 * Do not allow realtime tasks into groups that have no runtime
4832 * assigned.
4833 */
d0b27fa7 4834 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4835 return -EPERM;
4836#endif
4837
1da177e4
LT
4838 retval = security_task_setscheduler(p, policy, param);
4839 if (retval)
4840 return retval;
b29739f9
IM
4841 /*
4842 * make sure no PI-waiters arrive (or leave) while we are
4843 * changing the priority of the task:
4844 */
4845 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4846 /*
4847 * To be able to change p->policy safely, the apropriate
4848 * runqueue lock must be held.
4849 */
b29739f9 4850 rq = __task_rq_lock(p);
1da177e4
LT
4851 /* recheck policy now with rq lock held */
4852 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4853 policy = oldpolicy = -1;
b29739f9
IM
4854 __task_rq_unlock(rq);
4855 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4856 goto recheck;
4857 }
2daa3577 4858 update_rq_clock(rq);
dd41f596 4859 on_rq = p->se.on_rq;
051a1d1a 4860 running = task_current(rq, p);
0e1f3483 4861 if (on_rq)
2e1cb74a 4862 deactivate_task(rq, p, 0);
0e1f3483
HS
4863 if (running)
4864 p->sched_class->put_prev_task(rq, p);
f6b53205 4865
1da177e4 4866 oldprio = p->prio;
dd41f596 4867 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4868
0e1f3483
HS
4869 if (running)
4870 p->sched_class->set_curr_task(rq);
dd41f596
IM
4871 if (on_rq) {
4872 activate_task(rq, p, 0);
cb469845
SR
4873
4874 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4875 }
b29739f9
IM
4876 __task_rq_unlock(rq);
4877 spin_unlock_irqrestore(&p->pi_lock, flags);
4878
95e02ca9
TG
4879 rt_mutex_adjust_pi(p);
4880
1da177e4
LT
4881 return 0;
4882}
4883EXPORT_SYMBOL_GPL(sched_setscheduler);
4884
95cdf3b7
IM
4885static int
4886do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4887{
1da177e4
LT
4888 struct sched_param lparam;
4889 struct task_struct *p;
36c8b586 4890 int retval;
1da177e4
LT
4891
4892 if (!param || pid < 0)
4893 return -EINVAL;
4894 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4895 return -EFAULT;
5fe1d75f
ON
4896
4897 rcu_read_lock();
4898 retval = -ESRCH;
1da177e4 4899 p = find_process_by_pid(pid);
5fe1d75f
ON
4900 if (p != NULL)
4901 retval = sched_setscheduler(p, policy, &lparam);
4902 rcu_read_unlock();
36c8b586 4903
1da177e4
LT
4904 return retval;
4905}
4906
4907/**
4908 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4909 * @pid: the pid in question.
4910 * @policy: new policy.
4911 * @param: structure containing the new RT priority.
4912 */
41a2d6cf
IM
4913asmlinkage long
4914sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4915{
c21761f1
JB
4916 /* negative values for policy are not valid */
4917 if (policy < 0)
4918 return -EINVAL;
4919
1da177e4
LT
4920 return do_sched_setscheduler(pid, policy, param);
4921}
4922
4923/**
4924 * sys_sched_setparam - set/change the RT priority of a thread
4925 * @pid: the pid in question.
4926 * @param: structure containing the new RT priority.
4927 */
4928asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4929{
4930 return do_sched_setscheduler(pid, -1, param);
4931}
4932
4933/**
4934 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4935 * @pid: the pid in question.
4936 */
4937asmlinkage long sys_sched_getscheduler(pid_t pid)
4938{
36c8b586 4939 struct task_struct *p;
3a5c359a 4940 int retval;
1da177e4
LT
4941
4942 if (pid < 0)
3a5c359a 4943 return -EINVAL;
1da177e4
LT
4944
4945 retval = -ESRCH;
4946 read_lock(&tasklist_lock);
4947 p = find_process_by_pid(pid);
4948 if (p) {
4949 retval = security_task_getscheduler(p);
4950 if (!retval)
4951 retval = p->policy;
4952 }
4953 read_unlock(&tasklist_lock);
1da177e4
LT
4954 return retval;
4955}
4956
4957/**
4958 * sys_sched_getscheduler - get the RT priority of a thread
4959 * @pid: the pid in question.
4960 * @param: structure containing the RT priority.
4961 */
4962asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4963{
4964 struct sched_param lp;
36c8b586 4965 struct task_struct *p;
3a5c359a 4966 int retval;
1da177e4
LT
4967
4968 if (!param || pid < 0)
3a5c359a 4969 return -EINVAL;
1da177e4
LT
4970
4971 read_lock(&tasklist_lock);
4972 p = find_process_by_pid(pid);
4973 retval = -ESRCH;
4974 if (!p)
4975 goto out_unlock;
4976
4977 retval = security_task_getscheduler(p);
4978 if (retval)
4979 goto out_unlock;
4980
4981 lp.sched_priority = p->rt_priority;
4982 read_unlock(&tasklist_lock);
4983
4984 /*
4985 * This one might sleep, we cannot do it with a spinlock held ...
4986 */
4987 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4988
1da177e4
LT
4989 return retval;
4990
4991out_unlock:
4992 read_unlock(&tasklist_lock);
4993 return retval;
4994}
4995
b53e921b 4996long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4997{
1da177e4 4998 cpumask_t cpus_allowed;
b53e921b 4999 cpumask_t new_mask = *in_mask;
36c8b586
IM
5000 struct task_struct *p;
5001 int retval;
1da177e4 5002
95402b38 5003 get_online_cpus();
1da177e4
LT
5004 read_lock(&tasklist_lock);
5005
5006 p = find_process_by_pid(pid);
5007 if (!p) {
5008 read_unlock(&tasklist_lock);
95402b38 5009 put_online_cpus();
1da177e4
LT
5010 return -ESRCH;
5011 }
5012
5013 /*
5014 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5015 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5016 * usage count and then drop tasklist_lock.
5017 */
5018 get_task_struct(p);
5019 read_unlock(&tasklist_lock);
5020
5021 retval = -EPERM;
5022 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5023 !capable(CAP_SYS_NICE))
5024 goto out_unlock;
5025
e7834f8f
DQ
5026 retval = security_task_setscheduler(p, 0, NULL);
5027 if (retval)
5028 goto out_unlock;
5029
f9a86fcb 5030 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5031 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5032 again:
7c16ec58 5033 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5034
8707d8b8 5035 if (!retval) {
f9a86fcb 5036 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5037 if (!cpus_subset(new_mask, cpus_allowed)) {
5038 /*
5039 * We must have raced with a concurrent cpuset
5040 * update. Just reset the cpus_allowed to the
5041 * cpuset's cpus_allowed
5042 */
5043 new_mask = cpus_allowed;
5044 goto again;
5045 }
5046 }
1da177e4
LT
5047out_unlock:
5048 put_task_struct(p);
95402b38 5049 put_online_cpus();
1da177e4
LT
5050 return retval;
5051}
5052
5053static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5054 cpumask_t *new_mask)
5055{
5056 if (len < sizeof(cpumask_t)) {
5057 memset(new_mask, 0, sizeof(cpumask_t));
5058 } else if (len > sizeof(cpumask_t)) {
5059 len = sizeof(cpumask_t);
5060 }
5061 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5062}
5063
5064/**
5065 * sys_sched_setaffinity - set the cpu affinity of a process
5066 * @pid: pid of the process
5067 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5068 * @user_mask_ptr: user-space pointer to the new cpu mask
5069 */
5070asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5071 unsigned long __user *user_mask_ptr)
5072{
5073 cpumask_t new_mask;
5074 int retval;
5075
5076 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5077 if (retval)
5078 return retval;
5079
b53e921b 5080 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5081}
5082
1da177e4
LT
5083long sched_getaffinity(pid_t pid, cpumask_t *mask)
5084{
36c8b586 5085 struct task_struct *p;
1da177e4 5086 int retval;
1da177e4 5087
95402b38 5088 get_online_cpus();
1da177e4
LT
5089 read_lock(&tasklist_lock);
5090
5091 retval = -ESRCH;
5092 p = find_process_by_pid(pid);
5093 if (!p)
5094 goto out_unlock;
5095
e7834f8f
DQ
5096 retval = security_task_getscheduler(p);
5097 if (retval)
5098 goto out_unlock;
5099
2f7016d9 5100 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5101
5102out_unlock:
5103 read_unlock(&tasklist_lock);
95402b38 5104 put_online_cpus();
1da177e4 5105
9531b62f 5106 return retval;
1da177e4
LT
5107}
5108
5109/**
5110 * sys_sched_getaffinity - get the cpu affinity of a process
5111 * @pid: pid of the process
5112 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5113 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5114 */
5115asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5116 unsigned long __user *user_mask_ptr)
5117{
5118 int ret;
5119 cpumask_t mask;
5120
5121 if (len < sizeof(cpumask_t))
5122 return -EINVAL;
5123
5124 ret = sched_getaffinity(pid, &mask);
5125 if (ret < 0)
5126 return ret;
5127
5128 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5129 return -EFAULT;
5130
5131 return sizeof(cpumask_t);
5132}
5133
5134/**
5135 * sys_sched_yield - yield the current processor to other threads.
5136 *
dd41f596
IM
5137 * This function yields the current CPU to other tasks. If there are no
5138 * other threads running on this CPU then this function will return.
1da177e4
LT
5139 */
5140asmlinkage long sys_sched_yield(void)
5141{
70b97a7f 5142 struct rq *rq = this_rq_lock();
1da177e4 5143
2d72376b 5144 schedstat_inc(rq, yld_count);
4530d7ab 5145 current->sched_class->yield_task(rq);
1da177e4
LT
5146
5147 /*
5148 * Since we are going to call schedule() anyway, there's
5149 * no need to preempt or enable interrupts:
5150 */
5151 __release(rq->lock);
8a25d5de 5152 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5153 _raw_spin_unlock(&rq->lock);
5154 preempt_enable_no_resched();
5155
5156 schedule();
5157
5158 return 0;
5159}
5160
e7b38404 5161static void __cond_resched(void)
1da177e4 5162{
8e0a43d8
IM
5163#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5164 __might_sleep(__FILE__, __LINE__);
5165#endif
5bbcfd90
IM
5166 /*
5167 * The BKS might be reacquired before we have dropped
5168 * PREEMPT_ACTIVE, which could trigger a second
5169 * cond_resched() call.
5170 */
1da177e4
LT
5171 do {
5172 add_preempt_count(PREEMPT_ACTIVE);
5173 schedule();
5174 sub_preempt_count(PREEMPT_ACTIVE);
5175 } while (need_resched());
5176}
5177
02b67cc3 5178int __sched _cond_resched(void)
1da177e4 5179{
9414232f
IM
5180 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5181 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5182 __cond_resched();
5183 return 1;
5184 }
5185 return 0;
5186}
02b67cc3 5187EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5188
5189/*
5190 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5191 * call schedule, and on return reacquire the lock.
5192 *
41a2d6cf 5193 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5194 * operations here to prevent schedule() from being called twice (once via
5195 * spin_unlock(), once by hand).
5196 */
95cdf3b7 5197int cond_resched_lock(spinlock_t *lock)
1da177e4 5198{
95c354fe 5199 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5200 int ret = 0;
5201
95c354fe 5202 if (spin_needbreak(lock) || resched) {
1da177e4 5203 spin_unlock(lock);
95c354fe
NP
5204 if (resched && need_resched())
5205 __cond_resched();
5206 else
5207 cpu_relax();
6df3cecb 5208 ret = 1;
1da177e4 5209 spin_lock(lock);
1da177e4 5210 }
6df3cecb 5211 return ret;
1da177e4 5212}
1da177e4
LT
5213EXPORT_SYMBOL(cond_resched_lock);
5214
5215int __sched cond_resched_softirq(void)
5216{
5217 BUG_ON(!in_softirq());
5218
9414232f 5219 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5220 local_bh_enable();
1da177e4
LT
5221 __cond_resched();
5222 local_bh_disable();
5223 return 1;
5224 }
5225 return 0;
5226}
1da177e4
LT
5227EXPORT_SYMBOL(cond_resched_softirq);
5228
1da177e4
LT
5229/**
5230 * yield - yield the current processor to other threads.
5231 *
72fd4a35 5232 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5233 * thread runnable and calls sys_sched_yield().
5234 */
5235void __sched yield(void)
5236{
5237 set_current_state(TASK_RUNNING);
5238 sys_sched_yield();
5239}
1da177e4
LT
5240EXPORT_SYMBOL(yield);
5241
5242/*
41a2d6cf 5243 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5244 * that process accounting knows that this is a task in IO wait state.
5245 *
5246 * But don't do that if it is a deliberate, throttling IO wait (this task
5247 * has set its backing_dev_info: the queue against which it should throttle)
5248 */
5249void __sched io_schedule(void)
5250{
70b97a7f 5251 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5252
0ff92245 5253 delayacct_blkio_start();
1da177e4
LT
5254 atomic_inc(&rq->nr_iowait);
5255 schedule();
5256 atomic_dec(&rq->nr_iowait);
0ff92245 5257 delayacct_blkio_end();
1da177e4 5258}
1da177e4
LT
5259EXPORT_SYMBOL(io_schedule);
5260
5261long __sched io_schedule_timeout(long timeout)
5262{
70b97a7f 5263 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5264 long ret;
5265
0ff92245 5266 delayacct_blkio_start();
1da177e4
LT
5267 atomic_inc(&rq->nr_iowait);
5268 ret = schedule_timeout(timeout);
5269 atomic_dec(&rq->nr_iowait);
0ff92245 5270 delayacct_blkio_end();
1da177e4
LT
5271 return ret;
5272}
5273
5274/**
5275 * sys_sched_get_priority_max - return maximum RT priority.
5276 * @policy: scheduling class.
5277 *
5278 * this syscall returns the maximum rt_priority that can be used
5279 * by a given scheduling class.
5280 */
5281asmlinkage long sys_sched_get_priority_max(int policy)
5282{
5283 int ret = -EINVAL;
5284
5285 switch (policy) {
5286 case SCHED_FIFO:
5287 case SCHED_RR:
5288 ret = MAX_USER_RT_PRIO-1;
5289 break;
5290 case SCHED_NORMAL:
b0a9499c 5291 case SCHED_BATCH:
dd41f596 5292 case SCHED_IDLE:
1da177e4
LT
5293 ret = 0;
5294 break;
5295 }
5296 return ret;
5297}
5298
5299/**
5300 * sys_sched_get_priority_min - return minimum RT priority.
5301 * @policy: scheduling class.
5302 *
5303 * this syscall returns the minimum rt_priority that can be used
5304 * by a given scheduling class.
5305 */
5306asmlinkage long sys_sched_get_priority_min(int policy)
5307{
5308 int ret = -EINVAL;
5309
5310 switch (policy) {
5311 case SCHED_FIFO:
5312 case SCHED_RR:
5313 ret = 1;
5314 break;
5315 case SCHED_NORMAL:
b0a9499c 5316 case SCHED_BATCH:
dd41f596 5317 case SCHED_IDLE:
1da177e4
LT
5318 ret = 0;
5319 }
5320 return ret;
5321}
5322
5323/**
5324 * sys_sched_rr_get_interval - return the default timeslice of a process.
5325 * @pid: pid of the process.
5326 * @interval: userspace pointer to the timeslice value.
5327 *
5328 * this syscall writes the default timeslice value of a given process
5329 * into the user-space timespec buffer. A value of '0' means infinity.
5330 */
5331asmlinkage
5332long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5333{
36c8b586 5334 struct task_struct *p;
a4ec24b4 5335 unsigned int time_slice;
3a5c359a 5336 int retval;
1da177e4 5337 struct timespec t;
1da177e4
LT
5338
5339 if (pid < 0)
3a5c359a 5340 return -EINVAL;
1da177e4
LT
5341
5342 retval = -ESRCH;
5343 read_lock(&tasklist_lock);
5344 p = find_process_by_pid(pid);
5345 if (!p)
5346 goto out_unlock;
5347
5348 retval = security_task_getscheduler(p);
5349 if (retval)
5350 goto out_unlock;
5351
77034937
IM
5352 /*
5353 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5354 * tasks that are on an otherwise idle runqueue:
5355 */
5356 time_slice = 0;
5357 if (p->policy == SCHED_RR) {
a4ec24b4 5358 time_slice = DEF_TIMESLICE;
1868f958 5359 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5360 struct sched_entity *se = &p->se;
5361 unsigned long flags;
5362 struct rq *rq;
5363
5364 rq = task_rq_lock(p, &flags);
77034937
IM
5365 if (rq->cfs.load.weight)
5366 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5367 task_rq_unlock(rq, &flags);
5368 }
1da177e4 5369 read_unlock(&tasklist_lock);
a4ec24b4 5370 jiffies_to_timespec(time_slice, &t);
1da177e4 5371 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5372 return retval;
3a5c359a 5373
1da177e4
LT
5374out_unlock:
5375 read_unlock(&tasklist_lock);
5376 return retval;
5377}
5378
2ed6e34f 5379static const char stat_nam[] = "RSDTtZX";
36c8b586 5380
82a1fcb9 5381void sched_show_task(struct task_struct *p)
1da177e4 5382{
1da177e4 5383 unsigned long free = 0;
36c8b586 5384 unsigned state;
1da177e4 5385
1da177e4 5386 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5387 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5389#if BITS_PER_LONG == 32
1da177e4 5390 if (state == TASK_RUNNING)
cc4ea795 5391 printk(KERN_CONT " running ");
1da177e4 5392 else
cc4ea795 5393 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5394#else
5395 if (state == TASK_RUNNING)
cc4ea795 5396 printk(KERN_CONT " running task ");
1da177e4 5397 else
cc4ea795 5398 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5399#endif
5400#ifdef CONFIG_DEBUG_STACK_USAGE
5401 {
10ebffde 5402 unsigned long *n = end_of_stack(p);
1da177e4
LT
5403 while (!*n)
5404 n++;
10ebffde 5405 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5406 }
5407#endif
ba25f9dc 5408 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5409 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5410
5fb5e6de 5411 show_stack(p, NULL);
1da177e4
LT
5412}
5413
e59e2ae2 5414void show_state_filter(unsigned long state_filter)
1da177e4 5415{
36c8b586 5416 struct task_struct *g, *p;
1da177e4 5417
4bd77321
IM
5418#if BITS_PER_LONG == 32
5419 printk(KERN_INFO
5420 " task PC stack pid father\n");
1da177e4 5421#else
4bd77321
IM
5422 printk(KERN_INFO
5423 " task PC stack pid father\n");
1da177e4
LT
5424#endif
5425 read_lock(&tasklist_lock);
5426 do_each_thread(g, p) {
5427 /*
5428 * reset the NMI-timeout, listing all files on a slow
5429 * console might take alot of time:
5430 */
5431 touch_nmi_watchdog();
39bc89fd 5432 if (!state_filter || (p->state & state_filter))
82a1fcb9 5433 sched_show_task(p);
1da177e4
LT
5434 } while_each_thread(g, p);
5435
04c9167f
JF
5436 touch_all_softlockup_watchdogs();
5437
dd41f596
IM
5438#ifdef CONFIG_SCHED_DEBUG
5439 sysrq_sched_debug_show();
5440#endif
1da177e4 5441 read_unlock(&tasklist_lock);
e59e2ae2
IM
5442 /*
5443 * Only show locks if all tasks are dumped:
5444 */
5445 if (state_filter == -1)
5446 debug_show_all_locks();
1da177e4
LT
5447}
5448
1df21055
IM
5449void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5450{
dd41f596 5451 idle->sched_class = &idle_sched_class;
1df21055
IM
5452}
5453
f340c0d1
IM
5454/**
5455 * init_idle - set up an idle thread for a given CPU
5456 * @idle: task in question
5457 * @cpu: cpu the idle task belongs to
5458 *
5459 * NOTE: this function does not set the idle thread's NEED_RESCHED
5460 * flag, to make booting more robust.
5461 */
5c1e1767 5462void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5463{
70b97a7f 5464 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5465 unsigned long flags;
5466
dd41f596
IM
5467 __sched_fork(idle);
5468 idle->se.exec_start = sched_clock();
5469
b29739f9 5470 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5471 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5472 __set_task_cpu(idle, cpu);
1da177e4
LT
5473
5474 spin_lock_irqsave(&rq->lock, flags);
5475 rq->curr = rq->idle = idle;
4866cde0
NP
5476#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5477 idle->oncpu = 1;
5478#endif
1da177e4
LT
5479 spin_unlock_irqrestore(&rq->lock, flags);
5480
5481 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5482#if defined(CONFIG_PREEMPT)
5483 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5484#else
a1261f54 5485 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5486#endif
dd41f596
IM
5487 /*
5488 * The idle tasks have their own, simple scheduling class:
5489 */
5490 idle->sched_class = &idle_sched_class;
1da177e4
LT
5491}
5492
5493/*
5494 * In a system that switches off the HZ timer nohz_cpu_mask
5495 * indicates which cpus entered this state. This is used
5496 * in the rcu update to wait only for active cpus. For system
5497 * which do not switch off the HZ timer nohz_cpu_mask should
5498 * always be CPU_MASK_NONE.
5499 */
5500cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5501
19978ca6
IM
5502/*
5503 * Increase the granularity value when there are more CPUs,
5504 * because with more CPUs the 'effective latency' as visible
5505 * to users decreases. But the relationship is not linear,
5506 * so pick a second-best guess by going with the log2 of the
5507 * number of CPUs.
5508 *
5509 * This idea comes from the SD scheduler of Con Kolivas:
5510 */
5511static inline void sched_init_granularity(void)
5512{
5513 unsigned int factor = 1 + ilog2(num_online_cpus());
5514 const unsigned long limit = 200000000;
5515
5516 sysctl_sched_min_granularity *= factor;
5517 if (sysctl_sched_min_granularity > limit)
5518 sysctl_sched_min_granularity = limit;
5519
5520 sysctl_sched_latency *= factor;
5521 if (sysctl_sched_latency > limit)
5522 sysctl_sched_latency = limit;
5523
5524 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5525}
5526
1da177e4
LT
5527#ifdef CONFIG_SMP
5528/*
5529 * This is how migration works:
5530 *
70b97a7f 5531 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5532 * runqueue and wake up that CPU's migration thread.
5533 * 2) we down() the locked semaphore => thread blocks.
5534 * 3) migration thread wakes up (implicitly it forces the migrated
5535 * thread off the CPU)
5536 * 4) it gets the migration request and checks whether the migrated
5537 * task is still in the wrong runqueue.
5538 * 5) if it's in the wrong runqueue then the migration thread removes
5539 * it and puts it into the right queue.
5540 * 6) migration thread up()s the semaphore.
5541 * 7) we wake up and the migration is done.
5542 */
5543
5544/*
5545 * Change a given task's CPU affinity. Migrate the thread to a
5546 * proper CPU and schedule it away if the CPU it's executing on
5547 * is removed from the allowed bitmask.
5548 *
5549 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5550 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5551 * call is not atomic; no spinlocks may be held.
5552 */
cd8ba7cd 5553int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5554{
70b97a7f 5555 struct migration_req req;
1da177e4 5556 unsigned long flags;
70b97a7f 5557 struct rq *rq;
48f24c4d 5558 int ret = 0;
1da177e4
LT
5559
5560 rq = task_rq_lock(p, &flags);
cd8ba7cd 5561 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5562 ret = -EINVAL;
5563 goto out;
5564 }
5565
73fe6aae 5566 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5567 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5568 else {
cd8ba7cd
MT
5569 p->cpus_allowed = *new_mask;
5570 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5571 }
5572
1da177e4 5573 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5574 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5575 goto out;
5576
cd8ba7cd 5577 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5578 /* Need help from migration thread: drop lock and wait. */
5579 task_rq_unlock(rq, &flags);
5580 wake_up_process(rq->migration_thread);
5581 wait_for_completion(&req.done);
5582 tlb_migrate_finish(p->mm);
5583 return 0;
5584 }
5585out:
5586 task_rq_unlock(rq, &flags);
48f24c4d 5587
1da177e4
LT
5588 return ret;
5589}
cd8ba7cd 5590EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5591
5592/*
41a2d6cf 5593 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5594 * this because either it can't run here any more (set_cpus_allowed()
5595 * away from this CPU, or CPU going down), or because we're
5596 * attempting to rebalance this task on exec (sched_exec).
5597 *
5598 * So we race with normal scheduler movements, but that's OK, as long
5599 * as the task is no longer on this CPU.
efc30814
KK
5600 *
5601 * Returns non-zero if task was successfully migrated.
1da177e4 5602 */
efc30814 5603static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5604{
70b97a7f 5605 struct rq *rq_dest, *rq_src;
dd41f596 5606 int ret = 0, on_rq;
1da177e4
LT
5607
5608 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5609 return ret;
1da177e4
LT
5610
5611 rq_src = cpu_rq(src_cpu);
5612 rq_dest = cpu_rq(dest_cpu);
5613
5614 double_rq_lock(rq_src, rq_dest);
5615 /* Already moved. */
5616 if (task_cpu(p) != src_cpu)
5617 goto out;
5618 /* Affinity changed (again). */
5619 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5620 goto out;
5621
dd41f596 5622 on_rq = p->se.on_rq;
6e82a3be 5623 if (on_rq)
2e1cb74a 5624 deactivate_task(rq_src, p, 0);
6e82a3be 5625
1da177e4 5626 set_task_cpu(p, dest_cpu);
dd41f596
IM
5627 if (on_rq) {
5628 activate_task(rq_dest, p, 0);
5629 check_preempt_curr(rq_dest, p);
1da177e4 5630 }
efc30814 5631 ret = 1;
1da177e4
LT
5632out:
5633 double_rq_unlock(rq_src, rq_dest);
efc30814 5634 return ret;
1da177e4
LT
5635}
5636
5637/*
5638 * migration_thread - this is a highprio system thread that performs
5639 * thread migration by bumping thread off CPU then 'pushing' onto
5640 * another runqueue.
5641 */
95cdf3b7 5642static int migration_thread(void *data)
1da177e4 5643{
1da177e4 5644 int cpu = (long)data;
70b97a7f 5645 struct rq *rq;
1da177e4
LT
5646
5647 rq = cpu_rq(cpu);
5648 BUG_ON(rq->migration_thread != current);
5649
5650 set_current_state(TASK_INTERRUPTIBLE);
5651 while (!kthread_should_stop()) {
70b97a7f 5652 struct migration_req *req;
1da177e4 5653 struct list_head *head;
1da177e4 5654
1da177e4
LT
5655 spin_lock_irq(&rq->lock);
5656
5657 if (cpu_is_offline(cpu)) {
5658 spin_unlock_irq(&rq->lock);
5659 goto wait_to_die;
5660 }
5661
5662 if (rq->active_balance) {
5663 active_load_balance(rq, cpu);
5664 rq->active_balance = 0;
5665 }
5666
5667 head = &rq->migration_queue;
5668
5669 if (list_empty(head)) {
5670 spin_unlock_irq(&rq->lock);
5671 schedule();
5672 set_current_state(TASK_INTERRUPTIBLE);
5673 continue;
5674 }
70b97a7f 5675 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5676 list_del_init(head->next);
5677
674311d5
NP
5678 spin_unlock(&rq->lock);
5679 __migrate_task(req->task, cpu, req->dest_cpu);
5680 local_irq_enable();
1da177e4
LT
5681
5682 complete(&req->done);
5683 }
5684 __set_current_state(TASK_RUNNING);
5685 return 0;
5686
5687wait_to_die:
5688 /* Wait for kthread_stop */
5689 set_current_state(TASK_INTERRUPTIBLE);
5690 while (!kthread_should_stop()) {
5691 schedule();
5692 set_current_state(TASK_INTERRUPTIBLE);
5693 }
5694 __set_current_state(TASK_RUNNING);
5695 return 0;
5696}
5697
5698#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5699
5700static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5701{
5702 int ret;
5703
5704 local_irq_disable();
5705 ret = __migrate_task(p, src_cpu, dest_cpu);
5706 local_irq_enable();
5707 return ret;
5708}
5709
054b9108 5710/*
3a4fa0a2 5711 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5712 * NOTE: interrupts should be disabled by the caller
5713 */
48f24c4d 5714static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5715{
efc30814 5716 unsigned long flags;
1da177e4 5717 cpumask_t mask;
70b97a7f
IM
5718 struct rq *rq;
5719 int dest_cpu;
1da177e4 5720
3a5c359a
AK
5721 do {
5722 /* On same node? */
5723 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5724 cpus_and(mask, mask, p->cpus_allowed);
5725 dest_cpu = any_online_cpu(mask);
5726
5727 /* On any allowed CPU? */
434d53b0 5728 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5729 dest_cpu = any_online_cpu(p->cpus_allowed);
5730
5731 /* No more Mr. Nice Guy. */
434d53b0 5732 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5733 cpumask_t cpus_allowed;
5734
5735 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5736 /*
5737 * Try to stay on the same cpuset, where the
5738 * current cpuset may be a subset of all cpus.
5739 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5740 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5741 * called within calls to cpuset_lock/cpuset_unlock.
5742 */
3a5c359a 5743 rq = task_rq_lock(p, &flags);
470fd646 5744 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5745 dest_cpu = any_online_cpu(p->cpus_allowed);
5746 task_rq_unlock(rq, &flags);
1da177e4 5747
3a5c359a
AK
5748 /*
5749 * Don't tell them about moving exiting tasks or
5750 * kernel threads (both mm NULL), since they never
5751 * leave kernel.
5752 */
41a2d6cf 5753 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5754 printk(KERN_INFO "process %d (%s) no "
5755 "longer affine to cpu%d\n",
41a2d6cf
IM
5756 task_pid_nr(p), p->comm, dead_cpu);
5757 }
3a5c359a 5758 }
f7b4cddc 5759 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5760}
5761
5762/*
5763 * While a dead CPU has no uninterruptible tasks queued at this point,
5764 * it might still have a nonzero ->nr_uninterruptible counter, because
5765 * for performance reasons the counter is not stricly tracking tasks to
5766 * their home CPUs. So we just add the counter to another CPU's counter,
5767 * to keep the global sum constant after CPU-down:
5768 */
70b97a7f 5769static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5770{
7c16ec58 5771 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5772 unsigned long flags;
5773
5774 local_irq_save(flags);
5775 double_rq_lock(rq_src, rq_dest);
5776 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5777 rq_src->nr_uninterruptible = 0;
5778 double_rq_unlock(rq_src, rq_dest);
5779 local_irq_restore(flags);
5780}
5781
5782/* Run through task list and migrate tasks from the dead cpu. */
5783static void migrate_live_tasks(int src_cpu)
5784{
48f24c4d 5785 struct task_struct *p, *t;
1da177e4 5786
f7b4cddc 5787 read_lock(&tasklist_lock);
1da177e4 5788
48f24c4d
IM
5789 do_each_thread(t, p) {
5790 if (p == current)
1da177e4
LT
5791 continue;
5792
48f24c4d
IM
5793 if (task_cpu(p) == src_cpu)
5794 move_task_off_dead_cpu(src_cpu, p);
5795 } while_each_thread(t, p);
1da177e4 5796
f7b4cddc 5797 read_unlock(&tasklist_lock);
1da177e4
LT
5798}
5799
dd41f596
IM
5800/*
5801 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5802 * It does so by boosting its priority to highest possible.
5803 * Used by CPU offline code.
1da177e4
LT
5804 */
5805void sched_idle_next(void)
5806{
48f24c4d 5807 int this_cpu = smp_processor_id();
70b97a7f 5808 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5809 struct task_struct *p = rq->idle;
5810 unsigned long flags;
5811
5812 /* cpu has to be offline */
48f24c4d 5813 BUG_ON(cpu_online(this_cpu));
1da177e4 5814
48f24c4d
IM
5815 /*
5816 * Strictly not necessary since rest of the CPUs are stopped by now
5817 * and interrupts disabled on the current cpu.
1da177e4
LT
5818 */
5819 spin_lock_irqsave(&rq->lock, flags);
5820
dd41f596 5821 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5822
94bc9a7b
DA
5823 update_rq_clock(rq);
5824 activate_task(rq, p, 0);
1da177e4
LT
5825
5826 spin_unlock_irqrestore(&rq->lock, flags);
5827}
5828
48f24c4d
IM
5829/*
5830 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5831 * offline.
5832 */
5833void idle_task_exit(void)
5834{
5835 struct mm_struct *mm = current->active_mm;
5836
5837 BUG_ON(cpu_online(smp_processor_id()));
5838
5839 if (mm != &init_mm)
5840 switch_mm(mm, &init_mm, current);
5841 mmdrop(mm);
5842}
5843
054b9108 5844/* called under rq->lock with disabled interrupts */
36c8b586 5845static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5846{
70b97a7f 5847 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5848
5849 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5850 BUG_ON(!p->exit_state);
1da177e4
LT
5851
5852 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5853 BUG_ON(p->state == TASK_DEAD);
1da177e4 5854
48f24c4d 5855 get_task_struct(p);
1da177e4
LT
5856
5857 /*
5858 * Drop lock around migration; if someone else moves it,
41a2d6cf 5859 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5860 * fine.
5861 */
f7b4cddc 5862 spin_unlock_irq(&rq->lock);
48f24c4d 5863 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5864 spin_lock_irq(&rq->lock);
1da177e4 5865
48f24c4d 5866 put_task_struct(p);
1da177e4
LT
5867}
5868
5869/* release_task() removes task from tasklist, so we won't find dead tasks. */
5870static void migrate_dead_tasks(unsigned int dead_cpu)
5871{
70b97a7f 5872 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5873 struct task_struct *next;
48f24c4d 5874
dd41f596
IM
5875 for ( ; ; ) {
5876 if (!rq->nr_running)
5877 break;
a8e504d2 5878 update_rq_clock(rq);
ff95f3df 5879 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5880 if (!next)
5881 break;
5882 migrate_dead(dead_cpu, next);
e692ab53 5883
1da177e4
LT
5884 }
5885}
5886#endif /* CONFIG_HOTPLUG_CPU */
5887
e692ab53
NP
5888#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5889
5890static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5891 {
5892 .procname = "sched_domain",
c57baf1e 5893 .mode = 0555,
e0361851 5894 },
38605cae 5895 {0, },
e692ab53
NP
5896};
5897
5898static struct ctl_table sd_ctl_root[] = {
e0361851 5899 {
c57baf1e 5900 .ctl_name = CTL_KERN,
e0361851 5901 .procname = "kernel",
c57baf1e 5902 .mode = 0555,
e0361851
AD
5903 .child = sd_ctl_dir,
5904 },
38605cae 5905 {0, },
e692ab53
NP
5906};
5907
5908static struct ctl_table *sd_alloc_ctl_entry(int n)
5909{
5910 struct ctl_table *entry =
5cf9f062 5911 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5912
e692ab53
NP
5913 return entry;
5914}
5915
6382bc90
MM
5916static void sd_free_ctl_entry(struct ctl_table **tablep)
5917{
cd790076 5918 struct ctl_table *entry;
6382bc90 5919
cd790076
MM
5920 /*
5921 * In the intermediate directories, both the child directory and
5922 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5923 * will always be set. In the lowest directory the names are
cd790076
MM
5924 * static strings and all have proc handlers.
5925 */
5926 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5927 if (entry->child)
5928 sd_free_ctl_entry(&entry->child);
cd790076
MM
5929 if (entry->proc_handler == NULL)
5930 kfree(entry->procname);
5931 }
6382bc90
MM
5932
5933 kfree(*tablep);
5934 *tablep = NULL;
5935}
5936
e692ab53 5937static void
e0361851 5938set_table_entry(struct ctl_table *entry,
e692ab53
NP
5939 const char *procname, void *data, int maxlen,
5940 mode_t mode, proc_handler *proc_handler)
5941{
e692ab53
NP
5942 entry->procname = procname;
5943 entry->data = data;
5944 entry->maxlen = maxlen;
5945 entry->mode = mode;
5946 entry->proc_handler = proc_handler;
5947}
5948
5949static struct ctl_table *
5950sd_alloc_ctl_domain_table(struct sched_domain *sd)
5951{
ace8b3d6 5952 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5953
ad1cdc1d
MM
5954 if (table == NULL)
5955 return NULL;
5956
e0361851 5957 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5958 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5959 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5960 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5961 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5962 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5963 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5964 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5965 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5966 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5967 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5968 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5969 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5970 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5971 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5972 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5973 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5974 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5975 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5976 &sd->cache_nice_tries,
5977 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5978 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5979 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5980 /* &table[11] is terminator */
e692ab53
NP
5981
5982 return table;
5983}
5984
9a4e7159 5985static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5986{
5987 struct ctl_table *entry, *table;
5988 struct sched_domain *sd;
5989 int domain_num = 0, i;
5990 char buf[32];
5991
5992 for_each_domain(cpu, sd)
5993 domain_num++;
5994 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5995 if (table == NULL)
5996 return NULL;
e692ab53
NP
5997
5998 i = 0;
5999 for_each_domain(cpu, sd) {
6000 snprintf(buf, 32, "domain%d", i);
e692ab53 6001 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6002 entry->mode = 0555;
e692ab53
NP
6003 entry->child = sd_alloc_ctl_domain_table(sd);
6004 entry++;
6005 i++;
6006 }
6007 return table;
6008}
6009
6010static struct ctl_table_header *sd_sysctl_header;
6382bc90 6011static void register_sched_domain_sysctl(void)
e692ab53
NP
6012{
6013 int i, cpu_num = num_online_cpus();
6014 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6015 char buf[32];
6016
7378547f
MM
6017 WARN_ON(sd_ctl_dir[0].child);
6018 sd_ctl_dir[0].child = entry;
6019
ad1cdc1d
MM
6020 if (entry == NULL)
6021 return;
6022
97b6ea7b 6023 for_each_online_cpu(i) {
e692ab53 6024 snprintf(buf, 32, "cpu%d", i);
e692ab53 6025 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6026 entry->mode = 0555;
e692ab53 6027 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6028 entry++;
e692ab53 6029 }
7378547f
MM
6030
6031 WARN_ON(sd_sysctl_header);
e692ab53
NP
6032 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6033}
6382bc90 6034
7378547f 6035/* may be called multiple times per register */
6382bc90
MM
6036static void unregister_sched_domain_sysctl(void)
6037{
7378547f
MM
6038 if (sd_sysctl_header)
6039 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6040 sd_sysctl_header = NULL;
7378547f
MM
6041 if (sd_ctl_dir[0].child)
6042 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6043}
e692ab53 6044#else
6382bc90
MM
6045static void register_sched_domain_sysctl(void)
6046{
6047}
6048static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6049{
6050}
6051#endif
6052
1f11eb6a
GH
6053static void set_rq_online(struct rq *rq)
6054{
6055 if (!rq->online) {
6056 const struct sched_class *class;
6057
6058 cpu_set(rq->cpu, rq->rd->online);
6059 rq->online = 1;
6060
6061 for_each_class(class) {
6062 if (class->rq_online)
6063 class->rq_online(rq);
6064 }
6065 }
6066}
6067
6068static void set_rq_offline(struct rq *rq)
6069{
6070 if (rq->online) {
6071 const struct sched_class *class;
6072
6073 for_each_class(class) {
6074 if (class->rq_offline)
6075 class->rq_offline(rq);
6076 }
6077
6078 cpu_clear(rq->cpu, rq->rd->online);
6079 rq->online = 0;
6080 }
6081}
6082
1da177e4
LT
6083/*
6084 * migration_call - callback that gets triggered when a CPU is added.
6085 * Here we can start up the necessary migration thread for the new CPU.
6086 */
48f24c4d
IM
6087static int __cpuinit
6088migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6089{
1da177e4 6090 struct task_struct *p;
48f24c4d 6091 int cpu = (long)hcpu;
1da177e4 6092 unsigned long flags;
70b97a7f 6093 struct rq *rq;
1da177e4
LT
6094
6095 switch (action) {
5be9361c 6096
1da177e4 6097 case CPU_UP_PREPARE:
8bb78442 6098 case CPU_UP_PREPARE_FROZEN:
dd41f596 6099 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6100 if (IS_ERR(p))
6101 return NOTIFY_BAD;
1da177e4
LT
6102 kthread_bind(p, cpu);
6103 /* Must be high prio: stop_machine expects to yield to it. */
6104 rq = task_rq_lock(p, &flags);
dd41f596 6105 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6106 task_rq_unlock(rq, &flags);
6107 cpu_rq(cpu)->migration_thread = p;
6108 break;
48f24c4d 6109
1da177e4 6110 case CPU_ONLINE:
8bb78442 6111 case CPU_ONLINE_FROZEN:
3a4fa0a2 6112 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6113 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6114
6115 /* Update our root-domain */
6116 rq = cpu_rq(cpu);
6117 spin_lock_irqsave(&rq->lock, flags);
6118 if (rq->rd) {
6119 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6120
6121 set_rq_online(rq);
1f94ef59
GH
6122 }
6123 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6124 break;
48f24c4d 6125
1da177e4
LT
6126#ifdef CONFIG_HOTPLUG_CPU
6127 case CPU_UP_CANCELED:
8bb78442 6128 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6129 if (!cpu_rq(cpu)->migration_thread)
6130 break;
41a2d6cf 6131 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6132 kthread_bind(cpu_rq(cpu)->migration_thread,
6133 any_online_cpu(cpu_online_map));
1da177e4
LT
6134 kthread_stop(cpu_rq(cpu)->migration_thread);
6135 cpu_rq(cpu)->migration_thread = NULL;
6136 break;
48f24c4d 6137
1da177e4 6138 case CPU_DEAD:
8bb78442 6139 case CPU_DEAD_FROZEN:
470fd646 6140 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6141 migrate_live_tasks(cpu);
6142 rq = cpu_rq(cpu);
6143 kthread_stop(rq->migration_thread);
6144 rq->migration_thread = NULL;
6145 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6146 spin_lock_irq(&rq->lock);
a8e504d2 6147 update_rq_clock(rq);
2e1cb74a 6148 deactivate_task(rq, rq->idle, 0);
1da177e4 6149 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6150 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6151 rq->idle->sched_class = &idle_sched_class;
1da177e4 6152 migrate_dead_tasks(cpu);
d2da272a 6153 spin_unlock_irq(&rq->lock);
470fd646 6154 cpuset_unlock();
1da177e4
LT
6155 migrate_nr_uninterruptible(rq);
6156 BUG_ON(rq->nr_running != 0);
6157
41a2d6cf
IM
6158 /*
6159 * No need to migrate the tasks: it was best-effort if
6160 * they didn't take sched_hotcpu_mutex. Just wake up
6161 * the requestors.
6162 */
1da177e4
LT
6163 spin_lock_irq(&rq->lock);
6164 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6165 struct migration_req *req;
6166
1da177e4 6167 req = list_entry(rq->migration_queue.next,
70b97a7f 6168 struct migration_req, list);
1da177e4
LT
6169 list_del_init(&req->list);
6170 complete(&req->done);
6171 }
6172 spin_unlock_irq(&rq->lock);
6173 break;
57d885fe 6174
08f503b0
GH
6175 case CPU_DYING:
6176 case CPU_DYING_FROZEN:
57d885fe
GH
6177 /* Update our root-domain */
6178 rq = cpu_rq(cpu);
6179 spin_lock_irqsave(&rq->lock, flags);
6180 if (rq->rd) {
6181 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6182 set_rq_offline(rq);
57d885fe
GH
6183 }
6184 spin_unlock_irqrestore(&rq->lock, flags);
6185 break;
1da177e4
LT
6186#endif
6187 }
6188 return NOTIFY_OK;
6189}
6190
6191/* Register at highest priority so that task migration (migrate_all_tasks)
6192 * happens before everything else.
6193 */
26c2143b 6194static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6195 .notifier_call = migration_call,
6196 .priority = 10
6197};
6198
e6fe6649 6199void __init migration_init(void)
1da177e4
LT
6200{
6201 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6202 int err;
48f24c4d
IM
6203
6204 /* Start one for the boot CPU: */
07dccf33
AM
6205 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6206 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6207 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6208 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6209}
6210#endif
6211
6212#ifdef CONFIG_SMP
476f3534 6213
3e9830dc 6214#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6215
099f98c8
GS
6216static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6217{
6218 switch (lvl) {
6219 case SD_LV_NONE:
6220 return "NONE";
6221 case SD_LV_SIBLING:
6222 return "SIBLING";
6223 case SD_LV_MC:
6224 return "MC";
6225 case SD_LV_CPU:
6226 return "CPU";
6227 case SD_LV_NODE:
6228 return "NODE";
6229 case SD_LV_ALLNODES:
6230 return "ALLNODES";
6231 case SD_LV_MAX:
6232 return "MAX";
6233
6234 }
6235 return "MAX";
6236}
6237
7c16ec58
MT
6238static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6239 cpumask_t *groupmask)
1da177e4 6240{
4dcf6aff 6241 struct sched_group *group = sd->groups;
434d53b0 6242 char str[256];
1da177e4 6243
434d53b0 6244 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6245 cpus_clear(*groupmask);
4dcf6aff
IM
6246
6247 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6248
6249 if (!(sd->flags & SD_LOAD_BALANCE)) {
6250 printk("does not load-balance\n");
6251 if (sd->parent)
6252 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6253 " has parent");
6254 return -1;
41c7ce9a
NP
6255 }
6256
099f98c8
GS
6257 printk(KERN_CONT "span %s level %s\n",
6258 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6259
6260 if (!cpu_isset(cpu, sd->span)) {
6261 printk(KERN_ERR "ERROR: domain->span does not contain "
6262 "CPU%d\n", cpu);
6263 }
6264 if (!cpu_isset(cpu, group->cpumask)) {
6265 printk(KERN_ERR "ERROR: domain->groups does not contain"
6266 " CPU%d\n", cpu);
6267 }
1da177e4 6268
4dcf6aff 6269 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6270 do {
4dcf6aff
IM
6271 if (!group) {
6272 printk("\n");
6273 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6274 break;
6275 }
6276
4dcf6aff
IM
6277 if (!group->__cpu_power) {
6278 printk(KERN_CONT "\n");
6279 printk(KERN_ERR "ERROR: domain->cpu_power not "
6280 "set\n");
6281 break;
6282 }
1da177e4 6283
4dcf6aff
IM
6284 if (!cpus_weight(group->cpumask)) {
6285 printk(KERN_CONT "\n");
6286 printk(KERN_ERR "ERROR: empty group\n");
6287 break;
6288 }
1da177e4 6289
7c16ec58 6290 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6291 printk(KERN_CONT "\n");
6292 printk(KERN_ERR "ERROR: repeated CPUs\n");
6293 break;
6294 }
1da177e4 6295
7c16ec58 6296 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6297
434d53b0 6298 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6299 printk(KERN_CONT " %s", str);
1da177e4 6300
4dcf6aff
IM
6301 group = group->next;
6302 } while (group != sd->groups);
6303 printk(KERN_CONT "\n");
1da177e4 6304
7c16ec58 6305 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6306 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6307
7c16ec58 6308 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6309 printk(KERN_ERR "ERROR: parent span is not a superset "
6310 "of domain->span\n");
6311 return 0;
6312}
1da177e4 6313
4dcf6aff
IM
6314static void sched_domain_debug(struct sched_domain *sd, int cpu)
6315{
7c16ec58 6316 cpumask_t *groupmask;
4dcf6aff 6317 int level = 0;
1da177e4 6318
4dcf6aff
IM
6319 if (!sd) {
6320 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6321 return;
6322 }
1da177e4 6323
4dcf6aff
IM
6324 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6325
7c16ec58
MT
6326 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6327 if (!groupmask) {
6328 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6329 return;
6330 }
6331
4dcf6aff 6332 for (;;) {
7c16ec58 6333 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6334 break;
1da177e4
LT
6335 level++;
6336 sd = sd->parent;
33859f7f 6337 if (!sd)
4dcf6aff
IM
6338 break;
6339 }
7c16ec58 6340 kfree(groupmask);
1da177e4 6341}
6d6bc0ad 6342#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6343# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6344#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6345
1a20ff27 6346static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6347{
6348 if (cpus_weight(sd->span) == 1)
6349 return 1;
6350
6351 /* Following flags need at least 2 groups */
6352 if (sd->flags & (SD_LOAD_BALANCE |
6353 SD_BALANCE_NEWIDLE |
6354 SD_BALANCE_FORK |
89c4710e
SS
6355 SD_BALANCE_EXEC |
6356 SD_SHARE_CPUPOWER |
6357 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6358 if (sd->groups != sd->groups->next)
6359 return 0;
6360 }
6361
6362 /* Following flags don't use groups */
6363 if (sd->flags & (SD_WAKE_IDLE |
6364 SD_WAKE_AFFINE |
6365 SD_WAKE_BALANCE))
6366 return 0;
6367
6368 return 1;
6369}
6370
48f24c4d
IM
6371static int
6372sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6373{
6374 unsigned long cflags = sd->flags, pflags = parent->flags;
6375
6376 if (sd_degenerate(parent))
6377 return 1;
6378
6379 if (!cpus_equal(sd->span, parent->span))
6380 return 0;
6381
6382 /* Does parent contain flags not in child? */
6383 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6384 if (cflags & SD_WAKE_AFFINE)
6385 pflags &= ~SD_WAKE_BALANCE;
6386 /* Flags needing groups don't count if only 1 group in parent */
6387 if (parent->groups == parent->groups->next) {
6388 pflags &= ~(SD_LOAD_BALANCE |
6389 SD_BALANCE_NEWIDLE |
6390 SD_BALANCE_FORK |
89c4710e
SS
6391 SD_BALANCE_EXEC |
6392 SD_SHARE_CPUPOWER |
6393 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6394 }
6395 if (~cflags & pflags)
6396 return 0;
6397
6398 return 1;
6399}
6400
57d885fe
GH
6401static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6402{
6403 unsigned long flags;
57d885fe
GH
6404
6405 spin_lock_irqsave(&rq->lock, flags);
6406
6407 if (rq->rd) {
6408 struct root_domain *old_rd = rq->rd;
6409
1f11eb6a
GH
6410 if (cpu_isset(rq->cpu, old_rd->online))
6411 set_rq_offline(rq);
57d885fe 6412
dc938520 6413 cpu_clear(rq->cpu, old_rd->span);
dc938520 6414
57d885fe
GH
6415 if (atomic_dec_and_test(&old_rd->refcount))
6416 kfree(old_rd);
6417 }
6418
6419 atomic_inc(&rd->refcount);
6420 rq->rd = rd;
6421
dc938520 6422 cpu_set(rq->cpu, rd->span);
1f94ef59 6423 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6424 set_rq_online(rq);
57d885fe
GH
6425
6426 spin_unlock_irqrestore(&rq->lock, flags);
6427}
6428
dc938520 6429static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6430{
6431 memset(rd, 0, sizeof(*rd));
6432
dc938520
GH
6433 cpus_clear(rd->span);
6434 cpus_clear(rd->online);
6e0534f2
GH
6435
6436 cpupri_init(&rd->cpupri);
57d885fe
GH
6437}
6438
6439static void init_defrootdomain(void)
6440{
dc938520 6441 init_rootdomain(&def_root_domain);
57d885fe
GH
6442 atomic_set(&def_root_domain.refcount, 1);
6443}
6444
dc938520 6445static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6446{
6447 struct root_domain *rd;
6448
6449 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6450 if (!rd)
6451 return NULL;
6452
dc938520 6453 init_rootdomain(rd);
57d885fe
GH
6454
6455 return rd;
6456}
6457
1da177e4 6458/*
0eab9146 6459 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6460 * hold the hotplug lock.
6461 */
0eab9146
IM
6462static void
6463cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6464{
70b97a7f 6465 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6466 struct sched_domain *tmp;
6467
6468 /* Remove the sched domains which do not contribute to scheduling. */
6469 for (tmp = sd; tmp; tmp = tmp->parent) {
6470 struct sched_domain *parent = tmp->parent;
6471 if (!parent)
6472 break;
1a848870 6473 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6474 tmp->parent = parent->parent;
1a848870
SS
6475 if (parent->parent)
6476 parent->parent->child = tmp;
6477 }
245af2c7
SS
6478 }
6479
1a848870 6480 if (sd && sd_degenerate(sd)) {
245af2c7 6481 sd = sd->parent;
1a848870
SS
6482 if (sd)
6483 sd->child = NULL;
6484 }
1da177e4
LT
6485
6486 sched_domain_debug(sd, cpu);
6487
57d885fe 6488 rq_attach_root(rq, rd);
674311d5 6489 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6490}
6491
6492/* cpus with isolated domains */
67af63a6 6493static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6494
6495/* Setup the mask of cpus configured for isolated domains */
6496static int __init isolated_cpu_setup(char *str)
6497{
6498 int ints[NR_CPUS], i;
6499
6500 str = get_options(str, ARRAY_SIZE(ints), ints);
6501 cpus_clear(cpu_isolated_map);
6502 for (i = 1; i <= ints[0]; i++)
6503 if (ints[i] < NR_CPUS)
6504 cpu_set(ints[i], cpu_isolated_map);
6505 return 1;
6506}
6507
8927f494 6508__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6509
6510/*
6711cab4
SS
6511 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6512 * to a function which identifies what group(along with sched group) a CPU
6513 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6514 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6515 *
6516 * init_sched_build_groups will build a circular linked list of the groups
6517 * covered by the given span, and will set each group's ->cpumask correctly,
6518 * and ->cpu_power to 0.
6519 */
a616058b 6520static void
7c16ec58 6521init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6522 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6523 struct sched_group **sg,
6524 cpumask_t *tmpmask),
6525 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6526{
6527 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6528 int i;
6529
7c16ec58
MT
6530 cpus_clear(*covered);
6531
6532 for_each_cpu_mask(i, *span) {
6711cab4 6533 struct sched_group *sg;
7c16ec58 6534 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6535 int j;
6536
7c16ec58 6537 if (cpu_isset(i, *covered))
1da177e4
LT
6538 continue;
6539
7c16ec58 6540 cpus_clear(sg->cpumask);
5517d86b 6541 sg->__cpu_power = 0;
1da177e4 6542
7c16ec58
MT
6543 for_each_cpu_mask(j, *span) {
6544 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6545 continue;
6546
7c16ec58 6547 cpu_set(j, *covered);
1da177e4
LT
6548 cpu_set(j, sg->cpumask);
6549 }
6550 if (!first)
6551 first = sg;
6552 if (last)
6553 last->next = sg;
6554 last = sg;
6555 }
6556 last->next = first;
6557}
6558
9c1cfda2 6559#define SD_NODES_PER_DOMAIN 16
1da177e4 6560
9c1cfda2 6561#ifdef CONFIG_NUMA
198e2f18 6562
9c1cfda2
JH
6563/**
6564 * find_next_best_node - find the next node to include in a sched_domain
6565 * @node: node whose sched_domain we're building
6566 * @used_nodes: nodes already in the sched_domain
6567 *
41a2d6cf 6568 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6569 * finds the closest node not already in the @used_nodes map.
6570 *
6571 * Should use nodemask_t.
6572 */
c5f59f08 6573static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6574{
6575 int i, n, val, min_val, best_node = 0;
6576
6577 min_val = INT_MAX;
6578
6579 for (i = 0; i < MAX_NUMNODES; i++) {
6580 /* Start at @node */
6581 n = (node + i) % MAX_NUMNODES;
6582
6583 if (!nr_cpus_node(n))
6584 continue;
6585
6586 /* Skip already used nodes */
c5f59f08 6587 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6588 continue;
6589
6590 /* Simple min distance search */
6591 val = node_distance(node, n);
6592
6593 if (val < min_val) {
6594 min_val = val;
6595 best_node = n;
6596 }
6597 }
6598
c5f59f08 6599 node_set(best_node, *used_nodes);
9c1cfda2
JH
6600 return best_node;
6601}
6602
6603/**
6604 * sched_domain_node_span - get a cpumask for a node's sched_domain
6605 * @node: node whose cpumask we're constructing
73486722 6606 * @span: resulting cpumask
9c1cfda2 6607 *
41a2d6cf 6608 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6609 * should be one that prevents unnecessary balancing, but also spreads tasks
6610 * out optimally.
6611 */
4bdbaad3 6612static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6613{
c5f59f08 6614 nodemask_t used_nodes;
c5f59f08 6615 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6616 int i;
9c1cfda2 6617
4bdbaad3 6618 cpus_clear(*span);
c5f59f08 6619 nodes_clear(used_nodes);
9c1cfda2 6620
4bdbaad3 6621 cpus_or(*span, *span, *nodemask);
c5f59f08 6622 node_set(node, used_nodes);
9c1cfda2
JH
6623
6624 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6625 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6626
c5f59f08 6627 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6628 cpus_or(*span, *span, *nodemask);
9c1cfda2 6629 }
9c1cfda2 6630}
6d6bc0ad 6631#endif /* CONFIG_NUMA */
9c1cfda2 6632
5c45bf27 6633int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6634
9c1cfda2 6635/*
48f24c4d 6636 * SMT sched-domains:
9c1cfda2 6637 */
1da177e4
LT
6638#ifdef CONFIG_SCHED_SMT
6639static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6640static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6641
41a2d6cf 6642static int
7c16ec58
MT
6643cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6644 cpumask_t *unused)
1da177e4 6645{
6711cab4
SS
6646 if (sg)
6647 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6648 return cpu;
6649}
6d6bc0ad 6650#endif /* CONFIG_SCHED_SMT */
1da177e4 6651
48f24c4d
IM
6652/*
6653 * multi-core sched-domains:
6654 */
1e9f28fa
SS
6655#ifdef CONFIG_SCHED_MC
6656static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6657static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6658#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6659
6660#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6661static int
7c16ec58
MT
6662cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6663 cpumask_t *mask)
1e9f28fa 6664{
6711cab4 6665 int group;
7c16ec58
MT
6666
6667 *mask = per_cpu(cpu_sibling_map, cpu);
6668 cpus_and(*mask, *mask, *cpu_map);
6669 group = first_cpu(*mask);
6711cab4
SS
6670 if (sg)
6671 *sg = &per_cpu(sched_group_core, group);
6672 return group;
1e9f28fa
SS
6673}
6674#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6675static int
7c16ec58
MT
6676cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6677 cpumask_t *unused)
1e9f28fa 6678{
6711cab4
SS
6679 if (sg)
6680 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6681 return cpu;
6682}
6683#endif
6684
1da177e4 6685static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6686static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6687
41a2d6cf 6688static int
7c16ec58
MT
6689cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6690 cpumask_t *mask)
1da177e4 6691{
6711cab4 6692 int group;
48f24c4d 6693#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6694 *mask = cpu_coregroup_map(cpu);
6695 cpus_and(*mask, *mask, *cpu_map);
6696 group = first_cpu(*mask);
1e9f28fa 6697#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6698 *mask = per_cpu(cpu_sibling_map, cpu);
6699 cpus_and(*mask, *mask, *cpu_map);
6700 group = first_cpu(*mask);
1da177e4 6701#else
6711cab4 6702 group = cpu;
1da177e4 6703#endif
6711cab4
SS
6704 if (sg)
6705 *sg = &per_cpu(sched_group_phys, group);
6706 return group;
1da177e4
LT
6707}
6708
6709#ifdef CONFIG_NUMA
1da177e4 6710/*
9c1cfda2
JH
6711 * The init_sched_build_groups can't handle what we want to do with node
6712 * groups, so roll our own. Now each node has its own list of groups which
6713 * gets dynamically allocated.
1da177e4 6714 */
9c1cfda2 6715static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6716static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6717
9c1cfda2 6718static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6719static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6720
6711cab4 6721static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6722 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6723{
6711cab4
SS
6724 int group;
6725
7c16ec58
MT
6726 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6727 cpus_and(*nodemask, *nodemask, *cpu_map);
6728 group = first_cpu(*nodemask);
6711cab4
SS
6729
6730 if (sg)
6731 *sg = &per_cpu(sched_group_allnodes, group);
6732 return group;
1da177e4 6733}
6711cab4 6734
08069033
SS
6735static void init_numa_sched_groups_power(struct sched_group *group_head)
6736{
6737 struct sched_group *sg = group_head;
6738 int j;
6739
6740 if (!sg)
6741 return;
3a5c359a
AK
6742 do {
6743 for_each_cpu_mask(j, sg->cpumask) {
6744 struct sched_domain *sd;
08069033 6745
3a5c359a
AK
6746 sd = &per_cpu(phys_domains, j);
6747 if (j != first_cpu(sd->groups->cpumask)) {
6748 /*
6749 * Only add "power" once for each
6750 * physical package.
6751 */
6752 continue;
6753 }
08069033 6754
3a5c359a
AK
6755 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6756 }
6757 sg = sg->next;
6758 } while (sg != group_head);
08069033 6759}
6d6bc0ad 6760#endif /* CONFIG_NUMA */
1da177e4 6761
a616058b 6762#ifdef CONFIG_NUMA
51888ca2 6763/* Free memory allocated for various sched_group structures */
7c16ec58 6764static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6765{
a616058b 6766 int cpu, i;
51888ca2
SV
6767
6768 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6769 struct sched_group **sched_group_nodes
6770 = sched_group_nodes_bycpu[cpu];
6771
51888ca2
SV
6772 if (!sched_group_nodes)
6773 continue;
6774
6775 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6776 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6777
7c16ec58
MT
6778 *nodemask = node_to_cpumask(i);
6779 cpus_and(*nodemask, *nodemask, *cpu_map);
6780 if (cpus_empty(*nodemask))
51888ca2
SV
6781 continue;
6782
6783 if (sg == NULL)
6784 continue;
6785 sg = sg->next;
6786next_sg:
6787 oldsg = sg;
6788 sg = sg->next;
6789 kfree(oldsg);
6790 if (oldsg != sched_group_nodes[i])
6791 goto next_sg;
6792 }
6793 kfree(sched_group_nodes);
6794 sched_group_nodes_bycpu[cpu] = NULL;
6795 }
51888ca2 6796}
6d6bc0ad 6797#else /* !CONFIG_NUMA */
7c16ec58 6798static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6799{
6800}
6d6bc0ad 6801#endif /* CONFIG_NUMA */
51888ca2 6802
89c4710e
SS
6803/*
6804 * Initialize sched groups cpu_power.
6805 *
6806 * cpu_power indicates the capacity of sched group, which is used while
6807 * distributing the load between different sched groups in a sched domain.
6808 * Typically cpu_power for all the groups in a sched domain will be same unless
6809 * there are asymmetries in the topology. If there are asymmetries, group
6810 * having more cpu_power will pickup more load compared to the group having
6811 * less cpu_power.
6812 *
6813 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6814 * the maximum number of tasks a group can handle in the presence of other idle
6815 * or lightly loaded groups in the same sched domain.
6816 */
6817static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6818{
6819 struct sched_domain *child;
6820 struct sched_group *group;
6821
6822 WARN_ON(!sd || !sd->groups);
6823
6824 if (cpu != first_cpu(sd->groups->cpumask))
6825 return;
6826
6827 child = sd->child;
6828
5517d86b
ED
6829 sd->groups->__cpu_power = 0;
6830
89c4710e
SS
6831 /*
6832 * For perf policy, if the groups in child domain share resources
6833 * (for example cores sharing some portions of the cache hierarchy
6834 * or SMT), then set this domain groups cpu_power such that each group
6835 * can handle only one task, when there are other idle groups in the
6836 * same sched domain.
6837 */
6838 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6839 (child->flags &
6840 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6841 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6842 return;
6843 }
6844
89c4710e
SS
6845 /*
6846 * add cpu_power of each child group to this groups cpu_power
6847 */
6848 group = child->groups;
6849 do {
5517d86b 6850 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6851 group = group->next;
6852 } while (group != child->groups);
6853}
6854
7c16ec58
MT
6855/*
6856 * Initializers for schedule domains
6857 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6858 */
6859
6860#define SD_INIT(sd, type) sd_init_##type(sd)
6861#define SD_INIT_FUNC(type) \
6862static noinline void sd_init_##type(struct sched_domain *sd) \
6863{ \
6864 memset(sd, 0, sizeof(*sd)); \
6865 *sd = SD_##type##_INIT; \
1d3504fc 6866 sd->level = SD_LV_##type; \
7c16ec58
MT
6867}
6868
6869SD_INIT_FUNC(CPU)
6870#ifdef CONFIG_NUMA
6871 SD_INIT_FUNC(ALLNODES)
6872 SD_INIT_FUNC(NODE)
6873#endif
6874#ifdef CONFIG_SCHED_SMT
6875 SD_INIT_FUNC(SIBLING)
6876#endif
6877#ifdef CONFIG_SCHED_MC
6878 SD_INIT_FUNC(MC)
6879#endif
6880
6881/*
6882 * To minimize stack usage kmalloc room for cpumasks and share the
6883 * space as the usage in build_sched_domains() dictates. Used only
6884 * if the amount of space is significant.
6885 */
6886struct allmasks {
6887 cpumask_t tmpmask; /* make this one first */
6888 union {
6889 cpumask_t nodemask;
6890 cpumask_t this_sibling_map;
6891 cpumask_t this_core_map;
6892 };
6893 cpumask_t send_covered;
6894
6895#ifdef CONFIG_NUMA
6896 cpumask_t domainspan;
6897 cpumask_t covered;
6898 cpumask_t notcovered;
6899#endif
6900};
6901
6902#if NR_CPUS > 128
6903#define SCHED_CPUMASK_ALLOC 1
6904#define SCHED_CPUMASK_FREE(v) kfree(v)
6905#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6906#else
6907#define SCHED_CPUMASK_ALLOC 0
6908#define SCHED_CPUMASK_FREE(v)
6909#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6910#endif
6911
6912#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6913 ((unsigned long)(a) + offsetof(struct allmasks, v))
6914
1d3504fc
HS
6915static int default_relax_domain_level = -1;
6916
6917static int __init setup_relax_domain_level(char *str)
6918{
6919 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6920 return 1;
6921}
6922__setup("relax_domain_level=", setup_relax_domain_level);
6923
6924static void set_domain_attribute(struct sched_domain *sd,
6925 struct sched_domain_attr *attr)
6926{
6927 int request;
6928
6929 if (!attr || attr->relax_domain_level < 0) {
6930 if (default_relax_domain_level < 0)
6931 return;
6932 else
6933 request = default_relax_domain_level;
6934 } else
6935 request = attr->relax_domain_level;
6936 if (request < sd->level) {
6937 /* turn off idle balance on this domain */
6938 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6939 } else {
6940 /* turn on idle balance on this domain */
6941 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6942 }
6943}
6944
1da177e4 6945/*
1a20ff27
DG
6946 * Build sched domains for a given set of cpus and attach the sched domains
6947 * to the individual cpus
1da177e4 6948 */
1d3504fc
HS
6949static int __build_sched_domains(const cpumask_t *cpu_map,
6950 struct sched_domain_attr *attr)
1da177e4
LT
6951{
6952 int i;
57d885fe 6953 struct root_domain *rd;
7c16ec58
MT
6954 SCHED_CPUMASK_DECLARE(allmasks);
6955 cpumask_t *tmpmask;
d1b55138
JH
6956#ifdef CONFIG_NUMA
6957 struct sched_group **sched_group_nodes = NULL;
6711cab4 6958 int sd_allnodes = 0;
d1b55138
JH
6959
6960 /*
6961 * Allocate the per-node list of sched groups
6962 */
5cf9f062 6963 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6964 GFP_KERNEL);
d1b55138
JH
6965 if (!sched_group_nodes) {
6966 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6967 return -ENOMEM;
d1b55138 6968 }
d1b55138 6969#endif
1da177e4 6970
dc938520 6971 rd = alloc_rootdomain();
57d885fe
GH
6972 if (!rd) {
6973 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6974#ifdef CONFIG_NUMA
6975 kfree(sched_group_nodes);
6976#endif
57d885fe
GH
6977 return -ENOMEM;
6978 }
6979
7c16ec58
MT
6980#if SCHED_CPUMASK_ALLOC
6981 /* get space for all scratch cpumask variables */
6982 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6983 if (!allmasks) {
6984 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6985 kfree(rd);
6986#ifdef CONFIG_NUMA
6987 kfree(sched_group_nodes);
6988#endif
6989 return -ENOMEM;
6990 }
6991#endif
6992 tmpmask = (cpumask_t *)allmasks;
6993
6994
6995#ifdef CONFIG_NUMA
6996 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6997#endif
6998
1da177e4 6999 /*
1a20ff27 7000 * Set up domains for cpus specified by the cpu_map.
1da177e4 7001 */
1a20ff27 7002 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7003 struct sched_domain *sd = NULL, *p;
7c16ec58 7004 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7005
7c16ec58
MT
7006 *nodemask = node_to_cpumask(cpu_to_node(i));
7007 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7008
7009#ifdef CONFIG_NUMA
dd41f596 7010 if (cpus_weight(*cpu_map) >
7c16ec58 7011 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7012 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7013 SD_INIT(sd, ALLNODES);
1d3504fc 7014 set_domain_attribute(sd, attr);
9c1cfda2 7015 sd->span = *cpu_map;
7c16ec58 7016 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7017 p = sd;
6711cab4 7018 sd_allnodes = 1;
9c1cfda2
JH
7019 } else
7020 p = NULL;
7021
1da177e4 7022 sd = &per_cpu(node_domains, i);
7c16ec58 7023 SD_INIT(sd, NODE);
1d3504fc 7024 set_domain_attribute(sd, attr);
4bdbaad3 7025 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7026 sd->parent = p;
1a848870
SS
7027 if (p)
7028 p->child = sd;
9c1cfda2 7029 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7030#endif
7031
7032 p = sd;
7033 sd = &per_cpu(phys_domains, i);
7c16ec58 7034 SD_INIT(sd, CPU);
1d3504fc 7035 set_domain_attribute(sd, attr);
7c16ec58 7036 sd->span = *nodemask;
1da177e4 7037 sd->parent = p;
1a848870
SS
7038 if (p)
7039 p->child = sd;
7c16ec58 7040 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7041
1e9f28fa
SS
7042#ifdef CONFIG_SCHED_MC
7043 p = sd;
7044 sd = &per_cpu(core_domains, i);
7c16ec58 7045 SD_INIT(sd, MC);
1d3504fc 7046 set_domain_attribute(sd, attr);
1e9f28fa
SS
7047 sd->span = cpu_coregroup_map(i);
7048 cpus_and(sd->span, sd->span, *cpu_map);
7049 sd->parent = p;
1a848870 7050 p->child = sd;
7c16ec58 7051 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7052#endif
7053
1da177e4
LT
7054#ifdef CONFIG_SCHED_SMT
7055 p = sd;
7056 sd = &per_cpu(cpu_domains, i);
7c16ec58 7057 SD_INIT(sd, SIBLING);
1d3504fc 7058 set_domain_attribute(sd, attr);
d5a7430d 7059 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7060 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7061 sd->parent = p;
1a848870 7062 p->child = sd;
7c16ec58 7063 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7064#endif
7065 }
7066
7067#ifdef CONFIG_SCHED_SMT
7068 /* Set up CPU (sibling) groups */
9c1cfda2 7069 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7070 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7071 SCHED_CPUMASK_VAR(send_covered, allmasks);
7072
7073 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7074 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7075 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7076 continue;
7077
dd41f596 7078 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7079 &cpu_to_cpu_group,
7080 send_covered, tmpmask);
1da177e4
LT
7081 }
7082#endif
7083
1e9f28fa
SS
7084#ifdef CONFIG_SCHED_MC
7085 /* Set up multi-core groups */
7086 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7087 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7088 SCHED_CPUMASK_VAR(send_covered, allmasks);
7089
7090 *this_core_map = cpu_coregroup_map(i);
7091 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7092 if (i != first_cpu(*this_core_map))
1e9f28fa 7093 continue;
7c16ec58 7094
dd41f596 7095 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7096 &cpu_to_core_group,
7097 send_covered, tmpmask);
1e9f28fa
SS
7098 }
7099#endif
7100
1da177e4
LT
7101 /* Set up physical groups */
7102 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7103 SCHED_CPUMASK_VAR(nodemask, allmasks);
7104 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7105
7c16ec58
MT
7106 *nodemask = node_to_cpumask(i);
7107 cpus_and(*nodemask, *nodemask, *cpu_map);
7108 if (cpus_empty(*nodemask))
1da177e4
LT
7109 continue;
7110
7c16ec58
MT
7111 init_sched_build_groups(nodemask, cpu_map,
7112 &cpu_to_phys_group,
7113 send_covered, tmpmask);
1da177e4
LT
7114 }
7115
7116#ifdef CONFIG_NUMA
7117 /* Set up node groups */
7c16ec58
MT
7118 if (sd_allnodes) {
7119 SCHED_CPUMASK_VAR(send_covered, allmasks);
7120
7121 init_sched_build_groups(cpu_map, cpu_map,
7122 &cpu_to_allnodes_group,
7123 send_covered, tmpmask);
7124 }
9c1cfda2
JH
7125
7126 for (i = 0; i < MAX_NUMNODES; i++) {
7127 /* Set up node groups */
7128 struct sched_group *sg, *prev;
7c16ec58
MT
7129 SCHED_CPUMASK_VAR(nodemask, allmasks);
7130 SCHED_CPUMASK_VAR(domainspan, allmasks);
7131 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7132 int j;
7133
7c16ec58
MT
7134 *nodemask = node_to_cpumask(i);
7135 cpus_clear(*covered);
7136
7137 cpus_and(*nodemask, *nodemask, *cpu_map);
7138 if (cpus_empty(*nodemask)) {
d1b55138 7139 sched_group_nodes[i] = NULL;
9c1cfda2 7140 continue;
d1b55138 7141 }
9c1cfda2 7142
4bdbaad3 7143 sched_domain_node_span(i, domainspan);
7c16ec58 7144 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7145
15f0b676 7146 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7147 if (!sg) {
7148 printk(KERN_WARNING "Can not alloc domain group for "
7149 "node %d\n", i);
7150 goto error;
7151 }
9c1cfda2 7152 sched_group_nodes[i] = sg;
7c16ec58 7153 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7154 struct sched_domain *sd;
9761eea8 7155
9c1cfda2
JH
7156 sd = &per_cpu(node_domains, j);
7157 sd->groups = sg;
9c1cfda2 7158 }
5517d86b 7159 sg->__cpu_power = 0;
7c16ec58 7160 sg->cpumask = *nodemask;
51888ca2 7161 sg->next = sg;
7c16ec58 7162 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7163 prev = sg;
7164
7165 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7166 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7167 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7168 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7169
7c16ec58
MT
7170 cpus_complement(*notcovered, *covered);
7171 cpus_and(*tmpmask, *notcovered, *cpu_map);
7172 cpus_and(*tmpmask, *tmpmask, *domainspan);
7173 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7174 break;
7175
7c16ec58
MT
7176 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7177 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7178 continue;
7179
15f0b676
SV
7180 sg = kmalloc_node(sizeof(struct sched_group),
7181 GFP_KERNEL, i);
9c1cfda2
JH
7182 if (!sg) {
7183 printk(KERN_WARNING
7184 "Can not alloc domain group for node %d\n", j);
51888ca2 7185 goto error;
9c1cfda2 7186 }
5517d86b 7187 sg->__cpu_power = 0;
7c16ec58 7188 sg->cpumask = *tmpmask;
51888ca2 7189 sg->next = prev->next;
7c16ec58 7190 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7191 prev->next = sg;
7192 prev = sg;
7193 }
9c1cfda2 7194 }
1da177e4
LT
7195#endif
7196
7197 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7198#ifdef CONFIG_SCHED_SMT
1a20ff27 7199 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7200 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7201
89c4710e 7202 init_sched_groups_power(i, sd);
5c45bf27 7203 }
1da177e4 7204#endif
1e9f28fa 7205#ifdef CONFIG_SCHED_MC
5c45bf27 7206 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7207 struct sched_domain *sd = &per_cpu(core_domains, i);
7208
89c4710e 7209 init_sched_groups_power(i, sd);
5c45bf27
SS
7210 }
7211#endif
1e9f28fa 7212
5c45bf27 7213 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7214 struct sched_domain *sd = &per_cpu(phys_domains, i);
7215
89c4710e 7216 init_sched_groups_power(i, sd);
1da177e4
LT
7217 }
7218
9c1cfda2 7219#ifdef CONFIG_NUMA
08069033
SS
7220 for (i = 0; i < MAX_NUMNODES; i++)
7221 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7222
6711cab4
SS
7223 if (sd_allnodes) {
7224 struct sched_group *sg;
f712c0c7 7225
7c16ec58
MT
7226 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7227 tmpmask);
f712c0c7
SS
7228 init_numa_sched_groups_power(sg);
7229 }
9c1cfda2
JH
7230#endif
7231
1da177e4 7232 /* Attach the domains */
1a20ff27 7233 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7234 struct sched_domain *sd;
7235#ifdef CONFIG_SCHED_SMT
7236 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7237#elif defined(CONFIG_SCHED_MC)
7238 sd = &per_cpu(core_domains, i);
1da177e4
LT
7239#else
7240 sd = &per_cpu(phys_domains, i);
7241#endif
57d885fe 7242 cpu_attach_domain(sd, rd, i);
1da177e4 7243 }
51888ca2 7244
7c16ec58 7245 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7246 return 0;
7247
a616058b 7248#ifdef CONFIG_NUMA
51888ca2 7249error:
7c16ec58
MT
7250 free_sched_groups(cpu_map, tmpmask);
7251 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7252 return -ENOMEM;
a616058b 7253#endif
1da177e4 7254}
029190c5 7255
1d3504fc
HS
7256static int build_sched_domains(const cpumask_t *cpu_map)
7257{
7258 return __build_sched_domains(cpu_map, NULL);
7259}
7260
029190c5
PJ
7261static cpumask_t *doms_cur; /* current sched domains */
7262static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7263static struct sched_domain_attr *dattr_cur;
7264 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7265
7266/*
7267 * Special case: If a kmalloc of a doms_cur partition (array of
7268 * cpumask_t) fails, then fallback to a single sched domain,
7269 * as determined by the single cpumask_t fallback_doms.
7270 */
7271static cpumask_t fallback_doms;
7272
22e52b07
HC
7273void __attribute__((weak)) arch_update_cpu_topology(void)
7274{
7275}
7276
5c8e1ed1
MK
7277/*
7278 * Free current domain masks.
7279 * Called after all cpus are attached to NULL domain.
7280 */
7281static void free_sched_domains(void)
7282{
7283 ndoms_cur = 0;
7284 if (doms_cur != &fallback_doms)
7285 kfree(doms_cur);
7286 doms_cur = &fallback_doms;
7287}
7288
1a20ff27 7289/*
41a2d6cf 7290 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7291 * For now this just excludes isolated cpus, but could be used to
7292 * exclude other special cases in the future.
1a20ff27 7293 */
51888ca2 7294static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7295{
7378547f
MM
7296 int err;
7297
22e52b07 7298 arch_update_cpu_topology();
029190c5
PJ
7299 ndoms_cur = 1;
7300 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7301 if (!doms_cur)
7302 doms_cur = &fallback_doms;
7303 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7304 dattr_cur = NULL;
7378547f 7305 err = build_sched_domains(doms_cur);
6382bc90 7306 register_sched_domain_sysctl();
7378547f
MM
7307
7308 return err;
1a20ff27
DG
7309}
7310
7c16ec58
MT
7311static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7312 cpumask_t *tmpmask)
1da177e4 7313{
7c16ec58 7314 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7315}
1da177e4 7316
1a20ff27
DG
7317/*
7318 * Detach sched domains from a group of cpus specified in cpu_map
7319 * These cpus will now be attached to the NULL domain
7320 */
858119e1 7321static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7322{
7c16ec58 7323 cpumask_t tmpmask;
1a20ff27
DG
7324 int i;
7325
6382bc90
MM
7326 unregister_sched_domain_sysctl();
7327
1a20ff27 7328 for_each_cpu_mask(i, *cpu_map)
57d885fe 7329 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7330 synchronize_sched();
7c16ec58 7331 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7332}
7333
1d3504fc
HS
7334/* handle null as "default" */
7335static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7336 struct sched_domain_attr *new, int idx_new)
7337{
7338 struct sched_domain_attr tmp;
7339
7340 /* fast path */
7341 if (!new && !cur)
7342 return 1;
7343
7344 tmp = SD_ATTR_INIT;
7345 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7346 new ? (new + idx_new) : &tmp,
7347 sizeof(struct sched_domain_attr));
7348}
7349
029190c5
PJ
7350/*
7351 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7352 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7353 * doms_new[] to the current sched domain partitioning, doms_cur[].
7354 * It destroys each deleted domain and builds each new domain.
7355 *
7356 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7357 * The masks don't intersect (don't overlap.) We should setup one
7358 * sched domain for each mask. CPUs not in any of the cpumasks will
7359 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7360 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7361 * it as it is.
7362 *
41a2d6cf
IM
7363 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7364 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7365 * failed the kmalloc call, then it can pass in doms_new == NULL,
7366 * and partition_sched_domains() will fallback to the single partition
7367 * 'fallback_doms'.
7368 *
7369 * Call with hotplug lock held
7370 */
1d3504fc
HS
7371void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7372 struct sched_domain_attr *dattr_new)
029190c5
PJ
7373{
7374 int i, j;
7375
712555ee 7376 mutex_lock(&sched_domains_mutex);
a1835615 7377
7378547f
MM
7378 /* always unregister in case we don't destroy any domains */
7379 unregister_sched_domain_sysctl();
7380
029190c5
PJ
7381 if (doms_new == NULL) {
7382 ndoms_new = 1;
7383 doms_new = &fallback_doms;
7384 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7385 dattr_new = NULL;
029190c5
PJ
7386 }
7387
7388 /* Destroy deleted domains */
7389 for (i = 0; i < ndoms_cur; i++) {
7390 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7391 if (cpus_equal(doms_cur[i], doms_new[j])
7392 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7393 goto match1;
7394 }
7395 /* no match - a current sched domain not in new doms_new[] */
7396 detach_destroy_domains(doms_cur + i);
7397match1:
7398 ;
7399 }
7400
7401 /* Build new domains */
7402 for (i = 0; i < ndoms_new; i++) {
7403 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7404 if (cpus_equal(doms_new[i], doms_cur[j])
7405 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7406 goto match2;
7407 }
7408 /* no match - add a new doms_new */
1d3504fc
HS
7409 __build_sched_domains(doms_new + i,
7410 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7411match2:
7412 ;
7413 }
7414
7415 /* Remember the new sched domains */
7416 if (doms_cur != &fallback_doms)
7417 kfree(doms_cur);
1d3504fc 7418 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7419 doms_cur = doms_new;
1d3504fc 7420 dattr_cur = dattr_new;
029190c5 7421 ndoms_cur = ndoms_new;
7378547f
MM
7422
7423 register_sched_domain_sysctl();
a1835615 7424
712555ee 7425 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7426}
7427
5c45bf27 7428#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7429int arch_reinit_sched_domains(void)
5c45bf27
SS
7430{
7431 int err;
7432
95402b38 7433 get_online_cpus();
712555ee 7434 mutex_lock(&sched_domains_mutex);
5c45bf27 7435 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7436 free_sched_domains();
5c45bf27 7437 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7438 mutex_unlock(&sched_domains_mutex);
95402b38 7439 put_online_cpus();
5c45bf27
SS
7440
7441 return err;
7442}
7443
7444static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7445{
7446 int ret;
7447
7448 if (buf[0] != '0' && buf[0] != '1')
7449 return -EINVAL;
7450
7451 if (smt)
7452 sched_smt_power_savings = (buf[0] == '1');
7453 else
7454 sched_mc_power_savings = (buf[0] == '1');
7455
7456 ret = arch_reinit_sched_domains();
7457
7458 return ret ? ret : count;
7459}
7460
5c45bf27
SS
7461#ifdef CONFIG_SCHED_MC
7462static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7463{
7464 return sprintf(page, "%u\n", sched_mc_power_savings);
7465}
48f24c4d
IM
7466static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7467 const char *buf, size_t count)
5c45bf27
SS
7468{
7469 return sched_power_savings_store(buf, count, 0);
7470}
6707de00
AB
7471static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7472 sched_mc_power_savings_store);
5c45bf27
SS
7473#endif
7474
7475#ifdef CONFIG_SCHED_SMT
7476static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7477{
7478 return sprintf(page, "%u\n", sched_smt_power_savings);
7479}
48f24c4d
IM
7480static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7481 const char *buf, size_t count)
5c45bf27
SS
7482{
7483 return sched_power_savings_store(buf, count, 1);
7484}
6707de00
AB
7485static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7486 sched_smt_power_savings_store);
7487#endif
7488
7489int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7490{
7491 int err = 0;
7492
7493#ifdef CONFIG_SCHED_SMT
7494 if (smt_capable())
7495 err = sysfs_create_file(&cls->kset.kobj,
7496 &attr_sched_smt_power_savings.attr);
7497#endif
7498#ifdef CONFIG_SCHED_MC
7499 if (!err && mc_capable())
7500 err = sysfs_create_file(&cls->kset.kobj,
7501 &attr_sched_mc_power_savings.attr);
7502#endif
7503 return err;
7504}
6d6bc0ad 7505#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7506
1da177e4 7507/*
41a2d6cf 7508 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7509 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7510 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7511 * which will prevent rebalancing while the sched domains are recalculated.
7512 */
7513static int update_sched_domains(struct notifier_block *nfb,
7514 unsigned long action, void *hcpu)
7515{
1da177e4
LT
7516 switch (action) {
7517 case CPU_UP_PREPARE:
8bb78442 7518 case CPU_UP_PREPARE_FROZEN:
1da177e4 7519 case CPU_DOWN_PREPARE:
8bb78442 7520 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7521 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7522 free_sched_domains();
1da177e4
LT
7523 return NOTIFY_OK;
7524
7525 case CPU_UP_CANCELED:
8bb78442 7526 case CPU_UP_CANCELED_FROZEN:
1da177e4 7527 case CPU_DOWN_FAILED:
8bb78442 7528 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7529 case CPU_ONLINE:
8bb78442 7530 case CPU_ONLINE_FROZEN:
1da177e4 7531 case CPU_DEAD:
8bb78442 7532 case CPU_DEAD_FROZEN:
1da177e4
LT
7533 /*
7534 * Fall through and re-initialise the domains.
7535 */
7536 break;
7537 default:
7538 return NOTIFY_DONE;
7539 }
7540
5c8e1ed1
MK
7541#ifndef CONFIG_CPUSETS
7542 /*
7543 * Create default domain partitioning if cpusets are disabled.
7544 * Otherwise we let cpusets rebuild the domains based on the
7545 * current setup.
7546 */
7547
1da177e4 7548 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7549 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7550#endif
1da177e4
LT
7551
7552 return NOTIFY_OK;
7553}
1da177e4
LT
7554
7555void __init sched_init_smp(void)
7556{
5c1e1767
NP
7557 cpumask_t non_isolated_cpus;
7558
434d53b0
MT
7559#if defined(CONFIG_NUMA)
7560 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7561 GFP_KERNEL);
7562 BUG_ON(sched_group_nodes_bycpu == NULL);
7563#endif
95402b38 7564 get_online_cpus();
712555ee 7565 mutex_lock(&sched_domains_mutex);
1a20ff27 7566 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7567 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7568 if (cpus_empty(non_isolated_cpus))
7569 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7570 mutex_unlock(&sched_domains_mutex);
95402b38 7571 put_online_cpus();
1da177e4
LT
7572 /* XXX: Theoretical race here - CPU may be hotplugged now */
7573 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7574 init_hrtick();
5c1e1767
NP
7575
7576 /* Move init over to a non-isolated CPU */
7c16ec58 7577 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7578 BUG();
19978ca6 7579 sched_init_granularity();
1da177e4
LT
7580}
7581#else
7582void __init sched_init_smp(void)
7583{
19978ca6 7584 sched_init_granularity();
1da177e4
LT
7585}
7586#endif /* CONFIG_SMP */
7587
7588int in_sched_functions(unsigned long addr)
7589{
1da177e4
LT
7590 return in_lock_functions(addr) ||
7591 (addr >= (unsigned long)__sched_text_start
7592 && addr < (unsigned long)__sched_text_end);
7593}
7594
a9957449 7595static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7596{
7597 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7598 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7599#ifdef CONFIG_FAIR_GROUP_SCHED
7600 cfs_rq->rq = rq;
7601#endif
67e9fb2a 7602 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7603}
7604
fa85ae24
PZ
7605static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7606{
7607 struct rt_prio_array *array;
7608 int i;
7609
7610 array = &rt_rq->active;
7611 for (i = 0; i < MAX_RT_PRIO; i++) {
45c01e82
GH
7612 INIT_LIST_HEAD(array->xqueue + i);
7613 INIT_LIST_HEAD(array->squeue + i);
fa85ae24
PZ
7614 __clear_bit(i, array->bitmap);
7615 }
7616 /* delimiter for bitsearch: */
7617 __set_bit(MAX_RT_PRIO, array->bitmap);
7618
052f1dc7 7619#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7620 rt_rq->highest_prio = MAX_RT_PRIO;
7621#endif
fa85ae24
PZ
7622#ifdef CONFIG_SMP
7623 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7624 rt_rq->overloaded = 0;
7625#endif
7626
7627 rt_rq->rt_time = 0;
7628 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7629 rt_rq->rt_runtime = 0;
7630 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7631
052f1dc7 7632#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7633 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7634 rt_rq->rq = rq;
7635#endif
fa85ae24
PZ
7636}
7637
6f505b16 7638#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7639static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7640 struct sched_entity *se, int cpu, int add,
7641 struct sched_entity *parent)
6f505b16 7642{
ec7dc8ac 7643 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7644 tg->cfs_rq[cpu] = cfs_rq;
7645 init_cfs_rq(cfs_rq, rq);
7646 cfs_rq->tg = tg;
7647 if (add)
7648 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7649
7650 tg->se[cpu] = se;
354d60c2
DG
7651 /* se could be NULL for init_task_group */
7652 if (!se)
7653 return;
7654
ec7dc8ac
DG
7655 if (!parent)
7656 se->cfs_rq = &rq->cfs;
7657 else
7658 se->cfs_rq = parent->my_q;
7659
6f505b16
PZ
7660 se->my_q = cfs_rq;
7661 se->load.weight = tg->shares;
e05510d0 7662 se->load.inv_weight = 0;
ec7dc8ac 7663 se->parent = parent;
6f505b16 7664}
052f1dc7 7665#endif
6f505b16 7666
052f1dc7 7667#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7668static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7669 struct sched_rt_entity *rt_se, int cpu, int add,
7670 struct sched_rt_entity *parent)
6f505b16 7671{
ec7dc8ac
DG
7672 struct rq *rq = cpu_rq(cpu);
7673
6f505b16
PZ
7674 tg->rt_rq[cpu] = rt_rq;
7675 init_rt_rq(rt_rq, rq);
7676 rt_rq->tg = tg;
7677 rt_rq->rt_se = rt_se;
ac086bc2 7678 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7679 if (add)
7680 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7681
7682 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7683 if (!rt_se)
7684 return;
7685
ec7dc8ac
DG
7686 if (!parent)
7687 rt_se->rt_rq = &rq->rt;
7688 else
7689 rt_se->rt_rq = parent->my_q;
7690
6f505b16
PZ
7691 rt_se->rt_rq = &rq->rt;
7692 rt_se->my_q = rt_rq;
ec7dc8ac 7693 rt_se->parent = parent;
6f505b16
PZ
7694 INIT_LIST_HEAD(&rt_se->run_list);
7695}
7696#endif
7697
1da177e4
LT
7698void __init sched_init(void)
7699{
dd41f596 7700 int i, j;
434d53b0
MT
7701 unsigned long alloc_size = 0, ptr;
7702
7703#ifdef CONFIG_FAIR_GROUP_SCHED
7704 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7705#endif
7706#ifdef CONFIG_RT_GROUP_SCHED
7707 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7708#endif
7709#ifdef CONFIG_USER_SCHED
7710 alloc_size *= 2;
434d53b0
MT
7711#endif
7712 /*
7713 * As sched_init() is called before page_alloc is setup,
7714 * we use alloc_bootmem().
7715 */
7716 if (alloc_size) {
5a9d3225 7717 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7718
7719#ifdef CONFIG_FAIR_GROUP_SCHED
7720 init_task_group.se = (struct sched_entity **)ptr;
7721 ptr += nr_cpu_ids * sizeof(void **);
7722
7723 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7724 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7725
7726#ifdef CONFIG_USER_SCHED
7727 root_task_group.se = (struct sched_entity **)ptr;
7728 ptr += nr_cpu_ids * sizeof(void **);
7729
7730 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7731 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7732#endif /* CONFIG_USER_SCHED */
7733#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7734#ifdef CONFIG_RT_GROUP_SCHED
7735 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7736 ptr += nr_cpu_ids * sizeof(void **);
7737
7738 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7739 ptr += nr_cpu_ids * sizeof(void **);
7740
7741#ifdef CONFIG_USER_SCHED
7742 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7743 ptr += nr_cpu_ids * sizeof(void **);
7744
7745 root_task_group.rt_rq = (struct rt_rq **)ptr;
7746 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7747#endif /* CONFIG_USER_SCHED */
7748#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7749 }
dd41f596 7750
57d885fe
GH
7751#ifdef CONFIG_SMP
7752 init_defrootdomain();
7753#endif
7754
d0b27fa7
PZ
7755 init_rt_bandwidth(&def_rt_bandwidth,
7756 global_rt_period(), global_rt_runtime());
7757
7758#ifdef CONFIG_RT_GROUP_SCHED
7759 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7760 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7761#ifdef CONFIG_USER_SCHED
7762 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7763 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7764#endif /* CONFIG_USER_SCHED */
7765#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7766
052f1dc7 7767#ifdef CONFIG_GROUP_SCHED
6f505b16 7768 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7769 INIT_LIST_HEAD(&init_task_group.children);
7770
7771#ifdef CONFIG_USER_SCHED
7772 INIT_LIST_HEAD(&root_task_group.children);
7773 init_task_group.parent = &root_task_group;
7774 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7775#endif /* CONFIG_USER_SCHED */
7776#endif /* CONFIG_GROUP_SCHED */
6f505b16 7777
0a945022 7778 for_each_possible_cpu(i) {
70b97a7f 7779 struct rq *rq;
1da177e4
LT
7780
7781 rq = cpu_rq(i);
7782 spin_lock_init(&rq->lock);
fcb99371 7783 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7784 rq->nr_running = 0;
dd41f596 7785 init_cfs_rq(&rq->cfs, rq);
6f505b16 7786 init_rt_rq(&rq->rt, rq);
dd41f596 7787#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7788 init_task_group.shares = init_task_group_load;
6f505b16 7789 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7790#ifdef CONFIG_CGROUP_SCHED
7791 /*
7792 * How much cpu bandwidth does init_task_group get?
7793 *
7794 * In case of task-groups formed thr' the cgroup filesystem, it
7795 * gets 100% of the cpu resources in the system. This overall
7796 * system cpu resource is divided among the tasks of
7797 * init_task_group and its child task-groups in a fair manner,
7798 * based on each entity's (task or task-group's) weight
7799 * (se->load.weight).
7800 *
7801 * In other words, if init_task_group has 10 tasks of weight
7802 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7803 * then A0's share of the cpu resource is:
7804 *
7805 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7806 *
7807 * We achieve this by letting init_task_group's tasks sit
7808 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7809 */
ec7dc8ac 7810 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7811#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7812 root_task_group.shares = NICE_0_LOAD;
7813 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7814 /*
7815 * In case of task-groups formed thr' the user id of tasks,
7816 * init_task_group represents tasks belonging to root user.
7817 * Hence it forms a sibling of all subsequent groups formed.
7818 * In this case, init_task_group gets only a fraction of overall
7819 * system cpu resource, based on the weight assigned to root
7820 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7821 * by letting tasks of init_task_group sit in a separate cfs_rq
7822 * (init_cfs_rq) and having one entity represent this group of
7823 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7824 */
ec7dc8ac 7825 init_tg_cfs_entry(&init_task_group,
6f505b16 7826 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7827 &per_cpu(init_sched_entity, i), i, 1,
7828 root_task_group.se[i]);
6f505b16 7829
052f1dc7 7830#endif
354d60c2
DG
7831#endif /* CONFIG_FAIR_GROUP_SCHED */
7832
7833 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7834#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7835 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7836#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7837 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7838#elif defined CONFIG_USER_SCHED
eff766a6 7839 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7840 init_tg_rt_entry(&init_task_group,
6f505b16 7841 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7842 &per_cpu(init_sched_rt_entity, i), i, 1,
7843 root_task_group.rt_se[i]);
354d60c2 7844#endif
dd41f596 7845#endif
1da177e4 7846
dd41f596
IM
7847 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7848 rq->cpu_load[j] = 0;
1da177e4 7849#ifdef CONFIG_SMP
41c7ce9a 7850 rq->sd = NULL;
57d885fe 7851 rq->rd = NULL;
1da177e4 7852 rq->active_balance = 0;
dd41f596 7853 rq->next_balance = jiffies;
1da177e4 7854 rq->push_cpu = 0;
0a2966b4 7855 rq->cpu = i;
1f11eb6a 7856 rq->online = 0;
1da177e4
LT
7857 rq->migration_thread = NULL;
7858 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7859 rq_attach_root(rq, &def_root_domain);
1da177e4 7860#endif
8f4d37ec 7861 init_rq_hrtick(rq);
1da177e4 7862 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7863 }
7864
2dd73a4f 7865 set_load_weight(&init_task);
b50f60ce 7866
e107be36
AK
7867#ifdef CONFIG_PREEMPT_NOTIFIERS
7868 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7869#endif
7870
c9819f45
CL
7871#ifdef CONFIG_SMP
7872 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7873#endif
7874
b50f60ce
HC
7875#ifdef CONFIG_RT_MUTEXES
7876 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7877#endif
7878
1da177e4
LT
7879 /*
7880 * The boot idle thread does lazy MMU switching as well:
7881 */
7882 atomic_inc(&init_mm.mm_count);
7883 enter_lazy_tlb(&init_mm, current);
7884
7885 /*
7886 * Make us the idle thread. Technically, schedule() should not be
7887 * called from this thread, however somewhere below it might be,
7888 * but because we are the idle thread, we just pick up running again
7889 * when this runqueue becomes "idle".
7890 */
7891 init_idle(current, smp_processor_id());
dd41f596
IM
7892 /*
7893 * During early bootup we pretend to be a normal task:
7894 */
7895 current->sched_class = &fair_sched_class;
6892b75e
IM
7896
7897 scheduler_running = 1;
1da177e4
LT
7898}
7899
7900#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7901void __might_sleep(char *file, int line)
7902{
48f24c4d 7903#ifdef in_atomic
1da177e4
LT
7904 static unsigned long prev_jiffy; /* ratelimiting */
7905
7906 if ((in_atomic() || irqs_disabled()) &&
7907 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7908 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7909 return;
7910 prev_jiffy = jiffies;
91368d73 7911 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7912 " context at %s:%d\n", file, line);
7913 printk("in_atomic():%d, irqs_disabled():%d\n",
7914 in_atomic(), irqs_disabled());
a4c410f0 7915 debug_show_held_locks(current);
3117df04
IM
7916 if (irqs_disabled())
7917 print_irqtrace_events(current);
1da177e4
LT
7918 dump_stack();
7919 }
7920#endif
7921}
7922EXPORT_SYMBOL(__might_sleep);
7923#endif
7924
7925#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7926static void normalize_task(struct rq *rq, struct task_struct *p)
7927{
7928 int on_rq;
3e51f33f 7929
3a5e4dc1
AK
7930 update_rq_clock(rq);
7931 on_rq = p->se.on_rq;
7932 if (on_rq)
7933 deactivate_task(rq, p, 0);
7934 __setscheduler(rq, p, SCHED_NORMAL, 0);
7935 if (on_rq) {
7936 activate_task(rq, p, 0);
7937 resched_task(rq->curr);
7938 }
7939}
7940
1da177e4
LT
7941void normalize_rt_tasks(void)
7942{
a0f98a1c 7943 struct task_struct *g, *p;
1da177e4 7944 unsigned long flags;
70b97a7f 7945 struct rq *rq;
1da177e4 7946
4cf5d77a 7947 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7948 do_each_thread(g, p) {
178be793
IM
7949 /*
7950 * Only normalize user tasks:
7951 */
7952 if (!p->mm)
7953 continue;
7954
6cfb0d5d 7955 p->se.exec_start = 0;
6cfb0d5d 7956#ifdef CONFIG_SCHEDSTATS
dd41f596 7957 p->se.wait_start = 0;
dd41f596 7958 p->se.sleep_start = 0;
dd41f596 7959 p->se.block_start = 0;
6cfb0d5d 7960#endif
dd41f596
IM
7961
7962 if (!rt_task(p)) {
7963 /*
7964 * Renice negative nice level userspace
7965 * tasks back to 0:
7966 */
7967 if (TASK_NICE(p) < 0 && p->mm)
7968 set_user_nice(p, 0);
1da177e4 7969 continue;
dd41f596 7970 }
1da177e4 7971
4cf5d77a 7972 spin_lock(&p->pi_lock);
b29739f9 7973 rq = __task_rq_lock(p);
1da177e4 7974
178be793 7975 normalize_task(rq, p);
3a5e4dc1 7976
b29739f9 7977 __task_rq_unlock(rq);
4cf5d77a 7978 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7979 } while_each_thread(g, p);
7980
4cf5d77a 7981 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7982}
7983
7984#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7985
7986#ifdef CONFIG_IA64
7987/*
7988 * These functions are only useful for the IA64 MCA handling.
7989 *
7990 * They can only be called when the whole system has been
7991 * stopped - every CPU needs to be quiescent, and no scheduling
7992 * activity can take place. Using them for anything else would
7993 * be a serious bug, and as a result, they aren't even visible
7994 * under any other configuration.
7995 */
7996
7997/**
7998 * curr_task - return the current task for a given cpu.
7999 * @cpu: the processor in question.
8000 *
8001 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8002 */
36c8b586 8003struct task_struct *curr_task(int cpu)
1df5c10a
LT
8004{
8005 return cpu_curr(cpu);
8006}
8007
8008/**
8009 * set_curr_task - set the current task for a given cpu.
8010 * @cpu: the processor in question.
8011 * @p: the task pointer to set.
8012 *
8013 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8014 * are serviced on a separate stack. It allows the architecture to switch the
8015 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8016 * must be called with all CPU's synchronized, and interrupts disabled, the
8017 * and caller must save the original value of the current task (see
8018 * curr_task() above) and restore that value before reenabling interrupts and
8019 * re-starting the system.
8020 *
8021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8022 */
36c8b586 8023void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8024{
8025 cpu_curr(cpu) = p;
8026}
8027
8028#endif
29f59db3 8029
bccbe08a
PZ
8030#ifdef CONFIG_FAIR_GROUP_SCHED
8031static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8032{
8033 int i;
8034
8035 for_each_possible_cpu(i) {
8036 if (tg->cfs_rq)
8037 kfree(tg->cfs_rq[i]);
8038 if (tg->se)
8039 kfree(tg->se[i]);
6f505b16
PZ
8040 }
8041
8042 kfree(tg->cfs_rq);
8043 kfree(tg->se);
6f505b16
PZ
8044}
8045
ec7dc8ac
DG
8046static
8047int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8048{
29f59db3 8049 struct cfs_rq *cfs_rq;
ec7dc8ac 8050 struct sched_entity *se, *parent_se;
9b5b7751 8051 struct rq *rq;
29f59db3
SV
8052 int i;
8053
434d53b0 8054 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8055 if (!tg->cfs_rq)
8056 goto err;
434d53b0 8057 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8058 if (!tg->se)
8059 goto err;
052f1dc7
PZ
8060
8061 tg->shares = NICE_0_LOAD;
29f59db3
SV
8062
8063 for_each_possible_cpu(i) {
9b5b7751 8064 rq = cpu_rq(i);
29f59db3 8065
6f505b16
PZ
8066 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8067 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8068 if (!cfs_rq)
8069 goto err;
8070
6f505b16
PZ
8071 se = kmalloc_node(sizeof(struct sched_entity),
8072 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8073 if (!se)
8074 goto err;
8075
ec7dc8ac
DG
8076 parent_se = parent ? parent->se[i] : NULL;
8077 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8078 }
8079
8080 return 1;
8081
8082 err:
8083 return 0;
8084}
8085
8086static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8087{
8088 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8089 &cpu_rq(cpu)->leaf_cfs_rq_list);
8090}
8091
8092static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8093{
8094 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8095}
6d6bc0ad 8096#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8097static inline void free_fair_sched_group(struct task_group *tg)
8098{
8099}
8100
ec7dc8ac
DG
8101static inline
8102int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8103{
8104 return 1;
8105}
8106
8107static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8108{
8109}
8110
8111static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8112{
8113}
6d6bc0ad 8114#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8115
8116#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8117static void free_rt_sched_group(struct task_group *tg)
8118{
8119 int i;
8120
d0b27fa7
PZ
8121 destroy_rt_bandwidth(&tg->rt_bandwidth);
8122
bccbe08a
PZ
8123 for_each_possible_cpu(i) {
8124 if (tg->rt_rq)
8125 kfree(tg->rt_rq[i]);
8126 if (tg->rt_se)
8127 kfree(tg->rt_se[i]);
8128 }
8129
8130 kfree(tg->rt_rq);
8131 kfree(tg->rt_se);
8132}
8133
ec7dc8ac
DG
8134static
8135int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8136{
8137 struct rt_rq *rt_rq;
ec7dc8ac 8138 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8139 struct rq *rq;
8140 int i;
8141
434d53b0 8142 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8143 if (!tg->rt_rq)
8144 goto err;
434d53b0 8145 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8146 if (!tg->rt_se)
8147 goto err;
8148
d0b27fa7
PZ
8149 init_rt_bandwidth(&tg->rt_bandwidth,
8150 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8151
8152 for_each_possible_cpu(i) {
8153 rq = cpu_rq(i);
8154
6f505b16
PZ
8155 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8156 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8157 if (!rt_rq)
8158 goto err;
29f59db3 8159
6f505b16
PZ
8160 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8161 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8162 if (!rt_se)
8163 goto err;
29f59db3 8164
ec7dc8ac
DG
8165 parent_se = parent ? parent->rt_se[i] : NULL;
8166 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8167 }
8168
bccbe08a
PZ
8169 return 1;
8170
8171 err:
8172 return 0;
8173}
8174
8175static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8176{
8177 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8178 &cpu_rq(cpu)->leaf_rt_rq_list);
8179}
8180
8181static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8182{
8183 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8184}
6d6bc0ad 8185#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8186static inline void free_rt_sched_group(struct task_group *tg)
8187{
8188}
8189
ec7dc8ac
DG
8190static inline
8191int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8192{
8193 return 1;
8194}
8195
8196static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8197{
8198}
8199
8200static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8201{
8202}
6d6bc0ad 8203#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8204
d0b27fa7 8205#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8206static void free_sched_group(struct task_group *tg)
8207{
8208 free_fair_sched_group(tg);
8209 free_rt_sched_group(tg);
8210 kfree(tg);
8211}
8212
8213/* allocate runqueue etc for a new task group */
ec7dc8ac 8214struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8215{
8216 struct task_group *tg;
8217 unsigned long flags;
8218 int i;
8219
8220 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8221 if (!tg)
8222 return ERR_PTR(-ENOMEM);
8223
ec7dc8ac 8224 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8225 goto err;
8226
ec7dc8ac 8227 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8228 goto err;
8229
8ed36996 8230 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8231 for_each_possible_cpu(i) {
bccbe08a
PZ
8232 register_fair_sched_group(tg, i);
8233 register_rt_sched_group(tg, i);
9b5b7751 8234 }
6f505b16 8235 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8236
8237 WARN_ON(!parent); /* root should already exist */
8238
8239 tg->parent = parent;
8240 list_add_rcu(&tg->siblings, &parent->children);
8241 INIT_LIST_HEAD(&tg->children);
8ed36996 8242 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8243
9b5b7751 8244 return tg;
29f59db3
SV
8245
8246err:
6f505b16 8247 free_sched_group(tg);
29f59db3
SV
8248 return ERR_PTR(-ENOMEM);
8249}
8250
9b5b7751 8251/* rcu callback to free various structures associated with a task group */
6f505b16 8252static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8253{
29f59db3 8254 /* now it should be safe to free those cfs_rqs */
6f505b16 8255 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8256}
8257
9b5b7751 8258/* Destroy runqueue etc associated with a task group */
4cf86d77 8259void sched_destroy_group(struct task_group *tg)
29f59db3 8260{
8ed36996 8261 unsigned long flags;
9b5b7751 8262 int i;
29f59db3 8263
8ed36996 8264 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8265 for_each_possible_cpu(i) {
bccbe08a
PZ
8266 unregister_fair_sched_group(tg, i);
8267 unregister_rt_sched_group(tg, i);
9b5b7751 8268 }
6f505b16 8269 list_del_rcu(&tg->list);
f473aa5e 8270 list_del_rcu(&tg->siblings);
8ed36996 8271 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8272
9b5b7751 8273 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8274 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8275}
8276
9b5b7751 8277/* change task's runqueue when it moves between groups.
3a252015
IM
8278 * The caller of this function should have put the task in its new group
8279 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8280 * reflect its new group.
9b5b7751
SV
8281 */
8282void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8283{
8284 int on_rq, running;
8285 unsigned long flags;
8286 struct rq *rq;
8287
8288 rq = task_rq_lock(tsk, &flags);
8289
29f59db3
SV
8290 update_rq_clock(rq);
8291
051a1d1a 8292 running = task_current(rq, tsk);
29f59db3
SV
8293 on_rq = tsk->se.on_rq;
8294
0e1f3483 8295 if (on_rq)
29f59db3 8296 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8297 if (unlikely(running))
8298 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8299
6f505b16 8300 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8301
810b3817
PZ
8302#ifdef CONFIG_FAIR_GROUP_SCHED
8303 if (tsk->sched_class->moved_group)
8304 tsk->sched_class->moved_group(tsk);
8305#endif
8306
0e1f3483
HS
8307 if (unlikely(running))
8308 tsk->sched_class->set_curr_task(rq);
8309 if (on_rq)
7074badb 8310 enqueue_task(rq, tsk, 0);
29f59db3 8311
29f59db3
SV
8312 task_rq_unlock(rq, &flags);
8313}
6d6bc0ad 8314#endif /* CONFIG_GROUP_SCHED */
29f59db3 8315
052f1dc7 8316#ifdef CONFIG_FAIR_GROUP_SCHED
6363ca57 8317static void set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8318{
8319 struct cfs_rq *cfs_rq = se->cfs_rq;
6363ca57 8320 struct rq *rq = cfs_rq->rq;
29f59db3
SV
8321 int on_rq;
8322
6363ca57
IM
8323 spin_lock_irq(&rq->lock);
8324
29f59db3 8325 on_rq = se->on_rq;
62fb1851 8326 if (on_rq)
29f59db3
SV
8327 dequeue_entity(cfs_rq, se, 0);
8328
8329 se->load.weight = shares;
e05510d0 8330 se->load.inv_weight = 0;
29f59db3 8331
62fb1851 8332 if (on_rq)
29f59db3 8333 enqueue_entity(cfs_rq, se, 0);
62fb1851 8334
6363ca57 8335 spin_unlock_irq(&rq->lock);
29f59db3
SV
8336}
8337
8ed36996
PZ
8338static DEFINE_MUTEX(shares_mutex);
8339
4cf86d77 8340int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8341{
8342 int i;
8ed36996 8343 unsigned long flags;
c61935fd 8344
ec7dc8ac
DG
8345 /*
8346 * We can't change the weight of the root cgroup.
8347 */
8348 if (!tg->se[0])
8349 return -EINVAL;
8350
18d95a28
PZ
8351 if (shares < MIN_SHARES)
8352 shares = MIN_SHARES;
cb4ad1ff
MX
8353 else if (shares > MAX_SHARES)
8354 shares = MAX_SHARES;
62fb1851 8355
8ed36996 8356 mutex_lock(&shares_mutex);
9b5b7751 8357 if (tg->shares == shares)
5cb350ba 8358 goto done;
29f59db3 8359
8ed36996 8360 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8361 for_each_possible_cpu(i)
8362 unregister_fair_sched_group(tg, i);
f473aa5e 8363 list_del_rcu(&tg->siblings);
8ed36996 8364 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8365
8366 /* wait for any ongoing reference to this group to finish */
8367 synchronize_sched();
8368
8369 /*
8370 * Now we are free to modify the group's share on each cpu
8371 * w/o tripping rebalance_share or load_balance_fair.
8372 */
9b5b7751 8373 tg->shares = shares;
6363ca57 8374 for_each_possible_cpu(i)
cb4ad1ff 8375 set_se_shares(tg->se[i], shares);
29f59db3 8376
6b2d7700
SV
8377 /*
8378 * Enable load balance activity on this group, by inserting it back on
8379 * each cpu's rq->leaf_cfs_rq_list.
8380 */
8ed36996 8381 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8382 for_each_possible_cpu(i)
8383 register_fair_sched_group(tg, i);
f473aa5e 8384 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8385 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8386done:
8ed36996 8387 mutex_unlock(&shares_mutex);
9b5b7751 8388 return 0;
29f59db3
SV
8389}
8390
5cb350ba
DG
8391unsigned long sched_group_shares(struct task_group *tg)
8392{
8393 return tg->shares;
8394}
052f1dc7 8395#endif
5cb350ba 8396
052f1dc7 8397#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8398/*
9f0c1e56 8399 * Ensure that the real time constraints are schedulable.
6f505b16 8400 */
9f0c1e56
PZ
8401static DEFINE_MUTEX(rt_constraints_mutex);
8402
8403static unsigned long to_ratio(u64 period, u64 runtime)
8404{
8405 if (runtime == RUNTIME_INF)
8406 return 1ULL << 16;
8407
6f6d6a1a 8408 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8409}
8410
b40b2e8e
PZ
8411#ifdef CONFIG_CGROUP_SCHED
8412static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8413{
8414 struct task_group *tgi, *parent = tg->parent;
8415 unsigned long total = 0;
8416
8417 if (!parent) {
8418 if (global_rt_period() < period)
8419 return 0;
8420
8421 return to_ratio(period, runtime) <
8422 to_ratio(global_rt_period(), global_rt_runtime());
8423 }
8424
8425 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8426 return 0;
8427
8428 rcu_read_lock();
8429 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8430 if (tgi == tg)
8431 continue;
8432
8433 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8434 tgi->rt_bandwidth.rt_runtime);
8435 }
8436 rcu_read_unlock();
8437
8438 return total + to_ratio(period, runtime) <
8439 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8440 parent->rt_bandwidth.rt_runtime);
8441}
8442#elif defined CONFIG_USER_SCHED
9f0c1e56 8443static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8444{
8445 struct task_group *tgi;
8446 unsigned long total = 0;
9f0c1e56 8447 unsigned long global_ratio =
d0b27fa7 8448 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8449
8450 rcu_read_lock();
9f0c1e56
PZ
8451 list_for_each_entry_rcu(tgi, &task_groups, list) {
8452 if (tgi == tg)
8453 continue;
6f505b16 8454
d0b27fa7
PZ
8455 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8456 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8457 }
8458 rcu_read_unlock();
6f505b16 8459
9f0c1e56 8460 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8461}
b40b2e8e 8462#endif
6f505b16 8463
521f1a24
DG
8464/* Must be called with tasklist_lock held */
8465static inline int tg_has_rt_tasks(struct task_group *tg)
8466{
8467 struct task_struct *g, *p;
8468 do_each_thread(g, p) {
8469 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8470 return 1;
8471 } while_each_thread(g, p);
8472 return 0;
8473}
8474
d0b27fa7
PZ
8475static int tg_set_bandwidth(struct task_group *tg,
8476 u64 rt_period, u64 rt_runtime)
6f505b16 8477{
ac086bc2 8478 int i, err = 0;
9f0c1e56 8479
9f0c1e56 8480 mutex_lock(&rt_constraints_mutex);
521f1a24 8481 read_lock(&tasklist_lock);
ac086bc2 8482 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8483 err = -EBUSY;
8484 goto unlock;
8485 }
9f0c1e56
PZ
8486 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8487 err = -EINVAL;
8488 goto unlock;
8489 }
ac086bc2
PZ
8490
8491 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8492 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8493 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8494
8495 for_each_possible_cpu(i) {
8496 struct rt_rq *rt_rq = tg->rt_rq[i];
8497
8498 spin_lock(&rt_rq->rt_runtime_lock);
8499 rt_rq->rt_runtime = rt_runtime;
8500 spin_unlock(&rt_rq->rt_runtime_lock);
8501 }
8502 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8503 unlock:
521f1a24 8504 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8505 mutex_unlock(&rt_constraints_mutex);
8506
8507 return err;
6f505b16
PZ
8508}
8509
d0b27fa7
PZ
8510int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8511{
8512 u64 rt_runtime, rt_period;
8513
8514 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8515 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8516 if (rt_runtime_us < 0)
8517 rt_runtime = RUNTIME_INF;
8518
8519 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8520}
8521
9f0c1e56
PZ
8522long sched_group_rt_runtime(struct task_group *tg)
8523{
8524 u64 rt_runtime_us;
8525
d0b27fa7 8526 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8527 return -1;
8528
d0b27fa7 8529 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8530 do_div(rt_runtime_us, NSEC_PER_USEC);
8531 return rt_runtime_us;
8532}
d0b27fa7
PZ
8533
8534int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8535{
8536 u64 rt_runtime, rt_period;
8537
8538 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8539 rt_runtime = tg->rt_bandwidth.rt_runtime;
8540
8541 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8542}
8543
8544long sched_group_rt_period(struct task_group *tg)
8545{
8546 u64 rt_period_us;
8547
8548 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8549 do_div(rt_period_us, NSEC_PER_USEC);
8550 return rt_period_us;
8551}
8552
8553static int sched_rt_global_constraints(void)
8554{
8555 int ret = 0;
8556
8557 mutex_lock(&rt_constraints_mutex);
8558 if (!__rt_schedulable(NULL, 1, 0))
8559 ret = -EINVAL;
8560 mutex_unlock(&rt_constraints_mutex);
8561
8562 return ret;
8563}
6d6bc0ad 8564#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8565static int sched_rt_global_constraints(void)
8566{
ac086bc2
PZ
8567 unsigned long flags;
8568 int i;
8569
8570 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8571 for_each_possible_cpu(i) {
8572 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8573
8574 spin_lock(&rt_rq->rt_runtime_lock);
8575 rt_rq->rt_runtime = global_rt_runtime();
8576 spin_unlock(&rt_rq->rt_runtime_lock);
8577 }
8578 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8579
d0b27fa7
PZ
8580 return 0;
8581}
6d6bc0ad 8582#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8583
8584int sched_rt_handler(struct ctl_table *table, int write,
8585 struct file *filp, void __user *buffer, size_t *lenp,
8586 loff_t *ppos)
8587{
8588 int ret;
8589 int old_period, old_runtime;
8590 static DEFINE_MUTEX(mutex);
8591
8592 mutex_lock(&mutex);
8593 old_period = sysctl_sched_rt_period;
8594 old_runtime = sysctl_sched_rt_runtime;
8595
8596 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8597
8598 if (!ret && write) {
8599 ret = sched_rt_global_constraints();
8600 if (ret) {
8601 sysctl_sched_rt_period = old_period;
8602 sysctl_sched_rt_runtime = old_runtime;
8603 } else {
8604 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8605 def_rt_bandwidth.rt_period =
8606 ns_to_ktime(global_rt_period());
8607 }
8608 }
8609 mutex_unlock(&mutex);
8610
8611 return ret;
8612}
68318b8e 8613
052f1dc7 8614#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8615
8616/* return corresponding task_group object of a cgroup */
2b01dfe3 8617static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8618{
2b01dfe3
PM
8619 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8620 struct task_group, css);
68318b8e
SV
8621}
8622
8623static struct cgroup_subsys_state *
2b01dfe3 8624cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8625{
ec7dc8ac 8626 struct task_group *tg, *parent;
68318b8e 8627
2b01dfe3 8628 if (!cgrp->parent) {
68318b8e 8629 /* This is early initialization for the top cgroup */
2b01dfe3 8630 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8631 return &init_task_group.css;
8632 }
8633
ec7dc8ac
DG
8634 parent = cgroup_tg(cgrp->parent);
8635 tg = sched_create_group(parent);
68318b8e
SV
8636 if (IS_ERR(tg))
8637 return ERR_PTR(-ENOMEM);
8638
8639 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8640 tg->css.cgroup = cgrp;
68318b8e
SV
8641
8642 return &tg->css;
8643}
8644
41a2d6cf
IM
8645static void
8646cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8647{
2b01dfe3 8648 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8649
8650 sched_destroy_group(tg);
8651}
8652
41a2d6cf
IM
8653static int
8654cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8655 struct task_struct *tsk)
68318b8e 8656{
b68aa230
PZ
8657#ifdef CONFIG_RT_GROUP_SCHED
8658 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8659 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8660 return -EINVAL;
8661#else
68318b8e
SV
8662 /* We don't support RT-tasks being in separate groups */
8663 if (tsk->sched_class != &fair_sched_class)
8664 return -EINVAL;
b68aa230 8665#endif
68318b8e
SV
8666
8667 return 0;
8668}
8669
8670static void
2b01dfe3 8671cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8672 struct cgroup *old_cont, struct task_struct *tsk)
8673{
8674 sched_move_task(tsk);
8675}
8676
052f1dc7 8677#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8678static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8679 u64 shareval)
68318b8e 8680{
2b01dfe3 8681 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8682}
8683
f4c753b7 8684static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8685{
2b01dfe3 8686 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8687
8688 return (u64) tg->shares;
8689}
6d6bc0ad 8690#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8691
052f1dc7 8692#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8693static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8694 s64 val)
6f505b16 8695{
06ecb27c 8696 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8697}
8698
06ecb27c 8699static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8700{
06ecb27c 8701 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8702}
d0b27fa7
PZ
8703
8704static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8705 u64 rt_period_us)
8706{
8707 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8708}
8709
8710static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8711{
8712 return sched_group_rt_period(cgroup_tg(cgrp));
8713}
6d6bc0ad 8714#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8715
fe5c7cc2 8716static struct cftype cpu_files[] = {
052f1dc7 8717#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8718 {
8719 .name = "shares",
f4c753b7
PM
8720 .read_u64 = cpu_shares_read_u64,
8721 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8722 },
052f1dc7
PZ
8723#endif
8724#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8725 {
9f0c1e56 8726 .name = "rt_runtime_us",
06ecb27c
PM
8727 .read_s64 = cpu_rt_runtime_read,
8728 .write_s64 = cpu_rt_runtime_write,
6f505b16 8729 },
d0b27fa7
PZ
8730 {
8731 .name = "rt_period_us",
f4c753b7
PM
8732 .read_u64 = cpu_rt_period_read_uint,
8733 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8734 },
052f1dc7 8735#endif
68318b8e
SV
8736};
8737
8738static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8739{
fe5c7cc2 8740 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8741}
8742
8743struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8744 .name = "cpu",
8745 .create = cpu_cgroup_create,
8746 .destroy = cpu_cgroup_destroy,
8747 .can_attach = cpu_cgroup_can_attach,
8748 .attach = cpu_cgroup_attach,
8749 .populate = cpu_cgroup_populate,
8750 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8751 .early_init = 1,
8752};
8753
052f1dc7 8754#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8755
8756#ifdef CONFIG_CGROUP_CPUACCT
8757
8758/*
8759 * CPU accounting code for task groups.
8760 *
8761 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8762 * (balbir@in.ibm.com).
8763 */
8764
8765/* track cpu usage of a group of tasks */
8766struct cpuacct {
8767 struct cgroup_subsys_state css;
8768 /* cpuusage holds pointer to a u64-type object on every cpu */
8769 u64 *cpuusage;
8770};
8771
8772struct cgroup_subsys cpuacct_subsys;
8773
8774/* return cpu accounting group corresponding to this container */
32cd756a 8775static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8776{
32cd756a 8777 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8778 struct cpuacct, css);
8779}
8780
8781/* return cpu accounting group to which this task belongs */
8782static inline struct cpuacct *task_ca(struct task_struct *tsk)
8783{
8784 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8785 struct cpuacct, css);
8786}
8787
8788/* create a new cpu accounting group */
8789static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8790 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8791{
8792 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8793
8794 if (!ca)
8795 return ERR_PTR(-ENOMEM);
8796
8797 ca->cpuusage = alloc_percpu(u64);
8798 if (!ca->cpuusage) {
8799 kfree(ca);
8800 return ERR_PTR(-ENOMEM);
8801 }
8802
8803 return &ca->css;
8804}
8805
8806/* destroy an existing cpu accounting group */
41a2d6cf 8807static void
32cd756a 8808cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8809{
32cd756a 8810 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8811
8812 free_percpu(ca->cpuusage);
8813 kfree(ca);
8814}
8815
8816/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8817static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8818{
32cd756a 8819 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8820 u64 totalcpuusage = 0;
8821 int i;
8822
8823 for_each_possible_cpu(i) {
8824 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8825
8826 /*
8827 * Take rq->lock to make 64-bit addition safe on 32-bit
8828 * platforms.
8829 */
8830 spin_lock_irq(&cpu_rq(i)->lock);
8831 totalcpuusage += *cpuusage;
8832 spin_unlock_irq(&cpu_rq(i)->lock);
8833 }
8834
8835 return totalcpuusage;
8836}
8837
0297b803
DG
8838static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8839 u64 reset)
8840{
8841 struct cpuacct *ca = cgroup_ca(cgrp);
8842 int err = 0;
8843 int i;
8844
8845 if (reset) {
8846 err = -EINVAL;
8847 goto out;
8848 }
8849
8850 for_each_possible_cpu(i) {
8851 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8852
8853 spin_lock_irq(&cpu_rq(i)->lock);
8854 *cpuusage = 0;
8855 spin_unlock_irq(&cpu_rq(i)->lock);
8856 }
8857out:
8858 return err;
8859}
8860
d842de87
SV
8861static struct cftype files[] = {
8862 {
8863 .name = "usage",
f4c753b7
PM
8864 .read_u64 = cpuusage_read,
8865 .write_u64 = cpuusage_write,
d842de87
SV
8866 },
8867};
8868
32cd756a 8869static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8870{
32cd756a 8871 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8872}
8873
8874/*
8875 * charge this task's execution time to its accounting group.
8876 *
8877 * called with rq->lock held.
8878 */
8879static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8880{
8881 struct cpuacct *ca;
8882
8883 if (!cpuacct_subsys.active)
8884 return;
8885
8886 ca = task_ca(tsk);
8887 if (ca) {
8888 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8889
8890 *cpuusage += cputime;
8891 }
8892}
8893
8894struct cgroup_subsys cpuacct_subsys = {
8895 .name = "cpuacct",
8896 .create = cpuacct_create,
8897 .destroy = cpuacct_destroy,
8898 .populate = cpuacct_populate,
8899 .subsys_id = cpuacct_subsys_id,
8900};
8901#endif /* CONFIG_CGROUP_CPUACCT */