]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
x86: Add IRQ_TIME_ACCOUNTING
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
6aa645ea 494
1da177e4
LT
495 atomic_t nr_iowait;
496
497#ifdef CONFIG_SMP
0eab9146 498 struct root_domain *rd;
1da177e4
LT
499 struct sched_domain *sd;
500
e51fd5e2
PZ
501 unsigned long cpu_power;
502
a0a522ce 503 unsigned char idle_at_tick;
1da177e4 504 /* For active balancing */
3f029d3c 505 int post_schedule;
1da177e4
LT
506 int active_balance;
507 int push_cpu;
969c7921 508 struct cpu_stop_work active_balance_work;
d8016491
IM
509 /* cpu of this runqueue: */
510 int cpu;
1f11eb6a 511 int online;
1da177e4 512
a8a51d5e 513 unsigned long avg_load_per_task;
1da177e4 514
e9e9250b
PZ
515 u64 rt_avg;
516 u64 age_stamp;
1b9508f6
MG
517 u64 idle_stamp;
518 u64 avg_idle;
1da177e4
LT
519#endif
520
dce48a84
TG
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
8f4d37ec 525#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
526#ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529#endif
8f4d37ec
PZ
530 struct hrtimer hrtick_timer;
531#endif
532
1da177e4
LT
533#ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
9c2c4802
KC
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
538
539 /* sys_sched_yield() stats */
480b9434 540 unsigned int yld_count;
1da177e4
LT
541
542 /* schedule() stats */
480b9434
KC
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
1da177e4
LT
546
547 /* try_to_wake_up() stats */
480b9434
KC
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
b8efb561
IM
550
551 /* BKL stats */
480b9434 552 unsigned int bkl_count;
1da177e4
LT
553#endif
554};
555
f34e3b61 556static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 557
7d478721
PZ
558static inline
559void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 560{
7d478721 561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
dd41f596
IM
569}
570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618}
619
620/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622{
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626#endif
627
628#ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631#endif
632}
633
634#else /* CONFIG_CGROUP_SCHED */
635
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637static inline struct task_group *task_group(struct task_struct *p)
638{
639 return NULL;
640}
641
642#endif /* CONFIG_CGROUP_SCHED */
643
aa9c4c0f 644inline void update_rq_clock(struct rq *rq)
3e51f33f 645{
a64692a3
MG
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
648}
649
bf5c91ba
IM
650/*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653#ifdef CONFIG_SCHED_DEBUG
654# define const_debug __read_mostly
655#else
656# define const_debug static const
657#endif
658
017730c1
IM
659/**
660 * runqueue_is_locked
e17b38bf 661 * @cpu: the processor in question.
017730c1
IM
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
89f19f04 667int runqueue_is_locked(int cpu)
017730c1 668{
05fa785c 669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
34f3a814 705static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 706{
f00b45c1
PZ
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 713 }
34f3a814 714 seq_puts(m, "\n");
f00b45c1 715
34f3a814 716 return 0;
f00b45c1
PZ
717}
718
719static ssize_t
720sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722{
723 char buf[64];
7740191c 724 char *cmp;
f00b45c1
PZ
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
7740191c 735 cmp = strstrip(buf);
f00b45c1 736
c24b7c52 737 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
7740191c 743 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
42994724 755 *ppos += cnt;
f00b45c1
PZ
756
757 return cnt;
758}
759
34f3a814
LZ
760static int sched_feat_open(struct inode *inode, struct file *filp)
761{
762 return single_open(filp, sched_feat_show, NULL);
763}
764
828c0950 765static const struct file_operations sched_feat_fops = {
34f3a814
LZ
766 .open = sched_feat_open,
767 .write = sched_feat_write,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
f00b45c1
PZ
771};
772
773static __init int sched_init_debug(void)
774{
f00b45c1
PZ
775 debugfs_create_file("sched_features", 0644, NULL, NULL,
776 &sched_feat_fops);
777
778 return 0;
779}
780late_initcall(sched_init_debug);
781
782#endif
783
784#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 785
b82d9fdd
PZ
786/*
787 * Number of tasks to iterate in a single balance run.
788 * Limited because this is done with IRQs disabled.
789 */
790const_debug unsigned int sysctl_sched_nr_migrate = 32;
791
2398f2c6
PZ
792/*
793 * ratelimit for updating the group shares.
55cd5340 794 * default: 0.25ms
2398f2c6 795 */
55cd5340 796unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 797unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 798
ffda12a1
PZ
799/*
800 * Inject some fuzzyness into changing the per-cpu group shares
801 * this avoids remote rq-locks at the expense of fairness.
802 * default: 4
803 */
804unsigned int sysctl_sched_shares_thresh = 4;
805
e9e9250b
PZ
806/*
807 * period over which we average the RT time consumption, measured
808 * in ms.
809 *
810 * default: 1s
811 */
812const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813
fa85ae24 814/*
9f0c1e56 815 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
816 * default: 1s
817 */
9f0c1e56 818unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 819
6892b75e
IM
820static __read_mostly int scheduler_running;
821
9f0c1e56
PZ
822/*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826int sysctl_sched_rt_runtime = 950000;
fa85ae24 827
d0b27fa7
PZ
828static inline u64 global_rt_period(void)
829{
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831}
832
833static inline u64 global_rt_runtime(void)
834{
e26873bb 835 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839}
fa85ae24 840
1da177e4 841#ifndef prepare_arch_switch
4866cde0
NP
842# define prepare_arch_switch(next) do { } while (0)
843#endif
844#ifndef finish_arch_switch
845# define finish_arch_switch(prev) do { } while (0)
846#endif
847
051a1d1a
DA
848static inline int task_current(struct rq *rq, struct task_struct *p)
849{
850 return rq->curr == p;
851}
852
4866cde0 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 855{
051a1d1a 856 return task_current(rq, p);
4866cde0
NP
857}
858
70b97a7f 859static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
860{
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
da04c035
IM
865#ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868#endif
8a25d5de
IM
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
05fa785c 876 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
877}
878
879#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 880static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
881{
882#ifdef CONFIG_SMP
883 return p->oncpu;
884#else
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886#endif
887}
888
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2dd73a4f
PW
1355/*
1356 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1357 * of tasks with abnormal "nice" values across CPUs the contribution that
1358 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1359 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1360 * scaled version of the new time slice allocation that they receive on time
1361 * slice expiry etc.
1362 */
1363
cce7ade8
PZ
1364#define WEIGHT_IDLEPRIO 3
1365#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1366
1367/*
1368 * Nice levels are multiplicative, with a gentle 10% change for every
1369 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1370 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1371 * that remained on nice 0.
1372 *
1373 * The "10% effect" is relative and cumulative: from _any_ nice level,
1374 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1375 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1376 * If a task goes up by ~10% and another task goes down by ~10% then
1377 * the relative distance between them is ~25%.)
dd41f596
IM
1378 */
1379static const int prio_to_weight[40] = {
254753dc
IM
1380 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1381 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1382 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1383 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1384 /* 0 */ 1024, 820, 655, 526, 423,
1385 /* 5 */ 335, 272, 215, 172, 137,
1386 /* 10 */ 110, 87, 70, 56, 45,
1387 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1388};
1389
5714d2de
IM
1390/*
1391 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1392 *
1393 * In cases where the weight does not change often, we can use the
1394 * precalculated inverse to speed up arithmetics by turning divisions
1395 * into multiplications:
1396 */
dd41f596 1397static const u32 prio_to_wmult[40] = {
254753dc
IM
1398 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1399 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1400 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1401 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1402 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1403 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1404 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1405 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1406};
2dd73a4f 1407
ef12fefa
BR
1408/* Time spent by the tasks of the cpu accounting group executing in ... */
1409enum cpuacct_stat_index {
1410 CPUACCT_STAT_USER, /* ... user mode */
1411 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1412
1413 CPUACCT_STAT_NSTATS,
1414};
1415
d842de87
SV
1416#ifdef CONFIG_CGROUP_CPUACCT
1417static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1418static void cpuacct_update_stats(struct task_struct *tsk,
1419 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1420#else
1421static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1422static inline void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1424#endif
1425
18d95a28
PZ
1426static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1427{
1428 update_load_add(&rq->load, load);
1429}
1430
1431static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1432{
1433 update_load_sub(&rq->load, load);
1434}
1435
7940ca36 1436#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1437typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1438
1439/*
1440 * Iterate the full tree, calling @down when first entering a node and @up when
1441 * leaving it for the final time.
1442 */
eb755805 1443static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1444{
1445 struct task_group *parent, *child;
eb755805 1446 int ret;
c09595f6
PZ
1447
1448 rcu_read_lock();
1449 parent = &root_task_group;
1450down:
eb755805
PZ
1451 ret = (*down)(parent, data);
1452 if (ret)
1453 goto out_unlock;
c09595f6
PZ
1454 list_for_each_entry_rcu(child, &parent->children, siblings) {
1455 parent = child;
1456 goto down;
1457
1458up:
1459 continue;
1460 }
eb755805
PZ
1461 ret = (*up)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464
1465 child = parent;
1466 parent = parent->parent;
1467 if (parent)
1468 goto up;
eb755805 1469out_unlock:
c09595f6 1470 rcu_read_unlock();
eb755805
PZ
1471
1472 return ret;
c09595f6
PZ
1473}
1474
eb755805
PZ
1475static int tg_nop(struct task_group *tg, void *data)
1476{
1477 return 0;
c09595f6 1478}
eb755805
PZ
1479#endif
1480
1481#ifdef CONFIG_SMP
f5f08f39
PZ
1482/* Used instead of source_load when we know the type == 0 */
1483static unsigned long weighted_cpuload(const int cpu)
1484{
1485 return cpu_rq(cpu)->load.weight;
1486}
1487
1488/*
1489 * Return a low guess at the load of a migration-source cpu weighted
1490 * according to the scheduling class and "nice" value.
1491 *
1492 * We want to under-estimate the load of migration sources, to
1493 * balance conservatively.
1494 */
1495static unsigned long source_load(int cpu, int type)
1496{
1497 struct rq *rq = cpu_rq(cpu);
1498 unsigned long total = weighted_cpuload(cpu);
1499
1500 if (type == 0 || !sched_feat(LB_BIAS))
1501 return total;
1502
1503 return min(rq->cpu_load[type-1], total);
1504}
1505
1506/*
1507 * Return a high guess at the load of a migration-target cpu weighted
1508 * according to the scheduling class and "nice" value.
1509 */
1510static unsigned long target_load(int cpu, int type)
1511{
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long total = weighted_cpuload(cpu);
1514
1515 if (type == 0 || !sched_feat(LB_BIAS))
1516 return total;
1517
1518 return max(rq->cpu_load[type-1], total);
1519}
1520
ae154be1
PZ
1521static unsigned long power_of(int cpu)
1522{
e51fd5e2 1523 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1524}
1525
eb755805
PZ
1526static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1527
1528static unsigned long cpu_avg_load_per_task(int cpu)
1529{
1530 struct rq *rq = cpu_rq(cpu);
af6d596f 1531 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1532
4cd42620
SR
1533 if (nr_running)
1534 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1535 else
1536 rq->avg_load_per_task = 0;
eb755805
PZ
1537
1538 return rq->avg_load_per_task;
1539}
1540
1541#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1542
43cf38eb 1543static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1544
c09595f6
PZ
1545static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1546
1547/*
1548 * Calculate and set the cpu's group shares.
1549 */
34d76c41
PZ
1550static void update_group_shares_cpu(struct task_group *tg, int cpu,
1551 unsigned long sd_shares,
1552 unsigned long sd_rq_weight,
4a6cc4bd 1553 unsigned long *usd_rq_weight)
18d95a28 1554{
34d76c41 1555 unsigned long shares, rq_weight;
a5004278 1556 int boost = 0;
c09595f6 1557
4a6cc4bd 1558 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1559 if (!rq_weight) {
1560 boost = 1;
1561 rq_weight = NICE_0_LOAD;
1562 }
c8cba857 1563
c09595f6 1564 /*
a8af7246
PZ
1565 * \Sum_j shares_j * rq_weight_i
1566 * shares_i = -----------------------------
1567 * \Sum_j rq_weight_j
c09595f6 1568 */
ec4e0e2f 1569 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1570 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1571
ffda12a1
PZ
1572 if (abs(shares - tg->se[cpu]->load.weight) >
1573 sysctl_sched_shares_thresh) {
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
c09595f6 1576
05fa785c 1577 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1578 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1579 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1580 __set_se_shares(tg->se[cpu], shares);
05fa785c 1581 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1582 }
18d95a28 1583}
c09595f6
PZ
1584
1585/*
c8cba857
PZ
1586 * Re-compute the task group their per cpu shares over the given domain.
1587 * This needs to be done in a bottom-up fashion because the rq weight of a
1588 * parent group depends on the shares of its child groups.
c09595f6 1589 */
eb755805 1590static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1591{
cd8ad40d 1592 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1593 unsigned long *usd_rq_weight;
eb755805 1594 struct sched_domain *sd = data;
34d76c41 1595 unsigned long flags;
c8cba857 1596 int i;
c09595f6 1597
34d76c41
PZ
1598 if (!tg->se[0])
1599 return 0;
1600
1601 local_irq_save(flags);
4a6cc4bd 1602 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1603
758b2cdc 1604 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1605 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1606 usd_rq_weight[i] = weight;
34d76c41 1607
cd8ad40d 1608 rq_weight += weight;
ec4e0e2f
KC
1609 /*
1610 * If there are currently no tasks on the cpu pretend there
1611 * is one of average load so that when a new task gets to
1612 * run here it will not get delayed by group starvation.
1613 */
ec4e0e2f
KC
1614 if (!weight)
1615 weight = NICE_0_LOAD;
1616
cd8ad40d 1617 sum_weight += weight;
c8cba857 1618 shares += tg->cfs_rq[i]->shares;
c09595f6 1619 }
c09595f6 1620
cd8ad40d
PZ
1621 if (!rq_weight)
1622 rq_weight = sum_weight;
1623
c8cba857
PZ
1624 if ((!shares && rq_weight) || shares > tg->shares)
1625 shares = tg->shares;
1626
1627 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1628 shares = tg->shares;
c09595f6 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1631 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1632
1633 local_irq_restore(flags);
eb755805
PZ
1634
1635 return 0;
c09595f6
PZ
1636}
1637
1638/*
c8cba857
PZ
1639 * Compute the cpu's hierarchical load factor for each task group.
1640 * This needs to be done in a top-down fashion because the load of a child
1641 * group is a fraction of its parents load.
c09595f6 1642 */
eb755805 1643static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1644{
c8cba857 1645 unsigned long load;
eb755805 1646 long cpu = (long)data;
c09595f6 1647
c8cba857
PZ
1648 if (!tg->parent) {
1649 load = cpu_rq(cpu)->load.weight;
1650 } else {
1651 load = tg->parent->cfs_rq[cpu]->h_load;
1652 load *= tg->cfs_rq[cpu]->shares;
1653 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1654 }
c09595f6 1655
c8cba857 1656 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1657
eb755805 1658 return 0;
c09595f6
PZ
1659}
1660
c8cba857 1661static void update_shares(struct sched_domain *sd)
4d8d595d 1662{
e7097159
PZ
1663 s64 elapsed;
1664 u64 now;
1665
1666 if (root_task_group_empty())
1667 return;
1668
c676329a 1669 now = local_clock();
e7097159 1670 elapsed = now - sd->last_update;
2398f2c6
PZ
1671
1672 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1673 sd->last_update = now;
eb755805 1674 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1675 }
4d8d595d
PZ
1676}
1677
eb755805 1678static void update_h_load(long cpu)
c09595f6 1679{
eb755805 1680 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1681}
1682
c09595f6
PZ
1683#else
1684
c8cba857 1685static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1686{
1687}
1688
18d95a28
PZ
1689#endif
1690
8f45e2b5
GH
1691#ifdef CONFIG_PREEMPT
1692
b78bb868
PZ
1693static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1694
70574a99 1695/*
8f45e2b5
GH
1696 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1697 * way at the expense of forcing extra atomic operations in all
1698 * invocations. This assures that the double_lock is acquired using the
1699 * same underlying policy as the spinlock_t on this architecture, which
1700 * reduces latency compared to the unfair variant below. However, it
1701 * also adds more overhead and therefore may reduce throughput.
70574a99 1702 */
8f45e2b5
GH
1703static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704 __releases(this_rq->lock)
1705 __acquires(busiest->lock)
1706 __acquires(this_rq->lock)
1707{
05fa785c 1708 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1709 double_rq_lock(this_rq, busiest);
1710
1711 return 1;
1712}
1713
1714#else
1715/*
1716 * Unfair double_lock_balance: Optimizes throughput at the expense of
1717 * latency by eliminating extra atomic operations when the locks are
1718 * already in proper order on entry. This favors lower cpu-ids and will
1719 * grant the double lock to lower cpus over higher ids under contention,
1720 * regardless of entry order into the function.
1721 */
1722static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1723 __releases(this_rq->lock)
1724 __acquires(busiest->lock)
1725 __acquires(this_rq->lock)
1726{
1727 int ret = 0;
1728
05fa785c 1729 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1730 if (busiest < this_rq) {
05fa785c
TG
1731 raw_spin_unlock(&this_rq->lock);
1732 raw_spin_lock(&busiest->lock);
1733 raw_spin_lock_nested(&this_rq->lock,
1734 SINGLE_DEPTH_NESTING);
70574a99
AD
1735 ret = 1;
1736 } else
05fa785c
TG
1737 raw_spin_lock_nested(&busiest->lock,
1738 SINGLE_DEPTH_NESTING);
70574a99
AD
1739 }
1740 return ret;
1741}
1742
8f45e2b5
GH
1743#endif /* CONFIG_PREEMPT */
1744
1745/*
1746 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 */
1748static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749{
1750 if (unlikely(!irqs_disabled())) {
1751 /* printk() doesn't work good under rq->lock */
05fa785c 1752 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1753 BUG_ON(1);
1754 }
1755
1756 return _double_lock_balance(this_rq, busiest);
1757}
1758
70574a99
AD
1759static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1760 __releases(busiest->lock)
1761{
05fa785c 1762 raw_spin_unlock(&busiest->lock);
70574a99
AD
1763 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1764}
1e3c88bd
PZ
1765
1766/*
1767 * double_rq_lock - safely lock two runqueues
1768 *
1769 * Note this does not disable interrupts like task_rq_lock,
1770 * you need to do so manually before calling.
1771 */
1772static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1773 __acquires(rq1->lock)
1774 __acquires(rq2->lock)
1775{
1776 BUG_ON(!irqs_disabled());
1777 if (rq1 == rq2) {
1778 raw_spin_lock(&rq1->lock);
1779 __acquire(rq2->lock); /* Fake it out ;) */
1780 } else {
1781 if (rq1 < rq2) {
1782 raw_spin_lock(&rq1->lock);
1783 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1784 } else {
1785 raw_spin_lock(&rq2->lock);
1786 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1787 }
1788 }
1e3c88bd
PZ
1789}
1790
1791/*
1792 * double_rq_unlock - safely unlock two runqueues
1793 *
1794 * Note this does not restore interrupts like task_rq_unlock,
1795 * you need to do so manually after calling.
1796 */
1797static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1798 __releases(rq1->lock)
1799 __releases(rq2->lock)
1800{
1801 raw_spin_unlock(&rq1->lock);
1802 if (rq1 != rq2)
1803 raw_spin_unlock(&rq2->lock);
1804 else
1805 __release(rq2->lock);
1806}
1807
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
74f5187a 1819static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
fdf3e95d 1822static void update_cpu_load(struct rq *this_rq);
dce48a84 1823
cd29fe6f
PZ
1824static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1825{
1826 set_task_rq(p, cpu);
1827#ifdef CONFIG_SMP
1828 /*
1829 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1830 * successfuly executed on another CPU. We must ensure that updates of
1831 * per-task data have been completed by this moment.
1832 */
1833 smp_wmb();
1834 task_thread_info(p)->cpu = cpu;
1835#endif
1836}
dce48a84 1837
1e3c88bd 1838static const struct sched_class rt_sched_class;
dd41f596 1839
34f971f6 1840#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1841#define for_each_class(class) \
1842 for (class = sched_class_highest; class; class = class->next)
dd41f596 1843
1e3c88bd
PZ
1844#include "sched_stats.h"
1845
c09595f6 1846static void inc_nr_running(struct rq *rq)
9c217245
IM
1847{
1848 rq->nr_running++;
9c217245
IM
1849}
1850
c09595f6 1851static void dec_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running--;
9c217245
IM
1854}
1855
45bf76df
IM
1856static void set_load_weight(struct task_struct *p)
1857{
dd41f596
IM
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
71f8bd46 1866
dd41f596
IM
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1869}
1870
371fd7e7 1871static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1872{
a64692a3 1873 update_rq_clock(rq);
dd41f596 1874 sched_info_queued(p);
371fd7e7 1875 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1876 p->se.on_rq = 1;
71f8bd46
IM
1877}
1878
371fd7e7 1879static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1880{
a64692a3 1881 update_rq_clock(rq);
46ac22ba 1882 sched_info_dequeued(p);
371fd7e7 1883 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1884 p->se.on_rq = 0;
71f8bd46
IM
1885}
1886
1e3c88bd
PZ
1887/*
1888 * activate_task - move a task to the runqueue.
1889 */
371fd7e7 1890static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1891{
1892 if (task_contributes_to_load(p))
1893 rq->nr_uninterruptible--;
1894
371fd7e7 1895 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1896 inc_nr_running(rq);
1897}
1898
1899/*
1900 * deactivate_task - remove a task from the runqueue.
1901 */
371fd7e7 1902static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1903{
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible++;
1906
371fd7e7 1907 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1908 dec_nr_running(rq);
1909}
1910
b52bfee4
VP
1911#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1912
1913static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1914static DEFINE_PER_CPU(u64, cpu_softirq_time);
1915
1916static DEFINE_PER_CPU(u64, irq_start_time);
1917static int sched_clock_irqtime;
1918
1919void enable_sched_clock_irqtime(void)
1920{
1921 sched_clock_irqtime = 1;
1922}
1923
1924void disable_sched_clock_irqtime(void)
1925{
1926 sched_clock_irqtime = 0;
1927}
1928
1929void account_system_vtime(struct task_struct *curr)
1930{
1931 unsigned long flags;
1932 int cpu;
1933 u64 now, delta;
1934
1935 if (!sched_clock_irqtime)
1936 return;
1937
1938 local_irq_save(flags);
1939
1940 now = sched_clock();
1941 cpu = smp_processor_id();
1942 delta = now - per_cpu(irq_start_time, cpu);
1943 per_cpu(irq_start_time, cpu) = now;
1944 /*
1945 * We do not account for softirq time from ksoftirqd here.
1946 * We want to continue accounting softirq time to ksoftirqd thread
1947 * in that case, so as not to confuse scheduler with a special task
1948 * that do not consume any time, but still wants to run.
1949 */
1950 if (hardirq_count())
1951 per_cpu(cpu_hardirq_time, cpu) += delta;
1952 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1953 per_cpu(cpu_softirq_time, cpu) += delta;
1954
1955 local_irq_restore(flags);
1956}
1957
1958#endif
1959
1e3c88bd
PZ
1960#include "sched_idletask.c"
1961#include "sched_fair.c"
1962#include "sched_rt.c"
34f971f6 1963#include "sched_stoptask.c"
1e3c88bd
PZ
1964#ifdef CONFIG_SCHED_DEBUG
1965# include "sched_debug.c"
1966#endif
1967
34f971f6
PZ
1968void sched_set_stop_task(int cpu, struct task_struct *stop)
1969{
1970 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1971 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1972
1973 if (stop) {
1974 /*
1975 * Make it appear like a SCHED_FIFO task, its something
1976 * userspace knows about and won't get confused about.
1977 *
1978 * Also, it will make PI more or less work without too
1979 * much confusion -- but then, stop work should not
1980 * rely on PI working anyway.
1981 */
1982 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1983
1984 stop->sched_class = &stop_sched_class;
1985 }
1986
1987 cpu_rq(cpu)->stop = stop;
1988
1989 if (old_stop) {
1990 /*
1991 * Reset it back to a normal scheduling class so that
1992 * it can die in pieces.
1993 */
1994 old_stop->sched_class = &rt_sched_class;
1995 }
1996}
1997
14531189 1998/*
dd41f596 1999 * __normal_prio - return the priority that is based on the static prio
14531189 2000 */
14531189
IM
2001static inline int __normal_prio(struct task_struct *p)
2002{
dd41f596 2003 return p->static_prio;
14531189
IM
2004}
2005
b29739f9
IM
2006/*
2007 * Calculate the expected normal priority: i.e. priority
2008 * without taking RT-inheritance into account. Might be
2009 * boosted by interactivity modifiers. Changes upon fork,
2010 * setprio syscalls, and whenever the interactivity
2011 * estimator recalculates.
2012 */
36c8b586 2013static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2014{
2015 int prio;
2016
e05606d3 2017 if (task_has_rt_policy(p))
b29739f9
IM
2018 prio = MAX_RT_PRIO-1 - p->rt_priority;
2019 else
2020 prio = __normal_prio(p);
2021 return prio;
2022}
2023
2024/*
2025 * Calculate the current priority, i.e. the priority
2026 * taken into account by the scheduler. This value might
2027 * be boosted by RT tasks, or might be boosted by
2028 * interactivity modifiers. Will be RT if the task got
2029 * RT-boosted. If not then it returns p->normal_prio.
2030 */
36c8b586 2031static int effective_prio(struct task_struct *p)
b29739f9
IM
2032{
2033 p->normal_prio = normal_prio(p);
2034 /*
2035 * If we are RT tasks or we were boosted to RT priority,
2036 * keep the priority unchanged. Otherwise, update priority
2037 * to the normal priority:
2038 */
2039 if (!rt_prio(p->prio))
2040 return p->normal_prio;
2041 return p->prio;
2042}
2043
1da177e4
LT
2044/**
2045 * task_curr - is this task currently executing on a CPU?
2046 * @p: the task in question.
2047 */
36c8b586 2048inline int task_curr(const struct task_struct *p)
1da177e4
LT
2049{
2050 return cpu_curr(task_cpu(p)) == p;
2051}
2052
cb469845
SR
2053static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2054 const struct sched_class *prev_class,
2055 int oldprio, int running)
2056{
2057 if (prev_class != p->sched_class) {
2058 if (prev_class->switched_from)
2059 prev_class->switched_from(rq, p, running);
2060 p->sched_class->switched_to(rq, p, running);
2061 } else
2062 p->sched_class->prio_changed(rq, p, oldprio, running);
2063}
2064
1da177e4 2065#ifdef CONFIG_SMP
cc367732
IM
2066/*
2067 * Is this task likely cache-hot:
2068 */
e7693a36 2069static int
cc367732
IM
2070task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2071{
2072 s64 delta;
2073
e6c8fba7
PZ
2074 if (p->sched_class != &fair_sched_class)
2075 return 0;
2076
ef8002f6
NR
2077 if (unlikely(p->policy == SCHED_IDLE))
2078 return 0;
2079
f540a608
IM
2080 /*
2081 * Buddy candidates are cache hot:
2082 */
f685ceac 2083 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2084 (&p->se == cfs_rq_of(&p->se)->next ||
2085 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2086 return 1;
2087
6bc1665b
IM
2088 if (sysctl_sched_migration_cost == -1)
2089 return 1;
2090 if (sysctl_sched_migration_cost == 0)
2091 return 0;
2092
cc367732
IM
2093 delta = now - p->se.exec_start;
2094
2095 return delta < (s64)sysctl_sched_migration_cost;
2096}
2097
dd41f596 2098void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2099{
e2912009
PZ
2100#ifdef CONFIG_SCHED_DEBUG
2101 /*
2102 * We should never call set_task_cpu() on a blocked task,
2103 * ttwu() will sort out the placement.
2104 */
077614ee
PZ
2105 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2106 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2107#endif
2108
de1d7286 2109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2110
0c69774e
PZ
2111 if (task_cpu(p) != new_cpu) {
2112 p->se.nr_migrations++;
2113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2114 }
dd41f596
IM
2115
2116 __set_task_cpu(p, new_cpu);
c65cc870
IM
2117}
2118
969c7921 2119struct migration_arg {
36c8b586 2120 struct task_struct *task;
1da177e4 2121 int dest_cpu;
70b97a7f 2122};
1da177e4 2123
969c7921
TH
2124static int migration_cpu_stop(void *data);
2125
1da177e4
LT
2126/*
2127 * The task's runqueue lock must be held.
2128 * Returns true if you have to wait for migration thread.
2129 */
969c7921 2130static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2131{
70b97a7f 2132 struct rq *rq = task_rq(p);
1da177e4
LT
2133
2134 /*
2135 * If the task is not on a runqueue (and not running), then
e2912009 2136 * the next wake-up will properly place the task.
1da177e4 2137 */
969c7921 2138 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2139}
2140
2141/*
2142 * wait_task_inactive - wait for a thread to unschedule.
2143 *
85ba2d86
RM
2144 * If @match_state is nonzero, it's the @p->state value just checked and
2145 * not expected to change. If it changes, i.e. @p might have woken up,
2146 * then return zero. When we succeed in waiting for @p to be off its CPU,
2147 * we return a positive number (its total switch count). If a second call
2148 * a short while later returns the same number, the caller can be sure that
2149 * @p has remained unscheduled the whole time.
2150 *
1da177e4
LT
2151 * The caller must ensure that the task *will* unschedule sometime soon,
2152 * else this function might spin for a *long* time. This function can't
2153 * be called with interrupts off, or it may introduce deadlock with
2154 * smp_call_function() if an IPI is sent by the same process we are
2155 * waiting to become inactive.
2156 */
85ba2d86 2157unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2158{
2159 unsigned long flags;
dd41f596 2160 int running, on_rq;
85ba2d86 2161 unsigned long ncsw;
70b97a7f 2162 struct rq *rq;
1da177e4 2163
3a5c359a
AK
2164 for (;;) {
2165 /*
2166 * We do the initial early heuristics without holding
2167 * any task-queue locks at all. We'll only try to get
2168 * the runqueue lock when things look like they will
2169 * work out!
2170 */
2171 rq = task_rq(p);
fa490cfd 2172
3a5c359a
AK
2173 /*
2174 * If the task is actively running on another CPU
2175 * still, just relax and busy-wait without holding
2176 * any locks.
2177 *
2178 * NOTE! Since we don't hold any locks, it's not
2179 * even sure that "rq" stays as the right runqueue!
2180 * But we don't care, since "task_running()" will
2181 * return false if the runqueue has changed and p
2182 * is actually now running somewhere else!
2183 */
85ba2d86
RM
2184 while (task_running(rq, p)) {
2185 if (match_state && unlikely(p->state != match_state))
2186 return 0;
3a5c359a 2187 cpu_relax();
85ba2d86 2188 }
fa490cfd 2189
3a5c359a
AK
2190 /*
2191 * Ok, time to look more closely! We need the rq
2192 * lock now, to be *sure*. If we're wrong, we'll
2193 * just go back and repeat.
2194 */
2195 rq = task_rq_lock(p, &flags);
27a9da65 2196 trace_sched_wait_task(p);
3a5c359a
AK
2197 running = task_running(rq, p);
2198 on_rq = p->se.on_rq;
85ba2d86 2199 ncsw = 0;
f31e11d8 2200 if (!match_state || p->state == match_state)
93dcf55f 2201 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2202 task_rq_unlock(rq, &flags);
fa490cfd 2203
85ba2d86
RM
2204 /*
2205 * If it changed from the expected state, bail out now.
2206 */
2207 if (unlikely(!ncsw))
2208 break;
2209
3a5c359a
AK
2210 /*
2211 * Was it really running after all now that we
2212 * checked with the proper locks actually held?
2213 *
2214 * Oops. Go back and try again..
2215 */
2216 if (unlikely(running)) {
2217 cpu_relax();
2218 continue;
2219 }
fa490cfd 2220
3a5c359a
AK
2221 /*
2222 * It's not enough that it's not actively running,
2223 * it must be off the runqueue _entirely_, and not
2224 * preempted!
2225 *
80dd99b3 2226 * So if it was still runnable (but just not actively
3a5c359a
AK
2227 * running right now), it's preempted, and we should
2228 * yield - it could be a while.
2229 */
2230 if (unlikely(on_rq)) {
2231 schedule_timeout_uninterruptible(1);
2232 continue;
2233 }
fa490cfd 2234
3a5c359a
AK
2235 /*
2236 * Ahh, all good. It wasn't running, and it wasn't
2237 * runnable, which means that it will never become
2238 * running in the future either. We're all done!
2239 */
2240 break;
2241 }
85ba2d86
RM
2242
2243 return ncsw;
1da177e4
LT
2244}
2245
2246/***
2247 * kick_process - kick a running thread to enter/exit the kernel
2248 * @p: the to-be-kicked thread
2249 *
2250 * Cause a process which is running on another CPU to enter
2251 * kernel-mode, without any delay. (to get signals handled.)
2252 *
2253 * NOTE: this function doesnt have to take the runqueue lock,
2254 * because all it wants to ensure is that the remote task enters
2255 * the kernel. If the IPI races and the task has been migrated
2256 * to another CPU then no harm is done and the purpose has been
2257 * achieved as well.
2258 */
36c8b586 2259void kick_process(struct task_struct *p)
1da177e4
LT
2260{
2261 int cpu;
2262
2263 preempt_disable();
2264 cpu = task_cpu(p);
2265 if ((cpu != smp_processor_id()) && task_curr(p))
2266 smp_send_reschedule(cpu);
2267 preempt_enable();
2268}
b43e3521 2269EXPORT_SYMBOL_GPL(kick_process);
476d139c 2270#endif /* CONFIG_SMP */
1da177e4 2271
0793a61d
TG
2272/**
2273 * task_oncpu_function_call - call a function on the cpu on which a task runs
2274 * @p: the task to evaluate
2275 * @func: the function to be called
2276 * @info: the function call argument
2277 *
2278 * Calls the function @func when the task is currently running. This might
2279 * be on the current CPU, which just calls the function directly
2280 */
2281void task_oncpu_function_call(struct task_struct *p,
2282 void (*func) (void *info), void *info)
2283{
2284 int cpu;
2285
2286 preempt_disable();
2287 cpu = task_cpu(p);
2288 if (task_curr(p))
2289 smp_call_function_single(cpu, func, info, 1);
2290 preempt_enable();
2291}
2292
970b13ba 2293#ifdef CONFIG_SMP
30da688e
ON
2294/*
2295 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2296 */
5da9a0fb
PZ
2297static int select_fallback_rq(int cpu, struct task_struct *p)
2298{
2299 int dest_cpu;
2300 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2301
2302 /* Look for allowed, online CPU in same node. */
2303 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2304 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2305 return dest_cpu;
2306
2307 /* Any allowed, online CPU? */
2308 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2309 if (dest_cpu < nr_cpu_ids)
2310 return dest_cpu;
2311
2312 /* No more Mr. Nice Guy. */
897f0b3c 2313 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2314 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2315 /*
2316 * Don't tell them about moving exiting tasks or
2317 * kernel threads (both mm NULL), since they never
2318 * leave kernel.
2319 */
2320 if (p->mm && printk_ratelimit()) {
2321 printk(KERN_INFO "process %d (%s) no "
2322 "longer affine to cpu%d\n",
2323 task_pid_nr(p), p->comm, cpu);
2324 }
2325 }
2326
2327 return dest_cpu;
2328}
2329
e2912009 2330/*
30da688e 2331 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2332 */
970b13ba 2333static inline
0017d735 2334int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2335{
0017d735 2336 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2337
2338 /*
2339 * In order not to call set_task_cpu() on a blocking task we need
2340 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2341 * cpu.
2342 *
2343 * Since this is common to all placement strategies, this lives here.
2344 *
2345 * [ this allows ->select_task() to simply return task_cpu(p) and
2346 * not worry about this generic constraint ]
2347 */
2348 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2349 !cpu_online(cpu)))
5da9a0fb 2350 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2351
2352 return cpu;
970b13ba 2353}
09a40af5
MG
2354
2355static void update_avg(u64 *avg, u64 sample)
2356{
2357 s64 diff = sample - *avg;
2358 *avg += diff >> 3;
2359}
970b13ba
PZ
2360#endif
2361
9ed3811a
TH
2362static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2363 bool is_sync, bool is_migrate, bool is_local,
2364 unsigned long en_flags)
2365{
2366 schedstat_inc(p, se.statistics.nr_wakeups);
2367 if (is_sync)
2368 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2369 if (is_migrate)
2370 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2371 if (is_local)
2372 schedstat_inc(p, se.statistics.nr_wakeups_local);
2373 else
2374 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2375
2376 activate_task(rq, p, en_flags);
2377}
2378
2379static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2380 int wake_flags, bool success)
2381{
2382 trace_sched_wakeup(p, success);
2383 check_preempt_curr(rq, p, wake_flags);
2384
2385 p->state = TASK_RUNNING;
2386#ifdef CONFIG_SMP
2387 if (p->sched_class->task_woken)
2388 p->sched_class->task_woken(rq, p);
2389
2390 if (unlikely(rq->idle_stamp)) {
2391 u64 delta = rq->clock - rq->idle_stamp;
2392 u64 max = 2*sysctl_sched_migration_cost;
2393
2394 if (delta > max)
2395 rq->avg_idle = max;
2396 else
2397 update_avg(&rq->avg_idle, delta);
2398 rq->idle_stamp = 0;
2399 }
2400#endif
21aa9af0
TH
2401 /* if a worker is waking up, notify workqueue */
2402 if ((p->flags & PF_WQ_WORKER) && success)
2403 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2404}
2405
2406/**
1da177e4 2407 * try_to_wake_up - wake up a thread
9ed3811a 2408 * @p: the thread to be awakened
1da177e4 2409 * @state: the mask of task states that can be woken
9ed3811a 2410 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2411 *
2412 * Put it on the run-queue if it's not already there. The "current"
2413 * thread is always on the run-queue (except when the actual
2414 * re-schedule is in progress), and as such you're allowed to do
2415 * the simpler "current->state = TASK_RUNNING" to mark yourself
2416 * runnable without the overhead of this.
2417 *
9ed3811a
TH
2418 * Returns %true if @p was woken up, %false if it was already running
2419 * or @state didn't match @p's state.
1da177e4 2420 */
7d478721
PZ
2421static int try_to_wake_up(struct task_struct *p, unsigned int state,
2422 int wake_flags)
1da177e4 2423{
cc367732 2424 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2425 unsigned long flags;
371fd7e7 2426 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2427 struct rq *rq;
1da177e4 2428
e9c84311 2429 this_cpu = get_cpu();
2398f2c6 2430
04e2f174 2431 smp_wmb();
ab3b3aa5 2432 rq = task_rq_lock(p, &flags);
e9c84311 2433 if (!(p->state & state))
1da177e4
LT
2434 goto out;
2435
dd41f596 2436 if (p->se.on_rq)
1da177e4
LT
2437 goto out_running;
2438
2439 cpu = task_cpu(p);
cc367732 2440 orig_cpu = cpu;
1da177e4
LT
2441
2442#ifdef CONFIG_SMP
2443 if (unlikely(task_running(rq, p)))
2444 goto out_activate;
2445
e9c84311
PZ
2446 /*
2447 * In order to handle concurrent wakeups and release the rq->lock
2448 * we put the task in TASK_WAKING state.
eb24073b
IM
2449 *
2450 * First fix up the nr_uninterruptible count:
e9c84311 2451 */
cc87f76a
PZ
2452 if (task_contributes_to_load(p)) {
2453 if (likely(cpu_online(orig_cpu)))
2454 rq->nr_uninterruptible--;
2455 else
2456 this_rq()->nr_uninterruptible--;
2457 }
e9c84311 2458 p->state = TASK_WAKING;
efbbd05a 2459
371fd7e7 2460 if (p->sched_class->task_waking) {
efbbd05a 2461 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2462 en_flags |= ENQUEUE_WAKING;
2463 }
efbbd05a 2464
0017d735
PZ
2465 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2466 if (cpu != orig_cpu)
5d2f5a61 2467 set_task_cpu(p, cpu);
0017d735 2468 __task_rq_unlock(rq);
ab19cb23 2469
0970d299
PZ
2470 rq = cpu_rq(cpu);
2471 raw_spin_lock(&rq->lock);
f5dc3753 2472
0970d299
PZ
2473 /*
2474 * We migrated the task without holding either rq->lock, however
2475 * since the task is not on the task list itself, nobody else
2476 * will try and migrate the task, hence the rq should match the
2477 * cpu we just moved it to.
2478 */
2479 WARN_ON(task_cpu(p) != cpu);
e9c84311 2480 WARN_ON(p->state != TASK_WAKING);
1da177e4 2481
e7693a36
GH
2482#ifdef CONFIG_SCHEDSTATS
2483 schedstat_inc(rq, ttwu_count);
2484 if (cpu == this_cpu)
2485 schedstat_inc(rq, ttwu_local);
2486 else {
2487 struct sched_domain *sd;
2488 for_each_domain(this_cpu, sd) {
758b2cdc 2489 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2490 schedstat_inc(sd, ttwu_wake_remote);
2491 break;
2492 }
2493 }
2494 }
6d6bc0ad 2495#endif /* CONFIG_SCHEDSTATS */
e7693a36 2496
1da177e4
LT
2497out_activate:
2498#endif /* CONFIG_SMP */
9ed3811a
TH
2499 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2500 cpu == this_cpu, en_flags);
1da177e4 2501 success = 1;
1da177e4 2502out_running:
9ed3811a 2503 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2504out:
2505 task_rq_unlock(rq, &flags);
e9c84311 2506 put_cpu();
1da177e4
LT
2507
2508 return success;
2509}
2510
21aa9af0
TH
2511/**
2512 * try_to_wake_up_local - try to wake up a local task with rq lock held
2513 * @p: the thread to be awakened
2514 *
2515 * Put @p on the run-queue if it's not alredy there. The caller must
2516 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2517 * the current task. this_rq() stays locked over invocation.
2518 */
2519static void try_to_wake_up_local(struct task_struct *p)
2520{
2521 struct rq *rq = task_rq(p);
2522 bool success = false;
2523
2524 BUG_ON(rq != this_rq());
2525 BUG_ON(p == current);
2526 lockdep_assert_held(&rq->lock);
2527
2528 if (!(p->state & TASK_NORMAL))
2529 return;
2530
2531 if (!p->se.on_rq) {
2532 if (likely(!task_running(rq, p))) {
2533 schedstat_inc(rq, ttwu_count);
2534 schedstat_inc(rq, ttwu_local);
2535 }
2536 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2537 success = true;
2538 }
2539 ttwu_post_activation(p, rq, 0, success);
2540}
2541
50fa610a
DH
2542/**
2543 * wake_up_process - Wake up a specific process
2544 * @p: The process to be woken up.
2545 *
2546 * Attempt to wake up the nominated process and move it to the set of runnable
2547 * processes. Returns 1 if the process was woken up, 0 if it was already
2548 * running.
2549 *
2550 * It may be assumed that this function implies a write memory barrier before
2551 * changing the task state if and only if any tasks are woken up.
2552 */
7ad5b3a5 2553int wake_up_process(struct task_struct *p)
1da177e4 2554{
d9514f6c 2555 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2556}
1da177e4
LT
2557EXPORT_SYMBOL(wake_up_process);
2558
7ad5b3a5 2559int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2560{
2561 return try_to_wake_up(p, state, 0);
2562}
2563
1da177e4
LT
2564/*
2565 * Perform scheduler related setup for a newly forked process p.
2566 * p is forked by current.
dd41f596
IM
2567 *
2568 * __sched_fork() is basic setup used by init_idle() too:
2569 */
2570static void __sched_fork(struct task_struct *p)
2571{
dd41f596
IM
2572 p->se.exec_start = 0;
2573 p->se.sum_exec_runtime = 0;
f6cf891c 2574 p->se.prev_sum_exec_runtime = 0;
6c594c21 2575 p->se.nr_migrations = 0;
6cfb0d5d
IM
2576
2577#ifdef CONFIG_SCHEDSTATS
41acab88 2578 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2579#endif
476d139c 2580
fa717060 2581 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2582 p->se.on_rq = 0;
4a55bd5e 2583 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2584
e107be36
AK
2585#ifdef CONFIG_PREEMPT_NOTIFIERS
2586 INIT_HLIST_HEAD(&p->preempt_notifiers);
2587#endif
dd41f596
IM
2588}
2589
2590/*
2591 * fork()/clone()-time setup:
2592 */
2593void sched_fork(struct task_struct *p, int clone_flags)
2594{
2595 int cpu = get_cpu();
2596
2597 __sched_fork(p);
06b83b5f 2598 /*
0017d735 2599 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2600 * nobody will actually run it, and a signal or other external
2601 * event cannot wake it up and insert it on the runqueue either.
2602 */
0017d735 2603 p->state = TASK_RUNNING;
dd41f596 2604
b9dc29e7
MG
2605 /*
2606 * Revert to default priority/policy on fork if requested.
2607 */
2608 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2609 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2610 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2611 p->normal_prio = p->static_prio;
2612 }
b9dc29e7 2613
6c697bdf
MG
2614 if (PRIO_TO_NICE(p->static_prio) < 0) {
2615 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2616 p->normal_prio = p->static_prio;
6c697bdf
MG
2617 set_load_weight(p);
2618 }
2619
b9dc29e7
MG
2620 /*
2621 * We don't need the reset flag anymore after the fork. It has
2622 * fulfilled its duty:
2623 */
2624 p->sched_reset_on_fork = 0;
2625 }
ca94c442 2626
f83f9ac2
PW
2627 /*
2628 * Make sure we do not leak PI boosting priority to the child.
2629 */
2630 p->prio = current->normal_prio;
2631
2ddbf952
HS
2632 if (!rt_prio(p->prio))
2633 p->sched_class = &fair_sched_class;
b29739f9 2634
cd29fe6f
PZ
2635 if (p->sched_class->task_fork)
2636 p->sched_class->task_fork(p);
2637
86951599
PZ
2638 /*
2639 * The child is not yet in the pid-hash so no cgroup attach races,
2640 * and the cgroup is pinned to this child due to cgroup_fork()
2641 * is ran before sched_fork().
2642 *
2643 * Silence PROVE_RCU.
2644 */
2645 rcu_read_lock();
5f3edc1b 2646 set_task_cpu(p, cpu);
86951599 2647 rcu_read_unlock();
5f3edc1b 2648
52f17b6c 2649#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2650 if (likely(sched_info_on()))
52f17b6c 2651 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2652#endif
d6077cb8 2653#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2654 p->oncpu = 0;
2655#endif
1da177e4 2656#ifdef CONFIG_PREEMPT
4866cde0 2657 /* Want to start with kernel preemption disabled. */
a1261f54 2658 task_thread_info(p)->preempt_count = 1;
1da177e4 2659#endif
917b627d
GH
2660 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2661
476d139c 2662 put_cpu();
1da177e4
LT
2663}
2664
2665/*
2666 * wake_up_new_task - wake up a newly created task for the first time.
2667 *
2668 * This function will do some initial scheduler statistics housekeeping
2669 * that must be done for every newly created context, then puts the task
2670 * on the runqueue and wakes it.
2671 */
7ad5b3a5 2672void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2673{
2674 unsigned long flags;
dd41f596 2675 struct rq *rq;
c890692b 2676 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2677
2678#ifdef CONFIG_SMP
0017d735
PZ
2679 rq = task_rq_lock(p, &flags);
2680 p->state = TASK_WAKING;
2681
fabf318e
PZ
2682 /*
2683 * Fork balancing, do it here and not earlier because:
2684 * - cpus_allowed can change in the fork path
2685 * - any previously selected cpu might disappear through hotplug
2686 *
0017d735
PZ
2687 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2688 * without people poking at ->cpus_allowed.
fabf318e 2689 */
0017d735 2690 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2691 set_task_cpu(p, cpu);
1da177e4 2692
06b83b5f 2693 p->state = TASK_RUNNING;
0017d735
PZ
2694 task_rq_unlock(rq, &flags);
2695#endif
2696
2697 rq = task_rq_lock(p, &flags);
cd29fe6f 2698 activate_task(rq, p, 0);
27a9da65 2699 trace_sched_wakeup_new(p, 1);
a7558e01 2700 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2701#ifdef CONFIG_SMP
efbbd05a
PZ
2702 if (p->sched_class->task_woken)
2703 p->sched_class->task_woken(rq, p);
9a897c5a 2704#endif
dd41f596 2705 task_rq_unlock(rq, &flags);
fabf318e 2706 put_cpu();
1da177e4
LT
2707}
2708
e107be36
AK
2709#ifdef CONFIG_PREEMPT_NOTIFIERS
2710
2711/**
80dd99b3 2712 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2713 * @notifier: notifier struct to register
e107be36
AK
2714 */
2715void preempt_notifier_register(struct preempt_notifier *notifier)
2716{
2717 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2718}
2719EXPORT_SYMBOL_GPL(preempt_notifier_register);
2720
2721/**
2722 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2723 * @notifier: notifier struct to unregister
e107be36
AK
2724 *
2725 * This is safe to call from within a preemption notifier.
2726 */
2727void preempt_notifier_unregister(struct preempt_notifier *notifier)
2728{
2729 hlist_del(&notifier->link);
2730}
2731EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2732
2733static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2734{
2735 struct preempt_notifier *notifier;
2736 struct hlist_node *node;
2737
2738 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2739 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2740}
2741
2742static void
2743fire_sched_out_preempt_notifiers(struct task_struct *curr,
2744 struct task_struct *next)
2745{
2746 struct preempt_notifier *notifier;
2747 struct hlist_node *node;
2748
2749 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2750 notifier->ops->sched_out(notifier, next);
2751}
2752
6d6bc0ad 2753#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2754
2755static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2756{
2757}
2758
2759static void
2760fire_sched_out_preempt_notifiers(struct task_struct *curr,
2761 struct task_struct *next)
2762{
2763}
2764
6d6bc0ad 2765#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2766
4866cde0
NP
2767/**
2768 * prepare_task_switch - prepare to switch tasks
2769 * @rq: the runqueue preparing to switch
421cee29 2770 * @prev: the current task that is being switched out
4866cde0
NP
2771 * @next: the task we are going to switch to.
2772 *
2773 * This is called with the rq lock held and interrupts off. It must
2774 * be paired with a subsequent finish_task_switch after the context
2775 * switch.
2776 *
2777 * prepare_task_switch sets up locking and calls architecture specific
2778 * hooks.
2779 */
e107be36
AK
2780static inline void
2781prepare_task_switch(struct rq *rq, struct task_struct *prev,
2782 struct task_struct *next)
4866cde0 2783{
e107be36 2784 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2785 prepare_lock_switch(rq, next);
2786 prepare_arch_switch(next);
2787}
2788
1da177e4
LT
2789/**
2790 * finish_task_switch - clean up after a task-switch
344babaa 2791 * @rq: runqueue associated with task-switch
1da177e4
LT
2792 * @prev: the thread we just switched away from.
2793 *
4866cde0
NP
2794 * finish_task_switch must be called after the context switch, paired
2795 * with a prepare_task_switch call before the context switch.
2796 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2797 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2798 *
2799 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2800 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2801 * with the lock held can cause deadlocks; see schedule() for
2802 * details.)
2803 */
a9957449 2804static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2805 __releases(rq->lock)
2806{
1da177e4 2807 struct mm_struct *mm = rq->prev_mm;
55a101f8 2808 long prev_state;
1da177e4
LT
2809
2810 rq->prev_mm = NULL;
2811
2812 /*
2813 * A task struct has one reference for the use as "current".
c394cc9f 2814 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2815 * schedule one last time. The schedule call will never return, and
2816 * the scheduled task must drop that reference.
c394cc9f 2817 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2818 * still held, otherwise prev could be scheduled on another cpu, die
2819 * there before we look at prev->state, and then the reference would
2820 * be dropped twice.
2821 * Manfred Spraul <manfred@colorfullife.com>
2822 */
55a101f8 2823 prev_state = prev->state;
4866cde0 2824 finish_arch_switch(prev);
8381f65d
JI
2825#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2826 local_irq_disable();
2827#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2828 perf_event_task_sched_in(current);
8381f65d
JI
2829#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2830 local_irq_enable();
2831#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2832 finish_lock_switch(rq, prev);
e8fa1362 2833
e107be36 2834 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2835 if (mm)
2836 mmdrop(mm);
c394cc9f 2837 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2838 /*
2839 * Remove function-return probe instances associated with this
2840 * task and put them back on the free list.
9761eea8 2841 */
c6fd91f0 2842 kprobe_flush_task(prev);
1da177e4 2843 put_task_struct(prev);
c6fd91f0 2844 }
1da177e4
LT
2845}
2846
3f029d3c
GH
2847#ifdef CONFIG_SMP
2848
2849/* assumes rq->lock is held */
2850static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2851{
2852 if (prev->sched_class->pre_schedule)
2853 prev->sched_class->pre_schedule(rq, prev);
2854}
2855
2856/* rq->lock is NOT held, but preemption is disabled */
2857static inline void post_schedule(struct rq *rq)
2858{
2859 if (rq->post_schedule) {
2860 unsigned long flags;
2861
05fa785c 2862 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2863 if (rq->curr->sched_class->post_schedule)
2864 rq->curr->sched_class->post_schedule(rq);
05fa785c 2865 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2866
2867 rq->post_schedule = 0;
2868 }
2869}
2870
2871#else
da19ab51 2872
3f029d3c
GH
2873static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2874{
2875}
2876
2877static inline void post_schedule(struct rq *rq)
2878{
1da177e4
LT
2879}
2880
3f029d3c
GH
2881#endif
2882
1da177e4
LT
2883/**
2884 * schedule_tail - first thing a freshly forked thread must call.
2885 * @prev: the thread we just switched away from.
2886 */
36c8b586 2887asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2888 __releases(rq->lock)
2889{
70b97a7f
IM
2890 struct rq *rq = this_rq();
2891
4866cde0 2892 finish_task_switch(rq, prev);
da19ab51 2893
3f029d3c
GH
2894 /*
2895 * FIXME: do we need to worry about rq being invalidated by the
2896 * task_switch?
2897 */
2898 post_schedule(rq);
70b97a7f 2899
4866cde0
NP
2900#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2901 /* In this case, finish_task_switch does not reenable preemption */
2902 preempt_enable();
2903#endif
1da177e4 2904 if (current->set_child_tid)
b488893a 2905 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2906}
2907
2908/*
2909 * context_switch - switch to the new MM and the new
2910 * thread's register state.
2911 */
dd41f596 2912static inline void
70b97a7f 2913context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2914 struct task_struct *next)
1da177e4 2915{
dd41f596 2916 struct mm_struct *mm, *oldmm;
1da177e4 2917
e107be36 2918 prepare_task_switch(rq, prev, next);
27a9da65 2919 trace_sched_switch(prev, next);
dd41f596
IM
2920 mm = next->mm;
2921 oldmm = prev->active_mm;
9226d125
ZA
2922 /*
2923 * For paravirt, this is coupled with an exit in switch_to to
2924 * combine the page table reload and the switch backend into
2925 * one hypercall.
2926 */
224101ed 2927 arch_start_context_switch(prev);
9226d125 2928
31915ab4 2929 if (!mm) {
1da177e4
LT
2930 next->active_mm = oldmm;
2931 atomic_inc(&oldmm->mm_count);
2932 enter_lazy_tlb(oldmm, next);
2933 } else
2934 switch_mm(oldmm, mm, next);
2935
31915ab4 2936 if (!prev->mm) {
1da177e4 2937 prev->active_mm = NULL;
1da177e4
LT
2938 rq->prev_mm = oldmm;
2939 }
3a5f5e48
IM
2940 /*
2941 * Since the runqueue lock will be released by the next
2942 * task (which is an invalid locking op but in the case
2943 * of the scheduler it's an obvious special-case), so we
2944 * do an early lockdep release here:
2945 */
2946#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2947 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2948#endif
1da177e4
LT
2949
2950 /* Here we just switch the register state and the stack. */
2951 switch_to(prev, next, prev);
2952
dd41f596
IM
2953 barrier();
2954 /*
2955 * this_rq must be evaluated again because prev may have moved
2956 * CPUs since it called schedule(), thus the 'rq' on its stack
2957 * frame will be invalid.
2958 */
2959 finish_task_switch(this_rq(), prev);
1da177e4
LT
2960}
2961
2962/*
2963 * nr_running, nr_uninterruptible and nr_context_switches:
2964 *
2965 * externally visible scheduler statistics: current number of runnable
2966 * threads, current number of uninterruptible-sleeping threads, total
2967 * number of context switches performed since bootup.
2968 */
2969unsigned long nr_running(void)
2970{
2971 unsigned long i, sum = 0;
2972
2973 for_each_online_cpu(i)
2974 sum += cpu_rq(i)->nr_running;
2975
2976 return sum;
f711f609 2977}
1da177e4
LT
2978
2979unsigned long nr_uninterruptible(void)
f711f609 2980{
1da177e4 2981 unsigned long i, sum = 0;
f711f609 2982
0a945022 2983 for_each_possible_cpu(i)
1da177e4 2984 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2985
2986 /*
1da177e4
LT
2987 * Since we read the counters lockless, it might be slightly
2988 * inaccurate. Do not allow it to go below zero though:
f711f609 2989 */
1da177e4
LT
2990 if (unlikely((long)sum < 0))
2991 sum = 0;
f711f609 2992
1da177e4 2993 return sum;
f711f609 2994}
f711f609 2995
1da177e4 2996unsigned long long nr_context_switches(void)
46cb4b7c 2997{
cc94abfc
SR
2998 int i;
2999 unsigned long long sum = 0;
46cb4b7c 3000
0a945022 3001 for_each_possible_cpu(i)
1da177e4 3002 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3003
1da177e4
LT
3004 return sum;
3005}
483b4ee6 3006
1da177e4
LT
3007unsigned long nr_iowait(void)
3008{
3009 unsigned long i, sum = 0;
483b4ee6 3010
0a945022 3011 for_each_possible_cpu(i)
1da177e4 3012 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3013
1da177e4
LT
3014 return sum;
3015}
483b4ee6 3016
8c215bd3 3017unsigned long nr_iowait_cpu(int cpu)
69d25870 3018{
8c215bd3 3019 struct rq *this = cpu_rq(cpu);
69d25870
AV
3020 return atomic_read(&this->nr_iowait);
3021}
46cb4b7c 3022
69d25870
AV
3023unsigned long this_cpu_load(void)
3024{
3025 struct rq *this = this_rq();
3026 return this->cpu_load[0];
3027}
e790fb0b 3028
46cb4b7c 3029
dce48a84
TG
3030/* Variables and functions for calc_load */
3031static atomic_long_t calc_load_tasks;
3032static unsigned long calc_load_update;
3033unsigned long avenrun[3];
3034EXPORT_SYMBOL(avenrun);
46cb4b7c 3035
74f5187a
PZ
3036static long calc_load_fold_active(struct rq *this_rq)
3037{
3038 long nr_active, delta = 0;
3039
3040 nr_active = this_rq->nr_running;
3041 nr_active += (long) this_rq->nr_uninterruptible;
3042
3043 if (nr_active != this_rq->calc_load_active) {
3044 delta = nr_active - this_rq->calc_load_active;
3045 this_rq->calc_load_active = nr_active;
3046 }
3047
3048 return delta;
3049}
3050
3051#ifdef CONFIG_NO_HZ
3052/*
3053 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3054 *
3055 * When making the ILB scale, we should try to pull this in as well.
3056 */
3057static atomic_long_t calc_load_tasks_idle;
3058
3059static void calc_load_account_idle(struct rq *this_rq)
3060{
3061 long delta;
3062
3063 delta = calc_load_fold_active(this_rq);
3064 if (delta)
3065 atomic_long_add(delta, &calc_load_tasks_idle);
3066}
3067
3068static long calc_load_fold_idle(void)
3069{
3070 long delta = 0;
3071
3072 /*
3073 * Its got a race, we don't care...
3074 */
3075 if (atomic_long_read(&calc_load_tasks_idle))
3076 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3077
3078 return delta;
3079}
3080#else
3081static void calc_load_account_idle(struct rq *this_rq)
3082{
3083}
3084
3085static inline long calc_load_fold_idle(void)
3086{
3087 return 0;
3088}
3089#endif
3090
2d02494f
TG
3091/**
3092 * get_avenrun - get the load average array
3093 * @loads: pointer to dest load array
3094 * @offset: offset to add
3095 * @shift: shift count to shift the result left
3096 *
3097 * These values are estimates at best, so no need for locking.
3098 */
3099void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3100{
3101 loads[0] = (avenrun[0] + offset) << shift;
3102 loads[1] = (avenrun[1] + offset) << shift;
3103 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3104}
46cb4b7c 3105
dce48a84
TG
3106static unsigned long
3107calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3108{
dce48a84
TG
3109 load *= exp;
3110 load += active * (FIXED_1 - exp);
3111 return load >> FSHIFT;
3112}
46cb4b7c
SS
3113
3114/*
dce48a84
TG
3115 * calc_load - update the avenrun load estimates 10 ticks after the
3116 * CPUs have updated calc_load_tasks.
7835b98b 3117 */
dce48a84 3118void calc_global_load(void)
7835b98b 3119{
dce48a84
TG
3120 unsigned long upd = calc_load_update + 10;
3121 long active;
1da177e4 3122
dce48a84
TG
3123 if (time_before(jiffies, upd))
3124 return;
1da177e4 3125
dce48a84
TG
3126 active = atomic_long_read(&calc_load_tasks);
3127 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3128
dce48a84
TG
3129 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3130 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3131 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3132
dce48a84
TG
3133 calc_load_update += LOAD_FREQ;
3134}
1da177e4 3135
dce48a84 3136/*
74f5187a
PZ
3137 * Called from update_cpu_load() to periodically update this CPU's
3138 * active count.
dce48a84
TG
3139 */
3140static void calc_load_account_active(struct rq *this_rq)
3141{
74f5187a 3142 long delta;
08c183f3 3143
74f5187a
PZ
3144 if (time_before(jiffies, this_rq->calc_load_update))
3145 return;
783609c6 3146
74f5187a
PZ
3147 delta = calc_load_fold_active(this_rq);
3148 delta += calc_load_fold_idle();
3149 if (delta)
dce48a84 3150 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3151
3152 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3153}
3154
fdf3e95d
VP
3155/*
3156 * The exact cpuload at various idx values, calculated at every tick would be
3157 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3158 *
3159 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3160 * on nth tick when cpu may be busy, then we have:
3161 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3162 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3163 *
3164 * decay_load_missed() below does efficient calculation of
3165 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3166 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3167 *
3168 * The calculation is approximated on a 128 point scale.
3169 * degrade_zero_ticks is the number of ticks after which load at any
3170 * particular idx is approximated to be zero.
3171 * degrade_factor is a precomputed table, a row for each load idx.
3172 * Each column corresponds to degradation factor for a power of two ticks,
3173 * based on 128 point scale.
3174 * Example:
3175 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3176 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3177 *
3178 * With this power of 2 load factors, we can degrade the load n times
3179 * by looking at 1 bits in n and doing as many mult/shift instead of
3180 * n mult/shifts needed by the exact degradation.
3181 */
3182#define DEGRADE_SHIFT 7
3183static const unsigned char
3184 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3185static const unsigned char
3186 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3187 {0, 0, 0, 0, 0, 0, 0, 0},
3188 {64, 32, 8, 0, 0, 0, 0, 0},
3189 {96, 72, 40, 12, 1, 0, 0},
3190 {112, 98, 75, 43, 15, 1, 0},
3191 {120, 112, 98, 76, 45, 16, 2} };
3192
3193/*
3194 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3195 * would be when CPU is idle and so we just decay the old load without
3196 * adding any new load.
3197 */
3198static unsigned long
3199decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3200{
3201 int j = 0;
3202
3203 if (!missed_updates)
3204 return load;
3205
3206 if (missed_updates >= degrade_zero_ticks[idx])
3207 return 0;
3208
3209 if (idx == 1)
3210 return load >> missed_updates;
3211
3212 while (missed_updates) {
3213 if (missed_updates % 2)
3214 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3215
3216 missed_updates >>= 1;
3217 j++;
3218 }
3219 return load;
3220}
3221
46cb4b7c 3222/*
dd41f596 3223 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3224 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3225 * every tick. We fix it up based on jiffies.
46cb4b7c 3226 */
dd41f596 3227static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3228{
495eca49 3229 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3230 unsigned long curr_jiffies = jiffies;
3231 unsigned long pending_updates;
dd41f596 3232 int i, scale;
46cb4b7c 3233
dd41f596 3234 this_rq->nr_load_updates++;
46cb4b7c 3235
fdf3e95d
VP
3236 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3237 if (curr_jiffies == this_rq->last_load_update_tick)
3238 return;
3239
3240 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3241 this_rq->last_load_update_tick = curr_jiffies;
3242
dd41f596 3243 /* Update our load: */
fdf3e95d
VP
3244 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3245 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3246 unsigned long old_load, new_load;
7d1e6a9b 3247
dd41f596 3248 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3249
dd41f596 3250 old_load = this_rq->cpu_load[i];
fdf3e95d 3251 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3252 new_load = this_load;
a25707f3
IM
3253 /*
3254 * Round up the averaging division if load is increasing. This
3255 * prevents us from getting stuck on 9 if the load is 10, for
3256 * example.
3257 */
3258 if (new_load > old_load)
fdf3e95d
VP
3259 new_load += scale - 1;
3260
3261 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3262 }
da2b71ed
SS
3263
3264 sched_avg_update(this_rq);
fdf3e95d
VP
3265}
3266
3267static void update_cpu_load_active(struct rq *this_rq)
3268{
3269 update_cpu_load(this_rq);
46cb4b7c 3270
74f5187a 3271 calc_load_account_active(this_rq);
46cb4b7c
SS
3272}
3273
dd41f596 3274#ifdef CONFIG_SMP
8a0be9ef 3275
46cb4b7c 3276/*
38022906
PZ
3277 * sched_exec - execve() is a valuable balancing opportunity, because at
3278 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3279 */
38022906 3280void sched_exec(void)
46cb4b7c 3281{
38022906 3282 struct task_struct *p = current;
1da177e4 3283 unsigned long flags;
70b97a7f 3284 struct rq *rq;
0017d735 3285 int dest_cpu;
46cb4b7c 3286
1da177e4 3287 rq = task_rq_lock(p, &flags);
0017d735
PZ
3288 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3289 if (dest_cpu == smp_processor_id())
3290 goto unlock;
38022906 3291
46cb4b7c 3292 /*
38022906 3293 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3294 */
30da688e 3295 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3296 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3297 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3298
1da177e4 3299 task_rq_unlock(rq, &flags);
969c7921 3300 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3301 return;
3302 }
0017d735 3303unlock:
1da177e4 3304 task_rq_unlock(rq, &flags);
1da177e4 3305}
dd41f596 3306
1da177e4
LT
3307#endif
3308
1da177e4
LT
3309DEFINE_PER_CPU(struct kernel_stat, kstat);
3310
3311EXPORT_PER_CPU_SYMBOL(kstat);
3312
3313/*
c5f8d995 3314 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3315 * @p in case that task is currently running.
c5f8d995
HS
3316 *
3317 * Called with task_rq_lock() held on @rq.
1da177e4 3318 */
c5f8d995
HS
3319static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3320{
3321 u64 ns = 0;
3322
3323 if (task_current(rq, p)) {
3324 update_rq_clock(rq);
3325 ns = rq->clock - p->se.exec_start;
3326 if ((s64)ns < 0)
3327 ns = 0;
3328 }
3329
3330 return ns;
3331}
3332
bb34d92f 3333unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3334{
1da177e4 3335 unsigned long flags;
41b86e9c 3336 struct rq *rq;
bb34d92f 3337 u64 ns = 0;
48f24c4d 3338
41b86e9c 3339 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3340 ns = do_task_delta_exec(p, rq);
3341 task_rq_unlock(rq, &flags);
1508487e 3342
c5f8d995
HS
3343 return ns;
3344}
f06febc9 3345
c5f8d995
HS
3346/*
3347 * Return accounted runtime for the task.
3348 * In case the task is currently running, return the runtime plus current's
3349 * pending runtime that have not been accounted yet.
3350 */
3351unsigned long long task_sched_runtime(struct task_struct *p)
3352{
3353 unsigned long flags;
3354 struct rq *rq;
3355 u64 ns = 0;
3356
3357 rq = task_rq_lock(p, &flags);
3358 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3359 task_rq_unlock(rq, &flags);
3360
3361 return ns;
3362}
48f24c4d 3363
c5f8d995
HS
3364/*
3365 * Return sum_exec_runtime for the thread group.
3366 * In case the task is currently running, return the sum plus current's
3367 * pending runtime that have not been accounted yet.
3368 *
3369 * Note that the thread group might have other running tasks as well,
3370 * so the return value not includes other pending runtime that other
3371 * running tasks might have.
3372 */
3373unsigned long long thread_group_sched_runtime(struct task_struct *p)
3374{
3375 struct task_cputime totals;
3376 unsigned long flags;
3377 struct rq *rq;
3378 u64 ns;
3379
3380 rq = task_rq_lock(p, &flags);
3381 thread_group_cputime(p, &totals);
3382 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3383 task_rq_unlock(rq, &flags);
48f24c4d 3384
1da177e4
LT
3385 return ns;
3386}
3387
1da177e4
LT
3388/*
3389 * Account user cpu time to a process.
3390 * @p: the process that the cpu time gets accounted to
1da177e4 3391 * @cputime: the cpu time spent in user space since the last update
457533a7 3392 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3393 */
457533a7
MS
3394void account_user_time(struct task_struct *p, cputime_t cputime,
3395 cputime_t cputime_scaled)
1da177e4
LT
3396{
3397 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3398 cputime64_t tmp;
3399
457533a7 3400 /* Add user time to process. */
1da177e4 3401 p->utime = cputime_add(p->utime, cputime);
457533a7 3402 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3403 account_group_user_time(p, cputime);
1da177e4
LT
3404
3405 /* Add user time to cpustat. */
3406 tmp = cputime_to_cputime64(cputime);
3407 if (TASK_NICE(p) > 0)
3408 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3409 else
3410 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3411
3412 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3413 /* Account for user time used */
3414 acct_update_integrals(p);
1da177e4
LT
3415}
3416
94886b84
LV
3417/*
3418 * Account guest cpu time to a process.
3419 * @p: the process that the cpu time gets accounted to
3420 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3421 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3422 */
457533a7
MS
3423static void account_guest_time(struct task_struct *p, cputime_t cputime,
3424 cputime_t cputime_scaled)
94886b84
LV
3425{
3426 cputime64_t tmp;
3427 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3428
3429 tmp = cputime_to_cputime64(cputime);
3430
457533a7 3431 /* Add guest time to process. */
94886b84 3432 p->utime = cputime_add(p->utime, cputime);
457533a7 3433 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3434 account_group_user_time(p, cputime);
94886b84
LV
3435 p->gtime = cputime_add(p->gtime, cputime);
3436
457533a7 3437 /* Add guest time to cpustat. */
ce0e7b28
RO
3438 if (TASK_NICE(p) > 0) {
3439 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3440 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3441 } else {
3442 cpustat->user = cputime64_add(cpustat->user, tmp);
3443 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3444 }
94886b84
LV
3445}
3446
1da177e4
LT
3447/*
3448 * Account system cpu time to a process.
3449 * @p: the process that the cpu time gets accounted to
3450 * @hardirq_offset: the offset to subtract from hardirq_count()
3451 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3452 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3453 */
3454void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3455 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3456{
3457 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3458 cputime64_t tmp;
3459
983ed7a6 3460 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3461 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3462 return;
3463 }
94886b84 3464
457533a7 3465 /* Add system time to process. */
1da177e4 3466 p->stime = cputime_add(p->stime, cputime);
457533a7 3467 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3468 account_group_system_time(p, cputime);
1da177e4
LT
3469
3470 /* Add system time to cpustat. */
3471 tmp = cputime_to_cputime64(cputime);
3472 if (hardirq_count() - hardirq_offset)
3473 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3474 else if (in_serving_softirq())
1da177e4 3475 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3476 else
79741dd3
MS
3477 cpustat->system = cputime64_add(cpustat->system, tmp);
3478
ef12fefa
BR
3479 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3480
1da177e4
LT
3481 /* Account for system time used */
3482 acct_update_integrals(p);
1da177e4
LT
3483}
3484
c66f08be 3485/*
1da177e4 3486 * Account for involuntary wait time.
1da177e4 3487 * @steal: the cpu time spent in involuntary wait
c66f08be 3488 */
79741dd3 3489void account_steal_time(cputime_t cputime)
c66f08be 3490{
79741dd3
MS
3491 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3492 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3493
3494 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3495}
3496
1da177e4 3497/*
79741dd3
MS
3498 * Account for idle time.
3499 * @cputime: the cpu time spent in idle wait
1da177e4 3500 */
79741dd3 3501void account_idle_time(cputime_t cputime)
1da177e4
LT
3502{
3503 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3504 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3505 struct rq *rq = this_rq();
1da177e4 3506
79741dd3
MS
3507 if (atomic_read(&rq->nr_iowait) > 0)
3508 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3509 else
3510 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3511}
3512
79741dd3
MS
3513#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3514
3515/*
3516 * Account a single tick of cpu time.
3517 * @p: the process that the cpu time gets accounted to
3518 * @user_tick: indicates if the tick is a user or a system tick
3519 */
3520void account_process_tick(struct task_struct *p, int user_tick)
3521{
a42548a1 3522 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3523 struct rq *rq = this_rq();
3524
3525 if (user_tick)
a42548a1 3526 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3527 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3528 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3529 one_jiffy_scaled);
3530 else
a42548a1 3531 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3532}
3533
3534/*
3535 * Account multiple ticks of steal time.
3536 * @p: the process from which the cpu time has been stolen
3537 * @ticks: number of stolen ticks
3538 */
3539void account_steal_ticks(unsigned long ticks)
3540{
3541 account_steal_time(jiffies_to_cputime(ticks));
3542}
3543
3544/*
3545 * Account multiple ticks of idle time.
3546 * @ticks: number of stolen ticks
3547 */
3548void account_idle_ticks(unsigned long ticks)
3549{
3550 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3551}
3552
79741dd3
MS
3553#endif
3554
49048622
BS
3555/*
3556 * Use precise platform statistics if available:
3557 */
3558#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3559void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3560{
d99ca3b9
HS
3561 *ut = p->utime;
3562 *st = p->stime;
49048622
BS
3563}
3564
0cf55e1e 3565void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3566{
0cf55e1e
HS
3567 struct task_cputime cputime;
3568
3569 thread_group_cputime(p, &cputime);
3570
3571 *ut = cputime.utime;
3572 *st = cputime.stime;
49048622
BS
3573}
3574#else
761b1d26
HS
3575
3576#ifndef nsecs_to_cputime
b7b20df9 3577# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3578#endif
3579
d180c5bc 3580void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3581{
d99ca3b9 3582 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3583
3584 /*
3585 * Use CFS's precise accounting:
3586 */
d180c5bc 3587 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3588
3589 if (total) {
e75e863d 3590 u64 temp = rtime;
d180c5bc 3591
e75e863d 3592 temp *= utime;
49048622 3593 do_div(temp, total);
d180c5bc
HS
3594 utime = (cputime_t)temp;
3595 } else
3596 utime = rtime;
49048622 3597
d180c5bc
HS
3598 /*
3599 * Compare with previous values, to keep monotonicity:
3600 */
761b1d26 3601 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3602 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3603
d99ca3b9
HS
3604 *ut = p->prev_utime;
3605 *st = p->prev_stime;
49048622
BS
3606}
3607
0cf55e1e
HS
3608/*
3609 * Must be called with siglock held.
3610 */
3611void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3612{
0cf55e1e
HS
3613 struct signal_struct *sig = p->signal;
3614 struct task_cputime cputime;
3615 cputime_t rtime, utime, total;
49048622 3616
0cf55e1e 3617 thread_group_cputime(p, &cputime);
49048622 3618
0cf55e1e
HS
3619 total = cputime_add(cputime.utime, cputime.stime);
3620 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3621
0cf55e1e 3622 if (total) {
e75e863d 3623 u64 temp = rtime;
49048622 3624
e75e863d 3625 temp *= cputime.utime;
0cf55e1e
HS
3626 do_div(temp, total);
3627 utime = (cputime_t)temp;
3628 } else
3629 utime = rtime;
3630
3631 sig->prev_utime = max(sig->prev_utime, utime);
3632 sig->prev_stime = max(sig->prev_stime,
3633 cputime_sub(rtime, sig->prev_utime));
3634
3635 *ut = sig->prev_utime;
3636 *st = sig->prev_stime;
49048622 3637}
49048622 3638#endif
49048622 3639
7835b98b
CL
3640/*
3641 * This function gets called by the timer code, with HZ frequency.
3642 * We call it with interrupts disabled.
3643 *
3644 * It also gets called by the fork code, when changing the parent's
3645 * timeslices.
3646 */
3647void scheduler_tick(void)
3648{
7835b98b
CL
3649 int cpu = smp_processor_id();
3650 struct rq *rq = cpu_rq(cpu);
dd41f596 3651 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3652
3653 sched_clock_tick();
dd41f596 3654
05fa785c 3655 raw_spin_lock(&rq->lock);
3e51f33f 3656 update_rq_clock(rq);
fdf3e95d 3657 update_cpu_load_active(rq);
fa85ae24 3658 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3659 raw_spin_unlock(&rq->lock);
7835b98b 3660
49f47433 3661 perf_event_task_tick(curr);
e220d2dc 3662
e418e1c2 3663#ifdef CONFIG_SMP
dd41f596
IM
3664 rq->idle_at_tick = idle_cpu(cpu);
3665 trigger_load_balance(rq, cpu);
e418e1c2 3666#endif
1da177e4
LT
3667}
3668
132380a0 3669notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3670{
3671 if (in_lock_functions(addr)) {
3672 addr = CALLER_ADDR2;
3673 if (in_lock_functions(addr))
3674 addr = CALLER_ADDR3;
3675 }
3676 return addr;
3677}
1da177e4 3678
7e49fcce
SR
3679#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3680 defined(CONFIG_PREEMPT_TRACER))
3681
43627582 3682void __kprobes add_preempt_count(int val)
1da177e4 3683{
6cd8a4bb 3684#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3685 /*
3686 * Underflow?
3687 */
9a11b49a
IM
3688 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3689 return;
6cd8a4bb 3690#endif
1da177e4 3691 preempt_count() += val;
6cd8a4bb 3692#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3693 /*
3694 * Spinlock count overflowing soon?
3695 */
33859f7f
MOS
3696 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3697 PREEMPT_MASK - 10);
6cd8a4bb
SR
3698#endif
3699 if (preempt_count() == val)
3700 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3701}
3702EXPORT_SYMBOL(add_preempt_count);
3703
43627582 3704void __kprobes sub_preempt_count(int val)
1da177e4 3705{
6cd8a4bb 3706#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3707 /*
3708 * Underflow?
3709 */
01e3eb82 3710 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3711 return;
1da177e4
LT
3712 /*
3713 * Is the spinlock portion underflowing?
3714 */
9a11b49a
IM
3715 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3716 !(preempt_count() & PREEMPT_MASK)))
3717 return;
6cd8a4bb 3718#endif
9a11b49a 3719
6cd8a4bb
SR
3720 if (preempt_count() == val)
3721 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3722 preempt_count() -= val;
3723}
3724EXPORT_SYMBOL(sub_preempt_count);
3725
3726#endif
3727
3728/*
dd41f596 3729 * Print scheduling while atomic bug:
1da177e4 3730 */
dd41f596 3731static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3732{
838225b4
SS
3733 struct pt_regs *regs = get_irq_regs();
3734
3df0fc5b
PZ
3735 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3736 prev->comm, prev->pid, preempt_count());
838225b4 3737
dd41f596 3738 debug_show_held_locks(prev);
e21f5b15 3739 print_modules();
dd41f596
IM
3740 if (irqs_disabled())
3741 print_irqtrace_events(prev);
838225b4
SS
3742
3743 if (regs)
3744 show_regs(regs);
3745 else
3746 dump_stack();
dd41f596 3747}
1da177e4 3748
dd41f596
IM
3749/*
3750 * Various schedule()-time debugging checks and statistics:
3751 */
3752static inline void schedule_debug(struct task_struct *prev)
3753{
1da177e4 3754 /*
41a2d6cf 3755 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3756 * schedule() atomically, we ignore that path for now.
3757 * Otherwise, whine if we are scheduling when we should not be.
3758 */
3f33a7ce 3759 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3760 __schedule_bug(prev);
3761
1da177e4
LT
3762 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3763
2d72376b 3764 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3765#ifdef CONFIG_SCHEDSTATS
3766 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3767 schedstat_inc(this_rq(), bkl_count);
3768 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3769 }
3770#endif
dd41f596
IM
3771}
3772
6cecd084 3773static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3774{
a64692a3
MG
3775 if (prev->se.on_rq)
3776 update_rq_clock(rq);
3777 rq->skip_clock_update = 0;
6cecd084 3778 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3779}
3780
dd41f596
IM
3781/*
3782 * Pick up the highest-prio task:
3783 */
3784static inline struct task_struct *
b67802ea 3785pick_next_task(struct rq *rq)
dd41f596 3786{
5522d5d5 3787 const struct sched_class *class;
dd41f596 3788 struct task_struct *p;
1da177e4
LT
3789
3790 /*
dd41f596
IM
3791 * Optimization: we know that if all tasks are in
3792 * the fair class we can call that function directly:
1da177e4 3793 */
dd41f596 3794 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3795 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3796 if (likely(p))
3797 return p;
1da177e4
LT
3798 }
3799
34f971f6 3800 for_each_class(class) {
fb8d4724 3801 p = class->pick_next_task(rq);
dd41f596
IM
3802 if (p)
3803 return p;
dd41f596 3804 }
34f971f6
PZ
3805
3806 BUG(); /* the idle class will always have a runnable task */
dd41f596 3807}
1da177e4 3808
dd41f596
IM
3809/*
3810 * schedule() is the main scheduler function.
3811 */
ff743345 3812asmlinkage void __sched schedule(void)
dd41f596
IM
3813{
3814 struct task_struct *prev, *next;
67ca7bde 3815 unsigned long *switch_count;
dd41f596 3816 struct rq *rq;
31656519 3817 int cpu;
dd41f596 3818
ff743345
PZ
3819need_resched:
3820 preempt_disable();
dd41f596
IM
3821 cpu = smp_processor_id();
3822 rq = cpu_rq(cpu);
25502a6c 3823 rcu_note_context_switch(cpu);
dd41f596 3824 prev = rq->curr;
dd41f596
IM
3825
3826 release_kernel_lock(prev);
3827need_resched_nonpreemptible:
3828
3829 schedule_debug(prev);
1da177e4 3830
31656519 3831 if (sched_feat(HRTICK))
f333fdc9 3832 hrtick_clear(rq);
8f4d37ec 3833
05fa785c 3834 raw_spin_lock_irq(&rq->lock);
1e819950 3835 clear_tsk_need_resched(prev);
1da177e4 3836
246d86b5 3837 switch_count = &prev->nivcsw;
1da177e4 3838 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3839 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3840 prev->state = TASK_RUNNING;
21aa9af0
TH
3841 } else {
3842 /*
3843 * If a worker is going to sleep, notify and
3844 * ask workqueue whether it wants to wake up a
3845 * task to maintain concurrency. If so, wake
3846 * up the task.
3847 */
3848 if (prev->flags & PF_WQ_WORKER) {
3849 struct task_struct *to_wakeup;
3850
3851 to_wakeup = wq_worker_sleeping(prev, cpu);
3852 if (to_wakeup)
3853 try_to_wake_up_local(to_wakeup);
3854 }
371fd7e7 3855 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3856 }
dd41f596 3857 switch_count = &prev->nvcsw;
1da177e4
LT
3858 }
3859
3f029d3c 3860 pre_schedule(rq, prev);
f65eda4f 3861
dd41f596 3862 if (unlikely(!rq->nr_running))
1da177e4 3863 idle_balance(cpu, rq);
1da177e4 3864
df1c99d4 3865 put_prev_task(rq, prev);
b67802ea 3866 next = pick_next_task(rq);
1da177e4 3867
1da177e4 3868 if (likely(prev != next)) {
673a90a1 3869 sched_info_switch(prev, next);
49f47433 3870 perf_event_task_sched_out(prev, next);
673a90a1 3871
1da177e4
LT
3872 rq->nr_switches++;
3873 rq->curr = next;
3874 ++*switch_count;
3875
dd41f596 3876 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3877 /*
246d86b5
ON
3878 * The context switch have flipped the stack from under us
3879 * and restored the local variables which were saved when
3880 * this task called schedule() in the past. prev == current
3881 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3882 */
3883 cpu = smp_processor_id();
3884 rq = cpu_rq(cpu);
1da177e4 3885 } else
05fa785c 3886 raw_spin_unlock_irq(&rq->lock);
1da177e4 3887
3f029d3c 3888 post_schedule(rq);
1da177e4 3889
246d86b5 3890 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3891 goto need_resched_nonpreemptible;
8f4d37ec 3892
1da177e4 3893 preempt_enable_no_resched();
ff743345 3894 if (need_resched())
1da177e4
LT
3895 goto need_resched;
3896}
1da177e4
LT
3897EXPORT_SYMBOL(schedule);
3898
c08f7829 3899#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3900/*
3901 * Look out! "owner" is an entirely speculative pointer
3902 * access and not reliable.
3903 */
3904int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3905{
3906 unsigned int cpu;
3907 struct rq *rq;
3908
3909 if (!sched_feat(OWNER_SPIN))
3910 return 0;
3911
3912#ifdef CONFIG_DEBUG_PAGEALLOC
3913 /*
3914 * Need to access the cpu field knowing that
3915 * DEBUG_PAGEALLOC could have unmapped it if
3916 * the mutex owner just released it and exited.
3917 */
3918 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3919 return 0;
0d66bf6d
PZ
3920#else
3921 cpu = owner->cpu;
3922#endif
3923
3924 /*
3925 * Even if the access succeeded (likely case),
3926 * the cpu field may no longer be valid.
3927 */
3928 if (cpu >= nr_cpumask_bits)
4b402210 3929 return 0;
0d66bf6d
PZ
3930
3931 /*
3932 * We need to validate that we can do a
3933 * get_cpu() and that we have the percpu area.
3934 */
3935 if (!cpu_online(cpu))
4b402210 3936 return 0;
0d66bf6d
PZ
3937
3938 rq = cpu_rq(cpu);
3939
3940 for (;;) {
3941 /*
3942 * Owner changed, break to re-assess state.
3943 */
9d0f4dcc
TC
3944 if (lock->owner != owner) {
3945 /*
3946 * If the lock has switched to a different owner,
3947 * we likely have heavy contention. Return 0 to quit
3948 * optimistic spinning and not contend further:
3949 */
3950 if (lock->owner)
3951 return 0;
0d66bf6d 3952 break;
9d0f4dcc 3953 }
0d66bf6d
PZ
3954
3955 /*
3956 * Is that owner really running on that cpu?
3957 */
3958 if (task_thread_info(rq->curr) != owner || need_resched())
3959 return 0;
3960
3961 cpu_relax();
3962 }
4b402210 3963
0d66bf6d
PZ
3964 return 1;
3965}
3966#endif
3967
1da177e4
LT
3968#ifdef CONFIG_PREEMPT
3969/*
2ed6e34f 3970 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3971 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3972 * occur there and call schedule directly.
3973 */
d1f74e20 3974asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3975{
3976 struct thread_info *ti = current_thread_info();
6478d880 3977
1da177e4
LT
3978 /*
3979 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3980 * we do not want to preempt the current task. Just return..
1da177e4 3981 */
beed33a8 3982 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3983 return;
3984
3a5c359a 3985 do {
d1f74e20 3986 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3987 schedule();
d1f74e20 3988 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3989
3a5c359a
AK
3990 /*
3991 * Check again in case we missed a preemption opportunity
3992 * between schedule and now.
3993 */
3994 barrier();
5ed0cec0 3995 } while (need_resched());
1da177e4 3996}
1da177e4
LT
3997EXPORT_SYMBOL(preempt_schedule);
3998
3999/*
2ed6e34f 4000 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4001 * off of irq context.
4002 * Note, that this is called and return with irqs disabled. This will
4003 * protect us against recursive calling from irq.
4004 */
4005asmlinkage void __sched preempt_schedule_irq(void)
4006{
4007 struct thread_info *ti = current_thread_info();
6478d880 4008
2ed6e34f 4009 /* Catch callers which need to be fixed */
1da177e4
LT
4010 BUG_ON(ti->preempt_count || !irqs_disabled());
4011
3a5c359a
AK
4012 do {
4013 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4014 local_irq_enable();
4015 schedule();
4016 local_irq_disable();
3a5c359a 4017 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4018
3a5c359a
AK
4019 /*
4020 * Check again in case we missed a preemption opportunity
4021 * between schedule and now.
4022 */
4023 barrier();
5ed0cec0 4024 } while (need_resched());
1da177e4
LT
4025}
4026
4027#endif /* CONFIG_PREEMPT */
4028
63859d4f 4029int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4030 void *key)
1da177e4 4031{
63859d4f 4032 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4033}
1da177e4
LT
4034EXPORT_SYMBOL(default_wake_function);
4035
4036/*
41a2d6cf
IM
4037 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4038 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4039 * number) then we wake all the non-exclusive tasks and one exclusive task.
4040 *
4041 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4042 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4043 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4044 */
78ddb08f 4045static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4046 int nr_exclusive, int wake_flags, void *key)
1da177e4 4047{
2e45874c 4048 wait_queue_t *curr, *next;
1da177e4 4049
2e45874c 4050 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4051 unsigned flags = curr->flags;
4052
63859d4f 4053 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4054 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4055 break;
4056 }
4057}
4058
4059/**
4060 * __wake_up - wake up threads blocked on a waitqueue.
4061 * @q: the waitqueue
4062 * @mode: which threads
4063 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4064 * @key: is directly passed to the wakeup function
50fa610a
DH
4065 *
4066 * It may be assumed that this function implies a write memory barrier before
4067 * changing the task state if and only if any tasks are woken up.
1da177e4 4068 */
7ad5b3a5 4069void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4070 int nr_exclusive, void *key)
1da177e4
LT
4071{
4072 unsigned long flags;
4073
4074 spin_lock_irqsave(&q->lock, flags);
4075 __wake_up_common(q, mode, nr_exclusive, 0, key);
4076 spin_unlock_irqrestore(&q->lock, flags);
4077}
1da177e4
LT
4078EXPORT_SYMBOL(__wake_up);
4079
4080/*
4081 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4082 */
7ad5b3a5 4083void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4084{
4085 __wake_up_common(q, mode, 1, 0, NULL);
4086}
22c43c81 4087EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4088
4ede816a
DL
4089void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4090{
4091 __wake_up_common(q, mode, 1, 0, key);
4092}
4093
1da177e4 4094/**
4ede816a 4095 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4096 * @q: the waitqueue
4097 * @mode: which threads
4098 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4099 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4100 *
4101 * The sync wakeup differs that the waker knows that it will schedule
4102 * away soon, so while the target thread will be woken up, it will not
4103 * be migrated to another CPU - ie. the two threads are 'synchronized'
4104 * with each other. This can prevent needless bouncing between CPUs.
4105 *
4106 * On UP it can prevent extra preemption.
50fa610a
DH
4107 *
4108 * It may be assumed that this function implies a write memory barrier before
4109 * changing the task state if and only if any tasks are woken up.
1da177e4 4110 */
4ede816a
DL
4111void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4112 int nr_exclusive, void *key)
1da177e4
LT
4113{
4114 unsigned long flags;
7d478721 4115 int wake_flags = WF_SYNC;
1da177e4
LT
4116
4117 if (unlikely(!q))
4118 return;
4119
4120 if (unlikely(!nr_exclusive))
7d478721 4121 wake_flags = 0;
1da177e4
LT
4122
4123 spin_lock_irqsave(&q->lock, flags);
7d478721 4124 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4125 spin_unlock_irqrestore(&q->lock, flags);
4126}
4ede816a
DL
4127EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4128
4129/*
4130 * __wake_up_sync - see __wake_up_sync_key()
4131 */
4132void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4133{
4134 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4135}
1da177e4
LT
4136EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4137
65eb3dc6
KD
4138/**
4139 * complete: - signals a single thread waiting on this completion
4140 * @x: holds the state of this particular completion
4141 *
4142 * This will wake up a single thread waiting on this completion. Threads will be
4143 * awakened in the same order in which they were queued.
4144 *
4145 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4146 *
4147 * It may be assumed that this function implies a write memory barrier before
4148 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4149 */
b15136e9 4150void complete(struct completion *x)
1da177e4
LT
4151{
4152 unsigned long flags;
4153
4154 spin_lock_irqsave(&x->wait.lock, flags);
4155 x->done++;
d9514f6c 4156 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4157 spin_unlock_irqrestore(&x->wait.lock, flags);
4158}
4159EXPORT_SYMBOL(complete);
4160
65eb3dc6
KD
4161/**
4162 * complete_all: - signals all threads waiting on this completion
4163 * @x: holds the state of this particular completion
4164 *
4165 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4166 *
4167 * It may be assumed that this function implies a write memory barrier before
4168 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4169 */
b15136e9 4170void complete_all(struct completion *x)
1da177e4
LT
4171{
4172 unsigned long flags;
4173
4174 spin_lock_irqsave(&x->wait.lock, flags);
4175 x->done += UINT_MAX/2;
d9514f6c 4176 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4177 spin_unlock_irqrestore(&x->wait.lock, flags);
4178}
4179EXPORT_SYMBOL(complete_all);
4180
8cbbe86d
AK
4181static inline long __sched
4182do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4183{
1da177e4
LT
4184 if (!x->done) {
4185 DECLARE_WAITQUEUE(wait, current);
4186
a93d2f17 4187 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4188 do {
94d3d824 4189 if (signal_pending_state(state, current)) {
ea71a546
ON
4190 timeout = -ERESTARTSYS;
4191 break;
8cbbe86d
AK
4192 }
4193 __set_current_state(state);
1da177e4
LT
4194 spin_unlock_irq(&x->wait.lock);
4195 timeout = schedule_timeout(timeout);
4196 spin_lock_irq(&x->wait.lock);
ea71a546 4197 } while (!x->done && timeout);
1da177e4 4198 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4199 if (!x->done)
4200 return timeout;
1da177e4
LT
4201 }
4202 x->done--;
ea71a546 4203 return timeout ?: 1;
1da177e4 4204}
1da177e4 4205
8cbbe86d
AK
4206static long __sched
4207wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4208{
1da177e4
LT
4209 might_sleep();
4210
4211 spin_lock_irq(&x->wait.lock);
8cbbe86d 4212 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4213 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4214 return timeout;
4215}
1da177e4 4216
65eb3dc6
KD
4217/**
4218 * wait_for_completion: - waits for completion of a task
4219 * @x: holds the state of this particular completion
4220 *
4221 * This waits to be signaled for completion of a specific task. It is NOT
4222 * interruptible and there is no timeout.
4223 *
4224 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4225 * and interrupt capability. Also see complete().
4226 */
b15136e9 4227void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4228{
4229 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4230}
8cbbe86d 4231EXPORT_SYMBOL(wait_for_completion);
1da177e4 4232
65eb3dc6
KD
4233/**
4234 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4235 * @x: holds the state of this particular completion
4236 * @timeout: timeout value in jiffies
4237 *
4238 * This waits for either a completion of a specific task to be signaled or for a
4239 * specified timeout to expire. The timeout is in jiffies. It is not
4240 * interruptible.
4241 */
b15136e9 4242unsigned long __sched
8cbbe86d 4243wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4244{
8cbbe86d 4245 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4246}
8cbbe86d 4247EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4248
65eb3dc6
KD
4249/**
4250 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4251 * @x: holds the state of this particular completion
4252 *
4253 * This waits for completion of a specific task to be signaled. It is
4254 * interruptible.
4255 */
8cbbe86d 4256int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4257{
51e97990
AK
4258 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4259 if (t == -ERESTARTSYS)
4260 return t;
4261 return 0;
0fec171c 4262}
8cbbe86d 4263EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4264
65eb3dc6
KD
4265/**
4266 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4267 * @x: holds the state of this particular completion
4268 * @timeout: timeout value in jiffies
4269 *
4270 * This waits for either a completion of a specific task to be signaled or for a
4271 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4272 */
b15136e9 4273unsigned long __sched
8cbbe86d
AK
4274wait_for_completion_interruptible_timeout(struct completion *x,
4275 unsigned long timeout)
0fec171c 4276{
8cbbe86d 4277 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4278}
8cbbe86d 4279EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4280
65eb3dc6
KD
4281/**
4282 * wait_for_completion_killable: - waits for completion of a task (killable)
4283 * @x: holds the state of this particular completion
4284 *
4285 * This waits to be signaled for completion of a specific task. It can be
4286 * interrupted by a kill signal.
4287 */
009e577e
MW
4288int __sched wait_for_completion_killable(struct completion *x)
4289{
4290 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4291 if (t == -ERESTARTSYS)
4292 return t;
4293 return 0;
4294}
4295EXPORT_SYMBOL(wait_for_completion_killable);
4296
0aa12fb4
SW
4297/**
4298 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4299 * @x: holds the state of this particular completion
4300 * @timeout: timeout value in jiffies
4301 *
4302 * This waits for either a completion of a specific task to be
4303 * signaled or for a specified timeout to expire. It can be
4304 * interrupted by a kill signal. The timeout is in jiffies.
4305 */
4306unsigned long __sched
4307wait_for_completion_killable_timeout(struct completion *x,
4308 unsigned long timeout)
4309{
4310 return wait_for_common(x, timeout, TASK_KILLABLE);
4311}
4312EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4313
be4de352
DC
4314/**
4315 * try_wait_for_completion - try to decrement a completion without blocking
4316 * @x: completion structure
4317 *
4318 * Returns: 0 if a decrement cannot be done without blocking
4319 * 1 if a decrement succeeded.
4320 *
4321 * If a completion is being used as a counting completion,
4322 * attempt to decrement the counter without blocking. This
4323 * enables us to avoid waiting if the resource the completion
4324 * is protecting is not available.
4325 */
4326bool try_wait_for_completion(struct completion *x)
4327{
7539a3b3 4328 unsigned long flags;
be4de352
DC
4329 int ret = 1;
4330
7539a3b3 4331 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4332 if (!x->done)
4333 ret = 0;
4334 else
4335 x->done--;
7539a3b3 4336 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4337 return ret;
4338}
4339EXPORT_SYMBOL(try_wait_for_completion);
4340
4341/**
4342 * completion_done - Test to see if a completion has any waiters
4343 * @x: completion structure
4344 *
4345 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4346 * 1 if there are no waiters.
4347 *
4348 */
4349bool completion_done(struct completion *x)
4350{
7539a3b3 4351 unsigned long flags;
be4de352
DC
4352 int ret = 1;
4353
7539a3b3 4354 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4355 if (!x->done)
4356 ret = 0;
7539a3b3 4357 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4358 return ret;
4359}
4360EXPORT_SYMBOL(completion_done);
4361
8cbbe86d
AK
4362static long __sched
4363sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4364{
0fec171c
IM
4365 unsigned long flags;
4366 wait_queue_t wait;
4367
4368 init_waitqueue_entry(&wait, current);
1da177e4 4369
8cbbe86d 4370 __set_current_state(state);
1da177e4 4371
8cbbe86d
AK
4372 spin_lock_irqsave(&q->lock, flags);
4373 __add_wait_queue(q, &wait);
4374 spin_unlock(&q->lock);
4375 timeout = schedule_timeout(timeout);
4376 spin_lock_irq(&q->lock);
4377 __remove_wait_queue(q, &wait);
4378 spin_unlock_irqrestore(&q->lock, flags);
4379
4380 return timeout;
4381}
4382
4383void __sched interruptible_sleep_on(wait_queue_head_t *q)
4384{
4385 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4386}
1da177e4
LT
4387EXPORT_SYMBOL(interruptible_sleep_on);
4388
0fec171c 4389long __sched
95cdf3b7 4390interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4391{
8cbbe86d 4392 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4393}
1da177e4
LT
4394EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4395
0fec171c 4396void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4397{
8cbbe86d 4398 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4399}
1da177e4
LT
4400EXPORT_SYMBOL(sleep_on);
4401
0fec171c 4402long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4403{
8cbbe86d 4404 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4405}
1da177e4
LT
4406EXPORT_SYMBOL(sleep_on_timeout);
4407
b29739f9
IM
4408#ifdef CONFIG_RT_MUTEXES
4409
4410/*
4411 * rt_mutex_setprio - set the current priority of a task
4412 * @p: task
4413 * @prio: prio value (kernel-internal form)
4414 *
4415 * This function changes the 'effective' priority of a task. It does
4416 * not touch ->normal_prio like __setscheduler().
4417 *
4418 * Used by the rt_mutex code to implement priority inheritance logic.
4419 */
36c8b586 4420void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4421{
4422 unsigned long flags;
83b699ed 4423 int oldprio, on_rq, running;
70b97a7f 4424 struct rq *rq;
83ab0aa0 4425 const struct sched_class *prev_class;
b29739f9
IM
4426
4427 BUG_ON(prio < 0 || prio > MAX_PRIO);
4428
4429 rq = task_rq_lock(p, &flags);
4430
a8027073 4431 trace_sched_pi_setprio(p, prio);
d5f9f942 4432 oldprio = p->prio;
83ab0aa0 4433 prev_class = p->sched_class;
dd41f596 4434 on_rq = p->se.on_rq;
051a1d1a 4435 running = task_current(rq, p);
0e1f3483 4436 if (on_rq)
69be72c1 4437 dequeue_task(rq, p, 0);
0e1f3483
HS
4438 if (running)
4439 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4440
4441 if (rt_prio(prio))
4442 p->sched_class = &rt_sched_class;
4443 else
4444 p->sched_class = &fair_sched_class;
4445
b29739f9
IM
4446 p->prio = prio;
4447
0e1f3483
HS
4448 if (running)
4449 p->sched_class->set_curr_task(rq);
dd41f596 4450 if (on_rq) {
371fd7e7 4451 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4452
4453 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4454 }
4455 task_rq_unlock(rq, &flags);
4456}
4457
4458#endif
4459
36c8b586 4460void set_user_nice(struct task_struct *p, long nice)
1da177e4 4461{
dd41f596 4462 int old_prio, delta, on_rq;
1da177e4 4463 unsigned long flags;
70b97a7f 4464 struct rq *rq;
1da177e4
LT
4465
4466 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4467 return;
4468 /*
4469 * We have to be careful, if called from sys_setpriority(),
4470 * the task might be in the middle of scheduling on another CPU.
4471 */
4472 rq = task_rq_lock(p, &flags);
4473 /*
4474 * The RT priorities are set via sched_setscheduler(), but we still
4475 * allow the 'normal' nice value to be set - but as expected
4476 * it wont have any effect on scheduling until the task is
dd41f596 4477 * SCHED_FIFO/SCHED_RR:
1da177e4 4478 */
e05606d3 4479 if (task_has_rt_policy(p)) {
1da177e4
LT
4480 p->static_prio = NICE_TO_PRIO(nice);
4481 goto out_unlock;
4482 }
dd41f596 4483 on_rq = p->se.on_rq;
c09595f6 4484 if (on_rq)
69be72c1 4485 dequeue_task(rq, p, 0);
1da177e4 4486
1da177e4 4487 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4488 set_load_weight(p);
b29739f9
IM
4489 old_prio = p->prio;
4490 p->prio = effective_prio(p);
4491 delta = p->prio - old_prio;
1da177e4 4492
dd41f596 4493 if (on_rq) {
371fd7e7 4494 enqueue_task(rq, p, 0);
1da177e4 4495 /*
d5f9f942
AM
4496 * If the task increased its priority or is running and
4497 * lowered its priority, then reschedule its CPU:
1da177e4 4498 */
d5f9f942 4499 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4500 resched_task(rq->curr);
4501 }
4502out_unlock:
4503 task_rq_unlock(rq, &flags);
4504}
1da177e4
LT
4505EXPORT_SYMBOL(set_user_nice);
4506
e43379f1
MM
4507/*
4508 * can_nice - check if a task can reduce its nice value
4509 * @p: task
4510 * @nice: nice value
4511 */
36c8b586 4512int can_nice(const struct task_struct *p, const int nice)
e43379f1 4513{
024f4747
MM
4514 /* convert nice value [19,-20] to rlimit style value [1,40] */
4515 int nice_rlim = 20 - nice;
48f24c4d 4516
78d7d407 4517 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4518 capable(CAP_SYS_NICE));
4519}
4520
1da177e4
LT
4521#ifdef __ARCH_WANT_SYS_NICE
4522
4523/*
4524 * sys_nice - change the priority of the current process.
4525 * @increment: priority increment
4526 *
4527 * sys_setpriority is a more generic, but much slower function that
4528 * does similar things.
4529 */
5add95d4 4530SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4531{
48f24c4d 4532 long nice, retval;
1da177e4
LT
4533
4534 /*
4535 * Setpriority might change our priority at the same moment.
4536 * We don't have to worry. Conceptually one call occurs first
4537 * and we have a single winner.
4538 */
e43379f1
MM
4539 if (increment < -40)
4540 increment = -40;
1da177e4
LT
4541 if (increment > 40)
4542 increment = 40;
4543
2b8f836f 4544 nice = TASK_NICE(current) + increment;
1da177e4
LT
4545 if (nice < -20)
4546 nice = -20;
4547 if (nice > 19)
4548 nice = 19;
4549
e43379f1
MM
4550 if (increment < 0 && !can_nice(current, nice))
4551 return -EPERM;
4552
1da177e4
LT
4553 retval = security_task_setnice(current, nice);
4554 if (retval)
4555 return retval;
4556
4557 set_user_nice(current, nice);
4558 return 0;
4559}
4560
4561#endif
4562
4563/**
4564 * task_prio - return the priority value of a given task.
4565 * @p: the task in question.
4566 *
4567 * This is the priority value as seen by users in /proc.
4568 * RT tasks are offset by -200. Normal tasks are centered
4569 * around 0, value goes from -16 to +15.
4570 */
36c8b586 4571int task_prio(const struct task_struct *p)
1da177e4
LT
4572{
4573 return p->prio - MAX_RT_PRIO;
4574}
4575
4576/**
4577 * task_nice - return the nice value of a given task.
4578 * @p: the task in question.
4579 */
36c8b586 4580int task_nice(const struct task_struct *p)
1da177e4
LT
4581{
4582 return TASK_NICE(p);
4583}
150d8bed 4584EXPORT_SYMBOL(task_nice);
1da177e4
LT
4585
4586/**
4587 * idle_cpu - is a given cpu idle currently?
4588 * @cpu: the processor in question.
4589 */
4590int idle_cpu(int cpu)
4591{
4592 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4593}
4594
1da177e4
LT
4595/**
4596 * idle_task - return the idle task for a given cpu.
4597 * @cpu: the processor in question.
4598 */
36c8b586 4599struct task_struct *idle_task(int cpu)
1da177e4
LT
4600{
4601 return cpu_rq(cpu)->idle;
4602}
4603
4604/**
4605 * find_process_by_pid - find a process with a matching PID value.
4606 * @pid: the pid in question.
4607 */
a9957449 4608static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4609{
228ebcbe 4610 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4611}
4612
4613/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4614static void
4615__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4616{
dd41f596 4617 BUG_ON(p->se.on_rq);
48f24c4d 4618
1da177e4
LT
4619 p->policy = policy;
4620 p->rt_priority = prio;
b29739f9
IM
4621 p->normal_prio = normal_prio(p);
4622 /* we are holding p->pi_lock already */
4623 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4624 if (rt_prio(p->prio))
4625 p->sched_class = &rt_sched_class;
4626 else
4627 p->sched_class = &fair_sched_class;
2dd73a4f 4628 set_load_weight(p);
1da177e4
LT
4629}
4630
c69e8d9c
DH
4631/*
4632 * check the target process has a UID that matches the current process's
4633 */
4634static bool check_same_owner(struct task_struct *p)
4635{
4636 const struct cred *cred = current_cred(), *pcred;
4637 bool match;
4638
4639 rcu_read_lock();
4640 pcred = __task_cred(p);
4641 match = (cred->euid == pcred->euid ||
4642 cred->euid == pcred->uid);
4643 rcu_read_unlock();
4644 return match;
4645}
4646
961ccddd
RR
4647static int __sched_setscheduler(struct task_struct *p, int policy,
4648 struct sched_param *param, bool user)
1da177e4 4649{
83b699ed 4650 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4651 unsigned long flags;
83ab0aa0 4652 const struct sched_class *prev_class;
70b97a7f 4653 struct rq *rq;
ca94c442 4654 int reset_on_fork;
1da177e4 4655
66e5393a
SR
4656 /* may grab non-irq protected spin_locks */
4657 BUG_ON(in_interrupt());
1da177e4
LT
4658recheck:
4659 /* double check policy once rq lock held */
ca94c442
LP
4660 if (policy < 0) {
4661 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4662 policy = oldpolicy = p->policy;
ca94c442
LP
4663 } else {
4664 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4665 policy &= ~SCHED_RESET_ON_FORK;
4666
4667 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4668 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4669 policy != SCHED_IDLE)
4670 return -EINVAL;
4671 }
4672
1da177e4
LT
4673 /*
4674 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4675 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4676 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4677 */
4678 if (param->sched_priority < 0 ||
95cdf3b7 4679 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4680 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4681 return -EINVAL;
e05606d3 4682 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4683 return -EINVAL;
4684
37e4ab3f
OC
4685 /*
4686 * Allow unprivileged RT tasks to decrease priority:
4687 */
961ccddd 4688 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4689 if (rt_policy(policy)) {
a44702e8
ON
4690 unsigned long rlim_rtprio =
4691 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4692
4693 /* can't set/change the rt policy */
4694 if (policy != p->policy && !rlim_rtprio)
4695 return -EPERM;
4696
4697 /* can't increase priority */
4698 if (param->sched_priority > p->rt_priority &&
4699 param->sched_priority > rlim_rtprio)
4700 return -EPERM;
4701 }
dd41f596
IM
4702 /*
4703 * Like positive nice levels, dont allow tasks to
4704 * move out of SCHED_IDLE either:
4705 */
4706 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4707 return -EPERM;
5fe1d75f 4708
37e4ab3f 4709 /* can't change other user's priorities */
c69e8d9c 4710 if (!check_same_owner(p))
37e4ab3f 4711 return -EPERM;
ca94c442
LP
4712
4713 /* Normal users shall not reset the sched_reset_on_fork flag */
4714 if (p->sched_reset_on_fork && !reset_on_fork)
4715 return -EPERM;
37e4ab3f 4716 }
1da177e4 4717
725aad24 4718 if (user) {
725aad24
JF
4719 retval = security_task_setscheduler(p, policy, param);
4720 if (retval)
4721 return retval;
4722 }
4723
b29739f9
IM
4724 /*
4725 * make sure no PI-waiters arrive (or leave) while we are
4726 * changing the priority of the task:
4727 */
1d615482 4728 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4729 /*
4730 * To be able to change p->policy safely, the apropriate
4731 * runqueue lock must be held.
4732 */
b29739f9 4733 rq = __task_rq_lock(p);
dc61b1d6 4734
34f971f6
PZ
4735 /*
4736 * Changing the policy of the stop threads its a very bad idea
4737 */
4738 if (p == rq->stop) {
4739 __task_rq_unlock(rq);
4740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4741 return -EINVAL;
4742 }
4743
dc61b1d6
PZ
4744#ifdef CONFIG_RT_GROUP_SCHED
4745 if (user) {
4746 /*
4747 * Do not allow realtime tasks into groups that have no runtime
4748 * assigned.
4749 */
4750 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4751 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4752 __task_rq_unlock(rq);
4753 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4754 return -EPERM;
4755 }
4756 }
4757#endif
4758
1da177e4
LT
4759 /* recheck policy now with rq lock held */
4760 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4761 policy = oldpolicy = -1;
b29739f9 4762 __task_rq_unlock(rq);
1d615482 4763 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4764 goto recheck;
4765 }
dd41f596 4766 on_rq = p->se.on_rq;
051a1d1a 4767 running = task_current(rq, p);
0e1f3483 4768 if (on_rq)
2e1cb74a 4769 deactivate_task(rq, p, 0);
0e1f3483
HS
4770 if (running)
4771 p->sched_class->put_prev_task(rq, p);
f6b53205 4772
ca94c442
LP
4773 p->sched_reset_on_fork = reset_on_fork;
4774
1da177e4 4775 oldprio = p->prio;
83ab0aa0 4776 prev_class = p->sched_class;
dd41f596 4777 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4778
0e1f3483
HS
4779 if (running)
4780 p->sched_class->set_curr_task(rq);
dd41f596
IM
4781 if (on_rq) {
4782 activate_task(rq, p, 0);
cb469845
SR
4783
4784 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4785 }
b29739f9 4786 __task_rq_unlock(rq);
1d615482 4787 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4788
95e02ca9
TG
4789 rt_mutex_adjust_pi(p);
4790
1da177e4
LT
4791 return 0;
4792}
961ccddd
RR
4793
4794/**
4795 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4796 * @p: the task in question.
4797 * @policy: new policy.
4798 * @param: structure containing the new RT priority.
4799 *
4800 * NOTE that the task may be already dead.
4801 */
4802int sched_setscheduler(struct task_struct *p, int policy,
4803 struct sched_param *param)
4804{
4805 return __sched_setscheduler(p, policy, param, true);
4806}
1da177e4
LT
4807EXPORT_SYMBOL_GPL(sched_setscheduler);
4808
961ccddd
RR
4809/**
4810 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4811 * @p: the task in question.
4812 * @policy: new policy.
4813 * @param: structure containing the new RT priority.
4814 *
4815 * Just like sched_setscheduler, only don't bother checking if the
4816 * current context has permission. For example, this is needed in
4817 * stop_machine(): we create temporary high priority worker threads,
4818 * but our caller might not have that capability.
4819 */
4820int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4821 struct sched_param *param)
4822{
4823 return __sched_setscheduler(p, policy, param, false);
4824}
4825
95cdf3b7
IM
4826static int
4827do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4828{
1da177e4
LT
4829 struct sched_param lparam;
4830 struct task_struct *p;
36c8b586 4831 int retval;
1da177e4
LT
4832
4833 if (!param || pid < 0)
4834 return -EINVAL;
4835 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4836 return -EFAULT;
5fe1d75f
ON
4837
4838 rcu_read_lock();
4839 retval = -ESRCH;
1da177e4 4840 p = find_process_by_pid(pid);
5fe1d75f
ON
4841 if (p != NULL)
4842 retval = sched_setscheduler(p, policy, &lparam);
4843 rcu_read_unlock();
36c8b586 4844
1da177e4
LT
4845 return retval;
4846}
4847
4848/**
4849 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4850 * @pid: the pid in question.
4851 * @policy: new policy.
4852 * @param: structure containing the new RT priority.
4853 */
5add95d4
HC
4854SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4855 struct sched_param __user *, param)
1da177e4 4856{
c21761f1
JB
4857 /* negative values for policy are not valid */
4858 if (policy < 0)
4859 return -EINVAL;
4860
1da177e4
LT
4861 return do_sched_setscheduler(pid, policy, param);
4862}
4863
4864/**
4865 * sys_sched_setparam - set/change the RT priority of a thread
4866 * @pid: the pid in question.
4867 * @param: structure containing the new RT priority.
4868 */
5add95d4 4869SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4870{
4871 return do_sched_setscheduler(pid, -1, param);
4872}
4873
4874/**
4875 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4876 * @pid: the pid in question.
4877 */
5add95d4 4878SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4879{
36c8b586 4880 struct task_struct *p;
3a5c359a 4881 int retval;
1da177e4
LT
4882
4883 if (pid < 0)
3a5c359a 4884 return -EINVAL;
1da177e4
LT
4885
4886 retval = -ESRCH;
5fe85be0 4887 rcu_read_lock();
1da177e4
LT
4888 p = find_process_by_pid(pid);
4889 if (p) {
4890 retval = security_task_getscheduler(p);
4891 if (!retval)
ca94c442
LP
4892 retval = p->policy
4893 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4894 }
5fe85be0 4895 rcu_read_unlock();
1da177e4
LT
4896 return retval;
4897}
4898
4899/**
ca94c442 4900 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4901 * @pid: the pid in question.
4902 * @param: structure containing the RT priority.
4903 */
5add95d4 4904SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4905{
4906 struct sched_param lp;
36c8b586 4907 struct task_struct *p;
3a5c359a 4908 int retval;
1da177e4
LT
4909
4910 if (!param || pid < 0)
3a5c359a 4911 return -EINVAL;
1da177e4 4912
5fe85be0 4913 rcu_read_lock();
1da177e4
LT
4914 p = find_process_by_pid(pid);
4915 retval = -ESRCH;
4916 if (!p)
4917 goto out_unlock;
4918
4919 retval = security_task_getscheduler(p);
4920 if (retval)
4921 goto out_unlock;
4922
4923 lp.sched_priority = p->rt_priority;
5fe85be0 4924 rcu_read_unlock();
1da177e4
LT
4925
4926 /*
4927 * This one might sleep, we cannot do it with a spinlock held ...
4928 */
4929 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4930
1da177e4
LT
4931 return retval;
4932
4933out_unlock:
5fe85be0 4934 rcu_read_unlock();
1da177e4
LT
4935 return retval;
4936}
4937
96f874e2 4938long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4939{
5a16f3d3 4940 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4941 struct task_struct *p;
4942 int retval;
1da177e4 4943
95402b38 4944 get_online_cpus();
23f5d142 4945 rcu_read_lock();
1da177e4
LT
4946
4947 p = find_process_by_pid(pid);
4948 if (!p) {
23f5d142 4949 rcu_read_unlock();
95402b38 4950 put_online_cpus();
1da177e4
LT
4951 return -ESRCH;
4952 }
4953
23f5d142 4954 /* Prevent p going away */
1da177e4 4955 get_task_struct(p);
23f5d142 4956 rcu_read_unlock();
1da177e4 4957
5a16f3d3
RR
4958 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4959 retval = -ENOMEM;
4960 goto out_put_task;
4961 }
4962 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4963 retval = -ENOMEM;
4964 goto out_free_cpus_allowed;
4965 }
1da177e4 4966 retval = -EPERM;
c69e8d9c 4967 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4968 goto out_unlock;
4969
e7834f8f
DQ
4970 retval = security_task_setscheduler(p, 0, NULL);
4971 if (retval)
4972 goto out_unlock;
4973
5a16f3d3
RR
4974 cpuset_cpus_allowed(p, cpus_allowed);
4975 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4976again:
5a16f3d3 4977 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4978
8707d8b8 4979 if (!retval) {
5a16f3d3
RR
4980 cpuset_cpus_allowed(p, cpus_allowed);
4981 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4982 /*
4983 * We must have raced with a concurrent cpuset
4984 * update. Just reset the cpus_allowed to the
4985 * cpuset's cpus_allowed
4986 */
5a16f3d3 4987 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4988 goto again;
4989 }
4990 }
1da177e4 4991out_unlock:
5a16f3d3
RR
4992 free_cpumask_var(new_mask);
4993out_free_cpus_allowed:
4994 free_cpumask_var(cpus_allowed);
4995out_put_task:
1da177e4 4996 put_task_struct(p);
95402b38 4997 put_online_cpus();
1da177e4
LT
4998 return retval;
4999}
5000
5001static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5002 struct cpumask *new_mask)
1da177e4 5003{
96f874e2
RR
5004 if (len < cpumask_size())
5005 cpumask_clear(new_mask);
5006 else if (len > cpumask_size())
5007 len = cpumask_size();
5008
1da177e4
LT
5009 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5010}
5011
5012/**
5013 * sys_sched_setaffinity - set the cpu affinity of a process
5014 * @pid: pid of the process
5015 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5016 * @user_mask_ptr: user-space pointer to the new cpu mask
5017 */
5add95d4
HC
5018SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5019 unsigned long __user *, user_mask_ptr)
1da177e4 5020{
5a16f3d3 5021 cpumask_var_t new_mask;
1da177e4
LT
5022 int retval;
5023
5a16f3d3
RR
5024 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5025 return -ENOMEM;
1da177e4 5026
5a16f3d3
RR
5027 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5028 if (retval == 0)
5029 retval = sched_setaffinity(pid, new_mask);
5030 free_cpumask_var(new_mask);
5031 return retval;
1da177e4
LT
5032}
5033
96f874e2 5034long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5035{
36c8b586 5036 struct task_struct *p;
31605683
TG
5037 unsigned long flags;
5038 struct rq *rq;
1da177e4 5039 int retval;
1da177e4 5040
95402b38 5041 get_online_cpus();
23f5d142 5042 rcu_read_lock();
1da177e4
LT
5043
5044 retval = -ESRCH;
5045 p = find_process_by_pid(pid);
5046 if (!p)
5047 goto out_unlock;
5048
e7834f8f
DQ
5049 retval = security_task_getscheduler(p);
5050 if (retval)
5051 goto out_unlock;
5052
31605683 5053 rq = task_rq_lock(p, &flags);
96f874e2 5054 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5055 task_rq_unlock(rq, &flags);
1da177e4
LT
5056
5057out_unlock:
23f5d142 5058 rcu_read_unlock();
95402b38 5059 put_online_cpus();
1da177e4 5060
9531b62f 5061 return retval;
1da177e4
LT
5062}
5063
5064/**
5065 * sys_sched_getaffinity - get the cpu affinity of a process
5066 * @pid: pid of the process
5067 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5068 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5069 */
5add95d4
HC
5070SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5071 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5072{
5073 int ret;
f17c8607 5074 cpumask_var_t mask;
1da177e4 5075
84fba5ec 5076 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5077 return -EINVAL;
5078 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5079 return -EINVAL;
5080
f17c8607
RR
5081 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5082 return -ENOMEM;
1da177e4 5083
f17c8607
RR
5084 ret = sched_getaffinity(pid, mask);
5085 if (ret == 0) {
8bc037fb 5086 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5087
5088 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5089 ret = -EFAULT;
5090 else
cd3d8031 5091 ret = retlen;
f17c8607
RR
5092 }
5093 free_cpumask_var(mask);
1da177e4 5094
f17c8607 5095 return ret;
1da177e4
LT
5096}
5097
5098/**
5099 * sys_sched_yield - yield the current processor to other threads.
5100 *
dd41f596
IM
5101 * This function yields the current CPU to other tasks. If there are no
5102 * other threads running on this CPU then this function will return.
1da177e4 5103 */
5add95d4 5104SYSCALL_DEFINE0(sched_yield)
1da177e4 5105{
70b97a7f 5106 struct rq *rq = this_rq_lock();
1da177e4 5107
2d72376b 5108 schedstat_inc(rq, yld_count);
4530d7ab 5109 current->sched_class->yield_task(rq);
1da177e4
LT
5110
5111 /*
5112 * Since we are going to call schedule() anyway, there's
5113 * no need to preempt or enable interrupts:
5114 */
5115 __release(rq->lock);
8a25d5de 5116 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5117 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5118 preempt_enable_no_resched();
5119
5120 schedule();
5121
5122 return 0;
5123}
5124
d86ee480
PZ
5125static inline int should_resched(void)
5126{
5127 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5128}
5129
e7b38404 5130static void __cond_resched(void)
1da177e4 5131{
e7aaaa69
FW
5132 add_preempt_count(PREEMPT_ACTIVE);
5133 schedule();
5134 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5135}
5136
02b67cc3 5137int __sched _cond_resched(void)
1da177e4 5138{
d86ee480 5139 if (should_resched()) {
1da177e4
LT
5140 __cond_resched();
5141 return 1;
5142 }
5143 return 0;
5144}
02b67cc3 5145EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5146
5147/*
613afbf8 5148 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5149 * call schedule, and on return reacquire the lock.
5150 *
41a2d6cf 5151 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5152 * operations here to prevent schedule() from being called twice (once via
5153 * spin_unlock(), once by hand).
5154 */
613afbf8 5155int __cond_resched_lock(spinlock_t *lock)
1da177e4 5156{
d86ee480 5157 int resched = should_resched();
6df3cecb
JK
5158 int ret = 0;
5159
f607c668
PZ
5160 lockdep_assert_held(lock);
5161
95c354fe 5162 if (spin_needbreak(lock) || resched) {
1da177e4 5163 spin_unlock(lock);
d86ee480 5164 if (resched)
95c354fe
NP
5165 __cond_resched();
5166 else
5167 cpu_relax();
6df3cecb 5168 ret = 1;
1da177e4 5169 spin_lock(lock);
1da177e4 5170 }
6df3cecb 5171 return ret;
1da177e4 5172}
613afbf8 5173EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5174
613afbf8 5175int __sched __cond_resched_softirq(void)
1da177e4
LT
5176{
5177 BUG_ON(!in_softirq());
5178
d86ee480 5179 if (should_resched()) {
98d82567 5180 local_bh_enable();
1da177e4
LT
5181 __cond_resched();
5182 local_bh_disable();
5183 return 1;
5184 }
5185 return 0;
5186}
613afbf8 5187EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5188
1da177e4
LT
5189/**
5190 * yield - yield the current processor to other threads.
5191 *
72fd4a35 5192 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5193 * thread runnable and calls sys_sched_yield().
5194 */
5195void __sched yield(void)
5196{
5197 set_current_state(TASK_RUNNING);
5198 sys_sched_yield();
5199}
1da177e4
LT
5200EXPORT_SYMBOL(yield);
5201
5202/*
41a2d6cf 5203 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5204 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5205 */
5206void __sched io_schedule(void)
5207{
54d35f29 5208 struct rq *rq = raw_rq();
1da177e4 5209
0ff92245 5210 delayacct_blkio_start();
1da177e4 5211 atomic_inc(&rq->nr_iowait);
8f0dfc34 5212 current->in_iowait = 1;
1da177e4 5213 schedule();
8f0dfc34 5214 current->in_iowait = 0;
1da177e4 5215 atomic_dec(&rq->nr_iowait);
0ff92245 5216 delayacct_blkio_end();
1da177e4 5217}
1da177e4
LT
5218EXPORT_SYMBOL(io_schedule);
5219
5220long __sched io_schedule_timeout(long timeout)
5221{
54d35f29 5222 struct rq *rq = raw_rq();
1da177e4
LT
5223 long ret;
5224
0ff92245 5225 delayacct_blkio_start();
1da177e4 5226 atomic_inc(&rq->nr_iowait);
8f0dfc34 5227 current->in_iowait = 1;
1da177e4 5228 ret = schedule_timeout(timeout);
8f0dfc34 5229 current->in_iowait = 0;
1da177e4 5230 atomic_dec(&rq->nr_iowait);
0ff92245 5231 delayacct_blkio_end();
1da177e4
LT
5232 return ret;
5233}
5234
5235/**
5236 * sys_sched_get_priority_max - return maximum RT priority.
5237 * @policy: scheduling class.
5238 *
5239 * this syscall returns the maximum rt_priority that can be used
5240 * by a given scheduling class.
5241 */
5add95d4 5242SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5243{
5244 int ret = -EINVAL;
5245
5246 switch (policy) {
5247 case SCHED_FIFO:
5248 case SCHED_RR:
5249 ret = MAX_USER_RT_PRIO-1;
5250 break;
5251 case SCHED_NORMAL:
b0a9499c 5252 case SCHED_BATCH:
dd41f596 5253 case SCHED_IDLE:
1da177e4
LT
5254 ret = 0;
5255 break;
5256 }
5257 return ret;
5258}
5259
5260/**
5261 * sys_sched_get_priority_min - return minimum RT priority.
5262 * @policy: scheduling class.
5263 *
5264 * this syscall returns the minimum rt_priority that can be used
5265 * by a given scheduling class.
5266 */
5add95d4 5267SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5268{
5269 int ret = -EINVAL;
5270
5271 switch (policy) {
5272 case SCHED_FIFO:
5273 case SCHED_RR:
5274 ret = 1;
5275 break;
5276 case SCHED_NORMAL:
b0a9499c 5277 case SCHED_BATCH:
dd41f596 5278 case SCHED_IDLE:
1da177e4
LT
5279 ret = 0;
5280 }
5281 return ret;
5282}
5283
5284/**
5285 * sys_sched_rr_get_interval - return the default timeslice of a process.
5286 * @pid: pid of the process.
5287 * @interval: userspace pointer to the timeslice value.
5288 *
5289 * this syscall writes the default timeslice value of a given process
5290 * into the user-space timespec buffer. A value of '0' means infinity.
5291 */
17da2bd9 5292SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5293 struct timespec __user *, interval)
1da177e4 5294{
36c8b586 5295 struct task_struct *p;
a4ec24b4 5296 unsigned int time_slice;
dba091b9
TG
5297 unsigned long flags;
5298 struct rq *rq;
3a5c359a 5299 int retval;
1da177e4 5300 struct timespec t;
1da177e4
LT
5301
5302 if (pid < 0)
3a5c359a 5303 return -EINVAL;
1da177e4
LT
5304
5305 retval = -ESRCH;
1a551ae7 5306 rcu_read_lock();
1da177e4
LT
5307 p = find_process_by_pid(pid);
5308 if (!p)
5309 goto out_unlock;
5310
5311 retval = security_task_getscheduler(p);
5312 if (retval)
5313 goto out_unlock;
5314
dba091b9
TG
5315 rq = task_rq_lock(p, &flags);
5316 time_slice = p->sched_class->get_rr_interval(rq, p);
5317 task_rq_unlock(rq, &flags);
a4ec24b4 5318
1a551ae7 5319 rcu_read_unlock();
a4ec24b4 5320 jiffies_to_timespec(time_slice, &t);
1da177e4 5321 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5322 return retval;
3a5c359a 5323
1da177e4 5324out_unlock:
1a551ae7 5325 rcu_read_unlock();
1da177e4
LT
5326 return retval;
5327}
5328
7c731e0a 5329static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5330
82a1fcb9 5331void sched_show_task(struct task_struct *p)
1da177e4 5332{
1da177e4 5333 unsigned long free = 0;
36c8b586 5334 unsigned state;
1da177e4 5335
1da177e4 5336 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5337 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5338 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5339#if BITS_PER_LONG == 32
1da177e4 5340 if (state == TASK_RUNNING)
3df0fc5b 5341 printk(KERN_CONT " running ");
1da177e4 5342 else
3df0fc5b 5343 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5344#else
5345 if (state == TASK_RUNNING)
3df0fc5b 5346 printk(KERN_CONT " running task ");
1da177e4 5347 else
3df0fc5b 5348 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5349#endif
5350#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5351 free = stack_not_used(p);
1da177e4 5352#endif
3df0fc5b 5353 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5354 task_pid_nr(p), task_pid_nr(p->real_parent),
5355 (unsigned long)task_thread_info(p)->flags);
1da177e4 5356
5fb5e6de 5357 show_stack(p, NULL);
1da177e4
LT
5358}
5359
e59e2ae2 5360void show_state_filter(unsigned long state_filter)
1da177e4 5361{
36c8b586 5362 struct task_struct *g, *p;
1da177e4 5363
4bd77321 5364#if BITS_PER_LONG == 32
3df0fc5b
PZ
5365 printk(KERN_INFO
5366 " task PC stack pid father\n");
1da177e4 5367#else
3df0fc5b
PZ
5368 printk(KERN_INFO
5369 " task PC stack pid father\n");
1da177e4
LT
5370#endif
5371 read_lock(&tasklist_lock);
5372 do_each_thread(g, p) {
5373 /*
5374 * reset the NMI-timeout, listing all files on a slow
5375 * console might take alot of time:
5376 */
5377 touch_nmi_watchdog();
39bc89fd 5378 if (!state_filter || (p->state & state_filter))
82a1fcb9 5379 sched_show_task(p);
1da177e4
LT
5380 } while_each_thread(g, p);
5381
04c9167f
JF
5382 touch_all_softlockup_watchdogs();
5383
dd41f596
IM
5384#ifdef CONFIG_SCHED_DEBUG
5385 sysrq_sched_debug_show();
5386#endif
1da177e4 5387 read_unlock(&tasklist_lock);
e59e2ae2
IM
5388 /*
5389 * Only show locks if all tasks are dumped:
5390 */
93335a21 5391 if (!state_filter)
e59e2ae2 5392 debug_show_all_locks();
1da177e4
LT
5393}
5394
1df21055
IM
5395void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5396{
dd41f596 5397 idle->sched_class = &idle_sched_class;
1df21055
IM
5398}
5399
f340c0d1
IM
5400/**
5401 * init_idle - set up an idle thread for a given CPU
5402 * @idle: task in question
5403 * @cpu: cpu the idle task belongs to
5404 *
5405 * NOTE: this function does not set the idle thread's NEED_RESCHED
5406 * flag, to make booting more robust.
5407 */
5c1e1767 5408void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5409{
70b97a7f 5410 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5411 unsigned long flags;
5412
05fa785c 5413 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5414
dd41f596 5415 __sched_fork(idle);
06b83b5f 5416 idle->state = TASK_RUNNING;
dd41f596
IM
5417 idle->se.exec_start = sched_clock();
5418
96f874e2 5419 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5420 __set_task_cpu(idle, cpu);
1da177e4 5421
1da177e4 5422 rq->curr = rq->idle = idle;
4866cde0
NP
5423#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5424 idle->oncpu = 1;
5425#endif
05fa785c 5426 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5427
5428 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5429#if defined(CONFIG_PREEMPT)
5430 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5431#else
a1261f54 5432 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5433#endif
dd41f596
IM
5434 /*
5435 * The idle tasks have their own, simple scheduling class:
5436 */
5437 idle->sched_class = &idle_sched_class;
fb52607a 5438 ftrace_graph_init_task(idle);
1da177e4
LT
5439}
5440
5441/*
5442 * In a system that switches off the HZ timer nohz_cpu_mask
5443 * indicates which cpus entered this state. This is used
5444 * in the rcu update to wait only for active cpus. For system
5445 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5446 * always be CPU_BITS_NONE.
1da177e4 5447 */
6a7b3dc3 5448cpumask_var_t nohz_cpu_mask;
1da177e4 5449
19978ca6
IM
5450/*
5451 * Increase the granularity value when there are more CPUs,
5452 * because with more CPUs the 'effective latency' as visible
5453 * to users decreases. But the relationship is not linear,
5454 * so pick a second-best guess by going with the log2 of the
5455 * number of CPUs.
5456 *
5457 * This idea comes from the SD scheduler of Con Kolivas:
5458 */
acb4a848 5459static int get_update_sysctl_factor(void)
19978ca6 5460{
4ca3ef71 5461 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5462 unsigned int factor;
5463
5464 switch (sysctl_sched_tunable_scaling) {
5465 case SCHED_TUNABLESCALING_NONE:
5466 factor = 1;
5467 break;
5468 case SCHED_TUNABLESCALING_LINEAR:
5469 factor = cpus;
5470 break;
5471 case SCHED_TUNABLESCALING_LOG:
5472 default:
5473 factor = 1 + ilog2(cpus);
5474 break;
5475 }
19978ca6 5476
acb4a848
CE
5477 return factor;
5478}
19978ca6 5479
acb4a848
CE
5480static void update_sysctl(void)
5481{
5482 unsigned int factor = get_update_sysctl_factor();
19978ca6 5483
0bcdcf28
CE
5484#define SET_SYSCTL(name) \
5485 (sysctl_##name = (factor) * normalized_sysctl_##name)
5486 SET_SYSCTL(sched_min_granularity);
5487 SET_SYSCTL(sched_latency);
5488 SET_SYSCTL(sched_wakeup_granularity);
5489 SET_SYSCTL(sched_shares_ratelimit);
5490#undef SET_SYSCTL
5491}
55cd5340 5492
0bcdcf28
CE
5493static inline void sched_init_granularity(void)
5494{
5495 update_sysctl();
19978ca6
IM
5496}
5497
1da177e4
LT
5498#ifdef CONFIG_SMP
5499/*
5500 * This is how migration works:
5501 *
969c7921
TH
5502 * 1) we invoke migration_cpu_stop() on the target CPU using
5503 * stop_one_cpu().
5504 * 2) stopper starts to run (implicitly forcing the migrated thread
5505 * off the CPU)
5506 * 3) it checks whether the migrated task is still in the wrong runqueue.
5507 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5508 * it and puts it into the right queue.
969c7921
TH
5509 * 5) stopper completes and stop_one_cpu() returns and the migration
5510 * is done.
1da177e4
LT
5511 */
5512
5513/*
5514 * Change a given task's CPU affinity. Migrate the thread to a
5515 * proper CPU and schedule it away if the CPU it's executing on
5516 * is removed from the allowed bitmask.
5517 *
5518 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5519 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5520 * call is not atomic; no spinlocks may be held.
5521 */
96f874e2 5522int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5523{
5524 unsigned long flags;
70b97a7f 5525 struct rq *rq;
969c7921 5526 unsigned int dest_cpu;
48f24c4d 5527 int ret = 0;
1da177e4 5528
65cc8e48
PZ
5529 /*
5530 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5531 * drop the rq->lock and still rely on ->cpus_allowed.
5532 */
5533again:
5534 while (task_is_waking(p))
5535 cpu_relax();
1da177e4 5536 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5537 if (task_is_waking(p)) {
5538 task_rq_unlock(rq, &flags);
5539 goto again;
5540 }
e2912009 5541
6ad4c188 5542 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5543 ret = -EINVAL;
5544 goto out;
5545 }
5546
9985b0ba 5547 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5548 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5549 ret = -EINVAL;
5550 goto out;
5551 }
5552
73fe6aae 5553 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5554 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5555 else {
96f874e2
RR
5556 cpumask_copy(&p->cpus_allowed, new_mask);
5557 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5558 }
5559
1da177e4 5560 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5561 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5562 goto out;
5563
969c7921
TH
5564 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5565 if (migrate_task(p, dest_cpu)) {
5566 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5567 /* Need help from migration thread: drop lock and wait. */
5568 task_rq_unlock(rq, &flags);
969c7921 5569 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5570 tlb_migrate_finish(p->mm);
5571 return 0;
5572 }
5573out:
5574 task_rq_unlock(rq, &flags);
48f24c4d 5575
1da177e4
LT
5576 return ret;
5577}
cd8ba7cd 5578EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5579
5580/*
41a2d6cf 5581 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5582 * this because either it can't run here any more (set_cpus_allowed()
5583 * away from this CPU, or CPU going down), or because we're
5584 * attempting to rebalance this task on exec (sched_exec).
5585 *
5586 * So we race with normal scheduler movements, but that's OK, as long
5587 * as the task is no longer on this CPU.
efc30814
KK
5588 *
5589 * Returns non-zero if task was successfully migrated.
1da177e4 5590 */
efc30814 5591static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5592{
70b97a7f 5593 struct rq *rq_dest, *rq_src;
e2912009 5594 int ret = 0;
1da177e4 5595
e761b772 5596 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5597 return ret;
1da177e4
LT
5598
5599 rq_src = cpu_rq(src_cpu);
5600 rq_dest = cpu_rq(dest_cpu);
5601
5602 double_rq_lock(rq_src, rq_dest);
5603 /* Already moved. */
5604 if (task_cpu(p) != src_cpu)
b1e38734 5605 goto done;
1da177e4 5606 /* Affinity changed (again). */
96f874e2 5607 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5608 goto fail;
1da177e4 5609
e2912009
PZ
5610 /*
5611 * If we're not on a rq, the next wake-up will ensure we're
5612 * placed properly.
5613 */
5614 if (p->se.on_rq) {
2e1cb74a 5615 deactivate_task(rq_src, p, 0);
e2912009 5616 set_task_cpu(p, dest_cpu);
dd41f596 5617 activate_task(rq_dest, p, 0);
15afe09b 5618 check_preempt_curr(rq_dest, p, 0);
1da177e4 5619 }
b1e38734 5620done:
efc30814 5621 ret = 1;
b1e38734 5622fail:
1da177e4 5623 double_rq_unlock(rq_src, rq_dest);
efc30814 5624 return ret;
1da177e4
LT
5625}
5626
5627/*
969c7921
TH
5628 * migration_cpu_stop - this will be executed by a highprio stopper thread
5629 * and performs thread migration by bumping thread off CPU then
5630 * 'pushing' onto another runqueue.
1da177e4 5631 */
969c7921 5632static int migration_cpu_stop(void *data)
1da177e4 5633{
969c7921 5634 struct migration_arg *arg = data;
f7b4cddc 5635
969c7921
TH
5636 /*
5637 * The original target cpu might have gone down and we might
5638 * be on another cpu but it doesn't matter.
5639 */
f7b4cddc 5640 local_irq_disable();
969c7921 5641 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5642 local_irq_enable();
1da177e4 5643 return 0;
f7b4cddc
ON
5644}
5645
1da177e4 5646#ifdef CONFIG_HOTPLUG_CPU
054b9108 5647/*
3a4fa0a2 5648 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5649 */
6a1bdc1b 5650void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5651{
1445c08d
ON
5652 struct rq *rq = cpu_rq(dead_cpu);
5653 int needs_cpu, uninitialized_var(dest_cpu);
5654 unsigned long flags;
e76bd8d9 5655
1445c08d 5656 local_irq_save(flags);
e76bd8d9 5657
1445c08d
ON
5658 raw_spin_lock(&rq->lock);
5659 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5660 if (needs_cpu)
5661 dest_cpu = select_fallback_rq(dead_cpu, p);
5662 raw_spin_unlock(&rq->lock);
c1804d54
ON
5663 /*
5664 * It can only fail if we race with set_cpus_allowed(),
5665 * in the racer should migrate the task anyway.
5666 */
1445c08d 5667 if (needs_cpu)
c1804d54 5668 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5669 local_irq_restore(flags);
1da177e4
LT
5670}
5671
5672/*
5673 * While a dead CPU has no uninterruptible tasks queued at this point,
5674 * it might still have a nonzero ->nr_uninterruptible counter, because
5675 * for performance reasons the counter is not stricly tracking tasks to
5676 * their home CPUs. So we just add the counter to another CPU's counter,
5677 * to keep the global sum constant after CPU-down:
5678 */
70b97a7f 5679static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5680{
6ad4c188 5681 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5682 unsigned long flags;
5683
5684 local_irq_save(flags);
5685 double_rq_lock(rq_src, rq_dest);
5686 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5687 rq_src->nr_uninterruptible = 0;
5688 double_rq_unlock(rq_src, rq_dest);
5689 local_irq_restore(flags);
5690}
5691
5692/* Run through task list and migrate tasks from the dead cpu. */
5693static void migrate_live_tasks(int src_cpu)
5694{
48f24c4d 5695 struct task_struct *p, *t;
1da177e4 5696
f7b4cddc 5697 read_lock(&tasklist_lock);
1da177e4 5698
48f24c4d
IM
5699 do_each_thread(t, p) {
5700 if (p == current)
1da177e4
LT
5701 continue;
5702
48f24c4d
IM
5703 if (task_cpu(p) == src_cpu)
5704 move_task_off_dead_cpu(src_cpu, p);
5705 } while_each_thread(t, p);
1da177e4 5706
f7b4cddc 5707 read_unlock(&tasklist_lock);
1da177e4
LT
5708}
5709
dd41f596
IM
5710/*
5711 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5712 * It does so by boosting its priority to highest possible.
5713 * Used by CPU offline code.
1da177e4
LT
5714 */
5715void sched_idle_next(void)
5716{
48f24c4d 5717 int this_cpu = smp_processor_id();
70b97a7f 5718 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5719 struct task_struct *p = rq->idle;
5720 unsigned long flags;
5721
5722 /* cpu has to be offline */
48f24c4d 5723 BUG_ON(cpu_online(this_cpu));
1da177e4 5724
48f24c4d
IM
5725 /*
5726 * Strictly not necessary since rest of the CPUs are stopped by now
5727 * and interrupts disabled on the current cpu.
1da177e4 5728 */
05fa785c 5729 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5730
dd41f596 5731 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5732
94bc9a7b 5733 activate_task(rq, p, 0);
1da177e4 5734
05fa785c 5735 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5736}
5737
48f24c4d
IM
5738/*
5739 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5740 * offline.
5741 */
5742void idle_task_exit(void)
5743{
5744 struct mm_struct *mm = current->active_mm;
5745
5746 BUG_ON(cpu_online(smp_processor_id()));
5747
5748 if (mm != &init_mm)
5749 switch_mm(mm, &init_mm, current);
5750 mmdrop(mm);
5751}
5752
054b9108 5753/* called under rq->lock with disabled interrupts */
36c8b586 5754static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5755{
70b97a7f 5756 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5757
5758 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5759 BUG_ON(!p->exit_state);
1da177e4
LT
5760
5761 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5762 BUG_ON(p->state == TASK_DEAD);
1da177e4 5763
48f24c4d 5764 get_task_struct(p);
1da177e4
LT
5765
5766 /*
5767 * Drop lock around migration; if someone else moves it,
41a2d6cf 5768 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5769 * fine.
5770 */
05fa785c 5771 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5772 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5773 raw_spin_lock_irq(&rq->lock);
1da177e4 5774
48f24c4d 5775 put_task_struct(p);
1da177e4
LT
5776}
5777
5778/* release_task() removes task from tasklist, so we won't find dead tasks. */
5779static void migrate_dead_tasks(unsigned int dead_cpu)
5780{
70b97a7f 5781 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5782 struct task_struct *next;
48f24c4d 5783
dd41f596
IM
5784 for ( ; ; ) {
5785 if (!rq->nr_running)
5786 break;
b67802ea 5787 next = pick_next_task(rq);
dd41f596
IM
5788 if (!next)
5789 break;
79c53799 5790 next->sched_class->put_prev_task(rq, next);
dd41f596 5791 migrate_dead(dead_cpu, next);
e692ab53 5792
1da177e4
LT
5793 }
5794}
dce48a84
TG
5795
5796/*
5797 * remove the tasks which were accounted by rq from calc_load_tasks.
5798 */
5799static void calc_global_load_remove(struct rq *rq)
5800{
5801 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5802 rq->calc_load_active = 0;
dce48a84 5803}
1da177e4
LT
5804#endif /* CONFIG_HOTPLUG_CPU */
5805
e692ab53
NP
5806#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5807
5808static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5809 {
5810 .procname = "sched_domain",
c57baf1e 5811 .mode = 0555,
e0361851 5812 },
56992309 5813 {}
e692ab53
NP
5814};
5815
5816static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5817 {
5818 .procname = "kernel",
c57baf1e 5819 .mode = 0555,
e0361851
AD
5820 .child = sd_ctl_dir,
5821 },
56992309 5822 {}
e692ab53
NP
5823};
5824
5825static struct ctl_table *sd_alloc_ctl_entry(int n)
5826{
5827 struct ctl_table *entry =
5cf9f062 5828 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5829
e692ab53
NP
5830 return entry;
5831}
5832
6382bc90
MM
5833static void sd_free_ctl_entry(struct ctl_table **tablep)
5834{
cd790076 5835 struct ctl_table *entry;
6382bc90 5836
cd790076
MM
5837 /*
5838 * In the intermediate directories, both the child directory and
5839 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5840 * will always be set. In the lowest directory the names are
cd790076
MM
5841 * static strings and all have proc handlers.
5842 */
5843 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5844 if (entry->child)
5845 sd_free_ctl_entry(&entry->child);
cd790076
MM
5846 if (entry->proc_handler == NULL)
5847 kfree(entry->procname);
5848 }
6382bc90
MM
5849
5850 kfree(*tablep);
5851 *tablep = NULL;
5852}
5853
e692ab53 5854static void
e0361851 5855set_table_entry(struct ctl_table *entry,
e692ab53
NP
5856 const char *procname, void *data, int maxlen,
5857 mode_t mode, proc_handler *proc_handler)
5858{
e692ab53
NP
5859 entry->procname = procname;
5860 entry->data = data;
5861 entry->maxlen = maxlen;
5862 entry->mode = mode;
5863 entry->proc_handler = proc_handler;
5864}
5865
5866static struct ctl_table *
5867sd_alloc_ctl_domain_table(struct sched_domain *sd)
5868{
a5d8c348 5869 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5870
ad1cdc1d
MM
5871 if (table == NULL)
5872 return NULL;
5873
e0361851 5874 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5875 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5876 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5877 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5878 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5879 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5880 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5881 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5882 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5883 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5884 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5885 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5886 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5887 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5888 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5889 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5890 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5891 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5892 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5893 &sd->cache_nice_tries,
5894 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5895 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5896 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5897 set_table_entry(&table[11], "name", sd->name,
5898 CORENAME_MAX_SIZE, 0444, proc_dostring);
5899 /* &table[12] is terminator */
e692ab53
NP
5900
5901 return table;
5902}
5903
9a4e7159 5904static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5905{
5906 struct ctl_table *entry, *table;
5907 struct sched_domain *sd;
5908 int domain_num = 0, i;
5909 char buf[32];
5910
5911 for_each_domain(cpu, sd)
5912 domain_num++;
5913 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5914 if (table == NULL)
5915 return NULL;
e692ab53
NP
5916
5917 i = 0;
5918 for_each_domain(cpu, sd) {
5919 snprintf(buf, 32, "domain%d", i);
e692ab53 5920 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5921 entry->mode = 0555;
e692ab53
NP
5922 entry->child = sd_alloc_ctl_domain_table(sd);
5923 entry++;
5924 i++;
5925 }
5926 return table;
5927}
5928
5929static struct ctl_table_header *sd_sysctl_header;
6382bc90 5930static void register_sched_domain_sysctl(void)
e692ab53 5931{
6ad4c188 5932 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5933 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5934 char buf[32];
5935
7378547f
MM
5936 WARN_ON(sd_ctl_dir[0].child);
5937 sd_ctl_dir[0].child = entry;
5938
ad1cdc1d
MM
5939 if (entry == NULL)
5940 return;
5941
6ad4c188 5942 for_each_possible_cpu(i) {
e692ab53 5943 snprintf(buf, 32, "cpu%d", i);
e692ab53 5944 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5945 entry->mode = 0555;
e692ab53 5946 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5947 entry++;
e692ab53 5948 }
7378547f
MM
5949
5950 WARN_ON(sd_sysctl_header);
e692ab53
NP
5951 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5952}
6382bc90 5953
7378547f 5954/* may be called multiple times per register */
6382bc90
MM
5955static void unregister_sched_domain_sysctl(void)
5956{
7378547f
MM
5957 if (sd_sysctl_header)
5958 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5959 sd_sysctl_header = NULL;
7378547f
MM
5960 if (sd_ctl_dir[0].child)
5961 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5962}
e692ab53 5963#else
6382bc90
MM
5964static void register_sched_domain_sysctl(void)
5965{
5966}
5967static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5968{
5969}
5970#endif
5971
1f11eb6a
GH
5972static void set_rq_online(struct rq *rq)
5973{
5974 if (!rq->online) {
5975 const struct sched_class *class;
5976
c6c4927b 5977 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5978 rq->online = 1;
5979
5980 for_each_class(class) {
5981 if (class->rq_online)
5982 class->rq_online(rq);
5983 }
5984 }
5985}
5986
5987static void set_rq_offline(struct rq *rq)
5988{
5989 if (rq->online) {
5990 const struct sched_class *class;
5991
5992 for_each_class(class) {
5993 if (class->rq_offline)
5994 class->rq_offline(rq);
5995 }
5996
c6c4927b 5997 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5998 rq->online = 0;
5999 }
6000}
6001
1da177e4
LT
6002/*
6003 * migration_call - callback that gets triggered when a CPU is added.
6004 * Here we can start up the necessary migration thread for the new CPU.
6005 */
48f24c4d
IM
6006static int __cpuinit
6007migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6008{
48f24c4d 6009 int cpu = (long)hcpu;
1da177e4 6010 unsigned long flags;
969c7921 6011 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6012
6013 switch (action) {
5be9361c 6014
1da177e4 6015 case CPU_UP_PREPARE:
8bb78442 6016 case CPU_UP_PREPARE_FROZEN:
a468d389 6017 rq->calc_load_update = calc_load_update;
1da177e4 6018 break;
48f24c4d 6019
1da177e4 6020 case CPU_ONLINE:
8bb78442 6021 case CPU_ONLINE_FROZEN:
1f94ef59 6022 /* Update our root-domain */
05fa785c 6023 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6024 if (rq->rd) {
c6c4927b 6025 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6026
6027 set_rq_online(rq);
1f94ef59 6028 }
05fa785c 6029 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6030 break;
48f24c4d 6031
1da177e4 6032#ifdef CONFIG_HOTPLUG_CPU
1da177e4 6033 case CPU_DEAD:
8bb78442 6034 case CPU_DEAD_FROZEN:
1da177e4 6035 migrate_live_tasks(cpu);
1da177e4 6036 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 6037 raw_spin_lock_irq(&rq->lock);
2e1cb74a 6038 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
6039 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6040 rq->idle->sched_class = &idle_sched_class;
1da177e4 6041 migrate_dead_tasks(cpu);
05fa785c 6042 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
6043 migrate_nr_uninterruptible(rq);
6044 BUG_ON(rq->nr_running != 0);
dce48a84 6045 calc_global_load_remove(rq);
1da177e4 6046 break;
57d885fe 6047
08f503b0
GH
6048 case CPU_DYING:
6049 case CPU_DYING_FROZEN:
57d885fe 6050 /* Update our root-domain */
05fa785c 6051 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6052 if (rq->rd) {
c6c4927b 6053 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6054 set_rq_offline(rq);
57d885fe 6055 }
05fa785c 6056 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 6057 break;
1da177e4
LT
6058#endif
6059 }
6060 return NOTIFY_OK;
6061}
6062
f38b0820
PM
6063/*
6064 * Register at high priority so that task migration (migrate_all_tasks)
6065 * happens before everything else. This has to be lower priority than
cdd6c482 6066 * the notifier in the perf_event subsystem, though.
1da177e4 6067 */
26c2143b 6068static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6069 .notifier_call = migration_call,
50a323b7 6070 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6071};
6072
3a101d05
TH
6073static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6074 unsigned long action, void *hcpu)
6075{
6076 switch (action & ~CPU_TASKS_FROZEN) {
6077 case CPU_ONLINE:
6078 case CPU_DOWN_FAILED:
6079 set_cpu_active((long)hcpu, true);
6080 return NOTIFY_OK;
6081 default:
6082 return NOTIFY_DONE;
6083 }
6084}
6085
6086static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6087 unsigned long action, void *hcpu)
6088{
6089 switch (action & ~CPU_TASKS_FROZEN) {
6090 case CPU_DOWN_PREPARE:
6091 set_cpu_active((long)hcpu, false);
6092 return NOTIFY_OK;
6093 default:
6094 return NOTIFY_DONE;
6095 }
6096}
6097
7babe8db 6098static int __init migration_init(void)
1da177e4
LT
6099{
6100 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6101 int err;
48f24c4d 6102
3a101d05 6103 /* Initialize migration for the boot CPU */
07dccf33
AM
6104 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6105 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6106 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6107 register_cpu_notifier(&migration_notifier);
7babe8db 6108
3a101d05
TH
6109 /* Register cpu active notifiers */
6110 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6111 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6112
a004cd42 6113 return 0;
1da177e4 6114}
7babe8db 6115early_initcall(migration_init);
1da177e4
LT
6116#endif
6117
6118#ifdef CONFIG_SMP
476f3534 6119
3e9830dc 6120#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6121
f6630114
MT
6122static __read_mostly int sched_domain_debug_enabled;
6123
6124static int __init sched_domain_debug_setup(char *str)
6125{
6126 sched_domain_debug_enabled = 1;
6127
6128 return 0;
6129}
6130early_param("sched_debug", sched_domain_debug_setup);
6131
7c16ec58 6132static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6133 struct cpumask *groupmask)
1da177e4 6134{
4dcf6aff 6135 struct sched_group *group = sd->groups;
434d53b0 6136 char str[256];
1da177e4 6137
968ea6d8 6138 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6139 cpumask_clear(groupmask);
4dcf6aff
IM
6140
6141 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6142
6143 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6144 printk("does not load-balance\n");
4dcf6aff 6145 if (sd->parent)
3df0fc5b
PZ
6146 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6147 " has parent");
4dcf6aff 6148 return -1;
41c7ce9a
NP
6149 }
6150
3df0fc5b 6151 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6152
758b2cdc 6153 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6154 printk(KERN_ERR "ERROR: domain->span does not contain "
6155 "CPU%d\n", cpu);
4dcf6aff 6156 }
758b2cdc 6157 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6158 printk(KERN_ERR "ERROR: domain->groups does not contain"
6159 " CPU%d\n", cpu);
4dcf6aff 6160 }
1da177e4 6161
4dcf6aff 6162 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6163 do {
4dcf6aff 6164 if (!group) {
3df0fc5b
PZ
6165 printk("\n");
6166 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6167 break;
6168 }
6169
18a3885f 6170 if (!group->cpu_power) {
3df0fc5b
PZ
6171 printk(KERN_CONT "\n");
6172 printk(KERN_ERR "ERROR: domain->cpu_power not "
6173 "set\n");
4dcf6aff
IM
6174 break;
6175 }
1da177e4 6176
758b2cdc 6177 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6178 printk(KERN_CONT "\n");
6179 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6180 break;
6181 }
1da177e4 6182
758b2cdc 6183 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6184 printk(KERN_CONT "\n");
6185 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6186 break;
6187 }
1da177e4 6188
758b2cdc 6189 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6190
968ea6d8 6191 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6192
3df0fc5b 6193 printk(KERN_CONT " %s", str);
18a3885f 6194 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6195 printk(KERN_CONT " (cpu_power = %d)",
6196 group->cpu_power);
381512cf 6197 }
1da177e4 6198
4dcf6aff
IM
6199 group = group->next;
6200 } while (group != sd->groups);
3df0fc5b 6201 printk(KERN_CONT "\n");
1da177e4 6202
758b2cdc 6203 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6204 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6205
758b2cdc
RR
6206 if (sd->parent &&
6207 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6208 printk(KERN_ERR "ERROR: parent span is not a superset "
6209 "of domain->span\n");
4dcf6aff
IM
6210 return 0;
6211}
1da177e4 6212
4dcf6aff
IM
6213static void sched_domain_debug(struct sched_domain *sd, int cpu)
6214{
d5dd3db1 6215 cpumask_var_t groupmask;
4dcf6aff 6216 int level = 0;
1da177e4 6217
f6630114
MT
6218 if (!sched_domain_debug_enabled)
6219 return;
6220
4dcf6aff
IM
6221 if (!sd) {
6222 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6223 return;
6224 }
1da177e4 6225
4dcf6aff
IM
6226 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6227
d5dd3db1 6228 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6229 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6230 return;
6231 }
6232
4dcf6aff 6233 for (;;) {
7c16ec58 6234 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6235 break;
1da177e4
LT
6236 level++;
6237 sd = sd->parent;
33859f7f 6238 if (!sd)
4dcf6aff
IM
6239 break;
6240 }
d5dd3db1 6241 free_cpumask_var(groupmask);
1da177e4 6242}
6d6bc0ad 6243#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6244# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6245#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6246
1a20ff27 6247static int sd_degenerate(struct sched_domain *sd)
245af2c7 6248{
758b2cdc 6249 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6250 return 1;
6251
6252 /* Following flags need at least 2 groups */
6253 if (sd->flags & (SD_LOAD_BALANCE |
6254 SD_BALANCE_NEWIDLE |
6255 SD_BALANCE_FORK |
89c4710e
SS
6256 SD_BALANCE_EXEC |
6257 SD_SHARE_CPUPOWER |
6258 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6259 if (sd->groups != sd->groups->next)
6260 return 0;
6261 }
6262
6263 /* Following flags don't use groups */
c88d5910 6264 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6265 return 0;
6266
6267 return 1;
6268}
6269
48f24c4d
IM
6270static int
6271sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6272{
6273 unsigned long cflags = sd->flags, pflags = parent->flags;
6274
6275 if (sd_degenerate(parent))
6276 return 1;
6277
758b2cdc 6278 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6279 return 0;
6280
245af2c7
SS
6281 /* Flags needing groups don't count if only 1 group in parent */
6282 if (parent->groups == parent->groups->next) {
6283 pflags &= ~(SD_LOAD_BALANCE |
6284 SD_BALANCE_NEWIDLE |
6285 SD_BALANCE_FORK |
89c4710e
SS
6286 SD_BALANCE_EXEC |
6287 SD_SHARE_CPUPOWER |
6288 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6289 if (nr_node_ids == 1)
6290 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6291 }
6292 if (~cflags & pflags)
6293 return 0;
6294
6295 return 1;
6296}
6297
c6c4927b
RR
6298static void free_rootdomain(struct root_domain *rd)
6299{
047106ad
PZ
6300 synchronize_sched();
6301
68e74568
RR
6302 cpupri_cleanup(&rd->cpupri);
6303
c6c4927b
RR
6304 free_cpumask_var(rd->rto_mask);
6305 free_cpumask_var(rd->online);
6306 free_cpumask_var(rd->span);
6307 kfree(rd);
6308}
6309
57d885fe
GH
6310static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6311{
a0490fa3 6312 struct root_domain *old_rd = NULL;
57d885fe 6313 unsigned long flags;
57d885fe 6314
05fa785c 6315 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6316
6317 if (rq->rd) {
a0490fa3 6318 old_rd = rq->rd;
57d885fe 6319
c6c4927b 6320 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6321 set_rq_offline(rq);
57d885fe 6322
c6c4927b 6323 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6324
a0490fa3
IM
6325 /*
6326 * If we dont want to free the old_rt yet then
6327 * set old_rd to NULL to skip the freeing later
6328 * in this function:
6329 */
6330 if (!atomic_dec_and_test(&old_rd->refcount))
6331 old_rd = NULL;
57d885fe
GH
6332 }
6333
6334 atomic_inc(&rd->refcount);
6335 rq->rd = rd;
6336
c6c4927b 6337 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6338 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6339 set_rq_online(rq);
57d885fe 6340
05fa785c 6341 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6342
6343 if (old_rd)
6344 free_rootdomain(old_rd);
57d885fe
GH
6345}
6346
68c38fc3 6347static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6348{
6349 memset(rd, 0, sizeof(*rd));
6350
68c38fc3 6351 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6352 goto out;
68c38fc3 6353 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6354 goto free_span;
68c38fc3 6355 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6356 goto free_online;
6e0534f2 6357
68c38fc3 6358 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6359 goto free_rto_mask;
c6c4927b 6360 return 0;
6e0534f2 6361
68e74568
RR
6362free_rto_mask:
6363 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6364free_online:
6365 free_cpumask_var(rd->online);
6366free_span:
6367 free_cpumask_var(rd->span);
0c910d28 6368out:
c6c4927b 6369 return -ENOMEM;
57d885fe
GH
6370}
6371
6372static void init_defrootdomain(void)
6373{
68c38fc3 6374 init_rootdomain(&def_root_domain);
c6c4927b 6375
57d885fe
GH
6376 atomic_set(&def_root_domain.refcount, 1);
6377}
6378
dc938520 6379static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6380{
6381 struct root_domain *rd;
6382
6383 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6384 if (!rd)
6385 return NULL;
6386
68c38fc3 6387 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6388 kfree(rd);
6389 return NULL;
6390 }
57d885fe
GH
6391
6392 return rd;
6393}
6394
1da177e4 6395/*
0eab9146 6396 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6397 * hold the hotplug lock.
6398 */
0eab9146
IM
6399static void
6400cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6401{
70b97a7f 6402 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6403 struct sched_domain *tmp;
6404
669c55e9
PZ
6405 for (tmp = sd; tmp; tmp = tmp->parent)
6406 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6407
245af2c7 6408 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6409 for (tmp = sd; tmp; ) {
245af2c7
SS
6410 struct sched_domain *parent = tmp->parent;
6411 if (!parent)
6412 break;
f29c9b1c 6413
1a848870 6414 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6415 tmp->parent = parent->parent;
1a848870
SS
6416 if (parent->parent)
6417 parent->parent->child = tmp;
f29c9b1c
LZ
6418 } else
6419 tmp = tmp->parent;
245af2c7
SS
6420 }
6421
1a848870 6422 if (sd && sd_degenerate(sd)) {
245af2c7 6423 sd = sd->parent;
1a848870
SS
6424 if (sd)
6425 sd->child = NULL;
6426 }
1da177e4
LT
6427
6428 sched_domain_debug(sd, cpu);
6429
57d885fe 6430 rq_attach_root(rq, rd);
674311d5 6431 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6432}
6433
6434/* cpus with isolated domains */
dcc30a35 6435static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6436
6437/* Setup the mask of cpus configured for isolated domains */
6438static int __init isolated_cpu_setup(char *str)
6439{
bdddd296 6440 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6441 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6442 return 1;
6443}
6444
8927f494 6445__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6446
6447/*
6711cab4
SS
6448 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6449 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6450 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6451 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6452 *
6453 * init_sched_build_groups will build a circular linked list of the groups
6454 * covered by the given span, and will set each group's ->cpumask correctly,
6455 * and ->cpu_power to 0.
6456 */
a616058b 6457static void
96f874e2
RR
6458init_sched_build_groups(const struct cpumask *span,
6459 const struct cpumask *cpu_map,
6460 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6461 struct sched_group **sg,
96f874e2
RR
6462 struct cpumask *tmpmask),
6463 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6464{
6465 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6466 int i;
6467
96f874e2 6468 cpumask_clear(covered);
7c16ec58 6469
abcd083a 6470 for_each_cpu(i, span) {
6711cab4 6471 struct sched_group *sg;
7c16ec58 6472 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6473 int j;
6474
758b2cdc 6475 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6476 continue;
6477
758b2cdc 6478 cpumask_clear(sched_group_cpus(sg));
18a3885f 6479 sg->cpu_power = 0;
1da177e4 6480
abcd083a 6481 for_each_cpu(j, span) {
7c16ec58 6482 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6483 continue;
6484
96f874e2 6485 cpumask_set_cpu(j, covered);
758b2cdc 6486 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6487 }
6488 if (!first)
6489 first = sg;
6490 if (last)
6491 last->next = sg;
6492 last = sg;
6493 }
6494 last->next = first;
6495}
6496
9c1cfda2 6497#define SD_NODES_PER_DOMAIN 16
1da177e4 6498
9c1cfda2 6499#ifdef CONFIG_NUMA
198e2f18 6500
9c1cfda2
JH
6501/**
6502 * find_next_best_node - find the next node to include in a sched_domain
6503 * @node: node whose sched_domain we're building
6504 * @used_nodes: nodes already in the sched_domain
6505 *
41a2d6cf 6506 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6507 * finds the closest node not already in the @used_nodes map.
6508 *
6509 * Should use nodemask_t.
6510 */
c5f59f08 6511static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6512{
6513 int i, n, val, min_val, best_node = 0;
6514
6515 min_val = INT_MAX;
6516
076ac2af 6517 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6518 /* Start at @node */
076ac2af 6519 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6520
6521 if (!nr_cpus_node(n))
6522 continue;
6523
6524 /* Skip already used nodes */
c5f59f08 6525 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6526 continue;
6527
6528 /* Simple min distance search */
6529 val = node_distance(node, n);
6530
6531 if (val < min_val) {
6532 min_val = val;
6533 best_node = n;
6534 }
6535 }
6536
c5f59f08 6537 node_set(best_node, *used_nodes);
9c1cfda2
JH
6538 return best_node;
6539}
6540
6541/**
6542 * sched_domain_node_span - get a cpumask for a node's sched_domain
6543 * @node: node whose cpumask we're constructing
73486722 6544 * @span: resulting cpumask
9c1cfda2 6545 *
41a2d6cf 6546 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6547 * should be one that prevents unnecessary balancing, but also spreads tasks
6548 * out optimally.
6549 */
96f874e2 6550static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6551{
c5f59f08 6552 nodemask_t used_nodes;
48f24c4d 6553 int i;
9c1cfda2 6554
6ca09dfc 6555 cpumask_clear(span);
c5f59f08 6556 nodes_clear(used_nodes);
9c1cfda2 6557
6ca09dfc 6558 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6559 node_set(node, used_nodes);
9c1cfda2
JH
6560
6561 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6562 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6563
6ca09dfc 6564 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6565 }
9c1cfda2 6566}
6d6bc0ad 6567#endif /* CONFIG_NUMA */
9c1cfda2 6568
5c45bf27 6569int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6570
6c99e9ad
RR
6571/*
6572 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6573 *
6574 * ( See the the comments in include/linux/sched.h:struct sched_group
6575 * and struct sched_domain. )
6c99e9ad
RR
6576 */
6577struct static_sched_group {
6578 struct sched_group sg;
6579 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6580};
6581
6582struct static_sched_domain {
6583 struct sched_domain sd;
6584 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6585};
6586
49a02c51
AH
6587struct s_data {
6588#ifdef CONFIG_NUMA
6589 int sd_allnodes;
6590 cpumask_var_t domainspan;
6591 cpumask_var_t covered;
6592 cpumask_var_t notcovered;
6593#endif
6594 cpumask_var_t nodemask;
6595 cpumask_var_t this_sibling_map;
6596 cpumask_var_t this_core_map;
01a08546 6597 cpumask_var_t this_book_map;
49a02c51
AH
6598 cpumask_var_t send_covered;
6599 cpumask_var_t tmpmask;
6600 struct sched_group **sched_group_nodes;
6601 struct root_domain *rd;
6602};
6603
2109b99e
AH
6604enum s_alloc {
6605 sa_sched_groups = 0,
6606 sa_rootdomain,
6607 sa_tmpmask,
6608 sa_send_covered,
01a08546 6609 sa_this_book_map,
2109b99e
AH
6610 sa_this_core_map,
6611 sa_this_sibling_map,
6612 sa_nodemask,
6613 sa_sched_group_nodes,
6614#ifdef CONFIG_NUMA
6615 sa_notcovered,
6616 sa_covered,
6617 sa_domainspan,
6618#endif
6619 sa_none,
6620};
6621
9c1cfda2 6622/*
48f24c4d 6623 * SMT sched-domains:
9c1cfda2 6624 */
1da177e4 6625#ifdef CONFIG_SCHED_SMT
6c99e9ad 6626static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6627static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6628
41a2d6cf 6629static int
96f874e2
RR
6630cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6631 struct sched_group **sg, struct cpumask *unused)
1da177e4 6632{
6711cab4 6633 if (sg)
1871e52c 6634 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6635 return cpu;
6636}
6d6bc0ad 6637#endif /* CONFIG_SCHED_SMT */
1da177e4 6638
48f24c4d
IM
6639/*
6640 * multi-core sched-domains:
6641 */
1e9f28fa 6642#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6643static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6644static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6645
41a2d6cf 6646static int
96f874e2
RR
6647cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6648 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6649{
6711cab4 6650 int group;
f269893c 6651#ifdef CONFIG_SCHED_SMT
c69fc56d 6652 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6653 group = cpumask_first(mask);
f269893c
HC
6654#else
6655 group = cpu;
6656#endif
6711cab4 6657 if (sg)
6c99e9ad 6658 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6659 return group;
1e9f28fa 6660}
f269893c 6661#endif /* CONFIG_SCHED_MC */
1e9f28fa 6662
01a08546
HC
6663/*
6664 * book sched-domains:
6665 */
6666#ifdef CONFIG_SCHED_BOOK
6667static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6668static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6669
6670static int
6671cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6672 struct sched_group **sg, struct cpumask *mask)
6673{
6674 int group = cpu;
6675#ifdef CONFIG_SCHED_MC
6676 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6677 group = cpumask_first(mask);
6678#elif defined(CONFIG_SCHED_SMT)
6679 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6680 group = cpumask_first(mask);
6681#endif
6682 if (sg)
6683 *sg = &per_cpu(sched_group_book, group).sg;
6684 return group;
6685}
6686#endif /* CONFIG_SCHED_BOOK */
6687
6c99e9ad
RR
6688static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6689static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6690
41a2d6cf 6691static int
96f874e2
RR
6692cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6693 struct sched_group **sg, struct cpumask *mask)
1da177e4 6694{
6711cab4 6695 int group;
01a08546
HC
6696#ifdef CONFIG_SCHED_BOOK
6697 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6698 group = cpumask_first(mask);
6699#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6700 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6701 group = cpumask_first(mask);
1e9f28fa 6702#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6703 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6704 group = cpumask_first(mask);
1da177e4 6705#else
6711cab4 6706 group = cpu;
1da177e4 6707#endif
6711cab4 6708 if (sg)
6c99e9ad 6709 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6710 return group;
1da177e4
LT
6711}
6712
6713#ifdef CONFIG_NUMA
1da177e4 6714/*
9c1cfda2
JH
6715 * The init_sched_build_groups can't handle what we want to do with node
6716 * groups, so roll our own. Now each node has its own list of groups which
6717 * gets dynamically allocated.
1da177e4 6718 */
62ea9ceb 6719static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6720static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6721
62ea9ceb 6722static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6723static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6724
96f874e2
RR
6725static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6726 struct sched_group **sg,
6727 struct cpumask *nodemask)
9c1cfda2 6728{
6711cab4
SS
6729 int group;
6730
6ca09dfc 6731 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6732 group = cpumask_first(nodemask);
6711cab4
SS
6733
6734 if (sg)
6c99e9ad 6735 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6736 return group;
1da177e4 6737}
6711cab4 6738
08069033
SS
6739static void init_numa_sched_groups_power(struct sched_group *group_head)
6740{
6741 struct sched_group *sg = group_head;
6742 int j;
6743
6744 if (!sg)
6745 return;
3a5c359a 6746 do {
758b2cdc 6747 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6748 struct sched_domain *sd;
08069033 6749
6c99e9ad 6750 sd = &per_cpu(phys_domains, j).sd;
13318a71 6751 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6752 /*
6753 * Only add "power" once for each
6754 * physical package.
6755 */
6756 continue;
6757 }
08069033 6758
18a3885f 6759 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6760 }
6761 sg = sg->next;
6762 } while (sg != group_head);
08069033 6763}
0601a88d
AH
6764
6765static int build_numa_sched_groups(struct s_data *d,
6766 const struct cpumask *cpu_map, int num)
6767{
6768 struct sched_domain *sd;
6769 struct sched_group *sg, *prev;
6770 int n, j;
6771
6772 cpumask_clear(d->covered);
6773 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6774 if (cpumask_empty(d->nodemask)) {
6775 d->sched_group_nodes[num] = NULL;
6776 goto out;
6777 }
6778
6779 sched_domain_node_span(num, d->domainspan);
6780 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6781
6782 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6783 GFP_KERNEL, num);
6784 if (!sg) {
3df0fc5b
PZ
6785 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6786 num);
0601a88d
AH
6787 return -ENOMEM;
6788 }
6789 d->sched_group_nodes[num] = sg;
6790
6791 for_each_cpu(j, d->nodemask) {
6792 sd = &per_cpu(node_domains, j).sd;
6793 sd->groups = sg;
6794 }
6795
18a3885f 6796 sg->cpu_power = 0;
0601a88d
AH
6797 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6798 sg->next = sg;
6799 cpumask_or(d->covered, d->covered, d->nodemask);
6800
6801 prev = sg;
6802 for (j = 0; j < nr_node_ids; j++) {
6803 n = (num + j) % nr_node_ids;
6804 cpumask_complement(d->notcovered, d->covered);
6805 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6806 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6807 if (cpumask_empty(d->tmpmask))
6808 break;
6809 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6810 if (cpumask_empty(d->tmpmask))
6811 continue;
6812 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6813 GFP_KERNEL, num);
6814 if (!sg) {
3df0fc5b
PZ
6815 printk(KERN_WARNING
6816 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6817 return -ENOMEM;
6818 }
18a3885f 6819 sg->cpu_power = 0;
0601a88d
AH
6820 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6821 sg->next = prev->next;
6822 cpumask_or(d->covered, d->covered, d->tmpmask);
6823 prev->next = sg;
6824 prev = sg;
6825 }
6826out:
6827 return 0;
6828}
6d6bc0ad 6829#endif /* CONFIG_NUMA */
1da177e4 6830
a616058b 6831#ifdef CONFIG_NUMA
51888ca2 6832/* Free memory allocated for various sched_group structures */
96f874e2
RR
6833static void free_sched_groups(const struct cpumask *cpu_map,
6834 struct cpumask *nodemask)
51888ca2 6835{
a616058b 6836 int cpu, i;
51888ca2 6837
abcd083a 6838 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6839 struct sched_group **sched_group_nodes
6840 = sched_group_nodes_bycpu[cpu];
6841
51888ca2
SV
6842 if (!sched_group_nodes)
6843 continue;
6844
076ac2af 6845 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6846 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6847
6ca09dfc 6848 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6849 if (cpumask_empty(nodemask))
51888ca2
SV
6850 continue;
6851
6852 if (sg == NULL)
6853 continue;
6854 sg = sg->next;
6855next_sg:
6856 oldsg = sg;
6857 sg = sg->next;
6858 kfree(oldsg);
6859 if (oldsg != sched_group_nodes[i])
6860 goto next_sg;
6861 }
6862 kfree(sched_group_nodes);
6863 sched_group_nodes_bycpu[cpu] = NULL;
6864 }
51888ca2 6865}
6d6bc0ad 6866#else /* !CONFIG_NUMA */
96f874e2
RR
6867static void free_sched_groups(const struct cpumask *cpu_map,
6868 struct cpumask *nodemask)
a616058b
SS
6869{
6870}
6d6bc0ad 6871#endif /* CONFIG_NUMA */
51888ca2 6872
89c4710e
SS
6873/*
6874 * Initialize sched groups cpu_power.
6875 *
6876 * cpu_power indicates the capacity of sched group, which is used while
6877 * distributing the load between different sched groups in a sched domain.
6878 * Typically cpu_power for all the groups in a sched domain will be same unless
6879 * there are asymmetries in the topology. If there are asymmetries, group
6880 * having more cpu_power will pickup more load compared to the group having
6881 * less cpu_power.
89c4710e
SS
6882 */
6883static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6884{
6885 struct sched_domain *child;
6886 struct sched_group *group;
f93e65c1
PZ
6887 long power;
6888 int weight;
89c4710e
SS
6889
6890 WARN_ON(!sd || !sd->groups);
6891
13318a71 6892 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6893 return;
6894
6895 child = sd->child;
6896
18a3885f 6897 sd->groups->cpu_power = 0;
5517d86b 6898
f93e65c1
PZ
6899 if (!child) {
6900 power = SCHED_LOAD_SCALE;
6901 weight = cpumask_weight(sched_domain_span(sd));
6902 /*
6903 * SMT siblings share the power of a single core.
a52bfd73
PZ
6904 * Usually multiple threads get a better yield out of
6905 * that one core than a single thread would have,
6906 * reflect that in sd->smt_gain.
f93e65c1 6907 */
a52bfd73
PZ
6908 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6909 power *= sd->smt_gain;
f93e65c1 6910 power /= weight;
a52bfd73
PZ
6911 power >>= SCHED_LOAD_SHIFT;
6912 }
18a3885f 6913 sd->groups->cpu_power += power;
89c4710e
SS
6914 return;
6915 }
6916
89c4710e 6917 /*
f93e65c1 6918 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6919 */
6920 group = child->groups;
6921 do {
18a3885f 6922 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6923 group = group->next;
6924 } while (group != child->groups);
6925}
6926
7c16ec58
MT
6927/*
6928 * Initializers for schedule domains
6929 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6930 */
6931
a5d8c348
IM
6932#ifdef CONFIG_SCHED_DEBUG
6933# define SD_INIT_NAME(sd, type) sd->name = #type
6934#else
6935# define SD_INIT_NAME(sd, type) do { } while (0)
6936#endif
6937
7c16ec58 6938#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6939
7c16ec58
MT
6940#define SD_INIT_FUNC(type) \
6941static noinline void sd_init_##type(struct sched_domain *sd) \
6942{ \
6943 memset(sd, 0, sizeof(*sd)); \
6944 *sd = SD_##type##_INIT; \
1d3504fc 6945 sd->level = SD_LV_##type; \
a5d8c348 6946 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6947}
6948
6949SD_INIT_FUNC(CPU)
6950#ifdef CONFIG_NUMA
6951 SD_INIT_FUNC(ALLNODES)
6952 SD_INIT_FUNC(NODE)
6953#endif
6954#ifdef CONFIG_SCHED_SMT
6955 SD_INIT_FUNC(SIBLING)
6956#endif
6957#ifdef CONFIG_SCHED_MC
6958 SD_INIT_FUNC(MC)
6959#endif
01a08546
HC
6960#ifdef CONFIG_SCHED_BOOK
6961 SD_INIT_FUNC(BOOK)
6962#endif
7c16ec58 6963
1d3504fc
HS
6964static int default_relax_domain_level = -1;
6965
6966static int __init setup_relax_domain_level(char *str)
6967{
30e0e178
LZ
6968 unsigned long val;
6969
6970 val = simple_strtoul(str, NULL, 0);
6971 if (val < SD_LV_MAX)
6972 default_relax_domain_level = val;
6973
1d3504fc
HS
6974 return 1;
6975}
6976__setup("relax_domain_level=", setup_relax_domain_level);
6977
6978static void set_domain_attribute(struct sched_domain *sd,
6979 struct sched_domain_attr *attr)
6980{
6981 int request;
6982
6983 if (!attr || attr->relax_domain_level < 0) {
6984 if (default_relax_domain_level < 0)
6985 return;
6986 else
6987 request = default_relax_domain_level;
6988 } else
6989 request = attr->relax_domain_level;
6990 if (request < sd->level) {
6991 /* turn off idle balance on this domain */
c88d5910 6992 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6993 } else {
6994 /* turn on idle balance on this domain */
c88d5910 6995 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6996 }
6997}
6998
2109b99e
AH
6999static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7000 const struct cpumask *cpu_map)
7001{
7002 switch (what) {
7003 case sa_sched_groups:
7004 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7005 d->sched_group_nodes = NULL;
7006 case sa_rootdomain:
7007 free_rootdomain(d->rd); /* fall through */
7008 case sa_tmpmask:
7009 free_cpumask_var(d->tmpmask); /* fall through */
7010 case sa_send_covered:
7011 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7012 case sa_this_book_map:
7013 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7014 case sa_this_core_map:
7015 free_cpumask_var(d->this_core_map); /* fall through */
7016 case sa_this_sibling_map:
7017 free_cpumask_var(d->this_sibling_map); /* fall through */
7018 case sa_nodemask:
7019 free_cpumask_var(d->nodemask); /* fall through */
7020 case sa_sched_group_nodes:
d1b55138 7021#ifdef CONFIG_NUMA
2109b99e
AH
7022 kfree(d->sched_group_nodes); /* fall through */
7023 case sa_notcovered:
7024 free_cpumask_var(d->notcovered); /* fall through */
7025 case sa_covered:
7026 free_cpumask_var(d->covered); /* fall through */
7027 case sa_domainspan:
7028 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7029#endif
2109b99e
AH
7030 case sa_none:
7031 break;
7032 }
7033}
3404c8d9 7034
2109b99e
AH
7035static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7036 const struct cpumask *cpu_map)
7037{
3404c8d9 7038#ifdef CONFIG_NUMA
2109b99e
AH
7039 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7040 return sa_none;
7041 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7042 return sa_domainspan;
7043 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7044 return sa_covered;
7045 /* Allocate the per-node list of sched groups */
7046 d->sched_group_nodes = kcalloc(nr_node_ids,
7047 sizeof(struct sched_group *), GFP_KERNEL);
7048 if (!d->sched_group_nodes) {
3df0fc5b 7049 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7050 return sa_notcovered;
d1b55138 7051 }
2109b99e 7052 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7053#endif
2109b99e
AH
7054 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7055 return sa_sched_group_nodes;
7056 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7057 return sa_nodemask;
7058 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7059 return sa_this_sibling_map;
01a08546 7060 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7061 return sa_this_core_map;
01a08546
HC
7062 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7063 return sa_this_book_map;
2109b99e
AH
7064 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7065 return sa_send_covered;
7066 d->rd = alloc_rootdomain();
7067 if (!d->rd) {
3df0fc5b 7068 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7069 return sa_tmpmask;
57d885fe 7070 }
2109b99e
AH
7071 return sa_rootdomain;
7072}
57d885fe 7073
7f4588f3
AH
7074static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7075 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7076{
7077 struct sched_domain *sd = NULL;
7c16ec58 7078#ifdef CONFIG_NUMA
7f4588f3 7079 struct sched_domain *parent;
1da177e4 7080
7f4588f3
AH
7081 d->sd_allnodes = 0;
7082 if (cpumask_weight(cpu_map) >
7083 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7084 sd = &per_cpu(allnodes_domains, i).sd;
7085 SD_INIT(sd, ALLNODES);
1d3504fc 7086 set_domain_attribute(sd, attr);
7f4588f3
AH
7087 cpumask_copy(sched_domain_span(sd), cpu_map);
7088 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7089 d->sd_allnodes = 1;
7090 }
7091 parent = sd;
7092
7093 sd = &per_cpu(node_domains, i).sd;
7094 SD_INIT(sd, NODE);
7095 set_domain_attribute(sd, attr);
7096 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7097 sd->parent = parent;
7098 if (parent)
7099 parent->child = sd;
7100 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7101#endif
7f4588f3
AH
7102 return sd;
7103}
1da177e4 7104
87cce662
AH
7105static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7106 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7107 struct sched_domain *parent, int i)
7108{
7109 struct sched_domain *sd;
7110 sd = &per_cpu(phys_domains, i).sd;
7111 SD_INIT(sd, CPU);
7112 set_domain_attribute(sd, attr);
7113 cpumask_copy(sched_domain_span(sd), d->nodemask);
7114 sd->parent = parent;
7115 if (parent)
7116 parent->child = sd;
7117 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7118 return sd;
7119}
1da177e4 7120
01a08546
HC
7121static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7122 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7123 struct sched_domain *parent, int i)
7124{
7125 struct sched_domain *sd = parent;
7126#ifdef CONFIG_SCHED_BOOK
7127 sd = &per_cpu(book_domains, i).sd;
7128 SD_INIT(sd, BOOK);
7129 set_domain_attribute(sd, attr);
7130 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7131 sd->parent = parent;
7132 parent->child = sd;
7133 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7134#endif
7135 return sd;
7136}
7137
410c4081
AH
7138static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7139 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7140 struct sched_domain *parent, int i)
7141{
7142 struct sched_domain *sd = parent;
1e9f28fa 7143#ifdef CONFIG_SCHED_MC
410c4081
AH
7144 sd = &per_cpu(core_domains, i).sd;
7145 SD_INIT(sd, MC);
7146 set_domain_attribute(sd, attr);
7147 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7148 sd->parent = parent;
7149 parent->child = sd;
7150 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7151#endif
410c4081
AH
7152 return sd;
7153}
1e9f28fa 7154
d8173535
AH
7155static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7156 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7157 struct sched_domain *parent, int i)
7158{
7159 struct sched_domain *sd = parent;
1da177e4 7160#ifdef CONFIG_SCHED_SMT
d8173535
AH
7161 sd = &per_cpu(cpu_domains, i).sd;
7162 SD_INIT(sd, SIBLING);
7163 set_domain_attribute(sd, attr);
7164 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7165 sd->parent = parent;
7166 parent->child = sd;
7167 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7168#endif
d8173535
AH
7169 return sd;
7170}
1da177e4 7171
0e8e85c9
AH
7172static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7173 const struct cpumask *cpu_map, int cpu)
7174{
7175 switch (l) {
1da177e4 7176#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7177 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7178 cpumask_and(d->this_sibling_map, cpu_map,
7179 topology_thread_cpumask(cpu));
7180 if (cpu == cpumask_first(d->this_sibling_map))
7181 init_sched_build_groups(d->this_sibling_map, cpu_map,
7182 &cpu_to_cpu_group,
7183 d->send_covered, d->tmpmask);
7184 break;
1da177e4 7185#endif
1e9f28fa 7186#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7187 case SD_LV_MC: /* set up multi-core groups */
7188 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7189 if (cpu == cpumask_first(d->this_core_map))
7190 init_sched_build_groups(d->this_core_map, cpu_map,
7191 &cpu_to_core_group,
7192 d->send_covered, d->tmpmask);
7193 break;
01a08546
HC
7194#endif
7195#ifdef CONFIG_SCHED_BOOK
7196 case SD_LV_BOOK: /* set up book groups */
7197 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7198 if (cpu == cpumask_first(d->this_book_map))
7199 init_sched_build_groups(d->this_book_map, cpu_map,
7200 &cpu_to_book_group,
7201 d->send_covered, d->tmpmask);
7202 break;
1e9f28fa 7203#endif
86548096
AH
7204 case SD_LV_CPU: /* set up physical groups */
7205 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7206 if (!cpumask_empty(d->nodemask))
7207 init_sched_build_groups(d->nodemask, cpu_map,
7208 &cpu_to_phys_group,
7209 d->send_covered, d->tmpmask);
7210 break;
1da177e4 7211#ifdef CONFIG_NUMA
de616e36
AH
7212 case SD_LV_ALLNODES:
7213 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7214 d->send_covered, d->tmpmask);
7215 break;
7216#endif
0e8e85c9
AH
7217 default:
7218 break;
7c16ec58 7219 }
0e8e85c9 7220}
9c1cfda2 7221
2109b99e
AH
7222/*
7223 * Build sched domains for a given set of cpus and attach the sched domains
7224 * to the individual cpus
7225 */
7226static int __build_sched_domains(const struct cpumask *cpu_map,
7227 struct sched_domain_attr *attr)
7228{
7229 enum s_alloc alloc_state = sa_none;
7230 struct s_data d;
294b0c96 7231 struct sched_domain *sd;
2109b99e 7232 int i;
7c16ec58 7233#ifdef CONFIG_NUMA
2109b99e 7234 d.sd_allnodes = 0;
7c16ec58 7235#endif
9c1cfda2 7236
2109b99e
AH
7237 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7238 if (alloc_state != sa_rootdomain)
7239 goto error;
7240 alloc_state = sa_sched_groups;
9c1cfda2 7241
1da177e4 7242 /*
1a20ff27 7243 * Set up domains for cpus specified by the cpu_map.
1da177e4 7244 */
abcd083a 7245 for_each_cpu(i, cpu_map) {
49a02c51
AH
7246 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7247 cpu_map);
9761eea8 7248
7f4588f3 7249 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7250 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7251 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7252 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7253 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7254 }
9c1cfda2 7255
abcd083a 7256 for_each_cpu(i, cpu_map) {
0e8e85c9 7257 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7258 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7259 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7260 }
9c1cfda2 7261
1da177e4 7262 /* Set up physical groups */
86548096
AH
7263 for (i = 0; i < nr_node_ids; i++)
7264 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7265
1da177e4
LT
7266#ifdef CONFIG_NUMA
7267 /* Set up node groups */
de616e36
AH
7268 if (d.sd_allnodes)
7269 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7270
0601a88d
AH
7271 for (i = 0; i < nr_node_ids; i++)
7272 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7273 goto error;
1da177e4
LT
7274#endif
7275
7276 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7277#ifdef CONFIG_SCHED_SMT
abcd083a 7278 for_each_cpu(i, cpu_map) {
294b0c96 7279 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7280 init_sched_groups_power(i, sd);
5c45bf27 7281 }
1da177e4 7282#endif
1e9f28fa 7283#ifdef CONFIG_SCHED_MC
abcd083a 7284 for_each_cpu(i, cpu_map) {
294b0c96 7285 sd = &per_cpu(core_domains, i).sd;
89c4710e 7286 init_sched_groups_power(i, sd);
5c45bf27
SS
7287 }
7288#endif
01a08546
HC
7289#ifdef CONFIG_SCHED_BOOK
7290 for_each_cpu(i, cpu_map) {
7291 sd = &per_cpu(book_domains, i).sd;
7292 init_sched_groups_power(i, sd);
7293 }
7294#endif
1e9f28fa 7295
abcd083a 7296 for_each_cpu(i, cpu_map) {
294b0c96 7297 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7298 init_sched_groups_power(i, sd);
1da177e4
LT
7299 }
7300
9c1cfda2 7301#ifdef CONFIG_NUMA
076ac2af 7302 for (i = 0; i < nr_node_ids; i++)
49a02c51 7303 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7304
49a02c51 7305 if (d.sd_allnodes) {
6711cab4 7306 struct sched_group *sg;
f712c0c7 7307
96f874e2 7308 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7309 d.tmpmask);
f712c0c7
SS
7310 init_numa_sched_groups_power(sg);
7311 }
9c1cfda2
JH
7312#endif
7313
1da177e4 7314 /* Attach the domains */
abcd083a 7315 for_each_cpu(i, cpu_map) {
1da177e4 7316#ifdef CONFIG_SCHED_SMT
6c99e9ad 7317 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7318#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7319 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7320#elif defined(CONFIG_SCHED_BOOK)
7321 sd = &per_cpu(book_domains, i).sd;
1da177e4 7322#else
6c99e9ad 7323 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7324#endif
49a02c51 7325 cpu_attach_domain(sd, d.rd, i);
1da177e4 7326 }
51888ca2 7327
2109b99e
AH
7328 d.sched_group_nodes = NULL; /* don't free this we still need it */
7329 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7330 return 0;
51888ca2 7331
51888ca2 7332error:
2109b99e
AH
7333 __free_domain_allocs(&d, alloc_state, cpu_map);
7334 return -ENOMEM;
1da177e4 7335}
029190c5 7336
96f874e2 7337static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7338{
7339 return __build_sched_domains(cpu_map, NULL);
7340}
7341
acc3f5d7 7342static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7343static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7344static struct sched_domain_attr *dattr_cur;
7345 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7346
7347/*
7348 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7349 * cpumask) fails, then fallback to a single sched domain,
7350 * as determined by the single cpumask fallback_doms.
029190c5 7351 */
4212823f 7352static cpumask_var_t fallback_doms;
029190c5 7353
ee79d1bd
HC
7354/*
7355 * arch_update_cpu_topology lets virtualized architectures update the
7356 * cpu core maps. It is supposed to return 1 if the topology changed
7357 * or 0 if it stayed the same.
7358 */
7359int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7360{
ee79d1bd 7361 return 0;
22e52b07
HC
7362}
7363
acc3f5d7
RR
7364cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7365{
7366 int i;
7367 cpumask_var_t *doms;
7368
7369 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7370 if (!doms)
7371 return NULL;
7372 for (i = 0; i < ndoms; i++) {
7373 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7374 free_sched_domains(doms, i);
7375 return NULL;
7376 }
7377 }
7378 return doms;
7379}
7380
7381void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7382{
7383 unsigned int i;
7384 for (i = 0; i < ndoms; i++)
7385 free_cpumask_var(doms[i]);
7386 kfree(doms);
7387}
7388
1a20ff27 7389/*
41a2d6cf 7390 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7391 * For now this just excludes isolated cpus, but could be used to
7392 * exclude other special cases in the future.
1a20ff27 7393 */
96f874e2 7394static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7395{
7378547f
MM
7396 int err;
7397
22e52b07 7398 arch_update_cpu_topology();
029190c5 7399 ndoms_cur = 1;
acc3f5d7 7400 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7401 if (!doms_cur)
acc3f5d7
RR
7402 doms_cur = &fallback_doms;
7403 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7404 dattr_cur = NULL;
acc3f5d7 7405 err = build_sched_domains(doms_cur[0]);
6382bc90 7406 register_sched_domain_sysctl();
7378547f
MM
7407
7408 return err;
1a20ff27
DG
7409}
7410
96f874e2
RR
7411static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7412 struct cpumask *tmpmask)
1da177e4 7413{
7c16ec58 7414 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7415}
1da177e4 7416
1a20ff27
DG
7417/*
7418 * Detach sched domains from a group of cpus specified in cpu_map
7419 * These cpus will now be attached to the NULL domain
7420 */
96f874e2 7421static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7422{
96f874e2
RR
7423 /* Save because hotplug lock held. */
7424 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7425 int i;
7426
abcd083a 7427 for_each_cpu(i, cpu_map)
57d885fe 7428 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7429 synchronize_sched();
96f874e2 7430 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7431}
7432
1d3504fc
HS
7433/* handle null as "default" */
7434static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7435 struct sched_domain_attr *new, int idx_new)
7436{
7437 struct sched_domain_attr tmp;
7438
7439 /* fast path */
7440 if (!new && !cur)
7441 return 1;
7442
7443 tmp = SD_ATTR_INIT;
7444 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7445 new ? (new + idx_new) : &tmp,
7446 sizeof(struct sched_domain_attr));
7447}
7448
029190c5
PJ
7449/*
7450 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7451 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7452 * doms_new[] to the current sched domain partitioning, doms_cur[].
7453 * It destroys each deleted domain and builds each new domain.
7454 *
acc3f5d7 7455 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7456 * The masks don't intersect (don't overlap.) We should setup one
7457 * sched domain for each mask. CPUs not in any of the cpumasks will
7458 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7459 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7460 * it as it is.
7461 *
acc3f5d7
RR
7462 * The passed in 'doms_new' should be allocated using
7463 * alloc_sched_domains. This routine takes ownership of it and will
7464 * free_sched_domains it when done with it. If the caller failed the
7465 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7466 * and partition_sched_domains() will fallback to the single partition
7467 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7468 *
96f874e2 7469 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7470 * ndoms_new == 0 is a special case for destroying existing domains,
7471 * and it will not create the default domain.
dfb512ec 7472 *
029190c5
PJ
7473 * Call with hotplug lock held
7474 */
acc3f5d7 7475void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7476 struct sched_domain_attr *dattr_new)
029190c5 7477{
dfb512ec 7478 int i, j, n;
d65bd5ec 7479 int new_topology;
029190c5 7480
712555ee 7481 mutex_lock(&sched_domains_mutex);
a1835615 7482
7378547f
MM
7483 /* always unregister in case we don't destroy any domains */
7484 unregister_sched_domain_sysctl();
7485
d65bd5ec
HC
7486 /* Let architecture update cpu core mappings. */
7487 new_topology = arch_update_cpu_topology();
7488
dfb512ec 7489 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7490
7491 /* Destroy deleted domains */
7492 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7493 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7494 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7495 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7496 goto match1;
7497 }
7498 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7499 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7500match1:
7501 ;
7502 }
7503
e761b772
MK
7504 if (doms_new == NULL) {
7505 ndoms_cur = 0;
acc3f5d7 7506 doms_new = &fallback_doms;
6ad4c188 7507 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7508 WARN_ON_ONCE(dattr_new);
e761b772
MK
7509 }
7510
029190c5
PJ
7511 /* Build new domains */
7512 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7513 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7514 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7515 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7516 goto match2;
7517 }
7518 /* no match - add a new doms_new */
acc3f5d7 7519 __build_sched_domains(doms_new[i],
1d3504fc 7520 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7521match2:
7522 ;
7523 }
7524
7525 /* Remember the new sched domains */
acc3f5d7
RR
7526 if (doms_cur != &fallback_doms)
7527 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7528 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7529 doms_cur = doms_new;
1d3504fc 7530 dattr_cur = dattr_new;
029190c5 7531 ndoms_cur = ndoms_new;
7378547f
MM
7532
7533 register_sched_domain_sysctl();
a1835615 7534
712555ee 7535 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7536}
7537
5c45bf27 7538#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7539static void arch_reinit_sched_domains(void)
5c45bf27 7540{
95402b38 7541 get_online_cpus();
dfb512ec
MK
7542
7543 /* Destroy domains first to force the rebuild */
7544 partition_sched_domains(0, NULL, NULL);
7545
e761b772 7546 rebuild_sched_domains();
95402b38 7547 put_online_cpus();
5c45bf27
SS
7548}
7549
7550static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7551{
afb8a9b7 7552 unsigned int level = 0;
5c45bf27 7553
afb8a9b7
GS
7554 if (sscanf(buf, "%u", &level) != 1)
7555 return -EINVAL;
7556
7557 /*
7558 * level is always be positive so don't check for
7559 * level < POWERSAVINGS_BALANCE_NONE which is 0
7560 * What happens on 0 or 1 byte write,
7561 * need to check for count as well?
7562 */
7563
7564 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7565 return -EINVAL;
7566
7567 if (smt)
afb8a9b7 7568 sched_smt_power_savings = level;
5c45bf27 7569 else
afb8a9b7 7570 sched_mc_power_savings = level;
5c45bf27 7571
c70f22d2 7572 arch_reinit_sched_domains();
5c45bf27 7573
c70f22d2 7574 return count;
5c45bf27
SS
7575}
7576
5c45bf27 7577#ifdef CONFIG_SCHED_MC
f718cd4a 7578static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7579 struct sysdev_class_attribute *attr,
f718cd4a 7580 char *page)
5c45bf27
SS
7581{
7582 return sprintf(page, "%u\n", sched_mc_power_savings);
7583}
f718cd4a 7584static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7585 struct sysdev_class_attribute *attr,
48f24c4d 7586 const char *buf, size_t count)
5c45bf27
SS
7587{
7588 return sched_power_savings_store(buf, count, 0);
7589}
f718cd4a
AK
7590static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7591 sched_mc_power_savings_show,
7592 sched_mc_power_savings_store);
5c45bf27
SS
7593#endif
7594
7595#ifdef CONFIG_SCHED_SMT
f718cd4a 7596static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7597 struct sysdev_class_attribute *attr,
f718cd4a 7598 char *page)
5c45bf27
SS
7599{
7600 return sprintf(page, "%u\n", sched_smt_power_savings);
7601}
f718cd4a 7602static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7603 struct sysdev_class_attribute *attr,
48f24c4d 7604 const char *buf, size_t count)
5c45bf27
SS
7605{
7606 return sched_power_savings_store(buf, count, 1);
7607}
f718cd4a
AK
7608static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7609 sched_smt_power_savings_show,
6707de00
AB
7610 sched_smt_power_savings_store);
7611#endif
7612
39aac648 7613int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7614{
7615 int err = 0;
7616
7617#ifdef CONFIG_SCHED_SMT
7618 if (smt_capable())
7619 err = sysfs_create_file(&cls->kset.kobj,
7620 &attr_sched_smt_power_savings.attr);
7621#endif
7622#ifdef CONFIG_SCHED_MC
7623 if (!err && mc_capable())
7624 err = sysfs_create_file(&cls->kset.kobj,
7625 &attr_sched_mc_power_savings.attr);
7626#endif
7627 return err;
7628}
6d6bc0ad 7629#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7630
1da177e4 7631/*
3a101d05
TH
7632 * Update cpusets according to cpu_active mask. If cpusets are
7633 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7634 * around partition_sched_domains().
1da177e4 7635 */
0b2e918a
TH
7636static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7637 void *hcpu)
e761b772 7638{
3a101d05 7639 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7640 case CPU_ONLINE:
6ad4c188 7641 case CPU_DOWN_FAILED:
3a101d05 7642 cpuset_update_active_cpus();
e761b772 7643 return NOTIFY_OK;
3a101d05
TH
7644 default:
7645 return NOTIFY_DONE;
7646 }
7647}
e761b772 7648
0b2e918a
TH
7649static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7650 void *hcpu)
3a101d05
TH
7651{
7652 switch (action & ~CPU_TASKS_FROZEN) {
7653 case CPU_DOWN_PREPARE:
7654 cpuset_update_active_cpus();
7655 return NOTIFY_OK;
e761b772
MK
7656 default:
7657 return NOTIFY_DONE;
7658 }
7659}
e761b772
MK
7660
7661static int update_runtime(struct notifier_block *nfb,
7662 unsigned long action, void *hcpu)
1da177e4 7663{
7def2be1
PZ
7664 int cpu = (int)(long)hcpu;
7665
1da177e4 7666 switch (action) {
1da177e4 7667 case CPU_DOWN_PREPARE:
8bb78442 7668 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7669 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7670 return NOTIFY_OK;
7671
1da177e4 7672 case CPU_DOWN_FAILED:
8bb78442 7673 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7674 case CPU_ONLINE:
8bb78442 7675 case CPU_ONLINE_FROZEN:
7def2be1 7676 enable_runtime(cpu_rq(cpu));
e761b772
MK
7677 return NOTIFY_OK;
7678
1da177e4
LT
7679 default:
7680 return NOTIFY_DONE;
7681 }
1da177e4 7682}
1da177e4
LT
7683
7684void __init sched_init_smp(void)
7685{
dcc30a35
RR
7686 cpumask_var_t non_isolated_cpus;
7687
7688 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7689 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7690
434d53b0
MT
7691#if defined(CONFIG_NUMA)
7692 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7693 GFP_KERNEL);
7694 BUG_ON(sched_group_nodes_bycpu == NULL);
7695#endif
95402b38 7696 get_online_cpus();
712555ee 7697 mutex_lock(&sched_domains_mutex);
6ad4c188 7698 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7699 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7700 if (cpumask_empty(non_isolated_cpus))
7701 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7702 mutex_unlock(&sched_domains_mutex);
95402b38 7703 put_online_cpus();
e761b772 7704
3a101d05
TH
7705 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7706 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7707
7708 /* RT runtime code needs to handle some hotplug events */
7709 hotcpu_notifier(update_runtime, 0);
7710
b328ca18 7711 init_hrtick();
5c1e1767
NP
7712
7713 /* Move init over to a non-isolated CPU */
dcc30a35 7714 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7715 BUG();
19978ca6 7716 sched_init_granularity();
dcc30a35 7717 free_cpumask_var(non_isolated_cpus);
4212823f 7718
0e3900e6 7719 init_sched_rt_class();
1da177e4
LT
7720}
7721#else
7722void __init sched_init_smp(void)
7723{
19978ca6 7724 sched_init_granularity();
1da177e4
LT
7725}
7726#endif /* CONFIG_SMP */
7727
cd1bb94b
AB
7728const_debug unsigned int sysctl_timer_migration = 1;
7729
1da177e4
LT
7730int in_sched_functions(unsigned long addr)
7731{
1da177e4
LT
7732 return in_lock_functions(addr) ||
7733 (addr >= (unsigned long)__sched_text_start
7734 && addr < (unsigned long)__sched_text_end);
7735}
7736
a9957449 7737static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7738{
7739 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7740 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7741#ifdef CONFIG_FAIR_GROUP_SCHED
7742 cfs_rq->rq = rq;
7743#endif
67e9fb2a 7744 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7745}
7746
fa85ae24
PZ
7747static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7748{
7749 struct rt_prio_array *array;
7750 int i;
7751
7752 array = &rt_rq->active;
7753 for (i = 0; i < MAX_RT_PRIO; i++) {
7754 INIT_LIST_HEAD(array->queue + i);
7755 __clear_bit(i, array->bitmap);
7756 }
7757 /* delimiter for bitsearch: */
7758 __set_bit(MAX_RT_PRIO, array->bitmap);
7759
052f1dc7 7760#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7761 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7762#ifdef CONFIG_SMP
e864c499 7763 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7764#endif
48d5e258 7765#endif
fa85ae24
PZ
7766#ifdef CONFIG_SMP
7767 rt_rq->rt_nr_migratory = 0;
fa85ae24 7768 rt_rq->overloaded = 0;
05fa785c 7769 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7770#endif
7771
7772 rt_rq->rt_time = 0;
7773 rt_rq->rt_throttled = 0;
ac086bc2 7774 rt_rq->rt_runtime = 0;
0986b11b 7775 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7776
052f1dc7 7777#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7778 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7779 rt_rq->rq = rq;
7780#endif
fa85ae24
PZ
7781}
7782
6f505b16 7783#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7784static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7785 struct sched_entity *se, int cpu, int add,
7786 struct sched_entity *parent)
6f505b16 7787{
ec7dc8ac 7788 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7789 tg->cfs_rq[cpu] = cfs_rq;
7790 init_cfs_rq(cfs_rq, rq);
7791 cfs_rq->tg = tg;
7792 if (add)
7793 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7794
7795 tg->se[cpu] = se;
354d60c2
DG
7796 /* se could be NULL for init_task_group */
7797 if (!se)
7798 return;
7799
ec7dc8ac
DG
7800 if (!parent)
7801 se->cfs_rq = &rq->cfs;
7802 else
7803 se->cfs_rq = parent->my_q;
7804
6f505b16
PZ
7805 se->my_q = cfs_rq;
7806 se->load.weight = tg->shares;
e05510d0 7807 se->load.inv_weight = 0;
ec7dc8ac 7808 se->parent = parent;
6f505b16 7809}
052f1dc7 7810#endif
6f505b16 7811
052f1dc7 7812#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7813static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7814 struct sched_rt_entity *rt_se, int cpu, int add,
7815 struct sched_rt_entity *parent)
6f505b16 7816{
ec7dc8ac
DG
7817 struct rq *rq = cpu_rq(cpu);
7818
6f505b16
PZ
7819 tg->rt_rq[cpu] = rt_rq;
7820 init_rt_rq(rt_rq, rq);
7821 rt_rq->tg = tg;
ac086bc2 7822 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7823 if (add)
7824 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7825
7826 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7827 if (!rt_se)
7828 return;
7829
ec7dc8ac
DG
7830 if (!parent)
7831 rt_se->rt_rq = &rq->rt;
7832 else
7833 rt_se->rt_rq = parent->my_q;
7834
6f505b16 7835 rt_se->my_q = rt_rq;
ec7dc8ac 7836 rt_se->parent = parent;
6f505b16
PZ
7837 INIT_LIST_HEAD(&rt_se->run_list);
7838}
7839#endif
7840
1da177e4
LT
7841void __init sched_init(void)
7842{
dd41f596 7843 int i, j;
434d53b0
MT
7844 unsigned long alloc_size = 0, ptr;
7845
7846#ifdef CONFIG_FAIR_GROUP_SCHED
7847 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7848#endif
7849#ifdef CONFIG_RT_GROUP_SCHED
7850 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7851#endif
df7c8e84 7852#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7853 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7854#endif
434d53b0 7855 if (alloc_size) {
36b7b6d4 7856 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7857
7858#ifdef CONFIG_FAIR_GROUP_SCHED
7859 init_task_group.se = (struct sched_entity **)ptr;
7860 ptr += nr_cpu_ids * sizeof(void **);
7861
7862 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7863 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7864
6d6bc0ad 7865#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7866#ifdef CONFIG_RT_GROUP_SCHED
7867 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7868 ptr += nr_cpu_ids * sizeof(void **);
7869
7870 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7871 ptr += nr_cpu_ids * sizeof(void **);
7872
6d6bc0ad 7873#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7874#ifdef CONFIG_CPUMASK_OFFSTACK
7875 for_each_possible_cpu(i) {
7876 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7877 ptr += cpumask_size();
7878 }
7879#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7880 }
dd41f596 7881
57d885fe
GH
7882#ifdef CONFIG_SMP
7883 init_defrootdomain();
7884#endif
7885
d0b27fa7
PZ
7886 init_rt_bandwidth(&def_rt_bandwidth,
7887 global_rt_period(), global_rt_runtime());
7888
7889#ifdef CONFIG_RT_GROUP_SCHED
7890 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7891 global_rt_period(), global_rt_runtime());
6d6bc0ad 7892#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7893
7c941438 7894#ifdef CONFIG_CGROUP_SCHED
6f505b16 7895 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7896 INIT_LIST_HEAD(&init_task_group.children);
7897
7c941438 7898#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7899
4a6cc4bd
JK
7900#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7901 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7902 __alignof__(unsigned long));
7903#endif
0a945022 7904 for_each_possible_cpu(i) {
70b97a7f 7905 struct rq *rq;
1da177e4
LT
7906
7907 rq = cpu_rq(i);
05fa785c 7908 raw_spin_lock_init(&rq->lock);
7897986b 7909 rq->nr_running = 0;
dce48a84
TG
7910 rq->calc_load_active = 0;
7911 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7912 init_cfs_rq(&rq->cfs, rq);
6f505b16 7913 init_rt_rq(&rq->rt, rq);
dd41f596 7914#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7915 init_task_group.shares = init_task_group_load;
6f505b16 7916 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7917#ifdef CONFIG_CGROUP_SCHED
7918 /*
7919 * How much cpu bandwidth does init_task_group get?
7920 *
7921 * In case of task-groups formed thr' the cgroup filesystem, it
7922 * gets 100% of the cpu resources in the system. This overall
7923 * system cpu resource is divided among the tasks of
7924 * init_task_group and its child task-groups in a fair manner,
7925 * based on each entity's (task or task-group's) weight
7926 * (se->load.weight).
7927 *
7928 * In other words, if init_task_group has 10 tasks of weight
7929 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7930 * then A0's share of the cpu resource is:
7931 *
0d905bca 7932 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7933 *
7934 * We achieve this by letting init_task_group's tasks sit
7935 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7936 */
ec7dc8ac 7937 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7938#endif
354d60c2
DG
7939#endif /* CONFIG_FAIR_GROUP_SCHED */
7940
7941 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7942#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7943 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7944#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7945 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7946#endif
dd41f596 7947#endif
1da177e4 7948
dd41f596
IM
7949 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7950 rq->cpu_load[j] = 0;
fdf3e95d
VP
7951
7952 rq->last_load_update_tick = jiffies;
7953
1da177e4 7954#ifdef CONFIG_SMP
41c7ce9a 7955 rq->sd = NULL;
57d885fe 7956 rq->rd = NULL;
e51fd5e2 7957 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7958 rq->post_schedule = 0;
1da177e4 7959 rq->active_balance = 0;
dd41f596 7960 rq->next_balance = jiffies;
1da177e4 7961 rq->push_cpu = 0;
0a2966b4 7962 rq->cpu = i;
1f11eb6a 7963 rq->online = 0;
eae0c9df
MG
7964 rq->idle_stamp = 0;
7965 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7966 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7967#ifdef CONFIG_NO_HZ
7968 rq->nohz_balance_kick = 0;
7969 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7970#endif
1da177e4 7971#endif
8f4d37ec 7972 init_rq_hrtick(rq);
1da177e4 7973 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7974 }
7975
2dd73a4f 7976 set_load_weight(&init_task);
b50f60ce 7977
e107be36
AK
7978#ifdef CONFIG_PREEMPT_NOTIFIERS
7979 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7980#endif
7981
c9819f45 7982#ifdef CONFIG_SMP
962cf36c 7983 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7984#endif
7985
b50f60ce 7986#ifdef CONFIG_RT_MUTEXES
1d615482 7987 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7988#endif
7989
1da177e4
LT
7990 /*
7991 * The boot idle thread does lazy MMU switching as well:
7992 */
7993 atomic_inc(&init_mm.mm_count);
7994 enter_lazy_tlb(&init_mm, current);
7995
7996 /*
7997 * Make us the idle thread. Technically, schedule() should not be
7998 * called from this thread, however somewhere below it might be,
7999 * but because we are the idle thread, we just pick up running again
8000 * when this runqueue becomes "idle".
8001 */
8002 init_idle(current, smp_processor_id());
dce48a84
TG
8003
8004 calc_load_update = jiffies + LOAD_FREQ;
8005
dd41f596
IM
8006 /*
8007 * During early bootup we pretend to be a normal task:
8008 */
8009 current->sched_class = &fair_sched_class;
6892b75e 8010
6a7b3dc3 8011 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8012 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8013#ifdef CONFIG_SMP
7d1e6a9b 8014#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8015 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8016 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8017 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8018 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8019 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8020#endif
bdddd296
RR
8021 /* May be allocated at isolcpus cmdline parse time */
8022 if (cpu_isolated_map == NULL)
8023 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8024#endif /* SMP */
6a7b3dc3 8025
cdd6c482 8026 perf_event_init();
0d905bca 8027
6892b75e 8028 scheduler_running = 1;
1da177e4
LT
8029}
8030
8031#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8032static inline int preempt_count_equals(int preempt_offset)
8033{
234da7bc 8034 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8035
8036 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8037}
8038
d894837f 8039void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8040{
48f24c4d 8041#ifdef in_atomic
1da177e4
LT
8042 static unsigned long prev_jiffy; /* ratelimiting */
8043
e4aafea2
FW
8044 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8045 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8046 return;
8047 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8048 return;
8049 prev_jiffy = jiffies;
8050
3df0fc5b
PZ
8051 printk(KERN_ERR
8052 "BUG: sleeping function called from invalid context at %s:%d\n",
8053 file, line);
8054 printk(KERN_ERR
8055 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8056 in_atomic(), irqs_disabled(),
8057 current->pid, current->comm);
aef745fc
IM
8058
8059 debug_show_held_locks(current);
8060 if (irqs_disabled())
8061 print_irqtrace_events(current);
8062 dump_stack();
1da177e4
LT
8063#endif
8064}
8065EXPORT_SYMBOL(__might_sleep);
8066#endif
8067
8068#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8069static void normalize_task(struct rq *rq, struct task_struct *p)
8070{
8071 int on_rq;
3e51f33f 8072
3a5e4dc1
AK
8073 on_rq = p->se.on_rq;
8074 if (on_rq)
8075 deactivate_task(rq, p, 0);
8076 __setscheduler(rq, p, SCHED_NORMAL, 0);
8077 if (on_rq) {
8078 activate_task(rq, p, 0);
8079 resched_task(rq->curr);
8080 }
8081}
8082
1da177e4
LT
8083void normalize_rt_tasks(void)
8084{
a0f98a1c 8085 struct task_struct *g, *p;
1da177e4 8086 unsigned long flags;
70b97a7f 8087 struct rq *rq;
1da177e4 8088
4cf5d77a 8089 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8090 do_each_thread(g, p) {
178be793
IM
8091 /*
8092 * Only normalize user tasks:
8093 */
8094 if (!p->mm)
8095 continue;
8096
6cfb0d5d 8097 p->se.exec_start = 0;
6cfb0d5d 8098#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8099 p->se.statistics.wait_start = 0;
8100 p->se.statistics.sleep_start = 0;
8101 p->se.statistics.block_start = 0;
6cfb0d5d 8102#endif
dd41f596
IM
8103
8104 if (!rt_task(p)) {
8105 /*
8106 * Renice negative nice level userspace
8107 * tasks back to 0:
8108 */
8109 if (TASK_NICE(p) < 0 && p->mm)
8110 set_user_nice(p, 0);
1da177e4 8111 continue;
dd41f596 8112 }
1da177e4 8113
1d615482 8114 raw_spin_lock(&p->pi_lock);
b29739f9 8115 rq = __task_rq_lock(p);
1da177e4 8116
178be793 8117 normalize_task(rq, p);
3a5e4dc1 8118
b29739f9 8119 __task_rq_unlock(rq);
1d615482 8120 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8121 } while_each_thread(g, p);
8122
4cf5d77a 8123 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8124}
8125
8126#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8127
67fc4e0c 8128#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8129/*
67fc4e0c 8130 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8131 *
8132 * They can only be called when the whole system has been
8133 * stopped - every CPU needs to be quiescent, and no scheduling
8134 * activity can take place. Using them for anything else would
8135 * be a serious bug, and as a result, they aren't even visible
8136 * under any other configuration.
8137 */
8138
8139/**
8140 * curr_task - return the current task for a given cpu.
8141 * @cpu: the processor in question.
8142 *
8143 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8144 */
36c8b586 8145struct task_struct *curr_task(int cpu)
1df5c10a
LT
8146{
8147 return cpu_curr(cpu);
8148}
8149
67fc4e0c
JW
8150#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8151
8152#ifdef CONFIG_IA64
1df5c10a
LT
8153/**
8154 * set_curr_task - set the current task for a given cpu.
8155 * @cpu: the processor in question.
8156 * @p: the task pointer to set.
8157 *
8158 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8159 * are serviced on a separate stack. It allows the architecture to switch the
8160 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8161 * must be called with all CPU's synchronized, and interrupts disabled, the
8162 * and caller must save the original value of the current task (see
8163 * curr_task() above) and restore that value before reenabling interrupts and
8164 * re-starting the system.
8165 *
8166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8167 */
36c8b586 8168void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8169{
8170 cpu_curr(cpu) = p;
8171}
8172
8173#endif
29f59db3 8174
bccbe08a
PZ
8175#ifdef CONFIG_FAIR_GROUP_SCHED
8176static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8177{
8178 int i;
8179
8180 for_each_possible_cpu(i) {
8181 if (tg->cfs_rq)
8182 kfree(tg->cfs_rq[i]);
8183 if (tg->se)
8184 kfree(tg->se[i]);
6f505b16
PZ
8185 }
8186
8187 kfree(tg->cfs_rq);
8188 kfree(tg->se);
6f505b16
PZ
8189}
8190
ec7dc8ac
DG
8191static
8192int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8193{
29f59db3 8194 struct cfs_rq *cfs_rq;
eab17229 8195 struct sched_entity *se;
9b5b7751 8196 struct rq *rq;
29f59db3
SV
8197 int i;
8198
434d53b0 8199 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8200 if (!tg->cfs_rq)
8201 goto err;
434d53b0 8202 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8203 if (!tg->se)
8204 goto err;
052f1dc7
PZ
8205
8206 tg->shares = NICE_0_LOAD;
29f59db3
SV
8207
8208 for_each_possible_cpu(i) {
9b5b7751 8209 rq = cpu_rq(i);
29f59db3 8210
eab17229
LZ
8211 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8212 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8213 if (!cfs_rq)
8214 goto err;
8215
eab17229
LZ
8216 se = kzalloc_node(sizeof(struct sched_entity),
8217 GFP_KERNEL, cpu_to_node(i));
29f59db3 8218 if (!se)
dfc12eb2 8219 goto err_free_rq;
29f59db3 8220
eab17229 8221 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8222 }
8223
8224 return 1;
8225
49246274 8226err_free_rq:
dfc12eb2 8227 kfree(cfs_rq);
49246274 8228err:
bccbe08a
PZ
8229 return 0;
8230}
8231
8232static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8233{
8234 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8235 &cpu_rq(cpu)->leaf_cfs_rq_list);
8236}
8237
8238static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8239{
8240 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8241}
6d6bc0ad 8242#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8243static inline void free_fair_sched_group(struct task_group *tg)
8244{
8245}
8246
ec7dc8ac
DG
8247static inline
8248int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8249{
8250 return 1;
8251}
8252
8253static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8254{
8255}
8256
8257static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8258{
8259}
6d6bc0ad 8260#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8261
8262#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8263static void free_rt_sched_group(struct task_group *tg)
8264{
8265 int i;
8266
d0b27fa7
PZ
8267 destroy_rt_bandwidth(&tg->rt_bandwidth);
8268
bccbe08a
PZ
8269 for_each_possible_cpu(i) {
8270 if (tg->rt_rq)
8271 kfree(tg->rt_rq[i]);
8272 if (tg->rt_se)
8273 kfree(tg->rt_se[i]);
8274 }
8275
8276 kfree(tg->rt_rq);
8277 kfree(tg->rt_se);
8278}
8279
ec7dc8ac
DG
8280static
8281int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8282{
8283 struct rt_rq *rt_rq;
eab17229 8284 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8285 struct rq *rq;
8286 int i;
8287
434d53b0 8288 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8289 if (!tg->rt_rq)
8290 goto err;
434d53b0 8291 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8292 if (!tg->rt_se)
8293 goto err;
8294
d0b27fa7
PZ
8295 init_rt_bandwidth(&tg->rt_bandwidth,
8296 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8297
8298 for_each_possible_cpu(i) {
8299 rq = cpu_rq(i);
8300
eab17229
LZ
8301 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8302 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8303 if (!rt_rq)
8304 goto err;
29f59db3 8305
eab17229
LZ
8306 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8307 GFP_KERNEL, cpu_to_node(i));
6f505b16 8308 if (!rt_se)
dfc12eb2 8309 goto err_free_rq;
29f59db3 8310
eab17229 8311 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8312 }
8313
bccbe08a
PZ
8314 return 1;
8315
49246274 8316err_free_rq:
dfc12eb2 8317 kfree(rt_rq);
49246274 8318err:
bccbe08a
PZ
8319 return 0;
8320}
8321
8322static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8323{
8324 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8325 &cpu_rq(cpu)->leaf_rt_rq_list);
8326}
8327
8328static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8329{
8330 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8331}
6d6bc0ad 8332#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8333static inline void free_rt_sched_group(struct task_group *tg)
8334{
8335}
8336
ec7dc8ac
DG
8337static inline
8338int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8339{
8340 return 1;
8341}
8342
8343static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8344{
8345}
8346
8347static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8348{
8349}
6d6bc0ad 8350#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8351
7c941438 8352#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8353static void free_sched_group(struct task_group *tg)
8354{
8355 free_fair_sched_group(tg);
8356 free_rt_sched_group(tg);
8357 kfree(tg);
8358}
8359
8360/* allocate runqueue etc for a new task group */
ec7dc8ac 8361struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8362{
8363 struct task_group *tg;
8364 unsigned long flags;
8365 int i;
8366
8367 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8368 if (!tg)
8369 return ERR_PTR(-ENOMEM);
8370
ec7dc8ac 8371 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8372 goto err;
8373
ec7dc8ac 8374 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8375 goto err;
8376
8ed36996 8377 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8378 for_each_possible_cpu(i) {
bccbe08a
PZ
8379 register_fair_sched_group(tg, i);
8380 register_rt_sched_group(tg, i);
9b5b7751 8381 }
6f505b16 8382 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8383
8384 WARN_ON(!parent); /* root should already exist */
8385
8386 tg->parent = parent;
f473aa5e 8387 INIT_LIST_HEAD(&tg->children);
09f2724a 8388 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8389 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8390
9b5b7751 8391 return tg;
29f59db3
SV
8392
8393err:
6f505b16 8394 free_sched_group(tg);
29f59db3
SV
8395 return ERR_PTR(-ENOMEM);
8396}
8397
9b5b7751 8398/* rcu callback to free various structures associated with a task group */
6f505b16 8399static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8400{
29f59db3 8401 /* now it should be safe to free those cfs_rqs */
6f505b16 8402 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8403}
8404
9b5b7751 8405/* Destroy runqueue etc associated with a task group */
4cf86d77 8406void sched_destroy_group(struct task_group *tg)
29f59db3 8407{
8ed36996 8408 unsigned long flags;
9b5b7751 8409 int i;
29f59db3 8410
8ed36996 8411 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8412 for_each_possible_cpu(i) {
bccbe08a
PZ
8413 unregister_fair_sched_group(tg, i);
8414 unregister_rt_sched_group(tg, i);
9b5b7751 8415 }
6f505b16 8416 list_del_rcu(&tg->list);
f473aa5e 8417 list_del_rcu(&tg->siblings);
8ed36996 8418 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8419
9b5b7751 8420 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8421 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8422}
8423
9b5b7751 8424/* change task's runqueue when it moves between groups.
3a252015
IM
8425 * The caller of this function should have put the task in its new group
8426 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8427 * reflect its new group.
9b5b7751
SV
8428 */
8429void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8430{
8431 int on_rq, running;
8432 unsigned long flags;
8433 struct rq *rq;
8434
8435 rq = task_rq_lock(tsk, &flags);
8436
051a1d1a 8437 running = task_current(rq, tsk);
29f59db3
SV
8438 on_rq = tsk->se.on_rq;
8439
0e1f3483 8440 if (on_rq)
29f59db3 8441 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8442 if (unlikely(running))
8443 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8444
6f505b16 8445 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8446
810b3817
PZ
8447#ifdef CONFIG_FAIR_GROUP_SCHED
8448 if (tsk->sched_class->moved_group)
88ec22d3 8449 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8450#endif
8451
0e1f3483
HS
8452 if (unlikely(running))
8453 tsk->sched_class->set_curr_task(rq);
8454 if (on_rq)
371fd7e7 8455 enqueue_task(rq, tsk, 0);
29f59db3 8456
29f59db3
SV
8457 task_rq_unlock(rq, &flags);
8458}
7c941438 8459#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8460
052f1dc7 8461#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8462static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8463{
8464 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8465 int on_rq;
8466
29f59db3 8467 on_rq = se->on_rq;
62fb1851 8468 if (on_rq)
29f59db3
SV
8469 dequeue_entity(cfs_rq, se, 0);
8470
8471 se->load.weight = shares;
e05510d0 8472 se->load.inv_weight = 0;
29f59db3 8473
62fb1851 8474 if (on_rq)
29f59db3 8475 enqueue_entity(cfs_rq, se, 0);
c09595f6 8476}
62fb1851 8477
c09595f6
PZ
8478static void set_se_shares(struct sched_entity *se, unsigned long shares)
8479{
8480 struct cfs_rq *cfs_rq = se->cfs_rq;
8481 struct rq *rq = cfs_rq->rq;
8482 unsigned long flags;
8483
05fa785c 8484 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8485 __set_se_shares(se, shares);
05fa785c 8486 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8487}
8488
8ed36996
PZ
8489static DEFINE_MUTEX(shares_mutex);
8490
4cf86d77 8491int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8492{
8493 int i;
8ed36996 8494 unsigned long flags;
c61935fd 8495
ec7dc8ac
DG
8496 /*
8497 * We can't change the weight of the root cgroup.
8498 */
8499 if (!tg->se[0])
8500 return -EINVAL;
8501
18d95a28
PZ
8502 if (shares < MIN_SHARES)
8503 shares = MIN_SHARES;
cb4ad1ff
MX
8504 else if (shares > MAX_SHARES)
8505 shares = MAX_SHARES;
62fb1851 8506
8ed36996 8507 mutex_lock(&shares_mutex);
9b5b7751 8508 if (tg->shares == shares)
5cb350ba 8509 goto done;
29f59db3 8510
8ed36996 8511 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8512 for_each_possible_cpu(i)
8513 unregister_fair_sched_group(tg, i);
f473aa5e 8514 list_del_rcu(&tg->siblings);
8ed36996 8515 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8516
8517 /* wait for any ongoing reference to this group to finish */
8518 synchronize_sched();
8519
8520 /*
8521 * Now we are free to modify the group's share on each cpu
8522 * w/o tripping rebalance_share or load_balance_fair.
8523 */
9b5b7751 8524 tg->shares = shares;
c09595f6
PZ
8525 for_each_possible_cpu(i) {
8526 /*
8527 * force a rebalance
8528 */
8529 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8530 set_se_shares(tg->se[i], shares);
c09595f6 8531 }
29f59db3 8532
6b2d7700
SV
8533 /*
8534 * Enable load balance activity on this group, by inserting it back on
8535 * each cpu's rq->leaf_cfs_rq_list.
8536 */
8ed36996 8537 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8538 for_each_possible_cpu(i)
8539 register_fair_sched_group(tg, i);
f473aa5e 8540 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8541 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8542done:
8ed36996 8543 mutex_unlock(&shares_mutex);
9b5b7751 8544 return 0;
29f59db3
SV
8545}
8546
5cb350ba
DG
8547unsigned long sched_group_shares(struct task_group *tg)
8548{
8549 return tg->shares;
8550}
052f1dc7 8551#endif
5cb350ba 8552
052f1dc7 8553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8554/*
9f0c1e56 8555 * Ensure that the real time constraints are schedulable.
6f505b16 8556 */
9f0c1e56
PZ
8557static DEFINE_MUTEX(rt_constraints_mutex);
8558
8559static unsigned long to_ratio(u64 period, u64 runtime)
8560{
8561 if (runtime == RUNTIME_INF)
9a7e0b18 8562 return 1ULL << 20;
9f0c1e56 8563
9a7e0b18 8564 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8565}
8566
9a7e0b18
PZ
8567/* Must be called with tasklist_lock held */
8568static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8569{
9a7e0b18 8570 struct task_struct *g, *p;
b40b2e8e 8571
9a7e0b18
PZ
8572 do_each_thread(g, p) {
8573 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8574 return 1;
8575 } while_each_thread(g, p);
b40b2e8e 8576
9a7e0b18
PZ
8577 return 0;
8578}
b40b2e8e 8579
9a7e0b18
PZ
8580struct rt_schedulable_data {
8581 struct task_group *tg;
8582 u64 rt_period;
8583 u64 rt_runtime;
8584};
b40b2e8e 8585
9a7e0b18
PZ
8586static int tg_schedulable(struct task_group *tg, void *data)
8587{
8588 struct rt_schedulable_data *d = data;
8589 struct task_group *child;
8590 unsigned long total, sum = 0;
8591 u64 period, runtime;
b40b2e8e 8592
9a7e0b18
PZ
8593 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8594 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8595
9a7e0b18
PZ
8596 if (tg == d->tg) {
8597 period = d->rt_period;
8598 runtime = d->rt_runtime;
b40b2e8e 8599 }
b40b2e8e 8600
4653f803
PZ
8601 /*
8602 * Cannot have more runtime than the period.
8603 */
8604 if (runtime > period && runtime != RUNTIME_INF)
8605 return -EINVAL;
6f505b16 8606
4653f803
PZ
8607 /*
8608 * Ensure we don't starve existing RT tasks.
8609 */
9a7e0b18
PZ
8610 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8611 return -EBUSY;
6f505b16 8612
9a7e0b18 8613 total = to_ratio(period, runtime);
6f505b16 8614
4653f803
PZ
8615 /*
8616 * Nobody can have more than the global setting allows.
8617 */
8618 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8619 return -EINVAL;
6f505b16 8620
4653f803
PZ
8621 /*
8622 * The sum of our children's runtime should not exceed our own.
8623 */
9a7e0b18
PZ
8624 list_for_each_entry_rcu(child, &tg->children, siblings) {
8625 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8626 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8627
9a7e0b18
PZ
8628 if (child == d->tg) {
8629 period = d->rt_period;
8630 runtime = d->rt_runtime;
8631 }
6f505b16 8632
9a7e0b18 8633 sum += to_ratio(period, runtime);
9f0c1e56 8634 }
6f505b16 8635
9a7e0b18
PZ
8636 if (sum > total)
8637 return -EINVAL;
8638
8639 return 0;
6f505b16
PZ
8640}
8641
9a7e0b18 8642static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8643{
9a7e0b18
PZ
8644 struct rt_schedulable_data data = {
8645 .tg = tg,
8646 .rt_period = period,
8647 .rt_runtime = runtime,
8648 };
8649
8650 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8651}
8652
d0b27fa7
PZ
8653static int tg_set_bandwidth(struct task_group *tg,
8654 u64 rt_period, u64 rt_runtime)
6f505b16 8655{
ac086bc2 8656 int i, err = 0;
9f0c1e56 8657
9f0c1e56 8658 mutex_lock(&rt_constraints_mutex);
521f1a24 8659 read_lock(&tasklist_lock);
9a7e0b18
PZ
8660 err = __rt_schedulable(tg, rt_period, rt_runtime);
8661 if (err)
9f0c1e56 8662 goto unlock;
ac086bc2 8663
0986b11b 8664 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8665 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8666 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8667
8668 for_each_possible_cpu(i) {
8669 struct rt_rq *rt_rq = tg->rt_rq[i];
8670
0986b11b 8671 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8672 rt_rq->rt_runtime = rt_runtime;
0986b11b 8673 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8674 }
0986b11b 8675 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8676unlock:
521f1a24 8677 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8678 mutex_unlock(&rt_constraints_mutex);
8679
8680 return err;
6f505b16
PZ
8681}
8682
d0b27fa7
PZ
8683int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8684{
8685 u64 rt_runtime, rt_period;
8686
8687 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8688 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8689 if (rt_runtime_us < 0)
8690 rt_runtime = RUNTIME_INF;
8691
8692 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8693}
8694
9f0c1e56
PZ
8695long sched_group_rt_runtime(struct task_group *tg)
8696{
8697 u64 rt_runtime_us;
8698
d0b27fa7 8699 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8700 return -1;
8701
d0b27fa7 8702 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8703 do_div(rt_runtime_us, NSEC_PER_USEC);
8704 return rt_runtime_us;
8705}
d0b27fa7
PZ
8706
8707int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8708{
8709 u64 rt_runtime, rt_period;
8710
8711 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8712 rt_runtime = tg->rt_bandwidth.rt_runtime;
8713
619b0488
R
8714 if (rt_period == 0)
8715 return -EINVAL;
8716
d0b27fa7
PZ
8717 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8718}
8719
8720long sched_group_rt_period(struct task_group *tg)
8721{
8722 u64 rt_period_us;
8723
8724 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8725 do_div(rt_period_us, NSEC_PER_USEC);
8726 return rt_period_us;
8727}
8728
8729static int sched_rt_global_constraints(void)
8730{
4653f803 8731 u64 runtime, period;
d0b27fa7
PZ
8732 int ret = 0;
8733
ec5d4989
HS
8734 if (sysctl_sched_rt_period <= 0)
8735 return -EINVAL;
8736
4653f803
PZ
8737 runtime = global_rt_runtime();
8738 period = global_rt_period();
8739
8740 /*
8741 * Sanity check on the sysctl variables.
8742 */
8743 if (runtime > period && runtime != RUNTIME_INF)
8744 return -EINVAL;
10b612f4 8745
d0b27fa7 8746 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8747 read_lock(&tasklist_lock);
4653f803 8748 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8749 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8750 mutex_unlock(&rt_constraints_mutex);
8751
8752 return ret;
8753}
54e99124
DG
8754
8755int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8756{
8757 /* Don't accept realtime tasks when there is no way for them to run */
8758 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8759 return 0;
8760
8761 return 1;
8762}
8763
6d6bc0ad 8764#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8765static int sched_rt_global_constraints(void)
8766{
ac086bc2
PZ
8767 unsigned long flags;
8768 int i;
8769
ec5d4989
HS
8770 if (sysctl_sched_rt_period <= 0)
8771 return -EINVAL;
8772
60aa605d
PZ
8773 /*
8774 * There's always some RT tasks in the root group
8775 * -- migration, kstopmachine etc..
8776 */
8777 if (sysctl_sched_rt_runtime == 0)
8778 return -EBUSY;
8779
0986b11b 8780 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8781 for_each_possible_cpu(i) {
8782 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8783
0986b11b 8784 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8785 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8786 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8787 }
0986b11b 8788 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8789
d0b27fa7
PZ
8790 return 0;
8791}
6d6bc0ad 8792#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8793
8794int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8795 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8796 loff_t *ppos)
8797{
8798 int ret;
8799 int old_period, old_runtime;
8800 static DEFINE_MUTEX(mutex);
8801
8802 mutex_lock(&mutex);
8803 old_period = sysctl_sched_rt_period;
8804 old_runtime = sysctl_sched_rt_runtime;
8805
8d65af78 8806 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8807
8808 if (!ret && write) {
8809 ret = sched_rt_global_constraints();
8810 if (ret) {
8811 sysctl_sched_rt_period = old_period;
8812 sysctl_sched_rt_runtime = old_runtime;
8813 } else {
8814 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8815 def_rt_bandwidth.rt_period =
8816 ns_to_ktime(global_rt_period());
8817 }
8818 }
8819 mutex_unlock(&mutex);
8820
8821 return ret;
8822}
68318b8e 8823
052f1dc7 8824#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8825
8826/* return corresponding task_group object of a cgroup */
2b01dfe3 8827static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8828{
2b01dfe3
PM
8829 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8830 struct task_group, css);
68318b8e
SV
8831}
8832
8833static struct cgroup_subsys_state *
2b01dfe3 8834cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8835{
ec7dc8ac 8836 struct task_group *tg, *parent;
68318b8e 8837
2b01dfe3 8838 if (!cgrp->parent) {
68318b8e 8839 /* This is early initialization for the top cgroup */
68318b8e
SV
8840 return &init_task_group.css;
8841 }
8842
ec7dc8ac
DG
8843 parent = cgroup_tg(cgrp->parent);
8844 tg = sched_create_group(parent);
68318b8e
SV
8845 if (IS_ERR(tg))
8846 return ERR_PTR(-ENOMEM);
8847
68318b8e
SV
8848 return &tg->css;
8849}
8850
41a2d6cf
IM
8851static void
8852cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8853{
2b01dfe3 8854 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8855
8856 sched_destroy_group(tg);
8857}
8858
41a2d6cf 8859static int
be367d09 8860cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8861{
b68aa230 8862#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8863 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8864 return -EINVAL;
8865#else
68318b8e
SV
8866 /* We don't support RT-tasks being in separate groups */
8867 if (tsk->sched_class != &fair_sched_class)
8868 return -EINVAL;
b68aa230 8869#endif
be367d09
BB
8870 return 0;
8871}
68318b8e 8872
be367d09
BB
8873static int
8874cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8875 struct task_struct *tsk, bool threadgroup)
8876{
8877 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8878 if (retval)
8879 return retval;
8880 if (threadgroup) {
8881 struct task_struct *c;
8882 rcu_read_lock();
8883 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8884 retval = cpu_cgroup_can_attach_task(cgrp, c);
8885 if (retval) {
8886 rcu_read_unlock();
8887 return retval;
8888 }
8889 }
8890 rcu_read_unlock();
8891 }
68318b8e
SV
8892 return 0;
8893}
8894
8895static void
2b01dfe3 8896cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8897 struct cgroup *old_cont, struct task_struct *tsk,
8898 bool threadgroup)
68318b8e
SV
8899{
8900 sched_move_task(tsk);
be367d09
BB
8901 if (threadgroup) {
8902 struct task_struct *c;
8903 rcu_read_lock();
8904 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8905 sched_move_task(c);
8906 }
8907 rcu_read_unlock();
8908 }
68318b8e
SV
8909}
8910
052f1dc7 8911#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8912static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8913 u64 shareval)
68318b8e 8914{
2b01dfe3 8915 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8916}
8917
f4c753b7 8918static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8919{
2b01dfe3 8920 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8921
8922 return (u64) tg->shares;
8923}
6d6bc0ad 8924#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8925
052f1dc7 8926#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8927static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8928 s64 val)
6f505b16 8929{
06ecb27c 8930 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8931}
8932
06ecb27c 8933static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8934{
06ecb27c 8935 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8936}
d0b27fa7
PZ
8937
8938static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8939 u64 rt_period_us)
8940{
8941 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8942}
8943
8944static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8945{
8946 return sched_group_rt_period(cgroup_tg(cgrp));
8947}
6d6bc0ad 8948#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8949
fe5c7cc2 8950static struct cftype cpu_files[] = {
052f1dc7 8951#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8952 {
8953 .name = "shares",
f4c753b7
PM
8954 .read_u64 = cpu_shares_read_u64,
8955 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8956 },
052f1dc7
PZ
8957#endif
8958#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8959 {
9f0c1e56 8960 .name = "rt_runtime_us",
06ecb27c
PM
8961 .read_s64 = cpu_rt_runtime_read,
8962 .write_s64 = cpu_rt_runtime_write,
6f505b16 8963 },
d0b27fa7
PZ
8964 {
8965 .name = "rt_period_us",
f4c753b7
PM
8966 .read_u64 = cpu_rt_period_read_uint,
8967 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8968 },
052f1dc7 8969#endif
68318b8e
SV
8970};
8971
8972static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8973{
fe5c7cc2 8974 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8975}
8976
8977struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8978 .name = "cpu",
8979 .create = cpu_cgroup_create,
8980 .destroy = cpu_cgroup_destroy,
8981 .can_attach = cpu_cgroup_can_attach,
8982 .attach = cpu_cgroup_attach,
8983 .populate = cpu_cgroup_populate,
8984 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8985 .early_init = 1,
8986};
8987
052f1dc7 8988#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8989
8990#ifdef CONFIG_CGROUP_CPUACCT
8991
8992/*
8993 * CPU accounting code for task groups.
8994 *
8995 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8996 * (balbir@in.ibm.com).
8997 */
8998
934352f2 8999/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9000struct cpuacct {
9001 struct cgroup_subsys_state css;
9002 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9003 u64 __percpu *cpuusage;
ef12fefa 9004 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9005 struct cpuacct *parent;
d842de87
SV
9006};
9007
9008struct cgroup_subsys cpuacct_subsys;
9009
9010/* return cpu accounting group corresponding to this container */
32cd756a 9011static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9012{
32cd756a 9013 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9014 struct cpuacct, css);
9015}
9016
9017/* return cpu accounting group to which this task belongs */
9018static inline struct cpuacct *task_ca(struct task_struct *tsk)
9019{
9020 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9021 struct cpuacct, css);
9022}
9023
9024/* create a new cpu accounting group */
9025static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9026 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9027{
9028 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9029 int i;
d842de87
SV
9030
9031 if (!ca)
ef12fefa 9032 goto out;
d842de87
SV
9033
9034 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9035 if (!ca->cpuusage)
9036 goto out_free_ca;
9037
9038 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9039 if (percpu_counter_init(&ca->cpustat[i], 0))
9040 goto out_free_counters;
d842de87 9041
934352f2
BR
9042 if (cgrp->parent)
9043 ca->parent = cgroup_ca(cgrp->parent);
9044
d842de87 9045 return &ca->css;
ef12fefa
BR
9046
9047out_free_counters:
9048 while (--i >= 0)
9049 percpu_counter_destroy(&ca->cpustat[i]);
9050 free_percpu(ca->cpuusage);
9051out_free_ca:
9052 kfree(ca);
9053out:
9054 return ERR_PTR(-ENOMEM);
d842de87
SV
9055}
9056
9057/* destroy an existing cpu accounting group */
41a2d6cf 9058static void
32cd756a 9059cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9060{
32cd756a 9061 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9062 int i;
d842de87 9063
ef12fefa
BR
9064 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9065 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9066 free_percpu(ca->cpuusage);
9067 kfree(ca);
9068}
9069
720f5498
KC
9070static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9071{
b36128c8 9072 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9073 u64 data;
9074
9075#ifndef CONFIG_64BIT
9076 /*
9077 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9078 */
05fa785c 9079 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9080 data = *cpuusage;
05fa785c 9081 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9082#else
9083 data = *cpuusage;
9084#endif
9085
9086 return data;
9087}
9088
9089static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9090{
b36128c8 9091 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9092
9093#ifndef CONFIG_64BIT
9094 /*
9095 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9096 */
05fa785c 9097 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9098 *cpuusage = val;
05fa785c 9099 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9100#else
9101 *cpuusage = val;
9102#endif
9103}
9104
d842de87 9105/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9106static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9107{
32cd756a 9108 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9109 u64 totalcpuusage = 0;
9110 int i;
9111
720f5498
KC
9112 for_each_present_cpu(i)
9113 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9114
9115 return totalcpuusage;
9116}
9117
0297b803
DG
9118static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9119 u64 reset)
9120{
9121 struct cpuacct *ca = cgroup_ca(cgrp);
9122 int err = 0;
9123 int i;
9124
9125 if (reset) {
9126 err = -EINVAL;
9127 goto out;
9128 }
9129
720f5498
KC
9130 for_each_present_cpu(i)
9131 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9132
0297b803
DG
9133out:
9134 return err;
9135}
9136
e9515c3c
KC
9137static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9138 struct seq_file *m)
9139{
9140 struct cpuacct *ca = cgroup_ca(cgroup);
9141 u64 percpu;
9142 int i;
9143
9144 for_each_present_cpu(i) {
9145 percpu = cpuacct_cpuusage_read(ca, i);
9146 seq_printf(m, "%llu ", (unsigned long long) percpu);
9147 }
9148 seq_printf(m, "\n");
9149 return 0;
9150}
9151
ef12fefa
BR
9152static const char *cpuacct_stat_desc[] = {
9153 [CPUACCT_STAT_USER] = "user",
9154 [CPUACCT_STAT_SYSTEM] = "system",
9155};
9156
9157static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9158 struct cgroup_map_cb *cb)
9159{
9160 struct cpuacct *ca = cgroup_ca(cgrp);
9161 int i;
9162
9163 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9164 s64 val = percpu_counter_read(&ca->cpustat[i]);
9165 val = cputime64_to_clock_t(val);
9166 cb->fill(cb, cpuacct_stat_desc[i], val);
9167 }
9168 return 0;
9169}
9170
d842de87
SV
9171static struct cftype files[] = {
9172 {
9173 .name = "usage",
f4c753b7
PM
9174 .read_u64 = cpuusage_read,
9175 .write_u64 = cpuusage_write,
d842de87 9176 },
e9515c3c
KC
9177 {
9178 .name = "usage_percpu",
9179 .read_seq_string = cpuacct_percpu_seq_read,
9180 },
ef12fefa
BR
9181 {
9182 .name = "stat",
9183 .read_map = cpuacct_stats_show,
9184 },
d842de87
SV
9185};
9186
32cd756a 9187static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9188{
32cd756a 9189 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9190}
9191
9192/*
9193 * charge this task's execution time to its accounting group.
9194 *
9195 * called with rq->lock held.
9196 */
9197static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9198{
9199 struct cpuacct *ca;
934352f2 9200 int cpu;
d842de87 9201
c40c6f85 9202 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9203 return;
9204
934352f2 9205 cpu = task_cpu(tsk);
a18b83b7
BR
9206
9207 rcu_read_lock();
9208
d842de87 9209 ca = task_ca(tsk);
d842de87 9210
934352f2 9211 for (; ca; ca = ca->parent) {
b36128c8 9212 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9213 *cpuusage += cputime;
9214 }
a18b83b7
BR
9215
9216 rcu_read_unlock();
d842de87
SV
9217}
9218
fa535a77
AB
9219/*
9220 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9221 * in cputime_t units. As a result, cpuacct_update_stats calls
9222 * percpu_counter_add with values large enough to always overflow the
9223 * per cpu batch limit causing bad SMP scalability.
9224 *
9225 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9226 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9227 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9228 */
9229#ifdef CONFIG_SMP
9230#define CPUACCT_BATCH \
9231 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9232#else
9233#define CPUACCT_BATCH 0
9234#endif
9235
ef12fefa
BR
9236/*
9237 * Charge the system/user time to the task's accounting group.
9238 */
9239static void cpuacct_update_stats(struct task_struct *tsk,
9240 enum cpuacct_stat_index idx, cputime_t val)
9241{
9242 struct cpuacct *ca;
fa535a77 9243 int batch = CPUACCT_BATCH;
ef12fefa
BR
9244
9245 if (unlikely(!cpuacct_subsys.active))
9246 return;
9247
9248 rcu_read_lock();
9249 ca = task_ca(tsk);
9250
9251 do {
fa535a77 9252 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9253 ca = ca->parent;
9254 } while (ca);
9255 rcu_read_unlock();
9256}
9257
d842de87
SV
9258struct cgroup_subsys cpuacct_subsys = {
9259 .name = "cpuacct",
9260 .create = cpuacct_create,
9261 .destroy = cpuacct_destroy,
9262 .populate = cpuacct_populate,
9263 .subsys_id = cpuacct_subsys_id,
9264};
9265#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9266
9267#ifndef CONFIG_SMP
9268
03b042bf
PM
9269void synchronize_sched_expedited(void)
9270{
fc390cde 9271 barrier();
03b042bf
PM
9272}
9273EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9274
9275#else /* #ifndef CONFIG_SMP */
9276
cc631fb7 9277static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9278
cc631fb7 9279static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9280{
969c7921
TH
9281 /*
9282 * There must be a full memory barrier on each affected CPU
9283 * between the time that try_stop_cpus() is called and the
9284 * time that it returns.
9285 *
9286 * In the current initial implementation of cpu_stop, the
9287 * above condition is already met when the control reaches
9288 * this point and the following smp_mb() is not strictly
9289 * necessary. Do smp_mb() anyway for documentation and
9290 * robustness against future implementation changes.
9291 */
cc631fb7 9292 smp_mb(); /* See above comment block. */
969c7921 9293 return 0;
03b042bf 9294}
03b042bf
PM
9295
9296/*
9297 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9298 * approach to force grace period to end quickly. This consumes
9299 * significant time on all CPUs, and is thus not recommended for
9300 * any sort of common-case code.
9301 *
9302 * Note that it is illegal to call this function while holding any
9303 * lock that is acquired by a CPU-hotplug notifier. Failing to
9304 * observe this restriction will result in deadlock.
9305 */
9306void synchronize_sched_expedited(void)
9307{
969c7921 9308 int snap, trycount = 0;
03b042bf
PM
9309
9310 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9311 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9312 get_online_cpus();
969c7921
TH
9313 while (try_stop_cpus(cpu_online_mask,
9314 synchronize_sched_expedited_cpu_stop,
94458d5e 9315 NULL) == -EAGAIN) {
03b042bf
PM
9316 put_online_cpus();
9317 if (trycount++ < 10)
9318 udelay(trycount * num_online_cpus());
9319 else {
9320 synchronize_sched();
9321 return;
9322 }
969c7921 9323 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9324 smp_mb(); /* ensure test happens before caller kfree */
9325 return;
9326 }
9327 get_online_cpus();
9328 }
969c7921 9329 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9330 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9331 put_online_cpus();
03b042bf
PM
9332}
9333EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9334
9335#endif /* #else #ifndef CONFIG_SMP */