]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: remove unused JIFFIES_TO_NS() macro
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
e05606d3
IM
135static inline int rt_policy(int policy)
136{
137 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
138 return 1;
139 return 0;
140}
141
142static inline int task_has_rt_policy(struct task_struct *p)
143{
144 return rt_policy(p->policy);
145}
146
1da177e4 147/*
6aa645ea 148 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 149 */
6aa645ea
IM
150struct rt_prio_array {
151 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
152 struct list_head queue[MAX_RT_PRIO];
153};
154
29f59db3
SV
155#ifdef CONFIG_FAIR_GROUP_SCHED
156
68318b8e
SV
157#include <linux/cgroup.h>
158
29f59db3
SV
159struct cfs_rq;
160
161/* task group related information */
4cf86d77 162struct task_group {
68318b8e
SV
163#ifdef CONFIG_FAIR_CGROUP_SCHED
164 struct cgroup_subsys_state css;
165#endif
29f59db3
SV
166 /* schedulable entities of this group on each cpu */
167 struct sched_entity **se;
168 /* runqueue "owned" by this group on each cpu */
169 struct cfs_rq **cfs_rq;
6b2d7700
SV
170
171 /*
172 * shares assigned to a task group governs how much of cpu bandwidth
173 * is allocated to the group. The more shares a group has, the more is
174 * the cpu bandwidth allocated to it.
175 *
176 * For ex, lets say that there are three task groups, A, B and C which
177 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
178 * cpu bandwidth allocated by the scheduler to task groups A, B and C
179 * should be:
180 *
181 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
182 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
183 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
184 *
185 * The weight assigned to a task group's schedulable entities on every
186 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
187 * group's shares. For ex: lets say that task group A has been
188 * assigned shares of 1000 and there are two CPUs in a system. Then,
189 *
190 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
191 *
192 * Note: It's not necessary that each of a task's group schedulable
193 * entity have the same weight on all CPUs. If the group
194 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
195 * better distribution of weight could be:
196 *
197 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
198 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
199 *
200 * rebalance_shares() is responsible for distributing the shares of a
201 * task groups like this among the group's schedulable entities across
202 * cpus.
203 *
204 */
29f59db3 205 unsigned long shares;
6b2d7700 206
ae8393e5 207 struct rcu_head rcu;
29f59db3
SV
208};
209
210/* Default task group's sched entity on each cpu */
211static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
212/* Default task group's cfs_rq on each cpu */
213static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
214
9b5b7751
SV
215static struct sched_entity *init_sched_entity_p[NR_CPUS];
216static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 217
ec2c507f
SV
218/* task_group_mutex serializes add/remove of task groups and also changes to
219 * a task group's cpu shares.
220 */
221static DEFINE_MUTEX(task_group_mutex);
222
a1835615
SV
223/* doms_cur_mutex serializes access to doms_cur[] array */
224static DEFINE_MUTEX(doms_cur_mutex);
225
6b2d7700
SV
226#ifdef CONFIG_SMP
227/* kernel thread that runs rebalance_shares() periodically */
228static struct task_struct *lb_monitor_task;
229static int load_balance_monitor(void *unused);
230#endif
231
232static void set_se_shares(struct sched_entity *se, unsigned long shares);
233
29f59db3 234/* Default task group.
3a252015 235 * Every task in system belong to this group at bootup.
29f59db3 236 */
4cf86d77 237struct task_group init_task_group = {
3a252015
IM
238 .se = init_sched_entity_p,
239 .cfs_rq = init_cfs_rq_p,
240};
9b5b7751 241
24e377a8 242#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 243# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 244#else
93f992cc 245# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
246#endif
247
6b2d7700
SV
248#define MIN_GROUP_SHARES 2
249
93f992cc 250static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
251
252/* return group to which a task belongs */
4cf86d77 253static inline struct task_group *task_group(struct task_struct *p)
29f59db3 254{
4cf86d77 255 struct task_group *tg;
9b5b7751 256
24e377a8
SV
257#ifdef CONFIG_FAIR_USER_SCHED
258 tg = p->user->tg;
68318b8e
SV
259#elif defined(CONFIG_FAIR_CGROUP_SCHED)
260 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
261 struct task_group, css);
24e377a8 262#else
41a2d6cf 263 tg = &init_task_group;
24e377a8 264#endif
9b5b7751 265 return tg;
29f59db3
SV
266}
267
268/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 269static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 270{
ce96b5ac
DA
271 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
272 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
273}
274
ec2c507f
SV
275static inline void lock_task_group_list(void)
276{
277 mutex_lock(&task_group_mutex);
278}
279
280static inline void unlock_task_group_list(void)
281{
282 mutex_unlock(&task_group_mutex);
283}
284
a1835615
SV
285static inline void lock_doms_cur(void)
286{
287 mutex_lock(&doms_cur_mutex);
288}
289
290static inline void unlock_doms_cur(void)
291{
292 mutex_unlock(&doms_cur_mutex);
293}
294
29f59db3
SV
295#else
296
ce96b5ac 297static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
298static inline void lock_task_group_list(void) { }
299static inline void unlock_task_group_list(void) { }
a1835615
SV
300static inline void lock_doms_cur(void) { }
301static inline void unlock_doms_cur(void) { }
29f59db3
SV
302
303#endif /* CONFIG_FAIR_GROUP_SCHED */
304
6aa645ea
IM
305/* CFS-related fields in a runqueue */
306struct cfs_rq {
307 struct load_weight load;
308 unsigned long nr_running;
309
6aa645ea 310 u64 exec_clock;
e9acbff6 311 u64 min_vruntime;
6aa645ea
IM
312
313 struct rb_root tasks_timeline;
314 struct rb_node *rb_leftmost;
315 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
316 /* 'curr' points to currently running entity on this cfs_rq.
317 * It is set to NULL otherwise (i.e when none are currently running).
318 */
319 struct sched_entity *curr;
ddc97297
PZ
320
321 unsigned long nr_spread_over;
322
62160e3f 323#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
324 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
325
41a2d6cf
IM
326 /*
327 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
328 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
329 * (like users, containers etc.)
330 *
331 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
332 * list is used during load balance.
333 */
41a2d6cf
IM
334 struct list_head leaf_cfs_rq_list;
335 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
336#endif
337};
1da177e4 338
6aa645ea
IM
339/* Real-Time classes' related field in a runqueue: */
340struct rt_rq {
341 struct rt_prio_array active;
342 int rt_load_balance_idx;
343 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 344 unsigned long rt_nr_running;
73fe6aae 345 unsigned long rt_nr_migratory;
764a9d6f
SR
346 /* highest queued rt task prio */
347 int highest_prio;
a22d7fc1 348 int overloaded;
6aa645ea
IM
349};
350
57d885fe
GH
351#ifdef CONFIG_SMP
352
353/*
354 * We add the notion of a root-domain which will be used to define per-domain
355 * variables. Each exclusive cpuset essentially defines an island domain by
356 * fully partitioning the member cpus from any other cpuset. Whenever a new
357 * exclusive cpuset is created, we also create and attach a new root-domain
358 * object.
359 *
360 * By default the system creates a single root-domain with all cpus as
361 * members (mimicking the global state we have today).
362 */
363struct root_domain {
364 atomic_t refcount;
365 cpumask_t span;
366 cpumask_t online;
637f5085
GH
367
368 /*
369 * The "RT overload" flag: it gets set if a CPU has more than
370 * one runnable RT task.
371 */
372 cpumask_t rto_mask;
373 atomic_t rto_count;
57d885fe
GH
374};
375
376static struct root_domain def_root_domain;
377
378#endif
379
1da177e4
LT
380/*
381 * This is the main, per-CPU runqueue data structure.
382 *
383 * Locking rule: those places that want to lock multiple runqueues
384 * (such as the load balancing or the thread migration code), lock
385 * acquire operations must be ordered by ascending &runqueue.
386 */
70b97a7f 387struct rq {
d8016491
IM
388 /* runqueue lock: */
389 spinlock_t lock;
1da177e4
LT
390
391 /*
392 * nr_running and cpu_load should be in the same cacheline because
393 * remote CPUs use both these fields when doing load calculation.
394 */
395 unsigned long nr_running;
6aa645ea
IM
396 #define CPU_LOAD_IDX_MAX 5
397 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 398 unsigned char idle_at_tick;
46cb4b7c
SS
399#ifdef CONFIG_NO_HZ
400 unsigned char in_nohz_recently;
401#endif
d8016491
IM
402 /* capture load from *all* tasks on this cpu: */
403 struct load_weight load;
6aa645ea
IM
404 unsigned long nr_load_updates;
405 u64 nr_switches;
406
407 struct cfs_rq cfs;
408#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
409 /* list of leaf cfs_rq on this cpu: */
410 struct list_head leaf_cfs_rq_list;
1da177e4 411#endif
41a2d6cf 412 struct rt_rq rt;
1da177e4
LT
413
414 /*
415 * This is part of a global counter where only the total sum
416 * over all CPUs matters. A task can increase this counter on
417 * one CPU and if it got migrated afterwards it may decrease
418 * it on another CPU. Always updated under the runqueue lock:
419 */
420 unsigned long nr_uninterruptible;
421
36c8b586 422 struct task_struct *curr, *idle;
c9819f45 423 unsigned long next_balance;
1da177e4 424 struct mm_struct *prev_mm;
6aa645ea 425
6aa645ea
IM
426 u64 clock, prev_clock_raw;
427 s64 clock_max_delta;
428
429 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
430 u64 idle_clock;
431 unsigned int clock_deep_idle_events;
529c7726 432 u64 tick_timestamp;
6aa645ea 433
1da177e4
LT
434 atomic_t nr_iowait;
435
436#ifdef CONFIG_SMP
57d885fe 437 struct root_domain *rd;
1da177e4
LT
438 struct sched_domain *sd;
439
440 /* For active balancing */
441 int active_balance;
442 int push_cpu;
d8016491
IM
443 /* cpu of this runqueue: */
444 int cpu;
1da177e4 445
36c8b586 446 struct task_struct *migration_thread;
1da177e4
LT
447 struct list_head migration_queue;
448#endif
449
450#ifdef CONFIG_SCHEDSTATS
451 /* latency stats */
452 struct sched_info rq_sched_info;
453
454 /* sys_sched_yield() stats */
480b9434
KC
455 unsigned int yld_exp_empty;
456 unsigned int yld_act_empty;
457 unsigned int yld_both_empty;
458 unsigned int yld_count;
1da177e4
LT
459
460 /* schedule() stats */
480b9434
KC
461 unsigned int sched_switch;
462 unsigned int sched_count;
463 unsigned int sched_goidle;
1da177e4
LT
464
465 /* try_to_wake_up() stats */
480b9434
KC
466 unsigned int ttwu_count;
467 unsigned int ttwu_local;
b8efb561
IM
468
469 /* BKL stats */
480b9434 470 unsigned int bkl_count;
1da177e4 471#endif
fcb99371 472 struct lock_class_key rq_lock_key;
1da177e4
LT
473};
474
f34e3b61 475static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 476
dd41f596
IM
477static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
478{
479 rq->curr->sched_class->check_preempt_curr(rq, p);
480}
481
0a2966b4
CL
482static inline int cpu_of(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485 return rq->cpu;
486#else
487 return 0;
488#endif
489}
490
20d315d4 491/*
b04a0f4c
IM
492 * Update the per-runqueue clock, as finegrained as the platform can give
493 * us, but without assuming monotonicity, etc.:
20d315d4 494 */
b04a0f4c 495static void __update_rq_clock(struct rq *rq)
20d315d4
IM
496{
497 u64 prev_raw = rq->prev_clock_raw;
498 u64 now = sched_clock();
499 s64 delta = now - prev_raw;
500 u64 clock = rq->clock;
501
b04a0f4c
IM
502#ifdef CONFIG_SCHED_DEBUG
503 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
504#endif
20d315d4
IM
505 /*
506 * Protect against sched_clock() occasionally going backwards:
507 */
508 if (unlikely(delta < 0)) {
509 clock++;
510 rq->clock_warps++;
511 } else {
512 /*
513 * Catch too large forward jumps too:
514 */
529c7726
IM
515 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
516 if (clock < rq->tick_timestamp + TICK_NSEC)
517 clock = rq->tick_timestamp + TICK_NSEC;
518 else
519 clock++;
20d315d4
IM
520 rq->clock_overflows++;
521 } else {
522 if (unlikely(delta > rq->clock_max_delta))
523 rq->clock_max_delta = delta;
524 clock += delta;
525 }
526 }
527
528 rq->prev_clock_raw = now;
529 rq->clock = clock;
b04a0f4c 530}
20d315d4 531
b04a0f4c
IM
532static void update_rq_clock(struct rq *rq)
533{
534 if (likely(smp_processor_id() == cpu_of(rq)))
535 __update_rq_clock(rq);
20d315d4
IM
536}
537
674311d5
NP
538/*
539 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 540 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
541 *
542 * The domain tree of any CPU may only be accessed from within
543 * preempt-disabled sections.
544 */
48f24c4d
IM
545#define for_each_domain(cpu, __sd) \
546 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
547
548#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
549#define this_rq() (&__get_cpu_var(runqueues))
550#define task_rq(p) cpu_rq(task_cpu(p))
551#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
552
bf5c91ba
IM
553/*
554 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
555 */
556#ifdef CONFIG_SCHED_DEBUG
557# define const_debug __read_mostly
558#else
559# define const_debug static const
560#endif
561
562/*
563 * Debugging: various feature bits
564 */
565enum {
bbdba7c0 566 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
567 SCHED_FEAT_WAKEUP_PREEMPT = 2,
568 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
569 SCHED_FEAT_TREE_AVG = 8,
570 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
571};
572
573const_debug unsigned int sysctl_sched_features =
8401f775 574 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 575 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
576 SCHED_FEAT_START_DEBIT * 1 |
577 SCHED_FEAT_TREE_AVG * 0 |
9612633a 578 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
579
580#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
581
b82d9fdd
PZ
582/*
583 * Number of tasks to iterate in a single balance run.
584 * Limited because this is done with IRQs disabled.
585 */
586const_debug unsigned int sysctl_sched_nr_migrate = 32;
587
e436d800
IM
588/*
589 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
590 * clock constructed from sched_clock():
591 */
592unsigned long long cpu_clock(int cpu)
593{
e436d800
IM
594 unsigned long long now;
595 unsigned long flags;
b04a0f4c 596 struct rq *rq;
e436d800 597
2cd4d0ea 598 local_irq_save(flags);
b04a0f4c 599 rq = cpu_rq(cpu);
8ced5f69
IM
600 /*
601 * Only call sched_clock() if the scheduler has already been
602 * initialized (some code might call cpu_clock() very early):
603 */
604 if (rq->idle)
605 update_rq_clock(rq);
b04a0f4c 606 now = rq->clock;
2cd4d0ea 607 local_irq_restore(flags);
e436d800
IM
608
609 return now;
610}
a58f6f25 611EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 612
1da177e4 613#ifndef prepare_arch_switch
4866cde0
NP
614# define prepare_arch_switch(next) do { } while (0)
615#endif
616#ifndef finish_arch_switch
617# define finish_arch_switch(prev) do { } while (0)
618#endif
619
051a1d1a
DA
620static inline int task_current(struct rq *rq, struct task_struct *p)
621{
622 return rq->curr == p;
623}
624
4866cde0 625#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 626static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 627{
051a1d1a 628 return task_current(rq, p);
4866cde0
NP
629}
630
70b97a7f 631static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
632{
633}
634
70b97a7f 635static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 636{
da04c035
IM
637#ifdef CONFIG_DEBUG_SPINLOCK
638 /* this is a valid case when another task releases the spinlock */
639 rq->lock.owner = current;
640#endif
8a25d5de
IM
641 /*
642 * If we are tracking spinlock dependencies then we have to
643 * fix up the runqueue lock - which gets 'carried over' from
644 * prev into current:
645 */
646 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
647
4866cde0
NP
648 spin_unlock_irq(&rq->lock);
649}
650
651#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 652static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
653{
654#ifdef CONFIG_SMP
655 return p->oncpu;
656#else
051a1d1a 657 return task_current(rq, p);
4866cde0
NP
658#endif
659}
660
70b97a7f 661static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
662{
663#ifdef CONFIG_SMP
664 /*
665 * We can optimise this out completely for !SMP, because the
666 * SMP rebalancing from interrupt is the only thing that cares
667 * here.
668 */
669 next->oncpu = 1;
670#endif
671#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
672 spin_unlock_irq(&rq->lock);
673#else
674 spin_unlock(&rq->lock);
675#endif
676}
677
70b97a7f 678static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
679{
680#ifdef CONFIG_SMP
681 /*
682 * After ->oncpu is cleared, the task can be moved to a different CPU.
683 * We must ensure this doesn't happen until the switch is completely
684 * finished.
685 */
686 smp_wmb();
687 prev->oncpu = 0;
688#endif
689#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
690 local_irq_enable();
1da177e4 691#endif
4866cde0
NP
692}
693#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 694
b29739f9
IM
695/*
696 * __task_rq_lock - lock the runqueue a given task resides on.
697 * Must be called interrupts disabled.
698 */
70b97a7f 699static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
700 __acquires(rq->lock)
701{
3a5c359a
AK
702 for (;;) {
703 struct rq *rq = task_rq(p);
704 spin_lock(&rq->lock);
705 if (likely(rq == task_rq(p)))
706 return rq;
b29739f9 707 spin_unlock(&rq->lock);
b29739f9 708 }
b29739f9
IM
709}
710
1da177e4
LT
711/*
712 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 713 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
714 * explicitly disabling preemption.
715 */
70b97a7f 716static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
717 __acquires(rq->lock)
718{
70b97a7f 719 struct rq *rq;
1da177e4 720
3a5c359a
AK
721 for (;;) {
722 local_irq_save(*flags);
723 rq = task_rq(p);
724 spin_lock(&rq->lock);
725 if (likely(rq == task_rq(p)))
726 return rq;
1da177e4 727 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 728 }
1da177e4
LT
729}
730
a9957449 731static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
732 __releases(rq->lock)
733{
734 spin_unlock(&rq->lock);
735}
736
70b97a7f 737static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
738 __releases(rq->lock)
739{
740 spin_unlock_irqrestore(&rq->lock, *flags);
741}
742
1da177e4 743/*
cc2a73b5 744 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 745 */
a9957449 746static struct rq *this_rq_lock(void)
1da177e4
LT
747 __acquires(rq->lock)
748{
70b97a7f 749 struct rq *rq;
1da177e4
LT
750
751 local_irq_disable();
752 rq = this_rq();
753 spin_lock(&rq->lock);
754
755 return rq;
756}
757
1b9f19c2 758/*
2aa44d05 759 * We are going deep-idle (irqs are disabled):
1b9f19c2 760 */
2aa44d05 761void sched_clock_idle_sleep_event(void)
1b9f19c2 762{
2aa44d05
IM
763 struct rq *rq = cpu_rq(smp_processor_id());
764
765 spin_lock(&rq->lock);
766 __update_rq_clock(rq);
767 spin_unlock(&rq->lock);
768 rq->clock_deep_idle_events++;
769}
770EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
771
772/*
773 * We just idled delta nanoseconds (called with irqs disabled):
774 */
775void sched_clock_idle_wakeup_event(u64 delta_ns)
776{
777 struct rq *rq = cpu_rq(smp_processor_id());
778 u64 now = sched_clock();
1b9f19c2 779
2bacec8c 780 touch_softlockup_watchdog();
2aa44d05
IM
781 rq->idle_clock += delta_ns;
782 /*
783 * Override the previous timestamp and ignore all
784 * sched_clock() deltas that occured while we idled,
785 * and use the PM-provided delta_ns to advance the
786 * rq clock:
787 */
788 spin_lock(&rq->lock);
789 rq->prev_clock_raw = now;
790 rq->clock += delta_ns;
791 spin_unlock(&rq->lock);
1b9f19c2 792}
2aa44d05 793EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 794
c24d20db
IM
795/*
796 * resched_task - mark a task 'to be rescheduled now'.
797 *
798 * On UP this means the setting of the need_resched flag, on SMP it
799 * might also involve a cross-CPU call to trigger the scheduler on
800 * the target CPU.
801 */
802#ifdef CONFIG_SMP
803
804#ifndef tsk_is_polling
805#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
806#endif
807
808static void resched_task(struct task_struct *p)
809{
810 int cpu;
811
812 assert_spin_locked(&task_rq(p)->lock);
813
814 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
815 return;
816
817 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
818
819 cpu = task_cpu(p);
820 if (cpu == smp_processor_id())
821 return;
822
823 /* NEED_RESCHED must be visible before we test polling */
824 smp_mb();
825 if (!tsk_is_polling(p))
826 smp_send_reschedule(cpu);
827}
828
829static void resched_cpu(int cpu)
830{
831 struct rq *rq = cpu_rq(cpu);
832 unsigned long flags;
833
834 if (!spin_trylock_irqsave(&rq->lock, flags))
835 return;
836 resched_task(cpu_curr(cpu));
837 spin_unlock_irqrestore(&rq->lock, flags);
838}
839#else
840static inline void resched_task(struct task_struct *p)
841{
842 assert_spin_locked(&task_rq(p)->lock);
843 set_tsk_need_resched(p);
844}
845#endif
846
45bf76df
IM
847#if BITS_PER_LONG == 32
848# define WMULT_CONST (~0UL)
849#else
850# define WMULT_CONST (1UL << 32)
851#endif
852
853#define WMULT_SHIFT 32
854
194081eb
IM
855/*
856 * Shift right and round:
857 */
cf2ab469 858#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 859
cb1c4fc9 860static unsigned long
45bf76df
IM
861calc_delta_mine(unsigned long delta_exec, unsigned long weight,
862 struct load_weight *lw)
863{
864 u64 tmp;
865
866 if (unlikely(!lw->inv_weight))
194081eb 867 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
868
869 tmp = (u64)delta_exec * weight;
870 /*
871 * Check whether we'd overflow the 64-bit multiplication:
872 */
194081eb 873 if (unlikely(tmp > WMULT_CONST))
cf2ab469 874 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
875 WMULT_SHIFT/2);
876 else
cf2ab469 877 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 878
ecf691da 879 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
880}
881
882static inline unsigned long
883calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
884{
885 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
886}
887
1091985b 888static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
889{
890 lw->weight += inc;
45bf76df
IM
891}
892
1091985b 893static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
894{
895 lw->weight -= dec;
45bf76df
IM
896}
897
2dd73a4f
PW
898/*
899 * To aid in avoiding the subversion of "niceness" due to uneven distribution
900 * of tasks with abnormal "nice" values across CPUs the contribution that
901 * each task makes to its run queue's load is weighted according to its
41a2d6cf 902 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
903 * scaled version of the new time slice allocation that they receive on time
904 * slice expiry etc.
905 */
906
dd41f596
IM
907#define WEIGHT_IDLEPRIO 2
908#define WMULT_IDLEPRIO (1 << 31)
909
910/*
911 * Nice levels are multiplicative, with a gentle 10% change for every
912 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
913 * nice 1, it will get ~10% less CPU time than another CPU-bound task
914 * that remained on nice 0.
915 *
916 * The "10% effect" is relative and cumulative: from _any_ nice level,
917 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
918 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
919 * If a task goes up by ~10% and another task goes down by ~10% then
920 * the relative distance between them is ~25%.)
dd41f596
IM
921 */
922static const int prio_to_weight[40] = {
254753dc
IM
923 /* -20 */ 88761, 71755, 56483, 46273, 36291,
924 /* -15 */ 29154, 23254, 18705, 14949, 11916,
925 /* -10 */ 9548, 7620, 6100, 4904, 3906,
926 /* -5 */ 3121, 2501, 1991, 1586, 1277,
927 /* 0 */ 1024, 820, 655, 526, 423,
928 /* 5 */ 335, 272, 215, 172, 137,
929 /* 10 */ 110, 87, 70, 56, 45,
930 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
931};
932
5714d2de
IM
933/*
934 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
935 *
936 * In cases where the weight does not change often, we can use the
937 * precalculated inverse to speed up arithmetics by turning divisions
938 * into multiplications:
939 */
dd41f596 940static const u32 prio_to_wmult[40] = {
254753dc
IM
941 /* -20 */ 48388, 59856, 76040, 92818, 118348,
942 /* -15 */ 147320, 184698, 229616, 287308, 360437,
943 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
944 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
945 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
946 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
947 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
948 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 949};
2dd73a4f 950
dd41f596
IM
951static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
952
953/*
954 * runqueue iterator, to support SMP load-balancing between different
955 * scheduling classes, without having to expose their internal data
956 * structures to the load-balancing proper:
957 */
958struct rq_iterator {
959 void *arg;
960 struct task_struct *(*start)(void *);
961 struct task_struct *(*next)(void *);
962};
963
e1d1484f
PW
964#ifdef CONFIG_SMP
965static unsigned long
966balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
967 unsigned long max_load_move, struct sched_domain *sd,
968 enum cpu_idle_type idle, int *all_pinned,
969 int *this_best_prio, struct rq_iterator *iterator);
970
971static int
972iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
973 struct sched_domain *sd, enum cpu_idle_type idle,
974 struct rq_iterator *iterator);
e1d1484f 975#endif
dd41f596 976
d842de87
SV
977#ifdef CONFIG_CGROUP_CPUACCT
978static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
979#else
980static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
981#endif
982
58e2d4ca
SV
983static inline void inc_cpu_load(struct rq *rq, unsigned long load)
984{
985 update_load_add(&rq->load, load);
986}
987
988static inline void dec_cpu_load(struct rq *rq, unsigned long load)
989{
990 update_load_sub(&rq->load, load);
991}
992
e7693a36
GH
993#ifdef CONFIG_SMP
994static unsigned long source_load(int cpu, int type);
995static unsigned long target_load(int cpu, int type);
996static unsigned long cpu_avg_load_per_task(int cpu);
997static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
998#endif /* CONFIG_SMP */
999
dd41f596 1000#include "sched_stats.h"
dd41f596 1001#include "sched_idletask.c"
5522d5d5
IM
1002#include "sched_fair.c"
1003#include "sched_rt.c"
dd41f596
IM
1004#ifdef CONFIG_SCHED_DEBUG
1005# include "sched_debug.c"
1006#endif
1007
1008#define sched_class_highest (&rt_sched_class)
1009
e5fa2237 1010static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1011{
1012 rq->nr_running++;
9c217245
IM
1013}
1014
db53181e 1015static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1016{
1017 rq->nr_running--;
9c217245
IM
1018}
1019
45bf76df
IM
1020static void set_load_weight(struct task_struct *p)
1021{
1022 if (task_has_rt_policy(p)) {
dd41f596
IM
1023 p->se.load.weight = prio_to_weight[0] * 2;
1024 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1025 return;
1026 }
45bf76df 1027
dd41f596
IM
1028 /*
1029 * SCHED_IDLE tasks get minimal weight:
1030 */
1031 if (p->policy == SCHED_IDLE) {
1032 p->se.load.weight = WEIGHT_IDLEPRIO;
1033 p->se.load.inv_weight = WMULT_IDLEPRIO;
1034 return;
1035 }
71f8bd46 1036
dd41f596
IM
1037 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1038 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1039}
1040
8159f87e 1041static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1042{
dd41f596 1043 sched_info_queued(p);
fd390f6a 1044 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1045 p->se.on_rq = 1;
71f8bd46
IM
1046}
1047
69be72c1 1048static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1049{
f02231e5 1050 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1051 p->se.on_rq = 0;
71f8bd46
IM
1052}
1053
14531189 1054/*
dd41f596 1055 * __normal_prio - return the priority that is based on the static prio
14531189 1056 */
14531189
IM
1057static inline int __normal_prio(struct task_struct *p)
1058{
dd41f596 1059 return p->static_prio;
14531189
IM
1060}
1061
b29739f9
IM
1062/*
1063 * Calculate the expected normal priority: i.e. priority
1064 * without taking RT-inheritance into account. Might be
1065 * boosted by interactivity modifiers. Changes upon fork,
1066 * setprio syscalls, and whenever the interactivity
1067 * estimator recalculates.
1068 */
36c8b586 1069static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1070{
1071 int prio;
1072
e05606d3 1073 if (task_has_rt_policy(p))
b29739f9
IM
1074 prio = MAX_RT_PRIO-1 - p->rt_priority;
1075 else
1076 prio = __normal_prio(p);
1077 return prio;
1078}
1079
1080/*
1081 * Calculate the current priority, i.e. the priority
1082 * taken into account by the scheduler. This value might
1083 * be boosted by RT tasks, or might be boosted by
1084 * interactivity modifiers. Will be RT if the task got
1085 * RT-boosted. If not then it returns p->normal_prio.
1086 */
36c8b586 1087static int effective_prio(struct task_struct *p)
b29739f9
IM
1088{
1089 p->normal_prio = normal_prio(p);
1090 /*
1091 * If we are RT tasks or we were boosted to RT priority,
1092 * keep the priority unchanged. Otherwise, update priority
1093 * to the normal priority:
1094 */
1095 if (!rt_prio(p->prio))
1096 return p->normal_prio;
1097 return p->prio;
1098}
1099
1da177e4 1100/*
dd41f596 1101 * activate_task - move a task to the runqueue.
1da177e4 1102 */
dd41f596 1103static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1104{
dd41f596
IM
1105 if (p->state == TASK_UNINTERRUPTIBLE)
1106 rq->nr_uninterruptible--;
1da177e4 1107
8159f87e 1108 enqueue_task(rq, p, wakeup);
e5fa2237 1109 inc_nr_running(p, rq);
1da177e4
LT
1110}
1111
1da177e4
LT
1112/*
1113 * deactivate_task - remove a task from the runqueue.
1114 */
2e1cb74a 1115static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1116{
dd41f596
IM
1117 if (p->state == TASK_UNINTERRUPTIBLE)
1118 rq->nr_uninterruptible++;
1119
69be72c1 1120 dequeue_task(rq, p, sleep);
db53181e 1121 dec_nr_running(p, rq);
1da177e4
LT
1122}
1123
1da177e4
LT
1124/**
1125 * task_curr - is this task currently executing on a CPU?
1126 * @p: the task in question.
1127 */
36c8b586 1128inline int task_curr(const struct task_struct *p)
1da177e4
LT
1129{
1130 return cpu_curr(task_cpu(p)) == p;
1131}
1132
2dd73a4f
PW
1133/* Used instead of source_load when we know the type == 0 */
1134unsigned long weighted_cpuload(const int cpu)
1135{
495eca49 1136 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1137}
1138
1139static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1140{
ce96b5ac 1141 set_task_cfs_rq(p, cpu);
dd41f596 1142#ifdef CONFIG_SMP
ce96b5ac
DA
1143 /*
1144 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1145 * successfuly executed on another CPU. We must ensure that updates of
1146 * per-task data have been completed by this moment.
1147 */
1148 smp_wmb();
dd41f596 1149 task_thread_info(p)->cpu = cpu;
dd41f596 1150#endif
2dd73a4f
PW
1151}
1152
1da177e4 1153#ifdef CONFIG_SMP
c65cc870 1154
cc367732
IM
1155/*
1156 * Is this task likely cache-hot:
1157 */
e7693a36 1158static int
cc367732
IM
1159task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1160{
1161 s64 delta;
1162
1163 if (p->sched_class != &fair_sched_class)
1164 return 0;
1165
6bc1665b
IM
1166 if (sysctl_sched_migration_cost == -1)
1167 return 1;
1168 if (sysctl_sched_migration_cost == 0)
1169 return 0;
1170
cc367732
IM
1171 delta = now - p->se.exec_start;
1172
1173 return delta < (s64)sysctl_sched_migration_cost;
1174}
1175
1176
dd41f596 1177void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1178{
dd41f596
IM
1179 int old_cpu = task_cpu(p);
1180 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1181 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1182 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1183 u64 clock_offset;
dd41f596
IM
1184
1185 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1186
1187#ifdef CONFIG_SCHEDSTATS
1188 if (p->se.wait_start)
1189 p->se.wait_start -= clock_offset;
dd41f596
IM
1190 if (p->se.sleep_start)
1191 p->se.sleep_start -= clock_offset;
1192 if (p->se.block_start)
1193 p->se.block_start -= clock_offset;
cc367732
IM
1194 if (old_cpu != new_cpu) {
1195 schedstat_inc(p, se.nr_migrations);
1196 if (task_hot(p, old_rq->clock, NULL))
1197 schedstat_inc(p, se.nr_forced2_migrations);
1198 }
6cfb0d5d 1199#endif
2830cf8c
SV
1200 p->se.vruntime -= old_cfsrq->min_vruntime -
1201 new_cfsrq->min_vruntime;
dd41f596
IM
1202
1203 __set_task_cpu(p, new_cpu);
c65cc870
IM
1204}
1205
70b97a7f 1206struct migration_req {
1da177e4 1207 struct list_head list;
1da177e4 1208
36c8b586 1209 struct task_struct *task;
1da177e4
LT
1210 int dest_cpu;
1211
1da177e4 1212 struct completion done;
70b97a7f 1213};
1da177e4
LT
1214
1215/*
1216 * The task's runqueue lock must be held.
1217 * Returns true if you have to wait for migration thread.
1218 */
36c8b586 1219static int
70b97a7f 1220migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1221{
70b97a7f 1222 struct rq *rq = task_rq(p);
1da177e4
LT
1223
1224 /*
1225 * If the task is not on a runqueue (and not running), then
1226 * it is sufficient to simply update the task's cpu field.
1227 */
dd41f596 1228 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1229 set_task_cpu(p, dest_cpu);
1230 return 0;
1231 }
1232
1233 init_completion(&req->done);
1da177e4
LT
1234 req->task = p;
1235 req->dest_cpu = dest_cpu;
1236 list_add(&req->list, &rq->migration_queue);
48f24c4d 1237
1da177e4
LT
1238 return 1;
1239}
1240
1241/*
1242 * wait_task_inactive - wait for a thread to unschedule.
1243 *
1244 * The caller must ensure that the task *will* unschedule sometime soon,
1245 * else this function might spin for a *long* time. This function can't
1246 * be called with interrupts off, or it may introduce deadlock with
1247 * smp_call_function() if an IPI is sent by the same process we are
1248 * waiting to become inactive.
1249 */
36c8b586 1250void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1251{
1252 unsigned long flags;
dd41f596 1253 int running, on_rq;
70b97a7f 1254 struct rq *rq;
1da177e4 1255
3a5c359a
AK
1256 for (;;) {
1257 /*
1258 * We do the initial early heuristics without holding
1259 * any task-queue locks at all. We'll only try to get
1260 * the runqueue lock when things look like they will
1261 * work out!
1262 */
1263 rq = task_rq(p);
fa490cfd 1264
3a5c359a
AK
1265 /*
1266 * If the task is actively running on another CPU
1267 * still, just relax and busy-wait without holding
1268 * any locks.
1269 *
1270 * NOTE! Since we don't hold any locks, it's not
1271 * even sure that "rq" stays as the right runqueue!
1272 * But we don't care, since "task_running()" will
1273 * return false if the runqueue has changed and p
1274 * is actually now running somewhere else!
1275 */
1276 while (task_running(rq, p))
1277 cpu_relax();
fa490cfd 1278
3a5c359a
AK
1279 /*
1280 * Ok, time to look more closely! We need the rq
1281 * lock now, to be *sure*. If we're wrong, we'll
1282 * just go back and repeat.
1283 */
1284 rq = task_rq_lock(p, &flags);
1285 running = task_running(rq, p);
1286 on_rq = p->se.on_rq;
1287 task_rq_unlock(rq, &flags);
fa490cfd 1288
3a5c359a
AK
1289 /*
1290 * Was it really running after all now that we
1291 * checked with the proper locks actually held?
1292 *
1293 * Oops. Go back and try again..
1294 */
1295 if (unlikely(running)) {
1296 cpu_relax();
1297 continue;
1298 }
fa490cfd 1299
3a5c359a
AK
1300 /*
1301 * It's not enough that it's not actively running,
1302 * it must be off the runqueue _entirely_, and not
1303 * preempted!
1304 *
1305 * So if it wa still runnable (but just not actively
1306 * running right now), it's preempted, and we should
1307 * yield - it could be a while.
1308 */
1309 if (unlikely(on_rq)) {
1310 schedule_timeout_uninterruptible(1);
1311 continue;
1312 }
fa490cfd 1313
3a5c359a
AK
1314 /*
1315 * Ahh, all good. It wasn't running, and it wasn't
1316 * runnable, which means that it will never become
1317 * running in the future either. We're all done!
1318 */
1319 break;
1320 }
1da177e4
LT
1321}
1322
1323/***
1324 * kick_process - kick a running thread to enter/exit the kernel
1325 * @p: the to-be-kicked thread
1326 *
1327 * Cause a process which is running on another CPU to enter
1328 * kernel-mode, without any delay. (to get signals handled.)
1329 *
1330 * NOTE: this function doesnt have to take the runqueue lock,
1331 * because all it wants to ensure is that the remote task enters
1332 * the kernel. If the IPI races and the task has been migrated
1333 * to another CPU then no harm is done and the purpose has been
1334 * achieved as well.
1335 */
36c8b586 1336void kick_process(struct task_struct *p)
1da177e4
LT
1337{
1338 int cpu;
1339
1340 preempt_disable();
1341 cpu = task_cpu(p);
1342 if ((cpu != smp_processor_id()) && task_curr(p))
1343 smp_send_reschedule(cpu);
1344 preempt_enable();
1345}
1346
1347/*
2dd73a4f
PW
1348 * Return a low guess at the load of a migration-source cpu weighted
1349 * according to the scheduling class and "nice" value.
1da177e4
LT
1350 *
1351 * We want to under-estimate the load of migration sources, to
1352 * balance conservatively.
1353 */
a9957449 1354static unsigned long source_load(int cpu, int type)
1da177e4 1355{
70b97a7f 1356 struct rq *rq = cpu_rq(cpu);
dd41f596 1357 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1358
3b0bd9bc 1359 if (type == 0)
dd41f596 1360 return total;
b910472d 1361
dd41f596 1362 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1363}
1364
1365/*
2dd73a4f
PW
1366 * Return a high guess at the load of a migration-target cpu weighted
1367 * according to the scheduling class and "nice" value.
1da177e4 1368 */
a9957449 1369static unsigned long target_load(int cpu, int type)
1da177e4 1370{
70b97a7f 1371 struct rq *rq = cpu_rq(cpu);
dd41f596 1372 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1373
7897986b 1374 if (type == 0)
dd41f596 1375 return total;
3b0bd9bc 1376
dd41f596 1377 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1378}
1379
1380/*
1381 * Return the average load per task on the cpu's run queue
1382 */
e7693a36 1383static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1384{
70b97a7f 1385 struct rq *rq = cpu_rq(cpu);
dd41f596 1386 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1387 unsigned long n = rq->nr_running;
1388
dd41f596 1389 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1390}
1391
147cbb4b
NP
1392/*
1393 * find_idlest_group finds and returns the least busy CPU group within the
1394 * domain.
1395 */
1396static struct sched_group *
1397find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1398{
1399 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1400 unsigned long min_load = ULONG_MAX, this_load = 0;
1401 int load_idx = sd->forkexec_idx;
1402 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1403
1404 do {
1405 unsigned long load, avg_load;
1406 int local_group;
1407 int i;
1408
da5a5522
BD
1409 /* Skip over this group if it has no CPUs allowed */
1410 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1411 continue;
da5a5522 1412
147cbb4b 1413 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1414
1415 /* Tally up the load of all CPUs in the group */
1416 avg_load = 0;
1417
1418 for_each_cpu_mask(i, group->cpumask) {
1419 /* Bias balancing toward cpus of our domain */
1420 if (local_group)
1421 load = source_load(i, load_idx);
1422 else
1423 load = target_load(i, load_idx);
1424
1425 avg_load += load;
1426 }
1427
1428 /* Adjust by relative CPU power of the group */
5517d86b
ED
1429 avg_load = sg_div_cpu_power(group,
1430 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1431
1432 if (local_group) {
1433 this_load = avg_load;
1434 this = group;
1435 } else if (avg_load < min_load) {
1436 min_load = avg_load;
1437 idlest = group;
1438 }
3a5c359a 1439 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1440
1441 if (!idlest || 100*this_load < imbalance*min_load)
1442 return NULL;
1443 return idlest;
1444}
1445
1446/*
0feaece9 1447 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1448 */
95cdf3b7
IM
1449static int
1450find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1451{
da5a5522 1452 cpumask_t tmp;
147cbb4b
NP
1453 unsigned long load, min_load = ULONG_MAX;
1454 int idlest = -1;
1455 int i;
1456
da5a5522
BD
1457 /* Traverse only the allowed CPUs */
1458 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1459
1460 for_each_cpu_mask(i, tmp) {
2dd73a4f 1461 load = weighted_cpuload(i);
147cbb4b
NP
1462
1463 if (load < min_load || (load == min_load && i == this_cpu)) {
1464 min_load = load;
1465 idlest = i;
1466 }
1467 }
1468
1469 return idlest;
1470}
1471
476d139c
NP
1472/*
1473 * sched_balance_self: balance the current task (running on cpu) in domains
1474 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1475 * SD_BALANCE_EXEC.
1476 *
1477 * Balance, ie. select the least loaded group.
1478 *
1479 * Returns the target CPU number, or the same CPU if no balancing is needed.
1480 *
1481 * preempt must be disabled.
1482 */
1483static int sched_balance_self(int cpu, int flag)
1484{
1485 struct task_struct *t = current;
1486 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1487
c96d145e 1488 for_each_domain(cpu, tmp) {
9761eea8
IM
1489 /*
1490 * If power savings logic is enabled for a domain, stop there.
1491 */
5c45bf27
SS
1492 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1493 break;
476d139c
NP
1494 if (tmp->flags & flag)
1495 sd = tmp;
c96d145e 1496 }
476d139c
NP
1497
1498 while (sd) {
1499 cpumask_t span;
1500 struct sched_group *group;
1a848870
SS
1501 int new_cpu, weight;
1502
1503 if (!(sd->flags & flag)) {
1504 sd = sd->child;
1505 continue;
1506 }
476d139c
NP
1507
1508 span = sd->span;
1509 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1510 if (!group) {
1511 sd = sd->child;
1512 continue;
1513 }
476d139c 1514
da5a5522 1515 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1516 if (new_cpu == -1 || new_cpu == cpu) {
1517 /* Now try balancing at a lower domain level of cpu */
1518 sd = sd->child;
1519 continue;
1520 }
476d139c 1521
1a848870 1522 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1523 cpu = new_cpu;
476d139c
NP
1524 sd = NULL;
1525 weight = cpus_weight(span);
1526 for_each_domain(cpu, tmp) {
1527 if (weight <= cpus_weight(tmp->span))
1528 break;
1529 if (tmp->flags & flag)
1530 sd = tmp;
1531 }
1532 /* while loop will break here if sd == NULL */
1533 }
1534
1535 return cpu;
1536}
1537
1538#endif /* CONFIG_SMP */
1da177e4 1539
1da177e4
LT
1540/***
1541 * try_to_wake_up - wake up a thread
1542 * @p: the to-be-woken-up thread
1543 * @state: the mask of task states that can be woken
1544 * @sync: do a synchronous wakeup?
1545 *
1546 * Put it on the run-queue if it's not already there. The "current"
1547 * thread is always on the run-queue (except when the actual
1548 * re-schedule is in progress), and as such you're allowed to do
1549 * the simpler "current->state = TASK_RUNNING" to mark yourself
1550 * runnable without the overhead of this.
1551 *
1552 * returns failure only if the task is already active.
1553 */
36c8b586 1554static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1555{
cc367732 1556 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1557 unsigned long flags;
1558 long old_state;
70b97a7f 1559 struct rq *rq;
1da177e4 1560#ifdef CONFIG_SMP
1da177e4
LT
1561 int new_cpu;
1562#endif
1563
1564 rq = task_rq_lock(p, &flags);
1565 old_state = p->state;
1566 if (!(old_state & state))
1567 goto out;
1568
dd41f596 1569 if (p->se.on_rq)
1da177e4
LT
1570 goto out_running;
1571
1572 cpu = task_cpu(p);
cc367732 1573 orig_cpu = cpu;
1da177e4
LT
1574 this_cpu = smp_processor_id();
1575
1576#ifdef CONFIG_SMP
1577 if (unlikely(task_running(rq, p)))
1578 goto out_activate;
1579
e7693a36 1580 new_cpu = p->sched_class->select_task_rq(p, sync);
1da177e4
LT
1581 if (new_cpu != cpu) {
1582 set_task_cpu(p, new_cpu);
1583 task_rq_unlock(rq, &flags);
1584 /* might preempt at this point */
1585 rq = task_rq_lock(p, &flags);
1586 old_state = p->state;
1587 if (!(old_state & state))
1588 goto out;
dd41f596 1589 if (p->se.on_rq)
1da177e4
LT
1590 goto out_running;
1591
1592 this_cpu = smp_processor_id();
1593 cpu = task_cpu(p);
1594 }
1595
e7693a36
GH
1596#ifdef CONFIG_SCHEDSTATS
1597 schedstat_inc(rq, ttwu_count);
1598 if (cpu == this_cpu)
1599 schedstat_inc(rq, ttwu_local);
1600 else {
1601 struct sched_domain *sd;
1602 for_each_domain(this_cpu, sd) {
1603 if (cpu_isset(cpu, sd->span)) {
1604 schedstat_inc(sd, ttwu_wake_remote);
1605 break;
1606 }
1607 }
1608 }
1609
1610#endif
1611
1612
1da177e4
LT
1613out_activate:
1614#endif /* CONFIG_SMP */
cc367732
IM
1615 schedstat_inc(p, se.nr_wakeups);
1616 if (sync)
1617 schedstat_inc(p, se.nr_wakeups_sync);
1618 if (orig_cpu != cpu)
1619 schedstat_inc(p, se.nr_wakeups_migrate);
1620 if (cpu == this_cpu)
1621 schedstat_inc(p, se.nr_wakeups_local);
1622 else
1623 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1624 update_rq_clock(rq);
dd41f596 1625 activate_task(rq, p, 1);
9c63d9c0 1626 check_preempt_curr(rq, p);
1da177e4
LT
1627 success = 1;
1628
1629out_running:
1630 p->state = TASK_RUNNING;
4642dafd 1631 wakeup_balance_rt(rq, p);
1da177e4
LT
1632out:
1633 task_rq_unlock(rq, &flags);
1634
1635 return success;
1636}
1637
36c8b586 1638int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1639{
1640 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1641 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1642}
1da177e4
LT
1643EXPORT_SYMBOL(wake_up_process);
1644
36c8b586 1645int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1646{
1647 return try_to_wake_up(p, state, 0);
1648}
1649
1da177e4
LT
1650/*
1651 * Perform scheduler related setup for a newly forked process p.
1652 * p is forked by current.
dd41f596
IM
1653 *
1654 * __sched_fork() is basic setup used by init_idle() too:
1655 */
1656static void __sched_fork(struct task_struct *p)
1657{
dd41f596
IM
1658 p->se.exec_start = 0;
1659 p->se.sum_exec_runtime = 0;
f6cf891c 1660 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1661
1662#ifdef CONFIG_SCHEDSTATS
1663 p->se.wait_start = 0;
dd41f596
IM
1664 p->se.sum_sleep_runtime = 0;
1665 p->se.sleep_start = 0;
dd41f596
IM
1666 p->se.block_start = 0;
1667 p->se.sleep_max = 0;
1668 p->se.block_max = 0;
1669 p->se.exec_max = 0;
eba1ed4b 1670 p->se.slice_max = 0;
dd41f596 1671 p->se.wait_max = 0;
6cfb0d5d 1672#endif
476d139c 1673
dd41f596
IM
1674 INIT_LIST_HEAD(&p->run_list);
1675 p->se.on_rq = 0;
476d139c 1676
e107be36
AK
1677#ifdef CONFIG_PREEMPT_NOTIFIERS
1678 INIT_HLIST_HEAD(&p->preempt_notifiers);
1679#endif
1680
1da177e4
LT
1681 /*
1682 * We mark the process as running here, but have not actually
1683 * inserted it onto the runqueue yet. This guarantees that
1684 * nobody will actually run it, and a signal or other external
1685 * event cannot wake it up and insert it on the runqueue either.
1686 */
1687 p->state = TASK_RUNNING;
dd41f596
IM
1688}
1689
1690/*
1691 * fork()/clone()-time setup:
1692 */
1693void sched_fork(struct task_struct *p, int clone_flags)
1694{
1695 int cpu = get_cpu();
1696
1697 __sched_fork(p);
1698
1699#ifdef CONFIG_SMP
1700 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1701#endif
02e4bac2 1702 set_task_cpu(p, cpu);
b29739f9
IM
1703
1704 /*
1705 * Make sure we do not leak PI boosting priority to the child:
1706 */
1707 p->prio = current->normal_prio;
2ddbf952
HS
1708 if (!rt_prio(p->prio))
1709 p->sched_class = &fair_sched_class;
b29739f9 1710
52f17b6c 1711#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1712 if (likely(sched_info_on()))
52f17b6c 1713 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1714#endif
d6077cb8 1715#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1716 p->oncpu = 0;
1717#endif
1da177e4 1718#ifdef CONFIG_PREEMPT
4866cde0 1719 /* Want to start with kernel preemption disabled. */
a1261f54 1720 task_thread_info(p)->preempt_count = 1;
1da177e4 1721#endif
476d139c 1722 put_cpu();
1da177e4
LT
1723}
1724
1725/*
1726 * wake_up_new_task - wake up a newly created task for the first time.
1727 *
1728 * This function will do some initial scheduler statistics housekeeping
1729 * that must be done for every newly created context, then puts the task
1730 * on the runqueue and wakes it.
1731 */
36c8b586 1732void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1733{
1734 unsigned long flags;
dd41f596 1735 struct rq *rq;
1da177e4
LT
1736
1737 rq = task_rq_lock(p, &flags);
147cbb4b 1738 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1739 update_rq_clock(rq);
1da177e4
LT
1740
1741 p->prio = effective_prio(p);
1742
b9dca1e0 1743 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1744 activate_task(rq, p, 0);
1da177e4 1745 } else {
1da177e4 1746 /*
dd41f596
IM
1747 * Let the scheduling class do new task startup
1748 * management (if any):
1da177e4 1749 */
ee0827d8 1750 p->sched_class->task_new(rq, p);
e5fa2237 1751 inc_nr_running(p, rq);
1da177e4 1752 }
dd41f596 1753 check_preempt_curr(rq, p);
0d1311a5 1754 wakeup_balance_rt(rq, p);
dd41f596 1755 task_rq_unlock(rq, &flags);
1da177e4
LT
1756}
1757
e107be36
AK
1758#ifdef CONFIG_PREEMPT_NOTIFIERS
1759
1760/**
421cee29
RD
1761 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1762 * @notifier: notifier struct to register
e107be36
AK
1763 */
1764void preempt_notifier_register(struct preempt_notifier *notifier)
1765{
1766 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1767}
1768EXPORT_SYMBOL_GPL(preempt_notifier_register);
1769
1770/**
1771 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1772 * @notifier: notifier struct to unregister
e107be36
AK
1773 *
1774 * This is safe to call from within a preemption notifier.
1775 */
1776void preempt_notifier_unregister(struct preempt_notifier *notifier)
1777{
1778 hlist_del(&notifier->link);
1779}
1780EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1781
1782static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1783{
1784 struct preempt_notifier *notifier;
1785 struct hlist_node *node;
1786
1787 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1788 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1789}
1790
1791static void
1792fire_sched_out_preempt_notifiers(struct task_struct *curr,
1793 struct task_struct *next)
1794{
1795 struct preempt_notifier *notifier;
1796 struct hlist_node *node;
1797
1798 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1799 notifier->ops->sched_out(notifier, next);
1800}
1801
1802#else
1803
1804static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1805{
1806}
1807
1808static void
1809fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810 struct task_struct *next)
1811{
1812}
1813
1814#endif
1815
4866cde0
NP
1816/**
1817 * prepare_task_switch - prepare to switch tasks
1818 * @rq: the runqueue preparing to switch
421cee29 1819 * @prev: the current task that is being switched out
4866cde0
NP
1820 * @next: the task we are going to switch to.
1821 *
1822 * This is called with the rq lock held and interrupts off. It must
1823 * be paired with a subsequent finish_task_switch after the context
1824 * switch.
1825 *
1826 * prepare_task_switch sets up locking and calls architecture specific
1827 * hooks.
1828 */
e107be36
AK
1829static inline void
1830prepare_task_switch(struct rq *rq, struct task_struct *prev,
1831 struct task_struct *next)
4866cde0 1832{
e107be36 1833 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1834 prepare_lock_switch(rq, next);
1835 prepare_arch_switch(next);
1836}
1837
1da177e4
LT
1838/**
1839 * finish_task_switch - clean up after a task-switch
344babaa 1840 * @rq: runqueue associated with task-switch
1da177e4
LT
1841 * @prev: the thread we just switched away from.
1842 *
4866cde0
NP
1843 * finish_task_switch must be called after the context switch, paired
1844 * with a prepare_task_switch call before the context switch.
1845 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1846 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1847 *
1848 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1849 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1850 * with the lock held can cause deadlocks; see schedule() for
1851 * details.)
1852 */
a9957449 1853static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1854 __releases(rq->lock)
1855{
1da177e4 1856 struct mm_struct *mm = rq->prev_mm;
55a101f8 1857 long prev_state;
1da177e4
LT
1858
1859 rq->prev_mm = NULL;
1860
1861 /*
1862 * A task struct has one reference for the use as "current".
c394cc9f 1863 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1864 * schedule one last time. The schedule call will never return, and
1865 * the scheduled task must drop that reference.
c394cc9f 1866 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1867 * still held, otherwise prev could be scheduled on another cpu, die
1868 * there before we look at prev->state, and then the reference would
1869 * be dropped twice.
1870 * Manfred Spraul <manfred@colorfullife.com>
1871 */
55a101f8 1872 prev_state = prev->state;
4866cde0
NP
1873 finish_arch_switch(prev);
1874 finish_lock_switch(rq, prev);
e8fa1362
SR
1875 schedule_tail_balance_rt(rq);
1876
e107be36 1877 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1878 if (mm)
1879 mmdrop(mm);
c394cc9f 1880 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1881 /*
1882 * Remove function-return probe instances associated with this
1883 * task and put them back on the free list.
9761eea8 1884 */
c6fd91f0 1885 kprobe_flush_task(prev);
1da177e4 1886 put_task_struct(prev);
c6fd91f0 1887 }
1da177e4
LT
1888}
1889
1890/**
1891 * schedule_tail - first thing a freshly forked thread must call.
1892 * @prev: the thread we just switched away from.
1893 */
36c8b586 1894asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1895 __releases(rq->lock)
1896{
70b97a7f
IM
1897 struct rq *rq = this_rq();
1898
4866cde0
NP
1899 finish_task_switch(rq, prev);
1900#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1901 /* In this case, finish_task_switch does not reenable preemption */
1902 preempt_enable();
1903#endif
1da177e4 1904 if (current->set_child_tid)
b488893a 1905 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1906}
1907
1908/*
1909 * context_switch - switch to the new MM and the new
1910 * thread's register state.
1911 */
dd41f596 1912static inline void
70b97a7f 1913context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1914 struct task_struct *next)
1da177e4 1915{
dd41f596 1916 struct mm_struct *mm, *oldmm;
1da177e4 1917
e107be36 1918 prepare_task_switch(rq, prev, next);
dd41f596
IM
1919 mm = next->mm;
1920 oldmm = prev->active_mm;
9226d125
ZA
1921 /*
1922 * For paravirt, this is coupled with an exit in switch_to to
1923 * combine the page table reload and the switch backend into
1924 * one hypercall.
1925 */
1926 arch_enter_lazy_cpu_mode();
1927
dd41f596 1928 if (unlikely(!mm)) {
1da177e4
LT
1929 next->active_mm = oldmm;
1930 atomic_inc(&oldmm->mm_count);
1931 enter_lazy_tlb(oldmm, next);
1932 } else
1933 switch_mm(oldmm, mm, next);
1934
dd41f596 1935 if (unlikely(!prev->mm)) {
1da177e4 1936 prev->active_mm = NULL;
1da177e4
LT
1937 rq->prev_mm = oldmm;
1938 }
3a5f5e48
IM
1939 /*
1940 * Since the runqueue lock will be released by the next
1941 * task (which is an invalid locking op but in the case
1942 * of the scheduler it's an obvious special-case), so we
1943 * do an early lockdep release here:
1944 */
1945#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1946 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1947#endif
1da177e4
LT
1948
1949 /* Here we just switch the register state and the stack. */
1950 switch_to(prev, next, prev);
1951
dd41f596
IM
1952 barrier();
1953 /*
1954 * this_rq must be evaluated again because prev may have moved
1955 * CPUs since it called schedule(), thus the 'rq' on its stack
1956 * frame will be invalid.
1957 */
1958 finish_task_switch(this_rq(), prev);
1da177e4
LT
1959}
1960
1961/*
1962 * nr_running, nr_uninterruptible and nr_context_switches:
1963 *
1964 * externally visible scheduler statistics: current number of runnable
1965 * threads, current number of uninterruptible-sleeping threads, total
1966 * number of context switches performed since bootup.
1967 */
1968unsigned long nr_running(void)
1969{
1970 unsigned long i, sum = 0;
1971
1972 for_each_online_cpu(i)
1973 sum += cpu_rq(i)->nr_running;
1974
1975 return sum;
1976}
1977
1978unsigned long nr_uninterruptible(void)
1979{
1980 unsigned long i, sum = 0;
1981
0a945022 1982 for_each_possible_cpu(i)
1da177e4
LT
1983 sum += cpu_rq(i)->nr_uninterruptible;
1984
1985 /*
1986 * Since we read the counters lockless, it might be slightly
1987 * inaccurate. Do not allow it to go below zero though:
1988 */
1989 if (unlikely((long)sum < 0))
1990 sum = 0;
1991
1992 return sum;
1993}
1994
1995unsigned long long nr_context_switches(void)
1996{
cc94abfc
SR
1997 int i;
1998 unsigned long long sum = 0;
1da177e4 1999
0a945022 2000 for_each_possible_cpu(i)
1da177e4
LT
2001 sum += cpu_rq(i)->nr_switches;
2002
2003 return sum;
2004}
2005
2006unsigned long nr_iowait(void)
2007{
2008 unsigned long i, sum = 0;
2009
0a945022 2010 for_each_possible_cpu(i)
1da177e4
LT
2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012
2013 return sum;
2014}
2015
db1b1fef
JS
2016unsigned long nr_active(void)
2017{
2018 unsigned long i, running = 0, uninterruptible = 0;
2019
2020 for_each_online_cpu(i) {
2021 running += cpu_rq(i)->nr_running;
2022 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2023 }
2024
2025 if (unlikely((long)uninterruptible < 0))
2026 uninterruptible = 0;
2027
2028 return running + uninterruptible;
2029}
2030
48f24c4d 2031/*
dd41f596
IM
2032 * Update rq->cpu_load[] statistics. This function is usually called every
2033 * scheduler tick (TICK_NSEC).
48f24c4d 2034 */
dd41f596 2035static void update_cpu_load(struct rq *this_rq)
48f24c4d 2036{
495eca49 2037 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2038 int i, scale;
2039
2040 this_rq->nr_load_updates++;
dd41f596
IM
2041
2042 /* Update our load: */
2043 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2044 unsigned long old_load, new_load;
2045
2046 /* scale is effectively 1 << i now, and >> i divides by scale */
2047
2048 old_load = this_rq->cpu_load[i];
2049 new_load = this_load;
a25707f3
IM
2050 /*
2051 * Round up the averaging division if load is increasing. This
2052 * prevents us from getting stuck on 9 if the load is 10, for
2053 * example.
2054 */
2055 if (new_load > old_load)
2056 new_load += scale-1;
dd41f596
IM
2057 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2058 }
48f24c4d
IM
2059}
2060
dd41f596
IM
2061#ifdef CONFIG_SMP
2062
1da177e4
LT
2063/*
2064 * double_rq_lock - safely lock two runqueues
2065 *
2066 * Note this does not disable interrupts like task_rq_lock,
2067 * you need to do so manually before calling.
2068 */
70b97a7f 2069static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2070 __acquires(rq1->lock)
2071 __acquires(rq2->lock)
2072{
054b9108 2073 BUG_ON(!irqs_disabled());
1da177e4
LT
2074 if (rq1 == rq2) {
2075 spin_lock(&rq1->lock);
2076 __acquire(rq2->lock); /* Fake it out ;) */
2077 } else {
c96d145e 2078 if (rq1 < rq2) {
1da177e4
LT
2079 spin_lock(&rq1->lock);
2080 spin_lock(&rq2->lock);
2081 } else {
2082 spin_lock(&rq2->lock);
2083 spin_lock(&rq1->lock);
2084 }
2085 }
6e82a3be
IM
2086 update_rq_clock(rq1);
2087 update_rq_clock(rq2);
1da177e4
LT
2088}
2089
2090/*
2091 * double_rq_unlock - safely unlock two runqueues
2092 *
2093 * Note this does not restore interrupts like task_rq_unlock,
2094 * you need to do so manually after calling.
2095 */
70b97a7f 2096static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2097 __releases(rq1->lock)
2098 __releases(rq2->lock)
2099{
2100 spin_unlock(&rq1->lock);
2101 if (rq1 != rq2)
2102 spin_unlock(&rq2->lock);
2103 else
2104 __release(rq2->lock);
2105}
2106
2107/*
2108 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2109 */
e8fa1362 2110static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2111 __releases(this_rq->lock)
2112 __acquires(busiest->lock)
2113 __acquires(this_rq->lock)
2114{
e8fa1362
SR
2115 int ret = 0;
2116
054b9108
KK
2117 if (unlikely(!irqs_disabled())) {
2118 /* printk() doesn't work good under rq->lock */
2119 spin_unlock(&this_rq->lock);
2120 BUG_ON(1);
2121 }
1da177e4 2122 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2123 if (busiest < this_rq) {
1da177e4
LT
2124 spin_unlock(&this_rq->lock);
2125 spin_lock(&busiest->lock);
2126 spin_lock(&this_rq->lock);
e8fa1362 2127 ret = 1;
1da177e4
LT
2128 } else
2129 spin_lock(&busiest->lock);
2130 }
e8fa1362 2131 return ret;
1da177e4
LT
2132}
2133
1da177e4
LT
2134/*
2135 * If dest_cpu is allowed for this process, migrate the task to it.
2136 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2137 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2138 * the cpu_allowed mask is restored.
2139 */
36c8b586 2140static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2141{
70b97a7f 2142 struct migration_req req;
1da177e4 2143 unsigned long flags;
70b97a7f 2144 struct rq *rq;
1da177e4
LT
2145
2146 rq = task_rq_lock(p, &flags);
2147 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2148 || unlikely(cpu_is_offline(dest_cpu)))
2149 goto out;
2150
2151 /* force the process onto the specified CPU */
2152 if (migrate_task(p, dest_cpu, &req)) {
2153 /* Need to wait for migration thread (might exit: take ref). */
2154 struct task_struct *mt = rq->migration_thread;
36c8b586 2155
1da177e4
LT
2156 get_task_struct(mt);
2157 task_rq_unlock(rq, &flags);
2158 wake_up_process(mt);
2159 put_task_struct(mt);
2160 wait_for_completion(&req.done);
36c8b586 2161
1da177e4
LT
2162 return;
2163 }
2164out:
2165 task_rq_unlock(rq, &flags);
2166}
2167
2168/*
476d139c
NP
2169 * sched_exec - execve() is a valuable balancing opportunity, because at
2170 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2171 */
2172void sched_exec(void)
2173{
1da177e4 2174 int new_cpu, this_cpu = get_cpu();
476d139c 2175 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2176 put_cpu();
476d139c
NP
2177 if (new_cpu != this_cpu)
2178 sched_migrate_task(current, new_cpu);
1da177e4
LT
2179}
2180
2181/*
2182 * pull_task - move a task from a remote runqueue to the local runqueue.
2183 * Both runqueues must be locked.
2184 */
dd41f596
IM
2185static void pull_task(struct rq *src_rq, struct task_struct *p,
2186 struct rq *this_rq, int this_cpu)
1da177e4 2187{
2e1cb74a 2188 deactivate_task(src_rq, p, 0);
1da177e4 2189 set_task_cpu(p, this_cpu);
dd41f596 2190 activate_task(this_rq, p, 0);
1da177e4
LT
2191 /*
2192 * Note that idle threads have a prio of MAX_PRIO, for this test
2193 * to be always true for them.
2194 */
dd41f596 2195 check_preempt_curr(this_rq, p);
1da177e4
LT
2196}
2197
2198/*
2199 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2200 */
858119e1 2201static
70b97a7f 2202int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2203 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2204 int *all_pinned)
1da177e4
LT
2205{
2206 /*
2207 * We do not migrate tasks that are:
2208 * 1) running (obviously), or
2209 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2210 * 3) are cache-hot on their current CPU.
2211 */
cc367732
IM
2212 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2213 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2214 return 0;
cc367732 2215 }
81026794
NP
2216 *all_pinned = 0;
2217
cc367732
IM
2218 if (task_running(rq, p)) {
2219 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2220 return 0;
cc367732 2221 }
1da177e4 2222
da84d961
IM
2223 /*
2224 * Aggressive migration if:
2225 * 1) task is cache cold, or
2226 * 2) too many balance attempts have failed.
2227 */
2228
6bc1665b
IM
2229 if (!task_hot(p, rq->clock, sd) ||
2230 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2231#ifdef CONFIG_SCHEDSTATS
cc367732 2232 if (task_hot(p, rq->clock, sd)) {
da84d961 2233 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2234 schedstat_inc(p, se.nr_forced_migrations);
2235 }
da84d961
IM
2236#endif
2237 return 1;
2238 }
2239
cc367732
IM
2240 if (task_hot(p, rq->clock, sd)) {
2241 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2242 return 0;
cc367732 2243 }
1da177e4
LT
2244 return 1;
2245}
2246
e1d1484f
PW
2247static unsigned long
2248balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2249 unsigned long max_load_move, struct sched_domain *sd,
2250 enum cpu_idle_type idle, int *all_pinned,
2251 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2252{
b82d9fdd 2253 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2254 struct task_struct *p;
2255 long rem_load_move = max_load_move;
1da177e4 2256
e1d1484f 2257 if (max_load_move == 0)
1da177e4
LT
2258 goto out;
2259
81026794
NP
2260 pinned = 1;
2261
1da177e4 2262 /*
dd41f596 2263 * Start the load-balancing iterator:
1da177e4 2264 */
dd41f596
IM
2265 p = iterator->start(iterator->arg);
2266next:
b82d9fdd 2267 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2268 goto out;
50ddd969 2269 /*
b82d9fdd 2270 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2271 * skip a task if it will be the highest priority task (i.e. smallest
2272 * prio value) on its new queue regardless of its load weight
2273 */
dd41f596
IM
2274 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2275 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2276 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2277 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2278 p = iterator->next(iterator->arg);
2279 goto next;
1da177e4
LT
2280 }
2281
dd41f596 2282 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2283 pulled++;
dd41f596 2284 rem_load_move -= p->se.load.weight;
1da177e4 2285
2dd73a4f 2286 /*
b82d9fdd 2287 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2288 */
e1d1484f 2289 if (rem_load_move > 0) {
a4ac01c3
PW
2290 if (p->prio < *this_best_prio)
2291 *this_best_prio = p->prio;
dd41f596
IM
2292 p = iterator->next(iterator->arg);
2293 goto next;
1da177e4
LT
2294 }
2295out:
2296 /*
e1d1484f 2297 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2298 * so we can safely collect pull_task() stats here rather than
2299 * inside pull_task().
2300 */
2301 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2302
2303 if (all_pinned)
2304 *all_pinned = pinned;
e1d1484f
PW
2305
2306 return max_load_move - rem_load_move;
1da177e4
LT
2307}
2308
dd41f596 2309/*
43010659
PW
2310 * move_tasks tries to move up to max_load_move weighted load from busiest to
2311 * this_rq, as part of a balancing operation within domain "sd".
2312 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2313 *
2314 * Called with both runqueues locked.
2315 */
2316static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2317 unsigned long max_load_move,
dd41f596
IM
2318 struct sched_domain *sd, enum cpu_idle_type idle,
2319 int *all_pinned)
2320{
5522d5d5 2321 const struct sched_class *class = sched_class_highest;
43010659 2322 unsigned long total_load_moved = 0;
a4ac01c3 2323 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2324
2325 do {
43010659
PW
2326 total_load_moved +=
2327 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2328 max_load_move - total_load_moved,
a4ac01c3 2329 sd, idle, all_pinned, &this_best_prio);
dd41f596 2330 class = class->next;
43010659 2331 } while (class && max_load_move > total_load_moved);
dd41f596 2332
43010659
PW
2333 return total_load_moved > 0;
2334}
2335
e1d1484f
PW
2336static int
2337iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2338 struct sched_domain *sd, enum cpu_idle_type idle,
2339 struct rq_iterator *iterator)
2340{
2341 struct task_struct *p = iterator->start(iterator->arg);
2342 int pinned = 0;
2343
2344 while (p) {
2345 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2346 pull_task(busiest, p, this_rq, this_cpu);
2347 /*
2348 * Right now, this is only the second place pull_task()
2349 * is called, so we can safely collect pull_task()
2350 * stats here rather than inside pull_task().
2351 */
2352 schedstat_inc(sd, lb_gained[idle]);
2353
2354 return 1;
2355 }
2356 p = iterator->next(iterator->arg);
2357 }
2358
2359 return 0;
2360}
2361
43010659
PW
2362/*
2363 * move_one_task tries to move exactly one task from busiest to this_rq, as
2364 * part of active balancing operations within "domain".
2365 * Returns 1 if successful and 0 otherwise.
2366 *
2367 * Called with both runqueues locked.
2368 */
2369static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2370 struct sched_domain *sd, enum cpu_idle_type idle)
2371{
5522d5d5 2372 const struct sched_class *class;
43010659
PW
2373
2374 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2375 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2376 return 1;
2377
2378 return 0;
dd41f596
IM
2379}
2380
1da177e4
LT
2381/*
2382 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2383 * domain. It calculates and returns the amount of weighted load which
2384 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2385 */
2386static struct sched_group *
2387find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2388 unsigned long *imbalance, enum cpu_idle_type idle,
2389 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2390{
2391 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2392 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2393 unsigned long max_pull;
2dd73a4f
PW
2394 unsigned long busiest_load_per_task, busiest_nr_running;
2395 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2396 int load_idx, group_imb = 0;
5c45bf27
SS
2397#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2398 int power_savings_balance = 1;
2399 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2400 unsigned long min_nr_running = ULONG_MAX;
2401 struct sched_group *group_min = NULL, *group_leader = NULL;
2402#endif
1da177e4
LT
2403
2404 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2405 busiest_load_per_task = busiest_nr_running = 0;
2406 this_load_per_task = this_nr_running = 0;
d15bcfdb 2407 if (idle == CPU_NOT_IDLE)
7897986b 2408 load_idx = sd->busy_idx;
d15bcfdb 2409 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2410 load_idx = sd->newidle_idx;
2411 else
2412 load_idx = sd->idle_idx;
1da177e4
LT
2413
2414 do {
908a7c1b 2415 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2416 int local_group;
2417 int i;
908a7c1b 2418 int __group_imb = 0;
783609c6 2419 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2420 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2421
2422 local_group = cpu_isset(this_cpu, group->cpumask);
2423
783609c6
SS
2424 if (local_group)
2425 balance_cpu = first_cpu(group->cpumask);
2426
1da177e4 2427 /* Tally up the load of all CPUs in the group */
2dd73a4f 2428 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2429 max_cpu_load = 0;
2430 min_cpu_load = ~0UL;
1da177e4
LT
2431
2432 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2433 struct rq *rq;
2434
2435 if (!cpu_isset(i, *cpus))
2436 continue;
2437
2438 rq = cpu_rq(i);
2dd73a4f 2439
9439aab8 2440 if (*sd_idle && rq->nr_running)
5969fe06
NP
2441 *sd_idle = 0;
2442
1da177e4 2443 /* Bias balancing toward cpus of our domain */
783609c6
SS
2444 if (local_group) {
2445 if (idle_cpu(i) && !first_idle_cpu) {
2446 first_idle_cpu = 1;
2447 balance_cpu = i;
2448 }
2449
a2000572 2450 load = target_load(i, load_idx);
908a7c1b 2451 } else {
a2000572 2452 load = source_load(i, load_idx);
908a7c1b
KC
2453 if (load > max_cpu_load)
2454 max_cpu_load = load;
2455 if (min_cpu_load > load)
2456 min_cpu_load = load;
2457 }
1da177e4
LT
2458
2459 avg_load += load;
2dd73a4f 2460 sum_nr_running += rq->nr_running;
dd41f596 2461 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2462 }
2463
783609c6
SS
2464 /*
2465 * First idle cpu or the first cpu(busiest) in this sched group
2466 * is eligible for doing load balancing at this and above
9439aab8
SS
2467 * domains. In the newly idle case, we will allow all the cpu's
2468 * to do the newly idle load balance.
783609c6 2469 */
9439aab8
SS
2470 if (idle != CPU_NEWLY_IDLE && local_group &&
2471 balance_cpu != this_cpu && balance) {
783609c6
SS
2472 *balance = 0;
2473 goto ret;
2474 }
2475
1da177e4 2476 total_load += avg_load;
5517d86b 2477 total_pwr += group->__cpu_power;
1da177e4
LT
2478
2479 /* Adjust by relative CPU power of the group */
5517d86b
ED
2480 avg_load = sg_div_cpu_power(group,
2481 avg_load * SCHED_LOAD_SCALE);
1da177e4 2482
908a7c1b
KC
2483 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2484 __group_imb = 1;
2485
5517d86b 2486 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2487
1da177e4
LT
2488 if (local_group) {
2489 this_load = avg_load;
2490 this = group;
2dd73a4f
PW
2491 this_nr_running = sum_nr_running;
2492 this_load_per_task = sum_weighted_load;
2493 } else if (avg_load > max_load &&
908a7c1b 2494 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2495 max_load = avg_load;
2496 busiest = group;
2dd73a4f
PW
2497 busiest_nr_running = sum_nr_running;
2498 busiest_load_per_task = sum_weighted_load;
908a7c1b 2499 group_imb = __group_imb;
1da177e4 2500 }
5c45bf27
SS
2501
2502#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2503 /*
2504 * Busy processors will not participate in power savings
2505 * balance.
2506 */
dd41f596
IM
2507 if (idle == CPU_NOT_IDLE ||
2508 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2509 goto group_next;
5c45bf27
SS
2510
2511 /*
2512 * If the local group is idle or completely loaded
2513 * no need to do power savings balance at this domain
2514 */
2515 if (local_group && (this_nr_running >= group_capacity ||
2516 !this_nr_running))
2517 power_savings_balance = 0;
2518
dd41f596 2519 /*
5c45bf27
SS
2520 * If a group is already running at full capacity or idle,
2521 * don't include that group in power savings calculations
dd41f596
IM
2522 */
2523 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2524 || !sum_nr_running)
dd41f596 2525 goto group_next;
5c45bf27 2526
dd41f596 2527 /*
5c45bf27 2528 * Calculate the group which has the least non-idle load.
dd41f596
IM
2529 * This is the group from where we need to pick up the load
2530 * for saving power
2531 */
2532 if ((sum_nr_running < min_nr_running) ||
2533 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2534 first_cpu(group->cpumask) <
2535 first_cpu(group_min->cpumask))) {
dd41f596
IM
2536 group_min = group;
2537 min_nr_running = sum_nr_running;
5c45bf27
SS
2538 min_load_per_task = sum_weighted_load /
2539 sum_nr_running;
dd41f596 2540 }
5c45bf27 2541
dd41f596 2542 /*
5c45bf27 2543 * Calculate the group which is almost near its
dd41f596
IM
2544 * capacity but still has some space to pick up some load
2545 * from other group and save more power
2546 */
2547 if (sum_nr_running <= group_capacity - 1) {
2548 if (sum_nr_running > leader_nr_running ||
2549 (sum_nr_running == leader_nr_running &&
2550 first_cpu(group->cpumask) >
2551 first_cpu(group_leader->cpumask))) {
2552 group_leader = group;
2553 leader_nr_running = sum_nr_running;
2554 }
48f24c4d 2555 }
5c45bf27
SS
2556group_next:
2557#endif
1da177e4
LT
2558 group = group->next;
2559 } while (group != sd->groups);
2560
2dd73a4f 2561 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2562 goto out_balanced;
2563
2564 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2565
2566 if (this_load >= avg_load ||
2567 100*max_load <= sd->imbalance_pct*this_load)
2568 goto out_balanced;
2569
2dd73a4f 2570 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2571 if (group_imb)
2572 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2573
1da177e4
LT
2574 /*
2575 * We're trying to get all the cpus to the average_load, so we don't
2576 * want to push ourselves above the average load, nor do we wish to
2577 * reduce the max loaded cpu below the average load, as either of these
2578 * actions would just result in more rebalancing later, and ping-pong
2579 * tasks around. Thus we look for the minimum possible imbalance.
2580 * Negative imbalances (*we* are more loaded than anyone else) will
2581 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2582 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2583 * appear as very large values with unsigned longs.
2584 */
2dd73a4f
PW
2585 if (max_load <= busiest_load_per_task)
2586 goto out_balanced;
2587
2588 /*
2589 * In the presence of smp nice balancing, certain scenarios can have
2590 * max load less than avg load(as we skip the groups at or below
2591 * its cpu_power, while calculating max_load..)
2592 */
2593 if (max_load < avg_load) {
2594 *imbalance = 0;
2595 goto small_imbalance;
2596 }
0c117f1b
SS
2597
2598 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2599 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2600
1da177e4 2601 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2602 *imbalance = min(max_pull * busiest->__cpu_power,
2603 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2604 / SCHED_LOAD_SCALE;
2605
2dd73a4f
PW
2606 /*
2607 * if *imbalance is less than the average load per runnable task
2608 * there is no gaurantee that any tasks will be moved so we'll have
2609 * a think about bumping its value to force at least one task to be
2610 * moved
2611 */
7fd0d2dd 2612 if (*imbalance < busiest_load_per_task) {
48f24c4d 2613 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2614 unsigned int imbn;
2615
2616small_imbalance:
2617 pwr_move = pwr_now = 0;
2618 imbn = 2;
2619 if (this_nr_running) {
2620 this_load_per_task /= this_nr_running;
2621 if (busiest_load_per_task > this_load_per_task)
2622 imbn = 1;
2623 } else
2624 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2625
dd41f596
IM
2626 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2627 busiest_load_per_task * imbn) {
2dd73a4f 2628 *imbalance = busiest_load_per_task;
1da177e4
LT
2629 return busiest;
2630 }
2631
2632 /*
2633 * OK, we don't have enough imbalance to justify moving tasks,
2634 * however we may be able to increase total CPU power used by
2635 * moving them.
2636 */
2637
5517d86b
ED
2638 pwr_now += busiest->__cpu_power *
2639 min(busiest_load_per_task, max_load);
2640 pwr_now += this->__cpu_power *
2641 min(this_load_per_task, this_load);
1da177e4
LT
2642 pwr_now /= SCHED_LOAD_SCALE;
2643
2644 /* Amount of load we'd subtract */
5517d86b
ED
2645 tmp = sg_div_cpu_power(busiest,
2646 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2647 if (max_load > tmp)
5517d86b 2648 pwr_move += busiest->__cpu_power *
2dd73a4f 2649 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2650
2651 /* Amount of load we'd add */
5517d86b 2652 if (max_load * busiest->__cpu_power <
33859f7f 2653 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2654 tmp = sg_div_cpu_power(this,
2655 max_load * busiest->__cpu_power);
1da177e4 2656 else
5517d86b
ED
2657 tmp = sg_div_cpu_power(this,
2658 busiest_load_per_task * SCHED_LOAD_SCALE);
2659 pwr_move += this->__cpu_power *
2660 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2661 pwr_move /= SCHED_LOAD_SCALE;
2662
2663 /* Move if we gain throughput */
7fd0d2dd
SS
2664 if (pwr_move > pwr_now)
2665 *imbalance = busiest_load_per_task;
1da177e4
LT
2666 }
2667
1da177e4
LT
2668 return busiest;
2669
2670out_balanced:
5c45bf27 2671#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2672 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2673 goto ret;
1da177e4 2674
5c45bf27
SS
2675 if (this == group_leader && group_leader != group_min) {
2676 *imbalance = min_load_per_task;
2677 return group_min;
2678 }
5c45bf27 2679#endif
783609c6 2680ret:
1da177e4
LT
2681 *imbalance = 0;
2682 return NULL;
2683}
2684
2685/*
2686 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2687 */
70b97a7f 2688static struct rq *
d15bcfdb 2689find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2690 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2691{
70b97a7f 2692 struct rq *busiest = NULL, *rq;
2dd73a4f 2693 unsigned long max_load = 0;
1da177e4
LT
2694 int i;
2695
2696 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2697 unsigned long wl;
0a2966b4
CL
2698
2699 if (!cpu_isset(i, *cpus))
2700 continue;
2701
48f24c4d 2702 rq = cpu_rq(i);
dd41f596 2703 wl = weighted_cpuload(i);
2dd73a4f 2704
dd41f596 2705 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2706 continue;
1da177e4 2707
dd41f596
IM
2708 if (wl > max_load) {
2709 max_load = wl;
48f24c4d 2710 busiest = rq;
1da177e4
LT
2711 }
2712 }
2713
2714 return busiest;
2715}
2716
77391d71
NP
2717/*
2718 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2719 * so long as it is large enough.
2720 */
2721#define MAX_PINNED_INTERVAL 512
2722
1da177e4
LT
2723/*
2724 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2725 * tasks if there is an imbalance.
1da177e4 2726 */
70b97a7f 2727static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2728 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2729 int *balance)
1da177e4 2730{
43010659 2731 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2732 struct sched_group *group;
1da177e4 2733 unsigned long imbalance;
70b97a7f 2734 struct rq *busiest;
0a2966b4 2735 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2736 unsigned long flags;
5969fe06 2737
89c4710e
SS
2738 /*
2739 * When power savings policy is enabled for the parent domain, idle
2740 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2741 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2742 * portraying it as CPU_NOT_IDLE.
89c4710e 2743 */
d15bcfdb 2744 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2746 sd_idle = 1;
1da177e4 2747
2d72376b 2748 schedstat_inc(sd, lb_count[idle]);
1da177e4 2749
0a2966b4
CL
2750redo:
2751 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2752 &cpus, balance);
2753
06066714 2754 if (*balance == 0)
783609c6 2755 goto out_balanced;
783609c6 2756
1da177e4
LT
2757 if (!group) {
2758 schedstat_inc(sd, lb_nobusyg[idle]);
2759 goto out_balanced;
2760 }
2761
0a2966b4 2762 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2763 if (!busiest) {
2764 schedstat_inc(sd, lb_nobusyq[idle]);
2765 goto out_balanced;
2766 }
2767
db935dbd 2768 BUG_ON(busiest == this_rq);
1da177e4
LT
2769
2770 schedstat_add(sd, lb_imbalance[idle], imbalance);
2771
43010659 2772 ld_moved = 0;
1da177e4
LT
2773 if (busiest->nr_running > 1) {
2774 /*
2775 * Attempt to move tasks. If find_busiest_group has found
2776 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2777 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2778 * correctly treated as an imbalance.
2779 */
fe2eea3f 2780 local_irq_save(flags);
e17224bf 2781 double_rq_lock(this_rq, busiest);
43010659 2782 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2783 imbalance, sd, idle, &all_pinned);
e17224bf 2784 double_rq_unlock(this_rq, busiest);
fe2eea3f 2785 local_irq_restore(flags);
81026794 2786
46cb4b7c
SS
2787 /*
2788 * some other cpu did the load balance for us.
2789 */
43010659 2790 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2791 resched_cpu(this_cpu);
2792
81026794 2793 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2794 if (unlikely(all_pinned)) {
2795 cpu_clear(cpu_of(busiest), cpus);
2796 if (!cpus_empty(cpus))
2797 goto redo;
81026794 2798 goto out_balanced;
0a2966b4 2799 }
1da177e4 2800 }
81026794 2801
43010659 2802 if (!ld_moved) {
1da177e4
LT
2803 schedstat_inc(sd, lb_failed[idle]);
2804 sd->nr_balance_failed++;
2805
2806 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2807
fe2eea3f 2808 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2809
2810 /* don't kick the migration_thread, if the curr
2811 * task on busiest cpu can't be moved to this_cpu
2812 */
2813 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2814 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2815 all_pinned = 1;
2816 goto out_one_pinned;
2817 }
2818
1da177e4
LT
2819 if (!busiest->active_balance) {
2820 busiest->active_balance = 1;
2821 busiest->push_cpu = this_cpu;
81026794 2822 active_balance = 1;
1da177e4 2823 }
fe2eea3f 2824 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2825 if (active_balance)
1da177e4
LT
2826 wake_up_process(busiest->migration_thread);
2827
2828 /*
2829 * We've kicked active balancing, reset the failure
2830 * counter.
2831 */
39507451 2832 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2833 }
81026794 2834 } else
1da177e4
LT
2835 sd->nr_balance_failed = 0;
2836
81026794 2837 if (likely(!active_balance)) {
1da177e4
LT
2838 /* We were unbalanced, so reset the balancing interval */
2839 sd->balance_interval = sd->min_interval;
81026794
NP
2840 } else {
2841 /*
2842 * If we've begun active balancing, start to back off. This
2843 * case may not be covered by the all_pinned logic if there
2844 * is only 1 task on the busy runqueue (because we don't call
2845 * move_tasks).
2846 */
2847 if (sd->balance_interval < sd->max_interval)
2848 sd->balance_interval *= 2;
1da177e4
LT
2849 }
2850
43010659 2851 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2852 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2853 return -1;
43010659 2854 return ld_moved;
1da177e4
LT
2855
2856out_balanced:
1da177e4
LT
2857 schedstat_inc(sd, lb_balanced[idle]);
2858
16cfb1c0 2859 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2860
2861out_one_pinned:
1da177e4 2862 /* tune up the balancing interval */
77391d71
NP
2863 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2864 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2865 sd->balance_interval *= 2;
2866
48f24c4d 2867 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2868 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2869 return -1;
1da177e4
LT
2870 return 0;
2871}
2872
2873/*
2874 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2875 * tasks if there is an imbalance.
2876 *
d15bcfdb 2877 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2878 * this_rq is locked.
2879 */
48f24c4d 2880static int
70b97a7f 2881load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2882{
2883 struct sched_group *group;
70b97a7f 2884 struct rq *busiest = NULL;
1da177e4 2885 unsigned long imbalance;
43010659 2886 int ld_moved = 0;
5969fe06 2887 int sd_idle = 0;
969bb4e4 2888 int all_pinned = 0;
0a2966b4 2889 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2890
89c4710e
SS
2891 /*
2892 * When power savings policy is enabled for the parent domain, idle
2893 * sibling can pick up load irrespective of busy siblings. In this case,
2894 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2895 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2896 */
2897 if (sd->flags & SD_SHARE_CPUPOWER &&
2898 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2899 sd_idle = 1;
1da177e4 2900
2d72376b 2901 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2902redo:
d15bcfdb 2903 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2904 &sd_idle, &cpus, NULL);
1da177e4 2905 if (!group) {
d15bcfdb 2906 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2907 goto out_balanced;
1da177e4
LT
2908 }
2909
d15bcfdb 2910 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2911 &cpus);
db935dbd 2912 if (!busiest) {
d15bcfdb 2913 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2914 goto out_balanced;
1da177e4
LT
2915 }
2916
db935dbd
NP
2917 BUG_ON(busiest == this_rq);
2918
d15bcfdb 2919 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2920
43010659 2921 ld_moved = 0;
d6d5cfaf
NP
2922 if (busiest->nr_running > 1) {
2923 /* Attempt to move tasks */
2924 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2925 /* this_rq->clock is already updated */
2926 update_rq_clock(busiest);
43010659 2927 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2928 imbalance, sd, CPU_NEWLY_IDLE,
2929 &all_pinned);
d6d5cfaf 2930 spin_unlock(&busiest->lock);
0a2966b4 2931
969bb4e4 2932 if (unlikely(all_pinned)) {
0a2966b4
CL
2933 cpu_clear(cpu_of(busiest), cpus);
2934 if (!cpus_empty(cpus))
2935 goto redo;
2936 }
d6d5cfaf
NP
2937 }
2938
43010659 2939 if (!ld_moved) {
d15bcfdb 2940 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2941 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2942 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2943 return -1;
2944 } else
16cfb1c0 2945 sd->nr_balance_failed = 0;
1da177e4 2946
43010659 2947 return ld_moved;
16cfb1c0
NP
2948
2949out_balanced:
d15bcfdb 2950 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2951 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2952 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2953 return -1;
16cfb1c0 2954 sd->nr_balance_failed = 0;
48f24c4d 2955
16cfb1c0 2956 return 0;
1da177e4
LT
2957}
2958
2959/*
2960 * idle_balance is called by schedule() if this_cpu is about to become
2961 * idle. Attempts to pull tasks from other CPUs.
2962 */
70b97a7f 2963static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2964{
2965 struct sched_domain *sd;
dd41f596
IM
2966 int pulled_task = -1;
2967 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2968
2969 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2970 unsigned long interval;
2971
2972 if (!(sd->flags & SD_LOAD_BALANCE))
2973 continue;
2974
2975 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2976 /* If we've pulled tasks over stop searching: */
1bd77f2d 2977 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2978 this_rq, sd);
2979
2980 interval = msecs_to_jiffies(sd->balance_interval);
2981 if (time_after(next_balance, sd->last_balance + interval))
2982 next_balance = sd->last_balance + interval;
2983 if (pulled_task)
2984 break;
1da177e4 2985 }
dd41f596 2986 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2987 /*
2988 * We are going idle. next_balance may be set based on
2989 * a busy processor. So reset next_balance.
2990 */
2991 this_rq->next_balance = next_balance;
dd41f596 2992 }
1da177e4
LT
2993}
2994
2995/*
2996 * active_load_balance is run by migration threads. It pushes running tasks
2997 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2998 * running on each physical CPU where possible, and avoids physical /
2999 * logical imbalances.
3000 *
3001 * Called with busiest_rq locked.
3002 */
70b97a7f 3003static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3004{
39507451 3005 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3006 struct sched_domain *sd;
3007 struct rq *target_rq;
39507451 3008
48f24c4d 3009 /* Is there any task to move? */
39507451 3010 if (busiest_rq->nr_running <= 1)
39507451
NP
3011 return;
3012
3013 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3014
3015 /*
39507451 3016 * This condition is "impossible", if it occurs
41a2d6cf 3017 * we need to fix it. Originally reported by
39507451 3018 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3019 */
39507451 3020 BUG_ON(busiest_rq == target_rq);
1da177e4 3021
39507451
NP
3022 /* move a task from busiest_rq to target_rq */
3023 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3024 update_rq_clock(busiest_rq);
3025 update_rq_clock(target_rq);
39507451
NP
3026
3027 /* Search for an sd spanning us and the target CPU. */
c96d145e 3028 for_each_domain(target_cpu, sd) {
39507451 3029 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3030 cpu_isset(busiest_cpu, sd->span))
39507451 3031 break;
c96d145e 3032 }
39507451 3033
48f24c4d 3034 if (likely(sd)) {
2d72376b 3035 schedstat_inc(sd, alb_count);
39507451 3036
43010659
PW
3037 if (move_one_task(target_rq, target_cpu, busiest_rq,
3038 sd, CPU_IDLE))
48f24c4d
IM
3039 schedstat_inc(sd, alb_pushed);
3040 else
3041 schedstat_inc(sd, alb_failed);
3042 }
39507451 3043 spin_unlock(&target_rq->lock);
1da177e4
LT
3044}
3045
46cb4b7c
SS
3046#ifdef CONFIG_NO_HZ
3047static struct {
3048 atomic_t load_balancer;
41a2d6cf 3049 cpumask_t cpu_mask;
46cb4b7c
SS
3050} nohz ____cacheline_aligned = {
3051 .load_balancer = ATOMIC_INIT(-1),
3052 .cpu_mask = CPU_MASK_NONE,
3053};
3054
7835b98b 3055/*
46cb4b7c
SS
3056 * This routine will try to nominate the ilb (idle load balancing)
3057 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3058 * load balancing on behalf of all those cpus. If all the cpus in the system
3059 * go into this tickless mode, then there will be no ilb owner (as there is
3060 * no need for one) and all the cpus will sleep till the next wakeup event
3061 * arrives...
3062 *
3063 * For the ilb owner, tick is not stopped. And this tick will be used
3064 * for idle load balancing. ilb owner will still be part of
3065 * nohz.cpu_mask..
7835b98b 3066 *
46cb4b7c
SS
3067 * While stopping the tick, this cpu will become the ilb owner if there
3068 * is no other owner. And will be the owner till that cpu becomes busy
3069 * or if all cpus in the system stop their ticks at which point
3070 * there is no need for ilb owner.
3071 *
3072 * When the ilb owner becomes busy, it nominates another owner, during the
3073 * next busy scheduler_tick()
3074 */
3075int select_nohz_load_balancer(int stop_tick)
3076{
3077 int cpu = smp_processor_id();
3078
3079 if (stop_tick) {
3080 cpu_set(cpu, nohz.cpu_mask);
3081 cpu_rq(cpu)->in_nohz_recently = 1;
3082
3083 /*
3084 * If we are going offline and still the leader, give up!
3085 */
3086 if (cpu_is_offline(cpu) &&
3087 atomic_read(&nohz.load_balancer) == cpu) {
3088 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3089 BUG();
3090 return 0;
3091 }
3092
3093 /* time for ilb owner also to sleep */
3094 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3095 if (atomic_read(&nohz.load_balancer) == cpu)
3096 atomic_set(&nohz.load_balancer, -1);
3097 return 0;
3098 }
3099
3100 if (atomic_read(&nohz.load_balancer) == -1) {
3101 /* make me the ilb owner */
3102 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3103 return 1;
3104 } else if (atomic_read(&nohz.load_balancer) == cpu)
3105 return 1;
3106 } else {
3107 if (!cpu_isset(cpu, nohz.cpu_mask))
3108 return 0;
3109
3110 cpu_clear(cpu, nohz.cpu_mask);
3111
3112 if (atomic_read(&nohz.load_balancer) == cpu)
3113 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3114 BUG();
3115 }
3116 return 0;
3117}
3118#endif
3119
3120static DEFINE_SPINLOCK(balancing);
3121
3122/*
7835b98b
CL
3123 * It checks each scheduling domain to see if it is due to be balanced,
3124 * and initiates a balancing operation if so.
3125 *
3126 * Balancing parameters are set up in arch_init_sched_domains.
3127 */
a9957449 3128static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3129{
46cb4b7c
SS
3130 int balance = 1;
3131 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3132 unsigned long interval;
3133 struct sched_domain *sd;
46cb4b7c 3134 /* Earliest time when we have to do rebalance again */
c9819f45 3135 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3136 int update_next_balance = 0;
1da177e4 3137
46cb4b7c 3138 for_each_domain(cpu, sd) {
1da177e4
LT
3139 if (!(sd->flags & SD_LOAD_BALANCE))
3140 continue;
3141
3142 interval = sd->balance_interval;
d15bcfdb 3143 if (idle != CPU_IDLE)
1da177e4
LT
3144 interval *= sd->busy_factor;
3145
3146 /* scale ms to jiffies */
3147 interval = msecs_to_jiffies(interval);
3148 if (unlikely(!interval))
3149 interval = 1;
dd41f596
IM
3150 if (interval > HZ*NR_CPUS/10)
3151 interval = HZ*NR_CPUS/10;
3152
1da177e4 3153
08c183f3
CL
3154 if (sd->flags & SD_SERIALIZE) {
3155 if (!spin_trylock(&balancing))
3156 goto out;
3157 }
3158
c9819f45 3159 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3160 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3161 /*
3162 * We've pulled tasks over so either we're no
5969fe06
NP
3163 * longer idle, or one of our SMT siblings is
3164 * not idle.
3165 */
d15bcfdb 3166 idle = CPU_NOT_IDLE;
1da177e4 3167 }
1bd77f2d 3168 sd->last_balance = jiffies;
1da177e4 3169 }
08c183f3
CL
3170 if (sd->flags & SD_SERIALIZE)
3171 spin_unlock(&balancing);
3172out:
f549da84 3173 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3174 next_balance = sd->last_balance + interval;
f549da84
SS
3175 update_next_balance = 1;
3176 }
783609c6
SS
3177
3178 /*
3179 * Stop the load balance at this level. There is another
3180 * CPU in our sched group which is doing load balancing more
3181 * actively.
3182 */
3183 if (!balance)
3184 break;
1da177e4 3185 }
f549da84
SS
3186
3187 /*
3188 * next_balance will be updated only when there is a need.
3189 * When the cpu is attached to null domain for ex, it will not be
3190 * updated.
3191 */
3192 if (likely(update_next_balance))
3193 rq->next_balance = next_balance;
46cb4b7c
SS
3194}
3195
3196/*
3197 * run_rebalance_domains is triggered when needed from the scheduler tick.
3198 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3199 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3200 */
3201static void run_rebalance_domains(struct softirq_action *h)
3202{
dd41f596
IM
3203 int this_cpu = smp_processor_id();
3204 struct rq *this_rq = cpu_rq(this_cpu);
3205 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3206 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3207
dd41f596 3208 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3209
3210#ifdef CONFIG_NO_HZ
3211 /*
3212 * If this cpu is the owner for idle load balancing, then do the
3213 * balancing on behalf of the other idle cpus whose ticks are
3214 * stopped.
3215 */
dd41f596
IM
3216 if (this_rq->idle_at_tick &&
3217 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3218 cpumask_t cpus = nohz.cpu_mask;
3219 struct rq *rq;
3220 int balance_cpu;
3221
dd41f596 3222 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3223 for_each_cpu_mask(balance_cpu, cpus) {
3224 /*
3225 * If this cpu gets work to do, stop the load balancing
3226 * work being done for other cpus. Next load
3227 * balancing owner will pick it up.
3228 */
3229 if (need_resched())
3230 break;
3231
de0cf899 3232 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3233
3234 rq = cpu_rq(balance_cpu);
dd41f596
IM
3235 if (time_after(this_rq->next_balance, rq->next_balance))
3236 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3237 }
3238 }
3239#endif
3240}
3241
3242/*
3243 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3244 *
3245 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3246 * idle load balancing owner or decide to stop the periodic load balancing,
3247 * if the whole system is idle.
3248 */
dd41f596 3249static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3250{
46cb4b7c
SS
3251#ifdef CONFIG_NO_HZ
3252 /*
3253 * If we were in the nohz mode recently and busy at the current
3254 * scheduler tick, then check if we need to nominate new idle
3255 * load balancer.
3256 */
3257 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3258 rq->in_nohz_recently = 0;
3259
3260 if (atomic_read(&nohz.load_balancer) == cpu) {
3261 cpu_clear(cpu, nohz.cpu_mask);
3262 atomic_set(&nohz.load_balancer, -1);
3263 }
3264
3265 if (atomic_read(&nohz.load_balancer) == -1) {
3266 /*
3267 * simple selection for now: Nominate the
3268 * first cpu in the nohz list to be the next
3269 * ilb owner.
3270 *
3271 * TBD: Traverse the sched domains and nominate
3272 * the nearest cpu in the nohz.cpu_mask.
3273 */
3274 int ilb = first_cpu(nohz.cpu_mask);
3275
3276 if (ilb != NR_CPUS)
3277 resched_cpu(ilb);
3278 }
3279 }
3280
3281 /*
3282 * If this cpu is idle and doing idle load balancing for all the
3283 * cpus with ticks stopped, is it time for that to stop?
3284 */
3285 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3286 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3287 resched_cpu(cpu);
3288 return;
3289 }
3290
3291 /*
3292 * If this cpu is idle and the idle load balancing is done by
3293 * someone else, then no need raise the SCHED_SOFTIRQ
3294 */
3295 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3296 cpu_isset(cpu, nohz.cpu_mask))
3297 return;
3298#endif
3299 if (time_after_eq(jiffies, rq->next_balance))
3300 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3301}
dd41f596
IM
3302
3303#else /* CONFIG_SMP */
3304
1da177e4
LT
3305/*
3306 * on UP we do not need to balance between CPUs:
3307 */
70b97a7f 3308static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3309{
3310}
dd41f596 3311
1da177e4
LT
3312#endif
3313
1da177e4
LT
3314DEFINE_PER_CPU(struct kernel_stat, kstat);
3315
3316EXPORT_PER_CPU_SYMBOL(kstat);
3317
3318/*
41b86e9c
IM
3319 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3320 * that have not yet been banked in case the task is currently running.
1da177e4 3321 */
41b86e9c 3322unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3323{
1da177e4 3324 unsigned long flags;
41b86e9c
IM
3325 u64 ns, delta_exec;
3326 struct rq *rq;
48f24c4d 3327
41b86e9c
IM
3328 rq = task_rq_lock(p, &flags);
3329 ns = p->se.sum_exec_runtime;
051a1d1a 3330 if (task_current(rq, p)) {
a8e504d2
IM
3331 update_rq_clock(rq);
3332 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3333 if ((s64)delta_exec > 0)
3334 ns += delta_exec;
3335 }
3336 task_rq_unlock(rq, &flags);
48f24c4d 3337
1da177e4
LT
3338 return ns;
3339}
3340
1da177e4
LT
3341/*
3342 * Account user cpu time to a process.
3343 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3344 * @cputime: the cpu time spent in user space since the last update
3345 */
3346void account_user_time(struct task_struct *p, cputime_t cputime)
3347{
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t tmp;
3350
3351 p->utime = cputime_add(p->utime, cputime);
3352
3353 /* Add user time to cpustat. */
3354 tmp = cputime_to_cputime64(cputime);
3355 if (TASK_NICE(p) > 0)
3356 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3357 else
3358 cpustat->user = cputime64_add(cpustat->user, tmp);
3359}
3360
94886b84
LV
3361/*
3362 * Account guest cpu time to a process.
3363 * @p: the process that the cpu time gets accounted to
3364 * @cputime: the cpu time spent in virtual machine since the last update
3365 */
f7402e03 3366static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3367{
3368 cputime64_t tmp;
3369 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3370
3371 tmp = cputime_to_cputime64(cputime);
3372
3373 p->utime = cputime_add(p->utime, cputime);
3374 p->gtime = cputime_add(p->gtime, cputime);
3375
3376 cpustat->user = cputime64_add(cpustat->user, tmp);
3377 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3378}
3379
c66f08be
MN
3380/*
3381 * Account scaled user cpu time to a process.
3382 * @p: the process that the cpu time gets accounted to
3383 * @cputime: the cpu time spent in user space since the last update
3384 */
3385void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3386{
3387 p->utimescaled = cputime_add(p->utimescaled, cputime);
3388}
3389
1da177e4
LT
3390/*
3391 * Account system cpu time to a process.
3392 * @p: the process that the cpu time gets accounted to
3393 * @hardirq_offset: the offset to subtract from hardirq_count()
3394 * @cputime: the cpu time spent in kernel space since the last update
3395 */
3396void account_system_time(struct task_struct *p, int hardirq_offset,
3397 cputime_t cputime)
3398{
3399 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3400 struct rq *rq = this_rq();
1da177e4
LT
3401 cputime64_t tmp;
3402
9778385d
CB
3403 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3404 return account_guest_time(p, cputime);
94886b84 3405
1da177e4
LT
3406 p->stime = cputime_add(p->stime, cputime);
3407
3408 /* Add system time to cpustat. */
3409 tmp = cputime_to_cputime64(cputime);
3410 if (hardirq_count() - hardirq_offset)
3411 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3412 else if (softirq_count())
3413 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3414 else if (p != rq->idle)
1da177e4 3415 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3416 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3417 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3418 else
3419 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3420 /* Account for system time used */
3421 acct_update_integrals(p);
1da177e4
LT
3422}
3423
c66f08be
MN
3424/*
3425 * Account scaled system cpu time to a process.
3426 * @p: the process that the cpu time gets accounted to
3427 * @hardirq_offset: the offset to subtract from hardirq_count()
3428 * @cputime: the cpu time spent in kernel space since the last update
3429 */
3430void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3431{
3432 p->stimescaled = cputime_add(p->stimescaled, cputime);
3433}
3434
1da177e4
LT
3435/*
3436 * Account for involuntary wait time.
3437 * @p: the process from which the cpu time has been stolen
3438 * @steal: the cpu time spent in involuntary wait
3439 */
3440void account_steal_time(struct task_struct *p, cputime_t steal)
3441{
3442 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3443 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3444 struct rq *rq = this_rq();
1da177e4
LT
3445
3446 if (p == rq->idle) {
3447 p->stime = cputime_add(p->stime, steal);
3448 if (atomic_read(&rq->nr_iowait) > 0)
3449 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3450 else
3451 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3452 } else
1da177e4
LT
3453 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3454}
3455
7835b98b
CL
3456/*
3457 * This function gets called by the timer code, with HZ frequency.
3458 * We call it with interrupts disabled.
3459 *
3460 * It also gets called by the fork code, when changing the parent's
3461 * timeslices.
3462 */
3463void scheduler_tick(void)
3464{
7835b98b
CL
3465 int cpu = smp_processor_id();
3466 struct rq *rq = cpu_rq(cpu);
dd41f596 3467 struct task_struct *curr = rq->curr;
529c7726 3468 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3469
3470 spin_lock(&rq->lock);
546fe3c9 3471 __update_rq_clock(rq);
529c7726
IM
3472 /*
3473 * Let rq->clock advance by at least TICK_NSEC:
3474 */
3475 if (unlikely(rq->clock < next_tick))
3476 rq->clock = next_tick;
3477 rq->tick_timestamp = rq->clock;
f1a438d8 3478 update_cpu_load(rq);
dd41f596
IM
3479 if (curr != rq->idle) /* FIXME: needed? */
3480 curr->sched_class->task_tick(rq, curr);
dd41f596 3481 spin_unlock(&rq->lock);
7835b98b 3482
e418e1c2 3483#ifdef CONFIG_SMP
dd41f596
IM
3484 rq->idle_at_tick = idle_cpu(cpu);
3485 trigger_load_balance(rq, cpu);
e418e1c2 3486#endif
1da177e4
LT
3487}
3488
1da177e4
LT
3489#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3490
3491void fastcall add_preempt_count(int val)
3492{
3493 /*
3494 * Underflow?
3495 */
9a11b49a
IM
3496 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3497 return;
1da177e4
LT
3498 preempt_count() += val;
3499 /*
3500 * Spinlock count overflowing soon?
3501 */
33859f7f
MOS
3502 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3503 PREEMPT_MASK - 10);
1da177e4
LT
3504}
3505EXPORT_SYMBOL(add_preempt_count);
3506
3507void fastcall sub_preempt_count(int val)
3508{
3509 /*
3510 * Underflow?
3511 */
9a11b49a
IM
3512 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3513 return;
1da177e4
LT
3514 /*
3515 * Is the spinlock portion underflowing?
3516 */
9a11b49a
IM
3517 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3518 !(preempt_count() & PREEMPT_MASK)))
3519 return;
3520
1da177e4
LT
3521 preempt_count() -= val;
3522}
3523EXPORT_SYMBOL(sub_preempt_count);
3524
3525#endif
3526
3527/*
dd41f596 3528 * Print scheduling while atomic bug:
1da177e4 3529 */
dd41f596 3530static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3531{
838225b4
SS
3532 struct pt_regs *regs = get_irq_regs();
3533
3534 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3535 prev->comm, prev->pid, preempt_count());
3536
dd41f596
IM
3537 debug_show_held_locks(prev);
3538 if (irqs_disabled())
3539 print_irqtrace_events(prev);
838225b4
SS
3540
3541 if (regs)
3542 show_regs(regs);
3543 else
3544 dump_stack();
dd41f596 3545}
1da177e4 3546
dd41f596
IM
3547/*
3548 * Various schedule()-time debugging checks and statistics:
3549 */
3550static inline void schedule_debug(struct task_struct *prev)
3551{
1da177e4 3552 /*
41a2d6cf 3553 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3554 * schedule() atomically, we ignore that path for now.
3555 * Otherwise, whine if we are scheduling when we should not be.
3556 */
dd41f596
IM
3557 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3558 __schedule_bug(prev);
3559
1da177e4
LT
3560 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3561
2d72376b 3562 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3563#ifdef CONFIG_SCHEDSTATS
3564 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3565 schedstat_inc(this_rq(), bkl_count);
3566 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3567 }
3568#endif
dd41f596
IM
3569}
3570
3571/*
3572 * Pick up the highest-prio task:
3573 */
3574static inline struct task_struct *
ff95f3df 3575pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3576{
5522d5d5 3577 const struct sched_class *class;
dd41f596 3578 struct task_struct *p;
1da177e4
LT
3579
3580 /*
dd41f596
IM
3581 * Optimization: we know that if all tasks are in
3582 * the fair class we can call that function directly:
1da177e4 3583 */
dd41f596 3584 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3585 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3586 if (likely(p))
3587 return p;
1da177e4
LT
3588 }
3589
dd41f596
IM
3590 class = sched_class_highest;
3591 for ( ; ; ) {
fb8d4724 3592 p = class->pick_next_task(rq);
dd41f596
IM
3593 if (p)
3594 return p;
3595 /*
3596 * Will never be NULL as the idle class always
3597 * returns a non-NULL p:
3598 */
3599 class = class->next;
3600 }
3601}
1da177e4 3602
dd41f596
IM
3603/*
3604 * schedule() is the main scheduler function.
3605 */
3606asmlinkage void __sched schedule(void)
3607{
3608 struct task_struct *prev, *next;
3609 long *switch_count;
3610 struct rq *rq;
dd41f596
IM
3611 int cpu;
3612
3613need_resched:
3614 preempt_disable();
3615 cpu = smp_processor_id();
3616 rq = cpu_rq(cpu);
3617 rcu_qsctr_inc(cpu);
3618 prev = rq->curr;
3619 switch_count = &prev->nivcsw;
3620
3621 release_kernel_lock(prev);
3622need_resched_nonpreemptible:
3623
3624 schedule_debug(prev);
1da177e4 3625
1e819950
IM
3626 /*
3627 * Do the rq-clock update outside the rq lock:
3628 */
3629 local_irq_disable();
c1b3da3e 3630 __update_rq_clock(rq);
1e819950
IM
3631 spin_lock(&rq->lock);
3632 clear_tsk_need_resched(prev);
1da177e4 3633
1da177e4 3634 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3635 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3636 unlikely(signal_pending(prev)))) {
1da177e4 3637 prev->state = TASK_RUNNING;
dd41f596 3638 } else {
2e1cb74a 3639 deactivate_task(rq, prev, 1);
1da177e4 3640 }
dd41f596 3641 switch_count = &prev->nvcsw;
1da177e4
LT
3642 }
3643
f65eda4f
SR
3644 schedule_balance_rt(rq, prev);
3645
dd41f596 3646 if (unlikely(!rq->nr_running))
1da177e4 3647 idle_balance(cpu, rq);
1da177e4 3648
31ee529c 3649 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3650 next = pick_next_task(rq, prev);
1da177e4
LT
3651
3652 sched_info_switch(prev, next);
dd41f596 3653
1da177e4 3654 if (likely(prev != next)) {
1da177e4
LT
3655 rq->nr_switches++;
3656 rq->curr = next;
3657 ++*switch_count;
3658
dd41f596 3659 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3660 } else
3661 spin_unlock_irq(&rq->lock);
3662
dd41f596
IM
3663 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3664 cpu = smp_processor_id();
3665 rq = cpu_rq(cpu);
1da177e4 3666 goto need_resched_nonpreemptible;
dd41f596 3667 }
1da177e4
LT
3668 preempt_enable_no_resched();
3669 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3670 goto need_resched;
3671}
1da177e4
LT
3672EXPORT_SYMBOL(schedule);
3673
3674#ifdef CONFIG_PREEMPT
3675/*
2ed6e34f 3676 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3677 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3678 * occur there and call schedule directly.
3679 */
3680asmlinkage void __sched preempt_schedule(void)
3681{
3682 struct thread_info *ti = current_thread_info();
3683#ifdef CONFIG_PREEMPT_BKL
3684 struct task_struct *task = current;
3685 int saved_lock_depth;
3686#endif
3687 /*
3688 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3689 * we do not want to preempt the current task. Just return..
1da177e4 3690 */
beed33a8 3691 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3692 return;
3693
3a5c359a
AK
3694 do {
3695 add_preempt_count(PREEMPT_ACTIVE);
3696
3697 /*
3698 * We keep the big kernel semaphore locked, but we
3699 * clear ->lock_depth so that schedule() doesnt
3700 * auto-release the semaphore:
3701 */
1da177e4 3702#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3703 saved_lock_depth = task->lock_depth;
3704 task->lock_depth = -1;
1da177e4 3705#endif
3a5c359a 3706 schedule();
1da177e4 3707#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3708 task->lock_depth = saved_lock_depth;
1da177e4 3709#endif
3a5c359a 3710 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3711
3a5c359a
AK
3712 /*
3713 * Check again in case we missed a preemption opportunity
3714 * between schedule and now.
3715 */
3716 barrier();
3717 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3718}
1da177e4
LT
3719EXPORT_SYMBOL(preempt_schedule);
3720
3721/*
2ed6e34f 3722 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3723 * off of irq context.
3724 * Note, that this is called and return with irqs disabled. This will
3725 * protect us against recursive calling from irq.
3726 */
3727asmlinkage void __sched preempt_schedule_irq(void)
3728{
3729 struct thread_info *ti = current_thread_info();
3730#ifdef CONFIG_PREEMPT_BKL
3731 struct task_struct *task = current;
3732 int saved_lock_depth;
3733#endif
2ed6e34f 3734 /* Catch callers which need to be fixed */
1da177e4
LT
3735 BUG_ON(ti->preempt_count || !irqs_disabled());
3736
3a5c359a
AK
3737 do {
3738 add_preempt_count(PREEMPT_ACTIVE);
3739
3740 /*
3741 * We keep the big kernel semaphore locked, but we
3742 * clear ->lock_depth so that schedule() doesnt
3743 * auto-release the semaphore:
3744 */
1da177e4 3745#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3746 saved_lock_depth = task->lock_depth;
3747 task->lock_depth = -1;
1da177e4 3748#endif
3a5c359a
AK
3749 local_irq_enable();
3750 schedule();
3751 local_irq_disable();
1da177e4 3752#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3753 task->lock_depth = saved_lock_depth;
1da177e4 3754#endif
3a5c359a 3755 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3756
3a5c359a
AK
3757 /*
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3760 */
3761 barrier();
3762 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3763}
3764
3765#endif /* CONFIG_PREEMPT */
3766
95cdf3b7
IM
3767int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3768 void *key)
1da177e4 3769{
48f24c4d 3770 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3771}
1da177e4
LT
3772EXPORT_SYMBOL(default_wake_function);
3773
3774/*
41a2d6cf
IM
3775 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3776 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3777 * number) then we wake all the non-exclusive tasks and one exclusive task.
3778 *
3779 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3780 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3781 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3782 */
3783static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3784 int nr_exclusive, int sync, void *key)
3785{
2e45874c 3786 wait_queue_t *curr, *next;
1da177e4 3787
2e45874c 3788 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3789 unsigned flags = curr->flags;
3790
1da177e4 3791 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3792 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3793 break;
3794 }
3795}
3796
3797/**
3798 * __wake_up - wake up threads blocked on a waitqueue.
3799 * @q: the waitqueue
3800 * @mode: which threads
3801 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3802 * @key: is directly passed to the wakeup function
1da177e4
LT
3803 */
3804void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3805 int nr_exclusive, void *key)
1da177e4
LT
3806{
3807 unsigned long flags;
3808
3809 spin_lock_irqsave(&q->lock, flags);
3810 __wake_up_common(q, mode, nr_exclusive, 0, key);
3811 spin_unlock_irqrestore(&q->lock, flags);
3812}
1da177e4
LT
3813EXPORT_SYMBOL(__wake_up);
3814
3815/*
3816 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3817 */
3818void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3819{
3820 __wake_up_common(q, mode, 1, 0, NULL);
3821}
3822
3823/**
67be2dd1 3824 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3825 * @q: the waitqueue
3826 * @mode: which threads
3827 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3828 *
3829 * The sync wakeup differs that the waker knows that it will schedule
3830 * away soon, so while the target thread will be woken up, it will not
3831 * be migrated to another CPU - ie. the two threads are 'synchronized'
3832 * with each other. This can prevent needless bouncing between CPUs.
3833 *
3834 * On UP it can prevent extra preemption.
3835 */
95cdf3b7
IM
3836void fastcall
3837__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3838{
3839 unsigned long flags;
3840 int sync = 1;
3841
3842 if (unlikely(!q))
3843 return;
3844
3845 if (unlikely(!nr_exclusive))
3846 sync = 0;
3847
3848 spin_lock_irqsave(&q->lock, flags);
3849 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3850 spin_unlock_irqrestore(&q->lock, flags);
3851}
3852EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3853
b15136e9 3854void complete(struct completion *x)
1da177e4
LT
3855{
3856 unsigned long flags;
3857
3858 spin_lock_irqsave(&x->wait.lock, flags);
3859 x->done++;
3860 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3861 1, 0, NULL);
3862 spin_unlock_irqrestore(&x->wait.lock, flags);
3863}
3864EXPORT_SYMBOL(complete);
3865
b15136e9 3866void complete_all(struct completion *x)
1da177e4
LT
3867{
3868 unsigned long flags;
3869
3870 spin_lock_irqsave(&x->wait.lock, flags);
3871 x->done += UINT_MAX/2;
3872 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3873 0, 0, NULL);
3874 spin_unlock_irqrestore(&x->wait.lock, flags);
3875}
3876EXPORT_SYMBOL(complete_all);
3877
8cbbe86d
AK
3878static inline long __sched
3879do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3880{
1da177e4
LT
3881 if (!x->done) {
3882 DECLARE_WAITQUEUE(wait, current);
3883
3884 wait.flags |= WQ_FLAG_EXCLUSIVE;
3885 __add_wait_queue_tail(&x->wait, &wait);
3886 do {
8cbbe86d
AK
3887 if (state == TASK_INTERRUPTIBLE &&
3888 signal_pending(current)) {
3889 __remove_wait_queue(&x->wait, &wait);
3890 return -ERESTARTSYS;
3891 }
3892 __set_current_state(state);
1da177e4
LT
3893 spin_unlock_irq(&x->wait.lock);
3894 timeout = schedule_timeout(timeout);
3895 spin_lock_irq(&x->wait.lock);
3896 if (!timeout) {
3897 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3898 return timeout;
1da177e4
LT
3899 }
3900 } while (!x->done);
3901 __remove_wait_queue(&x->wait, &wait);
3902 }
3903 x->done--;
1da177e4
LT
3904 return timeout;
3905}
1da177e4 3906
8cbbe86d
AK
3907static long __sched
3908wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3909{
1da177e4
LT
3910 might_sleep();
3911
3912 spin_lock_irq(&x->wait.lock);
8cbbe86d 3913 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3914 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3915 return timeout;
3916}
1da177e4 3917
b15136e9 3918void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3919{
3920 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3921}
8cbbe86d 3922EXPORT_SYMBOL(wait_for_completion);
1da177e4 3923
b15136e9 3924unsigned long __sched
8cbbe86d 3925wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3926{
8cbbe86d 3927 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3928}
8cbbe86d 3929EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3930
8cbbe86d 3931int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3932{
51e97990
AK
3933 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3934 if (t == -ERESTARTSYS)
3935 return t;
3936 return 0;
0fec171c 3937}
8cbbe86d 3938EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3939
b15136e9 3940unsigned long __sched
8cbbe86d
AK
3941wait_for_completion_interruptible_timeout(struct completion *x,
3942 unsigned long timeout)
0fec171c 3943{
8cbbe86d 3944 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3945}
8cbbe86d 3946EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3947
8cbbe86d
AK
3948static long __sched
3949sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3950{
0fec171c
IM
3951 unsigned long flags;
3952 wait_queue_t wait;
3953
3954 init_waitqueue_entry(&wait, current);
1da177e4 3955
8cbbe86d 3956 __set_current_state(state);
1da177e4 3957
8cbbe86d
AK
3958 spin_lock_irqsave(&q->lock, flags);
3959 __add_wait_queue(q, &wait);
3960 spin_unlock(&q->lock);
3961 timeout = schedule_timeout(timeout);
3962 spin_lock_irq(&q->lock);
3963 __remove_wait_queue(q, &wait);
3964 spin_unlock_irqrestore(&q->lock, flags);
3965
3966 return timeout;
3967}
3968
3969void __sched interruptible_sleep_on(wait_queue_head_t *q)
3970{
3971 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3972}
1da177e4
LT
3973EXPORT_SYMBOL(interruptible_sleep_on);
3974
0fec171c 3975long __sched
95cdf3b7 3976interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3977{
8cbbe86d 3978 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3979}
1da177e4
LT
3980EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3981
0fec171c 3982void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3983{
8cbbe86d 3984 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3985}
1da177e4
LT
3986EXPORT_SYMBOL(sleep_on);
3987
0fec171c 3988long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3989{
8cbbe86d 3990 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3991}
1da177e4
LT
3992EXPORT_SYMBOL(sleep_on_timeout);
3993
b29739f9
IM
3994#ifdef CONFIG_RT_MUTEXES
3995
3996/*
3997 * rt_mutex_setprio - set the current priority of a task
3998 * @p: task
3999 * @prio: prio value (kernel-internal form)
4000 *
4001 * This function changes the 'effective' priority of a task. It does
4002 * not touch ->normal_prio like __setscheduler().
4003 *
4004 * Used by the rt_mutex code to implement priority inheritance logic.
4005 */
36c8b586 4006void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4007{
4008 unsigned long flags;
83b699ed 4009 int oldprio, on_rq, running;
70b97a7f 4010 struct rq *rq;
b29739f9
IM
4011
4012 BUG_ON(prio < 0 || prio > MAX_PRIO);
4013
4014 rq = task_rq_lock(p, &flags);
a8e504d2 4015 update_rq_clock(rq);
b29739f9 4016
d5f9f942 4017 oldprio = p->prio;
dd41f596 4018 on_rq = p->se.on_rq;
051a1d1a 4019 running = task_current(rq, p);
83b699ed 4020 if (on_rq) {
69be72c1 4021 dequeue_task(rq, p, 0);
83b699ed
SV
4022 if (running)
4023 p->sched_class->put_prev_task(rq, p);
4024 }
dd41f596
IM
4025
4026 if (rt_prio(prio))
4027 p->sched_class = &rt_sched_class;
4028 else
4029 p->sched_class = &fair_sched_class;
4030
b29739f9
IM
4031 p->prio = prio;
4032
dd41f596 4033 if (on_rq) {
83b699ed
SV
4034 if (running)
4035 p->sched_class->set_curr_task(rq);
8159f87e 4036 enqueue_task(rq, p, 0);
b29739f9
IM
4037 /*
4038 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4039 * our priority decreased, or if we are not currently running on
4040 * this runqueue and our priority is higher than the current's
b29739f9 4041 */
83b699ed 4042 if (running) {
d5f9f942
AM
4043 if (p->prio > oldprio)
4044 resched_task(rq->curr);
dd41f596
IM
4045 } else {
4046 check_preempt_curr(rq, p);
4047 }
b29739f9
IM
4048 }
4049 task_rq_unlock(rq, &flags);
4050}
4051
4052#endif
4053
36c8b586 4054void set_user_nice(struct task_struct *p, long nice)
1da177e4 4055{
dd41f596 4056 int old_prio, delta, on_rq;
1da177e4 4057 unsigned long flags;
70b97a7f 4058 struct rq *rq;
1da177e4
LT
4059
4060 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4061 return;
4062 /*
4063 * We have to be careful, if called from sys_setpriority(),
4064 * the task might be in the middle of scheduling on another CPU.
4065 */
4066 rq = task_rq_lock(p, &flags);
a8e504d2 4067 update_rq_clock(rq);
1da177e4
LT
4068 /*
4069 * The RT priorities are set via sched_setscheduler(), but we still
4070 * allow the 'normal' nice value to be set - but as expected
4071 * it wont have any effect on scheduling until the task is
dd41f596 4072 * SCHED_FIFO/SCHED_RR:
1da177e4 4073 */
e05606d3 4074 if (task_has_rt_policy(p)) {
1da177e4
LT
4075 p->static_prio = NICE_TO_PRIO(nice);
4076 goto out_unlock;
4077 }
dd41f596 4078 on_rq = p->se.on_rq;
58e2d4ca 4079 if (on_rq)
69be72c1 4080 dequeue_task(rq, p, 0);
1da177e4 4081
1da177e4 4082 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4083 set_load_weight(p);
b29739f9
IM
4084 old_prio = p->prio;
4085 p->prio = effective_prio(p);
4086 delta = p->prio - old_prio;
1da177e4 4087
dd41f596 4088 if (on_rq) {
8159f87e 4089 enqueue_task(rq, p, 0);
1da177e4 4090 /*
d5f9f942
AM
4091 * If the task increased its priority or is running and
4092 * lowered its priority, then reschedule its CPU:
1da177e4 4093 */
d5f9f942 4094 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4095 resched_task(rq->curr);
4096 }
4097out_unlock:
4098 task_rq_unlock(rq, &flags);
4099}
1da177e4
LT
4100EXPORT_SYMBOL(set_user_nice);
4101
e43379f1
MM
4102/*
4103 * can_nice - check if a task can reduce its nice value
4104 * @p: task
4105 * @nice: nice value
4106 */
36c8b586 4107int can_nice(const struct task_struct *p, const int nice)
e43379f1 4108{
024f4747
MM
4109 /* convert nice value [19,-20] to rlimit style value [1,40] */
4110 int nice_rlim = 20 - nice;
48f24c4d 4111
e43379f1
MM
4112 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4113 capable(CAP_SYS_NICE));
4114}
4115
1da177e4
LT
4116#ifdef __ARCH_WANT_SYS_NICE
4117
4118/*
4119 * sys_nice - change the priority of the current process.
4120 * @increment: priority increment
4121 *
4122 * sys_setpriority is a more generic, but much slower function that
4123 * does similar things.
4124 */
4125asmlinkage long sys_nice(int increment)
4126{
48f24c4d 4127 long nice, retval;
1da177e4
LT
4128
4129 /*
4130 * Setpriority might change our priority at the same moment.
4131 * We don't have to worry. Conceptually one call occurs first
4132 * and we have a single winner.
4133 */
e43379f1
MM
4134 if (increment < -40)
4135 increment = -40;
1da177e4
LT
4136 if (increment > 40)
4137 increment = 40;
4138
4139 nice = PRIO_TO_NICE(current->static_prio) + increment;
4140 if (nice < -20)
4141 nice = -20;
4142 if (nice > 19)
4143 nice = 19;
4144
e43379f1
MM
4145 if (increment < 0 && !can_nice(current, nice))
4146 return -EPERM;
4147
1da177e4
LT
4148 retval = security_task_setnice(current, nice);
4149 if (retval)
4150 return retval;
4151
4152 set_user_nice(current, nice);
4153 return 0;
4154}
4155
4156#endif
4157
4158/**
4159 * task_prio - return the priority value of a given task.
4160 * @p: the task in question.
4161 *
4162 * This is the priority value as seen by users in /proc.
4163 * RT tasks are offset by -200. Normal tasks are centered
4164 * around 0, value goes from -16 to +15.
4165 */
36c8b586 4166int task_prio(const struct task_struct *p)
1da177e4
LT
4167{
4168 return p->prio - MAX_RT_PRIO;
4169}
4170
4171/**
4172 * task_nice - return the nice value of a given task.
4173 * @p: the task in question.
4174 */
36c8b586 4175int task_nice(const struct task_struct *p)
1da177e4
LT
4176{
4177 return TASK_NICE(p);
4178}
1da177e4 4179EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4180
4181/**
4182 * idle_cpu - is a given cpu idle currently?
4183 * @cpu: the processor in question.
4184 */
4185int idle_cpu(int cpu)
4186{
4187 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4188}
4189
1da177e4
LT
4190/**
4191 * idle_task - return the idle task for a given cpu.
4192 * @cpu: the processor in question.
4193 */
36c8b586 4194struct task_struct *idle_task(int cpu)
1da177e4
LT
4195{
4196 return cpu_rq(cpu)->idle;
4197}
4198
4199/**
4200 * find_process_by_pid - find a process with a matching PID value.
4201 * @pid: the pid in question.
4202 */
a9957449 4203static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4204{
228ebcbe 4205 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4206}
4207
4208/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4209static void
4210__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4211{
dd41f596 4212 BUG_ON(p->se.on_rq);
48f24c4d 4213
1da177e4 4214 p->policy = policy;
dd41f596
IM
4215 switch (p->policy) {
4216 case SCHED_NORMAL:
4217 case SCHED_BATCH:
4218 case SCHED_IDLE:
4219 p->sched_class = &fair_sched_class;
4220 break;
4221 case SCHED_FIFO:
4222 case SCHED_RR:
4223 p->sched_class = &rt_sched_class;
4224 break;
4225 }
4226
1da177e4 4227 p->rt_priority = prio;
b29739f9
IM
4228 p->normal_prio = normal_prio(p);
4229 /* we are holding p->pi_lock already */
4230 p->prio = rt_mutex_getprio(p);
2dd73a4f 4231 set_load_weight(p);
1da177e4
LT
4232}
4233
4234/**
72fd4a35 4235 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4236 * @p: the task in question.
4237 * @policy: new policy.
4238 * @param: structure containing the new RT priority.
5fe1d75f 4239 *
72fd4a35 4240 * NOTE that the task may be already dead.
1da177e4 4241 */
95cdf3b7
IM
4242int sched_setscheduler(struct task_struct *p, int policy,
4243 struct sched_param *param)
1da177e4 4244{
83b699ed 4245 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4246 unsigned long flags;
70b97a7f 4247 struct rq *rq;
1da177e4 4248
66e5393a
SR
4249 /* may grab non-irq protected spin_locks */
4250 BUG_ON(in_interrupt());
1da177e4
LT
4251recheck:
4252 /* double check policy once rq lock held */
4253 if (policy < 0)
4254 policy = oldpolicy = p->policy;
4255 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4256 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4257 policy != SCHED_IDLE)
b0a9499c 4258 return -EINVAL;
1da177e4
LT
4259 /*
4260 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4261 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4262 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4263 */
4264 if (param->sched_priority < 0 ||
95cdf3b7 4265 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4266 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4267 return -EINVAL;
e05606d3 4268 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4269 return -EINVAL;
4270
37e4ab3f
OC
4271 /*
4272 * Allow unprivileged RT tasks to decrease priority:
4273 */
4274 if (!capable(CAP_SYS_NICE)) {
e05606d3 4275 if (rt_policy(policy)) {
8dc3e909 4276 unsigned long rlim_rtprio;
8dc3e909
ON
4277
4278 if (!lock_task_sighand(p, &flags))
4279 return -ESRCH;
4280 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4281 unlock_task_sighand(p, &flags);
4282
4283 /* can't set/change the rt policy */
4284 if (policy != p->policy && !rlim_rtprio)
4285 return -EPERM;
4286
4287 /* can't increase priority */
4288 if (param->sched_priority > p->rt_priority &&
4289 param->sched_priority > rlim_rtprio)
4290 return -EPERM;
4291 }
dd41f596
IM
4292 /*
4293 * Like positive nice levels, dont allow tasks to
4294 * move out of SCHED_IDLE either:
4295 */
4296 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4297 return -EPERM;
5fe1d75f 4298
37e4ab3f
OC
4299 /* can't change other user's priorities */
4300 if ((current->euid != p->euid) &&
4301 (current->euid != p->uid))
4302 return -EPERM;
4303 }
1da177e4
LT
4304
4305 retval = security_task_setscheduler(p, policy, param);
4306 if (retval)
4307 return retval;
b29739f9
IM
4308 /*
4309 * make sure no PI-waiters arrive (or leave) while we are
4310 * changing the priority of the task:
4311 */
4312 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4313 /*
4314 * To be able to change p->policy safely, the apropriate
4315 * runqueue lock must be held.
4316 */
b29739f9 4317 rq = __task_rq_lock(p);
1da177e4
LT
4318 /* recheck policy now with rq lock held */
4319 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4320 policy = oldpolicy = -1;
b29739f9
IM
4321 __task_rq_unlock(rq);
4322 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4323 goto recheck;
4324 }
2daa3577 4325 update_rq_clock(rq);
dd41f596 4326 on_rq = p->se.on_rq;
051a1d1a 4327 running = task_current(rq, p);
83b699ed 4328 if (on_rq) {
2e1cb74a 4329 deactivate_task(rq, p, 0);
83b699ed
SV
4330 if (running)
4331 p->sched_class->put_prev_task(rq, p);
4332 }
f6b53205 4333
1da177e4 4334 oldprio = p->prio;
dd41f596 4335 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4336
dd41f596 4337 if (on_rq) {
83b699ed
SV
4338 if (running)
4339 p->sched_class->set_curr_task(rq);
dd41f596 4340 activate_task(rq, p, 0);
1da177e4
LT
4341 /*
4342 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4343 * our priority decreased, or if we are not currently running on
4344 * this runqueue and our priority is higher than the current's
1da177e4 4345 */
83b699ed 4346 if (running) {
d5f9f942
AM
4347 if (p->prio > oldprio)
4348 resched_task(rq->curr);
dd41f596
IM
4349 } else {
4350 check_preempt_curr(rq, p);
4351 }
1da177e4 4352 }
b29739f9
IM
4353 __task_rq_unlock(rq);
4354 spin_unlock_irqrestore(&p->pi_lock, flags);
4355
95e02ca9
TG
4356 rt_mutex_adjust_pi(p);
4357
1da177e4
LT
4358 return 0;
4359}
4360EXPORT_SYMBOL_GPL(sched_setscheduler);
4361
95cdf3b7
IM
4362static int
4363do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4364{
1da177e4
LT
4365 struct sched_param lparam;
4366 struct task_struct *p;
36c8b586 4367 int retval;
1da177e4
LT
4368
4369 if (!param || pid < 0)
4370 return -EINVAL;
4371 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4372 return -EFAULT;
5fe1d75f
ON
4373
4374 rcu_read_lock();
4375 retval = -ESRCH;
1da177e4 4376 p = find_process_by_pid(pid);
5fe1d75f
ON
4377 if (p != NULL)
4378 retval = sched_setscheduler(p, policy, &lparam);
4379 rcu_read_unlock();
36c8b586 4380
1da177e4
LT
4381 return retval;
4382}
4383
4384/**
4385 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4386 * @pid: the pid in question.
4387 * @policy: new policy.
4388 * @param: structure containing the new RT priority.
4389 */
41a2d6cf
IM
4390asmlinkage long
4391sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4392{
c21761f1
JB
4393 /* negative values for policy are not valid */
4394 if (policy < 0)
4395 return -EINVAL;
4396
1da177e4
LT
4397 return do_sched_setscheduler(pid, policy, param);
4398}
4399
4400/**
4401 * sys_sched_setparam - set/change the RT priority of a thread
4402 * @pid: the pid in question.
4403 * @param: structure containing the new RT priority.
4404 */
4405asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4406{
4407 return do_sched_setscheduler(pid, -1, param);
4408}
4409
4410/**
4411 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4412 * @pid: the pid in question.
4413 */
4414asmlinkage long sys_sched_getscheduler(pid_t pid)
4415{
36c8b586 4416 struct task_struct *p;
3a5c359a 4417 int retval;
1da177e4
LT
4418
4419 if (pid < 0)
3a5c359a 4420 return -EINVAL;
1da177e4
LT
4421
4422 retval = -ESRCH;
4423 read_lock(&tasklist_lock);
4424 p = find_process_by_pid(pid);
4425 if (p) {
4426 retval = security_task_getscheduler(p);
4427 if (!retval)
4428 retval = p->policy;
4429 }
4430 read_unlock(&tasklist_lock);
1da177e4
LT
4431 return retval;
4432}
4433
4434/**
4435 * sys_sched_getscheduler - get the RT priority of a thread
4436 * @pid: the pid in question.
4437 * @param: structure containing the RT priority.
4438 */
4439asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4440{
4441 struct sched_param lp;
36c8b586 4442 struct task_struct *p;
3a5c359a 4443 int retval;
1da177e4
LT
4444
4445 if (!param || pid < 0)
3a5c359a 4446 return -EINVAL;
1da177e4
LT
4447
4448 read_lock(&tasklist_lock);
4449 p = find_process_by_pid(pid);
4450 retval = -ESRCH;
4451 if (!p)
4452 goto out_unlock;
4453
4454 retval = security_task_getscheduler(p);
4455 if (retval)
4456 goto out_unlock;
4457
4458 lp.sched_priority = p->rt_priority;
4459 read_unlock(&tasklist_lock);
4460
4461 /*
4462 * This one might sleep, we cannot do it with a spinlock held ...
4463 */
4464 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4465
1da177e4
LT
4466 return retval;
4467
4468out_unlock:
4469 read_unlock(&tasklist_lock);
4470 return retval;
4471}
4472
4473long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4474{
1da177e4 4475 cpumask_t cpus_allowed;
36c8b586
IM
4476 struct task_struct *p;
4477 int retval;
1da177e4 4478
95402b38 4479 get_online_cpus();
1da177e4
LT
4480 read_lock(&tasklist_lock);
4481
4482 p = find_process_by_pid(pid);
4483 if (!p) {
4484 read_unlock(&tasklist_lock);
95402b38 4485 put_online_cpus();
1da177e4
LT
4486 return -ESRCH;
4487 }
4488
4489 /*
4490 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4491 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4492 * usage count and then drop tasklist_lock.
4493 */
4494 get_task_struct(p);
4495 read_unlock(&tasklist_lock);
4496
4497 retval = -EPERM;
4498 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4499 !capable(CAP_SYS_NICE))
4500 goto out_unlock;
4501
e7834f8f
DQ
4502 retval = security_task_setscheduler(p, 0, NULL);
4503 if (retval)
4504 goto out_unlock;
4505
1da177e4
LT
4506 cpus_allowed = cpuset_cpus_allowed(p);
4507 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4508 again:
1da177e4
LT
4509 retval = set_cpus_allowed(p, new_mask);
4510
8707d8b8
PM
4511 if (!retval) {
4512 cpus_allowed = cpuset_cpus_allowed(p);
4513 if (!cpus_subset(new_mask, cpus_allowed)) {
4514 /*
4515 * We must have raced with a concurrent cpuset
4516 * update. Just reset the cpus_allowed to the
4517 * cpuset's cpus_allowed
4518 */
4519 new_mask = cpus_allowed;
4520 goto again;
4521 }
4522 }
1da177e4
LT
4523out_unlock:
4524 put_task_struct(p);
95402b38 4525 put_online_cpus();
1da177e4
LT
4526 return retval;
4527}
4528
4529static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4530 cpumask_t *new_mask)
4531{
4532 if (len < sizeof(cpumask_t)) {
4533 memset(new_mask, 0, sizeof(cpumask_t));
4534 } else if (len > sizeof(cpumask_t)) {
4535 len = sizeof(cpumask_t);
4536 }
4537 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4538}
4539
4540/**
4541 * sys_sched_setaffinity - set the cpu affinity of a process
4542 * @pid: pid of the process
4543 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4544 * @user_mask_ptr: user-space pointer to the new cpu mask
4545 */
4546asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4547 unsigned long __user *user_mask_ptr)
4548{
4549 cpumask_t new_mask;
4550 int retval;
4551
4552 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4553 if (retval)
4554 return retval;
4555
4556 return sched_setaffinity(pid, new_mask);
4557}
4558
4559/*
4560 * Represents all cpu's present in the system
4561 * In systems capable of hotplug, this map could dynamically grow
4562 * as new cpu's are detected in the system via any platform specific
4563 * method, such as ACPI for e.g.
4564 */
4565
4cef0c61 4566cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4567EXPORT_SYMBOL(cpu_present_map);
4568
4569#ifndef CONFIG_SMP
4cef0c61 4570cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4571EXPORT_SYMBOL(cpu_online_map);
4572
4cef0c61 4573cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4574EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4575#endif
4576
4577long sched_getaffinity(pid_t pid, cpumask_t *mask)
4578{
36c8b586 4579 struct task_struct *p;
1da177e4 4580 int retval;
1da177e4 4581
95402b38 4582 get_online_cpus();
1da177e4
LT
4583 read_lock(&tasklist_lock);
4584
4585 retval = -ESRCH;
4586 p = find_process_by_pid(pid);
4587 if (!p)
4588 goto out_unlock;
4589
e7834f8f
DQ
4590 retval = security_task_getscheduler(p);
4591 if (retval)
4592 goto out_unlock;
4593
2f7016d9 4594 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4595
4596out_unlock:
4597 read_unlock(&tasklist_lock);
95402b38 4598 put_online_cpus();
1da177e4 4599
9531b62f 4600 return retval;
1da177e4
LT
4601}
4602
4603/**
4604 * sys_sched_getaffinity - get the cpu affinity of a process
4605 * @pid: pid of the process
4606 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4607 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4608 */
4609asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4610 unsigned long __user *user_mask_ptr)
4611{
4612 int ret;
4613 cpumask_t mask;
4614
4615 if (len < sizeof(cpumask_t))
4616 return -EINVAL;
4617
4618 ret = sched_getaffinity(pid, &mask);
4619 if (ret < 0)
4620 return ret;
4621
4622 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4623 return -EFAULT;
4624
4625 return sizeof(cpumask_t);
4626}
4627
4628/**
4629 * sys_sched_yield - yield the current processor to other threads.
4630 *
dd41f596
IM
4631 * This function yields the current CPU to other tasks. If there are no
4632 * other threads running on this CPU then this function will return.
1da177e4
LT
4633 */
4634asmlinkage long sys_sched_yield(void)
4635{
70b97a7f 4636 struct rq *rq = this_rq_lock();
1da177e4 4637
2d72376b 4638 schedstat_inc(rq, yld_count);
4530d7ab 4639 current->sched_class->yield_task(rq);
1da177e4
LT
4640
4641 /*
4642 * Since we are going to call schedule() anyway, there's
4643 * no need to preempt or enable interrupts:
4644 */
4645 __release(rq->lock);
8a25d5de 4646 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4647 _raw_spin_unlock(&rq->lock);
4648 preempt_enable_no_resched();
4649
4650 schedule();
4651
4652 return 0;
4653}
4654
e7b38404 4655static void __cond_resched(void)
1da177e4 4656{
8e0a43d8
IM
4657#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4658 __might_sleep(__FILE__, __LINE__);
4659#endif
5bbcfd90
IM
4660 /*
4661 * The BKS might be reacquired before we have dropped
4662 * PREEMPT_ACTIVE, which could trigger a second
4663 * cond_resched() call.
4664 */
1da177e4
LT
4665 do {
4666 add_preempt_count(PREEMPT_ACTIVE);
4667 schedule();
4668 sub_preempt_count(PREEMPT_ACTIVE);
4669 } while (need_resched());
4670}
4671
4672int __sched cond_resched(void)
4673{
9414232f
IM
4674 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4675 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4676 __cond_resched();
4677 return 1;
4678 }
4679 return 0;
4680}
1da177e4
LT
4681EXPORT_SYMBOL(cond_resched);
4682
4683/*
4684 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4685 * call schedule, and on return reacquire the lock.
4686 *
41a2d6cf 4687 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4688 * operations here to prevent schedule() from being called twice (once via
4689 * spin_unlock(), once by hand).
4690 */
95cdf3b7 4691int cond_resched_lock(spinlock_t *lock)
1da177e4 4692{
6df3cecb
JK
4693 int ret = 0;
4694
1da177e4
LT
4695 if (need_lockbreak(lock)) {
4696 spin_unlock(lock);
4697 cpu_relax();
6df3cecb 4698 ret = 1;
1da177e4
LT
4699 spin_lock(lock);
4700 }
9414232f 4701 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4702 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4703 _raw_spin_unlock(lock);
4704 preempt_enable_no_resched();
4705 __cond_resched();
6df3cecb 4706 ret = 1;
1da177e4 4707 spin_lock(lock);
1da177e4 4708 }
6df3cecb 4709 return ret;
1da177e4 4710}
1da177e4
LT
4711EXPORT_SYMBOL(cond_resched_lock);
4712
4713int __sched cond_resched_softirq(void)
4714{
4715 BUG_ON(!in_softirq());
4716
9414232f 4717 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4718 local_bh_enable();
1da177e4
LT
4719 __cond_resched();
4720 local_bh_disable();
4721 return 1;
4722 }
4723 return 0;
4724}
1da177e4
LT
4725EXPORT_SYMBOL(cond_resched_softirq);
4726
1da177e4
LT
4727/**
4728 * yield - yield the current processor to other threads.
4729 *
72fd4a35 4730 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4731 * thread runnable and calls sys_sched_yield().
4732 */
4733void __sched yield(void)
4734{
4735 set_current_state(TASK_RUNNING);
4736 sys_sched_yield();
4737}
1da177e4
LT
4738EXPORT_SYMBOL(yield);
4739
4740/*
41a2d6cf 4741 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4742 * that process accounting knows that this is a task in IO wait state.
4743 *
4744 * But don't do that if it is a deliberate, throttling IO wait (this task
4745 * has set its backing_dev_info: the queue against which it should throttle)
4746 */
4747void __sched io_schedule(void)
4748{
70b97a7f 4749 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4750
0ff92245 4751 delayacct_blkio_start();
1da177e4
LT
4752 atomic_inc(&rq->nr_iowait);
4753 schedule();
4754 atomic_dec(&rq->nr_iowait);
0ff92245 4755 delayacct_blkio_end();
1da177e4 4756}
1da177e4
LT
4757EXPORT_SYMBOL(io_schedule);
4758
4759long __sched io_schedule_timeout(long timeout)
4760{
70b97a7f 4761 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4762 long ret;
4763
0ff92245 4764 delayacct_blkio_start();
1da177e4
LT
4765 atomic_inc(&rq->nr_iowait);
4766 ret = schedule_timeout(timeout);
4767 atomic_dec(&rq->nr_iowait);
0ff92245 4768 delayacct_blkio_end();
1da177e4
LT
4769 return ret;
4770}
4771
4772/**
4773 * sys_sched_get_priority_max - return maximum RT priority.
4774 * @policy: scheduling class.
4775 *
4776 * this syscall returns the maximum rt_priority that can be used
4777 * by a given scheduling class.
4778 */
4779asmlinkage long sys_sched_get_priority_max(int policy)
4780{
4781 int ret = -EINVAL;
4782
4783 switch (policy) {
4784 case SCHED_FIFO:
4785 case SCHED_RR:
4786 ret = MAX_USER_RT_PRIO-1;
4787 break;
4788 case SCHED_NORMAL:
b0a9499c 4789 case SCHED_BATCH:
dd41f596 4790 case SCHED_IDLE:
1da177e4
LT
4791 ret = 0;
4792 break;
4793 }
4794 return ret;
4795}
4796
4797/**
4798 * sys_sched_get_priority_min - return minimum RT priority.
4799 * @policy: scheduling class.
4800 *
4801 * this syscall returns the minimum rt_priority that can be used
4802 * by a given scheduling class.
4803 */
4804asmlinkage long sys_sched_get_priority_min(int policy)
4805{
4806 int ret = -EINVAL;
4807
4808 switch (policy) {
4809 case SCHED_FIFO:
4810 case SCHED_RR:
4811 ret = 1;
4812 break;
4813 case SCHED_NORMAL:
b0a9499c 4814 case SCHED_BATCH:
dd41f596 4815 case SCHED_IDLE:
1da177e4
LT
4816 ret = 0;
4817 }
4818 return ret;
4819}
4820
4821/**
4822 * sys_sched_rr_get_interval - return the default timeslice of a process.
4823 * @pid: pid of the process.
4824 * @interval: userspace pointer to the timeslice value.
4825 *
4826 * this syscall writes the default timeslice value of a given process
4827 * into the user-space timespec buffer. A value of '0' means infinity.
4828 */
4829asmlinkage
4830long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4831{
36c8b586 4832 struct task_struct *p;
a4ec24b4 4833 unsigned int time_slice;
3a5c359a 4834 int retval;
1da177e4 4835 struct timespec t;
1da177e4
LT
4836
4837 if (pid < 0)
3a5c359a 4838 return -EINVAL;
1da177e4
LT
4839
4840 retval = -ESRCH;
4841 read_lock(&tasklist_lock);
4842 p = find_process_by_pid(pid);
4843 if (!p)
4844 goto out_unlock;
4845
4846 retval = security_task_getscheduler(p);
4847 if (retval)
4848 goto out_unlock;
4849
77034937
IM
4850 /*
4851 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4852 * tasks that are on an otherwise idle runqueue:
4853 */
4854 time_slice = 0;
4855 if (p->policy == SCHED_RR) {
a4ec24b4 4856 time_slice = DEF_TIMESLICE;
77034937 4857 } else {
a4ec24b4
DA
4858 struct sched_entity *se = &p->se;
4859 unsigned long flags;
4860 struct rq *rq;
4861
4862 rq = task_rq_lock(p, &flags);
77034937
IM
4863 if (rq->cfs.load.weight)
4864 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4865 task_rq_unlock(rq, &flags);
4866 }
1da177e4 4867 read_unlock(&tasklist_lock);
a4ec24b4 4868 jiffies_to_timespec(time_slice, &t);
1da177e4 4869 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4870 return retval;
3a5c359a 4871
1da177e4
LT
4872out_unlock:
4873 read_unlock(&tasklist_lock);
4874 return retval;
4875}
4876
2ed6e34f 4877static const char stat_nam[] = "RSDTtZX";
36c8b586 4878
82a1fcb9 4879void sched_show_task(struct task_struct *p)
1da177e4 4880{
1da177e4 4881 unsigned long free = 0;
36c8b586 4882 unsigned state;
1da177e4 4883
1da177e4 4884 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4885 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4886 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4887#if BITS_PER_LONG == 32
1da177e4 4888 if (state == TASK_RUNNING)
cc4ea795 4889 printk(KERN_CONT " running ");
1da177e4 4890 else
cc4ea795 4891 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4892#else
4893 if (state == TASK_RUNNING)
cc4ea795 4894 printk(KERN_CONT " running task ");
1da177e4 4895 else
cc4ea795 4896 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4897#endif
4898#ifdef CONFIG_DEBUG_STACK_USAGE
4899 {
10ebffde 4900 unsigned long *n = end_of_stack(p);
1da177e4
LT
4901 while (!*n)
4902 n++;
10ebffde 4903 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4904 }
4905#endif
ba25f9dc 4906 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4907 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4908
4909 if (state != TASK_RUNNING)
4910 show_stack(p, NULL);
4911}
4912
e59e2ae2 4913void show_state_filter(unsigned long state_filter)
1da177e4 4914{
36c8b586 4915 struct task_struct *g, *p;
1da177e4 4916
4bd77321
IM
4917#if BITS_PER_LONG == 32
4918 printk(KERN_INFO
4919 " task PC stack pid father\n");
1da177e4 4920#else
4bd77321
IM
4921 printk(KERN_INFO
4922 " task PC stack pid father\n");
1da177e4
LT
4923#endif
4924 read_lock(&tasklist_lock);
4925 do_each_thread(g, p) {
4926 /*
4927 * reset the NMI-timeout, listing all files on a slow
4928 * console might take alot of time:
4929 */
4930 touch_nmi_watchdog();
39bc89fd 4931 if (!state_filter || (p->state & state_filter))
82a1fcb9 4932 sched_show_task(p);
1da177e4
LT
4933 } while_each_thread(g, p);
4934
04c9167f
JF
4935 touch_all_softlockup_watchdogs();
4936
dd41f596
IM
4937#ifdef CONFIG_SCHED_DEBUG
4938 sysrq_sched_debug_show();
4939#endif
1da177e4 4940 read_unlock(&tasklist_lock);
e59e2ae2
IM
4941 /*
4942 * Only show locks if all tasks are dumped:
4943 */
4944 if (state_filter == -1)
4945 debug_show_all_locks();
1da177e4
LT
4946}
4947
1df21055
IM
4948void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4949{
dd41f596 4950 idle->sched_class = &idle_sched_class;
1df21055
IM
4951}
4952
f340c0d1
IM
4953/**
4954 * init_idle - set up an idle thread for a given CPU
4955 * @idle: task in question
4956 * @cpu: cpu the idle task belongs to
4957 *
4958 * NOTE: this function does not set the idle thread's NEED_RESCHED
4959 * flag, to make booting more robust.
4960 */
5c1e1767 4961void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4962{
70b97a7f 4963 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4964 unsigned long flags;
4965
dd41f596
IM
4966 __sched_fork(idle);
4967 idle->se.exec_start = sched_clock();
4968
b29739f9 4969 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4970 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4971 __set_task_cpu(idle, cpu);
1da177e4
LT
4972
4973 spin_lock_irqsave(&rq->lock, flags);
4974 rq->curr = rq->idle = idle;
4866cde0
NP
4975#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4976 idle->oncpu = 1;
4977#endif
1da177e4
LT
4978 spin_unlock_irqrestore(&rq->lock, flags);
4979
4980 /* Set the preempt count _outside_ the spinlocks! */
4981#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4982 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4983#else
a1261f54 4984 task_thread_info(idle)->preempt_count = 0;
1da177e4 4985#endif
dd41f596
IM
4986 /*
4987 * The idle tasks have their own, simple scheduling class:
4988 */
4989 idle->sched_class = &idle_sched_class;
1da177e4
LT
4990}
4991
4992/*
4993 * In a system that switches off the HZ timer nohz_cpu_mask
4994 * indicates which cpus entered this state. This is used
4995 * in the rcu update to wait only for active cpus. For system
4996 * which do not switch off the HZ timer nohz_cpu_mask should
4997 * always be CPU_MASK_NONE.
4998 */
4999cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5000
19978ca6
IM
5001/*
5002 * Increase the granularity value when there are more CPUs,
5003 * because with more CPUs the 'effective latency' as visible
5004 * to users decreases. But the relationship is not linear,
5005 * so pick a second-best guess by going with the log2 of the
5006 * number of CPUs.
5007 *
5008 * This idea comes from the SD scheduler of Con Kolivas:
5009 */
5010static inline void sched_init_granularity(void)
5011{
5012 unsigned int factor = 1 + ilog2(num_online_cpus());
5013 const unsigned long limit = 200000000;
5014
5015 sysctl_sched_min_granularity *= factor;
5016 if (sysctl_sched_min_granularity > limit)
5017 sysctl_sched_min_granularity = limit;
5018
5019 sysctl_sched_latency *= factor;
5020 if (sysctl_sched_latency > limit)
5021 sysctl_sched_latency = limit;
5022
5023 sysctl_sched_wakeup_granularity *= factor;
5024 sysctl_sched_batch_wakeup_granularity *= factor;
5025}
5026
1da177e4
LT
5027#ifdef CONFIG_SMP
5028/*
5029 * This is how migration works:
5030 *
70b97a7f 5031 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5032 * runqueue and wake up that CPU's migration thread.
5033 * 2) we down() the locked semaphore => thread blocks.
5034 * 3) migration thread wakes up (implicitly it forces the migrated
5035 * thread off the CPU)
5036 * 4) it gets the migration request and checks whether the migrated
5037 * task is still in the wrong runqueue.
5038 * 5) if it's in the wrong runqueue then the migration thread removes
5039 * it and puts it into the right queue.
5040 * 6) migration thread up()s the semaphore.
5041 * 7) we wake up and the migration is done.
5042 */
5043
5044/*
5045 * Change a given task's CPU affinity. Migrate the thread to a
5046 * proper CPU and schedule it away if the CPU it's executing on
5047 * is removed from the allowed bitmask.
5048 *
5049 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5050 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5051 * call is not atomic; no spinlocks may be held.
5052 */
36c8b586 5053int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5054{
70b97a7f 5055 struct migration_req req;
1da177e4 5056 unsigned long flags;
70b97a7f 5057 struct rq *rq;
48f24c4d 5058 int ret = 0;
1da177e4
LT
5059
5060 rq = task_rq_lock(p, &flags);
5061 if (!cpus_intersects(new_mask, cpu_online_map)) {
5062 ret = -EINVAL;
5063 goto out;
5064 }
5065
73fe6aae
GH
5066 if (p->sched_class->set_cpus_allowed)
5067 p->sched_class->set_cpus_allowed(p, &new_mask);
5068 else {
5069 p->cpus_allowed = new_mask;
5070 p->nr_cpus_allowed = cpus_weight(new_mask);
5071 }
5072
1da177e4
LT
5073 /* Can the task run on the task's current CPU? If so, we're done */
5074 if (cpu_isset(task_cpu(p), new_mask))
5075 goto out;
5076
5077 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5078 /* Need help from migration thread: drop lock and wait. */
5079 task_rq_unlock(rq, &flags);
5080 wake_up_process(rq->migration_thread);
5081 wait_for_completion(&req.done);
5082 tlb_migrate_finish(p->mm);
5083 return 0;
5084 }
5085out:
5086 task_rq_unlock(rq, &flags);
48f24c4d 5087
1da177e4
LT
5088 return ret;
5089}
1da177e4
LT
5090EXPORT_SYMBOL_GPL(set_cpus_allowed);
5091
5092/*
41a2d6cf 5093 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5094 * this because either it can't run here any more (set_cpus_allowed()
5095 * away from this CPU, or CPU going down), or because we're
5096 * attempting to rebalance this task on exec (sched_exec).
5097 *
5098 * So we race with normal scheduler movements, but that's OK, as long
5099 * as the task is no longer on this CPU.
efc30814
KK
5100 *
5101 * Returns non-zero if task was successfully migrated.
1da177e4 5102 */
efc30814 5103static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5104{
70b97a7f 5105 struct rq *rq_dest, *rq_src;
dd41f596 5106 int ret = 0, on_rq;
1da177e4
LT
5107
5108 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5109 return ret;
1da177e4
LT
5110
5111 rq_src = cpu_rq(src_cpu);
5112 rq_dest = cpu_rq(dest_cpu);
5113
5114 double_rq_lock(rq_src, rq_dest);
5115 /* Already moved. */
5116 if (task_cpu(p) != src_cpu)
5117 goto out;
5118 /* Affinity changed (again). */
5119 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5120 goto out;
5121
dd41f596 5122 on_rq = p->se.on_rq;
6e82a3be 5123 if (on_rq)
2e1cb74a 5124 deactivate_task(rq_src, p, 0);
6e82a3be 5125
1da177e4 5126 set_task_cpu(p, dest_cpu);
dd41f596
IM
5127 if (on_rq) {
5128 activate_task(rq_dest, p, 0);
5129 check_preempt_curr(rq_dest, p);
1da177e4 5130 }
efc30814 5131 ret = 1;
1da177e4
LT
5132out:
5133 double_rq_unlock(rq_src, rq_dest);
efc30814 5134 return ret;
1da177e4
LT
5135}
5136
5137/*
5138 * migration_thread - this is a highprio system thread that performs
5139 * thread migration by bumping thread off CPU then 'pushing' onto
5140 * another runqueue.
5141 */
95cdf3b7 5142static int migration_thread(void *data)
1da177e4 5143{
1da177e4 5144 int cpu = (long)data;
70b97a7f 5145 struct rq *rq;
1da177e4
LT
5146
5147 rq = cpu_rq(cpu);
5148 BUG_ON(rq->migration_thread != current);
5149
5150 set_current_state(TASK_INTERRUPTIBLE);
5151 while (!kthread_should_stop()) {
70b97a7f 5152 struct migration_req *req;
1da177e4 5153 struct list_head *head;
1da177e4 5154
1da177e4
LT
5155 spin_lock_irq(&rq->lock);
5156
5157 if (cpu_is_offline(cpu)) {
5158 spin_unlock_irq(&rq->lock);
5159 goto wait_to_die;
5160 }
5161
5162 if (rq->active_balance) {
5163 active_load_balance(rq, cpu);
5164 rq->active_balance = 0;
5165 }
5166
5167 head = &rq->migration_queue;
5168
5169 if (list_empty(head)) {
5170 spin_unlock_irq(&rq->lock);
5171 schedule();
5172 set_current_state(TASK_INTERRUPTIBLE);
5173 continue;
5174 }
70b97a7f 5175 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5176 list_del_init(head->next);
5177
674311d5
NP
5178 spin_unlock(&rq->lock);
5179 __migrate_task(req->task, cpu, req->dest_cpu);
5180 local_irq_enable();
1da177e4
LT
5181
5182 complete(&req->done);
5183 }
5184 __set_current_state(TASK_RUNNING);
5185 return 0;
5186
5187wait_to_die:
5188 /* Wait for kthread_stop */
5189 set_current_state(TASK_INTERRUPTIBLE);
5190 while (!kthread_should_stop()) {
5191 schedule();
5192 set_current_state(TASK_INTERRUPTIBLE);
5193 }
5194 __set_current_state(TASK_RUNNING);
5195 return 0;
5196}
5197
5198#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5199
5200static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5201{
5202 int ret;
5203
5204 local_irq_disable();
5205 ret = __migrate_task(p, src_cpu, dest_cpu);
5206 local_irq_enable();
5207 return ret;
5208}
5209
054b9108 5210/*
3a4fa0a2 5211 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5212 * NOTE: interrupts should be disabled by the caller
5213 */
48f24c4d 5214static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5215{
efc30814 5216 unsigned long flags;
1da177e4 5217 cpumask_t mask;
70b97a7f
IM
5218 struct rq *rq;
5219 int dest_cpu;
1da177e4 5220
3a5c359a
AK
5221 do {
5222 /* On same node? */
5223 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5224 cpus_and(mask, mask, p->cpus_allowed);
5225 dest_cpu = any_online_cpu(mask);
5226
5227 /* On any allowed CPU? */
5228 if (dest_cpu == NR_CPUS)
5229 dest_cpu = any_online_cpu(p->cpus_allowed);
5230
5231 /* No more Mr. Nice Guy. */
5232 if (dest_cpu == NR_CPUS) {
470fd646
CW
5233 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5234 /*
5235 * Try to stay on the same cpuset, where the
5236 * current cpuset may be a subset of all cpus.
5237 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5238 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5239 * called within calls to cpuset_lock/cpuset_unlock.
5240 */
3a5c359a 5241 rq = task_rq_lock(p, &flags);
470fd646 5242 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5243 dest_cpu = any_online_cpu(p->cpus_allowed);
5244 task_rq_unlock(rq, &flags);
1da177e4 5245
3a5c359a
AK
5246 /*
5247 * Don't tell them about moving exiting tasks or
5248 * kernel threads (both mm NULL), since they never
5249 * leave kernel.
5250 */
41a2d6cf 5251 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5252 printk(KERN_INFO "process %d (%s) no "
5253 "longer affine to cpu%d\n",
41a2d6cf
IM
5254 task_pid_nr(p), p->comm, dead_cpu);
5255 }
3a5c359a 5256 }
f7b4cddc 5257 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5258}
5259
5260/*
5261 * While a dead CPU has no uninterruptible tasks queued at this point,
5262 * it might still have a nonzero ->nr_uninterruptible counter, because
5263 * for performance reasons the counter is not stricly tracking tasks to
5264 * their home CPUs. So we just add the counter to another CPU's counter,
5265 * to keep the global sum constant after CPU-down:
5266 */
70b97a7f 5267static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5268{
70b97a7f 5269 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5270 unsigned long flags;
5271
5272 local_irq_save(flags);
5273 double_rq_lock(rq_src, rq_dest);
5274 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5275 rq_src->nr_uninterruptible = 0;
5276 double_rq_unlock(rq_src, rq_dest);
5277 local_irq_restore(flags);
5278}
5279
5280/* Run through task list and migrate tasks from the dead cpu. */
5281static void migrate_live_tasks(int src_cpu)
5282{
48f24c4d 5283 struct task_struct *p, *t;
1da177e4 5284
f7b4cddc 5285 read_lock(&tasklist_lock);
1da177e4 5286
48f24c4d
IM
5287 do_each_thread(t, p) {
5288 if (p == current)
1da177e4
LT
5289 continue;
5290
48f24c4d
IM
5291 if (task_cpu(p) == src_cpu)
5292 move_task_off_dead_cpu(src_cpu, p);
5293 } while_each_thread(t, p);
1da177e4 5294
f7b4cddc 5295 read_unlock(&tasklist_lock);
1da177e4
LT
5296}
5297
dd41f596
IM
5298/*
5299 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5300 * It does so by boosting its priority to highest possible.
5301 * Used by CPU offline code.
1da177e4
LT
5302 */
5303void sched_idle_next(void)
5304{
48f24c4d 5305 int this_cpu = smp_processor_id();
70b97a7f 5306 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5307 struct task_struct *p = rq->idle;
5308 unsigned long flags;
5309
5310 /* cpu has to be offline */
48f24c4d 5311 BUG_ON(cpu_online(this_cpu));
1da177e4 5312
48f24c4d
IM
5313 /*
5314 * Strictly not necessary since rest of the CPUs are stopped by now
5315 * and interrupts disabled on the current cpu.
1da177e4
LT
5316 */
5317 spin_lock_irqsave(&rq->lock, flags);
5318
dd41f596 5319 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5320
94bc9a7b
DA
5321 update_rq_clock(rq);
5322 activate_task(rq, p, 0);
1da177e4
LT
5323
5324 spin_unlock_irqrestore(&rq->lock, flags);
5325}
5326
48f24c4d
IM
5327/*
5328 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5329 * offline.
5330 */
5331void idle_task_exit(void)
5332{
5333 struct mm_struct *mm = current->active_mm;
5334
5335 BUG_ON(cpu_online(smp_processor_id()));
5336
5337 if (mm != &init_mm)
5338 switch_mm(mm, &init_mm, current);
5339 mmdrop(mm);
5340}
5341
054b9108 5342/* called under rq->lock with disabled interrupts */
36c8b586 5343static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5344{
70b97a7f 5345 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5346
5347 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5348 BUG_ON(!p->exit_state);
1da177e4
LT
5349
5350 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5351 BUG_ON(p->state == TASK_DEAD);
1da177e4 5352
48f24c4d 5353 get_task_struct(p);
1da177e4
LT
5354
5355 /*
5356 * Drop lock around migration; if someone else moves it,
41a2d6cf 5357 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5358 * fine.
5359 */
f7b4cddc 5360 spin_unlock_irq(&rq->lock);
48f24c4d 5361 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5362 spin_lock_irq(&rq->lock);
1da177e4 5363
48f24c4d 5364 put_task_struct(p);
1da177e4
LT
5365}
5366
5367/* release_task() removes task from tasklist, so we won't find dead tasks. */
5368static void migrate_dead_tasks(unsigned int dead_cpu)
5369{
70b97a7f 5370 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5371 struct task_struct *next;
48f24c4d 5372
dd41f596
IM
5373 for ( ; ; ) {
5374 if (!rq->nr_running)
5375 break;
a8e504d2 5376 update_rq_clock(rq);
ff95f3df 5377 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5378 if (!next)
5379 break;
5380 migrate_dead(dead_cpu, next);
e692ab53 5381
1da177e4
LT
5382 }
5383}
5384#endif /* CONFIG_HOTPLUG_CPU */
5385
e692ab53
NP
5386#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5387
5388static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5389 {
5390 .procname = "sched_domain",
c57baf1e 5391 .mode = 0555,
e0361851 5392 },
38605cae 5393 {0, },
e692ab53
NP
5394};
5395
5396static struct ctl_table sd_ctl_root[] = {
e0361851 5397 {
c57baf1e 5398 .ctl_name = CTL_KERN,
e0361851 5399 .procname = "kernel",
c57baf1e 5400 .mode = 0555,
e0361851
AD
5401 .child = sd_ctl_dir,
5402 },
38605cae 5403 {0, },
e692ab53
NP
5404};
5405
5406static struct ctl_table *sd_alloc_ctl_entry(int n)
5407{
5408 struct ctl_table *entry =
5cf9f062 5409 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5410
e692ab53
NP
5411 return entry;
5412}
5413
6382bc90
MM
5414static void sd_free_ctl_entry(struct ctl_table **tablep)
5415{
cd790076 5416 struct ctl_table *entry;
6382bc90 5417
cd790076
MM
5418 /*
5419 * In the intermediate directories, both the child directory and
5420 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5421 * will always be set. In the lowest directory the names are
cd790076
MM
5422 * static strings and all have proc handlers.
5423 */
5424 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5425 if (entry->child)
5426 sd_free_ctl_entry(&entry->child);
cd790076
MM
5427 if (entry->proc_handler == NULL)
5428 kfree(entry->procname);
5429 }
6382bc90
MM
5430
5431 kfree(*tablep);
5432 *tablep = NULL;
5433}
5434
e692ab53 5435static void
e0361851 5436set_table_entry(struct ctl_table *entry,
e692ab53
NP
5437 const char *procname, void *data, int maxlen,
5438 mode_t mode, proc_handler *proc_handler)
5439{
e692ab53
NP
5440 entry->procname = procname;
5441 entry->data = data;
5442 entry->maxlen = maxlen;
5443 entry->mode = mode;
5444 entry->proc_handler = proc_handler;
5445}
5446
5447static struct ctl_table *
5448sd_alloc_ctl_domain_table(struct sched_domain *sd)
5449{
ace8b3d6 5450 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5451
ad1cdc1d
MM
5452 if (table == NULL)
5453 return NULL;
5454
e0361851 5455 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5456 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5457 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5458 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5459 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5461 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5463 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5465 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5467 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5468 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5469 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5470 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5471 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5472 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5473 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5474 &sd->cache_nice_tries,
5475 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5476 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5477 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5478 /* &table[11] is terminator */
e692ab53
NP
5479
5480 return table;
5481}
5482
9a4e7159 5483static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5484{
5485 struct ctl_table *entry, *table;
5486 struct sched_domain *sd;
5487 int domain_num = 0, i;
5488 char buf[32];
5489
5490 for_each_domain(cpu, sd)
5491 domain_num++;
5492 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5493 if (table == NULL)
5494 return NULL;
e692ab53
NP
5495
5496 i = 0;
5497 for_each_domain(cpu, sd) {
5498 snprintf(buf, 32, "domain%d", i);
e692ab53 5499 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5500 entry->mode = 0555;
e692ab53
NP
5501 entry->child = sd_alloc_ctl_domain_table(sd);
5502 entry++;
5503 i++;
5504 }
5505 return table;
5506}
5507
5508static struct ctl_table_header *sd_sysctl_header;
6382bc90 5509static void register_sched_domain_sysctl(void)
e692ab53
NP
5510{
5511 int i, cpu_num = num_online_cpus();
5512 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5513 char buf[32];
5514
7378547f
MM
5515 WARN_ON(sd_ctl_dir[0].child);
5516 sd_ctl_dir[0].child = entry;
5517
ad1cdc1d
MM
5518 if (entry == NULL)
5519 return;
5520
97b6ea7b 5521 for_each_online_cpu(i) {
e692ab53 5522 snprintf(buf, 32, "cpu%d", i);
e692ab53 5523 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5524 entry->mode = 0555;
e692ab53 5525 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5526 entry++;
e692ab53 5527 }
7378547f
MM
5528
5529 WARN_ON(sd_sysctl_header);
e692ab53
NP
5530 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5531}
6382bc90 5532
7378547f 5533/* may be called multiple times per register */
6382bc90
MM
5534static void unregister_sched_domain_sysctl(void)
5535{
7378547f
MM
5536 if (sd_sysctl_header)
5537 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5538 sd_sysctl_header = NULL;
7378547f
MM
5539 if (sd_ctl_dir[0].child)
5540 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5541}
e692ab53 5542#else
6382bc90
MM
5543static void register_sched_domain_sysctl(void)
5544{
5545}
5546static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5547{
5548}
5549#endif
5550
1da177e4
LT
5551/*
5552 * migration_call - callback that gets triggered when a CPU is added.
5553 * Here we can start up the necessary migration thread for the new CPU.
5554 */
48f24c4d
IM
5555static int __cpuinit
5556migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5557{
1da177e4 5558 struct task_struct *p;
48f24c4d 5559 int cpu = (long)hcpu;
1da177e4 5560 unsigned long flags;
70b97a7f 5561 struct rq *rq;
1da177e4
LT
5562
5563 switch (action) {
5be9361c 5564
1da177e4 5565 case CPU_UP_PREPARE:
8bb78442 5566 case CPU_UP_PREPARE_FROZEN:
dd41f596 5567 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5568 if (IS_ERR(p))
5569 return NOTIFY_BAD;
1da177e4
LT
5570 kthread_bind(p, cpu);
5571 /* Must be high prio: stop_machine expects to yield to it. */
5572 rq = task_rq_lock(p, &flags);
dd41f596 5573 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5574 task_rq_unlock(rq, &flags);
5575 cpu_rq(cpu)->migration_thread = p;
5576 break;
48f24c4d 5577
1da177e4 5578 case CPU_ONLINE:
8bb78442 5579 case CPU_ONLINE_FROZEN:
3a4fa0a2 5580 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5581 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5582
5583 /* Update our root-domain */
5584 rq = cpu_rq(cpu);
5585 spin_lock_irqsave(&rq->lock, flags);
5586 if (rq->rd) {
5587 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5588 cpu_set(cpu, rq->rd->online);
5589 }
5590 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5591 break;
48f24c4d 5592
1da177e4
LT
5593#ifdef CONFIG_HOTPLUG_CPU
5594 case CPU_UP_CANCELED:
8bb78442 5595 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5596 if (!cpu_rq(cpu)->migration_thread)
5597 break;
41a2d6cf 5598 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5599 kthread_bind(cpu_rq(cpu)->migration_thread,
5600 any_online_cpu(cpu_online_map));
1da177e4
LT
5601 kthread_stop(cpu_rq(cpu)->migration_thread);
5602 cpu_rq(cpu)->migration_thread = NULL;
5603 break;
48f24c4d 5604
1da177e4 5605 case CPU_DEAD:
8bb78442 5606 case CPU_DEAD_FROZEN:
470fd646 5607 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5608 migrate_live_tasks(cpu);
5609 rq = cpu_rq(cpu);
5610 kthread_stop(rq->migration_thread);
5611 rq->migration_thread = NULL;
5612 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5613 spin_lock_irq(&rq->lock);
a8e504d2 5614 update_rq_clock(rq);
2e1cb74a 5615 deactivate_task(rq, rq->idle, 0);
1da177e4 5616 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5617 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5618 rq->idle->sched_class = &idle_sched_class;
1da177e4 5619 migrate_dead_tasks(cpu);
d2da272a 5620 spin_unlock_irq(&rq->lock);
470fd646 5621 cpuset_unlock();
1da177e4
LT
5622 migrate_nr_uninterruptible(rq);
5623 BUG_ON(rq->nr_running != 0);
5624
41a2d6cf
IM
5625 /*
5626 * No need to migrate the tasks: it was best-effort if
5627 * they didn't take sched_hotcpu_mutex. Just wake up
5628 * the requestors.
5629 */
1da177e4
LT
5630 spin_lock_irq(&rq->lock);
5631 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5632 struct migration_req *req;
5633
1da177e4 5634 req = list_entry(rq->migration_queue.next,
70b97a7f 5635 struct migration_req, list);
1da177e4
LT
5636 list_del_init(&req->list);
5637 complete(&req->done);
5638 }
5639 spin_unlock_irq(&rq->lock);
5640 break;
57d885fe
GH
5641
5642 case CPU_DOWN_PREPARE:
5643 /* Update our root-domain */
5644 rq = cpu_rq(cpu);
5645 spin_lock_irqsave(&rq->lock, flags);
5646 if (rq->rd) {
5647 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5648 cpu_clear(cpu, rq->rd->online);
5649 }
5650 spin_unlock_irqrestore(&rq->lock, flags);
5651 break;
1da177e4
LT
5652#endif
5653 }
5654 return NOTIFY_OK;
5655}
5656
5657/* Register at highest priority so that task migration (migrate_all_tasks)
5658 * happens before everything else.
5659 */
26c2143b 5660static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5661 .notifier_call = migration_call,
5662 .priority = 10
5663};
5664
e6fe6649 5665void __init migration_init(void)
1da177e4
LT
5666{
5667 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5668 int err;
48f24c4d
IM
5669
5670 /* Start one for the boot CPU: */
07dccf33
AM
5671 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5672 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5673 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5674 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5675}
5676#endif
5677
5678#ifdef CONFIG_SMP
476f3534
CL
5679
5680/* Number of possible processor ids */
5681int nr_cpu_ids __read_mostly = NR_CPUS;
5682EXPORT_SYMBOL(nr_cpu_ids);
5683
3e9830dc 5684#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5685
5686static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5687{
4dcf6aff
IM
5688 struct sched_group *group = sd->groups;
5689 cpumask_t groupmask;
5690 char str[NR_CPUS];
1da177e4 5691
4dcf6aff
IM
5692 cpumask_scnprintf(str, NR_CPUS, sd->span);
5693 cpus_clear(groupmask);
5694
5695 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5696
5697 if (!(sd->flags & SD_LOAD_BALANCE)) {
5698 printk("does not load-balance\n");
5699 if (sd->parent)
5700 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5701 " has parent");
5702 return -1;
41c7ce9a
NP
5703 }
5704
4dcf6aff
IM
5705 printk(KERN_CONT "span %s\n", str);
5706
5707 if (!cpu_isset(cpu, sd->span)) {
5708 printk(KERN_ERR "ERROR: domain->span does not contain "
5709 "CPU%d\n", cpu);
5710 }
5711 if (!cpu_isset(cpu, group->cpumask)) {
5712 printk(KERN_ERR "ERROR: domain->groups does not contain"
5713 " CPU%d\n", cpu);
5714 }
1da177e4 5715
4dcf6aff 5716 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5717 do {
4dcf6aff
IM
5718 if (!group) {
5719 printk("\n");
5720 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5721 break;
5722 }
5723
4dcf6aff
IM
5724 if (!group->__cpu_power) {
5725 printk(KERN_CONT "\n");
5726 printk(KERN_ERR "ERROR: domain->cpu_power not "
5727 "set\n");
5728 break;
5729 }
1da177e4 5730
4dcf6aff
IM
5731 if (!cpus_weight(group->cpumask)) {
5732 printk(KERN_CONT "\n");
5733 printk(KERN_ERR "ERROR: empty group\n");
5734 break;
5735 }
1da177e4 5736
4dcf6aff
IM
5737 if (cpus_intersects(groupmask, group->cpumask)) {
5738 printk(KERN_CONT "\n");
5739 printk(KERN_ERR "ERROR: repeated CPUs\n");
5740 break;
5741 }
1da177e4 5742
4dcf6aff 5743 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5744
4dcf6aff
IM
5745 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5746 printk(KERN_CONT " %s", str);
1da177e4 5747
4dcf6aff
IM
5748 group = group->next;
5749 } while (group != sd->groups);
5750 printk(KERN_CONT "\n");
1da177e4 5751
4dcf6aff
IM
5752 if (!cpus_equal(sd->span, groupmask))
5753 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5754
4dcf6aff
IM
5755 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5756 printk(KERN_ERR "ERROR: parent span is not a superset "
5757 "of domain->span\n");
5758 return 0;
5759}
1da177e4 5760
4dcf6aff
IM
5761static void sched_domain_debug(struct sched_domain *sd, int cpu)
5762{
5763 int level = 0;
1da177e4 5764
4dcf6aff
IM
5765 if (!sd) {
5766 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5767 return;
5768 }
1da177e4 5769
4dcf6aff
IM
5770 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5771
5772 for (;;) {
5773 if (sched_domain_debug_one(sd, cpu, level))
5774 break;
1da177e4
LT
5775 level++;
5776 sd = sd->parent;
33859f7f 5777 if (!sd)
4dcf6aff
IM
5778 break;
5779 }
1da177e4
LT
5780}
5781#else
48f24c4d 5782# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5783#endif
5784
1a20ff27 5785static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5786{
5787 if (cpus_weight(sd->span) == 1)
5788 return 1;
5789
5790 /* Following flags need at least 2 groups */
5791 if (sd->flags & (SD_LOAD_BALANCE |
5792 SD_BALANCE_NEWIDLE |
5793 SD_BALANCE_FORK |
89c4710e
SS
5794 SD_BALANCE_EXEC |
5795 SD_SHARE_CPUPOWER |
5796 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5797 if (sd->groups != sd->groups->next)
5798 return 0;
5799 }
5800
5801 /* Following flags don't use groups */
5802 if (sd->flags & (SD_WAKE_IDLE |
5803 SD_WAKE_AFFINE |
5804 SD_WAKE_BALANCE))
5805 return 0;
5806
5807 return 1;
5808}
5809
48f24c4d
IM
5810static int
5811sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5812{
5813 unsigned long cflags = sd->flags, pflags = parent->flags;
5814
5815 if (sd_degenerate(parent))
5816 return 1;
5817
5818 if (!cpus_equal(sd->span, parent->span))
5819 return 0;
5820
5821 /* Does parent contain flags not in child? */
5822 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5823 if (cflags & SD_WAKE_AFFINE)
5824 pflags &= ~SD_WAKE_BALANCE;
5825 /* Flags needing groups don't count if only 1 group in parent */
5826 if (parent->groups == parent->groups->next) {
5827 pflags &= ~(SD_LOAD_BALANCE |
5828 SD_BALANCE_NEWIDLE |
5829 SD_BALANCE_FORK |
89c4710e
SS
5830 SD_BALANCE_EXEC |
5831 SD_SHARE_CPUPOWER |
5832 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5833 }
5834 if (~cflags & pflags)
5835 return 0;
5836
5837 return 1;
5838}
5839
57d885fe
GH
5840static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5841{
5842 unsigned long flags;
5843 const struct sched_class *class;
5844
5845 spin_lock_irqsave(&rq->lock, flags);
5846
5847 if (rq->rd) {
5848 struct root_domain *old_rd = rq->rd;
5849
5850 for (class = sched_class_highest; class; class = class->next)
5851 if (class->leave_domain)
5852 class->leave_domain(rq);
5853
5854 if (atomic_dec_and_test(&old_rd->refcount))
5855 kfree(old_rd);
5856 }
5857
5858 atomic_inc(&rd->refcount);
5859 rq->rd = rd;
5860
5861 for (class = sched_class_highest; class; class = class->next)
5862 if (class->join_domain)
5863 class->join_domain(rq);
5864
5865 spin_unlock_irqrestore(&rq->lock, flags);
5866}
5867
5868static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
5869{
5870 memset(rd, 0, sizeof(*rd));
5871
5872 rd->span = *map;
5873 cpus_and(rd->online, rd->span, cpu_online_map);
5874}
5875
5876static void init_defrootdomain(void)
5877{
5878 cpumask_t cpus = CPU_MASK_ALL;
5879
5880 init_rootdomain(&def_root_domain, &cpus);
5881 atomic_set(&def_root_domain.refcount, 1);
5882}
5883
5884static struct root_domain *alloc_rootdomain(const cpumask_t *map)
5885{
5886 struct root_domain *rd;
5887
5888 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5889 if (!rd)
5890 return NULL;
5891
5892 init_rootdomain(rd, map);
5893
5894 return rd;
5895}
5896
1da177e4
LT
5897/*
5898 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5899 * hold the hotplug lock.
5900 */
57d885fe
GH
5901static void cpu_attach_domain(struct sched_domain *sd,
5902 struct root_domain *rd, int cpu)
1da177e4 5903{
70b97a7f 5904 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5905 struct sched_domain *tmp;
5906
5907 /* Remove the sched domains which do not contribute to scheduling. */
5908 for (tmp = sd; tmp; tmp = tmp->parent) {
5909 struct sched_domain *parent = tmp->parent;
5910 if (!parent)
5911 break;
1a848870 5912 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5913 tmp->parent = parent->parent;
1a848870
SS
5914 if (parent->parent)
5915 parent->parent->child = tmp;
5916 }
245af2c7
SS
5917 }
5918
1a848870 5919 if (sd && sd_degenerate(sd)) {
245af2c7 5920 sd = sd->parent;
1a848870
SS
5921 if (sd)
5922 sd->child = NULL;
5923 }
1da177e4
LT
5924
5925 sched_domain_debug(sd, cpu);
5926
57d885fe 5927 rq_attach_root(rq, rd);
674311d5 5928 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5929}
5930
5931/* cpus with isolated domains */
67af63a6 5932static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5933
5934/* Setup the mask of cpus configured for isolated domains */
5935static int __init isolated_cpu_setup(char *str)
5936{
5937 int ints[NR_CPUS], i;
5938
5939 str = get_options(str, ARRAY_SIZE(ints), ints);
5940 cpus_clear(cpu_isolated_map);
5941 for (i = 1; i <= ints[0]; i++)
5942 if (ints[i] < NR_CPUS)
5943 cpu_set(ints[i], cpu_isolated_map);
5944 return 1;
5945}
5946
8927f494 5947__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5948
5949/*
6711cab4
SS
5950 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5951 * to a function which identifies what group(along with sched group) a CPU
5952 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5953 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5954 *
5955 * init_sched_build_groups will build a circular linked list of the groups
5956 * covered by the given span, and will set each group's ->cpumask correctly,
5957 * and ->cpu_power to 0.
5958 */
a616058b 5959static void
6711cab4
SS
5960init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5961 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5962 struct sched_group **sg))
1da177e4
LT
5963{
5964 struct sched_group *first = NULL, *last = NULL;
5965 cpumask_t covered = CPU_MASK_NONE;
5966 int i;
5967
5968 for_each_cpu_mask(i, span) {
6711cab4
SS
5969 struct sched_group *sg;
5970 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5971 int j;
5972
5973 if (cpu_isset(i, covered))
5974 continue;
5975
5976 sg->cpumask = CPU_MASK_NONE;
5517d86b 5977 sg->__cpu_power = 0;
1da177e4
LT
5978
5979 for_each_cpu_mask(j, span) {
6711cab4 5980 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5981 continue;
5982
5983 cpu_set(j, covered);
5984 cpu_set(j, sg->cpumask);
5985 }
5986 if (!first)
5987 first = sg;
5988 if (last)
5989 last->next = sg;
5990 last = sg;
5991 }
5992 last->next = first;
5993}
5994
9c1cfda2 5995#define SD_NODES_PER_DOMAIN 16
1da177e4 5996
9c1cfda2 5997#ifdef CONFIG_NUMA
198e2f18 5998
9c1cfda2
JH
5999/**
6000 * find_next_best_node - find the next node to include in a sched_domain
6001 * @node: node whose sched_domain we're building
6002 * @used_nodes: nodes already in the sched_domain
6003 *
41a2d6cf 6004 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6005 * finds the closest node not already in the @used_nodes map.
6006 *
6007 * Should use nodemask_t.
6008 */
6009static int find_next_best_node(int node, unsigned long *used_nodes)
6010{
6011 int i, n, val, min_val, best_node = 0;
6012
6013 min_val = INT_MAX;
6014
6015 for (i = 0; i < MAX_NUMNODES; i++) {
6016 /* Start at @node */
6017 n = (node + i) % MAX_NUMNODES;
6018
6019 if (!nr_cpus_node(n))
6020 continue;
6021
6022 /* Skip already used nodes */
6023 if (test_bit(n, used_nodes))
6024 continue;
6025
6026 /* Simple min distance search */
6027 val = node_distance(node, n);
6028
6029 if (val < min_val) {
6030 min_val = val;
6031 best_node = n;
6032 }
6033 }
6034
6035 set_bit(best_node, used_nodes);
6036 return best_node;
6037}
6038
6039/**
6040 * sched_domain_node_span - get a cpumask for a node's sched_domain
6041 * @node: node whose cpumask we're constructing
6042 * @size: number of nodes to include in this span
6043 *
41a2d6cf 6044 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6045 * should be one that prevents unnecessary balancing, but also spreads tasks
6046 * out optimally.
6047 */
6048static cpumask_t sched_domain_node_span(int node)
6049{
9c1cfda2 6050 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6051 cpumask_t span, nodemask;
6052 int i;
9c1cfda2
JH
6053
6054 cpus_clear(span);
6055 bitmap_zero(used_nodes, MAX_NUMNODES);
6056
6057 nodemask = node_to_cpumask(node);
6058 cpus_or(span, span, nodemask);
6059 set_bit(node, used_nodes);
6060
6061 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6062 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6063
9c1cfda2
JH
6064 nodemask = node_to_cpumask(next_node);
6065 cpus_or(span, span, nodemask);
6066 }
6067
6068 return span;
6069}
6070#endif
6071
5c45bf27 6072int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6073
9c1cfda2 6074/*
48f24c4d 6075 * SMT sched-domains:
9c1cfda2 6076 */
1da177e4
LT
6077#ifdef CONFIG_SCHED_SMT
6078static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6079static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6080
41a2d6cf
IM
6081static int
6082cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6083{
6711cab4
SS
6084 if (sg)
6085 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6086 return cpu;
6087}
6088#endif
6089
48f24c4d
IM
6090/*
6091 * multi-core sched-domains:
6092 */
1e9f28fa
SS
6093#ifdef CONFIG_SCHED_MC
6094static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6095static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6096#endif
6097
6098#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6099static int
6100cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6101{
6711cab4 6102 int group;
d5a7430d 6103 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6104 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6105 group = first_cpu(mask);
6106 if (sg)
6107 *sg = &per_cpu(sched_group_core, group);
6108 return group;
1e9f28fa
SS
6109}
6110#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6111static int
6112cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6113{
6711cab4
SS
6114 if (sg)
6115 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6116 return cpu;
6117}
6118#endif
6119
1da177e4 6120static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6121static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6122
41a2d6cf
IM
6123static int
6124cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6125{
6711cab4 6126 int group;
48f24c4d 6127#ifdef CONFIG_SCHED_MC
1e9f28fa 6128 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6129 cpus_and(mask, mask, *cpu_map);
6711cab4 6130 group = first_cpu(mask);
1e9f28fa 6131#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6132 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6133 cpus_and(mask, mask, *cpu_map);
6711cab4 6134 group = first_cpu(mask);
1da177e4 6135#else
6711cab4 6136 group = cpu;
1da177e4 6137#endif
6711cab4
SS
6138 if (sg)
6139 *sg = &per_cpu(sched_group_phys, group);
6140 return group;
1da177e4
LT
6141}
6142
6143#ifdef CONFIG_NUMA
1da177e4 6144/*
9c1cfda2
JH
6145 * The init_sched_build_groups can't handle what we want to do with node
6146 * groups, so roll our own. Now each node has its own list of groups which
6147 * gets dynamically allocated.
1da177e4 6148 */
9c1cfda2 6149static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6150static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6151
9c1cfda2 6152static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6153static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6154
6711cab4
SS
6155static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6156 struct sched_group **sg)
9c1cfda2 6157{
6711cab4
SS
6158 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6159 int group;
6160
6161 cpus_and(nodemask, nodemask, *cpu_map);
6162 group = first_cpu(nodemask);
6163
6164 if (sg)
6165 *sg = &per_cpu(sched_group_allnodes, group);
6166 return group;
1da177e4 6167}
6711cab4 6168
08069033
SS
6169static void init_numa_sched_groups_power(struct sched_group *group_head)
6170{
6171 struct sched_group *sg = group_head;
6172 int j;
6173
6174 if (!sg)
6175 return;
3a5c359a
AK
6176 do {
6177 for_each_cpu_mask(j, sg->cpumask) {
6178 struct sched_domain *sd;
08069033 6179
3a5c359a
AK
6180 sd = &per_cpu(phys_domains, j);
6181 if (j != first_cpu(sd->groups->cpumask)) {
6182 /*
6183 * Only add "power" once for each
6184 * physical package.
6185 */
6186 continue;
6187 }
08069033 6188
3a5c359a
AK
6189 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6190 }
6191 sg = sg->next;
6192 } while (sg != group_head);
08069033 6193}
1da177e4
LT
6194#endif
6195
a616058b 6196#ifdef CONFIG_NUMA
51888ca2
SV
6197/* Free memory allocated for various sched_group structures */
6198static void free_sched_groups(const cpumask_t *cpu_map)
6199{
a616058b 6200 int cpu, i;
51888ca2
SV
6201
6202 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6203 struct sched_group **sched_group_nodes
6204 = sched_group_nodes_bycpu[cpu];
6205
51888ca2
SV
6206 if (!sched_group_nodes)
6207 continue;
6208
6209 for (i = 0; i < MAX_NUMNODES; i++) {
6210 cpumask_t nodemask = node_to_cpumask(i);
6211 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6212
6213 cpus_and(nodemask, nodemask, *cpu_map);
6214 if (cpus_empty(nodemask))
6215 continue;
6216
6217 if (sg == NULL)
6218 continue;
6219 sg = sg->next;
6220next_sg:
6221 oldsg = sg;
6222 sg = sg->next;
6223 kfree(oldsg);
6224 if (oldsg != sched_group_nodes[i])
6225 goto next_sg;
6226 }
6227 kfree(sched_group_nodes);
6228 sched_group_nodes_bycpu[cpu] = NULL;
6229 }
51888ca2 6230}
a616058b
SS
6231#else
6232static void free_sched_groups(const cpumask_t *cpu_map)
6233{
6234}
6235#endif
51888ca2 6236
89c4710e
SS
6237/*
6238 * Initialize sched groups cpu_power.
6239 *
6240 * cpu_power indicates the capacity of sched group, which is used while
6241 * distributing the load between different sched groups in a sched domain.
6242 * Typically cpu_power for all the groups in a sched domain will be same unless
6243 * there are asymmetries in the topology. If there are asymmetries, group
6244 * having more cpu_power will pickup more load compared to the group having
6245 * less cpu_power.
6246 *
6247 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6248 * the maximum number of tasks a group can handle in the presence of other idle
6249 * or lightly loaded groups in the same sched domain.
6250 */
6251static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6252{
6253 struct sched_domain *child;
6254 struct sched_group *group;
6255
6256 WARN_ON(!sd || !sd->groups);
6257
6258 if (cpu != first_cpu(sd->groups->cpumask))
6259 return;
6260
6261 child = sd->child;
6262
5517d86b
ED
6263 sd->groups->__cpu_power = 0;
6264
89c4710e
SS
6265 /*
6266 * For perf policy, if the groups in child domain share resources
6267 * (for example cores sharing some portions of the cache hierarchy
6268 * or SMT), then set this domain groups cpu_power such that each group
6269 * can handle only one task, when there are other idle groups in the
6270 * same sched domain.
6271 */
6272 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6273 (child->flags &
6274 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6275 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6276 return;
6277 }
6278
89c4710e
SS
6279 /*
6280 * add cpu_power of each child group to this groups cpu_power
6281 */
6282 group = child->groups;
6283 do {
5517d86b 6284 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6285 group = group->next;
6286 } while (group != child->groups);
6287}
6288
1da177e4 6289/*
1a20ff27
DG
6290 * Build sched domains for a given set of cpus and attach the sched domains
6291 * to the individual cpus
1da177e4 6292 */
51888ca2 6293static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6294{
6295 int i;
57d885fe 6296 struct root_domain *rd;
d1b55138
JH
6297#ifdef CONFIG_NUMA
6298 struct sched_group **sched_group_nodes = NULL;
6711cab4 6299 int sd_allnodes = 0;
d1b55138
JH
6300
6301 /*
6302 * Allocate the per-node list of sched groups
6303 */
5cf9f062 6304 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6305 GFP_KERNEL);
d1b55138
JH
6306 if (!sched_group_nodes) {
6307 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6308 return -ENOMEM;
d1b55138
JH
6309 }
6310 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6311#endif
1da177e4 6312
57d885fe
GH
6313 rd = alloc_rootdomain(cpu_map);
6314 if (!rd) {
6315 printk(KERN_WARNING "Cannot alloc root domain\n");
6316 return -ENOMEM;
6317 }
6318
1da177e4 6319 /*
1a20ff27 6320 * Set up domains for cpus specified by the cpu_map.
1da177e4 6321 */
1a20ff27 6322 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6323 struct sched_domain *sd = NULL, *p;
6324 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6325
1a20ff27 6326 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6327
6328#ifdef CONFIG_NUMA
dd41f596
IM
6329 if (cpus_weight(*cpu_map) >
6330 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6331 sd = &per_cpu(allnodes_domains, i);
6332 *sd = SD_ALLNODES_INIT;
6333 sd->span = *cpu_map;
6711cab4 6334 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6335 p = sd;
6711cab4 6336 sd_allnodes = 1;
9c1cfda2
JH
6337 } else
6338 p = NULL;
6339
1da177e4 6340 sd = &per_cpu(node_domains, i);
1da177e4 6341 *sd = SD_NODE_INIT;
9c1cfda2
JH
6342 sd->span = sched_domain_node_span(cpu_to_node(i));
6343 sd->parent = p;
1a848870
SS
6344 if (p)
6345 p->child = sd;
9c1cfda2 6346 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6347#endif
6348
6349 p = sd;
6350 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6351 *sd = SD_CPU_INIT;
6352 sd->span = nodemask;
6353 sd->parent = p;
1a848870
SS
6354 if (p)
6355 p->child = sd;
6711cab4 6356 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6357
1e9f28fa
SS
6358#ifdef CONFIG_SCHED_MC
6359 p = sd;
6360 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6361 *sd = SD_MC_INIT;
6362 sd->span = cpu_coregroup_map(i);
6363 cpus_and(sd->span, sd->span, *cpu_map);
6364 sd->parent = p;
1a848870 6365 p->child = sd;
6711cab4 6366 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6367#endif
6368
1da177e4
LT
6369#ifdef CONFIG_SCHED_SMT
6370 p = sd;
6371 sd = &per_cpu(cpu_domains, i);
1da177e4 6372 *sd = SD_SIBLING_INIT;
d5a7430d 6373 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6374 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6375 sd->parent = p;
1a848870 6376 p->child = sd;
6711cab4 6377 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6378#endif
6379 }
6380
6381#ifdef CONFIG_SCHED_SMT
6382 /* Set up CPU (sibling) groups */
9c1cfda2 6383 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6384 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6385 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6386 if (i != first_cpu(this_sibling_map))
6387 continue;
6388
dd41f596
IM
6389 init_sched_build_groups(this_sibling_map, cpu_map,
6390 &cpu_to_cpu_group);
1da177e4
LT
6391 }
6392#endif
6393
1e9f28fa
SS
6394#ifdef CONFIG_SCHED_MC
6395 /* Set up multi-core groups */
6396 for_each_cpu_mask(i, *cpu_map) {
6397 cpumask_t this_core_map = cpu_coregroup_map(i);
6398 cpus_and(this_core_map, this_core_map, *cpu_map);
6399 if (i != first_cpu(this_core_map))
6400 continue;
dd41f596
IM
6401 init_sched_build_groups(this_core_map, cpu_map,
6402 &cpu_to_core_group);
1e9f28fa
SS
6403 }
6404#endif
6405
1da177e4
LT
6406 /* Set up physical groups */
6407 for (i = 0; i < MAX_NUMNODES; i++) {
6408 cpumask_t nodemask = node_to_cpumask(i);
6409
1a20ff27 6410 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6411 if (cpus_empty(nodemask))
6412 continue;
6413
6711cab4 6414 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6415 }
6416
6417#ifdef CONFIG_NUMA
6418 /* Set up node groups */
6711cab4 6419 if (sd_allnodes)
dd41f596
IM
6420 init_sched_build_groups(*cpu_map, cpu_map,
6421 &cpu_to_allnodes_group);
9c1cfda2
JH
6422
6423 for (i = 0; i < MAX_NUMNODES; i++) {
6424 /* Set up node groups */
6425 struct sched_group *sg, *prev;
6426 cpumask_t nodemask = node_to_cpumask(i);
6427 cpumask_t domainspan;
6428 cpumask_t covered = CPU_MASK_NONE;
6429 int j;
6430
6431 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6432 if (cpus_empty(nodemask)) {
6433 sched_group_nodes[i] = NULL;
9c1cfda2 6434 continue;
d1b55138 6435 }
9c1cfda2
JH
6436
6437 domainspan = sched_domain_node_span(i);
6438 cpus_and(domainspan, domainspan, *cpu_map);
6439
15f0b676 6440 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6441 if (!sg) {
6442 printk(KERN_WARNING "Can not alloc domain group for "
6443 "node %d\n", i);
6444 goto error;
6445 }
9c1cfda2
JH
6446 sched_group_nodes[i] = sg;
6447 for_each_cpu_mask(j, nodemask) {
6448 struct sched_domain *sd;
9761eea8 6449
9c1cfda2
JH
6450 sd = &per_cpu(node_domains, j);
6451 sd->groups = sg;
9c1cfda2 6452 }
5517d86b 6453 sg->__cpu_power = 0;
9c1cfda2 6454 sg->cpumask = nodemask;
51888ca2 6455 sg->next = sg;
9c1cfda2
JH
6456 cpus_or(covered, covered, nodemask);
6457 prev = sg;
6458
6459 for (j = 0; j < MAX_NUMNODES; j++) {
6460 cpumask_t tmp, notcovered;
6461 int n = (i + j) % MAX_NUMNODES;
6462
6463 cpus_complement(notcovered, covered);
6464 cpus_and(tmp, notcovered, *cpu_map);
6465 cpus_and(tmp, tmp, domainspan);
6466 if (cpus_empty(tmp))
6467 break;
6468
6469 nodemask = node_to_cpumask(n);
6470 cpus_and(tmp, tmp, nodemask);
6471 if (cpus_empty(tmp))
6472 continue;
6473
15f0b676
SV
6474 sg = kmalloc_node(sizeof(struct sched_group),
6475 GFP_KERNEL, i);
9c1cfda2
JH
6476 if (!sg) {
6477 printk(KERN_WARNING
6478 "Can not alloc domain group for node %d\n", j);
51888ca2 6479 goto error;
9c1cfda2 6480 }
5517d86b 6481 sg->__cpu_power = 0;
9c1cfda2 6482 sg->cpumask = tmp;
51888ca2 6483 sg->next = prev->next;
9c1cfda2
JH
6484 cpus_or(covered, covered, tmp);
6485 prev->next = sg;
6486 prev = sg;
6487 }
9c1cfda2 6488 }
1da177e4
LT
6489#endif
6490
6491 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6492#ifdef CONFIG_SCHED_SMT
1a20ff27 6493 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6494 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6495
89c4710e 6496 init_sched_groups_power(i, sd);
5c45bf27 6497 }
1da177e4 6498#endif
1e9f28fa 6499#ifdef CONFIG_SCHED_MC
5c45bf27 6500 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6501 struct sched_domain *sd = &per_cpu(core_domains, i);
6502
89c4710e 6503 init_sched_groups_power(i, sd);
5c45bf27
SS
6504 }
6505#endif
1e9f28fa 6506
5c45bf27 6507 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6508 struct sched_domain *sd = &per_cpu(phys_domains, i);
6509
89c4710e 6510 init_sched_groups_power(i, sd);
1da177e4
LT
6511 }
6512
9c1cfda2 6513#ifdef CONFIG_NUMA
08069033
SS
6514 for (i = 0; i < MAX_NUMNODES; i++)
6515 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6516
6711cab4
SS
6517 if (sd_allnodes) {
6518 struct sched_group *sg;
f712c0c7 6519
6711cab4 6520 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6521 init_numa_sched_groups_power(sg);
6522 }
9c1cfda2
JH
6523#endif
6524
1da177e4 6525 /* Attach the domains */
1a20ff27 6526 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6527 struct sched_domain *sd;
6528#ifdef CONFIG_SCHED_SMT
6529 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6530#elif defined(CONFIG_SCHED_MC)
6531 sd = &per_cpu(core_domains, i);
1da177e4
LT
6532#else
6533 sd = &per_cpu(phys_domains, i);
6534#endif
57d885fe 6535 cpu_attach_domain(sd, rd, i);
1da177e4 6536 }
51888ca2
SV
6537
6538 return 0;
6539
a616058b 6540#ifdef CONFIG_NUMA
51888ca2
SV
6541error:
6542 free_sched_groups(cpu_map);
6543 return -ENOMEM;
a616058b 6544#endif
1da177e4 6545}
029190c5
PJ
6546
6547static cpumask_t *doms_cur; /* current sched domains */
6548static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6549
6550/*
6551 * Special case: If a kmalloc of a doms_cur partition (array of
6552 * cpumask_t) fails, then fallback to a single sched domain,
6553 * as determined by the single cpumask_t fallback_doms.
6554 */
6555static cpumask_t fallback_doms;
6556
1a20ff27 6557/*
41a2d6cf 6558 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6559 * For now this just excludes isolated cpus, but could be used to
6560 * exclude other special cases in the future.
1a20ff27 6561 */
51888ca2 6562static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6563{
7378547f
MM
6564 int err;
6565
029190c5
PJ
6566 ndoms_cur = 1;
6567 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6568 if (!doms_cur)
6569 doms_cur = &fallback_doms;
6570 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6571 err = build_sched_domains(doms_cur);
6382bc90 6572 register_sched_domain_sysctl();
7378547f
MM
6573
6574 return err;
1a20ff27
DG
6575}
6576
6577static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6578{
51888ca2 6579 free_sched_groups(cpu_map);
9c1cfda2 6580}
1da177e4 6581
1a20ff27
DG
6582/*
6583 * Detach sched domains from a group of cpus specified in cpu_map
6584 * These cpus will now be attached to the NULL domain
6585 */
858119e1 6586static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6587{
6588 int i;
6589
6382bc90
MM
6590 unregister_sched_domain_sysctl();
6591
1a20ff27 6592 for_each_cpu_mask(i, *cpu_map)
57d885fe 6593 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6594 synchronize_sched();
6595 arch_destroy_sched_domains(cpu_map);
6596}
6597
029190c5
PJ
6598/*
6599 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6600 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6601 * doms_new[] to the current sched domain partitioning, doms_cur[].
6602 * It destroys each deleted domain and builds each new domain.
6603 *
6604 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6605 * The masks don't intersect (don't overlap.) We should setup one
6606 * sched domain for each mask. CPUs not in any of the cpumasks will
6607 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6608 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6609 * it as it is.
6610 *
41a2d6cf
IM
6611 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6612 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6613 * failed the kmalloc call, then it can pass in doms_new == NULL,
6614 * and partition_sched_domains() will fallback to the single partition
6615 * 'fallback_doms'.
6616 *
6617 * Call with hotplug lock held
6618 */
6619void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6620{
6621 int i, j;
6622
a1835615
SV
6623 lock_doms_cur();
6624
7378547f
MM
6625 /* always unregister in case we don't destroy any domains */
6626 unregister_sched_domain_sysctl();
6627
029190c5
PJ
6628 if (doms_new == NULL) {
6629 ndoms_new = 1;
6630 doms_new = &fallback_doms;
6631 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6632 }
6633
6634 /* Destroy deleted domains */
6635 for (i = 0; i < ndoms_cur; i++) {
6636 for (j = 0; j < ndoms_new; j++) {
6637 if (cpus_equal(doms_cur[i], doms_new[j]))
6638 goto match1;
6639 }
6640 /* no match - a current sched domain not in new doms_new[] */
6641 detach_destroy_domains(doms_cur + i);
6642match1:
6643 ;
6644 }
6645
6646 /* Build new domains */
6647 for (i = 0; i < ndoms_new; i++) {
6648 for (j = 0; j < ndoms_cur; j++) {
6649 if (cpus_equal(doms_new[i], doms_cur[j]))
6650 goto match2;
6651 }
6652 /* no match - add a new doms_new */
6653 build_sched_domains(doms_new + i);
6654match2:
6655 ;
6656 }
6657
6658 /* Remember the new sched domains */
6659 if (doms_cur != &fallback_doms)
6660 kfree(doms_cur);
6661 doms_cur = doms_new;
6662 ndoms_cur = ndoms_new;
7378547f
MM
6663
6664 register_sched_domain_sysctl();
a1835615
SV
6665
6666 unlock_doms_cur();
029190c5
PJ
6667}
6668
5c45bf27 6669#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6670static int arch_reinit_sched_domains(void)
5c45bf27
SS
6671{
6672 int err;
6673
95402b38 6674 get_online_cpus();
5c45bf27
SS
6675 detach_destroy_domains(&cpu_online_map);
6676 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6677 put_online_cpus();
5c45bf27
SS
6678
6679 return err;
6680}
6681
6682static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6683{
6684 int ret;
6685
6686 if (buf[0] != '0' && buf[0] != '1')
6687 return -EINVAL;
6688
6689 if (smt)
6690 sched_smt_power_savings = (buf[0] == '1');
6691 else
6692 sched_mc_power_savings = (buf[0] == '1');
6693
6694 ret = arch_reinit_sched_domains();
6695
6696 return ret ? ret : count;
6697}
6698
5c45bf27
SS
6699#ifdef CONFIG_SCHED_MC
6700static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6701{
6702 return sprintf(page, "%u\n", sched_mc_power_savings);
6703}
48f24c4d
IM
6704static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6705 const char *buf, size_t count)
5c45bf27
SS
6706{
6707 return sched_power_savings_store(buf, count, 0);
6708}
6707de00
AB
6709static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6710 sched_mc_power_savings_store);
5c45bf27
SS
6711#endif
6712
6713#ifdef CONFIG_SCHED_SMT
6714static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6715{
6716 return sprintf(page, "%u\n", sched_smt_power_savings);
6717}
48f24c4d
IM
6718static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6719 const char *buf, size_t count)
5c45bf27
SS
6720{
6721 return sched_power_savings_store(buf, count, 1);
6722}
6707de00
AB
6723static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6724 sched_smt_power_savings_store);
6725#endif
6726
6727int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6728{
6729 int err = 0;
6730
6731#ifdef CONFIG_SCHED_SMT
6732 if (smt_capable())
6733 err = sysfs_create_file(&cls->kset.kobj,
6734 &attr_sched_smt_power_savings.attr);
6735#endif
6736#ifdef CONFIG_SCHED_MC
6737 if (!err && mc_capable())
6738 err = sysfs_create_file(&cls->kset.kobj,
6739 &attr_sched_mc_power_savings.attr);
6740#endif
6741 return err;
6742}
5c45bf27
SS
6743#endif
6744
1da177e4 6745/*
41a2d6cf 6746 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6747 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6748 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6749 * which will prevent rebalancing while the sched domains are recalculated.
6750 */
6751static int update_sched_domains(struct notifier_block *nfb,
6752 unsigned long action, void *hcpu)
6753{
1da177e4
LT
6754 switch (action) {
6755 case CPU_UP_PREPARE:
8bb78442 6756 case CPU_UP_PREPARE_FROZEN:
1da177e4 6757 case CPU_DOWN_PREPARE:
8bb78442 6758 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6759 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6760 return NOTIFY_OK;
6761
6762 case CPU_UP_CANCELED:
8bb78442 6763 case CPU_UP_CANCELED_FROZEN:
1da177e4 6764 case CPU_DOWN_FAILED:
8bb78442 6765 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6766 case CPU_ONLINE:
8bb78442 6767 case CPU_ONLINE_FROZEN:
1da177e4 6768 case CPU_DEAD:
8bb78442 6769 case CPU_DEAD_FROZEN:
1da177e4
LT
6770 /*
6771 * Fall through and re-initialise the domains.
6772 */
6773 break;
6774 default:
6775 return NOTIFY_DONE;
6776 }
6777
6778 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6779 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6780
6781 return NOTIFY_OK;
6782}
1da177e4
LT
6783
6784void __init sched_init_smp(void)
6785{
5c1e1767
NP
6786 cpumask_t non_isolated_cpus;
6787
95402b38 6788 get_online_cpus();
1a20ff27 6789 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6790 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6791 if (cpus_empty(non_isolated_cpus))
6792 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6793 put_online_cpus();
1da177e4
LT
6794 /* XXX: Theoretical race here - CPU may be hotplugged now */
6795 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6796
6797 /* Move init over to a non-isolated CPU */
6798 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6799 BUG();
19978ca6 6800 sched_init_granularity();
6b2d7700
SV
6801
6802#ifdef CONFIG_FAIR_GROUP_SCHED
6803 if (nr_cpu_ids == 1)
6804 return;
6805
6806 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6807 "group_balance");
6808 if (!IS_ERR(lb_monitor_task)) {
6809 lb_monitor_task->flags |= PF_NOFREEZE;
6810 wake_up_process(lb_monitor_task);
6811 } else {
6812 printk(KERN_ERR "Could not create load balance monitor thread"
6813 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6814 }
6815#endif
1da177e4
LT
6816}
6817#else
6818void __init sched_init_smp(void)
6819{
19978ca6 6820 sched_init_granularity();
1da177e4
LT
6821}
6822#endif /* CONFIG_SMP */
6823
6824int in_sched_functions(unsigned long addr)
6825{
1da177e4
LT
6826 return in_lock_functions(addr) ||
6827 (addr >= (unsigned long)__sched_text_start
6828 && addr < (unsigned long)__sched_text_end);
6829}
6830
a9957449 6831static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6832{
6833 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6834#ifdef CONFIG_FAIR_GROUP_SCHED
6835 cfs_rq->rq = rq;
6836#endif
67e9fb2a 6837 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6838}
6839
1da177e4
LT
6840void __init sched_init(void)
6841{
476f3534 6842 int highest_cpu = 0;
dd41f596
IM
6843 int i, j;
6844
57d885fe
GH
6845#ifdef CONFIG_SMP
6846 init_defrootdomain();
6847#endif
6848
0a945022 6849 for_each_possible_cpu(i) {
dd41f596 6850 struct rt_prio_array *array;
70b97a7f 6851 struct rq *rq;
1da177e4
LT
6852
6853 rq = cpu_rq(i);
6854 spin_lock_init(&rq->lock);
fcb99371 6855 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6856 rq->nr_running = 0;
dd41f596
IM
6857 rq->clock = 1;
6858 init_cfs_rq(&rq->cfs, rq);
6859#ifdef CONFIG_FAIR_GROUP_SCHED
6860 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6861 {
6862 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6863 struct sched_entity *se =
6864 &per_cpu(init_sched_entity, i);
6865
6866 init_cfs_rq_p[i] = cfs_rq;
6867 init_cfs_rq(cfs_rq, rq);
4cf86d77 6868 cfs_rq->tg = &init_task_group;
3a252015 6869 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6870 &rq->leaf_cfs_rq_list);
6871
3a252015
IM
6872 init_sched_entity_p[i] = se;
6873 se->cfs_rq = &rq->cfs;
6874 se->my_q = cfs_rq;
4cf86d77 6875 se->load.weight = init_task_group_load;
9b5b7751 6876 se->load.inv_weight =
4cf86d77 6877 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6878 se->parent = NULL;
6879 }
4cf86d77 6880 init_task_group.shares = init_task_group_load;
dd41f596 6881#endif
1da177e4 6882
dd41f596
IM
6883 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6884 rq->cpu_load[j] = 0;
1da177e4 6885#ifdef CONFIG_SMP
41c7ce9a 6886 rq->sd = NULL;
57d885fe
GH
6887 rq->rd = NULL;
6888 rq_attach_root(rq, &def_root_domain);
1da177e4 6889 rq->active_balance = 0;
dd41f596 6890 rq->next_balance = jiffies;
1da177e4 6891 rq->push_cpu = 0;
0a2966b4 6892 rq->cpu = i;
1da177e4
LT
6893 rq->migration_thread = NULL;
6894 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6895 rq->rt.highest_prio = MAX_RT_PRIO;
a22d7fc1 6896 rq->rt.overloaded = 0;
1da177e4
LT
6897#endif
6898 atomic_set(&rq->nr_iowait, 0);
6899
dd41f596
IM
6900 array = &rq->rt.active;
6901 for (j = 0; j < MAX_RT_PRIO; j++) {
6902 INIT_LIST_HEAD(array->queue + j);
6903 __clear_bit(j, array->bitmap);
1da177e4 6904 }
476f3534 6905 highest_cpu = i;
dd41f596
IM
6906 /* delimiter for bitsearch: */
6907 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6908 }
6909
2dd73a4f 6910 set_load_weight(&init_task);
b50f60ce 6911
e107be36
AK
6912#ifdef CONFIG_PREEMPT_NOTIFIERS
6913 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6914#endif
6915
c9819f45 6916#ifdef CONFIG_SMP
476f3534 6917 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6918 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6919#endif
6920
b50f60ce
HC
6921#ifdef CONFIG_RT_MUTEXES
6922 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6923#endif
6924
1da177e4
LT
6925 /*
6926 * The boot idle thread does lazy MMU switching as well:
6927 */
6928 atomic_inc(&init_mm.mm_count);
6929 enter_lazy_tlb(&init_mm, current);
6930
6931 /*
6932 * Make us the idle thread. Technically, schedule() should not be
6933 * called from this thread, however somewhere below it might be,
6934 * but because we are the idle thread, we just pick up running again
6935 * when this runqueue becomes "idle".
6936 */
6937 init_idle(current, smp_processor_id());
dd41f596
IM
6938 /*
6939 * During early bootup we pretend to be a normal task:
6940 */
6941 current->sched_class = &fair_sched_class;
1da177e4
LT
6942}
6943
6944#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6945void __might_sleep(char *file, int line)
6946{
48f24c4d 6947#ifdef in_atomic
1da177e4
LT
6948 static unsigned long prev_jiffy; /* ratelimiting */
6949
6950 if ((in_atomic() || irqs_disabled()) &&
6951 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6952 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6953 return;
6954 prev_jiffy = jiffies;
91368d73 6955 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6956 " context at %s:%d\n", file, line);
6957 printk("in_atomic():%d, irqs_disabled():%d\n",
6958 in_atomic(), irqs_disabled());
a4c410f0 6959 debug_show_held_locks(current);
3117df04
IM
6960 if (irqs_disabled())
6961 print_irqtrace_events(current);
1da177e4
LT
6962 dump_stack();
6963 }
6964#endif
6965}
6966EXPORT_SYMBOL(__might_sleep);
6967#endif
6968
6969#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6970static void normalize_task(struct rq *rq, struct task_struct *p)
6971{
6972 int on_rq;
6973 update_rq_clock(rq);
6974 on_rq = p->se.on_rq;
6975 if (on_rq)
6976 deactivate_task(rq, p, 0);
6977 __setscheduler(rq, p, SCHED_NORMAL, 0);
6978 if (on_rq) {
6979 activate_task(rq, p, 0);
6980 resched_task(rq->curr);
6981 }
6982}
6983
1da177e4
LT
6984void normalize_rt_tasks(void)
6985{
a0f98a1c 6986 struct task_struct *g, *p;
1da177e4 6987 unsigned long flags;
70b97a7f 6988 struct rq *rq;
1da177e4
LT
6989
6990 read_lock_irq(&tasklist_lock);
a0f98a1c 6991 do_each_thread(g, p) {
178be793
IM
6992 /*
6993 * Only normalize user tasks:
6994 */
6995 if (!p->mm)
6996 continue;
6997
6cfb0d5d 6998 p->se.exec_start = 0;
6cfb0d5d 6999#ifdef CONFIG_SCHEDSTATS
dd41f596 7000 p->se.wait_start = 0;
dd41f596 7001 p->se.sleep_start = 0;
dd41f596 7002 p->se.block_start = 0;
6cfb0d5d 7003#endif
dd41f596
IM
7004 task_rq(p)->clock = 0;
7005
7006 if (!rt_task(p)) {
7007 /*
7008 * Renice negative nice level userspace
7009 * tasks back to 0:
7010 */
7011 if (TASK_NICE(p) < 0 && p->mm)
7012 set_user_nice(p, 0);
1da177e4 7013 continue;
dd41f596 7014 }
1da177e4 7015
b29739f9
IM
7016 spin_lock_irqsave(&p->pi_lock, flags);
7017 rq = __task_rq_lock(p);
1da177e4 7018
178be793 7019 normalize_task(rq, p);
3a5e4dc1 7020
b29739f9
IM
7021 __task_rq_unlock(rq);
7022 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7023 } while_each_thread(g, p);
7024
1da177e4
LT
7025 read_unlock_irq(&tasklist_lock);
7026}
7027
7028#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7029
7030#ifdef CONFIG_IA64
7031/*
7032 * These functions are only useful for the IA64 MCA handling.
7033 *
7034 * They can only be called when the whole system has been
7035 * stopped - every CPU needs to be quiescent, and no scheduling
7036 * activity can take place. Using them for anything else would
7037 * be a serious bug, and as a result, they aren't even visible
7038 * under any other configuration.
7039 */
7040
7041/**
7042 * curr_task - return the current task for a given cpu.
7043 * @cpu: the processor in question.
7044 *
7045 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7046 */
36c8b586 7047struct task_struct *curr_task(int cpu)
1df5c10a
LT
7048{
7049 return cpu_curr(cpu);
7050}
7051
7052/**
7053 * set_curr_task - set the current task for a given cpu.
7054 * @cpu: the processor in question.
7055 * @p: the task pointer to set.
7056 *
7057 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7058 * are serviced on a separate stack. It allows the architecture to switch the
7059 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7060 * must be called with all CPU's synchronized, and interrupts disabled, the
7061 * and caller must save the original value of the current task (see
7062 * curr_task() above) and restore that value before reenabling interrupts and
7063 * re-starting the system.
7064 *
7065 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7066 */
36c8b586 7067void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7068{
7069 cpu_curr(cpu) = p;
7070}
7071
7072#endif
29f59db3
SV
7073
7074#ifdef CONFIG_FAIR_GROUP_SCHED
7075
6b2d7700
SV
7076#ifdef CONFIG_SMP
7077/*
7078 * distribute shares of all task groups among their schedulable entities,
7079 * to reflect load distrbution across cpus.
7080 */
7081static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7082{
7083 struct cfs_rq *cfs_rq;
7084 struct rq *rq = cpu_rq(this_cpu);
7085 cpumask_t sdspan = sd->span;
7086 int balanced = 1;
7087
7088 /* Walk thr' all the task groups that we have */
7089 for_each_leaf_cfs_rq(rq, cfs_rq) {
7090 int i;
7091 unsigned long total_load = 0, total_shares;
7092 struct task_group *tg = cfs_rq->tg;
7093
7094 /* Gather total task load of this group across cpus */
7095 for_each_cpu_mask(i, sdspan)
7096 total_load += tg->cfs_rq[i]->load.weight;
7097
7098 /* Nothing to do if this group has no load */
7099 if (!total_load)
7100 continue;
7101
7102 /*
7103 * tg->shares represents the number of cpu shares the task group
7104 * is eligible to hold on a single cpu. On N cpus, it is
7105 * eligible to hold (N * tg->shares) number of cpu shares.
7106 */
7107 total_shares = tg->shares * cpus_weight(sdspan);
7108
7109 /*
7110 * redistribute total_shares across cpus as per the task load
7111 * distribution.
7112 */
7113 for_each_cpu_mask(i, sdspan) {
7114 unsigned long local_load, local_shares;
7115
7116 local_load = tg->cfs_rq[i]->load.weight;
7117 local_shares = (local_load * total_shares) / total_load;
7118 if (!local_shares)
7119 local_shares = MIN_GROUP_SHARES;
7120 if (local_shares == tg->se[i]->load.weight)
7121 continue;
7122
7123 spin_lock_irq(&cpu_rq(i)->lock);
7124 set_se_shares(tg->se[i], local_shares);
7125 spin_unlock_irq(&cpu_rq(i)->lock);
7126 balanced = 0;
7127 }
7128 }
7129
7130 return balanced;
7131}
7132
7133/*
7134 * How frequently should we rebalance_shares() across cpus?
7135 *
7136 * The more frequently we rebalance shares, the more accurate is the fairness
7137 * of cpu bandwidth distribution between task groups. However higher frequency
7138 * also implies increased scheduling overhead.
7139 *
7140 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7141 * consecutive calls to rebalance_shares() in the same sched domain.
7142 *
7143 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7144 * consecutive calls to rebalance_shares() in the same sched domain.
7145 *
7146 * These settings allows for the appropriate tradeoff between accuracy of
7147 * fairness and the associated overhead.
7148 *
7149 */
7150
7151/* default: 8ms, units: milliseconds */
7152const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7153
7154/* default: 128ms, units: milliseconds */
7155const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7156
7157/* kernel thread that runs rebalance_shares() periodically */
7158static int load_balance_monitor(void *unused)
7159{
7160 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7161 struct sched_param schedparm;
7162 int ret;
7163
7164 /*
7165 * We don't want this thread's execution to be limited by the shares
7166 * assigned to default group (init_task_group). Hence make it run
7167 * as a SCHED_RR RT task at the lowest priority.
7168 */
7169 schedparm.sched_priority = 1;
7170 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7171 if (ret)
7172 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7173 " monitor thread (error = %d) \n", ret);
7174
7175 while (!kthread_should_stop()) {
7176 int i, cpu, balanced = 1;
7177
7178 /* Prevent cpus going down or coming up */
86ef5c9a 7179 get_online_cpus();
6b2d7700
SV
7180 /* lockout changes to doms_cur[] array */
7181 lock_doms_cur();
7182 /*
7183 * Enter a rcu read-side critical section to safely walk rq->sd
7184 * chain on various cpus and to walk task group list
7185 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7186 */
7187 rcu_read_lock();
7188
7189 for (i = 0; i < ndoms_cur; i++) {
7190 cpumask_t cpumap = doms_cur[i];
7191 struct sched_domain *sd = NULL, *sd_prev = NULL;
7192
7193 cpu = first_cpu(cpumap);
7194
7195 /* Find the highest domain at which to balance shares */
7196 for_each_domain(cpu, sd) {
7197 if (!(sd->flags & SD_LOAD_BALANCE))
7198 continue;
7199 sd_prev = sd;
7200 }
7201
7202 sd = sd_prev;
7203 /* sd == NULL? No load balance reqd in this domain */
7204 if (!sd)
7205 continue;
7206
7207 balanced &= rebalance_shares(sd, cpu);
7208 }
7209
7210 rcu_read_unlock();
7211
7212 unlock_doms_cur();
86ef5c9a 7213 put_online_cpus();
6b2d7700
SV
7214
7215 if (!balanced)
7216 timeout = sysctl_sched_min_bal_int_shares;
7217 else if (timeout < sysctl_sched_max_bal_int_shares)
7218 timeout *= 2;
7219
7220 msleep_interruptible(timeout);
7221 }
7222
7223 return 0;
7224}
7225#endif /* CONFIG_SMP */
7226
29f59db3 7227/* allocate runqueue etc for a new task group */
4cf86d77 7228struct task_group *sched_create_group(void)
29f59db3 7229{
4cf86d77 7230 struct task_group *tg;
29f59db3
SV
7231 struct cfs_rq *cfs_rq;
7232 struct sched_entity *se;
9b5b7751 7233 struct rq *rq;
29f59db3
SV
7234 int i;
7235
29f59db3
SV
7236 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7237 if (!tg)
7238 return ERR_PTR(-ENOMEM);
7239
9b5b7751 7240 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7241 if (!tg->cfs_rq)
7242 goto err;
9b5b7751 7243 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7244 if (!tg->se)
7245 goto err;
7246
7247 for_each_possible_cpu(i) {
9b5b7751 7248 rq = cpu_rq(i);
29f59db3
SV
7249
7250 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7251 cpu_to_node(i));
7252 if (!cfs_rq)
7253 goto err;
7254
7255 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7256 cpu_to_node(i));
7257 if (!se)
7258 goto err;
7259
7260 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7261 memset(se, 0, sizeof(struct sched_entity));
7262
7263 tg->cfs_rq[i] = cfs_rq;
7264 init_cfs_rq(cfs_rq, rq);
7265 cfs_rq->tg = tg;
29f59db3
SV
7266
7267 tg->se[i] = se;
7268 se->cfs_rq = &rq->cfs;
7269 se->my_q = cfs_rq;
7270 se->load.weight = NICE_0_LOAD;
7271 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7272 se->parent = NULL;
7273 }
7274
ec2c507f
SV
7275 tg->shares = NICE_0_LOAD;
7276
7277 lock_task_group_list();
9b5b7751
SV
7278 for_each_possible_cpu(i) {
7279 rq = cpu_rq(i);
7280 cfs_rq = tg->cfs_rq[i];
7281 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7282 }
ec2c507f 7283 unlock_task_group_list();
29f59db3 7284
9b5b7751 7285 return tg;
29f59db3
SV
7286
7287err:
7288 for_each_possible_cpu(i) {
a65914b3 7289 if (tg->cfs_rq)
29f59db3 7290 kfree(tg->cfs_rq[i]);
a65914b3 7291 if (tg->se)
29f59db3
SV
7292 kfree(tg->se[i]);
7293 }
a65914b3
IM
7294 kfree(tg->cfs_rq);
7295 kfree(tg->se);
7296 kfree(tg);
29f59db3
SV
7297
7298 return ERR_PTR(-ENOMEM);
7299}
7300
9b5b7751
SV
7301/* rcu callback to free various structures associated with a task group */
7302static void free_sched_group(struct rcu_head *rhp)
29f59db3 7303{
ae8393e5
SV
7304 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7305 struct cfs_rq *cfs_rq;
29f59db3
SV
7306 struct sched_entity *se;
7307 int i;
7308
29f59db3
SV
7309 /* now it should be safe to free those cfs_rqs */
7310 for_each_possible_cpu(i) {
7311 cfs_rq = tg->cfs_rq[i];
7312 kfree(cfs_rq);
7313
7314 se = tg->se[i];
7315 kfree(se);
7316 }
7317
7318 kfree(tg->cfs_rq);
7319 kfree(tg->se);
7320 kfree(tg);
7321}
7322
9b5b7751 7323/* Destroy runqueue etc associated with a task group */
4cf86d77 7324void sched_destroy_group(struct task_group *tg)
29f59db3 7325{
7bae49d4 7326 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7327 int i;
29f59db3 7328
ec2c507f 7329 lock_task_group_list();
9b5b7751
SV
7330 for_each_possible_cpu(i) {
7331 cfs_rq = tg->cfs_rq[i];
7332 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7333 }
ec2c507f 7334 unlock_task_group_list();
9b5b7751 7335
7bae49d4 7336 BUG_ON(!cfs_rq);
9b5b7751
SV
7337
7338 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7339 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7340}
7341
9b5b7751 7342/* change task's runqueue when it moves between groups.
3a252015
IM
7343 * The caller of this function should have put the task in its new group
7344 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7345 * reflect its new group.
9b5b7751
SV
7346 */
7347void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7348{
7349 int on_rq, running;
7350 unsigned long flags;
7351 struct rq *rq;
7352
7353 rq = task_rq_lock(tsk, &flags);
7354
dae51f56 7355 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7356 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7357 goto done;
dae51f56 7358 }
29f59db3
SV
7359
7360 update_rq_clock(rq);
7361
051a1d1a 7362 running = task_current(rq, tsk);
29f59db3
SV
7363 on_rq = tsk->se.on_rq;
7364
83b699ed 7365 if (on_rq) {
29f59db3 7366 dequeue_task(rq, tsk, 0);
83b699ed
SV
7367 if (unlikely(running))
7368 tsk->sched_class->put_prev_task(rq, tsk);
7369 }
29f59db3 7370
ce96b5ac 7371 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7372
83b699ed
SV
7373 if (on_rq) {
7374 if (unlikely(running))
7375 tsk->sched_class->set_curr_task(rq);
7074badb 7376 enqueue_task(rq, tsk, 0);
83b699ed 7377 }
29f59db3
SV
7378
7379done:
7380 task_rq_unlock(rq, &flags);
7381}
7382
6b2d7700 7383/* rq->lock to be locked by caller */
29f59db3
SV
7384static void set_se_shares(struct sched_entity *se, unsigned long shares)
7385{
7386 struct cfs_rq *cfs_rq = se->cfs_rq;
7387 struct rq *rq = cfs_rq->rq;
7388 int on_rq;
7389
6b2d7700
SV
7390 if (!shares)
7391 shares = MIN_GROUP_SHARES;
29f59db3
SV
7392
7393 on_rq = se->on_rq;
6b2d7700 7394 if (on_rq) {
29f59db3 7395 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7396 dec_cpu_load(rq, se->load.weight);
7397 }
29f59db3
SV
7398
7399 se->load.weight = shares;
7400 se->load.inv_weight = div64_64((1ULL<<32), shares);
7401
6b2d7700 7402 if (on_rq) {
29f59db3 7403 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7404 inc_cpu_load(rq, se->load.weight);
7405 }
29f59db3
SV
7406}
7407
4cf86d77 7408int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7409{
7410 int i;
6b2d7700
SV
7411 struct cfs_rq *cfs_rq;
7412 struct rq *rq;
c61935fd 7413
ec2c507f 7414 lock_task_group_list();
9b5b7751 7415 if (tg->shares == shares)
5cb350ba 7416 goto done;
29f59db3 7417
6b2d7700
SV
7418 if (shares < MIN_GROUP_SHARES)
7419 shares = MIN_GROUP_SHARES;
7420
7421 /*
7422 * Prevent any load balance activity (rebalance_shares,
7423 * load_balance_fair) from referring to this group first,
7424 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7425 */
7426 for_each_possible_cpu(i) {
7427 cfs_rq = tg->cfs_rq[i];
7428 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7429 }
7430
7431 /* wait for any ongoing reference to this group to finish */
7432 synchronize_sched();
7433
7434 /*
7435 * Now we are free to modify the group's share on each cpu
7436 * w/o tripping rebalance_share or load_balance_fair.
7437 */
9b5b7751 7438 tg->shares = shares;
6b2d7700
SV
7439 for_each_possible_cpu(i) {
7440 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7441 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7442 spin_unlock_irq(&cpu_rq(i)->lock);
7443 }
29f59db3 7444
6b2d7700
SV
7445 /*
7446 * Enable load balance activity on this group, by inserting it back on
7447 * each cpu's rq->leaf_cfs_rq_list.
7448 */
7449 for_each_possible_cpu(i) {
7450 rq = cpu_rq(i);
7451 cfs_rq = tg->cfs_rq[i];
7452 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7453 }
5cb350ba 7454done:
ec2c507f 7455 unlock_task_group_list();
9b5b7751 7456 return 0;
29f59db3
SV
7457}
7458
5cb350ba
DG
7459unsigned long sched_group_shares(struct task_group *tg)
7460{
7461 return tg->shares;
7462}
7463
3a252015 7464#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7465
7466#ifdef CONFIG_FAIR_CGROUP_SCHED
7467
7468/* return corresponding task_group object of a cgroup */
2b01dfe3 7469static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7470{
2b01dfe3
PM
7471 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7472 struct task_group, css);
68318b8e
SV
7473}
7474
7475static struct cgroup_subsys_state *
2b01dfe3 7476cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7477{
7478 struct task_group *tg;
7479
2b01dfe3 7480 if (!cgrp->parent) {
68318b8e 7481 /* This is early initialization for the top cgroup */
2b01dfe3 7482 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7483 return &init_task_group.css;
7484 }
7485
7486 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7487 if (cgrp->parent->parent)
68318b8e
SV
7488 return ERR_PTR(-EINVAL);
7489
7490 tg = sched_create_group();
7491 if (IS_ERR(tg))
7492 return ERR_PTR(-ENOMEM);
7493
7494 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7495 tg->css.cgroup = cgrp;
68318b8e
SV
7496
7497 return &tg->css;
7498}
7499
41a2d6cf
IM
7500static void
7501cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7502{
2b01dfe3 7503 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7504
7505 sched_destroy_group(tg);
7506}
7507
41a2d6cf
IM
7508static int
7509cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7510 struct task_struct *tsk)
68318b8e
SV
7511{
7512 /* We don't support RT-tasks being in separate groups */
7513 if (tsk->sched_class != &fair_sched_class)
7514 return -EINVAL;
7515
7516 return 0;
7517}
7518
7519static void
2b01dfe3 7520cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7521 struct cgroup *old_cont, struct task_struct *tsk)
7522{
7523 sched_move_task(tsk);
7524}
7525
2b01dfe3
PM
7526static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7527 u64 shareval)
68318b8e 7528{
2b01dfe3 7529 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7530}
7531
2b01dfe3 7532static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7533{
2b01dfe3 7534 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7535
7536 return (u64) tg->shares;
7537}
7538
fe5c7cc2
PM
7539static struct cftype cpu_files[] = {
7540 {
7541 .name = "shares",
7542 .read_uint = cpu_shares_read_uint,
7543 .write_uint = cpu_shares_write_uint,
7544 },
68318b8e
SV
7545};
7546
7547static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7548{
fe5c7cc2 7549 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7550}
7551
7552struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7553 .name = "cpu",
7554 .create = cpu_cgroup_create,
7555 .destroy = cpu_cgroup_destroy,
7556 .can_attach = cpu_cgroup_can_attach,
7557 .attach = cpu_cgroup_attach,
7558 .populate = cpu_cgroup_populate,
7559 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7560 .early_init = 1,
7561};
7562
7563#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7564
7565#ifdef CONFIG_CGROUP_CPUACCT
7566
7567/*
7568 * CPU accounting code for task groups.
7569 *
7570 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7571 * (balbir@in.ibm.com).
7572 */
7573
7574/* track cpu usage of a group of tasks */
7575struct cpuacct {
7576 struct cgroup_subsys_state css;
7577 /* cpuusage holds pointer to a u64-type object on every cpu */
7578 u64 *cpuusage;
7579};
7580
7581struct cgroup_subsys cpuacct_subsys;
7582
7583/* return cpu accounting group corresponding to this container */
7584static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7585{
7586 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7587 struct cpuacct, css);
7588}
7589
7590/* return cpu accounting group to which this task belongs */
7591static inline struct cpuacct *task_ca(struct task_struct *tsk)
7592{
7593 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7594 struct cpuacct, css);
7595}
7596
7597/* create a new cpu accounting group */
7598static struct cgroup_subsys_state *cpuacct_create(
7599 struct cgroup_subsys *ss, struct cgroup *cont)
7600{
7601 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7602
7603 if (!ca)
7604 return ERR_PTR(-ENOMEM);
7605
7606 ca->cpuusage = alloc_percpu(u64);
7607 if (!ca->cpuusage) {
7608 kfree(ca);
7609 return ERR_PTR(-ENOMEM);
7610 }
7611
7612 return &ca->css;
7613}
7614
7615/* destroy an existing cpu accounting group */
41a2d6cf
IM
7616static void
7617cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7618{
7619 struct cpuacct *ca = cgroup_ca(cont);
7620
7621 free_percpu(ca->cpuusage);
7622 kfree(ca);
7623}
7624
7625/* return total cpu usage (in nanoseconds) of a group */
7626static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7627{
7628 struct cpuacct *ca = cgroup_ca(cont);
7629 u64 totalcpuusage = 0;
7630 int i;
7631
7632 for_each_possible_cpu(i) {
7633 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7634
7635 /*
7636 * Take rq->lock to make 64-bit addition safe on 32-bit
7637 * platforms.
7638 */
7639 spin_lock_irq(&cpu_rq(i)->lock);
7640 totalcpuusage += *cpuusage;
7641 spin_unlock_irq(&cpu_rq(i)->lock);
7642 }
7643
7644 return totalcpuusage;
7645}
7646
7647static struct cftype files[] = {
7648 {
7649 .name = "usage",
7650 .read_uint = cpuusage_read,
7651 },
7652};
7653
7654static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7655{
7656 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7657}
7658
7659/*
7660 * charge this task's execution time to its accounting group.
7661 *
7662 * called with rq->lock held.
7663 */
7664static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7665{
7666 struct cpuacct *ca;
7667
7668 if (!cpuacct_subsys.active)
7669 return;
7670
7671 ca = task_ca(tsk);
7672 if (ca) {
7673 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7674
7675 *cpuusage += cputime;
7676 }
7677}
7678
7679struct cgroup_subsys cpuacct_subsys = {
7680 .name = "cpuacct",
7681 .create = cpuacct_create,
7682 .destroy = cpuacct_destroy,
7683 .populate = cpuacct_populate,
7684 .subsys_id = cpuacct_subsys_id,
7685};
7686#endif /* CONFIG_CGROUP_CPUACCT */