]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Fix nr_uninterruptible count
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
6f505b16 439#endif
6aa645ea
IM
440};
441
57d885fe
GH
442#ifdef CONFIG_SMP
443
444/*
445 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
57d885fe
GH
451 */
452struct root_domain {
453 atomic_t refcount;
c6c4927b
RR
454 cpumask_var_t span;
455 cpumask_var_t online;
637f5085 456
0eab9146 457 /*
637f5085
GH
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
c6c4927b 461 cpumask_var_t rto_mask;
0eab9146 462 atomic_t rto_count;
6e0534f2
GH
463#ifdef CONFIG_SMP
464 struct cpupri cpupri;
465#endif
57d885fe
GH
466};
467
dc938520
GH
468/*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
57d885fe
GH
472static struct root_domain def_root_domain;
473
474#endif
475
1da177e4
LT
476/*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
70b97a7f 483struct rq {
d8016491 484 /* runqueue lock: */
05fa785c 485 raw_spinlock_t lock;
1da177e4
LT
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
6aa645ea
IM
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 494#ifdef CONFIG_NO_HZ
39c0cbe2 495 u64 nohz_stamp;
46cb4b7c
SS
496 unsigned char in_nohz_recently;
497#endif
a64692a3
MG
498 unsigned int skip_clock_update;
499
d8016491
IM
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
6aa645ea
IM
502 unsigned long nr_load_updates;
503 u64 nr_switches;
504
505 struct cfs_rq cfs;
6f505b16 506 struct rt_rq rt;
6f505b16 507
6aa645ea 508#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
511#endif
512#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 513 struct list_head leaf_rt_rq_list;
1da177e4 514#endif
1da177e4
LT
515
516 /*
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
521 */
522 unsigned long nr_uninterruptible;
523
36c8b586 524 struct task_struct *curr, *idle;
c9819f45 525 unsigned long next_balance;
1da177e4 526 struct mm_struct *prev_mm;
6aa645ea 527
3e51f33f 528 u64 clock;
6aa645ea 529
1da177e4
LT
530 atomic_t nr_iowait;
531
532#ifdef CONFIG_SMP
0eab9146 533 struct root_domain *rd;
1da177e4
LT
534 struct sched_domain *sd;
535
a0a522ce 536 unsigned char idle_at_tick;
1da177e4 537 /* For active balancing */
3f029d3c 538 int post_schedule;
1da177e4
LT
539 int active_balance;
540 int push_cpu;
d8016491
IM
541 /* cpu of this runqueue: */
542 int cpu;
1f11eb6a 543 int online;
1da177e4 544
a8a51d5e 545 unsigned long avg_load_per_task;
1da177e4 546
36c8b586 547 struct task_struct *migration_thread;
1da177e4 548 struct list_head migration_queue;
e9e9250b
PZ
549
550 u64 rt_avg;
551 u64 age_stamp;
1b9508f6
MG
552 u64 idle_stamp;
553 u64 avg_idle;
1da177e4
LT
554#endif
555
dce48a84
TG
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
559
8f4d37ec 560#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
561#ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564#endif
8f4d37ec
PZ
565 struct hrtimer hrtick_timer;
566#endif
567
1da177e4
LT
568#ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
9c2c4802
KC
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
573
574 /* sys_sched_yield() stats */
480b9434 575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4
LT
588#endif
589};
590
f34e3b61 591static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 592
7d478721
PZ
593static inline
594void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 595{
7d478721 596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
597
598 /*
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
601 */
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
dd41f596
IM
604}
605
0a2966b4
CL
606static inline int cpu_of(struct rq *rq)
607{
608#ifdef CONFIG_SMP
609 return rq->cpu;
610#else
611 return 0;
612#endif
613}
614
497f0ab3 615#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
619
674311d5
NP
620/*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 622 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
48f24c4d 627#define for_each_domain(cpu, __sd) \
497f0ab3 628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
629
630#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631#define this_rq() (&__get_cpu_var(runqueues))
632#define task_rq(p) cpu_rq(task_cpu(p))
633#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 634#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 635
aa9c4c0f 636inline void update_rq_clock(struct rq *rq)
3e51f33f 637{
a64692a3
MG
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
e17b38bf 653 * @cpu: the processor in question.
017730c1
IM
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
89f19f04 659int runqueue_is_locked(int cpu)
017730c1 660{
05fa785c 661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
662}
663
bf5c91ba
IM
664/*
665 * Debugging: various feature bits
666 */
f00b45c1
PZ
667
668#define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
bf5c91ba 671enum {
f00b45c1 672#include "sched_features.h"
bf5c91ba
IM
673};
674
f00b45c1
PZ
675#undef SCHED_FEAT
676
677#define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
bf5c91ba 680const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
681#include "sched_features.h"
682 0;
683
684#undef SCHED_FEAT
685
686#ifdef CONFIG_SCHED_DEBUG
687#define SCHED_FEAT(name, enabled) \
688 #name ,
689
983ed7a6 690static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
691#include "sched_features.h"
692 NULL
693};
694
695#undef SCHED_FEAT
696
34f3a814 697static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 698{
f00b45c1
PZ
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 705 }
34f3a814 706 seq_puts(m, "\n");
f00b45c1 707
34f3a814 708 return 0;
f00b45c1
PZ
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
42994724 748 *ppos += cnt;
f00b45c1
PZ
749
750 return cnt;
751}
752
34f3a814
LZ
753static int sched_feat_open(struct inode *inode, struct file *filp)
754{
755 return single_open(filp, sched_feat_show, NULL);
756}
757
828c0950 758static const struct file_operations sched_feat_fops = {
34f3a814
LZ
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
f00b45c1
PZ
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
2398f2c6
PZ
785/*
786 * ratelimit for updating the group shares.
55cd5340 787 * default: 0.25ms
2398f2c6 788 */
55cd5340 789unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 790unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 791
ffda12a1
PZ
792/*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797unsigned int sysctl_sched_shares_thresh = 4;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
ad474cac
ON
963void task_rq_unlock_wait(struct task_struct *p)
964{
965 struct rq *rq = task_rq(p);
966
967 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 968 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
969}
970
a9957449 971static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
972 __releases(rq->lock)
973{
05fa785c 974 raw_spin_unlock(&rq->lock);
b29739f9
IM
975}
976
70b97a7f 977static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
978 __releases(rq->lock)
979{
05fa785c 980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
981}
982
1da177e4 983/*
cc2a73b5 984 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 985 */
a9957449 986static struct rq *this_rq_lock(void)
1da177e4
LT
987 __acquires(rq->lock)
988{
70b97a7f 989 struct rq *rq;
1da177e4
LT
990
991 local_irq_disable();
992 rq = this_rq();
05fa785c 993 raw_spin_lock(&rq->lock);
1da177e4
LT
994
995 return rq;
996}
997
8f4d37ec
PZ
998#ifdef CONFIG_SCHED_HRTICK
999/*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
8f4d37ec
PZ
1009
1010/*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015static inline int hrtick_enabled(struct rq *rq)
1016{
1017 if (!sched_feat(HRTICK))
1018 return 0;
ba42059f 1019 if (!cpu_active(cpu_of(rq)))
b328ca18 1020 return 0;
8f4d37ec
PZ
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022}
1023
8f4d37ec
PZ
1024static void hrtick_clear(struct rq *rq)
1025{
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028}
1029
8f4d37ec
PZ
1030/*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035{
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
05fa785c 1040 raw_spin_lock(&rq->lock);
3e51f33f 1041 update_rq_clock(rq);
8f4d37ec 1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1043 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1044
1045 return HRTIMER_NORESTART;
1046}
1047
95e904c7 1048#ifdef CONFIG_SMP
31656519
PZ
1049/*
1050 * called from hardirq (IPI) context
1051 */
1052static void __hrtick_start(void *arg)
b328ca18 1053{
31656519 1054 struct rq *rq = arg;
b328ca18 1055
05fa785c 1056 raw_spin_lock(&rq->lock);
31656519
PZ
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
05fa785c 1059 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1060}
1061
31656519
PZ
1062/*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1068{
31656519
PZ
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1071
cc584b21 1072 hrtimer_set_expires(timer, time);
31656519
PZ
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
6e275637 1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1078 rq->hrtick_csd_pending = 1;
1079 }
b328ca18
PZ
1080}
1081
1082static int
1083hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084{
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
31656519 1094 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099}
1100
fa748203 1101static __init void init_hrtick(void)
b328ca18
PZ
1102{
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104}
31656519
PZ
1105#else
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
1112{
7f1e2ca9 1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1114 HRTIMER_MODE_REL_PINNED, 0);
31656519 1115}
b328ca18 1116
006c75f1 1117static inline void init_hrtick(void)
8f4d37ec 1118{
8f4d37ec 1119}
31656519 1120#endif /* CONFIG_SMP */
8f4d37ec 1121
31656519 1122static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1123{
31656519
PZ
1124#ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
8f4d37ec 1126
31656519
PZ
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130#endif
8f4d37ec 1131
31656519
PZ
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
8f4d37ec 1134}
006c75f1 1135#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1136static inline void hrtick_clear(struct rq *rq)
1137{
1138}
1139
8f4d37ec
PZ
1140static inline void init_rq_hrtick(struct rq *rq)
1141{
1142}
1143
b328ca18
PZ
1144static inline void init_hrtick(void)
1145{
1146}
006c75f1 1147#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1148
c24d20db
IM
1149/*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156#ifdef CONFIG_SMP
1157
1158#ifndef tsk_is_polling
1159#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160#endif
1161
31656519 1162static void resched_task(struct task_struct *p)
c24d20db
IM
1163{
1164 int cpu;
1165
05fa785c 1166 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1167
5ed0cec0 1168 if (test_tsk_need_resched(p))
c24d20db
IM
1169 return;
1170
5ed0cec0 1171 set_tsk_need_resched(p);
c24d20db
IM
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181}
1182
1183static void resched_cpu(int cpu)
1184{
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
05fa785c 1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1189 return;
1190 resched_task(cpu_curr(cpu));
05fa785c 1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1192}
06d8308c
TG
1193
1194#ifdef CONFIG_NO_HZ
1195/*
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1204 */
1205void wake_up_idle_cpu(int cpu)
1206{
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /*
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1218 */
1219 if (rq->curr != rq->idle)
1220 return;
1221
1222 /*
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1226 */
5ed0cec0 1227 set_tsk_need_resched(rq->idle);
06d8308c
TG
1228
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1233}
39c0cbe2
MG
1234
1235int nohz_ratelimit(int cpu)
1236{
1237 struct rq *rq = cpu_rq(cpu);
1238 u64 diff = rq->clock - rq->nohz_stamp;
1239
1240 rq->nohz_stamp = rq->clock;
1241
1242 return diff < (NSEC_PER_SEC / HZ) >> 1;
1243}
1244
6d6bc0ad 1245#endif /* CONFIG_NO_HZ */
06d8308c 1246
e9e9250b
PZ
1247static u64 sched_avg_period(void)
1248{
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250}
1251
1252static void sched_avg_update(struct rq *rq)
1253{
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
1257 rq->age_stamp += period;
1258 rq->rt_avg /= 2;
1259 }
1260}
1261
1262static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1263{
1264 rq->rt_avg += rt_delta;
1265 sched_avg_update(rq);
1266}
1267
6d6bc0ad 1268#else /* !CONFIG_SMP */
31656519 1269static void resched_task(struct task_struct *p)
c24d20db 1270{
05fa785c 1271 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1272 set_tsk_need_resched(p);
c24d20db 1273}
e9e9250b
PZ
1274
1275static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1276{
1277}
6d6bc0ad 1278#endif /* CONFIG_SMP */
c24d20db 1279
45bf76df
IM
1280#if BITS_PER_LONG == 32
1281# define WMULT_CONST (~0UL)
1282#else
1283# define WMULT_CONST (1UL << 32)
1284#endif
1285
1286#define WMULT_SHIFT 32
1287
194081eb
IM
1288/*
1289 * Shift right and round:
1290 */
cf2ab469 1291#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1292
a7be37ac
PZ
1293/*
1294 * delta *= weight / lw
1295 */
cb1c4fc9 1296static unsigned long
45bf76df
IM
1297calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1298 struct load_weight *lw)
1299{
1300 u64 tmp;
1301
7a232e03
LJ
1302 if (!lw->inv_weight) {
1303 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1304 lw->inv_weight = 1;
1305 else
1306 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1307 / (lw->weight+1);
1308 }
45bf76df
IM
1309
1310 tmp = (u64)delta_exec * weight;
1311 /*
1312 * Check whether we'd overflow the 64-bit multiplication:
1313 */
194081eb 1314 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1315 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1316 WMULT_SHIFT/2);
1317 else
cf2ab469 1318 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1319
ecf691da 1320 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1321}
1322
1091985b 1323static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1324{
1325 lw->weight += inc;
e89996ae 1326 lw->inv_weight = 0;
45bf76df
IM
1327}
1328
1091985b 1329static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1330{
1331 lw->weight -= dec;
e89996ae 1332 lw->inv_weight = 0;
45bf76df
IM
1333}
1334
2dd73a4f
PW
1335/*
1336 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1337 * of tasks with abnormal "nice" values across CPUs the contribution that
1338 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1339 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1340 * scaled version of the new time slice allocation that they receive on time
1341 * slice expiry etc.
1342 */
1343
cce7ade8
PZ
1344#define WEIGHT_IDLEPRIO 3
1345#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1346
1347/*
1348 * Nice levels are multiplicative, with a gentle 10% change for every
1349 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1350 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1351 * that remained on nice 0.
1352 *
1353 * The "10% effect" is relative and cumulative: from _any_ nice level,
1354 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1355 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1356 * If a task goes up by ~10% and another task goes down by ~10% then
1357 * the relative distance between them is ~25%.)
dd41f596
IM
1358 */
1359static const int prio_to_weight[40] = {
254753dc
IM
1360 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1361 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1362 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1363 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1364 /* 0 */ 1024, 820, 655, 526, 423,
1365 /* 5 */ 335, 272, 215, 172, 137,
1366 /* 10 */ 110, 87, 70, 56, 45,
1367 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1368};
1369
5714d2de
IM
1370/*
1371 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 *
1373 * In cases where the weight does not change often, we can use the
1374 * precalculated inverse to speed up arithmetics by turning divisions
1375 * into multiplications:
1376 */
dd41f596 1377static const u32 prio_to_wmult[40] = {
254753dc
IM
1378 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1379 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1380 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1381 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1382 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1383 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1384 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1385 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1386};
2dd73a4f 1387
ef12fefa
BR
1388/* Time spent by the tasks of the cpu accounting group executing in ... */
1389enum cpuacct_stat_index {
1390 CPUACCT_STAT_USER, /* ... user mode */
1391 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1392
1393 CPUACCT_STAT_NSTATS,
1394};
1395
d842de87
SV
1396#ifdef CONFIG_CGROUP_CPUACCT
1397static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1398static void cpuacct_update_stats(struct task_struct *tsk,
1399 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1400#else
1401static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1402static inline void cpuacct_update_stats(struct task_struct *tsk,
1403 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1404#endif
1405
18d95a28
PZ
1406static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1407{
1408 update_load_add(&rq->load, load);
1409}
1410
1411static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1412{
1413 update_load_sub(&rq->load, load);
1414}
1415
7940ca36 1416#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1417typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1418
1419/*
1420 * Iterate the full tree, calling @down when first entering a node and @up when
1421 * leaving it for the final time.
1422 */
eb755805 1423static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1424{
1425 struct task_group *parent, *child;
eb755805 1426 int ret;
c09595f6
PZ
1427
1428 rcu_read_lock();
1429 parent = &root_task_group;
1430down:
eb755805
PZ
1431 ret = (*down)(parent, data);
1432 if (ret)
1433 goto out_unlock;
c09595f6
PZ
1434 list_for_each_entry_rcu(child, &parent->children, siblings) {
1435 parent = child;
1436 goto down;
1437
1438up:
1439 continue;
1440 }
eb755805
PZ
1441 ret = (*up)(parent, data);
1442 if (ret)
1443 goto out_unlock;
c09595f6
PZ
1444
1445 child = parent;
1446 parent = parent->parent;
1447 if (parent)
1448 goto up;
eb755805 1449out_unlock:
c09595f6 1450 rcu_read_unlock();
eb755805
PZ
1451
1452 return ret;
c09595f6
PZ
1453}
1454
eb755805
PZ
1455static int tg_nop(struct task_group *tg, void *data)
1456{
1457 return 0;
c09595f6 1458}
eb755805
PZ
1459#endif
1460
1461#ifdef CONFIG_SMP
f5f08f39
PZ
1462/* Used instead of source_load when we know the type == 0 */
1463static unsigned long weighted_cpuload(const int cpu)
1464{
1465 return cpu_rq(cpu)->load.weight;
1466}
1467
1468/*
1469 * Return a low guess at the load of a migration-source cpu weighted
1470 * according to the scheduling class and "nice" value.
1471 *
1472 * We want to under-estimate the load of migration sources, to
1473 * balance conservatively.
1474 */
1475static unsigned long source_load(int cpu, int type)
1476{
1477 struct rq *rq = cpu_rq(cpu);
1478 unsigned long total = weighted_cpuload(cpu);
1479
1480 if (type == 0 || !sched_feat(LB_BIAS))
1481 return total;
1482
1483 return min(rq->cpu_load[type-1], total);
1484}
1485
1486/*
1487 * Return a high guess at the load of a migration-target cpu weighted
1488 * according to the scheduling class and "nice" value.
1489 */
1490static unsigned long target_load(int cpu, int type)
1491{
1492 struct rq *rq = cpu_rq(cpu);
1493 unsigned long total = weighted_cpuload(cpu);
1494
1495 if (type == 0 || !sched_feat(LB_BIAS))
1496 return total;
1497
1498 return max(rq->cpu_load[type-1], total);
1499}
1500
ae154be1
PZ
1501static struct sched_group *group_of(int cpu)
1502{
d11c563d 1503 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1504
1505 if (!sd)
1506 return NULL;
1507
1508 return sd->groups;
1509}
1510
1511static unsigned long power_of(int cpu)
1512{
1513 struct sched_group *group = group_of(cpu);
1514
1515 if (!group)
1516 return SCHED_LOAD_SCALE;
1517
1518 return group->cpu_power;
1519}
1520
eb755805
PZ
1521static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1522
1523static unsigned long cpu_avg_load_per_task(int cpu)
1524{
1525 struct rq *rq = cpu_rq(cpu);
af6d596f 1526 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1527
4cd42620
SR
1528 if (nr_running)
1529 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1530 else
1531 rq->avg_load_per_task = 0;
eb755805
PZ
1532
1533 return rq->avg_load_per_task;
1534}
1535
1536#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1537
43cf38eb 1538static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1539
c09595f6
PZ
1540static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1541
1542/*
1543 * Calculate and set the cpu's group shares.
1544 */
34d76c41
PZ
1545static void update_group_shares_cpu(struct task_group *tg, int cpu,
1546 unsigned long sd_shares,
1547 unsigned long sd_rq_weight,
4a6cc4bd 1548 unsigned long *usd_rq_weight)
18d95a28 1549{
34d76c41 1550 unsigned long shares, rq_weight;
a5004278 1551 int boost = 0;
c09595f6 1552
4a6cc4bd 1553 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1554 if (!rq_weight) {
1555 boost = 1;
1556 rq_weight = NICE_0_LOAD;
1557 }
c8cba857 1558
c09595f6 1559 /*
a8af7246
PZ
1560 * \Sum_j shares_j * rq_weight_i
1561 * shares_i = -----------------------------
1562 * \Sum_j rq_weight_j
c09595f6 1563 */
ec4e0e2f 1564 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1565 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1566
ffda12a1
PZ
1567 if (abs(shares - tg->se[cpu]->load.weight) >
1568 sysctl_sched_shares_thresh) {
1569 struct rq *rq = cpu_rq(cpu);
1570 unsigned long flags;
c09595f6 1571
05fa785c 1572 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1573 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1574 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1575 __set_se_shares(tg->se[cpu], shares);
05fa785c 1576 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1577 }
18d95a28 1578}
c09595f6
PZ
1579
1580/*
c8cba857
PZ
1581 * Re-compute the task group their per cpu shares over the given domain.
1582 * This needs to be done in a bottom-up fashion because the rq weight of a
1583 * parent group depends on the shares of its child groups.
c09595f6 1584 */
eb755805 1585static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1586{
cd8ad40d 1587 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1588 unsigned long *usd_rq_weight;
eb755805 1589 struct sched_domain *sd = data;
34d76c41 1590 unsigned long flags;
c8cba857 1591 int i;
c09595f6 1592
34d76c41
PZ
1593 if (!tg->se[0])
1594 return 0;
1595
1596 local_irq_save(flags);
4a6cc4bd 1597 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1598
758b2cdc 1599 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1600 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1601 usd_rq_weight[i] = weight;
34d76c41 1602
cd8ad40d 1603 rq_weight += weight;
ec4e0e2f
KC
1604 /*
1605 * If there are currently no tasks on the cpu pretend there
1606 * is one of average load so that when a new task gets to
1607 * run here it will not get delayed by group starvation.
1608 */
ec4e0e2f
KC
1609 if (!weight)
1610 weight = NICE_0_LOAD;
1611
cd8ad40d 1612 sum_weight += weight;
c8cba857 1613 shares += tg->cfs_rq[i]->shares;
c09595f6 1614 }
c09595f6 1615
cd8ad40d
PZ
1616 if (!rq_weight)
1617 rq_weight = sum_weight;
1618
c8cba857
PZ
1619 if ((!shares && rq_weight) || shares > tg->shares)
1620 shares = tg->shares;
1621
1622 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1623 shares = tg->shares;
c09595f6 1624
758b2cdc 1625 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1626 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1627
1628 local_irq_restore(flags);
eb755805
PZ
1629
1630 return 0;
c09595f6
PZ
1631}
1632
1633/*
c8cba857
PZ
1634 * Compute the cpu's hierarchical load factor for each task group.
1635 * This needs to be done in a top-down fashion because the load of a child
1636 * group is a fraction of its parents load.
c09595f6 1637 */
eb755805 1638static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1639{
c8cba857 1640 unsigned long load;
eb755805 1641 long cpu = (long)data;
c09595f6 1642
c8cba857
PZ
1643 if (!tg->parent) {
1644 load = cpu_rq(cpu)->load.weight;
1645 } else {
1646 load = tg->parent->cfs_rq[cpu]->h_load;
1647 load *= tg->cfs_rq[cpu]->shares;
1648 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1649 }
c09595f6 1650
c8cba857 1651 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1652
eb755805 1653 return 0;
c09595f6
PZ
1654}
1655
c8cba857 1656static void update_shares(struct sched_domain *sd)
4d8d595d 1657{
e7097159
PZ
1658 s64 elapsed;
1659 u64 now;
1660
1661 if (root_task_group_empty())
1662 return;
1663
1664 now = cpu_clock(raw_smp_processor_id());
1665 elapsed = now - sd->last_update;
2398f2c6
PZ
1666
1667 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1668 sd->last_update = now;
eb755805 1669 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1670 }
4d8d595d
PZ
1671}
1672
eb755805 1673static void update_h_load(long cpu)
c09595f6 1674{
e7097159
PZ
1675 if (root_task_group_empty())
1676 return;
1677
eb755805 1678 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1679}
1680
c09595f6
PZ
1681#else
1682
c8cba857 1683static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1684{
1685}
1686
18d95a28
PZ
1687#endif
1688
8f45e2b5
GH
1689#ifdef CONFIG_PREEMPT
1690
b78bb868
PZ
1691static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1692
70574a99 1693/*
8f45e2b5
GH
1694 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1695 * way at the expense of forcing extra atomic operations in all
1696 * invocations. This assures that the double_lock is acquired using the
1697 * same underlying policy as the spinlock_t on this architecture, which
1698 * reduces latency compared to the unfair variant below. However, it
1699 * also adds more overhead and therefore may reduce throughput.
70574a99 1700 */
8f45e2b5
GH
1701static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1702 __releases(this_rq->lock)
1703 __acquires(busiest->lock)
1704 __acquires(this_rq->lock)
1705{
05fa785c 1706 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1707 double_rq_lock(this_rq, busiest);
1708
1709 return 1;
1710}
1711
1712#else
1713/*
1714 * Unfair double_lock_balance: Optimizes throughput at the expense of
1715 * latency by eliminating extra atomic operations when the locks are
1716 * already in proper order on entry. This favors lower cpu-ids and will
1717 * grant the double lock to lower cpus over higher ids under contention,
1718 * regardless of entry order into the function.
1719 */
1720static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1721 __releases(this_rq->lock)
1722 __acquires(busiest->lock)
1723 __acquires(this_rq->lock)
1724{
1725 int ret = 0;
1726
05fa785c 1727 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1728 if (busiest < this_rq) {
05fa785c
TG
1729 raw_spin_unlock(&this_rq->lock);
1730 raw_spin_lock(&busiest->lock);
1731 raw_spin_lock_nested(&this_rq->lock,
1732 SINGLE_DEPTH_NESTING);
70574a99
AD
1733 ret = 1;
1734 } else
05fa785c
TG
1735 raw_spin_lock_nested(&busiest->lock,
1736 SINGLE_DEPTH_NESTING);
70574a99
AD
1737 }
1738 return ret;
1739}
1740
8f45e2b5
GH
1741#endif /* CONFIG_PREEMPT */
1742
1743/*
1744 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1745 */
1746static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747{
1748 if (unlikely(!irqs_disabled())) {
1749 /* printk() doesn't work good under rq->lock */
05fa785c 1750 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1751 BUG_ON(1);
1752 }
1753
1754 return _double_lock_balance(this_rq, busiest);
1755}
1756
70574a99
AD
1757static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1758 __releases(busiest->lock)
1759{
05fa785c 1760 raw_spin_unlock(&busiest->lock);
70574a99
AD
1761 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1762}
1e3c88bd
PZ
1763
1764/*
1765 * double_rq_lock - safely lock two runqueues
1766 *
1767 * Note this does not disable interrupts like task_rq_lock,
1768 * you need to do so manually before calling.
1769 */
1770static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1771 __acquires(rq1->lock)
1772 __acquires(rq2->lock)
1773{
1774 BUG_ON(!irqs_disabled());
1775 if (rq1 == rq2) {
1776 raw_spin_lock(&rq1->lock);
1777 __acquire(rq2->lock); /* Fake it out ;) */
1778 } else {
1779 if (rq1 < rq2) {
1780 raw_spin_lock(&rq1->lock);
1781 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1782 } else {
1783 raw_spin_lock(&rq2->lock);
1784 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1785 }
1786 }
1e3c88bd
PZ
1787}
1788
1789/*
1790 * double_rq_unlock - safely unlock two runqueues
1791 *
1792 * Note this does not restore interrupts like task_rq_unlock,
1793 * you need to do so manually after calling.
1794 */
1795static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1796 __releases(rq1->lock)
1797 __releases(rq2->lock)
1798{
1799 raw_spin_unlock(&rq1->lock);
1800 if (rq1 != rq2)
1801 raw_spin_unlock(&rq2->lock);
1802 else
1803 __release(rq2->lock);
1804}
1805
18d95a28
PZ
1806#endif
1807
30432094 1808#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1809static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810{
30432094 1811#ifdef CONFIG_SMP
34e83e85
IM
1812 cfs_rq->shares = shares;
1813#endif
1814}
30432094 1815#endif
e7693a36 1816
dce48a84 1817static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1818static void update_sysctl(void);
acb4a848 1819static int get_update_sysctl_factor(void);
dce48a84 1820
cd29fe6f
PZ
1821static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822{
1823 set_task_rq(p, cpu);
1824#ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832#endif
1833}
dce48a84 1834
1e3c88bd 1835static const struct sched_class rt_sched_class;
dd41f596
IM
1836
1837#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1838#define for_each_class(class) \
1839 for (class = sched_class_highest; class; class = class->next)
dd41f596 1840
1e3c88bd
PZ
1841#include "sched_stats.h"
1842
c09595f6 1843static void inc_nr_running(struct rq *rq)
9c217245
IM
1844{
1845 rq->nr_running++;
9c217245
IM
1846}
1847
c09595f6 1848static void dec_nr_running(struct rq *rq)
9c217245
IM
1849{
1850 rq->nr_running--;
9c217245
IM
1851}
1852
45bf76df
IM
1853static void set_load_weight(struct task_struct *p)
1854{
1855 if (task_has_rt_policy(p)) {
dd41f596
IM
1856 p->se.load.weight = prio_to_weight[0] * 2;
1857 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1858 return;
1859 }
45bf76df 1860
dd41f596
IM
1861 /*
1862 * SCHED_IDLE tasks get minimal weight:
1863 */
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1868 }
71f8bd46 1869
dd41f596
IM
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1872}
1873
2087a1ad
GH
1874static void update_avg(u64 *avg, u64 sample)
1875{
1876 s64 diff = sample - *avg;
1877 *avg += diff >> 3;
1878}
1879
ea87bb78
TG
1880static void
1881enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1882{
a64692a3 1883 update_rq_clock(rq);
dd41f596 1884 sched_info_queued(p);
ea87bb78 1885 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1886 p->se.on_rq = 1;
71f8bd46
IM
1887}
1888
69be72c1 1889static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1890{
a64692a3 1891 update_rq_clock(rq);
46ac22ba 1892 sched_info_dequeued(p);
f02231e5 1893 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1894 p->se.on_rq = 0;
71f8bd46
IM
1895}
1896
1e3c88bd
PZ
1897/*
1898 * activate_task - move a task to the runqueue.
1899 */
1900static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1901{
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1904
ea87bb78 1905 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1906 inc_nr_running(rq);
1907}
1908
1909/*
1910 * deactivate_task - remove a task from the runqueue.
1911 */
1912static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1913{
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1916
1917 dequeue_task(rq, p, sleep);
1918 dec_nr_running(rq);
1919}
1920
1921#include "sched_idletask.c"
1922#include "sched_fair.c"
1923#include "sched_rt.c"
1924#ifdef CONFIG_SCHED_DEBUG
1925# include "sched_debug.c"
1926#endif
1927
14531189 1928/*
dd41f596 1929 * __normal_prio - return the priority that is based on the static prio
14531189 1930 */
14531189
IM
1931static inline int __normal_prio(struct task_struct *p)
1932{
dd41f596 1933 return p->static_prio;
14531189
IM
1934}
1935
b29739f9
IM
1936/*
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1942 */
36c8b586 1943static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1944{
1945 int prio;
1946
e05606d3 1947 if (task_has_rt_policy(p))
b29739f9
IM
1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1949 else
1950 prio = __normal_prio(p);
1951 return prio;
1952}
1953
1954/*
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1960 */
36c8b586 1961static int effective_prio(struct task_struct *p)
b29739f9
IM
1962{
1963 p->normal_prio = normal_prio(p);
1964 /*
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1968 */
1969 if (!rt_prio(p->prio))
1970 return p->normal_prio;
1971 return p->prio;
1972}
1973
1da177e4
LT
1974/**
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1977 */
36c8b586 1978inline int task_curr(const struct task_struct *p)
1da177e4
LT
1979{
1980 return cpu_curr(task_cpu(p)) == p;
1981}
1982
cb469845
SR
1983static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986{
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993}
1994
1da177e4 1995#ifdef CONFIG_SMP
cc367732
IM
1996/*
1997 * Is this task likely cache-hot:
1998 */
e7693a36 1999static int
cc367732
IM
2000task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001{
2002 s64 delta;
2003
e6c8fba7
PZ
2004 if (p->sched_class != &fair_sched_class)
2005 return 0;
2006
f540a608
IM
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
f685ceac 2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2013 return 1;
2014
6bc1665b
IM
2015 if (sysctl_sched_migration_cost == -1)
2016 return 1;
2017 if (sysctl_sched_migration_cost == 0)
2018 return 0;
2019
cc367732
IM
2020 delta = now - p->se.exec_start;
2021
2022 return delta < (s64)sysctl_sched_migration_cost;
2023}
2024
dd41f596 2025void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2026{
e2912009
PZ
2027#ifdef CONFIG_SCHED_DEBUG
2028 /*
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2031 */
077614ee
PZ
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2034#endif
2035
de1d7286 2036 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2037
0c69774e
PZ
2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2041 }
dd41f596
IM
2042
2043 __set_task_cpu(p, new_cpu);
c65cc870
IM
2044}
2045
70b97a7f 2046struct migration_req {
1da177e4 2047 struct list_head list;
1da177e4 2048
36c8b586 2049 struct task_struct *task;
1da177e4
LT
2050 int dest_cpu;
2051
1da177e4 2052 struct completion done;
70b97a7f 2053};
1da177e4
LT
2054
2055/*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
36c8b586 2059static int
70b97a7f 2060migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2061{
70b97a7f 2062 struct rq *rq = task_rq(p);
1da177e4
LT
2063
2064 /*
2065 * If the task is not on a runqueue (and not running), then
e2912009 2066 * the next wake-up will properly place the task.
1da177e4 2067 */
e2912009 2068 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2069 return 0;
1da177e4
LT
2070
2071 init_completion(&req->done);
1da177e4
LT
2072 req->task = p;
2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue);
48f24c4d 2075
1da177e4
LT
2076 return 1;
2077}
2078
a26b89f0
MM
2079/*
2080 * wait_task_context_switch - wait for a thread to complete at least one
2081 * context switch.
2082 *
2083 * @p must not be current.
2084 */
2085void wait_task_context_switch(struct task_struct *p)
2086{
2087 unsigned long nvcsw, nivcsw, flags;
2088 int running;
2089 struct rq *rq;
2090
2091 nvcsw = p->nvcsw;
2092 nivcsw = p->nivcsw;
2093 for (;;) {
2094 /*
2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock.
2097 *
2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every
2100 * iteration.
2101 */
2102 rq = task_rq_lock(p, &flags);
2103 running = task_running(rq, p);
2104 task_rq_unlock(rq, &flags);
2105
2106 if (likely(!running))
2107 break;
2108 /*
2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed.
2112 */
2113 if ((p->nvcsw - nvcsw) > 1)
2114 break;
2115 if ((p->nivcsw - nivcsw) > 1)
2116 break;
2117
2118 cpu_relax();
2119 }
2120}
2121
1da177e4
LT
2122/*
2123 * wait_task_inactive - wait for a thread to unschedule.
2124 *
85ba2d86
RM
2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time.
2131 *
1da177e4
LT
2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive.
2137 */
85ba2d86 2138unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2139{
2140 unsigned long flags;
dd41f596 2141 int running, on_rq;
85ba2d86 2142 unsigned long ncsw;
70b97a7f 2143 struct rq *rq;
1da177e4 2144
3a5c359a
AK
2145 for (;;) {
2146 /*
2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will
2150 * work out!
2151 */
2152 rq = task_rq(p);
fa490cfd 2153
3a5c359a
AK
2154 /*
2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding
2157 * any locks.
2158 *
2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else!
2164 */
85ba2d86
RM
2165 while (task_running(rq, p)) {
2166 if (match_state && unlikely(p->state != match_state))
2167 return 0;
3a5c359a 2168 cpu_relax();
85ba2d86 2169 }
fa490cfd 2170
3a5c359a
AK
2171 /*
2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat.
2175 */
2176 rq = task_rq_lock(p, &flags);
0a16b607 2177 trace_sched_wait_task(rq, p);
3a5c359a
AK
2178 running = task_running(rq, p);
2179 on_rq = p->se.on_rq;
85ba2d86 2180 ncsw = 0;
f31e11d8 2181 if (!match_state || p->state == match_state)
93dcf55f 2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2183 task_rq_unlock(rq, &flags);
fa490cfd 2184
85ba2d86
RM
2185 /*
2186 * If it changed from the expected state, bail out now.
2187 */
2188 if (unlikely(!ncsw))
2189 break;
2190
3a5c359a
AK
2191 /*
2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held?
2194 *
2195 * Oops. Go back and try again..
2196 */
2197 if (unlikely(running)) {
2198 cpu_relax();
2199 continue;
2200 }
fa490cfd 2201
3a5c359a
AK
2202 /*
2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not
2205 * preempted!
2206 *
80dd99b3 2207 * So if it was still runnable (but just not actively
3a5c359a
AK
2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while.
2210 */
2211 if (unlikely(on_rq)) {
2212 schedule_timeout_uninterruptible(1);
2213 continue;
2214 }
fa490cfd 2215
3a5c359a
AK
2216 /*
2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done!
2220 */
2221 break;
2222 }
85ba2d86
RM
2223
2224 return ncsw;
1da177e4
LT
2225}
2226
2227/***
2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread
2230 *
2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.)
2233 *
2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been
2238 * achieved as well.
2239 */
36c8b586 2240void kick_process(struct task_struct *p)
1da177e4
LT
2241{
2242 int cpu;
2243
2244 preempt_disable();
2245 cpu = task_cpu(p);
2246 if ((cpu != smp_processor_id()) && task_curr(p))
2247 smp_send_reschedule(cpu);
2248 preempt_enable();
2249}
b43e3521 2250EXPORT_SYMBOL_GPL(kick_process);
476d139c 2251#endif /* CONFIG_SMP */
1da177e4 2252
0793a61d
TG
2253/**
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate
2256 * @func: the function to be called
2257 * @info: the function call argument
2258 *
2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly
2261 */
2262void task_oncpu_function_call(struct task_struct *p,
2263 void (*func) (void *info), void *info)
2264{
2265 int cpu;
2266
2267 preempt_disable();
2268 cpu = task_cpu(p);
2269 if (task_curr(p))
2270 smp_call_function_single(cpu, func, info, 1);
2271 preempt_enable();
2272}
2273
970b13ba 2274#ifdef CONFIG_SMP
30da688e
ON
2275/*
2276 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2277 */
5da9a0fb
PZ
2278static int select_fallback_rq(int cpu, struct task_struct *p)
2279{
2280 int dest_cpu;
2281 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2282
2283 /* Look for allowed, online CPU in same node. */
2284 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2285 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2286 return dest_cpu;
2287
2288 /* Any allowed, online CPU? */
2289 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2290 if (dest_cpu < nr_cpu_ids)
2291 return dest_cpu;
2292
2293 /* No more Mr. Nice Guy. */
897f0b3c 2294 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2295 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2296 /*
2297 * Don't tell them about moving exiting tasks or
2298 * kernel threads (both mm NULL), since they never
2299 * leave kernel.
2300 */
2301 if (p->mm && printk_ratelimit()) {
2302 printk(KERN_INFO "process %d (%s) no "
2303 "longer affine to cpu%d\n",
2304 task_pid_nr(p), p->comm, cpu);
2305 }
2306 }
2307
2308 return dest_cpu;
2309}
2310
e2912009 2311/*
30da688e 2312 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2313 */
970b13ba 2314static inline
0017d735 2315int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2316{
0017d735 2317 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2318
2319 /*
2320 * In order not to call set_task_cpu() on a blocking task we need
2321 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2322 * cpu.
2323 *
2324 * Since this is common to all placement strategies, this lives here.
2325 *
2326 * [ this allows ->select_task() to simply return task_cpu(p) and
2327 * not worry about this generic constraint ]
2328 */
2329 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2330 !cpu_online(cpu)))
5da9a0fb 2331 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2332
2333 return cpu;
970b13ba
PZ
2334}
2335#endif
2336
1da177e4
LT
2337/***
2338 * try_to_wake_up - wake up a thread
2339 * @p: the to-be-woken-up thread
2340 * @state: the mask of task states that can be woken
2341 * @sync: do a synchronous wakeup?
2342 *
2343 * Put it on the run-queue if it's not already there. The "current"
2344 * thread is always on the run-queue (except when the actual
2345 * re-schedule is in progress), and as such you're allowed to do
2346 * the simpler "current->state = TASK_RUNNING" to mark yourself
2347 * runnable without the overhead of this.
2348 *
2349 * returns failure only if the task is already active.
2350 */
7d478721
PZ
2351static int try_to_wake_up(struct task_struct *p, unsigned int state,
2352 int wake_flags)
1da177e4 2353{
cc367732 2354 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2355 unsigned long flags;
ab3b3aa5 2356 struct rq *rq;
1da177e4 2357
e9c84311 2358 this_cpu = get_cpu();
2398f2c6 2359
04e2f174 2360 smp_wmb();
ab3b3aa5 2361 rq = task_rq_lock(p, &flags);
e9c84311 2362 if (!(p->state & state))
1da177e4
LT
2363 goto out;
2364
dd41f596 2365 if (p->se.on_rq)
1da177e4
LT
2366 goto out_running;
2367
2368 cpu = task_cpu(p);
cc367732 2369 orig_cpu = cpu;
1da177e4
LT
2370
2371#ifdef CONFIG_SMP
2372 if (unlikely(task_running(rq, p)))
2373 goto out_activate;
2374
e9c84311
PZ
2375 /*
2376 * In order to handle concurrent wakeups and release the rq->lock
2377 * we put the task in TASK_WAKING state.
eb24073b
IM
2378 *
2379 * First fix up the nr_uninterruptible count:
e9c84311 2380 */
cc87f76a
PZ
2381 if (task_contributes_to_load(p)) {
2382 if (likely(cpu_online(orig_cpu)))
2383 rq->nr_uninterruptible--;
2384 else
2385 this_rq()->nr_uninterruptible--;
2386 }
e9c84311 2387 p->state = TASK_WAKING;
efbbd05a
PZ
2388
2389 if (p->sched_class->task_waking)
2390 p->sched_class->task_waking(rq, p);
2391
0017d735
PZ
2392 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2393 if (cpu != orig_cpu)
5d2f5a61 2394 set_task_cpu(p, cpu);
0017d735 2395 __task_rq_unlock(rq);
ab19cb23 2396
0970d299
PZ
2397 rq = cpu_rq(cpu);
2398 raw_spin_lock(&rq->lock);
f5dc3753 2399
0970d299
PZ
2400 /*
2401 * We migrated the task without holding either rq->lock, however
2402 * since the task is not on the task list itself, nobody else
2403 * will try and migrate the task, hence the rq should match the
2404 * cpu we just moved it to.
2405 */
2406 WARN_ON(task_cpu(p) != cpu);
e9c84311 2407 WARN_ON(p->state != TASK_WAKING);
1da177e4 2408
e7693a36
GH
2409#ifdef CONFIG_SCHEDSTATS
2410 schedstat_inc(rq, ttwu_count);
2411 if (cpu == this_cpu)
2412 schedstat_inc(rq, ttwu_local);
2413 else {
2414 struct sched_domain *sd;
2415 for_each_domain(this_cpu, sd) {
758b2cdc 2416 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2417 schedstat_inc(sd, ttwu_wake_remote);
2418 break;
2419 }
2420 }
2421 }
6d6bc0ad 2422#endif /* CONFIG_SCHEDSTATS */
e7693a36 2423
1da177e4
LT
2424out_activate:
2425#endif /* CONFIG_SMP */
41acab88 2426 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2427 if (wake_flags & WF_SYNC)
41acab88 2428 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2429 if (orig_cpu != cpu)
41acab88 2430 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2431 if (cpu == this_cpu)
41acab88 2432 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2433 else
41acab88 2434 schedstat_inc(p, se.statistics.nr_wakeups_remote);
dd41f596 2435 activate_task(rq, p, 1);
1da177e4
LT
2436 success = 1;
2437
2438out_running:
468a15bb 2439 trace_sched_wakeup(rq, p, success);
7d478721 2440 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2441
1da177e4 2442 p->state = TASK_RUNNING;
9a897c5a 2443#ifdef CONFIG_SMP
efbbd05a
PZ
2444 if (p->sched_class->task_woken)
2445 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2446
2447 if (unlikely(rq->idle_stamp)) {
2448 u64 delta = rq->clock - rq->idle_stamp;
2449 u64 max = 2*sysctl_sched_migration_cost;
2450
2451 if (delta > max)
2452 rq->avg_idle = max;
2453 else
2454 update_avg(&rq->avg_idle, delta);
2455 rq->idle_stamp = 0;
2456 }
9a897c5a 2457#endif
1da177e4
LT
2458out:
2459 task_rq_unlock(rq, &flags);
e9c84311 2460 put_cpu();
1da177e4
LT
2461
2462 return success;
2463}
2464
50fa610a
DH
2465/**
2466 * wake_up_process - Wake up a specific process
2467 * @p: The process to be woken up.
2468 *
2469 * Attempt to wake up the nominated process and move it to the set of runnable
2470 * processes. Returns 1 if the process was woken up, 0 if it was already
2471 * running.
2472 *
2473 * It may be assumed that this function implies a write memory barrier before
2474 * changing the task state if and only if any tasks are woken up.
2475 */
7ad5b3a5 2476int wake_up_process(struct task_struct *p)
1da177e4 2477{
d9514f6c 2478 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2479}
1da177e4
LT
2480EXPORT_SYMBOL(wake_up_process);
2481
7ad5b3a5 2482int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2483{
2484 return try_to_wake_up(p, state, 0);
2485}
2486
1da177e4
LT
2487/*
2488 * Perform scheduler related setup for a newly forked process p.
2489 * p is forked by current.
dd41f596
IM
2490 *
2491 * __sched_fork() is basic setup used by init_idle() too:
2492 */
2493static void __sched_fork(struct task_struct *p)
2494{
dd41f596
IM
2495 p->se.exec_start = 0;
2496 p->se.sum_exec_runtime = 0;
f6cf891c 2497 p->se.prev_sum_exec_runtime = 0;
6c594c21 2498 p->se.nr_migrations = 0;
6cfb0d5d
IM
2499
2500#ifdef CONFIG_SCHEDSTATS
41acab88 2501 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2502#endif
476d139c 2503
fa717060 2504 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2505 p->se.on_rq = 0;
4a55bd5e 2506 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2507
e107be36
AK
2508#ifdef CONFIG_PREEMPT_NOTIFIERS
2509 INIT_HLIST_HEAD(&p->preempt_notifiers);
2510#endif
dd41f596
IM
2511}
2512
2513/*
2514 * fork()/clone()-time setup:
2515 */
2516void sched_fork(struct task_struct *p, int clone_flags)
2517{
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
06b83b5f 2521 /*
0017d735 2522 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2523 * nobody will actually run it, and a signal or other external
2524 * event cannot wake it up and insert it on the runqueue either.
2525 */
0017d735 2526 p->state = TASK_RUNNING;
dd41f596 2527
b9dc29e7
MG
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2533 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2534 p->normal_prio = p->static_prio;
2535 }
b9dc29e7 2536
6c697bdf
MG
2537 if (PRIO_TO_NICE(p->static_prio) < 0) {
2538 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2539 p->normal_prio = p->static_prio;
6c697bdf
MG
2540 set_load_weight(p);
2541 }
2542
b9dc29e7
MG
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
ca94c442 2549
f83f9ac2
PW
2550 /*
2551 * Make sure we do not leak PI boosting priority to the child.
2552 */
2553 p->prio = current->normal_prio;
2554
2ddbf952
HS
2555 if (!rt_prio(p->prio))
2556 p->sched_class = &fair_sched_class;
b29739f9 2557
cd29fe6f
PZ
2558 if (p->sched_class->task_fork)
2559 p->sched_class->task_fork(p);
2560
5f3edc1b
PZ
2561 set_task_cpu(p, cpu);
2562
52f17b6c 2563#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2564 if (likely(sched_info_on()))
52f17b6c 2565 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2566#endif
d6077cb8 2567#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2568 p->oncpu = 0;
2569#endif
1da177e4 2570#ifdef CONFIG_PREEMPT
4866cde0 2571 /* Want to start with kernel preemption disabled. */
a1261f54 2572 task_thread_info(p)->preempt_count = 1;
1da177e4 2573#endif
917b627d
GH
2574 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2575
476d139c 2576 put_cpu();
1da177e4
LT
2577}
2578
2579/*
2580 * wake_up_new_task - wake up a newly created task for the first time.
2581 *
2582 * This function will do some initial scheduler statistics housekeeping
2583 * that must be done for every newly created context, then puts the task
2584 * on the runqueue and wakes it.
2585 */
7ad5b3a5 2586void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2587{
2588 unsigned long flags;
dd41f596 2589 struct rq *rq;
c890692b 2590 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2591
2592#ifdef CONFIG_SMP
0017d735
PZ
2593 rq = task_rq_lock(p, &flags);
2594 p->state = TASK_WAKING;
2595
fabf318e
PZ
2596 /*
2597 * Fork balancing, do it here and not earlier because:
2598 * - cpus_allowed can change in the fork path
2599 * - any previously selected cpu might disappear through hotplug
2600 *
0017d735
PZ
2601 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2602 * without people poking at ->cpus_allowed.
fabf318e 2603 */
0017d735 2604 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2605 set_task_cpu(p, cpu);
0970d299 2606
06b83b5f 2607 p->state = TASK_RUNNING;
0017d735
PZ
2608 task_rq_unlock(rq, &flags);
2609#endif
2610
2611 rq = task_rq_lock(p, &flags);
cd29fe6f 2612 activate_task(rq, p, 0);
c71dd42d 2613 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2614 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2615#ifdef CONFIG_SMP
efbbd05a
PZ
2616 if (p->sched_class->task_woken)
2617 p->sched_class->task_woken(rq, p);
9a897c5a 2618#endif
dd41f596 2619 task_rq_unlock(rq, &flags);
fabf318e 2620 put_cpu();
1da177e4
LT
2621}
2622
e107be36
AK
2623#ifdef CONFIG_PREEMPT_NOTIFIERS
2624
2625/**
80dd99b3 2626 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2627 * @notifier: notifier struct to register
e107be36
AK
2628 */
2629void preempt_notifier_register(struct preempt_notifier *notifier)
2630{
2631 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2632}
2633EXPORT_SYMBOL_GPL(preempt_notifier_register);
2634
2635/**
2636 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2637 * @notifier: notifier struct to unregister
e107be36
AK
2638 *
2639 * This is safe to call from within a preemption notifier.
2640 */
2641void preempt_notifier_unregister(struct preempt_notifier *notifier)
2642{
2643 hlist_del(&notifier->link);
2644}
2645EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2646
2647static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2648{
2649 struct preempt_notifier *notifier;
2650 struct hlist_node *node;
2651
2652 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2653 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2654}
2655
2656static void
2657fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659{
2660 struct preempt_notifier *notifier;
2661 struct hlist_node *node;
2662
2663 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2664 notifier->ops->sched_out(notifier, next);
2665}
2666
6d6bc0ad 2667#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2668
2669static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2670{
2671}
2672
2673static void
2674fire_sched_out_preempt_notifiers(struct task_struct *curr,
2675 struct task_struct *next)
2676{
2677}
2678
6d6bc0ad 2679#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2680
4866cde0
NP
2681/**
2682 * prepare_task_switch - prepare to switch tasks
2683 * @rq: the runqueue preparing to switch
421cee29 2684 * @prev: the current task that is being switched out
4866cde0
NP
2685 * @next: the task we are going to switch to.
2686 *
2687 * This is called with the rq lock held and interrupts off. It must
2688 * be paired with a subsequent finish_task_switch after the context
2689 * switch.
2690 *
2691 * prepare_task_switch sets up locking and calls architecture specific
2692 * hooks.
2693 */
e107be36
AK
2694static inline void
2695prepare_task_switch(struct rq *rq, struct task_struct *prev,
2696 struct task_struct *next)
4866cde0 2697{
e107be36 2698 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2699 prepare_lock_switch(rq, next);
2700 prepare_arch_switch(next);
2701}
2702
1da177e4
LT
2703/**
2704 * finish_task_switch - clean up after a task-switch
344babaa 2705 * @rq: runqueue associated with task-switch
1da177e4
LT
2706 * @prev: the thread we just switched away from.
2707 *
4866cde0
NP
2708 * finish_task_switch must be called after the context switch, paired
2709 * with a prepare_task_switch call before the context switch.
2710 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2711 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2712 *
2713 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2714 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2715 * with the lock held can cause deadlocks; see schedule() for
2716 * details.)
2717 */
a9957449 2718static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2719 __releases(rq->lock)
2720{
1da177e4 2721 struct mm_struct *mm = rq->prev_mm;
55a101f8 2722 long prev_state;
1da177e4
LT
2723
2724 rq->prev_mm = NULL;
2725
2726 /*
2727 * A task struct has one reference for the use as "current".
c394cc9f 2728 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2729 * schedule one last time. The schedule call will never return, and
2730 * the scheduled task must drop that reference.
c394cc9f 2731 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2732 * still held, otherwise prev could be scheduled on another cpu, die
2733 * there before we look at prev->state, and then the reference would
2734 * be dropped twice.
2735 * Manfred Spraul <manfred@colorfullife.com>
2736 */
55a101f8 2737 prev_state = prev->state;
4866cde0 2738 finish_arch_switch(prev);
8381f65d
JI
2739#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2740 local_irq_disable();
2741#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2742 perf_event_task_sched_in(current);
8381f65d
JI
2743#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2744 local_irq_enable();
2745#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2746 finish_lock_switch(rq, prev);
e8fa1362 2747
e107be36 2748 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2749 if (mm)
2750 mmdrop(mm);
c394cc9f 2751 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2752 /*
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
9761eea8 2755 */
c6fd91f0 2756 kprobe_flush_task(prev);
1da177e4 2757 put_task_struct(prev);
c6fd91f0 2758 }
1da177e4
LT
2759}
2760
3f029d3c
GH
2761#ifdef CONFIG_SMP
2762
2763/* assumes rq->lock is held */
2764static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2765{
2766 if (prev->sched_class->pre_schedule)
2767 prev->sched_class->pre_schedule(rq, prev);
2768}
2769
2770/* rq->lock is NOT held, but preemption is disabled */
2771static inline void post_schedule(struct rq *rq)
2772{
2773 if (rq->post_schedule) {
2774 unsigned long flags;
2775
05fa785c 2776 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2777 if (rq->curr->sched_class->post_schedule)
2778 rq->curr->sched_class->post_schedule(rq);
05fa785c 2779 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2780
2781 rq->post_schedule = 0;
2782 }
2783}
2784
2785#else
da19ab51 2786
3f029d3c
GH
2787static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2788{
2789}
2790
2791static inline void post_schedule(struct rq *rq)
2792{
1da177e4
LT
2793}
2794
3f029d3c
GH
2795#endif
2796
1da177e4
LT
2797/**
2798 * schedule_tail - first thing a freshly forked thread must call.
2799 * @prev: the thread we just switched away from.
2800 */
36c8b586 2801asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2802 __releases(rq->lock)
2803{
70b97a7f
IM
2804 struct rq *rq = this_rq();
2805
4866cde0 2806 finish_task_switch(rq, prev);
da19ab51 2807
3f029d3c
GH
2808 /*
2809 * FIXME: do we need to worry about rq being invalidated by the
2810 * task_switch?
2811 */
2812 post_schedule(rq);
70b97a7f 2813
4866cde0
NP
2814#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2815 /* In this case, finish_task_switch does not reenable preemption */
2816 preempt_enable();
2817#endif
1da177e4 2818 if (current->set_child_tid)
b488893a 2819 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2820}
2821
2822/*
2823 * context_switch - switch to the new MM and the new
2824 * thread's register state.
2825 */
dd41f596 2826static inline void
70b97a7f 2827context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2828 struct task_struct *next)
1da177e4 2829{
dd41f596 2830 struct mm_struct *mm, *oldmm;
1da177e4 2831
e107be36 2832 prepare_task_switch(rq, prev, next);
0a16b607 2833 trace_sched_switch(rq, prev, next);
dd41f596
IM
2834 mm = next->mm;
2835 oldmm = prev->active_mm;
9226d125
ZA
2836 /*
2837 * For paravirt, this is coupled with an exit in switch_to to
2838 * combine the page table reload and the switch backend into
2839 * one hypercall.
2840 */
224101ed 2841 arch_start_context_switch(prev);
9226d125 2842
710390d9 2843 if (likely(!mm)) {
1da177e4
LT
2844 next->active_mm = oldmm;
2845 atomic_inc(&oldmm->mm_count);
2846 enter_lazy_tlb(oldmm, next);
2847 } else
2848 switch_mm(oldmm, mm, next);
2849
710390d9 2850 if (likely(!prev->mm)) {
1da177e4 2851 prev->active_mm = NULL;
1da177e4
LT
2852 rq->prev_mm = oldmm;
2853 }
3a5f5e48
IM
2854 /*
2855 * Since the runqueue lock will be released by the next
2856 * task (which is an invalid locking op but in the case
2857 * of the scheduler it's an obvious special-case), so we
2858 * do an early lockdep release here:
2859 */
2860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2861 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2862#endif
1da177e4
LT
2863
2864 /* Here we just switch the register state and the stack. */
2865 switch_to(prev, next, prev);
2866
dd41f596
IM
2867 barrier();
2868 /*
2869 * this_rq must be evaluated again because prev may have moved
2870 * CPUs since it called schedule(), thus the 'rq' on its stack
2871 * frame will be invalid.
2872 */
2873 finish_task_switch(this_rq(), prev);
1da177e4
LT
2874}
2875
2876/*
2877 * nr_running, nr_uninterruptible and nr_context_switches:
2878 *
2879 * externally visible scheduler statistics: current number of runnable
2880 * threads, current number of uninterruptible-sleeping threads, total
2881 * number of context switches performed since bootup.
2882 */
2883unsigned long nr_running(void)
2884{
2885 unsigned long i, sum = 0;
2886
2887 for_each_online_cpu(i)
2888 sum += cpu_rq(i)->nr_running;
2889
2890 return sum;
f711f609 2891}
1da177e4
LT
2892
2893unsigned long nr_uninterruptible(void)
f711f609 2894{
1da177e4 2895 unsigned long i, sum = 0;
f711f609 2896
0a945022 2897 for_each_possible_cpu(i)
1da177e4 2898 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2899
2900 /*
1da177e4
LT
2901 * Since we read the counters lockless, it might be slightly
2902 * inaccurate. Do not allow it to go below zero though:
f711f609 2903 */
1da177e4
LT
2904 if (unlikely((long)sum < 0))
2905 sum = 0;
f711f609 2906
1da177e4 2907 return sum;
f711f609 2908}
f711f609 2909
1da177e4 2910unsigned long long nr_context_switches(void)
46cb4b7c 2911{
cc94abfc
SR
2912 int i;
2913 unsigned long long sum = 0;
46cb4b7c 2914
0a945022 2915 for_each_possible_cpu(i)
1da177e4 2916 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2917
1da177e4
LT
2918 return sum;
2919}
483b4ee6 2920
1da177e4
LT
2921unsigned long nr_iowait(void)
2922{
2923 unsigned long i, sum = 0;
483b4ee6 2924
0a945022 2925 for_each_possible_cpu(i)
1da177e4 2926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2927
1da177e4
LT
2928 return sum;
2929}
483b4ee6 2930
69d25870
AV
2931unsigned long nr_iowait_cpu(void)
2932{
2933 struct rq *this = this_rq();
2934 return atomic_read(&this->nr_iowait);
2935}
46cb4b7c 2936
69d25870
AV
2937unsigned long this_cpu_load(void)
2938{
2939 struct rq *this = this_rq();
2940 return this->cpu_load[0];
2941}
e790fb0b 2942
46cb4b7c 2943
dce48a84
TG
2944/* Variables and functions for calc_load */
2945static atomic_long_t calc_load_tasks;
2946static unsigned long calc_load_update;
2947unsigned long avenrun[3];
2948EXPORT_SYMBOL(avenrun);
46cb4b7c 2949
2d02494f
TG
2950/**
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2955 *
2956 * These values are estimates at best, so no need for locking.
2957 */
2958void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959{
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2963}
46cb4b7c 2964
dce48a84
TG
2965static unsigned long
2966calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2967{
dce48a84
TG
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2971}
46cb4b7c
SS
2972
2973/*
dce48a84
TG
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
7835b98b 2976 */
dce48a84 2977void calc_global_load(void)
7835b98b 2978{
dce48a84
TG
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
1da177e4 2981
dce48a84
TG
2982 if (time_before(jiffies, upd))
2983 return;
1da177e4 2984
dce48a84
TG
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2987
dce48a84
TG
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2991
dce48a84
TG
2992 calc_load_update += LOAD_FREQ;
2993}
1da177e4 2994
dce48a84
TG
2995/*
2996 * Either called from update_cpu_load() or from a cpu going idle
2997 */
2998static void calc_load_account_active(struct rq *this_rq)
2999{
3000 long nr_active, delta;
08c183f3 3001
dce48a84
TG
3002 nr_active = this_rq->nr_running;
3003 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3004
dce48a84
TG
3005 if (nr_active != this_rq->calc_load_active) {
3006 delta = nr_active - this_rq->calc_load_active;
3007 this_rq->calc_load_active = nr_active;
3008 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3009 }
46cb4b7c
SS
3010}
3011
3012/*
dd41f596
IM
3013 * Update rq->cpu_load[] statistics. This function is usually called every
3014 * scheduler tick (TICK_NSEC).
46cb4b7c 3015 */
dd41f596 3016static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3017{
495eca49 3018 unsigned long this_load = this_rq->load.weight;
dd41f596 3019 int i, scale;
46cb4b7c 3020
dd41f596 3021 this_rq->nr_load_updates++;
46cb4b7c 3022
dd41f596
IM
3023 /* Update our load: */
3024 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3025 unsigned long old_load, new_load;
7d1e6a9b 3026
dd41f596 3027 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3028
dd41f596
IM
3029 old_load = this_rq->cpu_load[i];
3030 new_load = this_load;
a25707f3
IM
3031 /*
3032 * Round up the averaging division if load is increasing. This
3033 * prevents us from getting stuck on 9 if the load is 10, for
3034 * example.
3035 */
3036 if (new_load > old_load)
3037 new_load += scale-1;
dd41f596
IM
3038 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3039 }
46cb4b7c 3040
dce48a84
TG
3041 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3042 this_rq->calc_load_update += LOAD_FREQ;
3043 calc_load_account_active(this_rq);
46cb4b7c 3044 }
46cb4b7c
SS
3045}
3046
dd41f596 3047#ifdef CONFIG_SMP
8a0be9ef 3048
46cb4b7c 3049/*
38022906
PZ
3050 * sched_exec - execve() is a valuable balancing opportunity, because at
3051 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3052 */
38022906 3053void sched_exec(void)
46cb4b7c 3054{
38022906 3055 struct task_struct *p = current;
70b97a7f 3056 struct migration_req req;
1da177e4 3057 unsigned long flags;
70b97a7f 3058 struct rq *rq;
0017d735 3059 int dest_cpu;
46cb4b7c 3060
1da177e4 3061 rq = task_rq_lock(p, &flags);
0017d735
PZ
3062 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3063 if (dest_cpu == smp_processor_id())
3064 goto unlock;
3065
46cb4b7c 3066 /*
38022906 3067 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3068 */
30da688e
ON
3069 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3070 likely(cpu_active(dest_cpu)) &&
3071 migrate_task(p, dest_cpu, &req)) {
1da177e4
LT
3072 /* Need to wait for migration thread (might exit: take ref). */
3073 struct task_struct *mt = rq->migration_thread;
dd41f596 3074
1da177e4
LT
3075 get_task_struct(mt);
3076 task_rq_unlock(rq, &flags);
3077 wake_up_process(mt);
3078 put_task_struct(mt);
3079 wait_for_completion(&req.done);
dd41f596 3080
1da177e4
LT
3081 return;
3082 }
0017d735 3083unlock:
1da177e4 3084 task_rq_unlock(rq, &flags);
1da177e4 3085}
dd41f596 3086
1da177e4
LT
3087#endif
3088
1da177e4
LT
3089DEFINE_PER_CPU(struct kernel_stat, kstat);
3090
3091EXPORT_PER_CPU_SYMBOL(kstat);
3092
3093/*
c5f8d995 3094 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3095 * @p in case that task is currently running.
c5f8d995
HS
3096 *
3097 * Called with task_rq_lock() held on @rq.
1da177e4 3098 */
c5f8d995
HS
3099static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3100{
3101 u64 ns = 0;
3102
3103 if (task_current(rq, p)) {
3104 update_rq_clock(rq);
3105 ns = rq->clock - p->se.exec_start;
3106 if ((s64)ns < 0)
3107 ns = 0;
3108 }
3109
3110 return ns;
3111}
3112
bb34d92f 3113unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3114{
1da177e4 3115 unsigned long flags;
41b86e9c 3116 struct rq *rq;
bb34d92f 3117 u64 ns = 0;
48f24c4d 3118
41b86e9c 3119 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3120 ns = do_task_delta_exec(p, rq);
3121 task_rq_unlock(rq, &flags);
1508487e 3122
c5f8d995
HS
3123 return ns;
3124}
f06febc9 3125
c5f8d995
HS
3126/*
3127 * Return accounted runtime for the task.
3128 * In case the task is currently running, return the runtime plus current's
3129 * pending runtime that have not been accounted yet.
3130 */
3131unsigned long long task_sched_runtime(struct task_struct *p)
3132{
3133 unsigned long flags;
3134 struct rq *rq;
3135 u64 ns = 0;
3136
3137 rq = task_rq_lock(p, &flags);
3138 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3139 task_rq_unlock(rq, &flags);
3140
3141 return ns;
3142}
48f24c4d 3143
c5f8d995
HS
3144/*
3145 * Return sum_exec_runtime for the thread group.
3146 * In case the task is currently running, return the sum plus current's
3147 * pending runtime that have not been accounted yet.
3148 *
3149 * Note that the thread group might have other running tasks as well,
3150 * so the return value not includes other pending runtime that other
3151 * running tasks might have.
3152 */
3153unsigned long long thread_group_sched_runtime(struct task_struct *p)
3154{
3155 struct task_cputime totals;
3156 unsigned long flags;
3157 struct rq *rq;
3158 u64 ns;
3159
3160 rq = task_rq_lock(p, &flags);
3161 thread_group_cputime(p, &totals);
3162 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3163 task_rq_unlock(rq, &flags);
48f24c4d 3164
1da177e4
LT
3165 return ns;
3166}
3167
1da177e4
LT
3168/*
3169 * Account user cpu time to a process.
3170 * @p: the process that the cpu time gets accounted to
1da177e4 3171 * @cputime: the cpu time spent in user space since the last update
457533a7 3172 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3173 */
457533a7
MS
3174void account_user_time(struct task_struct *p, cputime_t cputime,
3175 cputime_t cputime_scaled)
1da177e4
LT
3176{
3177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3178 cputime64_t tmp;
3179
457533a7 3180 /* Add user time to process. */
1da177e4 3181 p->utime = cputime_add(p->utime, cputime);
457533a7 3182 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3183 account_group_user_time(p, cputime);
1da177e4
LT
3184
3185 /* Add user time to cpustat. */
3186 tmp = cputime_to_cputime64(cputime);
3187 if (TASK_NICE(p) > 0)
3188 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3189 else
3190 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3191
3192 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3193 /* Account for user time used */
3194 acct_update_integrals(p);
1da177e4
LT
3195}
3196
94886b84
LV
3197/*
3198 * Account guest cpu time to a process.
3199 * @p: the process that the cpu time gets accounted to
3200 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3201 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3202 */
457533a7
MS
3203static void account_guest_time(struct task_struct *p, cputime_t cputime,
3204 cputime_t cputime_scaled)
94886b84
LV
3205{
3206 cputime64_t tmp;
3207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3208
3209 tmp = cputime_to_cputime64(cputime);
3210
457533a7 3211 /* Add guest time to process. */
94886b84 3212 p->utime = cputime_add(p->utime, cputime);
457533a7 3213 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3214 account_group_user_time(p, cputime);
94886b84
LV
3215 p->gtime = cputime_add(p->gtime, cputime);
3216
457533a7 3217 /* Add guest time to cpustat. */
ce0e7b28
RO
3218 if (TASK_NICE(p) > 0) {
3219 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3220 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3221 } else {
3222 cpustat->user = cputime64_add(cpustat->user, tmp);
3223 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3224 }
94886b84
LV
3225}
3226
1da177e4
LT
3227/*
3228 * Account system cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @hardirq_offset: the offset to subtract from hardirq_count()
3231 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3232 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3233 */
3234void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3235 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3236{
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3238 cputime64_t tmp;
3239
983ed7a6 3240 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3241 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3242 return;
3243 }
94886b84 3244
457533a7 3245 /* Add system time to process. */
1da177e4 3246 p->stime = cputime_add(p->stime, cputime);
457533a7 3247 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3248 account_group_system_time(p, cputime);
1da177e4
LT
3249
3250 /* Add system time to cpustat. */
3251 tmp = cputime_to_cputime64(cputime);
3252 if (hardirq_count() - hardirq_offset)
3253 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3254 else if (softirq_count())
3255 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3256 else
79741dd3
MS
3257 cpustat->system = cputime64_add(cpustat->system, tmp);
3258
ef12fefa
BR
3259 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3260
1da177e4
LT
3261 /* Account for system time used */
3262 acct_update_integrals(p);
1da177e4
LT
3263}
3264
c66f08be 3265/*
1da177e4 3266 * Account for involuntary wait time.
1da177e4 3267 * @steal: the cpu time spent in involuntary wait
c66f08be 3268 */
79741dd3 3269void account_steal_time(cputime_t cputime)
c66f08be 3270{
79741dd3
MS
3271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3272 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3273
3274 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3275}
3276
1da177e4 3277/*
79741dd3
MS
3278 * Account for idle time.
3279 * @cputime: the cpu time spent in idle wait
1da177e4 3280 */
79741dd3 3281void account_idle_time(cputime_t cputime)
1da177e4
LT
3282{
3283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3284 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3285 struct rq *rq = this_rq();
1da177e4 3286
79741dd3
MS
3287 if (atomic_read(&rq->nr_iowait) > 0)
3288 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3289 else
3290 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3291}
3292
79741dd3
MS
3293#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3294
3295/*
3296 * Account a single tick of cpu time.
3297 * @p: the process that the cpu time gets accounted to
3298 * @user_tick: indicates if the tick is a user or a system tick
3299 */
3300void account_process_tick(struct task_struct *p, int user_tick)
3301{
a42548a1 3302 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3303 struct rq *rq = this_rq();
3304
3305 if (user_tick)
a42548a1 3306 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3307 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3308 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3309 one_jiffy_scaled);
3310 else
a42548a1 3311 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3312}
3313
3314/*
3315 * Account multiple ticks of steal time.
3316 * @p: the process from which the cpu time has been stolen
3317 * @ticks: number of stolen ticks
3318 */
3319void account_steal_ticks(unsigned long ticks)
3320{
3321 account_steal_time(jiffies_to_cputime(ticks));
3322}
3323
3324/*
3325 * Account multiple ticks of idle time.
3326 * @ticks: number of stolen ticks
3327 */
3328void account_idle_ticks(unsigned long ticks)
3329{
3330 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3331}
3332
79741dd3
MS
3333#endif
3334
49048622
BS
3335/*
3336 * Use precise platform statistics if available:
3337 */
3338#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3339void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3340{
d99ca3b9
HS
3341 *ut = p->utime;
3342 *st = p->stime;
49048622
BS
3343}
3344
0cf55e1e 3345void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3346{
0cf55e1e
HS
3347 struct task_cputime cputime;
3348
3349 thread_group_cputime(p, &cputime);
3350
3351 *ut = cputime.utime;
3352 *st = cputime.stime;
49048622
BS
3353}
3354#else
761b1d26
HS
3355
3356#ifndef nsecs_to_cputime
b7b20df9 3357# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3358#endif
3359
d180c5bc 3360void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3361{
d99ca3b9 3362 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3363
3364 /*
3365 * Use CFS's precise accounting:
3366 */
d180c5bc 3367 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3368
3369 if (total) {
d180c5bc
HS
3370 u64 temp;
3371
3372 temp = (u64)(rtime * utime);
49048622 3373 do_div(temp, total);
d180c5bc
HS
3374 utime = (cputime_t)temp;
3375 } else
3376 utime = rtime;
49048622 3377
d180c5bc
HS
3378 /*
3379 * Compare with previous values, to keep monotonicity:
3380 */
761b1d26 3381 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3382 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3383
d99ca3b9
HS
3384 *ut = p->prev_utime;
3385 *st = p->prev_stime;
49048622
BS
3386}
3387
0cf55e1e
HS
3388/*
3389 * Must be called with siglock held.
3390 */
3391void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3392{
0cf55e1e
HS
3393 struct signal_struct *sig = p->signal;
3394 struct task_cputime cputime;
3395 cputime_t rtime, utime, total;
49048622 3396
0cf55e1e 3397 thread_group_cputime(p, &cputime);
49048622 3398
0cf55e1e
HS
3399 total = cputime_add(cputime.utime, cputime.stime);
3400 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3401
0cf55e1e
HS
3402 if (total) {
3403 u64 temp;
49048622 3404
0cf55e1e
HS
3405 temp = (u64)(rtime * cputime.utime);
3406 do_div(temp, total);
3407 utime = (cputime_t)temp;
3408 } else
3409 utime = rtime;
3410
3411 sig->prev_utime = max(sig->prev_utime, utime);
3412 sig->prev_stime = max(sig->prev_stime,
3413 cputime_sub(rtime, sig->prev_utime));
3414
3415 *ut = sig->prev_utime;
3416 *st = sig->prev_stime;
49048622 3417}
49048622 3418#endif
49048622 3419
7835b98b
CL
3420/*
3421 * This function gets called by the timer code, with HZ frequency.
3422 * We call it with interrupts disabled.
3423 *
3424 * It also gets called by the fork code, when changing the parent's
3425 * timeslices.
3426 */
3427void scheduler_tick(void)
3428{
7835b98b
CL
3429 int cpu = smp_processor_id();
3430 struct rq *rq = cpu_rq(cpu);
dd41f596 3431 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3432
3433 sched_clock_tick();
dd41f596 3434
05fa785c 3435 raw_spin_lock(&rq->lock);
3e51f33f 3436 update_rq_clock(rq);
f1a438d8 3437 update_cpu_load(rq);
fa85ae24 3438 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3439 raw_spin_unlock(&rq->lock);
7835b98b 3440
49f47433 3441 perf_event_task_tick(curr);
e220d2dc 3442
e418e1c2 3443#ifdef CONFIG_SMP
dd41f596
IM
3444 rq->idle_at_tick = idle_cpu(cpu);
3445 trigger_load_balance(rq, cpu);
e418e1c2 3446#endif
1da177e4
LT
3447}
3448
132380a0 3449notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3450{
3451 if (in_lock_functions(addr)) {
3452 addr = CALLER_ADDR2;
3453 if (in_lock_functions(addr))
3454 addr = CALLER_ADDR3;
3455 }
3456 return addr;
3457}
1da177e4 3458
7e49fcce
SR
3459#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3460 defined(CONFIG_PREEMPT_TRACER))
3461
43627582 3462void __kprobes add_preempt_count(int val)
1da177e4 3463{
6cd8a4bb 3464#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3465 /*
3466 * Underflow?
3467 */
9a11b49a
IM
3468 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3469 return;
6cd8a4bb 3470#endif
1da177e4 3471 preempt_count() += val;
6cd8a4bb 3472#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3473 /*
3474 * Spinlock count overflowing soon?
3475 */
33859f7f
MOS
3476 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3477 PREEMPT_MASK - 10);
6cd8a4bb
SR
3478#endif
3479 if (preempt_count() == val)
3480 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3481}
3482EXPORT_SYMBOL(add_preempt_count);
3483
43627582 3484void __kprobes sub_preempt_count(int val)
1da177e4 3485{
6cd8a4bb 3486#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3487 /*
3488 * Underflow?
3489 */
01e3eb82 3490 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3491 return;
1da177e4
LT
3492 /*
3493 * Is the spinlock portion underflowing?
3494 */
9a11b49a
IM
3495 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3496 !(preempt_count() & PREEMPT_MASK)))
3497 return;
6cd8a4bb 3498#endif
9a11b49a 3499
6cd8a4bb
SR
3500 if (preempt_count() == val)
3501 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3502 preempt_count() -= val;
3503}
3504EXPORT_SYMBOL(sub_preempt_count);
3505
3506#endif
3507
3508/*
dd41f596 3509 * Print scheduling while atomic bug:
1da177e4 3510 */
dd41f596 3511static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3512{
838225b4
SS
3513 struct pt_regs *regs = get_irq_regs();
3514
3df0fc5b
PZ
3515 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3516 prev->comm, prev->pid, preempt_count());
838225b4 3517
dd41f596 3518 debug_show_held_locks(prev);
e21f5b15 3519 print_modules();
dd41f596
IM
3520 if (irqs_disabled())
3521 print_irqtrace_events(prev);
838225b4
SS
3522
3523 if (regs)
3524 show_regs(regs);
3525 else
3526 dump_stack();
dd41f596 3527}
1da177e4 3528
dd41f596
IM
3529/*
3530 * Various schedule()-time debugging checks and statistics:
3531 */
3532static inline void schedule_debug(struct task_struct *prev)
3533{
1da177e4 3534 /*
41a2d6cf 3535 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3536 * schedule() atomically, we ignore that path for now.
3537 * Otherwise, whine if we are scheduling when we should not be.
3538 */
3f33a7ce 3539 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3540 __schedule_bug(prev);
3541
1da177e4
LT
3542 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3543
2d72376b 3544 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3545#ifdef CONFIG_SCHEDSTATS
3546 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3547 schedstat_inc(this_rq(), bkl_count);
3548 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3549 }
3550#endif
dd41f596
IM
3551}
3552
6cecd084 3553static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3554{
a64692a3
MG
3555 if (prev->se.on_rq)
3556 update_rq_clock(rq);
3557 rq->skip_clock_update = 0;
6cecd084 3558 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3559}
3560
dd41f596
IM
3561/*
3562 * Pick up the highest-prio task:
3563 */
3564static inline struct task_struct *
b67802ea 3565pick_next_task(struct rq *rq)
dd41f596 3566{
5522d5d5 3567 const struct sched_class *class;
dd41f596 3568 struct task_struct *p;
1da177e4
LT
3569
3570 /*
dd41f596
IM
3571 * Optimization: we know that if all tasks are in
3572 * the fair class we can call that function directly:
1da177e4 3573 */
dd41f596 3574 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3575 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3576 if (likely(p))
3577 return p;
1da177e4
LT
3578 }
3579
dd41f596
IM
3580 class = sched_class_highest;
3581 for ( ; ; ) {
fb8d4724 3582 p = class->pick_next_task(rq);
dd41f596
IM
3583 if (p)
3584 return p;
3585 /*
3586 * Will never be NULL as the idle class always
3587 * returns a non-NULL p:
3588 */
3589 class = class->next;
3590 }
3591}
1da177e4 3592
dd41f596
IM
3593/*
3594 * schedule() is the main scheduler function.
3595 */
ff743345 3596asmlinkage void __sched schedule(void)
dd41f596
IM
3597{
3598 struct task_struct *prev, *next;
67ca7bde 3599 unsigned long *switch_count;
dd41f596 3600 struct rq *rq;
31656519 3601 int cpu;
dd41f596 3602
ff743345
PZ
3603need_resched:
3604 preempt_disable();
dd41f596
IM
3605 cpu = smp_processor_id();
3606 rq = cpu_rq(cpu);
d6714c22 3607 rcu_sched_qs(cpu);
dd41f596
IM
3608 prev = rq->curr;
3609 switch_count = &prev->nivcsw;
3610
3611 release_kernel_lock(prev);
3612need_resched_nonpreemptible:
3613
3614 schedule_debug(prev);
1da177e4 3615
31656519 3616 if (sched_feat(HRTICK))
f333fdc9 3617 hrtick_clear(rq);
8f4d37ec 3618
05fa785c 3619 raw_spin_lock_irq(&rq->lock);
1e819950 3620 clear_tsk_need_resched(prev);
1da177e4 3621
1da177e4 3622 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3623 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3624 prev->state = TASK_RUNNING;
16882c1e 3625 else
2e1cb74a 3626 deactivate_task(rq, prev, 1);
dd41f596 3627 switch_count = &prev->nvcsw;
1da177e4
LT
3628 }
3629
3f029d3c 3630 pre_schedule(rq, prev);
f65eda4f 3631
dd41f596 3632 if (unlikely(!rq->nr_running))
1da177e4 3633 idle_balance(cpu, rq);
1da177e4 3634
df1c99d4 3635 put_prev_task(rq, prev);
b67802ea 3636 next = pick_next_task(rq);
1da177e4 3637
1da177e4 3638 if (likely(prev != next)) {
673a90a1 3639 sched_info_switch(prev, next);
49f47433 3640 perf_event_task_sched_out(prev, next);
673a90a1 3641
1da177e4
LT
3642 rq->nr_switches++;
3643 rq->curr = next;
3644 ++*switch_count;
3645
dd41f596 3646 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3647 /*
3648 * the context switch might have flipped the stack from under
3649 * us, hence refresh the local variables.
3650 */
3651 cpu = smp_processor_id();
3652 rq = cpu_rq(cpu);
1da177e4 3653 } else
05fa785c 3654 raw_spin_unlock_irq(&rq->lock);
1da177e4 3655
3f029d3c 3656 post_schedule(rq);
1da177e4 3657
6d558c3a
YZ
3658 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3659 prev = rq->curr;
3660 switch_count = &prev->nivcsw;
1da177e4 3661 goto need_resched_nonpreemptible;
6d558c3a 3662 }
8f4d37ec 3663
1da177e4 3664 preempt_enable_no_resched();
ff743345 3665 if (need_resched())
1da177e4
LT
3666 goto need_resched;
3667}
1da177e4
LT
3668EXPORT_SYMBOL(schedule);
3669
c08f7829 3670#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3671/*
3672 * Look out! "owner" is an entirely speculative pointer
3673 * access and not reliable.
3674 */
3675int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3676{
3677 unsigned int cpu;
3678 struct rq *rq;
3679
3680 if (!sched_feat(OWNER_SPIN))
3681 return 0;
3682
3683#ifdef CONFIG_DEBUG_PAGEALLOC
3684 /*
3685 * Need to access the cpu field knowing that
3686 * DEBUG_PAGEALLOC could have unmapped it if
3687 * the mutex owner just released it and exited.
3688 */
3689 if (probe_kernel_address(&owner->cpu, cpu))
3690 goto out;
3691#else
3692 cpu = owner->cpu;
3693#endif
3694
3695 /*
3696 * Even if the access succeeded (likely case),
3697 * the cpu field may no longer be valid.
3698 */
3699 if (cpu >= nr_cpumask_bits)
3700 goto out;
3701
3702 /*
3703 * We need to validate that we can do a
3704 * get_cpu() and that we have the percpu area.
3705 */
3706 if (!cpu_online(cpu))
3707 goto out;
3708
3709 rq = cpu_rq(cpu);
3710
3711 for (;;) {
3712 /*
3713 * Owner changed, break to re-assess state.
3714 */
3715 if (lock->owner != owner)
3716 break;
3717
3718 /*
3719 * Is that owner really running on that cpu?
3720 */
3721 if (task_thread_info(rq->curr) != owner || need_resched())
3722 return 0;
3723
3724 cpu_relax();
3725 }
3726out:
3727 return 1;
3728}
3729#endif
3730
1da177e4
LT
3731#ifdef CONFIG_PREEMPT
3732/*
2ed6e34f 3733 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3734 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3735 * occur there and call schedule directly.
3736 */
3737asmlinkage void __sched preempt_schedule(void)
3738{
3739 struct thread_info *ti = current_thread_info();
6478d880 3740
1da177e4
LT
3741 /*
3742 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3743 * we do not want to preempt the current task. Just return..
1da177e4 3744 */
beed33a8 3745 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3746 return;
3747
3a5c359a
AK
3748 do {
3749 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3750 schedule();
3a5c359a 3751 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3752
3a5c359a
AK
3753 /*
3754 * Check again in case we missed a preemption opportunity
3755 * between schedule and now.
3756 */
3757 barrier();
5ed0cec0 3758 } while (need_resched());
1da177e4 3759}
1da177e4
LT
3760EXPORT_SYMBOL(preempt_schedule);
3761
3762/*
2ed6e34f 3763 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3764 * off of irq context.
3765 * Note, that this is called and return with irqs disabled. This will
3766 * protect us against recursive calling from irq.
3767 */
3768asmlinkage void __sched preempt_schedule_irq(void)
3769{
3770 struct thread_info *ti = current_thread_info();
6478d880 3771
2ed6e34f 3772 /* Catch callers which need to be fixed */
1da177e4
LT
3773 BUG_ON(ti->preempt_count || !irqs_disabled());
3774
3a5c359a
AK
3775 do {
3776 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3777 local_irq_enable();
3778 schedule();
3779 local_irq_disable();
3a5c359a 3780 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3781
3a5c359a
AK
3782 /*
3783 * Check again in case we missed a preemption opportunity
3784 * between schedule and now.
3785 */
3786 barrier();
5ed0cec0 3787 } while (need_resched());
1da177e4
LT
3788}
3789
3790#endif /* CONFIG_PREEMPT */
3791
63859d4f 3792int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3793 void *key)
1da177e4 3794{
63859d4f 3795 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3796}
1da177e4
LT
3797EXPORT_SYMBOL(default_wake_function);
3798
3799/*
41a2d6cf
IM
3800 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3801 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3802 * number) then we wake all the non-exclusive tasks and one exclusive task.
3803 *
3804 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3805 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3806 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3807 */
78ddb08f 3808static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3809 int nr_exclusive, int wake_flags, void *key)
1da177e4 3810{
2e45874c 3811 wait_queue_t *curr, *next;
1da177e4 3812
2e45874c 3813 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3814 unsigned flags = curr->flags;
3815
63859d4f 3816 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3817 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3818 break;
3819 }
3820}
3821
3822/**
3823 * __wake_up - wake up threads blocked on a waitqueue.
3824 * @q: the waitqueue
3825 * @mode: which threads
3826 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3827 * @key: is directly passed to the wakeup function
50fa610a
DH
3828 *
3829 * It may be assumed that this function implies a write memory barrier before
3830 * changing the task state if and only if any tasks are woken up.
1da177e4 3831 */
7ad5b3a5 3832void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3833 int nr_exclusive, void *key)
1da177e4
LT
3834{
3835 unsigned long flags;
3836
3837 spin_lock_irqsave(&q->lock, flags);
3838 __wake_up_common(q, mode, nr_exclusive, 0, key);
3839 spin_unlock_irqrestore(&q->lock, flags);
3840}
1da177e4
LT
3841EXPORT_SYMBOL(__wake_up);
3842
3843/*
3844 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3845 */
7ad5b3a5 3846void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3847{
3848 __wake_up_common(q, mode, 1, 0, NULL);
3849}
3850
4ede816a
DL
3851void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3852{
3853 __wake_up_common(q, mode, 1, 0, key);
3854}
3855
1da177e4 3856/**
4ede816a 3857 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3858 * @q: the waitqueue
3859 * @mode: which threads
3860 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3861 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3862 *
3863 * The sync wakeup differs that the waker knows that it will schedule
3864 * away soon, so while the target thread will be woken up, it will not
3865 * be migrated to another CPU - ie. the two threads are 'synchronized'
3866 * with each other. This can prevent needless bouncing between CPUs.
3867 *
3868 * On UP it can prevent extra preemption.
50fa610a
DH
3869 *
3870 * It may be assumed that this function implies a write memory barrier before
3871 * changing the task state if and only if any tasks are woken up.
1da177e4 3872 */
4ede816a
DL
3873void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3874 int nr_exclusive, void *key)
1da177e4
LT
3875{
3876 unsigned long flags;
7d478721 3877 int wake_flags = WF_SYNC;
1da177e4
LT
3878
3879 if (unlikely(!q))
3880 return;
3881
3882 if (unlikely(!nr_exclusive))
7d478721 3883 wake_flags = 0;
1da177e4
LT
3884
3885 spin_lock_irqsave(&q->lock, flags);
7d478721 3886 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3887 spin_unlock_irqrestore(&q->lock, flags);
3888}
4ede816a
DL
3889EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3890
3891/*
3892 * __wake_up_sync - see __wake_up_sync_key()
3893 */
3894void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3895{
3896 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3897}
1da177e4
LT
3898EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3899
65eb3dc6
KD
3900/**
3901 * complete: - signals a single thread waiting on this completion
3902 * @x: holds the state of this particular completion
3903 *
3904 * This will wake up a single thread waiting on this completion. Threads will be
3905 * awakened in the same order in which they were queued.
3906 *
3907 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3908 *
3909 * It may be assumed that this function implies a write memory barrier before
3910 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3911 */
b15136e9 3912void complete(struct completion *x)
1da177e4
LT
3913{
3914 unsigned long flags;
3915
3916 spin_lock_irqsave(&x->wait.lock, flags);
3917 x->done++;
d9514f6c 3918 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3919 spin_unlock_irqrestore(&x->wait.lock, flags);
3920}
3921EXPORT_SYMBOL(complete);
3922
65eb3dc6
KD
3923/**
3924 * complete_all: - signals all threads waiting on this completion
3925 * @x: holds the state of this particular completion
3926 *
3927 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3928 *
3929 * It may be assumed that this function implies a write memory barrier before
3930 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3931 */
b15136e9 3932void complete_all(struct completion *x)
1da177e4
LT
3933{
3934 unsigned long flags;
3935
3936 spin_lock_irqsave(&x->wait.lock, flags);
3937 x->done += UINT_MAX/2;
d9514f6c 3938 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3939 spin_unlock_irqrestore(&x->wait.lock, flags);
3940}
3941EXPORT_SYMBOL(complete_all);
3942
8cbbe86d
AK
3943static inline long __sched
3944do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3945{
1da177e4
LT
3946 if (!x->done) {
3947 DECLARE_WAITQUEUE(wait, current);
3948
3949 wait.flags |= WQ_FLAG_EXCLUSIVE;
3950 __add_wait_queue_tail(&x->wait, &wait);
3951 do {
94d3d824 3952 if (signal_pending_state(state, current)) {
ea71a546
ON
3953 timeout = -ERESTARTSYS;
3954 break;
8cbbe86d
AK
3955 }
3956 __set_current_state(state);
1da177e4
LT
3957 spin_unlock_irq(&x->wait.lock);
3958 timeout = schedule_timeout(timeout);
3959 spin_lock_irq(&x->wait.lock);
ea71a546 3960 } while (!x->done && timeout);
1da177e4 3961 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3962 if (!x->done)
3963 return timeout;
1da177e4
LT
3964 }
3965 x->done--;
ea71a546 3966 return timeout ?: 1;
1da177e4 3967}
1da177e4 3968
8cbbe86d
AK
3969static long __sched
3970wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3971{
1da177e4
LT
3972 might_sleep();
3973
3974 spin_lock_irq(&x->wait.lock);
8cbbe86d 3975 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3976 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3977 return timeout;
3978}
1da177e4 3979
65eb3dc6
KD
3980/**
3981 * wait_for_completion: - waits for completion of a task
3982 * @x: holds the state of this particular completion
3983 *
3984 * This waits to be signaled for completion of a specific task. It is NOT
3985 * interruptible and there is no timeout.
3986 *
3987 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3988 * and interrupt capability. Also see complete().
3989 */
b15136e9 3990void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3991{
3992 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3993}
8cbbe86d 3994EXPORT_SYMBOL(wait_for_completion);
1da177e4 3995
65eb3dc6
KD
3996/**
3997 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3998 * @x: holds the state of this particular completion
3999 * @timeout: timeout value in jiffies
4000 *
4001 * This waits for either a completion of a specific task to be signaled or for a
4002 * specified timeout to expire. The timeout is in jiffies. It is not
4003 * interruptible.
4004 */
b15136e9 4005unsigned long __sched
8cbbe86d 4006wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4007{
8cbbe86d 4008 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4009}
8cbbe86d 4010EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4011
65eb3dc6
KD
4012/**
4013 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4014 * @x: holds the state of this particular completion
4015 *
4016 * This waits for completion of a specific task to be signaled. It is
4017 * interruptible.
4018 */
8cbbe86d 4019int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4020{
51e97990
AK
4021 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4022 if (t == -ERESTARTSYS)
4023 return t;
4024 return 0;
0fec171c 4025}
8cbbe86d 4026EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4027
65eb3dc6
KD
4028/**
4029 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4030 * @x: holds the state of this particular completion
4031 * @timeout: timeout value in jiffies
4032 *
4033 * This waits for either a completion of a specific task to be signaled or for a
4034 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4035 */
b15136e9 4036unsigned long __sched
8cbbe86d
AK
4037wait_for_completion_interruptible_timeout(struct completion *x,
4038 unsigned long timeout)
0fec171c 4039{
8cbbe86d 4040 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4041}
8cbbe86d 4042EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4043
65eb3dc6
KD
4044/**
4045 * wait_for_completion_killable: - waits for completion of a task (killable)
4046 * @x: holds the state of this particular completion
4047 *
4048 * This waits to be signaled for completion of a specific task. It can be
4049 * interrupted by a kill signal.
4050 */
009e577e
MW
4051int __sched wait_for_completion_killable(struct completion *x)
4052{
4053 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4054 if (t == -ERESTARTSYS)
4055 return t;
4056 return 0;
4057}
4058EXPORT_SYMBOL(wait_for_completion_killable);
4059
be4de352
DC
4060/**
4061 * try_wait_for_completion - try to decrement a completion without blocking
4062 * @x: completion structure
4063 *
4064 * Returns: 0 if a decrement cannot be done without blocking
4065 * 1 if a decrement succeeded.
4066 *
4067 * If a completion is being used as a counting completion,
4068 * attempt to decrement the counter without blocking. This
4069 * enables us to avoid waiting if the resource the completion
4070 * is protecting is not available.
4071 */
4072bool try_wait_for_completion(struct completion *x)
4073{
7539a3b3 4074 unsigned long flags;
be4de352
DC
4075 int ret = 1;
4076
7539a3b3 4077 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4078 if (!x->done)
4079 ret = 0;
4080 else
4081 x->done--;
7539a3b3 4082 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4083 return ret;
4084}
4085EXPORT_SYMBOL(try_wait_for_completion);
4086
4087/**
4088 * completion_done - Test to see if a completion has any waiters
4089 * @x: completion structure
4090 *
4091 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4092 * 1 if there are no waiters.
4093 *
4094 */
4095bool completion_done(struct completion *x)
4096{
7539a3b3 4097 unsigned long flags;
be4de352
DC
4098 int ret = 1;
4099
7539a3b3 4100 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4101 if (!x->done)
4102 ret = 0;
7539a3b3 4103 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4104 return ret;
4105}
4106EXPORT_SYMBOL(completion_done);
4107
8cbbe86d
AK
4108static long __sched
4109sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4110{
0fec171c
IM
4111 unsigned long flags;
4112 wait_queue_t wait;
4113
4114 init_waitqueue_entry(&wait, current);
1da177e4 4115
8cbbe86d 4116 __set_current_state(state);
1da177e4 4117
8cbbe86d
AK
4118 spin_lock_irqsave(&q->lock, flags);
4119 __add_wait_queue(q, &wait);
4120 spin_unlock(&q->lock);
4121 timeout = schedule_timeout(timeout);
4122 spin_lock_irq(&q->lock);
4123 __remove_wait_queue(q, &wait);
4124 spin_unlock_irqrestore(&q->lock, flags);
4125
4126 return timeout;
4127}
4128
4129void __sched interruptible_sleep_on(wait_queue_head_t *q)
4130{
4131 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4132}
1da177e4
LT
4133EXPORT_SYMBOL(interruptible_sleep_on);
4134
0fec171c 4135long __sched
95cdf3b7 4136interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4137{
8cbbe86d 4138 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4139}
1da177e4
LT
4140EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4141
0fec171c 4142void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4143{
8cbbe86d 4144 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4145}
1da177e4
LT
4146EXPORT_SYMBOL(sleep_on);
4147
0fec171c 4148long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4149{
8cbbe86d 4150 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4151}
1da177e4
LT
4152EXPORT_SYMBOL(sleep_on_timeout);
4153
b29739f9
IM
4154#ifdef CONFIG_RT_MUTEXES
4155
4156/*
4157 * rt_mutex_setprio - set the current priority of a task
4158 * @p: task
4159 * @prio: prio value (kernel-internal form)
4160 *
4161 * This function changes the 'effective' priority of a task. It does
4162 * not touch ->normal_prio like __setscheduler().
4163 *
4164 * Used by the rt_mutex code to implement priority inheritance logic.
4165 */
36c8b586 4166void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4167{
4168 unsigned long flags;
83b699ed 4169 int oldprio, on_rq, running;
70b97a7f 4170 struct rq *rq;
83ab0aa0 4171 const struct sched_class *prev_class;
b29739f9
IM
4172
4173 BUG_ON(prio < 0 || prio > MAX_PRIO);
4174
4175 rq = task_rq_lock(p, &flags);
4176
d5f9f942 4177 oldprio = p->prio;
83ab0aa0 4178 prev_class = p->sched_class;
dd41f596 4179 on_rq = p->se.on_rq;
051a1d1a 4180 running = task_current(rq, p);
0e1f3483 4181 if (on_rq)
69be72c1 4182 dequeue_task(rq, p, 0);
0e1f3483
HS
4183 if (running)
4184 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4185
4186 if (rt_prio(prio))
4187 p->sched_class = &rt_sched_class;
4188 else
4189 p->sched_class = &fair_sched_class;
4190
b29739f9
IM
4191 p->prio = prio;
4192
0e1f3483
HS
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
dd41f596 4195 if (on_rq) {
60db48ca 4196 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4197
4198 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4199 }
4200 task_rq_unlock(rq, &flags);
4201}
4202
4203#endif
4204
36c8b586 4205void set_user_nice(struct task_struct *p, long nice)
1da177e4 4206{
dd41f596 4207 int old_prio, delta, on_rq;
1da177e4 4208 unsigned long flags;
70b97a7f 4209 struct rq *rq;
1da177e4
LT
4210
4211 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4212 return;
4213 /*
4214 * We have to be careful, if called from sys_setpriority(),
4215 * the task might be in the middle of scheduling on another CPU.
4216 */
4217 rq = task_rq_lock(p, &flags);
4218 /*
4219 * The RT priorities are set via sched_setscheduler(), but we still
4220 * allow the 'normal' nice value to be set - but as expected
4221 * it wont have any effect on scheduling until the task is
dd41f596 4222 * SCHED_FIFO/SCHED_RR:
1da177e4 4223 */
e05606d3 4224 if (task_has_rt_policy(p)) {
1da177e4
LT
4225 p->static_prio = NICE_TO_PRIO(nice);
4226 goto out_unlock;
4227 }
dd41f596 4228 on_rq = p->se.on_rq;
c09595f6 4229 if (on_rq)
69be72c1 4230 dequeue_task(rq, p, 0);
1da177e4 4231
1da177e4 4232 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4233 set_load_weight(p);
b29739f9
IM
4234 old_prio = p->prio;
4235 p->prio = effective_prio(p);
4236 delta = p->prio - old_prio;
1da177e4 4237
dd41f596 4238 if (on_rq) {
ea87bb78 4239 enqueue_task(rq, p, 0, false);
1da177e4 4240 /*
d5f9f942
AM
4241 * If the task increased its priority or is running and
4242 * lowered its priority, then reschedule its CPU:
1da177e4 4243 */
d5f9f942 4244 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4245 resched_task(rq->curr);
4246 }
4247out_unlock:
4248 task_rq_unlock(rq, &flags);
4249}
1da177e4
LT
4250EXPORT_SYMBOL(set_user_nice);
4251
e43379f1
MM
4252/*
4253 * can_nice - check if a task can reduce its nice value
4254 * @p: task
4255 * @nice: nice value
4256 */
36c8b586 4257int can_nice(const struct task_struct *p, const int nice)
e43379f1 4258{
024f4747
MM
4259 /* convert nice value [19,-20] to rlimit style value [1,40] */
4260 int nice_rlim = 20 - nice;
48f24c4d 4261
78d7d407 4262 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4263 capable(CAP_SYS_NICE));
4264}
4265
1da177e4
LT
4266#ifdef __ARCH_WANT_SYS_NICE
4267
4268/*
4269 * sys_nice - change the priority of the current process.
4270 * @increment: priority increment
4271 *
4272 * sys_setpriority is a more generic, but much slower function that
4273 * does similar things.
4274 */
5add95d4 4275SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4276{
48f24c4d 4277 long nice, retval;
1da177e4
LT
4278
4279 /*
4280 * Setpriority might change our priority at the same moment.
4281 * We don't have to worry. Conceptually one call occurs first
4282 * and we have a single winner.
4283 */
e43379f1
MM
4284 if (increment < -40)
4285 increment = -40;
1da177e4
LT
4286 if (increment > 40)
4287 increment = 40;
4288
2b8f836f 4289 nice = TASK_NICE(current) + increment;
1da177e4
LT
4290 if (nice < -20)
4291 nice = -20;
4292 if (nice > 19)
4293 nice = 19;
4294
e43379f1
MM
4295 if (increment < 0 && !can_nice(current, nice))
4296 return -EPERM;
4297
1da177e4
LT
4298 retval = security_task_setnice(current, nice);
4299 if (retval)
4300 return retval;
4301
4302 set_user_nice(current, nice);
4303 return 0;
4304}
4305
4306#endif
4307
4308/**
4309 * task_prio - return the priority value of a given task.
4310 * @p: the task in question.
4311 *
4312 * This is the priority value as seen by users in /proc.
4313 * RT tasks are offset by -200. Normal tasks are centered
4314 * around 0, value goes from -16 to +15.
4315 */
36c8b586 4316int task_prio(const struct task_struct *p)
1da177e4
LT
4317{
4318 return p->prio - MAX_RT_PRIO;
4319}
4320
4321/**
4322 * task_nice - return the nice value of a given task.
4323 * @p: the task in question.
4324 */
36c8b586 4325int task_nice(const struct task_struct *p)
1da177e4
LT
4326{
4327 return TASK_NICE(p);
4328}
150d8bed 4329EXPORT_SYMBOL(task_nice);
1da177e4
LT
4330
4331/**
4332 * idle_cpu - is a given cpu idle currently?
4333 * @cpu: the processor in question.
4334 */
4335int idle_cpu(int cpu)
4336{
4337 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4338}
4339
1da177e4
LT
4340/**
4341 * idle_task - return the idle task for a given cpu.
4342 * @cpu: the processor in question.
4343 */
36c8b586 4344struct task_struct *idle_task(int cpu)
1da177e4
LT
4345{
4346 return cpu_rq(cpu)->idle;
4347}
4348
4349/**
4350 * find_process_by_pid - find a process with a matching PID value.
4351 * @pid: the pid in question.
4352 */
a9957449 4353static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4354{
228ebcbe 4355 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4356}
4357
4358/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4359static void
4360__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4361{
dd41f596 4362 BUG_ON(p->se.on_rq);
48f24c4d 4363
1da177e4
LT
4364 p->policy = policy;
4365 p->rt_priority = prio;
b29739f9
IM
4366 p->normal_prio = normal_prio(p);
4367 /* we are holding p->pi_lock already */
4368 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4369 if (rt_prio(p->prio))
4370 p->sched_class = &rt_sched_class;
4371 else
4372 p->sched_class = &fair_sched_class;
2dd73a4f 4373 set_load_weight(p);
1da177e4
LT
4374}
4375
c69e8d9c
DH
4376/*
4377 * check the target process has a UID that matches the current process's
4378 */
4379static bool check_same_owner(struct task_struct *p)
4380{
4381 const struct cred *cred = current_cred(), *pcred;
4382 bool match;
4383
4384 rcu_read_lock();
4385 pcred = __task_cred(p);
4386 match = (cred->euid == pcred->euid ||
4387 cred->euid == pcred->uid);
4388 rcu_read_unlock();
4389 return match;
4390}
4391
961ccddd
RR
4392static int __sched_setscheduler(struct task_struct *p, int policy,
4393 struct sched_param *param, bool user)
1da177e4 4394{
83b699ed 4395 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4396 unsigned long flags;
83ab0aa0 4397 const struct sched_class *prev_class;
70b97a7f 4398 struct rq *rq;
ca94c442 4399 int reset_on_fork;
1da177e4 4400
66e5393a
SR
4401 /* may grab non-irq protected spin_locks */
4402 BUG_ON(in_interrupt());
1da177e4
LT
4403recheck:
4404 /* double check policy once rq lock held */
ca94c442
LP
4405 if (policy < 0) {
4406 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4407 policy = oldpolicy = p->policy;
ca94c442
LP
4408 } else {
4409 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4410 policy &= ~SCHED_RESET_ON_FORK;
4411
4412 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4413 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4414 policy != SCHED_IDLE)
4415 return -EINVAL;
4416 }
4417
1da177e4
LT
4418 /*
4419 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4421 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4422 */
4423 if (param->sched_priority < 0 ||
95cdf3b7 4424 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4425 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4426 return -EINVAL;
e05606d3 4427 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4428 return -EINVAL;
4429
37e4ab3f
OC
4430 /*
4431 * Allow unprivileged RT tasks to decrease priority:
4432 */
961ccddd 4433 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4434 if (rt_policy(policy)) {
8dc3e909 4435 unsigned long rlim_rtprio;
8dc3e909
ON
4436
4437 if (!lock_task_sighand(p, &flags))
4438 return -ESRCH;
78d7d407 4439 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4440 unlock_task_sighand(p, &flags);
4441
4442 /* can't set/change the rt policy */
4443 if (policy != p->policy && !rlim_rtprio)
4444 return -EPERM;
4445
4446 /* can't increase priority */
4447 if (param->sched_priority > p->rt_priority &&
4448 param->sched_priority > rlim_rtprio)
4449 return -EPERM;
4450 }
dd41f596
IM
4451 /*
4452 * Like positive nice levels, dont allow tasks to
4453 * move out of SCHED_IDLE either:
4454 */
4455 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4456 return -EPERM;
5fe1d75f 4457
37e4ab3f 4458 /* can't change other user's priorities */
c69e8d9c 4459 if (!check_same_owner(p))
37e4ab3f 4460 return -EPERM;
ca94c442
LP
4461
4462 /* Normal users shall not reset the sched_reset_on_fork flag */
4463 if (p->sched_reset_on_fork && !reset_on_fork)
4464 return -EPERM;
37e4ab3f 4465 }
1da177e4 4466
725aad24 4467 if (user) {
b68aa230 4468#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4469 /*
4470 * Do not allow realtime tasks into groups that have no runtime
4471 * assigned.
4472 */
9a7e0b18
PZ
4473 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4474 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4475 return -EPERM;
b68aa230
PZ
4476#endif
4477
725aad24
JF
4478 retval = security_task_setscheduler(p, policy, param);
4479 if (retval)
4480 return retval;
4481 }
4482
b29739f9
IM
4483 /*
4484 * make sure no PI-waiters arrive (or leave) while we are
4485 * changing the priority of the task:
4486 */
1d615482 4487 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4488 /*
4489 * To be able to change p->policy safely, the apropriate
4490 * runqueue lock must be held.
4491 */
b29739f9 4492 rq = __task_rq_lock(p);
1da177e4
LT
4493 /* recheck policy now with rq lock held */
4494 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4495 policy = oldpolicy = -1;
b29739f9 4496 __task_rq_unlock(rq);
1d615482 4497 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4498 goto recheck;
4499 }
dd41f596 4500 on_rq = p->se.on_rq;
051a1d1a 4501 running = task_current(rq, p);
0e1f3483 4502 if (on_rq)
2e1cb74a 4503 deactivate_task(rq, p, 0);
0e1f3483
HS
4504 if (running)
4505 p->sched_class->put_prev_task(rq, p);
f6b53205 4506
ca94c442
LP
4507 p->sched_reset_on_fork = reset_on_fork;
4508
1da177e4 4509 oldprio = p->prio;
83ab0aa0 4510 prev_class = p->sched_class;
dd41f596 4511 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4512
0e1f3483
HS
4513 if (running)
4514 p->sched_class->set_curr_task(rq);
dd41f596
IM
4515 if (on_rq) {
4516 activate_task(rq, p, 0);
cb469845
SR
4517
4518 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4519 }
b29739f9 4520 __task_rq_unlock(rq);
1d615482 4521 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4522
95e02ca9
TG
4523 rt_mutex_adjust_pi(p);
4524
1da177e4
LT
4525 return 0;
4526}
961ccddd
RR
4527
4528/**
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4533 *
4534 * NOTE that the task may be already dead.
4535 */
4536int sched_setscheduler(struct task_struct *p, int policy,
4537 struct sched_param *param)
4538{
4539 return __sched_setscheduler(p, policy, param, true);
4540}
1da177e4
LT
4541EXPORT_SYMBOL_GPL(sched_setscheduler);
4542
961ccddd
RR
4543/**
4544 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4548 *
4549 * Just like sched_setscheduler, only don't bother checking if the
4550 * current context has permission. For example, this is needed in
4551 * stop_machine(): we create temporary high priority worker threads,
4552 * but our caller might not have that capability.
4553 */
4554int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4555 struct sched_param *param)
4556{
4557 return __sched_setscheduler(p, policy, param, false);
4558}
4559
95cdf3b7
IM
4560static int
4561do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4562{
1da177e4
LT
4563 struct sched_param lparam;
4564 struct task_struct *p;
36c8b586 4565 int retval;
1da177e4
LT
4566
4567 if (!param || pid < 0)
4568 return -EINVAL;
4569 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4570 return -EFAULT;
5fe1d75f
ON
4571
4572 rcu_read_lock();
4573 retval = -ESRCH;
1da177e4 4574 p = find_process_by_pid(pid);
5fe1d75f
ON
4575 if (p != NULL)
4576 retval = sched_setscheduler(p, policy, &lparam);
4577 rcu_read_unlock();
36c8b586 4578
1da177e4
LT
4579 return retval;
4580}
4581
4582/**
4583 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4584 * @pid: the pid in question.
4585 * @policy: new policy.
4586 * @param: structure containing the new RT priority.
4587 */
5add95d4
HC
4588SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4589 struct sched_param __user *, param)
1da177e4 4590{
c21761f1
JB
4591 /* negative values for policy are not valid */
4592 if (policy < 0)
4593 return -EINVAL;
4594
1da177e4
LT
4595 return do_sched_setscheduler(pid, policy, param);
4596}
4597
4598/**
4599 * sys_sched_setparam - set/change the RT priority of a thread
4600 * @pid: the pid in question.
4601 * @param: structure containing the new RT priority.
4602 */
5add95d4 4603SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4604{
4605 return do_sched_setscheduler(pid, -1, param);
4606}
4607
4608/**
4609 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4610 * @pid: the pid in question.
4611 */
5add95d4 4612SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4613{
36c8b586 4614 struct task_struct *p;
3a5c359a 4615 int retval;
1da177e4
LT
4616
4617 if (pid < 0)
3a5c359a 4618 return -EINVAL;
1da177e4
LT
4619
4620 retval = -ESRCH;
5fe85be0 4621 rcu_read_lock();
1da177e4
LT
4622 p = find_process_by_pid(pid);
4623 if (p) {
4624 retval = security_task_getscheduler(p);
4625 if (!retval)
ca94c442
LP
4626 retval = p->policy
4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4628 }
5fe85be0 4629 rcu_read_unlock();
1da177e4
LT
4630 return retval;
4631}
4632
4633/**
ca94c442 4634 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4637 */
5add95d4 4638SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4639{
4640 struct sched_param lp;
36c8b586 4641 struct task_struct *p;
3a5c359a 4642 int retval;
1da177e4
LT
4643
4644 if (!param || pid < 0)
3a5c359a 4645 return -EINVAL;
1da177e4 4646
5fe85be0 4647 rcu_read_lock();
1da177e4
LT
4648 p = find_process_by_pid(pid);
4649 retval = -ESRCH;
4650 if (!p)
4651 goto out_unlock;
4652
4653 retval = security_task_getscheduler(p);
4654 if (retval)
4655 goto out_unlock;
4656
4657 lp.sched_priority = p->rt_priority;
5fe85be0 4658 rcu_read_unlock();
1da177e4
LT
4659
4660 /*
4661 * This one might sleep, we cannot do it with a spinlock held ...
4662 */
4663 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4664
1da177e4
LT
4665 return retval;
4666
4667out_unlock:
5fe85be0 4668 rcu_read_unlock();
1da177e4
LT
4669 return retval;
4670}
4671
96f874e2 4672long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4673{
5a16f3d3 4674 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4675 struct task_struct *p;
4676 int retval;
1da177e4 4677
95402b38 4678 get_online_cpus();
23f5d142 4679 rcu_read_lock();
1da177e4
LT
4680
4681 p = find_process_by_pid(pid);
4682 if (!p) {
23f5d142 4683 rcu_read_unlock();
95402b38 4684 put_online_cpus();
1da177e4
LT
4685 return -ESRCH;
4686 }
4687
23f5d142 4688 /* Prevent p going away */
1da177e4 4689 get_task_struct(p);
23f5d142 4690 rcu_read_unlock();
1da177e4 4691
5a16f3d3
RR
4692 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4693 retval = -ENOMEM;
4694 goto out_put_task;
4695 }
4696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4697 retval = -ENOMEM;
4698 goto out_free_cpus_allowed;
4699 }
1da177e4 4700 retval = -EPERM;
c69e8d9c 4701 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4702 goto out_unlock;
4703
e7834f8f
DQ
4704 retval = security_task_setscheduler(p, 0, NULL);
4705 if (retval)
4706 goto out_unlock;
4707
5a16f3d3
RR
4708 cpuset_cpus_allowed(p, cpus_allowed);
4709 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4710 again:
5a16f3d3 4711 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4712
8707d8b8 4713 if (!retval) {
5a16f3d3
RR
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4716 /*
4717 * We must have raced with a concurrent cpuset
4718 * update. Just reset the cpus_allowed to the
4719 * cpuset's cpus_allowed
4720 */
5a16f3d3 4721 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4722 goto again;
4723 }
4724 }
1da177e4 4725out_unlock:
5a16f3d3
RR
4726 free_cpumask_var(new_mask);
4727out_free_cpus_allowed:
4728 free_cpumask_var(cpus_allowed);
4729out_put_task:
1da177e4 4730 put_task_struct(p);
95402b38 4731 put_online_cpus();
1da177e4
LT
4732 return retval;
4733}
4734
4735static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4736 struct cpumask *new_mask)
1da177e4 4737{
96f874e2
RR
4738 if (len < cpumask_size())
4739 cpumask_clear(new_mask);
4740 else if (len > cpumask_size())
4741 len = cpumask_size();
4742
1da177e4
LT
4743 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4744}
4745
4746/**
4747 * sys_sched_setaffinity - set the cpu affinity of a process
4748 * @pid: pid of the process
4749 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4750 * @user_mask_ptr: user-space pointer to the new cpu mask
4751 */
5add95d4
HC
4752SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4753 unsigned long __user *, user_mask_ptr)
1da177e4 4754{
5a16f3d3 4755 cpumask_var_t new_mask;
1da177e4
LT
4756 int retval;
4757
5a16f3d3
RR
4758 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4759 return -ENOMEM;
1da177e4 4760
5a16f3d3
RR
4761 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4762 if (retval == 0)
4763 retval = sched_setaffinity(pid, new_mask);
4764 free_cpumask_var(new_mask);
4765 return retval;
1da177e4
LT
4766}
4767
96f874e2 4768long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4769{
36c8b586 4770 struct task_struct *p;
31605683
TG
4771 unsigned long flags;
4772 struct rq *rq;
1da177e4 4773 int retval;
1da177e4 4774
95402b38 4775 get_online_cpus();
23f5d142 4776 rcu_read_lock();
1da177e4
LT
4777
4778 retval = -ESRCH;
4779 p = find_process_by_pid(pid);
4780 if (!p)
4781 goto out_unlock;
4782
e7834f8f
DQ
4783 retval = security_task_getscheduler(p);
4784 if (retval)
4785 goto out_unlock;
4786
31605683 4787 rq = task_rq_lock(p, &flags);
96f874e2 4788 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4789 task_rq_unlock(rq, &flags);
1da177e4
LT
4790
4791out_unlock:
23f5d142 4792 rcu_read_unlock();
95402b38 4793 put_online_cpus();
1da177e4 4794
9531b62f 4795 return retval;
1da177e4
LT
4796}
4797
4798/**
4799 * sys_sched_getaffinity - get the cpu affinity of a process
4800 * @pid: pid of the process
4801 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4802 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4803 */
5add95d4
HC
4804SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4805 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4806{
4807 int ret;
f17c8607 4808 cpumask_var_t mask;
1da177e4 4809
cd3d8031
KM
4810 if (len < nr_cpu_ids)
4811 return -EINVAL;
4812 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4813 return -EINVAL;
4814
f17c8607
RR
4815 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4816 return -ENOMEM;
1da177e4 4817
f17c8607
RR
4818 ret = sched_getaffinity(pid, mask);
4819 if (ret == 0) {
8bc037fb 4820 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4821
4822 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4823 ret = -EFAULT;
4824 else
cd3d8031 4825 ret = retlen;
f17c8607
RR
4826 }
4827 free_cpumask_var(mask);
1da177e4 4828
f17c8607 4829 return ret;
1da177e4
LT
4830}
4831
4832/**
4833 * sys_sched_yield - yield the current processor to other threads.
4834 *
dd41f596
IM
4835 * This function yields the current CPU to other tasks. If there are no
4836 * other threads running on this CPU then this function will return.
1da177e4 4837 */
5add95d4 4838SYSCALL_DEFINE0(sched_yield)
1da177e4 4839{
70b97a7f 4840 struct rq *rq = this_rq_lock();
1da177e4 4841
2d72376b 4842 schedstat_inc(rq, yld_count);
4530d7ab 4843 current->sched_class->yield_task(rq);
1da177e4
LT
4844
4845 /*
4846 * Since we are going to call schedule() anyway, there's
4847 * no need to preempt or enable interrupts:
4848 */
4849 __release(rq->lock);
8a25d5de 4850 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4851 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4852 preempt_enable_no_resched();
4853
4854 schedule();
4855
4856 return 0;
4857}
4858
d86ee480
PZ
4859static inline int should_resched(void)
4860{
4861 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4862}
4863
e7b38404 4864static void __cond_resched(void)
1da177e4 4865{
e7aaaa69
FW
4866 add_preempt_count(PREEMPT_ACTIVE);
4867 schedule();
4868 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4869}
4870
02b67cc3 4871int __sched _cond_resched(void)
1da177e4 4872{
d86ee480 4873 if (should_resched()) {
1da177e4
LT
4874 __cond_resched();
4875 return 1;
4876 }
4877 return 0;
4878}
02b67cc3 4879EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4880
4881/*
613afbf8 4882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4883 * call schedule, and on return reacquire the lock.
4884 *
41a2d6cf 4885 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4886 * operations here to prevent schedule() from being called twice (once via
4887 * spin_unlock(), once by hand).
4888 */
613afbf8 4889int __cond_resched_lock(spinlock_t *lock)
1da177e4 4890{
d86ee480 4891 int resched = should_resched();
6df3cecb
JK
4892 int ret = 0;
4893
f607c668
PZ
4894 lockdep_assert_held(lock);
4895
95c354fe 4896 if (spin_needbreak(lock) || resched) {
1da177e4 4897 spin_unlock(lock);
d86ee480 4898 if (resched)
95c354fe
NP
4899 __cond_resched();
4900 else
4901 cpu_relax();
6df3cecb 4902 ret = 1;
1da177e4 4903 spin_lock(lock);
1da177e4 4904 }
6df3cecb 4905 return ret;
1da177e4 4906}
613afbf8 4907EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4908
613afbf8 4909int __sched __cond_resched_softirq(void)
1da177e4
LT
4910{
4911 BUG_ON(!in_softirq());
4912
d86ee480 4913 if (should_resched()) {
98d82567 4914 local_bh_enable();
1da177e4
LT
4915 __cond_resched();
4916 local_bh_disable();
4917 return 1;
4918 }
4919 return 0;
4920}
613afbf8 4921EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4922
1da177e4
LT
4923/**
4924 * yield - yield the current processor to other threads.
4925 *
72fd4a35 4926 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4927 * thread runnable and calls sys_sched_yield().
4928 */
4929void __sched yield(void)
4930{
4931 set_current_state(TASK_RUNNING);
4932 sys_sched_yield();
4933}
1da177e4
LT
4934EXPORT_SYMBOL(yield);
4935
4936/*
41a2d6cf 4937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4938 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4939 */
4940void __sched io_schedule(void)
4941{
54d35f29 4942 struct rq *rq = raw_rq();
1da177e4 4943
0ff92245 4944 delayacct_blkio_start();
1da177e4 4945 atomic_inc(&rq->nr_iowait);
8f0dfc34 4946 current->in_iowait = 1;
1da177e4 4947 schedule();
8f0dfc34 4948 current->in_iowait = 0;
1da177e4 4949 atomic_dec(&rq->nr_iowait);
0ff92245 4950 delayacct_blkio_end();
1da177e4 4951}
1da177e4
LT
4952EXPORT_SYMBOL(io_schedule);
4953
4954long __sched io_schedule_timeout(long timeout)
4955{
54d35f29 4956 struct rq *rq = raw_rq();
1da177e4
LT
4957 long ret;
4958
0ff92245 4959 delayacct_blkio_start();
1da177e4 4960 atomic_inc(&rq->nr_iowait);
8f0dfc34 4961 current->in_iowait = 1;
1da177e4 4962 ret = schedule_timeout(timeout);
8f0dfc34 4963 current->in_iowait = 0;
1da177e4 4964 atomic_dec(&rq->nr_iowait);
0ff92245 4965 delayacct_blkio_end();
1da177e4
LT
4966 return ret;
4967}
4968
4969/**
4970 * sys_sched_get_priority_max - return maximum RT priority.
4971 * @policy: scheduling class.
4972 *
4973 * this syscall returns the maximum rt_priority that can be used
4974 * by a given scheduling class.
4975 */
5add95d4 4976SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4977{
4978 int ret = -EINVAL;
4979
4980 switch (policy) {
4981 case SCHED_FIFO:
4982 case SCHED_RR:
4983 ret = MAX_USER_RT_PRIO-1;
4984 break;
4985 case SCHED_NORMAL:
b0a9499c 4986 case SCHED_BATCH:
dd41f596 4987 case SCHED_IDLE:
1da177e4
LT
4988 ret = 0;
4989 break;
4990 }
4991 return ret;
4992}
4993
4994/**
4995 * sys_sched_get_priority_min - return minimum RT priority.
4996 * @policy: scheduling class.
4997 *
4998 * this syscall returns the minimum rt_priority that can be used
4999 * by a given scheduling class.
5000 */
5add95d4 5001SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5002{
5003 int ret = -EINVAL;
5004
5005 switch (policy) {
5006 case SCHED_FIFO:
5007 case SCHED_RR:
5008 ret = 1;
5009 break;
5010 case SCHED_NORMAL:
b0a9499c 5011 case SCHED_BATCH:
dd41f596 5012 case SCHED_IDLE:
1da177e4
LT
5013 ret = 0;
5014 }
5015 return ret;
5016}
5017
5018/**
5019 * sys_sched_rr_get_interval - return the default timeslice of a process.
5020 * @pid: pid of the process.
5021 * @interval: userspace pointer to the timeslice value.
5022 *
5023 * this syscall writes the default timeslice value of a given process
5024 * into the user-space timespec buffer. A value of '0' means infinity.
5025 */
17da2bd9 5026SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5027 struct timespec __user *, interval)
1da177e4 5028{
36c8b586 5029 struct task_struct *p;
a4ec24b4 5030 unsigned int time_slice;
dba091b9
TG
5031 unsigned long flags;
5032 struct rq *rq;
3a5c359a 5033 int retval;
1da177e4 5034 struct timespec t;
1da177e4
LT
5035
5036 if (pid < 0)
3a5c359a 5037 return -EINVAL;
1da177e4
LT
5038
5039 retval = -ESRCH;
1a551ae7 5040 rcu_read_lock();
1da177e4
LT
5041 p = find_process_by_pid(pid);
5042 if (!p)
5043 goto out_unlock;
5044
5045 retval = security_task_getscheduler(p);
5046 if (retval)
5047 goto out_unlock;
5048
dba091b9
TG
5049 rq = task_rq_lock(p, &flags);
5050 time_slice = p->sched_class->get_rr_interval(rq, p);
5051 task_rq_unlock(rq, &flags);
a4ec24b4 5052
1a551ae7 5053 rcu_read_unlock();
a4ec24b4 5054 jiffies_to_timespec(time_slice, &t);
1da177e4 5055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5056 return retval;
3a5c359a 5057
1da177e4 5058out_unlock:
1a551ae7 5059 rcu_read_unlock();
1da177e4
LT
5060 return retval;
5061}
5062
7c731e0a 5063static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5064
82a1fcb9 5065void sched_show_task(struct task_struct *p)
1da177e4 5066{
1da177e4 5067 unsigned long free = 0;
36c8b586 5068 unsigned state;
1da177e4 5069
1da177e4 5070 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5071 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5072 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5073#if BITS_PER_LONG == 32
1da177e4 5074 if (state == TASK_RUNNING)
3df0fc5b 5075 printk(KERN_CONT " running ");
1da177e4 5076 else
3df0fc5b 5077 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5078#else
5079 if (state == TASK_RUNNING)
3df0fc5b 5080 printk(KERN_CONT " running task ");
1da177e4 5081 else
3df0fc5b 5082 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5083#endif
5084#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5085 free = stack_not_used(p);
1da177e4 5086#endif
3df0fc5b 5087 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5088 task_pid_nr(p), task_pid_nr(p->real_parent),
5089 (unsigned long)task_thread_info(p)->flags);
1da177e4 5090
5fb5e6de 5091 show_stack(p, NULL);
1da177e4
LT
5092}
5093
e59e2ae2 5094void show_state_filter(unsigned long state_filter)
1da177e4 5095{
36c8b586 5096 struct task_struct *g, *p;
1da177e4 5097
4bd77321 5098#if BITS_PER_LONG == 32
3df0fc5b
PZ
5099 printk(KERN_INFO
5100 " task PC stack pid father\n");
1da177e4 5101#else
3df0fc5b
PZ
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
1da177e4
LT
5104#endif
5105 read_lock(&tasklist_lock);
5106 do_each_thread(g, p) {
5107 /*
5108 * reset the NMI-timeout, listing all files on a slow
5109 * console might take alot of time:
5110 */
5111 touch_nmi_watchdog();
39bc89fd 5112 if (!state_filter || (p->state & state_filter))
82a1fcb9 5113 sched_show_task(p);
1da177e4
LT
5114 } while_each_thread(g, p);
5115
04c9167f
JF
5116 touch_all_softlockup_watchdogs();
5117
dd41f596
IM
5118#ifdef CONFIG_SCHED_DEBUG
5119 sysrq_sched_debug_show();
5120#endif
1da177e4 5121 read_unlock(&tasklist_lock);
e59e2ae2
IM
5122 /*
5123 * Only show locks if all tasks are dumped:
5124 */
93335a21 5125 if (!state_filter)
e59e2ae2 5126 debug_show_all_locks();
1da177e4
LT
5127}
5128
1df21055
IM
5129void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5130{
dd41f596 5131 idle->sched_class = &idle_sched_class;
1df21055
IM
5132}
5133
f340c0d1
IM
5134/**
5135 * init_idle - set up an idle thread for a given CPU
5136 * @idle: task in question
5137 * @cpu: cpu the idle task belongs to
5138 *
5139 * NOTE: this function does not set the idle thread's NEED_RESCHED
5140 * flag, to make booting more robust.
5141 */
5c1e1767 5142void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5143{
70b97a7f 5144 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5145 unsigned long flags;
5146
05fa785c 5147 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5148
dd41f596 5149 __sched_fork(idle);
06b83b5f 5150 idle->state = TASK_RUNNING;
dd41f596
IM
5151 idle->se.exec_start = sched_clock();
5152
96f874e2 5153 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5154 __set_task_cpu(idle, cpu);
1da177e4 5155
1da177e4 5156 rq->curr = rq->idle = idle;
4866cde0
NP
5157#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5158 idle->oncpu = 1;
5159#endif
05fa785c 5160 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5161
5162 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5163#if defined(CONFIG_PREEMPT)
5164 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5165#else
a1261f54 5166 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5167#endif
dd41f596
IM
5168 /*
5169 * The idle tasks have their own, simple scheduling class:
5170 */
5171 idle->sched_class = &idle_sched_class;
fb52607a 5172 ftrace_graph_init_task(idle);
1da177e4
LT
5173}
5174
5175/*
5176 * In a system that switches off the HZ timer nohz_cpu_mask
5177 * indicates which cpus entered this state. This is used
5178 * in the rcu update to wait only for active cpus. For system
5179 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5180 * always be CPU_BITS_NONE.
1da177e4 5181 */
6a7b3dc3 5182cpumask_var_t nohz_cpu_mask;
1da177e4 5183
19978ca6
IM
5184/*
5185 * Increase the granularity value when there are more CPUs,
5186 * because with more CPUs the 'effective latency' as visible
5187 * to users decreases. But the relationship is not linear,
5188 * so pick a second-best guess by going with the log2 of the
5189 * number of CPUs.
5190 *
5191 * This idea comes from the SD scheduler of Con Kolivas:
5192 */
acb4a848 5193static int get_update_sysctl_factor(void)
19978ca6 5194{
4ca3ef71 5195 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5196 unsigned int factor;
5197
5198 switch (sysctl_sched_tunable_scaling) {
5199 case SCHED_TUNABLESCALING_NONE:
5200 factor = 1;
5201 break;
5202 case SCHED_TUNABLESCALING_LINEAR:
5203 factor = cpus;
5204 break;
5205 case SCHED_TUNABLESCALING_LOG:
5206 default:
5207 factor = 1 + ilog2(cpus);
5208 break;
5209 }
19978ca6 5210
acb4a848
CE
5211 return factor;
5212}
19978ca6 5213
acb4a848
CE
5214static void update_sysctl(void)
5215{
5216 unsigned int factor = get_update_sysctl_factor();
19978ca6 5217
0bcdcf28
CE
5218#define SET_SYSCTL(name) \
5219 (sysctl_##name = (factor) * normalized_sysctl_##name)
5220 SET_SYSCTL(sched_min_granularity);
5221 SET_SYSCTL(sched_latency);
5222 SET_SYSCTL(sched_wakeup_granularity);
5223 SET_SYSCTL(sched_shares_ratelimit);
5224#undef SET_SYSCTL
5225}
55cd5340 5226
0bcdcf28
CE
5227static inline void sched_init_granularity(void)
5228{
5229 update_sysctl();
19978ca6
IM
5230}
5231
1da177e4
LT
5232#ifdef CONFIG_SMP
5233/*
5234 * This is how migration works:
5235 *
70b97a7f 5236 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5237 * runqueue and wake up that CPU's migration thread.
5238 * 2) we down() the locked semaphore => thread blocks.
5239 * 3) migration thread wakes up (implicitly it forces the migrated
5240 * thread off the CPU)
5241 * 4) it gets the migration request and checks whether the migrated
5242 * task is still in the wrong runqueue.
5243 * 5) if it's in the wrong runqueue then the migration thread removes
5244 * it and puts it into the right queue.
5245 * 6) migration thread up()s the semaphore.
5246 * 7) we wake up and the migration is done.
5247 */
5248
5249/*
5250 * Change a given task's CPU affinity. Migrate the thread to a
5251 * proper CPU and schedule it away if the CPU it's executing on
5252 * is removed from the allowed bitmask.
5253 *
5254 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5255 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5256 * call is not atomic; no spinlocks may be held.
5257 */
96f874e2 5258int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5259{
70b97a7f 5260 struct migration_req req;
1da177e4 5261 unsigned long flags;
70b97a7f 5262 struct rq *rq;
48f24c4d 5263 int ret = 0;
1da177e4 5264
65cc8e48
PZ
5265 /*
5266 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5267 * drop the rq->lock and still rely on ->cpus_allowed.
5268 */
5269again:
5270 while (task_is_waking(p))
5271 cpu_relax();
1da177e4 5272 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5273 if (task_is_waking(p)) {
5274 task_rq_unlock(rq, &flags);
5275 goto again;
5276 }
e2912009 5277
6ad4c188 5278 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5279 ret = -EINVAL;
5280 goto out;
5281 }
5282
9985b0ba 5283 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5284 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5285 ret = -EINVAL;
5286 goto out;
5287 }
5288
73fe6aae 5289 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5290 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5291 else {
96f874e2
RR
5292 cpumask_copy(&p->cpus_allowed, new_mask);
5293 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5294 }
5295
1da177e4 5296 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5297 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5298 goto out;
5299
6ad4c188 5300 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5301 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5302 struct task_struct *mt = rq->migration_thread;
5303
5304 get_task_struct(mt);
1da177e4
LT
5305 task_rq_unlock(rq, &flags);
5306 wake_up_process(rq->migration_thread);
693525e3 5307 put_task_struct(mt);
1da177e4
LT
5308 wait_for_completion(&req.done);
5309 tlb_migrate_finish(p->mm);
5310 return 0;
5311 }
5312out:
5313 task_rq_unlock(rq, &flags);
48f24c4d 5314
1da177e4
LT
5315 return ret;
5316}
cd8ba7cd 5317EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5318
5319/*
41a2d6cf 5320 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5321 * this because either it can't run here any more (set_cpus_allowed()
5322 * away from this CPU, or CPU going down), or because we're
5323 * attempting to rebalance this task on exec (sched_exec).
5324 *
5325 * So we race with normal scheduler movements, but that's OK, as long
5326 * as the task is no longer on this CPU.
efc30814
KK
5327 *
5328 * Returns non-zero if task was successfully migrated.
1da177e4 5329 */
efc30814 5330static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5331{
70b97a7f 5332 struct rq *rq_dest, *rq_src;
e2912009 5333 int ret = 0;
1da177e4 5334
e761b772 5335 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5336 return ret;
1da177e4
LT
5337
5338 rq_src = cpu_rq(src_cpu);
5339 rq_dest = cpu_rq(dest_cpu);
5340
5341 double_rq_lock(rq_src, rq_dest);
5342 /* Already moved. */
5343 if (task_cpu(p) != src_cpu)
b1e38734 5344 goto done;
1da177e4 5345 /* Affinity changed (again). */
96f874e2 5346 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5347 goto fail;
1da177e4 5348
e2912009
PZ
5349 /*
5350 * If we're not on a rq, the next wake-up will ensure we're
5351 * placed properly.
5352 */
5353 if (p->se.on_rq) {
2e1cb74a 5354 deactivate_task(rq_src, p, 0);
e2912009 5355 set_task_cpu(p, dest_cpu);
dd41f596 5356 activate_task(rq_dest, p, 0);
15afe09b 5357 check_preempt_curr(rq_dest, p, 0);
1da177e4 5358 }
b1e38734 5359done:
efc30814 5360 ret = 1;
b1e38734 5361fail:
1da177e4 5362 double_rq_unlock(rq_src, rq_dest);
efc30814 5363 return ret;
1da177e4
LT
5364}
5365
03b042bf
PM
5366#define RCU_MIGRATION_IDLE 0
5367#define RCU_MIGRATION_NEED_QS 1
5368#define RCU_MIGRATION_GOT_QS 2
5369#define RCU_MIGRATION_MUST_SYNC 3
5370
1da177e4
LT
5371/*
5372 * migration_thread - this is a highprio system thread that performs
5373 * thread migration by bumping thread off CPU then 'pushing' onto
5374 * another runqueue.
5375 */
95cdf3b7 5376static int migration_thread(void *data)
1da177e4 5377{
03b042bf 5378 int badcpu;
1da177e4 5379 int cpu = (long)data;
70b97a7f 5380 struct rq *rq;
1da177e4
LT
5381
5382 rq = cpu_rq(cpu);
5383 BUG_ON(rq->migration_thread != current);
5384
5385 set_current_state(TASK_INTERRUPTIBLE);
5386 while (!kthread_should_stop()) {
70b97a7f 5387 struct migration_req *req;
1da177e4 5388 struct list_head *head;
1da177e4 5389
05fa785c 5390 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5391
5392 if (cpu_is_offline(cpu)) {
05fa785c 5393 raw_spin_unlock_irq(&rq->lock);
371cbb38 5394 break;
1da177e4
LT
5395 }
5396
5397 if (rq->active_balance) {
5398 active_load_balance(rq, cpu);
5399 rq->active_balance = 0;
5400 }
5401
5402 head = &rq->migration_queue;
5403
5404 if (list_empty(head)) {
05fa785c 5405 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5406 schedule();
5407 set_current_state(TASK_INTERRUPTIBLE);
5408 continue;
5409 }
70b97a7f 5410 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5411 list_del_init(head->next);
5412
03b042bf 5413 if (req->task != NULL) {
05fa785c 5414 raw_spin_unlock(&rq->lock);
03b042bf
PM
5415 __migrate_task(req->task, cpu, req->dest_cpu);
5416 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5417 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5418 raw_spin_unlock(&rq->lock);
03b042bf
PM
5419 } else {
5420 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5421 raw_spin_unlock(&rq->lock);
03b042bf
PM
5422 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5423 }
674311d5 5424 local_irq_enable();
1da177e4
LT
5425
5426 complete(&req->done);
5427 }
5428 __set_current_state(TASK_RUNNING);
1da177e4 5429
1da177e4
LT
5430 return 0;
5431}
5432
5433#ifdef CONFIG_HOTPLUG_CPU
054b9108 5434/*
3a4fa0a2 5435 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5436 */
6a1bdc1b 5437void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5438{
1445c08d
ON
5439 struct rq *rq = cpu_rq(dead_cpu);
5440 int needs_cpu, uninitialized_var(dest_cpu);
5441 unsigned long flags;
c1804d54 5442
1445c08d
ON
5443 local_irq_save(flags);
5444
5445 raw_spin_lock(&rq->lock);
5446 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5447 if (needs_cpu)
5448 dest_cpu = select_fallback_rq(dead_cpu, p);
5449 raw_spin_unlock(&rq->lock);
c1804d54
ON
5450 /*
5451 * It can only fail if we race with set_cpus_allowed(),
5452 * in the racer should migrate the task anyway.
5453 */
1445c08d 5454 if (needs_cpu)
c1804d54 5455 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5456 local_irq_restore(flags);
1da177e4
LT
5457}
5458
5459/*
5460 * While a dead CPU has no uninterruptible tasks queued at this point,
5461 * it might still have a nonzero ->nr_uninterruptible counter, because
5462 * for performance reasons the counter is not stricly tracking tasks to
5463 * their home CPUs. So we just add the counter to another CPU's counter,
5464 * to keep the global sum constant after CPU-down:
5465 */
70b97a7f 5466static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5467{
6ad4c188 5468 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5469 unsigned long flags;
5470
5471 local_irq_save(flags);
5472 double_rq_lock(rq_src, rq_dest);
5473 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5474 rq_src->nr_uninterruptible = 0;
5475 double_rq_unlock(rq_src, rq_dest);
5476 local_irq_restore(flags);
5477}
5478
5479/* Run through task list and migrate tasks from the dead cpu. */
5480static void migrate_live_tasks(int src_cpu)
5481{
48f24c4d 5482 struct task_struct *p, *t;
1da177e4 5483
f7b4cddc 5484 read_lock(&tasklist_lock);
1da177e4 5485
48f24c4d
IM
5486 do_each_thread(t, p) {
5487 if (p == current)
1da177e4
LT
5488 continue;
5489
48f24c4d
IM
5490 if (task_cpu(p) == src_cpu)
5491 move_task_off_dead_cpu(src_cpu, p);
5492 } while_each_thread(t, p);
1da177e4 5493
f7b4cddc 5494 read_unlock(&tasklist_lock);
1da177e4
LT
5495}
5496
dd41f596
IM
5497/*
5498 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5499 * It does so by boosting its priority to highest possible.
5500 * Used by CPU offline code.
1da177e4
LT
5501 */
5502void sched_idle_next(void)
5503{
48f24c4d 5504 int this_cpu = smp_processor_id();
70b97a7f 5505 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5506 struct task_struct *p = rq->idle;
5507 unsigned long flags;
5508
5509 /* cpu has to be offline */
48f24c4d 5510 BUG_ON(cpu_online(this_cpu));
1da177e4 5511
48f24c4d
IM
5512 /*
5513 * Strictly not necessary since rest of the CPUs are stopped by now
5514 * and interrupts disabled on the current cpu.
1da177e4 5515 */
05fa785c 5516 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5517
dd41f596 5518 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5519
94bc9a7b 5520 activate_task(rq, p, 0);
1da177e4 5521
05fa785c 5522 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5523}
5524
48f24c4d
IM
5525/*
5526 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5527 * offline.
5528 */
5529void idle_task_exit(void)
5530{
5531 struct mm_struct *mm = current->active_mm;
5532
5533 BUG_ON(cpu_online(smp_processor_id()));
5534
5535 if (mm != &init_mm)
5536 switch_mm(mm, &init_mm, current);
5537 mmdrop(mm);
5538}
5539
054b9108 5540/* called under rq->lock with disabled interrupts */
36c8b586 5541static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5542{
70b97a7f 5543 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5544
5545 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5546 BUG_ON(!p->exit_state);
1da177e4
LT
5547
5548 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5549 BUG_ON(p->state == TASK_DEAD);
1da177e4 5550
48f24c4d 5551 get_task_struct(p);
1da177e4
LT
5552
5553 /*
5554 * Drop lock around migration; if someone else moves it,
41a2d6cf 5555 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5556 * fine.
5557 */
05fa785c 5558 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5559 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5560 raw_spin_lock_irq(&rq->lock);
1da177e4 5561
48f24c4d 5562 put_task_struct(p);
1da177e4
LT
5563}
5564
5565/* release_task() removes task from tasklist, so we won't find dead tasks. */
5566static void migrate_dead_tasks(unsigned int dead_cpu)
5567{
70b97a7f 5568 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5569 struct task_struct *next;
48f24c4d 5570
dd41f596
IM
5571 for ( ; ; ) {
5572 if (!rq->nr_running)
5573 break;
b67802ea 5574 next = pick_next_task(rq);
dd41f596
IM
5575 if (!next)
5576 break;
79c53799 5577 next->sched_class->put_prev_task(rq, next);
dd41f596 5578 migrate_dead(dead_cpu, next);
e692ab53 5579
1da177e4
LT
5580 }
5581}
dce48a84
TG
5582
5583/*
5584 * remove the tasks which were accounted by rq from calc_load_tasks.
5585 */
5586static void calc_global_load_remove(struct rq *rq)
5587{
5588 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5589 rq->calc_load_active = 0;
dce48a84 5590}
1da177e4
LT
5591#endif /* CONFIG_HOTPLUG_CPU */
5592
e692ab53
NP
5593#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5594
5595static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5596 {
5597 .procname = "sched_domain",
c57baf1e 5598 .mode = 0555,
e0361851 5599 },
56992309 5600 {}
e692ab53
NP
5601};
5602
5603static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5604 {
5605 .procname = "kernel",
c57baf1e 5606 .mode = 0555,
e0361851
AD
5607 .child = sd_ctl_dir,
5608 },
56992309 5609 {}
e692ab53
NP
5610};
5611
5612static struct ctl_table *sd_alloc_ctl_entry(int n)
5613{
5614 struct ctl_table *entry =
5cf9f062 5615 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5616
e692ab53
NP
5617 return entry;
5618}
5619
6382bc90
MM
5620static void sd_free_ctl_entry(struct ctl_table **tablep)
5621{
cd790076 5622 struct ctl_table *entry;
6382bc90 5623
cd790076
MM
5624 /*
5625 * In the intermediate directories, both the child directory and
5626 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5627 * will always be set. In the lowest directory the names are
cd790076
MM
5628 * static strings and all have proc handlers.
5629 */
5630 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5631 if (entry->child)
5632 sd_free_ctl_entry(&entry->child);
cd790076
MM
5633 if (entry->proc_handler == NULL)
5634 kfree(entry->procname);
5635 }
6382bc90
MM
5636
5637 kfree(*tablep);
5638 *tablep = NULL;
5639}
5640
e692ab53 5641static void
e0361851 5642set_table_entry(struct ctl_table *entry,
e692ab53
NP
5643 const char *procname, void *data, int maxlen,
5644 mode_t mode, proc_handler *proc_handler)
5645{
e692ab53
NP
5646 entry->procname = procname;
5647 entry->data = data;
5648 entry->maxlen = maxlen;
5649 entry->mode = mode;
5650 entry->proc_handler = proc_handler;
5651}
5652
5653static struct ctl_table *
5654sd_alloc_ctl_domain_table(struct sched_domain *sd)
5655{
a5d8c348 5656 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5657
ad1cdc1d
MM
5658 if (table == NULL)
5659 return NULL;
5660
e0361851 5661 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5662 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5663 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5664 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5665 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5666 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5667 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5668 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5669 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5670 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5671 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5672 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5673 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5674 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5675 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5676 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5677 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5678 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5679 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5680 &sd->cache_nice_tries,
5681 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5682 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5683 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5684 set_table_entry(&table[11], "name", sd->name,
5685 CORENAME_MAX_SIZE, 0444, proc_dostring);
5686 /* &table[12] is terminator */
e692ab53
NP
5687
5688 return table;
5689}
5690
9a4e7159 5691static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5692{
5693 struct ctl_table *entry, *table;
5694 struct sched_domain *sd;
5695 int domain_num = 0, i;
5696 char buf[32];
5697
5698 for_each_domain(cpu, sd)
5699 domain_num++;
5700 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5701 if (table == NULL)
5702 return NULL;
e692ab53
NP
5703
5704 i = 0;
5705 for_each_domain(cpu, sd) {
5706 snprintf(buf, 32, "domain%d", i);
e692ab53 5707 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5708 entry->mode = 0555;
e692ab53
NP
5709 entry->child = sd_alloc_ctl_domain_table(sd);
5710 entry++;
5711 i++;
5712 }
5713 return table;
5714}
5715
5716static struct ctl_table_header *sd_sysctl_header;
6382bc90 5717static void register_sched_domain_sysctl(void)
e692ab53 5718{
6ad4c188 5719 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5720 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5721 char buf[32];
5722
7378547f
MM
5723 WARN_ON(sd_ctl_dir[0].child);
5724 sd_ctl_dir[0].child = entry;
5725
ad1cdc1d
MM
5726 if (entry == NULL)
5727 return;
5728
6ad4c188 5729 for_each_possible_cpu(i) {
e692ab53 5730 snprintf(buf, 32, "cpu%d", i);
e692ab53 5731 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5732 entry->mode = 0555;
e692ab53 5733 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5734 entry++;
e692ab53 5735 }
7378547f
MM
5736
5737 WARN_ON(sd_sysctl_header);
e692ab53
NP
5738 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5739}
6382bc90 5740
7378547f 5741/* may be called multiple times per register */
6382bc90
MM
5742static void unregister_sched_domain_sysctl(void)
5743{
7378547f
MM
5744 if (sd_sysctl_header)
5745 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5746 sd_sysctl_header = NULL;
7378547f
MM
5747 if (sd_ctl_dir[0].child)
5748 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5749}
e692ab53 5750#else
6382bc90
MM
5751static void register_sched_domain_sysctl(void)
5752{
5753}
5754static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5755{
5756}
5757#endif
5758
1f11eb6a
GH
5759static void set_rq_online(struct rq *rq)
5760{
5761 if (!rq->online) {
5762 const struct sched_class *class;
5763
c6c4927b 5764 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5765 rq->online = 1;
5766
5767 for_each_class(class) {
5768 if (class->rq_online)
5769 class->rq_online(rq);
5770 }
5771 }
5772}
5773
5774static void set_rq_offline(struct rq *rq)
5775{
5776 if (rq->online) {
5777 const struct sched_class *class;
5778
5779 for_each_class(class) {
5780 if (class->rq_offline)
5781 class->rq_offline(rq);
5782 }
5783
c6c4927b 5784 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5785 rq->online = 0;
5786 }
5787}
5788
1da177e4
LT
5789/*
5790 * migration_call - callback that gets triggered when a CPU is added.
5791 * Here we can start up the necessary migration thread for the new CPU.
5792 */
48f24c4d
IM
5793static int __cpuinit
5794migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5795{
1da177e4 5796 struct task_struct *p;
48f24c4d 5797 int cpu = (long)hcpu;
1da177e4 5798 unsigned long flags;
70b97a7f 5799 struct rq *rq;
1da177e4
LT
5800
5801 switch (action) {
5be9361c 5802
1da177e4 5803 case CPU_UP_PREPARE:
8bb78442 5804 case CPU_UP_PREPARE_FROZEN:
dd41f596 5805 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5806 if (IS_ERR(p))
5807 return NOTIFY_BAD;
1da177e4
LT
5808 kthread_bind(p, cpu);
5809 /* Must be high prio: stop_machine expects to yield to it. */
5810 rq = task_rq_lock(p, &flags);
dd41f596 5811 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5812 task_rq_unlock(rq, &flags);
371cbb38 5813 get_task_struct(p);
1da177e4 5814 cpu_rq(cpu)->migration_thread = p;
a468d389 5815 rq->calc_load_update = calc_load_update;
1da177e4 5816 break;
48f24c4d 5817
1da177e4 5818 case CPU_ONLINE:
8bb78442 5819 case CPU_ONLINE_FROZEN:
3a4fa0a2 5820 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5821 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5822
5823 /* Update our root-domain */
5824 rq = cpu_rq(cpu);
05fa785c 5825 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5826 if (rq->rd) {
c6c4927b 5827 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5828
5829 set_rq_online(rq);
1f94ef59 5830 }
05fa785c 5831 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5832 break;
48f24c4d 5833
1da177e4
LT
5834#ifdef CONFIG_HOTPLUG_CPU
5835 case CPU_UP_CANCELED:
8bb78442 5836 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5837 if (!cpu_rq(cpu)->migration_thread)
5838 break;
41a2d6cf 5839 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5840 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5841 cpumask_any(cpu_online_mask));
1da177e4 5842 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5843 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5844 cpu_rq(cpu)->migration_thread = NULL;
5845 break;
48f24c4d 5846
1da177e4 5847 case CPU_DEAD:
8bb78442 5848 case CPU_DEAD_FROZEN:
1da177e4
LT
5849 migrate_live_tasks(cpu);
5850 rq = cpu_rq(cpu);
5851 kthread_stop(rq->migration_thread);
371cbb38 5852 put_task_struct(rq->migration_thread);
1da177e4
LT
5853 rq->migration_thread = NULL;
5854 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5855 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5856 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5857 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5858 rq->idle->sched_class = &idle_sched_class;
1da177e4 5859 migrate_dead_tasks(cpu);
05fa785c 5860 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5861 migrate_nr_uninterruptible(rq);
5862 BUG_ON(rq->nr_running != 0);
dce48a84 5863 calc_global_load_remove(rq);
41a2d6cf
IM
5864 /*
5865 * No need to migrate the tasks: it was best-effort if
5866 * they didn't take sched_hotcpu_mutex. Just wake up
5867 * the requestors.
5868 */
05fa785c 5869 raw_spin_lock_irq(&rq->lock);
1da177e4 5870 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5871 struct migration_req *req;
5872
1da177e4 5873 req = list_entry(rq->migration_queue.next,
70b97a7f 5874 struct migration_req, list);
1da177e4 5875 list_del_init(&req->list);
05fa785c 5876 raw_spin_unlock_irq(&rq->lock);
1da177e4 5877 complete(&req->done);
05fa785c 5878 raw_spin_lock_irq(&rq->lock);
1da177e4 5879 }
05fa785c 5880 raw_spin_unlock_irq(&rq->lock);
1da177e4 5881 break;
57d885fe 5882
08f503b0
GH
5883 case CPU_DYING:
5884 case CPU_DYING_FROZEN:
57d885fe
GH
5885 /* Update our root-domain */
5886 rq = cpu_rq(cpu);
05fa785c 5887 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5888 if (rq->rd) {
c6c4927b 5889 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5890 set_rq_offline(rq);
57d885fe 5891 }
05fa785c 5892 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5893 break;
1da177e4
LT
5894#endif
5895 }
5896 return NOTIFY_OK;
5897}
5898
f38b0820
PM
5899/*
5900 * Register at high priority so that task migration (migrate_all_tasks)
5901 * happens before everything else. This has to be lower priority than
cdd6c482 5902 * the notifier in the perf_event subsystem, though.
1da177e4 5903 */
26c2143b 5904static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5905 .notifier_call = migration_call,
5906 .priority = 10
5907};
5908
7babe8db 5909static int __init migration_init(void)
1da177e4
LT
5910{
5911 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5912 int err;
48f24c4d
IM
5913
5914 /* Start one for the boot CPU: */
07dccf33
AM
5915 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5916 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5917 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5918 register_cpu_notifier(&migration_notifier);
7babe8db 5919
a004cd42 5920 return 0;
1da177e4 5921}
7babe8db 5922early_initcall(migration_init);
1da177e4
LT
5923#endif
5924
5925#ifdef CONFIG_SMP
476f3534 5926
3e9830dc 5927#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5928
f6630114
MT
5929static __read_mostly int sched_domain_debug_enabled;
5930
5931static int __init sched_domain_debug_setup(char *str)
5932{
5933 sched_domain_debug_enabled = 1;
5934
5935 return 0;
5936}
5937early_param("sched_debug", sched_domain_debug_setup);
5938
7c16ec58 5939static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5940 struct cpumask *groupmask)
1da177e4 5941{
4dcf6aff 5942 struct sched_group *group = sd->groups;
434d53b0 5943 char str[256];
1da177e4 5944
968ea6d8 5945 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5946 cpumask_clear(groupmask);
4dcf6aff
IM
5947
5948 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5949
5950 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5951 printk("does not load-balance\n");
4dcf6aff 5952 if (sd->parent)
3df0fc5b
PZ
5953 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5954 " has parent");
4dcf6aff 5955 return -1;
41c7ce9a
NP
5956 }
5957
3df0fc5b 5958 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5959
758b2cdc 5960 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5961 printk(KERN_ERR "ERROR: domain->span does not contain "
5962 "CPU%d\n", cpu);
4dcf6aff 5963 }
758b2cdc 5964 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5965 printk(KERN_ERR "ERROR: domain->groups does not contain"
5966 " CPU%d\n", cpu);
4dcf6aff 5967 }
1da177e4 5968
4dcf6aff 5969 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5970 do {
4dcf6aff 5971 if (!group) {
3df0fc5b
PZ
5972 printk("\n");
5973 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5974 break;
5975 }
5976
18a3885f 5977 if (!group->cpu_power) {
3df0fc5b
PZ
5978 printk(KERN_CONT "\n");
5979 printk(KERN_ERR "ERROR: domain->cpu_power not "
5980 "set\n");
4dcf6aff
IM
5981 break;
5982 }
1da177e4 5983
758b2cdc 5984 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5985 printk(KERN_CONT "\n");
5986 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5987 break;
5988 }
1da177e4 5989
758b2cdc 5990 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5991 printk(KERN_CONT "\n");
5992 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5993 break;
5994 }
1da177e4 5995
758b2cdc 5996 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5997
968ea6d8 5998 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5999
3df0fc5b 6000 printk(KERN_CONT " %s", str);
18a3885f 6001 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6002 printk(KERN_CONT " (cpu_power = %d)",
6003 group->cpu_power);
381512cf 6004 }
1da177e4 6005
4dcf6aff
IM
6006 group = group->next;
6007 } while (group != sd->groups);
3df0fc5b 6008 printk(KERN_CONT "\n");
1da177e4 6009
758b2cdc 6010 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6011 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6012
758b2cdc
RR
6013 if (sd->parent &&
6014 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6015 printk(KERN_ERR "ERROR: parent span is not a superset "
6016 "of domain->span\n");
4dcf6aff
IM
6017 return 0;
6018}
1da177e4 6019
4dcf6aff
IM
6020static void sched_domain_debug(struct sched_domain *sd, int cpu)
6021{
d5dd3db1 6022 cpumask_var_t groupmask;
4dcf6aff 6023 int level = 0;
1da177e4 6024
f6630114
MT
6025 if (!sched_domain_debug_enabled)
6026 return;
6027
4dcf6aff
IM
6028 if (!sd) {
6029 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6030 return;
6031 }
1da177e4 6032
4dcf6aff
IM
6033 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6034
d5dd3db1 6035 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6036 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6037 return;
6038 }
6039
4dcf6aff 6040 for (;;) {
7c16ec58 6041 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6042 break;
1da177e4
LT
6043 level++;
6044 sd = sd->parent;
33859f7f 6045 if (!sd)
4dcf6aff
IM
6046 break;
6047 }
d5dd3db1 6048 free_cpumask_var(groupmask);
1da177e4 6049}
6d6bc0ad 6050#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6051# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6052#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6053
1a20ff27 6054static int sd_degenerate(struct sched_domain *sd)
245af2c7 6055{
758b2cdc 6056 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6057 return 1;
6058
6059 /* Following flags need at least 2 groups */
6060 if (sd->flags & (SD_LOAD_BALANCE |
6061 SD_BALANCE_NEWIDLE |
6062 SD_BALANCE_FORK |
89c4710e
SS
6063 SD_BALANCE_EXEC |
6064 SD_SHARE_CPUPOWER |
6065 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6066 if (sd->groups != sd->groups->next)
6067 return 0;
6068 }
6069
6070 /* Following flags don't use groups */
c88d5910 6071 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6072 return 0;
6073
6074 return 1;
6075}
6076
48f24c4d
IM
6077static int
6078sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6079{
6080 unsigned long cflags = sd->flags, pflags = parent->flags;
6081
6082 if (sd_degenerate(parent))
6083 return 1;
6084
758b2cdc 6085 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6086 return 0;
6087
245af2c7
SS
6088 /* Flags needing groups don't count if only 1 group in parent */
6089 if (parent->groups == parent->groups->next) {
6090 pflags &= ~(SD_LOAD_BALANCE |
6091 SD_BALANCE_NEWIDLE |
6092 SD_BALANCE_FORK |
89c4710e
SS
6093 SD_BALANCE_EXEC |
6094 SD_SHARE_CPUPOWER |
6095 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6096 if (nr_node_ids == 1)
6097 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6098 }
6099 if (~cflags & pflags)
6100 return 0;
6101
6102 return 1;
6103}
6104
c6c4927b
RR
6105static void free_rootdomain(struct root_domain *rd)
6106{
047106ad
PZ
6107 synchronize_sched();
6108
68e74568
RR
6109 cpupri_cleanup(&rd->cpupri);
6110
c6c4927b
RR
6111 free_cpumask_var(rd->rto_mask);
6112 free_cpumask_var(rd->online);
6113 free_cpumask_var(rd->span);
6114 kfree(rd);
6115}
6116
57d885fe
GH
6117static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6118{
a0490fa3 6119 struct root_domain *old_rd = NULL;
57d885fe 6120 unsigned long flags;
57d885fe 6121
05fa785c 6122 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6123
6124 if (rq->rd) {
a0490fa3 6125 old_rd = rq->rd;
57d885fe 6126
c6c4927b 6127 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6128 set_rq_offline(rq);
57d885fe 6129
c6c4927b 6130 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6131
a0490fa3
IM
6132 /*
6133 * If we dont want to free the old_rt yet then
6134 * set old_rd to NULL to skip the freeing later
6135 * in this function:
6136 */
6137 if (!atomic_dec_and_test(&old_rd->refcount))
6138 old_rd = NULL;
57d885fe
GH
6139 }
6140
6141 atomic_inc(&rd->refcount);
6142 rq->rd = rd;
6143
c6c4927b 6144 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6145 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6146 set_rq_online(rq);
57d885fe 6147
05fa785c 6148 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6149
6150 if (old_rd)
6151 free_rootdomain(old_rd);
57d885fe
GH
6152}
6153
fd5e1b5d 6154static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6155{
36b7b6d4
PE
6156 gfp_t gfp = GFP_KERNEL;
6157
57d885fe
GH
6158 memset(rd, 0, sizeof(*rd));
6159
36b7b6d4
PE
6160 if (bootmem)
6161 gfp = GFP_NOWAIT;
c6c4927b 6162
36b7b6d4 6163 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6164 goto out;
36b7b6d4 6165 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6166 goto free_span;
36b7b6d4 6167 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6168 goto free_online;
6e0534f2 6169
0fb53029 6170 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6171 goto free_rto_mask;
c6c4927b 6172 return 0;
6e0534f2 6173
68e74568
RR
6174free_rto_mask:
6175 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6176free_online:
6177 free_cpumask_var(rd->online);
6178free_span:
6179 free_cpumask_var(rd->span);
0c910d28 6180out:
c6c4927b 6181 return -ENOMEM;
57d885fe
GH
6182}
6183
6184static void init_defrootdomain(void)
6185{
c6c4927b
RR
6186 init_rootdomain(&def_root_domain, true);
6187
57d885fe
GH
6188 atomic_set(&def_root_domain.refcount, 1);
6189}
6190
dc938520 6191static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6192{
6193 struct root_domain *rd;
6194
6195 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6196 if (!rd)
6197 return NULL;
6198
c6c4927b
RR
6199 if (init_rootdomain(rd, false) != 0) {
6200 kfree(rd);
6201 return NULL;
6202 }
57d885fe
GH
6203
6204 return rd;
6205}
6206
1da177e4 6207/*
0eab9146 6208 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6209 * hold the hotplug lock.
6210 */
0eab9146
IM
6211static void
6212cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6213{
70b97a7f 6214 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6215 struct sched_domain *tmp;
6216
6217 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6218 for (tmp = sd; tmp; ) {
245af2c7
SS
6219 struct sched_domain *parent = tmp->parent;
6220 if (!parent)
6221 break;
f29c9b1c 6222
1a848870 6223 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6224 tmp->parent = parent->parent;
1a848870
SS
6225 if (parent->parent)
6226 parent->parent->child = tmp;
f29c9b1c
LZ
6227 } else
6228 tmp = tmp->parent;
245af2c7
SS
6229 }
6230
1a848870 6231 if (sd && sd_degenerate(sd)) {
245af2c7 6232 sd = sd->parent;
1a848870
SS
6233 if (sd)
6234 sd->child = NULL;
6235 }
1da177e4
LT
6236
6237 sched_domain_debug(sd, cpu);
6238
57d885fe 6239 rq_attach_root(rq, rd);
674311d5 6240 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6241}
6242
6243/* cpus with isolated domains */
dcc30a35 6244static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6245
6246/* Setup the mask of cpus configured for isolated domains */
6247static int __init isolated_cpu_setup(char *str)
6248{
bdddd296 6249 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6250 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6251 return 1;
6252}
6253
8927f494 6254__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6255
6256/*
6711cab4
SS
6257 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6258 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6259 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6260 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6261 *
6262 * init_sched_build_groups will build a circular linked list of the groups
6263 * covered by the given span, and will set each group's ->cpumask correctly,
6264 * and ->cpu_power to 0.
6265 */
a616058b 6266static void
96f874e2
RR
6267init_sched_build_groups(const struct cpumask *span,
6268 const struct cpumask *cpu_map,
6269 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6270 struct sched_group **sg,
96f874e2
RR
6271 struct cpumask *tmpmask),
6272 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6273{
6274 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6275 int i;
6276
96f874e2 6277 cpumask_clear(covered);
7c16ec58 6278
abcd083a 6279 for_each_cpu(i, span) {
6711cab4 6280 struct sched_group *sg;
7c16ec58 6281 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6282 int j;
6283
758b2cdc 6284 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6285 continue;
6286
758b2cdc 6287 cpumask_clear(sched_group_cpus(sg));
18a3885f 6288 sg->cpu_power = 0;
1da177e4 6289
abcd083a 6290 for_each_cpu(j, span) {
7c16ec58 6291 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6292 continue;
6293
96f874e2 6294 cpumask_set_cpu(j, covered);
758b2cdc 6295 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6296 }
6297 if (!first)
6298 first = sg;
6299 if (last)
6300 last->next = sg;
6301 last = sg;
6302 }
6303 last->next = first;
6304}
6305
9c1cfda2 6306#define SD_NODES_PER_DOMAIN 16
1da177e4 6307
9c1cfda2 6308#ifdef CONFIG_NUMA
198e2f18 6309
9c1cfda2
JH
6310/**
6311 * find_next_best_node - find the next node to include in a sched_domain
6312 * @node: node whose sched_domain we're building
6313 * @used_nodes: nodes already in the sched_domain
6314 *
41a2d6cf 6315 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6316 * finds the closest node not already in the @used_nodes map.
6317 *
6318 * Should use nodemask_t.
6319 */
c5f59f08 6320static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6321{
6322 int i, n, val, min_val, best_node = 0;
6323
6324 min_val = INT_MAX;
6325
076ac2af 6326 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6327 /* Start at @node */
076ac2af 6328 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6329
6330 if (!nr_cpus_node(n))
6331 continue;
6332
6333 /* Skip already used nodes */
c5f59f08 6334 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6335 continue;
6336
6337 /* Simple min distance search */
6338 val = node_distance(node, n);
6339
6340 if (val < min_val) {
6341 min_val = val;
6342 best_node = n;
6343 }
6344 }
6345
c5f59f08 6346 node_set(best_node, *used_nodes);
9c1cfda2
JH
6347 return best_node;
6348}
6349
6350/**
6351 * sched_domain_node_span - get a cpumask for a node's sched_domain
6352 * @node: node whose cpumask we're constructing
73486722 6353 * @span: resulting cpumask
9c1cfda2 6354 *
41a2d6cf 6355 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6356 * should be one that prevents unnecessary balancing, but also spreads tasks
6357 * out optimally.
6358 */
96f874e2 6359static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6360{
c5f59f08 6361 nodemask_t used_nodes;
48f24c4d 6362 int i;
9c1cfda2 6363
6ca09dfc 6364 cpumask_clear(span);
c5f59f08 6365 nodes_clear(used_nodes);
9c1cfda2 6366
6ca09dfc 6367 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6368 node_set(node, used_nodes);
9c1cfda2
JH
6369
6370 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6371 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6372
6ca09dfc 6373 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6374 }
9c1cfda2 6375}
6d6bc0ad 6376#endif /* CONFIG_NUMA */
9c1cfda2 6377
5c45bf27 6378int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6379
6c99e9ad
RR
6380/*
6381 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6382 *
6383 * ( See the the comments in include/linux/sched.h:struct sched_group
6384 * and struct sched_domain. )
6c99e9ad
RR
6385 */
6386struct static_sched_group {
6387 struct sched_group sg;
6388 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6389};
6390
6391struct static_sched_domain {
6392 struct sched_domain sd;
6393 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6394};
6395
49a02c51
AH
6396struct s_data {
6397#ifdef CONFIG_NUMA
6398 int sd_allnodes;
6399 cpumask_var_t domainspan;
6400 cpumask_var_t covered;
6401 cpumask_var_t notcovered;
6402#endif
6403 cpumask_var_t nodemask;
6404 cpumask_var_t this_sibling_map;
6405 cpumask_var_t this_core_map;
6406 cpumask_var_t send_covered;
6407 cpumask_var_t tmpmask;
6408 struct sched_group **sched_group_nodes;
6409 struct root_domain *rd;
6410};
6411
2109b99e
AH
6412enum s_alloc {
6413 sa_sched_groups = 0,
6414 sa_rootdomain,
6415 sa_tmpmask,
6416 sa_send_covered,
6417 sa_this_core_map,
6418 sa_this_sibling_map,
6419 sa_nodemask,
6420 sa_sched_group_nodes,
6421#ifdef CONFIG_NUMA
6422 sa_notcovered,
6423 sa_covered,
6424 sa_domainspan,
6425#endif
6426 sa_none,
6427};
6428
9c1cfda2 6429/*
48f24c4d 6430 * SMT sched-domains:
9c1cfda2 6431 */
1da177e4 6432#ifdef CONFIG_SCHED_SMT
6c99e9ad 6433static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6434static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6435
41a2d6cf 6436static int
96f874e2
RR
6437cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6438 struct sched_group **sg, struct cpumask *unused)
1da177e4 6439{
6711cab4 6440 if (sg)
1871e52c 6441 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6442 return cpu;
6443}
6d6bc0ad 6444#endif /* CONFIG_SCHED_SMT */
1da177e4 6445
48f24c4d
IM
6446/*
6447 * multi-core sched-domains:
6448 */
1e9f28fa 6449#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6450static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6451static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6452#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6453
6454#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6455static int
96f874e2
RR
6456cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6457 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6458{
6711cab4 6459 int group;
7c16ec58 6460
c69fc56d 6461 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6462 group = cpumask_first(mask);
6711cab4 6463 if (sg)
6c99e9ad 6464 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6465 return group;
1e9f28fa
SS
6466}
6467#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6468static int
96f874e2
RR
6469cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6470 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6471{
6711cab4 6472 if (sg)
6c99e9ad 6473 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6474 return cpu;
6475}
6476#endif
6477
6c99e9ad
RR
6478static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6479static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6480
41a2d6cf 6481static int
96f874e2
RR
6482cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6483 struct sched_group **sg, struct cpumask *mask)
1da177e4 6484{
6711cab4 6485 int group;
48f24c4d 6486#ifdef CONFIG_SCHED_MC
6ca09dfc 6487 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6488 group = cpumask_first(mask);
1e9f28fa 6489#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6490 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6491 group = cpumask_first(mask);
1da177e4 6492#else
6711cab4 6493 group = cpu;
1da177e4 6494#endif
6711cab4 6495 if (sg)
6c99e9ad 6496 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6497 return group;
1da177e4
LT
6498}
6499
6500#ifdef CONFIG_NUMA
1da177e4 6501/*
9c1cfda2
JH
6502 * The init_sched_build_groups can't handle what we want to do with node
6503 * groups, so roll our own. Now each node has its own list of groups which
6504 * gets dynamically allocated.
1da177e4 6505 */
62ea9ceb 6506static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6507static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6508
62ea9ceb 6509static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6510static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6511
96f874e2
RR
6512static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6513 struct sched_group **sg,
6514 struct cpumask *nodemask)
9c1cfda2 6515{
6711cab4
SS
6516 int group;
6517
6ca09dfc 6518 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6519 group = cpumask_first(nodemask);
6711cab4
SS
6520
6521 if (sg)
6c99e9ad 6522 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6523 return group;
1da177e4 6524}
6711cab4 6525
08069033
SS
6526static void init_numa_sched_groups_power(struct sched_group *group_head)
6527{
6528 struct sched_group *sg = group_head;
6529 int j;
6530
6531 if (!sg)
6532 return;
3a5c359a 6533 do {
758b2cdc 6534 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6535 struct sched_domain *sd;
08069033 6536
6c99e9ad 6537 sd = &per_cpu(phys_domains, j).sd;
13318a71 6538 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6539 /*
6540 * Only add "power" once for each
6541 * physical package.
6542 */
6543 continue;
6544 }
08069033 6545
18a3885f 6546 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6547 }
6548 sg = sg->next;
6549 } while (sg != group_head);
08069033 6550}
0601a88d
AH
6551
6552static int build_numa_sched_groups(struct s_data *d,
6553 const struct cpumask *cpu_map, int num)
6554{
6555 struct sched_domain *sd;
6556 struct sched_group *sg, *prev;
6557 int n, j;
6558
6559 cpumask_clear(d->covered);
6560 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6561 if (cpumask_empty(d->nodemask)) {
6562 d->sched_group_nodes[num] = NULL;
6563 goto out;
6564 }
6565
6566 sched_domain_node_span(num, d->domainspan);
6567 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6568
6569 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6570 GFP_KERNEL, num);
6571 if (!sg) {
3df0fc5b
PZ
6572 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6573 num);
0601a88d
AH
6574 return -ENOMEM;
6575 }
6576 d->sched_group_nodes[num] = sg;
6577
6578 for_each_cpu(j, d->nodemask) {
6579 sd = &per_cpu(node_domains, j).sd;
6580 sd->groups = sg;
6581 }
6582
18a3885f 6583 sg->cpu_power = 0;
0601a88d
AH
6584 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6585 sg->next = sg;
6586 cpumask_or(d->covered, d->covered, d->nodemask);
6587
6588 prev = sg;
6589 for (j = 0; j < nr_node_ids; j++) {
6590 n = (num + j) % nr_node_ids;
6591 cpumask_complement(d->notcovered, d->covered);
6592 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6593 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6594 if (cpumask_empty(d->tmpmask))
6595 break;
6596 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6597 if (cpumask_empty(d->tmpmask))
6598 continue;
6599 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6600 GFP_KERNEL, num);
6601 if (!sg) {
3df0fc5b
PZ
6602 printk(KERN_WARNING
6603 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6604 return -ENOMEM;
6605 }
18a3885f 6606 sg->cpu_power = 0;
0601a88d
AH
6607 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6608 sg->next = prev->next;
6609 cpumask_or(d->covered, d->covered, d->tmpmask);
6610 prev->next = sg;
6611 prev = sg;
6612 }
6613out:
6614 return 0;
6615}
6d6bc0ad 6616#endif /* CONFIG_NUMA */
1da177e4 6617
a616058b 6618#ifdef CONFIG_NUMA
51888ca2 6619/* Free memory allocated for various sched_group structures */
96f874e2
RR
6620static void free_sched_groups(const struct cpumask *cpu_map,
6621 struct cpumask *nodemask)
51888ca2 6622{
a616058b 6623 int cpu, i;
51888ca2 6624
abcd083a 6625 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6626 struct sched_group **sched_group_nodes
6627 = sched_group_nodes_bycpu[cpu];
6628
51888ca2
SV
6629 if (!sched_group_nodes)
6630 continue;
6631
076ac2af 6632 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6633 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6634
6ca09dfc 6635 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6636 if (cpumask_empty(nodemask))
51888ca2
SV
6637 continue;
6638
6639 if (sg == NULL)
6640 continue;
6641 sg = sg->next;
6642next_sg:
6643 oldsg = sg;
6644 sg = sg->next;
6645 kfree(oldsg);
6646 if (oldsg != sched_group_nodes[i])
6647 goto next_sg;
6648 }
6649 kfree(sched_group_nodes);
6650 sched_group_nodes_bycpu[cpu] = NULL;
6651 }
51888ca2 6652}
6d6bc0ad 6653#else /* !CONFIG_NUMA */
96f874e2
RR
6654static void free_sched_groups(const struct cpumask *cpu_map,
6655 struct cpumask *nodemask)
a616058b
SS
6656{
6657}
6d6bc0ad 6658#endif /* CONFIG_NUMA */
51888ca2 6659
89c4710e
SS
6660/*
6661 * Initialize sched groups cpu_power.
6662 *
6663 * cpu_power indicates the capacity of sched group, which is used while
6664 * distributing the load between different sched groups in a sched domain.
6665 * Typically cpu_power for all the groups in a sched domain will be same unless
6666 * there are asymmetries in the topology. If there are asymmetries, group
6667 * having more cpu_power will pickup more load compared to the group having
6668 * less cpu_power.
89c4710e
SS
6669 */
6670static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6671{
6672 struct sched_domain *child;
6673 struct sched_group *group;
f93e65c1
PZ
6674 long power;
6675 int weight;
89c4710e
SS
6676
6677 WARN_ON(!sd || !sd->groups);
6678
13318a71 6679 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6680 return;
6681
6682 child = sd->child;
6683
18a3885f 6684 sd->groups->cpu_power = 0;
5517d86b 6685
f93e65c1
PZ
6686 if (!child) {
6687 power = SCHED_LOAD_SCALE;
6688 weight = cpumask_weight(sched_domain_span(sd));
6689 /*
6690 * SMT siblings share the power of a single core.
a52bfd73
PZ
6691 * Usually multiple threads get a better yield out of
6692 * that one core than a single thread would have,
6693 * reflect that in sd->smt_gain.
f93e65c1 6694 */
a52bfd73
PZ
6695 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6696 power *= sd->smt_gain;
f93e65c1 6697 power /= weight;
a52bfd73
PZ
6698 power >>= SCHED_LOAD_SHIFT;
6699 }
18a3885f 6700 sd->groups->cpu_power += power;
89c4710e
SS
6701 return;
6702 }
6703
89c4710e 6704 /*
f93e65c1 6705 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6706 */
6707 group = child->groups;
6708 do {
18a3885f 6709 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6710 group = group->next;
6711 } while (group != child->groups);
6712}
6713
7c16ec58
MT
6714/*
6715 * Initializers for schedule domains
6716 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6717 */
6718
a5d8c348
IM
6719#ifdef CONFIG_SCHED_DEBUG
6720# define SD_INIT_NAME(sd, type) sd->name = #type
6721#else
6722# define SD_INIT_NAME(sd, type) do { } while (0)
6723#endif
6724
7c16ec58 6725#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6726
7c16ec58
MT
6727#define SD_INIT_FUNC(type) \
6728static noinline void sd_init_##type(struct sched_domain *sd) \
6729{ \
6730 memset(sd, 0, sizeof(*sd)); \
6731 *sd = SD_##type##_INIT; \
1d3504fc 6732 sd->level = SD_LV_##type; \
a5d8c348 6733 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6734}
6735
6736SD_INIT_FUNC(CPU)
6737#ifdef CONFIG_NUMA
6738 SD_INIT_FUNC(ALLNODES)
6739 SD_INIT_FUNC(NODE)
6740#endif
6741#ifdef CONFIG_SCHED_SMT
6742 SD_INIT_FUNC(SIBLING)
6743#endif
6744#ifdef CONFIG_SCHED_MC
6745 SD_INIT_FUNC(MC)
6746#endif
6747
1d3504fc
HS
6748static int default_relax_domain_level = -1;
6749
6750static int __init setup_relax_domain_level(char *str)
6751{
30e0e178
LZ
6752 unsigned long val;
6753
6754 val = simple_strtoul(str, NULL, 0);
6755 if (val < SD_LV_MAX)
6756 default_relax_domain_level = val;
6757
1d3504fc
HS
6758 return 1;
6759}
6760__setup("relax_domain_level=", setup_relax_domain_level);
6761
6762static void set_domain_attribute(struct sched_domain *sd,
6763 struct sched_domain_attr *attr)
6764{
6765 int request;
6766
6767 if (!attr || attr->relax_domain_level < 0) {
6768 if (default_relax_domain_level < 0)
6769 return;
6770 else
6771 request = default_relax_domain_level;
6772 } else
6773 request = attr->relax_domain_level;
6774 if (request < sd->level) {
6775 /* turn off idle balance on this domain */
c88d5910 6776 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6777 } else {
6778 /* turn on idle balance on this domain */
c88d5910 6779 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6780 }
6781}
6782
2109b99e
AH
6783static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6784 const struct cpumask *cpu_map)
6785{
6786 switch (what) {
6787 case sa_sched_groups:
6788 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6789 d->sched_group_nodes = NULL;
6790 case sa_rootdomain:
6791 free_rootdomain(d->rd); /* fall through */
6792 case sa_tmpmask:
6793 free_cpumask_var(d->tmpmask); /* fall through */
6794 case sa_send_covered:
6795 free_cpumask_var(d->send_covered); /* fall through */
6796 case sa_this_core_map:
6797 free_cpumask_var(d->this_core_map); /* fall through */
6798 case sa_this_sibling_map:
6799 free_cpumask_var(d->this_sibling_map); /* fall through */
6800 case sa_nodemask:
6801 free_cpumask_var(d->nodemask); /* fall through */
6802 case sa_sched_group_nodes:
d1b55138 6803#ifdef CONFIG_NUMA
2109b99e
AH
6804 kfree(d->sched_group_nodes); /* fall through */
6805 case sa_notcovered:
6806 free_cpumask_var(d->notcovered); /* fall through */
6807 case sa_covered:
6808 free_cpumask_var(d->covered); /* fall through */
6809 case sa_domainspan:
6810 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6811#endif
2109b99e
AH
6812 case sa_none:
6813 break;
6814 }
6815}
3404c8d9 6816
2109b99e
AH
6817static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6818 const struct cpumask *cpu_map)
6819{
3404c8d9 6820#ifdef CONFIG_NUMA
2109b99e
AH
6821 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6822 return sa_none;
6823 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6824 return sa_domainspan;
6825 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6826 return sa_covered;
6827 /* Allocate the per-node list of sched groups */
6828 d->sched_group_nodes = kcalloc(nr_node_ids,
6829 sizeof(struct sched_group *), GFP_KERNEL);
6830 if (!d->sched_group_nodes) {
3df0fc5b 6831 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6832 return sa_notcovered;
d1b55138 6833 }
2109b99e 6834 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6835#endif
2109b99e
AH
6836 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6837 return sa_sched_group_nodes;
6838 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6839 return sa_nodemask;
6840 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6841 return sa_this_sibling_map;
6842 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6843 return sa_this_core_map;
6844 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6845 return sa_send_covered;
6846 d->rd = alloc_rootdomain();
6847 if (!d->rd) {
3df0fc5b 6848 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6849 return sa_tmpmask;
57d885fe 6850 }
2109b99e
AH
6851 return sa_rootdomain;
6852}
57d885fe 6853
7f4588f3
AH
6854static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6855 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6856{
6857 struct sched_domain *sd = NULL;
7c16ec58 6858#ifdef CONFIG_NUMA
7f4588f3 6859 struct sched_domain *parent;
1da177e4 6860
7f4588f3
AH
6861 d->sd_allnodes = 0;
6862 if (cpumask_weight(cpu_map) >
6863 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6864 sd = &per_cpu(allnodes_domains, i).sd;
6865 SD_INIT(sd, ALLNODES);
1d3504fc 6866 set_domain_attribute(sd, attr);
7f4588f3
AH
6867 cpumask_copy(sched_domain_span(sd), cpu_map);
6868 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6869 d->sd_allnodes = 1;
6870 }
6871 parent = sd;
6872
6873 sd = &per_cpu(node_domains, i).sd;
6874 SD_INIT(sd, NODE);
6875 set_domain_attribute(sd, attr);
6876 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6877 sd->parent = parent;
6878 if (parent)
6879 parent->child = sd;
6880 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6881#endif
7f4588f3
AH
6882 return sd;
6883}
1da177e4 6884
87cce662
AH
6885static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6886 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6887 struct sched_domain *parent, int i)
6888{
6889 struct sched_domain *sd;
6890 sd = &per_cpu(phys_domains, i).sd;
6891 SD_INIT(sd, CPU);
6892 set_domain_attribute(sd, attr);
6893 cpumask_copy(sched_domain_span(sd), d->nodemask);
6894 sd->parent = parent;
6895 if (parent)
6896 parent->child = sd;
6897 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6898 return sd;
6899}
1da177e4 6900
410c4081
AH
6901static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6902 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6903 struct sched_domain *parent, int i)
6904{
6905 struct sched_domain *sd = parent;
1e9f28fa 6906#ifdef CONFIG_SCHED_MC
410c4081
AH
6907 sd = &per_cpu(core_domains, i).sd;
6908 SD_INIT(sd, MC);
6909 set_domain_attribute(sd, attr);
6910 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6911 sd->parent = parent;
6912 parent->child = sd;
6913 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6914#endif
410c4081
AH
6915 return sd;
6916}
1e9f28fa 6917
d8173535
AH
6918static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6919 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6920 struct sched_domain *parent, int i)
6921{
6922 struct sched_domain *sd = parent;
1da177e4 6923#ifdef CONFIG_SCHED_SMT
d8173535
AH
6924 sd = &per_cpu(cpu_domains, i).sd;
6925 SD_INIT(sd, SIBLING);
6926 set_domain_attribute(sd, attr);
6927 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6928 sd->parent = parent;
6929 parent->child = sd;
6930 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6931#endif
d8173535
AH
6932 return sd;
6933}
1da177e4 6934
0e8e85c9
AH
6935static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6936 const struct cpumask *cpu_map, int cpu)
6937{
6938 switch (l) {
1da177e4 6939#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6940 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6941 cpumask_and(d->this_sibling_map, cpu_map,
6942 topology_thread_cpumask(cpu));
6943 if (cpu == cpumask_first(d->this_sibling_map))
6944 init_sched_build_groups(d->this_sibling_map, cpu_map,
6945 &cpu_to_cpu_group,
6946 d->send_covered, d->tmpmask);
6947 break;
1da177e4 6948#endif
1e9f28fa 6949#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6950 case SD_LV_MC: /* set up multi-core groups */
6951 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6952 if (cpu == cpumask_first(d->this_core_map))
6953 init_sched_build_groups(d->this_core_map, cpu_map,
6954 &cpu_to_core_group,
6955 d->send_covered, d->tmpmask);
6956 break;
1e9f28fa 6957#endif
86548096
AH
6958 case SD_LV_CPU: /* set up physical groups */
6959 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6960 if (!cpumask_empty(d->nodemask))
6961 init_sched_build_groups(d->nodemask, cpu_map,
6962 &cpu_to_phys_group,
6963 d->send_covered, d->tmpmask);
6964 break;
1da177e4 6965#ifdef CONFIG_NUMA
de616e36
AH
6966 case SD_LV_ALLNODES:
6967 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6968 d->send_covered, d->tmpmask);
6969 break;
6970#endif
0e8e85c9
AH
6971 default:
6972 break;
7c16ec58 6973 }
0e8e85c9 6974}
9c1cfda2 6975
2109b99e
AH
6976/*
6977 * Build sched domains for a given set of cpus and attach the sched domains
6978 * to the individual cpus
6979 */
6980static int __build_sched_domains(const struct cpumask *cpu_map,
6981 struct sched_domain_attr *attr)
6982{
6983 enum s_alloc alloc_state = sa_none;
6984 struct s_data d;
294b0c96 6985 struct sched_domain *sd;
2109b99e 6986 int i;
7c16ec58 6987#ifdef CONFIG_NUMA
2109b99e 6988 d.sd_allnodes = 0;
7c16ec58 6989#endif
9c1cfda2 6990
2109b99e
AH
6991 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6992 if (alloc_state != sa_rootdomain)
6993 goto error;
6994 alloc_state = sa_sched_groups;
9c1cfda2 6995
1da177e4 6996 /*
1a20ff27 6997 * Set up domains for cpus specified by the cpu_map.
1da177e4 6998 */
abcd083a 6999 for_each_cpu(i, cpu_map) {
49a02c51
AH
7000 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7001 cpu_map);
9761eea8 7002
7f4588f3 7003 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7004 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7005 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7006 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7007 }
9c1cfda2 7008
abcd083a 7009 for_each_cpu(i, cpu_map) {
0e8e85c9 7010 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7011 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7012 }
9c1cfda2 7013
1da177e4 7014 /* Set up physical groups */
86548096
AH
7015 for (i = 0; i < nr_node_ids; i++)
7016 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7017
1da177e4
LT
7018#ifdef CONFIG_NUMA
7019 /* Set up node groups */
de616e36
AH
7020 if (d.sd_allnodes)
7021 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7022
0601a88d
AH
7023 for (i = 0; i < nr_node_ids; i++)
7024 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7025 goto error;
1da177e4
LT
7026#endif
7027
7028 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7029#ifdef CONFIG_SCHED_SMT
abcd083a 7030 for_each_cpu(i, cpu_map) {
294b0c96 7031 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7032 init_sched_groups_power(i, sd);
5c45bf27 7033 }
1da177e4 7034#endif
1e9f28fa 7035#ifdef CONFIG_SCHED_MC
abcd083a 7036 for_each_cpu(i, cpu_map) {
294b0c96 7037 sd = &per_cpu(core_domains, i).sd;
89c4710e 7038 init_sched_groups_power(i, sd);
5c45bf27
SS
7039 }
7040#endif
1e9f28fa 7041
abcd083a 7042 for_each_cpu(i, cpu_map) {
294b0c96 7043 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7044 init_sched_groups_power(i, sd);
1da177e4
LT
7045 }
7046
9c1cfda2 7047#ifdef CONFIG_NUMA
076ac2af 7048 for (i = 0; i < nr_node_ids; i++)
49a02c51 7049 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7050
49a02c51 7051 if (d.sd_allnodes) {
6711cab4 7052 struct sched_group *sg;
f712c0c7 7053
96f874e2 7054 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7055 d.tmpmask);
f712c0c7
SS
7056 init_numa_sched_groups_power(sg);
7057 }
9c1cfda2
JH
7058#endif
7059
1da177e4 7060 /* Attach the domains */
abcd083a 7061 for_each_cpu(i, cpu_map) {
1da177e4 7062#ifdef CONFIG_SCHED_SMT
6c99e9ad 7063 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7064#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7065 sd = &per_cpu(core_domains, i).sd;
1da177e4 7066#else
6c99e9ad 7067 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7068#endif
49a02c51 7069 cpu_attach_domain(sd, d.rd, i);
1da177e4 7070 }
51888ca2 7071
2109b99e
AH
7072 d.sched_group_nodes = NULL; /* don't free this we still need it */
7073 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7074 return 0;
51888ca2 7075
51888ca2 7076error:
2109b99e
AH
7077 __free_domain_allocs(&d, alloc_state, cpu_map);
7078 return -ENOMEM;
1da177e4 7079}
029190c5 7080
96f874e2 7081static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7082{
7083 return __build_sched_domains(cpu_map, NULL);
7084}
7085
acc3f5d7 7086static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7087static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7088static struct sched_domain_attr *dattr_cur;
7089 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7090
7091/*
7092 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7093 * cpumask) fails, then fallback to a single sched domain,
7094 * as determined by the single cpumask fallback_doms.
029190c5 7095 */
4212823f 7096static cpumask_var_t fallback_doms;
029190c5 7097
ee79d1bd
HC
7098/*
7099 * arch_update_cpu_topology lets virtualized architectures update the
7100 * cpu core maps. It is supposed to return 1 if the topology changed
7101 * or 0 if it stayed the same.
7102 */
7103int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7104{
ee79d1bd 7105 return 0;
22e52b07
HC
7106}
7107
acc3f5d7
RR
7108cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7109{
7110 int i;
7111 cpumask_var_t *doms;
7112
7113 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7114 if (!doms)
7115 return NULL;
7116 for (i = 0; i < ndoms; i++) {
7117 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7118 free_sched_domains(doms, i);
7119 return NULL;
7120 }
7121 }
7122 return doms;
7123}
7124
7125void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7126{
7127 unsigned int i;
7128 for (i = 0; i < ndoms; i++)
7129 free_cpumask_var(doms[i]);
7130 kfree(doms);
7131}
7132
1a20ff27 7133/*
41a2d6cf 7134 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7135 * For now this just excludes isolated cpus, but could be used to
7136 * exclude other special cases in the future.
1a20ff27 7137 */
96f874e2 7138static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7139{
7378547f
MM
7140 int err;
7141
22e52b07 7142 arch_update_cpu_topology();
029190c5 7143 ndoms_cur = 1;
acc3f5d7 7144 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7145 if (!doms_cur)
acc3f5d7
RR
7146 doms_cur = &fallback_doms;
7147 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7148 dattr_cur = NULL;
acc3f5d7 7149 err = build_sched_domains(doms_cur[0]);
6382bc90 7150 register_sched_domain_sysctl();
7378547f
MM
7151
7152 return err;
1a20ff27
DG
7153}
7154
96f874e2
RR
7155static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7156 struct cpumask *tmpmask)
1da177e4 7157{
7c16ec58 7158 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7159}
1da177e4 7160
1a20ff27
DG
7161/*
7162 * Detach sched domains from a group of cpus specified in cpu_map
7163 * These cpus will now be attached to the NULL domain
7164 */
96f874e2 7165static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7166{
96f874e2
RR
7167 /* Save because hotplug lock held. */
7168 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7169 int i;
7170
abcd083a 7171 for_each_cpu(i, cpu_map)
57d885fe 7172 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7173 synchronize_sched();
96f874e2 7174 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7175}
7176
1d3504fc
HS
7177/* handle null as "default" */
7178static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7179 struct sched_domain_attr *new, int idx_new)
7180{
7181 struct sched_domain_attr tmp;
7182
7183 /* fast path */
7184 if (!new && !cur)
7185 return 1;
7186
7187 tmp = SD_ATTR_INIT;
7188 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7189 new ? (new + idx_new) : &tmp,
7190 sizeof(struct sched_domain_attr));
7191}
7192
029190c5
PJ
7193/*
7194 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7195 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7196 * doms_new[] to the current sched domain partitioning, doms_cur[].
7197 * It destroys each deleted domain and builds each new domain.
7198 *
acc3f5d7 7199 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7200 * The masks don't intersect (don't overlap.) We should setup one
7201 * sched domain for each mask. CPUs not in any of the cpumasks will
7202 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7203 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7204 * it as it is.
7205 *
acc3f5d7
RR
7206 * The passed in 'doms_new' should be allocated using
7207 * alloc_sched_domains. This routine takes ownership of it and will
7208 * free_sched_domains it when done with it. If the caller failed the
7209 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7210 * and partition_sched_domains() will fallback to the single partition
7211 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7212 *
96f874e2 7213 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7214 * ndoms_new == 0 is a special case for destroying existing domains,
7215 * and it will not create the default domain.
dfb512ec 7216 *
029190c5
PJ
7217 * Call with hotplug lock held
7218 */
acc3f5d7 7219void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7220 struct sched_domain_attr *dattr_new)
029190c5 7221{
dfb512ec 7222 int i, j, n;
d65bd5ec 7223 int new_topology;
029190c5 7224
712555ee 7225 mutex_lock(&sched_domains_mutex);
a1835615 7226
7378547f
MM
7227 /* always unregister in case we don't destroy any domains */
7228 unregister_sched_domain_sysctl();
7229
d65bd5ec
HC
7230 /* Let architecture update cpu core mappings. */
7231 new_topology = arch_update_cpu_topology();
7232
dfb512ec 7233 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7234
7235 /* Destroy deleted domains */
7236 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7237 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7238 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7239 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7240 goto match1;
7241 }
7242 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7243 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7244match1:
7245 ;
7246 }
7247
e761b772
MK
7248 if (doms_new == NULL) {
7249 ndoms_cur = 0;
acc3f5d7 7250 doms_new = &fallback_doms;
6ad4c188 7251 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7252 WARN_ON_ONCE(dattr_new);
e761b772
MK
7253 }
7254
029190c5
PJ
7255 /* Build new domains */
7256 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7257 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7258 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7259 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7260 goto match2;
7261 }
7262 /* no match - add a new doms_new */
acc3f5d7 7263 __build_sched_domains(doms_new[i],
1d3504fc 7264 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7265match2:
7266 ;
7267 }
7268
7269 /* Remember the new sched domains */
acc3f5d7
RR
7270 if (doms_cur != &fallback_doms)
7271 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7272 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7273 doms_cur = doms_new;
1d3504fc 7274 dattr_cur = dattr_new;
029190c5 7275 ndoms_cur = ndoms_new;
7378547f
MM
7276
7277 register_sched_domain_sysctl();
a1835615 7278
712555ee 7279 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7280}
7281
5c45bf27 7282#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7283static void arch_reinit_sched_domains(void)
5c45bf27 7284{
95402b38 7285 get_online_cpus();
dfb512ec
MK
7286
7287 /* Destroy domains first to force the rebuild */
7288 partition_sched_domains(0, NULL, NULL);
7289
e761b772 7290 rebuild_sched_domains();
95402b38 7291 put_online_cpus();
5c45bf27
SS
7292}
7293
7294static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7295{
afb8a9b7 7296 unsigned int level = 0;
5c45bf27 7297
afb8a9b7
GS
7298 if (sscanf(buf, "%u", &level) != 1)
7299 return -EINVAL;
7300
7301 /*
7302 * level is always be positive so don't check for
7303 * level < POWERSAVINGS_BALANCE_NONE which is 0
7304 * What happens on 0 or 1 byte write,
7305 * need to check for count as well?
7306 */
7307
7308 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7309 return -EINVAL;
7310
7311 if (smt)
afb8a9b7 7312 sched_smt_power_savings = level;
5c45bf27 7313 else
afb8a9b7 7314 sched_mc_power_savings = level;
5c45bf27 7315
c70f22d2 7316 arch_reinit_sched_domains();
5c45bf27 7317
c70f22d2 7318 return count;
5c45bf27
SS
7319}
7320
5c45bf27 7321#ifdef CONFIG_SCHED_MC
f718cd4a 7322static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7323 struct sysdev_class_attribute *attr,
f718cd4a 7324 char *page)
5c45bf27
SS
7325{
7326 return sprintf(page, "%u\n", sched_mc_power_savings);
7327}
f718cd4a 7328static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7329 struct sysdev_class_attribute *attr,
48f24c4d 7330 const char *buf, size_t count)
5c45bf27
SS
7331{
7332 return sched_power_savings_store(buf, count, 0);
7333}
f718cd4a
AK
7334static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7335 sched_mc_power_savings_show,
7336 sched_mc_power_savings_store);
5c45bf27
SS
7337#endif
7338
7339#ifdef CONFIG_SCHED_SMT
f718cd4a 7340static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7341 struct sysdev_class_attribute *attr,
f718cd4a 7342 char *page)
5c45bf27
SS
7343{
7344 return sprintf(page, "%u\n", sched_smt_power_savings);
7345}
f718cd4a 7346static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7347 struct sysdev_class_attribute *attr,
48f24c4d 7348 const char *buf, size_t count)
5c45bf27
SS
7349{
7350 return sched_power_savings_store(buf, count, 1);
7351}
f718cd4a
AK
7352static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7353 sched_smt_power_savings_show,
6707de00
AB
7354 sched_smt_power_savings_store);
7355#endif
7356
39aac648 7357int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7358{
7359 int err = 0;
7360
7361#ifdef CONFIG_SCHED_SMT
7362 if (smt_capable())
7363 err = sysfs_create_file(&cls->kset.kobj,
7364 &attr_sched_smt_power_savings.attr);
7365#endif
7366#ifdef CONFIG_SCHED_MC
7367 if (!err && mc_capable())
7368 err = sysfs_create_file(&cls->kset.kobj,
7369 &attr_sched_mc_power_savings.attr);
7370#endif
7371 return err;
7372}
6d6bc0ad 7373#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7374
e761b772 7375#ifndef CONFIG_CPUSETS
1da177e4 7376/*
e761b772
MK
7377 * Add online and remove offline CPUs from the scheduler domains.
7378 * When cpusets are enabled they take over this function.
1da177e4
LT
7379 */
7380static int update_sched_domains(struct notifier_block *nfb,
7381 unsigned long action, void *hcpu)
e761b772
MK
7382{
7383 switch (action) {
7384 case CPU_ONLINE:
7385 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7386 case CPU_DOWN_PREPARE:
7387 case CPU_DOWN_PREPARE_FROZEN:
7388 case CPU_DOWN_FAILED:
7389 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7390 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7391 return NOTIFY_OK;
7392
7393 default:
7394 return NOTIFY_DONE;
7395 }
7396}
7397#endif
7398
7399static int update_runtime(struct notifier_block *nfb,
7400 unsigned long action, void *hcpu)
1da177e4 7401{
7def2be1
PZ
7402 int cpu = (int)(long)hcpu;
7403
1da177e4 7404 switch (action) {
1da177e4 7405 case CPU_DOWN_PREPARE:
8bb78442 7406 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7407 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7408 return NOTIFY_OK;
7409
1da177e4 7410 case CPU_DOWN_FAILED:
8bb78442 7411 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7412 case CPU_ONLINE:
8bb78442 7413 case CPU_ONLINE_FROZEN:
7def2be1 7414 enable_runtime(cpu_rq(cpu));
e761b772
MK
7415 return NOTIFY_OK;
7416
1da177e4
LT
7417 default:
7418 return NOTIFY_DONE;
7419 }
1da177e4 7420}
1da177e4
LT
7421
7422void __init sched_init_smp(void)
7423{
dcc30a35
RR
7424 cpumask_var_t non_isolated_cpus;
7425
7426 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7427 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7428
434d53b0
MT
7429#if defined(CONFIG_NUMA)
7430 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7431 GFP_KERNEL);
7432 BUG_ON(sched_group_nodes_bycpu == NULL);
7433#endif
95402b38 7434 get_online_cpus();
712555ee 7435 mutex_lock(&sched_domains_mutex);
6ad4c188 7436 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7437 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7438 if (cpumask_empty(non_isolated_cpus))
7439 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7440 mutex_unlock(&sched_domains_mutex);
95402b38 7441 put_online_cpus();
e761b772
MK
7442
7443#ifndef CONFIG_CPUSETS
1da177e4
LT
7444 /* XXX: Theoretical race here - CPU may be hotplugged now */
7445 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7446#endif
7447
7448 /* RT runtime code needs to handle some hotplug events */
7449 hotcpu_notifier(update_runtime, 0);
7450
b328ca18 7451 init_hrtick();
5c1e1767
NP
7452
7453 /* Move init over to a non-isolated CPU */
dcc30a35 7454 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7455 BUG();
19978ca6 7456 sched_init_granularity();
dcc30a35 7457 free_cpumask_var(non_isolated_cpus);
4212823f 7458
0e3900e6 7459 init_sched_rt_class();
1da177e4
LT
7460}
7461#else
7462void __init sched_init_smp(void)
7463{
19978ca6 7464 sched_init_granularity();
1da177e4
LT
7465}
7466#endif /* CONFIG_SMP */
7467
cd1bb94b
AB
7468const_debug unsigned int sysctl_timer_migration = 1;
7469
1da177e4
LT
7470int in_sched_functions(unsigned long addr)
7471{
1da177e4
LT
7472 return in_lock_functions(addr) ||
7473 (addr >= (unsigned long)__sched_text_start
7474 && addr < (unsigned long)__sched_text_end);
7475}
7476
a9957449 7477static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7478{
7479 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7480 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7481#ifdef CONFIG_FAIR_GROUP_SCHED
7482 cfs_rq->rq = rq;
7483#endif
67e9fb2a 7484 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7485}
7486
fa85ae24
PZ
7487static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7488{
7489 struct rt_prio_array *array;
7490 int i;
7491
7492 array = &rt_rq->active;
7493 for (i = 0; i < MAX_RT_PRIO; i++) {
7494 INIT_LIST_HEAD(array->queue + i);
7495 __clear_bit(i, array->bitmap);
7496 }
7497 /* delimiter for bitsearch: */
7498 __set_bit(MAX_RT_PRIO, array->bitmap);
7499
052f1dc7 7500#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7501 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7502#ifdef CONFIG_SMP
e864c499 7503 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7504#endif
48d5e258 7505#endif
fa85ae24
PZ
7506#ifdef CONFIG_SMP
7507 rt_rq->rt_nr_migratory = 0;
fa85ae24 7508 rt_rq->overloaded = 0;
05fa785c 7509 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7510#endif
7511
7512 rt_rq->rt_time = 0;
7513 rt_rq->rt_throttled = 0;
ac086bc2 7514 rt_rq->rt_runtime = 0;
0986b11b 7515 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7516
052f1dc7 7517#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7518 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7519 rt_rq->rq = rq;
7520#endif
fa85ae24
PZ
7521}
7522
6f505b16 7523#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7524static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7525 struct sched_entity *se, int cpu, int add,
7526 struct sched_entity *parent)
6f505b16 7527{
ec7dc8ac 7528 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7529 tg->cfs_rq[cpu] = cfs_rq;
7530 init_cfs_rq(cfs_rq, rq);
7531 cfs_rq->tg = tg;
7532 if (add)
7533 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7534
7535 tg->se[cpu] = se;
354d60c2
DG
7536 /* se could be NULL for init_task_group */
7537 if (!se)
7538 return;
7539
ec7dc8ac
DG
7540 if (!parent)
7541 se->cfs_rq = &rq->cfs;
7542 else
7543 se->cfs_rq = parent->my_q;
7544
6f505b16
PZ
7545 se->my_q = cfs_rq;
7546 se->load.weight = tg->shares;
e05510d0 7547 se->load.inv_weight = 0;
ec7dc8ac 7548 se->parent = parent;
6f505b16 7549}
052f1dc7 7550#endif
6f505b16 7551
052f1dc7 7552#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7553static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7554 struct sched_rt_entity *rt_se, int cpu, int add,
7555 struct sched_rt_entity *parent)
6f505b16 7556{
ec7dc8ac
DG
7557 struct rq *rq = cpu_rq(cpu);
7558
6f505b16
PZ
7559 tg->rt_rq[cpu] = rt_rq;
7560 init_rt_rq(rt_rq, rq);
7561 rt_rq->tg = tg;
ac086bc2 7562 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7563 if (add)
7564 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7565
7566 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7567 if (!rt_se)
7568 return;
7569
ec7dc8ac
DG
7570 if (!parent)
7571 rt_se->rt_rq = &rq->rt;
7572 else
7573 rt_se->rt_rq = parent->my_q;
7574
6f505b16 7575 rt_se->my_q = rt_rq;
ec7dc8ac 7576 rt_se->parent = parent;
6f505b16
PZ
7577 INIT_LIST_HEAD(&rt_se->run_list);
7578}
7579#endif
7580
1da177e4
LT
7581void __init sched_init(void)
7582{
dd41f596 7583 int i, j;
434d53b0
MT
7584 unsigned long alloc_size = 0, ptr;
7585
7586#ifdef CONFIG_FAIR_GROUP_SCHED
7587 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7588#endif
7589#ifdef CONFIG_RT_GROUP_SCHED
7590 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7591#endif
df7c8e84 7592#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7593 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7594#endif
434d53b0 7595 if (alloc_size) {
36b7b6d4 7596 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7597
7598#ifdef CONFIG_FAIR_GROUP_SCHED
7599 init_task_group.se = (struct sched_entity **)ptr;
7600 ptr += nr_cpu_ids * sizeof(void **);
7601
7602 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7603 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7604
6d6bc0ad 7605#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7606#ifdef CONFIG_RT_GROUP_SCHED
7607 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7608 ptr += nr_cpu_ids * sizeof(void **);
7609
7610 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7611 ptr += nr_cpu_ids * sizeof(void **);
7612
6d6bc0ad 7613#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7614#ifdef CONFIG_CPUMASK_OFFSTACK
7615 for_each_possible_cpu(i) {
7616 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7617 ptr += cpumask_size();
7618 }
7619#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7620 }
dd41f596 7621
57d885fe
GH
7622#ifdef CONFIG_SMP
7623 init_defrootdomain();
7624#endif
7625
d0b27fa7
PZ
7626 init_rt_bandwidth(&def_rt_bandwidth,
7627 global_rt_period(), global_rt_runtime());
7628
7629#ifdef CONFIG_RT_GROUP_SCHED
7630 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7631 global_rt_period(), global_rt_runtime());
6d6bc0ad 7632#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7633
7c941438 7634#ifdef CONFIG_CGROUP_SCHED
6f505b16 7635 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7636 INIT_LIST_HEAD(&init_task_group.children);
7637
7c941438 7638#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7639
4a6cc4bd
JK
7640#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7641 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7642 __alignof__(unsigned long));
7643#endif
0a945022 7644 for_each_possible_cpu(i) {
70b97a7f 7645 struct rq *rq;
1da177e4
LT
7646
7647 rq = cpu_rq(i);
05fa785c 7648 raw_spin_lock_init(&rq->lock);
7897986b 7649 rq->nr_running = 0;
dce48a84
TG
7650 rq->calc_load_active = 0;
7651 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7652 init_cfs_rq(&rq->cfs, rq);
6f505b16 7653 init_rt_rq(&rq->rt, rq);
dd41f596 7654#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7655 init_task_group.shares = init_task_group_load;
6f505b16 7656 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7657#ifdef CONFIG_CGROUP_SCHED
7658 /*
7659 * How much cpu bandwidth does init_task_group get?
7660 *
7661 * In case of task-groups formed thr' the cgroup filesystem, it
7662 * gets 100% of the cpu resources in the system. This overall
7663 * system cpu resource is divided among the tasks of
7664 * init_task_group and its child task-groups in a fair manner,
7665 * based on each entity's (task or task-group's) weight
7666 * (se->load.weight).
7667 *
7668 * In other words, if init_task_group has 10 tasks of weight
7669 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7670 * then A0's share of the cpu resource is:
7671 *
0d905bca 7672 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7673 *
7674 * We achieve this by letting init_task_group's tasks sit
7675 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7676 */
ec7dc8ac 7677 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7678#endif
354d60c2
DG
7679#endif /* CONFIG_FAIR_GROUP_SCHED */
7680
7681 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7682#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7683 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7684#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7685 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7686#endif
dd41f596 7687#endif
1da177e4 7688
dd41f596
IM
7689 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7690 rq->cpu_load[j] = 0;
1da177e4 7691#ifdef CONFIG_SMP
41c7ce9a 7692 rq->sd = NULL;
57d885fe 7693 rq->rd = NULL;
3f029d3c 7694 rq->post_schedule = 0;
1da177e4 7695 rq->active_balance = 0;
dd41f596 7696 rq->next_balance = jiffies;
1da177e4 7697 rq->push_cpu = 0;
0a2966b4 7698 rq->cpu = i;
1f11eb6a 7699 rq->online = 0;
1da177e4 7700 rq->migration_thread = NULL;
eae0c9df
MG
7701 rq->idle_stamp = 0;
7702 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7703 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7704 rq_attach_root(rq, &def_root_domain);
1da177e4 7705#endif
8f4d37ec 7706 init_rq_hrtick(rq);
1da177e4 7707 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7708 }
7709
2dd73a4f 7710 set_load_weight(&init_task);
b50f60ce 7711
e107be36
AK
7712#ifdef CONFIG_PREEMPT_NOTIFIERS
7713 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7714#endif
7715
c9819f45 7716#ifdef CONFIG_SMP
962cf36c 7717 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7718#endif
7719
b50f60ce 7720#ifdef CONFIG_RT_MUTEXES
1d615482 7721 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7722#endif
7723
1da177e4
LT
7724 /*
7725 * The boot idle thread does lazy MMU switching as well:
7726 */
7727 atomic_inc(&init_mm.mm_count);
7728 enter_lazy_tlb(&init_mm, current);
7729
7730 /*
7731 * Make us the idle thread. Technically, schedule() should not be
7732 * called from this thread, however somewhere below it might be,
7733 * but because we are the idle thread, we just pick up running again
7734 * when this runqueue becomes "idle".
7735 */
7736 init_idle(current, smp_processor_id());
dce48a84
TG
7737
7738 calc_load_update = jiffies + LOAD_FREQ;
7739
dd41f596
IM
7740 /*
7741 * During early bootup we pretend to be a normal task:
7742 */
7743 current->sched_class = &fair_sched_class;
6892b75e 7744
6a7b3dc3 7745 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7746 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7747#ifdef CONFIG_SMP
7d1e6a9b 7748#ifdef CONFIG_NO_HZ
49557e62 7749 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7750 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7751#endif
bdddd296
RR
7752 /* May be allocated at isolcpus cmdline parse time */
7753 if (cpu_isolated_map == NULL)
7754 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7755#endif /* SMP */
6a7b3dc3 7756
cdd6c482 7757 perf_event_init();
0d905bca 7758
6892b75e 7759 scheduler_running = 1;
1da177e4
LT
7760}
7761
7762#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7763static inline int preempt_count_equals(int preempt_offset)
7764{
234da7bc 7765 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7766
7767 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7768}
7769
d894837f 7770void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7771{
48f24c4d 7772#ifdef in_atomic
1da177e4
LT
7773 static unsigned long prev_jiffy; /* ratelimiting */
7774
e4aafea2
FW
7775 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7776 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7777 return;
7778 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7779 return;
7780 prev_jiffy = jiffies;
7781
3df0fc5b
PZ
7782 printk(KERN_ERR
7783 "BUG: sleeping function called from invalid context at %s:%d\n",
7784 file, line);
7785 printk(KERN_ERR
7786 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7787 in_atomic(), irqs_disabled(),
7788 current->pid, current->comm);
aef745fc
IM
7789
7790 debug_show_held_locks(current);
7791 if (irqs_disabled())
7792 print_irqtrace_events(current);
7793 dump_stack();
1da177e4
LT
7794#endif
7795}
7796EXPORT_SYMBOL(__might_sleep);
7797#endif
7798
7799#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7800static void normalize_task(struct rq *rq, struct task_struct *p)
7801{
7802 int on_rq;
3e51f33f 7803
3a5e4dc1
AK
7804 on_rq = p->se.on_rq;
7805 if (on_rq)
7806 deactivate_task(rq, p, 0);
7807 __setscheduler(rq, p, SCHED_NORMAL, 0);
7808 if (on_rq) {
7809 activate_task(rq, p, 0);
7810 resched_task(rq->curr);
7811 }
7812}
7813
1da177e4
LT
7814void normalize_rt_tasks(void)
7815{
a0f98a1c 7816 struct task_struct *g, *p;
1da177e4 7817 unsigned long flags;
70b97a7f 7818 struct rq *rq;
1da177e4 7819
4cf5d77a 7820 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7821 do_each_thread(g, p) {
178be793
IM
7822 /*
7823 * Only normalize user tasks:
7824 */
7825 if (!p->mm)
7826 continue;
7827
6cfb0d5d 7828 p->se.exec_start = 0;
6cfb0d5d 7829#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7830 p->se.statistics.wait_start = 0;
7831 p->se.statistics.sleep_start = 0;
7832 p->se.statistics.block_start = 0;
6cfb0d5d 7833#endif
dd41f596
IM
7834
7835 if (!rt_task(p)) {
7836 /*
7837 * Renice negative nice level userspace
7838 * tasks back to 0:
7839 */
7840 if (TASK_NICE(p) < 0 && p->mm)
7841 set_user_nice(p, 0);
1da177e4 7842 continue;
dd41f596 7843 }
1da177e4 7844
1d615482 7845 raw_spin_lock(&p->pi_lock);
b29739f9 7846 rq = __task_rq_lock(p);
1da177e4 7847
178be793 7848 normalize_task(rq, p);
3a5e4dc1 7849
b29739f9 7850 __task_rq_unlock(rq);
1d615482 7851 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7852 } while_each_thread(g, p);
7853
4cf5d77a 7854 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7855}
7856
7857#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7858
7859#ifdef CONFIG_IA64
7860/*
7861 * These functions are only useful for the IA64 MCA handling.
7862 *
7863 * They can only be called when the whole system has been
7864 * stopped - every CPU needs to be quiescent, and no scheduling
7865 * activity can take place. Using them for anything else would
7866 * be a serious bug, and as a result, they aren't even visible
7867 * under any other configuration.
7868 */
7869
7870/**
7871 * curr_task - return the current task for a given cpu.
7872 * @cpu: the processor in question.
7873 *
7874 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7875 */
36c8b586 7876struct task_struct *curr_task(int cpu)
1df5c10a
LT
7877{
7878 return cpu_curr(cpu);
7879}
7880
7881/**
7882 * set_curr_task - set the current task for a given cpu.
7883 * @cpu: the processor in question.
7884 * @p: the task pointer to set.
7885 *
7886 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7887 * are serviced on a separate stack. It allows the architecture to switch the
7888 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7889 * must be called with all CPU's synchronized, and interrupts disabled, the
7890 * and caller must save the original value of the current task (see
7891 * curr_task() above) and restore that value before reenabling interrupts and
7892 * re-starting the system.
7893 *
7894 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7895 */
36c8b586 7896void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7897{
7898 cpu_curr(cpu) = p;
7899}
7900
7901#endif
29f59db3 7902
bccbe08a
PZ
7903#ifdef CONFIG_FAIR_GROUP_SCHED
7904static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7905{
7906 int i;
7907
7908 for_each_possible_cpu(i) {
7909 if (tg->cfs_rq)
7910 kfree(tg->cfs_rq[i]);
7911 if (tg->se)
7912 kfree(tg->se[i]);
6f505b16
PZ
7913 }
7914
7915 kfree(tg->cfs_rq);
7916 kfree(tg->se);
6f505b16
PZ
7917}
7918
ec7dc8ac
DG
7919static
7920int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7921{
29f59db3 7922 struct cfs_rq *cfs_rq;
eab17229 7923 struct sched_entity *se;
9b5b7751 7924 struct rq *rq;
29f59db3
SV
7925 int i;
7926
434d53b0 7927 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7928 if (!tg->cfs_rq)
7929 goto err;
434d53b0 7930 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7931 if (!tg->se)
7932 goto err;
052f1dc7
PZ
7933
7934 tg->shares = NICE_0_LOAD;
29f59db3
SV
7935
7936 for_each_possible_cpu(i) {
9b5b7751 7937 rq = cpu_rq(i);
29f59db3 7938
eab17229
LZ
7939 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7940 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7941 if (!cfs_rq)
7942 goto err;
7943
eab17229
LZ
7944 se = kzalloc_node(sizeof(struct sched_entity),
7945 GFP_KERNEL, cpu_to_node(i));
29f59db3 7946 if (!se)
dfc12eb2 7947 goto err_free_rq;
29f59db3 7948
eab17229 7949 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7950 }
7951
7952 return 1;
7953
dfc12eb2
PC
7954 err_free_rq:
7955 kfree(cfs_rq);
bccbe08a
PZ
7956 err:
7957 return 0;
7958}
7959
7960static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7961{
7962 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7963 &cpu_rq(cpu)->leaf_cfs_rq_list);
7964}
7965
7966static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7967{
7968 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7969}
6d6bc0ad 7970#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7971static inline void free_fair_sched_group(struct task_group *tg)
7972{
7973}
7974
ec7dc8ac
DG
7975static inline
7976int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7977{
7978 return 1;
7979}
7980
7981static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7982{
7983}
7984
7985static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7986{
7987}
6d6bc0ad 7988#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7989
7990#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7991static void free_rt_sched_group(struct task_group *tg)
7992{
7993 int i;
7994
d0b27fa7
PZ
7995 destroy_rt_bandwidth(&tg->rt_bandwidth);
7996
bccbe08a
PZ
7997 for_each_possible_cpu(i) {
7998 if (tg->rt_rq)
7999 kfree(tg->rt_rq[i]);
8000 if (tg->rt_se)
8001 kfree(tg->rt_se[i]);
8002 }
8003
8004 kfree(tg->rt_rq);
8005 kfree(tg->rt_se);
8006}
8007
ec7dc8ac
DG
8008static
8009int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8010{
8011 struct rt_rq *rt_rq;
eab17229 8012 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8013 struct rq *rq;
8014 int i;
8015
434d53b0 8016 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8017 if (!tg->rt_rq)
8018 goto err;
434d53b0 8019 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8020 if (!tg->rt_se)
8021 goto err;
8022
d0b27fa7
PZ
8023 init_rt_bandwidth(&tg->rt_bandwidth,
8024 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8025
8026 for_each_possible_cpu(i) {
8027 rq = cpu_rq(i);
8028
eab17229
LZ
8029 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8030 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8031 if (!rt_rq)
8032 goto err;
29f59db3 8033
eab17229
LZ
8034 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8035 GFP_KERNEL, cpu_to_node(i));
6f505b16 8036 if (!rt_se)
dfc12eb2 8037 goto err_free_rq;
29f59db3 8038
eab17229 8039 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8040 }
8041
bccbe08a
PZ
8042 return 1;
8043
dfc12eb2
PC
8044 err_free_rq:
8045 kfree(rt_rq);
bccbe08a
PZ
8046 err:
8047 return 0;
8048}
8049
8050static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8051{
8052 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8053 &cpu_rq(cpu)->leaf_rt_rq_list);
8054}
8055
8056static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8057{
8058 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8059}
6d6bc0ad 8060#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8061static inline void free_rt_sched_group(struct task_group *tg)
8062{
8063}
8064
ec7dc8ac
DG
8065static inline
8066int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8067{
8068 return 1;
8069}
8070
8071static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8072{
8073}
8074
8075static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8076{
8077}
6d6bc0ad 8078#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8079
7c941438 8080#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8081static void free_sched_group(struct task_group *tg)
8082{
8083 free_fair_sched_group(tg);
8084 free_rt_sched_group(tg);
8085 kfree(tg);
8086}
8087
8088/* allocate runqueue etc for a new task group */
ec7dc8ac 8089struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8090{
8091 struct task_group *tg;
8092 unsigned long flags;
8093 int i;
8094
8095 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8096 if (!tg)
8097 return ERR_PTR(-ENOMEM);
8098
ec7dc8ac 8099 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8100 goto err;
8101
ec7dc8ac 8102 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8103 goto err;
8104
8ed36996 8105 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8106 for_each_possible_cpu(i) {
bccbe08a
PZ
8107 register_fair_sched_group(tg, i);
8108 register_rt_sched_group(tg, i);
9b5b7751 8109 }
6f505b16 8110 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8111
8112 WARN_ON(!parent); /* root should already exist */
8113
8114 tg->parent = parent;
f473aa5e 8115 INIT_LIST_HEAD(&tg->children);
09f2724a 8116 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8117 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8118
9b5b7751 8119 return tg;
29f59db3
SV
8120
8121err:
6f505b16 8122 free_sched_group(tg);
29f59db3
SV
8123 return ERR_PTR(-ENOMEM);
8124}
8125
9b5b7751 8126/* rcu callback to free various structures associated with a task group */
6f505b16 8127static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8128{
29f59db3 8129 /* now it should be safe to free those cfs_rqs */
6f505b16 8130 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8131}
8132
9b5b7751 8133/* Destroy runqueue etc associated with a task group */
4cf86d77 8134void sched_destroy_group(struct task_group *tg)
29f59db3 8135{
8ed36996 8136 unsigned long flags;
9b5b7751 8137 int i;
29f59db3 8138
8ed36996 8139 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8140 for_each_possible_cpu(i) {
bccbe08a
PZ
8141 unregister_fair_sched_group(tg, i);
8142 unregister_rt_sched_group(tg, i);
9b5b7751 8143 }
6f505b16 8144 list_del_rcu(&tg->list);
f473aa5e 8145 list_del_rcu(&tg->siblings);
8ed36996 8146 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8147
9b5b7751 8148 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8149 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8150}
8151
9b5b7751 8152/* change task's runqueue when it moves between groups.
3a252015
IM
8153 * The caller of this function should have put the task in its new group
8154 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8155 * reflect its new group.
9b5b7751
SV
8156 */
8157void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8158{
8159 int on_rq, running;
8160 unsigned long flags;
8161 struct rq *rq;
8162
8163 rq = task_rq_lock(tsk, &flags);
8164
051a1d1a 8165 running = task_current(rq, tsk);
29f59db3
SV
8166 on_rq = tsk->se.on_rq;
8167
0e1f3483 8168 if (on_rq)
29f59db3 8169 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8170 if (unlikely(running))
8171 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8172
6f505b16 8173 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8174
810b3817
PZ
8175#ifdef CONFIG_FAIR_GROUP_SCHED
8176 if (tsk->sched_class->moved_group)
88ec22d3 8177 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8178#endif
8179
0e1f3483
HS
8180 if (unlikely(running))
8181 tsk->sched_class->set_curr_task(rq);
8182 if (on_rq)
ea87bb78 8183 enqueue_task(rq, tsk, 0, false);
29f59db3 8184
29f59db3
SV
8185 task_rq_unlock(rq, &flags);
8186}
7c941438 8187#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8188
052f1dc7 8189#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8190static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8191{
8192 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8193 int on_rq;
8194
29f59db3 8195 on_rq = se->on_rq;
62fb1851 8196 if (on_rq)
29f59db3
SV
8197 dequeue_entity(cfs_rq, se, 0);
8198
8199 se->load.weight = shares;
e05510d0 8200 se->load.inv_weight = 0;
29f59db3 8201
62fb1851 8202 if (on_rq)
29f59db3 8203 enqueue_entity(cfs_rq, se, 0);
c09595f6 8204}
62fb1851 8205
c09595f6
PZ
8206static void set_se_shares(struct sched_entity *se, unsigned long shares)
8207{
8208 struct cfs_rq *cfs_rq = se->cfs_rq;
8209 struct rq *rq = cfs_rq->rq;
8210 unsigned long flags;
8211
05fa785c 8212 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8213 __set_se_shares(se, shares);
05fa785c 8214 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8215}
8216
8ed36996
PZ
8217static DEFINE_MUTEX(shares_mutex);
8218
4cf86d77 8219int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8220{
8221 int i;
8ed36996 8222 unsigned long flags;
c61935fd 8223
ec7dc8ac
DG
8224 /*
8225 * We can't change the weight of the root cgroup.
8226 */
8227 if (!tg->se[0])
8228 return -EINVAL;
8229
18d95a28
PZ
8230 if (shares < MIN_SHARES)
8231 shares = MIN_SHARES;
cb4ad1ff
MX
8232 else if (shares > MAX_SHARES)
8233 shares = MAX_SHARES;
62fb1851 8234
8ed36996 8235 mutex_lock(&shares_mutex);
9b5b7751 8236 if (tg->shares == shares)
5cb350ba 8237 goto done;
29f59db3 8238
8ed36996 8239 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8240 for_each_possible_cpu(i)
8241 unregister_fair_sched_group(tg, i);
f473aa5e 8242 list_del_rcu(&tg->siblings);
8ed36996 8243 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8244
8245 /* wait for any ongoing reference to this group to finish */
8246 synchronize_sched();
8247
8248 /*
8249 * Now we are free to modify the group's share on each cpu
8250 * w/o tripping rebalance_share or load_balance_fair.
8251 */
9b5b7751 8252 tg->shares = shares;
c09595f6
PZ
8253 for_each_possible_cpu(i) {
8254 /*
8255 * force a rebalance
8256 */
8257 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8258 set_se_shares(tg->se[i], shares);
c09595f6 8259 }
29f59db3 8260
6b2d7700
SV
8261 /*
8262 * Enable load balance activity on this group, by inserting it back on
8263 * each cpu's rq->leaf_cfs_rq_list.
8264 */
8ed36996 8265 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8266 for_each_possible_cpu(i)
8267 register_fair_sched_group(tg, i);
f473aa5e 8268 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8269 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8270done:
8ed36996 8271 mutex_unlock(&shares_mutex);
9b5b7751 8272 return 0;
29f59db3
SV
8273}
8274
5cb350ba
DG
8275unsigned long sched_group_shares(struct task_group *tg)
8276{
8277 return tg->shares;
8278}
052f1dc7 8279#endif
5cb350ba 8280
052f1dc7 8281#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8282/*
9f0c1e56 8283 * Ensure that the real time constraints are schedulable.
6f505b16 8284 */
9f0c1e56
PZ
8285static DEFINE_MUTEX(rt_constraints_mutex);
8286
8287static unsigned long to_ratio(u64 period, u64 runtime)
8288{
8289 if (runtime == RUNTIME_INF)
9a7e0b18 8290 return 1ULL << 20;
9f0c1e56 8291
9a7e0b18 8292 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8293}
8294
9a7e0b18
PZ
8295/* Must be called with tasklist_lock held */
8296static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8297{
9a7e0b18 8298 struct task_struct *g, *p;
b40b2e8e 8299
9a7e0b18
PZ
8300 do_each_thread(g, p) {
8301 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8302 return 1;
8303 } while_each_thread(g, p);
b40b2e8e 8304
9a7e0b18
PZ
8305 return 0;
8306}
b40b2e8e 8307
9a7e0b18
PZ
8308struct rt_schedulable_data {
8309 struct task_group *tg;
8310 u64 rt_period;
8311 u64 rt_runtime;
8312};
b40b2e8e 8313
9a7e0b18
PZ
8314static int tg_schedulable(struct task_group *tg, void *data)
8315{
8316 struct rt_schedulable_data *d = data;
8317 struct task_group *child;
8318 unsigned long total, sum = 0;
8319 u64 period, runtime;
b40b2e8e 8320
9a7e0b18
PZ
8321 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8322 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8323
9a7e0b18
PZ
8324 if (tg == d->tg) {
8325 period = d->rt_period;
8326 runtime = d->rt_runtime;
b40b2e8e 8327 }
b40b2e8e 8328
4653f803
PZ
8329 /*
8330 * Cannot have more runtime than the period.
8331 */
8332 if (runtime > period && runtime != RUNTIME_INF)
8333 return -EINVAL;
6f505b16 8334
4653f803
PZ
8335 /*
8336 * Ensure we don't starve existing RT tasks.
8337 */
9a7e0b18
PZ
8338 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8339 return -EBUSY;
6f505b16 8340
9a7e0b18 8341 total = to_ratio(period, runtime);
6f505b16 8342
4653f803
PZ
8343 /*
8344 * Nobody can have more than the global setting allows.
8345 */
8346 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8347 return -EINVAL;
6f505b16 8348
4653f803
PZ
8349 /*
8350 * The sum of our children's runtime should not exceed our own.
8351 */
9a7e0b18
PZ
8352 list_for_each_entry_rcu(child, &tg->children, siblings) {
8353 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8354 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8355
9a7e0b18
PZ
8356 if (child == d->tg) {
8357 period = d->rt_period;
8358 runtime = d->rt_runtime;
8359 }
6f505b16 8360
9a7e0b18 8361 sum += to_ratio(period, runtime);
9f0c1e56 8362 }
6f505b16 8363
9a7e0b18
PZ
8364 if (sum > total)
8365 return -EINVAL;
8366
8367 return 0;
6f505b16
PZ
8368}
8369
9a7e0b18 8370static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8371{
9a7e0b18
PZ
8372 struct rt_schedulable_data data = {
8373 .tg = tg,
8374 .rt_period = period,
8375 .rt_runtime = runtime,
8376 };
8377
8378 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8379}
8380
d0b27fa7
PZ
8381static int tg_set_bandwidth(struct task_group *tg,
8382 u64 rt_period, u64 rt_runtime)
6f505b16 8383{
ac086bc2 8384 int i, err = 0;
9f0c1e56 8385
9f0c1e56 8386 mutex_lock(&rt_constraints_mutex);
521f1a24 8387 read_lock(&tasklist_lock);
9a7e0b18
PZ
8388 err = __rt_schedulable(tg, rt_period, rt_runtime);
8389 if (err)
9f0c1e56 8390 goto unlock;
ac086bc2 8391
0986b11b 8392 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8393 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8394 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8395
8396 for_each_possible_cpu(i) {
8397 struct rt_rq *rt_rq = tg->rt_rq[i];
8398
0986b11b 8399 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8400 rt_rq->rt_runtime = rt_runtime;
0986b11b 8401 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8402 }
0986b11b 8403 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8404 unlock:
521f1a24 8405 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8406 mutex_unlock(&rt_constraints_mutex);
8407
8408 return err;
6f505b16
PZ
8409}
8410
d0b27fa7
PZ
8411int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8412{
8413 u64 rt_runtime, rt_period;
8414
8415 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8416 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8417 if (rt_runtime_us < 0)
8418 rt_runtime = RUNTIME_INF;
8419
8420 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8421}
8422
9f0c1e56
PZ
8423long sched_group_rt_runtime(struct task_group *tg)
8424{
8425 u64 rt_runtime_us;
8426
d0b27fa7 8427 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8428 return -1;
8429
d0b27fa7 8430 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8431 do_div(rt_runtime_us, NSEC_PER_USEC);
8432 return rt_runtime_us;
8433}
d0b27fa7
PZ
8434
8435int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8436{
8437 u64 rt_runtime, rt_period;
8438
8439 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8440 rt_runtime = tg->rt_bandwidth.rt_runtime;
8441
619b0488
R
8442 if (rt_period == 0)
8443 return -EINVAL;
8444
d0b27fa7
PZ
8445 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8446}
8447
8448long sched_group_rt_period(struct task_group *tg)
8449{
8450 u64 rt_period_us;
8451
8452 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8453 do_div(rt_period_us, NSEC_PER_USEC);
8454 return rt_period_us;
8455}
8456
8457static int sched_rt_global_constraints(void)
8458{
4653f803 8459 u64 runtime, period;
d0b27fa7
PZ
8460 int ret = 0;
8461
ec5d4989
HS
8462 if (sysctl_sched_rt_period <= 0)
8463 return -EINVAL;
8464
4653f803
PZ
8465 runtime = global_rt_runtime();
8466 period = global_rt_period();
8467
8468 /*
8469 * Sanity check on the sysctl variables.
8470 */
8471 if (runtime > period && runtime != RUNTIME_INF)
8472 return -EINVAL;
10b612f4 8473
d0b27fa7 8474 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8475 read_lock(&tasklist_lock);
4653f803 8476 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8477 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8478 mutex_unlock(&rt_constraints_mutex);
8479
8480 return ret;
8481}
54e99124
DG
8482
8483int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8484{
8485 /* Don't accept realtime tasks when there is no way for them to run */
8486 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8487 return 0;
8488
8489 return 1;
8490}
8491
6d6bc0ad 8492#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8493static int sched_rt_global_constraints(void)
8494{
ac086bc2
PZ
8495 unsigned long flags;
8496 int i;
8497
ec5d4989
HS
8498 if (sysctl_sched_rt_period <= 0)
8499 return -EINVAL;
8500
60aa605d
PZ
8501 /*
8502 * There's always some RT tasks in the root group
8503 * -- migration, kstopmachine etc..
8504 */
8505 if (sysctl_sched_rt_runtime == 0)
8506 return -EBUSY;
8507
0986b11b 8508 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8509 for_each_possible_cpu(i) {
8510 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8511
0986b11b 8512 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8513 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8514 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8515 }
0986b11b 8516 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8517
d0b27fa7
PZ
8518 return 0;
8519}
6d6bc0ad 8520#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8521
8522int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8523 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8524 loff_t *ppos)
8525{
8526 int ret;
8527 int old_period, old_runtime;
8528 static DEFINE_MUTEX(mutex);
8529
8530 mutex_lock(&mutex);
8531 old_period = sysctl_sched_rt_period;
8532 old_runtime = sysctl_sched_rt_runtime;
8533
8d65af78 8534 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8535
8536 if (!ret && write) {
8537 ret = sched_rt_global_constraints();
8538 if (ret) {
8539 sysctl_sched_rt_period = old_period;
8540 sysctl_sched_rt_runtime = old_runtime;
8541 } else {
8542 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8543 def_rt_bandwidth.rt_period =
8544 ns_to_ktime(global_rt_period());
8545 }
8546 }
8547 mutex_unlock(&mutex);
8548
8549 return ret;
8550}
68318b8e 8551
052f1dc7 8552#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8553
8554/* return corresponding task_group object of a cgroup */
2b01dfe3 8555static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8556{
2b01dfe3
PM
8557 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8558 struct task_group, css);
68318b8e
SV
8559}
8560
8561static struct cgroup_subsys_state *
2b01dfe3 8562cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8563{
ec7dc8ac 8564 struct task_group *tg, *parent;
68318b8e 8565
2b01dfe3 8566 if (!cgrp->parent) {
68318b8e 8567 /* This is early initialization for the top cgroup */
68318b8e
SV
8568 return &init_task_group.css;
8569 }
8570
ec7dc8ac
DG
8571 parent = cgroup_tg(cgrp->parent);
8572 tg = sched_create_group(parent);
68318b8e
SV
8573 if (IS_ERR(tg))
8574 return ERR_PTR(-ENOMEM);
8575
68318b8e
SV
8576 return &tg->css;
8577}
8578
41a2d6cf
IM
8579static void
8580cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8581{
2b01dfe3 8582 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8583
8584 sched_destroy_group(tg);
8585}
8586
41a2d6cf 8587static int
be367d09 8588cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8589{
b68aa230 8590#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8591 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8592 return -EINVAL;
8593#else
68318b8e
SV
8594 /* We don't support RT-tasks being in separate groups */
8595 if (tsk->sched_class != &fair_sched_class)
8596 return -EINVAL;
b68aa230 8597#endif
be367d09
BB
8598 return 0;
8599}
68318b8e 8600
be367d09
BB
8601static int
8602cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8603 struct task_struct *tsk, bool threadgroup)
8604{
8605 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8606 if (retval)
8607 return retval;
8608 if (threadgroup) {
8609 struct task_struct *c;
8610 rcu_read_lock();
8611 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8612 retval = cpu_cgroup_can_attach_task(cgrp, c);
8613 if (retval) {
8614 rcu_read_unlock();
8615 return retval;
8616 }
8617 }
8618 rcu_read_unlock();
8619 }
68318b8e
SV
8620 return 0;
8621}
8622
8623static void
2b01dfe3 8624cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8625 struct cgroup *old_cont, struct task_struct *tsk,
8626 bool threadgroup)
68318b8e
SV
8627{
8628 sched_move_task(tsk);
be367d09
BB
8629 if (threadgroup) {
8630 struct task_struct *c;
8631 rcu_read_lock();
8632 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8633 sched_move_task(c);
8634 }
8635 rcu_read_unlock();
8636 }
68318b8e
SV
8637}
8638
052f1dc7 8639#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8640static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8641 u64 shareval)
68318b8e 8642{
2b01dfe3 8643 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8644}
8645
f4c753b7 8646static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8647{
2b01dfe3 8648 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8649
8650 return (u64) tg->shares;
8651}
6d6bc0ad 8652#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8653
052f1dc7 8654#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8655static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8656 s64 val)
6f505b16 8657{
06ecb27c 8658 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8659}
8660
06ecb27c 8661static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8662{
06ecb27c 8663 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8664}
d0b27fa7
PZ
8665
8666static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8667 u64 rt_period_us)
8668{
8669 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8670}
8671
8672static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8673{
8674 return sched_group_rt_period(cgroup_tg(cgrp));
8675}
6d6bc0ad 8676#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8677
fe5c7cc2 8678static struct cftype cpu_files[] = {
052f1dc7 8679#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8680 {
8681 .name = "shares",
f4c753b7
PM
8682 .read_u64 = cpu_shares_read_u64,
8683 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8684 },
052f1dc7
PZ
8685#endif
8686#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8687 {
9f0c1e56 8688 .name = "rt_runtime_us",
06ecb27c
PM
8689 .read_s64 = cpu_rt_runtime_read,
8690 .write_s64 = cpu_rt_runtime_write,
6f505b16 8691 },
d0b27fa7
PZ
8692 {
8693 .name = "rt_period_us",
f4c753b7
PM
8694 .read_u64 = cpu_rt_period_read_uint,
8695 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8696 },
052f1dc7 8697#endif
68318b8e
SV
8698};
8699
8700static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8701{
fe5c7cc2 8702 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8703}
8704
8705struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8706 .name = "cpu",
8707 .create = cpu_cgroup_create,
8708 .destroy = cpu_cgroup_destroy,
8709 .can_attach = cpu_cgroup_can_attach,
8710 .attach = cpu_cgroup_attach,
8711 .populate = cpu_cgroup_populate,
8712 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8713 .early_init = 1,
8714};
8715
052f1dc7 8716#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8717
8718#ifdef CONFIG_CGROUP_CPUACCT
8719
8720/*
8721 * CPU accounting code for task groups.
8722 *
8723 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8724 * (balbir@in.ibm.com).
8725 */
8726
934352f2 8727/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8728struct cpuacct {
8729 struct cgroup_subsys_state css;
8730 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8731 u64 __percpu *cpuusage;
ef12fefa 8732 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8733 struct cpuacct *parent;
d842de87
SV
8734};
8735
8736struct cgroup_subsys cpuacct_subsys;
8737
8738/* return cpu accounting group corresponding to this container */
32cd756a 8739static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8740{
32cd756a 8741 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8742 struct cpuacct, css);
8743}
8744
8745/* return cpu accounting group to which this task belongs */
8746static inline struct cpuacct *task_ca(struct task_struct *tsk)
8747{
8748 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8749 struct cpuacct, css);
8750}
8751
8752/* create a new cpu accounting group */
8753static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8754 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8755{
8756 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8757 int i;
d842de87
SV
8758
8759 if (!ca)
ef12fefa 8760 goto out;
d842de87
SV
8761
8762 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8763 if (!ca->cpuusage)
8764 goto out_free_ca;
8765
8766 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8767 if (percpu_counter_init(&ca->cpustat[i], 0))
8768 goto out_free_counters;
d842de87 8769
934352f2
BR
8770 if (cgrp->parent)
8771 ca->parent = cgroup_ca(cgrp->parent);
8772
d842de87 8773 return &ca->css;
ef12fefa
BR
8774
8775out_free_counters:
8776 while (--i >= 0)
8777 percpu_counter_destroy(&ca->cpustat[i]);
8778 free_percpu(ca->cpuusage);
8779out_free_ca:
8780 kfree(ca);
8781out:
8782 return ERR_PTR(-ENOMEM);
d842de87
SV
8783}
8784
8785/* destroy an existing cpu accounting group */
41a2d6cf 8786static void
32cd756a 8787cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8788{
32cd756a 8789 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8790 int i;
d842de87 8791
ef12fefa
BR
8792 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8793 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8794 free_percpu(ca->cpuusage);
8795 kfree(ca);
8796}
8797
720f5498
KC
8798static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8799{
b36128c8 8800 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8801 u64 data;
8802
8803#ifndef CONFIG_64BIT
8804 /*
8805 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8806 */
05fa785c 8807 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8808 data = *cpuusage;
05fa785c 8809 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8810#else
8811 data = *cpuusage;
8812#endif
8813
8814 return data;
8815}
8816
8817static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8818{
b36128c8 8819 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8820
8821#ifndef CONFIG_64BIT
8822 /*
8823 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8824 */
05fa785c 8825 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8826 *cpuusage = val;
05fa785c 8827 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8828#else
8829 *cpuusage = val;
8830#endif
8831}
8832
d842de87 8833/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8834static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8835{
32cd756a 8836 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8837 u64 totalcpuusage = 0;
8838 int i;
8839
720f5498
KC
8840 for_each_present_cpu(i)
8841 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8842
8843 return totalcpuusage;
8844}
8845
0297b803
DG
8846static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8847 u64 reset)
8848{
8849 struct cpuacct *ca = cgroup_ca(cgrp);
8850 int err = 0;
8851 int i;
8852
8853 if (reset) {
8854 err = -EINVAL;
8855 goto out;
8856 }
8857
720f5498
KC
8858 for_each_present_cpu(i)
8859 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8860
0297b803
DG
8861out:
8862 return err;
8863}
8864
e9515c3c
KC
8865static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8866 struct seq_file *m)
8867{
8868 struct cpuacct *ca = cgroup_ca(cgroup);
8869 u64 percpu;
8870 int i;
8871
8872 for_each_present_cpu(i) {
8873 percpu = cpuacct_cpuusage_read(ca, i);
8874 seq_printf(m, "%llu ", (unsigned long long) percpu);
8875 }
8876 seq_printf(m, "\n");
8877 return 0;
8878}
8879
ef12fefa
BR
8880static const char *cpuacct_stat_desc[] = {
8881 [CPUACCT_STAT_USER] = "user",
8882 [CPUACCT_STAT_SYSTEM] = "system",
8883};
8884
8885static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8886 struct cgroup_map_cb *cb)
8887{
8888 struct cpuacct *ca = cgroup_ca(cgrp);
8889 int i;
8890
8891 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8892 s64 val = percpu_counter_read(&ca->cpustat[i]);
8893 val = cputime64_to_clock_t(val);
8894 cb->fill(cb, cpuacct_stat_desc[i], val);
8895 }
8896 return 0;
8897}
8898
d842de87
SV
8899static struct cftype files[] = {
8900 {
8901 .name = "usage",
f4c753b7
PM
8902 .read_u64 = cpuusage_read,
8903 .write_u64 = cpuusage_write,
d842de87 8904 },
e9515c3c
KC
8905 {
8906 .name = "usage_percpu",
8907 .read_seq_string = cpuacct_percpu_seq_read,
8908 },
ef12fefa
BR
8909 {
8910 .name = "stat",
8911 .read_map = cpuacct_stats_show,
8912 },
d842de87
SV
8913};
8914
32cd756a 8915static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8916{
32cd756a 8917 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8918}
8919
8920/*
8921 * charge this task's execution time to its accounting group.
8922 *
8923 * called with rq->lock held.
8924 */
8925static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8926{
8927 struct cpuacct *ca;
934352f2 8928 int cpu;
d842de87 8929
c40c6f85 8930 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8931 return;
8932
934352f2 8933 cpu = task_cpu(tsk);
a18b83b7
BR
8934
8935 rcu_read_lock();
8936
d842de87 8937 ca = task_ca(tsk);
d842de87 8938
934352f2 8939 for (; ca; ca = ca->parent) {
b36128c8 8940 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8941 *cpuusage += cputime;
8942 }
a18b83b7
BR
8943
8944 rcu_read_unlock();
d842de87
SV
8945}
8946
fa535a77
AB
8947/*
8948 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8949 * in cputime_t units. As a result, cpuacct_update_stats calls
8950 * percpu_counter_add with values large enough to always overflow the
8951 * per cpu batch limit causing bad SMP scalability.
8952 *
8953 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8954 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8955 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8956 */
8957#ifdef CONFIG_SMP
8958#define CPUACCT_BATCH \
8959 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8960#else
8961#define CPUACCT_BATCH 0
8962#endif
8963
ef12fefa
BR
8964/*
8965 * Charge the system/user time to the task's accounting group.
8966 */
8967static void cpuacct_update_stats(struct task_struct *tsk,
8968 enum cpuacct_stat_index idx, cputime_t val)
8969{
8970 struct cpuacct *ca;
fa535a77 8971 int batch = CPUACCT_BATCH;
ef12fefa
BR
8972
8973 if (unlikely(!cpuacct_subsys.active))
8974 return;
8975
8976 rcu_read_lock();
8977 ca = task_ca(tsk);
8978
8979 do {
fa535a77 8980 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8981 ca = ca->parent;
8982 } while (ca);
8983 rcu_read_unlock();
8984}
8985
d842de87
SV
8986struct cgroup_subsys cpuacct_subsys = {
8987 .name = "cpuacct",
8988 .create = cpuacct_create,
8989 .destroy = cpuacct_destroy,
8990 .populate = cpuacct_populate,
8991 .subsys_id = cpuacct_subsys_id,
8992};
8993#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8994
8995#ifndef CONFIG_SMP
8996
8997int rcu_expedited_torture_stats(char *page)
8998{
8999 return 0;
9000}
9001EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9002
9003void synchronize_sched_expedited(void)
9004{
9005}
9006EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9007
9008#else /* #ifndef CONFIG_SMP */
9009
9010static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9011static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9012
9013#define RCU_EXPEDITED_STATE_POST -2
9014#define RCU_EXPEDITED_STATE_IDLE -1
9015
9016static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9017
9018int rcu_expedited_torture_stats(char *page)
9019{
9020 int cnt = 0;
9021 int cpu;
9022
9023 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9024 for_each_online_cpu(cpu) {
9025 cnt += sprintf(&page[cnt], " %d:%d",
9026 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9027 }
9028 cnt += sprintf(&page[cnt], "\n");
9029 return cnt;
9030}
9031EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9032
9033static long synchronize_sched_expedited_count;
9034
9035/*
9036 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9037 * approach to force grace period to end quickly. This consumes
9038 * significant time on all CPUs, and is thus not recommended for
9039 * any sort of common-case code.
9040 *
9041 * Note that it is illegal to call this function while holding any
9042 * lock that is acquired by a CPU-hotplug notifier. Failing to
9043 * observe this restriction will result in deadlock.
9044 */
9045void synchronize_sched_expedited(void)
9046{
9047 int cpu;
9048 unsigned long flags;
9049 bool need_full_sync = 0;
9050 struct rq *rq;
9051 struct migration_req *req;
9052 long snap;
9053 int trycount = 0;
9054
9055 smp_mb(); /* ensure prior mod happens before capturing snap. */
9056 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9057 get_online_cpus();
9058 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9059 put_online_cpus();
9060 if (trycount++ < 10)
9061 udelay(trycount * num_online_cpus());
9062 else {
9063 synchronize_sched();
9064 return;
9065 }
9066 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9067 smp_mb(); /* ensure test happens before caller kfree */
9068 return;
9069 }
9070 get_online_cpus();
9071 }
9072 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9073 for_each_online_cpu(cpu) {
9074 rq = cpu_rq(cpu);
9075 req = &per_cpu(rcu_migration_req, cpu);
9076 init_completion(&req->done);
9077 req->task = NULL;
9078 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9079 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9080 list_add(&req->list, &rq->migration_queue);
05fa785c 9081 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9082 wake_up_process(rq->migration_thread);
9083 }
9084 for_each_online_cpu(cpu) {
9085 rcu_expedited_state = cpu;
9086 req = &per_cpu(rcu_migration_req, cpu);
9087 rq = cpu_rq(cpu);
9088 wait_for_completion(&req->done);
05fa785c 9089 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9090 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9091 need_full_sync = 1;
9092 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9093 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9094 }
9095 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9096 synchronize_sched_expedited_count++;
03b042bf
PM
9097 mutex_unlock(&rcu_sched_expedited_mutex);
9098 put_online_cpus();
9099 if (need_full_sync)
9100 synchronize_sched();
9101}
9102EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9103
9104#endif /* #else #ifndef CONFIG_SMP */