]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: fair-group: fix a Div0 error of the fair group scheduler
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
b035b6de
AD
77/*
78 * Scheduler clock - returns current time in nanosec units.
79 * This is default implementation.
80 * Architectures and sub-architectures can override this.
81 */
82unsigned long long __attribute__((weak)) sched_clock(void)
83{
d6322faf 84 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
85}
86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
5517d86b
ED
126#ifdef CONFIG_SMP
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
149 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
218 if (rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start(&rt_b->rt_period_timer,
232 rt_b->rt_period_timer.expires,
233 HRTIMER_MODE_ABS);
234 }
235 spin_unlock(&rt_b->rt_runtime_lock);
236}
237
238#ifdef CONFIG_RT_GROUP_SCHED
239static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240{
241 hrtimer_cancel(&rt_b->rt_period_timer);
242}
243#endif
244
712555ee
HC
245/*
246 * sched_domains_mutex serializes calls to arch_init_sched_domains,
247 * detach_destroy_domains and partition_sched_domains.
248 */
249static DEFINE_MUTEX(sched_domains_mutex);
250
052f1dc7 251#ifdef CONFIG_GROUP_SCHED
29f59db3 252
68318b8e
SV
253#include <linux/cgroup.h>
254
29f59db3
SV
255struct cfs_rq;
256
6f505b16
PZ
257static LIST_HEAD(task_groups);
258
29f59db3 259/* task group related information */
4cf86d77 260struct task_group {
052f1dc7 261#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
262 struct cgroup_subsys_state css;
263#endif
052f1dc7
PZ
264
265#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
266 /* schedulable entities of this group on each cpu */
267 struct sched_entity **se;
268 /* runqueue "owned" by this group on each cpu */
269 struct cfs_rq **cfs_rq;
270 unsigned long shares;
052f1dc7
PZ
271#endif
272
273#ifdef CONFIG_RT_GROUP_SCHED
274 struct sched_rt_entity **rt_se;
275 struct rt_rq **rt_rq;
276
d0b27fa7 277 struct rt_bandwidth rt_bandwidth;
052f1dc7 278#endif
6b2d7700 279
ae8393e5 280 struct rcu_head rcu;
6f505b16 281 struct list_head list;
f473aa5e
PZ
282
283 struct task_group *parent;
284 struct list_head siblings;
285 struct list_head children;
29f59db3
SV
286};
287
354d60c2 288#ifdef CONFIG_USER_SCHED
eff766a6
PZ
289
290/*
291 * Root task group.
292 * Every UID task group (including init_task_group aka UID-0) will
293 * be a child to this group.
294 */
295struct task_group root_task_group;
296
052f1dc7 297#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
298/* Default task group's sched entity on each cpu */
299static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
300/* Default task group's cfs_rq on each cpu */
301static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
302#endif
303
304#ifdef CONFIG_RT_GROUP_SCHED
305static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
306static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 307#endif
eff766a6
PZ
308#else
309#define root_task_group init_task_group
354d60c2 310#endif
6f505b16 311
8ed36996 312/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
313 * a task group's cpu shares.
314 */
8ed36996 315static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
318#ifdef CONFIG_USER_SCHED
319# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
320#else
321# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
322#endif
323
cb4ad1ff
MX
324/*
325 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
326 * (The default weight is 1024 - so there's no practical
327 * limitation from this.)
328 */
18d95a28 329#define MIN_SHARES 2
cb4ad1ff 330#define MAX_SHARES (ULONG_MAX - 1)
18d95a28 331
052f1dc7
PZ
332static int init_task_group_load = INIT_TASK_GROUP_LOAD;
333#endif
334
29f59db3 335/* Default task group.
3a252015 336 * Every task in system belong to this group at bootup.
29f59db3 337 */
434d53b0 338struct task_group init_task_group;
29f59db3
SV
339
340/* return group to which a task belongs */
4cf86d77 341static inline struct task_group *task_group(struct task_struct *p)
29f59db3 342{
4cf86d77 343 struct task_group *tg;
9b5b7751 344
052f1dc7 345#ifdef CONFIG_USER_SCHED
24e377a8 346 tg = p->user->tg;
052f1dc7 347#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
348 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
349 struct task_group, css);
24e377a8 350#else
41a2d6cf 351 tg = &init_task_group;
24e377a8 352#endif
9b5b7751 353 return tg;
29f59db3
SV
354}
355
356/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 357static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 358{
052f1dc7 359#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
360 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
361 p->se.parent = task_group(p)->se[cpu];
052f1dc7 362#endif
6f505b16 363
052f1dc7 364#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
365 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
366 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 367#endif
29f59db3
SV
368}
369
370#else
371
6f505b16 372static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 373
052f1dc7 374#endif /* CONFIG_GROUP_SCHED */
29f59db3 375
6aa645ea
IM
376/* CFS-related fields in a runqueue */
377struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
6aa645ea 381 u64 exec_clock;
e9acbff6 382 u64 min_vruntime;
6aa645ea
IM
383
384 struct rb_root tasks_timeline;
385 struct rb_node *rb_leftmost;
4a55bd5e
PZ
386
387 struct list_head tasks;
388 struct list_head *balance_iterator;
389
390 /*
391 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
392 * It is set to NULL otherwise (i.e when none are currently running).
393 */
aa2ac252 394 struct sched_entity *curr, *next;
ddc97297
PZ
395
396 unsigned long nr_spread_over;
397
62160e3f 398#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
400
41a2d6cf
IM
401 /*
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
405 *
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
408 */
41a2d6cf
IM
409 struct list_head leaf_cfs_rq_list;
410 struct task_group *tg; /* group that "owns" this runqueue */
18d95a28
PZ
411
412#ifdef CONFIG_SMP
413 unsigned long task_weight;
414 unsigned long shares;
415 /*
416 * We need space to build a sched_domain wide view of the full task
417 * group tree, in order to avoid depending on dynamic memory allocation
418 * during the load balancing we place this in the per cpu task group
419 * hierarchy. This limits the load balancing to one instance per cpu,
420 * but more should not be needed anyway.
421 */
422 struct aggregate_struct {
423 /*
424 * load = weight(cpus) * f(tg)
425 *
426 * Where f(tg) is the recursive weight fraction assigned to
427 * this group.
428 */
429 unsigned long load;
430
431 /*
432 * part of the group weight distributed to this span.
433 */
434 unsigned long shares;
435
436 /*
437 * The sum of all runqueue weights within this span.
438 */
439 unsigned long rq_weight;
440
441 /*
442 * Weight contributed by tasks; this is the part we can
443 * influence by moving tasks around.
444 */
445 unsigned long task_weight;
446 } aggregate;
447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
456 int highest_prio; /* highest queued rt task prio */
457#endif
fa85ae24 458#ifdef CONFIG_SMP
73fe6aae 459 unsigned long rt_nr_migratory;
a22d7fc1 460 int overloaded;
fa85ae24 461#endif
6f505b16 462 int rt_throttled;
fa85ae24 463 u64 rt_time;
ac086bc2 464 u64 rt_runtime;
ea736ed5 465 /* Nests inside the rq lock: */
ac086bc2 466 spinlock_t rt_runtime_lock;
6f505b16 467
052f1dc7 468#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
469 unsigned long rt_nr_boosted;
470
6f505b16
PZ
471 struct rq *rq;
472 struct list_head leaf_rt_rq_list;
473 struct task_group *tg;
474 struct sched_rt_entity *rt_se;
475#endif
6aa645ea
IM
476};
477
57d885fe
GH
478#ifdef CONFIG_SMP
479
480/*
481 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
482 * variables. Each exclusive cpuset essentially defines an island domain by
483 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
484 * exclusive cpuset is created, we also create and attach a new root-domain
485 * object.
486 *
57d885fe
GH
487 */
488struct root_domain {
489 atomic_t refcount;
490 cpumask_t span;
491 cpumask_t online;
637f5085 492
0eab9146 493 /*
637f5085
GH
494 * The "RT overload" flag: it gets set if a CPU has more than
495 * one runnable RT task.
496 */
497 cpumask_t rto_mask;
0eab9146 498 atomic_t rto_count;
57d885fe
GH
499};
500
dc938520
GH
501/*
502 * By default the system creates a single root-domain with all cpus as
503 * members (mimicking the global state we have today).
504 */
57d885fe
GH
505static struct root_domain def_root_domain;
506
507#endif
508
1da177e4
LT
509/*
510 * This is the main, per-CPU runqueue data structure.
511 *
512 * Locking rule: those places that want to lock multiple runqueues
513 * (such as the load balancing or the thread migration code), lock
514 * acquire operations must be ordered by ascending &runqueue.
515 */
70b97a7f 516struct rq {
d8016491
IM
517 /* runqueue lock: */
518 spinlock_t lock;
1da177e4
LT
519
520 /*
521 * nr_running and cpu_load should be in the same cacheline because
522 * remote CPUs use both these fields when doing load calculation.
523 */
524 unsigned long nr_running;
6aa645ea
IM
525 #define CPU_LOAD_IDX_MAX 5
526 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 527 unsigned char idle_at_tick;
46cb4b7c 528#ifdef CONFIG_NO_HZ
15934a37 529 unsigned long last_tick_seen;
46cb4b7c
SS
530 unsigned char in_nohz_recently;
531#endif
d8016491
IM
532 /* capture load from *all* tasks on this cpu: */
533 struct load_weight load;
6aa645ea
IM
534 unsigned long nr_load_updates;
535 u64 nr_switches;
536
537 struct cfs_rq cfs;
6f505b16 538 struct rt_rq rt;
6f505b16 539
6aa645ea 540#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
541 /* list of leaf cfs_rq on this cpu: */
542 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
543#endif
544#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 545 struct list_head leaf_rt_rq_list;
1da177e4 546#endif
1da177e4
LT
547
548 /*
549 * This is part of a global counter where only the total sum
550 * over all CPUs matters. A task can increase this counter on
551 * one CPU and if it got migrated afterwards it may decrease
552 * it on another CPU. Always updated under the runqueue lock:
553 */
554 unsigned long nr_uninterruptible;
555
36c8b586 556 struct task_struct *curr, *idle;
c9819f45 557 unsigned long next_balance;
1da177e4 558 struct mm_struct *prev_mm;
6aa645ea 559
6aa645ea
IM
560 u64 clock, prev_clock_raw;
561 s64 clock_max_delta;
562
cc203d24 563 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
564 u64 idle_clock;
565 unsigned int clock_deep_idle_events;
529c7726 566 u64 tick_timestamp;
6aa645ea 567
1da177e4
LT
568 atomic_t nr_iowait;
569
570#ifdef CONFIG_SMP
0eab9146 571 struct root_domain *rd;
1da177e4
LT
572 struct sched_domain *sd;
573
574 /* For active balancing */
575 int active_balance;
576 int push_cpu;
d8016491
IM
577 /* cpu of this runqueue: */
578 int cpu;
1da177e4 579
36c8b586 580 struct task_struct *migration_thread;
1da177e4
LT
581 struct list_head migration_queue;
582#endif
583
8f4d37ec
PZ
584#ifdef CONFIG_SCHED_HRTICK
585 unsigned long hrtick_flags;
586 ktime_t hrtick_expire;
587 struct hrtimer hrtick_timer;
588#endif
589
1da177e4
LT
590#ifdef CONFIG_SCHEDSTATS
591 /* latency stats */
592 struct sched_info rq_sched_info;
593
594 /* sys_sched_yield() stats */
480b9434
KC
595 unsigned int yld_exp_empty;
596 unsigned int yld_act_empty;
597 unsigned int yld_both_empty;
598 unsigned int yld_count;
1da177e4
LT
599
600 /* schedule() stats */
480b9434
KC
601 unsigned int sched_switch;
602 unsigned int sched_count;
603 unsigned int sched_goidle;
1da177e4
LT
604
605 /* try_to_wake_up() stats */
480b9434
KC
606 unsigned int ttwu_count;
607 unsigned int ttwu_local;
b8efb561
IM
608
609 /* BKL stats */
480b9434 610 unsigned int bkl_count;
1da177e4 611#endif
fcb99371 612 struct lock_class_key rq_lock_key;
1da177e4
LT
613};
614
f34e3b61 615static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 616
dd41f596
IM
617static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
618{
619 rq->curr->sched_class->check_preempt_curr(rq, p);
620}
621
0a2966b4
CL
622static inline int cpu_of(struct rq *rq)
623{
624#ifdef CONFIG_SMP
625 return rq->cpu;
626#else
627 return 0;
628#endif
629}
630
15934a37
GC
631#ifdef CONFIG_NO_HZ
632static inline bool nohz_on(int cpu)
633{
634 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
635}
636
637static inline u64 max_skipped_ticks(struct rq *rq)
638{
639 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
640}
641
642static inline void update_last_tick_seen(struct rq *rq)
643{
644 rq->last_tick_seen = jiffies;
645}
646#else
647static inline u64 max_skipped_ticks(struct rq *rq)
648{
649 return 1;
650}
651
652static inline void update_last_tick_seen(struct rq *rq)
653{
654}
655#endif
656
20d315d4 657/*
b04a0f4c
IM
658 * Update the per-runqueue clock, as finegrained as the platform can give
659 * us, but without assuming monotonicity, etc.:
20d315d4 660 */
b04a0f4c 661static void __update_rq_clock(struct rq *rq)
20d315d4
IM
662{
663 u64 prev_raw = rq->prev_clock_raw;
664 u64 now = sched_clock();
665 s64 delta = now - prev_raw;
666 u64 clock = rq->clock;
667
b04a0f4c
IM
668#ifdef CONFIG_SCHED_DEBUG
669 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
670#endif
20d315d4
IM
671 /*
672 * Protect against sched_clock() occasionally going backwards:
673 */
674 if (unlikely(delta < 0)) {
675 clock++;
676 rq->clock_warps++;
677 } else {
678 /*
679 * Catch too large forward jumps too:
680 */
15934a37
GC
681 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
682 u64 max_time = rq->tick_timestamp + max_jump;
683
684 if (unlikely(clock + delta > max_time)) {
685 if (clock < max_time)
686 clock = max_time;
529c7726
IM
687 else
688 clock++;
20d315d4
IM
689 rq->clock_overflows++;
690 } else {
691 if (unlikely(delta > rq->clock_max_delta))
692 rq->clock_max_delta = delta;
693 clock += delta;
694 }
695 }
696
697 rq->prev_clock_raw = now;
698 rq->clock = clock;
b04a0f4c 699}
20d315d4 700
b04a0f4c
IM
701static void update_rq_clock(struct rq *rq)
702{
703 if (likely(smp_processor_id() == cpu_of(rq)))
704 __update_rq_clock(rq);
20d315d4
IM
705}
706
674311d5
NP
707/*
708 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 709 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
710 *
711 * The domain tree of any CPU may only be accessed from within
712 * preempt-disabled sections.
713 */
48f24c4d
IM
714#define for_each_domain(cpu, __sd) \
715 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
716
717#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
718#define this_rq() (&__get_cpu_var(runqueues))
719#define task_rq(p) cpu_rq(task_cpu(p))
720#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
721
bf5c91ba
IM
722/*
723 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
724 */
725#ifdef CONFIG_SCHED_DEBUG
726# define const_debug __read_mostly
727#else
728# define const_debug static const
729#endif
730
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
983ed7a6 764static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
765{
766 filp->private_data = inode->i_private;
767 return 0;
768}
769
770static ssize_t
771sched_feat_read(struct file *filp, char __user *ubuf,
772 size_t cnt, loff_t *ppos)
773{
774 char *buf;
775 int r = 0;
776 int len = 0;
777 int i;
778
779 for (i = 0; sched_feat_names[i]; i++) {
780 len += strlen(sched_feat_names[i]);
781 len += 4;
782 }
783
784 buf = kmalloc(len + 2, GFP_KERNEL);
785 if (!buf)
786 return -ENOMEM;
787
788 for (i = 0; sched_feat_names[i]; i++) {
789 if (sysctl_sched_features & (1UL << i))
790 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
791 else
c24b7c52 792 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
793 }
794
795 r += sprintf(buf + r, "\n");
796 WARN_ON(r >= len + 2);
797
798 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
799
800 kfree(buf);
801
802 return r;
803}
804
805static ssize_t
806sched_feat_write(struct file *filp, const char __user *ubuf,
807 size_t cnt, loff_t *ppos)
808{
809 char buf[64];
810 char *cmp = buf;
811 int neg = 0;
812 int i;
813
814 if (cnt > 63)
815 cnt = 63;
816
817 if (copy_from_user(&buf, ubuf, cnt))
818 return -EFAULT;
819
820 buf[cnt] = 0;
821
c24b7c52 822 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
823 neg = 1;
824 cmp += 3;
825 }
826
827 for (i = 0; sched_feat_names[i]; i++) {
828 int len = strlen(sched_feat_names[i]);
829
830 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
831 if (neg)
832 sysctl_sched_features &= ~(1UL << i);
833 else
834 sysctl_sched_features |= (1UL << i);
835 break;
836 }
837 }
838
839 if (!sched_feat_names[i])
840 return -EINVAL;
841
842 filp->f_pos += cnt;
843
844 return cnt;
845}
846
847static struct file_operations sched_feat_fops = {
848 .open = sched_feat_open,
849 .read = sched_feat_read,
850 .write = sched_feat_write,
851};
852
853static __init int sched_init_debug(void)
854{
f00b45c1
PZ
855 debugfs_create_file("sched_features", 0644, NULL, NULL,
856 &sched_feat_fops);
857
858 return 0;
859}
860late_initcall(sched_init_debug);
861
862#endif
863
864#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 865
b82d9fdd
PZ
866/*
867 * Number of tasks to iterate in a single balance run.
868 * Limited because this is done with IRQs disabled.
869 */
870const_debug unsigned int sysctl_sched_nr_migrate = 32;
871
fa85ae24 872/*
9f0c1e56 873 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
874 * default: 1s
875 */
9f0c1e56 876unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 877
6892b75e
IM
878static __read_mostly int scheduler_running;
879
9f0c1e56
PZ
880/*
881 * part of the period that we allow rt tasks to run in us.
882 * default: 0.95s
883 */
884int sysctl_sched_rt_runtime = 950000;
fa85ae24 885
d0b27fa7
PZ
886static inline u64 global_rt_period(void)
887{
888 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
889}
890
891static inline u64 global_rt_runtime(void)
892{
893 if (sysctl_sched_rt_period < 0)
894 return RUNTIME_INF;
895
896 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
897}
fa85ae24 898
690229a0 899unsigned long long time_sync_thresh = 100000;
27ec4407
IM
900
901static DEFINE_PER_CPU(unsigned long long, time_offset);
902static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
903
e436d800 904/*
27ec4407
IM
905 * Global lock which we take every now and then to synchronize
906 * the CPUs time. This method is not warp-safe, but it's good
907 * enough to synchronize slowly diverging time sources and thus
908 * it's good enough for tracing:
e436d800 909 */
27ec4407
IM
910static DEFINE_SPINLOCK(time_sync_lock);
911static unsigned long long prev_global_time;
912
913static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
914{
915 unsigned long flags;
916
917 spin_lock_irqsave(&time_sync_lock, flags);
918
919 if (time < prev_global_time) {
920 per_cpu(time_offset, cpu) += prev_global_time - time;
921 time = prev_global_time;
922 } else {
923 prev_global_time = time;
924 }
925
926 spin_unlock_irqrestore(&time_sync_lock, flags);
927
928 return time;
929}
930
931static unsigned long long __cpu_clock(int cpu)
e436d800 932{
e436d800
IM
933 unsigned long long now;
934 unsigned long flags;
b04a0f4c 935 struct rq *rq;
e436d800 936
8ced5f69
IM
937 /*
938 * Only call sched_clock() if the scheduler has already been
939 * initialized (some code might call cpu_clock() very early):
940 */
6892b75e
IM
941 if (unlikely(!scheduler_running))
942 return 0;
943
944 local_irq_save(flags);
945 rq = cpu_rq(cpu);
946 update_rq_clock(rq);
b04a0f4c 947 now = rq->clock;
2cd4d0ea 948 local_irq_restore(flags);
e436d800
IM
949
950 return now;
951}
27ec4407
IM
952
953/*
954 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
955 * clock constructed from sched_clock():
956 */
957unsigned long long cpu_clock(int cpu)
958{
959 unsigned long long prev_cpu_time, time, delta_time;
960
961 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
962 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
963 delta_time = time-prev_cpu_time;
964
965 if (unlikely(delta_time > time_sync_thresh))
966 time = __sync_cpu_clock(time, cpu);
967
968 return time;
969}
a58f6f25 970EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 971
1da177e4 972#ifndef prepare_arch_switch
4866cde0
NP
973# define prepare_arch_switch(next) do { } while (0)
974#endif
975#ifndef finish_arch_switch
976# define finish_arch_switch(prev) do { } while (0)
977#endif
978
051a1d1a
DA
979static inline int task_current(struct rq *rq, struct task_struct *p)
980{
981 return rq->curr == p;
982}
983
4866cde0 984#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 985static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 986{
051a1d1a 987 return task_current(rq, p);
4866cde0
NP
988}
989
70b97a7f 990static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
991{
992}
993
70b97a7f 994static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 995{
da04c035
IM
996#ifdef CONFIG_DEBUG_SPINLOCK
997 /* this is a valid case when another task releases the spinlock */
998 rq->lock.owner = current;
999#endif
8a25d5de
IM
1000 /*
1001 * If we are tracking spinlock dependencies then we have to
1002 * fix up the runqueue lock - which gets 'carried over' from
1003 * prev into current:
1004 */
1005 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1006
4866cde0
NP
1007 spin_unlock_irq(&rq->lock);
1008}
1009
1010#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1011static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
1012{
1013#ifdef CONFIG_SMP
1014 return p->oncpu;
1015#else
051a1d1a 1016 return task_current(rq, p);
4866cde0
NP
1017#endif
1018}
1019
70b97a7f 1020static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1021{
1022#ifdef CONFIG_SMP
1023 /*
1024 * We can optimise this out completely for !SMP, because the
1025 * SMP rebalancing from interrupt is the only thing that cares
1026 * here.
1027 */
1028 next->oncpu = 1;
1029#endif
1030#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1031 spin_unlock_irq(&rq->lock);
1032#else
1033 spin_unlock(&rq->lock);
1034#endif
1035}
1036
70b97a7f 1037static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1038{
1039#ifdef CONFIG_SMP
1040 /*
1041 * After ->oncpu is cleared, the task can be moved to a different CPU.
1042 * We must ensure this doesn't happen until the switch is completely
1043 * finished.
1044 */
1045 smp_wmb();
1046 prev->oncpu = 0;
1047#endif
1048#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1049 local_irq_enable();
1da177e4 1050#endif
4866cde0
NP
1051}
1052#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1053
b29739f9
IM
1054/*
1055 * __task_rq_lock - lock the runqueue a given task resides on.
1056 * Must be called interrupts disabled.
1057 */
70b97a7f 1058static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1059 __acquires(rq->lock)
1060{
3a5c359a
AK
1061 for (;;) {
1062 struct rq *rq = task_rq(p);
1063 spin_lock(&rq->lock);
1064 if (likely(rq == task_rq(p)))
1065 return rq;
b29739f9 1066 spin_unlock(&rq->lock);
b29739f9 1067 }
b29739f9
IM
1068}
1069
1da177e4
LT
1070/*
1071 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 1072 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
1073 * explicitly disabling preemption.
1074 */
70b97a7f 1075static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
1076 __acquires(rq->lock)
1077{
70b97a7f 1078 struct rq *rq;
1da177e4 1079
3a5c359a
AK
1080 for (;;) {
1081 local_irq_save(*flags);
1082 rq = task_rq(p);
1083 spin_lock(&rq->lock);
1084 if (likely(rq == task_rq(p)))
1085 return rq;
1da177e4 1086 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1087 }
1da177e4
LT
1088}
1089
a9957449 1090static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1091 __releases(rq->lock)
1092{
1093 spin_unlock(&rq->lock);
1094}
1095
70b97a7f 1096static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1097 __releases(rq->lock)
1098{
1099 spin_unlock_irqrestore(&rq->lock, *flags);
1100}
1101
1da177e4 1102/*
cc2a73b5 1103 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1104 */
a9957449 1105static struct rq *this_rq_lock(void)
1da177e4
LT
1106 __acquires(rq->lock)
1107{
70b97a7f 1108 struct rq *rq;
1da177e4
LT
1109
1110 local_irq_disable();
1111 rq = this_rq();
1112 spin_lock(&rq->lock);
1113
1114 return rq;
1115}
1116
1b9f19c2 1117/*
2aa44d05 1118 * We are going deep-idle (irqs are disabled):
1b9f19c2 1119 */
2aa44d05 1120void sched_clock_idle_sleep_event(void)
1b9f19c2 1121{
2aa44d05
IM
1122 struct rq *rq = cpu_rq(smp_processor_id());
1123
d478c2cf 1124 WARN_ON(!irqs_disabled());
2aa44d05
IM
1125 spin_lock(&rq->lock);
1126 __update_rq_clock(rq);
1127 spin_unlock(&rq->lock);
1128 rq->clock_deep_idle_events++;
1129}
1130EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
1131
1132/*
1133 * We just idled delta nanoseconds (called with irqs disabled):
1134 */
1135void sched_clock_idle_wakeup_event(u64 delta_ns)
1136{
1137 struct rq *rq = cpu_rq(smp_processor_id());
1138 u64 now = sched_clock();
1b9f19c2 1139
d478c2cf 1140 WARN_ON(!irqs_disabled());
2aa44d05
IM
1141 rq->idle_clock += delta_ns;
1142 /*
1143 * Override the previous timestamp and ignore all
1144 * sched_clock() deltas that occured while we idled,
1145 * and use the PM-provided delta_ns to advance the
1146 * rq clock:
1147 */
1148 spin_lock(&rq->lock);
1149 rq->prev_clock_raw = now;
1150 rq->clock += delta_ns;
1151 spin_unlock(&rq->lock);
782daeee 1152 touch_softlockup_watchdog();
1b9f19c2 1153}
2aa44d05 1154EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 1155
8f4d37ec
PZ
1156static void __resched_task(struct task_struct *p, int tif_bit);
1157
1158static inline void resched_task(struct task_struct *p)
1159{
1160 __resched_task(p, TIF_NEED_RESCHED);
1161}
1162
1163#ifdef CONFIG_SCHED_HRTICK
1164/*
1165 * Use HR-timers to deliver accurate preemption points.
1166 *
1167 * Its all a bit involved since we cannot program an hrt while holding the
1168 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1169 * reschedule event.
1170 *
1171 * When we get rescheduled we reprogram the hrtick_timer outside of the
1172 * rq->lock.
1173 */
1174static inline void resched_hrt(struct task_struct *p)
1175{
1176 __resched_task(p, TIF_HRTICK_RESCHED);
1177}
1178
1179static inline void resched_rq(struct rq *rq)
1180{
1181 unsigned long flags;
1182
1183 spin_lock_irqsave(&rq->lock, flags);
1184 resched_task(rq->curr);
1185 spin_unlock_irqrestore(&rq->lock, flags);
1186}
1187
1188enum {
1189 HRTICK_SET, /* re-programm hrtick_timer */
1190 HRTICK_RESET, /* not a new slice */
b328ca18 1191 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1192};
1193
1194/*
1195 * Use hrtick when:
1196 * - enabled by features
1197 * - hrtimer is actually high res
1198 */
1199static inline int hrtick_enabled(struct rq *rq)
1200{
1201 if (!sched_feat(HRTICK))
1202 return 0;
b328ca18
PZ
1203 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1204 return 0;
8f4d37ec
PZ
1205 return hrtimer_is_hres_active(&rq->hrtick_timer);
1206}
1207
1208/*
1209 * Called to set the hrtick timer state.
1210 *
1211 * called with rq->lock held and irqs disabled
1212 */
1213static void hrtick_start(struct rq *rq, u64 delay, int reset)
1214{
1215 assert_spin_locked(&rq->lock);
1216
1217 /*
1218 * preempt at: now + delay
1219 */
1220 rq->hrtick_expire =
1221 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1222 /*
1223 * indicate we need to program the timer
1224 */
1225 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1226 if (reset)
1227 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1228
1229 /*
1230 * New slices are called from the schedule path and don't need a
1231 * forced reschedule.
1232 */
1233 if (reset)
1234 resched_hrt(rq->curr);
1235}
1236
1237static void hrtick_clear(struct rq *rq)
1238{
1239 if (hrtimer_active(&rq->hrtick_timer))
1240 hrtimer_cancel(&rq->hrtick_timer);
1241}
1242
1243/*
1244 * Update the timer from the possible pending state.
1245 */
1246static void hrtick_set(struct rq *rq)
1247{
1248 ktime_t time;
1249 int set, reset;
1250 unsigned long flags;
1251
1252 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1253
1254 spin_lock_irqsave(&rq->lock, flags);
1255 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1256 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1257 time = rq->hrtick_expire;
1258 clear_thread_flag(TIF_HRTICK_RESCHED);
1259 spin_unlock_irqrestore(&rq->lock, flags);
1260
1261 if (set) {
1262 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1263 if (reset && !hrtimer_active(&rq->hrtick_timer))
1264 resched_rq(rq);
1265 } else
1266 hrtick_clear(rq);
1267}
1268
1269/*
1270 * High-resolution timer tick.
1271 * Runs from hardirq context with interrupts disabled.
1272 */
1273static enum hrtimer_restart hrtick(struct hrtimer *timer)
1274{
1275 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1276
1277 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1278
1279 spin_lock(&rq->lock);
1280 __update_rq_clock(rq);
1281 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1282 spin_unlock(&rq->lock);
1283
1284 return HRTIMER_NORESTART;
1285}
1286
b328ca18
PZ
1287static void hotplug_hrtick_disable(int cpu)
1288{
1289 struct rq *rq = cpu_rq(cpu);
1290 unsigned long flags;
1291
1292 spin_lock_irqsave(&rq->lock, flags);
1293 rq->hrtick_flags = 0;
1294 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1295 spin_unlock_irqrestore(&rq->lock, flags);
1296
1297 hrtick_clear(rq);
1298}
1299
1300static void hotplug_hrtick_enable(int cpu)
1301{
1302 struct rq *rq = cpu_rq(cpu);
1303 unsigned long flags;
1304
1305 spin_lock_irqsave(&rq->lock, flags);
1306 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1307 spin_unlock_irqrestore(&rq->lock, flags);
1308}
1309
1310static int
1311hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1312{
1313 int cpu = (int)(long)hcpu;
1314
1315 switch (action) {
1316 case CPU_UP_CANCELED:
1317 case CPU_UP_CANCELED_FROZEN:
1318 case CPU_DOWN_PREPARE:
1319 case CPU_DOWN_PREPARE_FROZEN:
1320 case CPU_DEAD:
1321 case CPU_DEAD_FROZEN:
1322 hotplug_hrtick_disable(cpu);
1323 return NOTIFY_OK;
1324
1325 case CPU_UP_PREPARE:
1326 case CPU_UP_PREPARE_FROZEN:
1327 case CPU_DOWN_FAILED:
1328 case CPU_DOWN_FAILED_FROZEN:
1329 case CPU_ONLINE:
1330 case CPU_ONLINE_FROZEN:
1331 hotplug_hrtick_enable(cpu);
1332 return NOTIFY_OK;
1333 }
1334
1335 return NOTIFY_DONE;
1336}
1337
1338static void init_hrtick(void)
1339{
1340 hotcpu_notifier(hotplug_hrtick, 0);
1341}
1342
1343static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1344{
1345 rq->hrtick_flags = 0;
1346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1347 rq->hrtick_timer.function = hrtick;
1348 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1349}
1350
1351void hrtick_resched(void)
1352{
1353 struct rq *rq;
1354 unsigned long flags;
1355
1356 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1357 return;
1358
1359 local_irq_save(flags);
1360 rq = cpu_rq(smp_processor_id());
1361 hrtick_set(rq);
1362 local_irq_restore(flags);
1363}
1364#else
1365static inline void hrtick_clear(struct rq *rq)
1366{
1367}
1368
1369static inline void hrtick_set(struct rq *rq)
1370{
1371}
1372
1373static inline void init_rq_hrtick(struct rq *rq)
1374{
1375}
1376
1377void hrtick_resched(void)
1378{
1379}
b328ca18
PZ
1380
1381static inline void init_hrtick(void)
1382{
1383}
8f4d37ec
PZ
1384#endif
1385
c24d20db
IM
1386/*
1387 * resched_task - mark a task 'to be rescheduled now'.
1388 *
1389 * On UP this means the setting of the need_resched flag, on SMP it
1390 * might also involve a cross-CPU call to trigger the scheduler on
1391 * the target CPU.
1392 */
1393#ifdef CONFIG_SMP
1394
1395#ifndef tsk_is_polling
1396#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1397#endif
1398
8f4d37ec 1399static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1400{
1401 int cpu;
1402
1403 assert_spin_locked(&task_rq(p)->lock);
1404
8f4d37ec 1405 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1406 return;
1407
8f4d37ec 1408 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1409
1410 cpu = task_cpu(p);
1411 if (cpu == smp_processor_id())
1412 return;
1413
1414 /* NEED_RESCHED must be visible before we test polling */
1415 smp_mb();
1416 if (!tsk_is_polling(p))
1417 smp_send_reschedule(cpu);
1418}
1419
1420static void resched_cpu(int cpu)
1421{
1422 struct rq *rq = cpu_rq(cpu);
1423 unsigned long flags;
1424
1425 if (!spin_trylock_irqsave(&rq->lock, flags))
1426 return;
1427 resched_task(cpu_curr(cpu));
1428 spin_unlock_irqrestore(&rq->lock, flags);
1429}
06d8308c
TG
1430
1431#ifdef CONFIG_NO_HZ
1432/*
1433 * When add_timer_on() enqueues a timer into the timer wheel of an
1434 * idle CPU then this timer might expire before the next timer event
1435 * which is scheduled to wake up that CPU. In case of a completely
1436 * idle system the next event might even be infinite time into the
1437 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1438 * leaves the inner idle loop so the newly added timer is taken into
1439 * account when the CPU goes back to idle and evaluates the timer
1440 * wheel for the next timer event.
1441 */
1442void wake_up_idle_cpu(int cpu)
1443{
1444 struct rq *rq = cpu_rq(cpu);
1445
1446 if (cpu == smp_processor_id())
1447 return;
1448
1449 /*
1450 * This is safe, as this function is called with the timer
1451 * wheel base lock of (cpu) held. When the CPU is on the way
1452 * to idle and has not yet set rq->curr to idle then it will
1453 * be serialized on the timer wheel base lock and take the new
1454 * timer into account automatically.
1455 */
1456 if (rq->curr != rq->idle)
1457 return;
1458
1459 /*
1460 * We can set TIF_RESCHED on the idle task of the other CPU
1461 * lockless. The worst case is that the other CPU runs the
1462 * idle task through an additional NOOP schedule()
1463 */
1464 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1465
1466 /* NEED_RESCHED must be visible before we test polling */
1467 smp_mb();
1468 if (!tsk_is_polling(rq->idle))
1469 smp_send_reschedule(cpu);
1470}
1471#endif
1472
c24d20db 1473#else
8f4d37ec 1474static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1475{
1476 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1477 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1478}
1479#endif
1480
45bf76df
IM
1481#if BITS_PER_LONG == 32
1482# define WMULT_CONST (~0UL)
1483#else
1484# define WMULT_CONST (1UL << 32)
1485#endif
1486
1487#define WMULT_SHIFT 32
1488
194081eb
IM
1489/*
1490 * Shift right and round:
1491 */
cf2ab469 1492#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1493
8f1bc385
PZ
1494/*
1495 * delta *= weight / lw
1496 */
cb1c4fc9 1497static unsigned long
45bf76df
IM
1498calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1499 struct load_weight *lw)
1500{
1501 u64 tmp;
1502
e05510d0
PZ
1503 if (!lw->inv_weight)
1504 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1505
1506 tmp = (u64)delta_exec * weight;
1507 /*
1508 * Check whether we'd overflow the 64-bit multiplication:
1509 */
194081eb 1510 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1511 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1512 WMULT_SHIFT/2);
1513 else
cf2ab469 1514 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1515
ecf691da 1516 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1517}
1518
1091985b 1519static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1520{
1521 lw->weight += inc;
e89996ae 1522 lw->inv_weight = 0;
45bf76df
IM
1523}
1524
1091985b 1525static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1526{
1527 lw->weight -= dec;
e89996ae 1528 lw->inv_weight = 0;
45bf76df
IM
1529}
1530
2dd73a4f
PW
1531/*
1532 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1533 * of tasks with abnormal "nice" values across CPUs the contribution that
1534 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1535 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1536 * scaled version of the new time slice allocation that they receive on time
1537 * slice expiry etc.
1538 */
1539
dd41f596
IM
1540#define WEIGHT_IDLEPRIO 2
1541#define WMULT_IDLEPRIO (1 << 31)
1542
1543/*
1544 * Nice levels are multiplicative, with a gentle 10% change for every
1545 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1546 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1547 * that remained on nice 0.
1548 *
1549 * The "10% effect" is relative and cumulative: from _any_ nice level,
1550 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1551 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1552 * If a task goes up by ~10% and another task goes down by ~10% then
1553 * the relative distance between them is ~25%.)
dd41f596
IM
1554 */
1555static const int prio_to_weight[40] = {
254753dc
IM
1556 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1557 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1558 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1559 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1560 /* 0 */ 1024, 820, 655, 526, 423,
1561 /* 5 */ 335, 272, 215, 172, 137,
1562 /* 10 */ 110, 87, 70, 56, 45,
1563 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1564};
1565
5714d2de
IM
1566/*
1567 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1568 *
1569 * In cases where the weight does not change often, we can use the
1570 * precalculated inverse to speed up arithmetics by turning divisions
1571 * into multiplications:
1572 */
dd41f596 1573static const u32 prio_to_wmult[40] = {
254753dc
IM
1574 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1575 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1576 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1577 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1578 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1579 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1580 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1581 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1582};
2dd73a4f 1583
dd41f596
IM
1584static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1585
1586/*
1587 * runqueue iterator, to support SMP load-balancing between different
1588 * scheduling classes, without having to expose their internal data
1589 * structures to the load-balancing proper:
1590 */
1591struct rq_iterator {
1592 void *arg;
1593 struct task_struct *(*start)(void *);
1594 struct task_struct *(*next)(void *);
1595};
1596
e1d1484f
PW
1597#ifdef CONFIG_SMP
1598static unsigned long
1599balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1600 unsigned long max_load_move, struct sched_domain *sd,
1601 enum cpu_idle_type idle, int *all_pinned,
1602 int *this_best_prio, struct rq_iterator *iterator);
1603
1604static int
1605iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1606 struct sched_domain *sd, enum cpu_idle_type idle,
1607 struct rq_iterator *iterator);
e1d1484f 1608#endif
dd41f596 1609
d842de87
SV
1610#ifdef CONFIG_CGROUP_CPUACCT
1611static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1612#else
1613static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1614#endif
1615
18d95a28
PZ
1616static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1617{
1618 update_load_add(&rq->load, load);
1619}
1620
1621static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1622{
1623 update_load_sub(&rq->load, load);
1624}
1625
e7693a36
GH
1626#ifdef CONFIG_SMP
1627static unsigned long source_load(int cpu, int type);
1628static unsigned long target_load(int cpu, int type);
1629static unsigned long cpu_avg_load_per_task(int cpu);
1630static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1631
1632#ifdef CONFIG_FAIR_GROUP_SCHED
1633
1634/*
1635 * Group load balancing.
1636 *
1637 * We calculate a few balance domain wide aggregate numbers; load and weight.
1638 * Given the pictures below, and assuming each item has equal weight:
1639 *
1640 * root 1 - thread
1641 * / | \ A - group
1642 * A 1 B
1643 * /|\ / \
1644 * C 2 D 3 4
1645 * | |
1646 * 5 6
1647 *
1648 * load:
1649 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1650 * which equals 1/9-th of the total load.
1651 *
1652 * shares:
1653 * The weight of this group on the selected cpus.
1654 *
1655 * rq_weight:
1656 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1657 * B would get 2.
1658 *
1659 * task_weight:
1660 * Part of the rq_weight contributed by tasks; all groups except B would
1661 * get 1, B gets 2.
1662 */
1663
1664static inline struct aggregate_struct *
1665aggregate(struct task_group *tg, struct sched_domain *sd)
1666{
1667 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1668}
1669
1670typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1671
1672/*
1673 * Iterate the full tree, calling @down when first entering a node and @up when
1674 * leaving it for the final time.
1675 */
1676static
1677void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1678 struct sched_domain *sd)
1679{
1680 struct task_group *parent, *child;
1681
1682 rcu_read_lock();
1683 parent = &root_task_group;
1684down:
1685 (*down)(parent, sd);
1686 list_for_each_entry_rcu(child, &parent->children, siblings) {
1687 parent = child;
1688 goto down;
1689
1690up:
1691 continue;
1692 }
1693 (*up)(parent, sd);
1694
1695 child = parent;
1696 parent = parent->parent;
1697 if (parent)
1698 goto up;
1699 rcu_read_unlock();
1700}
1701
1702/*
1703 * Calculate the aggregate runqueue weight.
1704 */
1705static
1706void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1707{
1708 unsigned long rq_weight = 0;
1709 unsigned long task_weight = 0;
1710 int i;
1711
1712 for_each_cpu_mask(i, sd->span) {
1713 rq_weight += tg->cfs_rq[i]->load.weight;
1714 task_weight += tg->cfs_rq[i]->task_weight;
1715 }
1716
1717 aggregate(tg, sd)->rq_weight = rq_weight;
1718 aggregate(tg, sd)->task_weight = task_weight;
1719}
1720
18d95a28
PZ
1721/*
1722 * Compute the weight of this group on the given cpus.
1723 */
1724static
1725void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1726{
1727 unsigned long shares = 0;
1728 int i;
1729
18d95a28
PZ
1730 for_each_cpu_mask(i, sd->span)
1731 shares += tg->cfs_rq[i]->shares;
1732
3f5087a2
PZ
1733 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1734 shares = tg->shares;
18d95a28
PZ
1735
1736 aggregate(tg, sd)->shares = shares;
1737}
1738
1739/*
1740 * Compute the load fraction assigned to this group, relies on the aggregate
1741 * weight and this group's parent's load, i.e. top-down.
1742 */
1743static
1744void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1745{
1746 unsigned long load;
1747
1748 if (!tg->parent) {
1749 int i;
1750
1751 load = 0;
1752 for_each_cpu_mask(i, sd->span)
1753 load += cpu_rq(i)->load.weight;
1754
1755 } else {
1756 load = aggregate(tg->parent, sd)->load;
1757
1758 /*
1759 * shares is our weight in the parent's rq so
1760 * shares/parent->rq_weight gives our fraction of the load
1761 */
1762 load *= aggregate(tg, sd)->shares;
1763 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1764 }
1765
1766 aggregate(tg, sd)->load = load;
1767}
1768
1769static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1770
1771/*
1772 * Calculate and set the cpu's group shares.
1773 */
1774static void
1775__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1776 int tcpu)
1777{
1778 int boost = 0;
1779 unsigned long shares;
1780 unsigned long rq_weight;
1781
1782 if (!tg->se[tcpu])
1783 return;
1784
1785 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1786
1787 /*
1788 * If there are currently no tasks on the cpu pretend there is one of
1789 * average load so that when a new task gets to run here it will not
1790 * get delayed by group starvation.
1791 */
1792 if (!rq_weight) {
1793 boost = 1;
1794 rq_weight = NICE_0_LOAD;
1795 }
1796
1797 /*
1798 * \Sum shares * rq_weight
1799 * shares = -----------------------
1800 * \Sum rq_weight
1801 *
1802 */
1803 shares = aggregate(tg, sd)->shares * rq_weight;
1804 shares /= aggregate(tg, sd)->rq_weight + 1;
1805
1806 /*
1807 * record the actual number of shares, not the boosted amount.
1808 */
1809 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1810
1811 if (shares < MIN_SHARES)
1812 shares = MIN_SHARES;
cb4ad1ff
MX
1813 else if (shares > MAX_SHARES)
1814 shares = MAX_SHARES;
18d95a28
PZ
1815
1816 __set_se_shares(tg->se[tcpu], shares);
1817}
1818
1819/*
1820 * Re-adjust the weights on the cpu the task came from and on the cpu the
1821 * task went to.
1822 */
1823static void
1824__move_group_shares(struct task_group *tg, struct sched_domain *sd,
1825 int scpu, int dcpu)
1826{
1827 unsigned long shares;
1828
1829 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1830
1831 __update_group_shares_cpu(tg, sd, scpu);
1832 __update_group_shares_cpu(tg, sd, dcpu);
1833
1834 /*
1835 * ensure we never loose shares due to rounding errors in the
1836 * above redistribution.
1837 */
1838 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1839 if (shares)
1840 tg->cfs_rq[dcpu]->shares += shares;
1841}
1842
1843/*
1844 * Because changing a group's shares changes the weight of the super-group
1845 * we need to walk up the tree and change all shares until we hit the root.
1846 */
1847static void
1848move_group_shares(struct task_group *tg, struct sched_domain *sd,
1849 int scpu, int dcpu)
1850{
1851 while (tg) {
1852 __move_group_shares(tg, sd, scpu, dcpu);
1853 tg = tg->parent;
1854 }
1855}
1856
1857static
1858void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1859{
1860 unsigned long shares = aggregate(tg, sd)->shares;
1861 int i;
1862
1863 for_each_cpu_mask(i, sd->span) {
1864 struct rq *rq = cpu_rq(i);
1865 unsigned long flags;
1866
1867 spin_lock_irqsave(&rq->lock, flags);
1868 __update_group_shares_cpu(tg, sd, i);
1869 spin_unlock_irqrestore(&rq->lock, flags);
1870 }
1871
1872 aggregate_group_shares(tg, sd);
1873
1874 /*
1875 * ensure we never loose shares due to rounding errors in the
1876 * above redistribution.
1877 */
1878 shares -= aggregate(tg, sd)->shares;
1879 if (shares) {
1880 tg->cfs_rq[sd->first_cpu]->shares += shares;
1881 aggregate(tg, sd)->shares += shares;
1882 }
1883}
1884
1885/*
1886 * Calculate the accumulative weight and recursive load of each task group
1887 * while walking down the tree.
1888 */
1889static
1890void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1891{
1892 aggregate_group_weight(tg, sd);
1893 aggregate_group_shares(tg, sd);
1894 aggregate_group_load(tg, sd);
1895}
1896
1897/*
1898 * Rebalance the cpu shares while walking back up the tree.
1899 */
1900static
1901void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1902{
1903 aggregate_group_set_shares(tg, sd);
1904}
1905
1906static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1907
1908static void __init init_aggregate(void)
1909{
1910 int i;
1911
1912 for_each_possible_cpu(i)
1913 spin_lock_init(&per_cpu(aggregate_lock, i));
1914}
1915
1916static int get_aggregate(struct sched_domain *sd)
1917{
1918 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1919 return 0;
1920
1921 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1922 return 1;
1923}
1924
1925static void put_aggregate(struct sched_domain *sd)
1926{
1927 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1928}
1929
1930static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1931{
1932 cfs_rq->shares = shares;
1933}
1934
1935#else
1936
1937static inline void init_aggregate(void)
1938{
1939}
1940
1941static inline int get_aggregate(struct sched_domain *sd)
1942{
1943 return 0;
1944}
1945
1946static inline void put_aggregate(struct sched_domain *sd)
1947{
1948}
1949#endif
1950
1951#else /* CONFIG_SMP */
1952
1953#ifdef CONFIG_FAIR_GROUP_SCHED
1954static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1955{
1956}
1957#endif
1958
e7693a36
GH
1959#endif /* CONFIG_SMP */
1960
dd41f596 1961#include "sched_stats.h"
dd41f596 1962#include "sched_idletask.c"
5522d5d5
IM
1963#include "sched_fair.c"
1964#include "sched_rt.c"
dd41f596
IM
1965#ifdef CONFIG_SCHED_DEBUG
1966# include "sched_debug.c"
1967#endif
1968
1969#define sched_class_highest (&rt_sched_class)
1970
18d95a28 1971static void inc_nr_running(struct rq *rq)
9c217245
IM
1972{
1973 rq->nr_running++;
9c217245
IM
1974}
1975
18d95a28 1976static void dec_nr_running(struct rq *rq)
9c217245
IM
1977{
1978 rq->nr_running--;
9c217245
IM
1979}
1980
45bf76df
IM
1981static void set_load_weight(struct task_struct *p)
1982{
1983 if (task_has_rt_policy(p)) {
dd41f596
IM
1984 p->se.load.weight = prio_to_weight[0] * 2;
1985 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1986 return;
1987 }
45bf76df 1988
dd41f596
IM
1989 /*
1990 * SCHED_IDLE tasks get minimal weight:
1991 */
1992 if (p->policy == SCHED_IDLE) {
1993 p->se.load.weight = WEIGHT_IDLEPRIO;
1994 p->se.load.inv_weight = WMULT_IDLEPRIO;
1995 return;
1996 }
71f8bd46 1997
dd41f596
IM
1998 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1999 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
2000}
2001
8159f87e 2002static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 2003{
dd41f596 2004 sched_info_queued(p);
fd390f6a 2005 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 2006 p->se.on_rq = 1;
71f8bd46
IM
2007}
2008
69be72c1 2009static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 2010{
f02231e5 2011 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 2012 p->se.on_rq = 0;
71f8bd46
IM
2013}
2014
14531189 2015/*
dd41f596 2016 * __normal_prio - return the priority that is based on the static prio
14531189 2017 */
14531189
IM
2018static inline int __normal_prio(struct task_struct *p)
2019{
dd41f596 2020 return p->static_prio;
14531189
IM
2021}
2022
b29739f9
IM
2023/*
2024 * Calculate the expected normal priority: i.e. priority
2025 * without taking RT-inheritance into account. Might be
2026 * boosted by interactivity modifiers. Changes upon fork,
2027 * setprio syscalls, and whenever the interactivity
2028 * estimator recalculates.
2029 */
36c8b586 2030static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2031{
2032 int prio;
2033
e05606d3 2034 if (task_has_rt_policy(p))
b29739f9
IM
2035 prio = MAX_RT_PRIO-1 - p->rt_priority;
2036 else
2037 prio = __normal_prio(p);
2038 return prio;
2039}
2040
2041/*
2042 * Calculate the current priority, i.e. the priority
2043 * taken into account by the scheduler. This value might
2044 * be boosted by RT tasks, or might be boosted by
2045 * interactivity modifiers. Will be RT if the task got
2046 * RT-boosted. If not then it returns p->normal_prio.
2047 */
36c8b586 2048static int effective_prio(struct task_struct *p)
b29739f9
IM
2049{
2050 p->normal_prio = normal_prio(p);
2051 /*
2052 * If we are RT tasks or we were boosted to RT priority,
2053 * keep the priority unchanged. Otherwise, update priority
2054 * to the normal priority:
2055 */
2056 if (!rt_prio(p->prio))
2057 return p->normal_prio;
2058 return p->prio;
2059}
2060
1da177e4 2061/*
dd41f596 2062 * activate_task - move a task to the runqueue.
1da177e4 2063 */
dd41f596 2064static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 2065{
d9514f6c 2066 if (task_contributes_to_load(p))
dd41f596 2067 rq->nr_uninterruptible--;
1da177e4 2068
8159f87e 2069 enqueue_task(rq, p, wakeup);
18d95a28 2070 inc_nr_running(rq);
1da177e4
LT
2071}
2072
1da177e4
LT
2073/*
2074 * deactivate_task - remove a task from the runqueue.
2075 */
2e1cb74a 2076static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 2077{
d9514f6c 2078 if (task_contributes_to_load(p))
dd41f596
IM
2079 rq->nr_uninterruptible++;
2080
69be72c1 2081 dequeue_task(rq, p, sleep);
18d95a28 2082 dec_nr_running(rq);
1da177e4
LT
2083}
2084
1da177e4
LT
2085/**
2086 * task_curr - is this task currently executing on a CPU?
2087 * @p: the task in question.
2088 */
36c8b586 2089inline int task_curr(const struct task_struct *p)
1da177e4
LT
2090{
2091 return cpu_curr(task_cpu(p)) == p;
2092}
2093
2dd73a4f
PW
2094/* Used instead of source_load when we know the type == 0 */
2095unsigned long weighted_cpuload(const int cpu)
2096{
495eca49 2097 return cpu_rq(cpu)->load.weight;
dd41f596
IM
2098}
2099
2100static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2101{
6f505b16 2102 set_task_rq(p, cpu);
dd41f596 2103#ifdef CONFIG_SMP
ce96b5ac
DA
2104 /*
2105 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2106 * successfuly executed on another CPU. We must ensure that updates of
2107 * per-task data have been completed by this moment.
2108 */
2109 smp_wmb();
dd41f596 2110 task_thread_info(p)->cpu = cpu;
dd41f596 2111#endif
2dd73a4f
PW
2112}
2113
cb469845
SR
2114static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2115 const struct sched_class *prev_class,
2116 int oldprio, int running)
2117{
2118 if (prev_class != p->sched_class) {
2119 if (prev_class->switched_from)
2120 prev_class->switched_from(rq, p, running);
2121 p->sched_class->switched_to(rq, p, running);
2122 } else
2123 p->sched_class->prio_changed(rq, p, oldprio, running);
2124}
2125
1da177e4 2126#ifdef CONFIG_SMP
c65cc870 2127
cc367732
IM
2128/*
2129 * Is this task likely cache-hot:
2130 */
e7693a36 2131static int
cc367732
IM
2132task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2133{
2134 s64 delta;
2135
f540a608
IM
2136 /*
2137 * Buddy candidates are cache hot:
2138 */
d25ce4cd 2139 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
2140 return 1;
2141
cc367732
IM
2142 if (p->sched_class != &fair_sched_class)
2143 return 0;
2144
6bc1665b
IM
2145 if (sysctl_sched_migration_cost == -1)
2146 return 1;
2147 if (sysctl_sched_migration_cost == 0)
2148 return 0;
2149
cc367732
IM
2150 delta = now - p->se.exec_start;
2151
2152 return delta < (s64)sysctl_sched_migration_cost;
2153}
2154
2155
dd41f596 2156void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2157{
dd41f596
IM
2158 int old_cpu = task_cpu(p);
2159 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2160 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2161 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2162 u64 clock_offset;
dd41f596
IM
2163
2164 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
2165
2166#ifdef CONFIG_SCHEDSTATS
2167 if (p->se.wait_start)
2168 p->se.wait_start -= clock_offset;
dd41f596
IM
2169 if (p->se.sleep_start)
2170 p->se.sleep_start -= clock_offset;
2171 if (p->se.block_start)
2172 p->se.block_start -= clock_offset;
cc367732
IM
2173 if (old_cpu != new_cpu) {
2174 schedstat_inc(p, se.nr_migrations);
2175 if (task_hot(p, old_rq->clock, NULL))
2176 schedstat_inc(p, se.nr_forced2_migrations);
2177 }
6cfb0d5d 2178#endif
2830cf8c
SV
2179 p->se.vruntime -= old_cfsrq->min_vruntime -
2180 new_cfsrq->min_vruntime;
dd41f596
IM
2181
2182 __set_task_cpu(p, new_cpu);
c65cc870
IM
2183}
2184
70b97a7f 2185struct migration_req {
1da177e4 2186 struct list_head list;
1da177e4 2187
36c8b586 2188 struct task_struct *task;
1da177e4
LT
2189 int dest_cpu;
2190
1da177e4 2191 struct completion done;
70b97a7f 2192};
1da177e4
LT
2193
2194/*
2195 * The task's runqueue lock must be held.
2196 * Returns true if you have to wait for migration thread.
2197 */
36c8b586 2198static int
70b97a7f 2199migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2200{
70b97a7f 2201 struct rq *rq = task_rq(p);
1da177e4
LT
2202
2203 /*
2204 * If the task is not on a runqueue (and not running), then
2205 * it is sufficient to simply update the task's cpu field.
2206 */
dd41f596 2207 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2208 set_task_cpu(p, dest_cpu);
2209 return 0;
2210 }
2211
2212 init_completion(&req->done);
1da177e4
LT
2213 req->task = p;
2214 req->dest_cpu = dest_cpu;
2215 list_add(&req->list, &rq->migration_queue);
48f24c4d 2216
1da177e4
LT
2217 return 1;
2218}
2219
2220/*
2221 * wait_task_inactive - wait for a thread to unschedule.
2222 *
2223 * The caller must ensure that the task *will* unschedule sometime soon,
2224 * else this function might spin for a *long* time. This function can't
2225 * be called with interrupts off, or it may introduce deadlock with
2226 * smp_call_function() if an IPI is sent by the same process we are
2227 * waiting to become inactive.
2228 */
36c8b586 2229void wait_task_inactive(struct task_struct *p)
1da177e4
LT
2230{
2231 unsigned long flags;
dd41f596 2232 int running, on_rq;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
2255 while (task_running(rq, p))
2256 cpu_relax();
fa490cfd 2257
3a5c359a
AK
2258 /*
2259 * Ok, time to look more closely! We need the rq
2260 * lock now, to be *sure*. If we're wrong, we'll
2261 * just go back and repeat.
2262 */
2263 rq = task_rq_lock(p, &flags);
2264 running = task_running(rq, p);
2265 on_rq = p->se.on_rq;
2266 task_rq_unlock(rq, &flags);
fa490cfd 2267
3a5c359a
AK
2268 /*
2269 * Was it really running after all now that we
2270 * checked with the proper locks actually held?
2271 *
2272 * Oops. Go back and try again..
2273 */
2274 if (unlikely(running)) {
2275 cpu_relax();
2276 continue;
2277 }
fa490cfd 2278
3a5c359a
AK
2279 /*
2280 * It's not enough that it's not actively running,
2281 * it must be off the runqueue _entirely_, and not
2282 * preempted!
2283 *
2284 * So if it wa still runnable (but just not actively
2285 * running right now), it's preempted, and we should
2286 * yield - it could be a while.
2287 */
2288 if (unlikely(on_rq)) {
2289 schedule_timeout_uninterruptible(1);
2290 continue;
2291 }
fa490cfd 2292
3a5c359a
AK
2293 /*
2294 * Ahh, all good. It wasn't running, and it wasn't
2295 * runnable, which means that it will never become
2296 * running in the future either. We're all done!
2297 */
2298 break;
2299 }
1da177e4
LT
2300}
2301
2302/***
2303 * kick_process - kick a running thread to enter/exit the kernel
2304 * @p: the to-be-kicked thread
2305 *
2306 * Cause a process which is running on another CPU to enter
2307 * kernel-mode, without any delay. (to get signals handled.)
2308 *
2309 * NOTE: this function doesnt have to take the runqueue lock,
2310 * because all it wants to ensure is that the remote task enters
2311 * the kernel. If the IPI races and the task has been migrated
2312 * to another CPU then no harm is done and the purpose has been
2313 * achieved as well.
2314 */
36c8b586 2315void kick_process(struct task_struct *p)
1da177e4
LT
2316{
2317 int cpu;
2318
2319 preempt_disable();
2320 cpu = task_cpu(p);
2321 if ((cpu != smp_processor_id()) && task_curr(p))
2322 smp_send_reschedule(cpu);
2323 preempt_enable();
2324}
2325
2326/*
2dd73a4f
PW
2327 * Return a low guess at the load of a migration-source cpu weighted
2328 * according to the scheduling class and "nice" value.
1da177e4
LT
2329 *
2330 * We want to under-estimate the load of migration sources, to
2331 * balance conservatively.
2332 */
a9957449 2333static unsigned long source_load(int cpu, int type)
1da177e4 2334{
70b97a7f 2335 struct rq *rq = cpu_rq(cpu);
dd41f596 2336 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2337
3b0bd9bc 2338 if (type == 0)
dd41f596 2339 return total;
b910472d 2340
dd41f596 2341 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2342}
2343
2344/*
2dd73a4f
PW
2345 * Return a high guess at the load of a migration-target cpu weighted
2346 * according to the scheduling class and "nice" value.
1da177e4 2347 */
a9957449 2348static unsigned long target_load(int cpu, int type)
1da177e4 2349{
70b97a7f 2350 struct rq *rq = cpu_rq(cpu);
dd41f596 2351 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2352
7897986b 2353 if (type == 0)
dd41f596 2354 return total;
3b0bd9bc 2355
dd41f596 2356 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2357}
2358
2359/*
2360 * Return the average load per task on the cpu's run queue
2361 */
e7693a36 2362static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2363{
70b97a7f 2364 struct rq *rq = cpu_rq(cpu);
dd41f596 2365 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2366 unsigned long n = rq->nr_running;
2367
dd41f596 2368 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2369}
2370
147cbb4b
NP
2371/*
2372 * find_idlest_group finds and returns the least busy CPU group within the
2373 * domain.
2374 */
2375static struct sched_group *
2376find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2377{
2378 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2379 unsigned long min_load = ULONG_MAX, this_load = 0;
2380 int load_idx = sd->forkexec_idx;
2381 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2382
2383 do {
2384 unsigned long load, avg_load;
2385 int local_group;
2386 int i;
2387
da5a5522
BD
2388 /* Skip over this group if it has no CPUs allowed */
2389 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2390 continue;
da5a5522 2391
147cbb4b 2392 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2393
2394 /* Tally up the load of all CPUs in the group */
2395 avg_load = 0;
2396
2397 for_each_cpu_mask(i, group->cpumask) {
2398 /* Bias balancing toward cpus of our domain */
2399 if (local_group)
2400 load = source_load(i, load_idx);
2401 else
2402 load = target_load(i, load_idx);
2403
2404 avg_load += load;
2405 }
2406
2407 /* Adjust by relative CPU power of the group */
5517d86b
ED
2408 avg_load = sg_div_cpu_power(group,
2409 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2410
2411 if (local_group) {
2412 this_load = avg_load;
2413 this = group;
2414 } else if (avg_load < min_load) {
2415 min_load = avg_load;
2416 idlest = group;
2417 }
3a5c359a 2418 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2419
2420 if (!idlest || 100*this_load < imbalance*min_load)
2421 return NULL;
2422 return idlest;
2423}
2424
2425/*
0feaece9 2426 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2427 */
95cdf3b7 2428static int
7c16ec58
MT
2429find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2430 cpumask_t *tmp)
147cbb4b
NP
2431{
2432 unsigned long load, min_load = ULONG_MAX;
2433 int idlest = -1;
2434 int i;
2435
da5a5522 2436 /* Traverse only the allowed CPUs */
7c16ec58 2437 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2438
7c16ec58 2439 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2440 load = weighted_cpuload(i);
147cbb4b
NP
2441
2442 if (load < min_load || (load == min_load && i == this_cpu)) {
2443 min_load = load;
2444 idlest = i;
2445 }
2446 }
2447
2448 return idlest;
2449}
2450
476d139c
NP
2451/*
2452 * sched_balance_self: balance the current task (running on cpu) in domains
2453 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2454 * SD_BALANCE_EXEC.
2455 *
2456 * Balance, ie. select the least loaded group.
2457 *
2458 * Returns the target CPU number, or the same CPU if no balancing is needed.
2459 *
2460 * preempt must be disabled.
2461 */
2462static int sched_balance_self(int cpu, int flag)
2463{
2464 struct task_struct *t = current;
2465 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2466
c96d145e 2467 for_each_domain(cpu, tmp) {
9761eea8
IM
2468 /*
2469 * If power savings logic is enabled for a domain, stop there.
2470 */
5c45bf27
SS
2471 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2472 break;
476d139c
NP
2473 if (tmp->flags & flag)
2474 sd = tmp;
c96d145e 2475 }
476d139c
NP
2476
2477 while (sd) {
7c16ec58 2478 cpumask_t span, tmpmask;
476d139c 2479 struct sched_group *group;
1a848870
SS
2480 int new_cpu, weight;
2481
2482 if (!(sd->flags & flag)) {
2483 sd = sd->child;
2484 continue;
2485 }
476d139c
NP
2486
2487 span = sd->span;
2488 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2489 if (!group) {
2490 sd = sd->child;
2491 continue;
2492 }
476d139c 2493
7c16ec58 2494 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2495 if (new_cpu == -1 || new_cpu == cpu) {
2496 /* Now try balancing at a lower domain level of cpu */
2497 sd = sd->child;
2498 continue;
2499 }
476d139c 2500
1a848870 2501 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2502 cpu = new_cpu;
476d139c
NP
2503 sd = NULL;
2504 weight = cpus_weight(span);
2505 for_each_domain(cpu, tmp) {
2506 if (weight <= cpus_weight(tmp->span))
2507 break;
2508 if (tmp->flags & flag)
2509 sd = tmp;
2510 }
2511 /* while loop will break here if sd == NULL */
2512 }
2513
2514 return cpu;
2515}
2516
2517#endif /* CONFIG_SMP */
1da177e4 2518
1da177e4
LT
2519/***
2520 * try_to_wake_up - wake up a thread
2521 * @p: the to-be-woken-up thread
2522 * @state: the mask of task states that can be woken
2523 * @sync: do a synchronous wakeup?
2524 *
2525 * Put it on the run-queue if it's not already there. The "current"
2526 * thread is always on the run-queue (except when the actual
2527 * re-schedule is in progress), and as such you're allowed to do
2528 * the simpler "current->state = TASK_RUNNING" to mark yourself
2529 * runnable without the overhead of this.
2530 *
2531 * returns failure only if the task is already active.
2532 */
36c8b586 2533static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2534{
cc367732 2535 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2536 unsigned long flags;
2537 long old_state;
70b97a7f 2538 struct rq *rq;
1da177e4 2539
b85d0667
IM
2540 if (!sched_feat(SYNC_WAKEUPS))
2541 sync = 0;
2542
04e2f174 2543 smp_wmb();
1da177e4
LT
2544 rq = task_rq_lock(p, &flags);
2545 old_state = p->state;
2546 if (!(old_state & state))
2547 goto out;
2548
dd41f596 2549 if (p->se.on_rq)
1da177e4
LT
2550 goto out_running;
2551
2552 cpu = task_cpu(p);
cc367732 2553 orig_cpu = cpu;
1da177e4
LT
2554 this_cpu = smp_processor_id();
2555
2556#ifdef CONFIG_SMP
2557 if (unlikely(task_running(rq, p)))
2558 goto out_activate;
2559
5d2f5a61
DA
2560 cpu = p->sched_class->select_task_rq(p, sync);
2561 if (cpu != orig_cpu) {
2562 set_task_cpu(p, cpu);
1da177e4
LT
2563 task_rq_unlock(rq, &flags);
2564 /* might preempt at this point */
2565 rq = task_rq_lock(p, &flags);
2566 old_state = p->state;
2567 if (!(old_state & state))
2568 goto out;
dd41f596 2569 if (p->se.on_rq)
1da177e4
LT
2570 goto out_running;
2571
2572 this_cpu = smp_processor_id();
2573 cpu = task_cpu(p);
2574 }
2575
e7693a36
GH
2576#ifdef CONFIG_SCHEDSTATS
2577 schedstat_inc(rq, ttwu_count);
2578 if (cpu == this_cpu)
2579 schedstat_inc(rq, ttwu_local);
2580 else {
2581 struct sched_domain *sd;
2582 for_each_domain(this_cpu, sd) {
2583 if (cpu_isset(cpu, sd->span)) {
2584 schedstat_inc(sd, ttwu_wake_remote);
2585 break;
2586 }
2587 }
2588 }
e7693a36
GH
2589#endif
2590
1da177e4
LT
2591out_activate:
2592#endif /* CONFIG_SMP */
cc367732
IM
2593 schedstat_inc(p, se.nr_wakeups);
2594 if (sync)
2595 schedstat_inc(p, se.nr_wakeups_sync);
2596 if (orig_cpu != cpu)
2597 schedstat_inc(p, se.nr_wakeups_migrate);
2598 if (cpu == this_cpu)
2599 schedstat_inc(p, se.nr_wakeups_local);
2600 else
2601 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2602 update_rq_clock(rq);
dd41f596 2603 activate_task(rq, p, 1);
1da177e4
LT
2604 success = 1;
2605
2606out_running:
4ae7d5ce
IM
2607 check_preempt_curr(rq, p);
2608
1da177e4 2609 p->state = TASK_RUNNING;
9a897c5a
SR
2610#ifdef CONFIG_SMP
2611 if (p->sched_class->task_wake_up)
2612 p->sched_class->task_wake_up(rq, p);
2613#endif
1da177e4
LT
2614out:
2615 task_rq_unlock(rq, &flags);
2616
2617 return success;
2618}
2619
7ad5b3a5 2620int wake_up_process(struct task_struct *p)
1da177e4 2621{
d9514f6c 2622 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2623}
1da177e4
LT
2624EXPORT_SYMBOL(wake_up_process);
2625
7ad5b3a5 2626int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2627{
2628 return try_to_wake_up(p, state, 0);
2629}
2630
1da177e4
LT
2631/*
2632 * Perform scheduler related setup for a newly forked process p.
2633 * p is forked by current.
dd41f596
IM
2634 *
2635 * __sched_fork() is basic setup used by init_idle() too:
2636 */
2637static void __sched_fork(struct task_struct *p)
2638{
dd41f596
IM
2639 p->se.exec_start = 0;
2640 p->se.sum_exec_runtime = 0;
f6cf891c 2641 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2642 p->se.last_wakeup = 0;
2643 p->se.avg_overlap = 0;
6cfb0d5d
IM
2644
2645#ifdef CONFIG_SCHEDSTATS
2646 p->se.wait_start = 0;
dd41f596
IM
2647 p->se.sum_sleep_runtime = 0;
2648 p->se.sleep_start = 0;
dd41f596
IM
2649 p->se.block_start = 0;
2650 p->se.sleep_max = 0;
2651 p->se.block_max = 0;
2652 p->se.exec_max = 0;
eba1ed4b 2653 p->se.slice_max = 0;
dd41f596 2654 p->se.wait_max = 0;
6cfb0d5d 2655#endif
476d139c 2656
fa717060 2657 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2658 p->se.on_rq = 0;
4a55bd5e 2659 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2660
e107be36
AK
2661#ifdef CONFIG_PREEMPT_NOTIFIERS
2662 INIT_HLIST_HEAD(&p->preempt_notifiers);
2663#endif
2664
1da177e4
LT
2665 /*
2666 * We mark the process as running here, but have not actually
2667 * inserted it onto the runqueue yet. This guarantees that
2668 * nobody will actually run it, and a signal or other external
2669 * event cannot wake it up and insert it on the runqueue either.
2670 */
2671 p->state = TASK_RUNNING;
dd41f596
IM
2672}
2673
2674/*
2675 * fork()/clone()-time setup:
2676 */
2677void sched_fork(struct task_struct *p, int clone_flags)
2678{
2679 int cpu = get_cpu();
2680
2681 __sched_fork(p);
2682
2683#ifdef CONFIG_SMP
2684 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2685#endif
02e4bac2 2686 set_task_cpu(p, cpu);
b29739f9
IM
2687
2688 /*
2689 * Make sure we do not leak PI boosting priority to the child:
2690 */
2691 p->prio = current->normal_prio;
2ddbf952
HS
2692 if (!rt_prio(p->prio))
2693 p->sched_class = &fair_sched_class;
b29739f9 2694
52f17b6c 2695#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2696 if (likely(sched_info_on()))
52f17b6c 2697 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2698#endif
d6077cb8 2699#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2700 p->oncpu = 0;
2701#endif
1da177e4 2702#ifdef CONFIG_PREEMPT
4866cde0 2703 /* Want to start with kernel preemption disabled. */
a1261f54 2704 task_thread_info(p)->preempt_count = 1;
1da177e4 2705#endif
476d139c 2706 put_cpu();
1da177e4
LT
2707}
2708
2709/*
2710 * wake_up_new_task - wake up a newly created task for the first time.
2711 *
2712 * This function will do some initial scheduler statistics housekeeping
2713 * that must be done for every newly created context, then puts the task
2714 * on the runqueue and wakes it.
2715 */
7ad5b3a5 2716void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2717{
2718 unsigned long flags;
dd41f596 2719 struct rq *rq;
1da177e4
LT
2720
2721 rq = task_rq_lock(p, &flags);
147cbb4b 2722 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2723 update_rq_clock(rq);
1da177e4
LT
2724
2725 p->prio = effective_prio(p);
2726
b9dca1e0 2727 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2728 activate_task(rq, p, 0);
1da177e4 2729 } else {
1da177e4 2730 /*
dd41f596
IM
2731 * Let the scheduling class do new task startup
2732 * management (if any):
1da177e4 2733 */
ee0827d8 2734 p->sched_class->task_new(rq, p);
18d95a28 2735 inc_nr_running(rq);
1da177e4 2736 }
dd41f596 2737 check_preempt_curr(rq, p);
9a897c5a
SR
2738#ifdef CONFIG_SMP
2739 if (p->sched_class->task_wake_up)
2740 p->sched_class->task_wake_up(rq, p);
2741#endif
dd41f596 2742 task_rq_unlock(rq, &flags);
1da177e4
LT
2743}
2744
e107be36
AK
2745#ifdef CONFIG_PREEMPT_NOTIFIERS
2746
2747/**
421cee29
RD
2748 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2749 * @notifier: notifier struct to register
e107be36
AK
2750 */
2751void preempt_notifier_register(struct preempt_notifier *notifier)
2752{
2753 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2754}
2755EXPORT_SYMBOL_GPL(preempt_notifier_register);
2756
2757/**
2758 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2759 * @notifier: notifier struct to unregister
e107be36
AK
2760 *
2761 * This is safe to call from within a preemption notifier.
2762 */
2763void preempt_notifier_unregister(struct preempt_notifier *notifier)
2764{
2765 hlist_del(&notifier->link);
2766}
2767EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2768
2769static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2770{
2771 struct preempt_notifier *notifier;
2772 struct hlist_node *node;
2773
2774 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2775 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2776}
2777
2778static void
2779fire_sched_out_preempt_notifiers(struct task_struct *curr,
2780 struct task_struct *next)
2781{
2782 struct preempt_notifier *notifier;
2783 struct hlist_node *node;
2784
2785 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2786 notifier->ops->sched_out(notifier, next);
2787}
2788
2789#else
2790
2791static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2792{
2793}
2794
2795static void
2796fire_sched_out_preempt_notifiers(struct task_struct *curr,
2797 struct task_struct *next)
2798{
2799}
2800
2801#endif
2802
4866cde0
NP
2803/**
2804 * prepare_task_switch - prepare to switch tasks
2805 * @rq: the runqueue preparing to switch
421cee29 2806 * @prev: the current task that is being switched out
4866cde0
NP
2807 * @next: the task we are going to switch to.
2808 *
2809 * This is called with the rq lock held and interrupts off. It must
2810 * be paired with a subsequent finish_task_switch after the context
2811 * switch.
2812 *
2813 * prepare_task_switch sets up locking and calls architecture specific
2814 * hooks.
2815 */
e107be36
AK
2816static inline void
2817prepare_task_switch(struct rq *rq, struct task_struct *prev,
2818 struct task_struct *next)
4866cde0 2819{
e107be36 2820 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2821 prepare_lock_switch(rq, next);
2822 prepare_arch_switch(next);
2823}
2824
1da177e4
LT
2825/**
2826 * finish_task_switch - clean up after a task-switch
344babaa 2827 * @rq: runqueue associated with task-switch
1da177e4
LT
2828 * @prev: the thread we just switched away from.
2829 *
4866cde0
NP
2830 * finish_task_switch must be called after the context switch, paired
2831 * with a prepare_task_switch call before the context switch.
2832 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2833 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2834 *
2835 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2836 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2837 * with the lock held can cause deadlocks; see schedule() for
2838 * details.)
2839 */
a9957449 2840static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2841 __releases(rq->lock)
2842{
1da177e4 2843 struct mm_struct *mm = rq->prev_mm;
55a101f8 2844 long prev_state;
1da177e4
LT
2845
2846 rq->prev_mm = NULL;
2847
2848 /*
2849 * A task struct has one reference for the use as "current".
c394cc9f 2850 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2851 * schedule one last time. The schedule call will never return, and
2852 * the scheduled task must drop that reference.
c394cc9f 2853 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2854 * still held, otherwise prev could be scheduled on another cpu, die
2855 * there before we look at prev->state, and then the reference would
2856 * be dropped twice.
2857 * Manfred Spraul <manfred@colorfullife.com>
2858 */
55a101f8 2859 prev_state = prev->state;
4866cde0
NP
2860 finish_arch_switch(prev);
2861 finish_lock_switch(rq, prev);
9a897c5a
SR
2862#ifdef CONFIG_SMP
2863 if (current->sched_class->post_schedule)
2864 current->sched_class->post_schedule(rq);
2865#endif
e8fa1362 2866
e107be36 2867 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2868 if (mm)
2869 mmdrop(mm);
c394cc9f 2870 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2871 /*
2872 * Remove function-return probe instances associated with this
2873 * task and put them back on the free list.
9761eea8 2874 */
c6fd91f0 2875 kprobe_flush_task(prev);
1da177e4 2876 put_task_struct(prev);
c6fd91f0 2877 }
1da177e4
LT
2878}
2879
2880/**
2881 * schedule_tail - first thing a freshly forked thread must call.
2882 * @prev: the thread we just switched away from.
2883 */
36c8b586 2884asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2885 __releases(rq->lock)
2886{
70b97a7f
IM
2887 struct rq *rq = this_rq();
2888
4866cde0
NP
2889 finish_task_switch(rq, prev);
2890#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2891 /* In this case, finish_task_switch does not reenable preemption */
2892 preempt_enable();
2893#endif
1da177e4 2894 if (current->set_child_tid)
b488893a 2895 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2896}
2897
2898/*
2899 * context_switch - switch to the new MM and the new
2900 * thread's register state.
2901 */
dd41f596 2902static inline void
70b97a7f 2903context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2904 struct task_struct *next)
1da177e4 2905{
dd41f596 2906 struct mm_struct *mm, *oldmm;
1da177e4 2907
e107be36 2908 prepare_task_switch(rq, prev, next);
dd41f596
IM
2909 mm = next->mm;
2910 oldmm = prev->active_mm;
9226d125
ZA
2911 /*
2912 * For paravirt, this is coupled with an exit in switch_to to
2913 * combine the page table reload and the switch backend into
2914 * one hypercall.
2915 */
2916 arch_enter_lazy_cpu_mode();
2917
dd41f596 2918 if (unlikely(!mm)) {
1da177e4
LT
2919 next->active_mm = oldmm;
2920 atomic_inc(&oldmm->mm_count);
2921 enter_lazy_tlb(oldmm, next);
2922 } else
2923 switch_mm(oldmm, mm, next);
2924
dd41f596 2925 if (unlikely(!prev->mm)) {
1da177e4 2926 prev->active_mm = NULL;
1da177e4
LT
2927 rq->prev_mm = oldmm;
2928 }
3a5f5e48
IM
2929 /*
2930 * Since the runqueue lock will be released by the next
2931 * task (which is an invalid locking op but in the case
2932 * of the scheduler it's an obvious special-case), so we
2933 * do an early lockdep release here:
2934 */
2935#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2936 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2937#endif
1da177e4
LT
2938
2939 /* Here we just switch the register state and the stack. */
2940 switch_to(prev, next, prev);
2941
dd41f596
IM
2942 barrier();
2943 /*
2944 * this_rq must be evaluated again because prev may have moved
2945 * CPUs since it called schedule(), thus the 'rq' on its stack
2946 * frame will be invalid.
2947 */
2948 finish_task_switch(this_rq(), prev);
1da177e4
LT
2949}
2950
2951/*
2952 * nr_running, nr_uninterruptible and nr_context_switches:
2953 *
2954 * externally visible scheduler statistics: current number of runnable
2955 * threads, current number of uninterruptible-sleeping threads, total
2956 * number of context switches performed since bootup.
2957 */
2958unsigned long nr_running(void)
2959{
2960 unsigned long i, sum = 0;
2961
2962 for_each_online_cpu(i)
2963 sum += cpu_rq(i)->nr_running;
2964
2965 return sum;
2966}
2967
2968unsigned long nr_uninterruptible(void)
2969{
2970 unsigned long i, sum = 0;
2971
0a945022 2972 for_each_possible_cpu(i)
1da177e4
LT
2973 sum += cpu_rq(i)->nr_uninterruptible;
2974
2975 /*
2976 * Since we read the counters lockless, it might be slightly
2977 * inaccurate. Do not allow it to go below zero though:
2978 */
2979 if (unlikely((long)sum < 0))
2980 sum = 0;
2981
2982 return sum;
2983}
2984
2985unsigned long long nr_context_switches(void)
2986{
cc94abfc
SR
2987 int i;
2988 unsigned long long sum = 0;
1da177e4 2989
0a945022 2990 for_each_possible_cpu(i)
1da177e4
LT
2991 sum += cpu_rq(i)->nr_switches;
2992
2993 return sum;
2994}
2995
2996unsigned long nr_iowait(void)
2997{
2998 unsigned long i, sum = 0;
2999
0a945022 3000 for_each_possible_cpu(i)
1da177e4
LT
3001 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3002
3003 return sum;
3004}
3005
db1b1fef
JS
3006unsigned long nr_active(void)
3007{
3008 unsigned long i, running = 0, uninterruptible = 0;
3009
3010 for_each_online_cpu(i) {
3011 running += cpu_rq(i)->nr_running;
3012 uninterruptible += cpu_rq(i)->nr_uninterruptible;
3013 }
3014
3015 if (unlikely((long)uninterruptible < 0))
3016 uninterruptible = 0;
3017
3018 return running + uninterruptible;
3019}
3020
48f24c4d 3021/*
dd41f596
IM
3022 * Update rq->cpu_load[] statistics. This function is usually called every
3023 * scheduler tick (TICK_NSEC).
48f24c4d 3024 */
dd41f596 3025static void update_cpu_load(struct rq *this_rq)
48f24c4d 3026{
495eca49 3027 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3028 int i, scale;
3029
3030 this_rq->nr_load_updates++;
dd41f596
IM
3031
3032 /* Update our load: */
3033 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3034 unsigned long old_load, new_load;
3035
3036 /* scale is effectively 1 << i now, and >> i divides by scale */
3037
3038 old_load = this_rq->cpu_load[i];
3039 new_load = this_load;
a25707f3
IM
3040 /*
3041 * Round up the averaging division if load is increasing. This
3042 * prevents us from getting stuck on 9 if the load is 10, for
3043 * example.
3044 */
3045 if (new_load > old_load)
3046 new_load += scale-1;
dd41f596
IM
3047 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3048 }
48f24c4d
IM
3049}
3050
dd41f596
IM
3051#ifdef CONFIG_SMP
3052
1da177e4
LT
3053/*
3054 * double_rq_lock - safely lock two runqueues
3055 *
3056 * Note this does not disable interrupts like task_rq_lock,
3057 * you need to do so manually before calling.
3058 */
70b97a7f 3059static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3060 __acquires(rq1->lock)
3061 __acquires(rq2->lock)
3062{
054b9108 3063 BUG_ON(!irqs_disabled());
1da177e4
LT
3064 if (rq1 == rq2) {
3065 spin_lock(&rq1->lock);
3066 __acquire(rq2->lock); /* Fake it out ;) */
3067 } else {
c96d145e 3068 if (rq1 < rq2) {
1da177e4
LT
3069 spin_lock(&rq1->lock);
3070 spin_lock(&rq2->lock);
3071 } else {
3072 spin_lock(&rq2->lock);
3073 spin_lock(&rq1->lock);
3074 }
3075 }
6e82a3be
IM
3076 update_rq_clock(rq1);
3077 update_rq_clock(rq2);
1da177e4
LT
3078}
3079
3080/*
3081 * double_rq_unlock - safely unlock two runqueues
3082 *
3083 * Note this does not restore interrupts like task_rq_unlock,
3084 * you need to do so manually after calling.
3085 */
70b97a7f 3086static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3087 __releases(rq1->lock)
3088 __releases(rq2->lock)
3089{
3090 spin_unlock(&rq1->lock);
3091 if (rq1 != rq2)
3092 spin_unlock(&rq2->lock);
3093 else
3094 __release(rq2->lock);
3095}
3096
3097/*
3098 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3099 */
e8fa1362 3100static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
3101 __releases(this_rq->lock)
3102 __acquires(busiest->lock)
3103 __acquires(this_rq->lock)
3104{
e8fa1362
SR
3105 int ret = 0;
3106
054b9108
KK
3107 if (unlikely(!irqs_disabled())) {
3108 /* printk() doesn't work good under rq->lock */
3109 spin_unlock(&this_rq->lock);
3110 BUG_ON(1);
3111 }
1da177e4 3112 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 3113 if (busiest < this_rq) {
1da177e4
LT
3114 spin_unlock(&this_rq->lock);
3115 spin_lock(&busiest->lock);
3116 spin_lock(&this_rq->lock);
e8fa1362 3117 ret = 1;
1da177e4
LT
3118 } else
3119 spin_lock(&busiest->lock);
3120 }
e8fa1362 3121 return ret;
1da177e4
LT
3122}
3123
1da177e4
LT
3124/*
3125 * If dest_cpu is allowed for this process, migrate the task to it.
3126 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3127 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3128 * the cpu_allowed mask is restored.
3129 */
36c8b586 3130static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3131{
70b97a7f 3132 struct migration_req req;
1da177e4 3133 unsigned long flags;
70b97a7f 3134 struct rq *rq;
1da177e4
LT
3135
3136 rq = task_rq_lock(p, &flags);
3137 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3138 || unlikely(cpu_is_offline(dest_cpu)))
3139 goto out;
3140
3141 /* force the process onto the specified CPU */
3142 if (migrate_task(p, dest_cpu, &req)) {
3143 /* Need to wait for migration thread (might exit: take ref). */
3144 struct task_struct *mt = rq->migration_thread;
36c8b586 3145
1da177e4
LT
3146 get_task_struct(mt);
3147 task_rq_unlock(rq, &flags);
3148 wake_up_process(mt);
3149 put_task_struct(mt);
3150 wait_for_completion(&req.done);
36c8b586 3151
1da177e4
LT
3152 return;
3153 }
3154out:
3155 task_rq_unlock(rq, &flags);
3156}
3157
3158/*
476d139c
NP
3159 * sched_exec - execve() is a valuable balancing opportunity, because at
3160 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3161 */
3162void sched_exec(void)
3163{
1da177e4 3164 int new_cpu, this_cpu = get_cpu();
476d139c 3165 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3166 put_cpu();
476d139c
NP
3167 if (new_cpu != this_cpu)
3168 sched_migrate_task(current, new_cpu);
1da177e4
LT
3169}
3170
3171/*
3172 * pull_task - move a task from a remote runqueue to the local runqueue.
3173 * Both runqueues must be locked.
3174 */
dd41f596
IM
3175static void pull_task(struct rq *src_rq, struct task_struct *p,
3176 struct rq *this_rq, int this_cpu)
1da177e4 3177{
2e1cb74a 3178 deactivate_task(src_rq, p, 0);
1da177e4 3179 set_task_cpu(p, this_cpu);
dd41f596 3180 activate_task(this_rq, p, 0);
1da177e4
LT
3181 /*
3182 * Note that idle threads have a prio of MAX_PRIO, for this test
3183 * to be always true for them.
3184 */
dd41f596 3185 check_preempt_curr(this_rq, p);
1da177e4
LT
3186}
3187
3188/*
3189 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3190 */
858119e1 3191static
70b97a7f 3192int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3193 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3194 int *all_pinned)
1da177e4
LT
3195{
3196 /*
3197 * We do not migrate tasks that are:
3198 * 1) running (obviously), or
3199 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3200 * 3) are cache-hot on their current CPU.
3201 */
cc367732
IM
3202 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3203 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3204 return 0;
cc367732 3205 }
81026794
NP
3206 *all_pinned = 0;
3207
cc367732
IM
3208 if (task_running(rq, p)) {
3209 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3210 return 0;
cc367732 3211 }
1da177e4 3212
da84d961
IM
3213 /*
3214 * Aggressive migration if:
3215 * 1) task is cache cold, or
3216 * 2) too many balance attempts have failed.
3217 */
3218
6bc1665b
IM
3219 if (!task_hot(p, rq->clock, sd) ||
3220 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3221#ifdef CONFIG_SCHEDSTATS
cc367732 3222 if (task_hot(p, rq->clock, sd)) {
da84d961 3223 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3224 schedstat_inc(p, se.nr_forced_migrations);
3225 }
da84d961
IM
3226#endif
3227 return 1;
3228 }
3229
cc367732
IM
3230 if (task_hot(p, rq->clock, sd)) {
3231 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3232 return 0;
cc367732 3233 }
1da177e4
LT
3234 return 1;
3235}
3236
e1d1484f
PW
3237static unsigned long
3238balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3239 unsigned long max_load_move, struct sched_domain *sd,
3240 enum cpu_idle_type idle, int *all_pinned,
3241 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3242{
b82d9fdd 3243 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
3244 struct task_struct *p;
3245 long rem_load_move = max_load_move;
1da177e4 3246
e1d1484f 3247 if (max_load_move == 0)
1da177e4
LT
3248 goto out;
3249
81026794
NP
3250 pinned = 1;
3251
1da177e4 3252 /*
dd41f596 3253 * Start the load-balancing iterator:
1da177e4 3254 */
dd41f596
IM
3255 p = iterator->start(iterator->arg);
3256next:
b82d9fdd 3257 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3258 goto out;
50ddd969 3259 /*
b82d9fdd 3260 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
3261 * skip a task if it will be the highest priority task (i.e. smallest
3262 * prio value) on its new queue regardless of its load weight
3263 */
dd41f596
IM
3264 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3265 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 3266 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 3267 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3268 p = iterator->next(iterator->arg);
3269 goto next;
1da177e4
LT
3270 }
3271
dd41f596 3272 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3273 pulled++;
dd41f596 3274 rem_load_move -= p->se.load.weight;
1da177e4 3275
2dd73a4f 3276 /*
b82d9fdd 3277 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3278 */
e1d1484f 3279 if (rem_load_move > 0) {
a4ac01c3
PW
3280 if (p->prio < *this_best_prio)
3281 *this_best_prio = p->prio;
dd41f596
IM
3282 p = iterator->next(iterator->arg);
3283 goto next;
1da177e4
LT
3284 }
3285out:
3286 /*
e1d1484f 3287 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3288 * so we can safely collect pull_task() stats here rather than
3289 * inside pull_task().
3290 */
3291 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3292
3293 if (all_pinned)
3294 *all_pinned = pinned;
e1d1484f
PW
3295
3296 return max_load_move - rem_load_move;
1da177e4
LT
3297}
3298
dd41f596 3299/*
43010659
PW
3300 * move_tasks tries to move up to max_load_move weighted load from busiest to
3301 * this_rq, as part of a balancing operation within domain "sd".
3302 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3303 *
3304 * Called with both runqueues locked.
3305 */
3306static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3307 unsigned long max_load_move,
dd41f596
IM
3308 struct sched_domain *sd, enum cpu_idle_type idle,
3309 int *all_pinned)
3310{
5522d5d5 3311 const struct sched_class *class = sched_class_highest;
43010659 3312 unsigned long total_load_moved = 0;
a4ac01c3 3313 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3314
3315 do {
43010659
PW
3316 total_load_moved +=
3317 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3318 max_load_move - total_load_moved,
a4ac01c3 3319 sd, idle, all_pinned, &this_best_prio);
dd41f596 3320 class = class->next;
43010659 3321 } while (class && max_load_move > total_load_moved);
dd41f596 3322
43010659
PW
3323 return total_load_moved > 0;
3324}
3325
e1d1484f
PW
3326static int
3327iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3328 struct sched_domain *sd, enum cpu_idle_type idle,
3329 struct rq_iterator *iterator)
3330{
3331 struct task_struct *p = iterator->start(iterator->arg);
3332 int pinned = 0;
3333
3334 while (p) {
3335 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3336 pull_task(busiest, p, this_rq, this_cpu);
3337 /*
3338 * Right now, this is only the second place pull_task()
3339 * is called, so we can safely collect pull_task()
3340 * stats here rather than inside pull_task().
3341 */
3342 schedstat_inc(sd, lb_gained[idle]);
3343
3344 return 1;
3345 }
3346 p = iterator->next(iterator->arg);
3347 }
3348
3349 return 0;
3350}
3351
43010659
PW
3352/*
3353 * move_one_task tries to move exactly one task from busiest to this_rq, as
3354 * part of active balancing operations within "domain".
3355 * Returns 1 if successful and 0 otherwise.
3356 *
3357 * Called with both runqueues locked.
3358 */
3359static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3360 struct sched_domain *sd, enum cpu_idle_type idle)
3361{
5522d5d5 3362 const struct sched_class *class;
43010659
PW
3363
3364 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3365 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3366 return 1;
3367
3368 return 0;
dd41f596
IM
3369}
3370
1da177e4
LT
3371/*
3372 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3373 * domain. It calculates and returns the amount of weighted load which
3374 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3375 */
3376static struct sched_group *
3377find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3378 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3379 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3380{
3381 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3382 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3383 unsigned long max_pull;
2dd73a4f
PW
3384 unsigned long busiest_load_per_task, busiest_nr_running;
3385 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3386 int load_idx, group_imb = 0;
5c45bf27
SS
3387#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 int power_savings_balance = 1;
3389 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3390 unsigned long min_nr_running = ULONG_MAX;
3391 struct sched_group *group_min = NULL, *group_leader = NULL;
3392#endif
1da177e4
LT
3393
3394 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3395 busiest_load_per_task = busiest_nr_running = 0;
3396 this_load_per_task = this_nr_running = 0;
d15bcfdb 3397 if (idle == CPU_NOT_IDLE)
7897986b 3398 load_idx = sd->busy_idx;
d15bcfdb 3399 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3400 load_idx = sd->newidle_idx;
3401 else
3402 load_idx = sd->idle_idx;
1da177e4
LT
3403
3404 do {
908a7c1b 3405 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3406 int local_group;
3407 int i;
908a7c1b 3408 int __group_imb = 0;
783609c6 3409 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3410 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3411
3412 local_group = cpu_isset(this_cpu, group->cpumask);
3413
783609c6
SS
3414 if (local_group)
3415 balance_cpu = first_cpu(group->cpumask);
3416
1da177e4 3417 /* Tally up the load of all CPUs in the group */
2dd73a4f 3418 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3419 max_cpu_load = 0;
3420 min_cpu_load = ~0UL;
1da177e4
LT
3421
3422 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3423 struct rq *rq;
3424
3425 if (!cpu_isset(i, *cpus))
3426 continue;
3427
3428 rq = cpu_rq(i);
2dd73a4f 3429
9439aab8 3430 if (*sd_idle && rq->nr_running)
5969fe06
NP
3431 *sd_idle = 0;
3432
1da177e4 3433 /* Bias balancing toward cpus of our domain */
783609c6
SS
3434 if (local_group) {
3435 if (idle_cpu(i) && !first_idle_cpu) {
3436 first_idle_cpu = 1;
3437 balance_cpu = i;
3438 }
3439
a2000572 3440 load = target_load(i, load_idx);
908a7c1b 3441 } else {
a2000572 3442 load = source_load(i, load_idx);
908a7c1b
KC
3443 if (load > max_cpu_load)
3444 max_cpu_load = load;
3445 if (min_cpu_load > load)
3446 min_cpu_load = load;
3447 }
1da177e4
LT
3448
3449 avg_load += load;
2dd73a4f 3450 sum_nr_running += rq->nr_running;
dd41f596 3451 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3452 }
3453
783609c6
SS
3454 /*
3455 * First idle cpu or the first cpu(busiest) in this sched group
3456 * is eligible for doing load balancing at this and above
9439aab8
SS
3457 * domains. In the newly idle case, we will allow all the cpu's
3458 * to do the newly idle load balance.
783609c6 3459 */
9439aab8
SS
3460 if (idle != CPU_NEWLY_IDLE && local_group &&
3461 balance_cpu != this_cpu && balance) {
783609c6
SS
3462 *balance = 0;
3463 goto ret;
3464 }
3465
1da177e4 3466 total_load += avg_load;
5517d86b 3467 total_pwr += group->__cpu_power;
1da177e4
LT
3468
3469 /* Adjust by relative CPU power of the group */
5517d86b
ED
3470 avg_load = sg_div_cpu_power(group,
3471 avg_load * SCHED_LOAD_SCALE);
1da177e4 3472
908a7c1b
KC
3473 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3474 __group_imb = 1;
3475
5517d86b 3476 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3477
1da177e4
LT
3478 if (local_group) {
3479 this_load = avg_load;
3480 this = group;
2dd73a4f
PW
3481 this_nr_running = sum_nr_running;
3482 this_load_per_task = sum_weighted_load;
3483 } else if (avg_load > max_load &&
908a7c1b 3484 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3485 max_load = avg_load;
3486 busiest = group;
2dd73a4f
PW
3487 busiest_nr_running = sum_nr_running;
3488 busiest_load_per_task = sum_weighted_load;
908a7c1b 3489 group_imb = __group_imb;
1da177e4 3490 }
5c45bf27
SS
3491
3492#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3493 /*
3494 * Busy processors will not participate in power savings
3495 * balance.
3496 */
dd41f596
IM
3497 if (idle == CPU_NOT_IDLE ||
3498 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3499 goto group_next;
5c45bf27
SS
3500
3501 /*
3502 * If the local group is idle or completely loaded
3503 * no need to do power savings balance at this domain
3504 */
3505 if (local_group && (this_nr_running >= group_capacity ||
3506 !this_nr_running))
3507 power_savings_balance = 0;
3508
dd41f596 3509 /*
5c45bf27
SS
3510 * If a group is already running at full capacity or idle,
3511 * don't include that group in power savings calculations
dd41f596
IM
3512 */
3513 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3514 || !sum_nr_running)
dd41f596 3515 goto group_next;
5c45bf27 3516
dd41f596 3517 /*
5c45bf27 3518 * Calculate the group which has the least non-idle load.
dd41f596
IM
3519 * This is the group from where we need to pick up the load
3520 * for saving power
3521 */
3522 if ((sum_nr_running < min_nr_running) ||
3523 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3524 first_cpu(group->cpumask) <
3525 first_cpu(group_min->cpumask))) {
dd41f596
IM
3526 group_min = group;
3527 min_nr_running = sum_nr_running;
5c45bf27
SS
3528 min_load_per_task = sum_weighted_load /
3529 sum_nr_running;
dd41f596 3530 }
5c45bf27 3531
dd41f596 3532 /*
5c45bf27 3533 * Calculate the group which is almost near its
dd41f596
IM
3534 * capacity but still has some space to pick up some load
3535 * from other group and save more power
3536 */
3537 if (sum_nr_running <= group_capacity - 1) {
3538 if (sum_nr_running > leader_nr_running ||
3539 (sum_nr_running == leader_nr_running &&
3540 first_cpu(group->cpumask) >
3541 first_cpu(group_leader->cpumask))) {
3542 group_leader = group;
3543 leader_nr_running = sum_nr_running;
3544 }
48f24c4d 3545 }
5c45bf27
SS
3546group_next:
3547#endif
1da177e4
LT
3548 group = group->next;
3549 } while (group != sd->groups);
3550
2dd73a4f 3551 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3552 goto out_balanced;
3553
3554 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3555
3556 if (this_load >= avg_load ||
3557 100*max_load <= sd->imbalance_pct*this_load)
3558 goto out_balanced;
3559
2dd73a4f 3560 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3561 if (group_imb)
3562 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3563
1da177e4
LT
3564 /*
3565 * We're trying to get all the cpus to the average_load, so we don't
3566 * want to push ourselves above the average load, nor do we wish to
3567 * reduce the max loaded cpu below the average load, as either of these
3568 * actions would just result in more rebalancing later, and ping-pong
3569 * tasks around. Thus we look for the minimum possible imbalance.
3570 * Negative imbalances (*we* are more loaded than anyone else) will
3571 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3572 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3573 * appear as very large values with unsigned longs.
3574 */
2dd73a4f
PW
3575 if (max_load <= busiest_load_per_task)
3576 goto out_balanced;
3577
3578 /*
3579 * In the presence of smp nice balancing, certain scenarios can have
3580 * max load less than avg load(as we skip the groups at or below
3581 * its cpu_power, while calculating max_load..)
3582 */
3583 if (max_load < avg_load) {
3584 *imbalance = 0;
3585 goto small_imbalance;
3586 }
0c117f1b
SS
3587
3588 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3589 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3590
1da177e4 3591 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3592 *imbalance = min(max_pull * busiest->__cpu_power,
3593 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3594 / SCHED_LOAD_SCALE;
3595
2dd73a4f
PW
3596 /*
3597 * if *imbalance is less than the average load per runnable task
3598 * there is no gaurantee that any tasks will be moved so we'll have
3599 * a think about bumping its value to force at least one task to be
3600 * moved
3601 */
7fd0d2dd 3602 if (*imbalance < busiest_load_per_task) {
48f24c4d 3603 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3604 unsigned int imbn;
3605
3606small_imbalance:
3607 pwr_move = pwr_now = 0;
3608 imbn = 2;
3609 if (this_nr_running) {
3610 this_load_per_task /= this_nr_running;
3611 if (busiest_load_per_task > this_load_per_task)
3612 imbn = 1;
3613 } else
3614 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3615
dd41f596
IM
3616 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3617 busiest_load_per_task * imbn) {
2dd73a4f 3618 *imbalance = busiest_load_per_task;
1da177e4
LT
3619 return busiest;
3620 }
3621
3622 /*
3623 * OK, we don't have enough imbalance to justify moving tasks,
3624 * however we may be able to increase total CPU power used by
3625 * moving them.
3626 */
3627
5517d86b
ED
3628 pwr_now += busiest->__cpu_power *
3629 min(busiest_load_per_task, max_load);
3630 pwr_now += this->__cpu_power *
3631 min(this_load_per_task, this_load);
1da177e4
LT
3632 pwr_now /= SCHED_LOAD_SCALE;
3633
3634 /* Amount of load we'd subtract */
5517d86b
ED
3635 tmp = sg_div_cpu_power(busiest,
3636 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3637 if (max_load > tmp)
5517d86b 3638 pwr_move += busiest->__cpu_power *
2dd73a4f 3639 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3640
3641 /* Amount of load we'd add */
5517d86b 3642 if (max_load * busiest->__cpu_power <
33859f7f 3643 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3644 tmp = sg_div_cpu_power(this,
3645 max_load * busiest->__cpu_power);
1da177e4 3646 else
5517d86b
ED
3647 tmp = sg_div_cpu_power(this,
3648 busiest_load_per_task * SCHED_LOAD_SCALE);
3649 pwr_move += this->__cpu_power *
3650 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3651 pwr_move /= SCHED_LOAD_SCALE;
3652
3653 /* Move if we gain throughput */
7fd0d2dd
SS
3654 if (pwr_move > pwr_now)
3655 *imbalance = busiest_load_per_task;
1da177e4
LT
3656 }
3657
1da177e4
LT
3658 return busiest;
3659
3660out_balanced:
5c45bf27 3661#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3662 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3663 goto ret;
1da177e4 3664
5c45bf27
SS
3665 if (this == group_leader && group_leader != group_min) {
3666 *imbalance = min_load_per_task;
3667 return group_min;
3668 }
5c45bf27 3669#endif
783609c6 3670ret:
1da177e4
LT
3671 *imbalance = 0;
3672 return NULL;
3673}
3674
3675/*
3676 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3677 */
70b97a7f 3678static struct rq *
d15bcfdb 3679find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3680 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3681{
70b97a7f 3682 struct rq *busiest = NULL, *rq;
2dd73a4f 3683 unsigned long max_load = 0;
1da177e4
LT
3684 int i;
3685
3686 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3687 unsigned long wl;
0a2966b4
CL
3688
3689 if (!cpu_isset(i, *cpus))
3690 continue;
3691
48f24c4d 3692 rq = cpu_rq(i);
dd41f596 3693 wl = weighted_cpuload(i);
2dd73a4f 3694
dd41f596 3695 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3696 continue;
1da177e4 3697
dd41f596
IM
3698 if (wl > max_load) {
3699 max_load = wl;
48f24c4d 3700 busiest = rq;
1da177e4
LT
3701 }
3702 }
3703
3704 return busiest;
3705}
3706
77391d71
NP
3707/*
3708 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3709 * so long as it is large enough.
3710 */
3711#define MAX_PINNED_INTERVAL 512
3712
1da177e4
LT
3713/*
3714 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3715 * tasks if there is an imbalance.
1da177e4 3716 */
70b97a7f 3717static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3718 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3719 int *balance, cpumask_t *cpus)
1da177e4 3720{
43010659 3721 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3722 struct sched_group *group;
1da177e4 3723 unsigned long imbalance;
70b97a7f 3724 struct rq *busiest;
fe2eea3f 3725 unsigned long flags;
18d95a28 3726 int unlock_aggregate;
5969fe06 3727
7c16ec58
MT
3728 cpus_setall(*cpus);
3729
18d95a28
PZ
3730 unlock_aggregate = get_aggregate(sd);
3731
89c4710e
SS
3732 /*
3733 * When power savings policy is enabled for the parent domain, idle
3734 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3735 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3736 * portraying it as CPU_NOT_IDLE.
89c4710e 3737 */
d15bcfdb 3738 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3739 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3740 sd_idle = 1;
1da177e4 3741
2d72376b 3742 schedstat_inc(sd, lb_count[idle]);
1da177e4 3743
0a2966b4
CL
3744redo:
3745 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3746 cpus, balance);
783609c6 3747
06066714 3748 if (*balance == 0)
783609c6 3749 goto out_balanced;
783609c6 3750
1da177e4
LT
3751 if (!group) {
3752 schedstat_inc(sd, lb_nobusyg[idle]);
3753 goto out_balanced;
3754 }
3755
7c16ec58 3756 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3757 if (!busiest) {
3758 schedstat_inc(sd, lb_nobusyq[idle]);
3759 goto out_balanced;
3760 }
3761
db935dbd 3762 BUG_ON(busiest == this_rq);
1da177e4
LT
3763
3764 schedstat_add(sd, lb_imbalance[idle], imbalance);
3765
43010659 3766 ld_moved = 0;
1da177e4
LT
3767 if (busiest->nr_running > 1) {
3768 /*
3769 * Attempt to move tasks. If find_busiest_group has found
3770 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3771 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3772 * correctly treated as an imbalance.
3773 */
fe2eea3f 3774 local_irq_save(flags);
e17224bf 3775 double_rq_lock(this_rq, busiest);
43010659 3776 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3777 imbalance, sd, idle, &all_pinned);
e17224bf 3778 double_rq_unlock(this_rq, busiest);
fe2eea3f 3779 local_irq_restore(flags);
81026794 3780
46cb4b7c
SS
3781 /*
3782 * some other cpu did the load balance for us.
3783 */
43010659 3784 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3785 resched_cpu(this_cpu);
3786
81026794 3787 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3788 if (unlikely(all_pinned)) {
7c16ec58
MT
3789 cpu_clear(cpu_of(busiest), *cpus);
3790 if (!cpus_empty(*cpus))
0a2966b4 3791 goto redo;
81026794 3792 goto out_balanced;
0a2966b4 3793 }
1da177e4 3794 }
81026794 3795
43010659 3796 if (!ld_moved) {
1da177e4
LT
3797 schedstat_inc(sd, lb_failed[idle]);
3798 sd->nr_balance_failed++;
3799
3800 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3801
fe2eea3f 3802 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3803
3804 /* don't kick the migration_thread, if the curr
3805 * task on busiest cpu can't be moved to this_cpu
3806 */
3807 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3808 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3809 all_pinned = 1;
3810 goto out_one_pinned;
3811 }
3812
1da177e4
LT
3813 if (!busiest->active_balance) {
3814 busiest->active_balance = 1;
3815 busiest->push_cpu = this_cpu;
81026794 3816 active_balance = 1;
1da177e4 3817 }
fe2eea3f 3818 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3819 if (active_balance)
1da177e4
LT
3820 wake_up_process(busiest->migration_thread);
3821
3822 /*
3823 * We've kicked active balancing, reset the failure
3824 * counter.
3825 */
39507451 3826 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3827 }
81026794 3828 } else
1da177e4
LT
3829 sd->nr_balance_failed = 0;
3830
81026794 3831 if (likely(!active_balance)) {
1da177e4
LT
3832 /* We were unbalanced, so reset the balancing interval */
3833 sd->balance_interval = sd->min_interval;
81026794
NP
3834 } else {
3835 /*
3836 * If we've begun active balancing, start to back off. This
3837 * case may not be covered by the all_pinned logic if there
3838 * is only 1 task on the busy runqueue (because we don't call
3839 * move_tasks).
3840 */
3841 if (sd->balance_interval < sd->max_interval)
3842 sd->balance_interval *= 2;
1da177e4
LT
3843 }
3844
43010659 3845 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3846 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3847 ld_moved = -1;
3848
3849 goto out;
1da177e4
LT
3850
3851out_balanced:
1da177e4
LT
3852 schedstat_inc(sd, lb_balanced[idle]);
3853
16cfb1c0 3854 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3855
3856out_one_pinned:
1da177e4 3857 /* tune up the balancing interval */
77391d71
NP
3858 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3859 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3860 sd->balance_interval *= 2;
3861
48f24c4d 3862 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3863 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3864 ld_moved = -1;
3865 else
3866 ld_moved = 0;
3867out:
3868 if (unlock_aggregate)
3869 put_aggregate(sd);
3870 return ld_moved;
1da177e4
LT
3871}
3872
3873/*
3874 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3875 * tasks if there is an imbalance.
3876 *
d15bcfdb 3877 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3878 * this_rq is locked.
3879 */
48f24c4d 3880static int
7c16ec58
MT
3881load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3882 cpumask_t *cpus)
1da177e4
LT
3883{
3884 struct sched_group *group;
70b97a7f 3885 struct rq *busiest = NULL;
1da177e4 3886 unsigned long imbalance;
43010659 3887 int ld_moved = 0;
5969fe06 3888 int sd_idle = 0;
969bb4e4 3889 int all_pinned = 0;
7c16ec58
MT
3890
3891 cpus_setall(*cpus);
5969fe06 3892
89c4710e
SS
3893 /*
3894 * When power savings policy is enabled for the parent domain, idle
3895 * sibling can pick up load irrespective of busy siblings. In this case,
3896 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3897 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3898 */
3899 if (sd->flags & SD_SHARE_CPUPOWER &&
3900 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3901 sd_idle = 1;
1da177e4 3902
2d72376b 3903 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3904redo:
d15bcfdb 3905 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3906 &sd_idle, cpus, NULL);
1da177e4 3907 if (!group) {
d15bcfdb 3908 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3909 goto out_balanced;
1da177e4
LT
3910 }
3911
7c16ec58 3912 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3913 if (!busiest) {
d15bcfdb 3914 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3915 goto out_balanced;
1da177e4
LT
3916 }
3917
db935dbd
NP
3918 BUG_ON(busiest == this_rq);
3919
d15bcfdb 3920 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3921
43010659 3922 ld_moved = 0;
d6d5cfaf
NP
3923 if (busiest->nr_running > 1) {
3924 /* Attempt to move tasks */
3925 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3926 /* this_rq->clock is already updated */
3927 update_rq_clock(busiest);
43010659 3928 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3929 imbalance, sd, CPU_NEWLY_IDLE,
3930 &all_pinned);
d6d5cfaf 3931 spin_unlock(&busiest->lock);
0a2966b4 3932
969bb4e4 3933 if (unlikely(all_pinned)) {
7c16ec58
MT
3934 cpu_clear(cpu_of(busiest), *cpus);
3935 if (!cpus_empty(*cpus))
0a2966b4
CL
3936 goto redo;
3937 }
d6d5cfaf
NP
3938 }
3939
43010659 3940 if (!ld_moved) {
d15bcfdb 3941 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3942 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3943 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3944 return -1;
3945 } else
16cfb1c0 3946 sd->nr_balance_failed = 0;
1da177e4 3947
43010659 3948 return ld_moved;
16cfb1c0
NP
3949
3950out_balanced:
d15bcfdb 3951 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3952 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3953 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3954 return -1;
16cfb1c0 3955 sd->nr_balance_failed = 0;
48f24c4d 3956
16cfb1c0 3957 return 0;
1da177e4
LT
3958}
3959
3960/*
3961 * idle_balance is called by schedule() if this_cpu is about to become
3962 * idle. Attempts to pull tasks from other CPUs.
3963 */
70b97a7f 3964static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3965{
3966 struct sched_domain *sd;
dd41f596
IM
3967 int pulled_task = -1;
3968 unsigned long next_balance = jiffies + HZ;
7c16ec58 3969 cpumask_t tmpmask;
1da177e4
LT
3970
3971 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3972 unsigned long interval;
3973
3974 if (!(sd->flags & SD_LOAD_BALANCE))
3975 continue;
3976
3977 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3978 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3979 pulled_task = load_balance_newidle(this_cpu, this_rq,
3980 sd, &tmpmask);
92c4ca5c
CL
3981
3982 interval = msecs_to_jiffies(sd->balance_interval);
3983 if (time_after(next_balance, sd->last_balance + interval))
3984 next_balance = sd->last_balance + interval;
3985 if (pulled_task)
3986 break;
1da177e4 3987 }
dd41f596 3988 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3989 /*
3990 * We are going idle. next_balance may be set based on
3991 * a busy processor. So reset next_balance.
3992 */
3993 this_rq->next_balance = next_balance;
dd41f596 3994 }
1da177e4
LT
3995}
3996
3997/*
3998 * active_load_balance is run by migration threads. It pushes running tasks
3999 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4000 * running on each physical CPU where possible, and avoids physical /
4001 * logical imbalances.
4002 *
4003 * Called with busiest_rq locked.
4004 */
70b97a7f 4005static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4006{
39507451 4007 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4008 struct sched_domain *sd;
4009 struct rq *target_rq;
39507451 4010
48f24c4d 4011 /* Is there any task to move? */
39507451 4012 if (busiest_rq->nr_running <= 1)
39507451
NP
4013 return;
4014
4015 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4016
4017 /*
39507451 4018 * This condition is "impossible", if it occurs
41a2d6cf 4019 * we need to fix it. Originally reported by
39507451 4020 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4021 */
39507451 4022 BUG_ON(busiest_rq == target_rq);
1da177e4 4023
39507451
NP
4024 /* move a task from busiest_rq to target_rq */
4025 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4026 update_rq_clock(busiest_rq);
4027 update_rq_clock(target_rq);
39507451
NP
4028
4029 /* Search for an sd spanning us and the target CPU. */
c96d145e 4030 for_each_domain(target_cpu, sd) {
39507451 4031 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 4032 cpu_isset(busiest_cpu, sd->span))
39507451 4033 break;
c96d145e 4034 }
39507451 4035
48f24c4d 4036 if (likely(sd)) {
2d72376b 4037 schedstat_inc(sd, alb_count);
39507451 4038
43010659
PW
4039 if (move_one_task(target_rq, target_cpu, busiest_rq,
4040 sd, CPU_IDLE))
48f24c4d
IM
4041 schedstat_inc(sd, alb_pushed);
4042 else
4043 schedstat_inc(sd, alb_failed);
4044 }
39507451 4045 spin_unlock(&target_rq->lock);
1da177e4
LT
4046}
4047
46cb4b7c
SS
4048#ifdef CONFIG_NO_HZ
4049static struct {
4050 atomic_t load_balancer;
41a2d6cf 4051 cpumask_t cpu_mask;
46cb4b7c
SS
4052} nohz ____cacheline_aligned = {
4053 .load_balancer = ATOMIC_INIT(-1),
4054 .cpu_mask = CPU_MASK_NONE,
4055};
4056
7835b98b 4057/*
46cb4b7c
SS
4058 * This routine will try to nominate the ilb (idle load balancing)
4059 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4060 * load balancing on behalf of all those cpus. If all the cpus in the system
4061 * go into this tickless mode, then there will be no ilb owner (as there is
4062 * no need for one) and all the cpus will sleep till the next wakeup event
4063 * arrives...
4064 *
4065 * For the ilb owner, tick is not stopped. And this tick will be used
4066 * for idle load balancing. ilb owner will still be part of
4067 * nohz.cpu_mask..
7835b98b 4068 *
46cb4b7c
SS
4069 * While stopping the tick, this cpu will become the ilb owner if there
4070 * is no other owner. And will be the owner till that cpu becomes busy
4071 * or if all cpus in the system stop their ticks at which point
4072 * there is no need for ilb owner.
4073 *
4074 * When the ilb owner becomes busy, it nominates another owner, during the
4075 * next busy scheduler_tick()
4076 */
4077int select_nohz_load_balancer(int stop_tick)
4078{
4079 int cpu = smp_processor_id();
4080
4081 if (stop_tick) {
4082 cpu_set(cpu, nohz.cpu_mask);
4083 cpu_rq(cpu)->in_nohz_recently = 1;
4084
4085 /*
4086 * If we are going offline and still the leader, give up!
4087 */
4088 if (cpu_is_offline(cpu) &&
4089 atomic_read(&nohz.load_balancer) == cpu) {
4090 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4091 BUG();
4092 return 0;
4093 }
4094
4095 /* time for ilb owner also to sleep */
4096 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4097 if (atomic_read(&nohz.load_balancer) == cpu)
4098 atomic_set(&nohz.load_balancer, -1);
4099 return 0;
4100 }
4101
4102 if (atomic_read(&nohz.load_balancer) == -1) {
4103 /* make me the ilb owner */
4104 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4105 return 1;
4106 } else if (atomic_read(&nohz.load_balancer) == cpu)
4107 return 1;
4108 } else {
4109 if (!cpu_isset(cpu, nohz.cpu_mask))
4110 return 0;
4111
4112 cpu_clear(cpu, nohz.cpu_mask);
4113
4114 if (atomic_read(&nohz.load_balancer) == cpu)
4115 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4116 BUG();
4117 }
4118 return 0;
4119}
4120#endif
4121
4122static DEFINE_SPINLOCK(balancing);
4123
4124/*
7835b98b
CL
4125 * It checks each scheduling domain to see if it is due to be balanced,
4126 * and initiates a balancing operation if so.
4127 *
4128 * Balancing parameters are set up in arch_init_sched_domains.
4129 */
a9957449 4130static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4131{
46cb4b7c
SS
4132 int balance = 1;
4133 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4134 unsigned long interval;
4135 struct sched_domain *sd;
46cb4b7c 4136 /* Earliest time when we have to do rebalance again */
c9819f45 4137 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4138 int update_next_balance = 0;
7c16ec58 4139 cpumask_t tmp;
1da177e4 4140
46cb4b7c 4141 for_each_domain(cpu, sd) {
1da177e4
LT
4142 if (!(sd->flags & SD_LOAD_BALANCE))
4143 continue;
4144
4145 interval = sd->balance_interval;
d15bcfdb 4146 if (idle != CPU_IDLE)
1da177e4
LT
4147 interval *= sd->busy_factor;
4148
4149 /* scale ms to jiffies */
4150 interval = msecs_to_jiffies(interval);
4151 if (unlikely(!interval))
4152 interval = 1;
dd41f596
IM
4153 if (interval > HZ*NR_CPUS/10)
4154 interval = HZ*NR_CPUS/10;
4155
1da177e4 4156
08c183f3
CL
4157 if (sd->flags & SD_SERIALIZE) {
4158 if (!spin_trylock(&balancing))
4159 goto out;
4160 }
4161
c9819f45 4162 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 4163 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
4164 /*
4165 * We've pulled tasks over so either we're no
5969fe06
NP
4166 * longer idle, or one of our SMT siblings is
4167 * not idle.
4168 */
d15bcfdb 4169 idle = CPU_NOT_IDLE;
1da177e4 4170 }
1bd77f2d 4171 sd->last_balance = jiffies;
1da177e4 4172 }
08c183f3
CL
4173 if (sd->flags & SD_SERIALIZE)
4174 spin_unlock(&balancing);
4175out:
f549da84 4176 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4177 next_balance = sd->last_balance + interval;
f549da84
SS
4178 update_next_balance = 1;
4179 }
783609c6
SS
4180
4181 /*
4182 * Stop the load balance at this level. There is another
4183 * CPU in our sched group which is doing load balancing more
4184 * actively.
4185 */
4186 if (!balance)
4187 break;
1da177e4 4188 }
f549da84
SS
4189
4190 /*
4191 * next_balance will be updated only when there is a need.
4192 * When the cpu is attached to null domain for ex, it will not be
4193 * updated.
4194 */
4195 if (likely(update_next_balance))
4196 rq->next_balance = next_balance;
46cb4b7c
SS
4197}
4198
4199/*
4200 * run_rebalance_domains is triggered when needed from the scheduler tick.
4201 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4202 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4203 */
4204static void run_rebalance_domains(struct softirq_action *h)
4205{
dd41f596
IM
4206 int this_cpu = smp_processor_id();
4207 struct rq *this_rq = cpu_rq(this_cpu);
4208 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4209 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4210
dd41f596 4211 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4212
4213#ifdef CONFIG_NO_HZ
4214 /*
4215 * If this cpu is the owner for idle load balancing, then do the
4216 * balancing on behalf of the other idle cpus whose ticks are
4217 * stopped.
4218 */
dd41f596
IM
4219 if (this_rq->idle_at_tick &&
4220 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4221 cpumask_t cpus = nohz.cpu_mask;
4222 struct rq *rq;
4223 int balance_cpu;
4224
dd41f596 4225 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
4226 for_each_cpu_mask(balance_cpu, cpus) {
4227 /*
4228 * If this cpu gets work to do, stop the load balancing
4229 * work being done for other cpus. Next load
4230 * balancing owner will pick it up.
4231 */
4232 if (need_resched())
4233 break;
4234
de0cf899 4235 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4236
4237 rq = cpu_rq(balance_cpu);
dd41f596
IM
4238 if (time_after(this_rq->next_balance, rq->next_balance))
4239 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4240 }
4241 }
4242#endif
4243}
4244
4245/*
4246 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4247 *
4248 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4249 * idle load balancing owner or decide to stop the periodic load balancing,
4250 * if the whole system is idle.
4251 */
dd41f596 4252static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4253{
46cb4b7c
SS
4254#ifdef CONFIG_NO_HZ
4255 /*
4256 * If we were in the nohz mode recently and busy at the current
4257 * scheduler tick, then check if we need to nominate new idle
4258 * load balancer.
4259 */
4260 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4261 rq->in_nohz_recently = 0;
4262
4263 if (atomic_read(&nohz.load_balancer) == cpu) {
4264 cpu_clear(cpu, nohz.cpu_mask);
4265 atomic_set(&nohz.load_balancer, -1);
4266 }
4267
4268 if (atomic_read(&nohz.load_balancer) == -1) {
4269 /*
4270 * simple selection for now: Nominate the
4271 * first cpu in the nohz list to be the next
4272 * ilb owner.
4273 *
4274 * TBD: Traverse the sched domains and nominate
4275 * the nearest cpu in the nohz.cpu_mask.
4276 */
4277 int ilb = first_cpu(nohz.cpu_mask);
4278
434d53b0 4279 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4280 resched_cpu(ilb);
4281 }
4282 }
4283
4284 /*
4285 * If this cpu is idle and doing idle load balancing for all the
4286 * cpus with ticks stopped, is it time for that to stop?
4287 */
4288 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4289 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4290 resched_cpu(cpu);
4291 return;
4292 }
4293
4294 /*
4295 * If this cpu is idle and the idle load balancing is done by
4296 * someone else, then no need raise the SCHED_SOFTIRQ
4297 */
4298 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4299 cpu_isset(cpu, nohz.cpu_mask))
4300 return;
4301#endif
4302 if (time_after_eq(jiffies, rq->next_balance))
4303 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4304}
dd41f596
IM
4305
4306#else /* CONFIG_SMP */
4307
1da177e4
LT
4308/*
4309 * on UP we do not need to balance between CPUs:
4310 */
70b97a7f 4311static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4312{
4313}
dd41f596 4314
1da177e4
LT
4315#endif
4316
1da177e4
LT
4317DEFINE_PER_CPU(struct kernel_stat, kstat);
4318
4319EXPORT_PER_CPU_SYMBOL(kstat);
4320
4321/*
41b86e9c
IM
4322 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4323 * that have not yet been banked in case the task is currently running.
1da177e4 4324 */
41b86e9c 4325unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4326{
1da177e4 4327 unsigned long flags;
41b86e9c
IM
4328 u64 ns, delta_exec;
4329 struct rq *rq;
48f24c4d 4330
41b86e9c
IM
4331 rq = task_rq_lock(p, &flags);
4332 ns = p->se.sum_exec_runtime;
051a1d1a 4333 if (task_current(rq, p)) {
a8e504d2
IM
4334 update_rq_clock(rq);
4335 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4336 if ((s64)delta_exec > 0)
4337 ns += delta_exec;
4338 }
4339 task_rq_unlock(rq, &flags);
48f24c4d 4340
1da177e4
LT
4341 return ns;
4342}
4343
1da177e4
LT
4344/*
4345 * Account user cpu time to a process.
4346 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4347 * @cputime: the cpu time spent in user space since the last update
4348 */
4349void account_user_time(struct task_struct *p, cputime_t cputime)
4350{
4351 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4352 cputime64_t tmp;
4353
4354 p->utime = cputime_add(p->utime, cputime);
4355
4356 /* Add user time to cpustat. */
4357 tmp = cputime_to_cputime64(cputime);
4358 if (TASK_NICE(p) > 0)
4359 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4360 else
4361 cpustat->user = cputime64_add(cpustat->user, tmp);
4362}
4363
94886b84
LV
4364/*
4365 * Account guest cpu time to a process.
4366 * @p: the process that the cpu time gets accounted to
4367 * @cputime: the cpu time spent in virtual machine since the last update
4368 */
f7402e03 4369static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4370{
4371 cputime64_t tmp;
4372 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4373
4374 tmp = cputime_to_cputime64(cputime);
4375
4376 p->utime = cputime_add(p->utime, cputime);
4377 p->gtime = cputime_add(p->gtime, cputime);
4378
4379 cpustat->user = cputime64_add(cpustat->user, tmp);
4380 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4381}
4382
c66f08be
MN
4383/*
4384 * Account scaled user cpu time to a process.
4385 * @p: the process that the cpu time gets accounted to
4386 * @cputime: the cpu time spent in user space since the last update
4387 */
4388void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4389{
4390 p->utimescaled = cputime_add(p->utimescaled, cputime);
4391}
4392
1da177e4
LT
4393/*
4394 * Account system cpu time to a process.
4395 * @p: the process that the cpu time gets accounted to
4396 * @hardirq_offset: the offset to subtract from hardirq_count()
4397 * @cputime: the cpu time spent in kernel space since the last update
4398 */
4399void account_system_time(struct task_struct *p, int hardirq_offset,
4400 cputime_t cputime)
4401{
4402 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4403 struct rq *rq = this_rq();
1da177e4
LT
4404 cputime64_t tmp;
4405
983ed7a6
HH
4406 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4407 account_guest_time(p, cputime);
4408 return;
4409 }
94886b84 4410
1da177e4
LT
4411 p->stime = cputime_add(p->stime, cputime);
4412
4413 /* Add system time to cpustat. */
4414 tmp = cputime_to_cputime64(cputime);
4415 if (hardirq_count() - hardirq_offset)
4416 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4417 else if (softirq_count())
4418 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4419 else if (p != rq->idle)
1da177e4 4420 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4421 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4422 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4423 else
4424 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4425 /* Account for system time used */
4426 acct_update_integrals(p);
1da177e4
LT
4427}
4428
c66f08be
MN
4429/*
4430 * Account scaled system cpu time to a process.
4431 * @p: the process that the cpu time gets accounted to
4432 * @hardirq_offset: the offset to subtract from hardirq_count()
4433 * @cputime: the cpu time spent in kernel space since the last update
4434 */
4435void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4436{
4437 p->stimescaled = cputime_add(p->stimescaled, cputime);
4438}
4439
1da177e4
LT
4440/*
4441 * Account for involuntary wait time.
4442 * @p: the process from which the cpu time has been stolen
4443 * @steal: the cpu time spent in involuntary wait
4444 */
4445void account_steal_time(struct task_struct *p, cputime_t steal)
4446{
4447 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4448 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4449 struct rq *rq = this_rq();
1da177e4
LT
4450
4451 if (p == rq->idle) {
4452 p->stime = cputime_add(p->stime, steal);
4453 if (atomic_read(&rq->nr_iowait) > 0)
4454 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4455 else
4456 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4457 } else
1da177e4
LT
4458 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4459}
4460
7835b98b
CL
4461/*
4462 * This function gets called by the timer code, with HZ frequency.
4463 * We call it with interrupts disabled.
4464 *
4465 * It also gets called by the fork code, when changing the parent's
4466 * timeslices.
4467 */
4468void scheduler_tick(void)
4469{
7835b98b
CL
4470 int cpu = smp_processor_id();
4471 struct rq *rq = cpu_rq(cpu);
dd41f596 4472 struct task_struct *curr = rq->curr;
529c7726 4473 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
4474
4475 spin_lock(&rq->lock);
546fe3c9 4476 __update_rq_clock(rq);
529c7726
IM
4477 /*
4478 * Let rq->clock advance by at least TICK_NSEC:
4479 */
cc203d24 4480 if (unlikely(rq->clock < next_tick)) {
529c7726 4481 rq->clock = next_tick;
cc203d24
GC
4482 rq->clock_underflows++;
4483 }
529c7726 4484 rq->tick_timestamp = rq->clock;
15934a37 4485 update_last_tick_seen(rq);
f1a438d8 4486 update_cpu_load(rq);
fa85ae24 4487 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4488 spin_unlock(&rq->lock);
7835b98b 4489
e418e1c2 4490#ifdef CONFIG_SMP
dd41f596
IM
4491 rq->idle_at_tick = idle_cpu(cpu);
4492 trigger_load_balance(rq, cpu);
e418e1c2 4493#endif
1da177e4
LT
4494}
4495
1da177e4
LT
4496#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4497
43627582 4498void __kprobes add_preempt_count(int val)
1da177e4
LT
4499{
4500 /*
4501 * Underflow?
4502 */
9a11b49a
IM
4503 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4504 return;
1da177e4
LT
4505 preempt_count() += val;
4506 /*
4507 * Spinlock count overflowing soon?
4508 */
33859f7f
MOS
4509 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4510 PREEMPT_MASK - 10);
1da177e4
LT
4511}
4512EXPORT_SYMBOL(add_preempt_count);
4513
43627582 4514void __kprobes sub_preempt_count(int val)
1da177e4
LT
4515{
4516 /*
4517 * Underflow?
4518 */
9a11b49a
IM
4519 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4520 return;
1da177e4
LT
4521 /*
4522 * Is the spinlock portion underflowing?
4523 */
9a11b49a
IM
4524 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4525 !(preempt_count() & PREEMPT_MASK)))
4526 return;
4527
1da177e4
LT
4528 preempt_count() -= val;
4529}
4530EXPORT_SYMBOL(sub_preempt_count);
4531
4532#endif
4533
4534/*
dd41f596 4535 * Print scheduling while atomic bug:
1da177e4 4536 */
dd41f596 4537static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4538{
838225b4
SS
4539 struct pt_regs *regs = get_irq_regs();
4540
4541 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4542 prev->comm, prev->pid, preempt_count());
4543
dd41f596
IM
4544 debug_show_held_locks(prev);
4545 if (irqs_disabled())
4546 print_irqtrace_events(prev);
838225b4
SS
4547
4548 if (regs)
4549 show_regs(regs);
4550 else
4551 dump_stack();
dd41f596 4552}
1da177e4 4553
dd41f596
IM
4554/*
4555 * Various schedule()-time debugging checks and statistics:
4556 */
4557static inline void schedule_debug(struct task_struct *prev)
4558{
1da177e4 4559 /*
41a2d6cf 4560 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4561 * schedule() atomically, we ignore that path for now.
4562 * Otherwise, whine if we are scheduling when we should not be.
4563 */
dd41f596
IM
4564 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4565 __schedule_bug(prev);
4566
1da177e4
LT
4567 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4568
2d72376b 4569 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4570#ifdef CONFIG_SCHEDSTATS
4571 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4572 schedstat_inc(this_rq(), bkl_count);
4573 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4574 }
4575#endif
dd41f596
IM
4576}
4577
4578/*
4579 * Pick up the highest-prio task:
4580 */
4581static inline struct task_struct *
ff95f3df 4582pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4583{
5522d5d5 4584 const struct sched_class *class;
dd41f596 4585 struct task_struct *p;
1da177e4
LT
4586
4587 /*
dd41f596
IM
4588 * Optimization: we know that if all tasks are in
4589 * the fair class we can call that function directly:
1da177e4 4590 */
dd41f596 4591 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4592 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4593 if (likely(p))
4594 return p;
1da177e4
LT
4595 }
4596
dd41f596
IM
4597 class = sched_class_highest;
4598 for ( ; ; ) {
fb8d4724 4599 p = class->pick_next_task(rq);
dd41f596
IM
4600 if (p)
4601 return p;
4602 /*
4603 * Will never be NULL as the idle class always
4604 * returns a non-NULL p:
4605 */
4606 class = class->next;
4607 }
4608}
1da177e4 4609
dd41f596
IM
4610/*
4611 * schedule() is the main scheduler function.
4612 */
4613asmlinkage void __sched schedule(void)
4614{
4615 struct task_struct *prev, *next;
67ca7bde 4616 unsigned long *switch_count;
dd41f596 4617 struct rq *rq;
dd41f596
IM
4618 int cpu;
4619
4620need_resched:
4621 preempt_disable();
4622 cpu = smp_processor_id();
4623 rq = cpu_rq(cpu);
4624 rcu_qsctr_inc(cpu);
4625 prev = rq->curr;
4626 switch_count = &prev->nivcsw;
4627
4628 release_kernel_lock(prev);
4629need_resched_nonpreemptible:
4630
4631 schedule_debug(prev);
1da177e4 4632
8f4d37ec
PZ
4633 hrtick_clear(rq);
4634
1e819950
IM
4635 /*
4636 * Do the rq-clock update outside the rq lock:
4637 */
4638 local_irq_disable();
c1b3da3e 4639 __update_rq_clock(rq);
1e819950
IM
4640 spin_lock(&rq->lock);
4641 clear_tsk_need_resched(prev);
1da177e4 4642
1da177e4 4643 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4644 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4645 signal_pending(prev))) {
1da177e4 4646 prev->state = TASK_RUNNING;
dd41f596 4647 } else {
2e1cb74a 4648 deactivate_task(rq, prev, 1);
1da177e4 4649 }
dd41f596 4650 switch_count = &prev->nvcsw;
1da177e4
LT
4651 }
4652
9a897c5a
SR
4653#ifdef CONFIG_SMP
4654 if (prev->sched_class->pre_schedule)
4655 prev->sched_class->pre_schedule(rq, prev);
4656#endif
f65eda4f 4657
dd41f596 4658 if (unlikely(!rq->nr_running))
1da177e4 4659 idle_balance(cpu, rq);
1da177e4 4660
31ee529c 4661 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4662 next = pick_next_task(rq, prev);
1da177e4 4663
1da177e4 4664 if (likely(prev != next)) {
673a90a1
DS
4665 sched_info_switch(prev, next);
4666
1da177e4
LT
4667 rq->nr_switches++;
4668 rq->curr = next;
4669 ++*switch_count;
4670
dd41f596 4671 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4672 /*
4673 * the context switch might have flipped the stack from under
4674 * us, hence refresh the local variables.
4675 */
4676 cpu = smp_processor_id();
4677 rq = cpu_rq(cpu);
1da177e4
LT
4678 } else
4679 spin_unlock_irq(&rq->lock);
4680
8f4d37ec
PZ
4681 hrtick_set(rq);
4682
4683 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4684 goto need_resched_nonpreemptible;
8f4d37ec 4685
1da177e4
LT
4686 preempt_enable_no_resched();
4687 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4688 goto need_resched;
4689}
1da177e4
LT
4690EXPORT_SYMBOL(schedule);
4691
4692#ifdef CONFIG_PREEMPT
4693/*
2ed6e34f 4694 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4695 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4696 * occur there and call schedule directly.
4697 */
4698asmlinkage void __sched preempt_schedule(void)
4699{
4700 struct thread_info *ti = current_thread_info();
1da177e4
LT
4701 struct task_struct *task = current;
4702 int saved_lock_depth;
6478d880 4703
1da177e4
LT
4704 /*
4705 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4706 * we do not want to preempt the current task. Just return..
1da177e4 4707 */
beed33a8 4708 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4709 return;
4710
3a5c359a
AK
4711 do {
4712 add_preempt_count(PREEMPT_ACTIVE);
4713
4714 /*
4715 * We keep the big kernel semaphore locked, but we
4716 * clear ->lock_depth so that schedule() doesnt
4717 * auto-release the semaphore:
4718 */
3a5c359a
AK
4719 saved_lock_depth = task->lock_depth;
4720 task->lock_depth = -1;
3a5c359a 4721 schedule();
3a5c359a 4722 task->lock_depth = saved_lock_depth;
3a5c359a 4723 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4724
3a5c359a
AK
4725 /*
4726 * Check again in case we missed a preemption opportunity
4727 * between schedule and now.
4728 */
4729 barrier();
4730 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4731}
1da177e4
LT
4732EXPORT_SYMBOL(preempt_schedule);
4733
4734/*
2ed6e34f 4735 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4736 * off of irq context.
4737 * Note, that this is called and return with irqs disabled. This will
4738 * protect us against recursive calling from irq.
4739 */
4740asmlinkage void __sched preempt_schedule_irq(void)
4741{
4742 struct thread_info *ti = current_thread_info();
1da177e4
LT
4743 struct task_struct *task = current;
4744 int saved_lock_depth;
6478d880 4745
2ed6e34f 4746 /* Catch callers which need to be fixed */
1da177e4
LT
4747 BUG_ON(ti->preempt_count || !irqs_disabled());
4748
3a5c359a
AK
4749 do {
4750 add_preempt_count(PREEMPT_ACTIVE);
4751
4752 /*
4753 * We keep the big kernel semaphore locked, but we
4754 * clear ->lock_depth so that schedule() doesnt
4755 * auto-release the semaphore:
4756 */
3a5c359a
AK
4757 saved_lock_depth = task->lock_depth;
4758 task->lock_depth = -1;
3a5c359a
AK
4759 local_irq_enable();
4760 schedule();
4761 local_irq_disable();
3a5c359a 4762 task->lock_depth = saved_lock_depth;
3a5c359a 4763 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4764
3a5c359a
AK
4765 /*
4766 * Check again in case we missed a preemption opportunity
4767 * between schedule and now.
4768 */
4769 barrier();
4770 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4771}
4772
4773#endif /* CONFIG_PREEMPT */
4774
95cdf3b7
IM
4775int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4776 void *key)
1da177e4 4777{
48f24c4d 4778 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4779}
1da177e4
LT
4780EXPORT_SYMBOL(default_wake_function);
4781
4782/*
41a2d6cf
IM
4783 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4784 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4785 * number) then we wake all the non-exclusive tasks and one exclusive task.
4786 *
4787 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4788 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4789 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4790 */
4791static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4792 int nr_exclusive, int sync, void *key)
4793{
2e45874c 4794 wait_queue_t *curr, *next;
1da177e4 4795
2e45874c 4796 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4797 unsigned flags = curr->flags;
4798
1da177e4 4799 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4800 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4801 break;
4802 }
4803}
4804
4805/**
4806 * __wake_up - wake up threads blocked on a waitqueue.
4807 * @q: the waitqueue
4808 * @mode: which threads
4809 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4810 * @key: is directly passed to the wakeup function
1da177e4 4811 */
7ad5b3a5 4812void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4813 int nr_exclusive, void *key)
1da177e4
LT
4814{
4815 unsigned long flags;
4816
4817 spin_lock_irqsave(&q->lock, flags);
4818 __wake_up_common(q, mode, nr_exclusive, 0, key);
4819 spin_unlock_irqrestore(&q->lock, flags);
4820}
1da177e4
LT
4821EXPORT_SYMBOL(__wake_up);
4822
4823/*
4824 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4825 */
7ad5b3a5 4826void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4827{
4828 __wake_up_common(q, mode, 1, 0, NULL);
4829}
4830
4831/**
67be2dd1 4832 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4833 * @q: the waitqueue
4834 * @mode: which threads
4835 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4836 *
4837 * The sync wakeup differs that the waker knows that it will schedule
4838 * away soon, so while the target thread will be woken up, it will not
4839 * be migrated to another CPU - ie. the two threads are 'synchronized'
4840 * with each other. This can prevent needless bouncing between CPUs.
4841 *
4842 * On UP it can prevent extra preemption.
4843 */
7ad5b3a5 4844void
95cdf3b7 4845__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4846{
4847 unsigned long flags;
4848 int sync = 1;
4849
4850 if (unlikely(!q))
4851 return;
4852
4853 if (unlikely(!nr_exclusive))
4854 sync = 0;
4855
4856 spin_lock_irqsave(&q->lock, flags);
4857 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4858 spin_unlock_irqrestore(&q->lock, flags);
4859}
4860EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4861
b15136e9 4862void complete(struct completion *x)
1da177e4
LT
4863{
4864 unsigned long flags;
4865
4866 spin_lock_irqsave(&x->wait.lock, flags);
4867 x->done++;
d9514f6c 4868 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4869 spin_unlock_irqrestore(&x->wait.lock, flags);
4870}
4871EXPORT_SYMBOL(complete);
4872
b15136e9 4873void complete_all(struct completion *x)
1da177e4
LT
4874{
4875 unsigned long flags;
4876
4877 spin_lock_irqsave(&x->wait.lock, flags);
4878 x->done += UINT_MAX/2;
d9514f6c 4879 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4880 spin_unlock_irqrestore(&x->wait.lock, flags);
4881}
4882EXPORT_SYMBOL(complete_all);
4883
8cbbe86d
AK
4884static inline long __sched
4885do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4886{
1da177e4
LT
4887 if (!x->done) {
4888 DECLARE_WAITQUEUE(wait, current);
4889
4890 wait.flags |= WQ_FLAG_EXCLUSIVE;
4891 __add_wait_queue_tail(&x->wait, &wait);
4892 do {
009e577e
MW
4893 if ((state == TASK_INTERRUPTIBLE &&
4894 signal_pending(current)) ||
4895 (state == TASK_KILLABLE &&
4896 fatal_signal_pending(current))) {
8cbbe86d
AK
4897 __remove_wait_queue(&x->wait, &wait);
4898 return -ERESTARTSYS;
4899 }
4900 __set_current_state(state);
1da177e4
LT
4901 spin_unlock_irq(&x->wait.lock);
4902 timeout = schedule_timeout(timeout);
4903 spin_lock_irq(&x->wait.lock);
4904 if (!timeout) {
4905 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4906 return timeout;
1da177e4
LT
4907 }
4908 } while (!x->done);
4909 __remove_wait_queue(&x->wait, &wait);
4910 }
4911 x->done--;
1da177e4
LT
4912 return timeout;
4913}
1da177e4 4914
8cbbe86d
AK
4915static long __sched
4916wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4917{
1da177e4
LT
4918 might_sleep();
4919
4920 spin_lock_irq(&x->wait.lock);
8cbbe86d 4921 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4922 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4923 return timeout;
4924}
1da177e4 4925
b15136e9 4926void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4927{
4928 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4929}
8cbbe86d 4930EXPORT_SYMBOL(wait_for_completion);
1da177e4 4931
b15136e9 4932unsigned long __sched
8cbbe86d 4933wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4934{
8cbbe86d 4935 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4936}
8cbbe86d 4937EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4938
8cbbe86d 4939int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4940{
51e97990
AK
4941 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4942 if (t == -ERESTARTSYS)
4943 return t;
4944 return 0;
0fec171c 4945}
8cbbe86d 4946EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4947
b15136e9 4948unsigned long __sched
8cbbe86d
AK
4949wait_for_completion_interruptible_timeout(struct completion *x,
4950 unsigned long timeout)
0fec171c 4951{
8cbbe86d 4952 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4953}
8cbbe86d 4954EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4955
009e577e
MW
4956int __sched wait_for_completion_killable(struct completion *x)
4957{
4958 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4959 if (t == -ERESTARTSYS)
4960 return t;
4961 return 0;
4962}
4963EXPORT_SYMBOL(wait_for_completion_killable);
4964
8cbbe86d
AK
4965static long __sched
4966sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4967{
0fec171c
IM
4968 unsigned long flags;
4969 wait_queue_t wait;
4970
4971 init_waitqueue_entry(&wait, current);
1da177e4 4972
8cbbe86d 4973 __set_current_state(state);
1da177e4 4974
8cbbe86d
AK
4975 spin_lock_irqsave(&q->lock, flags);
4976 __add_wait_queue(q, &wait);
4977 spin_unlock(&q->lock);
4978 timeout = schedule_timeout(timeout);
4979 spin_lock_irq(&q->lock);
4980 __remove_wait_queue(q, &wait);
4981 spin_unlock_irqrestore(&q->lock, flags);
4982
4983 return timeout;
4984}
4985
4986void __sched interruptible_sleep_on(wait_queue_head_t *q)
4987{
4988 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4989}
1da177e4
LT
4990EXPORT_SYMBOL(interruptible_sleep_on);
4991
0fec171c 4992long __sched
95cdf3b7 4993interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4994{
8cbbe86d 4995 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4996}
1da177e4
LT
4997EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4998
0fec171c 4999void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5000{
8cbbe86d 5001 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5002}
1da177e4
LT
5003EXPORT_SYMBOL(sleep_on);
5004
0fec171c 5005long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5006{
8cbbe86d 5007 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5008}
1da177e4
LT
5009EXPORT_SYMBOL(sleep_on_timeout);
5010
b29739f9
IM
5011#ifdef CONFIG_RT_MUTEXES
5012
5013/*
5014 * rt_mutex_setprio - set the current priority of a task
5015 * @p: task
5016 * @prio: prio value (kernel-internal form)
5017 *
5018 * This function changes the 'effective' priority of a task. It does
5019 * not touch ->normal_prio like __setscheduler().
5020 *
5021 * Used by the rt_mutex code to implement priority inheritance logic.
5022 */
36c8b586 5023void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5024{
5025 unsigned long flags;
83b699ed 5026 int oldprio, on_rq, running;
70b97a7f 5027 struct rq *rq;
cb469845 5028 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5029
5030 BUG_ON(prio < 0 || prio > MAX_PRIO);
5031
5032 rq = task_rq_lock(p, &flags);
a8e504d2 5033 update_rq_clock(rq);
b29739f9 5034
d5f9f942 5035 oldprio = p->prio;
dd41f596 5036 on_rq = p->se.on_rq;
051a1d1a 5037 running = task_current(rq, p);
0e1f3483 5038 if (on_rq)
69be72c1 5039 dequeue_task(rq, p, 0);
0e1f3483
HS
5040 if (running)
5041 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5042
5043 if (rt_prio(prio))
5044 p->sched_class = &rt_sched_class;
5045 else
5046 p->sched_class = &fair_sched_class;
5047
b29739f9
IM
5048 p->prio = prio;
5049
0e1f3483
HS
5050 if (running)
5051 p->sched_class->set_curr_task(rq);
dd41f596 5052 if (on_rq) {
8159f87e 5053 enqueue_task(rq, p, 0);
cb469845
SR
5054
5055 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5056 }
5057 task_rq_unlock(rq, &flags);
5058}
5059
5060#endif
5061
36c8b586 5062void set_user_nice(struct task_struct *p, long nice)
1da177e4 5063{
dd41f596 5064 int old_prio, delta, on_rq;
1da177e4 5065 unsigned long flags;
70b97a7f 5066 struct rq *rq;
1da177e4
LT
5067
5068 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5069 return;
5070 /*
5071 * We have to be careful, if called from sys_setpriority(),
5072 * the task might be in the middle of scheduling on another CPU.
5073 */
5074 rq = task_rq_lock(p, &flags);
a8e504d2 5075 update_rq_clock(rq);
1da177e4
LT
5076 /*
5077 * The RT priorities are set via sched_setscheduler(), but we still
5078 * allow the 'normal' nice value to be set - but as expected
5079 * it wont have any effect on scheduling until the task is
dd41f596 5080 * SCHED_FIFO/SCHED_RR:
1da177e4 5081 */
e05606d3 5082 if (task_has_rt_policy(p)) {
1da177e4
LT
5083 p->static_prio = NICE_TO_PRIO(nice);
5084 goto out_unlock;
5085 }
dd41f596 5086 on_rq = p->se.on_rq;
18d95a28 5087 if (on_rq)
69be72c1 5088 dequeue_task(rq, p, 0);
1da177e4 5089
1da177e4 5090 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5091 set_load_weight(p);
b29739f9
IM
5092 old_prio = p->prio;
5093 p->prio = effective_prio(p);
5094 delta = p->prio - old_prio;
1da177e4 5095
dd41f596 5096 if (on_rq) {
8159f87e 5097 enqueue_task(rq, p, 0);
1da177e4 5098 /*
d5f9f942
AM
5099 * If the task increased its priority or is running and
5100 * lowered its priority, then reschedule its CPU:
1da177e4 5101 */
d5f9f942 5102 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5103 resched_task(rq->curr);
5104 }
5105out_unlock:
5106 task_rq_unlock(rq, &flags);
5107}
1da177e4
LT
5108EXPORT_SYMBOL(set_user_nice);
5109
e43379f1
MM
5110/*
5111 * can_nice - check if a task can reduce its nice value
5112 * @p: task
5113 * @nice: nice value
5114 */
36c8b586 5115int can_nice(const struct task_struct *p, const int nice)
e43379f1 5116{
024f4747
MM
5117 /* convert nice value [19,-20] to rlimit style value [1,40] */
5118 int nice_rlim = 20 - nice;
48f24c4d 5119
e43379f1
MM
5120 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5121 capable(CAP_SYS_NICE));
5122}
5123
1da177e4
LT
5124#ifdef __ARCH_WANT_SYS_NICE
5125
5126/*
5127 * sys_nice - change the priority of the current process.
5128 * @increment: priority increment
5129 *
5130 * sys_setpriority is a more generic, but much slower function that
5131 * does similar things.
5132 */
5133asmlinkage long sys_nice(int increment)
5134{
48f24c4d 5135 long nice, retval;
1da177e4
LT
5136
5137 /*
5138 * Setpriority might change our priority at the same moment.
5139 * We don't have to worry. Conceptually one call occurs first
5140 * and we have a single winner.
5141 */
e43379f1
MM
5142 if (increment < -40)
5143 increment = -40;
1da177e4
LT
5144 if (increment > 40)
5145 increment = 40;
5146
5147 nice = PRIO_TO_NICE(current->static_prio) + increment;
5148 if (nice < -20)
5149 nice = -20;
5150 if (nice > 19)
5151 nice = 19;
5152
e43379f1
MM
5153 if (increment < 0 && !can_nice(current, nice))
5154 return -EPERM;
5155
1da177e4
LT
5156 retval = security_task_setnice(current, nice);
5157 if (retval)
5158 return retval;
5159
5160 set_user_nice(current, nice);
5161 return 0;
5162}
5163
5164#endif
5165
5166/**
5167 * task_prio - return the priority value of a given task.
5168 * @p: the task in question.
5169 *
5170 * This is the priority value as seen by users in /proc.
5171 * RT tasks are offset by -200. Normal tasks are centered
5172 * around 0, value goes from -16 to +15.
5173 */
36c8b586 5174int task_prio(const struct task_struct *p)
1da177e4
LT
5175{
5176 return p->prio - MAX_RT_PRIO;
5177}
5178
5179/**
5180 * task_nice - return the nice value of a given task.
5181 * @p: the task in question.
5182 */
36c8b586 5183int task_nice(const struct task_struct *p)
1da177e4
LT
5184{
5185 return TASK_NICE(p);
5186}
150d8bed 5187EXPORT_SYMBOL(task_nice);
1da177e4
LT
5188
5189/**
5190 * idle_cpu - is a given cpu idle currently?
5191 * @cpu: the processor in question.
5192 */
5193int idle_cpu(int cpu)
5194{
5195 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5196}
5197
1da177e4
LT
5198/**
5199 * idle_task - return the idle task for a given cpu.
5200 * @cpu: the processor in question.
5201 */
36c8b586 5202struct task_struct *idle_task(int cpu)
1da177e4
LT
5203{
5204 return cpu_rq(cpu)->idle;
5205}
5206
5207/**
5208 * find_process_by_pid - find a process with a matching PID value.
5209 * @pid: the pid in question.
5210 */
a9957449 5211static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5212{
228ebcbe 5213 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5214}
5215
5216/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5217static void
5218__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5219{
dd41f596 5220 BUG_ON(p->se.on_rq);
48f24c4d 5221
1da177e4 5222 p->policy = policy;
dd41f596
IM
5223 switch (p->policy) {
5224 case SCHED_NORMAL:
5225 case SCHED_BATCH:
5226 case SCHED_IDLE:
5227 p->sched_class = &fair_sched_class;
5228 break;
5229 case SCHED_FIFO:
5230 case SCHED_RR:
5231 p->sched_class = &rt_sched_class;
5232 break;
5233 }
5234
1da177e4 5235 p->rt_priority = prio;
b29739f9
IM
5236 p->normal_prio = normal_prio(p);
5237 /* we are holding p->pi_lock already */
5238 p->prio = rt_mutex_getprio(p);
2dd73a4f 5239 set_load_weight(p);
1da177e4
LT
5240}
5241
5242/**
72fd4a35 5243 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
5244 * @p: the task in question.
5245 * @policy: new policy.
5246 * @param: structure containing the new RT priority.
5fe1d75f 5247 *
72fd4a35 5248 * NOTE that the task may be already dead.
1da177e4 5249 */
95cdf3b7
IM
5250int sched_setscheduler(struct task_struct *p, int policy,
5251 struct sched_param *param)
1da177e4 5252{
83b699ed 5253 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5254 unsigned long flags;
cb469845 5255 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5256 struct rq *rq;
1da177e4 5257
66e5393a
SR
5258 /* may grab non-irq protected spin_locks */
5259 BUG_ON(in_interrupt());
1da177e4
LT
5260recheck:
5261 /* double check policy once rq lock held */
5262 if (policy < 0)
5263 policy = oldpolicy = p->policy;
5264 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5265 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5266 policy != SCHED_IDLE)
b0a9499c 5267 return -EINVAL;
1da177e4
LT
5268 /*
5269 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5270 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5271 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5272 */
5273 if (param->sched_priority < 0 ||
95cdf3b7 5274 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5275 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5276 return -EINVAL;
e05606d3 5277 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5278 return -EINVAL;
5279
37e4ab3f
OC
5280 /*
5281 * Allow unprivileged RT tasks to decrease priority:
5282 */
5283 if (!capable(CAP_SYS_NICE)) {
e05606d3 5284 if (rt_policy(policy)) {
8dc3e909 5285 unsigned long rlim_rtprio;
8dc3e909
ON
5286
5287 if (!lock_task_sighand(p, &flags))
5288 return -ESRCH;
5289 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5290 unlock_task_sighand(p, &flags);
5291
5292 /* can't set/change the rt policy */
5293 if (policy != p->policy && !rlim_rtprio)
5294 return -EPERM;
5295
5296 /* can't increase priority */
5297 if (param->sched_priority > p->rt_priority &&
5298 param->sched_priority > rlim_rtprio)
5299 return -EPERM;
5300 }
dd41f596
IM
5301 /*
5302 * Like positive nice levels, dont allow tasks to
5303 * move out of SCHED_IDLE either:
5304 */
5305 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5306 return -EPERM;
5fe1d75f 5307
37e4ab3f
OC
5308 /* can't change other user's priorities */
5309 if ((current->euid != p->euid) &&
5310 (current->euid != p->uid))
5311 return -EPERM;
5312 }
1da177e4 5313
b68aa230
PZ
5314#ifdef CONFIG_RT_GROUP_SCHED
5315 /*
5316 * Do not allow realtime tasks into groups that have no runtime
5317 * assigned.
5318 */
d0b27fa7 5319 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5320 return -EPERM;
5321#endif
5322
1da177e4
LT
5323 retval = security_task_setscheduler(p, policy, param);
5324 if (retval)
5325 return retval;
b29739f9
IM
5326 /*
5327 * make sure no PI-waiters arrive (or leave) while we are
5328 * changing the priority of the task:
5329 */
5330 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5331 /*
5332 * To be able to change p->policy safely, the apropriate
5333 * runqueue lock must be held.
5334 */
b29739f9 5335 rq = __task_rq_lock(p);
1da177e4
LT
5336 /* recheck policy now with rq lock held */
5337 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5338 policy = oldpolicy = -1;
b29739f9
IM
5339 __task_rq_unlock(rq);
5340 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5341 goto recheck;
5342 }
2daa3577 5343 update_rq_clock(rq);
dd41f596 5344 on_rq = p->se.on_rq;
051a1d1a 5345 running = task_current(rq, p);
0e1f3483 5346 if (on_rq)
2e1cb74a 5347 deactivate_task(rq, p, 0);
0e1f3483
HS
5348 if (running)
5349 p->sched_class->put_prev_task(rq, p);
f6b53205 5350
1da177e4 5351 oldprio = p->prio;
dd41f596 5352 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5353
0e1f3483
HS
5354 if (running)
5355 p->sched_class->set_curr_task(rq);
dd41f596
IM
5356 if (on_rq) {
5357 activate_task(rq, p, 0);
cb469845
SR
5358
5359 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5360 }
b29739f9
IM
5361 __task_rq_unlock(rq);
5362 spin_unlock_irqrestore(&p->pi_lock, flags);
5363
95e02ca9
TG
5364 rt_mutex_adjust_pi(p);
5365
1da177e4
LT
5366 return 0;
5367}
5368EXPORT_SYMBOL_GPL(sched_setscheduler);
5369
95cdf3b7
IM
5370static int
5371do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5372{
1da177e4
LT
5373 struct sched_param lparam;
5374 struct task_struct *p;
36c8b586 5375 int retval;
1da177e4
LT
5376
5377 if (!param || pid < 0)
5378 return -EINVAL;
5379 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5380 return -EFAULT;
5fe1d75f
ON
5381
5382 rcu_read_lock();
5383 retval = -ESRCH;
1da177e4 5384 p = find_process_by_pid(pid);
5fe1d75f
ON
5385 if (p != NULL)
5386 retval = sched_setscheduler(p, policy, &lparam);
5387 rcu_read_unlock();
36c8b586 5388
1da177e4
LT
5389 return retval;
5390}
5391
5392/**
5393 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5394 * @pid: the pid in question.
5395 * @policy: new policy.
5396 * @param: structure containing the new RT priority.
5397 */
41a2d6cf
IM
5398asmlinkage long
5399sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5400{
c21761f1
JB
5401 /* negative values for policy are not valid */
5402 if (policy < 0)
5403 return -EINVAL;
5404
1da177e4
LT
5405 return do_sched_setscheduler(pid, policy, param);
5406}
5407
5408/**
5409 * sys_sched_setparam - set/change the RT priority of a thread
5410 * @pid: the pid in question.
5411 * @param: structure containing the new RT priority.
5412 */
5413asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5414{
5415 return do_sched_setscheduler(pid, -1, param);
5416}
5417
5418/**
5419 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5420 * @pid: the pid in question.
5421 */
5422asmlinkage long sys_sched_getscheduler(pid_t pid)
5423{
36c8b586 5424 struct task_struct *p;
3a5c359a 5425 int retval;
1da177e4
LT
5426
5427 if (pid < 0)
3a5c359a 5428 return -EINVAL;
1da177e4
LT
5429
5430 retval = -ESRCH;
5431 read_lock(&tasklist_lock);
5432 p = find_process_by_pid(pid);
5433 if (p) {
5434 retval = security_task_getscheduler(p);
5435 if (!retval)
5436 retval = p->policy;
5437 }
5438 read_unlock(&tasklist_lock);
1da177e4
LT
5439 return retval;
5440}
5441
5442/**
5443 * sys_sched_getscheduler - get the RT priority of a thread
5444 * @pid: the pid in question.
5445 * @param: structure containing the RT priority.
5446 */
5447asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5448{
5449 struct sched_param lp;
36c8b586 5450 struct task_struct *p;
3a5c359a 5451 int retval;
1da177e4
LT
5452
5453 if (!param || pid < 0)
3a5c359a 5454 return -EINVAL;
1da177e4
LT
5455
5456 read_lock(&tasklist_lock);
5457 p = find_process_by_pid(pid);
5458 retval = -ESRCH;
5459 if (!p)
5460 goto out_unlock;
5461
5462 retval = security_task_getscheduler(p);
5463 if (retval)
5464 goto out_unlock;
5465
5466 lp.sched_priority = p->rt_priority;
5467 read_unlock(&tasklist_lock);
5468
5469 /*
5470 * This one might sleep, we cannot do it with a spinlock held ...
5471 */
5472 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5473
1da177e4
LT
5474 return retval;
5475
5476out_unlock:
5477 read_unlock(&tasklist_lock);
5478 return retval;
5479}
5480
b53e921b 5481long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5482{
1da177e4 5483 cpumask_t cpus_allowed;
b53e921b 5484 cpumask_t new_mask = *in_mask;
36c8b586
IM
5485 struct task_struct *p;
5486 int retval;
1da177e4 5487
95402b38 5488 get_online_cpus();
1da177e4
LT
5489 read_lock(&tasklist_lock);
5490
5491 p = find_process_by_pid(pid);
5492 if (!p) {
5493 read_unlock(&tasklist_lock);
95402b38 5494 put_online_cpus();
1da177e4
LT
5495 return -ESRCH;
5496 }
5497
5498 /*
5499 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5500 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5501 * usage count and then drop tasklist_lock.
5502 */
5503 get_task_struct(p);
5504 read_unlock(&tasklist_lock);
5505
5506 retval = -EPERM;
5507 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5508 !capable(CAP_SYS_NICE))
5509 goto out_unlock;
5510
e7834f8f
DQ
5511 retval = security_task_setscheduler(p, 0, NULL);
5512 if (retval)
5513 goto out_unlock;
5514
f9a86fcb 5515 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5516 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5517 again:
7c16ec58 5518 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5519
8707d8b8 5520 if (!retval) {
f9a86fcb 5521 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5522 if (!cpus_subset(new_mask, cpus_allowed)) {
5523 /*
5524 * We must have raced with a concurrent cpuset
5525 * update. Just reset the cpus_allowed to the
5526 * cpuset's cpus_allowed
5527 */
5528 new_mask = cpus_allowed;
5529 goto again;
5530 }
5531 }
1da177e4
LT
5532out_unlock:
5533 put_task_struct(p);
95402b38 5534 put_online_cpus();
1da177e4
LT
5535 return retval;
5536}
5537
5538static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5539 cpumask_t *new_mask)
5540{
5541 if (len < sizeof(cpumask_t)) {
5542 memset(new_mask, 0, sizeof(cpumask_t));
5543 } else if (len > sizeof(cpumask_t)) {
5544 len = sizeof(cpumask_t);
5545 }
5546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5547}
5548
5549/**
5550 * sys_sched_setaffinity - set the cpu affinity of a process
5551 * @pid: pid of the process
5552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5553 * @user_mask_ptr: user-space pointer to the new cpu mask
5554 */
5555asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5556 unsigned long __user *user_mask_ptr)
5557{
5558 cpumask_t new_mask;
5559 int retval;
5560
5561 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5562 if (retval)
5563 return retval;
5564
b53e921b 5565 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5566}
5567
5568/*
5569 * Represents all cpu's present in the system
5570 * In systems capable of hotplug, this map could dynamically grow
5571 * as new cpu's are detected in the system via any platform specific
5572 * method, such as ACPI for e.g.
5573 */
5574
4cef0c61 5575cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5576EXPORT_SYMBOL(cpu_present_map);
5577
5578#ifndef CONFIG_SMP
4cef0c61 5579cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5580EXPORT_SYMBOL(cpu_online_map);
5581
4cef0c61 5582cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5583EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5584#endif
5585
5586long sched_getaffinity(pid_t pid, cpumask_t *mask)
5587{
36c8b586 5588 struct task_struct *p;
1da177e4 5589 int retval;
1da177e4 5590
95402b38 5591 get_online_cpus();
1da177e4
LT
5592 read_lock(&tasklist_lock);
5593
5594 retval = -ESRCH;
5595 p = find_process_by_pid(pid);
5596 if (!p)
5597 goto out_unlock;
5598
e7834f8f
DQ
5599 retval = security_task_getscheduler(p);
5600 if (retval)
5601 goto out_unlock;
5602
2f7016d9 5603 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5604
5605out_unlock:
5606 read_unlock(&tasklist_lock);
95402b38 5607 put_online_cpus();
1da177e4 5608
9531b62f 5609 return retval;
1da177e4
LT
5610}
5611
5612/**
5613 * sys_sched_getaffinity - get the cpu affinity of a process
5614 * @pid: pid of the process
5615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5616 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5617 */
5618asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5619 unsigned long __user *user_mask_ptr)
5620{
5621 int ret;
5622 cpumask_t mask;
5623
5624 if (len < sizeof(cpumask_t))
5625 return -EINVAL;
5626
5627 ret = sched_getaffinity(pid, &mask);
5628 if (ret < 0)
5629 return ret;
5630
5631 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5632 return -EFAULT;
5633
5634 return sizeof(cpumask_t);
5635}
5636
5637/**
5638 * sys_sched_yield - yield the current processor to other threads.
5639 *
dd41f596
IM
5640 * This function yields the current CPU to other tasks. If there are no
5641 * other threads running on this CPU then this function will return.
1da177e4
LT
5642 */
5643asmlinkage long sys_sched_yield(void)
5644{
70b97a7f 5645 struct rq *rq = this_rq_lock();
1da177e4 5646
2d72376b 5647 schedstat_inc(rq, yld_count);
4530d7ab 5648 current->sched_class->yield_task(rq);
1da177e4
LT
5649
5650 /*
5651 * Since we are going to call schedule() anyway, there's
5652 * no need to preempt or enable interrupts:
5653 */
5654 __release(rq->lock);
8a25d5de 5655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5656 _raw_spin_unlock(&rq->lock);
5657 preempt_enable_no_resched();
5658
5659 schedule();
5660
5661 return 0;
5662}
5663
e7b38404 5664static void __cond_resched(void)
1da177e4 5665{
8e0a43d8
IM
5666#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5667 __might_sleep(__FILE__, __LINE__);
5668#endif
5bbcfd90
IM
5669 /*
5670 * The BKS might be reacquired before we have dropped
5671 * PREEMPT_ACTIVE, which could trigger a second
5672 * cond_resched() call.
5673 */
1da177e4
LT
5674 do {
5675 add_preempt_count(PREEMPT_ACTIVE);
5676 schedule();
5677 sub_preempt_count(PREEMPT_ACTIVE);
5678 } while (need_resched());
5679}
5680
02b67cc3
HX
5681#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5682int __sched _cond_resched(void)
1da177e4 5683{
9414232f
IM
5684 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5685 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5686 __cond_resched();
5687 return 1;
5688 }
5689 return 0;
5690}
02b67cc3
HX
5691EXPORT_SYMBOL(_cond_resched);
5692#endif
1da177e4
LT
5693
5694/*
5695 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5696 * call schedule, and on return reacquire the lock.
5697 *
41a2d6cf 5698 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5699 * operations here to prevent schedule() from being called twice (once via
5700 * spin_unlock(), once by hand).
5701 */
95cdf3b7 5702int cond_resched_lock(spinlock_t *lock)
1da177e4 5703{
95c354fe 5704 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5705 int ret = 0;
5706
95c354fe 5707 if (spin_needbreak(lock) || resched) {
1da177e4 5708 spin_unlock(lock);
95c354fe
NP
5709 if (resched && need_resched())
5710 __cond_resched();
5711 else
5712 cpu_relax();
6df3cecb 5713 ret = 1;
1da177e4 5714 spin_lock(lock);
1da177e4 5715 }
6df3cecb 5716 return ret;
1da177e4 5717}
1da177e4
LT
5718EXPORT_SYMBOL(cond_resched_lock);
5719
5720int __sched cond_resched_softirq(void)
5721{
5722 BUG_ON(!in_softirq());
5723
9414232f 5724 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5725 local_bh_enable();
1da177e4
LT
5726 __cond_resched();
5727 local_bh_disable();
5728 return 1;
5729 }
5730 return 0;
5731}
1da177e4
LT
5732EXPORT_SYMBOL(cond_resched_softirq);
5733
1da177e4
LT
5734/**
5735 * yield - yield the current processor to other threads.
5736 *
72fd4a35 5737 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5738 * thread runnable and calls sys_sched_yield().
5739 */
5740void __sched yield(void)
5741{
5742 set_current_state(TASK_RUNNING);
5743 sys_sched_yield();
5744}
1da177e4
LT
5745EXPORT_SYMBOL(yield);
5746
5747/*
41a2d6cf 5748 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5749 * that process accounting knows that this is a task in IO wait state.
5750 *
5751 * But don't do that if it is a deliberate, throttling IO wait (this task
5752 * has set its backing_dev_info: the queue against which it should throttle)
5753 */
5754void __sched io_schedule(void)
5755{
70b97a7f 5756 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5757
0ff92245 5758 delayacct_blkio_start();
1da177e4
LT
5759 atomic_inc(&rq->nr_iowait);
5760 schedule();
5761 atomic_dec(&rq->nr_iowait);
0ff92245 5762 delayacct_blkio_end();
1da177e4 5763}
1da177e4
LT
5764EXPORT_SYMBOL(io_schedule);
5765
5766long __sched io_schedule_timeout(long timeout)
5767{
70b97a7f 5768 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5769 long ret;
5770
0ff92245 5771 delayacct_blkio_start();
1da177e4
LT
5772 atomic_inc(&rq->nr_iowait);
5773 ret = schedule_timeout(timeout);
5774 atomic_dec(&rq->nr_iowait);
0ff92245 5775 delayacct_blkio_end();
1da177e4
LT
5776 return ret;
5777}
5778
5779/**
5780 * sys_sched_get_priority_max - return maximum RT priority.
5781 * @policy: scheduling class.
5782 *
5783 * this syscall returns the maximum rt_priority that can be used
5784 * by a given scheduling class.
5785 */
5786asmlinkage long sys_sched_get_priority_max(int policy)
5787{
5788 int ret = -EINVAL;
5789
5790 switch (policy) {
5791 case SCHED_FIFO:
5792 case SCHED_RR:
5793 ret = MAX_USER_RT_PRIO-1;
5794 break;
5795 case SCHED_NORMAL:
b0a9499c 5796 case SCHED_BATCH:
dd41f596 5797 case SCHED_IDLE:
1da177e4
LT
5798 ret = 0;
5799 break;
5800 }
5801 return ret;
5802}
5803
5804/**
5805 * sys_sched_get_priority_min - return minimum RT priority.
5806 * @policy: scheduling class.
5807 *
5808 * this syscall returns the minimum rt_priority that can be used
5809 * by a given scheduling class.
5810 */
5811asmlinkage long sys_sched_get_priority_min(int policy)
5812{
5813 int ret = -EINVAL;
5814
5815 switch (policy) {
5816 case SCHED_FIFO:
5817 case SCHED_RR:
5818 ret = 1;
5819 break;
5820 case SCHED_NORMAL:
b0a9499c 5821 case SCHED_BATCH:
dd41f596 5822 case SCHED_IDLE:
1da177e4
LT
5823 ret = 0;
5824 }
5825 return ret;
5826}
5827
5828/**
5829 * sys_sched_rr_get_interval - return the default timeslice of a process.
5830 * @pid: pid of the process.
5831 * @interval: userspace pointer to the timeslice value.
5832 *
5833 * this syscall writes the default timeslice value of a given process
5834 * into the user-space timespec buffer. A value of '0' means infinity.
5835 */
5836asmlinkage
5837long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5838{
36c8b586 5839 struct task_struct *p;
a4ec24b4 5840 unsigned int time_slice;
3a5c359a 5841 int retval;
1da177e4 5842 struct timespec t;
1da177e4
LT
5843
5844 if (pid < 0)
3a5c359a 5845 return -EINVAL;
1da177e4
LT
5846
5847 retval = -ESRCH;
5848 read_lock(&tasklist_lock);
5849 p = find_process_by_pid(pid);
5850 if (!p)
5851 goto out_unlock;
5852
5853 retval = security_task_getscheduler(p);
5854 if (retval)
5855 goto out_unlock;
5856
77034937
IM
5857 /*
5858 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5859 * tasks that are on an otherwise idle runqueue:
5860 */
5861 time_slice = 0;
5862 if (p->policy == SCHED_RR) {
a4ec24b4 5863 time_slice = DEF_TIMESLICE;
1868f958 5864 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5865 struct sched_entity *se = &p->se;
5866 unsigned long flags;
5867 struct rq *rq;
5868
5869 rq = task_rq_lock(p, &flags);
77034937
IM
5870 if (rq->cfs.load.weight)
5871 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5872 task_rq_unlock(rq, &flags);
5873 }
1da177e4 5874 read_unlock(&tasklist_lock);
a4ec24b4 5875 jiffies_to_timespec(time_slice, &t);
1da177e4 5876 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5877 return retval;
3a5c359a 5878
1da177e4
LT
5879out_unlock:
5880 read_unlock(&tasklist_lock);
5881 return retval;
5882}
5883
2ed6e34f 5884static const char stat_nam[] = "RSDTtZX";
36c8b586 5885
82a1fcb9 5886void sched_show_task(struct task_struct *p)
1da177e4 5887{
1da177e4 5888 unsigned long free = 0;
36c8b586 5889 unsigned state;
1da177e4 5890
1da177e4 5891 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5892 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5893 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5894#if BITS_PER_LONG == 32
1da177e4 5895 if (state == TASK_RUNNING)
cc4ea795 5896 printk(KERN_CONT " running ");
1da177e4 5897 else
cc4ea795 5898 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5899#else
5900 if (state == TASK_RUNNING)
cc4ea795 5901 printk(KERN_CONT " running task ");
1da177e4 5902 else
cc4ea795 5903 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5904#endif
5905#ifdef CONFIG_DEBUG_STACK_USAGE
5906 {
10ebffde 5907 unsigned long *n = end_of_stack(p);
1da177e4
LT
5908 while (!*n)
5909 n++;
10ebffde 5910 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5911 }
5912#endif
ba25f9dc 5913 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5914 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5915
5fb5e6de 5916 show_stack(p, NULL);
1da177e4
LT
5917}
5918
e59e2ae2 5919void show_state_filter(unsigned long state_filter)
1da177e4 5920{
36c8b586 5921 struct task_struct *g, *p;
1da177e4 5922
4bd77321
IM
5923#if BITS_PER_LONG == 32
5924 printk(KERN_INFO
5925 " task PC stack pid father\n");
1da177e4 5926#else
4bd77321
IM
5927 printk(KERN_INFO
5928 " task PC stack pid father\n");
1da177e4
LT
5929#endif
5930 read_lock(&tasklist_lock);
5931 do_each_thread(g, p) {
5932 /*
5933 * reset the NMI-timeout, listing all files on a slow
5934 * console might take alot of time:
5935 */
5936 touch_nmi_watchdog();
39bc89fd 5937 if (!state_filter || (p->state & state_filter))
82a1fcb9 5938 sched_show_task(p);
1da177e4
LT
5939 } while_each_thread(g, p);
5940
04c9167f
JF
5941 touch_all_softlockup_watchdogs();
5942
dd41f596
IM
5943#ifdef CONFIG_SCHED_DEBUG
5944 sysrq_sched_debug_show();
5945#endif
1da177e4 5946 read_unlock(&tasklist_lock);
e59e2ae2
IM
5947 /*
5948 * Only show locks if all tasks are dumped:
5949 */
5950 if (state_filter == -1)
5951 debug_show_all_locks();
1da177e4
LT
5952}
5953
1df21055
IM
5954void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5955{
dd41f596 5956 idle->sched_class = &idle_sched_class;
1df21055
IM
5957}
5958
f340c0d1
IM
5959/**
5960 * init_idle - set up an idle thread for a given CPU
5961 * @idle: task in question
5962 * @cpu: cpu the idle task belongs to
5963 *
5964 * NOTE: this function does not set the idle thread's NEED_RESCHED
5965 * flag, to make booting more robust.
5966 */
5c1e1767 5967void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5968{
70b97a7f 5969 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5970 unsigned long flags;
5971
dd41f596
IM
5972 __sched_fork(idle);
5973 idle->se.exec_start = sched_clock();
5974
b29739f9 5975 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5976 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5977 __set_task_cpu(idle, cpu);
1da177e4
LT
5978
5979 spin_lock_irqsave(&rq->lock, flags);
5980 rq->curr = rq->idle = idle;
4866cde0
NP
5981#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5982 idle->oncpu = 1;
5983#endif
1da177e4
LT
5984 spin_unlock_irqrestore(&rq->lock, flags);
5985
5986 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5987 task_thread_info(idle)->preempt_count = 0;
6478d880 5988
dd41f596
IM
5989 /*
5990 * The idle tasks have their own, simple scheduling class:
5991 */
5992 idle->sched_class = &idle_sched_class;
1da177e4
LT
5993}
5994
5995/*
5996 * In a system that switches off the HZ timer nohz_cpu_mask
5997 * indicates which cpus entered this state. This is used
5998 * in the rcu update to wait only for active cpus. For system
5999 * which do not switch off the HZ timer nohz_cpu_mask should
6000 * always be CPU_MASK_NONE.
6001 */
6002cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
6003
19978ca6
IM
6004/*
6005 * Increase the granularity value when there are more CPUs,
6006 * because with more CPUs the 'effective latency' as visible
6007 * to users decreases. But the relationship is not linear,
6008 * so pick a second-best guess by going with the log2 of the
6009 * number of CPUs.
6010 *
6011 * This idea comes from the SD scheduler of Con Kolivas:
6012 */
6013static inline void sched_init_granularity(void)
6014{
6015 unsigned int factor = 1 + ilog2(num_online_cpus());
6016 const unsigned long limit = 200000000;
6017
6018 sysctl_sched_min_granularity *= factor;
6019 if (sysctl_sched_min_granularity > limit)
6020 sysctl_sched_min_granularity = limit;
6021
6022 sysctl_sched_latency *= factor;
6023 if (sysctl_sched_latency > limit)
6024 sysctl_sched_latency = limit;
6025
6026 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
6027}
6028
1da177e4
LT
6029#ifdef CONFIG_SMP
6030/*
6031 * This is how migration works:
6032 *
70b97a7f 6033 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6034 * runqueue and wake up that CPU's migration thread.
6035 * 2) we down() the locked semaphore => thread blocks.
6036 * 3) migration thread wakes up (implicitly it forces the migrated
6037 * thread off the CPU)
6038 * 4) it gets the migration request and checks whether the migrated
6039 * task is still in the wrong runqueue.
6040 * 5) if it's in the wrong runqueue then the migration thread removes
6041 * it and puts it into the right queue.
6042 * 6) migration thread up()s the semaphore.
6043 * 7) we wake up and the migration is done.
6044 */
6045
6046/*
6047 * Change a given task's CPU affinity. Migrate the thread to a
6048 * proper CPU and schedule it away if the CPU it's executing on
6049 * is removed from the allowed bitmask.
6050 *
6051 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6052 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6053 * call is not atomic; no spinlocks may be held.
6054 */
cd8ba7cd 6055int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 6056{
70b97a7f 6057 struct migration_req req;
1da177e4 6058 unsigned long flags;
70b97a7f 6059 struct rq *rq;
48f24c4d 6060 int ret = 0;
1da177e4
LT
6061
6062 rq = task_rq_lock(p, &flags);
cd8ba7cd 6063 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
6064 ret = -EINVAL;
6065 goto out;
6066 }
6067
73fe6aae 6068 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6069 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6070 else {
cd8ba7cd
MT
6071 p->cpus_allowed = *new_mask;
6072 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
6073 }
6074
1da177e4 6075 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 6076 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
6077 goto out;
6078
cd8ba7cd 6079 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
6080 /* Need help from migration thread: drop lock and wait. */
6081 task_rq_unlock(rq, &flags);
6082 wake_up_process(rq->migration_thread);
6083 wait_for_completion(&req.done);
6084 tlb_migrate_finish(p->mm);
6085 return 0;
6086 }
6087out:
6088 task_rq_unlock(rq, &flags);
48f24c4d 6089
1da177e4
LT
6090 return ret;
6091}
cd8ba7cd 6092EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6093
6094/*
41a2d6cf 6095 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6096 * this because either it can't run here any more (set_cpus_allowed()
6097 * away from this CPU, or CPU going down), or because we're
6098 * attempting to rebalance this task on exec (sched_exec).
6099 *
6100 * So we race with normal scheduler movements, but that's OK, as long
6101 * as the task is no longer on this CPU.
efc30814
KK
6102 *
6103 * Returns non-zero if task was successfully migrated.
1da177e4 6104 */
efc30814 6105static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6106{
70b97a7f 6107 struct rq *rq_dest, *rq_src;
dd41f596 6108 int ret = 0, on_rq;
1da177e4
LT
6109
6110 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 6111 return ret;
1da177e4
LT
6112
6113 rq_src = cpu_rq(src_cpu);
6114 rq_dest = cpu_rq(dest_cpu);
6115
6116 double_rq_lock(rq_src, rq_dest);
6117 /* Already moved. */
6118 if (task_cpu(p) != src_cpu)
6119 goto out;
6120 /* Affinity changed (again). */
6121 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6122 goto out;
6123
dd41f596 6124 on_rq = p->se.on_rq;
6e82a3be 6125 if (on_rq)
2e1cb74a 6126 deactivate_task(rq_src, p, 0);
6e82a3be 6127
1da177e4 6128 set_task_cpu(p, dest_cpu);
dd41f596
IM
6129 if (on_rq) {
6130 activate_task(rq_dest, p, 0);
6131 check_preempt_curr(rq_dest, p);
1da177e4 6132 }
efc30814 6133 ret = 1;
1da177e4
LT
6134out:
6135 double_rq_unlock(rq_src, rq_dest);
efc30814 6136 return ret;
1da177e4
LT
6137}
6138
6139/*
6140 * migration_thread - this is a highprio system thread that performs
6141 * thread migration by bumping thread off CPU then 'pushing' onto
6142 * another runqueue.
6143 */
95cdf3b7 6144static int migration_thread(void *data)
1da177e4 6145{
1da177e4 6146 int cpu = (long)data;
70b97a7f 6147 struct rq *rq;
1da177e4
LT
6148
6149 rq = cpu_rq(cpu);
6150 BUG_ON(rq->migration_thread != current);
6151
6152 set_current_state(TASK_INTERRUPTIBLE);
6153 while (!kthread_should_stop()) {
70b97a7f 6154 struct migration_req *req;
1da177e4 6155 struct list_head *head;
1da177e4 6156
1da177e4
LT
6157 spin_lock_irq(&rq->lock);
6158
6159 if (cpu_is_offline(cpu)) {
6160 spin_unlock_irq(&rq->lock);
6161 goto wait_to_die;
6162 }
6163
6164 if (rq->active_balance) {
6165 active_load_balance(rq, cpu);
6166 rq->active_balance = 0;
6167 }
6168
6169 head = &rq->migration_queue;
6170
6171 if (list_empty(head)) {
6172 spin_unlock_irq(&rq->lock);
6173 schedule();
6174 set_current_state(TASK_INTERRUPTIBLE);
6175 continue;
6176 }
70b97a7f 6177 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6178 list_del_init(head->next);
6179
674311d5
NP
6180 spin_unlock(&rq->lock);
6181 __migrate_task(req->task, cpu, req->dest_cpu);
6182 local_irq_enable();
1da177e4
LT
6183
6184 complete(&req->done);
6185 }
6186 __set_current_state(TASK_RUNNING);
6187 return 0;
6188
6189wait_to_die:
6190 /* Wait for kthread_stop */
6191 set_current_state(TASK_INTERRUPTIBLE);
6192 while (!kthread_should_stop()) {
6193 schedule();
6194 set_current_state(TASK_INTERRUPTIBLE);
6195 }
6196 __set_current_state(TASK_RUNNING);
6197 return 0;
6198}
6199
6200#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6201
6202static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6203{
6204 int ret;
6205
6206 local_irq_disable();
6207 ret = __migrate_task(p, src_cpu, dest_cpu);
6208 local_irq_enable();
6209 return ret;
6210}
6211
054b9108 6212/*
3a4fa0a2 6213 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6214 * NOTE: interrupts should be disabled by the caller
6215 */
48f24c4d 6216static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6217{
efc30814 6218 unsigned long flags;
1da177e4 6219 cpumask_t mask;
70b97a7f
IM
6220 struct rq *rq;
6221 int dest_cpu;
1da177e4 6222
3a5c359a
AK
6223 do {
6224 /* On same node? */
6225 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6226 cpus_and(mask, mask, p->cpus_allowed);
6227 dest_cpu = any_online_cpu(mask);
6228
6229 /* On any allowed CPU? */
434d53b0 6230 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6231 dest_cpu = any_online_cpu(p->cpus_allowed);
6232
6233 /* No more Mr. Nice Guy. */
434d53b0 6234 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6235 cpumask_t cpus_allowed;
6236
6237 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6238 /*
6239 * Try to stay on the same cpuset, where the
6240 * current cpuset may be a subset of all cpus.
6241 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6242 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6243 * called within calls to cpuset_lock/cpuset_unlock.
6244 */
3a5c359a 6245 rq = task_rq_lock(p, &flags);
470fd646 6246 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6247 dest_cpu = any_online_cpu(p->cpus_allowed);
6248 task_rq_unlock(rq, &flags);
1da177e4 6249
3a5c359a
AK
6250 /*
6251 * Don't tell them about moving exiting tasks or
6252 * kernel threads (both mm NULL), since they never
6253 * leave kernel.
6254 */
41a2d6cf 6255 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6256 printk(KERN_INFO "process %d (%s) no "
6257 "longer affine to cpu%d\n",
41a2d6cf
IM
6258 task_pid_nr(p), p->comm, dead_cpu);
6259 }
3a5c359a 6260 }
f7b4cddc 6261 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6262}
6263
6264/*
6265 * While a dead CPU has no uninterruptible tasks queued at this point,
6266 * it might still have a nonzero ->nr_uninterruptible counter, because
6267 * for performance reasons the counter is not stricly tracking tasks to
6268 * their home CPUs. So we just add the counter to another CPU's counter,
6269 * to keep the global sum constant after CPU-down:
6270 */
70b97a7f 6271static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6272{
7c16ec58 6273 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6274 unsigned long flags;
6275
6276 local_irq_save(flags);
6277 double_rq_lock(rq_src, rq_dest);
6278 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6279 rq_src->nr_uninterruptible = 0;
6280 double_rq_unlock(rq_src, rq_dest);
6281 local_irq_restore(flags);
6282}
6283
6284/* Run through task list and migrate tasks from the dead cpu. */
6285static void migrate_live_tasks(int src_cpu)
6286{
48f24c4d 6287 struct task_struct *p, *t;
1da177e4 6288
f7b4cddc 6289 read_lock(&tasklist_lock);
1da177e4 6290
48f24c4d
IM
6291 do_each_thread(t, p) {
6292 if (p == current)
1da177e4
LT
6293 continue;
6294
48f24c4d
IM
6295 if (task_cpu(p) == src_cpu)
6296 move_task_off_dead_cpu(src_cpu, p);
6297 } while_each_thread(t, p);
1da177e4 6298
f7b4cddc 6299 read_unlock(&tasklist_lock);
1da177e4
LT
6300}
6301
dd41f596
IM
6302/*
6303 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6304 * It does so by boosting its priority to highest possible.
6305 * Used by CPU offline code.
1da177e4
LT
6306 */
6307void sched_idle_next(void)
6308{
48f24c4d 6309 int this_cpu = smp_processor_id();
70b97a7f 6310 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6311 struct task_struct *p = rq->idle;
6312 unsigned long flags;
6313
6314 /* cpu has to be offline */
48f24c4d 6315 BUG_ON(cpu_online(this_cpu));
1da177e4 6316
48f24c4d
IM
6317 /*
6318 * Strictly not necessary since rest of the CPUs are stopped by now
6319 * and interrupts disabled on the current cpu.
1da177e4
LT
6320 */
6321 spin_lock_irqsave(&rq->lock, flags);
6322
dd41f596 6323 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6324
94bc9a7b
DA
6325 update_rq_clock(rq);
6326 activate_task(rq, p, 0);
1da177e4
LT
6327
6328 spin_unlock_irqrestore(&rq->lock, flags);
6329}
6330
48f24c4d
IM
6331/*
6332 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6333 * offline.
6334 */
6335void idle_task_exit(void)
6336{
6337 struct mm_struct *mm = current->active_mm;
6338
6339 BUG_ON(cpu_online(smp_processor_id()));
6340
6341 if (mm != &init_mm)
6342 switch_mm(mm, &init_mm, current);
6343 mmdrop(mm);
6344}
6345
054b9108 6346/* called under rq->lock with disabled interrupts */
36c8b586 6347static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6348{
70b97a7f 6349 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6350
6351 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6352 BUG_ON(!p->exit_state);
1da177e4
LT
6353
6354 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6355 BUG_ON(p->state == TASK_DEAD);
1da177e4 6356
48f24c4d 6357 get_task_struct(p);
1da177e4
LT
6358
6359 /*
6360 * Drop lock around migration; if someone else moves it,
41a2d6cf 6361 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6362 * fine.
6363 */
f7b4cddc 6364 spin_unlock_irq(&rq->lock);
48f24c4d 6365 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6366 spin_lock_irq(&rq->lock);
1da177e4 6367
48f24c4d 6368 put_task_struct(p);
1da177e4
LT
6369}
6370
6371/* release_task() removes task from tasklist, so we won't find dead tasks. */
6372static void migrate_dead_tasks(unsigned int dead_cpu)
6373{
70b97a7f 6374 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6375 struct task_struct *next;
48f24c4d 6376
dd41f596
IM
6377 for ( ; ; ) {
6378 if (!rq->nr_running)
6379 break;
a8e504d2 6380 update_rq_clock(rq);
ff95f3df 6381 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6382 if (!next)
6383 break;
6384 migrate_dead(dead_cpu, next);
e692ab53 6385
1da177e4
LT
6386 }
6387}
6388#endif /* CONFIG_HOTPLUG_CPU */
6389
e692ab53
NP
6390#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6391
6392static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6393 {
6394 .procname = "sched_domain",
c57baf1e 6395 .mode = 0555,
e0361851 6396 },
38605cae 6397 {0, },
e692ab53
NP
6398};
6399
6400static struct ctl_table sd_ctl_root[] = {
e0361851 6401 {
c57baf1e 6402 .ctl_name = CTL_KERN,
e0361851 6403 .procname = "kernel",
c57baf1e 6404 .mode = 0555,
e0361851
AD
6405 .child = sd_ctl_dir,
6406 },
38605cae 6407 {0, },
e692ab53
NP
6408};
6409
6410static struct ctl_table *sd_alloc_ctl_entry(int n)
6411{
6412 struct ctl_table *entry =
5cf9f062 6413 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6414
e692ab53
NP
6415 return entry;
6416}
6417
6382bc90
MM
6418static void sd_free_ctl_entry(struct ctl_table **tablep)
6419{
cd790076 6420 struct ctl_table *entry;
6382bc90 6421
cd790076
MM
6422 /*
6423 * In the intermediate directories, both the child directory and
6424 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6425 * will always be set. In the lowest directory the names are
cd790076
MM
6426 * static strings and all have proc handlers.
6427 */
6428 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6429 if (entry->child)
6430 sd_free_ctl_entry(&entry->child);
cd790076
MM
6431 if (entry->proc_handler == NULL)
6432 kfree(entry->procname);
6433 }
6382bc90
MM
6434
6435 kfree(*tablep);
6436 *tablep = NULL;
6437}
6438
e692ab53 6439static void
e0361851 6440set_table_entry(struct ctl_table *entry,
e692ab53
NP
6441 const char *procname, void *data, int maxlen,
6442 mode_t mode, proc_handler *proc_handler)
6443{
e692ab53
NP
6444 entry->procname = procname;
6445 entry->data = data;
6446 entry->maxlen = maxlen;
6447 entry->mode = mode;
6448 entry->proc_handler = proc_handler;
6449}
6450
6451static struct ctl_table *
6452sd_alloc_ctl_domain_table(struct sched_domain *sd)
6453{
ace8b3d6 6454 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6455
ad1cdc1d
MM
6456 if (table == NULL)
6457 return NULL;
6458
e0361851 6459 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6460 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6461 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6462 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6463 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6465 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6467 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6468 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6469 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6470 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6471 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6472 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6473 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6474 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6475 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6476 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6477 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6478 &sd->cache_nice_tries,
6479 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6480 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6481 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6482 /* &table[11] is terminator */
e692ab53
NP
6483
6484 return table;
6485}
6486
9a4e7159 6487static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6488{
6489 struct ctl_table *entry, *table;
6490 struct sched_domain *sd;
6491 int domain_num = 0, i;
6492 char buf[32];
6493
6494 for_each_domain(cpu, sd)
6495 domain_num++;
6496 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6497 if (table == NULL)
6498 return NULL;
e692ab53
NP
6499
6500 i = 0;
6501 for_each_domain(cpu, sd) {
6502 snprintf(buf, 32, "domain%d", i);
e692ab53 6503 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6504 entry->mode = 0555;
e692ab53
NP
6505 entry->child = sd_alloc_ctl_domain_table(sd);
6506 entry++;
6507 i++;
6508 }
6509 return table;
6510}
6511
6512static struct ctl_table_header *sd_sysctl_header;
6382bc90 6513static void register_sched_domain_sysctl(void)
e692ab53
NP
6514{
6515 int i, cpu_num = num_online_cpus();
6516 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6517 char buf[32];
6518
7378547f
MM
6519 WARN_ON(sd_ctl_dir[0].child);
6520 sd_ctl_dir[0].child = entry;
6521
ad1cdc1d
MM
6522 if (entry == NULL)
6523 return;
6524
97b6ea7b 6525 for_each_online_cpu(i) {
e692ab53 6526 snprintf(buf, 32, "cpu%d", i);
e692ab53 6527 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6528 entry->mode = 0555;
e692ab53 6529 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6530 entry++;
e692ab53 6531 }
7378547f
MM
6532
6533 WARN_ON(sd_sysctl_header);
e692ab53
NP
6534 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6535}
6382bc90 6536
7378547f 6537/* may be called multiple times per register */
6382bc90
MM
6538static void unregister_sched_domain_sysctl(void)
6539{
7378547f
MM
6540 if (sd_sysctl_header)
6541 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6542 sd_sysctl_header = NULL;
7378547f
MM
6543 if (sd_ctl_dir[0].child)
6544 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6545}
e692ab53 6546#else
6382bc90
MM
6547static void register_sched_domain_sysctl(void)
6548{
6549}
6550static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6551{
6552}
6553#endif
6554
1da177e4
LT
6555/*
6556 * migration_call - callback that gets triggered when a CPU is added.
6557 * Here we can start up the necessary migration thread for the new CPU.
6558 */
48f24c4d
IM
6559static int __cpuinit
6560migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6561{
1da177e4 6562 struct task_struct *p;
48f24c4d 6563 int cpu = (long)hcpu;
1da177e4 6564 unsigned long flags;
70b97a7f 6565 struct rq *rq;
1da177e4
LT
6566
6567 switch (action) {
5be9361c 6568
1da177e4 6569 case CPU_UP_PREPARE:
8bb78442 6570 case CPU_UP_PREPARE_FROZEN:
dd41f596 6571 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6572 if (IS_ERR(p))
6573 return NOTIFY_BAD;
1da177e4
LT
6574 kthread_bind(p, cpu);
6575 /* Must be high prio: stop_machine expects to yield to it. */
6576 rq = task_rq_lock(p, &flags);
dd41f596 6577 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6578 task_rq_unlock(rq, &flags);
6579 cpu_rq(cpu)->migration_thread = p;
6580 break;
48f24c4d 6581
1da177e4 6582 case CPU_ONLINE:
8bb78442 6583 case CPU_ONLINE_FROZEN:
3a4fa0a2 6584 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6585 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6586
6587 /* Update our root-domain */
6588 rq = cpu_rq(cpu);
6589 spin_lock_irqsave(&rq->lock, flags);
6590 if (rq->rd) {
6591 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6592 cpu_set(cpu, rq->rd->online);
6593 }
6594 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6595 break;
48f24c4d 6596
1da177e4
LT
6597#ifdef CONFIG_HOTPLUG_CPU
6598 case CPU_UP_CANCELED:
8bb78442 6599 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6600 if (!cpu_rq(cpu)->migration_thread)
6601 break;
41a2d6cf 6602 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6603 kthread_bind(cpu_rq(cpu)->migration_thread,
6604 any_online_cpu(cpu_online_map));
1da177e4
LT
6605 kthread_stop(cpu_rq(cpu)->migration_thread);
6606 cpu_rq(cpu)->migration_thread = NULL;
6607 break;
48f24c4d 6608
1da177e4 6609 case CPU_DEAD:
8bb78442 6610 case CPU_DEAD_FROZEN:
470fd646 6611 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6612 migrate_live_tasks(cpu);
6613 rq = cpu_rq(cpu);
6614 kthread_stop(rq->migration_thread);
6615 rq->migration_thread = NULL;
6616 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6617 spin_lock_irq(&rq->lock);
a8e504d2 6618 update_rq_clock(rq);
2e1cb74a 6619 deactivate_task(rq, rq->idle, 0);
1da177e4 6620 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6621 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6622 rq->idle->sched_class = &idle_sched_class;
1da177e4 6623 migrate_dead_tasks(cpu);
d2da272a 6624 spin_unlock_irq(&rq->lock);
470fd646 6625 cpuset_unlock();
1da177e4
LT
6626 migrate_nr_uninterruptible(rq);
6627 BUG_ON(rq->nr_running != 0);
6628
41a2d6cf
IM
6629 /*
6630 * No need to migrate the tasks: it was best-effort if
6631 * they didn't take sched_hotcpu_mutex. Just wake up
6632 * the requestors.
6633 */
1da177e4
LT
6634 spin_lock_irq(&rq->lock);
6635 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6636 struct migration_req *req;
6637
1da177e4 6638 req = list_entry(rq->migration_queue.next,
70b97a7f 6639 struct migration_req, list);
1da177e4
LT
6640 list_del_init(&req->list);
6641 complete(&req->done);
6642 }
6643 spin_unlock_irq(&rq->lock);
6644 break;
57d885fe 6645
08f503b0
GH
6646 case CPU_DYING:
6647 case CPU_DYING_FROZEN:
57d885fe
GH
6648 /* Update our root-domain */
6649 rq = cpu_rq(cpu);
6650 spin_lock_irqsave(&rq->lock, flags);
6651 if (rq->rd) {
6652 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6653 cpu_clear(cpu, rq->rd->online);
6654 }
6655 spin_unlock_irqrestore(&rq->lock, flags);
6656 break;
1da177e4
LT
6657#endif
6658 }
6659 return NOTIFY_OK;
6660}
6661
6662/* Register at highest priority so that task migration (migrate_all_tasks)
6663 * happens before everything else.
6664 */
26c2143b 6665static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6666 .notifier_call = migration_call,
6667 .priority = 10
6668};
6669
e6fe6649 6670void __init migration_init(void)
1da177e4
LT
6671{
6672 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6673 int err;
48f24c4d
IM
6674
6675 /* Start one for the boot CPU: */
07dccf33
AM
6676 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6677 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6678 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6679 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6680}
6681#endif
6682
6683#ifdef CONFIG_SMP
476f3534 6684
3e9830dc 6685#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6686
7c16ec58
MT
6687static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6688 cpumask_t *groupmask)
1da177e4 6689{
4dcf6aff 6690 struct sched_group *group = sd->groups;
434d53b0 6691 char str[256];
1da177e4 6692
434d53b0 6693 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6694 cpus_clear(*groupmask);
4dcf6aff
IM
6695
6696 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6697
6698 if (!(sd->flags & SD_LOAD_BALANCE)) {
6699 printk("does not load-balance\n");
6700 if (sd->parent)
6701 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6702 " has parent");
6703 return -1;
41c7ce9a
NP
6704 }
6705
4dcf6aff
IM
6706 printk(KERN_CONT "span %s\n", str);
6707
6708 if (!cpu_isset(cpu, sd->span)) {
6709 printk(KERN_ERR "ERROR: domain->span does not contain "
6710 "CPU%d\n", cpu);
6711 }
6712 if (!cpu_isset(cpu, group->cpumask)) {
6713 printk(KERN_ERR "ERROR: domain->groups does not contain"
6714 " CPU%d\n", cpu);
6715 }
1da177e4 6716
4dcf6aff 6717 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6718 do {
4dcf6aff
IM
6719 if (!group) {
6720 printk("\n");
6721 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6722 break;
6723 }
6724
4dcf6aff
IM
6725 if (!group->__cpu_power) {
6726 printk(KERN_CONT "\n");
6727 printk(KERN_ERR "ERROR: domain->cpu_power not "
6728 "set\n");
6729 break;
6730 }
1da177e4 6731
4dcf6aff
IM
6732 if (!cpus_weight(group->cpumask)) {
6733 printk(KERN_CONT "\n");
6734 printk(KERN_ERR "ERROR: empty group\n");
6735 break;
6736 }
1da177e4 6737
7c16ec58 6738 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6739 printk(KERN_CONT "\n");
6740 printk(KERN_ERR "ERROR: repeated CPUs\n");
6741 break;
6742 }
1da177e4 6743
7c16ec58 6744 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6745
434d53b0 6746 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6747 printk(KERN_CONT " %s", str);
1da177e4 6748
4dcf6aff
IM
6749 group = group->next;
6750 } while (group != sd->groups);
6751 printk(KERN_CONT "\n");
1da177e4 6752
7c16ec58 6753 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6754 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6755
7c16ec58 6756 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6757 printk(KERN_ERR "ERROR: parent span is not a superset "
6758 "of domain->span\n");
6759 return 0;
6760}
1da177e4 6761
4dcf6aff
IM
6762static void sched_domain_debug(struct sched_domain *sd, int cpu)
6763{
7c16ec58 6764 cpumask_t *groupmask;
4dcf6aff 6765 int level = 0;
1da177e4 6766
4dcf6aff
IM
6767 if (!sd) {
6768 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6769 return;
6770 }
1da177e4 6771
4dcf6aff
IM
6772 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6773
7c16ec58
MT
6774 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6775 if (!groupmask) {
6776 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6777 return;
6778 }
6779
4dcf6aff 6780 for (;;) {
7c16ec58 6781 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6782 break;
1da177e4
LT
6783 level++;
6784 sd = sd->parent;
33859f7f 6785 if (!sd)
4dcf6aff
IM
6786 break;
6787 }
7c16ec58 6788 kfree(groupmask);
1da177e4
LT
6789}
6790#else
48f24c4d 6791# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6792#endif
6793
1a20ff27 6794static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6795{
6796 if (cpus_weight(sd->span) == 1)
6797 return 1;
6798
6799 /* Following flags need at least 2 groups */
6800 if (sd->flags & (SD_LOAD_BALANCE |
6801 SD_BALANCE_NEWIDLE |
6802 SD_BALANCE_FORK |
89c4710e
SS
6803 SD_BALANCE_EXEC |
6804 SD_SHARE_CPUPOWER |
6805 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6806 if (sd->groups != sd->groups->next)
6807 return 0;
6808 }
6809
6810 /* Following flags don't use groups */
6811 if (sd->flags & (SD_WAKE_IDLE |
6812 SD_WAKE_AFFINE |
6813 SD_WAKE_BALANCE))
6814 return 0;
6815
6816 return 1;
6817}
6818
48f24c4d
IM
6819static int
6820sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6821{
6822 unsigned long cflags = sd->flags, pflags = parent->flags;
6823
6824 if (sd_degenerate(parent))
6825 return 1;
6826
6827 if (!cpus_equal(sd->span, parent->span))
6828 return 0;
6829
6830 /* Does parent contain flags not in child? */
6831 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6832 if (cflags & SD_WAKE_AFFINE)
6833 pflags &= ~SD_WAKE_BALANCE;
6834 /* Flags needing groups don't count if only 1 group in parent */
6835 if (parent->groups == parent->groups->next) {
6836 pflags &= ~(SD_LOAD_BALANCE |
6837 SD_BALANCE_NEWIDLE |
6838 SD_BALANCE_FORK |
89c4710e
SS
6839 SD_BALANCE_EXEC |
6840 SD_SHARE_CPUPOWER |
6841 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6842 }
6843 if (~cflags & pflags)
6844 return 0;
6845
6846 return 1;
6847}
6848
57d885fe
GH
6849static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6850{
6851 unsigned long flags;
6852 const struct sched_class *class;
6853
6854 spin_lock_irqsave(&rq->lock, flags);
6855
6856 if (rq->rd) {
6857 struct root_domain *old_rd = rq->rd;
6858
0eab9146 6859 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6860 if (class->leave_domain)
6861 class->leave_domain(rq);
0eab9146 6862 }
57d885fe 6863
dc938520
GH
6864 cpu_clear(rq->cpu, old_rd->span);
6865 cpu_clear(rq->cpu, old_rd->online);
6866
57d885fe
GH
6867 if (atomic_dec_and_test(&old_rd->refcount))
6868 kfree(old_rd);
6869 }
6870
6871 atomic_inc(&rd->refcount);
6872 rq->rd = rd;
6873
dc938520 6874 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6875 if (cpu_isset(rq->cpu, cpu_online_map))
6876 cpu_set(rq->cpu, rd->online);
dc938520 6877
0eab9146 6878 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6879 if (class->join_domain)
6880 class->join_domain(rq);
0eab9146 6881 }
57d885fe
GH
6882
6883 spin_unlock_irqrestore(&rq->lock, flags);
6884}
6885
dc938520 6886static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6887{
6888 memset(rd, 0, sizeof(*rd));
6889
dc938520
GH
6890 cpus_clear(rd->span);
6891 cpus_clear(rd->online);
57d885fe
GH
6892}
6893
6894static void init_defrootdomain(void)
6895{
dc938520 6896 init_rootdomain(&def_root_domain);
57d885fe
GH
6897 atomic_set(&def_root_domain.refcount, 1);
6898}
6899
dc938520 6900static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6901{
6902 struct root_domain *rd;
6903
6904 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6905 if (!rd)
6906 return NULL;
6907
dc938520 6908 init_rootdomain(rd);
57d885fe
GH
6909
6910 return rd;
6911}
6912
1da177e4 6913/*
0eab9146 6914 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6915 * hold the hotplug lock.
6916 */
0eab9146
IM
6917static void
6918cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6919{
70b97a7f 6920 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6921 struct sched_domain *tmp;
6922
6923 /* Remove the sched domains which do not contribute to scheduling. */
6924 for (tmp = sd; tmp; tmp = tmp->parent) {
6925 struct sched_domain *parent = tmp->parent;
6926 if (!parent)
6927 break;
1a848870 6928 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6929 tmp->parent = parent->parent;
1a848870
SS
6930 if (parent->parent)
6931 parent->parent->child = tmp;
6932 }
245af2c7
SS
6933 }
6934
1a848870 6935 if (sd && sd_degenerate(sd)) {
245af2c7 6936 sd = sd->parent;
1a848870
SS
6937 if (sd)
6938 sd->child = NULL;
6939 }
1da177e4
LT
6940
6941 sched_domain_debug(sd, cpu);
6942
57d885fe 6943 rq_attach_root(rq, rd);
674311d5 6944 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6945}
6946
6947/* cpus with isolated domains */
67af63a6 6948static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6949
6950/* Setup the mask of cpus configured for isolated domains */
6951static int __init isolated_cpu_setup(char *str)
6952{
6953 int ints[NR_CPUS], i;
6954
6955 str = get_options(str, ARRAY_SIZE(ints), ints);
6956 cpus_clear(cpu_isolated_map);
6957 for (i = 1; i <= ints[0]; i++)
6958 if (ints[i] < NR_CPUS)
6959 cpu_set(ints[i], cpu_isolated_map);
6960 return 1;
6961}
6962
8927f494 6963__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6964
6965/*
6711cab4
SS
6966 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6967 * to a function which identifies what group(along with sched group) a CPU
6968 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6969 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6970 *
6971 * init_sched_build_groups will build a circular linked list of the groups
6972 * covered by the given span, and will set each group's ->cpumask correctly,
6973 * and ->cpu_power to 0.
6974 */
a616058b 6975static void
7c16ec58 6976init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6977 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6978 struct sched_group **sg,
6979 cpumask_t *tmpmask),
6980 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6981{
6982 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6983 int i;
6984
7c16ec58
MT
6985 cpus_clear(*covered);
6986
6987 for_each_cpu_mask(i, *span) {
6711cab4 6988 struct sched_group *sg;
7c16ec58 6989 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6990 int j;
6991
7c16ec58 6992 if (cpu_isset(i, *covered))
1da177e4
LT
6993 continue;
6994
7c16ec58 6995 cpus_clear(sg->cpumask);
5517d86b 6996 sg->__cpu_power = 0;
1da177e4 6997
7c16ec58
MT
6998 for_each_cpu_mask(j, *span) {
6999 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7000 continue;
7001
7c16ec58 7002 cpu_set(j, *covered);
1da177e4
LT
7003 cpu_set(j, sg->cpumask);
7004 }
7005 if (!first)
7006 first = sg;
7007 if (last)
7008 last->next = sg;
7009 last = sg;
7010 }
7011 last->next = first;
7012}
7013
9c1cfda2 7014#define SD_NODES_PER_DOMAIN 16
1da177e4 7015
9c1cfda2 7016#ifdef CONFIG_NUMA
198e2f18 7017
9c1cfda2
JH
7018/**
7019 * find_next_best_node - find the next node to include in a sched_domain
7020 * @node: node whose sched_domain we're building
7021 * @used_nodes: nodes already in the sched_domain
7022 *
41a2d6cf 7023 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7024 * finds the closest node not already in the @used_nodes map.
7025 *
7026 * Should use nodemask_t.
7027 */
c5f59f08 7028static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7029{
7030 int i, n, val, min_val, best_node = 0;
7031
7032 min_val = INT_MAX;
7033
7034 for (i = 0; i < MAX_NUMNODES; i++) {
7035 /* Start at @node */
7036 n = (node + i) % MAX_NUMNODES;
7037
7038 if (!nr_cpus_node(n))
7039 continue;
7040
7041 /* Skip already used nodes */
c5f59f08 7042 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7043 continue;
7044
7045 /* Simple min distance search */
7046 val = node_distance(node, n);
7047
7048 if (val < min_val) {
7049 min_val = val;
7050 best_node = n;
7051 }
7052 }
7053
c5f59f08 7054 node_set(best_node, *used_nodes);
9c1cfda2
JH
7055 return best_node;
7056}
7057
7058/**
7059 * sched_domain_node_span - get a cpumask for a node's sched_domain
7060 * @node: node whose cpumask we're constructing
73486722 7061 * @span: resulting cpumask
9c1cfda2 7062 *
41a2d6cf 7063 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7064 * should be one that prevents unnecessary balancing, but also spreads tasks
7065 * out optimally.
7066 */
4bdbaad3 7067static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7068{
c5f59f08 7069 nodemask_t used_nodes;
c5f59f08 7070 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7071 int i;
9c1cfda2 7072
4bdbaad3 7073 cpus_clear(*span);
c5f59f08 7074 nodes_clear(used_nodes);
9c1cfda2 7075
4bdbaad3 7076 cpus_or(*span, *span, *nodemask);
c5f59f08 7077 node_set(node, used_nodes);
9c1cfda2
JH
7078
7079 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7080 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7081
c5f59f08 7082 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7083 cpus_or(*span, *span, *nodemask);
9c1cfda2 7084 }
9c1cfda2
JH
7085}
7086#endif
7087
5c45bf27 7088int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7089
9c1cfda2 7090/*
48f24c4d 7091 * SMT sched-domains:
9c1cfda2 7092 */
1da177e4
LT
7093#ifdef CONFIG_SCHED_SMT
7094static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7095static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7096
41a2d6cf 7097static int
7c16ec58
MT
7098cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7099 cpumask_t *unused)
1da177e4 7100{
6711cab4
SS
7101 if (sg)
7102 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7103 return cpu;
7104}
7105#endif
7106
48f24c4d
IM
7107/*
7108 * multi-core sched-domains:
7109 */
1e9f28fa
SS
7110#ifdef CONFIG_SCHED_MC
7111static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7112static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
7113#endif
7114
7115#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7116static int
7c16ec58
MT
7117cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7118 cpumask_t *mask)
1e9f28fa 7119{
6711cab4 7120 int group;
7c16ec58
MT
7121
7122 *mask = per_cpu(cpu_sibling_map, cpu);
7123 cpus_and(*mask, *mask, *cpu_map);
7124 group = first_cpu(*mask);
6711cab4
SS
7125 if (sg)
7126 *sg = &per_cpu(sched_group_core, group);
7127 return group;
1e9f28fa
SS
7128}
7129#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7130static int
7c16ec58
MT
7131cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7132 cpumask_t *unused)
1e9f28fa 7133{
6711cab4
SS
7134 if (sg)
7135 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7136 return cpu;
7137}
7138#endif
7139
1da177e4 7140static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7141static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7142
41a2d6cf 7143static int
7c16ec58
MT
7144cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7145 cpumask_t *mask)
1da177e4 7146{
6711cab4 7147 int group;
48f24c4d 7148#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7149 *mask = cpu_coregroup_map(cpu);
7150 cpus_and(*mask, *mask, *cpu_map);
7151 group = first_cpu(*mask);
1e9f28fa 7152#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7153 *mask = per_cpu(cpu_sibling_map, cpu);
7154 cpus_and(*mask, *mask, *cpu_map);
7155 group = first_cpu(*mask);
1da177e4 7156#else
6711cab4 7157 group = cpu;
1da177e4 7158#endif
6711cab4
SS
7159 if (sg)
7160 *sg = &per_cpu(sched_group_phys, group);
7161 return group;
1da177e4
LT
7162}
7163
7164#ifdef CONFIG_NUMA
1da177e4 7165/*
9c1cfda2
JH
7166 * The init_sched_build_groups can't handle what we want to do with node
7167 * groups, so roll our own. Now each node has its own list of groups which
7168 * gets dynamically allocated.
1da177e4 7169 */
9c1cfda2 7170static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7171static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7172
9c1cfda2 7173static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7174static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7175
6711cab4 7176static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7177 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7178{
6711cab4
SS
7179 int group;
7180
7c16ec58
MT
7181 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7182 cpus_and(*nodemask, *nodemask, *cpu_map);
7183 group = first_cpu(*nodemask);
6711cab4
SS
7184
7185 if (sg)
7186 *sg = &per_cpu(sched_group_allnodes, group);
7187 return group;
1da177e4 7188}
6711cab4 7189
08069033
SS
7190static void init_numa_sched_groups_power(struct sched_group *group_head)
7191{
7192 struct sched_group *sg = group_head;
7193 int j;
7194
7195 if (!sg)
7196 return;
3a5c359a
AK
7197 do {
7198 for_each_cpu_mask(j, sg->cpumask) {
7199 struct sched_domain *sd;
08069033 7200
3a5c359a
AK
7201 sd = &per_cpu(phys_domains, j);
7202 if (j != first_cpu(sd->groups->cpumask)) {
7203 /*
7204 * Only add "power" once for each
7205 * physical package.
7206 */
7207 continue;
7208 }
08069033 7209
3a5c359a
AK
7210 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7211 }
7212 sg = sg->next;
7213 } while (sg != group_head);
08069033 7214}
1da177e4
LT
7215#endif
7216
a616058b 7217#ifdef CONFIG_NUMA
51888ca2 7218/* Free memory allocated for various sched_group structures */
7c16ec58 7219static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7220{
a616058b 7221 int cpu, i;
51888ca2
SV
7222
7223 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7224 struct sched_group **sched_group_nodes
7225 = sched_group_nodes_bycpu[cpu];
7226
51888ca2
SV
7227 if (!sched_group_nodes)
7228 continue;
7229
7230 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
7231 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7232
7c16ec58
MT
7233 *nodemask = node_to_cpumask(i);
7234 cpus_and(*nodemask, *nodemask, *cpu_map);
7235 if (cpus_empty(*nodemask))
51888ca2
SV
7236 continue;
7237
7238 if (sg == NULL)
7239 continue;
7240 sg = sg->next;
7241next_sg:
7242 oldsg = sg;
7243 sg = sg->next;
7244 kfree(oldsg);
7245 if (oldsg != sched_group_nodes[i])
7246 goto next_sg;
7247 }
7248 kfree(sched_group_nodes);
7249 sched_group_nodes_bycpu[cpu] = NULL;
7250 }
51888ca2 7251}
a616058b 7252#else
7c16ec58 7253static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7254{
7255}
7256#endif
51888ca2 7257
89c4710e
SS
7258/*
7259 * Initialize sched groups cpu_power.
7260 *
7261 * cpu_power indicates the capacity of sched group, which is used while
7262 * distributing the load between different sched groups in a sched domain.
7263 * Typically cpu_power for all the groups in a sched domain will be same unless
7264 * there are asymmetries in the topology. If there are asymmetries, group
7265 * having more cpu_power will pickup more load compared to the group having
7266 * less cpu_power.
7267 *
7268 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7269 * the maximum number of tasks a group can handle in the presence of other idle
7270 * or lightly loaded groups in the same sched domain.
7271 */
7272static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7273{
7274 struct sched_domain *child;
7275 struct sched_group *group;
7276
7277 WARN_ON(!sd || !sd->groups);
7278
7279 if (cpu != first_cpu(sd->groups->cpumask))
7280 return;
7281
7282 child = sd->child;
7283
5517d86b
ED
7284 sd->groups->__cpu_power = 0;
7285
89c4710e
SS
7286 /*
7287 * For perf policy, if the groups in child domain share resources
7288 * (for example cores sharing some portions of the cache hierarchy
7289 * or SMT), then set this domain groups cpu_power such that each group
7290 * can handle only one task, when there are other idle groups in the
7291 * same sched domain.
7292 */
7293 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7294 (child->flags &
7295 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7296 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7297 return;
7298 }
7299
89c4710e
SS
7300 /*
7301 * add cpu_power of each child group to this groups cpu_power
7302 */
7303 group = child->groups;
7304 do {
5517d86b 7305 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7306 group = group->next;
7307 } while (group != child->groups);
7308}
7309
7c16ec58
MT
7310/*
7311 * Initializers for schedule domains
7312 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7313 */
7314
7315#define SD_INIT(sd, type) sd_init_##type(sd)
7316#define SD_INIT_FUNC(type) \
7317static noinline void sd_init_##type(struct sched_domain *sd) \
7318{ \
7319 memset(sd, 0, sizeof(*sd)); \
7320 *sd = SD_##type##_INIT; \
1d3504fc 7321 sd->level = SD_LV_##type; \
7c16ec58
MT
7322}
7323
7324SD_INIT_FUNC(CPU)
7325#ifdef CONFIG_NUMA
7326 SD_INIT_FUNC(ALLNODES)
7327 SD_INIT_FUNC(NODE)
7328#endif
7329#ifdef CONFIG_SCHED_SMT
7330 SD_INIT_FUNC(SIBLING)
7331#endif
7332#ifdef CONFIG_SCHED_MC
7333 SD_INIT_FUNC(MC)
7334#endif
7335
7336/*
7337 * To minimize stack usage kmalloc room for cpumasks and share the
7338 * space as the usage in build_sched_domains() dictates. Used only
7339 * if the amount of space is significant.
7340 */
7341struct allmasks {
7342 cpumask_t tmpmask; /* make this one first */
7343 union {
7344 cpumask_t nodemask;
7345 cpumask_t this_sibling_map;
7346 cpumask_t this_core_map;
7347 };
7348 cpumask_t send_covered;
7349
7350#ifdef CONFIG_NUMA
7351 cpumask_t domainspan;
7352 cpumask_t covered;
7353 cpumask_t notcovered;
7354#endif
7355};
7356
7357#if NR_CPUS > 128
7358#define SCHED_CPUMASK_ALLOC 1
7359#define SCHED_CPUMASK_FREE(v) kfree(v)
7360#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7361#else
7362#define SCHED_CPUMASK_ALLOC 0
7363#define SCHED_CPUMASK_FREE(v)
7364#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7365#endif
7366
7367#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7368 ((unsigned long)(a) + offsetof(struct allmasks, v))
7369
1d3504fc
HS
7370static int default_relax_domain_level = -1;
7371
7372static int __init setup_relax_domain_level(char *str)
7373{
7374 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7375 return 1;
7376}
7377__setup("relax_domain_level=", setup_relax_domain_level);
7378
7379static void set_domain_attribute(struct sched_domain *sd,
7380 struct sched_domain_attr *attr)
7381{
7382 int request;
7383
7384 if (!attr || attr->relax_domain_level < 0) {
7385 if (default_relax_domain_level < 0)
7386 return;
7387 else
7388 request = default_relax_domain_level;
7389 } else
7390 request = attr->relax_domain_level;
7391 if (request < sd->level) {
7392 /* turn off idle balance on this domain */
7393 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7394 } else {
7395 /* turn on idle balance on this domain */
7396 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7397 }
7398}
7399
1da177e4 7400/*
1a20ff27
DG
7401 * Build sched domains for a given set of cpus and attach the sched domains
7402 * to the individual cpus
1da177e4 7403 */
1d3504fc
HS
7404static int __build_sched_domains(const cpumask_t *cpu_map,
7405 struct sched_domain_attr *attr)
1da177e4
LT
7406{
7407 int i;
57d885fe 7408 struct root_domain *rd;
7c16ec58
MT
7409 SCHED_CPUMASK_DECLARE(allmasks);
7410 cpumask_t *tmpmask;
d1b55138
JH
7411#ifdef CONFIG_NUMA
7412 struct sched_group **sched_group_nodes = NULL;
6711cab4 7413 int sd_allnodes = 0;
d1b55138
JH
7414
7415 /*
7416 * Allocate the per-node list of sched groups
7417 */
5cf9f062 7418 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7419 GFP_KERNEL);
d1b55138
JH
7420 if (!sched_group_nodes) {
7421 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7422 return -ENOMEM;
d1b55138 7423 }
d1b55138 7424#endif
1da177e4 7425
dc938520 7426 rd = alloc_rootdomain();
57d885fe
GH
7427 if (!rd) {
7428 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7429#ifdef CONFIG_NUMA
7430 kfree(sched_group_nodes);
7431#endif
57d885fe
GH
7432 return -ENOMEM;
7433 }
7434
7c16ec58
MT
7435#if SCHED_CPUMASK_ALLOC
7436 /* get space for all scratch cpumask variables */
7437 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7438 if (!allmasks) {
7439 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7440 kfree(rd);
7441#ifdef CONFIG_NUMA
7442 kfree(sched_group_nodes);
7443#endif
7444 return -ENOMEM;
7445 }
7446#endif
7447 tmpmask = (cpumask_t *)allmasks;
7448
7449
7450#ifdef CONFIG_NUMA
7451 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7452#endif
7453
1da177e4 7454 /*
1a20ff27 7455 * Set up domains for cpus specified by the cpu_map.
1da177e4 7456 */
1a20ff27 7457 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7458 struct sched_domain *sd = NULL, *p;
7c16ec58 7459 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7460
7c16ec58
MT
7461 *nodemask = node_to_cpumask(cpu_to_node(i));
7462 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7463
7464#ifdef CONFIG_NUMA
dd41f596 7465 if (cpus_weight(*cpu_map) >
7c16ec58 7466 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7467 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7468 SD_INIT(sd, ALLNODES);
1d3504fc 7469 set_domain_attribute(sd, attr);
9c1cfda2 7470 sd->span = *cpu_map;
18d95a28 7471 sd->first_cpu = first_cpu(sd->span);
7c16ec58 7472 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7473 p = sd;
6711cab4 7474 sd_allnodes = 1;
9c1cfda2
JH
7475 } else
7476 p = NULL;
7477
1da177e4 7478 sd = &per_cpu(node_domains, i);
7c16ec58 7479 SD_INIT(sd, NODE);
1d3504fc 7480 set_domain_attribute(sd, attr);
4bdbaad3 7481 sched_domain_node_span(cpu_to_node(i), &sd->span);
18d95a28 7482 sd->first_cpu = first_cpu(sd->span);
9c1cfda2 7483 sd->parent = p;
1a848870
SS
7484 if (p)
7485 p->child = sd;
9c1cfda2 7486 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7487#endif
7488
7489 p = sd;
7490 sd = &per_cpu(phys_domains, i);
7c16ec58 7491 SD_INIT(sd, CPU);
1d3504fc 7492 set_domain_attribute(sd, attr);
7c16ec58 7493 sd->span = *nodemask;
18d95a28 7494 sd->first_cpu = first_cpu(sd->span);
1da177e4 7495 sd->parent = p;
1a848870
SS
7496 if (p)
7497 p->child = sd;
7c16ec58 7498 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7499
1e9f28fa
SS
7500#ifdef CONFIG_SCHED_MC
7501 p = sd;
7502 sd = &per_cpu(core_domains, i);
7c16ec58 7503 SD_INIT(sd, MC);
1d3504fc 7504 set_domain_attribute(sd, attr);
1e9f28fa 7505 sd->span = cpu_coregroup_map(i);
18d95a28 7506 sd->first_cpu = first_cpu(sd->span);
1e9f28fa
SS
7507 cpus_and(sd->span, sd->span, *cpu_map);
7508 sd->parent = p;
1a848870 7509 p->child = sd;
7c16ec58 7510 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7511#endif
7512
1da177e4
LT
7513#ifdef CONFIG_SCHED_SMT
7514 p = sd;
7515 sd = &per_cpu(cpu_domains, i);
7c16ec58 7516 SD_INIT(sd, SIBLING);
1d3504fc 7517 set_domain_attribute(sd, attr);
d5a7430d 7518 sd->span = per_cpu(cpu_sibling_map, i);
18d95a28 7519 sd->first_cpu = first_cpu(sd->span);
1a20ff27 7520 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7521 sd->parent = p;
1a848870 7522 p->child = sd;
7c16ec58 7523 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7524#endif
7525 }
7526
7527#ifdef CONFIG_SCHED_SMT
7528 /* Set up CPU (sibling) groups */
9c1cfda2 7529 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7530 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7531 SCHED_CPUMASK_VAR(send_covered, allmasks);
7532
7533 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7534 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7535 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7536 continue;
7537
dd41f596 7538 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7539 &cpu_to_cpu_group,
7540 send_covered, tmpmask);
1da177e4
LT
7541 }
7542#endif
7543
1e9f28fa
SS
7544#ifdef CONFIG_SCHED_MC
7545 /* Set up multi-core groups */
7546 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7547 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7548 SCHED_CPUMASK_VAR(send_covered, allmasks);
7549
7550 *this_core_map = cpu_coregroup_map(i);
7551 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7552 if (i != first_cpu(*this_core_map))
1e9f28fa 7553 continue;
7c16ec58 7554
dd41f596 7555 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7556 &cpu_to_core_group,
7557 send_covered, tmpmask);
1e9f28fa
SS
7558 }
7559#endif
7560
1da177e4
LT
7561 /* Set up physical groups */
7562 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7563 SCHED_CPUMASK_VAR(nodemask, allmasks);
7564 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7565
7c16ec58
MT
7566 *nodemask = node_to_cpumask(i);
7567 cpus_and(*nodemask, *nodemask, *cpu_map);
7568 if (cpus_empty(*nodemask))
1da177e4
LT
7569 continue;
7570
7c16ec58
MT
7571 init_sched_build_groups(nodemask, cpu_map,
7572 &cpu_to_phys_group,
7573 send_covered, tmpmask);
1da177e4
LT
7574 }
7575
7576#ifdef CONFIG_NUMA
7577 /* Set up node groups */
7c16ec58
MT
7578 if (sd_allnodes) {
7579 SCHED_CPUMASK_VAR(send_covered, allmasks);
7580
7581 init_sched_build_groups(cpu_map, cpu_map,
7582 &cpu_to_allnodes_group,
7583 send_covered, tmpmask);
7584 }
9c1cfda2
JH
7585
7586 for (i = 0; i < MAX_NUMNODES; i++) {
7587 /* Set up node groups */
7588 struct sched_group *sg, *prev;
7c16ec58
MT
7589 SCHED_CPUMASK_VAR(nodemask, allmasks);
7590 SCHED_CPUMASK_VAR(domainspan, allmasks);
7591 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7592 int j;
7593
7c16ec58
MT
7594 *nodemask = node_to_cpumask(i);
7595 cpus_clear(*covered);
7596
7597 cpus_and(*nodemask, *nodemask, *cpu_map);
7598 if (cpus_empty(*nodemask)) {
d1b55138 7599 sched_group_nodes[i] = NULL;
9c1cfda2 7600 continue;
d1b55138 7601 }
9c1cfda2 7602
4bdbaad3 7603 sched_domain_node_span(i, domainspan);
7c16ec58 7604 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7605
15f0b676 7606 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7607 if (!sg) {
7608 printk(KERN_WARNING "Can not alloc domain group for "
7609 "node %d\n", i);
7610 goto error;
7611 }
9c1cfda2 7612 sched_group_nodes[i] = sg;
7c16ec58 7613 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7614 struct sched_domain *sd;
9761eea8 7615
9c1cfda2
JH
7616 sd = &per_cpu(node_domains, j);
7617 sd->groups = sg;
9c1cfda2 7618 }
5517d86b 7619 sg->__cpu_power = 0;
7c16ec58 7620 sg->cpumask = *nodemask;
51888ca2 7621 sg->next = sg;
7c16ec58 7622 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7623 prev = sg;
7624
7625 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7626 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7627 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7628 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7629
7c16ec58
MT
7630 cpus_complement(*notcovered, *covered);
7631 cpus_and(*tmpmask, *notcovered, *cpu_map);
7632 cpus_and(*tmpmask, *tmpmask, *domainspan);
7633 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7634 break;
7635
7c16ec58
MT
7636 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7637 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7638 continue;
7639
15f0b676
SV
7640 sg = kmalloc_node(sizeof(struct sched_group),
7641 GFP_KERNEL, i);
9c1cfda2
JH
7642 if (!sg) {
7643 printk(KERN_WARNING
7644 "Can not alloc domain group for node %d\n", j);
51888ca2 7645 goto error;
9c1cfda2 7646 }
5517d86b 7647 sg->__cpu_power = 0;
7c16ec58 7648 sg->cpumask = *tmpmask;
51888ca2 7649 sg->next = prev->next;
7c16ec58 7650 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7651 prev->next = sg;
7652 prev = sg;
7653 }
9c1cfda2 7654 }
1da177e4
LT
7655#endif
7656
7657 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7658#ifdef CONFIG_SCHED_SMT
1a20ff27 7659 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7660 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7661
89c4710e 7662 init_sched_groups_power(i, sd);
5c45bf27 7663 }
1da177e4 7664#endif
1e9f28fa 7665#ifdef CONFIG_SCHED_MC
5c45bf27 7666 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7667 struct sched_domain *sd = &per_cpu(core_domains, i);
7668
89c4710e 7669 init_sched_groups_power(i, sd);
5c45bf27
SS
7670 }
7671#endif
1e9f28fa 7672
5c45bf27 7673 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7674 struct sched_domain *sd = &per_cpu(phys_domains, i);
7675
89c4710e 7676 init_sched_groups_power(i, sd);
1da177e4
LT
7677 }
7678
9c1cfda2 7679#ifdef CONFIG_NUMA
08069033
SS
7680 for (i = 0; i < MAX_NUMNODES; i++)
7681 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7682
6711cab4
SS
7683 if (sd_allnodes) {
7684 struct sched_group *sg;
f712c0c7 7685
7c16ec58
MT
7686 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7687 tmpmask);
f712c0c7
SS
7688 init_numa_sched_groups_power(sg);
7689 }
9c1cfda2
JH
7690#endif
7691
1da177e4 7692 /* Attach the domains */
1a20ff27 7693 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7694 struct sched_domain *sd;
7695#ifdef CONFIG_SCHED_SMT
7696 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7697#elif defined(CONFIG_SCHED_MC)
7698 sd = &per_cpu(core_domains, i);
1da177e4
LT
7699#else
7700 sd = &per_cpu(phys_domains, i);
7701#endif
57d885fe 7702 cpu_attach_domain(sd, rd, i);
1da177e4 7703 }
51888ca2 7704
7c16ec58 7705 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7706 return 0;
7707
a616058b 7708#ifdef CONFIG_NUMA
51888ca2 7709error:
7c16ec58
MT
7710 free_sched_groups(cpu_map, tmpmask);
7711 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7712 return -ENOMEM;
a616058b 7713#endif
1da177e4 7714}
029190c5 7715
1d3504fc
HS
7716static int build_sched_domains(const cpumask_t *cpu_map)
7717{
7718 return __build_sched_domains(cpu_map, NULL);
7719}
7720
029190c5
PJ
7721static cpumask_t *doms_cur; /* current sched domains */
7722static int ndoms_cur; /* number of sched domains in 'doms_cur' */
1d3504fc
HS
7723static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7724 in 'doms_cur' */
029190c5
PJ
7725
7726/*
7727 * Special case: If a kmalloc of a doms_cur partition (array of
7728 * cpumask_t) fails, then fallback to a single sched domain,
7729 * as determined by the single cpumask_t fallback_doms.
7730 */
7731static cpumask_t fallback_doms;
7732
22e52b07
HC
7733void __attribute__((weak)) arch_update_cpu_topology(void)
7734{
7735}
7736
1a20ff27 7737/*
41a2d6cf 7738 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7739 * For now this just excludes isolated cpus, but could be used to
7740 * exclude other special cases in the future.
1a20ff27 7741 */
51888ca2 7742static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7743{
7378547f
MM
7744 int err;
7745
22e52b07 7746 arch_update_cpu_topology();
029190c5
PJ
7747 ndoms_cur = 1;
7748 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7749 if (!doms_cur)
7750 doms_cur = &fallback_doms;
7751 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7752 dattr_cur = NULL;
7378547f 7753 err = build_sched_domains(doms_cur);
6382bc90 7754 register_sched_domain_sysctl();
7378547f
MM
7755
7756 return err;
1a20ff27
DG
7757}
7758
7c16ec58
MT
7759static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7760 cpumask_t *tmpmask)
1da177e4 7761{
7c16ec58 7762 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7763}
1da177e4 7764
1a20ff27
DG
7765/*
7766 * Detach sched domains from a group of cpus specified in cpu_map
7767 * These cpus will now be attached to the NULL domain
7768 */
858119e1 7769static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7770{
7c16ec58 7771 cpumask_t tmpmask;
1a20ff27
DG
7772 int i;
7773
6382bc90
MM
7774 unregister_sched_domain_sysctl();
7775
1a20ff27 7776 for_each_cpu_mask(i, *cpu_map)
57d885fe 7777 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7778 synchronize_sched();
7c16ec58 7779 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7780}
7781
1d3504fc
HS
7782/* handle null as "default" */
7783static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7784 struct sched_domain_attr *new, int idx_new)
7785{
7786 struct sched_domain_attr tmp;
7787
7788 /* fast path */
7789 if (!new && !cur)
7790 return 1;
7791
7792 tmp = SD_ATTR_INIT;
7793 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7794 new ? (new + idx_new) : &tmp,
7795 sizeof(struct sched_domain_attr));
7796}
7797
029190c5
PJ
7798/*
7799 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7800 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7801 * doms_new[] to the current sched domain partitioning, doms_cur[].
7802 * It destroys each deleted domain and builds each new domain.
7803 *
7804 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7805 * The masks don't intersect (don't overlap.) We should setup one
7806 * sched domain for each mask. CPUs not in any of the cpumasks will
7807 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7808 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7809 * it as it is.
7810 *
41a2d6cf
IM
7811 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7812 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7813 * failed the kmalloc call, then it can pass in doms_new == NULL,
7814 * and partition_sched_domains() will fallback to the single partition
7815 * 'fallback_doms'.
7816 *
7817 * Call with hotplug lock held
7818 */
1d3504fc
HS
7819void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7820 struct sched_domain_attr *dattr_new)
029190c5
PJ
7821{
7822 int i, j;
7823
712555ee 7824 mutex_lock(&sched_domains_mutex);
a1835615 7825
7378547f
MM
7826 /* always unregister in case we don't destroy any domains */
7827 unregister_sched_domain_sysctl();
7828
029190c5
PJ
7829 if (doms_new == NULL) {
7830 ndoms_new = 1;
7831 doms_new = &fallback_doms;
7832 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7833 dattr_new = NULL;
029190c5
PJ
7834 }
7835
7836 /* Destroy deleted domains */
7837 for (i = 0; i < ndoms_cur; i++) {
7838 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7839 if (cpus_equal(doms_cur[i], doms_new[j])
7840 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7841 goto match1;
7842 }
7843 /* no match - a current sched domain not in new doms_new[] */
7844 detach_destroy_domains(doms_cur + i);
7845match1:
7846 ;
7847 }
7848
7849 /* Build new domains */
7850 for (i = 0; i < ndoms_new; i++) {
7851 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7852 if (cpus_equal(doms_new[i], doms_cur[j])
7853 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7854 goto match2;
7855 }
7856 /* no match - add a new doms_new */
1d3504fc
HS
7857 __build_sched_domains(doms_new + i,
7858 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7859match2:
7860 ;
7861 }
7862
7863 /* Remember the new sched domains */
7864 if (doms_cur != &fallback_doms)
7865 kfree(doms_cur);
1d3504fc 7866 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7867 doms_cur = doms_new;
1d3504fc 7868 dattr_cur = dattr_new;
029190c5 7869 ndoms_cur = ndoms_new;
7378547f
MM
7870
7871 register_sched_domain_sysctl();
a1835615 7872
712555ee 7873 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7874}
7875
5c45bf27 7876#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7877int arch_reinit_sched_domains(void)
5c45bf27
SS
7878{
7879 int err;
7880
95402b38 7881 get_online_cpus();
712555ee 7882 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7883 detach_destroy_domains(&cpu_online_map);
7884 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7885 mutex_unlock(&sched_domains_mutex);
95402b38 7886 put_online_cpus();
5c45bf27
SS
7887
7888 return err;
7889}
7890
7891static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7892{
7893 int ret;
7894
7895 if (buf[0] != '0' && buf[0] != '1')
7896 return -EINVAL;
7897
7898 if (smt)
7899 sched_smt_power_savings = (buf[0] == '1');
7900 else
7901 sched_mc_power_savings = (buf[0] == '1');
7902
7903 ret = arch_reinit_sched_domains();
7904
7905 return ret ? ret : count;
7906}
7907
5c45bf27
SS
7908#ifdef CONFIG_SCHED_MC
7909static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7910{
7911 return sprintf(page, "%u\n", sched_mc_power_savings);
7912}
48f24c4d
IM
7913static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7914 const char *buf, size_t count)
5c45bf27
SS
7915{
7916 return sched_power_savings_store(buf, count, 0);
7917}
6707de00
AB
7918static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7919 sched_mc_power_savings_store);
5c45bf27
SS
7920#endif
7921
7922#ifdef CONFIG_SCHED_SMT
7923static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7924{
7925 return sprintf(page, "%u\n", sched_smt_power_savings);
7926}
48f24c4d
IM
7927static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7928 const char *buf, size_t count)
5c45bf27
SS
7929{
7930 return sched_power_savings_store(buf, count, 1);
7931}
6707de00
AB
7932static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7933 sched_smt_power_savings_store);
7934#endif
7935
7936int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7937{
7938 int err = 0;
7939
7940#ifdef CONFIG_SCHED_SMT
7941 if (smt_capable())
7942 err = sysfs_create_file(&cls->kset.kobj,
7943 &attr_sched_smt_power_savings.attr);
7944#endif
7945#ifdef CONFIG_SCHED_MC
7946 if (!err && mc_capable())
7947 err = sysfs_create_file(&cls->kset.kobj,
7948 &attr_sched_mc_power_savings.attr);
7949#endif
7950 return err;
7951}
5c45bf27
SS
7952#endif
7953
1da177e4 7954/*
41a2d6cf 7955 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7956 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7957 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7958 * which will prevent rebalancing while the sched domains are recalculated.
7959 */
7960static int update_sched_domains(struct notifier_block *nfb,
7961 unsigned long action, void *hcpu)
7962{
1da177e4
LT
7963 switch (action) {
7964 case CPU_UP_PREPARE:
8bb78442 7965 case CPU_UP_PREPARE_FROZEN:
1da177e4 7966 case CPU_DOWN_PREPARE:
8bb78442 7967 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7968 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7969 return NOTIFY_OK;
7970
7971 case CPU_UP_CANCELED:
8bb78442 7972 case CPU_UP_CANCELED_FROZEN:
1da177e4 7973 case CPU_DOWN_FAILED:
8bb78442 7974 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7975 case CPU_ONLINE:
8bb78442 7976 case CPU_ONLINE_FROZEN:
1da177e4 7977 case CPU_DEAD:
8bb78442 7978 case CPU_DEAD_FROZEN:
1da177e4
LT
7979 /*
7980 * Fall through and re-initialise the domains.
7981 */
7982 break;
7983 default:
7984 return NOTIFY_DONE;
7985 }
7986
7987 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7988 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7989
7990 return NOTIFY_OK;
7991}
1da177e4
LT
7992
7993void __init sched_init_smp(void)
7994{
5c1e1767
NP
7995 cpumask_t non_isolated_cpus;
7996
434d53b0
MT
7997#if defined(CONFIG_NUMA)
7998 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7999 GFP_KERNEL);
8000 BUG_ON(sched_group_nodes_bycpu == NULL);
8001#endif
95402b38 8002 get_online_cpus();
712555ee 8003 mutex_lock(&sched_domains_mutex);
1a20ff27 8004 arch_init_sched_domains(&cpu_online_map);
e5e5673f 8005 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
8006 if (cpus_empty(non_isolated_cpus))
8007 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 8008 mutex_unlock(&sched_domains_mutex);
95402b38 8009 put_online_cpus();
1da177e4
LT
8010 /* XXX: Theoretical race here - CPU may be hotplugged now */
8011 hotcpu_notifier(update_sched_domains, 0);
b328ca18 8012 init_hrtick();
5c1e1767
NP
8013
8014 /* Move init over to a non-isolated CPU */
7c16ec58 8015 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8016 BUG();
19978ca6 8017 sched_init_granularity();
1da177e4
LT
8018}
8019#else
8020void __init sched_init_smp(void)
8021{
19978ca6 8022 sched_init_granularity();
1da177e4
LT
8023}
8024#endif /* CONFIG_SMP */
8025
8026int in_sched_functions(unsigned long addr)
8027{
1da177e4
LT
8028 return in_lock_functions(addr) ||
8029 (addr >= (unsigned long)__sched_text_start
8030 && addr < (unsigned long)__sched_text_end);
8031}
8032
a9957449 8033static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8034{
8035 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8036 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8037#ifdef CONFIG_FAIR_GROUP_SCHED
8038 cfs_rq->rq = rq;
8039#endif
67e9fb2a 8040 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8041}
8042
fa85ae24
PZ
8043static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8044{
8045 struct rt_prio_array *array;
8046 int i;
8047
8048 array = &rt_rq->active;
8049 for (i = 0; i < MAX_RT_PRIO; i++) {
8050 INIT_LIST_HEAD(array->queue + i);
8051 __clear_bit(i, array->bitmap);
8052 }
8053 /* delimiter for bitsearch: */
8054 __set_bit(MAX_RT_PRIO, array->bitmap);
8055
052f1dc7 8056#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8057 rt_rq->highest_prio = MAX_RT_PRIO;
8058#endif
fa85ae24
PZ
8059#ifdef CONFIG_SMP
8060 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8061 rt_rq->overloaded = 0;
8062#endif
8063
8064 rt_rq->rt_time = 0;
8065 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8066 rt_rq->rt_runtime = 0;
8067 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8068
052f1dc7 8069#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8070 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8071 rt_rq->rq = rq;
8072#endif
fa85ae24
PZ
8073}
8074
6f505b16 8075#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8076static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8077 struct sched_entity *se, int cpu, int add,
8078 struct sched_entity *parent)
6f505b16 8079{
ec7dc8ac 8080 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8081 tg->cfs_rq[cpu] = cfs_rq;
8082 init_cfs_rq(cfs_rq, rq);
8083 cfs_rq->tg = tg;
8084 if (add)
8085 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8086
8087 tg->se[cpu] = se;
354d60c2
DG
8088 /* se could be NULL for init_task_group */
8089 if (!se)
8090 return;
8091
ec7dc8ac
DG
8092 if (!parent)
8093 se->cfs_rq = &rq->cfs;
8094 else
8095 se->cfs_rq = parent->my_q;
8096
6f505b16
PZ
8097 se->my_q = cfs_rq;
8098 se->load.weight = tg->shares;
e05510d0 8099 se->load.inv_weight = 0;
ec7dc8ac 8100 se->parent = parent;
6f505b16 8101}
052f1dc7 8102#endif
6f505b16 8103
052f1dc7 8104#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8105static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8106 struct sched_rt_entity *rt_se, int cpu, int add,
8107 struct sched_rt_entity *parent)
6f505b16 8108{
ec7dc8ac
DG
8109 struct rq *rq = cpu_rq(cpu);
8110
6f505b16
PZ
8111 tg->rt_rq[cpu] = rt_rq;
8112 init_rt_rq(rt_rq, rq);
8113 rt_rq->tg = tg;
8114 rt_rq->rt_se = rt_se;
ac086bc2 8115 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8116 if (add)
8117 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8118
8119 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8120 if (!rt_se)
8121 return;
8122
ec7dc8ac
DG
8123 if (!parent)
8124 rt_se->rt_rq = &rq->rt;
8125 else
8126 rt_se->rt_rq = parent->my_q;
8127
6f505b16
PZ
8128 rt_se->rt_rq = &rq->rt;
8129 rt_se->my_q = rt_rq;
ec7dc8ac 8130 rt_se->parent = parent;
6f505b16
PZ
8131 INIT_LIST_HEAD(&rt_se->run_list);
8132}
8133#endif
8134
1da177e4
LT
8135void __init sched_init(void)
8136{
dd41f596 8137 int i, j;
434d53b0
MT
8138 unsigned long alloc_size = 0, ptr;
8139
8140#ifdef CONFIG_FAIR_GROUP_SCHED
8141 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8142#endif
8143#ifdef CONFIG_RT_GROUP_SCHED
8144 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8145#endif
8146#ifdef CONFIG_USER_SCHED
8147 alloc_size *= 2;
434d53b0
MT
8148#endif
8149 /*
8150 * As sched_init() is called before page_alloc is setup,
8151 * we use alloc_bootmem().
8152 */
8153 if (alloc_size) {
5a9d3225 8154 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8155
8156#ifdef CONFIG_FAIR_GROUP_SCHED
8157 init_task_group.se = (struct sched_entity **)ptr;
8158 ptr += nr_cpu_ids * sizeof(void **);
8159
8160 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8161 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8162
8163#ifdef CONFIG_USER_SCHED
8164 root_task_group.se = (struct sched_entity **)ptr;
8165 ptr += nr_cpu_ids * sizeof(void **);
8166
8167 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8168 ptr += nr_cpu_ids * sizeof(void **);
8169#endif
434d53b0
MT
8170#endif
8171#ifdef CONFIG_RT_GROUP_SCHED
8172 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8173 ptr += nr_cpu_ids * sizeof(void **);
8174
8175 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8176 ptr += nr_cpu_ids * sizeof(void **);
8177
8178#ifdef CONFIG_USER_SCHED
8179 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8180 ptr += nr_cpu_ids * sizeof(void **);
8181
8182 root_task_group.rt_rq = (struct rt_rq **)ptr;
8183 ptr += nr_cpu_ids * sizeof(void **);
8184#endif
434d53b0
MT
8185#endif
8186 }
dd41f596 8187
57d885fe 8188#ifdef CONFIG_SMP
18d95a28 8189 init_aggregate();
57d885fe
GH
8190 init_defrootdomain();
8191#endif
8192
d0b27fa7
PZ
8193 init_rt_bandwidth(&def_rt_bandwidth,
8194 global_rt_period(), global_rt_runtime());
8195
8196#ifdef CONFIG_RT_GROUP_SCHED
8197 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8198 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8199#ifdef CONFIG_USER_SCHED
8200 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8201 global_rt_period(), RUNTIME_INF);
8202#endif
d0b27fa7
PZ
8203#endif
8204
052f1dc7 8205#ifdef CONFIG_GROUP_SCHED
6f505b16 8206 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8207 INIT_LIST_HEAD(&init_task_group.children);
8208
8209#ifdef CONFIG_USER_SCHED
8210 INIT_LIST_HEAD(&root_task_group.children);
8211 init_task_group.parent = &root_task_group;
8212 list_add(&init_task_group.siblings, &root_task_group.children);
8213#endif
6f505b16
PZ
8214#endif
8215
0a945022 8216 for_each_possible_cpu(i) {
70b97a7f 8217 struct rq *rq;
1da177e4
LT
8218
8219 rq = cpu_rq(i);
8220 spin_lock_init(&rq->lock);
fcb99371 8221 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8222 rq->nr_running = 0;
dd41f596 8223 rq->clock = 1;
15934a37 8224 update_last_tick_seen(rq);
dd41f596 8225 init_cfs_rq(&rq->cfs, rq);
6f505b16 8226 init_rt_rq(&rq->rt, rq);
dd41f596 8227#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8228 init_task_group.shares = init_task_group_load;
6f505b16 8229 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8230#ifdef CONFIG_CGROUP_SCHED
8231 /*
8232 * How much cpu bandwidth does init_task_group get?
8233 *
8234 * In case of task-groups formed thr' the cgroup filesystem, it
8235 * gets 100% of the cpu resources in the system. This overall
8236 * system cpu resource is divided among the tasks of
8237 * init_task_group and its child task-groups in a fair manner,
8238 * based on each entity's (task or task-group's) weight
8239 * (se->load.weight).
8240 *
8241 * In other words, if init_task_group has 10 tasks of weight
8242 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8243 * then A0's share of the cpu resource is:
8244 *
8245 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8246 *
8247 * We achieve this by letting init_task_group's tasks sit
8248 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8249 */
ec7dc8ac 8250 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8251#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8252 root_task_group.shares = NICE_0_LOAD;
8253 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8254 /*
8255 * In case of task-groups formed thr' the user id of tasks,
8256 * init_task_group represents tasks belonging to root user.
8257 * Hence it forms a sibling of all subsequent groups formed.
8258 * In this case, init_task_group gets only a fraction of overall
8259 * system cpu resource, based on the weight assigned to root
8260 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8261 * by letting tasks of init_task_group sit in a separate cfs_rq
8262 * (init_cfs_rq) and having one entity represent this group of
8263 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8264 */
ec7dc8ac 8265 init_tg_cfs_entry(&init_task_group,
6f505b16 8266 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8267 &per_cpu(init_sched_entity, i), i, 1,
8268 root_task_group.se[i]);
6f505b16 8269
052f1dc7 8270#endif
354d60c2
DG
8271#endif /* CONFIG_FAIR_GROUP_SCHED */
8272
8273 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8274#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8275 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8276#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8277 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8278#elif defined CONFIG_USER_SCHED
eff766a6 8279 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8280 init_tg_rt_entry(&init_task_group,
6f505b16 8281 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8282 &per_cpu(init_sched_rt_entity, i), i, 1,
8283 root_task_group.rt_se[i]);
354d60c2 8284#endif
dd41f596 8285#endif
1da177e4 8286
dd41f596
IM
8287 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8288 rq->cpu_load[j] = 0;
1da177e4 8289#ifdef CONFIG_SMP
41c7ce9a 8290 rq->sd = NULL;
57d885fe 8291 rq->rd = NULL;
1da177e4 8292 rq->active_balance = 0;
dd41f596 8293 rq->next_balance = jiffies;
1da177e4 8294 rq->push_cpu = 0;
0a2966b4 8295 rq->cpu = i;
1da177e4
LT
8296 rq->migration_thread = NULL;
8297 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8298 rq_attach_root(rq, &def_root_domain);
1da177e4 8299#endif
8f4d37ec 8300 init_rq_hrtick(rq);
1da177e4 8301 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8302 }
8303
2dd73a4f 8304 set_load_weight(&init_task);
b50f60ce 8305
e107be36
AK
8306#ifdef CONFIG_PREEMPT_NOTIFIERS
8307 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8308#endif
8309
c9819f45
CL
8310#ifdef CONFIG_SMP
8311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8312#endif
8313
b50f60ce
HC
8314#ifdef CONFIG_RT_MUTEXES
8315 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8316#endif
8317
1da177e4
LT
8318 /*
8319 * The boot idle thread does lazy MMU switching as well:
8320 */
8321 atomic_inc(&init_mm.mm_count);
8322 enter_lazy_tlb(&init_mm, current);
8323
8324 /*
8325 * Make us the idle thread. Technically, schedule() should not be
8326 * called from this thread, however somewhere below it might be,
8327 * but because we are the idle thread, we just pick up running again
8328 * when this runqueue becomes "idle".
8329 */
8330 init_idle(current, smp_processor_id());
dd41f596
IM
8331 /*
8332 * During early bootup we pretend to be a normal task:
8333 */
8334 current->sched_class = &fair_sched_class;
6892b75e
IM
8335
8336 scheduler_running = 1;
1da177e4
LT
8337}
8338
8339#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8340void __might_sleep(char *file, int line)
8341{
48f24c4d 8342#ifdef in_atomic
1da177e4
LT
8343 static unsigned long prev_jiffy; /* ratelimiting */
8344
8345 if ((in_atomic() || irqs_disabled()) &&
8346 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8347 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8348 return;
8349 prev_jiffy = jiffies;
91368d73 8350 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8351 " context at %s:%d\n", file, line);
8352 printk("in_atomic():%d, irqs_disabled():%d\n",
8353 in_atomic(), irqs_disabled());
a4c410f0 8354 debug_show_held_locks(current);
3117df04
IM
8355 if (irqs_disabled())
8356 print_irqtrace_events(current);
1da177e4
LT
8357 dump_stack();
8358 }
8359#endif
8360}
8361EXPORT_SYMBOL(__might_sleep);
8362#endif
8363
8364#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8365static void normalize_task(struct rq *rq, struct task_struct *p)
8366{
8367 int on_rq;
8368 update_rq_clock(rq);
8369 on_rq = p->se.on_rq;
8370 if (on_rq)
8371 deactivate_task(rq, p, 0);
8372 __setscheduler(rq, p, SCHED_NORMAL, 0);
8373 if (on_rq) {
8374 activate_task(rq, p, 0);
8375 resched_task(rq->curr);
8376 }
8377}
8378
1da177e4
LT
8379void normalize_rt_tasks(void)
8380{
a0f98a1c 8381 struct task_struct *g, *p;
1da177e4 8382 unsigned long flags;
70b97a7f 8383 struct rq *rq;
1da177e4 8384
4cf5d77a 8385 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8386 do_each_thread(g, p) {
178be793
IM
8387 /*
8388 * Only normalize user tasks:
8389 */
8390 if (!p->mm)
8391 continue;
8392
6cfb0d5d 8393 p->se.exec_start = 0;
6cfb0d5d 8394#ifdef CONFIG_SCHEDSTATS
dd41f596 8395 p->se.wait_start = 0;
dd41f596 8396 p->se.sleep_start = 0;
dd41f596 8397 p->se.block_start = 0;
6cfb0d5d 8398#endif
dd41f596
IM
8399 task_rq(p)->clock = 0;
8400
8401 if (!rt_task(p)) {
8402 /*
8403 * Renice negative nice level userspace
8404 * tasks back to 0:
8405 */
8406 if (TASK_NICE(p) < 0 && p->mm)
8407 set_user_nice(p, 0);
1da177e4 8408 continue;
dd41f596 8409 }
1da177e4 8410
4cf5d77a 8411 spin_lock(&p->pi_lock);
b29739f9 8412 rq = __task_rq_lock(p);
1da177e4 8413
178be793 8414 normalize_task(rq, p);
3a5e4dc1 8415
b29739f9 8416 __task_rq_unlock(rq);
4cf5d77a 8417 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8418 } while_each_thread(g, p);
8419
4cf5d77a 8420 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8421}
8422
8423#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8424
8425#ifdef CONFIG_IA64
8426/*
8427 * These functions are only useful for the IA64 MCA handling.
8428 *
8429 * They can only be called when the whole system has been
8430 * stopped - every CPU needs to be quiescent, and no scheduling
8431 * activity can take place. Using them for anything else would
8432 * be a serious bug, and as a result, they aren't even visible
8433 * under any other configuration.
8434 */
8435
8436/**
8437 * curr_task - return the current task for a given cpu.
8438 * @cpu: the processor in question.
8439 *
8440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8441 */
36c8b586 8442struct task_struct *curr_task(int cpu)
1df5c10a
LT
8443{
8444 return cpu_curr(cpu);
8445}
8446
8447/**
8448 * set_curr_task - set the current task for a given cpu.
8449 * @cpu: the processor in question.
8450 * @p: the task pointer to set.
8451 *
8452 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8453 * are serviced on a separate stack. It allows the architecture to switch the
8454 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8455 * must be called with all CPU's synchronized, and interrupts disabled, the
8456 * and caller must save the original value of the current task (see
8457 * curr_task() above) and restore that value before reenabling interrupts and
8458 * re-starting the system.
8459 *
8460 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8461 */
36c8b586 8462void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8463{
8464 cpu_curr(cpu) = p;
8465}
8466
8467#endif
29f59db3 8468
bccbe08a
PZ
8469#ifdef CONFIG_FAIR_GROUP_SCHED
8470static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8471{
8472 int i;
8473
8474 for_each_possible_cpu(i) {
8475 if (tg->cfs_rq)
8476 kfree(tg->cfs_rq[i]);
8477 if (tg->se)
8478 kfree(tg->se[i]);
6f505b16
PZ
8479 }
8480
8481 kfree(tg->cfs_rq);
8482 kfree(tg->se);
6f505b16
PZ
8483}
8484
ec7dc8ac
DG
8485static
8486int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8487{
29f59db3 8488 struct cfs_rq *cfs_rq;
ec7dc8ac 8489 struct sched_entity *se, *parent_se;
9b5b7751 8490 struct rq *rq;
29f59db3
SV
8491 int i;
8492
434d53b0 8493 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8494 if (!tg->cfs_rq)
8495 goto err;
434d53b0 8496 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8497 if (!tg->se)
8498 goto err;
052f1dc7
PZ
8499
8500 tg->shares = NICE_0_LOAD;
29f59db3
SV
8501
8502 for_each_possible_cpu(i) {
9b5b7751 8503 rq = cpu_rq(i);
29f59db3 8504
6f505b16
PZ
8505 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8506 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8507 if (!cfs_rq)
8508 goto err;
8509
6f505b16
PZ
8510 se = kmalloc_node(sizeof(struct sched_entity),
8511 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8512 if (!se)
8513 goto err;
8514
ec7dc8ac
DG
8515 parent_se = parent ? parent->se[i] : NULL;
8516 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8517 }
8518
8519 return 1;
8520
8521 err:
8522 return 0;
8523}
8524
8525static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8526{
8527 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8528 &cpu_rq(cpu)->leaf_cfs_rq_list);
8529}
8530
8531static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8532{
8533 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8534}
8535#else
8536static inline void free_fair_sched_group(struct task_group *tg)
8537{
8538}
8539
ec7dc8ac
DG
8540static inline
8541int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8542{
8543 return 1;
8544}
8545
8546static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8547{
8548}
8549
8550static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8551{
8552}
052f1dc7
PZ
8553#endif
8554
8555#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8556static void free_rt_sched_group(struct task_group *tg)
8557{
8558 int i;
8559
d0b27fa7
PZ
8560 destroy_rt_bandwidth(&tg->rt_bandwidth);
8561
bccbe08a
PZ
8562 for_each_possible_cpu(i) {
8563 if (tg->rt_rq)
8564 kfree(tg->rt_rq[i]);
8565 if (tg->rt_se)
8566 kfree(tg->rt_se[i]);
8567 }
8568
8569 kfree(tg->rt_rq);
8570 kfree(tg->rt_se);
8571}
8572
ec7dc8ac
DG
8573static
8574int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8575{
8576 struct rt_rq *rt_rq;
ec7dc8ac 8577 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8578 struct rq *rq;
8579 int i;
8580
434d53b0 8581 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8582 if (!tg->rt_rq)
8583 goto err;
434d53b0 8584 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8585 if (!tg->rt_se)
8586 goto err;
8587
d0b27fa7
PZ
8588 init_rt_bandwidth(&tg->rt_bandwidth,
8589 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8590
8591 for_each_possible_cpu(i) {
8592 rq = cpu_rq(i);
8593
6f505b16
PZ
8594 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8595 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8596 if (!rt_rq)
8597 goto err;
29f59db3 8598
6f505b16
PZ
8599 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8600 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8601 if (!rt_se)
8602 goto err;
29f59db3 8603
ec7dc8ac
DG
8604 parent_se = parent ? parent->rt_se[i] : NULL;
8605 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8606 }
8607
bccbe08a
PZ
8608 return 1;
8609
8610 err:
8611 return 0;
8612}
8613
8614static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8615{
8616 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8617 &cpu_rq(cpu)->leaf_rt_rq_list);
8618}
8619
8620static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8621{
8622 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8623}
8624#else
8625static inline void free_rt_sched_group(struct task_group *tg)
8626{
8627}
8628
ec7dc8ac
DG
8629static inline
8630int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8631{
8632 return 1;
8633}
8634
8635static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8636{
8637}
8638
8639static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8640{
8641}
8642#endif
8643
d0b27fa7 8644#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8645static void free_sched_group(struct task_group *tg)
8646{
8647 free_fair_sched_group(tg);
8648 free_rt_sched_group(tg);
8649 kfree(tg);
8650}
8651
8652/* allocate runqueue etc for a new task group */
ec7dc8ac 8653struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8654{
8655 struct task_group *tg;
8656 unsigned long flags;
8657 int i;
8658
8659 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8660 if (!tg)
8661 return ERR_PTR(-ENOMEM);
8662
ec7dc8ac 8663 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8664 goto err;
8665
ec7dc8ac 8666 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8667 goto err;
8668
8ed36996 8669 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8670 for_each_possible_cpu(i) {
bccbe08a
PZ
8671 register_fair_sched_group(tg, i);
8672 register_rt_sched_group(tg, i);
9b5b7751 8673 }
6f505b16 8674 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8675
8676 WARN_ON(!parent); /* root should already exist */
8677
8678 tg->parent = parent;
8679 list_add_rcu(&tg->siblings, &parent->children);
8680 INIT_LIST_HEAD(&tg->children);
8ed36996 8681 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8682
9b5b7751 8683 return tg;
29f59db3
SV
8684
8685err:
6f505b16 8686 free_sched_group(tg);
29f59db3
SV
8687 return ERR_PTR(-ENOMEM);
8688}
8689
9b5b7751 8690/* rcu callback to free various structures associated with a task group */
6f505b16 8691static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8692{
29f59db3 8693 /* now it should be safe to free those cfs_rqs */
6f505b16 8694 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8695}
8696
9b5b7751 8697/* Destroy runqueue etc associated with a task group */
4cf86d77 8698void sched_destroy_group(struct task_group *tg)
29f59db3 8699{
8ed36996 8700 unsigned long flags;
9b5b7751 8701 int i;
29f59db3 8702
8ed36996 8703 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8704 for_each_possible_cpu(i) {
bccbe08a
PZ
8705 unregister_fair_sched_group(tg, i);
8706 unregister_rt_sched_group(tg, i);
9b5b7751 8707 }
6f505b16 8708 list_del_rcu(&tg->list);
f473aa5e 8709 list_del_rcu(&tg->siblings);
8ed36996 8710 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8711
9b5b7751 8712 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8713 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8714}
8715
9b5b7751 8716/* change task's runqueue when it moves between groups.
3a252015
IM
8717 * The caller of this function should have put the task in its new group
8718 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8719 * reflect its new group.
9b5b7751
SV
8720 */
8721void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8722{
8723 int on_rq, running;
8724 unsigned long flags;
8725 struct rq *rq;
8726
8727 rq = task_rq_lock(tsk, &flags);
8728
29f59db3
SV
8729 update_rq_clock(rq);
8730
051a1d1a 8731 running = task_current(rq, tsk);
29f59db3
SV
8732 on_rq = tsk->se.on_rq;
8733
0e1f3483 8734 if (on_rq)
29f59db3 8735 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8736 if (unlikely(running))
8737 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8738
6f505b16 8739 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8740
810b3817
PZ
8741#ifdef CONFIG_FAIR_GROUP_SCHED
8742 if (tsk->sched_class->moved_group)
8743 tsk->sched_class->moved_group(tsk);
8744#endif
8745
0e1f3483
HS
8746 if (unlikely(running))
8747 tsk->sched_class->set_curr_task(rq);
8748 if (on_rq)
7074badb 8749 enqueue_task(rq, tsk, 0);
29f59db3 8750
29f59db3
SV
8751 task_rq_unlock(rq, &flags);
8752}
d0b27fa7 8753#endif
29f59db3 8754
052f1dc7 8755#ifdef CONFIG_FAIR_GROUP_SCHED
18d95a28 8756static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8757{
8758 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8759 int on_rq;
8760
29f59db3 8761 on_rq = se->on_rq;
62fb1851 8762 if (on_rq)
29f59db3
SV
8763 dequeue_entity(cfs_rq, se, 0);
8764
8765 se->load.weight = shares;
e05510d0 8766 se->load.inv_weight = 0;
29f59db3 8767
62fb1851 8768 if (on_rq)
29f59db3 8769 enqueue_entity(cfs_rq, se, 0);
18d95a28 8770}
62fb1851 8771
18d95a28
PZ
8772static void set_se_shares(struct sched_entity *se, unsigned long shares)
8773{
8774 struct cfs_rq *cfs_rq = se->cfs_rq;
8775 struct rq *rq = cfs_rq->rq;
8776 unsigned long flags;
8777
8778 spin_lock_irqsave(&rq->lock, flags);
8779 __set_se_shares(se, shares);
8780 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8781}
8782
8ed36996
PZ
8783static DEFINE_MUTEX(shares_mutex);
8784
4cf86d77 8785int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8786{
8787 int i;
8ed36996 8788 unsigned long flags;
c61935fd 8789
ec7dc8ac
DG
8790 /*
8791 * We can't change the weight of the root cgroup.
8792 */
8793 if (!tg->se[0])
8794 return -EINVAL;
8795
18d95a28
PZ
8796 if (shares < MIN_SHARES)
8797 shares = MIN_SHARES;
cb4ad1ff
MX
8798 else if (shares > MAX_SHARES)
8799 shares = MAX_SHARES;
62fb1851 8800
8ed36996 8801 mutex_lock(&shares_mutex);
9b5b7751 8802 if (tg->shares == shares)
5cb350ba 8803 goto done;
29f59db3 8804
8ed36996 8805 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8806 for_each_possible_cpu(i)
8807 unregister_fair_sched_group(tg, i);
f473aa5e 8808 list_del_rcu(&tg->siblings);
8ed36996 8809 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8810
8811 /* wait for any ongoing reference to this group to finish */
8812 synchronize_sched();
8813
8814 /*
8815 * Now we are free to modify the group's share on each cpu
8816 * w/o tripping rebalance_share or load_balance_fair.
8817 */
9b5b7751 8818 tg->shares = shares;
18d95a28
PZ
8819 for_each_possible_cpu(i) {
8820 /*
8821 * force a rebalance
8822 */
8823 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8824 set_se_shares(tg->se[i], shares);
18d95a28 8825 }
29f59db3 8826
6b2d7700
SV
8827 /*
8828 * Enable load balance activity on this group, by inserting it back on
8829 * each cpu's rq->leaf_cfs_rq_list.
8830 */
8ed36996 8831 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8832 for_each_possible_cpu(i)
8833 register_fair_sched_group(tg, i);
f473aa5e 8834 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8835 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8836done:
8ed36996 8837 mutex_unlock(&shares_mutex);
9b5b7751 8838 return 0;
29f59db3
SV
8839}
8840
5cb350ba
DG
8841unsigned long sched_group_shares(struct task_group *tg)
8842{
8843 return tg->shares;
8844}
052f1dc7 8845#endif
5cb350ba 8846
052f1dc7 8847#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8848/*
9f0c1e56 8849 * Ensure that the real time constraints are schedulable.
6f505b16 8850 */
9f0c1e56
PZ
8851static DEFINE_MUTEX(rt_constraints_mutex);
8852
8853static unsigned long to_ratio(u64 period, u64 runtime)
8854{
8855 if (runtime == RUNTIME_INF)
8856 return 1ULL << 16;
8857
6f6d6a1a 8858 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8859}
8860
b40b2e8e
PZ
8861#ifdef CONFIG_CGROUP_SCHED
8862static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8863{
8864 struct task_group *tgi, *parent = tg->parent;
8865 unsigned long total = 0;
8866
8867 if (!parent) {
8868 if (global_rt_period() < period)
8869 return 0;
8870
8871 return to_ratio(period, runtime) <
8872 to_ratio(global_rt_period(), global_rt_runtime());
8873 }
8874
8875 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8876 return 0;
8877
8878 rcu_read_lock();
8879 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8880 if (tgi == tg)
8881 continue;
8882
8883 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8884 tgi->rt_bandwidth.rt_runtime);
8885 }
8886 rcu_read_unlock();
8887
8888 return total + to_ratio(period, runtime) <
8889 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8890 parent->rt_bandwidth.rt_runtime);
8891}
8892#elif defined CONFIG_USER_SCHED
9f0c1e56 8893static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8894{
8895 struct task_group *tgi;
8896 unsigned long total = 0;
9f0c1e56 8897 unsigned long global_ratio =
d0b27fa7 8898 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8899
8900 rcu_read_lock();
9f0c1e56
PZ
8901 list_for_each_entry_rcu(tgi, &task_groups, list) {
8902 if (tgi == tg)
8903 continue;
6f505b16 8904
d0b27fa7
PZ
8905 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8906 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8907 }
8908 rcu_read_unlock();
6f505b16 8909
9f0c1e56 8910 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8911}
b40b2e8e 8912#endif
6f505b16 8913
521f1a24
DG
8914/* Must be called with tasklist_lock held */
8915static inline int tg_has_rt_tasks(struct task_group *tg)
8916{
8917 struct task_struct *g, *p;
8918 do_each_thread(g, p) {
8919 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8920 return 1;
8921 } while_each_thread(g, p);
8922 return 0;
8923}
8924
d0b27fa7
PZ
8925static int tg_set_bandwidth(struct task_group *tg,
8926 u64 rt_period, u64 rt_runtime)
6f505b16 8927{
ac086bc2 8928 int i, err = 0;
9f0c1e56 8929
9f0c1e56 8930 mutex_lock(&rt_constraints_mutex);
521f1a24 8931 read_lock(&tasklist_lock);
ac086bc2 8932 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8933 err = -EBUSY;
8934 goto unlock;
8935 }
9f0c1e56
PZ
8936 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8937 err = -EINVAL;
8938 goto unlock;
8939 }
ac086bc2
PZ
8940
8941 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8942 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8943 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8944
8945 for_each_possible_cpu(i) {
8946 struct rt_rq *rt_rq = tg->rt_rq[i];
8947
8948 spin_lock(&rt_rq->rt_runtime_lock);
8949 rt_rq->rt_runtime = rt_runtime;
8950 spin_unlock(&rt_rq->rt_runtime_lock);
8951 }
8952 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8953 unlock:
521f1a24 8954 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8955 mutex_unlock(&rt_constraints_mutex);
8956
8957 return err;
6f505b16
PZ
8958}
8959
d0b27fa7
PZ
8960int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8961{
8962 u64 rt_runtime, rt_period;
8963
8964 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8965 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8966 if (rt_runtime_us < 0)
8967 rt_runtime = RUNTIME_INF;
8968
8969 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8970}
8971
9f0c1e56
PZ
8972long sched_group_rt_runtime(struct task_group *tg)
8973{
8974 u64 rt_runtime_us;
8975
d0b27fa7 8976 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8977 return -1;
8978
d0b27fa7 8979 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8980 do_div(rt_runtime_us, NSEC_PER_USEC);
8981 return rt_runtime_us;
8982}
d0b27fa7
PZ
8983
8984int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8985{
8986 u64 rt_runtime, rt_period;
8987
8988 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8989 rt_runtime = tg->rt_bandwidth.rt_runtime;
8990
8991 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8992}
8993
8994long sched_group_rt_period(struct task_group *tg)
8995{
8996 u64 rt_period_us;
8997
8998 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8999 do_div(rt_period_us, NSEC_PER_USEC);
9000 return rt_period_us;
9001}
9002
9003static int sched_rt_global_constraints(void)
9004{
9005 int ret = 0;
9006
9007 mutex_lock(&rt_constraints_mutex);
9008 if (!__rt_schedulable(NULL, 1, 0))
9009 ret = -EINVAL;
9010 mutex_unlock(&rt_constraints_mutex);
9011
9012 return ret;
9013}
9014#else
9015static int sched_rt_global_constraints(void)
9016{
ac086bc2
PZ
9017 unsigned long flags;
9018 int i;
9019
9020 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9021 for_each_possible_cpu(i) {
9022 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9023
9024 spin_lock(&rt_rq->rt_runtime_lock);
9025 rt_rq->rt_runtime = global_rt_runtime();
9026 spin_unlock(&rt_rq->rt_runtime_lock);
9027 }
9028 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9029
d0b27fa7
PZ
9030 return 0;
9031}
052f1dc7 9032#endif
d0b27fa7
PZ
9033
9034int sched_rt_handler(struct ctl_table *table, int write,
9035 struct file *filp, void __user *buffer, size_t *lenp,
9036 loff_t *ppos)
9037{
9038 int ret;
9039 int old_period, old_runtime;
9040 static DEFINE_MUTEX(mutex);
9041
9042 mutex_lock(&mutex);
9043 old_period = sysctl_sched_rt_period;
9044 old_runtime = sysctl_sched_rt_runtime;
9045
9046 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9047
9048 if (!ret && write) {
9049 ret = sched_rt_global_constraints();
9050 if (ret) {
9051 sysctl_sched_rt_period = old_period;
9052 sysctl_sched_rt_runtime = old_runtime;
9053 } else {
9054 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9055 def_rt_bandwidth.rt_period =
9056 ns_to_ktime(global_rt_period());
9057 }
9058 }
9059 mutex_unlock(&mutex);
9060
9061 return ret;
9062}
68318b8e 9063
052f1dc7 9064#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9065
9066/* return corresponding task_group object of a cgroup */
2b01dfe3 9067static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9068{
2b01dfe3
PM
9069 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9070 struct task_group, css);
68318b8e
SV
9071}
9072
9073static struct cgroup_subsys_state *
2b01dfe3 9074cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9075{
ec7dc8ac 9076 struct task_group *tg, *parent;
68318b8e 9077
2b01dfe3 9078 if (!cgrp->parent) {
68318b8e 9079 /* This is early initialization for the top cgroup */
2b01dfe3 9080 init_task_group.css.cgroup = cgrp;
68318b8e
SV
9081 return &init_task_group.css;
9082 }
9083
ec7dc8ac
DG
9084 parent = cgroup_tg(cgrp->parent);
9085 tg = sched_create_group(parent);
68318b8e
SV
9086 if (IS_ERR(tg))
9087 return ERR_PTR(-ENOMEM);
9088
9089 /* Bind the cgroup to task_group object we just created */
2b01dfe3 9090 tg->css.cgroup = cgrp;
68318b8e
SV
9091
9092 return &tg->css;
9093}
9094
41a2d6cf
IM
9095static void
9096cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9097{
2b01dfe3 9098 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9099
9100 sched_destroy_group(tg);
9101}
9102
41a2d6cf
IM
9103static int
9104cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9105 struct task_struct *tsk)
68318b8e 9106{
b68aa230
PZ
9107#ifdef CONFIG_RT_GROUP_SCHED
9108 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9109 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9110 return -EINVAL;
9111#else
68318b8e
SV
9112 /* We don't support RT-tasks being in separate groups */
9113 if (tsk->sched_class != &fair_sched_class)
9114 return -EINVAL;
b68aa230 9115#endif
68318b8e
SV
9116
9117 return 0;
9118}
9119
9120static void
2b01dfe3 9121cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9122 struct cgroup *old_cont, struct task_struct *tsk)
9123{
9124 sched_move_task(tsk);
9125}
9126
052f1dc7 9127#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9128static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9129 u64 shareval)
68318b8e 9130{
2b01dfe3 9131 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9132}
9133
f4c753b7 9134static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9135{
2b01dfe3 9136 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9137
9138 return (u64) tg->shares;
9139}
052f1dc7 9140#endif
68318b8e 9141
052f1dc7 9142#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 9143static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9144 s64 val)
6f505b16 9145{
06ecb27c 9146 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9147}
9148
06ecb27c 9149static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9150{
06ecb27c 9151 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9152}
d0b27fa7
PZ
9153
9154static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9155 u64 rt_period_us)
9156{
9157 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9158}
9159
9160static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9161{
9162 return sched_group_rt_period(cgroup_tg(cgrp));
9163}
052f1dc7 9164#endif
6f505b16 9165
fe5c7cc2 9166static struct cftype cpu_files[] = {
052f1dc7 9167#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9168 {
9169 .name = "shares",
f4c753b7
PM
9170 .read_u64 = cpu_shares_read_u64,
9171 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9172 },
052f1dc7
PZ
9173#endif
9174#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9175 {
9f0c1e56 9176 .name = "rt_runtime_us",
06ecb27c
PM
9177 .read_s64 = cpu_rt_runtime_read,
9178 .write_s64 = cpu_rt_runtime_write,
6f505b16 9179 },
d0b27fa7
PZ
9180 {
9181 .name = "rt_period_us",
f4c753b7
PM
9182 .read_u64 = cpu_rt_period_read_uint,
9183 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9184 },
052f1dc7 9185#endif
68318b8e
SV
9186};
9187
9188static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9189{
fe5c7cc2 9190 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9191}
9192
9193struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9194 .name = "cpu",
9195 .create = cpu_cgroup_create,
9196 .destroy = cpu_cgroup_destroy,
9197 .can_attach = cpu_cgroup_can_attach,
9198 .attach = cpu_cgroup_attach,
9199 .populate = cpu_cgroup_populate,
9200 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9201 .early_init = 1,
9202};
9203
052f1dc7 9204#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9205
9206#ifdef CONFIG_CGROUP_CPUACCT
9207
9208/*
9209 * CPU accounting code for task groups.
9210 *
9211 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9212 * (balbir@in.ibm.com).
9213 */
9214
9215/* track cpu usage of a group of tasks */
9216struct cpuacct {
9217 struct cgroup_subsys_state css;
9218 /* cpuusage holds pointer to a u64-type object on every cpu */
9219 u64 *cpuusage;
9220};
9221
9222struct cgroup_subsys cpuacct_subsys;
9223
9224/* return cpu accounting group corresponding to this container */
32cd756a 9225static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9226{
32cd756a 9227 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9228 struct cpuacct, css);
9229}
9230
9231/* return cpu accounting group to which this task belongs */
9232static inline struct cpuacct *task_ca(struct task_struct *tsk)
9233{
9234 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9235 struct cpuacct, css);
9236}
9237
9238/* create a new cpu accounting group */
9239static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9240 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9241{
9242 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9243
9244 if (!ca)
9245 return ERR_PTR(-ENOMEM);
9246
9247 ca->cpuusage = alloc_percpu(u64);
9248 if (!ca->cpuusage) {
9249 kfree(ca);
9250 return ERR_PTR(-ENOMEM);
9251 }
9252
9253 return &ca->css;
9254}
9255
9256/* destroy an existing cpu accounting group */
41a2d6cf 9257static void
32cd756a 9258cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9259{
32cd756a 9260 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9261
9262 free_percpu(ca->cpuusage);
9263 kfree(ca);
9264}
9265
9266/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9267static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9268{
32cd756a 9269 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9270 u64 totalcpuusage = 0;
9271 int i;
9272
9273 for_each_possible_cpu(i) {
9274 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9275
9276 /*
9277 * Take rq->lock to make 64-bit addition safe on 32-bit
9278 * platforms.
9279 */
9280 spin_lock_irq(&cpu_rq(i)->lock);
9281 totalcpuusage += *cpuusage;
9282 spin_unlock_irq(&cpu_rq(i)->lock);
9283 }
9284
9285 return totalcpuusage;
9286}
9287
0297b803
DG
9288static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9289 u64 reset)
9290{
9291 struct cpuacct *ca = cgroup_ca(cgrp);
9292 int err = 0;
9293 int i;
9294
9295 if (reset) {
9296 err = -EINVAL;
9297 goto out;
9298 }
9299
9300 for_each_possible_cpu(i) {
9301 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9302
9303 spin_lock_irq(&cpu_rq(i)->lock);
9304 *cpuusage = 0;
9305 spin_unlock_irq(&cpu_rq(i)->lock);
9306 }
9307out:
9308 return err;
9309}
9310
d842de87
SV
9311static struct cftype files[] = {
9312 {
9313 .name = "usage",
f4c753b7
PM
9314 .read_u64 = cpuusage_read,
9315 .write_u64 = cpuusage_write,
d842de87
SV
9316 },
9317};
9318
32cd756a 9319static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9320{
32cd756a 9321 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9322}
9323
9324/*
9325 * charge this task's execution time to its accounting group.
9326 *
9327 * called with rq->lock held.
9328 */
9329static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9330{
9331 struct cpuacct *ca;
9332
9333 if (!cpuacct_subsys.active)
9334 return;
9335
9336 ca = task_ca(tsk);
9337 if (ca) {
9338 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9339
9340 *cpuusage += cputime;
9341 }
9342}
9343
9344struct cgroup_subsys cpuacct_subsys = {
9345 .name = "cpuacct",
9346 .create = cpuacct_create,
9347 .destroy = cpuacct_destroy,
9348 .populate = cpuacct_populate,
9349 .subsys_id = cpuacct_subsys_id,
9350};
9351#endif /* CONFIG_CGROUP_CPUACCT */