]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
rcu: Remove Classic RCU
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a22d7fc1 496 int overloaded;
917b627d 497 struct plist_head pushable_tasks;
fa85ae24 498#endif
6f505b16 499 int rt_throttled;
fa85ae24 500 u64 rt_time;
ac086bc2 501 u64 rt_runtime;
ea736ed5 502 /* Nests inside the rq lock: */
ac086bc2 503 spinlock_t rt_runtime_lock;
6f505b16 504
052f1dc7 505#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
506 unsigned long rt_nr_boosted;
507
6f505b16
PZ
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512#endif
6aa645ea
IM
513};
514
57d885fe
GH
515#ifdef CONFIG_SMP
516
517/*
518 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
57d885fe
GH
524 */
525struct root_domain {
526 atomic_t refcount;
c6c4927b
RR
527 cpumask_var_t span;
528 cpumask_var_t online;
637f5085 529
0eab9146 530 /*
637f5085
GH
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
c6c4927b 534 cpumask_var_t rto_mask;
0eab9146 535 atomic_t rto_count;
6e0534f2
GH
536#ifdef CONFIG_SMP
537 struct cpupri cpupri;
538#endif
7a09b1a2
VS
539#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546#endif
57d885fe
GH
547};
548
dc938520
GH
549/*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
57d885fe
GH
553static struct root_domain def_root_domain;
554
555#endif
556
1da177e4
LT
557/*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
70b97a7f 564struct rq {
d8016491
IM
565 /* runqueue lock: */
566 spinlock_t lock;
1da177e4
LT
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
6aa645ea
IM
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 575#ifdef CONFIG_NO_HZ
15934a37 576 unsigned long last_tick_seen;
46cb4b7c
SS
577 unsigned char in_nohz_recently;
578#endif
d8016491
IM
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
6aa645ea
IM
581 unsigned long nr_load_updates;
582 u64 nr_switches;
23a185ca 583 u64 nr_migrations_in;
6aa645ea
IM
584
585 struct cfs_rq cfs;
6f505b16 586 struct rt_rq rt;
6f505b16 587
6aa645ea 588#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
591#endif
592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 593 struct list_head leaf_rt_rq_list;
1da177e4 594#endif
1da177e4
LT
595
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
36c8b586 604 struct task_struct *curr, *idle;
c9819f45 605 unsigned long next_balance;
1da177e4 606 struct mm_struct *prev_mm;
6aa645ea 607
3e51f33f 608 u64 clock;
6aa645ea 609
1da177e4
LT
610 atomic_t nr_iowait;
611
612#ifdef CONFIG_SMP
0eab9146 613 struct root_domain *rd;
1da177e4
LT
614 struct sched_domain *sd;
615
a0a522ce 616 unsigned char idle_at_tick;
1da177e4
LT
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
d8016491
IM
620 /* cpu of this runqueue: */
621 int cpu;
1f11eb6a 622 int online;
1da177e4 623
a8a51d5e 624 unsigned long avg_load_per_task;
1da177e4 625
36c8b586 626 struct task_struct *migration_thread;
1da177e4
LT
627 struct list_head migration_queue;
628#endif
629
dce48a84
TG
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
633
8f4d37ec 634#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
635#ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638#endif
8f4d37ec
PZ
639 struct hrtimer hrtick_timer;
640#endif
641
1da177e4
LT
642#ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
9c2c4802
KC
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
647
648 /* sys_sched_yield() stats */
480b9434 649 unsigned int yld_count;
1da177e4
LT
650
651 /* schedule() stats */
480b9434
KC
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
1da177e4
LT
655
656 /* try_to_wake_up() stats */
480b9434
KC
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
b8efb561
IM
659
660 /* BKL stats */
480b9434 661 unsigned int bkl_count;
1da177e4
LT
662#endif
663};
664
f34e3b61 665static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 666
15afe09b 667static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 668{
15afe09b 669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
670}
671
0a2966b4
CL
672static inline int cpu_of(struct rq *rq)
673{
674#ifdef CONFIG_SMP
675 return rq->cpu;
676#else
677 return 0;
678#endif
679}
680
674311d5
NP
681/*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 683 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
48f24c4d
IM
688#define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
690
691#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692#define this_rq() (&__get_cpu_var(runqueues))
693#define task_rq(p) cpu_rq(task_cpu(p))
694#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
aa9c4c0f 696inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
697{
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699}
700
bf5c91ba
IM
701/*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704#ifdef CONFIG_SCHED_DEBUG
705# define const_debug __read_mostly
706#else
707# define const_debug static const
708#endif
709
017730c1
IM
710/**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717int runqueue_is_locked(void)
718{
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726}
727
bf5c91ba
IM
728/*
729 * Debugging: various feature bits
730 */
f00b45c1
PZ
731
732#define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
bf5c91ba 735enum {
f00b45c1 736#include "sched_features.h"
bf5c91ba
IM
737};
738
f00b45c1
PZ
739#undef SCHED_FEAT
740
741#define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
bf5c91ba 744const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
745#include "sched_features.h"
746 0;
747
748#undef SCHED_FEAT
749
750#ifdef CONFIG_SCHED_DEBUG
751#define SCHED_FEAT(name, enabled) \
752 #name ,
753
983ed7a6 754static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
755#include "sched_features.h"
756 NULL
757};
758
759#undef SCHED_FEAT
760
34f3a814 761static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 762{
f00b45c1
PZ
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 769 }
34f3a814 770 seq_puts(m, "\n");
f00b45c1 771
34f3a814 772 return 0;
f00b45c1
PZ
773}
774
775static ssize_t
776sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778{
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
c24b7c52 792 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815}
816
34f3a814
LZ
817static int sched_feat_open(struct inode *inode, struct file *filp)
818{
819 return single_open(filp, sched_feat_show, NULL);
820}
821
f00b45c1 822static struct file_operations sched_feat_fops = {
34f3a814
LZ
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
f00b45c1
PZ
828};
829
830static __init int sched_init_debug(void)
831{
f00b45c1
PZ
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836}
837late_initcall(sched_init_debug);
838
839#endif
840
841#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 842
b82d9fdd
PZ
843/*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
2398f2c6
PZ
849/*
850 * ratelimit for updating the group shares.
55cd5340 851 * default: 0.25ms
2398f2c6 852 */
55cd5340 853unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 854
ffda12a1
PZ
855/*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860unsigned int sysctl_sched_shares_thresh = 4;
861
fa85ae24 862/*
9f0c1e56 863 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
864 * default: 1s
865 */
9f0c1e56 866unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 867
6892b75e
IM
868static __read_mostly int scheduler_running;
869
9f0c1e56
PZ
870/*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874int sysctl_sched_rt_runtime = 950000;
fa85ae24 875
d0b27fa7
PZ
876static inline u64 global_rt_period(void)
877{
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879}
880
881static inline u64 global_rt_runtime(void)
882{
e26873bb 883 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887}
fa85ae24 888
1da177e4 889#ifndef prepare_arch_switch
4866cde0
NP
890# define prepare_arch_switch(next) do { } while (0)
891#endif
892#ifndef finish_arch_switch
893# define finish_arch_switch(prev) do { } while (0)
894#endif
895
051a1d1a
DA
896static inline int task_current(struct rq *rq, struct task_struct *p)
897{
898 return rq->curr == p;
899}
900
4866cde0 901#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 903{
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909}
910
70b97a7f 911static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 912{
da04c035
IM
913#ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916#endif
8a25d5de
IM
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
4866cde0
NP
924 spin_unlock_irq(&rq->lock);
925}
926
927#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 928static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 return p->oncpu;
932#else
051a1d1a 933 return task_current(rq, p);
4866cde0
NP
934#endif
935}
936
70b97a7f 937static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
938{
939#ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946#endif
947#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949#else
950 spin_unlock(&rq->lock);
951#endif
952}
953
70b97a7f 954static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
955{
956#ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964#endif
965#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
1da177e4 967#endif
4866cde0
NP
968}
969#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 970
b29739f9
IM
971/*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
70b97a7f 975static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
976 __acquires(rq->lock)
977{
3a5c359a
AK
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
b29739f9 983 spin_unlock(&rq->lock);
b29739f9 984 }
b29739f9
IM
985}
986
1da177e4
LT
987/*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 989 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
990 * explicitly disabling preemption.
991 */
70b97a7f 992static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
993 __acquires(rq->lock)
994{
70b97a7f 995 struct rq *rq;
1da177e4 996
3a5c359a
AK
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1da177e4 1003 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1004 }
1da177e4
LT
1005}
1006
ad474cac
ON
1007void task_rq_unlock_wait(struct task_struct *p)
1008{
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013}
1014
a9957449 1015static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1016 __releases(rq->lock)
1017{
1018 spin_unlock(&rq->lock);
1019}
1020
70b97a7f 1021static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1022 __releases(rq->lock)
1023{
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025}
1026
1da177e4 1027/*
cc2a73b5 1028 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1029 */
a9957449 1030static struct rq *this_rq_lock(void)
1da177e4
LT
1031 __acquires(rq->lock)
1032{
70b97a7f 1033 struct rq *rq;
1da177e4
LT
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040}
1041
8f4d37ec
PZ
1042#ifdef CONFIG_SCHED_HRTICK
1043/*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
8f4d37ec
PZ
1053
1054/*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059static inline int hrtick_enabled(struct rq *rq)
1060{
1061 if (!sched_feat(HRTICK))
1062 return 0;
ba42059f 1063 if (!cpu_active(cpu_of(rq)))
b328ca18 1064 return 0;
8f4d37ec
PZ
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066}
1067
8f4d37ec
PZ
1068static void hrtick_clear(struct rq *rq)
1069{
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072}
1073
8f4d37ec
PZ
1074/*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079{
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
3e51f33f 1085 update_rq_clock(rq);
8f4d37ec
PZ
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090}
1091
95e904c7 1092#ifdef CONFIG_SMP
31656519
PZ
1093/*
1094 * called from hardirq (IPI) context
1095 */
1096static void __hrtick_start(void *arg)
b328ca18 1097{
31656519 1098 struct rq *rq = arg;
b328ca18 1099
31656519
PZ
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
b328ca18
PZ
1104}
1105
31656519
PZ
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1112{
31656519
PZ
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1115
cc584b21 1116 hrtimer_set_expires(timer, time);
31656519
PZ
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
6e275637 1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1122 rq->hrtick_csd_pending = 1;
1123 }
b328ca18
PZ
1124}
1125
1126static int
1127hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128{
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
31656519 1138 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143}
1144
fa748203 1145static __init void init_hrtick(void)
b328ca18
PZ
1146{
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148}
31656519
PZ
1149#else
1150/*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155static void hrtick_start(struct rq *rq, u64 delay)
1156{
7f1e2ca9 1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1158 HRTIMER_MODE_REL_PINNED, 0);
31656519 1159}
b328ca18 1160
006c75f1 1161static inline void init_hrtick(void)
8f4d37ec 1162{
8f4d37ec 1163}
31656519 1164#endif /* CONFIG_SMP */
8f4d37ec 1165
31656519 1166static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1167{
31656519
PZ
1168#ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
8f4d37ec 1170
31656519
PZ
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174#endif
8f4d37ec 1175
31656519
PZ
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
8f4d37ec 1178}
006c75f1 1179#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1180static inline void hrtick_clear(struct rq *rq)
1181{
1182}
1183
8f4d37ec
PZ
1184static inline void init_rq_hrtick(struct rq *rq)
1185{
1186}
1187
b328ca18
PZ
1188static inline void init_hrtick(void)
1189{
1190}
006c75f1 1191#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1192
c24d20db
IM
1193/*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200#ifdef CONFIG_SMP
1201
1202#ifndef tsk_is_polling
1203#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204#endif
1205
31656519 1206static void resched_task(struct task_struct *p)
c24d20db
IM
1207{
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
5ed0cec0 1212 if (test_tsk_need_resched(p))
c24d20db
IM
1213 return;
1214
5ed0cec0 1215 set_tsk_need_resched(p);
c24d20db
IM
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225}
1226
1227static void resched_cpu(int cpu)
1228{
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236}
06d8308c
TG
1237
1238#ifdef CONFIG_NO_HZ
1239/*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249void wake_up_idle_cpu(int cpu)
1250{
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
5ed0cec0 1271 set_tsk_need_resched(rq->idle);
06d8308c
TG
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277}
6d6bc0ad 1278#endif /* CONFIG_NO_HZ */
06d8308c 1279
6d6bc0ad 1280#else /* !CONFIG_SMP */
31656519 1281static void resched_task(struct task_struct *p)
c24d20db
IM
1282{
1283 assert_spin_locked(&task_rq(p)->lock);
31656519 1284 set_tsk_need_resched(p);
c24d20db 1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
dd41f596
IM
1396static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398/*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407};
1408
e1d1484f
PW
1409#ifdef CONFIG_SMP
1410static unsigned long
1411balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416static int
1417iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
e1d1484f 1420#endif
dd41f596 1421
ef12fefa
BR
1422/* Time spent by the tasks of the cpu accounting group executing in ... */
1423enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428};
1429
d842de87
SV
1430#ifdef CONFIG_CGROUP_CPUACCT
1431static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1432static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1434#else
1435static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1436static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1438#endif
1439
18d95a28
PZ
1440static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_add(&rq->load, load);
1443}
1444
1445static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446{
1447 update_load_sub(&rq->load, load);
1448}
1449
7940ca36 1450#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1451typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1452
1453/*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
eb755805 1457static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1458{
1459 struct task_group *parent, *child;
eb755805 1460 int ret;
c09595f6
PZ
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464down:
eb755805
PZ
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472up:
1473 continue;
1474 }
eb755805
PZ
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
c09595f6
PZ
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
eb755805 1483out_unlock:
c09595f6 1484 rcu_read_unlock();
eb755805
PZ
1485
1486 return ret;
c09595f6
PZ
1487}
1488
eb755805
PZ
1489static int tg_nop(struct task_group *tg, void *data)
1490{
1491 return 0;
c09595f6 1492}
eb755805
PZ
1493#endif
1494
1495#ifdef CONFIG_SMP
1496static unsigned long source_load(int cpu, int type);
1497static unsigned long target_load(int cpu, int type);
1498static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500static unsigned long cpu_avg_load_per_task(int cpu)
1501{
1502 struct rq *rq = cpu_rq(cpu);
af6d596f 1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1504
4cd42620
SR
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1507 else
1508 rq->avg_load_per_task = 0;
eb755805
PZ
1509
1510 return rq->avg_load_per_task;
1511}
1512
1513#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1514
c09595f6
PZ
1515static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517/*
1518 * Calculate and set the cpu's group shares.
1519 */
1520static void
ffda12a1
PZ
1521update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1523{
c09595f6
PZ
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
c8cba857 1527 if (!tg->se[cpu])
c09595f6
PZ
1528 return;
1529
ec4e0e2f 1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1531
c09595f6
PZ
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
ec4e0e2f 1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1540
ffda12a1
PZ
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
c09595f6 1545
ffda12a1 1546 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1547 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1548
ffda12a1
PZ
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
18d95a28 1552}
c09595f6
PZ
1553
1554/*
c8cba857
PZ
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
c09595f6 1558 */
eb755805 1559static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1560{
ec4e0e2f 1561 unsigned long weight, rq_weight = 0;
c8cba857 1562 unsigned long shares = 0;
eb755805 1563 struct sched_domain *sd = data;
c8cba857 1564 int i;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
c8cba857 1578 shares += tg->cfs_rq[i]->shares;
c09595f6 1579 }
c09595f6 1580
c8cba857
PZ
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
c09595f6 1586
758b2cdc 1587 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1588 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1589
1590 return 0;
c09595f6
PZ
1591}
1592
1593/*
c8cba857
PZ
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
c09595f6 1597 */
eb755805 1598static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1599{
c8cba857 1600 unsigned long load;
eb755805 1601 long cpu = (long)data;
c09595f6 1602
c8cba857
PZ
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
c09595f6 1610
c8cba857 1611 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1612
eb755805 1613 return 0;
c09595f6
PZ
1614}
1615
c8cba857 1616static void update_shares(struct sched_domain *sd)
4d8d595d 1617{
2398f2c6
PZ
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
eb755805 1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1624 }
4d8d595d
PZ
1625}
1626
3e5459b4
PZ
1627static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628{
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632}
1633
eb755805 1634static void update_h_load(long cpu)
c09595f6 1635{
eb755805 1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1637}
1638
c09595f6
PZ
1639#else
1640
c8cba857 1641static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1642{
1643}
1644
3e5459b4
PZ
1645static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646{
1647}
1648
18d95a28
PZ
1649#endif
1650
8f45e2b5
GH
1651#ifdef CONFIG_PREEMPT
1652
70574a99 1653/*
8f45e2b5
GH
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
70574a99 1660 */
8f45e2b5
GH
1661static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665{
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670}
1671
1672#else
1673/*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684{
1685 int ret = 0;
1686
70574a99
AD
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697}
1698
8f45e2b5
GH
1699#endif /* CONFIG_PREEMPT */
1700
1701/*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705{
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713}
1714
70574a99
AD
1715static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717{
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720}
18d95a28
PZ
1721#endif
1722
30432094 1723#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1724static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725{
30432094 1726#ifdef CONFIG_SMP
34e83e85
IM
1727 cfs_rq->shares = shares;
1728#endif
1729}
30432094 1730#endif
e7693a36 1731
dce48a84
TG
1732static void calc_load_account_active(struct rq *this_rq);
1733
dd41f596 1734#include "sched_stats.h"
dd41f596 1735#include "sched_idletask.c"
5522d5d5
IM
1736#include "sched_fair.c"
1737#include "sched_rt.c"
dd41f596
IM
1738#ifdef CONFIG_SCHED_DEBUG
1739# include "sched_debug.c"
1740#endif
1741
1742#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1743#define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
dd41f596 1745
c09595f6 1746static void inc_nr_running(struct rq *rq)
9c217245
IM
1747{
1748 rq->nr_running++;
9c217245
IM
1749}
1750
c09595f6 1751static void dec_nr_running(struct rq *rq)
9c217245
IM
1752{
1753 rq->nr_running--;
9c217245
IM
1754}
1755
45bf76df
IM
1756static void set_load_weight(struct task_struct *p)
1757{
1758 if (task_has_rt_policy(p)) {
dd41f596
IM
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1762 }
45bf76df 1763
dd41f596
IM
1764 /*
1765 * SCHED_IDLE tasks get minimal weight:
1766 */
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1771 }
71f8bd46 1772
dd41f596
IM
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1775}
1776
2087a1ad
GH
1777static void update_avg(u64 *avg, u64 sample)
1778{
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1781}
1782
8159f87e 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1784{
831451ac
PZ
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787
dd41f596 1788 sched_info_queued(p);
fd390f6a 1789 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1790 p->se.on_rq = 1;
71f8bd46
IM
1791}
1792
69be72c1 1793static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1794{
831451ac
PZ
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1803 }
2087a1ad
GH
1804 }
1805
46ac22ba 1806 sched_info_dequeued(p);
f02231e5 1807 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1808 p->se.on_rq = 0;
71f8bd46
IM
1809}
1810
14531189 1811/*
dd41f596 1812 * __normal_prio - return the priority that is based on the static prio
14531189 1813 */
14531189
IM
1814static inline int __normal_prio(struct task_struct *p)
1815{
dd41f596 1816 return p->static_prio;
14531189
IM
1817}
1818
b29739f9
IM
1819/*
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1825 */
36c8b586 1826static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1827{
1828 int prio;
1829
e05606d3 1830 if (task_has_rt_policy(p))
b29739f9
IM
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1835}
1836
1837/*
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */
36c8b586 1844static int effective_prio(struct task_struct *p)
b29739f9
IM
1845{
1846 p->normal_prio = normal_prio(p);
1847 /*
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1851 */
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1855}
1856
1da177e4 1857/*
dd41f596 1858 * activate_task - move a task to the runqueue.
1da177e4 1859 */
dd41f596 1860static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1861{
d9514f6c 1862 if (task_contributes_to_load(p))
dd41f596 1863 rq->nr_uninterruptible--;
1da177e4 1864
8159f87e 1865 enqueue_task(rq, p, wakeup);
c09595f6 1866 inc_nr_running(rq);
1da177e4
LT
1867}
1868
1da177e4
LT
1869/*
1870 * deactivate_task - remove a task from the runqueue.
1871 */
2e1cb74a 1872static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1873{
d9514f6c 1874 if (task_contributes_to_load(p))
dd41f596
IM
1875 rq->nr_uninterruptible++;
1876
69be72c1 1877 dequeue_task(rq, p, sleep);
c09595f6 1878 dec_nr_running(rq);
1da177e4
LT
1879}
1880
1da177e4
LT
1881/**
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1884 */
36c8b586 1885inline int task_curr(const struct task_struct *p)
1da177e4
LT
1886{
1887 return cpu_curr(task_cpu(p)) == p;
1888}
1889
dd41f596
IM
1890static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891{
6f505b16 1892 set_task_rq(p, cpu);
dd41f596 1893#ifdef CONFIG_SMP
ce96b5ac
DA
1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1898 */
1899 smp_wmb();
dd41f596 1900 task_thread_info(p)->cpu = cpu;
dd41f596 1901#endif
2dd73a4f
PW
1902}
1903
cb469845
SR
1904static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1907{
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914}
1915
1da177e4 1916#ifdef CONFIG_SMP
c65cc870 1917
e958b360
TG
1918/* Used instead of source_load when we know the type == 0 */
1919static unsigned long weighted_cpuload(const int cpu)
1920{
1921 return cpu_rq(cpu)->load.weight;
1922}
1923
cc367732
IM
1924/*
1925 * Is this task likely cache-hot:
1926 */
e7693a36 1927static int
cc367732
IM
1928task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929{
1930 s64 delta;
1931
f540a608
IM
1932 /*
1933 * Buddy candidates are cache hot:
1934 */
4793241b
PZ
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1938 return 1;
1939
cc367732
IM
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1942
6bc1665b
IM
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1947
cc367732
IM
1948 delta = now - p->se.exec_start;
1949
1950 return delta < (s64)sysctl_sched_migration_cost;
1951}
1952
1953
dd41f596 1954void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1955{
dd41f596
IM
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1960 u64 clock_offset;
dd41f596
IM
1961
1962 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1963
de1d7286 1964 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1965
6cfb0d5d
IM
1966#ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
dd41f596
IM
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
6c594c21 1973#endif
cc367732 1974 if (old_cpu != new_cpu) {
6c594c21 1975 p->se.nr_migrations++;
23a185ca 1976 new_rq->nr_migrations_in++;
6c594c21 1977#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1980#endif
e5289d4a
PZ
1981 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
1982 1, 1, NULL, 0);
6c594c21 1983 }
2830cf8c
SV
1984 p->se.vruntime -= old_cfsrq->min_vruntime -
1985 new_cfsrq->min_vruntime;
dd41f596
IM
1986
1987 __set_task_cpu(p, new_cpu);
c65cc870
IM
1988}
1989
70b97a7f 1990struct migration_req {
1da177e4 1991 struct list_head list;
1da177e4 1992
36c8b586 1993 struct task_struct *task;
1da177e4
LT
1994 int dest_cpu;
1995
1da177e4 1996 struct completion done;
70b97a7f 1997};
1da177e4
LT
1998
1999/*
2000 * The task's runqueue lock must be held.
2001 * Returns true if you have to wait for migration thread.
2002 */
36c8b586 2003static int
70b97a7f 2004migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2005{
70b97a7f 2006 struct rq *rq = task_rq(p);
1da177e4
LT
2007
2008 /*
2009 * If the task is not on a runqueue (and not running), then
2010 * it is sufficient to simply update the task's cpu field.
2011 */
dd41f596 2012 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2013 set_task_cpu(p, dest_cpu);
2014 return 0;
2015 }
2016
2017 init_completion(&req->done);
1da177e4
LT
2018 req->task = p;
2019 req->dest_cpu = dest_cpu;
2020 list_add(&req->list, &rq->migration_queue);
48f24c4d 2021
1da177e4
LT
2022 return 1;
2023}
2024
a26b89f0
MM
2025/*
2026 * wait_task_context_switch - wait for a thread to complete at least one
2027 * context switch.
2028 *
2029 * @p must not be current.
2030 */
2031void wait_task_context_switch(struct task_struct *p)
2032{
2033 unsigned long nvcsw, nivcsw, flags;
2034 int running;
2035 struct rq *rq;
2036
2037 nvcsw = p->nvcsw;
2038 nivcsw = p->nivcsw;
2039 for (;;) {
2040 /*
2041 * The runqueue is assigned before the actual context
2042 * switch. We need to take the runqueue lock.
2043 *
2044 * We could check initially without the lock but it is
2045 * very likely that we need to take the lock in every
2046 * iteration.
2047 */
2048 rq = task_rq_lock(p, &flags);
2049 running = task_running(rq, p);
2050 task_rq_unlock(rq, &flags);
2051
2052 if (likely(!running))
2053 break;
2054 /*
2055 * The switch count is incremented before the actual
2056 * context switch. We thus wait for two switches to be
2057 * sure at least one completed.
2058 */
2059 if ((p->nvcsw - nvcsw) > 1)
2060 break;
2061 if ((p->nivcsw - nivcsw) > 1)
2062 break;
2063
2064 cpu_relax();
2065 }
2066}
2067
1da177e4
LT
2068/*
2069 * wait_task_inactive - wait for a thread to unschedule.
2070 *
85ba2d86
RM
2071 * If @match_state is nonzero, it's the @p->state value just checked and
2072 * not expected to change. If it changes, i.e. @p might have woken up,
2073 * then return zero. When we succeed in waiting for @p to be off its CPU,
2074 * we return a positive number (its total switch count). If a second call
2075 * a short while later returns the same number, the caller can be sure that
2076 * @p has remained unscheduled the whole time.
2077 *
1da177e4
LT
2078 * The caller must ensure that the task *will* unschedule sometime soon,
2079 * else this function might spin for a *long* time. This function can't
2080 * be called with interrupts off, or it may introduce deadlock with
2081 * smp_call_function() if an IPI is sent by the same process we are
2082 * waiting to become inactive.
2083 */
85ba2d86 2084unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2085{
2086 unsigned long flags;
dd41f596 2087 int running, on_rq;
85ba2d86 2088 unsigned long ncsw;
70b97a7f 2089 struct rq *rq;
1da177e4 2090
3a5c359a
AK
2091 for (;;) {
2092 /*
2093 * We do the initial early heuristics without holding
2094 * any task-queue locks at all. We'll only try to get
2095 * the runqueue lock when things look like they will
2096 * work out!
2097 */
2098 rq = task_rq(p);
fa490cfd 2099
3a5c359a
AK
2100 /*
2101 * If the task is actively running on another CPU
2102 * still, just relax and busy-wait without holding
2103 * any locks.
2104 *
2105 * NOTE! Since we don't hold any locks, it's not
2106 * even sure that "rq" stays as the right runqueue!
2107 * But we don't care, since "task_running()" will
2108 * return false if the runqueue has changed and p
2109 * is actually now running somewhere else!
2110 */
85ba2d86
RM
2111 while (task_running(rq, p)) {
2112 if (match_state && unlikely(p->state != match_state))
2113 return 0;
3a5c359a 2114 cpu_relax();
85ba2d86 2115 }
fa490cfd 2116
3a5c359a
AK
2117 /*
2118 * Ok, time to look more closely! We need the rq
2119 * lock now, to be *sure*. If we're wrong, we'll
2120 * just go back and repeat.
2121 */
2122 rq = task_rq_lock(p, &flags);
0a16b607 2123 trace_sched_wait_task(rq, p);
3a5c359a
AK
2124 running = task_running(rq, p);
2125 on_rq = p->se.on_rq;
85ba2d86 2126 ncsw = 0;
f31e11d8 2127 if (!match_state || p->state == match_state)
93dcf55f 2128 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2129 task_rq_unlock(rq, &flags);
fa490cfd 2130
85ba2d86
RM
2131 /*
2132 * If it changed from the expected state, bail out now.
2133 */
2134 if (unlikely(!ncsw))
2135 break;
2136
3a5c359a
AK
2137 /*
2138 * Was it really running after all now that we
2139 * checked with the proper locks actually held?
2140 *
2141 * Oops. Go back and try again..
2142 */
2143 if (unlikely(running)) {
2144 cpu_relax();
2145 continue;
2146 }
fa490cfd 2147
3a5c359a
AK
2148 /*
2149 * It's not enough that it's not actively running,
2150 * it must be off the runqueue _entirely_, and not
2151 * preempted!
2152 *
80dd99b3 2153 * So if it was still runnable (but just not actively
3a5c359a
AK
2154 * running right now), it's preempted, and we should
2155 * yield - it could be a while.
2156 */
2157 if (unlikely(on_rq)) {
2158 schedule_timeout_uninterruptible(1);
2159 continue;
2160 }
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * Ahh, all good. It wasn't running, and it wasn't
2164 * runnable, which means that it will never become
2165 * running in the future either. We're all done!
2166 */
2167 break;
2168 }
85ba2d86
RM
2169
2170 return ncsw;
1da177e4
LT
2171}
2172
2173/***
2174 * kick_process - kick a running thread to enter/exit the kernel
2175 * @p: the to-be-kicked thread
2176 *
2177 * Cause a process which is running on another CPU to enter
2178 * kernel-mode, without any delay. (to get signals handled.)
2179 *
2180 * NOTE: this function doesnt have to take the runqueue lock,
2181 * because all it wants to ensure is that the remote task enters
2182 * the kernel. If the IPI races and the task has been migrated
2183 * to another CPU then no harm is done and the purpose has been
2184 * achieved as well.
2185 */
36c8b586 2186void kick_process(struct task_struct *p)
1da177e4
LT
2187{
2188 int cpu;
2189
2190 preempt_disable();
2191 cpu = task_cpu(p);
2192 if ((cpu != smp_processor_id()) && task_curr(p))
2193 smp_send_reschedule(cpu);
2194 preempt_enable();
2195}
b43e3521 2196EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2197
2198/*
2dd73a4f
PW
2199 * Return a low guess at the load of a migration-source cpu weighted
2200 * according to the scheduling class and "nice" value.
1da177e4
LT
2201 *
2202 * We want to under-estimate the load of migration sources, to
2203 * balance conservatively.
2204 */
a9957449 2205static unsigned long source_load(int cpu, int type)
1da177e4 2206{
70b97a7f 2207 struct rq *rq = cpu_rq(cpu);
dd41f596 2208 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2209
93b75217 2210 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2211 return total;
b910472d 2212
dd41f596 2213 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2214}
2215
2216/*
2dd73a4f
PW
2217 * Return a high guess at the load of a migration-target cpu weighted
2218 * according to the scheduling class and "nice" value.
1da177e4 2219 */
a9957449 2220static unsigned long target_load(int cpu, int type)
1da177e4 2221{
70b97a7f 2222 struct rq *rq = cpu_rq(cpu);
dd41f596 2223 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2224
93b75217 2225 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2226 return total;
3b0bd9bc 2227
dd41f596 2228 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2229}
2230
147cbb4b
NP
2231/*
2232 * find_idlest_group finds and returns the least busy CPU group within the
2233 * domain.
2234 */
2235static struct sched_group *
2236find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2237{
2238 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2239 unsigned long min_load = ULONG_MAX, this_load = 0;
2240 int load_idx = sd->forkexec_idx;
2241 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2242
2243 do {
2244 unsigned long load, avg_load;
2245 int local_group;
2246 int i;
2247
da5a5522 2248 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2249 if (!cpumask_intersects(sched_group_cpus(group),
2250 &p->cpus_allowed))
3a5c359a 2251 continue;
da5a5522 2252
758b2cdc
RR
2253 local_group = cpumask_test_cpu(this_cpu,
2254 sched_group_cpus(group));
147cbb4b
NP
2255
2256 /* Tally up the load of all CPUs in the group */
2257 avg_load = 0;
2258
758b2cdc 2259 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2260 /* Bias balancing toward cpus of our domain */
2261 if (local_group)
2262 load = source_load(i, load_idx);
2263 else
2264 load = target_load(i, load_idx);
2265
2266 avg_load += load;
2267 }
2268
2269 /* Adjust by relative CPU power of the group */
5517d86b
ED
2270 avg_load = sg_div_cpu_power(group,
2271 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2272
2273 if (local_group) {
2274 this_load = avg_load;
2275 this = group;
2276 } else if (avg_load < min_load) {
2277 min_load = avg_load;
2278 idlest = group;
2279 }
3a5c359a 2280 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2281
2282 if (!idlest || 100*this_load < imbalance*min_load)
2283 return NULL;
2284 return idlest;
2285}
2286
2287/*
0feaece9 2288 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2289 */
95cdf3b7 2290static int
758b2cdc 2291find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2292{
2293 unsigned long load, min_load = ULONG_MAX;
2294 int idlest = -1;
2295 int i;
2296
da5a5522 2297 /* Traverse only the allowed CPUs */
758b2cdc 2298 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2299 load = weighted_cpuload(i);
147cbb4b
NP
2300
2301 if (load < min_load || (load == min_load && i == this_cpu)) {
2302 min_load = load;
2303 idlest = i;
2304 }
2305 }
2306
2307 return idlest;
2308}
2309
476d139c
NP
2310/*
2311 * sched_balance_self: balance the current task (running on cpu) in domains
2312 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2313 * SD_BALANCE_EXEC.
2314 *
2315 * Balance, ie. select the least loaded group.
2316 *
2317 * Returns the target CPU number, or the same CPU if no balancing is needed.
2318 *
2319 * preempt must be disabled.
2320 */
2321static int sched_balance_self(int cpu, int flag)
2322{
2323 struct task_struct *t = current;
2324 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2325
c96d145e 2326 for_each_domain(cpu, tmp) {
9761eea8
IM
2327 /*
2328 * If power savings logic is enabled for a domain, stop there.
2329 */
5c45bf27
SS
2330 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2331 break;
476d139c
NP
2332 if (tmp->flags & flag)
2333 sd = tmp;
c96d145e 2334 }
476d139c 2335
039a1c41
PZ
2336 if (sd)
2337 update_shares(sd);
2338
476d139c 2339 while (sd) {
476d139c 2340 struct sched_group *group;
1a848870
SS
2341 int new_cpu, weight;
2342
2343 if (!(sd->flags & flag)) {
2344 sd = sd->child;
2345 continue;
2346 }
476d139c 2347
476d139c 2348 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2349 if (!group) {
2350 sd = sd->child;
2351 continue;
2352 }
476d139c 2353
758b2cdc 2354 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2355 if (new_cpu == -1 || new_cpu == cpu) {
2356 /* Now try balancing at a lower domain level of cpu */
2357 sd = sd->child;
2358 continue;
2359 }
476d139c 2360
1a848870 2361 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2362 cpu = new_cpu;
758b2cdc 2363 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2364 sd = NULL;
476d139c 2365 for_each_domain(cpu, tmp) {
758b2cdc 2366 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2367 break;
2368 if (tmp->flags & flag)
2369 sd = tmp;
2370 }
2371 /* while loop will break here if sd == NULL */
2372 }
2373
2374 return cpu;
2375}
2376
2377#endif /* CONFIG_SMP */
1da177e4 2378
0793a61d
TG
2379/**
2380 * task_oncpu_function_call - call a function on the cpu on which a task runs
2381 * @p: the task to evaluate
2382 * @func: the function to be called
2383 * @info: the function call argument
2384 *
2385 * Calls the function @func when the task is currently running. This might
2386 * be on the current CPU, which just calls the function directly
2387 */
2388void task_oncpu_function_call(struct task_struct *p,
2389 void (*func) (void *info), void *info)
2390{
2391 int cpu;
2392
2393 preempt_disable();
2394 cpu = task_cpu(p);
2395 if (task_curr(p))
2396 smp_call_function_single(cpu, func, info, 1);
2397 preempt_enable();
2398}
2399
1da177e4
LT
2400/***
2401 * try_to_wake_up - wake up a thread
2402 * @p: the to-be-woken-up thread
2403 * @state: the mask of task states that can be woken
2404 * @sync: do a synchronous wakeup?
2405 *
2406 * Put it on the run-queue if it's not already there. The "current"
2407 * thread is always on the run-queue (except when the actual
2408 * re-schedule is in progress), and as such you're allowed to do
2409 * the simpler "current->state = TASK_RUNNING" to mark yourself
2410 * runnable without the overhead of this.
2411 *
2412 * returns failure only if the task is already active.
2413 */
36c8b586 2414static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2415{
cc367732 2416 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2417 unsigned long flags;
2418 long old_state;
70b97a7f 2419 struct rq *rq;
1da177e4 2420
b85d0667
IM
2421 if (!sched_feat(SYNC_WAKEUPS))
2422 sync = 0;
2423
2398f2c6 2424#ifdef CONFIG_SMP
57310a98 2425 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2426 struct sched_domain *sd;
2427
2428 this_cpu = raw_smp_processor_id();
2429 cpu = task_cpu(p);
2430
2431 for_each_domain(this_cpu, sd) {
758b2cdc 2432 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2433 update_shares(sd);
2434 break;
2435 }
2436 }
2437 }
2438#endif
2439
04e2f174 2440 smp_wmb();
1da177e4 2441 rq = task_rq_lock(p, &flags);
03e89e45 2442 update_rq_clock(rq);
1da177e4
LT
2443 old_state = p->state;
2444 if (!(old_state & state))
2445 goto out;
2446
dd41f596 2447 if (p->se.on_rq)
1da177e4
LT
2448 goto out_running;
2449
2450 cpu = task_cpu(p);
cc367732 2451 orig_cpu = cpu;
1da177e4
LT
2452 this_cpu = smp_processor_id();
2453
2454#ifdef CONFIG_SMP
2455 if (unlikely(task_running(rq, p)))
2456 goto out_activate;
2457
5d2f5a61
DA
2458 cpu = p->sched_class->select_task_rq(p, sync);
2459 if (cpu != orig_cpu) {
2460 set_task_cpu(p, cpu);
1da177e4
LT
2461 task_rq_unlock(rq, &flags);
2462 /* might preempt at this point */
2463 rq = task_rq_lock(p, &flags);
2464 old_state = p->state;
2465 if (!(old_state & state))
2466 goto out;
dd41f596 2467 if (p->se.on_rq)
1da177e4
LT
2468 goto out_running;
2469
2470 this_cpu = smp_processor_id();
2471 cpu = task_cpu(p);
2472 }
2473
e7693a36
GH
2474#ifdef CONFIG_SCHEDSTATS
2475 schedstat_inc(rq, ttwu_count);
2476 if (cpu == this_cpu)
2477 schedstat_inc(rq, ttwu_local);
2478 else {
2479 struct sched_domain *sd;
2480 for_each_domain(this_cpu, sd) {
758b2cdc 2481 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2482 schedstat_inc(sd, ttwu_wake_remote);
2483 break;
2484 }
2485 }
2486 }
6d6bc0ad 2487#endif /* CONFIG_SCHEDSTATS */
e7693a36 2488
1da177e4
LT
2489out_activate:
2490#endif /* CONFIG_SMP */
cc367732
IM
2491 schedstat_inc(p, se.nr_wakeups);
2492 if (sync)
2493 schedstat_inc(p, se.nr_wakeups_sync);
2494 if (orig_cpu != cpu)
2495 schedstat_inc(p, se.nr_wakeups_migrate);
2496 if (cpu == this_cpu)
2497 schedstat_inc(p, se.nr_wakeups_local);
2498 else
2499 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2500 activate_task(rq, p, 1);
1da177e4
LT
2501 success = 1;
2502
831451ac
PZ
2503 /*
2504 * Only attribute actual wakeups done by this task.
2505 */
2506 if (!in_interrupt()) {
2507 struct sched_entity *se = &current->se;
2508 u64 sample = se->sum_exec_runtime;
2509
2510 if (se->last_wakeup)
2511 sample -= se->last_wakeup;
2512 else
2513 sample -= se->start_runtime;
2514 update_avg(&se->avg_wakeup, sample);
2515
2516 se->last_wakeup = se->sum_exec_runtime;
2517 }
2518
1da177e4 2519out_running:
468a15bb 2520 trace_sched_wakeup(rq, p, success);
15afe09b 2521 check_preempt_curr(rq, p, sync);
4ae7d5ce 2522
1da177e4 2523 p->state = TASK_RUNNING;
9a897c5a
SR
2524#ifdef CONFIG_SMP
2525 if (p->sched_class->task_wake_up)
2526 p->sched_class->task_wake_up(rq, p);
2527#endif
1da177e4
LT
2528out:
2529 task_rq_unlock(rq, &flags);
2530
2531 return success;
2532}
2533
50fa610a
DH
2534/**
2535 * wake_up_process - Wake up a specific process
2536 * @p: The process to be woken up.
2537 *
2538 * Attempt to wake up the nominated process and move it to the set of runnable
2539 * processes. Returns 1 if the process was woken up, 0 if it was already
2540 * running.
2541 *
2542 * It may be assumed that this function implies a write memory barrier before
2543 * changing the task state if and only if any tasks are woken up.
2544 */
7ad5b3a5 2545int wake_up_process(struct task_struct *p)
1da177e4 2546{
d9514f6c 2547 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2548}
1da177e4
LT
2549EXPORT_SYMBOL(wake_up_process);
2550
7ad5b3a5 2551int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2552{
2553 return try_to_wake_up(p, state, 0);
2554}
2555
1da177e4
LT
2556/*
2557 * Perform scheduler related setup for a newly forked process p.
2558 * p is forked by current.
dd41f596
IM
2559 *
2560 * __sched_fork() is basic setup used by init_idle() too:
2561 */
2562static void __sched_fork(struct task_struct *p)
2563{
dd41f596
IM
2564 p->se.exec_start = 0;
2565 p->se.sum_exec_runtime = 0;
f6cf891c 2566 p->se.prev_sum_exec_runtime = 0;
6c594c21 2567 p->se.nr_migrations = 0;
4ae7d5ce
IM
2568 p->se.last_wakeup = 0;
2569 p->se.avg_overlap = 0;
831451ac
PZ
2570 p->se.start_runtime = 0;
2571 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2572
2573#ifdef CONFIG_SCHEDSTATS
2574 p->se.wait_start = 0;
dd41f596
IM
2575 p->se.sum_sleep_runtime = 0;
2576 p->se.sleep_start = 0;
dd41f596
IM
2577 p->se.block_start = 0;
2578 p->se.sleep_max = 0;
2579 p->se.block_max = 0;
2580 p->se.exec_max = 0;
eba1ed4b 2581 p->se.slice_max = 0;
dd41f596 2582 p->se.wait_max = 0;
6cfb0d5d 2583#endif
476d139c 2584
fa717060 2585 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2586 p->se.on_rq = 0;
4a55bd5e 2587 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2588
e107be36
AK
2589#ifdef CONFIG_PREEMPT_NOTIFIERS
2590 INIT_HLIST_HEAD(&p->preempt_notifiers);
2591#endif
2592
1da177e4
LT
2593 /*
2594 * We mark the process as running here, but have not actually
2595 * inserted it onto the runqueue yet. This guarantees that
2596 * nobody will actually run it, and a signal or other external
2597 * event cannot wake it up and insert it on the runqueue either.
2598 */
2599 p->state = TASK_RUNNING;
dd41f596
IM
2600}
2601
2602/*
2603 * fork()/clone()-time setup:
2604 */
2605void sched_fork(struct task_struct *p, int clone_flags)
2606{
2607 int cpu = get_cpu();
2608
2609 __sched_fork(p);
2610
2611#ifdef CONFIG_SMP
2612 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2613#endif
02e4bac2 2614 set_task_cpu(p, cpu);
b29739f9
IM
2615
2616 /*
2617 * Make sure we do not leak PI boosting priority to the child:
2618 */
2619 p->prio = current->normal_prio;
2ddbf952
HS
2620 if (!rt_prio(p->prio))
2621 p->sched_class = &fair_sched_class;
b29739f9 2622
52f17b6c 2623#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2624 if (likely(sched_info_on()))
52f17b6c 2625 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2626#endif
d6077cb8 2627#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2628 p->oncpu = 0;
2629#endif
1da177e4 2630#ifdef CONFIG_PREEMPT
4866cde0 2631 /* Want to start with kernel preemption disabled. */
a1261f54 2632 task_thread_info(p)->preempt_count = 1;
1da177e4 2633#endif
917b627d
GH
2634 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2635
476d139c 2636 put_cpu();
1da177e4
LT
2637}
2638
2639/*
2640 * wake_up_new_task - wake up a newly created task for the first time.
2641 *
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2645 */
7ad5b3a5 2646void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2647{
2648 unsigned long flags;
dd41f596 2649 struct rq *rq;
1da177e4
LT
2650
2651 rq = task_rq_lock(p, &flags);
147cbb4b 2652 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2653 update_rq_clock(rq);
1da177e4
LT
2654
2655 p->prio = effective_prio(p);
2656
b9dca1e0 2657 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2658 activate_task(rq, p, 0);
1da177e4 2659 } else {
1da177e4 2660 /*
dd41f596
IM
2661 * Let the scheduling class do new task startup
2662 * management (if any):
1da177e4 2663 */
ee0827d8 2664 p->sched_class->task_new(rq, p);
c09595f6 2665 inc_nr_running(rq);
1da177e4 2666 }
c71dd42d 2667 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2668 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2669#ifdef CONFIG_SMP
2670 if (p->sched_class->task_wake_up)
2671 p->sched_class->task_wake_up(rq, p);
2672#endif
dd41f596 2673 task_rq_unlock(rq, &flags);
1da177e4
LT
2674}
2675
e107be36
AK
2676#ifdef CONFIG_PREEMPT_NOTIFIERS
2677
2678/**
80dd99b3 2679 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2680 * @notifier: notifier struct to register
e107be36
AK
2681 */
2682void preempt_notifier_register(struct preempt_notifier *notifier)
2683{
2684 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2685}
2686EXPORT_SYMBOL_GPL(preempt_notifier_register);
2687
2688/**
2689 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2690 * @notifier: notifier struct to unregister
e107be36
AK
2691 *
2692 * This is safe to call from within a preemption notifier.
2693 */
2694void preempt_notifier_unregister(struct preempt_notifier *notifier)
2695{
2696 hlist_del(&notifier->link);
2697}
2698EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2699
2700static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2701{
2702 struct preempt_notifier *notifier;
2703 struct hlist_node *node;
2704
2705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2706 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2707}
2708
2709static void
2710fire_sched_out_preempt_notifiers(struct task_struct *curr,
2711 struct task_struct *next)
2712{
2713 struct preempt_notifier *notifier;
2714 struct hlist_node *node;
2715
2716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2717 notifier->ops->sched_out(notifier, next);
2718}
2719
6d6bc0ad 2720#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2721
2722static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2723{
2724}
2725
2726static void
2727fire_sched_out_preempt_notifiers(struct task_struct *curr,
2728 struct task_struct *next)
2729{
2730}
2731
6d6bc0ad 2732#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2733
4866cde0
NP
2734/**
2735 * prepare_task_switch - prepare to switch tasks
2736 * @rq: the runqueue preparing to switch
421cee29 2737 * @prev: the current task that is being switched out
4866cde0
NP
2738 * @next: the task we are going to switch to.
2739 *
2740 * This is called with the rq lock held and interrupts off. It must
2741 * be paired with a subsequent finish_task_switch after the context
2742 * switch.
2743 *
2744 * prepare_task_switch sets up locking and calls architecture specific
2745 * hooks.
2746 */
e107be36
AK
2747static inline void
2748prepare_task_switch(struct rq *rq, struct task_struct *prev,
2749 struct task_struct *next)
4866cde0 2750{
e107be36 2751 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2752 prepare_lock_switch(rq, next);
2753 prepare_arch_switch(next);
2754}
2755
1da177e4
LT
2756/**
2757 * finish_task_switch - clean up after a task-switch
344babaa 2758 * @rq: runqueue associated with task-switch
1da177e4
LT
2759 * @prev: the thread we just switched away from.
2760 *
4866cde0
NP
2761 * finish_task_switch must be called after the context switch, paired
2762 * with a prepare_task_switch call before the context switch.
2763 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2764 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2765 *
2766 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2767 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2768 * with the lock held can cause deadlocks; see schedule() for
2769 * details.)
2770 */
a9957449 2771static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2772 __releases(rq->lock)
2773{
1da177e4 2774 struct mm_struct *mm = rq->prev_mm;
55a101f8 2775 long prev_state;
967fc046
GH
2776#ifdef CONFIG_SMP
2777 int post_schedule = 0;
2778
2779 if (current->sched_class->needs_post_schedule)
2780 post_schedule = current->sched_class->needs_post_schedule(rq);
2781#endif
1da177e4
LT
2782
2783 rq->prev_mm = NULL;
2784
2785 /*
2786 * A task struct has one reference for the use as "current".
c394cc9f 2787 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2788 * schedule one last time. The schedule call will never return, and
2789 * the scheduled task must drop that reference.
c394cc9f 2790 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2791 * still held, otherwise prev could be scheduled on another cpu, die
2792 * there before we look at prev->state, and then the reference would
2793 * be dropped twice.
2794 * Manfred Spraul <manfred@colorfullife.com>
2795 */
55a101f8 2796 prev_state = prev->state;
4866cde0 2797 finish_arch_switch(prev);
0793a61d 2798 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2799 finish_lock_switch(rq, prev);
9a897c5a 2800#ifdef CONFIG_SMP
967fc046 2801 if (post_schedule)
9a897c5a
SR
2802 current->sched_class->post_schedule(rq);
2803#endif
e8fa1362 2804
e107be36 2805 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2806 if (mm)
2807 mmdrop(mm);
c394cc9f 2808 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2809 /*
2810 * Remove function-return probe instances associated with this
2811 * task and put them back on the free list.
9761eea8 2812 */
c6fd91f0 2813 kprobe_flush_task(prev);
1da177e4 2814 put_task_struct(prev);
c6fd91f0 2815 }
1da177e4
LT
2816}
2817
2818/**
2819 * schedule_tail - first thing a freshly forked thread must call.
2820 * @prev: the thread we just switched away from.
2821 */
36c8b586 2822asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2823 __releases(rq->lock)
2824{
70b97a7f
IM
2825 struct rq *rq = this_rq();
2826
4866cde0
NP
2827 finish_task_switch(rq, prev);
2828#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2829 /* In this case, finish_task_switch does not reenable preemption */
2830 preempt_enable();
2831#endif
1da177e4 2832 if (current->set_child_tid)
b488893a 2833 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2834}
2835
2836/*
2837 * context_switch - switch to the new MM and the new
2838 * thread's register state.
2839 */
dd41f596 2840static inline void
70b97a7f 2841context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2842 struct task_struct *next)
1da177e4 2843{
dd41f596 2844 struct mm_struct *mm, *oldmm;
1da177e4 2845
e107be36 2846 prepare_task_switch(rq, prev, next);
0a16b607 2847 trace_sched_switch(rq, prev, next);
dd41f596
IM
2848 mm = next->mm;
2849 oldmm = prev->active_mm;
9226d125
ZA
2850 /*
2851 * For paravirt, this is coupled with an exit in switch_to to
2852 * combine the page table reload and the switch backend into
2853 * one hypercall.
2854 */
224101ed 2855 arch_start_context_switch(prev);
9226d125 2856
dd41f596 2857 if (unlikely(!mm)) {
1da177e4
LT
2858 next->active_mm = oldmm;
2859 atomic_inc(&oldmm->mm_count);
2860 enter_lazy_tlb(oldmm, next);
2861 } else
2862 switch_mm(oldmm, mm, next);
2863
dd41f596 2864 if (unlikely(!prev->mm)) {
1da177e4 2865 prev->active_mm = NULL;
1da177e4
LT
2866 rq->prev_mm = oldmm;
2867 }
3a5f5e48
IM
2868 /*
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2873 */
2874#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2876#endif
1da177e4
LT
2877
2878 /* Here we just switch the register state and the stack. */
2879 switch_to(prev, next, prev);
2880
dd41f596
IM
2881 barrier();
2882 /*
2883 * this_rq must be evaluated again because prev may have moved
2884 * CPUs since it called schedule(), thus the 'rq' on its stack
2885 * frame will be invalid.
2886 */
2887 finish_task_switch(this_rq(), prev);
1da177e4
LT
2888}
2889
2890/*
2891 * nr_running, nr_uninterruptible and nr_context_switches:
2892 *
2893 * externally visible scheduler statistics: current number of runnable
2894 * threads, current number of uninterruptible-sleeping threads, total
2895 * number of context switches performed since bootup.
2896 */
2897unsigned long nr_running(void)
2898{
2899 unsigned long i, sum = 0;
2900
2901 for_each_online_cpu(i)
2902 sum += cpu_rq(i)->nr_running;
2903
2904 return sum;
2905}
2906
2907unsigned long nr_uninterruptible(void)
2908{
2909 unsigned long i, sum = 0;
2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4
LT
2912 sum += cpu_rq(i)->nr_uninterruptible;
2913
2914 /*
2915 * Since we read the counters lockless, it might be slightly
2916 * inaccurate. Do not allow it to go below zero though:
2917 */
2918 if (unlikely((long)sum < 0))
2919 sum = 0;
2920
2921 return sum;
2922}
2923
2924unsigned long long nr_context_switches(void)
2925{
cc94abfc
SR
2926 int i;
2927 unsigned long long sum = 0;
1da177e4 2928
0a945022 2929 for_each_possible_cpu(i)
1da177e4
LT
2930 sum += cpu_rq(i)->nr_switches;
2931
2932 return sum;
2933}
2934
2935unsigned long nr_iowait(void)
2936{
2937 unsigned long i, sum = 0;
2938
0a945022 2939 for_each_possible_cpu(i)
1da177e4
LT
2940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2941
2942 return sum;
2943}
2944
dce48a84
TG
2945/* Variables and functions for calc_load */
2946static atomic_long_t calc_load_tasks;
2947static unsigned long calc_load_update;
2948unsigned long avenrun[3];
2949EXPORT_SYMBOL(avenrun);
2950
2d02494f
TG
2951/**
2952 * get_avenrun - get the load average array
2953 * @loads: pointer to dest load array
2954 * @offset: offset to add
2955 * @shift: shift count to shift the result left
2956 *
2957 * These values are estimates at best, so no need for locking.
2958 */
2959void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2960{
2961 loads[0] = (avenrun[0] + offset) << shift;
2962 loads[1] = (avenrun[1] + offset) << shift;
2963 loads[2] = (avenrun[2] + offset) << shift;
2964}
2965
dce48a84
TG
2966static unsigned long
2967calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2968{
dce48a84
TG
2969 load *= exp;
2970 load += active * (FIXED_1 - exp);
2971 return load >> FSHIFT;
2972}
db1b1fef 2973
dce48a84
TG
2974/*
2975 * calc_load - update the avenrun load estimates 10 ticks after the
2976 * CPUs have updated calc_load_tasks.
2977 */
2978void calc_global_load(void)
2979{
2980 unsigned long upd = calc_load_update + 10;
2981 long active;
2982
2983 if (time_before(jiffies, upd))
2984 return;
db1b1fef 2985
dce48a84
TG
2986 active = atomic_long_read(&calc_load_tasks);
2987 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2988
dce48a84
TG
2989 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2990 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2991 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2992
2993 calc_load_update += LOAD_FREQ;
2994}
2995
2996/*
2997 * Either called from update_cpu_load() or from a cpu going idle
2998 */
2999static void calc_load_account_active(struct rq *this_rq)
3000{
3001 long nr_active, delta;
3002
3003 nr_active = this_rq->nr_running;
3004 nr_active += (long) this_rq->nr_uninterruptible;
3005
3006 if (nr_active != this_rq->calc_load_active) {
3007 delta = nr_active - this_rq->calc_load_active;
3008 this_rq->calc_load_active = nr_active;
3009 atomic_long_add(delta, &calc_load_tasks);
3010 }
db1b1fef
JS
3011}
3012
23a185ca
PM
3013/*
3014 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3015 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3016 */
23a185ca
PM
3017u64 cpu_nr_migrations(int cpu)
3018{
3019 return cpu_rq(cpu)->nr_migrations_in;
3020}
3021
48f24c4d 3022/*
dd41f596
IM
3023 * Update rq->cpu_load[] statistics. This function is usually called every
3024 * scheduler tick (TICK_NSEC).
48f24c4d 3025 */
dd41f596 3026static void update_cpu_load(struct rq *this_rq)
48f24c4d 3027{
495eca49 3028 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3029 int i, scale;
3030
3031 this_rq->nr_load_updates++;
dd41f596
IM
3032
3033 /* Update our load: */
3034 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3035 unsigned long old_load, new_load;
3036
3037 /* scale is effectively 1 << i now, and >> i divides by scale */
3038
3039 old_load = this_rq->cpu_load[i];
3040 new_load = this_load;
a25707f3
IM
3041 /*
3042 * Round up the averaging division if load is increasing. This
3043 * prevents us from getting stuck on 9 if the load is 10, for
3044 * example.
3045 */
3046 if (new_load > old_load)
3047 new_load += scale-1;
dd41f596
IM
3048 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3049 }
dce48a84
TG
3050
3051 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3052 this_rq->calc_load_update += LOAD_FREQ;
3053 calc_load_account_active(this_rq);
3054 }
48f24c4d
IM
3055}
3056
dd41f596
IM
3057#ifdef CONFIG_SMP
3058
1da177e4
LT
3059/*
3060 * double_rq_lock - safely lock two runqueues
3061 *
3062 * Note this does not disable interrupts like task_rq_lock,
3063 * you need to do so manually before calling.
3064 */
70b97a7f 3065static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3066 __acquires(rq1->lock)
3067 __acquires(rq2->lock)
3068{
054b9108 3069 BUG_ON(!irqs_disabled());
1da177e4
LT
3070 if (rq1 == rq2) {
3071 spin_lock(&rq1->lock);
3072 __acquire(rq2->lock); /* Fake it out ;) */
3073 } else {
c96d145e 3074 if (rq1 < rq2) {
1da177e4 3075 spin_lock(&rq1->lock);
5e710e37 3076 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3077 } else {
3078 spin_lock(&rq2->lock);
5e710e37 3079 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3080 }
3081 }
6e82a3be
IM
3082 update_rq_clock(rq1);
3083 update_rq_clock(rq2);
1da177e4
LT
3084}
3085
3086/*
3087 * double_rq_unlock - safely unlock two runqueues
3088 *
3089 * Note this does not restore interrupts like task_rq_unlock,
3090 * you need to do so manually after calling.
3091 */
70b97a7f 3092static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3093 __releases(rq1->lock)
3094 __releases(rq2->lock)
3095{
3096 spin_unlock(&rq1->lock);
3097 if (rq1 != rq2)
3098 spin_unlock(&rq2->lock);
3099 else
3100 __release(rq2->lock);
3101}
3102
1da177e4
LT
3103/*
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3107 * the cpu_allowed mask is restored.
3108 */
36c8b586 3109static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3110{
70b97a7f 3111 struct migration_req req;
1da177e4 3112 unsigned long flags;
70b97a7f 3113 struct rq *rq;
1da177e4
LT
3114
3115 rq = task_rq_lock(p, &flags);
96f874e2 3116 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3117 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3118 goto out;
3119
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p, dest_cpu, &req)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct *mt = rq->migration_thread;
36c8b586 3124
1da177e4
LT
3125 get_task_struct(mt);
3126 task_rq_unlock(rq, &flags);
3127 wake_up_process(mt);
3128 put_task_struct(mt);
3129 wait_for_completion(&req.done);
36c8b586 3130
1da177e4
LT
3131 return;
3132 }
3133out:
3134 task_rq_unlock(rq, &flags);
3135}
3136
3137/*
476d139c
NP
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3140 */
3141void sched_exec(void)
3142{
1da177e4 3143 int new_cpu, this_cpu = get_cpu();
476d139c 3144 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3145 put_cpu();
476d139c
NP
3146 if (new_cpu != this_cpu)
3147 sched_migrate_task(current, new_cpu);
1da177e4
LT
3148}
3149
3150/*
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3153 */
dd41f596
IM
3154static void pull_task(struct rq *src_rq, struct task_struct *p,
3155 struct rq *this_rq, int this_cpu)
1da177e4 3156{
2e1cb74a 3157 deactivate_task(src_rq, p, 0);
1da177e4 3158 set_task_cpu(p, this_cpu);
dd41f596 3159 activate_task(this_rq, p, 0);
1da177e4
LT
3160 /*
3161 * Note that idle threads have a prio of MAX_PRIO, for this test
3162 * to be always true for them.
3163 */
15afe09b 3164 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3165}
3166
3167/*
3168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3169 */
858119e1 3170static
70b97a7f 3171int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3172 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3173 int *all_pinned)
1da177e4 3174{
708dc512 3175 int tsk_cache_hot = 0;
1da177e4
LT
3176 /*
3177 * We do not migrate tasks that are:
3178 * 1) running (obviously), or
3179 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3180 * 3) are cache-hot on their current CPU.
3181 */
96f874e2 3182 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3183 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3184 return 0;
cc367732 3185 }
81026794
NP
3186 *all_pinned = 0;
3187
cc367732
IM
3188 if (task_running(rq, p)) {
3189 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3190 return 0;
cc367732 3191 }
1da177e4 3192
da84d961
IM
3193 /*
3194 * Aggressive migration if:
3195 * 1) task is cache cold, or
3196 * 2) too many balance attempts have failed.
3197 */
3198
708dc512
LH
3199 tsk_cache_hot = task_hot(p, rq->clock, sd);
3200 if (!tsk_cache_hot ||
3201 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3202#ifdef CONFIG_SCHEDSTATS
708dc512 3203 if (tsk_cache_hot) {
da84d961 3204 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3205 schedstat_inc(p, se.nr_forced_migrations);
3206 }
da84d961
IM
3207#endif
3208 return 1;
3209 }
3210
708dc512 3211 if (tsk_cache_hot) {
cc367732 3212 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3213 return 0;
cc367732 3214 }
1da177e4
LT
3215 return 1;
3216}
3217
e1d1484f
PW
3218static unsigned long
3219balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3220 unsigned long max_load_move, struct sched_domain *sd,
3221 enum cpu_idle_type idle, int *all_pinned,
3222 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3223{
051c6764 3224 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3225 struct task_struct *p;
3226 long rem_load_move = max_load_move;
1da177e4 3227
e1d1484f 3228 if (max_load_move == 0)
1da177e4
LT
3229 goto out;
3230
81026794
NP
3231 pinned = 1;
3232
1da177e4 3233 /*
dd41f596 3234 * Start the load-balancing iterator:
1da177e4 3235 */
dd41f596
IM
3236 p = iterator->start(iterator->arg);
3237next:
b82d9fdd 3238 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3239 goto out;
051c6764
PZ
3240
3241 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3242 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3243 p = iterator->next(iterator->arg);
3244 goto next;
1da177e4
LT
3245 }
3246
dd41f596 3247 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3248 pulled++;
dd41f596 3249 rem_load_move -= p->se.load.weight;
1da177e4 3250
7e96fa58
GH
3251#ifdef CONFIG_PREEMPT
3252 /*
3253 * NEWIDLE balancing is a source of latency, so preemptible kernels
3254 * will stop after the first task is pulled to minimize the critical
3255 * section.
3256 */
3257 if (idle == CPU_NEWLY_IDLE)
3258 goto out;
3259#endif
3260
2dd73a4f 3261 /*
b82d9fdd 3262 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3263 */
e1d1484f 3264 if (rem_load_move > 0) {
a4ac01c3
PW
3265 if (p->prio < *this_best_prio)
3266 *this_best_prio = p->prio;
dd41f596
IM
3267 p = iterator->next(iterator->arg);
3268 goto next;
1da177e4
LT
3269 }
3270out:
3271 /*
e1d1484f 3272 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3273 * so we can safely collect pull_task() stats here rather than
3274 * inside pull_task().
3275 */
3276 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3277
3278 if (all_pinned)
3279 *all_pinned = pinned;
e1d1484f
PW
3280
3281 return max_load_move - rem_load_move;
1da177e4
LT
3282}
3283
dd41f596 3284/*
43010659
PW
3285 * move_tasks tries to move up to max_load_move weighted load from busiest to
3286 * this_rq, as part of a balancing operation within domain "sd".
3287 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3288 *
3289 * Called with both runqueues locked.
3290 */
3291static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3292 unsigned long max_load_move,
dd41f596
IM
3293 struct sched_domain *sd, enum cpu_idle_type idle,
3294 int *all_pinned)
3295{
5522d5d5 3296 const struct sched_class *class = sched_class_highest;
43010659 3297 unsigned long total_load_moved = 0;
a4ac01c3 3298 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3299
3300 do {
43010659
PW
3301 total_load_moved +=
3302 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3303 max_load_move - total_load_moved,
a4ac01c3 3304 sd, idle, all_pinned, &this_best_prio);
dd41f596 3305 class = class->next;
c4acb2c0 3306
7e96fa58
GH
3307#ifdef CONFIG_PREEMPT
3308 /*
3309 * NEWIDLE balancing is a source of latency, so preemptible
3310 * kernels will stop after the first task is pulled to minimize
3311 * the critical section.
3312 */
c4acb2c0
GH
3313 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3314 break;
7e96fa58 3315#endif
43010659 3316 } while (class && max_load_move > total_load_moved);
dd41f596 3317
43010659
PW
3318 return total_load_moved > 0;
3319}
3320
e1d1484f
PW
3321static int
3322iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle,
3324 struct rq_iterator *iterator)
3325{
3326 struct task_struct *p = iterator->start(iterator->arg);
3327 int pinned = 0;
3328
3329 while (p) {
3330 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3331 pull_task(busiest, p, this_rq, this_cpu);
3332 /*
3333 * Right now, this is only the second place pull_task()
3334 * is called, so we can safely collect pull_task()
3335 * stats here rather than inside pull_task().
3336 */
3337 schedstat_inc(sd, lb_gained[idle]);
3338
3339 return 1;
3340 }
3341 p = iterator->next(iterator->arg);
3342 }
3343
3344 return 0;
3345}
3346
43010659
PW
3347/*
3348 * move_one_task tries to move exactly one task from busiest to this_rq, as
3349 * part of active balancing operations within "domain".
3350 * Returns 1 if successful and 0 otherwise.
3351 *
3352 * Called with both runqueues locked.
3353 */
3354static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3355 struct sched_domain *sd, enum cpu_idle_type idle)
3356{
5522d5d5 3357 const struct sched_class *class;
43010659
PW
3358
3359 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3360 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3361 return 1;
3362
3363 return 0;
dd41f596 3364}
67bb6c03 3365/********** Helpers for find_busiest_group ************************/
1da177e4 3366/*
222d656d
GS
3367 * sd_lb_stats - Structure to store the statistics of a sched_domain
3368 * during load balancing.
1da177e4 3369 */
222d656d
GS
3370struct sd_lb_stats {
3371 struct sched_group *busiest; /* Busiest group in this sd */
3372 struct sched_group *this; /* Local group in this sd */
3373 unsigned long total_load; /* Total load of all groups in sd */
3374 unsigned long total_pwr; /* Total power of all groups in sd */
3375 unsigned long avg_load; /* Average load across all groups in sd */
3376
3377 /** Statistics of this group */
3378 unsigned long this_load;
3379 unsigned long this_load_per_task;
3380 unsigned long this_nr_running;
3381
3382 /* Statistics of the busiest group */
3383 unsigned long max_load;
3384 unsigned long busiest_load_per_task;
3385 unsigned long busiest_nr_running;
3386
3387 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3388#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3389 int power_savings_balance; /* Is powersave balance needed for this sd */
3390 struct sched_group *group_min; /* Least loaded group in sd */
3391 struct sched_group *group_leader; /* Group which relieves group_min */
3392 unsigned long min_load_per_task; /* load_per_task in group_min */
3393 unsigned long leader_nr_running; /* Nr running of group_leader */
3394 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3395#endif
222d656d 3396};
1da177e4 3397
d5ac537e 3398/*
381be78f
GS
3399 * sg_lb_stats - stats of a sched_group required for load_balancing
3400 */
3401struct sg_lb_stats {
3402 unsigned long avg_load; /*Avg load across the CPUs of the group */
3403 unsigned long group_load; /* Total load over the CPUs of the group */
3404 unsigned long sum_nr_running; /* Nr tasks running in the group */
3405 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3406 unsigned long group_capacity;
3407 int group_imb; /* Is there an imbalance in the group ? */
3408};
408ed066 3409
67bb6c03
GS
3410/**
3411 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3412 * @group: The group whose first cpu is to be returned.
3413 */
3414static inline unsigned int group_first_cpu(struct sched_group *group)
3415{
3416 return cpumask_first(sched_group_cpus(group));
3417}
3418
3419/**
3420 * get_sd_load_idx - Obtain the load index for a given sched domain.
3421 * @sd: The sched_domain whose load_idx is to be obtained.
3422 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3423 */
3424static inline int get_sd_load_idx(struct sched_domain *sd,
3425 enum cpu_idle_type idle)
3426{
3427 int load_idx;
3428
3429 switch (idle) {
3430 case CPU_NOT_IDLE:
7897986b 3431 load_idx = sd->busy_idx;
67bb6c03
GS
3432 break;
3433
3434 case CPU_NEWLY_IDLE:
7897986b 3435 load_idx = sd->newidle_idx;
67bb6c03
GS
3436 break;
3437 default:
7897986b 3438 load_idx = sd->idle_idx;
67bb6c03
GS
3439 break;
3440 }
1da177e4 3441
67bb6c03
GS
3442 return load_idx;
3443}
1da177e4 3444
1da177e4 3445
c071df18
GS
3446#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3447/**
3448 * init_sd_power_savings_stats - Initialize power savings statistics for
3449 * the given sched_domain, during load balancing.
3450 *
3451 * @sd: Sched domain whose power-savings statistics are to be initialized.
3452 * @sds: Variable containing the statistics for sd.
3453 * @idle: Idle status of the CPU at which we're performing load-balancing.
3454 */
3455static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3456 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3457{
3458 /*
3459 * Busy processors will not participate in power savings
3460 * balance.
3461 */
3462 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3463 sds->power_savings_balance = 0;
3464 else {
3465 sds->power_savings_balance = 1;
3466 sds->min_nr_running = ULONG_MAX;
3467 sds->leader_nr_running = 0;
3468 }
3469}
783609c6 3470
c071df18
GS
3471/**
3472 * update_sd_power_savings_stats - Update the power saving stats for a
3473 * sched_domain while performing load balancing.
3474 *
3475 * @group: sched_group belonging to the sched_domain under consideration.
3476 * @sds: Variable containing the statistics of the sched_domain
3477 * @local_group: Does group contain the CPU for which we're performing
3478 * load balancing ?
3479 * @sgs: Variable containing the statistics of the group.
3480 */
3481static inline void update_sd_power_savings_stats(struct sched_group *group,
3482 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3483{
408ed066 3484
c071df18
GS
3485 if (!sds->power_savings_balance)
3486 return;
1da177e4 3487
c071df18
GS
3488 /*
3489 * If the local group is idle or completely loaded
3490 * no need to do power savings balance at this domain
3491 */
3492 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3493 !sds->this_nr_running))
3494 sds->power_savings_balance = 0;
2dd73a4f 3495
c071df18
GS
3496 /*
3497 * If a group is already running at full capacity or idle,
3498 * don't include that group in power savings calculations
3499 */
3500 if (!sds->power_savings_balance ||
3501 sgs->sum_nr_running >= sgs->group_capacity ||
3502 !sgs->sum_nr_running)
3503 return;
5969fe06 3504
c071df18
GS
3505 /*
3506 * Calculate the group which has the least non-idle load.
3507 * This is the group from where we need to pick up the load
3508 * for saving power
3509 */
3510 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3511 (sgs->sum_nr_running == sds->min_nr_running &&
3512 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3513 sds->group_min = group;
3514 sds->min_nr_running = sgs->sum_nr_running;
3515 sds->min_load_per_task = sgs->sum_weighted_load /
3516 sgs->sum_nr_running;
3517 }
783609c6 3518
c071df18
GS
3519 /*
3520 * Calculate the group which is almost near its
3521 * capacity but still has some space to pick up some load
3522 * from other group and save more power
3523 */
3524 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3525 return;
1da177e4 3526
c071df18
GS
3527 if (sgs->sum_nr_running > sds->leader_nr_running ||
3528 (sgs->sum_nr_running == sds->leader_nr_running &&
3529 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3530 sds->group_leader = group;
3531 sds->leader_nr_running = sgs->sum_nr_running;
3532 }
3533}
408ed066 3534
c071df18 3535/**
d5ac537e 3536 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3537 * @sds: Variable containing the statistics of the sched_domain
3538 * under consideration.
3539 * @this_cpu: Cpu at which we're currently performing load-balancing.
3540 * @imbalance: Variable to store the imbalance.
3541 *
d5ac537e
RD
3542 * Description:
3543 * Check if we have potential to perform some power-savings balance.
3544 * If yes, set the busiest group to be the least loaded group in the
3545 * sched_domain, so that it's CPUs can be put to idle.
3546 *
c071df18
GS
3547 * Returns 1 if there is potential to perform power-savings balance.
3548 * Else returns 0.
3549 */
3550static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3551 int this_cpu, unsigned long *imbalance)
3552{
3553 if (!sds->power_savings_balance)
3554 return 0;
1da177e4 3555
c071df18
GS
3556 if (sds->this != sds->group_leader ||
3557 sds->group_leader == sds->group_min)
3558 return 0;
783609c6 3559
c071df18
GS
3560 *imbalance = sds->min_load_per_task;
3561 sds->busiest = sds->group_min;
1da177e4 3562
c071df18
GS
3563 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3564 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3565 group_first_cpu(sds->group_leader);
3566 }
3567
3568 return 1;
1da177e4 3569
c071df18
GS
3570}
3571#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3572static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3573 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3574{
3575 return;
3576}
408ed066 3577
c071df18
GS
3578static inline void update_sd_power_savings_stats(struct sched_group *group,
3579 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3580{
3581 return;
3582}
3583
3584static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3585 int this_cpu, unsigned long *imbalance)
3586{
3587 return 0;
3588}
3589#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3590
3591
1f8c553d
GS
3592/**
3593 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3594 * @group: sched_group whose statistics are to be updated.
3595 * @this_cpu: Cpu for which load balance is currently performed.
3596 * @idle: Idle status of this_cpu
3597 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3598 * @sd_idle: Idle status of the sched_domain containing group.
3599 * @local_group: Does group contain this_cpu.
3600 * @cpus: Set of cpus considered for load balancing.
3601 * @balance: Should we balance.
3602 * @sgs: variable to hold the statistics for this group.
3603 */
3604static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3605 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3606 int local_group, const struct cpumask *cpus,
3607 int *balance, struct sg_lb_stats *sgs)
3608{
3609 unsigned long load, max_cpu_load, min_cpu_load;
3610 int i;
3611 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3612 unsigned long sum_avg_load_per_task;
3613 unsigned long avg_load_per_task;
3614
3615 if (local_group)
3616 balance_cpu = group_first_cpu(group);
3617
3618 /* Tally up the load of all CPUs in the group */
3619 sum_avg_load_per_task = avg_load_per_task = 0;
3620 max_cpu_load = 0;
3621 min_cpu_load = ~0UL;
408ed066 3622
1f8c553d
GS
3623 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3624 struct rq *rq = cpu_rq(i);
908a7c1b 3625
1f8c553d
GS
3626 if (*sd_idle && rq->nr_running)
3627 *sd_idle = 0;
5c45bf27 3628
1f8c553d 3629 /* Bias balancing toward cpus of our domain */
1da177e4 3630 if (local_group) {
1f8c553d
GS
3631 if (idle_cpu(i) && !first_idle_cpu) {
3632 first_idle_cpu = 1;
3633 balance_cpu = i;
3634 }
3635
3636 load = target_load(i, load_idx);
3637 } else {
3638 load = source_load(i, load_idx);
3639 if (load > max_cpu_load)
3640 max_cpu_load = load;
3641 if (min_cpu_load > load)
3642 min_cpu_load = load;
1da177e4 3643 }
5c45bf27 3644
1f8c553d
GS
3645 sgs->group_load += load;
3646 sgs->sum_nr_running += rq->nr_running;
3647 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3648
1f8c553d
GS
3649 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3650 }
5c45bf27 3651
1f8c553d
GS
3652 /*
3653 * First idle cpu or the first cpu(busiest) in this sched group
3654 * is eligible for doing load balancing at this and above
3655 * domains. In the newly idle case, we will allow all the cpu's
3656 * to do the newly idle load balance.
3657 */
3658 if (idle != CPU_NEWLY_IDLE && local_group &&
3659 balance_cpu != this_cpu && balance) {
3660 *balance = 0;
3661 return;
3662 }
5c45bf27 3663
1f8c553d
GS
3664 /* Adjust by relative CPU power of the group */
3665 sgs->avg_load = sg_div_cpu_power(group,
3666 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3667
1f8c553d
GS
3668
3669 /*
3670 * Consider the group unbalanced when the imbalance is larger
3671 * than the average weight of two tasks.
3672 *
3673 * APZ: with cgroup the avg task weight can vary wildly and
3674 * might not be a suitable number - should we keep a
3675 * normalized nr_running number somewhere that negates
3676 * the hierarchy?
3677 */
3678 avg_load_per_task = sg_div_cpu_power(group,
3679 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3680
3681 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3682 sgs->group_imb = 1;
3683
3684 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3685
3686}
dd41f596 3687
37abe198
GS
3688/**
3689 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3690 * @sd: sched_domain whose statistics are to be updated.
3691 * @this_cpu: Cpu for which load balance is currently performed.
3692 * @idle: Idle status of this_cpu
3693 * @sd_idle: Idle status of the sched_domain containing group.
3694 * @cpus: Set of cpus considered for load balancing.
3695 * @balance: Should we balance.
3696 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3697 */
37abe198
GS
3698static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3699 enum cpu_idle_type idle, int *sd_idle,
3700 const struct cpumask *cpus, int *balance,
3701 struct sd_lb_stats *sds)
1da177e4 3702{
222d656d 3703 struct sched_group *group = sd->groups;
37abe198 3704 struct sg_lb_stats sgs;
222d656d
GS
3705 int load_idx;
3706
c071df18 3707 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3708 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3709
3710 do {
1da177e4 3711 int local_group;
1da177e4 3712
758b2cdc
RR
3713 local_group = cpumask_test_cpu(this_cpu,
3714 sched_group_cpus(group));
381be78f 3715 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3716 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3717 local_group, cpus, balance, &sgs);
1da177e4 3718
37abe198
GS
3719 if (local_group && balance && !(*balance))
3720 return;
783609c6 3721
37abe198
GS
3722 sds->total_load += sgs.group_load;
3723 sds->total_pwr += group->__cpu_power;
1da177e4 3724
1da177e4 3725 if (local_group) {
37abe198
GS
3726 sds->this_load = sgs.avg_load;
3727 sds->this = group;
3728 sds->this_nr_running = sgs.sum_nr_running;
3729 sds->this_load_per_task = sgs.sum_weighted_load;
3730 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3731 (sgs.sum_nr_running > sgs.group_capacity ||
3732 sgs.group_imb)) {
37abe198
GS
3733 sds->max_load = sgs.avg_load;
3734 sds->busiest = group;
3735 sds->busiest_nr_running = sgs.sum_nr_running;
3736 sds->busiest_load_per_task = sgs.sum_weighted_load;
3737 sds->group_imb = sgs.group_imb;
48f24c4d 3738 }
5c45bf27 3739
c071df18 3740 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3741 group = group->next;
3742 } while (group != sd->groups);
3743
37abe198 3744}
1da177e4 3745
2e6f44ae
GS
3746/**
3747 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3748 * amongst the groups of a sched_domain, during
3749 * load balancing.
2e6f44ae
GS
3750 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3751 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3752 * @imbalance: Variable to store the imbalance.
3753 */
3754static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3755 int this_cpu, unsigned long *imbalance)
3756{
3757 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3758 unsigned int imbn = 2;
3759
3760 if (sds->this_nr_running) {
3761 sds->this_load_per_task /= sds->this_nr_running;
3762 if (sds->busiest_load_per_task >
3763 sds->this_load_per_task)
3764 imbn = 1;
3765 } else
3766 sds->this_load_per_task =
3767 cpu_avg_load_per_task(this_cpu);
1da177e4 3768
2e6f44ae
GS
3769 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3770 sds->busiest_load_per_task * imbn) {
3771 *imbalance = sds->busiest_load_per_task;
3772 return;
3773 }
908a7c1b 3774
1da177e4 3775 /*
2e6f44ae
GS
3776 * OK, we don't have enough imbalance to justify moving tasks,
3777 * however we may be able to increase total CPU power used by
3778 * moving them.
1da177e4 3779 */
2dd73a4f 3780
2e6f44ae
GS
3781 pwr_now += sds->busiest->__cpu_power *
3782 min(sds->busiest_load_per_task, sds->max_load);
3783 pwr_now += sds->this->__cpu_power *
3784 min(sds->this_load_per_task, sds->this_load);
3785 pwr_now /= SCHED_LOAD_SCALE;
3786
3787 /* Amount of load we'd subtract */
3788 tmp = sg_div_cpu_power(sds->busiest,
3789 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3790 if (sds->max_load > tmp)
3791 pwr_move += sds->busiest->__cpu_power *
3792 min(sds->busiest_load_per_task, sds->max_load - tmp);
3793
3794 /* Amount of load we'd add */
3795 if (sds->max_load * sds->busiest->__cpu_power <
3796 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3797 tmp = sg_div_cpu_power(sds->this,
3798 sds->max_load * sds->busiest->__cpu_power);
3799 else
3800 tmp = sg_div_cpu_power(sds->this,
3801 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3802 pwr_move += sds->this->__cpu_power *
3803 min(sds->this_load_per_task, sds->this_load + tmp);
3804 pwr_move /= SCHED_LOAD_SCALE;
3805
3806 /* Move if we gain throughput */
3807 if (pwr_move > pwr_now)
3808 *imbalance = sds->busiest_load_per_task;
3809}
dbc523a3
GS
3810
3811/**
3812 * calculate_imbalance - Calculate the amount of imbalance present within the
3813 * groups of a given sched_domain during load balance.
3814 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3815 * @this_cpu: Cpu for which currently load balance is being performed.
3816 * @imbalance: The variable to store the imbalance.
3817 */
3818static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3819 unsigned long *imbalance)
3820{
3821 unsigned long max_pull;
2dd73a4f
PW
3822 /*
3823 * In the presence of smp nice balancing, certain scenarios can have
3824 * max load less than avg load(as we skip the groups at or below
3825 * its cpu_power, while calculating max_load..)
3826 */
dbc523a3 3827 if (sds->max_load < sds->avg_load) {
2dd73a4f 3828 *imbalance = 0;
dbc523a3 3829 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3830 }
0c117f1b
SS
3831
3832 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3833 max_pull = min(sds->max_load - sds->avg_load,
3834 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3835
1da177e4 3836 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3837 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3838 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3839 / SCHED_LOAD_SCALE;
3840
2dd73a4f
PW
3841 /*
3842 * if *imbalance is less than the average load per runnable task
3843 * there is no gaurantee that any tasks will be moved so we'll have
3844 * a think about bumping its value to force at least one task to be
3845 * moved
3846 */
dbc523a3
GS
3847 if (*imbalance < sds->busiest_load_per_task)
3848 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3849
dbc523a3 3850}
37abe198 3851/******* find_busiest_group() helpers end here *********************/
1da177e4 3852
b7bb4c9b
GS
3853/**
3854 * find_busiest_group - Returns the busiest group within the sched_domain
3855 * if there is an imbalance. If there isn't an imbalance, and
3856 * the user has opted for power-savings, it returns a group whose
3857 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3858 * such a group exists.
3859 *
3860 * Also calculates the amount of weighted load which should be moved
3861 * to restore balance.
3862 *
3863 * @sd: The sched_domain whose busiest group is to be returned.
3864 * @this_cpu: The cpu for which load balancing is currently being performed.
3865 * @imbalance: Variable which stores amount of weighted load which should
3866 * be moved to restore balance/put a group to idle.
3867 * @idle: The idle status of this_cpu.
3868 * @sd_idle: The idleness of sd
3869 * @cpus: The set of CPUs under consideration for load-balancing.
3870 * @balance: Pointer to a variable indicating if this_cpu
3871 * is the appropriate cpu to perform load balancing at this_level.
3872 *
3873 * Returns: - the busiest group if imbalance exists.
3874 * - If no imbalance and user has opted for power-savings balance,
3875 * return the least loaded group whose CPUs can be
3876 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3877 */
3878static struct sched_group *
3879find_busiest_group(struct sched_domain *sd, int this_cpu,
3880 unsigned long *imbalance, enum cpu_idle_type idle,
3881 int *sd_idle, const struct cpumask *cpus, int *balance)
3882{
3883 struct sd_lb_stats sds;
1da177e4 3884
37abe198 3885 memset(&sds, 0, sizeof(sds));
1da177e4 3886
37abe198
GS
3887 /*
3888 * Compute the various statistics relavent for load balancing at
3889 * this level.
3890 */
3891 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3892 balance, &sds);
3893
b7bb4c9b
GS
3894 /* Cases where imbalance does not exist from POV of this_cpu */
3895 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3896 * at this level.
3897 * 2) There is no busy sibling group to pull from.
3898 * 3) This group is the busiest group.
3899 * 4) This group is more busy than the avg busieness at this
3900 * sched_domain.
3901 * 5) The imbalance is within the specified limit.
3902 * 6) Any rebalance would lead to ping-pong
3903 */
37abe198
GS
3904 if (balance && !(*balance))
3905 goto ret;
1da177e4 3906
b7bb4c9b
GS
3907 if (!sds.busiest || sds.busiest_nr_running == 0)
3908 goto out_balanced;
1da177e4 3909
b7bb4c9b 3910 if (sds.this_load >= sds.max_load)
1da177e4 3911 goto out_balanced;
1da177e4 3912
222d656d 3913 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3914
b7bb4c9b
GS
3915 if (sds.this_load >= sds.avg_load)
3916 goto out_balanced;
3917
3918 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3919 goto out_balanced;
3920
222d656d
GS
3921 sds.busiest_load_per_task /= sds.busiest_nr_running;
3922 if (sds.group_imb)
3923 sds.busiest_load_per_task =
3924 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3925
1da177e4
LT
3926 /*
3927 * We're trying to get all the cpus to the average_load, so we don't
3928 * want to push ourselves above the average load, nor do we wish to
3929 * reduce the max loaded cpu below the average load, as either of these
3930 * actions would just result in more rebalancing later, and ping-pong
3931 * tasks around. Thus we look for the minimum possible imbalance.
3932 * Negative imbalances (*we* are more loaded than anyone else) will
3933 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3934 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3935 * appear as very large values with unsigned longs.
3936 */
222d656d 3937 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3938 goto out_balanced;
3939
dbc523a3
GS
3940 /* Looks like there is an imbalance. Compute it */
3941 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3942 return sds.busiest;
1da177e4
LT
3943
3944out_balanced:
c071df18
GS
3945 /*
3946 * There is no obvious imbalance. But check if we can do some balancing
3947 * to save power.
3948 */
3949 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3950 return sds.busiest;
783609c6 3951ret:
1da177e4
LT
3952 *imbalance = 0;
3953 return NULL;
3954}
3955
3956/*
3957 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3958 */
70b97a7f 3959static struct rq *
d15bcfdb 3960find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3961 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3962{
70b97a7f 3963 struct rq *busiest = NULL, *rq;
2dd73a4f 3964 unsigned long max_load = 0;
1da177e4
LT
3965 int i;
3966
758b2cdc 3967 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3968 unsigned long wl;
0a2966b4 3969
96f874e2 3970 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3971 continue;
3972
48f24c4d 3973 rq = cpu_rq(i);
dd41f596 3974 wl = weighted_cpuload(i);
2dd73a4f 3975
dd41f596 3976 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3977 continue;
1da177e4 3978
dd41f596
IM
3979 if (wl > max_load) {
3980 max_load = wl;
48f24c4d 3981 busiest = rq;
1da177e4
LT
3982 }
3983 }
3984
3985 return busiest;
3986}
3987
77391d71
NP
3988/*
3989 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3990 * so long as it is large enough.
3991 */
3992#define MAX_PINNED_INTERVAL 512
3993
df7c8e84
RR
3994/* Working cpumask for load_balance and load_balance_newidle. */
3995static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3996
1da177e4
LT
3997/*
3998 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3999 * tasks if there is an imbalance.
1da177e4 4000 */
70b97a7f 4001static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4002 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4003 int *balance)
1da177e4 4004{
43010659 4005 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4006 struct sched_group *group;
1da177e4 4007 unsigned long imbalance;
70b97a7f 4008 struct rq *busiest;
fe2eea3f 4009 unsigned long flags;
df7c8e84 4010 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4011
96f874e2 4012 cpumask_setall(cpus);
7c16ec58 4013
89c4710e
SS
4014 /*
4015 * When power savings policy is enabled for the parent domain, idle
4016 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4017 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4018 * portraying it as CPU_NOT_IDLE.
89c4710e 4019 */
d15bcfdb 4020 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4021 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4022 sd_idle = 1;
1da177e4 4023
2d72376b 4024 schedstat_inc(sd, lb_count[idle]);
1da177e4 4025
0a2966b4 4026redo:
c8cba857 4027 update_shares(sd);
0a2966b4 4028 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4029 cpus, balance);
783609c6 4030
06066714 4031 if (*balance == 0)
783609c6 4032 goto out_balanced;
783609c6 4033
1da177e4
LT
4034 if (!group) {
4035 schedstat_inc(sd, lb_nobusyg[idle]);
4036 goto out_balanced;
4037 }
4038
7c16ec58 4039 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4040 if (!busiest) {
4041 schedstat_inc(sd, lb_nobusyq[idle]);
4042 goto out_balanced;
4043 }
4044
db935dbd 4045 BUG_ON(busiest == this_rq);
1da177e4
LT
4046
4047 schedstat_add(sd, lb_imbalance[idle], imbalance);
4048
43010659 4049 ld_moved = 0;
1da177e4
LT
4050 if (busiest->nr_running > 1) {
4051 /*
4052 * Attempt to move tasks. If find_busiest_group has found
4053 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4054 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4055 * correctly treated as an imbalance.
4056 */
fe2eea3f 4057 local_irq_save(flags);
e17224bf 4058 double_rq_lock(this_rq, busiest);
43010659 4059 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4060 imbalance, sd, idle, &all_pinned);
e17224bf 4061 double_rq_unlock(this_rq, busiest);
fe2eea3f 4062 local_irq_restore(flags);
81026794 4063
46cb4b7c
SS
4064 /*
4065 * some other cpu did the load balance for us.
4066 */
43010659 4067 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4068 resched_cpu(this_cpu);
4069
81026794 4070 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4071 if (unlikely(all_pinned)) {
96f874e2
RR
4072 cpumask_clear_cpu(cpu_of(busiest), cpus);
4073 if (!cpumask_empty(cpus))
0a2966b4 4074 goto redo;
81026794 4075 goto out_balanced;
0a2966b4 4076 }
1da177e4 4077 }
81026794 4078
43010659 4079 if (!ld_moved) {
1da177e4
LT
4080 schedstat_inc(sd, lb_failed[idle]);
4081 sd->nr_balance_failed++;
4082
4083 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4084
fe2eea3f 4085 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4086
4087 /* don't kick the migration_thread, if the curr
4088 * task on busiest cpu can't be moved to this_cpu
4089 */
96f874e2
RR
4090 if (!cpumask_test_cpu(this_cpu,
4091 &busiest->curr->cpus_allowed)) {
fe2eea3f 4092 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4093 all_pinned = 1;
4094 goto out_one_pinned;
4095 }
4096
1da177e4
LT
4097 if (!busiest->active_balance) {
4098 busiest->active_balance = 1;
4099 busiest->push_cpu = this_cpu;
81026794 4100 active_balance = 1;
1da177e4 4101 }
fe2eea3f 4102 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4103 if (active_balance)
1da177e4
LT
4104 wake_up_process(busiest->migration_thread);
4105
4106 /*
4107 * We've kicked active balancing, reset the failure
4108 * counter.
4109 */
39507451 4110 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4111 }
81026794 4112 } else
1da177e4
LT
4113 sd->nr_balance_failed = 0;
4114
81026794 4115 if (likely(!active_balance)) {
1da177e4
LT
4116 /* We were unbalanced, so reset the balancing interval */
4117 sd->balance_interval = sd->min_interval;
81026794
NP
4118 } else {
4119 /*
4120 * If we've begun active balancing, start to back off. This
4121 * case may not be covered by the all_pinned logic if there
4122 * is only 1 task on the busy runqueue (because we don't call
4123 * move_tasks).
4124 */
4125 if (sd->balance_interval < sd->max_interval)
4126 sd->balance_interval *= 2;
1da177e4
LT
4127 }
4128
43010659 4129 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4130 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4131 ld_moved = -1;
4132
4133 goto out;
1da177e4
LT
4134
4135out_balanced:
1da177e4
LT
4136 schedstat_inc(sd, lb_balanced[idle]);
4137
16cfb1c0 4138 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4139
4140out_one_pinned:
1da177e4 4141 /* tune up the balancing interval */
77391d71
NP
4142 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4143 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4144 sd->balance_interval *= 2;
4145
48f24c4d 4146 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4147 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4148 ld_moved = -1;
4149 else
4150 ld_moved = 0;
4151out:
c8cba857
PZ
4152 if (ld_moved)
4153 update_shares(sd);
c09595f6 4154 return ld_moved;
1da177e4
LT
4155}
4156
4157/*
4158 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4159 * tasks if there is an imbalance.
4160 *
d15bcfdb 4161 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4162 * this_rq is locked.
4163 */
48f24c4d 4164static int
df7c8e84 4165load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4166{
4167 struct sched_group *group;
70b97a7f 4168 struct rq *busiest = NULL;
1da177e4 4169 unsigned long imbalance;
43010659 4170 int ld_moved = 0;
5969fe06 4171 int sd_idle = 0;
969bb4e4 4172 int all_pinned = 0;
df7c8e84 4173 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4174
96f874e2 4175 cpumask_setall(cpus);
5969fe06 4176
89c4710e
SS
4177 /*
4178 * When power savings policy is enabled for the parent domain, idle
4179 * sibling can pick up load irrespective of busy siblings. In this case,
4180 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4181 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4182 */
4183 if (sd->flags & SD_SHARE_CPUPOWER &&
4184 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4185 sd_idle = 1;
1da177e4 4186
2d72376b 4187 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4188redo:
3e5459b4 4189 update_shares_locked(this_rq, sd);
d15bcfdb 4190 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4191 &sd_idle, cpus, NULL);
1da177e4 4192 if (!group) {
d15bcfdb 4193 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4194 goto out_balanced;
1da177e4
LT
4195 }
4196
7c16ec58 4197 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4198 if (!busiest) {
d15bcfdb 4199 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4200 goto out_balanced;
1da177e4
LT
4201 }
4202
db935dbd
NP
4203 BUG_ON(busiest == this_rq);
4204
d15bcfdb 4205 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4206
43010659 4207 ld_moved = 0;
d6d5cfaf
NP
4208 if (busiest->nr_running > 1) {
4209 /* Attempt to move tasks */
4210 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4211 /* this_rq->clock is already updated */
4212 update_rq_clock(busiest);
43010659 4213 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4214 imbalance, sd, CPU_NEWLY_IDLE,
4215 &all_pinned);
1b12bbc7 4216 double_unlock_balance(this_rq, busiest);
0a2966b4 4217
969bb4e4 4218 if (unlikely(all_pinned)) {
96f874e2
RR
4219 cpumask_clear_cpu(cpu_of(busiest), cpus);
4220 if (!cpumask_empty(cpus))
0a2966b4
CL
4221 goto redo;
4222 }
d6d5cfaf
NP
4223 }
4224
43010659 4225 if (!ld_moved) {
36dffab6 4226 int active_balance = 0;
ad273b32 4227
d15bcfdb 4228 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4229 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4230 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4231 return -1;
ad273b32
VS
4232
4233 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4234 return -1;
4235
4236 if (sd->nr_balance_failed++ < 2)
4237 return -1;
4238
4239 /*
4240 * The only task running in a non-idle cpu can be moved to this
4241 * cpu in an attempt to completely freeup the other CPU
4242 * package. The same method used to move task in load_balance()
4243 * have been extended for load_balance_newidle() to speedup
4244 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4245 *
4246 * The package power saving logic comes from
4247 * find_busiest_group(). If there are no imbalance, then
4248 * f_b_g() will return NULL. However when sched_mc={1,2} then
4249 * f_b_g() will select a group from which a running task may be
4250 * pulled to this cpu in order to make the other package idle.
4251 * If there is no opportunity to make a package idle and if
4252 * there are no imbalance, then f_b_g() will return NULL and no
4253 * action will be taken in load_balance_newidle().
4254 *
4255 * Under normal task pull operation due to imbalance, there
4256 * will be more than one task in the source run queue and
4257 * move_tasks() will succeed. ld_moved will be true and this
4258 * active balance code will not be triggered.
4259 */
4260
4261 /* Lock busiest in correct order while this_rq is held */
4262 double_lock_balance(this_rq, busiest);
4263
4264 /*
4265 * don't kick the migration_thread, if the curr
4266 * task on busiest cpu can't be moved to this_cpu
4267 */
6ca09dfc 4268 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4269 double_unlock_balance(this_rq, busiest);
4270 all_pinned = 1;
4271 return ld_moved;
4272 }
4273
4274 if (!busiest->active_balance) {
4275 busiest->active_balance = 1;
4276 busiest->push_cpu = this_cpu;
4277 active_balance = 1;
4278 }
4279
4280 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4281 /*
4282 * Should not call ttwu while holding a rq->lock
4283 */
4284 spin_unlock(&this_rq->lock);
ad273b32
VS
4285 if (active_balance)
4286 wake_up_process(busiest->migration_thread);
da8d5089 4287 spin_lock(&this_rq->lock);
ad273b32 4288
5969fe06 4289 } else
16cfb1c0 4290 sd->nr_balance_failed = 0;
1da177e4 4291
3e5459b4 4292 update_shares_locked(this_rq, sd);
43010659 4293 return ld_moved;
16cfb1c0
NP
4294
4295out_balanced:
d15bcfdb 4296 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4297 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4298 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4299 return -1;
16cfb1c0 4300 sd->nr_balance_failed = 0;
48f24c4d 4301
16cfb1c0 4302 return 0;
1da177e4
LT
4303}
4304
4305/*
4306 * idle_balance is called by schedule() if this_cpu is about to become
4307 * idle. Attempts to pull tasks from other CPUs.
4308 */
70b97a7f 4309static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4310{
4311 struct sched_domain *sd;
efbe027e 4312 int pulled_task = 0;
dd41f596 4313 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4314
4315 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4316 unsigned long interval;
4317
4318 if (!(sd->flags & SD_LOAD_BALANCE))
4319 continue;
4320
4321 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4322 /* If we've pulled tasks over stop searching: */
7c16ec58 4323 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4324 sd);
92c4ca5c
CL
4325
4326 interval = msecs_to_jiffies(sd->balance_interval);
4327 if (time_after(next_balance, sd->last_balance + interval))
4328 next_balance = sd->last_balance + interval;
4329 if (pulled_task)
4330 break;
1da177e4 4331 }
dd41f596 4332 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4333 /*
4334 * We are going idle. next_balance may be set based on
4335 * a busy processor. So reset next_balance.
4336 */
4337 this_rq->next_balance = next_balance;
dd41f596 4338 }
1da177e4
LT
4339}
4340
4341/*
4342 * active_load_balance is run by migration threads. It pushes running tasks
4343 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4344 * running on each physical CPU where possible, and avoids physical /
4345 * logical imbalances.
4346 *
4347 * Called with busiest_rq locked.
4348 */
70b97a7f 4349static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4350{
39507451 4351 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4352 struct sched_domain *sd;
4353 struct rq *target_rq;
39507451 4354
48f24c4d 4355 /* Is there any task to move? */
39507451 4356 if (busiest_rq->nr_running <= 1)
39507451
NP
4357 return;
4358
4359 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4360
4361 /*
39507451 4362 * This condition is "impossible", if it occurs
41a2d6cf 4363 * we need to fix it. Originally reported by
39507451 4364 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4365 */
39507451 4366 BUG_ON(busiest_rq == target_rq);
1da177e4 4367
39507451
NP
4368 /* move a task from busiest_rq to target_rq */
4369 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4370 update_rq_clock(busiest_rq);
4371 update_rq_clock(target_rq);
39507451
NP
4372
4373 /* Search for an sd spanning us and the target CPU. */
c96d145e 4374 for_each_domain(target_cpu, sd) {
39507451 4375 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4376 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4377 break;
c96d145e 4378 }
39507451 4379
48f24c4d 4380 if (likely(sd)) {
2d72376b 4381 schedstat_inc(sd, alb_count);
39507451 4382
43010659
PW
4383 if (move_one_task(target_rq, target_cpu, busiest_rq,
4384 sd, CPU_IDLE))
48f24c4d
IM
4385 schedstat_inc(sd, alb_pushed);
4386 else
4387 schedstat_inc(sd, alb_failed);
4388 }
1b12bbc7 4389 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4390}
4391
46cb4b7c
SS
4392#ifdef CONFIG_NO_HZ
4393static struct {
4394 atomic_t load_balancer;
7d1e6a9b 4395 cpumask_var_t cpu_mask;
f711f609 4396 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4397} nohz ____cacheline_aligned = {
4398 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4399};
4400
eea08f32
AB
4401int get_nohz_load_balancer(void)
4402{
4403 return atomic_read(&nohz.load_balancer);
4404}
4405
f711f609
GS
4406#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4407/**
4408 * lowest_flag_domain - Return lowest sched_domain containing flag.
4409 * @cpu: The cpu whose lowest level of sched domain is to
4410 * be returned.
4411 * @flag: The flag to check for the lowest sched_domain
4412 * for the given cpu.
4413 *
4414 * Returns the lowest sched_domain of a cpu which contains the given flag.
4415 */
4416static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4417{
4418 struct sched_domain *sd;
4419
4420 for_each_domain(cpu, sd)
4421 if (sd && (sd->flags & flag))
4422 break;
4423
4424 return sd;
4425}
4426
4427/**
4428 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4429 * @cpu: The cpu whose domains we're iterating over.
4430 * @sd: variable holding the value of the power_savings_sd
4431 * for cpu.
4432 * @flag: The flag to filter the sched_domains to be iterated.
4433 *
4434 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4435 * set, starting from the lowest sched_domain to the highest.
4436 */
4437#define for_each_flag_domain(cpu, sd, flag) \
4438 for (sd = lowest_flag_domain(cpu, flag); \
4439 (sd && (sd->flags & flag)); sd = sd->parent)
4440
4441/**
4442 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4443 * @ilb_group: group to be checked for semi-idleness
4444 *
4445 * Returns: 1 if the group is semi-idle. 0 otherwise.
4446 *
4447 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4448 * and atleast one non-idle CPU. This helper function checks if the given
4449 * sched_group is semi-idle or not.
4450 */
4451static inline int is_semi_idle_group(struct sched_group *ilb_group)
4452{
4453 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4454 sched_group_cpus(ilb_group));
4455
4456 /*
4457 * A sched_group is semi-idle when it has atleast one busy cpu
4458 * and atleast one idle cpu.
4459 */
4460 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4461 return 0;
4462
4463 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4464 return 0;
4465
4466 return 1;
4467}
4468/**
4469 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4470 * @cpu: The cpu which is nominating a new idle_load_balancer.
4471 *
4472 * Returns: Returns the id of the idle load balancer if it exists,
4473 * Else, returns >= nr_cpu_ids.
4474 *
4475 * This algorithm picks the idle load balancer such that it belongs to a
4476 * semi-idle powersavings sched_domain. The idea is to try and avoid
4477 * completely idle packages/cores just for the purpose of idle load balancing
4478 * when there are other idle cpu's which are better suited for that job.
4479 */
4480static int find_new_ilb(int cpu)
4481{
4482 struct sched_domain *sd;
4483 struct sched_group *ilb_group;
4484
4485 /*
4486 * Have idle load balancer selection from semi-idle packages only
4487 * when power-aware load balancing is enabled
4488 */
4489 if (!(sched_smt_power_savings || sched_mc_power_savings))
4490 goto out_done;
4491
4492 /*
4493 * Optimize for the case when we have no idle CPUs or only one
4494 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4495 */
4496 if (cpumask_weight(nohz.cpu_mask) < 2)
4497 goto out_done;
4498
4499 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4500 ilb_group = sd->groups;
4501
4502 do {
4503 if (is_semi_idle_group(ilb_group))
4504 return cpumask_first(nohz.ilb_grp_nohz_mask);
4505
4506 ilb_group = ilb_group->next;
4507
4508 } while (ilb_group != sd->groups);
4509 }
4510
4511out_done:
4512 return cpumask_first(nohz.cpu_mask);
4513}
4514#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4515static inline int find_new_ilb(int call_cpu)
4516{
6e29ec57 4517 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4518}
4519#endif
4520
7835b98b 4521/*
46cb4b7c
SS
4522 * This routine will try to nominate the ilb (idle load balancing)
4523 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4524 * load balancing on behalf of all those cpus. If all the cpus in the system
4525 * go into this tickless mode, then there will be no ilb owner (as there is
4526 * no need for one) and all the cpus will sleep till the next wakeup event
4527 * arrives...
4528 *
4529 * For the ilb owner, tick is not stopped. And this tick will be used
4530 * for idle load balancing. ilb owner will still be part of
4531 * nohz.cpu_mask..
7835b98b 4532 *
46cb4b7c
SS
4533 * While stopping the tick, this cpu will become the ilb owner if there
4534 * is no other owner. And will be the owner till that cpu becomes busy
4535 * or if all cpus in the system stop their ticks at which point
4536 * there is no need for ilb owner.
4537 *
4538 * When the ilb owner becomes busy, it nominates another owner, during the
4539 * next busy scheduler_tick()
4540 */
4541int select_nohz_load_balancer(int stop_tick)
4542{
4543 int cpu = smp_processor_id();
4544
4545 if (stop_tick) {
46cb4b7c
SS
4546 cpu_rq(cpu)->in_nohz_recently = 1;
4547
483b4ee6
SS
4548 if (!cpu_active(cpu)) {
4549 if (atomic_read(&nohz.load_balancer) != cpu)
4550 return 0;
4551
4552 /*
4553 * If we are going offline and still the leader,
4554 * give up!
4555 */
46cb4b7c
SS
4556 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4557 BUG();
483b4ee6 4558
46cb4b7c
SS
4559 return 0;
4560 }
4561
483b4ee6
SS
4562 cpumask_set_cpu(cpu, nohz.cpu_mask);
4563
46cb4b7c 4564 /* time for ilb owner also to sleep */
7d1e6a9b 4565 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4566 if (atomic_read(&nohz.load_balancer) == cpu)
4567 atomic_set(&nohz.load_balancer, -1);
4568 return 0;
4569 }
4570
4571 if (atomic_read(&nohz.load_balancer) == -1) {
4572 /* make me the ilb owner */
4573 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4574 return 1;
e790fb0b
GS
4575 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4576 int new_ilb;
4577
4578 if (!(sched_smt_power_savings ||
4579 sched_mc_power_savings))
4580 return 1;
4581 /*
4582 * Check to see if there is a more power-efficient
4583 * ilb.
4584 */
4585 new_ilb = find_new_ilb(cpu);
4586 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4587 atomic_set(&nohz.load_balancer, -1);
4588 resched_cpu(new_ilb);
4589 return 0;
4590 }
46cb4b7c 4591 return 1;
e790fb0b 4592 }
46cb4b7c 4593 } else {
7d1e6a9b 4594 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4595 return 0;
4596
7d1e6a9b 4597 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4598
4599 if (atomic_read(&nohz.load_balancer) == cpu)
4600 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4601 BUG();
4602 }
4603 return 0;
4604}
4605#endif
4606
4607static DEFINE_SPINLOCK(balancing);
4608
4609/*
7835b98b
CL
4610 * It checks each scheduling domain to see if it is due to be balanced,
4611 * and initiates a balancing operation if so.
4612 *
4613 * Balancing parameters are set up in arch_init_sched_domains.
4614 */
a9957449 4615static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4616{
46cb4b7c
SS
4617 int balance = 1;
4618 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4619 unsigned long interval;
4620 struct sched_domain *sd;
46cb4b7c 4621 /* Earliest time when we have to do rebalance again */
c9819f45 4622 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4623 int update_next_balance = 0;
d07355f5 4624 int need_serialize;
1da177e4 4625
46cb4b7c 4626 for_each_domain(cpu, sd) {
1da177e4
LT
4627 if (!(sd->flags & SD_LOAD_BALANCE))
4628 continue;
4629
4630 interval = sd->balance_interval;
d15bcfdb 4631 if (idle != CPU_IDLE)
1da177e4
LT
4632 interval *= sd->busy_factor;
4633
4634 /* scale ms to jiffies */
4635 interval = msecs_to_jiffies(interval);
4636 if (unlikely(!interval))
4637 interval = 1;
dd41f596
IM
4638 if (interval > HZ*NR_CPUS/10)
4639 interval = HZ*NR_CPUS/10;
4640
d07355f5 4641 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4642
d07355f5 4643 if (need_serialize) {
08c183f3
CL
4644 if (!spin_trylock(&balancing))
4645 goto out;
4646 }
4647
c9819f45 4648 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4649 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4650 /*
4651 * We've pulled tasks over so either we're no
5969fe06
NP
4652 * longer idle, or one of our SMT siblings is
4653 * not idle.
4654 */
d15bcfdb 4655 idle = CPU_NOT_IDLE;
1da177e4 4656 }
1bd77f2d 4657 sd->last_balance = jiffies;
1da177e4 4658 }
d07355f5 4659 if (need_serialize)
08c183f3
CL
4660 spin_unlock(&balancing);
4661out:
f549da84 4662 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4663 next_balance = sd->last_balance + interval;
f549da84
SS
4664 update_next_balance = 1;
4665 }
783609c6
SS
4666
4667 /*
4668 * Stop the load balance at this level. There is another
4669 * CPU in our sched group which is doing load balancing more
4670 * actively.
4671 */
4672 if (!balance)
4673 break;
1da177e4 4674 }
f549da84
SS
4675
4676 /*
4677 * next_balance will be updated only when there is a need.
4678 * When the cpu is attached to null domain for ex, it will not be
4679 * updated.
4680 */
4681 if (likely(update_next_balance))
4682 rq->next_balance = next_balance;
46cb4b7c
SS
4683}
4684
4685/*
4686 * run_rebalance_domains is triggered when needed from the scheduler tick.
4687 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4688 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4689 */
4690static void run_rebalance_domains(struct softirq_action *h)
4691{
dd41f596
IM
4692 int this_cpu = smp_processor_id();
4693 struct rq *this_rq = cpu_rq(this_cpu);
4694 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4695 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4696
dd41f596 4697 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4698
4699#ifdef CONFIG_NO_HZ
4700 /*
4701 * If this cpu is the owner for idle load balancing, then do the
4702 * balancing on behalf of the other idle cpus whose ticks are
4703 * stopped.
4704 */
dd41f596
IM
4705 if (this_rq->idle_at_tick &&
4706 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4707 struct rq *rq;
4708 int balance_cpu;
4709
7d1e6a9b
RR
4710 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4711 if (balance_cpu == this_cpu)
4712 continue;
4713
46cb4b7c
SS
4714 /*
4715 * If this cpu gets work to do, stop the load balancing
4716 * work being done for other cpus. Next load
4717 * balancing owner will pick it up.
4718 */
4719 if (need_resched())
4720 break;
4721
de0cf899 4722 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4723
4724 rq = cpu_rq(balance_cpu);
dd41f596
IM
4725 if (time_after(this_rq->next_balance, rq->next_balance))
4726 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4727 }
4728 }
4729#endif
4730}
4731
8a0be9ef
FW
4732static inline int on_null_domain(int cpu)
4733{
4734 return !rcu_dereference(cpu_rq(cpu)->sd);
4735}
4736
46cb4b7c
SS
4737/*
4738 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4739 *
4740 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4741 * idle load balancing owner or decide to stop the periodic load balancing,
4742 * if the whole system is idle.
4743 */
dd41f596 4744static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4745{
46cb4b7c
SS
4746#ifdef CONFIG_NO_HZ
4747 /*
4748 * If we were in the nohz mode recently and busy at the current
4749 * scheduler tick, then check if we need to nominate new idle
4750 * load balancer.
4751 */
4752 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4753 rq->in_nohz_recently = 0;
4754
4755 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4756 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4757 atomic_set(&nohz.load_balancer, -1);
4758 }
4759
4760 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4761 int ilb = find_new_ilb(cpu);
46cb4b7c 4762
434d53b0 4763 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4764 resched_cpu(ilb);
4765 }
4766 }
4767
4768 /*
4769 * If this cpu is idle and doing idle load balancing for all the
4770 * cpus with ticks stopped, is it time for that to stop?
4771 */
4772 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4773 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4774 resched_cpu(cpu);
4775 return;
4776 }
4777
4778 /*
4779 * If this cpu is idle and the idle load balancing is done by
4780 * someone else, then no need raise the SCHED_SOFTIRQ
4781 */
4782 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4783 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4784 return;
4785#endif
8a0be9ef
FW
4786 /* Don't need to rebalance while attached to NULL domain */
4787 if (time_after_eq(jiffies, rq->next_balance) &&
4788 likely(!on_null_domain(cpu)))
46cb4b7c 4789 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4790}
dd41f596
IM
4791
4792#else /* CONFIG_SMP */
4793
1da177e4
LT
4794/*
4795 * on UP we do not need to balance between CPUs:
4796 */
70b97a7f 4797static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4798{
4799}
dd41f596 4800
1da177e4
LT
4801#endif
4802
1da177e4
LT
4803DEFINE_PER_CPU(struct kernel_stat, kstat);
4804
4805EXPORT_PER_CPU_SYMBOL(kstat);
4806
4807/*
c5f8d995 4808 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4809 * @p in case that task is currently running.
c5f8d995
HS
4810 *
4811 * Called with task_rq_lock() held on @rq.
1da177e4 4812 */
c5f8d995
HS
4813static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4814{
4815 u64 ns = 0;
4816
4817 if (task_current(rq, p)) {
4818 update_rq_clock(rq);
4819 ns = rq->clock - p->se.exec_start;
4820 if ((s64)ns < 0)
4821 ns = 0;
4822 }
4823
4824 return ns;
4825}
4826
bb34d92f 4827unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4828{
1da177e4 4829 unsigned long flags;
41b86e9c 4830 struct rq *rq;
bb34d92f 4831 u64 ns = 0;
48f24c4d 4832
41b86e9c 4833 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4834 ns = do_task_delta_exec(p, rq);
4835 task_rq_unlock(rq, &flags);
1508487e 4836
c5f8d995
HS
4837 return ns;
4838}
f06febc9 4839
c5f8d995
HS
4840/*
4841 * Return accounted runtime for the task.
4842 * In case the task is currently running, return the runtime plus current's
4843 * pending runtime that have not been accounted yet.
4844 */
4845unsigned long long task_sched_runtime(struct task_struct *p)
4846{
4847 unsigned long flags;
4848 struct rq *rq;
4849 u64 ns = 0;
4850
4851 rq = task_rq_lock(p, &flags);
4852 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4853 task_rq_unlock(rq, &flags);
4854
4855 return ns;
4856}
48f24c4d 4857
c5f8d995
HS
4858/*
4859 * Return sum_exec_runtime for the thread group.
4860 * In case the task is currently running, return the sum plus current's
4861 * pending runtime that have not been accounted yet.
4862 *
4863 * Note that the thread group might have other running tasks as well,
4864 * so the return value not includes other pending runtime that other
4865 * running tasks might have.
4866 */
4867unsigned long long thread_group_sched_runtime(struct task_struct *p)
4868{
4869 struct task_cputime totals;
4870 unsigned long flags;
4871 struct rq *rq;
4872 u64 ns;
4873
4874 rq = task_rq_lock(p, &flags);
4875 thread_group_cputime(p, &totals);
4876 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4877 task_rq_unlock(rq, &flags);
48f24c4d 4878
1da177e4
LT
4879 return ns;
4880}
4881
1da177e4
LT
4882/*
4883 * Account user cpu time to a process.
4884 * @p: the process that the cpu time gets accounted to
1da177e4 4885 * @cputime: the cpu time spent in user space since the last update
457533a7 4886 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4887 */
457533a7
MS
4888void account_user_time(struct task_struct *p, cputime_t cputime,
4889 cputime_t cputime_scaled)
1da177e4
LT
4890{
4891 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4892 cputime64_t tmp;
4893
457533a7 4894 /* Add user time to process. */
1da177e4 4895 p->utime = cputime_add(p->utime, cputime);
457533a7 4896 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4897 account_group_user_time(p, cputime);
1da177e4
LT
4898
4899 /* Add user time to cpustat. */
4900 tmp = cputime_to_cputime64(cputime);
4901 if (TASK_NICE(p) > 0)
4902 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4903 else
4904 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4905
4906 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4907 /* Account for user time used */
4908 acct_update_integrals(p);
1da177e4
LT
4909}
4910
94886b84
LV
4911/*
4912 * Account guest cpu time to a process.
4913 * @p: the process that the cpu time gets accounted to
4914 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4915 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4916 */
457533a7
MS
4917static void account_guest_time(struct task_struct *p, cputime_t cputime,
4918 cputime_t cputime_scaled)
94886b84
LV
4919{
4920 cputime64_t tmp;
4921 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4922
4923 tmp = cputime_to_cputime64(cputime);
4924
457533a7 4925 /* Add guest time to process. */
94886b84 4926 p->utime = cputime_add(p->utime, cputime);
457533a7 4927 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4928 account_group_user_time(p, cputime);
94886b84
LV
4929 p->gtime = cputime_add(p->gtime, cputime);
4930
457533a7 4931 /* Add guest time to cpustat. */
94886b84
LV
4932 cpustat->user = cputime64_add(cpustat->user, tmp);
4933 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4934}
4935
1da177e4
LT
4936/*
4937 * Account system cpu time to a process.
4938 * @p: the process that the cpu time gets accounted to
4939 * @hardirq_offset: the offset to subtract from hardirq_count()
4940 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4941 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4942 */
4943void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4944 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4945{
4946 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4947 cputime64_t tmp;
4948
983ed7a6 4949 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4950 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4951 return;
4952 }
94886b84 4953
457533a7 4954 /* Add system time to process. */
1da177e4 4955 p->stime = cputime_add(p->stime, cputime);
457533a7 4956 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4957 account_group_system_time(p, cputime);
1da177e4
LT
4958
4959 /* Add system time to cpustat. */
4960 tmp = cputime_to_cputime64(cputime);
4961 if (hardirq_count() - hardirq_offset)
4962 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4963 else if (softirq_count())
4964 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4965 else
79741dd3
MS
4966 cpustat->system = cputime64_add(cpustat->system, tmp);
4967
ef12fefa
BR
4968 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4969
1da177e4
LT
4970 /* Account for system time used */
4971 acct_update_integrals(p);
1da177e4
LT
4972}
4973
c66f08be 4974/*
1da177e4 4975 * Account for involuntary wait time.
1da177e4 4976 * @steal: the cpu time spent in involuntary wait
c66f08be 4977 */
79741dd3 4978void account_steal_time(cputime_t cputime)
c66f08be 4979{
79741dd3
MS
4980 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4981 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4982
4983 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4984}
4985
1da177e4 4986/*
79741dd3
MS
4987 * Account for idle time.
4988 * @cputime: the cpu time spent in idle wait
1da177e4 4989 */
79741dd3 4990void account_idle_time(cputime_t cputime)
1da177e4
LT
4991{
4992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4993 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4994 struct rq *rq = this_rq();
1da177e4 4995
79741dd3
MS
4996 if (atomic_read(&rq->nr_iowait) > 0)
4997 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4998 else
4999 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5000}
5001
79741dd3
MS
5002#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5003
5004/*
5005 * Account a single tick of cpu time.
5006 * @p: the process that the cpu time gets accounted to
5007 * @user_tick: indicates if the tick is a user or a system tick
5008 */
5009void account_process_tick(struct task_struct *p, int user_tick)
5010{
5011 cputime_t one_jiffy = jiffies_to_cputime(1);
5012 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5013 struct rq *rq = this_rq();
5014
5015 if (user_tick)
5016 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5017 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5018 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5019 one_jiffy_scaled);
5020 else
5021 account_idle_time(one_jiffy);
5022}
5023
5024/*
5025 * Account multiple ticks of steal time.
5026 * @p: the process from which the cpu time has been stolen
5027 * @ticks: number of stolen ticks
5028 */
5029void account_steal_ticks(unsigned long ticks)
5030{
5031 account_steal_time(jiffies_to_cputime(ticks));
5032}
5033
5034/*
5035 * Account multiple ticks of idle time.
5036 * @ticks: number of stolen ticks
5037 */
5038void account_idle_ticks(unsigned long ticks)
5039{
5040 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5041}
5042
79741dd3
MS
5043#endif
5044
49048622
BS
5045/*
5046 * Use precise platform statistics if available:
5047 */
5048#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5049cputime_t task_utime(struct task_struct *p)
5050{
5051 return p->utime;
5052}
5053
5054cputime_t task_stime(struct task_struct *p)
5055{
5056 return p->stime;
5057}
5058#else
5059cputime_t task_utime(struct task_struct *p)
5060{
5061 clock_t utime = cputime_to_clock_t(p->utime),
5062 total = utime + cputime_to_clock_t(p->stime);
5063 u64 temp;
5064
5065 /*
5066 * Use CFS's precise accounting:
5067 */
5068 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5069
5070 if (total) {
5071 temp *= utime;
5072 do_div(temp, total);
5073 }
5074 utime = (clock_t)temp;
5075
5076 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5077 return p->prev_utime;
5078}
5079
5080cputime_t task_stime(struct task_struct *p)
5081{
5082 clock_t stime;
5083
5084 /*
5085 * Use CFS's precise accounting. (we subtract utime from
5086 * the total, to make sure the total observed by userspace
5087 * grows monotonically - apps rely on that):
5088 */
5089 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5090 cputime_to_clock_t(task_utime(p));
5091
5092 if (stime >= 0)
5093 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5094
5095 return p->prev_stime;
5096}
5097#endif
5098
5099inline cputime_t task_gtime(struct task_struct *p)
5100{
5101 return p->gtime;
5102}
5103
7835b98b
CL
5104/*
5105 * This function gets called by the timer code, with HZ frequency.
5106 * We call it with interrupts disabled.
5107 *
5108 * It also gets called by the fork code, when changing the parent's
5109 * timeslices.
5110 */
5111void scheduler_tick(void)
5112{
7835b98b
CL
5113 int cpu = smp_processor_id();
5114 struct rq *rq = cpu_rq(cpu);
dd41f596 5115 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5116
5117 sched_clock_tick();
dd41f596
IM
5118
5119 spin_lock(&rq->lock);
3e51f33f 5120 update_rq_clock(rq);
f1a438d8 5121 update_cpu_load(rq);
fa85ae24 5122 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5123 spin_unlock(&rq->lock);
7835b98b 5124
e220d2dc
PZ
5125 perf_counter_task_tick(curr, cpu);
5126
e418e1c2 5127#ifdef CONFIG_SMP
dd41f596
IM
5128 rq->idle_at_tick = idle_cpu(cpu);
5129 trigger_load_balance(rq, cpu);
e418e1c2 5130#endif
1da177e4
LT
5131}
5132
132380a0 5133notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5134{
5135 if (in_lock_functions(addr)) {
5136 addr = CALLER_ADDR2;
5137 if (in_lock_functions(addr))
5138 addr = CALLER_ADDR3;
5139 }
5140 return addr;
5141}
1da177e4 5142
7e49fcce
SR
5143#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5144 defined(CONFIG_PREEMPT_TRACER))
5145
43627582 5146void __kprobes add_preempt_count(int val)
1da177e4 5147{
6cd8a4bb 5148#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5149 /*
5150 * Underflow?
5151 */
9a11b49a
IM
5152 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5153 return;
6cd8a4bb 5154#endif
1da177e4 5155 preempt_count() += val;
6cd8a4bb 5156#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5157 /*
5158 * Spinlock count overflowing soon?
5159 */
33859f7f
MOS
5160 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5161 PREEMPT_MASK - 10);
6cd8a4bb
SR
5162#endif
5163 if (preempt_count() == val)
5164 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5165}
5166EXPORT_SYMBOL(add_preempt_count);
5167
43627582 5168void __kprobes sub_preempt_count(int val)
1da177e4 5169{
6cd8a4bb 5170#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5171 /*
5172 * Underflow?
5173 */
01e3eb82 5174 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5175 return;
1da177e4
LT
5176 /*
5177 * Is the spinlock portion underflowing?
5178 */
9a11b49a
IM
5179 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5180 !(preempt_count() & PREEMPT_MASK)))
5181 return;
6cd8a4bb 5182#endif
9a11b49a 5183
6cd8a4bb
SR
5184 if (preempt_count() == val)
5185 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5186 preempt_count() -= val;
5187}
5188EXPORT_SYMBOL(sub_preempt_count);
5189
5190#endif
5191
5192/*
dd41f596 5193 * Print scheduling while atomic bug:
1da177e4 5194 */
dd41f596 5195static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5196{
838225b4
SS
5197 struct pt_regs *regs = get_irq_regs();
5198
5199 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5200 prev->comm, prev->pid, preempt_count());
5201
dd41f596 5202 debug_show_held_locks(prev);
e21f5b15 5203 print_modules();
dd41f596
IM
5204 if (irqs_disabled())
5205 print_irqtrace_events(prev);
838225b4
SS
5206
5207 if (regs)
5208 show_regs(regs);
5209 else
5210 dump_stack();
dd41f596 5211}
1da177e4 5212
dd41f596
IM
5213/*
5214 * Various schedule()-time debugging checks and statistics:
5215 */
5216static inline void schedule_debug(struct task_struct *prev)
5217{
1da177e4 5218 /*
41a2d6cf 5219 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5220 * schedule() atomically, we ignore that path for now.
5221 * Otherwise, whine if we are scheduling when we should not be.
5222 */
3f33a7ce 5223 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5224 __schedule_bug(prev);
5225
1da177e4
LT
5226 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5227
2d72376b 5228 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5229#ifdef CONFIG_SCHEDSTATS
5230 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5231 schedstat_inc(this_rq(), bkl_count);
5232 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5233 }
5234#endif
dd41f596
IM
5235}
5236
df1c99d4
MG
5237static void put_prev_task(struct rq *rq, struct task_struct *prev)
5238{
5239 if (prev->state == TASK_RUNNING) {
5240 u64 runtime = prev->se.sum_exec_runtime;
5241
5242 runtime -= prev->se.prev_sum_exec_runtime;
5243 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5244
5245 /*
5246 * In order to avoid avg_overlap growing stale when we are
5247 * indeed overlapping and hence not getting put to sleep, grow
5248 * the avg_overlap on preemption.
5249 *
5250 * We use the average preemption runtime because that
5251 * correlates to the amount of cache footprint a task can
5252 * build up.
5253 */
5254 update_avg(&prev->se.avg_overlap, runtime);
5255 }
5256 prev->sched_class->put_prev_task(rq, prev);
5257}
5258
dd41f596
IM
5259/*
5260 * Pick up the highest-prio task:
5261 */
5262static inline struct task_struct *
b67802ea 5263pick_next_task(struct rq *rq)
dd41f596 5264{
5522d5d5 5265 const struct sched_class *class;
dd41f596 5266 struct task_struct *p;
1da177e4
LT
5267
5268 /*
dd41f596
IM
5269 * Optimization: we know that if all tasks are in
5270 * the fair class we can call that function directly:
1da177e4 5271 */
dd41f596 5272 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5273 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5274 if (likely(p))
5275 return p;
1da177e4
LT
5276 }
5277
dd41f596
IM
5278 class = sched_class_highest;
5279 for ( ; ; ) {
fb8d4724 5280 p = class->pick_next_task(rq);
dd41f596
IM
5281 if (p)
5282 return p;
5283 /*
5284 * Will never be NULL as the idle class always
5285 * returns a non-NULL p:
5286 */
5287 class = class->next;
5288 }
5289}
1da177e4 5290
dd41f596
IM
5291/*
5292 * schedule() is the main scheduler function.
5293 */
ff743345 5294asmlinkage void __sched schedule(void)
dd41f596
IM
5295{
5296 struct task_struct *prev, *next;
67ca7bde 5297 unsigned long *switch_count;
dd41f596 5298 struct rq *rq;
31656519 5299 int cpu;
dd41f596 5300
ff743345
PZ
5301need_resched:
5302 preempt_disable();
dd41f596
IM
5303 cpu = smp_processor_id();
5304 rq = cpu_rq(cpu);
5305 rcu_qsctr_inc(cpu);
5306 prev = rq->curr;
5307 switch_count = &prev->nivcsw;
5308
5309 release_kernel_lock(prev);
5310need_resched_nonpreemptible:
5311
5312 schedule_debug(prev);
1da177e4 5313
31656519 5314 if (sched_feat(HRTICK))
f333fdc9 5315 hrtick_clear(rq);
8f4d37ec 5316
8cd162ce 5317 spin_lock_irq(&rq->lock);
3e51f33f 5318 update_rq_clock(rq);
1e819950 5319 clear_tsk_need_resched(prev);
1da177e4 5320
1da177e4 5321 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5322 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5323 prev->state = TASK_RUNNING;
16882c1e 5324 else
2e1cb74a 5325 deactivate_task(rq, prev, 1);
dd41f596 5326 switch_count = &prev->nvcsw;
1da177e4
LT
5327 }
5328
9a897c5a
SR
5329#ifdef CONFIG_SMP
5330 if (prev->sched_class->pre_schedule)
5331 prev->sched_class->pre_schedule(rq, prev);
5332#endif
f65eda4f 5333
dd41f596 5334 if (unlikely(!rq->nr_running))
1da177e4 5335 idle_balance(cpu, rq);
1da177e4 5336
df1c99d4 5337 put_prev_task(rq, prev);
b67802ea 5338 next = pick_next_task(rq);
1da177e4 5339
1da177e4 5340 if (likely(prev != next)) {
673a90a1 5341 sched_info_switch(prev, next);
564c2b21 5342 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5343
1da177e4
LT
5344 rq->nr_switches++;
5345 rq->curr = next;
5346 ++*switch_count;
5347
dd41f596 5348 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5349 /*
5350 * the context switch might have flipped the stack from under
5351 * us, hence refresh the local variables.
5352 */
5353 cpu = smp_processor_id();
5354 rq = cpu_rq(cpu);
1da177e4
LT
5355 } else
5356 spin_unlock_irq(&rq->lock);
5357
8f4d37ec 5358 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5359 goto need_resched_nonpreemptible;
8f4d37ec 5360
1da177e4 5361 preempt_enable_no_resched();
ff743345 5362 if (need_resched())
1da177e4
LT
5363 goto need_resched;
5364}
1da177e4
LT
5365EXPORT_SYMBOL(schedule);
5366
0d66bf6d
PZ
5367#ifdef CONFIG_SMP
5368/*
5369 * Look out! "owner" is an entirely speculative pointer
5370 * access and not reliable.
5371 */
5372int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5373{
5374 unsigned int cpu;
5375 struct rq *rq;
5376
5377 if (!sched_feat(OWNER_SPIN))
5378 return 0;
5379
5380#ifdef CONFIG_DEBUG_PAGEALLOC
5381 /*
5382 * Need to access the cpu field knowing that
5383 * DEBUG_PAGEALLOC could have unmapped it if
5384 * the mutex owner just released it and exited.
5385 */
5386 if (probe_kernel_address(&owner->cpu, cpu))
5387 goto out;
5388#else
5389 cpu = owner->cpu;
5390#endif
5391
5392 /*
5393 * Even if the access succeeded (likely case),
5394 * the cpu field may no longer be valid.
5395 */
5396 if (cpu >= nr_cpumask_bits)
5397 goto out;
5398
5399 /*
5400 * We need to validate that we can do a
5401 * get_cpu() and that we have the percpu area.
5402 */
5403 if (!cpu_online(cpu))
5404 goto out;
5405
5406 rq = cpu_rq(cpu);
5407
5408 for (;;) {
5409 /*
5410 * Owner changed, break to re-assess state.
5411 */
5412 if (lock->owner != owner)
5413 break;
5414
5415 /*
5416 * Is that owner really running on that cpu?
5417 */
5418 if (task_thread_info(rq->curr) != owner || need_resched())
5419 return 0;
5420
5421 cpu_relax();
5422 }
5423out:
5424 return 1;
5425}
5426#endif
5427
1da177e4
LT
5428#ifdef CONFIG_PREEMPT
5429/*
2ed6e34f 5430 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5431 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5432 * occur there and call schedule directly.
5433 */
5434asmlinkage void __sched preempt_schedule(void)
5435{
5436 struct thread_info *ti = current_thread_info();
6478d880 5437
1da177e4
LT
5438 /*
5439 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5440 * we do not want to preempt the current task. Just return..
1da177e4 5441 */
beed33a8 5442 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5443 return;
5444
3a5c359a
AK
5445 do {
5446 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5447 schedule();
3a5c359a 5448 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5449
3a5c359a
AK
5450 /*
5451 * Check again in case we missed a preemption opportunity
5452 * between schedule and now.
5453 */
5454 barrier();
5ed0cec0 5455 } while (need_resched());
1da177e4 5456}
1da177e4
LT
5457EXPORT_SYMBOL(preempt_schedule);
5458
5459/*
2ed6e34f 5460 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5461 * off of irq context.
5462 * Note, that this is called and return with irqs disabled. This will
5463 * protect us against recursive calling from irq.
5464 */
5465asmlinkage void __sched preempt_schedule_irq(void)
5466{
5467 struct thread_info *ti = current_thread_info();
6478d880 5468
2ed6e34f 5469 /* Catch callers which need to be fixed */
1da177e4
LT
5470 BUG_ON(ti->preempt_count || !irqs_disabled());
5471
3a5c359a
AK
5472 do {
5473 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5474 local_irq_enable();
5475 schedule();
5476 local_irq_disable();
3a5c359a 5477 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5478
3a5c359a
AK
5479 /*
5480 * Check again in case we missed a preemption opportunity
5481 * between schedule and now.
5482 */
5483 barrier();
5ed0cec0 5484 } while (need_resched());
1da177e4
LT
5485}
5486
5487#endif /* CONFIG_PREEMPT */
5488
95cdf3b7
IM
5489int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5490 void *key)
1da177e4 5491{
48f24c4d 5492 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5493}
1da177e4
LT
5494EXPORT_SYMBOL(default_wake_function);
5495
5496/*
41a2d6cf
IM
5497 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5498 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5499 * number) then we wake all the non-exclusive tasks and one exclusive task.
5500 *
5501 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5502 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5503 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5504 */
78ddb08f 5505static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5506 int nr_exclusive, int sync, void *key)
1da177e4 5507{
2e45874c 5508 wait_queue_t *curr, *next;
1da177e4 5509
2e45874c 5510 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5511 unsigned flags = curr->flags;
5512
1da177e4 5513 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5514 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5515 break;
5516 }
5517}
5518
5519/**
5520 * __wake_up - wake up threads blocked on a waitqueue.
5521 * @q: the waitqueue
5522 * @mode: which threads
5523 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5524 * @key: is directly passed to the wakeup function
50fa610a
DH
5525 *
5526 * It may be assumed that this function implies a write memory barrier before
5527 * changing the task state if and only if any tasks are woken up.
1da177e4 5528 */
7ad5b3a5 5529void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5530 int nr_exclusive, void *key)
1da177e4
LT
5531{
5532 unsigned long flags;
5533
5534 spin_lock_irqsave(&q->lock, flags);
5535 __wake_up_common(q, mode, nr_exclusive, 0, key);
5536 spin_unlock_irqrestore(&q->lock, flags);
5537}
1da177e4
LT
5538EXPORT_SYMBOL(__wake_up);
5539
5540/*
5541 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5542 */
7ad5b3a5 5543void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5544{
5545 __wake_up_common(q, mode, 1, 0, NULL);
5546}
5547
4ede816a
DL
5548void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5549{
5550 __wake_up_common(q, mode, 1, 0, key);
5551}
5552
1da177e4 5553/**
4ede816a 5554 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5555 * @q: the waitqueue
5556 * @mode: which threads
5557 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5558 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5559 *
5560 * The sync wakeup differs that the waker knows that it will schedule
5561 * away soon, so while the target thread will be woken up, it will not
5562 * be migrated to another CPU - ie. the two threads are 'synchronized'
5563 * with each other. This can prevent needless bouncing between CPUs.
5564 *
5565 * On UP it can prevent extra preemption.
50fa610a
DH
5566 *
5567 * It may be assumed that this function implies a write memory barrier before
5568 * changing the task state if and only if any tasks are woken up.
1da177e4 5569 */
4ede816a
DL
5570void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5571 int nr_exclusive, void *key)
1da177e4
LT
5572{
5573 unsigned long flags;
5574 int sync = 1;
5575
5576 if (unlikely(!q))
5577 return;
5578
5579 if (unlikely(!nr_exclusive))
5580 sync = 0;
5581
5582 spin_lock_irqsave(&q->lock, flags);
4ede816a 5583 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5584 spin_unlock_irqrestore(&q->lock, flags);
5585}
4ede816a
DL
5586EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5587
5588/*
5589 * __wake_up_sync - see __wake_up_sync_key()
5590 */
5591void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5592{
5593 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5594}
1da177e4
LT
5595EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5596
65eb3dc6
KD
5597/**
5598 * complete: - signals a single thread waiting on this completion
5599 * @x: holds the state of this particular completion
5600 *
5601 * This will wake up a single thread waiting on this completion. Threads will be
5602 * awakened in the same order in which they were queued.
5603 *
5604 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5605 *
5606 * It may be assumed that this function implies a write memory barrier before
5607 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5608 */
b15136e9 5609void complete(struct completion *x)
1da177e4
LT
5610{
5611 unsigned long flags;
5612
5613 spin_lock_irqsave(&x->wait.lock, flags);
5614 x->done++;
d9514f6c 5615 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5616 spin_unlock_irqrestore(&x->wait.lock, flags);
5617}
5618EXPORT_SYMBOL(complete);
5619
65eb3dc6
KD
5620/**
5621 * complete_all: - signals all threads waiting on this completion
5622 * @x: holds the state of this particular completion
5623 *
5624 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5625 *
5626 * It may be assumed that this function implies a write memory barrier before
5627 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5628 */
b15136e9 5629void complete_all(struct completion *x)
1da177e4
LT
5630{
5631 unsigned long flags;
5632
5633 spin_lock_irqsave(&x->wait.lock, flags);
5634 x->done += UINT_MAX/2;
d9514f6c 5635 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5636 spin_unlock_irqrestore(&x->wait.lock, flags);
5637}
5638EXPORT_SYMBOL(complete_all);
5639
8cbbe86d
AK
5640static inline long __sched
5641do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5642{
1da177e4
LT
5643 if (!x->done) {
5644 DECLARE_WAITQUEUE(wait, current);
5645
5646 wait.flags |= WQ_FLAG_EXCLUSIVE;
5647 __add_wait_queue_tail(&x->wait, &wait);
5648 do {
94d3d824 5649 if (signal_pending_state(state, current)) {
ea71a546
ON
5650 timeout = -ERESTARTSYS;
5651 break;
8cbbe86d
AK
5652 }
5653 __set_current_state(state);
1da177e4
LT
5654 spin_unlock_irq(&x->wait.lock);
5655 timeout = schedule_timeout(timeout);
5656 spin_lock_irq(&x->wait.lock);
ea71a546 5657 } while (!x->done && timeout);
1da177e4 5658 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5659 if (!x->done)
5660 return timeout;
1da177e4
LT
5661 }
5662 x->done--;
ea71a546 5663 return timeout ?: 1;
1da177e4 5664}
1da177e4 5665
8cbbe86d
AK
5666static long __sched
5667wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5668{
1da177e4
LT
5669 might_sleep();
5670
5671 spin_lock_irq(&x->wait.lock);
8cbbe86d 5672 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5673 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5674 return timeout;
5675}
1da177e4 5676
65eb3dc6
KD
5677/**
5678 * wait_for_completion: - waits for completion of a task
5679 * @x: holds the state of this particular completion
5680 *
5681 * This waits to be signaled for completion of a specific task. It is NOT
5682 * interruptible and there is no timeout.
5683 *
5684 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5685 * and interrupt capability. Also see complete().
5686 */
b15136e9 5687void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5688{
5689 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5690}
8cbbe86d 5691EXPORT_SYMBOL(wait_for_completion);
1da177e4 5692
65eb3dc6
KD
5693/**
5694 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5695 * @x: holds the state of this particular completion
5696 * @timeout: timeout value in jiffies
5697 *
5698 * This waits for either a completion of a specific task to be signaled or for a
5699 * specified timeout to expire. The timeout is in jiffies. It is not
5700 * interruptible.
5701 */
b15136e9 5702unsigned long __sched
8cbbe86d 5703wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5704{
8cbbe86d 5705 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5706}
8cbbe86d 5707EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5708
65eb3dc6
KD
5709/**
5710 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5711 * @x: holds the state of this particular completion
5712 *
5713 * This waits for completion of a specific task to be signaled. It is
5714 * interruptible.
5715 */
8cbbe86d 5716int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5717{
51e97990
AK
5718 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5719 if (t == -ERESTARTSYS)
5720 return t;
5721 return 0;
0fec171c 5722}
8cbbe86d 5723EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5724
65eb3dc6
KD
5725/**
5726 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5727 * @x: holds the state of this particular completion
5728 * @timeout: timeout value in jiffies
5729 *
5730 * This waits for either a completion of a specific task to be signaled or for a
5731 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5732 */
b15136e9 5733unsigned long __sched
8cbbe86d
AK
5734wait_for_completion_interruptible_timeout(struct completion *x,
5735 unsigned long timeout)
0fec171c 5736{
8cbbe86d 5737 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5738}
8cbbe86d 5739EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5740
65eb3dc6
KD
5741/**
5742 * wait_for_completion_killable: - waits for completion of a task (killable)
5743 * @x: holds the state of this particular completion
5744 *
5745 * This waits to be signaled for completion of a specific task. It can be
5746 * interrupted by a kill signal.
5747 */
009e577e
MW
5748int __sched wait_for_completion_killable(struct completion *x)
5749{
5750 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5751 if (t == -ERESTARTSYS)
5752 return t;
5753 return 0;
5754}
5755EXPORT_SYMBOL(wait_for_completion_killable);
5756
be4de352
DC
5757/**
5758 * try_wait_for_completion - try to decrement a completion without blocking
5759 * @x: completion structure
5760 *
5761 * Returns: 0 if a decrement cannot be done without blocking
5762 * 1 if a decrement succeeded.
5763 *
5764 * If a completion is being used as a counting completion,
5765 * attempt to decrement the counter without blocking. This
5766 * enables us to avoid waiting if the resource the completion
5767 * is protecting is not available.
5768 */
5769bool try_wait_for_completion(struct completion *x)
5770{
5771 int ret = 1;
5772
5773 spin_lock_irq(&x->wait.lock);
5774 if (!x->done)
5775 ret = 0;
5776 else
5777 x->done--;
5778 spin_unlock_irq(&x->wait.lock);
5779 return ret;
5780}
5781EXPORT_SYMBOL(try_wait_for_completion);
5782
5783/**
5784 * completion_done - Test to see if a completion has any waiters
5785 * @x: completion structure
5786 *
5787 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5788 * 1 if there are no waiters.
5789 *
5790 */
5791bool completion_done(struct completion *x)
5792{
5793 int ret = 1;
5794
5795 spin_lock_irq(&x->wait.lock);
5796 if (!x->done)
5797 ret = 0;
5798 spin_unlock_irq(&x->wait.lock);
5799 return ret;
5800}
5801EXPORT_SYMBOL(completion_done);
5802
8cbbe86d
AK
5803static long __sched
5804sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5805{
0fec171c
IM
5806 unsigned long flags;
5807 wait_queue_t wait;
5808
5809 init_waitqueue_entry(&wait, current);
1da177e4 5810
8cbbe86d 5811 __set_current_state(state);
1da177e4 5812
8cbbe86d
AK
5813 spin_lock_irqsave(&q->lock, flags);
5814 __add_wait_queue(q, &wait);
5815 spin_unlock(&q->lock);
5816 timeout = schedule_timeout(timeout);
5817 spin_lock_irq(&q->lock);
5818 __remove_wait_queue(q, &wait);
5819 spin_unlock_irqrestore(&q->lock, flags);
5820
5821 return timeout;
5822}
5823
5824void __sched interruptible_sleep_on(wait_queue_head_t *q)
5825{
5826 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5827}
1da177e4
LT
5828EXPORT_SYMBOL(interruptible_sleep_on);
5829
0fec171c 5830long __sched
95cdf3b7 5831interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5832{
8cbbe86d 5833 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5834}
1da177e4
LT
5835EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5836
0fec171c 5837void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5838{
8cbbe86d 5839 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5840}
1da177e4
LT
5841EXPORT_SYMBOL(sleep_on);
5842
0fec171c 5843long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5844{
8cbbe86d 5845 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5846}
1da177e4
LT
5847EXPORT_SYMBOL(sleep_on_timeout);
5848
b29739f9
IM
5849#ifdef CONFIG_RT_MUTEXES
5850
5851/*
5852 * rt_mutex_setprio - set the current priority of a task
5853 * @p: task
5854 * @prio: prio value (kernel-internal form)
5855 *
5856 * This function changes the 'effective' priority of a task. It does
5857 * not touch ->normal_prio like __setscheduler().
5858 *
5859 * Used by the rt_mutex code to implement priority inheritance logic.
5860 */
36c8b586 5861void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5862{
5863 unsigned long flags;
83b699ed 5864 int oldprio, on_rq, running;
70b97a7f 5865 struct rq *rq;
cb469845 5866 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5867
5868 BUG_ON(prio < 0 || prio > MAX_PRIO);
5869
5870 rq = task_rq_lock(p, &flags);
a8e504d2 5871 update_rq_clock(rq);
b29739f9 5872
d5f9f942 5873 oldprio = p->prio;
dd41f596 5874 on_rq = p->se.on_rq;
051a1d1a 5875 running = task_current(rq, p);
0e1f3483 5876 if (on_rq)
69be72c1 5877 dequeue_task(rq, p, 0);
0e1f3483
HS
5878 if (running)
5879 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5880
5881 if (rt_prio(prio))
5882 p->sched_class = &rt_sched_class;
5883 else
5884 p->sched_class = &fair_sched_class;
5885
b29739f9
IM
5886 p->prio = prio;
5887
0e1f3483
HS
5888 if (running)
5889 p->sched_class->set_curr_task(rq);
dd41f596 5890 if (on_rq) {
8159f87e 5891 enqueue_task(rq, p, 0);
cb469845
SR
5892
5893 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5894 }
5895 task_rq_unlock(rq, &flags);
5896}
5897
5898#endif
5899
36c8b586 5900void set_user_nice(struct task_struct *p, long nice)
1da177e4 5901{
dd41f596 5902 int old_prio, delta, on_rq;
1da177e4 5903 unsigned long flags;
70b97a7f 5904 struct rq *rq;
1da177e4
LT
5905
5906 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5907 return;
5908 /*
5909 * We have to be careful, if called from sys_setpriority(),
5910 * the task might be in the middle of scheduling on another CPU.
5911 */
5912 rq = task_rq_lock(p, &flags);
a8e504d2 5913 update_rq_clock(rq);
1da177e4
LT
5914 /*
5915 * The RT priorities are set via sched_setscheduler(), but we still
5916 * allow the 'normal' nice value to be set - but as expected
5917 * it wont have any effect on scheduling until the task is
dd41f596 5918 * SCHED_FIFO/SCHED_RR:
1da177e4 5919 */
e05606d3 5920 if (task_has_rt_policy(p)) {
1da177e4
LT
5921 p->static_prio = NICE_TO_PRIO(nice);
5922 goto out_unlock;
5923 }
dd41f596 5924 on_rq = p->se.on_rq;
c09595f6 5925 if (on_rq)
69be72c1 5926 dequeue_task(rq, p, 0);
1da177e4 5927
1da177e4 5928 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5929 set_load_weight(p);
b29739f9
IM
5930 old_prio = p->prio;
5931 p->prio = effective_prio(p);
5932 delta = p->prio - old_prio;
1da177e4 5933
dd41f596 5934 if (on_rq) {
8159f87e 5935 enqueue_task(rq, p, 0);
1da177e4 5936 /*
d5f9f942
AM
5937 * If the task increased its priority or is running and
5938 * lowered its priority, then reschedule its CPU:
1da177e4 5939 */
d5f9f942 5940 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5941 resched_task(rq->curr);
5942 }
5943out_unlock:
5944 task_rq_unlock(rq, &flags);
5945}
1da177e4
LT
5946EXPORT_SYMBOL(set_user_nice);
5947
e43379f1
MM
5948/*
5949 * can_nice - check if a task can reduce its nice value
5950 * @p: task
5951 * @nice: nice value
5952 */
36c8b586 5953int can_nice(const struct task_struct *p, const int nice)
e43379f1 5954{
024f4747
MM
5955 /* convert nice value [19,-20] to rlimit style value [1,40] */
5956 int nice_rlim = 20 - nice;
48f24c4d 5957
e43379f1
MM
5958 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5959 capable(CAP_SYS_NICE));
5960}
5961
1da177e4
LT
5962#ifdef __ARCH_WANT_SYS_NICE
5963
5964/*
5965 * sys_nice - change the priority of the current process.
5966 * @increment: priority increment
5967 *
5968 * sys_setpriority is a more generic, but much slower function that
5969 * does similar things.
5970 */
5add95d4 5971SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5972{
48f24c4d 5973 long nice, retval;
1da177e4
LT
5974
5975 /*
5976 * Setpriority might change our priority at the same moment.
5977 * We don't have to worry. Conceptually one call occurs first
5978 * and we have a single winner.
5979 */
e43379f1
MM
5980 if (increment < -40)
5981 increment = -40;
1da177e4
LT
5982 if (increment > 40)
5983 increment = 40;
5984
2b8f836f 5985 nice = TASK_NICE(current) + increment;
1da177e4
LT
5986 if (nice < -20)
5987 nice = -20;
5988 if (nice > 19)
5989 nice = 19;
5990
e43379f1
MM
5991 if (increment < 0 && !can_nice(current, nice))
5992 return -EPERM;
5993
1da177e4
LT
5994 retval = security_task_setnice(current, nice);
5995 if (retval)
5996 return retval;
5997
5998 set_user_nice(current, nice);
5999 return 0;
6000}
6001
6002#endif
6003
6004/**
6005 * task_prio - return the priority value of a given task.
6006 * @p: the task in question.
6007 *
6008 * This is the priority value as seen by users in /proc.
6009 * RT tasks are offset by -200. Normal tasks are centered
6010 * around 0, value goes from -16 to +15.
6011 */
36c8b586 6012int task_prio(const struct task_struct *p)
1da177e4
LT
6013{
6014 return p->prio - MAX_RT_PRIO;
6015}
6016
6017/**
6018 * task_nice - return the nice value of a given task.
6019 * @p: the task in question.
6020 */
36c8b586 6021int task_nice(const struct task_struct *p)
1da177e4
LT
6022{
6023 return TASK_NICE(p);
6024}
150d8bed 6025EXPORT_SYMBOL(task_nice);
1da177e4
LT
6026
6027/**
6028 * idle_cpu - is a given cpu idle currently?
6029 * @cpu: the processor in question.
6030 */
6031int idle_cpu(int cpu)
6032{
6033 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6034}
6035
1da177e4
LT
6036/**
6037 * idle_task - return the idle task for a given cpu.
6038 * @cpu: the processor in question.
6039 */
36c8b586 6040struct task_struct *idle_task(int cpu)
1da177e4
LT
6041{
6042 return cpu_rq(cpu)->idle;
6043}
6044
6045/**
6046 * find_process_by_pid - find a process with a matching PID value.
6047 * @pid: the pid in question.
6048 */
a9957449 6049static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6050{
228ebcbe 6051 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6052}
6053
6054/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6055static void
6056__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6057{
dd41f596 6058 BUG_ON(p->se.on_rq);
48f24c4d 6059
1da177e4 6060 p->policy = policy;
dd41f596
IM
6061 switch (p->policy) {
6062 case SCHED_NORMAL:
6063 case SCHED_BATCH:
6064 case SCHED_IDLE:
6065 p->sched_class = &fair_sched_class;
6066 break;
6067 case SCHED_FIFO:
6068 case SCHED_RR:
6069 p->sched_class = &rt_sched_class;
6070 break;
6071 }
6072
1da177e4 6073 p->rt_priority = prio;
b29739f9
IM
6074 p->normal_prio = normal_prio(p);
6075 /* we are holding p->pi_lock already */
6076 p->prio = rt_mutex_getprio(p);
2dd73a4f 6077 set_load_weight(p);
1da177e4
LT
6078}
6079
c69e8d9c
DH
6080/*
6081 * check the target process has a UID that matches the current process's
6082 */
6083static bool check_same_owner(struct task_struct *p)
6084{
6085 const struct cred *cred = current_cred(), *pcred;
6086 bool match;
6087
6088 rcu_read_lock();
6089 pcred = __task_cred(p);
6090 match = (cred->euid == pcred->euid ||
6091 cred->euid == pcred->uid);
6092 rcu_read_unlock();
6093 return match;
6094}
6095
961ccddd
RR
6096static int __sched_setscheduler(struct task_struct *p, int policy,
6097 struct sched_param *param, bool user)
1da177e4 6098{
83b699ed 6099 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6100 unsigned long flags;
cb469845 6101 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6102 struct rq *rq;
1da177e4 6103
66e5393a
SR
6104 /* may grab non-irq protected spin_locks */
6105 BUG_ON(in_interrupt());
1da177e4
LT
6106recheck:
6107 /* double check policy once rq lock held */
6108 if (policy < 0)
6109 policy = oldpolicy = p->policy;
6110 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
6111 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6112 policy != SCHED_IDLE)
b0a9499c 6113 return -EINVAL;
1da177e4
LT
6114 /*
6115 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6116 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6117 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6118 */
6119 if (param->sched_priority < 0 ||
95cdf3b7 6120 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6121 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6122 return -EINVAL;
e05606d3 6123 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6124 return -EINVAL;
6125
37e4ab3f
OC
6126 /*
6127 * Allow unprivileged RT tasks to decrease priority:
6128 */
961ccddd 6129 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6130 if (rt_policy(policy)) {
8dc3e909 6131 unsigned long rlim_rtprio;
8dc3e909
ON
6132
6133 if (!lock_task_sighand(p, &flags))
6134 return -ESRCH;
6135 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6136 unlock_task_sighand(p, &flags);
6137
6138 /* can't set/change the rt policy */
6139 if (policy != p->policy && !rlim_rtprio)
6140 return -EPERM;
6141
6142 /* can't increase priority */
6143 if (param->sched_priority > p->rt_priority &&
6144 param->sched_priority > rlim_rtprio)
6145 return -EPERM;
6146 }
dd41f596
IM
6147 /*
6148 * Like positive nice levels, dont allow tasks to
6149 * move out of SCHED_IDLE either:
6150 */
6151 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6152 return -EPERM;
5fe1d75f 6153
37e4ab3f 6154 /* can't change other user's priorities */
c69e8d9c 6155 if (!check_same_owner(p))
37e4ab3f
OC
6156 return -EPERM;
6157 }
1da177e4 6158
725aad24 6159 if (user) {
b68aa230 6160#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6161 /*
6162 * Do not allow realtime tasks into groups that have no runtime
6163 * assigned.
6164 */
9a7e0b18
PZ
6165 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6166 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6167 return -EPERM;
b68aa230
PZ
6168#endif
6169
725aad24
JF
6170 retval = security_task_setscheduler(p, policy, param);
6171 if (retval)
6172 return retval;
6173 }
6174
b29739f9
IM
6175 /*
6176 * make sure no PI-waiters arrive (or leave) while we are
6177 * changing the priority of the task:
6178 */
6179 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6180 /*
6181 * To be able to change p->policy safely, the apropriate
6182 * runqueue lock must be held.
6183 */
b29739f9 6184 rq = __task_rq_lock(p);
1da177e4
LT
6185 /* recheck policy now with rq lock held */
6186 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6187 policy = oldpolicy = -1;
b29739f9
IM
6188 __task_rq_unlock(rq);
6189 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6190 goto recheck;
6191 }
2daa3577 6192 update_rq_clock(rq);
dd41f596 6193 on_rq = p->se.on_rq;
051a1d1a 6194 running = task_current(rq, p);
0e1f3483 6195 if (on_rq)
2e1cb74a 6196 deactivate_task(rq, p, 0);
0e1f3483
HS
6197 if (running)
6198 p->sched_class->put_prev_task(rq, p);
f6b53205 6199
1da177e4 6200 oldprio = p->prio;
dd41f596 6201 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6202
0e1f3483
HS
6203 if (running)
6204 p->sched_class->set_curr_task(rq);
dd41f596
IM
6205 if (on_rq) {
6206 activate_task(rq, p, 0);
cb469845
SR
6207
6208 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6209 }
b29739f9
IM
6210 __task_rq_unlock(rq);
6211 spin_unlock_irqrestore(&p->pi_lock, flags);
6212
95e02ca9
TG
6213 rt_mutex_adjust_pi(p);
6214
1da177e4
LT
6215 return 0;
6216}
961ccddd
RR
6217
6218/**
6219 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6220 * @p: the task in question.
6221 * @policy: new policy.
6222 * @param: structure containing the new RT priority.
6223 *
6224 * NOTE that the task may be already dead.
6225 */
6226int sched_setscheduler(struct task_struct *p, int policy,
6227 struct sched_param *param)
6228{
6229 return __sched_setscheduler(p, policy, param, true);
6230}
1da177e4
LT
6231EXPORT_SYMBOL_GPL(sched_setscheduler);
6232
961ccddd
RR
6233/**
6234 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6235 * @p: the task in question.
6236 * @policy: new policy.
6237 * @param: structure containing the new RT priority.
6238 *
6239 * Just like sched_setscheduler, only don't bother checking if the
6240 * current context has permission. For example, this is needed in
6241 * stop_machine(): we create temporary high priority worker threads,
6242 * but our caller might not have that capability.
6243 */
6244int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6245 struct sched_param *param)
6246{
6247 return __sched_setscheduler(p, policy, param, false);
6248}
6249
95cdf3b7
IM
6250static int
6251do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6252{
1da177e4
LT
6253 struct sched_param lparam;
6254 struct task_struct *p;
36c8b586 6255 int retval;
1da177e4
LT
6256
6257 if (!param || pid < 0)
6258 return -EINVAL;
6259 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6260 return -EFAULT;
5fe1d75f
ON
6261
6262 rcu_read_lock();
6263 retval = -ESRCH;
1da177e4 6264 p = find_process_by_pid(pid);
5fe1d75f
ON
6265 if (p != NULL)
6266 retval = sched_setscheduler(p, policy, &lparam);
6267 rcu_read_unlock();
36c8b586 6268
1da177e4
LT
6269 return retval;
6270}
6271
6272/**
6273 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6274 * @pid: the pid in question.
6275 * @policy: new policy.
6276 * @param: structure containing the new RT priority.
6277 */
5add95d4
HC
6278SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6279 struct sched_param __user *, param)
1da177e4 6280{
c21761f1
JB
6281 /* negative values for policy are not valid */
6282 if (policy < 0)
6283 return -EINVAL;
6284
1da177e4
LT
6285 return do_sched_setscheduler(pid, policy, param);
6286}
6287
6288/**
6289 * sys_sched_setparam - set/change the RT priority of a thread
6290 * @pid: the pid in question.
6291 * @param: structure containing the new RT priority.
6292 */
5add95d4 6293SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6294{
6295 return do_sched_setscheduler(pid, -1, param);
6296}
6297
6298/**
6299 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6300 * @pid: the pid in question.
6301 */
5add95d4 6302SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6303{
36c8b586 6304 struct task_struct *p;
3a5c359a 6305 int retval;
1da177e4
LT
6306
6307 if (pid < 0)
3a5c359a 6308 return -EINVAL;
1da177e4
LT
6309
6310 retval = -ESRCH;
6311 read_lock(&tasklist_lock);
6312 p = find_process_by_pid(pid);
6313 if (p) {
6314 retval = security_task_getscheduler(p);
6315 if (!retval)
6316 retval = p->policy;
6317 }
6318 read_unlock(&tasklist_lock);
1da177e4
LT
6319 return retval;
6320}
6321
6322/**
6323 * sys_sched_getscheduler - get the RT priority of a thread
6324 * @pid: the pid in question.
6325 * @param: structure containing the RT priority.
6326 */
5add95d4 6327SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6328{
6329 struct sched_param lp;
36c8b586 6330 struct task_struct *p;
3a5c359a 6331 int retval;
1da177e4
LT
6332
6333 if (!param || pid < 0)
3a5c359a 6334 return -EINVAL;
1da177e4
LT
6335
6336 read_lock(&tasklist_lock);
6337 p = find_process_by_pid(pid);
6338 retval = -ESRCH;
6339 if (!p)
6340 goto out_unlock;
6341
6342 retval = security_task_getscheduler(p);
6343 if (retval)
6344 goto out_unlock;
6345
6346 lp.sched_priority = p->rt_priority;
6347 read_unlock(&tasklist_lock);
6348
6349 /*
6350 * This one might sleep, we cannot do it with a spinlock held ...
6351 */
6352 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6353
1da177e4
LT
6354 return retval;
6355
6356out_unlock:
6357 read_unlock(&tasklist_lock);
6358 return retval;
6359}
6360
96f874e2 6361long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6362{
5a16f3d3 6363 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6364 struct task_struct *p;
6365 int retval;
1da177e4 6366
95402b38 6367 get_online_cpus();
1da177e4
LT
6368 read_lock(&tasklist_lock);
6369
6370 p = find_process_by_pid(pid);
6371 if (!p) {
6372 read_unlock(&tasklist_lock);
95402b38 6373 put_online_cpus();
1da177e4
LT
6374 return -ESRCH;
6375 }
6376
6377 /*
6378 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6379 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6380 * usage count and then drop tasklist_lock.
6381 */
6382 get_task_struct(p);
6383 read_unlock(&tasklist_lock);
6384
5a16f3d3
RR
6385 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6386 retval = -ENOMEM;
6387 goto out_put_task;
6388 }
6389 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6390 retval = -ENOMEM;
6391 goto out_free_cpus_allowed;
6392 }
1da177e4 6393 retval = -EPERM;
c69e8d9c 6394 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6395 goto out_unlock;
6396
e7834f8f
DQ
6397 retval = security_task_setscheduler(p, 0, NULL);
6398 if (retval)
6399 goto out_unlock;
6400
5a16f3d3
RR
6401 cpuset_cpus_allowed(p, cpus_allowed);
6402 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6403 again:
5a16f3d3 6404 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6405
8707d8b8 6406 if (!retval) {
5a16f3d3
RR
6407 cpuset_cpus_allowed(p, cpus_allowed);
6408 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6409 /*
6410 * We must have raced with a concurrent cpuset
6411 * update. Just reset the cpus_allowed to the
6412 * cpuset's cpus_allowed
6413 */
5a16f3d3 6414 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6415 goto again;
6416 }
6417 }
1da177e4 6418out_unlock:
5a16f3d3
RR
6419 free_cpumask_var(new_mask);
6420out_free_cpus_allowed:
6421 free_cpumask_var(cpus_allowed);
6422out_put_task:
1da177e4 6423 put_task_struct(p);
95402b38 6424 put_online_cpus();
1da177e4
LT
6425 return retval;
6426}
6427
6428static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6429 struct cpumask *new_mask)
1da177e4 6430{
96f874e2
RR
6431 if (len < cpumask_size())
6432 cpumask_clear(new_mask);
6433 else if (len > cpumask_size())
6434 len = cpumask_size();
6435
1da177e4
LT
6436 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6437}
6438
6439/**
6440 * sys_sched_setaffinity - set the cpu affinity of a process
6441 * @pid: pid of the process
6442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6443 * @user_mask_ptr: user-space pointer to the new cpu mask
6444 */
5add95d4
HC
6445SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6446 unsigned long __user *, user_mask_ptr)
1da177e4 6447{
5a16f3d3 6448 cpumask_var_t new_mask;
1da177e4
LT
6449 int retval;
6450
5a16f3d3
RR
6451 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6452 return -ENOMEM;
1da177e4 6453
5a16f3d3
RR
6454 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6455 if (retval == 0)
6456 retval = sched_setaffinity(pid, new_mask);
6457 free_cpumask_var(new_mask);
6458 return retval;
1da177e4
LT
6459}
6460
96f874e2 6461long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6462{
36c8b586 6463 struct task_struct *p;
1da177e4 6464 int retval;
1da177e4 6465
95402b38 6466 get_online_cpus();
1da177e4
LT
6467 read_lock(&tasklist_lock);
6468
6469 retval = -ESRCH;
6470 p = find_process_by_pid(pid);
6471 if (!p)
6472 goto out_unlock;
6473
e7834f8f
DQ
6474 retval = security_task_getscheduler(p);
6475 if (retval)
6476 goto out_unlock;
6477
96f874e2 6478 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6479
6480out_unlock:
6481 read_unlock(&tasklist_lock);
95402b38 6482 put_online_cpus();
1da177e4 6483
9531b62f 6484 return retval;
1da177e4
LT
6485}
6486
6487/**
6488 * sys_sched_getaffinity - get the cpu affinity of a process
6489 * @pid: pid of the process
6490 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6491 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6492 */
5add95d4
HC
6493SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6494 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6495{
6496 int ret;
f17c8607 6497 cpumask_var_t mask;
1da177e4 6498
f17c8607 6499 if (len < cpumask_size())
1da177e4
LT
6500 return -EINVAL;
6501
f17c8607
RR
6502 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6503 return -ENOMEM;
1da177e4 6504
f17c8607
RR
6505 ret = sched_getaffinity(pid, mask);
6506 if (ret == 0) {
6507 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6508 ret = -EFAULT;
6509 else
6510 ret = cpumask_size();
6511 }
6512 free_cpumask_var(mask);
1da177e4 6513
f17c8607 6514 return ret;
1da177e4
LT
6515}
6516
6517/**
6518 * sys_sched_yield - yield the current processor to other threads.
6519 *
dd41f596
IM
6520 * This function yields the current CPU to other tasks. If there are no
6521 * other threads running on this CPU then this function will return.
1da177e4 6522 */
5add95d4 6523SYSCALL_DEFINE0(sched_yield)
1da177e4 6524{
70b97a7f 6525 struct rq *rq = this_rq_lock();
1da177e4 6526
2d72376b 6527 schedstat_inc(rq, yld_count);
4530d7ab 6528 current->sched_class->yield_task(rq);
1da177e4
LT
6529
6530 /*
6531 * Since we are going to call schedule() anyway, there's
6532 * no need to preempt or enable interrupts:
6533 */
6534 __release(rq->lock);
8a25d5de 6535 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6536 _raw_spin_unlock(&rq->lock);
6537 preempt_enable_no_resched();
6538
6539 schedule();
6540
6541 return 0;
6542}
6543
e7b38404 6544static void __cond_resched(void)
1da177e4 6545{
8e0a43d8
IM
6546#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6547 __might_sleep(__FILE__, __LINE__);
6548#endif
5bbcfd90
IM
6549 /*
6550 * The BKS might be reacquired before we have dropped
6551 * PREEMPT_ACTIVE, which could trigger a second
6552 * cond_resched() call.
6553 */
1da177e4
LT
6554 do {
6555 add_preempt_count(PREEMPT_ACTIVE);
6556 schedule();
6557 sub_preempt_count(PREEMPT_ACTIVE);
6558 } while (need_resched());
6559}
6560
02b67cc3 6561int __sched _cond_resched(void)
1da177e4 6562{
9414232f
IM
6563 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6564 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6565 __cond_resched();
6566 return 1;
6567 }
6568 return 0;
6569}
02b67cc3 6570EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6571
6572/*
6573 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6574 * call schedule, and on return reacquire the lock.
6575 *
41a2d6cf 6576 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6577 * operations here to prevent schedule() from being called twice (once via
6578 * spin_unlock(), once by hand).
6579 */
95cdf3b7 6580int cond_resched_lock(spinlock_t *lock)
1da177e4 6581{
95c354fe 6582 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6583 int ret = 0;
6584
95c354fe 6585 if (spin_needbreak(lock) || resched) {
1da177e4 6586 spin_unlock(lock);
95c354fe
NP
6587 if (resched && need_resched())
6588 __cond_resched();
6589 else
6590 cpu_relax();
6df3cecb 6591 ret = 1;
1da177e4 6592 spin_lock(lock);
1da177e4 6593 }
6df3cecb 6594 return ret;
1da177e4 6595}
1da177e4
LT
6596EXPORT_SYMBOL(cond_resched_lock);
6597
6598int __sched cond_resched_softirq(void)
6599{
6600 BUG_ON(!in_softirq());
6601
9414232f 6602 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6603 local_bh_enable();
1da177e4
LT
6604 __cond_resched();
6605 local_bh_disable();
6606 return 1;
6607 }
6608 return 0;
6609}
1da177e4
LT
6610EXPORT_SYMBOL(cond_resched_softirq);
6611
1da177e4
LT
6612/**
6613 * yield - yield the current processor to other threads.
6614 *
72fd4a35 6615 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6616 * thread runnable and calls sys_sched_yield().
6617 */
6618void __sched yield(void)
6619{
6620 set_current_state(TASK_RUNNING);
6621 sys_sched_yield();
6622}
1da177e4
LT
6623EXPORT_SYMBOL(yield);
6624
6625/*
41a2d6cf 6626 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6627 * that process accounting knows that this is a task in IO wait state.
6628 *
6629 * But don't do that if it is a deliberate, throttling IO wait (this task
6630 * has set its backing_dev_info: the queue against which it should throttle)
6631 */
6632void __sched io_schedule(void)
6633{
70b97a7f 6634 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6635
0ff92245 6636 delayacct_blkio_start();
1da177e4
LT
6637 atomic_inc(&rq->nr_iowait);
6638 schedule();
6639 atomic_dec(&rq->nr_iowait);
0ff92245 6640 delayacct_blkio_end();
1da177e4 6641}
1da177e4
LT
6642EXPORT_SYMBOL(io_schedule);
6643
6644long __sched io_schedule_timeout(long timeout)
6645{
70b97a7f 6646 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6647 long ret;
6648
0ff92245 6649 delayacct_blkio_start();
1da177e4
LT
6650 atomic_inc(&rq->nr_iowait);
6651 ret = schedule_timeout(timeout);
6652 atomic_dec(&rq->nr_iowait);
0ff92245 6653 delayacct_blkio_end();
1da177e4
LT
6654 return ret;
6655}
6656
6657/**
6658 * sys_sched_get_priority_max - return maximum RT priority.
6659 * @policy: scheduling class.
6660 *
6661 * this syscall returns the maximum rt_priority that can be used
6662 * by a given scheduling class.
6663 */
5add95d4 6664SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6665{
6666 int ret = -EINVAL;
6667
6668 switch (policy) {
6669 case SCHED_FIFO:
6670 case SCHED_RR:
6671 ret = MAX_USER_RT_PRIO-1;
6672 break;
6673 case SCHED_NORMAL:
b0a9499c 6674 case SCHED_BATCH:
dd41f596 6675 case SCHED_IDLE:
1da177e4
LT
6676 ret = 0;
6677 break;
6678 }
6679 return ret;
6680}
6681
6682/**
6683 * sys_sched_get_priority_min - return minimum RT priority.
6684 * @policy: scheduling class.
6685 *
6686 * this syscall returns the minimum rt_priority that can be used
6687 * by a given scheduling class.
6688 */
5add95d4 6689SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6690{
6691 int ret = -EINVAL;
6692
6693 switch (policy) {
6694 case SCHED_FIFO:
6695 case SCHED_RR:
6696 ret = 1;
6697 break;
6698 case SCHED_NORMAL:
b0a9499c 6699 case SCHED_BATCH:
dd41f596 6700 case SCHED_IDLE:
1da177e4
LT
6701 ret = 0;
6702 }
6703 return ret;
6704}
6705
6706/**
6707 * sys_sched_rr_get_interval - return the default timeslice of a process.
6708 * @pid: pid of the process.
6709 * @interval: userspace pointer to the timeslice value.
6710 *
6711 * this syscall writes the default timeslice value of a given process
6712 * into the user-space timespec buffer. A value of '0' means infinity.
6713 */
17da2bd9 6714SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6715 struct timespec __user *, interval)
1da177e4 6716{
36c8b586 6717 struct task_struct *p;
a4ec24b4 6718 unsigned int time_slice;
3a5c359a 6719 int retval;
1da177e4 6720 struct timespec t;
1da177e4
LT
6721
6722 if (pid < 0)
3a5c359a 6723 return -EINVAL;
1da177e4
LT
6724
6725 retval = -ESRCH;
6726 read_lock(&tasklist_lock);
6727 p = find_process_by_pid(pid);
6728 if (!p)
6729 goto out_unlock;
6730
6731 retval = security_task_getscheduler(p);
6732 if (retval)
6733 goto out_unlock;
6734
77034937
IM
6735 /*
6736 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6737 * tasks that are on an otherwise idle runqueue:
6738 */
6739 time_slice = 0;
6740 if (p->policy == SCHED_RR) {
a4ec24b4 6741 time_slice = DEF_TIMESLICE;
1868f958 6742 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6743 struct sched_entity *se = &p->se;
6744 unsigned long flags;
6745 struct rq *rq;
6746
6747 rq = task_rq_lock(p, &flags);
77034937
IM
6748 if (rq->cfs.load.weight)
6749 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6750 task_rq_unlock(rq, &flags);
6751 }
1da177e4 6752 read_unlock(&tasklist_lock);
a4ec24b4 6753 jiffies_to_timespec(time_slice, &t);
1da177e4 6754 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6755 return retval;
3a5c359a 6756
1da177e4
LT
6757out_unlock:
6758 read_unlock(&tasklist_lock);
6759 return retval;
6760}
6761
7c731e0a 6762static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6763
82a1fcb9 6764void sched_show_task(struct task_struct *p)
1da177e4 6765{
1da177e4 6766 unsigned long free = 0;
36c8b586 6767 unsigned state;
1da177e4 6768
1da177e4 6769 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6770 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6771 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6772#if BITS_PER_LONG == 32
1da177e4 6773 if (state == TASK_RUNNING)
cc4ea795 6774 printk(KERN_CONT " running ");
1da177e4 6775 else
cc4ea795 6776 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6777#else
6778 if (state == TASK_RUNNING)
cc4ea795 6779 printk(KERN_CONT " running task ");
1da177e4 6780 else
cc4ea795 6781 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6782#endif
6783#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6784 free = stack_not_used(p);
1da177e4 6785#endif
aa47b7e0
DR
6786 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6787 task_pid_nr(p), task_pid_nr(p->real_parent),
6788 (unsigned long)task_thread_info(p)->flags);
1da177e4 6789
5fb5e6de 6790 show_stack(p, NULL);
1da177e4
LT
6791}
6792
e59e2ae2 6793void show_state_filter(unsigned long state_filter)
1da177e4 6794{
36c8b586 6795 struct task_struct *g, *p;
1da177e4 6796
4bd77321
IM
6797#if BITS_PER_LONG == 32
6798 printk(KERN_INFO
6799 " task PC stack pid father\n");
1da177e4 6800#else
4bd77321
IM
6801 printk(KERN_INFO
6802 " task PC stack pid father\n");
1da177e4
LT
6803#endif
6804 read_lock(&tasklist_lock);
6805 do_each_thread(g, p) {
6806 /*
6807 * reset the NMI-timeout, listing all files on a slow
6808 * console might take alot of time:
6809 */
6810 touch_nmi_watchdog();
39bc89fd 6811 if (!state_filter || (p->state & state_filter))
82a1fcb9 6812 sched_show_task(p);
1da177e4
LT
6813 } while_each_thread(g, p);
6814
04c9167f
JF
6815 touch_all_softlockup_watchdogs();
6816
dd41f596
IM
6817#ifdef CONFIG_SCHED_DEBUG
6818 sysrq_sched_debug_show();
6819#endif
1da177e4 6820 read_unlock(&tasklist_lock);
e59e2ae2
IM
6821 /*
6822 * Only show locks if all tasks are dumped:
6823 */
6824 if (state_filter == -1)
6825 debug_show_all_locks();
1da177e4
LT
6826}
6827
1df21055
IM
6828void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6829{
dd41f596 6830 idle->sched_class = &idle_sched_class;
1df21055
IM
6831}
6832
f340c0d1
IM
6833/**
6834 * init_idle - set up an idle thread for a given CPU
6835 * @idle: task in question
6836 * @cpu: cpu the idle task belongs to
6837 *
6838 * NOTE: this function does not set the idle thread's NEED_RESCHED
6839 * flag, to make booting more robust.
6840 */
5c1e1767 6841void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6842{
70b97a7f 6843 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6844 unsigned long flags;
6845
5cbd54ef
IM
6846 spin_lock_irqsave(&rq->lock, flags);
6847
dd41f596
IM
6848 __sched_fork(idle);
6849 idle->se.exec_start = sched_clock();
6850
b29739f9 6851 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6852 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6853 __set_task_cpu(idle, cpu);
1da177e4 6854
1da177e4 6855 rq->curr = rq->idle = idle;
4866cde0
NP
6856#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6857 idle->oncpu = 1;
6858#endif
1da177e4
LT
6859 spin_unlock_irqrestore(&rq->lock, flags);
6860
6861 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6862#if defined(CONFIG_PREEMPT)
6863 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6864#else
a1261f54 6865 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6866#endif
dd41f596
IM
6867 /*
6868 * The idle tasks have their own, simple scheduling class:
6869 */
6870 idle->sched_class = &idle_sched_class;
fb52607a 6871 ftrace_graph_init_task(idle);
1da177e4
LT
6872}
6873
6874/*
6875 * In a system that switches off the HZ timer nohz_cpu_mask
6876 * indicates which cpus entered this state. This is used
6877 * in the rcu update to wait only for active cpus. For system
6878 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6879 * always be CPU_BITS_NONE.
1da177e4 6880 */
6a7b3dc3 6881cpumask_var_t nohz_cpu_mask;
1da177e4 6882
19978ca6
IM
6883/*
6884 * Increase the granularity value when there are more CPUs,
6885 * because with more CPUs the 'effective latency' as visible
6886 * to users decreases. But the relationship is not linear,
6887 * so pick a second-best guess by going with the log2 of the
6888 * number of CPUs.
6889 *
6890 * This idea comes from the SD scheduler of Con Kolivas:
6891 */
6892static inline void sched_init_granularity(void)
6893{
6894 unsigned int factor = 1 + ilog2(num_online_cpus());
6895 const unsigned long limit = 200000000;
6896
6897 sysctl_sched_min_granularity *= factor;
6898 if (sysctl_sched_min_granularity > limit)
6899 sysctl_sched_min_granularity = limit;
6900
6901 sysctl_sched_latency *= factor;
6902 if (sysctl_sched_latency > limit)
6903 sysctl_sched_latency = limit;
6904
6905 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6906
6907 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6908}
6909
1da177e4
LT
6910#ifdef CONFIG_SMP
6911/*
6912 * This is how migration works:
6913 *
70b97a7f 6914 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6915 * runqueue and wake up that CPU's migration thread.
6916 * 2) we down() the locked semaphore => thread blocks.
6917 * 3) migration thread wakes up (implicitly it forces the migrated
6918 * thread off the CPU)
6919 * 4) it gets the migration request and checks whether the migrated
6920 * task is still in the wrong runqueue.
6921 * 5) if it's in the wrong runqueue then the migration thread removes
6922 * it and puts it into the right queue.
6923 * 6) migration thread up()s the semaphore.
6924 * 7) we wake up and the migration is done.
6925 */
6926
6927/*
6928 * Change a given task's CPU affinity. Migrate the thread to a
6929 * proper CPU and schedule it away if the CPU it's executing on
6930 * is removed from the allowed bitmask.
6931 *
6932 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6933 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6934 * call is not atomic; no spinlocks may be held.
6935 */
96f874e2 6936int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6937{
70b97a7f 6938 struct migration_req req;
1da177e4 6939 unsigned long flags;
70b97a7f 6940 struct rq *rq;
48f24c4d 6941 int ret = 0;
1da177e4
LT
6942
6943 rq = task_rq_lock(p, &flags);
96f874e2 6944 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6945 ret = -EINVAL;
6946 goto out;
6947 }
6948
9985b0ba 6949 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6950 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6951 ret = -EINVAL;
6952 goto out;
6953 }
6954
73fe6aae 6955 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6956 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6957 else {
96f874e2
RR
6958 cpumask_copy(&p->cpus_allowed, new_mask);
6959 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6960 }
6961
1da177e4 6962 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6963 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6964 goto out;
6965
1e5ce4f4 6966 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6967 /* Need help from migration thread: drop lock and wait. */
6968 task_rq_unlock(rq, &flags);
6969 wake_up_process(rq->migration_thread);
6970 wait_for_completion(&req.done);
6971 tlb_migrate_finish(p->mm);
6972 return 0;
6973 }
6974out:
6975 task_rq_unlock(rq, &flags);
48f24c4d 6976
1da177e4
LT
6977 return ret;
6978}
cd8ba7cd 6979EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6980
6981/*
41a2d6cf 6982 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6983 * this because either it can't run here any more (set_cpus_allowed()
6984 * away from this CPU, or CPU going down), or because we're
6985 * attempting to rebalance this task on exec (sched_exec).
6986 *
6987 * So we race with normal scheduler movements, but that's OK, as long
6988 * as the task is no longer on this CPU.
efc30814
KK
6989 *
6990 * Returns non-zero if task was successfully migrated.
1da177e4 6991 */
efc30814 6992static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6993{
70b97a7f 6994 struct rq *rq_dest, *rq_src;
dd41f596 6995 int ret = 0, on_rq;
1da177e4 6996
e761b772 6997 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6998 return ret;
1da177e4
LT
6999
7000 rq_src = cpu_rq(src_cpu);
7001 rq_dest = cpu_rq(dest_cpu);
7002
7003 double_rq_lock(rq_src, rq_dest);
7004 /* Already moved. */
7005 if (task_cpu(p) != src_cpu)
b1e38734 7006 goto done;
1da177e4 7007 /* Affinity changed (again). */
96f874e2 7008 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7009 goto fail;
1da177e4 7010
dd41f596 7011 on_rq = p->se.on_rq;
6e82a3be 7012 if (on_rq)
2e1cb74a 7013 deactivate_task(rq_src, p, 0);
6e82a3be 7014
1da177e4 7015 set_task_cpu(p, dest_cpu);
dd41f596
IM
7016 if (on_rq) {
7017 activate_task(rq_dest, p, 0);
15afe09b 7018 check_preempt_curr(rq_dest, p, 0);
1da177e4 7019 }
b1e38734 7020done:
efc30814 7021 ret = 1;
b1e38734 7022fail:
1da177e4 7023 double_rq_unlock(rq_src, rq_dest);
efc30814 7024 return ret;
1da177e4
LT
7025}
7026
7027/*
7028 * migration_thread - this is a highprio system thread that performs
7029 * thread migration by bumping thread off CPU then 'pushing' onto
7030 * another runqueue.
7031 */
95cdf3b7 7032static int migration_thread(void *data)
1da177e4 7033{
1da177e4 7034 int cpu = (long)data;
70b97a7f 7035 struct rq *rq;
1da177e4
LT
7036
7037 rq = cpu_rq(cpu);
7038 BUG_ON(rq->migration_thread != current);
7039
7040 set_current_state(TASK_INTERRUPTIBLE);
7041 while (!kthread_should_stop()) {
70b97a7f 7042 struct migration_req *req;
1da177e4 7043 struct list_head *head;
1da177e4 7044
1da177e4
LT
7045 spin_lock_irq(&rq->lock);
7046
7047 if (cpu_is_offline(cpu)) {
7048 spin_unlock_irq(&rq->lock);
371cbb38 7049 break;
1da177e4
LT
7050 }
7051
7052 if (rq->active_balance) {
7053 active_load_balance(rq, cpu);
7054 rq->active_balance = 0;
7055 }
7056
7057 head = &rq->migration_queue;
7058
7059 if (list_empty(head)) {
7060 spin_unlock_irq(&rq->lock);
7061 schedule();
7062 set_current_state(TASK_INTERRUPTIBLE);
7063 continue;
7064 }
70b97a7f 7065 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7066 list_del_init(head->next);
7067
674311d5
NP
7068 spin_unlock(&rq->lock);
7069 __migrate_task(req->task, cpu, req->dest_cpu);
7070 local_irq_enable();
1da177e4
LT
7071
7072 complete(&req->done);
7073 }
7074 __set_current_state(TASK_RUNNING);
1da177e4 7075
1da177e4
LT
7076 return 0;
7077}
7078
7079#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7080
7081static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7082{
7083 int ret;
7084
7085 local_irq_disable();
7086 ret = __migrate_task(p, src_cpu, dest_cpu);
7087 local_irq_enable();
7088 return ret;
7089}
7090
054b9108 7091/*
3a4fa0a2 7092 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7093 */
48f24c4d 7094static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7095{
70b97a7f 7096 int dest_cpu;
6ca09dfc 7097 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7098
7099again:
7100 /* Look for allowed, online CPU in same node. */
7101 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7102 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7103 goto move;
7104
7105 /* Any allowed, online CPU? */
7106 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7107 if (dest_cpu < nr_cpu_ids)
7108 goto move;
7109
7110 /* No more Mr. Nice Guy. */
7111 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7112 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7113 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7114
e76bd8d9
RR
7115 /*
7116 * Don't tell them about moving exiting tasks or
7117 * kernel threads (both mm NULL), since they never
7118 * leave kernel.
7119 */
7120 if (p->mm && printk_ratelimit()) {
7121 printk(KERN_INFO "process %d (%s) no "
7122 "longer affine to cpu%d\n",
7123 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7124 }
e76bd8d9
RR
7125 }
7126
7127move:
7128 /* It can have affinity changed while we were choosing. */
7129 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7130 goto again;
1da177e4
LT
7131}
7132
7133/*
7134 * While a dead CPU has no uninterruptible tasks queued at this point,
7135 * it might still have a nonzero ->nr_uninterruptible counter, because
7136 * for performance reasons the counter is not stricly tracking tasks to
7137 * their home CPUs. So we just add the counter to another CPU's counter,
7138 * to keep the global sum constant after CPU-down:
7139 */
70b97a7f 7140static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7141{
1e5ce4f4 7142 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7143 unsigned long flags;
7144
7145 local_irq_save(flags);
7146 double_rq_lock(rq_src, rq_dest);
7147 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7148 rq_src->nr_uninterruptible = 0;
7149 double_rq_unlock(rq_src, rq_dest);
7150 local_irq_restore(flags);
7151}
7152
7153/* Run through task list and migrate tasks from the dead cpu. */
7154static void migrate_live_tasks(int src_cpu)
7155{
48f24c4d 7156 struct task_struct *p, *t;
1da177e4 7157
f7b4cddc 7158 read_lock(&tasklist_lock);
1da177e4 7159
48f24c4d
IM
7160 do_each_thread(t, p) {
7161 if (p == current)
1da177e4
LT
7162 continue;
7163
48f24c4d
IM
7164 if (task_cpu(p) == src_cpu)
7165 move_task_off_dead_cpu(src_cpu, p);
7166 } while_each_thread(t, p);
1da177e4 7167
f7b4cddc 7168 read_unlock(&tasklist_lock);
1da177e4
LT
7169}
7170
dd41f596
IM
7171/*
7172 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7173 * It does so by boosting its priority to highest possible.
7174 * Used by CPU offline code.
1da177e4
LT
7175 */
7176void sched_idle_next(void)
7177{
48f24c4d 7178 int this_cpu = smp_processor_id();
70b97a7f 7179 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7180 struct task_struct *p = rq->idle;
7181 unsigned long flags;
7182
7183 /* cpu has to be offline */
48f24c4d 7184 BUG_ON(cpu_online(this_cpu));
1da177e4 7185
48f24c4d
IM
7186 /*
7187 * Strictly not necessary since rest of the CPUs are stopped by now
7188 * and interrupts disabled on the current cpu.
1da177e4
LT
7189 */
7190 spin_lock_irqsave(&rq->lock, flags);
7191
dd41f596 7192 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7193
94bc9a7b
DA
7194 update_rq_clock(rq);
7195 activate_task(rq, p, 0);
1da177e4
LT
7196
7197 spin_unlock_irqrestore(&rq->lock, flags);
7198}
7199
48f24c4d
IM
7200/*
7201 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7202 * offline.
7203 */
7204void idle_task_exit(void)
7205{
7206 struct mm_struct *mm = current->active_mm;
7207
7208 BUG_ON(cpu_online(smp_processor_id()));
7209
7210 if (mm != &init_mm)
7211 switch_mm(mm, &init_mm, current);
7212 mmdrop(mm);
7213}
7214
054b9108 7215/* called under rq->lock with disabled interrupts */
36c8b586 7216static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7217{
70b97a7f 7218 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7219
7220 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7221 BUG_ON(!p->exit_state);
1da177e4
LT
7222
7223 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7224 BUG_ON(p->state == TASK_DEAD);
1da177e4 7225
48f24c4d 7226 get_task_struct(p);
1da177e4
LT
7227
7228 /*
7229 * Drop lock around migration; if someone else moves it,
41a2d6cf 7230 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7231 * fine.
7232 */
f7b4cddc 7233 spin_unlock_irq(&rq->lock);
48f24c4d 7234 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7235 spin_lock_irq(&rq->lock);
1da177e4 7236
48f24c4d 7237 put_task_struct(p);
1da177e4
LT
7238}
7239
7240/* release_task() removes task from tasklist, so we won't find dead tasks. */
7241static void migrate_dead_tasks(unsigned int dead_cpu)
7242{
70b97a7f 7243 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7244 struct task_struct *next;
48f24c4d 7245
dd41f596
IM
7246 for ( ; ; ) {
7247 if (!rq->nr_running)
7248 break;
a8e504d2 7249 update_rq_clock(rq);
b67802ea 7250 next = pick_next_task(rq);
dd41f596
IM
7251 if (!next)
7252 break;
79c53799 7253 next->sched_class->put_prev_task(rq, next);
dd41f596 7254 migrate_dead(dead_cpu, next);
e692ab53 7255
1da177e4
LT
7256 }
7257}
dce48a84
TG
7258
7259/*
7260 * remove the tasks which were accounted by rq from calc_load_tasks.
7261 */
7262static void calc_global_load_remove(struct rq *rq)
7263{
7264 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7265}
1da177e4
LT
7266#endif /* CONFIG_HOTPLUG_CPU */
7267
e692ab53
NP
7268#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7269
7270static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7271 {
7272 .procname = "sched_domain",
c57baf1e 7273 .mode = 0555,
e0361851 7274 },
38605cae 7275 {0, },
e692ab53
NP
7276};
7277
7278static struct ctl_table sd_ctl_root[] = {
e0361851 7279 {
c57baf1e 7280 .ctl_name = CTL_KERN,
e0361851 7281 .procname = "kernel",
c57baf1e 7282 .mode = 0555,
e0361851
AD
7283 .child = sd_ctl_dir,
7284 },
38605cae 7285 {0, },
e692ab53
NP
7286};
7287
7288static struct ctl_table *sd_alloc_ctl_entry(int n)
7289{
7290 struct ctl_table *entry =
5cf9f062 7291 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7292
e692ab53
NP
7293 return entry;
7294}
7295
6382bc90
MM
7296static void sd_free_ctl_entry(struct ctl_table **tablep)
7297{
cd790076 7298 struct ctl_table *entry;
6382bc90 7299
cd790076
MM
7300 /*
7301 * In the intermediate directories, both the child directory and
7302 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7303 * will always be set. In the lowest directory the names are
cd790076
MM
7304 * static strings and all have proc handlers.
7305 */
7306 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7307 if (entry->child)
7308 sd_free_ctl_entry(&entry->child);
cd790076
MM
7309 if (entry->proc_handler == NULL)
7310 kfree(entry->procname);
7311 }
6382bc90
MM
7312
7313 kfree(*tablep);
7314 *tablep = NULL;
7315}
7316
e692ab53 7317static void
e0361851 7318set_table_entry(struct ctl_table *entry,
e692ab53
NP
7319 const char *procname, void *data, int maxlen,
7320 mode_t mode, proc_handler *proc_handler)
7321{
e692ab53
NP
7322 entry->procname = procname;
7323 entry->data = data;
7324 entry->maxlen = maxlen;
7325 entry->mode = mode;
7326 entry->proc_handler = proc_handler;
7327}
7328
7329static struct ctl_table *
7330sd_alloc_ctl_domain_table(struct sched_domain *sd)
7331{
a5d8c348 7332 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7333
ad1cdc1d
MM
7334 if (table == NULL)
7335 return NULL;
7336
e0361851 7337 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7338 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7339 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7340 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7341 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7342 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7343 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7344 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7345 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7346 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7347 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7348 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7349 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7350 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7351 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7352 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7353 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7354 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7355 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7356 &sd->cache_nice_tries,
7357 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7358 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7359 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7360 set_table_entry(&table[11], "name", sd->name,
7361 CORENAME_MAX_SIZE, 0444, proc_dostring);
7362 /* &table[12] is terminator */
e692ab53
NP
7363
7364 return table;
7365}
7366
9a4e7159 7367static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7368{
7369 struct ctl_table *entry, *table;
7370 struct sched_domain *sd;
7371 int domain_num = 0, i;
7372 char buf[32];
7373
7374 for_each_domain(cpu, sd)
7375 domain_num++;
7376 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7377 if (table == NULL)
7378 return NULL;
e692ab53
NP
7379
7380 i = 0;
7381 for_each_domain(cpu, sd) {
7382 snprintf(buf, 32, "domain%d", i);
e692ab53 7383 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7384 entry->mode = 0555;
e692ab53
NP
7385 entry->child = sd_alloc_ctl_domain_table(sd);
7386 entry++;
7387 i++;
7388 }
7389 return table;
7390}
7391
7392static struct ctl_table_header *sd_sysctl_header;
6382bc90 7393static void register_sched_domain_sysctl(void)
e692ab53
NP
7394{
7395 int i, cpu_num = num_online_cpus();
7396 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7397 char buf[32];
7398
7378547f
MM
7399 WARN_ON(sd_ctl_dir[0].child);
7400 sd_ctl_dir[0].child = entry;
7401
ad1cdc1d
MM
7402 if (entry == NULL)
7403 return;
7404
97b6ea7b 7405 for_each_online_cpu(i) {
e692ab53 7406 snprintf(buf, 32, "cpu%d", i);
e692ab53 7407 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7408 entry->mode = 0555;
e692ab53 7409 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7410 entry++;
e692ab53 7411 }
7378547f
MM
7412
7413 WARN_ON(sd_sysctl_header);
e692ab53
NP
7414 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7415}
6382bc90 7416
7378547f 7417/* may be called multiple times per register */
6382bc90
MM
7418static void unregister_sched_domain_sysctl(void)
7419{
7378547f
MM
7420 if (sd_sysctl_header)
7421 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7422 sd_sysctl_header = NULL;
7378547f
MM
7423 if (sd_ctl_dir[0].child)
7424 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7425}
e692ab53 7426#else
6382bc90
MM
7427static void register_sched_domain_sysctl(void)
7428{
7429}
7430static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7431{
7432}
7433#endif
7434
1f11eb6a
GH
7435static void set_rq_online(struct rq *rq)
7436{
7437 if (!rq->online) {
7438 const struct sched_class *class;
7439
c6c4927b 7440 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7441 rq->online = 1;
7442
7443 for_each_class(class) {
7444 if (class->rq_online)
7445 class->rq_online(rq);
7446 }
7447 }
7448}
7449
7450static void set_rq_offline(struct rq *rq)
7451{
7452 if (rq->online) {
7453 const struct sched_class *class;
7454
7455 for_each_class(class) {
7456 if (class->rq_offline)
7457 class->rq_offline(rq);
7458 }
7459
c6c4927b 7460 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7461 rq->online = 0;
7462 }
7463}
7464
1da177e4
LT
7465/*
7466 * migration_call - callback that gets triggered when a CPU is added.
7467 * Here we can start up the necessary migration thread for the new CPU.
7468 */
48f24c4d
IM
7469static int __cpuinit
7470migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7471{
1da177e4 7472 struct task_struct *p;
48f24c4d 7473 int cpu = (long)hcpu;
1da177e4 7474 unsigned long flags;
70b97a7f 7475 struct rq *rq;
1da177e4
LT
7476
7477 switch (action) {
5be9361c 7478
1da177e4 7479 case CPU_UP_PREPARE:
8bb78442 7480 case CPU_UP_PREPARE_FROZEN:
dd41f596 7481 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7482 if (IS_ERR(p))
7483 return NOTIFY_BAD;
1da177e4
LT
7484 kthread_bind(p, cpu);
7485 /* Must be high prio: stop_machine expects to yield to it. */
7486 rq = task_rq_lock(p, &flags);
dd41f596 7487 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7488 task_rq_unlock(rq, &flags);
371cbb38 7489 get_task_struct(p);
1da177e4
LT
7490 cpu_rq(cpu)->migration_thread = p;
7491 break;
48f24c4d 7492
1da177e4 7493 case CPU_ONLINE:
8bb78442 7494 case CPU_ONLINE_FROZEN:
3a4fa0a2 7495 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7496 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7497
7498 /* Update our root-domain */
7499 rq = cpu_rq(cpu);
7500 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7501 rq->calc_load_update = calc_load_update;
7502 rq->calc_load_active = 0;
1f94ef59 7503 if (rq->rd) {
c6c4927b 7504 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7505
7506 set_rq_online(rq);
1f94ef59
GH
7507 }
7508 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7509 break;
48f24c4d 7510
1da177e4
LT
7511#ifdef CONFIG_HOTPLUG_CPU
7512 case CPU_UP_CANCELED:
8bb78442 7513 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7514 if (!cpu_rq(cpu)->migration_thread)
7515 break;
41a2d6cf 7516 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7517 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7518 cpumask_any(cpu_online_mask));
1da177e4 7519 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7520 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7521 cpu_rq(cpu)->migration_thread = NULL;
7522 break;
48f24c4d 7523
1da177e4 7524 case CPU_DEAD:
8bb78442 7525 case CPU_DEAD_FROZEN:
470fd646 7526 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7527 migrate_live_tasks(cpu);
7528 rq = cpu_rq(cpu);
7529 kthread_stop(rq->migration_thread);
371cbb38 7530 put_task_struct(rq->migration_thread);
1da177e4
LT
7531 rq->migration_thread = NULL;
7532 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7533 spin_lock_irq(&rq->lock);
a8e504d2 7534 update_rq_clock(rq);
2e1cb74a 7535 deactivate_task(rq, rq->idle, 0);
1da177e4 7536 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7537 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7538 rq->idle->sched_class = &idle_sched_class;
1da177e4 7539 migrate_dead_tasks(cpu);
d2da272a 7540 spin_unlock_irq(&rq->lock);
470fd646 7541 cpuset_unlock();
1da177e4
LT
7542 migrate_nr_uninterruptible(rq);
7543 BUG_ON(rq->nr_running != 0);
dce48a84 7544 calc_global_load_remove(rq);
41a2d6cf
IM
7545 /*
7546 * No need to migrate the tasks: it was best-effort if
7547 * they didn't take sched_hotcpu_mutex. Just wake up
7548 * the requestors.
7549 */
1da177e4
LT
7550 spin_lock_irq(&rq->lock);
7551 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7552 struct migration_req *req;
7553
1da177e4 7554 req = list_entry(rq->migration_queue.next,
70b97a7f 7555 struct migration_req, list);
1da177e4 7556 list_del_init(&req->list);
9a2bd244 7557 spin_unlock_irq(&rq->lock);
1da177e4 7558 complete(&req->done);
9a2bd244 7559 spin_lock_irq(&rq->lock);
1da177e4
LT
7560 }
7561 spin_unlock_irq(&rq->lock);
7562 break;
57d885fe 7563
08f503b0
GH
7564 case CPU_DYING:
7565 case CPU_DYING_FROZEN:
57d885fe
GH
7566 /* Update our root-domain */
7567 rq = cpu_rq(cpu);
7568 spin_lock_irqsave(&rq->lock, flags);
7569 if (rq->rd) {
c6c4927b 7570 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7571 set_rq_offline(rq);
57d885fe
GH
7572 }
7573 spin_unlock_irqrestore(&rq->lock, flags);
7574 break;
1da177e4
LT
7575#endif
7576 }
7577 return NOTIFY_OK;
7578}
7579
f38b0820
PM
7580/*
7581 * Register at high priority so that task migration (migrate_all_tasks)
7582 * happens before everything else. This has to be lower priority than
7583 * the notifier in the perf_counter subsystem, though.
1da177e4 7584 */
26c2143b 7585static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7586 .notifier_call = migration_call,
7587 .priority = 10
7588};
7589
7babe8db 7590static int __init migration_init(void)
1da177e4
LT
7591{
7592 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7593 int err;
48f24c4d
IM
7594
7595 /* Start one for the boot CPU: */
07dccf33
AM
7596 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7597 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7598 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7599 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7600
7601 return err;
1da177e4 7602}
7babe8db 7603early_initcall(migration_init);
1da177e4
LT
7604#endif
7605
7606#ifdef CONFIG_SMP
476f3534 7607
3e9830dc 7608#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7609
7c16ec58 7610static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7611 struct cpumask *groupmask)
1da177e4 7612{
4dcf6aff 7613 struct sched_group *group = sd->groups;
434d53b0 7614 char str[256];
1da177e4 7615
968ea6d8 7616 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7617 cpumask_clear(groupmask);
4dcf6aff
IM
7618
7619 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7620
7621 if (!(sd->flags & SD_LOAD_BALANCE)) {
7622 printk("does not load-balance\n");
7623 if (sd->parent)
7624 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7625 " has parent");
7626 return -1;
41c7ce9a
NP
7627 }
7628
eefd796a 7629 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7630
758b2cdc 7631 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7632 printk(KERN_ERR "ERROR: domain->span does not contain "
7633 "CPU%d\n", cpu);
7634 }
758b2cdc 7635 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7636 printk(KERN_ERR "ERROR: domain->groups does not contain"
7637 " CPU%d\n", cpu);
7638 }
1da177e4 7639
4dcf6aff 7640 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7641 do {
4dcf6aff
IM
7642 if (!group) {
7643 printk("\n");
7644 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7645 break;
7646 }
7647
4dcf6aff
IM
7648 if (!group->__cpu_power) {
7649 printk(KERN_CONT "\n");
7650 printk(KERN_ERR "ERROR: domain->cpu_power not "
7651 "set\n");
7652 break;
7653 }
1da177e4 7654
758b2cdc 7655 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7656 printk(KERN_CONT "\n");
7657 printk(KERN_ERR "ERROR: empty group\n");
7658 break;
7659 }
1da177e4 7660
758b2cdc 7661 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7662 printk(KERN_CONT "\n");
7663 printk(KERN_ERR "ERROR: repeated CPUs\n");
7664 break;
7665 }
1da177e4 7666
758b2cdc 7667 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7668
968ea6d8 7669 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7670
7671 printk(KERN_CONT " %s", str);
7672 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7673 printk(KERN_CONT " (__cpu_power = %d)",
7674 group->__cpu_power);
7675 }
1da177e4 7676
4dcf6aff
IM
7677 group = group->next;
7678 } while (group != sd->groups);
7679 printk(KERN_CONT "\n");
1da177e4 7680
758b2cdc 7681 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7682 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7683
758b2cdc
RR
7684 if (sd->parent &&
7685 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7686 printk(KERN_ERR "ERROR: parent span is not a superset "
7687 "of domain->span\n");
7688 return 0;
7689}
1da177e4 7690
4dcf6aff
IM
7691static void sched_domain_debug(struct sched_domain *sd, int cpu)
7692{
d5dd3db1 7693 cpumask_var_t groupmask;
4dcf6aff 7694 int level = 0;
1da177e4 7695
4dcf6aff
IM
7696 if (!sd) {
7697 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7698 return;
7699 }
1da177e4 7700
4dcf6aff
IM
7701 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7702
d5dd3db1 7703 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7704 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7705 return;
7706 }
7707
4dcf6aff 7708 for (;;) {
7c16ec58 7709 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7710 break;
1da177e4
LT
7711 level++;
7712 sd = sd->parent;
33859f7f 7713 if (!sd)
4dcf6aff
IM
7714 break;
7715 }
d5dd3db1 7716 free_cpumask_var(groupmask);
1da177e4 7717}
6d6bc0ad 7718#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7719# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7720#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7721
1a20ff27 7722static int sd_degenerate(struct sched_domain *sd)
245af2c7 7723{
758b2cdc 7724 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7725 return 1;
7726
7727 /* Following flags need at least 2 groups */
7728 if (sd->flags & (SD_LOAD_BALANCE |
7729 SD_BALANCE_NEWIDLE |
7730 SD_BALANCE_FORK |
89c4710e
SS
7731 SD_BALANCE_EXEC |
7732 SD_SHARE_CPUPOWER |
7733 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7734 if (sd->groups != sd->groups->next)
7735 return 0;
7736 }
7737
7738 /* Following flags don't use groups */
7739 if (sd->flags & (SD_WAKE_IDLE |
7740 SD_WAKE_AFFINE |
7741 SD_WAKE_BALANCE))
7742 return 0;
7743
7744 return 1;
7745}
7746
48f24c4d
IM
7747static int
7748sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7749{
7750 unsigned long cflags = sd->flags, pflags = parent->flags;
7751
7752 if (sd_degenerate(parent))
7753 return 1;
7754
758b2cdc 7755 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7756 return 0;
7757
7758 /* Does parent contain flags not in child? */
7759 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7760 if (cflags & SD_WAKE_AFFINE)
7761 pflags &= ~SD_WAKE_BALANCE;
7762 /* Flags needing groups don't count if only 1 group in parent */
7763 if (parent->groups == parent->groups->next) {
7764 pflags &= ~(SD_LOAD_BALANCE |
7765 SD_BALANCE_NEWIDLE |
7766 SD_BALANCE_FORK |
89c4710e
SS
7767 SD_BALANCE_EXEC |
7768 SD_SHARE_CPUPOWER |
7769 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7770 if (nr_node_ids == 1)
7771 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7772 }
7773 if (~cflags & pflags)
7774 return 0;
7775
7776 return 1;
7777}
7778
c6c4927b
RR
7779static void free_rootdomain(struct root_domain *rd)
7780{
68e74568
RR
7781 cpupri_cleanup(&rd->cpupri);
7782
c6c4927b
RR
7783 free_cpumask_var(rd->rto_mask);
7784 free_cpumask_var(rd->online);
7785 free_cpumask_var(rd->span);
7786 kfree(rd);
7787}
7788
57d885fe
GH
7789static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7790{
a0490fa3 7791 struct root_domain *old_rd = NULL;
57d885fe 7792 unsigned long flags;
57d885fe
GH
7793
7794 spin_lock_irqsave(&rq->lock, flags);
7795
7796 if (rq->rd) {
a0490fa3 7797 old_rd = rq->rd;
57d885fe 7798
c6c4927b 7799 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7800 set_rq_offline(rq);
57d885fe 7801
c6c4927b 7802 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7803
a0490fa3
IM
7804 /*
7805 * If we dont want to free the old_rt yet then
7806 * set old_rd to NULL to skip the freeing later
7807 * in this function:
7808 */
7809 if (!atomic_dec_and_test(&old_rd->refcount))
7810 old_rd = NULL;
57d885fe
GH
7811 }
7812
7813 atomic_inc(&rd->refcount);
7814 rq->rd = rd;
7815
c6c4927b
RR
7816 cpumask_set_cpu(rq->cpu, rd->span);
7817 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7818 set_rq_online(rq);
57d885fe
GH
7819
7820 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7821
7822 if (old_rd)
7823 free_rootdomain(old_rd);
57d885fe
GH
7824}
7825
fd5e1b5d 7826static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7827{
36b7b6d4
PE
7828 gfp_t gfp = GFP_KERNEL;
7829
57d885fe
GH
7830 memset(rd, 0, sizeof(*rd));
7831
36b7b6d4
PE
7832 if (bootmem)
7833 gfp = GFP_NOWAIT;
c6c4927b 7834
36b7b6d4 7835 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7836 goto out;
36b7b6d4 7837 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7838 goto free_span;
36b7b6d4 7839 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7840 goto free_online;
6e0534f2 7841
0fb53029 7842 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7843 goto free_rto_mask;
c6c4927b 7844 return 0;
6e0534f2 7845
68e74568
RR
7846free_rto_mask:
7847 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7848free_online:
7849 free_cpumask_var(rd->online);
7850free_span:
7851 free_cpumask_var(rd->span);
0c910d28 7852out:
c6c4927b 7853 return -ENOMEM;
57d885fe
GH
7854}
7855
7856static void init_defrootdomain(void)
7857{
c6c4927b
RR
7858 init_rootdomain(&def_root_domain, true);
7859
57d885fe
GH
7860 atomic_set(&def_root_domain.refcount, 1);
7861}
7862
dc938520 7863static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7864{
7865 struct root_domain *rd;
7866
7867 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7868 if (!rd)
7869 return NULL;
7870
c6c4927b
RR
7871 if (init_rootdomain(rd, false) != 0) {
7872 kfree(rd);
7873 return NULL;
7874 }
57d885fe
GH
7875
7876 return rd;
7877}
7878
1da177e4 7879/*
0eab9146 7880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7881 * hold the hotplug lock.
7882 */
0eab9146
IM
7883static void
7884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7885{
70b97a7f 7886 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7887 struct sched_domain *tmp;
7888
7889 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7890 for (tmp = sd; tmp; ) {
245af2c7
SS
7891 struct sched_domain *parent = tmp->parent;
7892 if (!parent)
7893 break;
f29c9b1c 7894
1a848870 7895 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7896 tmp->parent = parent->parent;
1a848870
SS
7897 if (parent->parent)
7898 parent->parent->child = tmp;
f29c9b1c
LZ
7899 } else
7900 tmp = tmp->parent;
245af2c7
SS
7901 }
7902
1a848870 7903 if (sd && sd_degenerate(sd)) {
245af2c7 7904 sd = sd->parent;
1a848870
SS
7905 if (sd)
7906 sd->child = NULL;
7907 }
1da177e4
LT
7908
7909 sched_domain_debug(sd, cpu);
7910
57d885fe 7911 rq_attach_root(rq, rd);
674311d5 7912 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7913}
7914
7915/* cpus with isolated domains */
dcc30a35 7916static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7917
7918/* Setup the mask of cpus configured for isolated domains */
7919static int __init isolated_cpu_setup(char *str)
7920{
968ea6d8 7921 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7922 return 1;
7923}
7924
8927f494 7925__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7926
7927/*
6711cab4
SS
7928 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7929 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7930 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7931 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7932 *
7933 * init_sched_build_groups will build a circular linked list of the groups
7934 * covered by the given span, and will set each group's ->cpumask correctly,
7935 * and ->cpu_power to 0.
7936 */
a616058b 7937static void
96f874e2
RR
7938init_sched_build_groups(const struct cpumask *span,
7939 const struct cpumask *cpu_map,
7940 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7941 struct sched_group **sg,
96f874e2
RR
7942 struct cpumask *tmpmask),
7943 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7944{
7945 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7946 int i;
7947
96f874e2 7948 cpumask_clear(covered);
7c16ec58 7949
abcd083a 7950 for_each_cpu(i, span) {
6711cab4 7951 struct sched_group *sg;
7c16ec58 7952 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7953 int j;
7954
758b2cdc 7955 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7956 continue;
7957
758b2cdc 7958 cpumask_clear(sched_group_cpus(sg));
5517d86b 7959 sg->__cpu_power = 0;
1da177e4 7960
abcd083a 7961 for_each_cpu(j, span) {
7c16ec58 7962 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7963 continue;
7964
96f874e2 7965 cpumask_set_cpu(j, covered);
758b2cdc 7966 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7967 }
7968 if (!first)
7969 first = sg;
7970 if (last)
7971 last->next = sg;
7972 last = sg;
7973 }
7974 last->next = first;
7975}
7976
9c1cfda2 7977#define SD_NODES_PER_DOMAIN 16
1da177e4 7978
9c1cfda2 7979#ifdef CONFIG_NUMA
198e2f18 7980
9c1cfda2
JH
7981/**
7982 * find_next_best_node - find the next node to include in a sched_domain
7983 * @node: node whose sched_domain we're building
7984 * @used_nodes: nodes already in the sched_domain
7985 *
41a2d6cf 7986 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7987 * finds the closest node not already in the @used_nodes map.
7988 *
7989 * Should use nodemask_t.
7990 */
c5f59f08 7991static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7992{
7993 int i, n, val, min_val, best_node = 0;
7994
7995 min_val = INT_MAX;
7996
076ac2af 7997 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7998 /* Start at @node */
076ac2af 7999 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8000
8001 if (!nr_cpus_node(n))
8002 continue;
8003
8004 /* Skip already used nodes */
c5f59f08 8005 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8006 continue;
8007
8008 /* Simple min distance search */
8009 val = node_distance(node, n);
8010
8011 if (val < min_val) {
8012 min_val = val;
8013 best_node = n;
8014 }
8015 }
8016
c5f59f08 8017 node_set(best_node, *used_nodes);
9c1cfda2
JH
8018 return best_node;
8019}
8020
8021/**
8022 * sched_domain_node_span - get a cpumask for a node's sched_domain
8023 * @node: node whose cpumask we're constructing
73486722 8024 * @span: resulting cpumask
9c1cfda2 8025 *
41a2d6cf 8026 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8027 * should be one that prevents unnecessary balancing, but also spreads tasks
8028 * out optimally.
8029 */
96f874e2 8030static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8031{
c5f59f08 8032 nodemask_t used_nodes;
48f24c4d 8033 int i;
9c1cfda2 8034
6ca09dfc 8035 cpumask_clear(span);
c5f59f08 8036 nodes_clear(used_nodes);
9c1cfda2 8037
6ca09dfc 8038 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8039 node_set(node, used_nodes);
9c1cfda2
JH
8040
8041 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8042 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8043
6ca09dfc 8044 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8045 }
9c1cfda2 8046}
6d6bc0ad 8047#endif /* CONFIG_NUMA */
9c1cfda2 8048
5c45bf27 8049int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8050
6c99e9ad
RR
8051/*
8052 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8053 *
8054 * ( See the the comments in include/linux/sched.h:struct sched_group
8055 * and struct sched_domain. )
6c99e9ad
RR
8056 */
8057struct static_sched_group {
8058 struct sched_group sg;
8059 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8060};
8061
8062struct static_sched_domain {
8063 struct sched_domain sd;
8064 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8065};
8066
9c1cfda2 8067/*
48f24c4d 8068 * SMT sched-domains:
9c1cfda2 8069 */
1da177e4 8070#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8071static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8072static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8073
41a2d6cf 8074static int
96f874e2
RR
8075cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8076 struct sched_group **sg, struct cpumask *unused)
1da177e4 8077{
6711cab4 8078 if (sg)
6c99e9ad 8079 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8080 return cpu;
8081}
6d6bc0ad 8082#endif /* CONFIG_SCHED_SMT */
1da177e4 8083
48f24c4d
IM
8084/*
8085 * multi-core sched-domains:
8086 */
1e9f28fa 8087#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8088static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8089static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8090#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8091
8092#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8093static int
96f874e2
RR
8094cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8095 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8096{
6711cab4 8097 int group;
7c16ec58 8098
c69fc56d 8099 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8100 group = cpumask_first(mask);
6711cab4 8101 if (sg)
6c99e9ad 8102 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8103 return group;
1e9f28fa
SS
8104}
8105#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8106static int
96f874e2
RR
8107cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8108 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8109{
6711cab4 8110 if (sg)
6c99e9ad 8111 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8112 return cpu;
8113}
8114#endif
8115
6c99e9ad
RR
8116static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8117static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8118
41a2d6cf 8119static int
96f874e2
RR
8120cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8121 struct sched_group **sg, struct cpumask *mask)
1da177e4 8122{
6711cab4 8123 int group;
48f24c4d 8124#ifdef CONFIG_SCHED_MC
6ca09dfc 8125 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8126 group = cpumask_first(mask);
1e9f28fa 8127#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8128 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8129 group = cpumask_first(mask);
1da177e4 8130#else
6711cab4 8131 group = cpu;
1da177e4 8132#endif
6711cab4 8133 if (sg)
6c99e9ad 8134 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8135 return group;
1da177e4
LT
8136}
8137
8138#ifdef CONFIG_NUMA
1da177e4 8139/*
9c1cfda2
JH
8140 * The init_sched_build_groups can't handle what we want to do with node
8141 * groups, so roll our own. Now each node has its own list of groups which
8142 * gets dynamically allocated.
1da177e4 8143 */
62ea9ceb 8144static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8145static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8146
62ea9ceb 8147static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8148static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8149
96f874e2
RR
8150static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8151 struct sched_group **sg,
8152 struct cpumask *nodemask)
9c1cfda2 8153{
6711cab4
SS
8154 int group;
8155
6ca09dfc 8156 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8157 group = cpumask_first(nodemask);
6711cab4
SS
8158
8159 if (sg)
6c99e9ad 8160 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8161 return group;
1da177e4 8162}
6711cab4 8163
08069033
SS
8164static void init_numa_sched_groups_power(struct sched_group *group_head)
8165{
8166 struct sched_group *sg = group_head;
8167 int j;
8168
8169 if (!sg)
8170 return;
3a5c359a 8171 do {
758b2cdc 8172 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8173 struct sched_domain *sd;
08069033 8174
6c99e9ad 8175 sd = &per_cpu(phys_domains, j).sd;
13318a71 8176 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8177 /*
8178 * Only add "power" once for each
8179 * physical package.
8180 */
8181 continue;
8182 }
08069033 8183
3a5c359a
AK
8184 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8185 }
8186 sg = sg->next;
8187 } while (sg != group_head);
08069033 8188}
6d6bc0ad 8189#endif /* CONFIG_NUMA */
1da177e4 8190
a616058b 8191#ifdef CONFIG_NUMA
51888ca2 8192/* Free memory allocated for various sched_group structures */
96f874e2
RR
8193static void free_sched_groups(const struct cpumask *cpu_map,
8194 struct cpumask *nodemask)
51888ca2 8195{
a616058b 8196 int cpu, i;
51888ca2 8197
abcd083a 8198 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8199 struct sched_group **sched_group_nodes
8200 = sched_group_nodes_bycpu[cpu];
8201
51888ca2
SV
8202 if (!sched_group_nodes)
8203 continue;
8204
076ac2af 8205 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8206 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8207
6ca09dfc 8208 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8209 if (cpumask_empty(nodemask))
51888ca2
SV
8210 continue;
8211
8212 if (sg == NULL)
8213 continue;
8214 sg = sg->next;
8215next_sg:
8216 oldsg = sg;
8217 sg = sg->next;
8218 kfree(oldsg);
8219 if (oldsg != sched_group_nodes[i])
8220 goto next_sg;
8221 }
8222 kfree(sched_group_nodes);
8223 sched_group_nodes_bycpu[cpu] = NULL;
8224 }
51888ca2 8225}
6d6bc0ad 8226#else /* !CONFIG_NUMA */
96f874e2
RR
8227static void free_sched_groups(const struct cpumask *cpu_map,
8228 struct cpumask *nodemask)
a616058b
SS
8229{
8230}
6d6bc0ad 8231#endif /* CONFIG_NUMA */
51888ca2 8232
89c4710e
SS
8233/*
8234 * Initialize sched groups cpu_power.
8235 *
8236 * cpu_power indicates the capacity of sched group, which is used while
8237 * distributing the load between different sched groups in a sched domain.
8238 * Typically cpu_power for all the groups in a sched domain will be same unless
8239 * there are asymmetries in the topology. If there are asymmetries, group
8240 * having more cpu_power will pickup more load compared to the group having
8241 * less cpu_power.
8242 *
8243 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8244 * the maximum number of tasks a group can handle in the presence of other idle
8245 * or lightly loaded groups in the same sched domain.
8246 */
8247static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8248{
8249 struct sched_domain *child;
8250 struct sched_group *group;
8251
8252 WARN_ON(!sd || !sd->groups);
8253
13318a71 8254 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8255 return;
8256
8257 child = sd->child;
8258
5517d86b
ED
8259 sd->groups->__cpu_power = 0;
8260
89c4710e
SS
8261 /*
8262 * For perf policy, if the groups in child domain share resources
8263 * (for example cores sharing some portions of the cache hierarchy
8264 * or SMT), then set this domain groups cpu_power such that each group
8265 * can handle only one task, when there are other idle groups in the
8266 * same sched domain.
8267 */
8268 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8269 (child->flags &
8270 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8271 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8272 return;
8273 }
8274
89c4710e
SS
8275 /*
8276 * add cpu_power of each child group to this groups cpu_power
8277 */
8278 group = child->groups;
8279 do {
5517d86b 8280 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8281 group = group->next;
8282 } while (group != child->groups);
8283}
8284
7c16ec58
MT
8285/*
8286 * Initializers for schedule domains
8287 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8288 */
8289
a5d8c348
IM
8290#ifdef CONFIG_SCHED_DEBUG
8291# define SD_INIT_NAME(sd, type) sd->name = #type
8292#else
8293# define SD_INIT_NAME(sd, type) do { } while (0)
8294#endif
8295
7c16ec58 8296#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8297
7c16ec58
MT
8298#define SD_INIT_FUNC(type) \
8299static noinline void sd_init_##type(struct sched_domain *sd) \
8300{ \
8301 memset(sd, 0, sizeof(*sd)); \
8302 *sd = SD_##type##_INIT; \
1d3504fc 8303 sd->level = SD_LV_##type; \
a5d8c348 8304 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8305}
8306
8307SD_INIT_FUNC(CPU)
8308#ifdef CONFIG_NUMA
8309 SD_INIT_FUNC(ALLNODES)
8310 SD_INIT_FUNC(NODE)
8311#endif
8312#ifdef CONFIG_SCHED_SMT
8313 SD_INIT_FUNC(SIBLING)
8314#endif
8315#ifdef CONFIG_SCHED_MC
8316 SD_INIT_FUNC(MC)
8317#endif
8318
1d3504fc
HS
8319static int default_relax_domain_level = -1;
8320
8321static int __init setup_relax_domain_level(char *str)
8322{
30e0e178
LZ
8323 unsigned long val;
8324
8325 val = simple_strtoul(str, NULL, 0);
8326 if (val < SD_LV_MAX)
8327 default_relax_domain_level = val;
8328
1d3504fc
HS
8329 return 1;
8330}
8331__setup("relax_domain_level=", setup_relax_domain_level);
8332
8333static void set_domain_attribute(struct sched_domain *sd,
8334 struct sched_domain_attr *attr)
8335{
8336 int request;
8337
8338 if (!attr || attr->relax_domain_level < 0) {
8339 if (default_relax_domain_level < 0)
8340 return;
8341 else
8342 request = default_relax_domain_level;
8343 } else
8344 request = attr->relax_domain_level;
8345 if (request < sd->level) {
8346 /* turn off idle balance on this domain */
8347 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8348 } else {
8349 /* turn on idle balance on this domain */
8350 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8351 }
8352}
8353
1da177e4 8354/*
1a20ff27
DG
8355 * Build sched domains for a given set of cpus and attach the sched domains
8356 * to the individual cpus
1da177e4 8357 */
96f874e2 8358static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8359 struct sched_domain_attr *attr)
1da177e4 8360{
3404c8d9 8361 int i, err = -ENOMEM;
57d885fe 8362 struct root_domain *rd;
3404c8d9
RR
8363 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8364 tmpmask;
d1b55138 8365#ifdef CONFIG_NUMA
3404c8d9 8366 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8367 struct sched_group **sched_group_nodes = NULL;
6711cab4 8368 int sd_allnodes = 0;
d1b55138 8369
3404c8d9
RR
8370 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8371 goto out;
8372 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8373 goto free_domainspan;
8374 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8375 goto free_covered;
8376#endif
8377
8378 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8379 goto free_notcovered;
8380 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8381 goto free_nodemask;
8382 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8383 goto free_this_sibling_map;
8384 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8385 goto free_this_core_map;
8386 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8387 goto free_send_covered;
8388
8389#ifdef CONFIG_NUMA
d1b55138
JH
8390 /*
8391 * Allocate the per-node list of sched groups
8392 */
076ac2af 8393 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8394 GFP_KERNEL);
d1b55138
JH
8395 if (!sched_group_nodes) {
8396 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8397 goto free_tmpmask;
d1b55138 8398 }
d1b55138 8399#endif
1da177e4 8400
dc938520 8401 rd = alloc_rootdomain();
57d885fe
GH
8402 if (!rd) {
8403 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8404 goto free_sched_groups;
57d885fe
GH
8405 }
8406
7c16ec58 8407#ifdef CONFIG_NUMA
96f874e2 8408 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8409#endif
8410
1da177e4 8411 /*
1a20ff27 8412 * Set up domains for cpus specified by the cpu_map.
1da177e4 8413 */
abcd083a 8414 for_each_cpu(i, cpu_map) {
1da177e4 8415 struct sched_domain *sd = NULL, *p;
1da177e4 8416
6ca09dfc 8417 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8418
8419#ifdef CONFIG_NUMA
96f874e2
RR
8420 if (cpumask_weight(cpu_map) >
8421 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8422 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8423 SD_INIT(sd, ALLNODES);
1d3504fc 8424 set_domain_attribute(sd, attr);
758b2cdc 8425 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8426 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8427 p = sd;
6711cab4 8428 sd_allnodes = 1;
9c1cfda2
JH
8429 } else
8430 p = NULL;
8431
62ea9ceb 8432 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8433 SD_INIT(sd, NODE);
1d3504fc 8434 set_domain_attribute(sd, attr);
758b2cdc 8435 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8436 sd->parent = p;
1a848870
SS
8437 if (p)
8438 p->child = sd;
758b2cdc
RR
8439 cpumask_and(sched_domain_span(sd),
8440 sched_domain_span(sd), cpu_map);
1da177e4
LT
8441#endif
8442
8443 p = sd;
6c99e9ad 8444 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8445 SD_INIT(sd, CPU);
1d3504fc 8446 set_domain_attribute(sd, attr);
758b2cdc 8447 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8448 sd->parent = p;
1a848870
SS
8449 if (p)
8450 p->child = sd;
7c16ec58 8451 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8452
1e9f28fa
SS
8453#ifdef CONFIG_SCHED_MC
8454 p = sd;
6c99e9ad 8455 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8456 SD_INIT(sd, MC);
1d3504fc 8457 set_domain_attribute(sd, attr);
6ca09dfc
MT
8458 cpumask_and(sched_domain_span(sd), cpu_map,
8459 cpu_coregroup_mask(i));
1e9f28fa 8460 sd->parent = p;
1a848870 8461 p->child = sd;
7c16ec58 8462 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8463#endif
8464
1da177e4
LT
8465#ifdef CONFIG_SCHED_SMT
8466 p = sd;
6c99e9ad 8467 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8468 SD_INIT(sd, SIBLING);
1d3504fc 8469 set_domain_attribute(sd, attr);
758b2cdc 8470 cpumask_and(sched_domain_span(sd),
c69fc56d 8471 topology_thread_cpumask(i), cpu_map);
1da177e4 8472 sd->parent = p;
1a848870 8473 p->child = sd;
7c16ec58 8474 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8475#endif
8476 }
8477
8478#ifdef CONFIG_SCHED_SMT
8479 /* Set up CPU (sibling) groups */
abcd083a 8480 for_each_cpu(i, cpu_map) {
96f874e2 8481 cpumask_and(this_sibling_map,
c69fc56d 8482 topology_thread_cpumask(i), cpu_map);
96f874e2 8483 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8484 continue;
8485
dd41f596 8486 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8487 &cpu_to_cpu_group,
8488 send_covered, tmpmask);
1da177e4
LT
8489 }
8490#endif
8491
1e9f28fa
SS
8492#ifdef CONFIG_SCHED_MC
8493 /* Set up multi-core groups */
abcd083a 8494 for_each_cpu(i, cpu_map) {
6ca09dfc 8495 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8496 if (i != cpumask_first(this_core_map))
1e9f28fa 8497 continue;
7c16ec58 8498
dd41f596 8499 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8500 &cpu_to_core_group,
8501 send_covered, tmpmask);
1e9f28fa
SS
8502 }
8503#endif
8504
1da177e4 8505 /* Set up physical groups */
076ac2af 8506 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8507 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8508 if (cpumask_empty(nodemask))
1da177e4
LT
8509 continue;
8510
7c16ec58
MT
8511 init_sched_build_groups(nodemask, cpu_map,
8512 &cpu_to_phys_group,
8513 send_covered, tmpmask);
1da177e4
LT
8514 }
8515
8516#ifdef CONFIG_NUMA
8517 /* Set up node groups */
7c16ec58 8518 if (sd_allnodes) {
7c16ec58
MT
8519 init_sched_build_groups(cpu_map, cpu_map,
8520 &cpu_to_allnodes_group,
8521 send_covered, tmpmask);
8522 }
9c1cfda2 8523
076ac2af 8524 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8525 /* Set up node groups */
8526 struct sched_group *sg, *prev;
9c1cfda2
JH
8527 int j;
8528
96f874e2 8529 cpumask_clear(covered);
6ca09dfc 8530 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8531 if (cpumask_empty(nodemask)) {
d1b55138 8532 sched_group_nodes[i] = NULL;
9c1cfda2 8533 continue;
d1b55138 8534 }
9c1cfda2 8535
4bdbaad3 8536 sched_domain_node_span(i, domainspan);
96f874e2 8537 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8538
6c99e9ad
RR
8539 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8540 GFP_KERNEL, i);
51888ca2
SV
8541 if (!sg) {
8542 printk(KERN_WARNING "Can not alloc domain group for "
8543 "node %d\n", i);
8544 goto error;
8545 }
9c1cfda2 8546 sched_group_nodes[i] = sg;
abcd083a 8547 for_each_cpu(j, nodemask) {
9c1cfda2 8548 struct sched_domain *sd;
9761eea8 8549
62ea9ceb 8550 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8551 sd->groups = sg;
9c1cfda2 8552 }
5517d86b 8553 sg->__cpu_power = 0;
758b2cdc 8554 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8555 sg->next = sg;
96f874e2 8556 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8557 prev = sg;
8558
076ac2af 8559 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8560 int n = (i + j) % nr_node_ids;
9c1cfda2 8561
96f874e2
RR
8562 cpumask_complement(notcovered, covered);
8563 cpumask_and(tmpmask, notcovered, cpu_map);
8564 cpumask_and(tmpmask, tmpmask, domainspan);
8565 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8566 break;
8567
6ca09dfc 8568 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8569 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8570 continue;
8571
6c99e9ad
RR
8572 sg = kmalloc_node(sizeof(struct sched_group) +
8573 cpumask_size(),
15f0b676 8574 GFP_KERNEL, i);
9c1cfda2
JH
8575 if (!sg) {
8576 printk(KERN_WARNING
8577 "Can not alloc domain group for node %d\n", j);
51888ca2 8578 goto error;
9c1cfda2 8579 }
5517d86b 8580 sg->__cpu_power = 0;
758b2cdc 8581 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8582 sg->next = prev->next;
96f874e2 8583 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8584 prev->next = sg;
8585 prev = sg;
8586 }
9c1cfda2 8587 }
1da177e4
LT
8588#endif
8589
8590 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8591#ifdef CONFIG_SCHED_SMT
abcd083a 8592 for_each_cpu(i, cpu_map) {
6c99e9ad 8593 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8594
89c4710e 8595 init_sched_groups_power(i, sd);
5c45bf27 8596 }
1da177e4 8597#endif
1e9f28fa 8598#ifdef CONFIG_SCHED_MC
abcd083a 8599 for_each_cpu(i, cpu_map) {
6c99e9ad 8600 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8601
89c4710e 8602 init_sched_groups_power(i, sd);
5c45bf27
SS
8603 }
8604#endif
1e9f28fa 8605
abcd083a 8606 for_each_cpu(i, cpu_map) {
6c99e9ad 8607 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8608
89c4710e 8609 init_sched_groups_power(i, sd);
1da177e4
LT
8610 }
8611
9c1cfda2 8612#ifdef CONFIG_NUMA
076ac2af 8613 for (i = 0; i < nr_node_ids; i++)
08069033 8614 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8615
6711cab4
SS
8616 if (sd_allnodes) {
8617 struct sched_group *sg;
f712c0c7 8618
96f874e2 8619 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8620 tmpmask);
f712c0c7
SS
8621 init_numa_sched_groups_power(sg);
8622 }
9c1cfda2
JH
8623#endif
8624
1da177e4 8625 /* Attach the domains */
abcd083a 8626 for_each_cpu(i, cpu_map) {
1da177e4
LT
8627 struct sched_domain *sd;
8628#ifdef CONFIG_SCHED_SMT
6c99e9ad 8629 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8630#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8631 sd = &per_cpu(core_domains, i).sd;
1da177e4 8632#else
6c99e9ad 8633 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8634#endif
57d885fe 8635 cpu_attach_domain(sd, rd, i);
1da177e4 8636 }
51888ca2 8637
3404c8d9
RR
8638 err = 0;
8639
8640free_tmpmask:
8641 free_cpumask_var(tmpmask);
8642free_send_covered:
8643 free_cpumask_var(send_covered);
8644free_this_core_map:
8645 free_cpumask_var(this_core_map);
8646free_this_sibling_map:
8647 free_cpumask_var(this_sibling_map);
8648free_nodemask:
8649 free_cpumask_var(nodemask);
8650free_notcovered:
8651#ifdef CONFIG_NUMA
8652 free_cpumask_var(notcovered);
8653free_covered:
8654 free_cpumask_var(covered);
8655free_domainspan:
8656 free_cpumask_var(domainspan);
8657out:
8658#endif
8659 return err;
8660
8661free_sched_groups:
8662#ifdef CONFIG_NUMA
8663 kfree(sched_group_nodes);
8664#endif
8665 goto free_tmpmask;
51888ca2 8666
a616058b 8667#ifdef CONFIG_NUMA
51888ca2 8668error:
7c16ec58 8669 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8670 free_rootdomain(rd);
3404c8d9 8671 goto free_tmpmask;
a616058b 8672#endif
1da177e4 8673}
029190c5 8674
96f874e2 8675static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8676{
8677 return __build_sched_domains(cpu_map, NULL);
8678}
8679
96f874e2 8680static struct cpumask *doms_cur; /* current sched domains */
029190c5 8681static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8682static struct sched_domain_attr *dattr_cur;
8683 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8684
8685/*
8686 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8687 * cpumask) fails, then fallback to a single sched domain,
8688 * as determined by the single cpumask fallback_doms.
029190c5 8689 */
4212823f 8690static cpumask_var_t fallback_doms;
029190c5 8691
ee79d1bd
HC
8692/*
8693 * arch_update_cpu_topology lets virtualized architectures update the
8694 * cpu core maps. It is supposed to return 1 if the topology changed
8695 * or 0 if it stayed the same.
8696 */
8697int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8698{
ee79d1bd 8699 return 0;
22e52b07
HC
8700}
8701
1a20ff27 8702/*
41a2d6cf 8703 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8704 * For now this just excludes isolated cpus, but could be used to
8705 * exclude other special cases in the future.
1a20ff27 8706 */
96f874e2 8707static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8708{
7378547f
MM
8709 int err;
8710
22e52b07 8711 arch_update_cpu_topology();
029190c5 8712 ndoms_cur = 1;
96f874e2 8713 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8714 if (!doms_cur)
4212823f 8715 doms_cur = fallback_doms;
dcc30a35 8716 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8717 dattr_cur = NULL;
7378547f 8718 err = build_sched_domains(doms_cur);
6382bc90 8719 register_sched_domain_sysctl();
7378547f
MM
8720
8721 return err;
1a20ff27
DG
8722}
8723
96f874e2
RR
8724static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8725 struct cpumask *tmpmask)
1da177e4 8726{
7c16ec58 8727 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8728}
1da177e4 8729
1a20ff27
DG
8730/*
8731 * Detach sched domains from a group of cpus specified in cpu_map
8732 * These cpus will now be attached to the NULL domain
8733 */
96f874e2 8734static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8735{
96f874e2
RR
8736 /* Save because hotplug lock held. */
8737 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8738 int i;
8739
abcd083a 8740 for_each_cpu(i, cpu_map)
57d885fe 8741 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8742 synchronize_sched();
96f874e2 8743 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8744}
8745
1d3504fc
HS
8746/* handle null as "default" */
8747static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8748 struct sched_domain_attr *new, int idx_new)
8749{
8750 struct sched_domain_attr tmp;
8751
8752 /* fast path */
8753 if (!new && !cur)
8754 return 1;
8755
8756 tmp = SD_ATTR_INIT;
8757 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8758 new ? (new + idx_new) : &tmp,
8759 sizeof(struct sched_domain_attr));
8760}
8761
029190c5
PJ
8762/*
8763 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8764 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8765 * doms_new[] to the current sched domain partitioning, doms_cur[].
8766 * It destroys each deleted domain and builds each new domain.
8767 *
96f874e2 8768 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8769 * The masks don't intersect (don't overlap.) We should setup one
8770 * sched domain for each mask. CPUs not in any of the cpumasks will
8771 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8772 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8773 * it as it is.
8774 *
41a2d6cf
IM
8775 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8776 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8777 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8778 * ndoms_new == 1, and partition_sched_domains() will fallback to
8779 * the single partition 'fallback_doms', it also forces the domains
8780 * to be rebuilt.
029190c5 8781 *
96f874e2 8782 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8783 * ndoms_new == 0 is a special case for destroying existing domains,
8784 * and it will not create the default domain.
dfb512ec 8785 *
029190c5
PJ
8786 * Call with hotplug lock held
8787 */
96f874e2
RR
8788/* FIXME: Change to struct cpumask *doms_new[] */
8789void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8790 struct sched_domain_attr *dattr_new)
029190c5 8791{
dfb512ec 8792 int i, j, n;
d65bd5ec 8793 int new_topology;
029190c5 8794
712555ee 8795 mutex_lock(&sched_domains_mutex);
a1835615 8796
7378547f
MM
8797 /* always unregister in case we don't destroy any domains */
8798 unregister_sched_domain_sysctl();
8799
d65bd5ec
HC
8800 /* Let architecture update cpu core mappings. */
8801 new_topology = arch_update_cpu_topology();
8802
dfb512ec 8803 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8804
8805 /* Destroy deleted domains */
8806 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8807 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8808 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8809 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8810 goto match1;
8811 }
8812 /* no match - a current sched domain not in new doms_new[] */
8813 detach_destroy_domains(doms_cur + i);
8814match1:
8815 ;
8816 }
8817
e761b772
MK
8818 if (doms_new == NULL) {
8819 ndoms_cur = 0;
4212823f 8820 doms_new = fallback_doms;
dcc30a35 8821 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8822 WARN_ON_ONCE(dattr_new);
e761b772
MK
8823 }
8824
029190c5
PJ
8825 /* Build new domains */
8826 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8827 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8828 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8829 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8830 goto match2;
8831 }
8832 /* no match - add a new doms_new */
1d3504fc
HS
8833 __build_sched_domains(doms_new + i,
8834 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8835match2:
8836 ;
8837 }
8838
8839 /* Remember the new sched domains */
4212823f 8840 if (doms_cur != fallback_doms)
029190c5 8841 kfree(doms_cur);
1d3504fc 8842 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8843 doms_cur = doms_new;
1d3504fc 8844 dattr_cur = dattr_new;
029190c5 8845 ndoms_cur = ndoms_new;
7378547f
MM
8846
8847 register_sched_domain_sysctl();
a1835615 8848
712555ee 8849 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8850}
8851
5c45bf27 8852#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8853static void arch_reinit_sched_domains(void)
5c45bf27 8854{
95402b38 8855 get_online_cpus();
dfb512ec
MK
8856
8857 /* Destroy domains first to force the rebuild */
8858 partition_sched_domains(0, NULL, NULL);
8859
e761b772 8860 rebuild_sched_domains();
95402b38 8861 put_online_cpus();
5c45bf27
SS
8862}
8863
8864static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8865{
afb8a9b7 8866 unsigned int level = 0;
5c45bf27 8867
afb8a9b7
GS
8868 if (sscanf(buf, "%u", &level) != 1)
8869 return -EINVAL;
8870
8871 /*
8872 * level is always be positive so don't check for
8873 * level < POWERSAVINGS_BALANCE_NONE which is 0
8874 * What happens on 0 or 1 byte write,
8875 * need to check for count as well?
8876 */
8877
8878 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8879 return -EINVAL;
8880
8881 if (smt)
afb8a9b7 8882 sched_smt_power_savings = level;
5c45bf27 8883 else
afb8a9b7 8884 sched_mc_power_savings = level;
5c45bf27 8885
c70f22d2 8886 arch_reinit_sched_domains();
5c45bf27 8887
c70f22d2 8888 return count;
5c45bf27
SS
8889}
8890
5c45bf27 8891#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8892static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8893 char *page)
5c45bf27
SS
8894{
8895 return sprintf(page, "%u\n", sched_mc_power_savings);
8896}
f718cd4a 8897static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8898 const char *buf, size_t count)
5c45bf27
SS
8899{
8900 return sched_power_savings_store(buf, count, 0);
8901}
f718cd4a
AK
8902static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8903 sched_mc_power_savings_show,
8904 sched_mc_power_savings_store);
5c45bf27
SS
8905#endif
8906
8907#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8908static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8909 char *page)
5c45bf27
SS
8910{
8911 return sprintf(page, "%u\n", sched_smt_power_savings);
8912}
f718cd4a 8913static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8914 const char *buf, size_t count)
5c45bf27
SS
8915{
8916 return sched_power_savings_store(buf, count, 1);
8917}
f718cd4a
AK
8918static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8919 sched_smt_power_savings_show,
6707de00
AB
8920 sched_smt_power_savings_store);
8921#endif
8922
39aac648 8923int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8924{
8925 int err = 0;
8926
8927#ifdef CONFIG_SCHED_SMT
8928 if (smt_capable())
8929 err = sysfs_create_file(&cls->kset.kobj,
8930 &attr_sched_smt_power_savings.attr);
8931#endif
8932#ifdef CONFIG_SCHED_MC
8933 if (!err && mc_capable())
8934 err = sysfs_create_file(&cls->kset.kobj,
8935 &attr_sched_mc_power_savings.attr);
8936#endif
8937 return err;
8938}
6d6bc0ad 8939#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8940
e761b772 8941#ifndef CONFIG_CPUSETS
1da177e4 8942/*
e761b772
MK
8943 * Add online and remove offline CPUs from the scheduler domains.
8944 * When cpusets are enabled they take over this function.
1da177e4
LT
8945 */
8946static int update_sched_domains(struct notifier_block *nfb,
8947 unsigned long action, void *hcpu)
e761b772
MK
8948{
8949 switch (action) {
8950 case CPU_ONLINE:
8951 case CPU_ONLINE_FROZEN:
8952 case CPU_DEAD:
8953 case CPU_DEAD_FROZEN:
dfb512ec 8954 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8955 return NOTIFY_OK;
8956
8957 default:
8958 return NOTIFY_DONE;
8959 }
8960}
8961#endif
8962
8963static int update_runtime(struct notifier_block *nfb,
8964 unsigned long action, void *hcpu)
1da177e4 8965{
7def2be1
PZ
8966 int cpu = (int)(long)hcpu;
8967
1da177e4 8968 switch (action) {
1da177e4 8969 case CPU_DOWN_PREPARE:
8bb78442 8970 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8971 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8972 return NOTIFY_OK;
8973
1da177e4 8974 case CPU_DOWN_FAILED:
8bb78442 8975 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8976 case CPU_ONLINE:
8bb78442 8977 case CPU_ONLINE_FROZEN:
7def2be1 8978 enable_runtime(cpu_rq(cpu));
e761b772
MK
8979 return NOTIFY_OK;
8980
1da177e4
LT
8981 default:
8982 return NOTIFY_DONE;
8983 }
1da177e4 8984}
1da177e4
LT
8985
8986void __init sched_init_smp(void)
8987{
dcc30a35
RR
8988 cpumask_var_t non_isolated_cpus;
8989
8990 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8991
434d53b0
MT
8992#if defined(CONFIG_NUMA)
8993 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8994 GFP_KERNEL);
8995 BUG_ON(sched_group_nodes_bycpu == NULL);
8996#endif
95402b38 8997 get_online_cpus();
712555ee 8998 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8999 arch_init_sched_domains(cpu_online_mask);
9000 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9001 if (cpumask_empty(non_isolated_cpus))
9002 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9003 mutex_unlock(&sched_domains_mutex);
95402b38 9004 put_online_cpus();
e761b772
MK
9005
9006#ifndef CONFIG_CPUSETS
1da177e4
LT
9007 /* XXX: Theoretical race here - CPU may be hotplugged now */
9008 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9009#endif
9010
9011 /* RT runtime code needs to handle some hotplug events */
9012 hotcpu_notifier(update_runtime, 0);
9013
b328ca18 9014 init_hrtick();
5c1e1767
NP
9015
9016 /* Move init over to a non-isolated CPU */
dcc30a35 9017 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9018 BUG();
19978ca6 9019 sched_init_granularity();
dcc30a35 9020 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9021
9022 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9023 init_sched_rt_class();
1da177e4
LT
9024}
9025#else
9026void __init sched_init_smp(void)
9027{
19978ca6 9028 sched_init_granularity();
1da177e4
LT
9029}
9030#endif /* CONFIG_SMP */
9031
cd1bb94b
AB
9032const_debug unsigned int sysctl_timer_migration = 1;
9033
1da177e4
LT
9034int in_sched_functions(unsigned long addr)
9035{
1da177e4
LT
9036 return in_lock_functions(addr) ||
9037 (addr >= (unsigned long)__sched_text_start
9038 && addr < (unsigned long)__sched_text_end);
9039}
9040
a9957449 9041static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9042{
9043 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9044 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9045#ifdef CONFIG_FAIR_GROUP_SCHED
9046 cfs_rq->rq = rq;
9047#endif
67e9fb2a 9048 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9049}
9050
fa85ae24
PZ
9051static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9052{
9053 struct rt_prio_array *array;
9054 int i;
9055
9056 array = &rt_rq->active;
9057 for (i = 0; i < MAX_RT_PRIO; i++) {
9058 INIT_LIST_HEAD(array->queue + i);
9059 __clear_bit(i, array->bitmap);
9060 }
9061 /* delimiter for bitsearch: */
9062 __set_bit(MAX_RT_PRIO, array->bitmap);
9063
052f1dc7 9064#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9065 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9066#ifdef CONFIG_SMP
e864c499 9067 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9068#endif
48d5e258 9069#endif
fa85ae24
PZ
9070#ifdef CONFIG_SMP
9071 rt_rq->rt_nr_migratory = 0;
fa85ae24 9072 rt_rq->overloaded = 0;
917b627d 9073 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
9074#endif
9075
9076 rt_rq->rt_time = 0;
9077 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9078 rt_rq->rt_runtime = 0;
9079 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9080
052f1dc7 9081#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9082 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9083 rt_rq->rq = rq;
9084#endif
fa85ae24
PZ
9085}
9086
6f505b16 9087#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9088static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9089 struct sched_entity *se, int cpu, int add,
9090 struct sched_entity *parent)
6f505b16 9091{
ec7dc8ac 9092 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9093 tg->cfs_rq[cpu] = cfs_rq;
9094 init_cfs_rq(cfs_rq, rq);
9095 cfs_rq->tg = tg;
9096 if (add)
9097 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9098
9099 tg->se[cpu] = se;
354d60c2
DG
9100 /* se could be NULL for init_task_group */
9101 if (!se)
9102 return;
9103
ec7dc8ac
DG
9104 if (!parent)
9105 se->cfs_rq = &rq->cfs;
9106 else
9107 se->cfs_rq = parent->my_q;
9108
6f505b16
PZ
9109 se->my_q = cfs_rq;
9110 se->load.weight = tg->shares;
e05510d0 9111 se->load.inv_weight = 0;
ec7dc8ac 9112 se->parent = parent;
6f505b16 9113}
052f1dc7 9114#endif
6f505b16 9115
052f1dc7 9116#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9117static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9118 struct sched_rt_entity *rt_se, int cpu, int add,
9119 struct sched_rt_entity *parent)
6f505b16 9120{
ec7dc8ac
DG
9121 struct rq *rq = cpu_rq(cpu);
9122
6f505b16
PZ
9123 tg->rt_rq[cpu] = rt_rq;
9124 init_rt_rq(rt_rq, rq);
9125 rt_rq->tg = tg;
9126 rt_rq->rt_se = rt_se;
ac086bc2 9127 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9128 if (add)
9129 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9130
9131 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9132 if (!rt_se)
9133 return;
9134
ec7dc8ac
DG
9135 if (!parent)
9136 rt_se->rt_rq = &rq->rt;
9137 else
9138 rt_se->rt_rq = parent->my_q;
9139
6f505b16 9140 rt_se->my_q = rt_rq;
ec7dc8ac 9141 rt_se->parent = parent;
6f505b16
PZ
9142 INIT_LIST_HEAD(&rt_se->run_list);
9143}
9144#endif
9145
1da177e4
LT
9146void __init sched_init(void)
9147{
dd41f596 9148 int i, j;
434d53b0
MT
9149 unsigned long alloc_size = 0, ptr;
9150
9151#ifdef CONFIG_FAIR_GROUP_SCHED
9152 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9153#endif
9154#ifdef CONFIG_RT_GROUP_SCHED
9155 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9156#endif
9157#ifdef CONFIG_USER_SCHED
9158 alloc_size *= 2;
df7c8e84
RR
9159#endif
9160#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9161 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9162#endif
9163 /*
9164 * As sched_init() is called before page_alloc is setup,
9165 * we use alloc_bootmem().
9166 */
9167 if (alloc_size) {
36b7b6d4 9168 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9169
9170#ifdef CONFIG_FAIR_GROUP_SCHED
9171 init_task_group.se = (struct sched_entity **)ptr;
9172 ptr += nr_cpu_ids * sizeof(void **);
9173
9174 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9175 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9176
9177#ifdef CONFIG_USER_SCHED
9178 root_task_group.se = (struct sched_entity **)ptr;
9179 ptr += nr_cpu_ids * sizeof(void **);
9180
9181 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9182 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9183#endif /* CONFIG_USER_SCHED */
9184#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9185#ifdef CONFIG_RT_GROUP_SCHED
9186 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9187 ptr += nr_cpu_ids * sizeof(void **);
9188
9189 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9190 ptr += nr_cpu_ids * sizeof(void **);
9191
9192#ifdef CONFIG_USER_SCHED
9193 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9194 ptr += nr_cpu_ids * sizeof(void **);
9195
9196 root_task_group.rt_rq = (struct rt_rq **)ptr;
9197 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9198#endif /* CONFIG_USER_SCHED */
9199#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9200#ifdef CONFIG_CPUMASK_OFFSTACK
9201 for_each_possible_cpu(i) {
9202 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9203 ptr += cpumask_size();
9204 }
9205#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9206 }
dd41f596 9207
57d885fe
GH
9208#ifdef CONFIG_SMP
9209 init_defrootdomain();
9210#endif
9211
d0b27fa7
PZ
9212 init_rt_bandwidth(&def_rt_bandwidth,
9213 global_rt_period(), global_rt_runtime());
9214
9215#ifdef CONFIG_RT_GROUP_SCHED
9216 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9217 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9218#ifdef CONFIG_USER_SCHED
9219 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9220 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9221#endif /* CONFIG_USER_SCHED */
9222#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9223
052f1dc7 9224#ifdef CONFIG_GROUP_SCHED
6f505b16 9225 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9226 INIT_LIST_HEAD(&init_task_group.children);
9227
9228#ifdef CONFIG_USER_SCHED
9229 INIT_LIST_HEAD(&root_task_group.children);
9230 init_task_group.parent = &root_task_group;
9231 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9232#endif /* CONFIG_USER_SCHED */
9233#endif /* CONFIG_GROUP_SCHED */
6f505b16 9234
0a945022 9235 for_each_possible_cpu(i) {
70b97a7f 9236 struct rq *rq;
1da177e4
LT
9237
9238 rq = cpu_rq(i);
9239 spin_lock_init(&rq->lock);
7897986b 9240 rq->nr_running = 0;
dce48a84
TG
9241 rq->calc_load_active = 0;
9242 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9243 init_cfs_rq(&rq->cfs, rq);
6f505b16 9244 init_rt_rq(&rq->rt, rq);
dd41f596 9245#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9246 init_task_group.shares = init_task_group_load;
6f505b16 9247 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9248#ifdef CONFIG_CGROUP_SCHED
9249 /*
9250 * How much cpu bandwidth does init_task_group get?
9251 *
9252 * In case of task-groups formed thr' the cgroup filesystem, it
9253 * gets 100% of the cpu resources in the system. This overall
9254 * system cpu resource is divided among the tasks of
9255 * init_task_group and its child task-groups in a fair manner,
9256 * based on each entity's (task or task-group's) weight
9257 * (se->load.weight).
9258 *
9259 * In other words, if init_task_group has 10 tasks of weight
9260 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9261 * then A0's share of the cpu resource is:
9262 *
0d905bca 9263 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9264 *
9265 * We achieve this by letting init_task_group's tasks sit
9266 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9267 */
ec7dc8ac 9268 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9269#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9270 root_task_group.shares = NICE_0_LOAD;
9271 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9272 /*
9273 * In case of task-groups formed thr' the user id of tasks,
9274 * init_task_group represents tasks belonging to root user.
9275 * Hence it forms a sibling of all subsequent groups formed.
9276 * In this case, init_task_group gets only a fraction of overall
9277 * system cpu resource, based on the weight assigned to root
9278 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9279 * by letting tasks of init_task_group sit in a separate cfs_rq
9280 * (init_cfs_rq) and having one entity represent this group of
9281 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9282 */
ec7dc8ac 9283 init_tg_cfs_entry(&init_task_group,
6f505b16 9284 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9285 &per_cpu(init_sched_entity, i), i, 1,
9286 root_task_group.se[i]);
6f505b16 9287
052f1dc7 9288#endif
354d60c2
DG
9289#endif /* CONFIG_FAIR_GROUP_SCHED */
9290
9291 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9292#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9293 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9294#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9295 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9296#elif defined CONFIG_USER_SCHED
eff766a6 9297 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9298 init_tg_rt_entry(&init_task_group,
6f505b16 9299 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9300 &per_cpu(init_sched_rt_entity, i), i, 1,
9301 root_task_group.rt_se[i]);
354d60c2 9302#endif
dd41f596 9303#endif
1da177e4 9304
dd41f596
IM
9305 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9306 rq->cpu_load[j] = 0;
1da177e4 9307#ifdef CONFIG_SMP
41c7ce9a 9308 rq->sd = NULL;
57d885fe 9309 rq->rd = NULL;
1da177e4 9310 rq->active_balance = 0;
dd41f596 9311 rq->next_balance = jiffies;
1da177e4 9312 rq->push_cpu = 0;
0a2966b4 9313 rq->cpu = i;
1f11eb6a 9314 rq->online = 0;
1da177e4
LT
9315 rq->migration_thread = NULL;
9316 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9317 rq_attach_root(rq, &def_root_domain);
1da177e4 9318#endif
8f4d37ec 9319 init_rq_hrtick(rq);
1da177e4 9320 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9321 }
9322
2dd73a4f 9323 set_load_weight(&init_task);
b50f60ce 9324
e107be36
AK
9325#ifdef CONFIG_PREEMPT_NOTIFIERS
9326 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9327#endif
9328
c9819f45 9329#ifdef CONFIG_SMP
962cf36c 9330 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9331#endif
9332
b50f60ce
HC
9333#ifdef CONFIG_RT_MUTEXES
9334 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9335#endif
9336
1da177e4
LT
9337 /*
9338 * The boot idle thread does lazy MMU switching as well:
9339 */
9340 atomic_inc(&init_mm.mm_count);
9341 enter_lazy_tlb(&init_mm, current);
9342
9343 /*
9344 * Make us the idle thread. Technically, schedule() should not be
9345 * called from this thread, however somewhere below it might be,
9346 * but because we are the idle thread, we just pick up running again
9347 * when this runqueue becomes "idle".
9348 */
9349 init_idle(current, smp_processor_id());
dce48a84
TG
9350
9351 calc_load_update = jiffies + LOAD_FREQ;
9352
dd41f596
IM
9353 /*
9354 * During early bootup we pretend to be a normal task:
9355 */
9356 current->sched_class = &fair_sched_class;
6892b75e 9357
6a7b3dc3 9358 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9359 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9360#ifdef CONFIG_SMP
7d1e6a9b 9361#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9362 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9363 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9364#endif
4bdddf8f 9365 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9366#endif /* SMP */
6a7b3dc3 9367
0d905bca
IM
9368 perf_counter_init();
9369
6892b75e 9370 scheduler_running = 1;
1da177e4
LT
9371}
9372
9373#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9374void __might_sleep(char *file, int line)
9375{
48f24c4d 9376#ifdef in_atomic
1da177e4
LT
9377 static unsigned long prev_jiffy; /* ratelimiting */
9378
aef745fc
IM
9379 if ((!in_atomic() && !irqs_disabled()) ||
9380 system_state != SYSTEM_RUNNING || oops_in_progress)
9381 return;
9382 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9383 return;
9384 prev_jiffy = jiffies;
9385
9386 printk(KERN_ERR
9387 "BUG: sleeping function called from invalid context at %s:%d\n",
9388 file, line);
9389 printk(KERN_ERR
9390 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9391 in_atomic(), irqs_disabled(),
9392 current->pid, current->comm);
9393
9394 debug_show_held_locks(current);
9395 if (irqs_disabled())
9396 print_irqtrace_events(current);
9397 dump_stack();
1da177e4
LT
9398#endif
9399}
9400EXPORT_SYMBOL(__might_sleep);
9401#endif
9402
9403#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9404static void normalize_task(struct rq *rq, struct task_struct *p)
9405{
9406 int on_rq;
3e51f33f 9407
3a5e4dc1
AK
9408 update_rq_clock(rq);
9409 on_rq = p->se.on_rq;
9410 if (on_rq)
9411 deactivate_task(rq, p, 0);
9412 __setscheduler(rq, p, SCHED_NORMAL, 0);
9413 if (on_rq) {
9414 activate_task(rq, p, 0);
9415 resched_task(rq->curr);
9416 }
9417}
9418
1da177e4
LT
9419void normalize_rt_tasks(void)
9420{
a0f98a1c 9421 struct task_struct *g, *p;
1da177e4 9422 unsigned long flags;
70b97a7f 9423 struct rq *rq;
1da177e4 9424
4cf5d77a 9425 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9426 do_each_thread(g, p) {
178be793
IM
9427 /*
9428 * Only normalize user tasks:
9429 */
9430 if (!p->mm)
9431 continue;
9432
6cfb0d5d 9433 p->se.exec_start = 0;
6cfb0d5d 9434#ifdef CONFIG_SCHEDSTATS
dd41f596 9435 p->se.wait_start = 0;
dd41f596 9436 p->se.sleep_start = 0;
dd41f596 9437 p->se.block_start = 0;
6cfb0d5d 9438#endif
dd41f596
IM
9439
9440 if (!rt_task(p)) {
9441 /*
9442 * Renice negative nice level userspace
9443 * tasks back to 0:
9444 */
9445 if (TASK_NICE(p) < 0 && p->mm)
9446 set_user_nice(p, 0);
1da177e4 9447 continue;
dd41f596 9448 }
1da177e4 9449
4cf5d77a 9450 spin_lock(&p->pi_lock);
b29739f9 9451 rq = __task_rq_lock(p);
1da177e4 9452
178be793 9453 normalize_task(rq, p);
3a5e4dc1 9454
b29739f9 9455 __task_rq_unlock(rq);
4cf5d77a 9456 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9457 } while_each_thread(g, p);
9458
4cf5d77a 9459 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9460}
9461
9462#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9463
9464#ifdef CONFIG_IA64
9465/*
9466 * These functions are only useful for the IA64 MCA handling.
9467 *
9468 * They can only be called when the whole system has been
9469 * stopped - every CPU needs to be quiescent, and no scheduling
9470 * activity can take place. Using them for anything else would
9471 * be a serious bug, and as a result, they aren't even visible
9472 * under any other configuration.
9473 */
9474
9475/**
9476 * curr_task - return the current task for a given cpu.
9477 * @cpu: the processor in question.
9478 *
9479 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9480 */
36c8b586 9481struct task_struct *curr_task(int cpu)
1df5c10a
LT
9482{
9483 return cpu_curr(cpu);
9484}
9485
9486/**
9487 * set_curr_task - set the current task for a given cpu.
9488 * @cpu: the processor in question.
9489 * @p: the task pointer to set.
9490 *
9491 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9492 * are serviced on a separate stack. It allows the architecture to switch the
9493 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9494 * must be called with all CPU's synchronized, and interrupts disabled, the
9495 * and caller must save the original value of the current task (see
9496 * curr_task() above) and restore that value before reenabling interrupts and
9497 * re-starting the system.
9498 *
9499 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9500 */
36c8b586 9501void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9502{
9503 cpu_curr(cpu) = p;
9504}
9505
9506#endif
29f59db3 9507
bccbe08a
PZ
9508#ifdef CONFIG_FAIR_GROUP_SCHED
9509static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9510{
9511 int i;
9512
9513 for_each_possible_cpu(i) {
9514 if (tg->cfs_rq)
9515 kfree(tg->cfs_rq[i]);
9516 if (tg->se)
9517 kfree(tg->se[i]);
6f505b16
PZ
9518 }
9519
9520 kfree(tg->cfs_rq);
9521 kfree(tg->se);
6f505b16
PZ
9522}
9523
ec7dc8ac
DG
9524static
9525int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9526{
29f59db3 9527 struct cfs_rq *cfs_rq;
eab17229 9528 struct sched_entity *se;
9b5b7751 9529 struct rq *rq;
29f59db3
SV
9530 int i;
9531
434d53b0 9532 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9533 if (!tg->cfs_rq)
9534 goto err;
434d53b0 9535 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9536 if (!tg->se)
9537 goto err;
052f1dc7
PZ
9538
9539 tg->shares = NICE_0_LOAD;
29f59db3
SV
9540
9541 for_each_possible_cpu(i) {
9b5b7751 9542 rq = cpu_rq(i);
29f59db3 9543
eab17229
LZ
9544 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9545 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9546 if (!cfs_rq)
9547 goto err;
9548
eab17229
LZ
9549 se = kzalloc_node(sizeof(struct sched_entity),
9550 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9551 if (!se)
9552 goto err;
9553
eab17229 9554 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9555 }
9556
9557 return 1;
9558
9559 err:
9560 return 0;
9561}
9562
9563static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9564{
9565 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9566 &cpu_rq(cpu)->leaf_cfs_rq_list);
9567}
9568
9569static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9570{
9571 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9572}
6d6bc0ad 9573#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9574static inline void free_fair_sched_group(struct task_group *tg)
9575{
9576}
9577
ec7dc8ac
DG
9578static inline
9579int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9580{
9581 return 1;
9582}
9583
9584static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9585{
9586}
9587
9588static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9589{
9590}
6d6bc0ad 9591#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9592
9593#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9594static void free_rt_sched_group(struct task_group *tg)
9595{
9596 int i;
9597
d0b27fa7
PZ
9598 destroy_rt_bandwidth(&tg->rt_bandwidth);
9599
bccbe08a
PZ
9600 for_each_possible_cpu(i) {
9601 if (tg->rt_rq)
9602 kfree(tg->rt_rq[i]);
9603 if (tg->rt_se)
9604 kfree(tg->rt_se[i]);
9605 }
9606
9607 kfree(tg->rt_rq);
9608 kfree(tg->rt_se);
9609}
9610
ec7dc8ac
DG
9611static
9612int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9613{
9614 struct rt_rq *rt_rq;
eab17229 9615 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9616 struct rq *rq;
9617 int i;
9618
434d53b0 9619 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9620 if (!tg->rt_rq)
9621 goto err;
434d53b0 9622 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9623 if (!tg->rt_se)
9624 goto err;
9625
d0b27fa7
PZ
9626 init_rt_bandwidth(&tg->rt_bandwidth,
9627 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9628
9629 for_each_possible_cpu(i) {
9630 rq = cpu_rq(i);
9631
eab17229
LZ
9632 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9633 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9634 if (!rt_rq)
9635 goto err;
29f59db3 9636
eab17229
LZ
9637 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9638 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9639 if (!rt_se)
9640 goto err;
29f59db3 9641
eab17229 9642 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9643 }
9644
bccbe08a
PZ
9645 return 1;
9646
9647 err:
9648 return 0;
9649}
9650
9651static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9652{
9653 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9654 &cpu_rq(cpu)->leaf_rt_rq_list);
9655}
9656
9657static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9658{
9659 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9660}
6d6bc0ad 9661#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9662static inline void free_rt_sched_group(struct task_group *tg)
9663{
9664}
9665
ec7dc8ac
DG
9666static inline
9667int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9668{
9669 return 1;
9670}
9671
9672static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9673{
9674}
9675
9676static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9677{
9678}
6d6bc0ad 9679#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9680
d0b27fa7 9681#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9682static void free_sched_group(struct task_group *tg)
9683{
9684 free_fair_sched_group(tg);
9685 free_rt_sched_group(tg);
9686 kfree(tg);
9687}
9688
9689/* allocate runqueue etc for a new task group */
ec7dc8ac 9690struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9691{
9692 struct task_group *tg;
9693 unsigned long flags;
9694 int i;
9695
9696 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9697 if (!tg)
9698 return ERR_PTR(-ENOMEM);
9699
ec7dc8ac 9700 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9701 goto err;
9702
ec7dc8ac 9703 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9704 goto err;
9705
8ed36996 9706 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9707 for_each_possible_cpu(i) {
bccbe08a
PZ
9708 register_fair_sched_group(tg, i);
9709 register_rt_sched_group(tg, i);
9b5b7751 9710 }
6f505b16 9711 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9712
9713 WARN_ON(!parent); /* root should already exist */
9714
9715 tg->parent = parent;
f473aa5e 9716 INIT_LIST_HEAD(&tg->children);
09f2724a 9717 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9718 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9719
9b5b7751 9720 return tg;
29f59db3
SV
9721
9722err:
6f505b16 9723 free_sched_group(tg);
29f59db3
SV
9724 return ERR_PTR(-ENOMEM);
9725}
9726
9b5b7751 9727/* rcu callback to free various structures associated with a task group */
6f505b16 9728static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9729{
29f59db3 9730 /* now it should be safe to free those cfs_rqs */
6f505b16 9731 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9732}
9733
9b5b7751 9734/* Destroy runqueue etc associated with a task group */
4cf86d77 9735void sched_destroy_group(struct task_group *tg)
29f59db3 9736{
8ed36996 9737 unsigned long flags;
9b5b7751 9738 int i;
29f59db3 9739
8ed36996 9740 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9741 for_each_possible_cpu(i) {
bccbe08a
PZ
9742 unregister_fair_sched_group(tg, i);
9743 unregister_rt_sched_group(tg, i);
9b5b7751 9744 }
6f505b16 9745 list_del_rcu(&tg->list);
f473aa5e 9746 list_del_rcu(&tg->siblings);
8ed36996 9747 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9748
9b5b7751 9749 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9750 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9751}
9752
9b5b7751 9753/* change task's runqueue when it moves between groups.
3a252015
IM
9754 * The caller of this function should have put the task in its new group
9755 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9756 * reflect its new group.
9b5b7751
SV
9757 */
9758void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9759{
9760 int on_rq, running;
9761 unsigned long flags;
9762 struct rq *rq;
9763
9764 rq = task_rq_lock(tsk, &flags);
9765
29f59db3
SV
9766 update_rq_clock(rq);
9767
051a1d1a 9768 running = task_current(rq, tsk);
29f59db3
SV
9769 on_rq = tsk->se.on_rq;
9770
0e1f3483 9771 if (on_rq)
29f59db3 9772 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9773 if (unlikely(running))
9774 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9775
6f505b16 9776 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9777
810b3817
PZ
9778#ifdef CONFIG_FAIR_GROUP_SCHED
9779 if (tsk->sched_class->moved_group)
9780 tsk->sched_class->moved_group(tsk);
9781#endif
9782
0e1f3483
HS
9783 if (unlikely(running))
9784 tsk->sched_class->set_curr_task(rq);
9785 if (on_rq)
7074badb 9786 enqueue_task(rq, tsk, 0);
29f59db3 9787
29f59db3
SV
9788 task_rq_unlock(rq, &flags);
9789}
6d6bc0ad 9790#endif /* CONFIG_GROUP_SCHED */
29f59db3 9791
052f1dc7 9792#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9793static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9794{
9795 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9796 int on_rq;
9797
29f59db3 9798 on_rq = se->on_rq;
62fb1851 9799 if (on_rq)
29f59db3
SV
9800 dequeue_entity(cfs_rq, se, 0);
9801
9802 se->load.weight = shares;
e05510d0 9803 se->load.inv_weight = 0;
29f59db3 9804
62fb1851 9805 if (on_rq)
29f59db3 9806 enqueue_entity(cfs_rq, se, 0);
c09595f6 9807}
62fb1851 9808
c09595f6
PZ
9809static void set_se_shares(struct sched_entity *se, unsigned long shares)
9810{
9811 struct cfs_rq *cfs_rq = se->cfs_rq;
9812 struct rq *rq = cfs_rq->rq;
9813 unsigned long flags;
9814
9815 spin_lock_irqsave(&rq->lock, flags);
9816 __set_se_shares(se, shares);
9817 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9818}
9819
8ed36996
PZ
9820static DEFINE_MUTEX(shares_mutex);
9821
4cf86d77 9822int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9823{
9824 int i;
8ed36996 9825 unsigned long flags;
c61935fd 9826
ec7dc8ac
DG
9827 /*
9828 * We can't change the weight of the root cgroup.
9829 */
9830 if (!tg->se[0])
9831 return -EINVAL;
9832
18d95a28
PZ
9833 if (shares < MIN_SHARES)
9834 shares = MIN_SHARES;
cb4ad1ff
MX
9835 else if (shares > MAX_SHARES)
9836 shares = MAX_SHARES;
62fb1851 9837
8ed36996 9838 mutex_lock(&shares_mutex);
9b5b7751 9839 if (tg->shares == shares)
5cb350ba 9840 goto done;
29f59db3 9841
8ed36996 9842 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9843 for_each_possible_cpu(i)
9844 unregister_fair_sched_group(tg, i);
f473aa5e 9845 list_del_rcu(&tg->siblings);
8ed36996 9846 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9847
9848 /* wait for any ongoing reference to this group to finish */
9849 synchronize_sched();
9850
9851 /*
9852 * Now we are free to modify the group's share on each cpu
9853 * w/o tripping rebalance_share or load_balance_fair.
9854 */
9b5b7751 9855 tg->shares = shares;
c09595f6
PZ
9856 for_each_possible_cpu(i) {
9857 /*
9858 * force a rebalance
9859 */
9860 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9861 set_se_shares(tg->se[i], shares);
c09595f6 9862 }
29f59db3 9863
6b2d7700
SV
9864 /*
9865 * Enable load balance activity on this group, by inserting it back on
9866 * each cpu's rq->leaf_cfs_rq_list.
9867 */
8ed36996 9868 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9869 for_each_possible_cpu(i)
9870 register_fair_sched_group(tg, i);
f473aa5e 9871 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9872 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9873done:
8ed36996 9874 mutex_unlock(&shares_mutex);
9b5b7751 9875 return 0;
29f59db3
SV
9876}
9877
5cb350ba
DG
9878unsigned long sched_group_shares(struct task_group *tg)
9879{
9880 return tg->shares;
9881}
052f1dc7 9882#endif
5cb350ba 9883
052f1dc7 9884#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9885/*
9f0c1e56 9886 * Ensure that the real time constraints are schedulable.
6f505b16 9887 */
9f0c1e56
PZ
9888static DEFINE_MUTEX(rt_constraints_mutex);
9889
9890static unsigned long to_ratio(u64 period, u64 runtime)
9891{
9892 if (runtime == RUNTIME_INF)
9a7e0b18 9893 return 1ULL << 20;
9f0c1e56 9894
9a7e0b18 9895 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9896}
9897
9a7e0b18
PZ
9898/* Must be called with tasklist_lock held */
9899static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9900{
9a7e0b18 9901 struct task_struct *g, *p;
b40b2e8e 9902
9a7e0b18
PZ
9903 do_each_thread(g, p) {
9904 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9905 return 1;
9906 } while_each_thread(g, p);
b40b2e8e 9907
9a7e0b18
PZ
9908 return 0;
9909}
b40b2e8e 9910
9a7e0b18
PZ
9911struct rt_schedulable_data {
9912 struct task_group *tg;
9913 u64 rt_period;
9914 u64 rt_runtime;
9915};
b40b2e8e 9916
9a7e0b18
PZ
9917static int tg_schedulable(struct task_group *tg, void *data)
9918{
9919 struct rt_schedulable_data *d = data;
9920 struct task_group *child;
9921 unsigned long total, sum = 0;
9922 u64 period, runtime;
b40b2e8e 9923
9a7e0b18
PZ
9924 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9925 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9926
9a7e0b18
PZ
9927 if (tg == d->tg) {
9928 period = d->rt_period;
9929 runtime = d->rt_runtime;
b40b2e8e 9930 }
b40b2e8e 9931
98a4826b
PZ
9932#ifdef CONFIG_USER_SCHED
9933 if (tg == &root_task_group) {
9934 period = global_rt_period();
9935 runtime = global_rt_runtime();
9936 }
9937#endif
9938
4653f803
PZ
9939 /*
9940 * Cannot have more runtime than the period.
9941 */
9942 if (runtime > period && runtime != RUNTIME_INF)
9943 return -EINVAL;
6f505b16 9944
4653f803
PZ
9945 /*
9946 * Ensure we don't starve existing RT tasks.
9947 */
9a7e0b18
PZ
9948 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9949 return -EBUSY;
6f505b16 9950
9a7e0b18 9951 total = to_ratio(period, runtime);
6f505b16 9952
4653f803
PZ
9953 /*
9954 * Nobody can have more than the global setting allows.
9955 */
9956 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9957 return -EINVAL;
6f505b16 9958
4653f803
PZ
9959 /*
9960 * The sum of our children's runtime should not exceed our own.
9961 */
9a7e0b18
PZ
9962 list_for_each_entry_rcu(child, &tg->children, siblings) {
9963 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9964 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9965
9a7e0b18
PZ
9966 if (child == d->tg) {
9967 period = d->rt_period;
9968 runtime = d->rt_runtime;
9969 }
6f505b16 9970
9a7e0b18 9971 sum += to_ratio(period, runtime);
9f0c1e56 9972 }
6f505b16 9973
9a7e0b18
PZ
9974 if (sum > total)
9975 return -EINVAL;
9976
9977 return 0;
6f505b16
PZ
9978}
9979
9a7e0b18 9980static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9981{
9a7e0b18
PZ
9982 struct rt_schedulable_data data = {
9983 .tg = tg,
9984 .rt_period = period,
9985 .rt_runtime = runtime,
9986 };
9987
9988 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9989}
9990
d0b27fa7
PZ
9991static int tg_set_bandwidth(struct task_group *tg,
9992 u64 rt_period, u64 rt_runtime)
6f505b16 9993{
ac086bc2 9994 int i, err = 0;
9f0c1e56 9995
9f0c1e56 9996 mutex_lock(&rt_constraints_mutex);
521f1a24 9997 read_lock(&tasklist_lock);
9a7e0b18
PZ
9998 err = __rt_schedulable(tg, rt_period, rt_runtime);
9999 if (err)
9f0c1e56 10000 goto unlock;
ac086bc2
PZ
10001
10002 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10003 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10004 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10005
10006 for_each_possible_cpu(i) {
10007 struct rt_rq *rt_rq = tg->rt_rq[i];
10008
10009 spin_lock(&rt_rq->rt_runtime_lock);
10010 rt_rq->rt_runtime = rt_runtime;
10011 spin_unlock(&rt_rq->rt_runtime_lock);
10012 }
10013 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10014 unlock:
521f1a24 10015 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10016 mutex_unlock(&rt_constraints_mutex);
10017
10018 return err;
6f505b16
PZ
10019}
10020
d0b27fa7
PZ
10021int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10022{
10023 u64 rt_runtime, rt_period;
10024
10025 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10026 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10027 if (rt_runtime_us < 0)
10028 rt_runtime = RUNTIME_INF;
10029
10030 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10031}
10032
9f0c1e56
PZ
10033long sched_group_rt_runtime(struct task_group *tg)
10034{
10035 u64 rt_runtime_us;
10036
d0b27fa7 10037 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10038 return -1;
10039
d0b27fa7 10040 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10041 do_div(rt_runtime_us, NSEC_PER_USEC);
10042 return rt_runtime_us;
10043}
d0b27fa7
PZ
10044
10045int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10046{
10047 u64 rt_runtime, rt_period;
10048
10049 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10050 rt_runtime = tg->rt_bandwidth.rt_runtime;
10051
619b0488
R
10052 if (rt_period == 0)
10053 return -EINVAL;
10054
d0b27fa7
PZ
10055 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10056}
10057
10058long sched_group_rt_period(struct task_group *tg)
10059{
10060 u64 rt_period_us;
10061
10062 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10063 do_div(rt_period_us, NSEC_PER_USEC);
10064 return rt_period_us;
10065}
10066
10067static int sched_rt_global_constraints(void)
10068{
4653f803 10069 u64 runtime, period;
d0b27fa7
PZ
10070 int ret = 0;
10071
ec5d4989
HS
10072 if (sysctl_sched_rt_period <= 0)
10073 return -EINVAL;
10074
4653f803
PZ
10075 runtime = global_rt_runtime();
10076 period = global_rt_period();
10077
10078 /*
10079 * Sanity check on the sysctl variables.
10080 */
10081 if (runtime > period && runtime != RUNTIME_INF)
10082 return -EINVAL;
10b612f4 10083
d0b27fa7 10084 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10085 read_lock(&tasklist_lock);
4653f803 10086 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10087 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10088 mutex_unlock(&rt_constraints_mutex);
10089
10090 return ret;
10091}
54e99124
DG
10092
10093int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10094{
10095 /* Don't accept realtime tasks when there is no way for them to run */
10096 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10097 return 0;
10098
10099 return 1;
10100}
10101
6d6bc0ad 10102#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10103static int sched_rt_global_constraints(void)
10104{
ac086bc2
PZ
10105 unsigned long flags;
10106 int i;
10107
ec5d4989
HS
10108 if (sysctl_sched_rt_period <= 0)
10109 return -EINVAL;
10110
60aa605d
PZ
10111 /*
10112 * There's always some RT tasks in the root group
10113 * -- migration, kstopmachine etc..
10114 */
10115 if (sysctl_sched_rt_runtime == 0)
10116 return -EBUSY;
10117
ac086bc2
PZ
10118 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10119 for_each_possible_cpu(i) {
10120 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10121
10122 spin_lock(&rt_rq->rt_runtime_lock);
10123 rt_rq->rt_runtime = global_rt_runtime();
10124 spin_unlock(&rt_rq->rt_runtime_lock);
10125 }
10126 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10127
d0b27fa7
PZ
10128 return 0;
10129}
6d6bc0ad 10130#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10131
10132int sched_rt_handler(struct ctl_table *table, int write,
10133 struct file *filp, void __user *buffer, size_t *lenp,
10134 loff_t *ppos)
10135{
10136 int ret;
10137 int old_period, old_runtime;
10138 static DEFINE_MUTEX(mutex);
10139
10140 mutex_lock(&mutex);
10141 old_period = sysctl_sched_rt_period;
10142 old_runtime = sysctl_sched_rt_runtime;
10143
10144 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10145
10146 if (!ret && write) {
10147 ret = sched_rt_global_constraints();
10148 if (ret) {
10149 sysctl_sched_rt_period = old_period;
10150 sysctl_sched_rt_runtime = old_runtime;
10151 } else {
10152 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10153 def_rt_bandwidth.rt_period =
10154 ns_to_ktime(global_rt_period());
10155 }
10156 }
10157 mutex_unlock(&mutex);
10158
10159 return ret;
10160}
68318b8e 10161
052f1dc7 10162#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10163
10164/* return corresponding task_group object of a cgroup */
2b01dfe3 10165static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10166{
2b01dfe3
PM
10167 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10168 struct task_group, css);
68318b8e
SV
10169}
10170
10171static struct cgroup_subsys_state *
2b01dfe3 10172cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10173{
ec7dc8ac 10174 struct task_group *tg, *parent;
68318b8e 10175
2b01dfe3 10176 if (!cgrp->parent) {
68318b8e 10177 /* This is early initialization for the top cgroup */
68318b8e
SV
10178 return &init_task_group.css;
10179 }
10180
ec7dc8ac
DG
10181 parent = cgroup_tg(cgrp->parent);
10182 tg = sched_create_group(parent);
68318b8e
SV
10183 if (IS_ERR(tg))
10184 return ERR_PTR(-ENOMEM);
10185
68318b8e
SV
10186 return &tg->css;
10187}
10188
41a2d6cf
IM
10189static void
10190cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10191{
2b01dfe3 10192 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10193
10194 sched_destroy_group(tg);
10195}
10196
41a2d6cf
IM
10197static int
10198cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10199 struct task_struct *tsk)
68318b8e 10200{
b68aa230 10201#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10202 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10203 return -EINVAL;
10204#else
68318b8e
SV
10205 /* We don't support RT-tasks being in separate groups */
10206 if (tsk->sched_class != &fair_sched_class)
10207 return -EINVAL;
b68aa230 10208#endif
68318b8e
SV
10209
10210 return 0;
10211}
10212
10213static void
2b01dfe3 10214cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10215 struct cgroup *old_cont, struct task_struct *tsk)
10216{
10217 sched_move_task(tsk);
10218}
10219
052f1dc7 10220#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10221static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10222 u64 shareval)
68318b8e 10223{
2b01dfe3 10224 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10225}
10226
f4c753b7 10227static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10228{
2b01dfe3 10229 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10230
10231 return (u64) tg->shares;
10232}
6d6bc0ad 10233#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10234
052f1dc7 10235#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10236static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10237 s64 val)
6f505b16 10238{
06ecb27c 10239 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10240}
10241
06ecb27c 10242static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10243{
06ecb27c 10244 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10245}
d0b27fa7
PZ
10246
10247static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10248 u64 rt_period_us)
10249{
10250 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10251}
10252
10253static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10254{
10255 return sched_group_rt_period(cgroup_tg(cgrp));
10256}
6d6bc0ad 10257#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10258
fe5c7cc2 10259static struct cftype cpu_files[] = {
052f1dc7 10260#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10261 {
10262 .name = "shares",
f4c753b7
PM
10263 .read_u64 = cpu_shares_read_u64,
10264 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10265 },
052f1dc7
PZ
10266#endif
10267#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10268 {
9f0c1e56 10269 .name = "rt_runtime_us",
06ecb27c
PM
10270 .read_s64 = cpu_rt_runtime_read,
10271 .write_s64 = cpu_rt_runtime_write,
6f505b16 10272 },
d0b27fa7
PZ
10273 {
10274 .name = "rt_period_us",
f4c753b7
PM
10275 .read_u64 = cpu_rt_period_read_uint,
10276 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10277 },
052f1dc7 10278#endif
68318b8e
SV
10279};
10280
10281static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10282{
fe5c7cc2 10283 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10284}
10285
10286struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10287 .name = "cpu",
10288 .create = cpu_cgroup_create,
10289 .destroy = cpu_cgroup_destroy,
10290 .can_attach = cpu_cgroup_can_attach,
10291 .attach = cpu_cgroup_attach,
10292 .populate = cpu_cgroup_populate,
10293 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10294 .early_init = 1,
10295};
10296
052f1dc7 10297#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10298
10299#ifdef CONFIG_CGROUP_CPUACCT
10300
10301/*
10302 * CPU accounting code for task groups.
10303 *
10304 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10305 * (balbir@in.ibm.com).
10306 */
10307
934352f2 10308/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10309struct cpuacct {
10310 struct cgroup_subsys_state css;
10311 /* cpuusage holds pointer to a u64-type object on every cpu */
10312 u64 *cpuusage;
ef12fefa 10313 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10314 struct cpuacct *parent;
d842de87
SV
10315};
10316
10317struct cgroup_subsys cpuacct_subsys;
10318
10319/* return cpu accounting group corresponding to this container */
32cd756a 10320static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10321{
32cd756a 10322 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10323 struct cpuacct, css);
10324}
10325
10326/* return cpu accounting group to which this task belongs */
10327static inline struct cpuacct *task_ca(struct task_struct *tsk)
10328{
10329 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10330 struct cpuacct, css);
10331}
10332
10333/* create a new cpu accounting group */
10334static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10335 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10336{
10337 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10338 int i;
d842de87
SV
10339
10340 if (!ca)
ef12fefa 10341 goto out;
d842de87
SV
10342
10343 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10344 if (!ca->cpuusage)
10345 goto out_free_ca;
10346
10347 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10348 if (percpu_counter_init(&ca->cpustat[i], 0))
10349 goto out_free_counters;
d842de87 10350
934352f2
BR
10351 if (cgrp->parent)
10352 ca->parent = cgroup_ca(cgrp->parent);
10353
d842de87 10354 return &ca->css;
ef12fefa
BR
10355
10356out_free_counters:
10357 while (--i >= 0)
10358 percpu_counter_destroy(&ca->cpustat[i]);
10359 free_percpu(ca->cpuusage);
10360out_free_ca:
10361 kfree(ca);
10362out:
10363 return ERR_PTR(-ENOMEM);
d842de87
SV
10364}
10365
10366/* destroy an existing cpu accounting group */
41a2d6cf 10367static void
32cd756a 10368cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10369{
32cd756a 10370 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10371 int i;
d842de87 10372
ef12fefa
BR
10373 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10374 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10375 free_percpu(ca->cpuusage);
10376 kfree(ca);
10377}
10378
720f5498
KC
10379static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10380{
b36128c8 10381 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10382 u64 data;
10383
10384#ifndef CONFIG_64BIT
10385 /*
10386 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10387 */
10388 spin_lock_irq(&cpu_rq(cpu)->lock);
10389 data = *cpuusage;
10390 spin_unlock_irq(&cpu_rq(cpu)->lock);
10391#else
10392 data = *cpuusage;
10393#endif
10394
10395 return data;
10396}
10397
10398static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10399{
b36128c8 10400 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10401
10402#ifndef CONFIG_64BIT
10403 /*
10404 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10405 */
10406 spin_lock_irq(&cpu_rq(cpu)->lock);
10407 *cpuusage = val;
10408 spin_unlock_irq(&cpu_rq(cpu)->lock);
10409#else
10410 *cpuusage = val;
10411#endif
10412}
10413
d842de87 10414/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10415static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10416{
32cd756a 10417 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10418 u64 totalcpuusage = 0;
10419 int i;
10420
720f5498
KC
10421 for_each_present_cpu(i)
10422 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10423
10424 return totalcpuusage;
10425}
10426
0297b803
DG
10427static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10428 u64 reset)
10429{
10430 struct cpuacct *ca = cgroup_ca(cgrp);
10431 int err = 0;
10432 int i;
10433
10434 if (reset) {
10435 err = -EINVAL;
10436 goto out;
10437 }
10438
720f5498
KC
10439 for_each_present_cpu(i)
10440 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10441
0297b803
DG
10442out:
10443 return err;
10444}
10445
e9515c3c
KC
10446static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10447 struct seq_file *m)
10448{
10449 struct cpuacct *ca = cgroup_ca(cgroup);
10450 u64 percpu;
10451 int i;
10452
10453 for_each_present_cpu(i) {
10454 percpu = cpuacct_cpuusage_read(ca, i);
10455 seq_printf(m, "%llu ", (unsigned long long) percpu);
10456 }
10457 seq_printf(m, "\n");
10458 return 0;
10459}
10460
ef12fefa
BR
10461static const char *cpuacct_stat_desc[] = {
10462 [CPUACCT_STAT_USER] = "user",
10463 [CPUACCT_STAT_SYSTEM] = "system",
10464};
10465
10466static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10467 struct cgroup_map_cb *cb)
10468{
10469 struct cpuacct *ca = cgroup_ca(cgrp);
10470 int i;
10471
10472 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10473 s64 val = percpu_counter_read(&ca->cpustat[i]);
10474 val = cputime64_to_clock_t(val);
10475 cb->fill(cb, cpuacct_stat_desc[i], val);
10476 }
10477 return 0;
10478}
10479
d842de87
SV
10480static struct cftype files[] = {
10481 {
10482 .name = "usage",
f4c753b7
PM
10483 .read_u64 = cpuusage_read,
10484 .write_u64 = cpuusage_write,
d842de87 10485 },
e9515c3c
KC
10486 {
10487 .name = "usage_percpu",
10488 .read_seq_string = cpuacct_percpu_seq_read,
10489 },
ef12fefa
BR
10490 {
10491 .name = "stat",
10492 .read_map = cpuacct_stats_show,
10493 },
d842de87
SV
10494};
10495
32cd756a 10496static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10497{
32cd756a 10498 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10499}
10500
10501/*
10502 * charge this task's execution time to its accounting group.
10503 *
10504 * called with rq->lock held.
10505 */
10506static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10507{
10508 struct cpuacct *ca;
934352f2 10509 int cpu;
d842de87 10510
c40c6f85 10511 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10512 return;
10513
934352f2 10514 cpu = task_cpu(tsk);
a18b83b7
BR
10515
10516 rcu_read_lock();
10517
d842de87 10518 ca = task_ca(tsk);
d842de87 10519
934352f2 10520 for (; ca; ca = ca->parent) {
b36128c8 10521 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10522 *cpuusage += cputime;
10523 }
a18b83b7
BR
10524
10525 rcu_read_unlock();
d842de87
SV
10526}
10527
ef12fefa
BR
10528/*
10529 * Charge the system/user time to the task's accounting group.
10530 */
10531static void cpuacct_update_stats(struct task_struct *tsk,
10532 enum cpuacct_stat_index idx, cputime_t val)
10533{
10534 struct cpuacct *ca;
10535
10536 if (unlikely(!cpuacct_subsys.active))
10537 return;
10538
10539 rcu_read_lock();
10540 ca = task_ca(tsk);
10541
10542 do {
10543 percpu_counter_add(&ca->cpustat[idx], val);
10544 ca = ca->parent;
10545 } while (ca);
10546 rcu_read_unlock();
10547}
10548
d842de87
SV
10549struct cgroup_subsys cpuacct_subsys = {
10550 .name = "cpuacct",
10551 .create = cpuacct_create,
10552 .destroy = cpuacct_destroy,
10553 .populate = cpuacct_populate,
10554 .subsys_id = cpuacct_subsys_id,
10555};
10556#endif /* CONFIG_CGROUP_CPUACCT */