]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
x86/paravirt: flush pending mmu updates on context switch
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434 641 unsigned int yld_count;
1da177e4
LT
642
643 /* schedule() stats */
480b9434
KC
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
1da177e4
LT
647
648 /* try_to_wake_up() stats */
480b9434
KC
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
b8efb561
IM
651
652 /* BKL stats */
480b9434 653 unsigned int bkl_count;
1da177e4
LT
654#endif
655};
656
f34e3b61 657static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 658
15afe09b 659static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 660{
15afe09b 661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
662}
663
0a2966b4
CL
664static inline int cpu_of(struct rq *rq)
665{
666#ifdef CONFIG_SMP
667 return rq->cpu;
668#else
669 return 0;
670#endif
671}
672
674311d5
NP
673/*
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 675 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
676 *
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
679 */
48f24c4d
IM
680#define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
682
683#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684#define this_rq() (&__get_cpu_var(runqueues))
685#define task_rq(p) cpu_rq(task_cpu(p))
686#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
687
3e51f33f
PZ
688static inline void update_rq_clock(struct rq *rq)
689{
690 rq->clock = sched_clock_cpu(cpu_of(rq));
691}
692
bf5c91ba
IM
693/*
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
695 */
696#ifdef CONFIG_SCHED_DEBUG
697# define const_debug __read_mostly
698#else
699# define const_debug static const
700#endif
701
017730c1
IM
702/**
703 * runqueue_is_locked
704 *
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
708 */
709int runqueue_is_locked(void)
710{
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
714
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
718}
719
bf5c91ba
IM
720/*
721 * Debugging: various feature bits
722 */
f00b45c1
PZ
723
724#define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
726
bf5c91ba 727enum {
f00b45c1 728#include "sched_features.h"
bf5c91ba
IM
729};
730
f00b45c1
PZ
731#undef SCHED_FEAT
732
733#define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
735
bf5c91ba 736const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
737#include "sched_features.h"
738 0;
739
740#undef SCHED_FEAT
741
742#ifdef CONFIG_SCHED_DEBUG
743#define SCHED_FEAT(name, enabled) \
744 #name ,
745
983ed7a6 746static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
747#include "sched_features.h"
748 NULL
749};
750
751#undef SCHED_FEAT
752
34f3a814 753static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 754{
f00b45c1
PZ
755 int i;
756
757 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 761 }
34f3a814 762 seq_puts(m, "\n");
f00b45c1 763
34f3a814 764 return 0;
f00b45c1
PZ
765}
766
767static ssize_t
768sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
770{
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
775
776 if (cnt > 63)
777 cnt = 63;
778
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
781
782 buf[cnt] = 0;
783
c24b7c52 784 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
785 neg = 1;
786 cmp += 3;
787 }
788
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
791
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
798 }
799 }
800
801 if (!sched_feat_names[i])
802 return -EINVAL;
803
804 filp->f_pos += cnt;
805
806 return cnt;
807}
808
34f3a814
LZ
809static int sched_feat_open(struct inode *inode, struct file *filp)
810{
811 return single_open(filp, sched_feat_show, NULL);
812}
813
f00b45c1 814static struct file_operations sched_feat_fops = {
34f3a814
LZ
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
f00b45c1
PZ
820};
821
822static __init int sched_init_debug(void)
823{
f00b45c1
PZ
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
826
827 return 0;
828}
829late_initcall(sched_init_debug);
830
831#endif
832
833#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 834
b82d9fdd
PZ
835/*
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
838 */
839const_debug unsigned int sysctl_sched_nr_migrate = 32;
840
2398f2c6
PZ
841/*
842 * ratelimit for updating the group shares.
55cd5340 843 * default: 0.25ms
2398f2c6 844 */
55cd5340 845unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 846
ffda12a1
PZ
847/*
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
851 */
852unsigned int sysctl_sched_shares_thresh = 4;
853
fa85ae24 854/*
9f0c1e56 855 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
856 * default: 1s
857 */
9f0c1e56 858unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 859
6892b75e
IM
860static __read_mostly int scheduler_running;
861
9f0c1e56
PZ
862/*
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
865 */
866int sysctl_sched_rt_runtime = 950000;
fa85ae24 867
d0b27fa7
PZ
868static inline u64 global_rt_period(void)
869{
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
871}
872
873static inline u64 global_rt_runtime(void)
874{
e26873bb 875 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
876 return RUNTIME_INF;
877
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
879}
fa85ae24 880
1da177e4 881#ifndef prepare_arch_switch
4866cde0
NP
882# define prepare_arch_switch(next) do { } while (0)
883#endif
884#ifndef finish_arch_switch
885# define finish_arch_switch(prev) do { } while (0)
886#endif
887
051a1d1a
DA
888static inline int task_current(struct rq *rq, struct task_struct *p)
889{
890 return rq->curr == p;
891}
892
4866cde0 893#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 894static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 895{
051a1d1a 896 return task_current(rq, p);
4866cde0
NP
897}
898
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901}
902
70b97a7f 903static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 904{
da04c035
IM
905#ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908#endif
8a25d5de
IM
909 /*
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
913 */
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
915
4866cde0
NP
916 spin_unlock_irq(&rq->lock);
917}
918
919#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 920static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
921{
922#ifdef CONFIG_SMP
923 return p->oncpu;
924#else
051a1d1a 925 return task_current(rq, p);
4866cde0
NP
926#endif
927}
928
70b97a7f 929static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
936 */
937 next->oncpu = 1;
938#endif
939#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941#else
942 spin_unlock(&rq->lock);
943#endif
944}
945
70b97a7f 946static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
947{
948#ifdef CONFIG_SMP
949 /*
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
953 */
954 smp_wmb();
955 prev->oncpu = 0;
956#endif
957#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
1da177e4 959#endif
4866cde0
NP
960}
961#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 962
b29739f9
IM
963/*
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
966 */
70b97a7f 967static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
968 __acquires(rq->lock)
969{
3a5c359a
AK
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
b29739f9 975 spin_unlock(&rq->lock);
b29739f9 976 }
b29739f9
IM
977}
978
1da177e4
LT
979/*
980 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 981 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
982 * explicitly disabling preemption.
983 */
70b97a7f 984static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
985 __acquires(rq->lock)
986{
70b97a7f 987 struct rq *rq;
1da177e4 988
3a5c359a
AK
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
1da177e4 995 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 996 }
1da177e4
LT
997}
998
ad474cac
ON
999void task_rq_unlock_wait(struct task_struct *p)
1000{
1001 struct rq *rq = task_rq(p);
1002
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1005}
1006
a9957449 1007static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1008 __releases(rq->lock)
1009{
1010 spin_unlock(&rq->lock);
1011}
1012
70b97a7f 1013static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1014 __releases(rq->lock)
1015{
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1017}
1018
1da177e4 1019/*
cc2a73b5 1020 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1021 */
a9957449 1022static struct rq *this_rq_lock(void)
1da177e4
LT
1023 __acquires(rq->lock)
1024{
70b97a7f 1025 struct rq *rq;
1da177e4
LT
1026
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1030
1031 return rq;
1032}
1033
8f4d37ec
PZ
1034#ifdef CONFIG_SCHED_HRTICK
1035/*
1036 * Use HR-timers to deliver accurate preemption points.
1037 *
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1041 *
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1044 */
8f4d37ec
PZ
1045
1046/*
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1050 */
1051static inline int hrtick_enabled(struct rq *rq)
1052{
1053 if (!sched_feat(HRTICK))
1054 return 0;
ba42059f 1055 if (!cpu_active(cpu_of(rq)))
b328ca18 1056 return 0;
8f4d37ec
PZ
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1058}
1059
8f4d37ec
PZ
1060static void hrtick_clear(struct rq *rq)
1061{
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1064}
1065
8f4d37ec
PZ
1066/*
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1069 */
1070static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071{
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075
1076 spin_lock(&rq->lock);
3e51f33f 1077 update_rq_clock(rq);
8f4d37ec
PZ
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1080
1081 return HRTIMER_NORESTART;
1082}
1083
95e904c7 1084#ifdef CONFIG_SMP
31656519
PZ
1085/*
1086 * called from hardirq (IPI) context
1087 */
1088static void __hrtick_start(void *arg)
b328ca18 1089{
31656519 1090 struct rq *rq = arg;
b328ca18 1091
31656519
PZ
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
b328ca18
PZ
1096}
1097
31656519
PZ
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1104{
31656519
PZ
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1107
cc584b21 1108 hrtimer_set_expires(timer, time);
31656519
PZ
1109
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1115 }
b328ca18
PZ
1116}
1117
1118static int
1119hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1120{
1121 int cpu = (int)(long)hcpu;
1122
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
31656519 1130 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1131 return NOTIFY_OK;
1132 }
1133
1134 return NOTIFY_DONE;
1135}
1136
fa748203 1137static __init void init_hrtick(void)
b328ca18
PZ
1138{
1139 hotcpu_notifier(hotplug_hrtick, 0);
1140}
31656519
PZ
1141#else
1142/*
1143 * Called to set the hrtick timer state.
1144 *
1145 * called with rq->lock held and irqs disabled
1146 */
1147static void hrtick_start(struct rq *rq, u64 delay)
1148{
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1150}
b328ca18 1151
006c75f1 1152static inline void init_hrtick(void)
8f4d37ec 1153{
8f4d37ec 1154}
31656519 1155#endif /* CONFIG_SMP */
8f4d37ec 1156
31656519 1157static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1158{
31656519
PZ
1159#ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
8f4d37ec 1161
31656519
PZ
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165#endif
8f4d37ec 1166
31656519
PZ
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
8f4d37ec 1169}
006c75f1 1170#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1171static inline void hrtick_clear(struct rq *rq)
1172{
1173}
1174
8f4d37ec
PZ
1175static inline void init_rq_hrtick(struct rq *rq)
1176{
1177}
1178
b328ca18
PZ
1179static inline void init_hrtick(void)
1180{
1181}
006c75f1 1182#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
31656519 1197static void resched_task(struct task_struct *p)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
5ed0cec0 1203 if (test_tsk_need_resched(p))
c24d20db
IM
1204 return;
1205
5ed0cec0 1206 set_tsk_need_resched(p);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
5ed0cec0 1262 set_tsk_need_resched(rq->idle);
06d8308c
TG
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
cce7ade8
PZ
1343#define WEIGHT_IDLEPRIO 3
1344#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
7940ca36 1429#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1430typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1431
1432/*
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1435 */
eb755805 1436static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1437{
1438 struct task_group *parent, *child;
eb755805 1439 int ret;
c09595f6
PZ
1440
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443down:
eb755805
PZ
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1450
1451up:
1452 continue;
1453 }
eb755805
PZ
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
eb755805 1462out_unlock:
c09595f6 1463 rcu_read_unlock();
eb755805
PZ
1464
1465 return ret;
c09595f6
PZ
1466}
1467
eb755805
PZ
1468static int tg_nop(struct task_group *tg, void *data)
1469{
1470 return 0;
c09595f6 1471}
eb755805
PZ
1472#endif
1473
1474#ifdef CONFIG_SMP
1475static unsigned long source_load(int cpu, int type);
1476static unsigned long target_load(int cpu, int type);
1477static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1478
1479static unsigned long cpu_avg_load_per_task(int cpu)
1480{
1481 struct rq *rq = cpu_rq(cpu);
af6d596f 1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1483
4cd42620
SR
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1486 else
1487 rq->avg_load_per_task = 0;
eb755805
PZ
1488
1489 return rq->avg_load_per_task;
1490}
1491
1492#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1493
c09595f6
PZ
1494static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1495
1496/*
1497 * Calculate and set the cpu's group shares.
1498 */
1499static void
ffda12a1
PZ
1500update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1502{
c09595f6
PZ
1503 unsigned long shares;
1504 unsigned long rq_weight;
1505
c8cba857 1506 if (!tg->se[cpu])
c09595f6
PZ
1507 return;
1508
ec4e0e2f 1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1510
c09595f6
PZ
1511 /*
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1515 *
1516 */
ec4e0e2f 1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1519
ffda12a1
PZ
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
c09595f6 1524
ffda12a1 1525 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1526 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1527
ffda12a1
PZ
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1530 }
18d95a28 1531}
c09595f6
PZ
1532
1533/*
c8cba857
PZ
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
c09595f6 1537 */
eb755805 1538static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1539{
ec4e0e2f 1540 unsigned long weight, rq_weight = 0;
c8cba857 1541 unsigned long shares = 0;
eb755805 1542 struct sched_domain *sd = data;
c8cba857 1543 int i;
c09595f6 1544
758b2cdc 1545 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1546 /*
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1550 */
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1554
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
c8cba857 1557 shares += tg->cfs_rq[i]->shares;
c09595f6 1558 }
c09595f6 1559
c8cba857
PZ
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1562
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1567 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1568
1569 return 0;
c09595f6
PZ
1570}
1571
1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
c8cba857 1595static void update_shares(struct sched_domain *sd)
4d8d595d 1596{
2398f2c6
PZ
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1599
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
eb755805 1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1603 }
4d8d595d
PZ
1604}
1605
3e5459b4
PZ
1606static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1607{
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1611}
1612
eb755805 1613static void update_h_load(long cpu)
c09595f6 1614{
eb755805 1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1616}
1617
c09595f6
PZ
1618#else
1619
c8cba857 1620static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1621{
1622}
1623
3e5459b4
PZ
1624static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1625{
1626}
1627
18d95a28
PZ
1628#endif
1629
8f45e2b5
GH
1630#ifdef CONFIG_PREEMPT
1631
70574a99 1632/*
8f45e2b5
GH
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
70574a99 1639 */
8f45e2b5
GH
1640static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1647
1648 return 1;
1649}
1650
1651#else
1652/*
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1658 */
1659static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1663{
1664 int ret = 0;
1665
70574a99
AD
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1674 }
1675 return ret;
1676}
1677
8f45e2b5
GH
1678#endif /* CONFIG_PREEMPT */
1679
1680/*
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1682 */
1683static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684{
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1689 }
1690
1691 return _double_lock_balance(this_rq, busiest);
1692}
1693
70574a99
AD
1694static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1696{
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1699}
18d95a28
PZ
1700#endif
1701
30432094 1702#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1703static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1704{
30432094 1705#ifdef CONFIG_SMP
34e83e85
IM
1706 cfs_rq->shares = shares;
1707#endif
1708}
30432094 1709#endif
e7693a36 1710
dd41f596 1711#include "sched_stats.h"
dd41f596 1712#include "sched_idletask.c"
5522d5d5
IM
1713#include "sched_fair.c"
1714#include "sched_rt.c"
dd41f596
IM
1715#ifdef CONFIG_SCHED_DEBUG
1716# include "sched_debug.c"
1717#endif
1718
1719#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1720#define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
dd41f596 1722
c09595f6 1723static void inc_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running++;
9c217245
IM
1726}
1727
c09595f6 1728static void dec_nr_running(struct rq *rq)
9c217245
IM
1729{
1730 rq->nr_running--;
9c217245
IM
1731}
1732
45bf76df
IM
1733static void set_load_weight(struct task_struct *p)
1734{
1735 if (task_has_rt_policy(p)) {
dd41f596
IM
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1739 }
45bf76df 1740
dd41f596
IM
1741 /*
1742 * SCHED_IDLE tasks get minimal weight:
1743 */
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1748 }
71f8bd46 1749
dd41f596
IM
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1752}
1753
2087a1ad
GH
1754static void update_avg(u64 *avg, u64 sample)
1755{
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1758}
1759
8159f87e 1760static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1761{
831451ac
PZ
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1764
dd41f596 1765 sched_info_queued(p);
fd390f6a 1766 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1767 p->se.on_rq = 1;
71f8bd46
IM
1768}
1769
69be72c1 1770static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1771{
831451ac
PZ
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1780 }
2087a1ad
GH
1781 }
1782
46ac22ba 1783 sched_info_dequeued(p);
f02231e5 1784 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
14531189 1788/*
dd41f596 1789 * __normal_prio - return the priority that is based on the static prio
14531189 1790 */
14531189
IM
1791static inline int __normal_prio(struct task_struct *p)
1792{
dd41f596 1793 return p->static_prio;
14531189
IM
1794}
1795
b29739f9
IM
1796/*
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1802 */
36c8b586 1803static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1804{
1805 int prio;
1806
e05606d3 1807 if (task_has_rt_policy(p))
b29739f9
IM
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1812}
1813
1814/*
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1820 */
36c8b586 1821static int effective_prio(struct task_struct *p)
b29739f9
IM
1822{
1823 p->normal_prio = normal_prio(p);
1824 /*
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1828 */
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1832}
1833
1da177e4 1834/*
dd41f596 1835 * activate_task - move a task to the runqueue.
1da177e4 1836 */
dd41f596 1837static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1838{
d9514f6c 1839 if (task_contributes_to_load(p))
dd41f596 1840 rq->nr_uninterruptible--;
1da177e4 1841
8159f87e 1842 enqueue_task(rq, p, wakeup);
c09595f6 1843 inc_nr_running(rq);
1da177e4
LT
1844}
1845
1da177e4
LT
1846/*
1847 * deactivate_task - remove a task from the runqueue.
1848 */
2e1cb74a 1849static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1850{
d9514f6c 1851 if (task_contributes_to_load(p))
dd41f596
IM
1852 rq->nr_uninterruptible++;
1853
69be72c1 1854 dequeue_task(rq, p, sleep);
c09595f6 1855 dec_nr_running(rq);
1da177e4
LT
1856}
1857
1da177e4
LT
1858/**
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1861 */
36c8b586 1862inline int task_curr(const struct task_struct *p)
1da177e4
LT
1863{
1864 return cpu_curr(task_cpu(p)) == p;
1865}
1866
dd41f596
IM
1867static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1868{
6f505b16 1869 set_task_rq(p, cpu);
dd41f596 1870#ifdef CONFIG_SMP
ce96b5ac
DA
1871 /*
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1875 */
1876 smp_wmb();
dd41f596 1877 task_thread_info(p)->cpu = cpu;
dd41f596 1878#endif
2dd73a4f
PW
1879}
1880
cb469845
SR
1881static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1884{
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1891}
1892
1da177e4 1893#ifdef CONFIG_SMP
c65cc870 1894
e958b360
TG
1895/* Used instead of source_load when we know the type == 0 */
1896static unsigned long weighted_cpuload(const int cpu)
1897{
1898 return cpu_rq(cpu)->load.weight;
1899}
1900
cc367732
IM
1901/*
1902 * Is this task likely cache-hot:
1903 */
e7693a36 1904static int
cc367732
IM
1905task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1906{
1907 s64 delta;
1908
f540a608
IM
1909 /*
1910 * Buddy candidates are cache hot:
1911 */
4793241b
PZ
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1915 return 1;
1916
cc367732
IM
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1919
6bc1665b
IM
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1924
cc367732
IM
1925 delta = now - p->se.exec_start;
1926
1927 return delta < (s64)sysctl_sched_migration_cost;
1928}
1929
1930
dd41f596 1931void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1932{
dd41f596
IM
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1937 u64 clock_offset;
dd41f596
IM
1938
1939 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1940
cbc34ed1
PZ
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1942
6cfb0d5d
IM
1943#ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
dd41f596
IM
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
cc367732
IM
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1954 }
6cfb0d5d 1955#endif
2830cf8c
SV
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
dd41f596
IM
1958
1959 __set_task_cpu(p, new_cpu);
c65cc870
IM
1960}
1961
70b97a7f 1962struct migration_req {
1da177e4 1963 struct list_head list;
1da177e4 1964
36c8b586 1965 struct task_struct *task;
1da177e4
LT
1966 int dest_cpu;
1967
1da177e4 1968 struct completion done;
70b97a7f 1969};
1da177e4
LT
1970
1971/*
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1974 */
36c8b586 1975static int
70b97a7f 1976migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1977{
70b97a7f 1978 struct rq *rq = task_rq(p);
1da177e4
LT
1979
1980 /*
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1983 */
dd41f596 1984 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1987 }
1988
1989 init_completion(&req->done);
1da177e4
LT
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
48f24c4d 1993
1da177e4
LT
1994 return 1;
1995}
1996
1997/*
1998 * wait_task_inactive - wait for a thread to unschedule.
1999 *
85ba2d86
RM
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2006 *
1da177e4
LT
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2012 */
85ba2d86 2013unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2014{
2015 unsigned long flags;
dd41f596 2016 int running, on_rq;
85ba2d86 2017 unsigned long ncsw;
70b97a7f 2018 struct rq *rq;
1da177e4 2019
3a5c359a
AK
2020 for (;;) {
2021 /*
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2026 */
2027 rq = task_rq(p);
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2033 *
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2039 */
85ba2d86
RM
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
3a5c359a 2043 cpu_relax();
85ba2d86 2044 }
fa490cfd 2045
3a5c359a
AK
2046 /*
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2050 */
2051 rq = task_rq_lock(p, &flags);
0a16b607 2052 trace_sched_wait_task(rq, p);
3a5c359a
AK
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
85ba2d86 2055 ncsw = 0;
f31e11d8 2056 if (!match_state || p->state == match_state)
93dcf55f 2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2058 task_rq_unlock(rq, &flags);
fa490cfd 2059
85ba2d86
RM
2060 /*
2061 * If it changed from the expected state, bail out now.
2062 */
2063 if (unlikely(!ncsw))
2064 break;
2065
3a5c359a
AK
2066 /*
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2069 *
2070 * Oops. Go back and try again..
2071 */
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2075 }
fa490cfd 2076
3a5c359a
AK
2077 /*
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2081 *
80dd99b3 2082 * So if it was still runnable (but just not actively
3a5c359a
AK
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2085 */
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2089 }
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2095 */
2096 break;
2097 }
85ba2d86
RM
2098
2099 return ncsw;
1da177e4
LT
2100}
2101
2102/***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2105 *
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2108 *
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2114 */
36c8b586 2115void kick_process(struct task_struct *p)
1da177e4
LT
2116{
2117 int cpu;
2118
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2124}
2125
2126/*
2dd73a4f
PW
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
1da177e4
LT
2129 *
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2132 */
a9957449 2133static unsigned long source_load(int cpu, int type)
1da177e4 2134{
70b97a7f 2135 struct rq *rq = cpu_rq(cpu);
dd41f596 2136 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2137
93b75217 2138 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2139 return total;
b910472d 2140
dd41f596 2141 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2142}
2143
2144/*
2dd73a4f
PW
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
1da177e4 2147 */
a9957449 2148static unsigned long target_load(int cpu, int type)
1da177e4 2149{
70b97a7f 2150 struct rq *rq = cpu_rq(cpu);
dd41f596 2151 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2152
93b75217 2153 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2154 return total;
3b0bd9bc 2155
dd41f596 2156 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2157}
2158
147cbb4b
NP
2159/*
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2162 */
2163static struct sched_group *
2164find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2165{
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2170
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2175
da5a5522 2176 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
3a5c359a 2179 continue;
da5a5522 2180
758b2cdc
RR
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
147cbb4b
NP
2183
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2186
758b2cdc 2187 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2193
2194 avg_load += load;
2195 }
2196
2197 /* Adjust by relative CPU power of the group */
5517d86b
ED
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2200
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2207 }
3a5c359a 2208 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2209
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2213}
2214
2215/*
0feaece9 2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2217 */
95cdf3b7 2218static int
758b2cdc 2219find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2220{
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2224
da5a5522 2225 /* Traverse only the allowed CPUs */
758b2cdc 2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2227 load = weighted_cpuload(i);
147cbb4b
NP
2228
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2232 }
2233 }
2234
2235 return idlest;
2236}
2237
476d139c
NP
2238/*
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2242 *
2243 * Balance, ie. select the least loaded group.
2244 *
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2246 *
2247 * preempt must be disabled.
2248 */
2249static int sched_balance_self(int cpu, int flag)
2250{
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2253
c96d145e 2254 for_each_domain(cpu, tmp) {
9761eea8
IM
2255 /*
2256 * If power savings logic is enabled for a domain, stop there.
2257 */
5c45bf27
SS
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
476d139c
NP
2260 if (tmp->flags & flag)
2261 sd = tmp;
c96d145e 2262 }
476d139c 2263
039a1c41
PZ
2264 if (sd)
2265 update_shares(sd);
2266
476d139c 2267 while (sd) {
476d139c 2268 struct sched_group *group;
1a848870
SS
2269 int new_cpu, weight;
2270
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2274 }
476d139c 2275
476d139c 2276 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2280 }
476d139c 2281
758b2cdc 2282 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2287 }
476d139c 2288
1a848870 2289 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2290 cpu = new_cpu;
758b2cdc 2291 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2292 sd = NULL;
476d139c 2293 for_each_domain(cpu, tmp) {
758b2cdc 2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2298 }
2299 /* while loop will break here if sd == NULL */
2300 }
2301
2302 return cpu;
2303}
2304
2305#endif /* CONFIG_SMP */
1da177e4 2306
1da177e4
LT
2307/***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
36c8b586 2321static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2322{
cc367732 2323 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2324 unsigned long flags;
2325 long old_state;
70b97a7f 2326 struct rq *rq;
1da177e4 2327
b85d0667
IM
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2330
2398f2c6 2331#ifdef CONFIG_SMP
57310a98 2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2333 struct sched_domain *sd;
2334
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2337
2338 for_each_domain(this_cpu, sd) {
758b2cdc 2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2340 update_shares(sd);
2341 break;
2342 }
2343 }
2344 }
2345#endif
2346
04e2f174 2347 smp_wmb();
1da177e4 2348 rq = task_rq_lock(p, &flags);
03e89e45 2349 update_rq_clock(rq);
1da177e4
LT
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2353
dd41f596 2354 if (p->se.on_rq)
1da177e4
LT
2355 goto out_running;
2356
2357 cpu = task_cpu(p);
cc367732 2358 orig_cpu = cpu;
1da177e4
LT
2359 this_cpu = smp_processor_id();
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
5d2f5a61
DA
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
1da177e4
LT
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
dd41f596 2374 if (p->se.on_rq)
1da177e4
LT
2375 goto out_running;
2376
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2379 }
2380
e7693a36
GH
2381#ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
758b2cdc 2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2391 }
2392 }
2393 }
6d6bc0ad 2394#endif /* CONFIG_SCHEDSTATS */
e7693a36 2395
1da177e4
LT
2396out_activate:
2397#endif /* CONFIG_SMP */
cc367732
IM
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2407 activate_task(rq, p, 1);
1da177e4
LT
2408 success = 1;
2409
831451ac
PZ
2410 /*
2411 * Only attribute actual wakeups done by this task.
2412 */
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2416
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2422
2423 se->last_wakeup = se->sum_exec_runtime;
2424 }
2425
1da177e4 2426out_running:
468a15bb 2427 trace_sched_wakeup(rq, p, success);
15afe09b 2428 check_preempt_curr(rq, p, sync);
4ae7d5ce 2429
1da177e4 2430 p->state = TASK_RUNNING;
9a897c5a
SR
2431#ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434#endif
1da177e4
LT
2435out:
2436 task_rq_unlock(rq, &flags);
2437
2438 return success;
2439}
2440
7ad5b3a5 2441int wake_up_process(struct task_struct *p)
1da177e4 2442{
d9514f6c 2443 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2444}
1da177e4
LT
2445EXPORT_SYMBOL(wake_up_process);
2446
7ad5b3a5 2447int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2448{
2449 return try_to_wake_up(p, state, 0);
2450}
2451
1da177e4
LT
2452/*
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
dd41f596
IM
2455 *
2456 * __sched_fork() is basic setup used by init_idle() too:
2457 */
2458static void __sched_fork(struct task_struct *p)
2459{
dd41f596
IM
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
f6cf891c 2462 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
831451ac
PZ
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2467
2468#ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
dd41f596
IM
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
dd41f596
IM
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
eba1ed4b 2476 p->se.slice_max = 0;
dd41f596 2477 p->se.wait_max = 0;
6cfb0d5d 2478#endif
476d139c 2479
fa717060 2480 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2481 p->se.on_rq = 0;
4a55bd5e 2482 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2483
e107be36
AK
2484#ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486#endif
2487
1da177e4
LT
2488 /*
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2493 */
2494 p->state = TASK_RUNNING;
dd41f596
IM
2495}
2496
2497/*
2498 * fork()/clone()-time setup:
2499 */
2500void sched_fork(struct task_struct *p, int clone_flags)
2501{
2502 int cpu = get_cpu();
2503
2504 __sched_fork(p);
2505
2506#ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508#endif
02e4bac2 2509 set_task_cpu(p, cpu);
b29739f9
IM
2510
2511 /*
2512 * Make sure we do not leak PI boosting priority to the child:
2513 */
2514 p->prio = current->normal_prio;
2ddbf952
HS
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
b29739f9 2517
52f17b6c 2518#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2519 if (likely(sched_info_on()))
52f17b6c 2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2521#endif
d6077cb8 2522#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2523 p->oncpu = 0;
2524#endif
1da177e4 2525#ifdef CONFIG_PREEMPT
4866cde0 2526 /* Want to start with kernel preemption disabled. */
a1261f54 2527 task_thread_info(p)->preempt_count = 1;
1da177e4 2528#endif
917b627d
GH
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2530
476d139c 2531 put_cpu();
1da177e4
LT
2532}
2533
2534/*
2535 * wake_up_new_task - wake up a newly created task for the first time.
2536 *
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2540 */
7ad5b3a5 2541void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2542{
2543 unsigned long flags;
dd41f596 2544 struct rq *rq;
1da177e4
LT
2545
2546 rq = task_rq_lock(p, &flags);
147cbb4b 2547 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2548 update_rq_clock(rq);
1da177e4
LT
2549
2550 p->prio = effective_prio(p);
2551
b9dca1e0 2552 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2553 activate_task(rq, p, 0);
1da177e4 2554 } else {
1da177e4 2555 /*
dd41f596
IM
2556 * Let the scheduling class do new task startup
2557 * management (if any):
1da177e4 2558 */
ee0827d8 2559 p->sched_class->task_new(rq, p);
c09595f6 2560 inc_nr_running(rq);
1da177e4 2561 }
c71dd42d 2562 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2563 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2564#ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567#endif
dd41f596 2568 task_rq_unlock(rq, &flags);
1da177e4
LT
2569}
2570
e107be36
AK
2571#ifdef CONFIG_PREEMPT_NOTIFIERS
2572
2573/**
80dd99b3 2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2575 * @notifier: notifier struct to register
e107be36
AK
2576 */
2577void preempt_notifier_register(struct preempt_notifier *notifier)
2578{
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2580}
2581EXPORT_SYMBOL_GPL(preempt_notifier_register);
2582
2583/**
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2585 * @notifier: notifier struct to unregister
e107be36
AK
2586 *
2587 * This is safe to call from within a preemption notifier.
2588 */
2589void preempt_notifier_unregister(struct preempt_notifier *notifier)
2590{
2591 hlist_del(&notifier->link);
2592}
2593EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2594
2595static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2602}
2603
2604static void
2605fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2607{
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2610
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2613}
2614
6d6bc0ad 2615#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2616
2617static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619}
2620
2621static void
2622fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2624{
2625}
2626
6d6bc0ad 2627#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2628
4866cde0
NP
2629/**
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
421cee29 2632 * @prev: the current task that is being switched out
4866cde0
NP
2633 * @next: the task we are going to switch to.
2634 *
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2638 *
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2641 */
e107be36
AK
2642static inline void
2643prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
4866cde0 2645{
e107be36 2646 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2649}
2650
1da177e4
LT
2651/**
2652 * finish_task_switch - clean up after a task-switch
344babaa 2653 * @rq: runqueue associated with task-switch
1da177e4
LT
2654 * @prev: the thread we just switched away from.
2655 *
4866cde0
NP
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2660 *
2661 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2662 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2665 */
a9957449 2666static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2667 __releases(rq->lock)
2668{
1da177e4 2669 struct mm_struct *mm = rq->prev_mm;
55a101f8 2670 long prev_state;
967fc046
GH
2671#ifdef CONFIG_SMP
2672 int post_schedule = 0;
2673
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676#endif
1da177e4
LT
2677
2678 rq->prev_mm = NULL;
2679
2680 /*
2681 * A task struct has one reference for the use as "current".
c394cc9f 2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
c394cc9f 2685 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2690 */
55a101f8 2691 prev_state = prev->state;
4866cde0
NP
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
9a897c5a 2694#ifdef CONFIG_SMP
967fc046 2695 if (post_schedule)
9a897c5a
SR
2696 current->sched_class->post_schedule(rq);
2697#endif
e8fa1362 2698
e107be36 2699 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2700 if (mm)
2701 mmdrop(mm);
c394cc9f 2702 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2703 /*
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
9761eea8 2706 */
c6fd91f0 2707 kprobe_flush_task(prev);
1da177e4 2708 put_task_struct(prev);
c6fd91f0 2709 }
1da177e4
LT
2710}
2711
2712/**
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2715 */
36c8b586 2716asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2717 __releases(rq->lock)
2718{
70b97a7f
IM
2719 struct rq *rq = this_rq();
2720
4866cde0
NP
2721 finish_task_switch(rq, prev);
2722#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725#endif
1da177e4 2726 if (current->set_child_tid)
b488893a 2727 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2728}
2729
2730/*
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2733 */
dd41f596 2734static inline void
70b97a7f 2735context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2736 struct task_struct *next)
1da177e4 2737{
dd41f596 2738 struct mm_struct *mm, *oldmm;
1da177e4 2739
e107be36 2740 prepare_task_switch(rq, prev, next);
0a16b607 2741 trace_sched_switch(rq, prev, next);
dd41f596
IM
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
9226d125
ZA
2744 /*
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2748 */
7fd7d83d 2749 arch_start_context_switch();
9226d125 2750
dd41f596 2751 if (unlikely(!mm)) {
1da177e4
LT
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2757
dd41f596 2758 if (unlikely(!prev->mm)) {
1da177e4 2759 prev->active_mm = NULL;
1da177e4
LT
2760 rq->prev_mm = oldmm;
2761 }
3a5f5e48
IM
2762 /*
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2767 */
2768#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2770#endif
1da177e4
LT
2771
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2774
dd41f596
IM
2775 barrier();
2776 /*
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2780 */
2781 finish_task_switch(this_rq(), prev);
1da177e4
LT
2782}
2783
2784/*
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2786 *
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2790 */
2791unsigned long nr_running(void)
2792{
2793 unsigned long i, sum = 0;
2794
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2797
2798 return sum;
2799}
2800
2801unsigned long nr_uninterruptible(void)
2802{
2803 unsigned long i, sum = 0;
2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4
LT
2806 sum += cpu_rq(i)->nr_uninterruptible;
2807
2808 /*
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2811 */
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2814
2815 return sum;
2816}
2817
2818unsigned long long nr_context_switches(void)
2819{
cc94abfc
SR
2820 int i;
2821 unsigned long long sum = 0;
1da177e4 2822
0a945022 2823 for_each_possible_cpu(i)
1da177e4
LT
2824 sum += cpu_rq(i)->nr_switches;
2825
2826 return sum;
2827}
2828
2829unsigned long nr_iowait(void)
2830{
2831 unsigned long i, sum = 0;
2832
0a945022 2833 for_each_possible_cpu(i)
1da177e4
LT
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2835
2836 return sum;
2837}
2838
db1b1fef
JS
2839unsigned long nr_active(void)
2840{
2841 unsigned long i, running = 0, uninterruptible = 0;
2842
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2846 }
2847
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2850
2851 return running + uninterruptible;
2852}
2853
48f24c4d 2854/*
dd41f596
IM
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
48f24c4d 2857 */
dd41f596 2858static void update_cpu_load(struct rq *this_rq)
48f24c4d 2859{
495eca49 2860 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2861 int i, scale;
2862
2863 this_rq->nr_load_updates++;
dd41f596
IM
2864
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2868
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2870
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
a25707f3
IM
2873 /*
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2877 */
2878 if (new_load > old_load)
2879 new_load += scale-1;
dd41f596
IM
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2881 }
48f24c4d
IM
2882}
2883
dd41f596
IM
2884#ifdef CONFIG_SMP
2885
1da177e4
LT
2886/*
2887 * double_rq_lock - safely lock two runqueues
2888 *
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2891 */
70b97a7f 2892static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2895{
054b9108 2896 BUG_ON(!irqs_disabled());
1da177e4
LT
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
c96d145e 2901 if (rq1 < rq2) {
1da177e4 2902 spin_lock(&rq1->lock);
5e710e37 2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2904 } else {
2905 spin_lock(&rq2->lock);
5e710e37 2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 }
2908 }
6e82a3be
IM
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
1da177e4
LT
2911}
2912
2913/*
2914 * double_rq_unlock - safely unlock two runqueues
2915 *
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2918 */
70b97a7f 2919static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2922{
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2928}
2929
1da177e4
LT
2930/*
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2934 * the cpu_allowed mask is restored.
2935 */
36c8b586 2936static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2937{
70b97a7f 2938 struct migration_req req;
1da177e4 2939 unsigned long flags;
70b97a7f 2940 struct rq *rq;
1da177e4
LT
2941
2942 rq = task_rq_lock(p, &flags);
96f874e2 2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2944 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2945 goto out;
2946
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
36c8b586 2951
1da177e4
LT
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
36c8b586 2957
1da177e4
LT
2958 return;
2959 }
2960out:
2961 task_rq_unlock(rq, &flags);
2962}
2963
2964/*
476d139c
NP
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2967 */
2968void sched_exec(void)
2969{
1da177e4 2970 int new_cpu, this_cpu = get_cpu();
476d139c 2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2972 put_cpu();
476d139c
NP
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
1da177e4
LT
2975}
2976
2977/*
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2980 */
dd41f596
IM
2981static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
1da177e4 2983{
2e1cb74a 2984 deactivate_task(src_rq, p, 0);
1da177e4 2985 set_task_cpu(p, this_cpu);
dd41f596 2986 activate_task(this_rq, p, 0);
1da177e4
LT
2987 /*
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2990 */
15afe09b 2991 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2992}
2993
2994/*
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2996 */
858119e1 2997static
70b97a7f 2998int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2999 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3000 int *all_pinned)
1da177e4 3001{
708dc512 3002 int tsk_cache_hot = 0;
1da177e4
LT
3003 /*
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3008 */
96f874e2 3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3010 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3011 return 0;
cc367732 3012 }
81026794
NP
3013 *all_pinned = 0;
3014
cc367732
IM
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3017 return 0;
cc367732 3018 }
1da177e4 3019
da84d961
IM
3020 /*
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3024 */
3025
708dc512
LH
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3029#ifdef CONFIG_SCHEDSTATS
708dc512 3030 if (tsk_cache_hot) {
da84d961 3031 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3032 schedstat_inc(p, se.nr_forced_migrations);
3033 }
da84d961
IM
3034#endif
3035 return 1;
3036 }
3037
708dc512 3038 if (tsk_cache_hot) {
cc367732 3039 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3040 return 0;
cc367732 3041 }
1da177e4
LT
3042 return 1;
3043}
3044
e1d1484f
PW
3045static unsigned long
3046balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3050{
051c6764 3051 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
1da177e4 3054
e1d1484f 3055 if (max_load_move == 0)
1da177e4
LT
3056 goto out;
3057
81026794
NP
3058 pinned = 1;
3059
1da177e4 3060 /*
dd41f596 3061 * Start the load-balancing iterator:
1da177e4 3062 */
dd41f596
IM
3063 p = iterator->start(iterator->arg);
3064next:
b82d9fdd 3065 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3066 goto out;
051c6764
PZ
3067
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3070 p = iterator->next(iterator->arg);
3071 goto next;
1da177e4
LT
3072 }
3073
dd41f596 3074 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3075 pulled++;
dd41f596 3076 rem_load_move -= p->se.load.weight;
1da177e4 3077
7e96fa58
GH
3078#ifdef CONFIG_PREEMPT
3079 /*
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3083 */
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086#endif
3087
2dd73a4f 3088 /*
b82d9fdd 3089 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3090 */
e1d1484f 3091 if (rem_load_move > 0) {
a4ac01c3
PW
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
dd41f596
IM
3094 p = iterator->next(iterator->arg);
3095 goto next;
1da177e4
LT
3096 }
3097out:
3098 /*
e1d1484f 3099 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3102 */
3103 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3104
3105 if (all_pinned)
3106 *all_pinned = pinned;
e1d1484f
PW
3107
3108 return max_load_move - rem_load_move;
1da177e4
LT
3109}
3110
dd41f596 3111/*
43010659
PW
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3115 *
3116 * Called with both runqueues locked.
3117 */
3118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3119 unsigned long max_load_move,
dd41f596
IM
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3122{
5522d5d5 3123 const struct sched_class *class = sched_class_highest;
43010659 3124 unsigned long total_load_moved = 0;
a4ac01c3 3125 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3126
3127 do {
43010659
PW
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3130 max_load_move - total_load_moved,
a4ac01c3 3131 sd, idle, all_pinned, &this_best_prio);
dd41f596 3132 class = class->next;
c4acb2c0 3133
7e96fa58
GH
3134#ifdef CONFIG_PREEMPT
3135 /*
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3139 */
c4acb2c0
GH
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
7e96fa58 3142#endif
43010659 3143 } while (class && max_load_move > total_load_moved);
dd41f596 3144
43010659
PW
3145 return total_load_moved > 0;
3146}
3147
e1d1484f
PW
3148static int
3149iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3152{
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3155
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3159 /*
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3163 */
3164 schedstat_inc(sd, lb_gained[idle]);
3165
3166 return 1;
3167 }
3168 p = iterator->next(iterator->arg);
3169 }
3170
3171 return 0;
3172}
3173
43010659
PW
3174/*
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3178 *
3179 * Called with both runqueues locked.
3180 */
3181static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3183{
5522d5d5 3184 const struct sched_class *class;
43010659
PW
3185
3186 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3188 return 1;
3189
3190 return 0;
dd41f596 3191}
67bb6c03 3192/********** Helpers for find_busiest_group ************************/
d5ac537e 3193/*
222d656d
GS
3194 * sd_lb_stats - Structure to store the statistics of a sched_domain
3195 * during load balancing.
3196 */
3197struct sd_lb_stats {
3198 struct sched_group *busiest; /* Busiest group in this sd */
3199 struct sched_group *this; /* Local group in this sd */
3200 unsigned long total_load; /* Total load of all groups in sd */
3201 unsigned long total_pwr; /* Total power of all groups in sd */
3202 unsigned long avg_load; /* Average load across all groups in sd */
3203
3204 /** Statistics of this group */
3205 unsigned long this_load;
3206 unsigned long this_load_per_task;
3207 unsigned long this_nr_running;
3208
3209 /* Statistics of the busiest group */
3210 unsigned long max_load;
3211 unsigned long busiest_load_per_task;
3212 unsigned long busiest_nr_running;
3213
3214 int group_imb; /* Is there imbalance in this sd */
3215#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3216 int power_savings_balance; /* Is powersave balance needed for this sd */
3217 struct sched_group *group_min; /* Least loaded group in sd */
3218 struct sched_group *group_leader; /* Group which relieves group_min */
3219 unsigned long min_load_per_task; /* load_per_task in group_min */
3220 unsigned long leader_nr_running; /* Nr running of group_leader */
3221 unsigned long min_nr_running; /* Nr running of group_min */
3222#endif
3223};
67bb6c03 3224
d5ac537e 3225/*
381be78f
GS
3226 * sg_lb_stats - stats of a sched_group required for load_balancing
3227 */
3228struct sg_lb_stats {
3229 unsigned long avg_load; /*Avg load across the CPUs of the group */
3230 unsigned long group_load; /* Total load over the CPUs of the group */
3231 unsigned long sum_nr_running; /* Nr tasks running in the group */
3232 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3233 unsigned long group_capacity;
3234 int group_imb; /* Is there an imbalance in the group ? */
3235};
3236
67bb6c03
GS
3237/**
3238 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3239 * @group: The group whose first cpu is to be returned.
3240 */
3241static inline unsigned int group_first_cpu(struct sched_group *group)
3242{
3243 return cpumask_first(sched_group_cpus(group));
3244}
3245
3246/**
3247 * get_sd_load_idx - Obtain the load index for a given sched domain.
3248 * @sd: The sched_domain whose load_idx is to be obtained.
3249 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3250 */
3251static inline int get_sd_load_idx(struct sched_domain *sd,
3252 enum cpu_idle_type idle)
3253{
3254 int load_idx;
3255
3256 switch (idle) {
3257 case CPU_NOT_IDLE:
3258 load_idx = sd->busy_idx;
3259 break;
3260
3261 case CPU_NEWLY_IDLE:
3262 load_idx = sd->newidle_idx;
3263 break;
3264 default:
3265 load_idx = sd->idle_idx;
3266 break;
3267 }
3268
3269 return load_idx;
3270}
1f8c553d
GS
3271
3272
c071df18
GS
3273#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3274/**
3275 * init_sd_power_savings_stats - Initialize power savings statistics for
3276 * the given sched_domain, during load balancing.
3277 *
3278 * @sd: Sched domain whose power-savings statistics are to be initialized.
3279 * @sds: Variable containing the statistics for sd.
3280 * @idle: Idle status of the CPU at which we're performing load-balancing.
3281 */
3282static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3284{
3285 /*
3286 * Busy processors will not participate in power savings
3287 * balance.
3288 */
3289 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3290 sds->power_savings_balance = 0;
3291 else {
3292 sds->power_savings_balance = 1;
3293 sds->min_nr_running = ULONG_MAX;
3294 sds->leader_nr_running = 0;
3295 }
3296}
3297
3298/**
3299 * update_sd_power_savings_stats - Update the power saving stats for a
3300 * sched_domain while performing load balancing.
3301 *
3302 * @group: sched_group belonging to the sched_domain under consideration.
3303 * @sds: Variable containing the statistics of the sched_domain
3304 * @local_group: Does group contain the CPU for which we're performing
3305 * load balancing ?
3306 * @sgs: Variable containing the statistics of the group.
3307 */
3308static inline void update_sd_power_savings_stats(struct sched_group *group,
3309 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3310{
3311
3312 if (!sds->power_savings_balance)
3313 return;
3314
3315 /*
3316 * If the local group is idle or completely loaded
3317 * no need to do power savings balance at this domain
3318 */
3319 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3320 !sds->this_nr_running))
3321 sds->power_savings_balance = 0;
3322
3323 /*
3324 * If a group is already running at full capacity or idle,
3325 * don't include that group in power savings calculations
3326 */
3327 if (!sds->power_savings_balance ||
3328 sgs->sum_nr_running >= sgs->group_capacity ||
3329 !sgs->sum_nr_running)
3330 return;
3331
3332 /*
3333 * Calculate the group which has the least non-idle load.
3334 * This is the group from where we need to pick up the load
3335 * for saving power
3336 */
3337 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3338 (sgs->sum_nr_running == sds->min_nr_running &&
3339 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3340 sds->group_min = group;
3341 sds->min_nr_running = sgs->sum_nr_running;
3342 sds->min_load_per_task = sgs->sum_weighted_load /
3343 sgs->sum_nr_running;
3344 }
3345
3346 /*
3347 * Calculate the group which is almost near its
3348 * capacity but still has some space to pick up some load
3349 * from other group and save more power
3350 */
3351 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3352 return;
3353
3354 if (sgs->sum_nr_running > sds->leader_nr_running ||
3355 (sgs->sum_nr_running == sds->leader_nr_running &&
3356 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3357 sds->group_leader = group;
3358 sds->leader_nr_running = sgs->sum_nr_running;
3359 }
3360}
3361
3362/**
d5ac537e 3363 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3364 * @sds: Variable containing the statistics of the sched_domain
3365 * under consideration.
3366 * @this_cpu: Cpu at which we're currently performing load-balancing.
3367 * @imbalance: Variable to store the imbalance.
3368 *
d5ac537e
RD
3369 * Description:
3370 * Check if we have potential to perform some power-savings balance.
3371 * If yes, set the busiest group to be the least loaded group in the
3372 * sched_domain, so that it's CPUs can be put to idle.
3373 *
c071df18
GS
3374 * Returns 1 if there is potential to perform power-savings balance.
3375 * Else returns 0.
3376 */
3377static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3378 int this_cpu, unsigned long *imbalance)
3379{
3380 if (!sds->power_savings_balance)
3381 return 0;
3382
3383 if (sds->this != sds->group_leader ||
3384 sds->group_leader == sds->group_min)
3385 return 0;
3386
3387 *imbalance = sds->min_load_per_task;
3388 sds->busiest = sds->group_min;
3389
3390 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3391 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3392 group_first_cpu(sds->group_leader);
3393 }
3394
3395 return 1;
3396
3397}
3398#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3399static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3400 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3401{
3402 return;
3403}
3404
3405static inline void update_sd_power_savings_stats(struct sched_group *group,
3406 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3407{
3408 return;
3409}
3410
3411static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3412 int this_cpu, unsigned long *imbalance)
3413{
3414 return 0;
3415}
3416#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3417
3418
1f8c553d
GS
3419/**
3420 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3421 * @group: sched_group whose statistics are to be updated.
3422 * @this_cpu: Cpu for which load balance is currently performed.
3423 * @idle: Idle status of this_cpu
3424 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3425 * @sd_idle: Idle status of the sched_domain containing group.
3426 * @local_group: Does group contain this_cpu.
3427 * @cpus: Set of cpus considered for load balancing.
3428 * @balance: Should we balance.
3429 * @sgs: variable to hold the statistics for this group.
3430 */
3431static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3432 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3433 int local_group, const struct cpumask *cpus,
3434 int *balance, struct sg_lb_stats *sgs)
3435{
3436 unsigned long load, max_cpu_load, min_cpu_load;
3437 int i;
3438 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3439 unsigned long sum_avg_load_per_task;
3440 unsigned long avg_load_per_task;
3441
3442 if (local_group)
3443 balance_cpu = group_first_cpu(group);
3444
3445 /* Tally up the load of all CPUs in the group */
3446 sum_avg_load_per_task = avg_load_per_task = 0;
3447 max_cpu_load = 0;
3448 min_cpu_load = ~0UL;
3449
3450 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3451 struct rq *rq = cpu_rq(i);
3452
3453 if (*sd_idle && rq->nr_running)
3454 *sd_idle = 0;
3455
3456 /* Bias balancing toward cpus of our domain */
3457 if (local_group) {
3458 if (idle_cpu(i) && !first_idle_cpu) {
3459 first_idle_cpu = 1;
3460 balance_cpu = i;
3461 }
3462
3463 load = target_load(i, load_idx);
3464 } else {
3465 load = source_load(i, load_idx);
3466 if (load > max_cpu_load)
3467 max_cpu_load = load;
3468 if (min_cpu_load > load)
3469 min_cpu_load = load;
3470 }
3471
3472 sgs->group_load += load;
3473 sgs->sum_nr_running += rq->nr_running;
3474 sgs->sum_weighted_load += weighted_cpuload(i);
3475
3476 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3477 }
3478
3479 /*
3480 * First idle cpu or the first cpu(busiest) in this sched group
3481 * is eligible for doing load balancing at this and above
3482 * domains. In the newly idle case, we will allow all the cpu's
3483 * to do the newly idle load balance.
3484 */
3485 if (idle != CPU_NEWLY_IDLE && local_group &&
3486 balance_cpu != this_cpu && balance) {
3487 *balance = 0;
3488 return;
3489 }
3490
3491 /* Adjust by relative CPU power of the group */
3492 sgs->avg_load = sg_div_cpu_power(group,
3493 sgs->group_load * SCHED_LOAD_SCALE);
3494
3495
3496 /*
3497 * Consider the group unbalanced when the imbalance is larger
3498 * than the average weight of two tasks.
3499 *
3500 * APZ: with cgroup the avg task weight can vary wildly and
3501 * might not be a suitable number - should we keep a
3502 * normalized nr_running number somewhere that negates
3503 * the hierarchy?
3504 */
3505 avg_load_per_task = sg_div_cpu_power(group,
3506 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3507
3508 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3509 sgs->group_imb = 1;
3510
3511 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3512
3513}
dd41f596 3514
37abe198
GS
3515/**
3516 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3517 * @sd: sched_domain whose statistics are to be updated.
3518 * @this_cpu: Cpu for which load balance is currently performed.
3519 * @idle: Idle status of this_cpu
3520 * @sd_idle: Idle status of the sched_domain containing group.
3521 * @cpus: Set of cpus considered for load balancing.
3522 * @balance: Should we balance.
3523 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3524 */
37abe198
GS
3525static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3526 enum cpu_idle_type idle, int *sd_idle,
3527 const struct cpumask *cpus, int *balance,
3528 struct sd_lb_stats *sds)
1da177e4 3529{
222d656d 3530 struct sched_group *group = sd->groups;
37abe198 3531 struct sg_lb_stats sgs;
222d656d
GS
3532 int load_idx;
3533
c071df18 3534 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3535 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3536
3537 do {
1da177e4 3538 int local_group;
1da177e4 3539
758b2cdc
RR
3540 local_group = cpumask_test_cpu(this_cpu,
3541 sched_group_cpus(group));
381be78f 3542 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3543 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3544 local_group, cpus, balance, &sgs);
1da177e4 3545
37abe198
GS
3546 if (local_group && balance && !(*balance))
3547 return;
783609c6 3548
37abe198
GS
3549 sds->total_load += sgs.group_load;
3550 sds->total_pwr += group->__cpu_power;
1da177e4 3551
1da177e4 3552 if (local_group) {
37abe198
GS
3553 sds->this_load = sgs.avg_load;
3554 sds->this = group;
3555 sds->this_nr_running = sgs.sum_nr_running;
3556 sds->this_load_per_task = sgs.sum_weighted_load;
3557 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3558 (sgs.sum_nr_running > sgs.group_capacity ||
3559 sgs.group_imb)) {
37abe198
GS
3560 sds->max_load = sgs.avg_load;
3561 sds->busiest = group;
3562 sds->busiest_nr_running = sgs.sum_nr_running;
3563 sds->busiest_load_per_task = sgs.sum_weighted_load;
3564 sds->group_imb = sgs.group_imb;
1da177e4 3565 }
5c45bf27 3566
c071df18 3567 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3568 group = group->next;
3569 } while (group != sd->groups);
3570
37abe198 3571}
2e6f44ae
GS
3572
3573/**
3574 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3575 * amongst the groups of a sched_domain, during
3576 * load balancing.
2e6f44ae
GS
3577 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3578 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3579 * @imbalance: Variable to store the imbalance.
3580 */
3581static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3582 int this_cpu, unsigned long *imbalance)
3583{
3584 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3585 unsigned int imbn = 2;
3586
3587 if (sds->this_nr_running) {
3588 sds->this_load_per_task /= sds->this_nr_running;
3589 if (sds->busiest_load_per_task >
3590 sds->this_load_per_task)
3591 imbn = 1;
3592 } else
3593 sds->this_load_per_task =
3594 cpu_avg_load_per_task(this_cpu);
3595
3596 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3597 sds->busiest_load_per_task * imbn) {
3598 *imbalance = sds->busiest_load_per_task;
3599 return;
3600 }
3601
3602 /*
3603 * OK, we don't have enough imbalance to justify moving tasks,
3604 * however we may be able to increase total CPU power used by
3605 * moving them.
3606 */
3607
3608 pwr_now += sds->busiest->__cpu_power *
3609 min(sds->busiest_load_per_task, sds->max_load);
3610 pwr_now += sds->this->__cpu_power *
3611 min(sds->this_load_per_task, sds->this_load);
3612 pwr_now /= SCHED_LOAD_SCALE;
3613
3614 /* Amount of load we'd subtract */
3615 tmp = sg_div_cpu_power(sds->busiest,
3616 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3617 if (sds->max_load > tmp)
3618 pwr_move += sds->busiest->__cpu_power *
3619 min(sds->busiest_load_per_task, sds->max_load - tmp);
3620
3621 /* Amount of load we'd add */
3622 if (sds->max_load * sds->busiest->__cpu_power <
3623 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3624 tmp = sg_div_cpu_power(sds->this,
3625 sds->max_load * sds->busiest->__cpu_power);
3626 else
3627 tmp = sg_div_cpu_power(sds->this,
3628 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3629 pwr_move += sds->this->__cpu_power *
3630 min(sds->this_load_per_task, sds->this_load + tmp);
3631 pwr_move /= SCHED_LOAD_SCALE;
3632
3633 /* Move if we gain throughput */
3634 if (pwr_move > pwr_now)
3635 *imbalance = sds->busiest_load_per_task;
3636}
dbc523a3
GS
3637
3638/**
3639 * calculate_imbalance - Calculate the amount of imbalance present within the
3640 * groups of a given sched_domain during load balance.
3641 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3642 * @this_cpu: Cpu for which currently load balance is being performed.
3643 * @imbalance: The variable to store the imbalance.
3644 */
3645static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3646 unsigned long *imbalance)
3647{
3648 unsigned long max_pull;
3649 /*
3650 * In the presence of smp nice balancing, certain scenarios can have
3651 * max load less than avg load(as we skip the groups at or below
3652 * its cpu_power, while calculating max_load..)
3653 */
3654 if (sds->max_load < sds->avg_load) {
3655 *imbalance = 0;
3656 return fix_small_imbalance(sds, this_cpu, imbalance);
3657 }
3658
3659 /* Don't want to pull so many tasks that a group would go idle */
3660 max_pull = min(sds->max_load - sds->avg_load,
3661 sds->max_load - sds->busiest_load_per_task);
3662
3663 /* How much load to actually move to equalise the imbalance */
3664 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3665 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3666 / SCHED_LOAD_SCALE;
3667
3668 /*
3669 * if *imbalance is less than the average load per runnable task
3670 * there is no gaurantee that any tasks will be moved so we'll have
3671 * a think about bumping its value to force at least one task to be
3672 * moved
3673 */
3674 if (*imbalance < sds->busiest_load_per_task)
3675 return fix_small_imbalance(sds, this_cpu, imbalance);
3676
3677}
37abe198
GS
3678/******* find_busiest_group() helpers end here *********************/
3679
b7bb4c9b
GS
3680/**
3681 * find_busiest_group - Returns the busiest group within the sched_domain
3682 * if there is an imbalance. If there isn't an imbalance, and
3683 * the user has opted for power-savings, it returns a group whose
3684 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3685 * such a group exists.
3686 *
3687 * Also calculates the amount of weighted load which should be moved
3688 * to restore balance.
3689 *
3690 * @sd: The sched_domain whose busiest group is to be returned.
3691 * @this_cpu: The cpu for which load balancing is currently being performed.
3692 * @imbalance: Variable which stores amount of weighted load which should
3693 * be moved to restore balance/put a group to idle.
3694 * @idle: The idle status of this_cpu.
3695 * @sd_idle: The idleness of sd
3696 * @cpus: The set of CPUs under consideration for load-balancing.
3697 * @balance: Pointer to a variable indicating if this_cpu
3698 * is the appropriate cpu to perform load balancing at this_level.
3699 *
3700 * Returns: - the busiest group if imbalance exists.
3701 * - If no imbalance and user has opted for power-savings balance,
3702 * return the least loaded group whose CPUs can be
3703 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3704 */
3705static struct sched_group *
3706find_busiest_group(struct sched_domain *sd, int this_cpu,
3707 unsigned long *imbalance, enum cpu_idle_type idle,
3708 int *sd_idle, const struct cpumask *cpus, int *balance)
3709{
3710 struct sd_lb_stats sds;
37abe198
GS
3711
3712 memset(&sds, 0, sizeof(sds));
3713
3714 /*
3715 * Compute the various statistics relavent for load balancing at
3716 * this level.
3717 */
3718 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3719 balance, &sds);
3720
b7bb4c9b
GS
3721 /* Cases where imbalance does not exist from POV of this_cpu */
3722 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3723 * at this level.
3724 * 2) There is no busy sibling group to pull from.
3725 * 3) This group is the busiest group.
3726 * 4) This group is more busy than the avg busieness at this
3727 * sched_domain.
3728 * 5) The imbalance is within the specified limit.
3729 * 6) Any rebalance would lead to ping-pong
3730 */
37abe198
GS
3731 if (balance && !(*balance))
3732 goto ret;
3733
b7bb4c9b
GS
3734 if (!sds.busiest || sds.busiest_nr_running == 0)
3735 goto out_balanced;
3736
3737 if (sds.this_load >= sds.max_load)
1da177e4
LT
3738 goto out_balanced;
3739
222d656d 3740 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3741
b7bb4c9b
GS
3742 if (sds.this_load >= sds.avg_load)
3743 goto out_balanced;
3744
3745 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3746 goto out_balanced;
3747
222d656d
GS
3748 sds.busiest_load_per_task /= sds.busiest_nr_running;
3749 if (sds.group_imb)
3750 sds.busiest_load_per_task =
3751 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3752
1da177e4
LT
3753 /*
3754 * We're trying to get all the cpus to the average_load, so we don't
3755 * want to push ourselves above the average load, nor do we wish to
3756 * reduce the max loaded cpu below the average load, as either of these
3757 * actions would just result in more rebalancing later, and ping-pong
3758 * tasks around. Thus we look for the minimum possible imbalance.
3759 * Negative imbalances (*we* are more loaded than anyone else) will
3760 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3761 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3762 * appear as very large values with unsigned longs.
3763 */
222d656d 3764 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3765 goto out_balanced;
3766
dbc523a3
GS
3767 /* Looks like there is an imbalance. Compute it */
3768 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3769 return sds.busiest;
1da177e4
LT
3770
3771out_balanced:
c071df18
GS
3772 /*
3773 * There is no obvious imbalance. But check if we can do some balancing
3774 * to save power.
3775 */
3776 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3777 return sds.busiest;
783609c6 3778ret:
1da177e4
LT
3779 *imbalance = 0;
3780 return NULL;
3781}
3782
3783/*
3784 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3785 */
70b97a7f 3786static struct rq *
d15bcfdb 3787find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3788 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3789{
70b97a7f 3790 struct rq *busiest = NULL, *rq;
2dd73a4f 3791 unsigned long max_load = 0;
1da177e4
LT
3792 int i;
3793
758b2cdc 3794 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3795 unsigned long wl;
0a2966b4 3796
96f874e2 3797 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3798 continue;
3799
48f24c4d 3800 rq = cpu_rq(i);
dd41f596 3801 wl = weighted_cpuload(i);
2dd73a4f 3802
dd41f596 3803 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3804 continue;
1da177e4 3805
dd41f596
IM
3806 if (wl > max_load) {
3807 max_load = wl;
48f24c4d 3808 busiest = rq;
1da177e4
LT
3809 }
3810 }
3811
3812 return busiest;
3813}
3814
77391d71
NP
3815/*
3816 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3817 * so long as it is large enough.
3818 */
3819#define MAX_PINNED_INTERVAL 512
3820
1da177e4
LT
3821/*
3822 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3823 * tasks if there is an imbalance.
1da177e4 3824 */
70b97a7f 3825static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3826 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3827 int *balance, struct cpumask *cpus)
1da177e4 3828{
43010659 3829 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3830 struct sched_group *group;
1da177e4 3831 unsigned long imbalance;
70b97a7f 3832 struct rq *busiest;
fe2eea3f 3833 unsigned long flags;
5969fe06 3834
96f874e2 3835 cpumask_setall(cpus);
7c16ec58 3836
89c4710e
SS
3837 /*
3838 * When power savings policy is enabled for the parent domain, idle
3839 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3840 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3841 * portraying it as CPU_NOT_IDLE.
89c4710e 3842 */
d15bcfdb 3843 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3844 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3845 sd_idle = 1;
1da177e4 3846
2d72376b 3847 schedstat_inc(sd, lb_count[idle]);
1da177e4 3848
0a2966b4 3849redo:
c8cba857 3850 update_shares(sd);
0a2966b4 3851 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3852 cpus, balance);
783609c6 3853
06066714 3854 if (*balance == 0)
783609c6 3855 goto out_balanced;
783609c6 3856
1da177e4
LT
3857 if (!group) {
3858 schedstat_inc(sd, lb_nobusyg[idle]);
3859 goto out_balanced;
3860 }
3861
7c16ec58 3862 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3863 if (!busiest) {
3864 schedstat_inc(sd, lb_nobusyq[idle]);
3865 goto out_balanced;
3866 }
3867
db935dbd 3868 BUG_ON(busiest == this_rq);
1da177e4
LT
3869
3870 schedstat_add(sd, lb_imbalance[idle], imbalance);
3871
43010659 3872 ld_moved = 0;
1da177e4
LT
3873 if (busiest->nr_running > 1) {
3874 /*
3875 * Attempt to move tasks. If find_busiest_group has found
3876 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3877 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3878 * correctly treated as an imbalance.
3879 */
fe2eea3f 3880 local_irq_save(flags);
e17224bf 3881 double_rq_lock(this_rq, busiest);
43010659 3882 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3883 imbalance, sd, idle, &all_pinned);
e17224bf 3884 double_rq_unlock(this_rq, busiest);
fe2eea3f 3885 local_irq_restore(flags);
81026794 3886
46cb4b7c
SS
3887 /*
3888 * some other cpu did the load balance for us.
3889 */
43010659 3890 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3891 resched_cpu(this_cpu);
3892
81026794 3893 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3894 if (unlikely(all_pinned)) {
96f874e2
RR
3895 cpumask_clear_cpu(cpu_of(busiest), cpus);
3896 if (!cpumask_empty(cpus))
0a2966b4 3897 goto redo;
81026794 3898 goto out_balanced;
0a2966b4 3899 }
1da177e4 3900 }
81026794 3901
43010659 3902 if (!ld_moved) {
1da177e4
LT
3903 schedstat_inc(sd, lb_failed[idle]);
3904 sd->nr_balance_failed++;
3905
3906 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3907
fe2eea3f 3908 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3909
3910 /* don't kick the migration_thread, if the curr
3911 * task on busiest cpu can't be moved to this_cpu
3912 */
96f874e2
RR
3913 if (!cpumask_test_cpu(this_cpu,
3914 &busiest->curr->cpus_allowed)) {
fe2eea3f 3915 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3916 all_pinned = 1;
3917 goto out_one_pinned;
3918 }
3919
1da177e4
LT
3920 if (!busiest->active_balance) {
3921 busiest->active_balance = 1;
3922 busiest->push_cpu = this_cpu;
81026794 3923 active_balance = 1;
1da177e4 3924 }
fe2eea3f 3925 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3926 if (active_balance)
1da177e4
LT
3927 wake_up_process(busiest->migration_thread);
3928
3929 /*
3930 * We've kicked active balancing, reset the failure
3931 * counter.
3932 */
39507451 3933 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3934 }
81026794 3935 } else
1da177e4
LT
3936 sd->nr_balance_failed = 0;
3937
81026794 3938 if (likely(!active_balance)) {
1da177e4
LT
3939 /* We were unbalanced, so reset the balancing interval */
3940 sd->balance_interval = sd->min_interval;
81026794
NP
3941 } else {
3942 /*
3943 * If we've begun active balancing, start to back off. This
3944 * case may not be covered by the all_pinned logic if there
3945 * is only 1 task on the busy runqueue (because we don't call
3946 * move_tasks).
3947 */
3948 if (sd->balance_interval < sd->max_interval)
3949 sd->balance_interval *= 2;
1da177e4
LT
3950 }
3951
43010659 3952 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3953 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3954 ld_moved = -1;
3955
3956 goto out;
1da177e4
LT
3957
3958out_balanced:
1da177e4
LT
3959 schedstat_inc(sd, lb_balanced[idle]);
3960
16cfb1c0 3961 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3962
3963out_one_pinned:
1da177e4 3964 /* tune up the balancing interval */
77391d71
NP
3965 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3966 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3967 sd->balance_interval *= 2;
3968
48f24c4d 3969 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3970 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3971 ld_moved = -1;
3972 else
3973 ld_moved = 0;
3974out:
c8cba857
PZ
3975 if (ld_moved)
3976 update_shares(sd);
c09595f6 3977 return ld_moved;
1da177e4
LT
3978}
3979
3980/*
3981 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3982 * tasks if there is an imbalance.
3983 *
d15bcfdb 3984 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3985 * this_rq is locked.
3986 */
48f24c4d 3987static int
7c16ec58 3988load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3989 struct cpumask *cpus)
1da177e4
LT
3990{
3991 struct sched_group *group;
70b97a7f 3992 struct rq *busiest = NULL;
1da177e4 3993 unsigned long imbalance;
43010659 3994 int ld_moved = 0;
5969fe06 3995 int sd_idle = 0;
969bb4e4 3996 int all_pinned = 0;
7c16ec58 3997
96f874e2 3998 cpumask_setall(cpus);
5969fe06 3999
89c4710e
SS
4000 /*
4001 * When power savings policy is enabled for the parent domain, idle
4002 * sibling can pick up load irrespective of busy siblings. In this case,
4003 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4004 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4005 */
4006 if (sd->flags & SD_SHARE_CPUPOWER &&
4007 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4008 sd_idle = 1;
1da177e4 4009
2d72376b 4010 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4011redo:
3e5459b4 4012 update_shares_locked(this_rq, sd);
d15bcfdb 4013 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4014 &sd_idle, cpus, NULL);
1da177e4 4015 if (!group) {
d15bcfdb 4016 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4017 goto out_balanced;
1da177e4
LT
4018 }
4019
7c16ec58 4020 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4021 if (!busiest) {
d15bcfdb 4022 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4023 goto out_balanced;
1da177e4
LT
4024 }
4025
db935dbd
NP
4026 BUG_ON(busiest == this_rq);
4027
d15bcfdb 4028 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4029
43010659 4030 ld_moved = 0;
d6d5cfaf
NP
4031 if (busiest->nr_running > 1) {
4032 /* Attempt to move tasks */
4033 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4034 /* this_rq->clock is already updated */
4035 update_rq_clock(busiest);
43010659 4036 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4037 imbalance, sd, CPU_NEWLY_IDLE,
4038 &all_pinned);
1b12bbc7 4039 double_unlock_balance(this_rq, busiest);
0a2966b4 4040
969bb4e4 4041 if (unlikely(all_pinned)) {
96f874e2
RR
4042 cpumask_clear_cpu(cpu_of(busiest), cpus);
4043 if (!cpumask_empty(cpus))
0a2966b4
CL
4044 goto redo;
4045 }
d6d5cfaf
NP
4046 }
4047
43010659 4048 if (!ld_moved) {
36dffab6 4049 int active_balance = 0;
ad273b32 4050
d15bcfdb 4051 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4052 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4053 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4054 return -1;
ad273b32
VS
4055
4056 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4057 return -1;
4058
4059 if (sd->nr_balance_failed++ < 2)
4060 return -1;
4061
4062 /*
4063 * The only task running in a non-idle cpu can be moved to this
4064 * cpu in an attempt to completely freeup the other CPU
4065 * package. The same method used to move task in load_balance()
4066 * have been extended for load_balance_newidle() to speedup
4067 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4068 *
4069 * The package power saving logic comes from
4070 * find_busiest_group(). If there are no imbalance, then
4071 * f_b_g() will return NULL. However when sched_mc={1,2} then
4072 * f_b_g() will select a group from which a running task may be
4073 * pulled to this cpu in order to make the other package idle.
4074 * If there is no opportunity to make a package idle and if
4075 * there are no imbalance, then f_b_g() will return NULL and no
4076 * action will be taken in load_balance_newidle().
4077 *
4078 * Under normal task pull operation due to imbalance, there
4079 * will be more than one task in the source run queue and
4080 * move_tasks() will succeed. ld_moved will be true and this
4081 * active balance code will not be triggered.
4082 */
4083
4084 /* Lock busiest in correct order while this_rq is held */
4085 double_lock_balance(this_rq, busiest);
4086
4087 /*
4088 * don't kick the migration_thread, if the curr
4089 * task on busiest cpu can't be moved to this_cpu
4090 */
6ca09dfc 4091 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4092 double_unlock_balance(this_rq, busiest);
4093 all_pinned = 1;
4094 return ld_moved;
4095 }
4096
4097 if (!busiest->active_balance) {
4098 busiest->active_balance = 1;
4099 busiest->push_cpu = this_cpu;
4100 active_balance = 1;
4101 }
4102
4103 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4104 /*
4105 * Should not call ttwu while holding a rq->lock
4106 */
4107 spin_unlock(&this_rq->lock);
ad273b32
VS
4108 if (active_balance)
4109 wake_up_process(busiest->migration_thread);
da8d5089 4110 spin_lock(&this_rq->lock);
ad273b32 4111
5969fe06 4112 } else
16cfb1c0 4113 sd->nr_balance_failed = 0;
1da177e4 4114
3e5459b4 4115 update_shares_locked(this_rq, sd);
43010659 4116 return ld_moved;
16cfb1c0
NP
4117
4118out_balanced:
d15bcfdb 4119 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4120 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4121 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4122 return -1;
16cfb1c0 4123 sd->nr_balance_failed = 0;
48f24c4d 4124
16cfb1c0 4125 return 0;
1da177e4
LT
4126}
4127
4128/*
4129 * idle_balance is called by schedule() if this_cpu is about to become
4130 * idle. Attempts to pull tasks from other CPUs.
4131 */
70b97a7f 4132static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4133{
4134 struct sched_domain *sd;
efbe027e 4135 int pulled_task = 0;
dd41f596 4136 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
4137 cpumask_var_t tmpmask;
4138
4139 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
4140 return;
1da177e4
LT
4141
4142 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4143 unsigned long interval;
4144
4145 if (!(sd->flags & SD_LOAD_BALANCE))
4146 continue;
4147
4148 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4149 /* If we've pulled tasks over stop searching: */
7c16ec58 4150 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 4151 sd, tmpmask);
92c4ca5c
CL
4152
4153 interval = msecs_to_jiffies(sd->balance_interval);
4154 if (time_after(next_balance, sd->last_balance + interval))
4155 next_balance = sd->last_balance + interval;
4156 if (pulled_task)
4157 break;
1da177e4 4158 }
dd41f596 4159 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4160 /*
4161 * We are going idle. next_balance may be set based on
4162 * a busy processor. So reset next_balance.
4163 */
4164 this_rq->next_balance = next_balance;
dd41f596 4165 }
4d2732c6 4166 free_cpumask_var(tmpmask);
1da177e4
LT
4167}
4168
4169/*
4170 * active_load_balance is run by migration threads. It pushes running tasks
4171 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4172 * running on each physical CPU where possible, and avoids physical /
4173 * logical imbalances.
4174 *
4175 * Called with busiest_rq locked.
4176 */
70b97a7f 4177static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4178{
39507451 4179 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4180 struct sched_domain *sd;
4181 struct rq *target_rq;
39507451 4182
48f24c4d 4183 /* Is there any task to move? */
39507451 4184 if (busiest_rq->nr_running <= 1)
39507451
NP
4185 return;
4186
4187 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4188
4189 /*
39507451 4190 * This condition is "impossible", if it occurs
41a2d6cf 4191 * we need to fix it. Originally reported by
39507451 4192 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4193 */
39507451 4194 BUG_ON(busiest_rq == target_rq);
1da177e4 4195
39507451
NP
4196 /* move a task from busiest_rq to target_rq */
4197 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4198 update_rq_clock(busiest_rq);
4199 update_rq_clock(target_rq);
39507451
NP
4200
4201 /* Search for an sd spanning us and the target CPU. */
c96d145e 4202 for_each_domain(target_cpu, sd) {
39507451 4203 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4204 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4205 break;
c96d145e 4206 }
39507451 4207
48f24c4d 4208 if (likely(sd)) {
2d72376b 4209 schedstat_inc(sd, alb_count);
39507451 4210
43010659
PW
4211 if (move_one_task(target_rq, target_cpu, busiest_rq,
4212 sd, CPU_IDLE))
48f24c4d
IM
4213 schedstat_inc(sd, alb_pushed);
4214 else
4215 schedstat_inc(sd, alb_failed);
4216 }
1b12bbc7 4217 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4218}
4219
46cb4b7c
SS
4220#ifdef CONFIG_NO_HZ
4221static struct {
4222 atomic_t load_balancer;
7d1e6a9b 4223 cpumask_var_t cpu_mask;
46cb4b7c
SS
4224} nohz ____cacheline_aligned = {
4225 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4226};
4227
7835b98b 4228/*
46cb4b7c
SS
4229 * This routine will try to nominate the ilb (idle load balancing)
4230 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4231 * load balancing on behalf of all those cpus. If all the cpus in the system
4232 * go into this tickless mode, then there will be no ilb owner (as there is
4233 * no need for one) and all the cpus will sleep till the next wakeup event
4234 * arrives...
4235 *
4236 * For the ilb owner, tick is not stopped. And this tick will be used
4237 * for idle load balancing. ilb owner will still be part of
4238 * nohz.cpu_mask..
7835b98b 4239 *
46cb4b7c
SS
4240 * While stopping the tick, this cpu will become the ilb owner if there
4241 * is no other owner. And will be the owner till that cpu becomes busy
4242 * or if all cpus in the system stop their ticks at which point
4243 * there is no need for ilb owner.
4244 *
4245 * When the ilb owner becomes busy, it nominates another owner, during the
4246 * next busy scheduler_tick()
4247 */
4248int select_nohz_load_balancer(int stop_tick)
4249{
4250 int cpu = smp_processor_id();
4251
4252 if (stop_tick) {
46cb4b7c
SS
4253 cpu_rq(cpu)->in_nohz_recently = 1;
4254
483b4ee6
SS
4255 if (!cpu_active(cpu)) {
4256 if (atomic_read(&nohz.load_balancer) != cpu)
4257 return 0;
4258
4259 /*
4260 * If we are going offline and still the leader,
4261 * give up!
4262 */
46cb4b7c
SS
4263 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4264 BUG();
483b4ee6 4265
46cb4b7c
SS
4266 return 0;
4267 }
4268
483b4ee6
SS
4269 cpumask_set_cpu(cpu, nohz.cpu_mask);
4270
46cb4b7c 4271 /* time for ilb owner also to sleep */
7d1e6a9b 4272 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4273 if (atomic_read(&nohz.load_balancer) == cpu)
4274 atomic_set(&nohz.load_balancer, -1);
4275 return 0;
4276 }
4277
4278 if (atomic_read(&nohz.load_balancer) == -1) {
4279 /* make me the ilb owner */
4280 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4281 return 1;
4282 } else if (atomic_read(&nohz.load_balancer) == cpu)
4283 return 1;
4284 } else {
7d1e6a9b 4285 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4286 return 0;
4287
7d1e6a9b 4288 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4289
4290 if (atomic_read(&nohz.load_balancer) == cpu)
4291 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4292 BUG();
4293 }
4294 return 0;
4295}
4296#endif
4297
4298static DEFINE_SPINLOCK(balancing);
4299
4300/*
7835b98b
CL
4301 * It checks each scheduling domain to see if it is due to be balanced,
4302 * and initiates a balancing operation if so.
4303 *
4304 * Balancing parameters are set up in arch_init_sched_domains.
4305 */
a9957449 4306static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4307{
46cb4b7c
SS
4308 int balance = 1;
4309 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4310 unsigned long interval;
4311 struct sched_domain *sd;
46cb4b7c 4312 /* Earliest time when we have to do rebalance again */
c9819f45 4313 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4314 int update_next_balance = 0;
d07355f5 4315 int need_serialize;
a0e90245
RR
4316 cpumask_var_t tmp;
4317
4318 /* Fails alloc? Rebalancing probably not a priority right now. */
4319 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4320 return;
1da177e4 4321
46cb4b7c 4322 for_each_domain(cpu, sd) {
1da177e4
LT
4323 if (!(sd->flags & SD_LOAD_BALANCE))
4324 continue;
4325
4326 interval = sd->balance_interval;
d15bcfdb 4327 if (idle != CPU_IDLE)
1da177e4
LT
4328 interval *= sd->busy_factor;
4329
4330 /* scale ms to jiffies */
4331 interval = msecs_to_jiffies(interval);
4332 if (unlikely(!interval))
4333 interval = 1;
dd41f596
IM
4334 if (interval > HZ*NR_CPUS/10)
4335 interval = HZ*NR_CPUS/10;
4336
d07355f5 4337 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4338
d07355f5 4339 if (need_serialize) {
08c183f3
CL
4340 if (!spin_trylock(&balancing))
4341 goto out;
4342 }
4343
c9819f45 4344 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4345 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4346 /*
4347 * We've pulled tasks over so either we're no
5969fe06
NP
4348 * longer idle, or one of our SMT siblings is
4349 * not idle.
4350 */
d15bcfdb 4351 idle = CPU_NOT_IDLE;
1da177e4 4352 }
1bd77f2d 4353 sd->last_balance = jiffies;
1da177e4 4354 }
d07355f5 4355 if (need_serialize)
08c183f3
CL
4356 spin_unlock(&balancing);
4357out:
f549da84 4358 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4359 next_balance = sd->last_balance + interval;
f549da84
SS
4360 update_next_balance = 1;
4361 }
783609c6
SS
4362
4363 /*
4364 * Stop the load balance at this level. There is another
4365 * CPU in our sched group which is doing load balancing more
4366 * actively.
4367 */
4368 if (!balance)
4369 break;
1da177e4 4370 }
f549da84
SS
4371
4372 /*
4373 * next_balance will be updated only when there is a need.
4374 * When the cpu is attached to null domain for ex, it will not be
4375 * updated.
4376 */
4377 if (likely(update_next_balance))
4378 rq->next_balance = next_balance;
a0e90245
RR
4379
4380 free_cpumask_var(tmp);
46cb4b7c
SS
4381}
4382
4383/*
4384 * run_rebalance_domains is triggered when needed from the scheduler tick.
4385 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4386 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4387 */
4388static void run_rebalance_domains(struct softirq_action *h)
4389{
dd41f596
IM
4390 int this_cpu = smp_processor_id();
4391 struct rq *this_rq = cpu_rq(this_cpu);
4392 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4393 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4394
dd41f596 4395 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4396
4397#ifdef CONFIG_NO_HZ
4398 /*
4399 * If this cpu is the owner for idle load balancing, then do the
4400 * balancing on behalf of the other idle cpus whose ticks are
4401 * stopped.
4402 */
dd41f596
IM
4403 if (this_rq->idle_at_tick &&
4404 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4405 struct rq *rq;
4406 int balance_cpu;
4407
7d1e6a9b
RR
4408 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4409 if (balance_cpu == this_cpu)
4410 continue;
4411
46cb4b7c
SS
4412 /*
4413 * If this cpu gets work to do, stop the load balancing
4414 * work being done for other cpus. Next load
4415 * balancing owner will pick it up.
4416 */
4417 if (need_resched())
4418 break;
4419
de0cf899 4420 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4421
4422 rq = cpu_rq(balance_cpu);
dd41f596
IM
4423 if (time_after(this_rq->next_balance, rq->next_balance))
4424 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4425 }
4426 }
4427#endif
4428}
4429
8a0be9ef
FW
4430static inline int on_null_domain(int cpu)
4431{
4432 return !rcu_dereference(cpu_rq(cpu)->sd);
4433}
4434
46cb4b7c
SS
4435/*
4436 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4437 *
4438 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4439 * idle load balancing owner or decide to stop the periodic load balancing,
4440 * if the whole system is idle.
4441 */
dd41f596 4442static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4443{
46cb4b7c
SS
4444#ifdef CONFIG_NO_HZ
4445 /*
4446 * If we were in the nohz mode recently and busy at the current
4447 * scheduler tick, then check if we need to nominate new idle
4448 * load balancer.
4449 */
4450 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4451 rq->in_nohz_recently = 0;
4452
4453 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4454 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4455 atomic_set(&nohz.load_balancer, -1);
4456 }
4457
4458 if (atomic_read(&nohz.load_balancer) == -1) {
4459 /*
4460 * simple selection for now: Nominate the
4461 * first cpu in the nohz list to be the next
4462 * ilb owner.
4463 *
4464 * TBD: Traverse the sched domains and nominate
4465 * the nearest cpu in the nohz.cpu_mask.
4466 */
7d1e6a9b 4467 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4468
434d53b0 4469 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4470 resched_cpu(ilb);
4471 }
4472 }
4473
4474 /*
4475 * If this cpu is idle and doing idle load balancing for all the
4476 * cpus with ticks stopped, is it time for that to stop?
4477 */
4478 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4479 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4480 resched_cpu(cpu);
4481 return;
4482 }
4483
4484 /*
4485 * If this cpu is idle and the idle load balancing is done by
4486 * someone else, then no need raise the SCHED_SOFTIRQ
4487 */
4488 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4489 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4490 return;
4491#endif
8a0be9ef
FW
4492 /* Don't need to rebalance while attached to NULL domain */
4493 if (time_after_eq(jiffies, rq->next_balance) &&
4494 likely(!on_null_domain(cpu)))
46cb4b7c 4495 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4496}
dd41f596
IM
4497
4498#else /* CONFIG_SMP */
4499
1da177e4
LT
4500/*
4501 * on UP we do not need to balance between CPUs:
4502 */
70b97a7f 4503static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4504{
4505}
dd41f596 4506
1da177e4
LT
4507#endif
4508
1da177e4
LT
4509DEFINE_PER_CPU(struct kernel_stat, kstat);
4510
4511EXPORT_PER_CPU_SYMBOL(kstat);
4512
4513/*
f06febc9
FM
4514 * Return any ns on the sched_clock that have not yet been banked in
4515 * @p in case that task is currently running.
1da177e4 4516 */
bb34d92f 4517unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4518{
1da177e4 4519 unsigned long flags;
41b86e9c 4520 struct rq *rq;
bb34d92f 4521 u64 ns = 0;
48f24c4d 4522
41b86e9c 4523 rq = task_rq_lock(p, &flags);
1508487e 4524
051a1d1a 4525 if (task_current(rq, p)) {
f06febc9
FM
4526 u64 delta_exec;
4527
a8e504d2
IM
4528 update_rq_clock(rq);
4529 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4530 if ((s64)delta_exec > 0)
bb34d92f 4531 ns = delta_exec;
41b86e9c 4532 }
48f24c4d 4533
41b86e9c 4534 task_rq_unlock(rq, &flags);
48f24c4d 4535
1da177e4
LT
4536 return ns;
4537}
4538
1da177e4
LT
4539/*
4540 * Account user cpu time to a process.
4541 * @p: the process that the cpu time gets accounted to
1da177e4 4542 * @cputime: the cpu time spent in user space since the last update
457533a7 4543 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4544 */
457533a7
MS
4545void account_user_time(struct task_struct *p, cputime_t cputime,
4546 cputime_t cputime_scaled)
1da177e4
LT
4547{
4548 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4549 cputime64_t tmp;
4550
457533a7 4551 /* Add user time to process. */
1da177e4 4552 p->utime = cputime_add(p->utime, cputime);
457533a7 4553 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4554 account_group_user_time(p, cputime);
1da177e4
LT
4555
4556 /* Add user time to cpustat. */
4557 tmp = cputime_to_cputime64(cputime);
4558 if (TASK_NICE(p) > 0)
4559 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4560 else
4561 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4562 /* Account for user time used */
4563 acct_update_integrals(p);
1da177e4
LT
4564}
4565
94886b84
LV
4566/*
4567 * Account guest cpu time to a process.
4568 * @p: the process that the cpu time gets accounted to
4569 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4570 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4571 */
457533a7
MS
4572static void account_guest_time(struct task_struct *p, cputime_t cputime,
4573 cputime_t cputime_scaled)
94886b84
LV
4574{
4575 cputime64_t tmp;
4576 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4577
4578 tmp = cputime_to_cputime64(cputime);
4579
457533a7 4580 /* Add guest time to process. */
94886b84 4581 p->utime = cputime_add(p->utime, cputime);
457533a7 4582 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4583 account_group_user_time(p, cputime);
94886b84
LV
4584 p->gtime = cputime_add(p->gtime, cputime);
4585
457533a7 4586 /* Add guest time to cpustat. */
94886b84
LV
4587 cpustat->user = cputime64_add(cpustat->user, tmp);
4588 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4589}
4590
1da177e4
LT
4591/*
4592 * Account system cpu time to a process.
4593 * @p: the process that the cpu time gets accounted to
4594 * @hardirq_offset: the offset to subtract from hardirq_count()
4595 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4596 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4597 */
4598void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4599 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4600{
4601 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4602 cputime64_t tmp;
4603
983ed7a6 4604 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4605 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4606 return;
4607 }
94886b84 4608
457533a7 4609 /* Add system time to process. */
1da177e4 4610 p->stime = cputime_add(p->stime, cputime);
457533a7 4611 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4612 account_group_system_time(p, cputime);
1da177e4
LT
4613
4614 /* Add system time to cpustat. */
4615 tmp = cputime_to_cputime64(cputime);
4616 if (hardirq_count() - hardirq_offset)
4617 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4618 else if (softirq_count())
4619 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4620 else
79741dd3
MS
4621 cpustat->system = cputime64_add(cpustat->system, tmp);
4622
1da177e4
LT
4623 /* Account for system time used */
4624 acct_update_integrals(p);
1da177e4
LT
4625}
4626
c66f08be 4627/*
1da177e4 4628 * Account for involuntary wait time.
1da177e4 4629 * @steal: the cpu time spent in involuntary wait
c66f08be 4630 */
79741dd3 4631void account_steal_time(cputime_t cputime)
c66f08be 4632{
79741dd3
MS
4633 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4634 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4635
4636 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4637}
4638
1da177e4 4639/*
79741dd3
MS
4640 * Account for idle time.
4641 * @cputime: the cpu time spent in idle wait
1da177e4 4642 */
79741dd3 4643void account_idle_time(cputime_t cputime)
1da177e4
LT
4644{
4645 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4646 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4647 struct rq *rq = this_rq();
1da177e4 4648
79741dd3
MS
4649 if (atomic_read(&rq->nr_iowait) > 0)
4650 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4651 else
4652 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4653}
4654
79741dd3
MS
4655#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4656
4657/*
4658 * Account a single tick of cpu time.
4659 * @p: the process that the cpu time gets accounted to
4660 * @user_tick: indicates if the tick is a user or a system tick
4661 */
4662void account_process_tick(struct task_struct *p, int user_tick)
4663{
4664 cputime_t one_jiffy = jiffies_to_cputime(1);
4665 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4666 struct rq *rq = this_rq();
4667
4668 if (user_tick)
4669 account_user_time(p, one_jiffy, one_jiffy_scaled);
4670 else if (p != rq->idle)
4671 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4672 one_jiffy_scaled);
4673 else
4674 account_idle_time(one_jiffy);
4675}
4676
4677/*
4678 * Account multiple ticks of steal time.
4679 * @p: the process from which the cpu time has been stolen
4680 * @ticks: number of stolen ticks
4681 */
4682void account_steal_ticks(unsigned long ticks)
4683{
4684 account_steal_time(jiffies_to_cputime(ticks));
4685}
4686
4687/*
4688 * Account multiple ticks of idle time.
4689 * @ticks: number of stolen ticks
4690 */
4691void account_idle_ticks(unsigned long ticks)
4692{
4693 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4694}
4695
79741dd3
MS
4696#endif
4697
49048622
BS
4698/*
4699 * Use precise platform statistics if available:
4700 */
4701#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4702cputime_t task_utime(struct task_struct *p)
4703{
4704 return p->utime;
4705}
4706
4707cputime_t task_stime(struct task_struct *p)
4708{
4709 return p->stime;
4710}
4711#else
4712cputime_t task_utime(struct task_struct *p)
4713{
4714 clock_t utime = cputime_to_clock_t(p->utime),
4715 total = utime + cputime_to_clock_t(p->stime);
4716 u64 temp;
4717
4718 /*
4719 * Use CFS's precise accounting:
4720 */
4721 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4722
4723 if (total) {
4724 temp *= utime;
4725 do_div(temp, total);
4726 }
4727 utime = (clock_t)temp;
4728
4729 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4730 return p->prev_utime;
4731}
4732
4733cputime_t task_stime(struct task_struct *p)
4734{
4735 clock_t stime;
4736
4737 /*
4738 * Use CFS's precise accounting. (we subtract utime from
4739 * the total, to make sure the total observed by userspace
4740 * grows monotonically - apps rely on that):
4741 */
4742 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4743 cputime_to_clock_t(task_utime(p));
4744
4745 if (stime >= 0)
4746 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4747
4748 return p->prev_stime;
4749}
4750#endif
4751
4752inline cputime_t task_gtime(struct task_struct *p)
4753{
4754 return p->gtime;
4755}
4756
7835b98b
CL
4757/*
4758 * This function gets called by the timer code, with HZ frequency.
4759 * We call it with interrupts disabled.
4760 *
4761 * It also gets called by the fork code, when changing the parent's
4762 * timeslices.
4763 */
4764void scheduler_tick(void)
4765{
7835b98b
CL
4766 int cpu = smp_processor_id();
4767 struct rq *rq = cpu_rq(cpu);
dd41f596 4768 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4769
4770 sched_clock_tick();
dd41f596
IM
4771
4772 spin_lock(&rq->lock);
3e51f33f 4773 update_rq_clock(rq);
f1a438d8 4774 update_cpu_load(rq);
fa85ae24 4775 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4776 spin_unlock(&rq->lock);
7835b98b 4777
e418e1c2 4778#ifdef CONFIG_SMP
dd41f596
IM
4779 rq->idle_at_tick = idle_cpu(cpu);
4780 trigger_load_balance(rq, cpu);
e418e1c2 4781#endif
1da177e4
LT
4782}
4783
6cd8a4bb
SR
4784#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4785 defined(CONFIG_PREEMPT_TRACER))
4786
4787static inline unsigned long get_parent_ip(unsigned long addr)
4788{
4789 if (in_lock_functions(addr)) {
4790 addr = CALLER_ADDR2;
4791 if (in_lock_functions(addr))
4792 addr = CALLER_ADDR3;
4793 }
4794 return addr;
4795}
1da177e4 4796
43627582 4797void __kprobes add_preempt_count(int val)
1da177e4 4798{
6cd8a4bb 4799#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4800 /*
4801 * Underflow?
4802 */
9a11b49a
IM
4803 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4804 return;
6cd8a4bb 4805#endif
1da177e4 4806 preempt_count() += val;
6cd8a4bb 4807#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4808 /*
4809 * Spinlock count overflowing soon?
4810 */
33859f7f
MOS
4811 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4812 PREEMPT_MASK - 10);
6cd8a4bb
SR
4813#endif
4814 if (preempt_count() == val)
4815 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4816}
4817EXPORT_SYMBOL(add_preempt_count);
4818
43627582 4819void __kprobes sub_preempt_count(int val)
1da177e4 4820{
6cd8a4bb 4821#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4822 /*
4823 * Underflow?
4824 */
01e3eb82 4825 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4826 return;
1da177e4
LT
4827 /*
4828 * Is the spinlock portion underflowing?
4829 */
9a11b49a
IM
4830 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4831 !(preempt_count() & PREEMPT_MASK)))
4832 return;
6cd8a4bb 4833#endif
9a11b49a 4834
6cd8a4bb
SR
4835 if (preempt_count() == val)
4836 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4837 preempt_count() -= val;
4838}
4839EXPORT_SYMBOL(sub_preempt_count);
4840
4841#endif
4842
4843/*
dd41f596 4844 * Print scheduling while atomic bug:
1da177e4 4845 */
dd41f596 4846static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4847{
838225b4
SS
4848 struct pt_regs *regs = get_irq_regs();
4849
4850 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4851 prev->comm, prev->pid, preempt_count());
4852
dd41f596 4853 debug_show_held_locks(prev);
e21f5b15 4854 print_modules();
dd41f596
IM
4855 if (irqs_disabled())
4856 print_irqtrace_events(prev);
838225b4
SS
4857
4858 if (regs)
4859 show_regs(regs);
4860 else
4861 dump_stack();
dd41f596 4862}
1da177e4 4863
dd41f596
IM
4864/*
4865 * Various schedule()-time debugging checks and statistics:
4866 */
4867static inline void schedule_debug(struct task_struct *prev)
4868{
1da177e4 4869 /*
41a2d6cf 4870 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4871 * schedule() atomically, we ignore that path for now.
4872 * Otherwise, whine if we are scheduling when we should not be.
4873 */
3f33a7ce 4874 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4875 __schedule_bug(prev);
4876
1da177e4
LT
4877 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4878
2d72376b 4879 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4880#ifdef CONFIG_SCHEDSTATS
4881 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4882 schedstat_inc(this_rq(), bkl_count);
4883 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4884 }
4885#endif
dd41f596
IM
4886}
4887
df1c99d4
MG
4888static void put_prev_task(struct rq *rq, struct task_struct *prev)
4889{
4890 if (prev->state == TASK_RUNNING) {
4891 u64 runtime = prev->se.sum_exec_runtime;
4892
4893 runtime -= prev->se.prev_sum_exec_runtime;
4894 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4895
4896 /*
4897 * In order to avoid avg_overlap growing stale when we are
4898 * indeed overlapping and hence not getting put to sleep, grow
4899 * the avg_overlap on preemption.
4900 *
4901 * We use the average preemption runtime because that
4902 * correlates to the amount of cache footprint a task can
4903 * build up.
4904 */
4905 update_avg(&prev->se.avg_overlap, runtime);
4906 }
4907 prev->sched_class->put_prev_task(rq, prev);
4908}
4909
dd41f596
IM
4910/*
4911 * Pick up the highest-prio task:
4912 */
4913static inline struct task_struct *
b67802ea 4914pick_next_task(struct rq *rq)
dd41f596 4915{
5522d5d5 4916 const struct sched_class *class;
dd41f596 4917 struct task_struct *p;
1da177e4
LT
4918
4919 /*
dd41f596
IM
4920 * Optimization: we know that if all tasks are in
4921 * the fair class we can call that function directly:
1da177e4 4922 */
dd41f596 4923 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4924 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4925 if (likely(p))
4926 return p;
1da177e4
LT
4927 }
4928
dd41f596
IM
4929 class = sched_class_highest;
4930 for ( ; ; ) {
fb8d4724 4931 p = class->pick_next_task(rq);
dd41f596
IM
4932 if (p)
4933 return p;
4934 /*
4935 * Will never be NULL as the idle class always
4936 * returns a non-NULL p:
4937 */
4938 class = class->next;
4939 }
4940}
1da177e4 4941
dd41f596
IM
4942/*
4943 * schedule() is the main scheduler function.
4944 */
4945asmlinkage void __sched schedule(void)
4946{
4947 struct task_struct *prev, *next;
67ca7bde 4948 unsigned long *switch_count;
dd41f596 4949 struct rq *rq;
31656519 4950 int cpu;
dd41f596
IM
4951
4952need_resched:
4953 preempt_disable();
4954 cpu = smp_processor_id();
4955 rq = cpu_rq(cpu);
4956 rcu_qsctr_inc(cpu);
4957 prev = rq->curr;
4958 switch_count = &prev->nivcsw;
4959
4960 release_kernel_lock(prev);
4961need_resched_nonpreemptible:
4962
4963 schedule_debug(prev);
1da177e4 4964
31656519 4965 if (sched_feat(HRTICK))
f333fdc9 4966 hrtick_clear(rq);
8f4d37ec 4967
8cd162ce 4968 spin_lock_irq(&rq->lock);
3e51f33f 4969 update_rq_clock(rq);
1e819950 4970 clear_tsk_need_resched(prev);
1da177e4 4971
1da177e4 4972 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4973 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4974 prev->state = TASK_RUNNING;
16882c1e 4975 else
2e1cb74a 4976 deactivate_task(rq, prev, 1);
dd41f596 4977 switch_count = &prev->nvcsw;
1da177e4
LT
4978 }
4979
9a897c5a
SR
4980#ifdef CONFIG_SMP
4981 if (prev->sched_class->pre_schedule)
4982 prev->sched_class->pre_schedule(rq, prev);
4983#endif
f65eda4f 4984
dd41f596 4985 if (unlikely(!rq->nr_running))
1da177e4 4986 idle_balance(cpu, rq);
1da177e4 4987
df1c99d4 4988 put_prev_task(rq, prev);
b67802ea 4989 next = pick_next_task(rq);
1da177e4 4990
1da177e4 4991 if (likely(prev != next)) {
673a90a1
DS
4992 sched_info_switch(prev, next);
4993
1da177e4
LT
4994 rq->nr_switches++;
4995 rq->curr = next;
4996 ++*switch_count;
4997
dd41f596 4998 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4999 /*
5000 * the context switch might have flipped the stack from under
5001 * us, hence refresh the local variables.
5002 */
5003 cpu = smp_processor_id();
5004 rq = cpu_rq(cpu);
1da177e4
LT
5005 } else
5006 spin_unlock_irq(&rq->lock);
5007
8f4d37ec 5008 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5009 goto need_resched_nonpreemptible;
8f4d37ec 5010
1da177e4
LT
5011 preempt_enable_no_resched();
5012 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5013 goto need_resched;
5014}
1da177e4
LT
5015EXPORT_SYMBOL(schedule);
5016
5017#ifdef CONFIG_PREEMPT
5018/*
2ed6e34f 5019 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5020 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5021 * occur there and call schedule directly.
5022 */
5023asmlinkage void __sched preempt_schedule(void)
5024{
5025 struct thread_info *ti = current_thread_info();
6478d880 5026
1da177e4
LT
5027 /*
5028 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5029 * we do not want to preempt the current task. Just return..
1da177e4 5030 */
beed33a8 5031 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5032 return;
5033
3a5c359a
AK
5034 do {
5035 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5036 schedule();
3a5c359a 5037 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5038
3a5c359a
AK
5039 /*
5040 * Check again in case we missed a preemption opportunity
5041 * between schedule and now.
5042 */
5043 barrier();
5ed0cec0 5044 } while (need_resched());
1da177e4 5045}
1da177e4
LT
5046EXPORT_SYMBOL(preempt_schedule);
5047
5048/*
2ed6e34f 5049 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5050 * off of irq context.
5051 * Note, that this is called and return with irqs disabled. This will
5052 * protect us against recursive calling from irq.
5053 */
5054asmlinkage void __sched preempt_schedule_irq(void)
5055{
5056 struct thread_info *ti = current_thread_info();
6478d880 5057
2ed6e34f 5058 /* Catch callers which need to be fixed */
1da177e4
LT
5059 BUG_ON(ti->preempt_count || !irqs_disabled());
5060
3a5c359a
AK
5061 do {
5062 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5063 local_irq_enable();
5064 schedule();
5065 local_irq_disable();
3a5c359a 5066 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5067
3a5c359a
AK
5068 /*
5069 * Check again in case we missed a preemption opportunity
5070 * between schedule and now.
5071 */
5072 barrier();
5ed0cec0 5073 } while (need_resched());
1da177e4
LT
5074}
5075
5076#endif /* CONFIG_PREEMPT */
5077
95cdf3b7
IM
5078int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5079 void *key)
1da177e4 5080{
48f24c4d 5081 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5082}
1da177e4
LT
5083EXPORT_SYMBOL(default_wake_function);
5084
5085/*
41a2d6cf
IM
5086 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5087 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5088 * number) then we wake all the non-exclusive tasks and one exclusive task.
5089 *
5090 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5091 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5092 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5093 */
777c6c5f
JW
5094void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5095 int nr_exclusive, int sync, void *key)
1da177e4 5096{
2e45874c 5097 wait_queue_t *curr, *next;
1da177e4 5098
2e45874c 5099 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5100 unsigned flags = curr->flags;
5101
1da177e4 5102 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5103 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5104 break;
5105 }
5106}
5107
5108/**
5109 * __wake_up - wake up threads blocked on a waitqueue.
5110 * @q: the waitqueue
5111 * @mode: which threads
5112 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5113 * @key: is directly passed to the wakeup function
1da177e4 5114 */
7ad5b3a5 5115void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5116 int nr_exclusive, void *key)
1da177e4
LT
5117{
5118 unsigned long flags;
5119
5120 spin_lock_irqsave(&q->lock, flags);
5121 __wake_up_common(q, mode, nr_exclusive, 0, key);
5122 spin_unlock_irqrestore(&q->lock, flags);
5123}
1da177e4
LT
5124EXPORT_SYMBOL(__wake_up);
5125
5126/*
5127 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5128 */
7ad5b3a5 5129void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5130{
5131 __wake_up_common(q, mode, 1, 0, NULL);
5132}
5133
5134/**
67be2dd1 5135 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
5136 * @q: the waitqueue
5137 * @mode: which threads
5138 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5139 *
5140 * The sync wakeup differs that the waker knows that it will schedule
5141 * away soon, so while the target thread will be woken up, it will not
5142 * be migrated to another CPU - ie. the two threads are 'synchronized'
5143 * with each other. This can prevent needless bouncing between CPUs.
5144 *
5145 * On UP it can prevent extra preemption.
5146 */
7ad5b3a5 5147void
95cdf3b7 5148__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
5149{
5150 unsigned long flags;
5151 int sync = 1;
5152
5153 if (unlikely(!q))
5154 return;
5155
5156 if (unlikely(!nr_exclusive))
5157 sync = 0;
5158
5159 spin_lock_irqsave(&q->lock, flags);
5160 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
5161 spin_unlock_irqrestore(&q->lock, flags);
5162}
5163EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5164
65eb3dc6
KD
5165/**
5166 * complete: - signals a single thread waiting on this completion
5167 * @x: holds the state of this particular completion
5168 *
5169 * This will wake up a single thread waiting on this completion. Threads will be
5170 * awakened in the same order in which they were queued.
5171 *
5172 * See also complete_all(), wait_for_completion() and related routines.
5173 */
b15136e9 5174void complete(struct completion *x)
1da177e4
LT
5175{
5176 unsigned long flags;
5177
5178 spin_lock_irqsave(&x->wait.lock, flags);
5179 x->done++;
d9514f6c 5180 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5181 spin_unlock_irqrestore(&x->wait.lock, flags);
5182}
5183EXPORT_SYMBOL(complete);
5184
65eb3dc6
KD
5185/**
5186 * complete_all: - signals all threads waiting on this completion
5187 * @x: holds the state of this particular completion
5188 *
5189 * This will wake up all threads waiting on this particular completion event.
5190 */
b15136e9 5191void complete_all(struct completion *x)
1da177e4
LT
5192{
5193 unsigned long flags;
5194
5195 spin_lock_irqsave(&x->wait.lock, flags);
5196 x->done += UINT_MAX/2;
d9514f6c 5197 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5198 spin_unlock_irqrestore(&x->wait.lock, flags);
5199}
5200EXPORT_SYMBOL(complete_all);
5201
8cbbe86d
AK
5202static inline long __sched
5203do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5204{
1da177e4
LT
5205 if (!x->done) {
5206 DECLARE_WAITQUEUE(wait, current);
5207
5208 wait.flags |= WQ_FLAG_EXCLUSIVE;
5209 __add_wait_queue_tail(&x->wait, &wait);
5210 do {
94d3d824 5211 if (signal_pending_state(state, current)) {
ea71a546
ON
5212 timeout = -ERESTARTSYS;
5213 break;
8cbbe86d
AK
5214 }
5215 __set_current_state(state);
1da177e4
LT
5216 spin_unlock_irq(&x->wait.lock);
5217 timeout = schedule_timeout(timeout);
5218 spin_lock_irq(&x->wait.lock);
ea71a546 5219 } while (!x->done && timeout);
1da177e4 5220 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5221 if (!x->done)
5222 return timeout;
1da177e4
LT
5223 }
5224 x->done--;
ea71a546 5225 return timeout ?: 1;
1da177e4 5226}
1da177e4 5227
8cbbe86d
AK
5228static long __sched
5229wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5230{
1da177e4
LT
5231 might_sleep();
5232
5233 spin_lock_irq(&x->wait.lock);
8cbbe86d 5234 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5235 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5236 return timeout;
5237}
1da177e4 5238
65eb3dc6
KD
5239/**
5240 * wait_for_completion: - waits for completion of a task
5241 * @x: holds the state of this particular completion
5242 *
5243 * This waits to be signaled for completion of a specific task. It is NOT
5244 * interruptible and there is no timeout.
5245 *
5246 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5247 * and interrupt capability. Also see complete().
5248 */
b15136e9 5249void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5250{
5251 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5252}
8cbbe86d 5253EXPORT_SYMBOL(wait_for_completion);
1da177e4 5254
65eb3dc6
KD
5255/**
5256 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5257 * @x: holds the state of this particular completion
5258 * @timeout: timeout value in jiffies
5259 *
5260 * This waits for either a completion of a specific task to be signaled or for a
5261 * specified timeout to expire. The timeout is in jiffies. It is not
5262 * interruptible.
5263 */
b15136e9 5264unsigned long __sched
8cbbe86d 5265wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5266{
8cbbe86d 5267 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5268}
8cbbe86d 5269EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5270
65eb3dc6
KD
5271/**
5272 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5273 * @x: holds the state of this particular completion
5274 *
5275 * This waits for completion of a specific task to be signaled. It is
5276 * interruptible.
5277 */
8cbbe86d 5278int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5279{
51e97990
AK
5280 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5281 if (t == -ERESTARTSYS)
5282 return t;
5283 return 0;
0fec171c 5284}
8cbbe86d 5285EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5286
65eb3dc6
KD
5287/**
5288 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5289 * @x: holds the state of this particular completion
5290 * @timeout: timeout value in jiffies
5291 *
5292 * This waits for either a completion of a specific task to be signaled or for a
5293 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5294 */
b15136e9 5295unsigned long __sched
8cbbe86d
AK
5296wait_for_completion_interruptible_timeout(struct completion *x,
5297 unsigned long timeout)
0fec171c 5298{
8cbbe86d 5299 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5300}
8cbbe86d 5301EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5302
65eb3dc6
KD
5303/**
5304 * wait_for_completion_killable: - waits for completion of a task (killable)
5305 * @x: holds the state of this particular completion
5306 *
5307 * This waits to be signaled for completion of a specific task. It can be
5308 * interrupted by a kill signal.
5309 */
009e577e
MW
5310int __sched wait_for_completion_killable(struct completion *x)
5311{
5312 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5313 if (t == -ERESTARTSYS)
5314 return t;
5315 return 0;
5316}
5317EXPORT_SYMBOL(wait_for_completion_killable);
5318
be4de352
DC
5319/**
5320 * try_wait_for_completion - try to decrement a completion without blocking
5321 * @x: completion structure
5322 *
5323 * Returns: 0 if a decrement cannot be done without blocking
5324 * 1 if a decrement succeeded.
5325 *
5326 * If a completion is being used as a counting completion,
5327 * attempt to decrement the counter without blocking. This
5328 * enables us to avoid waiting if the resource the completion
5329 * is protecting is not available.
5330 */
5331bool try_wait_for_completion(struct completion *x)
5332{
5333 int ret = 1;
5334
5335 spin_lock_irq(&x->wait.lock);
5336 if (!x->done)
5337 ret = 0;
5338 else
5339 x->done--;
5340 spin_unlock_irq(&x->wait.lock);
5341 return ret;
5342}
5343EXPORT_SYMBOL(try_wait_for_completion);
5344
5345/**
5346 * completion_done - Test to see if a completion has any waiters
5347 * @x: completion structure
5348 *
5349 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5350 * 1 if there are no waiters.
5351 *
5352 */
5353bool completion_done(struct completion *x)
5354{
5355 int ret = 1;
5356
5357 spin_lock_irq(&x->wait.lock);
5358 if (!x->done)
5359 ret = 0;
5360 spin_unlock_irq(&x->wait.lock);
5361 return ret;
5362}
5363EXPORT_SYMBOL(completion_done);
5364
8cbbe86d
AK
5365static long __sched
5366sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5367{
0fec171c
IM
5368 unsigned long flags;
5369 wait_queue_t wait;
5370
5371 init_waitqueue_entry(&wait, current);
1da177e4 5372
8cbbe86d 5373 __set_current_state(state);
1da177e4 5374
8cbbe86d
AK
5375 spin_lock_irqsave(&q->lock, flags);
5376 __add_wait_queue(q, &wait);
5377 spin_unlock(&q->lock);
5378 timeout = schedule_timeout(timeout);
5379 spin_lock_irq(&q->lock);
5380 __remove_wait_queue(q, &wait);
5381 spin_unlock_irqrestore(&q->lock, flags);
5382
5383 return timeout;
5384}
5385
5386void __sched interruptible_sleep_on(wait_queue_head_t *q)
5387{
5388 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5389}
1da177e4
LT
5390EXPORT_SYMBOL(interruptible_sleep_on);
5391
0fec171c 5392long __sched
95cdf3b7 5393interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5394{
8cbbe86d 5395 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5396}
1da177e4
LT
5397EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5398
0fec171c 5399void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5400{
8cbbe86d 5401 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5402}
1da177e4
LT
5403EXPORT_SYMBOL(sleep_on);
5404
0fec171c 5405long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5406{
8cbbe86d 5407 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5408}
1da177e4
LT
5409EXPORT_SYMBOL(sleep_on_timeout);
5410
b29739f9
IM
5411#ifdef CONFIG_RT_MUTEXES
5412
5413/*
5414 * rt_mutex_setprio - set the current priority of a task
5415 * @p: task
5416 * @prio: prio value (kernel-internal form)
5417 *
5418 * This function changes the 'effective' priority of a task. It does
5419 * not touch ->normal_prio like __setscheduler().
5420 *
5421 * Used by the rt_mutex code to implement priority inheritance logic.
5422 */
36c8b586 5423void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5424{
5425 unsigned long flags;
83b699ed 5426 int oldprio, on_rq, running;
70b97a7f 5427 struct rq *rq;
cb469845 5428 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5429
5430 BUG_ON(prio < 0 || prio > MAX_PRIO);
5431
5432 rq = task_rq_lock(p, &flags);
a8e504d2 5433 update_rq_clock(rq);
b29739f9 5434
d5f9f942 5435 oldprio = p->prio;
dd41f596 5436 on_rq = p->se.on_rq;
051a1d1a 5437 running = task_current(rq, p);
0e1f3483 5438 if (on_rq)
69be72c1 5439 dequeue_task(rq, p, 0);
0e1f3483
HS
5440 if (running)
5441 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5442
5443 if (rt_prio(prio))
5444 p->sched_class = &rt_sched_class;
5445 else
5446 p->sched_class = &fair_sched_class;
5447
b29739f9
IM
5448 p->prio = prio;
5449
0e1f3483
HS
5450 if (running)
5451 p->sched_class->set_curr_task(rq);
dd41f596 5452 if (on_rq) {
8159f87e 5453 enqueue_task(rq, p, 0);
cb469845
SR
5454
5455 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5456 }
5457 task_rq_unlock(rq, &flags);
5458}
5459
5460#endif
5461
36c8b586 5462void set_user_nice(struct task_struct *p, long nice)
1da177e4 5463{
dd41f596 5464 int old_prio, delta, on_rq;
1da177e4 5465 unsigned long flags;
70b97a7f 5466 struct rq *rq;
1da177e4
LT
5467
5468 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5469 return;
5470 /*
5471 * We have to be careful, if called from sys_setpriority(),
5472 * the task might be in the middle of scheduling on another CPU.
5473 */
5474 rq = task_rq_lock(p, &flags);
a8e504d2 5475 update_rq_clock(rq);
1da177e4
LT
5476 /*
5477 * The RT priorities are set via sched_setscheduler(), but we still
5478 * allow the 'normal' nice value to be set - but as expected
5479 * it wont have any effect on scheduling until the task is
dd41f596 5480 * SCHED_FIFO/SCHED_RR:
1da177e4 5481 */
e05606d3 5482 if (task_has_rt_policy(p)) {
1da177e4
LT
5483 p->static_prio = NICE_TO_PRIO(nice);
5484 goto out_unlock;
5485 }
dd41f596 5486 on_rq = p->se.on_rq;
c09595f6 5487 if (on_rq)
69be72c1 5488 dequeue_task(rq, p, 0);
1da177e4 5489
1da177e4 5490 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5491 set_load_weight(p);
b29739f9
IM
5492 old_prio = p->prio;
5493 p->prio = effective_prio(p);
5494 delta = p->prio - old_prio;
1da177e4 5495
dd41f596 5496 if (on_rq) {
8159f87e 5497 enqueue_task(rq, p, 0);
1da177e4 5498 /*
d5f9f942
AM
5499 * If the task increased its priority or is running and
5500 * lowered its priority, then reschedule its CPU:
1da177e4 5501 */
d5f9f942 5502 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5503 resched_task(rq->curr);
5504 }
5505out_unlock:
5506 task_rq_unlock(rq, &flags);
5507}
1da177e4
LT
5508EXPORT_SYMBOL(set_user_nice);
5509
e43379f1
MM
5510/*
5511 * can_nice - check if a task can reduce its nice value
5512 * @p: task
5513 * @nice: nice value
5514 */
36c8b586 5515int can_nice(const struct task_struct *p, const int nice)
e43379f1 5516{
024f4747
MM
5517 /* convert nice value [19,-20] to rlimit style value [1,40] */
5518 int nice_rlim = 20 - nice;
48f24c4d 5519
e43379f1
MM
5520 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5521 capable(CAP_SYS_NICE));
5522}
5523
1da177e4
LT
5524#ifdef __ARCH_WANT_SYS_NICE
5525
5526/*
5527 * sys_nice - change the priority of the current process.
5528 * @increment: priority increment
5529 *
5530 * sys_setpriority is a more generic, but much slower function that
5531 * does similar things.
5532 */
5add95d4 5533SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5534{
48f24c4d 5535 long nice, retval;
1da177e4
LT
5536
5537 /*
5538 * Setpriority might change our priority at the same moment.
5539 * We don't have to worry. Conceptually one call occurs first
5540 * and we have a single winner.
5541 */
e43379f1
MM
5542 if (increment < -40)
5543 increment = -40;
1da177e4
LT
5544 if (increment > 40)
5545 increment = 40;
5546
2b8f836f 5547 nice = TASK_NICE(current) + increment;
1da177e4
LT
5548 if (nice < -20)
5549 nice = -20;
5550 if (nice > 19)
5551 nice = 19;
5552
e43379f1
MM
5553 if (increment < 0 && !can_nice(current, nice))
5554 return -EPERM;
5555
1da177e4
LT
5556 retval = security_task_setnice(current, nice);
5557 if (retval)
5558 return retval;
5559
5560 set_user_nice(current, nice);
5561 return 0;
5562}
5563
5564#endif
5565
5566/**
5567 * task_prio - return the priority value of a given task.
5568 * @p: the task in question.
5569 *
5570 * This is the priority value as seen by users in /proc.
5571 * RT tasks are offset by -200. Normal tasks are centered
5572 * around 0, value goes from -16 to +15.
5573 */
36c8b586 5574int task_prio(const struct task_struct *p)
1da177e4
LT
5575{
5576 return p->prio - MAX_RT_PRIO;
5577}
5578
5579/**
5580 * task_nice - return the nice value of a given task.
5581 * @p: the task in question.
5582 */
36c8b586 5583int task_nice(const struct task_struct *p)
1da177e4
LT
5584{
5585 return TASK_NICE(p);
5586}
150d8bed 5587EXPORT_SYMBOL(task_nice);
1da177e4
LT
5588
5589/**
5590 * idle_cpu - is a given cpu idle currently?
5591 * @cpu: the processor in question.
5592 */
5593int idle_cpu(int cpu)
5594{
5595 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5596}
5597
1da177e4
LT
5598/**
5599 * idle_task - return the idle task for a given cpu.
5600 * @cpu: the processor in question.
5601 */
36c8b586 5602struct task_struct *idle_task(int cpu)
1da177e4
LT
5603{
5604 return cpu_rq(cpu)->idle;
5605}
5606
5607/**
5608 * find_process_by_pid - find a process with a matching PID value.
5609 * @pid: the pid in question.
5610 */
a9957449 5611static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5612{
228ebcbe 5613 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5614}
5615
5616/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5617static void
5618__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5619{
dd41f596 5620 BUG_ON(p->se.on_rq);
48f24c4d 5621
1da177e4 5622 p->policy = policy;
dd41f596
IM
5623 switch (p->policy) {
5624 case SCHED_NORMAL:
5625 case SCHED_BATCH:
5626 case SCHED_IDLE:
5627 p->sched_class = &fair_sched_class;
5628 break;
5629 case SCHED_FIFO:
5630 case SCHED_RR:
5631 p->sched_class = &rt_sched_class;
5632 break;
5633 }
5634
1da177e4 5635 p->rt_priority = prio;
b29739f9
IM
5636 p->normal_prio = normal_prio(p);
5637 /* we are holding p->pi_lock already */
5638 p->prio = rt_mutex_getprio(p);
2dd73a4f 5639 set_load_weight(p);
1da177e4
LT
5640}
5641
c69e8d9c
DH
5642/*
5643 * check the target process has a UID that matches the current process's
5644 */
5645static bool check_same_owner(struct task_struct *p)
5646{
5647 const struct cred *cred = current_cred(), *pcred;
5648 bool match;
5649
5650 rcu_read_lock();
5651 pcred = __task_cred(p);
5652 match = (cred->euid == pcred->euid ||
5653 cred->euid == pcred->uid);
5654 rcu_read_unlock();
5655 return match;
5656}
5657
961ccddd
RR
5658static int __sched_setscheduler(struct task_struct *p, int policy,
5659 struct sched_param *param, bool user)
1da177e4 5660{
83b699ed 5661 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5662 unsigned long flags;
cb469845 5663 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5664 struct rq *rq;
1da177e4 5665
66e5393a
SR
5666 /* may grab non-irq protected spin_locks */
5667 BUG_ON(in_interrupt());
1da177e4
LT
5668recheck:
5669 /* double check policy once rq lock held */
5670 if (policy < 0)
5671 policy = oldpolicy = p->policy;
5672 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5673 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5674 policy != SCHED_IDLE)
b0a9499c 5675 return -EINVAL;
1da177e4
LT
5676 /*
5677 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5678 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5679 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5680 */
5681 if (param->sched_priority < 0 ||
95cdf3b7 5682 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5683 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5684 return -EINVAL;
e05606d3 5685 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5686 return -EINVAL;
5687
37e4ab3f
OC
5688 /*
5689 * Allow unprivileged RT tasks to decrease priority:
5690 */
961ccddd 5691 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5692 if (rt_policy(policy)) {
8dc3e909 5693 unsigned long rlim_rtprio;
8dc3e909
ON
5694
5695 if (!lock_task_sighand(p, &flags))
5696 return -ESRCH;
5697 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5698 unlock_task_sighand(p, &flags);
5699
5700 /* can't set/change the rt policy */
5701 if (policy != p->policy && !rlim_rtprio)
5702 return -EPERM;
5703
5704 /* can't increase priority */
5705 if (param->sched_priority > p->rt_priority &&
5706 param->sched_priority > rlim_rtprio)
5707 return -EPERM;
5708 }
dd41f596
IM
5709 /*
5710 * Like positive nice levels, dont allow tasks to
5711 * move out of SCHED_IDLE either:
5712 */
5713 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5714 return -EPERM;
5fe1d75f 5715
37e4ab3f 5716 /* can't change other user's priorities */
c69e8d9c 5717 if (!check_same_owner(p))
37e4ab3f
OC
5718 return -EPERM;
5719 }
1da177e4 5720
725aad24 5721 if (user) {
b68aa230 5722#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5723 /*
5724 * Do not allow realtime tasks into groups that have no runtime
5725 * assigned.
5726 */
9a7e0b18
PZ
5727 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5728 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5729 return -EPERM;
b68aa230
PZ
5730#endif
5731
725aad24
JF
5732 retval = security_task_setscheduler(p, policy, param);
5733 if (retval)
5734 return retval;
5735 }
5736
b29739f9
IM
5737 /*
5738 * make sure no PI-waiters arrive (or leave) while we are
5739 * changing the priority of the task:
5740 */
5741 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5742 /*
5743 * To be able to change p->policy safely, the apropriate
5744 * runqueue lock must be held.
5745 */
b29739f9 5746 rq = __task_rq_lock(p);
1da177e4
LT
5747 /* recheck policy now with rq lock held */
5748 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5749 policy = oldpolicy = -1;
b29739f9
IM
5750 __task_rq_unlock(rq);
5751 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5752 goto recheck;
5753 }
2daa3577 5754 update_rq_clock(rq);
dd41f596 5755 on_rq = p->se.on_rq;
051a1d1a 5756 running = task_current(rq, p);
0e1f3483 5757 if (on_rq)
2e1cb74a 5758 deactivate_task(rq, p, 0);
0e1f3483
HS
5759 if (running)
5760 p->sched_class->put_prev_task(rq, p);
f6b53205 5761
1da177e4 5762 oldprio = p->prio;
dd41f596 5763 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5764
0e1f3483
HS
5765 if (running)
5766 p->sched_class->set_curr_task(rq);
dd41f596
IM
5767 if (on_rq) {
5768 activate_task(rq, p, 0);
cb469845
SR
5769
5770 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5771 }
b29739f9
IM
5772 __task_rq_unlock(rq);
5773 spin_unlock_irqrestore(&p->pi_lock, flags);
5774
95e02ca9
TG
5775 rt_mutex_adjust_pi(p);
5776
1da177e4
LT
5777 return 0;
5778}
961ccddd
RR
5779
5780/**
5781 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5782 * @p: the task in question.
5783 * @policy: new policy.
5784 * @param: structure containing the new RT priority.
5785 *
5786 * NOTE that the task may be already dead.
5787 */
5788int sched_setscheduler(struct task_struct *p, int policy,
5789 struct sched_param *param)
5790{
5791 return __sched_setscheduler(p, policy, param, true);
5792}
1da177e4
LT
5793EXPORT_SYMBOL_GPL(sched_setscheduler);
5794
961ccddd
RR
5795/**
5796 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5797 * @p: the task in question.
5798 * @policy: new policy.
5799 * @param: structure containing the new RT priority.
5800 *
5801 * Just like sched_setscheduler, only don't bother checking if the
5802 * current context has permission. For example, this is needed in
5803 * stop_machine(): we create temporary high priority worker threads,
5804 * but our caller might not have that capability.
5805 */
5806int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5807 struct sched_param *param)
5808{
5809 return __sched_setscheduler(p, policy, param, false);
5810}
5811
95cdf3b7
IM
5812static int
5813do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5814{
1da177e4
LT
5815 struct sched_param lparam;
5816 struct task_struct *p;
36c8b586 5817 int retval;
1da177e4
LT
5818
5819 if (!param || pid < 0)
5820 return -EINVAL;
5821 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5822 return -EFAULT;
5fe1d75f
ON
5823
5824 rcu_read_lock();
5825 retval = -ESRCH;
1da177e4 5826 p = find_process_by_pid(pid);
5fe1d75f
ON
5827 if (p != NULL)
5828 retval = sched_setscheduler(p, policy, &lparam);
5829 rcu_read_unlock();
36c8b586 5830
1da177e4
LT
5831 return retval;
5832}
5833
5834/**
5835 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5836 * @pid: the pid in question.
5837 * @policy: new policy.
5838 * @param: structure containing the new RT priority.
5839 */
5add95d4
HC
5840SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5841 struct sched_param __user *, param)
1da177e4 5842{
c21761f1
JB
5843 /* negative values for policy are not valid */
5844 if (policy < 0)
5845 return -EINVAL;
5846
1da177e4
LT
5847 return do_sched_setscheduler(pid, policy, param);
5848}
5849
5850/**
5851 * sys_sched_setparam - set/change the RT priority of a thread
5852 * @pid: the pid in question.
5853 * @param: structure containing the new RT priority.
5854 */
5add95d4 5855SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5856{
5857 return do_sched_setscheduler(pid, -1, param);
5858}
5859
5860/**
5861 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5862 * @pid: the pid in question.
5863 */
5add95d4 5864SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5865{
36c8b586 5866 struct task_struct *p;
3a5c359a 5867 int retval;
1da177e4
LT
5868
5869 if (pid < 0)
3a5c359a 5870 return -EINVAL;
1da177e4
LT
5871
5872 retval = -ESRCH;
5873 read_lock(&tasklist_lock);
5874 p = find_process_by_pid(pid);
5875 if (p) {
5876 retval = security_task_getscheduler(p);
5877 if (!retval)
5878 retval = p->policy;
5879 }
5880 read_unlock(&tasklist_lock);
1da177e4
LT
5881 return retval;
5882}
5883
5884/**
5885 * sys_sched_getscheduler - get the RT priority of a thread
5886 * @pid: the pid in question.
5887 * @param: structure containing the RT priority.
5888 */
5add95d4 5889SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5890{
5891 struct sched_param lp;
36c8b586 5892 struct task_struct *p;
3a5c359a 5893 int retval;
1da177e4
LT
5894
5895 if (!param || pid < 0)
3a5c359a 5896 return -EINVAL;
1da177e4
LT
5897
5898 read_lock(&tasklist_lock);
5899 p = find_process_by_pid(pid);
5900 retval = -ESRCH;
5901 if (!p)
5902 goto out_unlock;
5903
5904 retval = security_task_getscheduler(p);
5905 if (retval)
5906 goto out_unlock;
5907
5908 lp.sched_priority = p->rt_priority;
5909 read_unlock(&tasklist_lock);
5910
5911 /*
5912 * This one might sleep, we cannot do it with a spinlock held ...
5913 */
5914 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5915
1da177e4
LT
5916 return retval;
5917
5918out_unlock:
5919 read_unlock(&tasklist_lock);
5920 return retval;
5921}
5922
96f874e2 5923long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5924{
5a16f3d3 5925 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5926 struct task_struct *p;
5927 int retval;
1da177e4 5928
95402b38 5929 get_online_cpus();
1da177e4
LT
5930 read_lock(&tasklist_lock);
5931
5932 p = find_process_by_pid(pid);
5933 if (!p) {
5934 read_unlock(&tasklist_lock);
95402b38 5935 put_online_cpus();
1da177e4
LT
5936 return -ESRCH;
5937 }
5938
5939 /*
5940 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5941 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5942 * usage count and then drop tasklist_lock.
5943 */
5944 get_task_struct(p);
5945 read_unlock(&tasklist_lock);
5946
5a16f3d3
RR
5947 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5948 retval = -ENOMEM;
5949 goto out_put_task;
5950 }
5951 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5952 retval = -ENOMEM;
5953 goto out_free_cpus_allowed;
5954 }
1da177e4 5955 retval = -EPERM;
c69e8d9c 5956 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5957 goto out_unlock;
5958
e7834f8f
DQ
5959 retval = security_task_setscheduler(p, 0, NULL);
5960 if (retval)
5961 goto out_unlock;
5962
5a16f3d3
RR
5963 cpuset_cpus_allowed(p, cpus_allowed);
5964 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5965 again:
5a16f3d3 5966 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5967
8707d8b8 5968 if (!retval) {
5a16f3d3
RR
5969 cpuset_cpus_allowed(p, cpus_allowed);
5970 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5971 /*
5972 * We must have raced with a concurrent cpuset
5973 * update. Just reset the cpus_allowed to the
5974 * cpuset's cpus_allowed
5975 */
5a16f3d3 5976 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5977 goto again;
5978 }
5979 }
1da177e4 5980out_unlock:
5a16f3d3
RR
5981 free_cpumask_var(new_mask);
5982out_free_cpus_allowed:
5983 free_cpumask_var(cpus_allowed);
5984out_put_task:
1da177e4 5985 put_task_struct(p);
95402b38 5986 put_online_cpus();
1da177e4
LT
5987 return retval;
5988}
5989
5990static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5991 struct cpumask *new_mask)
1da177e4 5992{
96f874e2
RR
5993 if (len < cpumask_size())
5994 cpumask_clear(new_mask);
5995 else if (len > cpumask_size())
5996 len = cpumask_size();
5997
1da177e4
LT
5998 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5999}
6000
6001/**
6002 * sys_sched_setaffinity - set the cpu affinity of a process
6003 * @pid: pid of the process
6004 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6005 * @user_mask_ptr: user-space pointer to the new cpu mask
6006 */
5add95d4
HC
6007SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6008 unsigned long __user *, user_mask_ptr)
1da177e4 6009{
5a16f3d3 6010 cpumask_var_t new_mask;
1da177e4
LT
6011 int retval;
6012
5a16f3d3
RR
6013 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6014 return -ENOMEM;
1da177e4 6015
5a16f3d3
RR
6016 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6017 if (retval == 0)
6018 retval = sched_setaffinity(pid, new_mask);
6019 free_cpumask_var(new_mask);
6020 return retval;
1da177e4
LT
6021}
6022
96f874e2 6023long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6024{
36c8b586 6025 struct task_struct *p;
1da177e4 6026 int retval;
1da177e4 6027
95402b38 6028 get_online_cpus();
1da177e4
LT
6029 read_lock(&tasklist_lock);
6030
6031 retval = -ESRCH;
6032 p = find_process_by_pid(pid);
6033 if (!p)
6034 goto out_unlock;
6035
e7834f8f
DQ
6036 retval = security_task_getscheduler(p);
6037 if (retval)
6038 goto out_unlock;
6039
96f874e2 6040 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6041
6042out_unlock:
6043 read_unlock(&tasklist_lock);
95402b38 6044 put_online_cpus();
1da177e4 6045
9531b62f 6046 return retval;
1da177e4
LT
6047}
6048
6049/**
6050 * sys_sched_getaffinity - get the cpu affinity of a process
6051 * @pid: pid of the process
6052 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6053 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6054 */
5add95d4
HC
6055SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6056 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6057{
6058 int ret;
f17c8607 6059 cpumask_var_t mask;
1da177e4 6060
f17c8607 6061 if (len < cpumask_size())
1da177e4
LT
6062 return -EINVAL;
6063
f17c8607
RR
6064 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6065 return -ENOMEM;
1da177e4 6066
f17c8607
RR
6067 ret = sched_getaffinity(pid, mask);
6068 if (ret == 0) {
6069 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6070 ret = -EFAULT;
6071 else
6072 ret = cpumask_size();
6073 }
6074 free_cpumask_var(mask);
1da177e4 6075
f17c8607 6076 return ret;
1da177e4
LT
6077}
6078
6079/**
6080 * sys_sched_yield - yield the current processor to other threads.
6081 *
dd41f596
IM
6082 * This function yields the current CPU to other tasks. If there are no
6083 * other threads running on this CPU then this function will return.
1da177e4 6084 */
5add95d4 6085SYSCALL_DEFINE0(sched_yield)
1da177e4 6086{
70b97a7f 6087 struct rq *rq = this_rq_lock();
1da177e4 6088
2d72376b 6089 schedstat_inc(rq, yld_count);
4530d7ab 6090 current->sched_class->yield_task(rq);
1da177e4
LT
6091
6092 /*
6093 * Since we are going to call schedule() anyway, there's
6094 * no need to preempt or enable interrupts:
6095 */
6096 __release(rq->lock);
8a25d5de 6097 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6098 _raw_spin_unlock(&rq->lock);
6099 preempt_enable_no_resched();
6100
6101 schedule();
6102
6103 return 0;
6104}
6105
e7b38404 6106static void __cond_resched(void)
1da177e4 6107{
8e0a43d8
IM
6108#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6109 __might_sleep(__FILE__, __LINE__);
6110#endif
5bbcfd90
IM
6111 /*
6112 * The BKS might be reacquired before we have dropped
6113 * PREEMPT_ACTIVE, which could trigger a second
6114 * cond_resched() call.
6115 */
1da177e4
LT
6116 do {
6117 add_preempt_count(PREEMPT_ACTIVE);
6118 schedule();
6119 sub_preempt_count(PREEMPT_ACTIVE);
6120 } while (need_resched());
6121}
6122
02b67cc3 6123int __sched _cond_resched(void)
1da177e4 6124{
9414232f
IM
6125 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6126 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6127 __cond_resched();
6128 return 1;
6129 }
6130 return 0;
6131}
02b67cc3 6132EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6133
6134/*
6135 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6136 * call schedule, and on return reacquire the lock.
6137 *
41a2d6cf 6138 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6139 * operations here to prevent schedule() from being called twice (once via
6140 * spin_unlock(), once by hand).
6141 */
95cdf3b7 6142int cond_resched_lock(spinlock_t *lock)
1da177e4 6143{
95c354fe 6144 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6145 int ret = 0;
6146
95c354fe 6147 if (spin_needbreak(lock) || resched) {
1da177e4 6148 spin_unlock(lock);
95c354fe
NP
6149 if (resched && need_resched())
6150 __cond_resched();
6151 else
6152 cpu_relax();
6df3cecb 6153 ret = 1;
1da177e4 6154 spin_lock(lock);
1da177e4 6155 }
6df3cecb 6156 return ret;
1da177e4 6157}
1da177e4
LT
6158EXPORT_SYMBOL(cond_resched_lock);
6159
6160int __sched cond_resched_softirq(void)
6161{
6162 BUG_ON(!in_softirq());
6163
9414232f 6164 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6165 local_bh_enable();
1da177e4
LT
6166 __cond_resched();
6167 local_bh_disable();
6168 return 1;
6169 }
6170 return 0;
6171}
1da177e4
LT
6172EXPORT_SYMBOL(cond_resched_softirq);
6173
1da177e4
LT
6174/**
6175 * yield - yield the current processor to other threads.
6176 *
72fd4a35 6177 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6178 * thread runnable and calls sys_sched_yield().
6179 */
6180void __sched yield(void)
6181{
6182 set_current_state(TASK_RUNNING);
6183 sys_sched_yield();
6184}
1da177e4
LT
6185EXPORT_SYMBOL(yield);
6186
6187/*
41a2d6cf 6188 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6189 * that process accounting knows that this is a task in IO wait state.
6190 *
6191 * But don't do that if it is a deliberate, throttling IO wait (this task
6192 * has set its backing_dev_info: the queue against which it should throttle)
6193 */
6194void __sched io_schedule(void)
6195{
70b97a7f 6196 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6197
0ff92245 6198 delayacct_blkio_start();
1da177e4
LT
6199 atomic_inc(&rq->nr_iowait);
6200 schedule();
6201 atomic_dec(&rq->nr_iowait);
0ff92245 6202 delayacct_blkio_end();
1da177e4 6203}
1da177e4
LT
6204EXPORT_SYMBOL(io_schedule);
6205
6206long __sched io_schedule_timeout(long timeout)
6207{
70b97a7f 6208 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6209 long ret;
6210
0ff92245 6211 delayacct_blkio_start();
1da177e4
LT
6212 atomic_inc(&rq->nr_iowait);
6213 ret = schedule_timeout(timeout);
6214 atomic_dec(&rq->nr_iowait);
0ff92245 6215 delayacct_blkio_end();
1da177e4
LT
6216 return ret;
6217}
6218
6219/**
6220 * sys_sched_get_priority_max - return maximum RT priority.
6221 * @policy: scheduling class.
6222 *
6223 * this syscall returns the maximum rt_priority that can be used
6224 * by a given scheduling class.
6225 */
5add95d4 6226SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6227{
6228 int ret = -EINVAL;
6229
6230 switch (policy) {
6231 case SCHED_FIFO:
6232 case SCHED_RR:
6233 ret = MAX_USER_RT_PRIO-1;
6234 break;
6235 case SCHED_NORMAL:
b0a9499c 6236 case SCHED_BATCH:
dd41f596 6237 case SCHED_IDLE:
1da177e4
LT
6238 ret = 0;
6239 break;
6240 }
6241 return ret;
6242}
6243
6244/**
6245 * sys_sched_get_priority_min - return minimum RT priority.
6246 * @policy: scheduling class.
6247 *
6248 * this syscall returns the minimum rt_priority that can be used
6249 * by a given scheduling class.
6250 */
5add95d4 6251SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6252{
6253 int ret = -EINVAL;
6254
6255 switch (policy) {
6256 case SCHED_FIFO:
6257 case SCHED_RR:
6258 ret = 1;
6259 break;
6260 case SCHED_NORMAL:
b0a9499c 6261 case SCHED_BATCH:
dd41f596 6262 case SCHED_IDLE:
1da177e4
LT
6263 ret = 0;
6264 }
6265 return ret;
6266}
6267
6268/**
6269 * sys_sched_rr_get_interval - return the default timeslice of a process.
6270 * @pid: pid of the process.
6271 * @interval: userspace pointer to the timeslice value.
6272 *
6273 * this syscall writes the default timeslice value of a given process
6274 * into the user-space timespec buffer. A value of '0' means infinity.
6275 */
17da2bd9 6276SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6277 struct timespec __user *, interval)
1da177e4 6278{
36c8b586 6279 struct task_struct *p;
a4ec24b4 6280 unsigned int time_slice;
3a5c359a 6281 int retval;
1da177e4 6282 struct timespec t;
1da177e4
LT
6283
6284 if (pid < 0)
3a5c359a 6285 return -EINVAL;
1da177e4
LT
6286
6287 retval = -ESRCH;
6288 read_lock(&tasklist_lock);
6289 p = find_process_by_pid(pid);
6290 if (!p)
6291 goto out_unlock;
6292
6293 retval = security_task_getscheduler(p);
6294 if (retval)
6295 goto out_unlock;
6296
77034937
IM
6297 /*
6298 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6299 * tasks that are on an otherwise idle runqueue:
6300 */
6301 time_slice = 0;
6302 if (p->policy == SCHED_RR) {
a4ec24b4 6303 time_slice = DEF_TIMESLICE;
1868f958 6304 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6305 struct sched_entity *se = &p->se;
6306 unsigned long flags;
6307 struct rq *rq;
6308
6309 rq = task_rq_lock(p, &flags);
77034937
IM
6310 if (rq->cfs.load.weight)
6311 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6312 task_rq_unlock(rq, &flags);
6313 }
1da177e4 6314 read_unlock(&tasklist_lock);
a4ec24b4 6315 jiffies_to_timespec(time_slice, &t);
1da177e4 6316 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6317 return retval;
3a5c359a 6318
1da177e4
LT
6319out_unlock:
6320 read_unlock(&tasklist_lock);
6321 return retval;
6322}
6323
7c731e0a 6324static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6325
82a1fcb9 6326void sched_show_task(struct task_struct *p)
1da177e4 6327{
1da177e4 6328 unsigned long free = 0;
36c8b586 6329 unsigned state;
1da177e4 6330
1da177e4 6331 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6332 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6333 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6334#if BITS_PER_LONG == 32
1da177e4 6335 if (state == TASK_RUNNING)
cc4ea795 6336 printk(KERN_CONT " running ");
1da177e4 6337 else
cc4ea795 6338 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6339#else
6340 if (state == TASK_RUNNING)
cc4ea795 6341 printk(KERN_CONT " running task ");
1da177e4 6342 else
cc4ea795 6343 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6344#endif
6345#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6346 free = stack_not_used(p);
1da177e4 6347#endif
ba25f9dc 6348 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6349 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6350
5fb5e6de 6351 show_stack(p, NULL);
1da177e4
LT
6352}
6353
e59e2ae2 6354void show_state_filter(unsigned long state_filter)
1da177e4 6355{
36c8b586 6356 struct task_struct *g, *p;
1da177e4 6357
4bd77321
IM
6358#if BITS_PER_LONG == 32
6359 printk(KERN_INFO
6360 " task PC stack pid father\n");
1da177e4 6361#else
4bd77321
IM
6362 printk(KERN_INFO
6363 " task PC stack pid father\n");
1da177e4
LT
6364#endif
6365 read_lock(&tasklist_lock);
6366 do_each_thread(g, p) {
6367 /*
6368 * reset the NMI-timeout, listing all files on a slow
6369 * console might take alot of time:
6370 */
6371 touch_nmi_watchdog();
39bc89fd 6372 if (!state_filter || (p->state & state_filter))
82a1fcb9 6373 sched_show_task(p);
1da177e4
LT
6374 } while_each_thread(g, p);
6375
04c9167f
JF
6376 touch_all_softlockup_watchdogs();
6377
dd41f596
IM
6378#ifdef CONFIG_SCHED_DEBUG
6379 sysrq_sched_debug_show();
6380#endif
1da177e4 6381 read_unlock(&tasklist_lock);
e59e2ae2
IM
6382 /*
6383 * Only show locks if all tasks are dumped:
6384 */
6385 if (state_filter == -1)
6386 debug_show_all_locks();
1da177e4
LT
6387}
6388
1df21055
IM
6389void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6390{
dd41f596 6391 idle->sched_class = &idle_sched_class;
1df21055
IM
6392}
6393
f340c0d1
IM
6394/**
6395 * init_idle - set up an idle thread for a given CPU
6396 * @idle: task in question
6397 * @cpu: cpu the idle task belongs to
6398 *
6399 * NOTE: this function does not set the idle thread's NEED_RESCHED
6400 * flag, to make booting more robust.
6401 */
5c1e1767 6402void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6403{
70b97a7f 6404 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6405 unsigned long flags;
6406
5cbd54ef
IM
6407 spin_lock_irqsave(&rq->lock, flags);
6408
dd41f596
IM
6409 __sched_fork(idle);
6410 idle->se.exec_start = sched_clock();
6411
b29739f9 6412 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6413 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6414 __set_task_cpu(idle, cpu);
1da177e4 6415
1da177e4 6416 rq->curr = rq->idle = idle;
4866cde0
NP
6417#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6418 idle->oncpu = 1;
6419#endif
1da177e4
LT
6420 spin_unlock_irqrestore(&rq->lock, flags);
6421
6422 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6423#if defined(CONFIG_PREEMPT)
6424 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6425#else
a1261f54 6426 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6427#endif
dd41f596
IM
6428 /*
6429 * The idle tasks have their own, simple scheduling class:
6430 */
6431 idle->sched_class = &idle_sched_class;
fb52607a 6432 ftrace_graph_init_task(idle);
1da177e4
LT
6433}
6434
6435/*
6436 * In a system that switches off the HZ timer nohz_cpu_mask
6437 * indicates which cpus entered this state. This is used
6438 * in the rcu update to wait only for active cpus. For system
6439 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6440 * always be CPU_BITS_NONE.
1da177e4 6441 */
6a7b3dc3 6442cpumask_var_t nohz_cpu_mask;
1da177e4 6443
19978ca6
IM
6444/*
6445 * Increase the granularity value when there are more CPUs,
6446 * because with more CPUs the 'effective latency' as visible
6447 * to users decreases. But the relationship is not linear,
6448 * so pick a second-best guess by going with the log2 of the
6449 * number of CPUs.
6450 *
6451 * This idea comes from the SD scheduler of Con Kolivas:
6452 */
6453static inline void sched_init_granularity(void)
6454{
6455 unsigned int factor = 1 + ilog2(num_online_cpus());
6456 const unsigned long limit = 200000000;
6457
6458 sysctl_sched_min_granularity *= factor;
6459 if (sysctl_sched_min_granularity > limit)
6460 sysctl_sched_min_granularity = limit;
6461
6462 sysctl_sched_latency *= factor;
6463 if (sysctl_sched_latency > limit)
6464 sysctl_sched_latency = limit;
6465
6466 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6467
6468 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6469}
6470
1da177e4
LT
6471#ifdef CONFIG_SMP
6472/*
6473 * This is how migration works:
6474 *
70b97a7f 6475 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6476 * runqueue and wake up that CPU's migration thread.
6477 * 2) we down() the locked semaphore => thread blocks.
6478 * 3) migration thread wakes up (implicitly it forces the migrated
6479 * thread off the CPU)
6480 * 4) it gets the migration request and checks whether the migrated
6481 * task is still in the wrong runqueue.
6482 * 5) if it's in the wrong runqueue then the migration thread removes
6483 * it and puts it into the right queue.
6484 * 6) migration thread up()s the semaphore.
6485 * 7) we wake up and the migration is done.
6486 */
6487
6488/*
6489 * Change a given task's CPU affinity. Migrate the thread to a
6490 * proper CPU and schedule it away if the CPU it's executing on
6491 * is removed from the allowed bitmask.
6492 *
6493 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6494 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6495 * call is not atomic; no spinlocks may be held.
6496 */
96f874e2 6497int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6498{
70b97a7f 6499 struct migration_req req;
1da177e4 6500 unsigned long flags;
70b97a7f 6501 struct rq *rq;
48f24c4d 6502 int ret = 0;
1da177e4
LT
6503
6504 rq = task_rq_lock(p, &flags);
96f874e2 6505 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6506 ret = -EINVAL;
6507 goto out;
6508 }
6509
9985b0ba 6510 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6511 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6512 ret = -EINVAL;
6513 goto out;
6514 }
6515
73fe6aae 6516 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6517 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6518 else {
96f874e2
RR
6519 cpumask_copy(&p->cpus_allowed, new_mask);
6520 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6521 }
6522
1da177e4 6523 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6524 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6525 goto out;
6526
1e5ce4f4 6527 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6528 /* Need help from migration thread: drop lock and wait. */
6529 task_rq_unlock(rq, &flags);
6530 wake_up_process(rq->migration_thread);
6531 wait_for_completion(&req.done);
6532 tlb_migrate_finish(p->mm);
6533 return 0;
6534 }
6535out:
6536 task_rq_unlock(rq, &flags);
48f24c4d 6537
1da177e4
LT
6538 return ret;
6539}
cd8ba7cd 6540EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6541
6542/*
41a2d6cf 6543 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6544 * this because either it can't run here any more (set_cpus_allowed()
6545 * away from this CPU, or CPU going down), or because we're
6546 * attempting to rebalance this task on exec (sched_exec).
6547 *
6548 * So we race with normal scheduler movements, but that's OK, as long
6549 * as the task is no longer on this CPU.
efc30814
KK
6550 *
6551 * Returns non-zero if task was successfully migrated.
1da177e4 6552 */
efc30814 6553static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6554{
70b97a7f 6555 struct rq *rq_dest, *rq_src;
dd41f596 6556 int ret = 0, on_rq;
1da177e4 6557
e761b772 6558 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6559 return ret;
1da177e4
LT
6560
6561 rq_src = cpu_rq(src_cpu);
6562 rq_dest = cpu_rq(dest_cpu);
6563
6564 double_rq_lock(rq_src, rq_dest);
6565 /* Already moved. */
6566 if (task_cpu(p) != src_cpu)
b1e38734 6567 goto done;
1da177e4 6568 /* Affinity changed (again). */
96f874e2 6569 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6570 goto fail;
1da177e4 6571
dd41f596 6572 on_rq = p->se.on_rq;
6e82a3be 6573 if (on_rq)
2e1cb74a 6574 deactivate_task(rq_src, p, 0);
6e82a3be 6575
1da177e4 6576 set_task_cpu(p, dest_cpu);
dd41f596
IM
6577 if (on_rq) {
6578 activate_task(rq_dest, p, 0);
15afe09b 6579 check_preempt_curr(rq_dest, p, 0);
1da177e4 6580 }
b1e38734 6581done:
efc30814 6582 ret = 1;
b1e38734 6583fail:
1da177e4 6584 double_rq_unlock(rq_src, rq_dest);
efc30814 6585 return ret;
1da177e4
LT
6586}
6587
6588/*
6589 * migration_thread - this is a highprio system thread that performs
6590 * thread migration by bumping thread off CPU then 'pushing' onto
6591 * another runqueue.
6592 */
95cdf3b7 6593static int migration_thread(void *data)
1da177e4 6594{
1da177e4 6595 int cpu = (long)data;
70b97a7f 6596 struct rq *rq;
1da177e4
LT
6597
6598 rq = cpu_rq(cpu);
6599 BUG_ON(rq->migration_thread != current);
6600
6601 set_current_state(TASK_INTERRUPTIBLE);
6602 while (!kthread_should_stop()) {
70b97a7f 6603 struct migration_req *req;
1da177e4 6604 struct list_head *head;
1da177e4 6605
1da177e4
LT
6606 spin_lock_irq(&rq->lock);
6607
6608 if (cpu_is_offline(cpu)) {
6609 spin_unlock_irq(&rq->lock);
6610 goto wait_to_die;
6611 }
6612
6613 if (rq->active_balance) {
6614 active_load_balance(rq, cpu);
6615 rq->active_balance = 0;
6616 }
6617
6618 head = &rq->migration_queue;
6619
6620 if (list_empty(head)) {
6621 spin_unlock_irq(&rq->lock);
6622 schedule();
6623 set_current_state(TASK_INTERRUPTIBLE);
6624 continue;
6625 }
70b97a7f 6626 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6627 list_del_init(head->next);
6628
674311d5
NP
6629 spin_unlock(&rq->lock);
6630 __migrate_task(req->task, cpu, req->dest_cpu);
6631 local_irq_enable();
1da177e4
LT
6632
6633 complete(&req->done);
6634 }
6635 __set_current_state(TASK_RUNNING);
6636 return 0;
6637
6638wait_to_die:
6639 /* Wait for kthread_stop */
6640 set_current_state(TASK_INTERRUPTIBLE);
6641 while (!kthread_should_stop()) {
6642 schedule();
6643 set_current_state(TASK_INTERRUPTIBLE);
6644 }
6645 __set_current_state(TASK_RUNNING);
6646 return 0;
6647}
6648
6649#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6650
6651static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6652{
6653 int ret;
6654
6655 local_irq_disable();
6656 ret = __migrate_task(p, src_cpu, dest_cpu);
6657 local_irq_enable();
6658 return ret;
6659}
6660
054b9108 6661/*
3a4fa0a2 6662 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6663 */
48f24c4d 6664static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6665{
70b97a7f 6666 int dest_cpu;
6ca09dfc 6667 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6668
6669again:
6670 /* Look for allowed, online CPU in same node. */
6671 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6672 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6673 goto move;
6674
6675 /* Any allowed, online CPU? */
6676 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6677 if (dest_cpu < nr_cpu_ids)
6678 goto move;
6679
6680 /* No more Mr. Nice Guy. */
6681 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6682 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6683 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6684
e76bd8d9
RR
6685 /*
6686 * Don't tell them about moving exiting tasks or
6687 * kernel threads (both mm NULL), since they never
6688 * leave kernel.
6689 */
6690 if (p->mm && printk_ratelimit()) {
6691 printk(KERN_INFO "process %d (%s) no "
6692 "longer affine to cpu%d\n",
6693 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6694 }
e76bd8d9
RR
6695 }
6696
6697move:
6698 /* It can have affinity changed while we were choosing. */
6699 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6700 goto again;
1da177e4
LT
6701}
6702
6703/*
6704 * While a dead CPU has no uninterruptible tasks queued at this point,
6705 * it might still have a nonzero ->nr_uninterruptible counter, because
6706 * for performance reasons the counter is not stricly tracking tasks to
6707 * their home CPUs. So we just add the counter to another CPU's counter,
6708 * to keep the global sum constant after CPU-down:
6709 */
70b97a7f 6710static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6711{
1e5ce4f4 6712 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6713 unsigned long flags;
6714
6715 local_irq_save(flags);
6716 double_rq_lock(rq_src, rq_dest);
6717 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6718 rq_src->nr_uninterruptible = 0;
6719 double_rq_unlock(rq_src, rq_dest);
6720 local_irq_restore(flags);
6721}
6722
6723/* Run through task list and migrate tasks from the dead cpu. */
6724static void migrate_live_tasks(int src_cpu)
6725{
48f24c4d 6726 struct task_struct *p, *t;
1da177e4 6727
f7b4cddc 6728 read_lock(&tasklist_lock);
1da177e4 6729
48f24c4d
IM
6730 do_each_thread(t, p) {
6731 if (p == current)
1da177e4
LT
6732 continue;
6733
48f24c4d
IM
6734 if (task_cpu(p) == src_cpu)
6735 move_task_off_dead_cpu(src_cpu, p);
6736 } while_each_thread(t, p);
1da177e4 6737
f7b4cddc 6738 read_unlock(&tasklist_lock);
1da177e4
LT
6739}
6740
dd41f596
IM
6741/*
6742 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6743 * It does so by boosting its priority to highest possible.
6744 * Used by CPU offline code.
1da177e4
LT
6745 */
6746void sched_idle_next(void)
6747{
48f24c4d 6748 int this_cpu = smp_processor_id();
70b97a7f 6749 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6750 struct task_struct *p = rq->idle;
6751 unsigned long flags;
6752
6753 /* cpu has to be offline */
48f24c4d 6754 BUG_ON(cpu_online(this_cpu));
1da177e4 6755
48f24c4d
IM
6756 /*
6757 * Strictly not necessary since rest of the CPUs are stopped by now
6758 * and interrupts disabled on the current cpu.
1da177e4
LT
6759 */
6760 spin_lock_irqsave(&rq->lock, flags);
6761
dd41f596 6762 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6763
94bc9a7b
DA
6764 update_rq_clock(rq);
6765 activate_task(rq, p, 0);
1da177e4
LT
6766
6767 spin_unlock_irqrestore(&rq->lock, flags);
6768}
6769
48f24c4d
IM
6770/*
6771 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6772 * offline.
6773 */
6774void idle_task_exit(void)
6775{
6776 struct mm_struct *mm = current->active_mm;
6777
6778 BUG_ON(cpu_online(smp_processor_id()));
6779
6780 if (mm != &init_mm)
6781 switch_mm(mm, &init_mm, current);
6782 mmdrop(mm);
6783}
6784
054b9108 6785/* called under rq->lock with disabled interrupts */
36c8b586 6786static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6787{
70b97a7f 6788 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6789
6790 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6791 BUG_ON(!p->exit_state);
1da177e4
LT
6792
6793 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6794 BUG_ON(p->state == TASK_DEAD);
1da177e4 6795
48f24c4d 6796 get_task_struct(p);
1da177e4
LT
6797
6798 /*
6799 * Drop lock around migration; if someone else moves it,
41a2d6cf 6800 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6801 * fine.
6802 */
f7b4cddc 6803 spin_unlock_irq(&rq->lock);
48f24c4d 6804 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6805 spin_lock_irq(&rq->lock);
1da177e4 6806
48f24c4d 6807 put_task_struct(p);
1da177e4
LT
6808}
6809
6810/* release_task() removes task from tasklist, so we won't find dead tasks. */
6811static void migrate_dead_tasks(unsigned int dead_cpu)
6812{
70b97a7f 6813 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6814 struct task_struct *next;
48f24c4d 6815
dd41f596
IM
6816 for ( ; ; ) {
6817 if (!rq->nr_running)
6818 break;
a8e504d2 6819 update_rq_clock(rq);
b67802ea 6820 next = pick_next_task(rq);
dd41f596
IM
6821 if (!next)
6822 break;
79c53799 6823 next->sched_class->put_prev_task(rq, next);
dd41f596 6824 migrate_dead(dead_cpu, next);
e692ab53 6825
1da177e4
LT
6826 }
6827}
6828#endif /* CONFIG_HOTPLUG_CPU */
6829
e692ab53
NP
6830#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6831
6832static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6833 {
6834 .procname = "sched_domain",
c57baf1e 6835 .mode = 0555,
e0361851 6836 },
38605cae 6837 {0, },
e692ab53
NP
6838};
6839
6840static struct ctl_table sd_ctl_root[] = {
e0361851 6841 {
c57baf1e 6842 .ctl_name = CTL_KERN,
e0361851 6843 .procname = "kernel",
c57baf1e 6844 .mode = 0555,
e0361851
AD
6845 .child = sd_ctl_dir,
6846 },
38605cae 6847 {0, },
e692ab53
NP
6848};
6849
6850static struct ctl_table *sd_alloc_ctl_entry(int n)
6851{
6852 struct ctl_table *entry =
5cf9f062 6853 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6854
e692ab53
NP
6855 return entry;
6856}
6857
6382bc90
MM
6858static void sd_free_ctl_entry(struct ctl_table **tablep)
6859{
cd790076 6860 struct ctl_table *entry;
6382bc90 6861
cd790076
MM
6862 /*
6863 * In the intermediate directories, both the child directory and
6864 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6865 * will always be set. In the lowest directory the names are
cd790076
MM
6866 * static strings and all have proc handlers.
6867 */
6868 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6869 if (entry->child)
6870 sd_free_ctl_entry(&entry->child);
cd790076
MM
6871 if (entry->proc_handler == NULL)
6872 kfree(entry->procname);
6873 }
6382bc90
MM
6874
6875 kfree(*tablep);
6876 *tablep = NULL;
6877}
6878
e692ab53 6879static void
e0361851 6880set_table_entry(struct ctl_table *entry,
e692ab53
NP
6881 const char *procname, void *data, int maxlen,
6882 mode_t mode, proc_handler *proc_handler)
6883{
e692ab53
NP
6884 entry->procname = procname;
6885 entry->data = data;
6886 entry->maxlen = maxlen;
6887 entry->mode = mode;
6888 entry->proc_handler = proc_handler;
6889}
6890
6891static struct ctl_table *
6892sd_alloc_ctl_domain_table(struct sched_domain *sd)
6893{
a5d8c348 6894 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6895
ad1cdc1d
MM
6896 if (table == NULL)
6897 return NULL;
6898
e0361851 6899 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6900 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6901 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6902 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6903 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6904 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6905 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6906 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6907 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6908 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6909 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6910 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6911 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6912 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6913 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6914 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6915 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6916 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6917 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6918 &sd->cache_nice_tries,
6919 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6920 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6921 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6922 set_table_entry(&table[11], "name", sd->name,
6923 CORENAME_MAX_SIZE, 0444, proc_dostring);
6924 /* &table[12] is terminator */
e692ab53
NP
6925
6926 return table;
6927}
6928
9a4e7159 6929static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6930{
6931 struct ctl_table *entry, *table;
6932 struct sched_domain *sd;
6933 int domain_num = 0, i;
6934 char buf[32];
6935
6936 for_each_domain(cpu, sd)
6937 domain_num++;
6938 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6939 if (table == NULL)
6940 return NULL;
e692ab53
NP
6941
6942 i = 0;
6943 for_each_domain(cpu, sd) {
6944 snprintf(buf, 32, "domain%d", i);
e692ab53 6945 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6946 entry->mode = 0555;
e692ab53
NP
6947 entry->child = sd_alloc_ctl_domain_table(sd);
6948 entry++;
6949 i++;
6950 }
6951 return table;
6952}
6953
6954static struct ctl_table_header *sd_sysctl_header;
6382bc90 6955static void register_sched_domain_sysctl(void)
e692ab53
NP
6956{
6957 int i, cpu_num = num_online_cpus();
6958 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6959 char buf[32];
6960
7378547f
MM
6961 WARN_ON(sd_ctl_dir[0].child);
6962 sd_ctl_dir[0].child = entry;
6963
ad1cdc1d
MM
6964 if (entry == NULL)
6965 return;
6966
97b6ea7b 6967 for_each_online_cpu(i) {
e692ab53 6968 snprintf(buf, 32, "cpu%d", i);
e692ab53 6969 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6970 entry->mode = 0555;
e692ab53 6971 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6972 entry++;
e692ab53 6973 }
7378547f
MM
6974
6975 WARN_ON(sd_sysctl_header);
e692ab53
NP
6976 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6977}
6382bc90 6978
7378547f 6979/* may be called multiple times per register */
6382bc90
MM
6980static void unregister_sched_domain_sysctl(void)
6981{
7378547f
MM
6982 if (sd_sysctl_header)
6983 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6984 sd_sysctl_header = NULL;
7378547f
MM
6985 if (sd_ctl_dir[0].child)
6986 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6987}
e692ab53 6988#else
6382bc90
MM
6989static void register_sched_domain_sysctl(void)
6990{
6991}
6992static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6993{
6994}
6995#endif
6996
1f11eb6a
GH
6997static void set_rq_online(struct rq *rq)
6998{
6999 if (!rq->online) {
7000 const struct sched_class *class;
7001
c6c4927b 7002 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7003 rq->online = 1;
7004
7005 for_each_class(class) {
7006 if (class->rq_online)
7007 class->rq_online(rq);
7008 }
7009 }
7010}
7011
7012static void set_rq_offline(struct rq *rq)
7013{
7014 if (rq->online) {
7015 const struct sched_class *class;
7016
7017 for_each_class(class) {
7018 if (class->rq_offline)
7019 class->rq_offline(rq);
7020 }
7021
c6c4927b 7022 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7023 rq->online = 0;
7024 }
7025}
7026
1da177e4
LT
7027/*
7028 * migration_call - callback that gets triggered when a CPU is added.
7029 * Here we can start up the necessary migration thread for the new CPU.
7030 */
48f24c4d
IM
7031static int __cpuinit
7032migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7033{
1da177e4 7034 struct task_struct *p;
48f24c4d 7035 int cpu = (long)hcpu;
1da177e4 7036 unsigned long flags;
70b97a7f 7037 struct rq *rq;
1da177e4
LT
7038
7039 switch (action) {
5be9361c 7040
1da177e4 7041 case CPU_UP_PREPARE:
8bb78442 7042 case CPU_UP_PREPARE_FROZEN:
dd41f596 7043 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7044 if (IS_ERR(p))
7045 return NOTIFY_BAD;
1da177e4
LT
7046 kthread_bind(p, cpu);
7047 /* Must be high prio: stop_machine expects to yield to it. */
7048 rq = task_rq_lock(p, &flags);
dd41f596 7049 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7050 task_rq_unlock(rq, &flags);
7051 cpu_rq(cpu)->migration_thread = p;
7052 break;
48f24c4d 7053
1da177e4 7054 case CPU_ONLINE:
8bb78442 7055 case CPU_ONLINE_FROZEN:
3a4fa0a2 7056 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7057 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7058
7059 /* Update our root-domain */
7060 rq = cpu_rq(cpu);
7061 spin_lock_irqsave(&rq->lock, flags);
7062 if (rq->rd) {
c6c4927b 7063 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7064
7065 set_rq_online(rq);
1f94ef59
GH
7066 }
7067 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7068 break;
48f24c4d 7069
1da177e4
LT
7070#ifdef CONFIG_HOTPLUG_CPU
7071 case CPU_UP_CANCELED:
8bb78442 7072 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7073 if (!cpu_rq(cpu)->migration_thread)
7074 break;
41a2d6cf 7075 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7076 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7077 cpumask_any(cpu_online_mask));
1da177e4
LT
7078 kthread_stop(cpu_rq(cpu)->migration_thread);
7079 cpu_rq(cpu)->migration_thread = NULL;
7080 break;
48f24c4d 7081
1da177e4 7082 case CPU_DEAD:
8bb78442 7083 case CPU_DEAD_FROZEN:
470fd646 7084 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7085 migrate_live_tasks(cpu);
7086 rq = cpu_rq(cpu);
7087 kthread_stop(rq->migration_thread);
7088 rq->migration_thread = NULL;
7089 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7090 spin_lock_irq(&rq->lock);
a8e504d2 7091 update_rq_clock(rq);
2e1cb74a 7092 deactivate_task(rq, rq->idle, 0);
1da177e4 7093 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7094 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7095 rq->idle->sched_class = &idle_sched_class;
1da177e4 7096 migrate_dead_tasks(cpu);
d2da272a 7097 spin_unlock_irq(&rq->lock);
470fd646 7098 cpuset_unlock();
1da177e4
LT
7099 migrate_nr_uninterruptible(rq);
7100 BUG_ON(rq->nr_running != 0);
7101
41a2d6cf
IM
7102 /*
7103 * No need to migrate the tasks: it was best-effort if
7104 * they didn't take sched_hotcpu_mutex. Just wake up
7105 * the requestors.
7106 */
1da177e4
LT
7107 spin_lock_irq(&rq->lock);
7108 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7109 struct migration_req *req;
7110
1da177e4 7111 req = list_entry(rq->migration_queue.next,
70b97a7f 7112 struct migration_req, list);
1da177e4 7113 list_del_init(&req->list);
9a2bd244 7114 spin_unlock_irq(&rq->lock);
1da177e4 7115 complete(&req->done);
9a2bd244 7116 spin_lock_irq(&rq->lock);
1da177e4
LT
7117 }
7118 spin_unlock_irq(&rq->lock);
7119 break;
57d885fe 7120
08f503b0
GH
7121 case CPU_DYING:
7122 case CPU_DYING_FROZEN:
57d885fe
GH
7123 /* Update our root-domain */
7124 rq = cpu_rq(cpu);
7125 spin_lock_irqsave(&rq->lock, flags);
7126 if (rq->rd) {
c6c4927b 7127 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7128 set_rq_offline(rq);
57d885fe
GH
7129 }
7130 spin_unlock_irqrestore(&rq->lock, flags);
7131 break;
1da177e4
LT
7132#endif
7133 }
7134 return NOTIFY_OK;
7135}
7136
7137/* Register at highest priority so that task migration (migrate_all_tasks)
7138 * happens before everything else.
7139 */
26c2143b 7140static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7141 .notifier_call = migration_call,
7142 .priority = 10
7143};
7144
7babe8db 7145static int __init migration_init(void)
1da177e4
LT
7146{
7147 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7148 int err;
48f24c4d
IM
7149
7150 /* Start one for the boot CPU: */
07dccf33
AM
7151 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7152 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7153 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7154 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7155
7156 return err;
1da177e4 7157}
7babe8db 7158early_initcall(migration_init);
1da177e4
LT
7159#endif
7160
7161#ifdef CONFIG_SMP
476f3534 7162
3e9830dc 7163#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7164
7c16ec58 7165static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7166 struct cpumask *groupmask)
1da177e4 7167{
4dcf6aff 7168 struct sched_group *group = sd->groups;
434d53b0 7169 char str[256];
1da177e4 7170
968ea6d8 7171 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7172 cpumask_clear(groupmask);
4dcf6aff
IM
7173
7174 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7175
7176 if (!(sd->flags & SD_LOAD_BALANCE)) {
7177 printk("does not load-balance\n");
7178 if (sd->parent)
7179 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7180 " has parent");
7181 return -1;
41c7ce9a
NP
7182 }
7183
eefd796a 7184 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7185
758b2cdc 7186 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7187 printk(KERN_ERR "ERROR: domain->span does not contain "
7188 "CPU%d\n", cpu);
7189 }
758b2cdc 7190 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7191 printk(KERN_ERR "ERROR: domain->groups does not contain"
7192 " CPU%d\n", cpu);
7193 }
1da177e4 7194
4dcf6aff 7195 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7196 do {
4dcf6aff
IM
7197 if (!group) {
7198 printk("\n");
7199 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7200 break;
7201 }
7202
4dcf6aff
IM
7203 if (!group->__cpu_power) {
7204 printk(KERN_CONT "\n");
7205 printk(KERN_ERR "ERROR: domain->cpu_power not "
7206 "set\n");
7207 break;
7208 }
1da177e4 7209
758b2cdc 7210 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7211 printk(KERN_CONT "\n");
7212 printk(KERN_ERR "ERROR: empty group\n");
7213 break;
7214 }
1da177e4 7215
758b2cdc 7216 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7217 printk(KERN_CONT "\n");
7218 printk(KERN_ERR "ERROR: repeated CPUs\n");
7219 break;
7220 }
1da177e4 7221
758b2cdc 7222 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7223
968ea6d8 7224 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 7225 printk(KERN_CONT " %s", str);
1da177e4 7226
4dcf6aff
IM
7227 group = group->next;
7228 } while (group != sd->groups);
7229 printk(KERN_CONT "\n");
1da177e4 7230
758b2cdc 7231 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7232 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7233
758b2cdc
RR
7234 if (sd->parent &&
7235 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7236 printk(KERN_ERR "ERROR: parent span is not a superset "
7237 "of domain->span\n");
7238 return 0;
7239}
1da177e4 7240
4dcf6aff
IM
7241static void sched_domain_debug(struct sched_domain *sd, int cpu)
7242{
d5dd3db1 7243 cpumask_var_t groupmask;
4dcf6aff 7244 int level = 0;
1da177e4 7245
4dcf6aff
IM
7246 if (!sd) {
7247 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7248 return;
7249 }
1da177e4 7250
4dcf6aff
IM
7251 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7252
d5dd3db1 7253 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7254 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7255 return;
7256 }
7257
4dcf6aff 7258 for (;;) {
7c16ec58 7259 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7260 break;
1da177e4
LT
7261 level++;
7262 sd = sd->parent;
33859f7f 7263 if (!sd)
4dcf6aff
IM
7264 break;
7265 }
d5dd3db1 7266 free_cpumask_var(groupmask);
1da177e4 7267}
6d6bc0ad 7268#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7269# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7270#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7271
1a20ff27 7272static int sd_degenerate(struct sched_domain *sd)
245af2c7 7273{
758b2cdc 7274 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7275 return 1;
7276
7277 /* Following flags need at least 2 groups */
7278 if (sd->flags & (SD_LOAD_BALANCE |
7279 SD_BALANCE_NEWIDLE |
7280 SD_BALANCE_FORK |
89c4710e
SS
7281 SD_BALANCE_EXEC |
7282 SD_SHARE_CPUPOWER |
7283 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7284 if (sd->groups != sd->groups->next)
7285 return 0;
7286 }
7287
7288 /* Following flags don't use groups */
7289 if (sd->flags & (SD_WAKE_IDLE |
7290 SD_WAKE_AFFINE |
7291 SD_WAKE_BALANCE))
7292 return 0;
7293
7294 return 1;
7295}
7296
48f24c4d
IM
7297static int
7298sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7299{
7300 unsigned long cflags = sd->flags, pflags = parent->flags;
7301
7302 if (sd_degenerate(parent))
7303 return 1;
7304
758b2cdc 7305 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7306 return 0;
7307
7308 /* Does parent contain flags not in child? */
7309 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7310 if (cflags & SD_WAKE_AFFINE)
7311 pflags &= ~SD_WAKE_BALANCE;
7312 /* Flags needing groups don't count if only 1 group in parent */
7313 if (parent->groups == parent->groups->next) {
7314 pflags &= ~(SD_LOAD_BALANCE |
7315 SD_BALANCE_NEWIDLE |
7316 SD_BALANCE_FORK |
89c4710e
SS
7317 SD_BALANCE_EXEC |
7318 SD_SHARE_CPUPOWER |
7319 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7320 if (nr_node_ids == 1)
7321 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7322 }
7323 if (~cflags & pflags)
7324 return 0;
7325
7326 return 1;
7327}
7328
c6c4927b
RR
7329static void free_rootdomain(struct root_domain *rd)
7330{
68e74568
RR
7331 cpupri_cleanup(&rd->cpupri);
7332
c6c4927b
RR
7333 free_cpumask_var(rd->rto_mask);
7334 free_cpumask_var(rd->online);
7335 free_cpumask_var(rd->span);
7336 kfree(rd);
7337}
7338
57d885fe
GH
7339static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7340{
a0490fa3 7341 struct root_domain *old_rd = NULL;
57d885fe 7342 unsigned long flags;
57d885fe
GH
7343
7344 spin_lock_irqsave(&rq->lock, flags);
7345
7346 if (rq->rd) {
a0490fa3 7347 old_rd = rq->rd;
57d885fe 7348
c6c4927b 7349 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7350 set_rq_offline(rq);
57d885fe 7351
c6c4927b 7352 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7353
a0490fa3
IM
7354 /*
7355 * If we dont want to free the old_rt yet then
7356 * set old_rd to NULL to skip the freeing later
7357 * in this function:
7358 */
7359 if (!atomic_dec_and_test(&old_rd->refcount))
7360 old_rd = NULL;
57d885fe
GH
7361 }
7362
7363 atomic_inc(&rd->refcount);
7364 rq->rd = rd;
7365
c6c4927b
RR
7366 cpumask_set_cpu(rq->cpu, rd->span);
7367 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7368 set_rq_online(rq);
57d885fe
GH
7369
7370 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7371
7372 if (old_rd)
7373 free_rootdomain(old_rd);
57d885fe
GH
7374}
7375
db2f59c8 7376static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7377{
7378 memset(rd, 0, sizeof(*rd));
7379
c6c4927b
RR
7380 if (bootmem) {
7381 alloc_bootmem_cpumask_var(&def_root_domain.span);
7382 alloc_bootmem_cpumask_var(&def_root_domain.online);
7383 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7384 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7385 return 0;
7386 }
7387
7388 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7389 goto out;
c6c4927b
RR
7390 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7391 goto free_span;
7392 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7393 goto free_online;
6e0534f2 7394
68e74568
RR
7395 if (cpupri_init(&rd->cpupri, false) != 0)
7396 goto free_rto_mask;
c6c4927b 7397 return 0;
6e0534f2 7398
68e74568
RR
7399free_rto_mask:
7400 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7401free_online:
7402 free_cpumask_var(rd->online);
7403free_span:
7404 free_cpumask_var(rd->span);
0c910d28 7405out:
c6c4927b 7406 return -ENOMEM;
57d885fe
GH
7407}
7408
7409static void init_defrootdomain(void)
7410{
c6c4927b
RR
7411 init_rootdomain(&def_root_domain, true);
7412
57d885fe
GH
7413 atomic_set(&def_root_domain.refcount, 1);
7414}
7415
dc938520 7416static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7417{
7418 struct root_domain *rd;
7419
7420 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7421 if (!rd)
7422 return NULL;
7423
c6c4927b
RR
7424 if (init_rootdomain(rd, false) != 0) {
7425 kfree(rd);
7426 return NULL;
7427 }
57d885fe
GH
7428
7429 return rd;
7430}
7431
1da177e4 7432/*
0eab9146 7433 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7434 * hold the hotplug lock.
7435 */
0eab9146
IM
7436static void
7437cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7438{
70b97a7f 7439 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7440 struct sched_domain *tmp;
7441
7442 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7443 for (tmp = sd; tmp; ) {
245af2c7
SS
7444 struct sched_domain *parent = tmp->parent;
7445 if (!parent)
7446 break;
f29c9b1c 7447
1a848870 7448 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7449 tmp->parent = parent->parent;
1a848870
SS
7450 if (parent->parent)
7451 parent->parent->child = tmp;
f29c9b1c
LZ
7452 } else
7453 tmp = tmp->parent;
245af2c7
SS
7454 }
7455
1a848870 7456 if (sd && sd_degenerate(sd)) {
245af2c7 7457 sd = sd->parent;
1a848870
SS
7458 if (sd)
7459 sd->child = NULL;
7460 }
1da177e4
LT
7461
7462 sched_domain_debug(sd, cpu);
7463
57d885fe 7464 rq_attach_root(rq, rd);
674311d5 7465 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7466}
7467
7468/* cpus with isolated domains */
dcc30a35 7469static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7470
7471/* Setup the mask of cpus configured for isolated domains */
7472static int __init isolated_cpu_setup(char *str)
7473{
968ea6d8 7474 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7475 return 1;
7476}
7477
8927f494 7478__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7479
7480/*
6711cab4
SS
7481 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7482 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7483 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7484 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7485 *
7486 * init_sched_build_groups will build a circular linked list of the groups
7487 * covered by the given span, and will set each group's ->cpumask correctly,
7488 * and ->cpu_power to 0.
7489 */
a616058b 7490static void
96f874e2
RR
7491init_sched_build_groups(const struct cpumask *span,
7492 const struct cpumask *cpu_map,
7493 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7494 struct sched_group **sg,
96f874e2
RR
7495 struct cpumask *tmpmask),
7496 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7497{
7498 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7499 int i;
7500
96f874e2 7501 cpumask_clear(covered);
7c16ec58 7502
abcd083a 7503 for_each_cpu(i, span) {
6711cab4 7504 struct sched_group *sg;
7c16ec58 7505 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7506 int j;
7507
758b2cdc 7508 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7509 continue;
7510
758b2cdc 7511 cpumask_clear(sched_group_cpus(sg));
5517d86b 7512 sg->__cpu_power = 0;
1da177e4 7513
abcd083a 7514 for_each_cpu(j, span) {
7c16ec58 7515 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7516 continue;
7517
96f874e2 7518 cpumask_set_cpu(j, covered);
758b2cdc 7519 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7520 }
7521 if (!first)
7522 first = sg;
7523 if (last)
7524 last->next = sg;
7525 last = sg;
7526 }
7527 last->next = first;
7528}
7529
9c1cfda2 7530#define SD_NODES_PER_DOMAIN 16
1da177e4 7531
9c1cfda2 7532#ifdef CONFIG_NUMA
198e2f18 7533
9c1cfda2
JH
7534/**
7535 * find_next_best_node - find the next node to include in a sched_domain
7536 * @node: node whose sched_domain we're building
7537 * @used_nodes: nodes already in the sched_domain
7538 *
41a2d6cf 7539 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7540 * finds the closest node not already in the @used_nodes map.
7541 *
7542 * Should use nodemask_t.
7543 */
c5f59f08 7544static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7545{
7546 int i, n, val, min_val, best_node = 0;
7547
7548 min_val = INT_MAX;
7549
076ac2af 7550 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7551 /* Start at @node */
076ac2af 7552 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7553
7554 if (!nr_cpus_node(n))
7555 continue;
7556
7557 /* Skip already used nodes */
c5f59f08 7558 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7559 continue;
7560
7561 /* Simple min distance search */
7562 val = node_distance(node, n);
7563
7564 if (val < min_val) {
7565 min_val = val;
7566 best_node = n;
7567 }
7568 }
7569
c5f59f08 7570 node_set(best_node, *used_nodes);
9c1cfda2
JH
7571 return best_node;
7572}
7573
7574/**
7575 * sched_domain_node_span - get a cpumask for a node's sched_domain
7576 * @node: node whose cpumask we're constructing
73486722 7577 * @span: resulting cpumask
9c1cfda2 7578 *
41a2d6cf 7579 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7580 * should be one that prevents unnecessary balancing, but also spreads tasks
7581 * out optimally.
7582 */
96f874e2 7583static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7584{
c5f59f08 7585 nodemask_t used_nodes;
48f24c4d 7586 int i;
9c1cfda2 7587
6ca09dfc 7588 cpumask_clear(span);
c5f59f08 7589 nodes_clear(used_nodes);
9c1cfda2 7590
6ca09dfc 7591 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7592 node_set(node, used_nodes);
9c1cfda2
JH
7593
7594 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7595 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7596
6ca09dfc 7597 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7598 }
9c1cfda2 7599}
6d6bc0ad 7600#endif /* CONFIG_NUMA */
9c1cfda2 7601
5c45bf27 7602int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7603
6c99e9ad
RR
7604/*
7605 * The cpus mask in sched_group and sched_domain hangs off the end.
7606 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7607 * for nr_cpu_ids < CONFIG_NR_CPUS.
7608 */
7609struct static_sched_group {
7610 struct sched_group sg;
7611 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7612};
7613
7614struct static_sched_domain {
7615 struct sched_domain sd;
7616 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7617};
7618
9c1cfda2 7619/*
48f24c4d 7620 * SMT sched-domains:
9c1cfda2 7621 */
1da177e4 7622#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7623static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7624static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7625
41a2d6cf 7626static int
96f874e2
RR
7627cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7628 struct sched_group **sg, struct cpumask *unused)
1da177e4 7629{
6711cab4 7630 if (sg)
6c99e9ad 7631 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7632 return cpu;
7633}
6d6bc0ad 7634#endif /* CONFIG_SCHED_SMT */
1da177e4 7635
48f24c4d
IM
7636/*
7637 * multi-core sched-domains:
7638 */
1e9f28fa 7639#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7640static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7641static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7642#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7643
7644#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7645static int
96f874e2
RR
7646cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7647 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7648{
6711cab4 7649 int group;
7c16ec58 7650
96f874e2
RR
7651 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7652 group = cpumask_first(mask);
6711cab4 7653 if (sg)
6c99e9ad 7654 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7655 return group;
1e9f28fa
SS
7656}
7657#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7658static int
96f874e2
RR
7659cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7660 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7661{
6711cab4 7662 if (sg)
6c99e9ad 7663 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7664 return cpu;
7665}
7666#endif
7667
6c99e9ad
RR
7668static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7669static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7670
41a2d6cf 7671static int
96f874e2
RR
7672cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7673 struct sched_group **sg, struct cpumask *mask)
1da177e4 7674{
6711cab4 7675 int group;
48f24c4d 7676#ifdef CONFIG_SCHED_MC
6ca09dfc 7677 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7678 group = cpumask_first(mask);
1e9f28fa 7679#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7680 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7681 group = cpumask_first(mask);
1da177e4 7682#else
6711cab4 7683 group = cpu;
1da177e4 7684#endif
6711cab4 7685 if (sg)
6c99e9ad 7686 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7687 return group;
1da177e4
LT
7688}
7689
7690#ifdef CONFIG_NUMA
1da177e4 7691/*
9c1cfda2
JH
7692 * The init_sched_build_groups can't handle what we want to do with node
7693 * groups, so roll our own. Now each node has its own list of groups which
7694 * gets dynamically allocated.
1da177e4 7695 */
62ea9ceb 7696static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7697static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7698
62ea9ceb 7699static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7700static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7701
96f874e2
RR
7702static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7703 struct sched_group **sg,
7704 struct cpumask *nodemask)
9c1cfda2 7705{
6711cab4
SS
7706 int group;
7707
6ca09dfc 7708 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7709 group = cpumask_first(nodemask);
6711cab4
SS
7710
7711 if (sg)
6c99e9ad 7712 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7713 return group;
1da177e4 7714}
6711cab4 7715
08069033
SS
7716static void init_numa_sched_groups_power(struct sched_group *group_head)
7717{
7718 struct sched_group *sg = group_head;
7719 int j;
7720
7721 if (!sg)
7722 return;
3a5c359a 7723 do {
758b2cdc 7724 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7725 struct sched_domain *sd;
08069033 7726
6c99e9ad 7727 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7728 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7729 /*
7730 * Only add "power" once for each
7731 * physical package.
7732 */
7733 continue;
7734 }
08069033 7735
3a5c359a
AK
7736 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7737 }
7738 sg = sg->next;
7739 } while (sg != group_head);
08069033 7740}
6d6bc0ad 7741#endif /* CONFIG_NUMA */
1da177e4 7742
a616058b 7743#ifdef CONFIG_NUMA
51888ca2 7744/* Free memory allocated for various sched_group structures */
96f874e2
RR
7745static void free_sched_groups(const struct cpumask *cpu_map,
7746 struct cpumask *nodemask)
51888ca2 7747{
a616058b 7748 int cpu, i;
51888ca2 7749
abcd083a 7750 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7751 struct sched_group **sched_group_nodes
7752 = sched_group_nodes_bycpu[cpu];
7753
51888ca2
SV
7754 if (!sched_group_nodes)
7755 continue;
7756
076ac2af 7757 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7758 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7759
6ca09dfc 7760 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7761 if (cpumask_empty(nodemask))
51888ca2
SV
7762 continue;
7763
7764 if (sg == NULL)
7765 continue;
7766 sg = sg->next;
7767next_sg:
7768 oldsg = sg;
7769 sg = sg->next;
7770 kfree(oldsg);
7771 if (oldsg != sched_group_nodes[i])
7772 goto next_sg;
7773 }
7774 kfree(sched_group_nodes);
7775 sched_group_nodes_bycpu[cpu] = NULL;
7776 }
51888ca2 7777}
6d6bc0ad 7778#else /* !CONFIG_NUMA */
96f874e2
RR
7779static void free_sched_groups(const struct cpumask *cpu_map,
7780 struct cpumask *nodemask)
a616058b
SS
7781{
7782}
6d6bc0ad 7783#endif /* CONFIG_NUMA */
51888ca2 7784
89c4710e
SS
7785/*
7786 * Initialize sched groups cpu_power.
7787 *
7788 * cpu_power indicates the capacity of sched group, which is used while
7789 * distributing the load between different sched groups in a sched domain.
7790 * Typically cpu_power for all the groups in a sched domain will be same unless
7791 * there are asymmetries in the topology. If there are asymmetries, group
7792 * having more cpu_power will pickup more load compared to the group having
7793 * less cpu_power.
7794 *
7795 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7796 * the maximum number of tasks a group can handle in the presence of other idle
7797 * or lightly loaded groups in the same sched domain.
7798 */
7799static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7800{
7801 struct sched_domain *child;
7802 struct sched_group *group;
7803
7804 WARN_ON(!sd || !sd->groups);
7805
758b2cdc 7806 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7807 return;
7808
7809 child = sd->child;
7810
5517d86b
ED
7811 sd->groups->__cpu_power = 0;
7812
89c4710e
SS
7813 /*
7814 * For perf policy, if the groups in child domain share resources
7815 * (for example cores sharing some portions of the cache hierarchy
7816 * or SMT), then set this domain groups cpu_power such that each group
7817 * can handle only one task, when there are other idle groups in the
7818 * same sched domain.
7819 */
7820 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7821 (child->flags &
7822 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7823 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7824 return;
7825 }
7826
89c4710e
SS
7827 /*
7828 * add cpu_power of each child group to this groups cpu_power
7829 */
7830 group = child->groups;
7831 do {
5517d86b 7832 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7833 group = group->next;
7834 } while (group != child->groups);
7835}
7836
7c16ec58
MT
7837/*
7838 * Initializers for schedule domains
7839 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7840 */
7841
a5d8c348
IM
7842#ifdef CONFIG_SCHED_DEBUG
7843# define SD_INIT_NAME(sd, type) sd->name = #type
7844#else
7845# define SD_INIT_NAME(sd, type) do { } while (0)
7846#endif
7847
7c16ec58 7848#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7849
7c16ec58
MT
7850#define SD_INIT_FUNC(type) \
7851static noinline void sd_init_##type(struct sched_domain *sd) \
7852{ \
7853 memset(sd, 0, sizeof(*sd)); \
7854 *sd = SD_##type##_INIT; \
1d3504fc 7855 sd->level = SD_LV_##type; \
a5d8c348 7856 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7857}
7858
7859SD_INIT_FUNC(CPU)
7860#ifdef CONFIG_NUMA
7861 SD_INIT_FUNC(ALLNODES)
7862 SD_INIT_FUNC(NODE)
7863#endif
7864#ifdef CONFIG_SCHED_SMT
7865 SD_INIT_FUNC(SIBLING)
7866#endif
7867#ifdef CONFIG_SCHED_MC
7868 SD_INIT_FUNC(MC)
7869#endif
7870
1d3504fc
HS
7871static int default_relax_domain_level = -1;
7872
7873static int __init setup_relax_domain_level(char *str)
7874{
30e0e178
LZ
7875 unsigned long val;
7876
7877 val = simple_strtoul(str, NULL, 0);
7878 if (val < SD_LV_MAX)
7879 default_relax_domain_level = val;
7880
1d3504fc
HS
7881 return 1;
7882}
7883__setup("relax_domain_level=", setup_relax_domain_level);
7884
7885static void set_domain_attribute(struct sched_domain *sd,
7886 struct sched_domain_attr *attr)
7887{
7888 int request;
7889
7890 if (!attr || attr->relax_domain_level < 0) {
7891 if (default_relax_domain_level < 0)
7892 return;
7893 else
7894 request = default_relax_domain_level;
7895 } else
7896 request = attr->relax_domain_level;
7897 if (request < sd->level) {
7898 /* turn off idle balance on this domain */
7899 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7900 } else {
7901 /* turn on idle balance on this domain */
7902 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7903 }
7904}
7905
1da177e4 7906/*
1a20ff27
DG
7907 * Build sched domains for a given set of cpus and attach the sched domains
7908 * to the individual cpus
1da177e4 7909 */
96f874e2 7910static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7911 struct sched_domain_attr *attr)
1da177e4 7912{
3404c8d9 7913 int i, err = -ENOMEM;
57d885fe 7914 struct root_domain *rd;
3404c8d9
RR
7915 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7916 tmpmask;
d1b55138 7917#ifdef CONFIG_NUMA
3404c8d9 7918 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7919 struct sched_group **sched_group_nodes = NULL;
6711cab4 7920 int sd_allnodes = 0;
d1b55138 7921
3404c8d9
RR
7922 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7923 goto out;
7924 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7925 goto free_domainspan;
7926 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7927 goto free_covered;
7928#endif
7929
7930 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7931 goto free_notcovered;
7932 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7933 goto free_nodemask;
7934 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7935 goto free_this_sibling_map;
7936 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7937 goto free_this_core_map;
7938 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7939 goto free_send_covered;
7940
7941#ifdef CONFIG_NUMA
d1b55138
JH
7942 /*
7943 * Allocate the per-node list of sched groups
7944 */
076ac2af 7945 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7946 GFP_KERNEL);
d1b55138
JH
7947 if (!sched_group_nodes) {
7948 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7949 goto free_tmpmask;
d1b55138 7950 }
d1b55138 7951#endif
1da177e4 7952
dc938520 7953 rd = alloc_rootdomain();
57d885fe
GH
7954 if (!rd) {
7955 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7956 goto free_sched_groups;
57d885fe
GH
7957 }
7958
7c16ec58 7959#ifdef CONFIG_NUMA
96f874e2 7960 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7961#endif
7962
1da177e4 7963 /*
1a20ff27 7964 * Set up domains for cpus specified by the cpu_map.
1da177e4 7965 */
abcd083a 7966 for_each_cpu(i, cpu_map) {
1da177e4 7967 struct sched_domain *sd = NULL, *p;
1da177e4 7968
6ca09dfc 7969 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7970
7971#ifdef CONFIG_NUMA
96f874e2
RR
7972 if (cpumask_weight(cpu_map) >
7973 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7974 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7975 SD_INIT(sd, ALLNODES);
1d3504fc 7976 set_domain_attribute(sd, attr);
758b2cdc 7977 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7978 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7979 p = sd;
6711cab4 7980 sd_allnodes = 1;
9c1cfda2
JH
7981 } else
7982 p = NULL;
7983
62ea9ceb 7984 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7985 SD_INIT(sd, NODE);
1d3504fc 7986 set_domain_attribute(sd, attr);
758b2cdc 7987 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7988 sd->parent = p;
1a848870
SS
7989 if (p)
7990 p->child = sd;
758b2cdc
RR
7991 cpumask_and(sched_domain_span(sd),
7992 sched_domain_span(sd), cpu_map);
1da177e4
LT
7993#endif
7994
7995 p = sd;
6c99e9ad 7996 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7997 SD_INIT(sd, CPU);
1d3504fc 7998 set_domain_attribute(sd, attr);
758b2cdc 7999 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8000 sd->parent = p;
1a848870
SS
8001 if (p)
8002 p->child = sd;
7c16ec58 8003 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8004
1e9f28fa
SS
8005#ifdef CONFIG_SCHED_MC
8006 p = sd;
6c99e9ad 8007 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8008 SD_INIT(sd, MC);
1d3504fc 8009 set_domain_attribute(sd, attr);
6ca09dfc
MT
8010 cpumask_and(sched_domain_span(sd), cpu_map,
8011 cpu_coregroup_mask(i));
1e9f28fa 8012 sd->parent = p;
1a848870 8013 p->child = sd;
7c16ec58 8014 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8015#endif
8016
1da177e4
LT
8017#ifdef CONFIG_SCHED_SMT
8018 p = sd;
6c99e9ad 8019 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8020 SD_INIT(sd, SIBLING);
1d3504fc 8021 set_domain_attribute(sd, attr);
758b2cdc
RR
8022 cpumask_and(sched_domain_span(sd),
8023 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 8024 sd->parent = p;
1a848870 8025 p->child = sd;
7c16ec58 8026 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8027#endif
8028 }
8029
8030#ifdef CONFIG_SCHED_SMT
8031 /* Set up CPU (sibling) groups */
abcd083a 8032 for_each_cpu(i, cpu_map) {
96f874e2
RR
8033 cpumask_and(this_sibling_map,
8034 &per_cpu(cpu_sibling_map, i), cpu_map);
8035 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8036 continue;
8037
dd41f596 8038 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8039 &cpu_to_cpu_group,
8040 send_covered, tmpmask);
1da177e4
LT
8041 }
8042#endif
8043
1e9f28fa
SS
8044#ifdef CONFIG_SCHED_MC
8045 /* Set up multi-core groups */
abcd083a 8046 for_each_cpu(i, cpu_map) {
6ca09dfc 8047 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8048 if (i != cpumask_first(this_core_map))
1e9f28fa 8049 continue;
7c16ec58 8050
dd41f596 8051 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8052 &cpu_to_core_group,
8053 send_covered, tmpmask);
1e9f28fa
SS
8054 }
8055#endif
8056
1da177e4 8057 /* Set up physical groups */
076ac2af 8058 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8059 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8060 if (cpumask_empty(nodemask))
1da177e4
LT
8061 continue;
8062
7c16ec58
MT
8063 init_sched_build_groups(nodemask, cpu_map,
8064 &cpu_to_phys_group,
8065 send_covered, tmpmask);
1da177e4
LT
8066 }
8067
8068#ifdef CONFIG_NUMA
8069 /* Set up node groups */
7c16ec58 8070 if (sd_allnodes) {
7c16ec58
MT
8071 init_sched_build_groups(cpu_map, cpu_map,
8072 &cpu_to_allnodes_group,
8073 send_covered, tmpmask);
8074 }
9c1cfda2 8075
076ac2af 8076 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8077 /* Set up node groups */
8078 struct sched_group *sg, *prev;
9c1cfda2
JH
8079 int j;
8080
96f874e2 8081 cpumask_clear(covered);
6ca09dfc 8082 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8083 if (cpumask_empty(nodemask)) {
d1b55138 8084 sched_group_nodes[i] = NULL;
9c1cfda2 8085 continue;
d1b55138 8086 }
9c1cfda2 8087
4bdbaad3 8088 sched_domain_node_span(i, domainspan);
96f874e2 8089 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8090
6c99e9ad
RR
8091 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8092 GFP_KERNEL, i);
51888ca2
SV
8093 if (!sg) {
8094 printk(KERN_WARNING "Can not alloc domain group for "
8095 "node %d\n", i);
8096 goto error;
8097 }
9c1cfda2 8098 sched_group_nodes[i] = sg;
abcd083a 8099 for_each_cpu(j, nodemask) {
9c1cfda2 8100 struct sched_domain *sd;
9761eea8 8101
62ea9ceb 8102 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8103 sd->groups = sg;
9c1cfda2 8104 }
5517d86b 8105 sg->__cpu_power = 0;
758b2cdc 8106 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8107 sg->next = sg;
96f874e2 8108 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8109 prev = sg;
8110
076ac2af 8111 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8112 int n = (i + j) % nr_node_ids;
9c1cfda2 8113
96f874e2
RR
8114 cpumask_complement(notcovered, covered);
8115 cpumask_and(tmpmask, notcovered, cpu_map);
8116 cpumask_and(tmpmask, tmpmask, domainspan);
8117 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8118 break;
8119
6ca09dfc 8120 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8121 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8122 continue;
8123
6c99e9ad
RR
8124 sg = kmalloc_node(sizeof(struct sched_group) +
8125 cpumask_size(),
15f0b676 8126 GFP_KERNEL, i);
9c1cfda2
JH
8127 if (!sg) {
8128 printk(KERN_WARNING
8129 "Can not alloc domain group for node %d\n", j);
51888ca2 8130 goto error;
9c1cfda2 8131 }
5517d86b 8132 sg->__cpu_power = 0;
758b2cdc 8133 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8134 sg->next = prev->next;
96f874e2 8135 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8136 prev->next = sg;
8137 prev = sg;
8138 }
9c1cfda2 8139 }
1da177e4
LT
8140#endif
8141
8142 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8143#ifdef CONFIG_SCHED_SMT
abcd083a 8144 for_each_cpu(i, cpu_map) {
6c99e9ad 8145 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8146
89c4710e 8147 init_sched_groups_power(i, sd);
5c45bf27 8148 }
1da177e4 8149#endif
1e9f28fa 8150#ifdef CONFIG_SCHED_MC
abcd083a 8151 for_each_cpu(i, cpu_map) {
6c99e9ad 8152 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8153
89c4710e 8154 init_sched_groups_power(i, sd);
5c45bf27
SS
8155 }
8156#endif
1e9f28fa 8157
abcd083a 8158 for_each_cpu(i, cpu_map) {
6c99e9ad 8159 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8160
89c4710e 8161 init_sched_groups_power(i, sd);
1da177e4
LT
8162 }
8163
9c1cfda2 8164#ifdef CONFIG_NUMA
076ac2af 8165 for (i = 0; i < nr_node_ids; i++)
08069033 8166 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8167
6711cab4
SS
8168 if (sd_allnodes) {
8169 struct sched_group *sg;
f712c0c7 8170
96f874e2 8171 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8172 tmpmask);
f712c0c7
SS
8173 init_numa_sched_groups_power(sg);
8174 }
9c1cfda2
JH
8175#endif
8176
1da177e4 8177 /* Attach the domains */
abcd083a 8178 for_each_cpu(i, cpu_map) {
1da177e4
LT
8179 struct sched_domain *sd;
8180#ifdef CONFIG_SCHED_SMT
6c99e9ad 8181 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8182#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8183 sd = &per_cpu(core_domains, i).sd;
1da177e4 8184#else
6c99e9ad 8185 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8186#endif
57d885fe 8187 cpu_attach_domain(sd, rd, i);
1da177e4 8188 }
51888ca2 8189
3404c8d9
RR
8190 err = 0;
8191
8192free_tmpmask:
8193 free_cpumask_var(tmpmask);
8194free_send_covered:
8195 free_cpumask_var(send_covered);
8196free_this_core_map:
8197 free_cpumask_var(this_core_map);
8198free_this_sibling_map:
8199 free_cpumask_var(this_sibling_map);
8200free_nodemask:
8201 free_cpumask_var(nodemask);
8202free_notcovered:
8203#ifdef CONFIG_NUMA
8204 free_cpumask_var(notcovered);
8205free_covered:
8206 free_cpumask_var(covered);
8207free_domainspan:
8208 free_cpumask_var(domainspan);
8209out:
8210#endif
8211 return err;
8212
8213free_sched_groups:
8214#ifdef CONFIG_NUMA
8215 kfree(sched_group_nodes);
8216#endif
8217 goto free_tmpmask;
51888ca2 8218
a616058b 8219#ifdef CONFIG_NUMA
51888ca2 8220error:
7c16ec58 8221 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8222 free_rootdomain(rd);
3404c8d9 8223 goto free_tmpmask;
a616058b 8224#endif
1da177e4 8225}
029190c5 8226
96f874e2 8227static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8228{
8229 return __build_sched_domains(cpu_map, NULL);
8230}
8231
96f874e2 8232static struct cpumask *doms_cur; /* current sched domains */
029190c5 8233static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8234static struct sched_domain_attr *dattr_cur;
8235 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8236
8237/*
8238 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8239 * cpumask) fails, then fallback to a single sched domain,
8240 * as determined by the single cpumask fallback_doms.
029190c5 8241 */
4212823f 8242static cpumask_var_t fallback_doms;
029190c5 8243
ee79d1bd
HC
8244/*
8245 * arch_update_cpu_topology lets virtualized architectures update the
8246 * cpu core maps. It is supposed to return 1 if the topology changed
8247 * or 0 if it stayed the same.
8248 */
8249int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8250{
ee79d1bd 8251 return 0;
22e52b07
HC
8252}
8253
1a20ff27 8254/*
41a2d6cf 8255 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8256 * For now this just excludes isolated cpus, but could be used to
8257 * exclude other special cases in the future.
1a20ff27 8258 */
96f874e2 8259static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8260{
7378547f
MM
8261 int err;
8262
22e52b07 8263 arch_update_cpu_topology();
029190c5 8264 ndoms_cur = 1;
96f874e2 8265 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8266 if (!doms_cur)
4212823f 8267 doms_cur = fallback_doms;
dcc30a35 8268 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8269 dattr_cur = NULL;
7378547f 8270 err = build_sched_domains(doms_cur);
6382bc90 8271 register_sched_domain_sysctl();
7378547f
MM
8272
8273 return err;
1a20ff27
DG
8274}
8275
96f874e2
RR
8276static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8277 struct cpumask *tmpmask)
1da177e4 8278{
7c16ec58 8279 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8280}
1da177e4 8281
1a20ff27
DG
8282/*
8283 * Detach sched domains from a group of cpus specified in cpu_map
8284 * These cpus will now be attached to the NULL domain
8285 */
96f874e2 8286static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8287{
96f874e2
RR
8288 /* Save because hotplug lock held. */
8289 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8290 int i;
8291
abcd083a 8292 for_each_cpu(i, cpu_map)
57d885fe 8293 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8294 synchronize_sched();
96f874e2 8295 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8296}
8297
1d3504fc
HS
8298/* handle null as "default" */
8299static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8300 struct sched_domain_attr *new, int idx_new)
8301{
8302 struct sched_domain_attr tmp;
8303
8304 /* fast path */
8305 if (!new && !cur)
8306 return 1;
8307
8308 tmp = SD_ATTR_INIT;
8309 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8310 new ? (new + idx_new) : &tmp,
8311 sizeof(struct sched_domain_attr));
8312}
8313
029190c5
PJ
8314/*
8315 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8316 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8317 * doms_new[] to the current sched domain partitioning, doms_cur[].
8318 * It destroys each deleted domain and builds each new domain.
8319 *
96f874e2 8320 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8321 * The masks don't intersect (don't overlap.) We should setup one
8322 * sched domain for each mask. CPUs not in any of the cpumasks will
8323 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8324 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8325 * it as it is.
8326 *
41a2d6cf
IM
8327 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8328 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8329 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8330 * ndoms_new == 1, and partition_sched_domains() will fallback to
8331 * the single partition 'fallback_doms', it also forces the domains
8332 * to be rebuilt.
029190c5 8333 *
96f874e2 8334 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8335 * ndoms_new == 0 is a special case for destroying existing domains,
8336 * and it will not create the default domain.
dfb512ec 8337 *
029190c5
PJ
8338 * Call with hotplug lock held
8339 */
96f874e2
RR
8340/* FIXME: Change to struct cpumask *doms_new[] */
8341void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8342 struct sched_domain_attr *dattr_new)
029190c5 8343{
dfb512ec 8344 int i, j, n;
d65bd5ec 8345 int new_topology;
029190c5 8346
712555ee 8347 mutex_lock(&sched_domains_mutex);
a1835615 8348
7378547f
MM
8349 /* always unregister in case we don't destroy any domains */
8350 unregister_sched_domain_sysctl();
8351
d65bd5ec
HC
8352 /* Let architecture update cpu core mappings. */
8353 new_topology = arch_update_cpu_topology();
8354
dfb512ec 8355 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8356
8357 /* Destroy deleted domains */
8358 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8359 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8360 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8361 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8362 goto match1;
8363 }
8364 /* no match - a current sched domain not in new doms_new[] */
8365 detach_destroy_domains(doms_cur + i);
8366match1:
8367 ;
8368 }
8369
e761b772
MK
8370 if (doms_new == NULL) {
8371 ndoms_cur = 0;
4212823f 8372 doms_new = fallback_doms;
dcc30a35 8373 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8374 WARN_ON_ONCE(dattr_new);
e761b772
MK
8375 }
8376
029190c5
PJ
8377 /* Build new domains */
8378 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8379 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8380 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8381 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8382 goto match2;
8383 }
8384 /* no match - add a new doms_new */
1d3504fc
HS
8385 __build_sched_domains(doms_new + i,
8386 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8387match2:
8388 ;
8389 }
8390
8391 /* Remember the new sched domains */
4212823f 8392 if (doms_cur != fallback_doms)
029190c5 8393 kfree(doms_cur);
1d3504fc 8394 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8395 doms_cur = doms_new;
1d3504fc 8396 dattr_cur = dattr_new;
029190c5 8397 ndoms_cur = ndoms_new;
7378547f
MM
8398
8399 register_sched_domain_sysctl();
a1835615 8400
712555ee 8401 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8402}
8403
5c45bf27 8404#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8405static void arch_reinit_sched_domains(void)
5c45bf27 8406{
95402b38 8407 get_online_cpus();
dfb512ec
MK
8408
8409 /* Destroy domains first to force the rebuild */
8410 partition_sched_domains(0, NULL, NULL);
8411
e761b772 8412 rebuild_sched_domains();
95402b38 8413 put_online_cpus();
5c45bf27
SS
8414}
8415
8416static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8417{
afb8a9b7 8418 unsigned int level = 0;
5c45bf27 8419
afb8a9b7
GS
8420 if (sscanf(buf, "%u", &level) != 1)
8421 return -EINVAL;
8422
8423 /*
8424 * level is always be positive so don't check for
8425 * level < POWERSAVINGS_BALANCE_NONE which is 0
8426 * What happens on 0 or 1 byte write,
8427 * need to check for count as well?
8428 */
8429
8430 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8431 return -EINVAL;
8432
8433 if (smt)
afb8a9b7 8434 sched_smt_power_savings = level;
5c45bf27 8435 else
afb8a9b7 8436 sched_mc_power_savings = level;
5c45bf27 8437
c70f22d2 8438 arch_reinit_sched_domains();
5c45bf27 8439
c70f22d2 8440 return count;
5c45bf27
SS
8441}
8442
5c45bf27 8443#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8444static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8445 char *page)
5c45bf27
SS
8446{
8447 return sprintf(page, "%u\n", sched_mc_power_savings);
8448}
f718cd4a 8449static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8450 const char *buf, size_t count)
5c45bf27
SS
8451{
8452 return sched_power_savings_store(buf, count, 0);
8453}
f718cd4a
AK
8454static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8455 sched_mc_power_savings_show,
8456 sched_mc_power_savings_store);
5c45bf27
SS
8457#endif
8458
8459#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8460static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8461 char *page)
5c45bf27
SS
8462{
8463 return sprintf(page, "%u\n", sched_smt_power_savings);
8464}
f718cd4a 8465static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8466 const char *buf, size_t count)
5c45bf27
SS
8467{
8468 return sched_power_savings_store(buf, count, 1);
8469}
f718cd4a
AK
8470static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8471 sched_smt_power_savings_show,
6707de00
AB
8472 sched_smt_power_savings_store);
8473#endif
8474
39aac648 8475int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8476{
8477 int err = 0;
8478
8479#ifdef CONFIG_SCHED_SMT
8480 if (smt_capable())
8481 err = sysfs_create_file(&cls->kset.kobj,
8482 &attr_sched_smt_power_savings.attr);
8483#endif
8484#ifdef CONFIG_SCHED_MC
8485 if (!err && mc_capable())
8486 err = sysfs_create_file(&cls->kset.kobj,
8487 &attr_sched_mc_power_savings.attr);
8488#endif
8489 return err;
8490}
6d6bc0ad 8491#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8492
e761b772 8493#ifndef CONFIG_CPUSETS
1da177e4 8494/*
e761b772
MK
8495 * Add online and remove offline CPUs from the scheduler domains.
8496 * When cpusets are enabled they take over this function.
1da177e4
LT
8497 */
8498static int update_sched_domains(struct notifier_block *nfb,
8499 unsigned long action, void *hcpu)
e761b772
MK
8500{
8501 switch (action) {
8502 case CPU_ONLINE:
8503 case CPU_ONLINE_FROZEN:
8504 case CPU_DEAD:
8505 case CPU_DEAD_FROZEN:
dfb512ec 8506 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8507 return NOTIFY_OK;
8508
8509 default:
8510 return NOTIFY_DONE;
8511 }
8512}
8513#endif
8514
8515static int update_runtime(struct notifier_block *nfb,
8516 unsigned long action, void *hcpu)
1da177e4 8517{
7def2be1
PZ
8518 int cpu = (int)(long)hcpu;
8519
1da177e4 8520 switch (action) {
1da177e4 8521 case CPU_DOWN_PREPARE:
8bb78442 8522 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8523 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8524 return NOTIFY_OK;
8525
1da177e4 8526 case CPU_DOWN_FAILED:
8bb78442 8527 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8528 case CPU_ONLINE:
8bb78442 8529 case CPU_ONLINE_FROZEN:
7def2be1 8530 enable_runtime(cpu_rq(cpu));
e761b772
MK
8531 return NOTIFY_OK;
8532
1da177e4
LT
8533 default:
8534 return NOTIFY_DONE;
8535 }
1da177e4 8536}
1da177e4
LT
8537
8538void __init sched_init_smp(void)
8539{
dcc30a35
RR
8540 cpumask_var_t non_isolated_cpus;
8541
8542 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8543
434d53b0
MT
8544#if defined(CONFIG_NUMA)
8545 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8546 GFP_KERNEL);
8547 BUG_ON(sched_group_nodes_bycpu == NULL);
8548#endif
95402b38 8549 get_online_cpus();
712555ee 8550 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8551 arch_init_sched_domains(cpu_online_mask);
8552 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8553 if (cpumask_empty(non_isolated_cpus))
8554 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8555 mutex_unlock(&sched_domains_mutex);
95402b38 8556 put_online_cpus();
e761b772
MK
8557
8558#ifndef CONFIG_CPUSETS
1da177e4
LT
8559 /* XXX: Theoretical race here - CPU may be hotplugged now */
8560 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8561#endif
8562
8563 /* RT runtime code needs to handle some hotplug events */
8564 hotcpu_notifier(update_runtime, 0);
8565
b328ca18 8566 init_hrtick();
5c1e1767
NP
8567
8568 /* Move init over to a non-isolated CPU */
dcc30a35 8569 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8570 BUG();
19978ca6 8571 sched_init_granularity();
dcc30a35 8572 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8573
8574 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8575 init_sched_rt_class();
1da177e4
LT
8576}
8577#else
8578void __init sched_init_smp(void)
8579{
19978ca6 8580 sched_init_granularity();
1da177e4
LT
8581}
8582#endif /* CONFIG_SMP */
8583
8584int in_sched_functions(unsigned long addr)
8585{
1da177e4
LT
8586 return in_lock_functions(addr) ||
8587 (addr >= (unsigned long)__sched_text_start
8588 && addr < (unsigned long)__sched_text_end);
8589}
8590
a9957449 8591static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8592{
8593 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8594 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8595#ifdef CONFIG_FAIR_GROUP_SCHED
8596 cfs_rq->rq = rq;
8597#endif
67e9fb2a 8598 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8599}
8600
fa85ae24
PZ
8601static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8602{
8603 struct rt_prio_array *array;
8604 int i;
8605
8606 array = &rt_rq->active;
8607 for (i = 0; i < MAX_RT_PRIO; i++) {
8608 INIT_LIST_HEAD(array->queue + i);
8609 __clear_bit(i, array->bitmap);
8610 }
8611 /* delimiter for bitsearch: */
8612 __set_bit(MAX_RT_PRIO, array->bitmap);
8613
052f1dc7 8614#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8615 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8616#ifdef CONFIG_SMP
e864c499 8617 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8618#endif
48d5e258 8619#endif
fa85ae24
PZ
8620#ifdef CONFIG_SMP
8621 rt_rq->rt_nr_migratory = 0;
fa85ae24 8622 rt_rq->overloaded = 0;
917b627d 8623 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8624#endif
8625
8626 rt_rq->rt_time = 0;
8627 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8628 rt_rq->rt_runtime = 0;
8629 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8630
052f1dc7 8631#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8632 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8633 rt_rq->rq = rq;
8634#endif
fa85ae24
PZ
8635}
8636
6f505b16 8637#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8638static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8639 struct sched_entity *se, int cpu, int add,
8640 struct sched_entity *parent)
6f505b16 8641{
ec7dc8ac 8642 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8643 tg->cfs_rq[cpu] = cfs_rq;
8644 init_cfs_rq(cfs_rq, rq);
8645 cfs_rq->tg = tg;
8646 if (add)
8647 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8648
8649 tg->se[cpu] = se;
354d60c2
DG
8650 /* se could be NULL for init_task_group */
8651 if (!se)
8652 return;
8653
ec7dc8ac
DG
8654 if (!parent)
8655 se->cfs_rq = &rq->cfs;
8656 else
8657 se->cfs_rq = parent->my_q;
8658
6f505b16
PZ
8659 se->my_q = cfs_rq;
8660 se->load.weight = tg->shares;
e05510d0 8661 se->load.inv_weight = 0;
ec7dc8ac 8662 se->parent = parent;
6f505b16 8663}
052f1dc7 8664#endif
6f505b16 8665
052f1dc7 8666#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8667static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8668 struct sched_rt_entity *rt_se, int cpu, int add,
8669 struct sched_rt_entity *parent)
6f505b16 8670{
ec7dc8ac
DG
8671 struct rq *rq = cpu_rq(cpu);
8672
6f505b16
PZ
8673 tg->rt_rq[cpu] = rt_rq;
8674 init_rt_rq(rt_rq, rq);
8675 rt_rq->tg = tg;
8676 rt_rq->rt_se = rt_se;
ac086bc2 8677 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8678 if (add)
8679 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8680
8681 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8682 if (!rt_se)
8683 return;
8684
ec7dc8ac
DG
8685 if (!parent)
8686 rt_se->rt_rq = &rq->rt;
8687 else
8688 rt_se->rt_rq = parent->my_q;
8689
6f505b16 8690 rt_se->my_q = rt_rq;
ec7dc8ac 8691 rt_se->parent = parent;
6f505b16
PZ
8692 INIT_LIST_HEAD(&rt_se->run_list);
8693}
8694#endif
8695
1da177e4
LT
8696void __init sched_init(void)
8697{
dd41f596 8698 int i, j;
434d53b0
MT
8699 unsigned long alloc_size = 0, ptr;
8700
8701#ifdef CONFIG_FAIR_GROUP_SCHED
8702 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8703#endif
8704#ifdef CONFIG_RT_GROUP_SCHED
8705 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8706#endif
8707#ifdef CONFIG_USER_SCHED
8708 alloc_size *= 2;
434d53b0
MT
8709#endif
8710 /*
8711 * As sched_init() is called before page_alloc is setup,
8712 * we use alloc_bootmem().
8713 */
8714 if (alloc_size) {
5a9d3225 8715 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8716
8717#ifdef CONFIG_FAIR_GROUP_SCHED
8718 init_task_group.se = (struct sched_entity **)ptr;
8719 ptr += nr_cpu_ids * sizeof(void **);
8720
8721 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8722 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8723
8724#ifdef CONFIG_USER_SCHED
8725 root_task_group.se = (struct sched_entity **)ptr;
8726 ptr += nr_cpu_ids * sizeof(void **);
8727
8728 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8729 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8730#endif /* CONFIG_USER_SCHED */
8731#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8732#ifdef CONFIG_RT_GROUP_SCHED
8733 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8734 ptr += nr_cpu_ids * sizeof(void **);
8735
8736 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8737 ptr += nr_cpu_ids * sizeof(void **);
8738
8739#ifdef CONFIG_USER_SCHED
8740 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8741 ptr += nr_cpu_ids * sizeof(void **);
8742
8743 root_task_group.rt_rq = (struct rt_rq **)ptr;
8744 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8745#endif /* CONFIG_USER_SCHED */
8746#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8747 }
dd41f596 8748
57d885fe
GH
8749#ifdef CONFIG_SMP
8750 init_defrootdomain();
8751#endif
8752
d0b27fa7
PZ
8753 init_rt_bandwidth(&def_rt_bandwidth,
8754 global_rt_period(), global_rt_runtime());
8755
8756#ifdef CONFIG_RT_GROUP_SCHED
8757 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8758 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8759#ifdef CONFIG_USER_SCHED
8760 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8761 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8762#endif /* CONFIG_USER_SCHED */
8763#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8764
052f1dc7 8765#ifdef CONFIG_GROUP_SCHED
6f505b16 8766 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8767 INIT_LIST_HEAD(&init_task_group.children);
8768
8769#ifdef CONFIG_USER_SCHED
8770 INIT_LIST_HEAD(&root_task_group.children);
8771 init_task_group.parent = &root_task_group;
8772 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8773#endif /* CONFIG_USER_SCHED */
8774#endif /* CONFIG_GROUP_SCHED */
6f505b16 8775
0a945022 8776 for_each_possible_cpu(i) {
70b97a7f 8777 struct rq *rq;
1da177e4
LT
8778
8779 rq = cpu_rq(i);
8780 spin_lock_init(&rq->lock);
7897986b 8781 rq->nr_running = 0;
dd41f596 8782 init_cfs_rq(&rq->cfs, rq);
6f505b16 8783 init_rt_rq(&rq->rt, rq);
dd41f596 8784#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8785 init_task_group.shares = init_task_group_load;
6f505b16 8786 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8787#ifdef CONFIG_CGROUP_SCHED
8788 /*
8789 * How much cpu bandwidth does init_task_group get?
8790 *
8791 * In case of task-groups formed thr' the cgroup filesystem, it
8792 * gets 100% of the cpu resources in the system. This overall
8793 * system cpu resource is divided among the tasks of
8794 * init_task_group and its child task-groups in a fair manner,
8795 * based on each entity's (task or task-group's) weight
8796 * (se->load.weight).
8797 *
8798 * In other words, if init_task_group has 10 tasks of weight
8799 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8800 * then A0's share of the cpu resource is:
8801 *
8802 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8803 *
8804 * We achieve this by letting init_task_group's tasks sit
8805 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8806 */
ec7dc8ac 8807 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8808#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8809 root_task_group.shares = NICE_0_LOAD;
8810 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8811 /*
8812 * In case of task-groups formed thr' the user id of tasks,
8813 * init_task_group represents tasks belonging to root user.
8814 * Hence it forms a sibling of all subsequent groups formed.
8815 * In this case, init_task_group gets only a fraction of overall
8816 * system cpu resource, based on the weight assigned to root
8817 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8818 * by letting tasks of init_task_group sit in a separate cfs_rq
8819 * (init_cfs_rq) and having one entity represent this group of
8820 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8821 */
ec7dc8ac 8822 init_tg_cfs_entry(&init_task_group,
6f505b16 8823 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8824 &per_cpu(init_sched_entity, i), i, 1,
8825 root_task_group.se[i]);
6f505b16 8826
052f1dc7 8827#endif
354d60c2
DG
8828#endif /* CONFIG_FAIR_GROUP_SCHED */
8829
8830 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8831#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8832 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8833#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8834 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8835#elif defined CONFIG_USER_SCHED
eff766a6 8836 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8837 init_tg_rt_entry(&init_task_group,
6f505b16 8838 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8839 &per_cpu(init_sched_rt_entity, i), i, 1,
8840 root_task_group.rt_se[i]);
354d60c2 8841#endif
dd41f596 8842#endif
1da177e4 8843
dd41f596
IM
8844 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8845 rq->cpu_load[j] = 0;
1da177e4 8846#ifdef CONFIG_SMP
41c7ce9a 8847 rq->sd = NULL;
57d885fe 8848 rq->rd = NULL;
1da177e4 8849 rq->active_balance = 0;
dd41f596 8850 rq->next_balance = jiffies;
1da177e4 8851 rq->push_cpu = 0;
0a2966b4 8852 rq->cpu = i;
1f11eb6a 8853 rq->online = 0;
1da177e4
LT
8854 rq->migration_thread = NULL;
8855 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8856 rq_attach_root(rq, &def_root_domain);
1da177e4 8857#endif
8f4d37ec 8858 init_rq_hrtick(rq);
1da177e4 8859 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8860 }
8861
2dd73a4f 8862 set_load_weight(&init_task);
b50f60ce 8863
e107be36
AK
8864#ifdef CONFIG_PREEMPT_NOTIFIERS
8865 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8866#endif
8867
c9819f45 8868#ifdef CONFIG_SMP
962cf36c 8869 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8870#endif
8871
b50f60ce
HC
8872#ifdef CONFIG_RT_MUTEXES
8873 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8874#endif
8875
1da177e4
LT
8876 /*
8877 * The boot idle thread does lazy MMU switching as well:
8878 */
8879 atomic_inc(&init_mm.mm_count);
8880 enter_lazy_tlb(&init_mm, current);
8881
8882 /*
8883 * Make us the idle thread. Technically, schedule() should not be
8884 * called from this thread, however somewhere below it might be,
8885 * but because we are the idle thread, we just pick up running again
8886 * when this runqueue becomes "idle".
8887 */
8888 init_idle(current, smp_processor_id());
dd41f596
IM
8889 /*
8890 * During early bootup we pretend to be a normal task:
8891 */
8892 current->sched_class = &fair_sched_class;
6892b75e 8893
6a7b3dc3
RR
8894 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8895 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8896#ifdef CONFIG_SMP
7d1e6a9b
RR
8897#ifdef CONFIG_NO_HZ
8898 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8899#endif
dcc30a35 8900 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8901#endif /* SMP */
6a7b3dc3 8902
6892b75e 8903 scheduler_running = 1;
1da177e4
LT
8904}
8905
8906#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8907void __might_sleep(char *file, int line)
8908{
48f24c4d 8909#ifdef in_atomic
1da177e4
LT
8910 static unsigned long prev_jiffy; /* ratelimiting */
8911
aef745fc
IM
8912 if ((!in_atomic() && !irqs_disabled()) ||
8913 system_state != SYSTEM_RUNNING || oops_in_progress)
8914 return;
8915 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8916 return;
8917 prev_jiffy = jiffies;
8918
8919 printk(KERN_ERR
8920 "BUG: sleeping function called from invalid context at %s:%d\n",
8921 file, line);
8922 printk(KERN_ERR
8923 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8924 in_atomic(), irqs_disabled(),
8925 current->pid, current->comm);
8926
8927 debug_show_held_locks(current);
8928 if (irqs_disabled())
8929 print_irqtrace_events(current);
8930 dump_stack();
1da177e4
LT
8931#endif
8932}
8933EXPORT_SYMBOL(__might_sleep);
8934#endif
8935
8936#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8937static void normalize_task(struct rq *rq, struct task_struct *p)
8938{
8939 int on_rq;
3e51f33f 8940
3a5e4dc1
AK
8941 update_rq_clock(rq);
8942 on_rq = p->se.on_rq;
8943 if (on_rq)
8944 deactivate_task(rq, p, 0);
8945 __setscheduler(rq, p, SCHED_NORMAL, 0);
8946 if (on_rq) {
8947 activate_task(rq, p, 0);
8948 resched_task(rq->curr);
8949 }
8950}
8951
1da177e4
LT
8952void normalize_rt_tasks(void)
8953{
a0f98a1c 8954 struct task_struct *g, *p;
1da177e4 8955 unsigned long flags;
70b97a7f 8956 struct rq *rq;
1da177e4 8957
4cf5d77a 8958 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8959 do_each_thread(g, p) {
178be793
IM
8960 /*
8961 * Only normalize user tasks:
8962 */
8963 if (!p->mm)
8964 continue;
8965
6cfb0d5d 8966 p->se.exec_start = 0;
6cfb0d5d 8967#ifdef CONFIG_SCHEDSTATS
dd41f596 8968 p->se.wait_start = 0;
dd41f596 8969 p->se.sleep_start = 0;
dd41f596 8970 p->se.block_start = 0;
6cfb0d5d 8971#endif
dd41f596
IM
8972
8973 if (!rt_task(p)) {
8974 /*
8975 * Renice negative nice level userspace
8976 * tasks back to 0:
8977 */
8978 if (TASK_NICE(p) < 0 && p->mm)
8979 set_user_nice(p, 0);
1da177e4 8980 continue;
dd41f596 8981 }
1da177e4 8982
4cf5d77a 8983 spin_lock(&p->pi_lock);
b29739f9 8984 rq = __task_rq_lock(p);
1da177e4 8985
178be793 8986 normalize_task(rq, p);
3a5e4dc1 8987
b29739f9 8988 __task_rq_unlock(rq);
4cf5d77a 8989 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8990 } while_each_thread(g, p);
8991
4cf5d77a 8992 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8993}
8994
8995#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8996
8997#ifdef CONFIG_IA64
8998/*
8999 * These functions are only useful for the IA64 MCA handling.
9000 *
9001 * They can only be called when the whole system has been
9002 * stopped - every CPU needs to be quiescent, and no scheduling
9003 * activity can take place. Using them for anything else would
9004 * be a serious bug, and as a result, they aren't even visible
9005 * under any other configuration.
9006 */
9007
9008/**
9009 * curr_task - return the current task for a given cpu.
9010 * @cpu: the processor in question.
9011 *
9012 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9013 */
36c8b586 9014struct task_struct *curr_task(int cpu)
1df5c10a
LT
9015{
9016 return cpu_curr(cpu);
9017}
9018
9019/**
9020 * set_curr_task - set the current task for a given cpu.
9021 * @cpu: the processor in question.
9022 * @p: the task pointer to set.
9023 *
9024 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9025 * are serviced on a separate stack. It allows the architecture to switch the
9026 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9027 * must be called with all CPU's synchronized, and interrupts disabled, the
9028 * and caller must save the original value of the current task (see
9029 * curr_task() above) and restore that value before reenabling interrupts and
9030 * re-starting the system.
9031 *
9032 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9033 */
36c8b586 9034void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9035{
9036 cpu_curr(cpu) = p;
9037}
9038
9039#endif
29f59db3 9040
bccbe08a
PZ
9041#ifdef CONFIG_FAIR_GROUP_SCHED
9042static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9043{
9044 int i;
9045
9046 for_each_possible_cpu(i) {
9047 if (tg->cfs_rq)
9048 kfree(tg->cfs_rq[i]);
9049 if (tg->se)
9050 kfree(tg->se[i]);
6f505b16
PZ
9051 }
9052
9053 kfree(tg->cfs_rq);
9054 kfree(tg->se);
6f505b16
PZ
9055}
9056
ec7dc8ac
DG
9057static
9058int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9059{
29f59db3 9060 struct cfs_rq *cfs_rq;
eab17229 9061 struct sched_entity *se;
9b5b7751 9062 struct rq *rq;
29f59db3
SV
9063 int i;
9064
434d53b0 9065 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9066 if (!tg->cfs_rq)
9067 goto err;
434d53b0 9068 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9069 if (!tg->se)
9070 goto err;
052f1dc7
PZ
9071
9072 tg->shares = NICE_0_LOAD;
29f59db3
SV
9073
9074 for_each_possible_cpu(i) {
9b5b7751 9075 rq = cpu_rq(i);
29f59db3 9076
eab17229
LZ
9077 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9078 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9079 if (!cfs_rq)
9080 goto err;
9081
eab17229
LZ
9082 se = kzalloc_node(sizeof(struct sched_entity),
9083 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9084 if (!se)
9085 goto err;
9086
eab17229 9087 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9088 }
9089
9090 return 1;
9091
9092 err:
9093 return 0;
9094}
9095
9096static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9097{
9098 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9099 &cpu_rq(cpu)->leaf_cfs_rq_list);
9100}
9101
9102static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9103{
9104 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9105}
6d6bc0ad 9106#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9107static inline void free_fair_sched_group(struct task_group *tg)
9108{
9109}
9110
ec7dc8ac
DG
9111static inline
9112int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9113{
9114 return 1;
9115}
9116
9117static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9118{
9119}
9120
9121static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9122{
9123}
6d6bc0ad 9124#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9125
9126#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9127static void free_rt_sched_group(struct task_group *tg)
9128{
9129 int i;
9130
d0b27fa7
PZ
9131 destroy_rt_bandwidth(&tg->rt_bandwidth);
9132
bccbe08a
PZ
9133 for_each_possible_cpu(i) {
9134 if (tg->rt_rq)
9135 kfree(tg->rt_rq[i]);
9136 if (tg->rt_se)
9137 kfree(tg->rt_se[i]);
9138 }
9139
9140 kfree(tg->rt_rq);
9141 kfree(tg->rt_se);
9142}
9143
ec7dc8ac
DG
9144static
9145int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9146{
9147 struct rt_rq *rt_rq;
eab17229 9148 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9149 struct rq *rq;
9150 int i;
9151
434d53b0 9152 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9153 if (!tg->rt_rq)
9154 goto err;
434d53b0 9155 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9156 if (!tg->rt_se)
9157 goto err;
9158
d0b27fa7
PZ
9159 init_rt_bandwidth(&tg->rt_bandwidth,
9160 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9161
9162 for_each_possible_cpu(i) {
9163 rq = cpu_rq(i);
9164
eab17229
LZ
9165 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9166 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9167 if (!rt_rq)
9168 goto err;
29f59db3 9169
eab17229
LZ
9170 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9171 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9172 if (!rt_se)
9173 goto err;
29f59db3 9174
eab17229 9175 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9176 }
9177
bccbe08a
PZ
9178 return 1;
9179
9180 err:
9181 return 0;
9182}
9183
9184static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9185{
9186 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9187 &cpu_rq(cpu)->leaf_rt_rq_list);
9188}
9189
9190static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9191{
9192 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9193}
6d6bc0ad 9194#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9195static inline void free_rt_sched_group(struct task_group *tg)
9196{
9197}
9198
ec7dc8ac
DG
9199static inline
9200int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9201{
9202 return 1;
9203}
9204
9205static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9206{
9207}
9208
9209static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9210{
9211}
6d6bc0ad 9212#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9213
d0b27fa7 9214#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9215static void free_sched_group(struct task_group *tg)
9216{
9217 free_fair_sched_group(tg);
9218 free_rt_sched_group(tg);
9219 kfree(tg);
9220}
9221
9222/* allocate runqueue etc for a new task group */
ec7dc8ac 9223struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9224{
9225 struct task_group *tg;
9226 unsigned long flags;
9227 int i;
9228
9229 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9230 if (!tg)
9231 return ERR_PTR(-ENOMEM);
9232
ec7dc8ac 9233 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9234 goto err;
9235
ec7dc8ac 9236 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9237 goto err;
9238
8ed36996 9239 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9240 for_each_possible_cpu(i) {
bccbe08a
PZ
9241 register_fair_sched_group(tg, i);
9242 register_rt_sched_group(tg, i);
9b5b7751 9243 }
6f505b16 9244 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9245
9246 WARN_ON(!parent); /* root should already exist */
9247
9248 tg->parent = parent;
f473aa5e 9249 INIT_LIST_HEAD(&tg->children);
09f2724a 9250 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9251 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9252
9b5b7751 9253 return tg;
29f59db3
SV
9254
9255err:
6f505b16 9256 free_sched_group(tg);
29f59db3
SV
9257 return ERR_PTR(-ENOMEM);
9258}
9259
9b5b7751 9260/* rcu callback to free various structures associated with a task group */
6f505b16 9261static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9262{
29f59db3 9263 /* now it should be safe to free those cfs_rqs */
6f505b16 9264 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9265}
9266
9b5b7751 9267/* Destroy runqueue etc associated with a task group */
4cf86d77 9268void sched_destroy_group(struct task_group *tg)
29f59db3 9269{
8ed36996 9270 unsigned long flags;
9b5b7751 9271 int i;
29f59db3 9272
8ed36996 9273 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9274 for_each_possible_cpu(i) {
bccbe08a
PZ
9275 unregister_fair_sched_group(tg, i);
9276 unregister_rt_sched_group(tg, i);
9b5b7751 9277 }
6f505b16 9278 list_del_rcu(&tg->list);
f473aa5e 9279 list_del_rcu(&tg->siblings);
8ed36996 9280 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9281
9b5b7751 9282 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9283 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9284}
9285
9b5b7751 9286/* change task's runqueue when it moves between groups.
3a252015
IM
9287 * The caller of this function should have put the task in its new group
9288 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9289 * reflect its new group.
9b5b7751
SV
9290 */
9291void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9292{
9293 int on_rq, running;
9294 unsigned long flags;
9295 struct rq *rq;
9296
9297 rq = task_rq_lock(tsk, &flags);
9298
29f59db3
SV
9299 update_rq_clock(rq);
9300
051a1d1a 9301 running = task_current(rq, tsk);
29f59db3
SV
9302 on_rq = tsk->se.on_rq;
9303
0e1f3483 9304 if (on_rq)
29f59db3 9305 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9306 if (unlikely(running))
9307 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9308
6f505b16 9309 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9310
810b3817
PZ
9311#ifdef CONFIG_FAIR_GROUP_SCHED
9312 if (tsk->sched_class->moved_group)
9313 tsk->sched_class->moved_group(tsk);
9314#endif
9315
0e1f3483
HS
9316 if (unlikely(running))
9317 tsk->sched_class->set_curr_task(rq);
9318 if (on_rq)
7074badb 9319 enqueue_task(rq, tsk, 0);
29f59db3 9320
29f59db3
SV
9321 task_rq_unlock(rq, &flags);
9322}
6d6bc0ad 9323#endif /* CONFIG_GROUP_SCHED */
29f59db3 9324
052f1dc7 9325#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9326static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9327{
9328 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9329 int on_rq;
9330
29f59db3 9331 on_rq = se->on_rq;
62fb1851 9332 if (on_rq)
29f59db3
SV
9333 dequeue_entity(cfs_rq, se, 0);
9334
9335 se->load.weight = shares;
e05510d0 9336 se->load.inv_weight = 0;
29f59db3 9337
62fb1851 9338 if (on_rq)
29f59db3 9339 enqueue_entity(cfs_rq, se, 0);
c09595f6 9340}
62fb1851 9341
c09595f6
PZ
9342static void set_se_shares(struct sched_entity *se, unsigned long shares)
9343{
9344 struct cfs_rq *cfs_rq = se->cfs_rq;
9345 struct rq *rq = cfs_rq->rq;
9346 unsigned long flags;
9347
9348 spin_lock_irqsave(&rq->lock, flags);
9349 __set_se_shares(se, shares);
9350 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9351}
9352
8ed36996
PZ
9353static DEFINE_MUTEX(shares_mutex);
9354
4cf86d77 9355int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9356{
9357 int i;
8ed36996 9358 unsigned long flags;
c61935fd 9359
ec7dc8ac
DG
9360 /*
9361 * We can't change the weight of the root cgroup.
9362 */
9363 if (!tg->se[0])
9364 return -EINVAL;
9365
18d95a28
PZ
9366 if (shares < MIN_SHARES)
9367 shares = MIN_SHARES;
cb4ad1ff
MX
9368 else if (shares > MAX_SHARES)
9369 shares = MAX_SHARES;
62fb1851 9370
8ed36996 9371 mutex_lock(&shares_mutex);
9b5b7751 9372 if (tg->shares == shares)
5cb350ba 9373 goto done;
29f59db3 9374
8ed36996 9375 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9376 for_each_possible_cpu(i)
9377 unregister_fair_sched_group(tg, i);
f473aa5e 9378 list_del_rcu(&tg->siblings);
8ed36996 9379 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9380
9381 /* wait for any ongoing reference to this group to finish */
9382 synchronize_sched();
9383
9384 /*
9385 * Now we are free to modify the group's share on each cpu
9386 * w/o tripping rebalance_share or load_balance_fair.
9387 */
9b5b7751 9388 tg->shares = shares;
c09595f6
PZ
9389 for_each_possible_cpu(i) {
9390 /*
9391 * force a rebalance
9392 */
9393 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9394 set_se_shares(tg->se[i], shares);
c09595f6 9395 }
29f59db3 9396
6b2d7700
SV
9397 /*
9398 * Enable load balance activity on this group, by inserting it back on
9399 * each cpu's rq->leaf_cfs_rq_list.
9400 */
8ed36996 9401 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9402 for_each_possible_cpu(i)
9403 register_fair_sched_group(tg, i);
f473aa5e 9404 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9405 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9406done:
8ed36996 9407 mutex_unlock(&shares_mutex);
9b5b7751 9408 return 0;
29f59db3
SV
9409}
9410
5cb350ba
DG
9411unsigned long sched_group_shares(struct task_group *tg)
9412{
9413 return tg->shares;
9414}
052f1dc7 9415#endif
5cb350ba 9416
052f1dc7 9417#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9418/*
9f0c1e56 9419 * Ensure that the real time constraints are schedulable.
6f505b16 9420 */
9f0c1e56
PZ
9421static DEFINE_MUTEX(rt_constraints_mutex);
9422
9423static unsigned long to_ratio(u64 period, u64 runtime)
9424{
9425 if (runtime == RUNTIME_INF)
9a7e0b18 9426 return 1ULL << 20;
9f0c1e56 9427
9a7e0b18 9428 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9429}
9430
9a7e0b18
PZ
9431/* Must be called with tasklist_lock held */
9432static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9433{
9a7e0b18 9434 struct task_struct *g, *p;
b40b2e8e 9435
9a7e0b18
PZ
9436 do_each_thread(g, p) {
9437 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9438 return 1;
9439 } while_each_thread(g, p);
b40b2e8e 9440
9a7e0b18
PZ
9441 return 0;
9442}
b40b2e8e 9443
9a7e0b18
PZ
9444struct rt_schedulable_data {
9445 struct task_group *tg;
9446 u64 rt_period;
9447 u64 rt_runtime;
9448};
b40b2e8e 9449
9a7e0b18
PZ
9450static int tg_schedulable(struct task_group *tg, void *data)
9451{
9452 struct rt_schedulable_data *d = data;
9453 struct task_group *child;
9454 unsigned long total, sum = 0;
9455 u64 period, runtime;
b40b2e8e 9456
9a7e0b18
PZ
9457 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9458 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9459
9a7e0b18
PZ
9460 if (tg == d->tg) {
9461 period = d->rt_period;
9462 runtime = d->rt_runtime;
b40b2e8e 9463 }
b40b2e8e 9464
98a4826b
PZ
9465#ifdef CONFIG_USER_SCHED
9466 if (tg == &root_task_group) {
9467 period = global_rt_period();
9468 runtime = global_rt_runtime();
9469 }
9470#endif
9471
4653f803
PZ
9472 /*
9473 * Cannot have more runtime than the period.
9474 */
9475 if (runtime > period && runtime != RUNTIME_INF)
9476 return -EINVAL;
6f505b16 9477
4653f803
PZ
9478 /*
9479 * Ensure we don't starve existing RT tasks.
9480 */
9a7e0b18
PZ
9481 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9482 return -EBUSY;
6f505b16 9483
9a7e0b18 9484 total = to_ratio(period, runtime);
6f505b16 9485
4653f803
PZ
9486 /*
9487 * Nobody can have more than the global setting allows.
9488 */
9489 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9490 return -EINVAL;
6f505b16 9491
4653f803
PZ
9492 /*
9493 * The sum of our children's runtime should not exceed our own.
9494 */
9a7e0b18
PZ
9495 list_for_each_entry_rcu(child, &tg->children, siblings) {
9496 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9497 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9498
9a7e0b18
PZ
9499 if (child == d->tg) {
9500 period = d->rt_period;
9501 runtime = d->rt_runtime;
9502 }
6f505b16 9503
9a7e0b18 9504 sum += to_ratio(period, runtime);
9f0c1e56 9505 }
6f505b16 9506
9a7e0b18
PZ
9507 if (sum > total)
9508 return -EINVAL;
9509
9510 return 0;
6f505b16
PZ
9511}
9512
9a7e0b18 9513static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9514{
9a7e0b18
PZ
9515 struct rt_schedulable_data data = {
9516 .tg = tg,
9517 .rt_period = period,
9518 .rt_runtime = runtime,
9519 };
9520
9521 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9522}
9523
d0b27fa7
PZ
9524static int tg_set_bandwidth(struct task_group *tg,
9525 u64 rt_period, u64 rt_runtime)
6f505b16 9526{
ac086bc2 9527 int i, err = 0;
9f0c1e56 9528
9f0c1e56 9529 mutex_lock(&rt_constraints_mutex);
521f1a24 9530 read_lock(&tasklist_lock);
9a7e0b18
PZ
9531 err = __rt_schedulable(tg, rt_period, rt_runtime);
9532 if (err)
9f0c1e56 9533 goto unlock;
ac086bc2
PZ
9534
9535 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9536 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9537 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9538
9539 for_each_possible_cpu(i) {
9540 struct rt_rq *rt_rq = tg->rt_rq[i];
9541
9542 spin_lock(&rt_rq->rt_runtime_lock);
9543 rt_rq->rt_runtime = rt_runtime;
9544 spin_unlock(&rt_rq->rt_runtime_lock);
9545 }
9546 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9547 unlock:
521f1a24 9548 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9549 mutex_unlock(&rt_constraints_mutex);
9550
9551 return err;
6f505b16
PZ
9552}
9553
d0b27fa7
PZ
9554int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9555{
9556 u64 rt_runtime, rt_period;
9557
9558 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9559 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9560 if (rt_runtime_us < 0)
9561 rt_runtime = RUNTIME_INF;
9562
9563 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9564}
9565
9f0c1e56
PZ
9566long sched_group_rt_runtime(struct task_group *tg)
9567{
9568 u64 rt_runtime_us;
9569
d0b27fa7 9570 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9571 return -1;
9572
d0b27fa7 9573 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9574 do_div(rt_runtime_us, NSEC_PER_USEC);
9575 return rt_runtime_us;
9576}
d0b27fa7
PZ
9577
9578int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9579{
9580 u64 rt_runtime, rt_period;
9581
9582 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9583 rt_runtime = tg->rt_bandwidth.rt_runtime;
9584
619b0488
R
9585 if (rt_period == 0)
9586 return -EINVAL;
9587
d0b27fa7
PZ
9588 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9589}
9590
9591long sched_group_rt_period(struct task_group *tg)
9592{
9593 u64 rt_period_us;
9594
9595 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9596 do_div(rt_period_us, NSEC_PER_USEC);
9597 return rt_period_us;
9598}
9599
9600static int sched_rt_global_constraints(void)
9601{
4653f803 9602 u64 runtime, period;
d0b27fa7
PZ
9603 int ret = 0;
9604
ec5d4989
HS
9605 if (sysctl_sched_rt_period <= 0)
9606 return -EINVAL;
9607
4653f803
PZ
9608 runtime = global_rt_runtime();
9609 period = global_rt_period();
9610
9611 /*
9612 * Sanity check on the sysctl variables.
9613 */
9614 if (runtime > period && runtime != RUNTIME_INF)
9615 return -EINVAL;
10b612f4 9616
d0b27fa7 9617 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9618 read_lock(&tasklist_lock);
4653f803 9619 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9620 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9621 mutex_unlock(&rt_constraints_mutex);
9622
9623 return ret;
9624}
54e99124
DG
9625
9626int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9627{
9628 /* Don't accept realtime tasks when there is no way for them to run */
9629 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9630 return 0;
9631
9632 return 1;
9633}
9634
6d6bc0ad 9635#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9636static int sched_rt_global_constraints(void)
9637{
ac086bc2
PZ
9638 unsigned long flags;
9639 int i;
9640
ec5d4989
HS
9641 if (sysctl_sched_rt_period <= 0)
9642 return -EINVAL;
9643
ac086bc2
PZ
9644 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9645 for_each_possible_cpu(i) {
9646 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9647
9648 spin_lock(&rt_rq->rt_runtime_lock);
9649 rt_rq->rt_runtime = global_rt_runtime();
9650 spin_unlock(&rt_rq->rt_runtime_lock);
9651 }
9652 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9653
d0b27fa7
PZ
9654 return 0;
9655}
6d6bc0ad 9656#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9657
9658int sched_rt_handler(struct ctl_table *table, int write,
9659 struct file *filp, void __user *buffer, size_t *lenp,
9660 loff_t *ppos)
9661{
9662 int ret;
9663 int old_period, old_runtime;
9664 static DEFINE_MUTEX(mutex);
9665
9666 mutex_lock(&mutex);
9667 old_period = sysctl_sched_rt_period;
9668 old_runtime = sysctl_sched_rt_runtime;
9669
9670 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9671
9672 if (!ret && write) {
9673 ret = sched_rt_global_constraints();
9674 if (ret) {
9675 sysctl_sched_rt_period = old_period;
9676 sysctl_sched_rt_runtime = old_runtime;
9677 } else {
9678 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9679 def_rt_bandwidth.rt_period =
9680 ns_to_ktime(global_rt_period());
9681 }
9682 }
9683 mutex_unlock(&mutex);
9684
9685 return ret;
9686}
68318b8e 9687
052f1dc7 9688#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9689
9690/* return corresponding task_group object of a cgroup */
2b01dfe3 9691static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9692{
2b01dfe3
PM
9693 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9694 struct task_group, css);
68318b8e
SV
9695}
9696
9697static struct cgroup_subsys_state *
2b01dfe3 9698cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9699{
ec7dc8ac 9700 struct task_group *tg, *parent;
68318b8e 9701
2b01dfe3 9702 if (!cgrp->parent) {
68318b8e 9703 /* This is early initialization for the top cgroup */
68318b8e
SV
9704 return &init_task_group.css;
9705 }
9706
ec7dc8ac
DG
9707 parent = cgroup_tg(cgrp->parent);
9708 tg = sched_create_group(parent);
68318b8e
SV
9709 if (IS_ERR(tg))
9710 return ERR_PTR(-ENOMEM);
9711
68318b8e
SV
9712 return &tg->css;
9713}
9714
41a2d6cf
IM
9715static void
9716cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9717{
2b01dfe3 9718 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9719
9720 sched_destroy_group(tg);
9721}
9722
41a2d6cf
IM
9723static int
9724cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9725 struct task_struct *tsk)
68318b8e 9726{
b68aa230 9727#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9728 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9729 return -EINVAL;
9730#else
68318b8e
SV
9731 /* We don't support RT-tasks being in separate groups */
9732 if (tsk->sched_class != &fair_sched_class)
9733 return -EINVAL;
b68aa230 9734#endif
68318b8e
SV
9735
9736 return 0;
9737}
9738
9739static void
2b01dfe3 9740cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9741 struct cgroup *old_cont, struct task_struct *tsk)
9742{
9743 sched_move_task(tsk);
9744}
9745
052f1dc7 9746#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9747static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9748 u64 shareval)
68318b8e 9749{
2b01dfe3 9750 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9751}
9752
f4c753b7 9753static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9754{
2b01dfe3 9755 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9756
9757 return (u64) tg->shares;
9758}
6d6bc0ad 9759#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9760
052f1dc7 9761#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9762static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9763 s64 val)
6f505b16 9764{
06ecb27c 9765 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9766}
9767
06ecb27c 9768static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9769{
06ecb27c 9770 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9771}
d0b27fa7
PZ
9772
9773static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9774 u64 rt_period_us)
9775{
9776 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9777}
9778
9779static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9780{
9781 return sched_group_rt_period(cgroup_tg(cgrp));
9782}
6d6bc0ad 9783#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9784
fe5c7cc2 9785static struct cftype cpu_files[] = {
052f1dc7 9786#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9787 {
9788 .name = "shares",
f4c753b7
PM
9789 .read_u64 = cpu_shares_read_u64,
9790 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9791 },
052f1dc7
PZ
9792#endif
9793#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9794 {
9f0c1e56 9795 .name = "rt_runtime_us",
06ecb27c
PM
9796 .read_s64 = cpu_rt_runtime_read,
9797 .write_s64 = cpu_rt_runtime_write,
6f505b16 9798 },
d0b27fa7
PZ
9799 {
9800 .name = "rt_period_us",
f4c753b7
PM
9801 .read_u64 = cpu_rt_period_read_uint,
9802 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9803 },
052f1dc7 9804#endif
68318b8e
SV
9805};
9806
9807static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9808{
fe5c7cc2 9809 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9810}
9811
9812struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9813 .name = "cpu",
9814 .create = cpu_cgroup_create,
9815 .destroy = cpu_cgroup_destroy,
9816 .can_attach = cpu_cgroup_can_attach,
9817 .attach = cpu_cgroup_attach,
9818 .populate = cpu_cgroup_populate,
9819 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9820 .early_init = 1,
9821};
9822
052f1dc7 9823#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9824
9825#ifdef CONFIG_CGROUP_CPUACCT
9826
9827/*
9828 * CPU accounting code for task groups.
9829 *
9830 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9831 * (balbir@in.ibm.com).
9832 */
9833
934352f2 9834/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9835struct cpuacct {
9836 struct cgroup_subsys_state css;
9837 /* cpuusage holds pointer to a u64-type object on every cpu */
9838 u64 *cpuusage;
934352f2 9839 struct cpuacct *parent;
d842de87
SV
9840};
9841
9842struct cgroup_subsys cpuacct_subsys;
9843
9844/* return cpu accounting group corresponding to this container */
32cd756a 9845static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9846{
32cd756a 9847 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9848 struct cpuacct, css);
9849}
9850
9851/* return cpu accounting group to which this task belongs */
9852static inline struct cpuacct *task_ca(struct task_struct *tsk)
9853{
9854 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9855 struct cpuacct, css);
9856}
9857
9858/* create a new cpu accounting group */
9859static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9860 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9861{
9862 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9863
9864 if (!ca)
9865 return ERR_PTR(-ENOMEM);
9866
9867 ca->cpuusage = alloc_percpu(u64);
9868 if (!ca->cpuusage) {
9869 kfree(ca);
9870 return ERR_PTR(-ENOMEM);
9871 }
9872
934352f2
BR
9873 if (cgrp->parent)
9874 ca->parent = cgroup_ca(cgrp->parent);
9875
d842de87
SV
9876 return &ca->css;
9877}
9878
9879/* destroy an existing cpu accounting group */
41a2d6cf 9880static void
32cd756a 9881cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9882{
32cd756a 9883 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9884
9885 free_percpu(ca->cpuusage);
9886 kfree(ca);
9887}
9888
720f5498
KC
9889static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9890{
b36128c8 9891 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9892 u64 data;
9893
9894#ifndef CONFIG_64BIT
9895 /*
9896 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9897 */
9898 spin_lock_irq(&cpu_rq(cpu)->lock);
9899 data = *cpuusage;
9900 spin_unlock_irq(&cpu_rq(cpu)->lock);
9901#else
9902 data = *cpuusage;
9903#endif
9904
9905 return data;
9906}
9907
9908static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9909{
b36128c8 9910 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9911
9912#ifndef CONFIG_64BIT
9913 /*
9914 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9915 */
9916 spin_lock_irq(&cpu_rq(cpu)->lock);
9917 *cpuusage = val;
9918 spin_unlock_irq(&cpu_rq(cpu)->lock);
9919#else
9920 *cpuusage = val;
9921#endif
9922}
9923
d842de87 9924/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9925static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9926{
32cd756a 9927 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9928 u64 totalcpuusage = 0;
9929 int i;
9930
720f5498
KC
9931 for_each_present_cpu(i)
9932 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9933
9934 return totalcpuusage;
9935}
9936
0297b803
DG
9937static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9938 u64 reset)
9939{
9940 struct cpuacct *ca = cgroup_ca(cgrp);
9941 int err = 0;
9942 int i;
9943
9944 if (reset) {
9945 err = -EINVAL;
9946 goto out;
9947 }
9948
720f5498
KC
9949 for_each_present_cpu(i)
9950 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9951
0297b803
DG
9952out:
9953 return err;
9954}
9955
e9515c3c
KC
9956static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9957 struct seq_file *m)
9958{
9959 struct cpuacct *ca = cgroup_ca(cgroup);
9960 u64 percpu;
9961 int i;
9962
9963 for_each_present_cpu(i) {
9964 percpu = cpuacct_cpuusage_read(ca, i);
9965 seq_printf(m, "%llu ", (unsigned long long) percpu);
9966 }
9967 seq_printf(m, "\n");
9968 return 0;
9969}
9970
d842de87
SV
9971static struct cftype files[] = {
9972 {
9973 .name = "usage",
f4c753b7
PM
9974 .read_u64 = cpuusage_read,
9975 .write_u64 = cpuusage_write,
d842de87 9976 },
e9515c3c
KC
9977 {
9978 .name = "usage_percpu",
9979 .read_seq_string = cpuacct_percpu_seq_read,
9980 },
9981
d842de87
SV
9982};
9983
32cd756a 9984static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9985{
32cd756a 9986 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9987}
9988
9989/*
9990 * charge this task's execution time to its accounting group.
9991 *
9992 * called with rq->lock held.
9993 */
9994static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9995{
9996 struct cpuacct *ca;
934352f2 9997 int cpu;
d842de87 9998
c40c6f85 9999 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10000 return;
10001
934352f2 10002 cpu = task_cpu(tsk);
d842de87 10003 ca = task_ca(tsk);
d842de87 10004
934352f2 10005 for (; ca; ca = ca->parent) {
b36128c8 10006 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10007 *cpuusage += cputime;
10008 }
10009}
10010
10011struct cgroup_subsys cpuacct_subsys = {
10012 .name = "cpuacct",
10013 .create = cpuacct_create,
10014 .destroy = cpuacct_destroy,
10015 .populate = cpuacct_populate,
10016 .subsys_id = cpuacct_subsys_id,
10017};
10018#endif /* CONFIG_CGROUP_CPUACCT */