]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: rt-bandwidth fixes
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
0b148fa0
PZ
207static inline int rt_bandwidth_enabled(void);
208
d0b27fa7
PZ
209static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
210{
211 ktime_t now;
212
0b148fa0 213 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
214 return;
215
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 return;
218
219 spin_lock(&rt_b->rt_runtime_lock);
220 for (;;) {
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 break;
223
224 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
225 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
226 hrtimer_start(&rt_b->rt_period_timer,
227 rt_b->rt_period_timer.expires,
228 HRTIMER_MODE_ABS);
229 }
230 spin_unlock(&rt_b->rt_runtime_lock);
231}
232
233#ifdef CONFIG_RT_GROUP_SCHED
234static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
235{
236 hrtimer_cancel(&rt_b->rt_period_timer);
237}
238#endif
239
712555ee
HC
240/*
241 * sched_domains_mutex serializes calls to arch_init_sched_domains,
242 * detach_destroy_domains and partition_sched_domains.
243 */
244static DEFINE_MUTEX(sched_domains_mutex);
245
052f1dc7 246#ifdef CONFIG_GROUP_SCHED
29f59db3 247
68318b8e
SV
248#include <linux/cgroup.h>
249
29f59db3
SV
250struct cfs_rq;
251
6f505b16
PZ
252static LIST_HEAD(task_groups);
253
29f59db3 254/* task group related information */
4cf86d77 255struct task_group {
052f1dc7 256#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
257 struct cgroup_subsys_state css;
258#endif
052f1dc7
PZ
259
260#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
261 /* schedulable entities of this group on each cpu */
262 struct sched_entity **se;
263 /* runqueue "owned" by this group on each cpu */
264 struct cfs_rq **cfs_rq;
265 unsigned long shares;
052f1dc7
PZ
266#endif
267
268#ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
d0b27fa7 272 struct rt_bandwidth rt_bandwidth;
052f1dc7 273#endif
6b2d7700 274
ae8393e5 275 struct rcu_head rcu;
6f505b16 276 struct list_head list;
f473aa5e
PZ
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
29f59db3
SV
281};
282
354d60c2 283#ifdef CONFIG_USER_SCHED
eff766a6
PZ
284
285/*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
296static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
052f1dc7 312#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
313#ifdef CONFIG_USER_SCHED
314# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 315#else /* !CONFIG_USER_SCHED */
052f1dc7 316# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 317#endif /* CONFIG_USER_SCHED */
052f1dc7 318
cb4ad1ff 319/*
2e084786
LJ
320 * A weight of 0 or 1 can cause arithmetics problems.
321 * A weight of a cfs_rq is the sum of weights of which entities
322 * are queued on this cfs_rq, so a weight of a entity should not be
323 * too large, so as the shares value of a task group.
cb4ad1ff
MX
324 * (The default weight is 1024 - so there's no practical
325 * limitation from this.)
326 */
18d95a28 327#define MIN_SHARES 2
2e084786 328#define MAX_SHARES (1UL << 18)
18d95a28 329
052f1dc7
PZ
330static int init_task_group_load = INIT_TASK_GROUP_LOAD;
331#endif
332
29f59db3 333/* Default task group.
3a252015 334 * Every task in system belong to this group at bootup.
29f59db3 335 */
434d53b0 336struct task_group init_task_group;
29f59db3
SV
337
338/* return group to which a task belongs */
4cf86d77 339static inline struct task_group *task_group(struct task_struct *p)
29f59db3 340{
4cf86d77 341 struct task_group *tg;
9b5b7751 342
052f1dc7 343#ifdef CONFIG_USER_SCHED
24e377a8 344 tg = p->user->tg;
052f1dc7 345#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
346 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
347 struct task_group, css);
24e377a8 348#else
41a2d6cf 349 tg = &init_task_group;
24e377a8 350#endif
9b5b7751 351 return tg;
29f59db3
SV
352}
353
354/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 355static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 356{
052f1dc7 357#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
358 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
359 p->se.parent = task_group(p)->se[cpu];
052f1dc7 360#endif
6f505b16 361
052f1dc7 362#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
363 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
364 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 365#endif
29f59db3
SV
366}
367
368#else
369
6f505b16 370static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
371static inline struct task_group *task_group(struct task_struct *p)
372{
373 return NULL;
374}
29f59db3 375
052f1dc7 376#endif /* CONFIG_GROUP_SCHED */
29f59db3 377
6aa645ea
IM
378/* CFS-related fields in a runqueue */
379struct cfs_rq {
380 struct load_weight load;
381 unsigned long nr_running;
382
6aa645ea 383 u64 exec_clock;
e9acbff6 384 u64 min_vruntime;
103638d9 385 u64 pair_start;
6aa645ea
IM
386
387 struct rb_root tasks_timeline;
388 struct rb_node *rb_leftmost;
4a55bd5e
PZ
389
390 struct list_head tasks;
391 struct list_head *balance_iterator;
392
393 /*
394 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
395 * It is set to NULL otherwise (i.e when none are currently running).
396 */
aa2ac252 397 struct sched_entity *curr, *next;
ddc97297
PZ
398
399 unsigned long nr_spread_over;
400
62160e3f 401#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
402 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
403
41a2d6cf
IM
404 /*
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
408 *
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
411 */
41a2d6cf
IM
412 struct list_head leaf_cfs_rq_list;
413 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
414
415#ifdef CONFIG_SMP
c09595f6 416 /*
c8cba857 417 * the part of load.weight contributed by tasks
c09595f6 418 */
c8cba857 419 unsigned long task_weight;
c09595f6 420
c8cba857
PZ
421 /*
422 * h_load = weight * f(tg)
423 *
424 * Where f(tg) is the recursive weight fraction assigned to
425 * this group.
426 */
427 unsigned long h_load;
c09595f6 428
c8cba857
PZ
429 /*
430 * this cpu's part of tg->shares
431 */
432 unsigned long shares;
f1d239f7
PZ
433
434 /*
435 * load.weight at the time we set shares
436 */
437 unsigned long rq_weight;
c09595f6 438#endif
6aa645ea
IM
439#endif
440};
1da177e4 441
6aa645ea
IM
442/* Real-Time classes' related field in a runqueue: */
443struct rt_rq {
444 struct rt_prio_array active;
63489e45 445 unsigned long rt_nr_running;
052f1dc7 446#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
447 int highest_prio; /* highest queued rt task prio */
448#endif
fa85ae24 449#ifdef CONFIG_SMP
73fe6aae 450 unsigned long rt_nr_migratory;
a22d7fc1 451 int overloaded;
fa85ae24 452#endif
6f505b16 453 int rt_throttled;
fa85ae24 454 u64 rt_time;
ac086bc2 455 u64 rt_runtime;
ea736ed5 456 /* Nests inside the rq lock: */
ac086bc2 457 spinlock_t rt_runtime_lock;
6f505b16 458
052f1dc7 459#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
460 unsigned long rt_nr_boosted;
461
6f505b16
PZ
462 struct rq *rq;
463 struct list_head leaf_rt_rq_list;
464 struct task_group *tg;
465 struct sched_rt_entity *rt_se;
466#endif
6aa645ea
IM
467};
468
57d885fe
GH
469#ifdef CONFIG_SMP
470
471/*
472 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
473 * variables. Each exclusive cpuset essentially defines an island domain by
474 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
475 * exclusive cpuset is created, we also create and attach a new root-domain
476 * object.
477 *
57d885fe
GH
478 */
479struct root_domain {
480 atomic_t refcount;
481 cpumask_t span;
482 cpumask_t online;
637f5085 483
0eab9146 484 /*
637f5085
GH
485 * The "RT overload" flag: it gets set if a CPU has more than
486 * one runnable RT task.
487 */
488 cpumask_t rto_mask;
0eab9146 489 atomic_t rto_count;
6e0534f2
GH
490#ifdef CONFIG_SMP
491 struct cpupri cpupri;
492#endif
57d885fe
GH
493};
494
dc938520
GH
495/*
496 * By default the system creates a single root-domain with all cpus as
497 * members (mimicking the global state we have today).
498 */
57d885fe
GH
499static struct root_domain def_root_domain;
500
501#endif
502
1da177e4
LT
503/*
504 * This is the main, per-CPU runqueue data structure.
505 *
506 * Locking rule: those places that want to lock multiple runqueues
507 * (such as the load balancing or the thread migration code), lock
508 * acquire operations must be ordered by ascending &runqueue.
509 */
70b97a7f 510struct rq {
d8016491
IM
511 /* runqueue lock: */
512 spinlock_t lock;
1da177e4
LT
513
514 /*
515 * nr_running and cpu_load should be in the same cacheline because
516 * remote CPUs use both these fields when doing load calculation.
517 */
518 unsigned long nr_running;
6aa645ea
IM
519 #define CPU_LOAD_IDX_MAX 5
520 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 521 unsigned char idle_at_tick;
46cb4b7c 522#ifdef CONFIG_NO_HZ
15934a37 523 unsigned long last_tick_seen;
46cb4b7c
SS
524 unsigned char in_nohz_recently;
525#endif
d8016491
IM
526 /* capture load from *all* tasks on this cpu: */
527 struct load_weight load;
6aa645ea
IM
528 unsigned long nr_load_updates;
529 u64 nr_switches;
530
531 struct cfs_rq cfs;
6f505b16 532 struct rt_rq rt;
6f505b16 533
6aa645ea 534#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
535 /* list of leaf cfs_rq on this cpu: */
536 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
537#endif
538#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 539 struct list_head leaf_rt_rq_list;
1da177e4 540#endif
1da177e4
LT
541
542 /*
543 * This is part of a global counter where only the total sum
544 * over all CPUs matters. A task can increase this counter on
545 * one CPU and if it got migrated afterwards it may decrease
546 * it on another CPU. Always updated under the runqueue lock:
547 */
548 unsigned long nr_uninterruptible;
549
36c8b586 550 struct task_struct *curr, *idle;
c9819f45 551 unsigned long next_balance;
1da177e4 552 struct mm_struct *prev_mm;
6aa645ea 553
3e51f33f 554 u64 clock;
6aa645ea 555
1da177e4
LT
556 atomic_t nr_iowait;
557
558#ifdef CONFIG_SMP
0eab9146 559 struct root_domain *rd;
1da177e4
LT
560 struct sched_domain *sd;
561
562 /* For active balancing */
563 int active_balance;
564 int push_cpu;
d8016491
IM
565 /* cpu of this runqueue: */
566 int cpu;
1f11eb6a 567 int online;
1da177e4 568
a8a51d5e 569 unsigned long avg_load_per_task;
1da177e4 570
36c8b586 571 struct task_struct *migration_thread;
1da177e4
LT
572 struct list_head migration_queue;
573#endif
574
8f4d37ec 575#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
576#ifdef CONFIG_SMP
577 int hrtick_csd_pending;
578 struct call_single_data hrtick_csd;
579#endif
8f4d37ec
PZ
580 struct hrtimer hrtick_timer;
581#endif
582
1da177e4
LT
583#ifdef CONFIG_SCHEDSTATS
584 /* latency stats */
585 struct sched_info rq_sched_info;
586
587 /* sys_sched_yield() stats */
480b9434
KC
588 unsigned int yld_exp_empty;
589 unsigned int yld_act_empty;
590 unsigned int yld_both_empty;
591 unsigned int yld_count;
1da177e4
LT
592
593 /* schedule() stats */
480b9434
KC
594 unsigned int sched_switch;
595 unsigned int sched_count;
596 unsigned int sched_goidle;
1da177e4
LT
597
598 /* try_to_wake_up() stats */
480b9434
KC
599 unsigned int ttwu_count;
600 unsigned int ttwu_local;
b8efb561
IM
601
602 /* BKL stats */
480b9434 603 unsigned int bkl_count;
1da177e4
LT
604#endif
605};
606
f34e3b61 607static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 608
dd41f596
IM
609static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
610{
611 rq->curr->sched_class->check_preempt_curr(rq, p);
612}
613
0a2966b4
CL
614static inline int cpu_of(struct rq *rq)
615{
616#ifdef CONFIG_SMP
617 return rq->cpu;
618#else
619 return 0;
620#endif
621}
622
674311d5
NP
623/*
624 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 625 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
626 *
627 * The domain tree of any CPU may only be accessed from within
628 * preempt-disabled sections.
629 */
48f24c4d
IM
630#define for_each_domain(cpu, __sd) \
631 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
632
633#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
634#define this_rq() (&__get_cpu_var(runqueues))
635#define task_rq(p) cpu_rq(task_cpu(p))
636#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
637
3e51f33f
PZ
638static inline void update_rq_clock(struct rq *rq)
639{
640 rq->clock = sched_clock_cpu(cpu_of(rq));
641}
642
bf5c91ba
IM
643/*
644 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 */
646#ifdef CONFIG_SCHED_DEBUG
647# define const_debug __read_mostly
648#else
649# define const_debug static const
650#endif
651
017730c1
IM
652/**
653 * runqueue_is_locked
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
659int runqueue_is_locked(void)
660{
661 int cpu = get_cpu();
662 struct rq *rq = cpu_rq(cpu);
663 int ret;
664
665 ret = spin_is_locked(&rq->lock);
666 put_cpu();
667 return ret;
668}
669
bf5c91ba
IM
670/*
671 * Debugging: various feature bits
672 */
f00b45c1
PZ
673
674#define SCHED_FEAT(name, enabled) \
675 __SCHED_FEAT_##name ,
676
bf5c91ba 677enum {
f00b45c1 678#include "sched_features.h"
bf5c91ba
IM
679};
680
f00b45c1
PZ
681#undef SCHED_FEAT
682
683#define SCHED_FEAT(name, enabled) \
684 (1UL << __SCHED_FEAT_##name) * enabled |
685
bf5c91ba 686const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
687#include "sched_features.h"
688 0;
689
690#undef SCHED_FEAT
691
692#ifdef CONFIG_SCHED_DEBUG
693#define SCHED_FEAT(name, enabled) \
694 #name ,
695
983ed7a6 696static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
697#include "sched_features.h"
698 NULL
699};
700
701#undef SCHED_FEAT
702
983ed7a6 703static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
704{
705 filp->private_data = inode->i_private;
706 return 0;
707}
708
709static ssize_t
710sched_feat_read(struct file *filp, char __user *ubuf,
711 size_t cnt, loff_t *ppos)
712{
713 char *buf;
714 int r = 0;
715 int len = 0;
716 int i;
717
718 for (i = 0; sched_feat_names[i]; i++) {
719 len += strlen(sched_feat_names[i]);
720 len += 4;
721 }
722
723 buf = kmalloc(len + 2, GFP_KERNEL);
724 if (!buf)
725 return -ENOMEM;
726
727 for (i = 0; sched_feat_names[i]; i++) {
728 if (sysctl_sched_features & (1UL << i))
729 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
730 else
c24b7c52 731 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
732 }
733
734 r += sprintf(buf + r, "\n");
735 WARN_ON(r >= len + 2);
736
737 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
738
739 kfree(buf);
740
741 return r;
742}
743
744static ssize_t
745sched_feat_write(struct file *filp, const char __user *ubuf,
746 size_t cnt, loff_t *ppos)
747{
748 char buf[64];
749 char *cmp = buf;
750 int neg = 0;
751 int i;
752
753 if (cnt > 63)
754 cnt = 63;
755
756 if (copy_from_user(&buf, ubuf, cnt))
757 return -EFAULT;
758
759 buf[cnt] = 0;
760
c24b7c52 761 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
762 neg = 1;
763 cmp += 3;
764 }
765
766 for (i = 0; sched_feat_names[i]; i++) {
767 int len = strlen(sched_feat_names[i]);
768
769 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
770 if (neg)
771 sysctl_sched_features &= ~(1UL << i);
772 else
773 sysctl_sched_features |= (1UL << i);
774 break;
775 }
776 }
777
778 if (!sched_feat_names[i])
779 return -EINVAL;
780
781 filp->f_pos += cnt;
782
783 return cnt;
784}
785
786static struct file_operations sched_feat_fops = {
787 .open = sched_feat_open,
788 .read = sched_feat_read,
789 .write = sched_feat_write,
790};
791
792static __init int sched_init_debug(void)
793{
f00b45c1
PZ
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798}
799late_initcall(sched_init_debug);
800
801#endif
802
803#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 804
b82d9fdd
PZ
805/*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
2398f2c6
PZ
811/*
812 * ratelimit for updating the group shares.
55cd5340 813 * default: 0.25ms
2398f2c6 814 */
55cd5340 815unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 816
fa85ae24 817/*
9f0c1e56 818 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
819 * default: 1s
820 */
9f0c1e56 821unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 822
6892b75e
IM
823static __read_mostly int scheduler_running;
824
9f0c1e56
PZ
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
fa85ae24 830
d0b27fa7
PZ
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
e26873bb 838 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
fa85ae24 843
0b148fa0
PZ
844static inline int rt_bandwidth_enabled(void)
845{
846 return sysctl_sched_rt_runtime >= 0;
847}
848
1da177e4 849#ifndef prepare_arch_switch
4866cde0
NP
850# define prepare_arch_switch(next) do { } while (0)
851#endif
852#ifndef finish_arch_switch
853# define finish_arch_switch(prev) do { } while (0)
854#endif
855
051a1d1a
DA
856static inline int task_current(struct rq *rq, struct task_struct *p)
857{
858 return rq->curr == p;
859}
860
4866cde0 861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 862static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 863{
051a1d1a 864 return task_current(rq, p);
4866cde0
NP
865}
866
70b97a7f 867static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
868{
869}
870
70b97a7f 871static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 872{
da04c035
IM
873#ifdef CONFIG_DEBUG_SPINLOCK
874 /* this is a valid case when another task releases the spinlock */
875 rq->lock.owner = current;
876#endif
8a25d5de
IM
877 /*
878 * If we are tracking spinlock dependencies then we have to
879 * fix up the runqueue lock - which gets 'carried over' from
880 * prev into current:
881 */
882 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
883
4866cde0
NP
884 spin_unlock_irq(&rq->lock);
885}
886
887#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 888static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
889{
890#ifdef CONFIG_SMP
891 return p->oncpu;
892#else
051a1d1a 893 return task_current(rq, p);
4866cde0
NP
894#endif
895}
896
70b97a7f 897static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 /*
901 * We can optimise this out completely for !SMP, because the
902 * SMP rebalancing from interrupt is the only thing that cares
903 * here.
904 */
905 next->oncpu = 1;
906#endif
907#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
908 spin_unlock_irq(&rq->lock);
909#else
910 spin_unlock(&rq->lock);
911#endif
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
915{
916#ifdef CONFIG_SMP
917 /*
918 * After ->oncpu is cleared, the task can be moved to a different CPU.
919 * We must ensure this doesn't happen until the switch is completely
920 * finished.
921 */
922 smp_wmb();
923 prev->oncpu = 0;
924#endif
925#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
926 local_irq_enable();
1da177e4 927#endif
4866cde0
NP
928}
929#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 930
b29739f9
IM
931/*
932 * __task_rq_lock - lock the runqueue a given task resides on.
933 * Must be called interrupts disabled.
934 */
70b97a7f 935static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
936 __acquires(rq->lock)
937{
3a5c359a
AK
938 for (;;) {
939 struct rq *rq = task_rq(p);
940 spin_lock(&rq->lock);
941 if (likely(rq == task_rq(p)))
942 return rq;
b29739f9 943 spin_unlock(&rq->lock);
b29739f9 944 }
b29739f9
IM
945}
946
1da177e4
LT
947/*
948 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 949 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
950 * explicitly disabling preemption.
951 */
70b97a7f 952static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
953 __acquires(rq->lock)
954{
70b97a7f 955 struct rq *rq;
1da177e4 956
3a5c359a
AK
957 for (;;) {
958 local_irq_save(*flags);
959 rq = task_rq(p);
960 spin_lock(&rq->lock);
961 if (likely(rq == task_rq(p)))
962 return rq;
1da177e4 963 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 964 }
1da177e4
LT
965}
966
a9957449 967static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
968 __releases(rq->lock)
969{
970 spin_unlock(&rq->lock);
971}
972
70b97a7f 973static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
974 __releases(rq->lock)
975{
976 spin_unlock_irqrestore(&rq->lock, *flags);
977}
978
1da177e4 979/*
cc2a73b5 980 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 981 */
a9957449 982static struct rq *this_rq_lock(void)
1da177e4
LT
983 __acquires(rq->lock)
984{
70b97a7f 985 struct rq *rq;
1da177e4
LT
986
987 local_irq_disable();
988 rq = this_rq();
989 spin_lock(&rq->lock);
990
991 return rq;
992}
993
8f4d37ec
PZ
994#ifdef CONFIG_SCHED_HRTICK
995/*
996 * Use HR-timers to deliver accurate preemption points.
997 *
998 * Its all a bit involved since we cannot program an hrt while holding the
999 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1000 * reschedule event.
1001 *
1002 * When we get rescheduled we reprogram the hrtick_timer outside of the
1003 * rq->lock.
1004 */
8f4d37ec
PZ
1005
1006/*
1007 * Use hrtick when:
1008 * - enabled by features
1009 * - hrtimer is actually high res
1010 */
1011static inline int hrtick_enabled(struct rq *rq)
1012{
1013 if (!sched_feat(HRTICK))
1014 return 0;
ba42059f 1015 if (!cpu_active(cpu_of(rq)))
b328ca18 1016 return 0;
8f4d37ec
PZ
1017 return hrtimer_is_hres_active(&rq->hrtick_timer);
1018}
1019
8f4d37ec
PZ
1020static void hrtick_clear(struct rq *rq)
1021{
1022 if (hrtimer_active(&rq->hrtick_timer))
1023 hrtimer_cancel(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026/*
1027 * High-resolution timer tick.
1028 * Runs from hardirq context with interrupts disabled.
1029 */
1030static enum hrtimer_restart hrtick(struct hrtimer *timer)
1031{
1032 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1033
1034 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1035
1036 spin_lock(&rq->lock);
3e51f33f 1037 update_rq_clock(rq);
8f4d37ec
PZ
1038 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1039 spin_unlock(&rq->lock);
1040
1041 return HRTIMER_NORESTART;
1042}
1043
95e904c7 1044#ifdef CONFIG_SMP
31656519
PZ
1045/*
1046 * called from hardirq (IPI) context
1047 */
1048static void __hrtick_start(void *arg)
b328ca18 1049{
31656519 1050 struct rq *rq = arg;
b328ca18 1051
31656519
PZ
1052 spin_lock(&rq->lock);
1053 hrtimer_restart(&rq->hrtick_timer);
1054 rq->hrtick_csd_pending = 0;
1055 spin_unlock(&rq->lock);
b328ca18
PZ
1056}
1057
31656519
PZ
1058/*
1059 * Called to set the hrtick timer state.
1060 *
1061 * called with rq->lock held and irqs disabled
1062 */
1063static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1064{
31656519
PZ
1065 struct hrtimer *timer = &rq->hrtick_timer;
1066 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1067
31656519
PZ
1068 timer->expires = time;
1069
1070 if (rq == this_rq()) {
1071 hrtimer_restart(timer);
1072 } else if (!rq->hrtick_csd_pending) {
1073 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1074 rq->hrtick_csd_pending = 1;
1075 }
b328ca18
PZ
1076}
1077
1078static int
1079hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1080{
1081 int cpu = (int)(long)hcpu;
1082
1083 switch (action) {
1084 case CPU_UP_CANCELED:
1085 case CPU_UP_CANCELED_FROZEN:
1086 case CPU_DOWN_PREPARE:
1087 case CPU_DOWN_PREPARE_FROZEN:
1088 case CPU_DEAD:
1089 case CPU_DEAD_FROZEN:
31656519 1090 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1091 return NOTIFY_OK;
1092 }
1093
1094 return NOTIFY_DONE;
1095}
1096
1097static void init_hrtick(void)
1098{
1099 hotcpu_notifier(hotplug_hrtick, 0);
1100}
31656519
PZ
1101#else
1102/*
1103 * Called to set the hrtick timer state.
1104 *
1105 * called with rq->lock held and irqs disabled
1106 */
1107static void hrtick_start(struct rq *rq, u64 delay)
1108{
1109 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1110}
b328ca18 1111
31656519 1112static void init_hrtick(void)
8f4d37ec 1113{
8f4d37ec 1114}
31656519 1115#endif /* CONFIG_SMP */
8f4d37ec 1116
31656519 1117static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1118{
31656519
PZ
1119#ifdef CONFIG_SMP
1120 rq->hrtick_csd_pending = 0;
8f4d37ec 1121
31656519
PZ
1122 rq->hrtick_csd.flags = 0;
1123 rq->hrtick_csd.func = __hrtick_start;
1124 rq->hrtick_csd.info = rq;
1125#endif
8f4d37ec 1126
31656519
PZ
1127 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1128 rq->hrtick_timer.function = hrtick;
1129 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
8f4d37ec
PZ
1130}
1131#else
1132static inline void hrtick_clear(struct rq *rq)
1133{
1134}
1135
8f4d37ec
PZ
1136static inline void init_rq_hrtick(struct rq *rq)
1137{
1138}
1139
b328ca18
PZ
1140static inline void init_hrtick(void)
1141{
1142}
8f4d37ec
PZ
1143#endif
1144
c24d20db
IM
1145/*
1146 * resched_task - mark a task 'to be rescheduled now'.
1147 *
1148 * On UP this means the setting of the need_resched flag, on SMP it
1149 * might also involve a cross-CPU call to trigger the scheduler on
1150 * the target CPU.
1151 */
1152#ifdef CONFIG_SMP
1153
1154#ifndef tsk_is_polling
1155#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1156#endif
1157
31656519 1158static void resched_task(struct task_struct *p)
c24d20db
IM
1159{
1160 int cpu;
1161
1162 assert_spin_locked(&task_rq(p)->lock);
1163
31656519 1164 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1165 return;
1166
31656519 1167 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1168
1169 cpu = task_cpu(p);
1170 if (cpu == smp_processor_id())
1171 return;
1172
1173 /* NEED_RESCHED must be visible before we test polling */
1174 smp_mb();
1175 if (!tsk_is_polling(p))
1176 smp_send_reschedule(cpu);
1177}
1178
1179static void resched_cpu(int cpu)
1180{
1181 struct rq *rq = cpu_rq(cpu);
1182 unsigned long flags;
1183
1184 if (!spin_trylock_irqsave(&rq->lock, flags))
1185 return;
1186 resched_task(cpu_curr(cpu));
1187 spin_unlock_irqrestore(&rq->lock, flags);
1188}
06d8308c
TG
1189
1190#ifdef CONFIG_NO_HZ
1191/*
1192 * When add_timer_on() enqueues a timer into the timer wheel of an
1193 * idle CPU then this timer might expire before the next timer event
1194 * which is scheduled to wake up that CPU. In case of a completely
1195 * idle system the next event might even be infinite time into the
1196 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1197 * leaves the inner idle loop so the newly added timer is taken into
1198 * account when the CPU goes back to idle and evaluates the timer
1199 * wheel for the next timer event.
1200 */
1201void wake_up_idle_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204
1205 if (cpu == smp_processor_id())
1206 return;
1207
1208 /*
1209 * This is safe, as this function is called with the timer
1210 * wheel base lock of (cpu) held. When the CPU is on the way
1211 * to idle and has not yet set rq->curr to idle then it will
1212 * be serialized on the timer wheel base lock and take the new
1213 * timer into account automatically.
1214 */
1215 if (rq->curr != rq->idle)
1216 return;
1217
1218 /*
1219 * We can set TIF_RESCHED on the idle task of the other CPU
1220 * lockless. The worst case is that the other CPU runs the
1221 * idle task through an additional NOOP schedule()
1222 */
1223 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1224
1225 /* NEED_RESCHED must be visible before we test polling */
1226 smp_mb();
1227 if (!tsk_is_polling(rq->idle))
1228 smp_send_reschedule(cpu);
1229}
6d6bc0ad 1230#endif /* CONFIG_NO_HZ */
06d8308c 1231
6d6bc0ad 1232#else /* !CONFIG_SMP */
31656519 1233static void resched_task(struct task_struct *p)
c24d20db
IM
1234{
1235 assert_spin_locked(&task_rq(p)->lock);
31656519 1236 set_tsk_need_resched(p);
c24d20db 1237}
6d6bc0ad 1238#endif /* CONFIG_SMP */
c24d20db 1239
45bf76df
IM
1240#if BITS_PER_LONG == 32
1241# define WMULT_CONST (~0UL)
1242#else
1243# define WMULT_CONST (1UL << 32)
1244#endif
1245
1246#define WMULT_SHIFT 32
1247
194081eb
IM
1248/*
1249 * Shift right and round:
1250 */
cf2ab469 1251#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1252
a7be37ac
PZ
1253/*
1254 * delta *= weight / lw
1255 */
cb1c4fc9 1256static unsigned long
45bf76df
IM
1257calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1258 struct load_weight *lw)
1259{
1260 u64 tmp;
1261
7a232e03
LJ
1262 if (!lw->inv_weight) {
1263 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1264 lw->inv_weight = 1;
1265 else
1266 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1267 / (lw->weight+1);
1268 }
45bf76df
IM
1269
1270 tmp = (u64)delta_exec * weight;
1271 /*
1272 * Check whether we'd overflow the 64-bit multiplication:
1273 */
194081eb 1274 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1275 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1276 WMULT_SHIFT/2);
1277 else
cf2ab469 1278 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1279
ecf691da 1280 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1281}
1282
1091985b 1283static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1284{
1285 lw->weight += inc;
e89996ae 1286 lw->inv_weight = 0;
45bf76df
IM
1287}
1288
1091985b 1289static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1290{
1291 lw->weight -= dec;
e89996ae 1292 lw->inv_weight = 0;
45bf76df
IM
1293}
1294
2dd73a4f
PW
1295/*
1296 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1297 * of tasks with abnormal "nice" values across CPUs the contribution that
1298 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1299 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1300 * scaled version of the new time slice allocation that they receive on time
1301 * slice expiry etc.
1302 */
1303
dd41f596
IM
1304#define WEIGHT_IDLEPRIO 2
1305#define WMULT_IDLEPRIO (1 << 31)
1306
1307/*
1308 * Nice levels are multiplicative, with a gentle 10% change for every
1309 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1310 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1311 * that remained on nice 0.
1312 *
1313 * The "10% effect" is relative and cumulative: from _any_ nice level,
1314 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1315 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1316 * If a task goes up by ~10% and another task goes down by ~10% then
1317 * the relative distance between them is ~25%.)
dd41f596
IM
1318 */
1319static const int prio_to_weight[40] = {
254753dc
IM
1320 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1321 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1322 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1323 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1324 /* 0 */ 1024, 820, 655, 526, 423,
1325 /* 5 */ 335, 272, 215, 172, 137,
1326 /* 10 */ 110, 87, 70, 56, 45,
1327 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1328};
1329
5714d2de
IM
1330/*
1331 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1332 *
1333 * In cases where the weight does not change often, we can use the
1334 * precalculated inverse to speed up arithmetics by turning divisions
1335 * into multiplications:
1336 */
dd41f596 1337static const u32 prio_to_wmult[40] = {
254753dc
IM
1338 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1339 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1340 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1341 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1342 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1343 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1344 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1345 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1346};
2dd73a4f 1347
dd41f596
IM
1348static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1349
1350/*
1351 * runqueue iterator, to support SMP load-balancing between different
1352 * scheduling classes, without having to expose their internal data
1353 * structures to the load-balancing proper:
1354 */
1355struct rq_iterator {
1356 void *arg;
1357 struct task_struct *(*start)(void *);
1358 struct task_struct *(*next)(void *);
1359};
1360
e1d1484f
PW
1361#ifdef CONFIG_SMP
1362static unsigned long
1363balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1364 unsigned long max_load_move, struct sched_domain *sd,
1365 enum cpu_idle_type idle, int *all_pinned,
1366 int *this_best_prio, struct rq_iterator *iterator);
1367
1368static int
1369iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1370 struct sched_domain *sd, enum cpu_idle_type idle,
1371 struct rq_iterator *iterator);
e1d1484f 1372#endif
dd41f596 1373
d842de87
SV
1374#ifdef CONFIG_CGROUP_CPUACCT
1375static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1376#else
1377static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1378#endif
1379
18d95a28
PZ
1380static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1381{
1382 update_load_add(&rq->load, load);
1383}
1384
1385static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1386{
1387 update_load_sub(&rq->load, load);
1388}
1389
9a7e0b18 1390#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(SCHED_RT_GROUP_SCHED)
eb755805 1391typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1392
1393/*
1394 * Iterate the full tree, calling @down when first entering a node and @up when
1395 * leaving it for the final time.
1396 */
eb755805 1397static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1398{
1399 struct task_group *parent, *child;
eb755805 1400 int ret;
c09595f6
PZ
1401
1402 rcu_read_lock();
1403 parent = &root_task_group;
1404down:
eb755805
PZ
1405 ret = (*down)(parent, data);
1406 if (ret)
1407 goto out_unlock;
c09595f6
PZ
1408 list_for_each_entry_rcu(child, &parent->children, siblings) {
1409 parent = child;
1410 goto down;
1411
1412up:
1413 continue;
1414 }
eb755805
PZ
1415 ret = (*up)(parent, data);
1416 if (ret)
1417 goto out_unlock;
c09595f6
PZ
1418
1419 child = parent;
1420 parent = parent->parent;
1421 if (parent)
1422 goto up;
eb755805 1423out_unlock:
c09595f6 1424 rcu_read_unlock();
eb755805
PZ
1425
1426 return ret;
1427}
1428
1429static int tg_nop(struct task_group *tg, void *data)
1430{
1431 return 0;
c09595f6 1432}
eb755805
PZ
1433#endif
1434
1435#ifdef CONFIG_SMP
1436static unsigned long source_load(int cpu, int type);
1437static unsigned long target_load(int cpu, int type);
1438static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1439
1440static unsigned long cpu_avg_load_per_task(int cpu)
1441{
1442 struct rq *rq = cpu_rq(cpu);
1443
1444 if (rq->nr_running)
1445 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1446
1447 return rq->avg_load_per_task;
1448}
1449
1450#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1451
c09595f6
PZ
1452static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1453
1454/*
1455 * Calculate and set the cpu's group shares.
1456 */
1457static void
b6a86c74 1458__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1459 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1460{
c09595f6
PZ
1461 int boost = 0;
1462 unsigned long shares;
1463 unsigned long rq_weight;
1464
c8cba857 1465 if (!tg->se[cpu])
c09595f6
PZ
1466 return;
1467
c8cba857 1468 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1469
1470 /*
1471 * If there are currently no tasks on the cpu pretend there is one of
1472 * average load so that when a new task gets to run here it will not
1473 * get delayed by group starvation.
1474 */
1475 if (!rq_weight) {
1476 boost = 1;
1477 rq_weight = NICE_0_LOAD;
1478 }
1479
c8cba857
PZ
1480 if (unlikely(rq_weight > sd_rq_weight))
1481 rq_weight = sd_rq_weight;
1482
c09595f6
PZ
1483 /*
1484 * \Sum shares * rq_weight
1485 * shares = -----------------------
1486 * \Sum rq_weight
1487 *
1488 */
c8cba857 1489 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1490
1491 /*
1492 * record the actual number of shares, not the boosted amount.
1493 */
c8cba857 1494 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1495 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1496
1497 if (shares < MIN_SHARES)
1498 shares = MIN_SHARES;
1499 else if (shares > MAX_SHARES)
1500 shares = MAX_SHARES;
1501
c8cba857 1502 __set_se_shares(tg->se[cpu], shares);
18d95a28 1503}
c09595f6
PZ
1504
1505/*
c8cba857
PZ
1506 * Re-compute the task group their per cpu shares over the given domain.
1507 * This needs to be done in a bottom-up fashion because the rq weight of a
1508 * parent group depends on the shares of its child groups.
c09595f6 1509 */
eb755805 1510static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1511{
c8cba857
PZ
1512 unsigned long rq_weight = 0;
1513 unsigned long shares = 0;
eb755805 1514 struct sched_domain *sd = data;
c8cba857 1515 int i;
c09595f6 1516
c8cba857
PZ
1517 for_each_cpu_mask(i, sd->span) {
1518 rq_weight += tg->cfs_rq[i]->load.weight;
1519 shares += tg->cfs_rq[i]->shares;
c09595f6 1520 }
c09595f6 1521
c8cba857
PZ
1522 if ((!shares && rq_weight) || shares > tg->shares)
1523 shares = tg->shares;
1524
1525 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1526 shares = tg->shares;
c09595f6 1527
cd80917e
PZ
1528 if (!rq_weight)
1529 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1530
c09595f6
PZ
1531 for_each_cpu_mask(i, sd->span) {
1532 struct rq *rq = cpu_rq(i);
1533 unsigned long flags;
1534
1535 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1536 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1537 spin_unlock_irqrestore(&rq->lock, flags);
1538 }
eb755805
PZ
1539
1540 return 0;
c09595f6
PZ
1541}
1542
1543/*
c8cba857
PZ
1544 * Compute the cpu's hierarchical load factor for each task group.
1545 * This needs to be done in a top-down fashion because the load of a child
1546 * group is a fraction of its parents load.
c09595f6 1547 */
eb755805 1548static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1549{
c8cba857 1550 unsigned long load;
eb755805 1551 long cpu = (long)data;
c09595f6 1552
c8cba857
PZ
1553 if (!tg->parent) {
1554 load = cpu_rq(cpu)->load.weight;
1555 } else {
1556 load = tg->parent->cfs_rq[cpu]->h_load;
1557 load *= tg->cfs_rq[cpu]->shares;
1558 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1559 }
c09595f6 1560
c8cba857 1561 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1562
eb755805 1563 return 0;
c09595f6
PZ
1564}
1565
c8cba857 1566static void update_shares(struct sched_domain *sd)
4d8d595d 1567{
2398f2c6
PZ
1568 u64 now = cpu_clock(raw_smp_processor_id());
1569 s64 elapsed = now - sd->last_update;
1570
1571 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1572 sd->last_update = now;
eb755805 1573 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1574 }
4d8d595d
PZ
1575}
1576
3e5459b4
PZ
1577static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1578{
1579 spin_unlock(&rq->lock);
1580 update_shares(sd);
1581 spin_lock(&rq->lock);
1582}
1583
eb755805 1584static void update_h_load(long cpu)
c09595f6 1585{
eb755805 1586 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1587}
1588
c09595f6
PZ
1589#else
1590
c8cba857 1591static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1592{
1593}
1594
3e5459b4
PZ
1595static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1596{
1597}
1598
18d95a28
PZ
1599#endif
1600
18d95a28
PZ
1601#endif
1602
30432094 1603#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1604static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1605{
30432094 1606#ifdef CONFIG_SMP
34e83e85
IM
1607 cfs_rq->shares = shares;
1608#endif
1609}
30432094 1610#endif
e7693a36 1611
dd41f596 1612#include "sched_stats.h"
dd41f596 1613#include "sched_idletask.c"
5522d5d5
IM
1614#include "sched_fair.c"
1615#include "sched_rt.c"
dd41f596
IM
1616#ifdef CONFIG_SCHED_DEBUG
1617# include "sched_debug.c"
1618#endif
1619
1620#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1621#define for_each_class(class) \
1622 for (class = sched_class_highest; class; class = class->next)
dd41f596 1623
c09595f6 1624static void inc_nr_running(struct rq *rq)
9c217245
IM
1625{
1626 rq->nr_running++;
9c217245
IM
1627}
1628
c09595f6 1629static void dec_nr_running(struct rq *rq)
9c217245
IM
1630{
1631 rq->nr_running--;
9c217245
IM
1632}
1633
45bf76df
IM
1634static void set_load_weight(struct task_struct *p)
1635{
1636 if (task_has_rt_policy(p)) {
dd41f596
IM
1637 p->se.load.weight = prio_to_weight[0] * 2;
1638 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1639 return;
1640 }
45bf76df 1641
dd41f596
IM
1642 /*
1643 * SCHED_IDLE tasks get minimal weight:
1644 */
1645 if (p->policy == SCHED_IDLE) {
1646 p->se.load.weight = WEIGHT_IDLEPRIO;
1647 p->se.load.inv_weight = WMULT_IDLEPRIO;
1648 return;
1649 }
71f8bd46 1650
dd41f596
IM
1651 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1652 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1653}
1654
2087a1ad
GH
1655static void update_avg(u64 *avg, u64 sample)
1656{
1657 s64 diff = sample - *avg;
1658 *avg += diff >> 3;
1659}
1660
8159f87e 1661static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1662{
dd41f596 1663 sched_info_queued(p);
fd390f6a 1664 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1665 p->se.on_rq = 1;
71f8bd46
IM
1666}
1667
69be72c1 1668static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1669{
2087a1ad
GH
1670 if (sleep && p->se.last_wakeup) {
1671 update_avg(&p->se.avg_overlap,
1672 p->se.sum_exec_runtime - p->se.last_wakeup);
1673 p->se.last_wakeup = 0;
1674 }
1675
46ac22ba 1676 sched_info_dequeued(p);
f02231e5 1677 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1678 p->se.on_rq = 0;
71f8bd46
IM
1679}
1680
14531189 1681/*
dd41f596 1682 * __normal_prio - return the priority that is based on the static prio
14531189 1683 */
14531189
IM
1684static inline int __normal_prio(struct task_struct *p)
1685{
dd41f596 1686 return p->static_prio;
14531189
IM
1687}
1688
b29739f9
IM
1689/*
1690 * Calculate the expected normal priority: i.e. priority
1691 * without taking RT-inheritance into account. Might be
1692 * boosted by interactivity modifiers. Changes upon fork,
1693 * setprio syscalls, and whenever the interactivity
1694 * estimator recalculates.
1695 */
36c8b586 1696static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1697{
1698 int prio;
1699
e05606d3 1700 if (task_has_rt_policy(p))
b29739f9
IM
1701 prio = MAX_RT_PRIO-1 - p->rt_priority;
1702 else
1703 prio = __normal_prio(p);
1704 return prio;
1705}
1706
1707/*
1708 * Calculate the current priority, i.e. the priority
1709 * taken into account by the scheduler. This value might
1710 * be boosted by RT tasks, or might be boosted by
1711 * interactivity modifiers. Will be RT if the task got
1712 * RT-boosted. If not then it returns p->normal_prio.
1713 */
36c8b586 1714static int effective_prio(struct task_struct *p)
b29739f9
IM
1715{
1716 p->normal_prio = normal_prio(p);
1717 /*
1718 * If we are RT tasks or we were boosted to RT priority,
1719 * keep the priority unchanged. Otherwise, update priority
1720 * to the normal priority:
1721 */
1722 if (!rt_prio(p->prio))
1723 return p->normal_prio;
1724 return p->prio;
1725}
1726
1da177e4 1727/*
dd41f596 1728 * activate_task - move a task to the runqueue.
1da177e4 1729 */
dd41f596 1730static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1731{
d9514f6c 1732 if (task_contributes_to_load(p))
dd41f596 1733 rq->nr_uninterruptible--;
1da177e4 1734
8159f87e 1735 enqueue_task(rq, p, wakeup);
c09595f6 1736 inc_nr_running(rq);
1da177e4
LT
1737}
1738
1da177e4
LT
1739/*
1740 * deactivate_task - remove a task from the runqueue.
1741 */
2e1cb74a 1742static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1743{
d9514f6c 1744 if (task_contributes_to_load(p))
dd41f596
IM
1745 rq->nr_uninterruptible++;
1746
69be72c1 1747 dequeue_task(rq, p, sleep);
c09595f6 1748 dec_nr_running(rq);
1da177e4
LT
1749}
1750
1da177e4
LT
1751/**
1752 * task_curr - is this task currently executing on a CPU?
1753 * @p: the task in question.
1754 */
36c8b586 1755inline int task_curr(const struct task_struct *p)
1da177e4
LT
1756{
1757 return cpu_curr(task_cpu(p)) == p;
1758}
1759
dd41f596
IM
1760static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1761{
6f505b16 1762 set_task_rq(p, cpu);
dd41f596 1763#ifdef CONFIG_SMP
ce96b5ac
DA
1764 /*
1765 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1766 * successfuly executed on another CPU. We must ensure that updates of
1767 * per-task data have been completed by this moment.
1768 */
1769 smp_wmb();
dd41f596 1770 task_thread_info(p)->cpu = cpu;
dd41f596 1771#endif
2dd73a4f
PW
1772}
1773
cb469845
SR
1774static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1775 const struct sched_class *prev_class,
1776 int oldprio, int running)
1777{
1778 if (prev_class != p->sched_class) {
1779 if (prev_class->switched_from)
1780 prev_class->switched_from(rq, p, running);
1781 p->sched_class->switched_to(rq, p, running);
1782 } else
1783 p->sched_class->prio_changed(rq, p, oldprio, running);
1784}
1785
1da177e4 1786#ifdef CONFIG_SMP
c65cc870 1787
e958b360
TG
1788/* Used instead of source_load when we know the type == 0 */
1789static unsigned long weighted_cpuload(const int cpu)
1790{
1791 return cpu_rq(cpu)->load.weight;
1792}
1793
cc367732
IM
1794/*
1795 * Is this task likely cache-hot:
1796 */
e7693a36 1797static int
cc367732
IM
1798task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1799{
1800 s64 delta;
1801
f540a608
IM
1802 /*
1803 * Buddy candidates are cache hot:
1804 */
d25ce4cd 1805 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1806 return 1;
1807
cc367732
IM
1808 if (p->sched_class != &fair_sched_class)
1809 return 0;
1810
6bc1665b
IM
1811 if (sysctl_sched_migration_cost == -1)
1812 return 1;
1813 if (sysctl_sched_migration_cost == 0)
1814 return 0;
1815
cc367732
IM
1816 delta = now - p->se.exec_start;
1817
1818 return delta < (s64)sysctl_sched_migration_cost;
1819}
1820
1821
dd41f596 1822void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1823{
dd41f596
IM
1824 int old_cpu = task_cpu(p);
1825 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1826 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1827 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1828 u64 clock_offset;
dd41f596
IM
1829
1830 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1831
1832#ifdef CONFIG_SCHEDSTATS
1833 if (p->se.wait_start)
1834 p->se.wait_start -= clock_offset;
dd41f596
IM
1835 if (p->se.sleep_start)
1836 p->se.sleep_start -= clock_offset;
1837 if (p->se.block_start)
1838 p->se.block_start -= clock_offset;
cc367732
IM
1839 if (old_cpu != new_cpu) {
1840 schedstat_inc(p, se.nr_migrations);
1841 if (task_hot(p, old_rq->clock, NULL))
1842 schedstat_inc(p, se.nr_forced2_migrations);
1843 }
6cfb0d5d 1844#endif
2830cf8c
SV
1845 p->se.vruntime -= old_cfsrq->min_vruntime -
1846 new_cfsrq->min_vruntime;
dd41f596
IM
1847
1848 __set_task_cpu(p, new_cpu);
c65cc870
IM
1849}
1850
70b97a7f 1851struct migration_req {
1da177e4 1852 struct list_head list;
1da177e4 1853
36c8b586 1854 struct task_struct *task;
1da177e4
LT
1855 int dest_cpu;
1856
1da177e4 1857 struct completion done;
70b97a7f 1858};
1da177e4
LT
1859
1860/*
1861 * The task's runqueue lock must be held.
1862 * Returns true if you have to wait for migration thread.
1863 */
36c8b586 1864static int
70b97a7f 1865migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1866{
70b97a7f 1867 struct rq *rq = task_rq(p);
1da177e4
LT
1868
1869 /*
1870 * If the task is not on a runqueue (and not running), then
1871 * it is sufficient to simply update the task's cpu field.
1872 */
dd41f596 1873 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1874 set_task_cpu(p, dest_cpu);
1875 return 0;
1876 }
1877
1878 init_completion(&req->done);
1da177e4
LT
1879 req->task = p;
1880 req->dest_cpu = dest_cpu;
1881 list_add(&req->list, &rq->migration_queue);
48f24c4d 1882
1da177e4
LT
1883 return 1;
1884}
1885
1886/*
1887 * wait_task_inactive - wait for a thread to unschedule.
1888 *
85ba2d86
RM
1889 * If @match_state is nonzero, it's the @p->state value just checked and
1890 * not expected to change. If it changes, i.e. @p might have woken up,
1891 * then return zero. When we succeed in waiting for @p to be off its CPU,
1892 * we return a positive number (its total switch count). If a second call
1893 * a short while later returns the same number, the caller can be sure that
1894 * @p has remained unscheduled the whole time.
1895 *
1da177e4
LT
1896 * The caller must ensure that the task *will* unschedule sometime soon,
1897 * else this function might spin for a *long* time. This function can't
1898 * be called with interrupts off, or it may introduce deadlock with
1899 * smp_call_function() if an IPI is sent by the same process we are
1900 * waiting to become inactive.
1901 */
85ba2d86 1902unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1903{
1904 unsigned long flags;
dd41f596 1905 int running, on_rq;
85ba2d86 1906 unsigned long ncsw;
70b97a7f 1907 struct rq *rq;
1da177e4 1908
3a5c359a
AK
1909 for (;;) {
1910 /*
1911 * We do the initial early heuristics without holding
1912 * any task-queue locks at all. We'll only try to get
1913 * the runqueue lock when things look like they will
1914 * work out!
1915 */
1916 rq = task_rq(p);
fa490cfd 1917
3a5c359a
AK
1918 /*
1919 * If the task is actively running on another CPU
1920 * still, just relax and busy-wait without holding
1921 * any locks.
1922 *
1923 * NOTE! Since we don't hold any locks, it's not
1924 * even sure that "rq" stays as the right runqueue!
1925 * But we don't care, since "task_running()" will
1926 * return false if the runqueue has changed and p
1927 * is actually now running somewhere else!
1928 */
85ba2d86
RM
1929 while (task_running(rq, p)) {
1930 if (match_state && unlikely(p->state != match_state))
1931 return 0;
3a5c359a 1932 cpu_relax();
85ba2d86 1933 }
fa490cfd 1934
3a5c359a
AK
1935 /*
1936 * Ok, time to look more closely! We need the rq
1937 * lock now, to be *sure*. If we're wrong, we'll
1938 * just go back and repeat.
1939 */
1940 rq = task_rq_lock(p, &flags);
1941 running = task_running(rq, p);
1942 on_rq = p->se.on_rq;
85ba2d86
RM
1943 ncsw = 0;
1944 if (!match_state || p->state == match_state) {
1945 ncsw = p->nivcsw + p->nvcsw;
1946 if (unlikely(!ncsw))
1947 ncsw = 1;
1948 }
3a5c359a 1949 task_rq_unlock(rq, &flags);
fa490cfd 1950
85ba2d86
RM
1951 /*
1952 * If it changed from the expected state, bail out now.
1953 */
1954 if (unlikely(!ncsw))
1955 break;
1956
3a5c359a
AK
1957 /*
1958 * Was it really running after all now that we
1959 * checked with the proper locks actually held?
1960 *
1961 * Oops. Go back and try again..
1962 */
1963 if (unlikely(running)) {
1964 cpu_relax();
1965 continue;
1966 }
fa490cfd 1967
3a5c359a
AK
1968 /*
1969 * It's not enough that it's not actively running,
1970 * it must be off the runqueue _entirely_, and not
1971 * preempted!
1972 *
1973 * So if it wa still runnable (but just not actively
1974 * running right now), it's preempted, and we should
1975 * yield - it could be a while.
1976 */
1977 if (unlikely(on_rq)) {
1978 schedule_timeout_uninterruptible(1);
1979 continue;
1980 }
fa490cfd 1981
3a5c359a
AK
1982 /*
1983 * Ahh, all good. It wasn't running, and it wasn't
1984 * runnable, which means that it will never become
1985 * running in the future either. We're all done!
1986 */
1987 break;
1988 }
85ba2d86
RM
1989
1990 return ncsw;
1da177e4
LT
1991}
1992
1993/***
1994 * kick_process - kick a running thread to enter/exit the kernel
1995 * @p: the to-be-kicked thread
1996 *
1997 * Cause a process which is running on another CPU to enter
1998 * kernel-mode, without any delay. (to get signals handled.)
1999 *
2000 * NOTE: this function doesnt have to take the runqueue lock,
2001 * because all it wants to ensure is that the remote task enters
2002 * the kernel. If the IPI races and the task has been migrated
2003 * to another CPU then no harm is done and the purpose has been
2004 * achieved as well.
2005 */
36c8b586 2006void kick_process(struct task_struct *p)
1da177e4
LT
2007{
2008 int cpu;
2009
2010 preempt_disable();
2011 cpu = task_cpu(p);
2012 if ((cpu != smp_processor_id()) && task_curr(p))
2013 smp_send_reschedule(cpu);
2014 preempt_enable();
2015}
2016
2017/*
2dd73a4f
PW
2018 * Return a low guess at the load of a migration-source cpu weighted
2019 * according to the scheduling class and "nice" value.
1da177e4
LT
2020 *
2021 * We want to under-estimate the load of migration sources, to
2022 * balance conservatively.
2023 */
a9957449 2024static unsigned long source_load(int cpu, int type)
1da177e4 2025{
70b97a7f 2026 struct rq *rq = cpu_rq(cpu);
dd41f596 2027 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2028
93b75217 2029 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2030 return total;
b910472d 2031
dd41f596 2032 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2033}
2034
2035/*
2dd73a4f
PW
2036 * Return a high guess at the load of a migration-target cpu weighted
2037 * according to the scheduling class and "nice" value.
1da177e4 2038 */
a9957449 2039static unsigned long target_load(int cpu, int type)
1da177e4 2040{
70b97a7f 2041 struct rq *rq = cpu_rq(cpu);
dd41f596 2042 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2043
93b75217 2044 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2045 return total;
3b0bd9bc 2046
dd41f596 2047 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2048}
2049
147cbb4b
NP
2050/*
2051 * find_idlest_group finds and returns the least busy CPU group within the
2052 * domain.
2053 */
2054static struct sched_group *
2055find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2056{
2057 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2058 unsigned long min_load = ULONG_MAX, this_load = 0;
2059 int load_idx = sd->forkexec_idx;
2060 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2061
2062 do {
2063 unsigned long load, avg_load;
2064 int local_group;
2065 int i;
2066
da5a5522
BD
2067 /* Skip over this group if it has no CPUs allowed */
2068 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2069 continue;
da5a5522 2070
147cbb4b 2071 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2072
2073 /* Tally up the load of all CPUs in the group */
2074 avg_load = 0;
2075
363ab6f1 2076 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2077 /* Bias balancing toward cpus of our domain */
2078 if (local_group)
2079 load = source_load(i, load_idx);
2080 else
2081 load = target_load(i, load_idx);
2082
2083 avg_load += load;
2084 }
2085
2086 /* Adjust by relative CPU power of the group */
5517d86b
ED
2087 avg_load = sg_div_cpu_power(group,
2088 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2089
2090 if (local_group) {
2091 this_load = avg_load;
2092 this = group;
2093 } else if (avg_load < min_load) {
2094 min_load = avg_load;
2095 idlest = group;
2096 }
3a5c359a 2097 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2098
2099 if (!idlest || 100*this_load < imbalance*min_load)
2100 return NULL;
2101 return idlest;
2102}
2103
2104/*
0feaece9 2105 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2106 */
95cdf3b7 2107static int
7c16ec58
MT
2108find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2109 cpumask_t *tmp)
147cbb4b
NP
2110{
2111 unsigned long load, min_load = ULONG_MAX;
2112 int idlest = -1;
2113 int i;
2114
da5a5522 2115 /* Traverse only the allowed CPUs */
7c16ec58 2116 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2117
363ab6f1 2118 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2119 load = weighted_cpuload(i);
147cbb4b
NP
2120
2121 if (load < min_load || (load == min_load && i == this_cpu)) {
2122 min_load = load;
2123 idlest = i;
2124 }
2125 }
2126
2127 return idlest;
2128}
2129
476d139c
NP
2130/*
2131 * sched_balance_self: balance the current task (running on cpu) in domains
2132 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2133 * SD_BALANCE_EXEC.
2134 *
2135 * Balance, ie. select the least loaded group.
2136 *
2137 * Returns the target CPU number, or the same CPU if no balancing is needed.
2138 *
2139 * preempt must be disabled.
2140 */
2141static int sched_balance_self(int cpu, int flag)
2142{
2143 struct task_struct *t = current;
2144 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2145
c96d145e 2146 for_each_domain(cpu, tmp) {
9761eea8
IM
2147 /*
2148 * If power savings logic is enabled for a domain, stop there.
2149 */
5c45bf27
SS
2150 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2151 break;
476d139c
NP
2152 if (tmp->flags & flag)
2153 sd = tmp;
c96d145e 2154 }
476d139c 2155
039a1c41
PZ
2156 if (sd)
2157 update_shares(sd);
2158
476d139c 2159 while (sd) {
7c16ec58 2160 cpumask_t span, tmpmask;
476d139c 2161 struct sched_group *group;
1a848870
SS
2162 int new_cpu, weight;
2163
2164 if (!(sd->flags & flag)) {
2165 sd = sd->child;
2166 continue;
2167 }
476d139c
NP
2168
2169 span = sd->span;
2170 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2171 if (!group) {
2172 sd = sd->child;
2173 continue;
2174 }
476d139c 2175
7c16ec58 2176 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2177 if (new_cpu == -1 || new_cpu == cpu) {
2178 /* Now try balancing at a lower domain level of cpu */
2179 sd = sd->child;
2180 continue;
2181 }
476d139c 2182
1a848870 2183 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2184 cpu = new_cpu;
476d139c
NP
2185 sd = NULL;
2186 weight = cpus_weight(span);
2187 for_each_domain(cpu, tmp) {
2188 if (weight <= cpus_weight(tmp->span))
2189 break;
2190 if (tmp->flags & flag)
2191 sd = tmp;
2192 }
2193 /* while loop will break here if sd == NULL */
2194 }
2195
2196 return cpu;
2197}
2198
2199#endif /* CONFIG_SMP */
1da177e4 2200
1da177e4
LT
2201/***
2202 * try_to_wake_up - wake up a thread
2203 * @p: the to-be-woken-up thread
2204 * @state: the mask of task states that can be woken
2205 * @sync: do a synchronous wakeup?
2206 *
2207 * Put it on the run-queue if it's not already there. The "current"
2208 * thread is always on the run-queue (except when the actual
2209 * re-schedule is in progress), and as such you're allowed to do
2210 * the simpler "current->state = TASK_RUNNING" to mark yourself
2211 * runnable without the overhead of this.
2212 *
2213 * returns failure only if the task is already active.
2214 */
36c8b586 2215static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2216{
cc367732 2217 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2218 unsigned long flags;
2219 long old_state;
70b97a7f 2220 struct rq *rq;
1da177e4 2221
b85d0667
IM
2222 if (!sched_feat(SYNC_WAKEUPS))
2223 sync = 0;
2224
2398f2c6
PZ
2225#ifdef CONFIG_SMP
2226 if (sched_feat(LB_WAKEUP_UPDATE)) {
2227 struct sched_domain *sd;
2228
2229 this_cpu = raw_smp_processor_id();
2230 cpu = task_cpu(p);
2231
2232 for_each_domain(this_cpu, sd) {
2233 if (cpu_isset(cpu, sd->span)) {
2234 update_shares(sd);
2235 break;
2236 }
2237 }
2238 }
2239#endif
2240
04e2f174 2241 smp_wmb();
1da177e4
LT
2242 rq = task_rq_lock(p, &flags);
2243 old_state = p->state;
2244 if (!(old_state & state))
2245 goto out;
2246
dd41f596 2247 if (p->se.on_rq)
1da177e4
LT
2248 goto out_running;
2249
2250 cpu = task_cpu(p);
cc367732 2251 orig_cpu = cpu;
1da177e4
LT
2252 this_cpu = smp_processor_id();
2253
2254#ifdef CONFIG_SMP
2255 if (unlikely(task_running(rq, p)))
2256 goto out_activate;
2257
5d2f5a61
DA
2258 cpu = p->sched_class->select_task_rq(p, sync);
2259 if (cpu != orig_cpu) {
2260 set_task_cpu(p, cpu);
1da177e4
LT
2261 task_rq_unlock(rq, &flags);
2262 /* might preempt at this point */
2263 rq = task_rq_lock(p, &flags);
2264 old_state = p->state;
2265 if (!(old_state & state))
2266 goto out;
dd41f596 2267 if (p->se.on_rq)
1da177e4
LT
2268 goto out_running;
2269
2270 this_cpu = smp_processor_id();
2271 cpu = task_cpu(p);
2272 }
2273
e7693a36
GH
2274#ifdef CONFIG_SCHEDSTATS
2275 schedstat_inc(rq, ttwu_count);
2276 if (cpu == this_cpu)
2277 schedstat_inc(rq, ttwu_local);
2278 else {
2279 struct sched_domain *sd;
2280 for_each_domain(this_cpu, sd) {
2281 if (cpu_isset(cpu, sd->span)) {
2282 schedstat_inc(sd, ttwu_wake_remote);
2283 break;
2284 }
2285 }
2286 }
6d6bc0ad 2287#endif /* CONFIG_SCHEDSTATS */
e7693a36 2288
1da177e4
LT
2289out_activate:
2290#endif /* CONFIG_SMP */
cc367732
IM
2291 schedstat_inc(p, se.nr_wakeups);
2292 if (sync)
2293 schedstat_inc(p, se.nr_wakeups_sync);
2294 if (orig_cpu != cpu)
2295 schedstat_inc(p, se.nr_wakeups_migrate);
2296 if (cpu == this_cpu)
2297 schedstat_inc(p, se.nr_wakeups_local);
2298 else
2299 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2300 update_rq_clock(rq);
dd41f596 2301 activate_task(rq, p, 1);
1da177e4
LT
2302 success = 1;
2303
2304out_running:
5b82a1b0
MD
2305 trace_mark(kernel_sched_wakeup,
2306 "pid %d state %ld ## rq %p task %p rq->curr %p",
2307 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2308 check_preempt_curr(rq, p);
2309
1da177e4 2310 p->state = TASK_RUNNING;
9a897c5a
SR
2311#ifdef CONFIG_SMP
2312 if (p->sched_class->task_wake_up)
2313 p->sched_class->task_wake_up(rq, p);
2314#endif
1da177e4 2315out:
2087a1ad
GH
2316 current->se.last_wakeup = current->se.sum_exec_runtime;
2317
1da177e4
LT
2318 task_rq_unlock(rq, &flags);
2319
2320 return success;
2321}
2322
7ad5b3a5 2323int wake_up_process(struct task_struct *p)
1da177e4 2324{
d9514f6c 2325 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2326}
1da177e4
LT
2327EXPORT_SYMBOL(wake_up_process);
2328
7ad5b3a5 2329int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2330{
2331 return try_to_wake_up(p, state, 0);
2332}
2333
1da177e4
LT
2334/*
2335 * Perform scheduler related setup for a newly forked process p.
2336 * p is forked by current.
dd41f596
IM
2337 *
2338 * __sched_fork() is basic setup used by init_idle() too:
2339 */
2340static void __sched_fork(struct task_struct *p)
2341{
dd41f596
IM
2342 p->se.exec_start = 0;
2343 p->se.sum_exec_runtime = 0;
f6cf891c 2344 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2345 p->se.last_wakeup = 0;
2346 p->se.avg_overlap = 0;
6cfb0d5d
IM
2347
2348#ifdef CONFIG_SCHEDSTATS
2349 p->se.wait_start = 0;
dd41f596
IM
2350 p->se.sum_sleep_runtime = 0;
2351 p->se.sleep_start = 0;
dd41f596
IM
2352 p->se.block_start = 0;
2353 p->se.sleep_max = 0;
2354 p->se.block_max = 0;
2355 p->se.exec_max = 0;
eba1ed4b 2356 p->se.slice_max = 0;
dd41f596 2357 p->se.wait_max = 0;
6cfb0d5d 2358#endif
476d139c 2359
fa717060 2360 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2361 p->se.on_rq = 0;
4a55bd5e 2362 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2363
e107be36
AK
2364#ifdef CONFIG_PREEMPT_NOTIFIERS
2365 INIT_HLIST_HEAD(&p->preempt_notifiers);
2366#endif
2367
1da177e4
LT
2368 /*
2369 * We mark the process as running here, but have not actually
2370 * inserted it onto the runqueue yet. This guarantees that
2371 * nobody will actually run it, and a signal or other external
2372 * event cannot wake it up and insert it on the runqueue either.
2373 */
2374 p->state = TASK_RUNNING;
dd41f596
IM
2375}
2376
2377/*
2378 * fork()/clone()-time setup:
2379 */
2380void sched_fork(struct task_struct *p, int clone_flags)
2381{
2382 int cpu = get_cpu();
2383
2384 __sched_fork(p);
2385
2386#ifdef CONFIG_SMP
2387 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2388#endif
02e4bac2 2389 set_task_cpu(p, cpu);
b29739f9
IM
2390
2391 /*
2392 * Make sure we do not leak PI boosting priority to the child:
2393 */
2394 p->prio = current->normal_prio;
2ddbf952
HS
2395 if (!rt_prio(p->prio))
2396 p->sched_class = &fair_sched_class;
b29739f9 2397
52f17b6c 2398#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2399 if (likely(sched_info_on()))
52f17b6c 2400 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2401#endif
d6077cb8 2402#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2403 p->oncpu = 0;
2404#endif
1da177e4 2405#ifdef CONFIG_PREEMPT
4866cde0 2406 /* Want to start with kernel preemption disabled. */
a1261f54 2407 task_thread_info(p)->preempt_count = 1;
1da177e4 2408#endif
476d139c 2409 put_cpu();
1da177e4
LT
2410}
2411
2412/*
2413 * wake_up_new_task - wake up a newly created task for the first time.
2414 *
2415 * This function will do some initial scheduler statistics housekeeping
2416 * that must be done for every newly created context, then puts the task
2417 * on the runqueue and wakes it.
2418 */
7ad5b3a5 2419void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2420{
2421 unsigned long flags;
dd41f596 2422 struct rq *rq;
1da177e4
LT
2423
2424 rq = task_rq_lock(p, &flags);
147cbb4b 2425 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2426 update_rq_clock(rq);
1da177e4
LT
2427
2428 p->prio = effective_prio(p);
2429
b9dca1e0 2430 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2431 activate_task(rq, p, 0);
1da177e4 2432 } else {
1da177e4 2433 /*
dd41f596
IM
2434 * Let the scheduling class do new task startup
2435 * management (if any):
1da177e4 2436 */
ee0827d8 2437 p->sched_class->task_new(rq, p);
c09595f6 2438 inc_nr_running(rq);
1da177e4 2439 }
5b82a1b0
MD
2440 trace_mark(kernel_sched_wakeup_new,
2441 "pid %d state %ld ## rq %p task %p rq->curr %p",
2442 p->pid, p->state, rq, p, rq->curr);
dd41f596 2443 check_preempt_curr(rq, p);
9a897c5a
SR
2444#ifdef CONFIG_SMP
2445 if (p->sched_class->task_wake_up)
2446 p->sched_class->task_wake_up(rq, p);
2447#endif
dd41f596 2448 task_rq_unlock(rq, &flags);
1da177e4
LT
2449}
2450
e107be36
AK
2451#ifdef CONFIG_PREEMPT_NOTIFIERS
2452
2453/**
421cee29
RD
2454 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2455 * @notifier: notifier struct to register
e107be36
AK
2456 */
2457void preempt_notifier_register(struct preempt_notifier *notifier)
2458{
2459 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2460}
2461EXPORT_SYMBOL_GPL(preempt_notifier_register);
2462
2463/**
2464 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2465 * @notifier: notifier struct to unregister
e107be36
AK
2466 *
2467 * This is safe to call from within a preemption notifier.
2468 */
2469void preempt_notifier_unregister(struct preempt_notifier *notifier)
2470{
2471 hlist_del(&notifier->link);
2472}
2473EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2474
2475static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2476{
2477 struct preempt_notifier *notifier;
2478 struct hlist_node *node;
2479
2480 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2481 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2482}
2483
2484static void
2485fire_sched_out_preempt_notifiers(struct task_struct *curr,
2486 struct task_struct *next)
2487{
2488 struct preempt_notifier *notifier;
2489 struct hlist_node *node;
2490
2491 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2492 notifier->ops->sched_out(notifier, next);
2493}
2494
6d6bc0ad 2495#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2496
2497static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2498{
2499}
2500
2501static void
2502fire_sched_out_preempt_notifiers(struct task_struct *curr,
2503 struct task_struct *next)
2504{
2505}
2506
6d6bc0ad 2507#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2508
4866cde0
NP
2509/**
2510 * prepare_task_switch - prepare to switch tasks
2511 * @rq: the runqueue preparing to switch
421cee29 2512 * @prev: the current task that is being switched out
4866cde0
NP
2513 * @next: the task we are going to switch to.
2514 *
2515 * This is called with the rq lock held and interrupts off. It must
2516 * be paired with a subsequent finish_task_switch after the context
2517 * switch.
2518 *
2519 * prepare_task_switch sets up locking and calls architecture specific
2520 * hooks.
2521 */
e107be36
AK
2522static inline void
2523prepare_task_switch(struct rq *rq, struct task_struct *prev,
2524 struct task_struct *next)
4866cde0 2525{
e107be36 2526 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2527 prepare_lock_switch(rq, next);
2528 prepare_arch_switch(next);
2529}
2530
1da177e4
LT
2531/**
2532 * finish_task_switch - clean up after a task-switch
344babaa 2533 * @rq: runqueue associated with task-switch
1da177e4
LT
2534 * @prev: the thread we just switched away from.
2535 *
4866cde0
NP
2536 * finish_task_switch must be called after the context switch, paired
2537 * with a prepare_task_switch call before the context switch.
2538 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2539 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2540 *
2541 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2542 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2543 * with the lock held can cause deadlocks; see schedule() for
2544 * details.)
2545 */
a9957449 2546static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2547 __releases(rq->lock)
2548{
1da177e4 2549 struct mm_struct *mm = rq->prev_mm;
55a101f8 2550 long prev_state;
1da177e4
LT
2551
2552 rq->prev_mm = NULL;
2553
2554 /*
2555 * A task struct has one reference for the use as "current".
c394cc9f 2556 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2557 * schedule one last time. The schedule call will never return, and
2558 * the scheduled task must drop that reference.
c394cc9f 2559 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2560 * still held, otherwise prev could be scheduled on another cpu, die
2561 * there before we look at prev->state, and then the reference would
2562 * be dropped twice.
2563 * Manfred Spraul <manfred@colorfullife.com>
2564 */
55a101f8 2565 prev_state = prev->state;
4866cde0
NP
2566 finish_arch_switch(prev);
2567 finish_lock_switch(rq, prev);
9a897c5a
SR
2568#ifdef CONFIG_SMP
2569 if (current->sched_class->post_schedule)
2570 current->sched_class->post_schedule(rq);
2571#endif
e8fa1362 2572
e107be36 2573 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2574 if (mm)
2575 mmdrop(mm);
c394cc9f 2576 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2577 /*
2578 * Remove function-return probe instances associated with this
2579 * task and put them back on the free list.
9761eea8 2580 */
c6fd91f0 2581 kprobe_flush_task(prev);
1da177e4 2582 put_task_struct(prev);
c6fd91f0 2583 }
1da177e4
LT
2584}
2585
2586/**
2587 * schedule_tail - first thing a freshly forked thread must call.
2588 * @prev: the thread we just switched away from.
2589 */
36c8b586 2590asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2591 __releases(rq->lock)
2592{
70b97a7f
IM
2593 struct rq *rq = this_rq();
2594
4866cde0
NP
2595 finish_task_switch(rq, prev);
2596#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2597 /* In this case, finish_task_switch does not reenable preemption */
2598 preempt_enable();
2599#endif
1da177e4 2600 if (current->set_child_tid)
b488893a 2601 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2602}
2603
2604/*
2605 * context_switch - switch to the new MM and the new
2606 * thread's register state.
2607 */
dd41f596 2608static inline void
70b97a7f 2609context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2610 struct task_struct *next)
1da177e4 2611{
dd41f596 2612 struct mm_struct *mm, *oldmm;
1da177e4 2613
e107be36 2614 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2615 trace_mark(kernel_sched_schedule,
2616 "prev_pid %d next_pid %d prev_state %ld "
2617 "## rq %p prev %p next %p",
2618 prev->pid, next->pid, prev->state,
2619 rq, prev, next);
dd41f596
IM
2620 mm = next->mm;
2621 oldmm = prev->active_mm;
9226d125
ZA
2622 /*
2623 * For paravirt, this is coupled with an exit in switch_to to
2624 * combine the page table reload and the switch backend into
2625 * one hypercall.
2626 */
2627 arch_enter_lazy_cpu_mode();
2628
dd41f596 2629 if (unlikely(!mm)) {
1da177e4
LT
2630 next->active_mm = oldmm;
2631 atomic_inc(&oldmm->mm_count);
2632 enter_lazy_tlb(oldmm, next);
2633 } else
2634 switch_mm(oldmm, mm, next);
2635
dd41f596 2636 if (unlikely(!prev->mm)) {
1da177e4 2637 prev->active_mm = NULL;
1da177e4
LT
2638 rq->prev_mm = oldmm;
2639 }
3a5f5e48
IM
2640 /*
2641 * Since the runqueue lock will be released by the next
2642 * task (which is an invalid locking op but in the case
2643 * of the scheduler it's an obvious special-case), so we
2644 * do an early lockdep release here:
2645 */
2646#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2647 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2648#endif
1da177e4
LT
2649
2650 /* Here we just switch the register state and the stack. */
2651 switch_to(prev, next, prev);
2652
dd41f596
IM
2653 barrier();
2654 /*
2655 * this_rq must be evaluated again because prev may have moved
2656 * CPUs since it called schedule(), thus the 'rq' on its stack
2657 * frame will be invalid.
2658 */
2659 finish_task_switch(this_rq(), prev);
1da177e4
LT
2660}
2661
2662/*
2663 * nr_running, nr_uninterruptible and nr_context_switches:
2664 *
2665 * externally visible scheduler statistics: current number of runnable
2666 * threads, current number of uninterruptible-sleeping threads, total
2667 * number of context switches performed since bootup.
2668 */
2669unsigned long nr_running(void)
2670{
2671 unsigned long i, sum = 0;
2672
2673 for_each_online_cpu(i)
2674 sum += cpu_rq(i)->nr_running;
2675
2676 return sum;
2677}
2678
2679unsigned long nr_uninterruptible(void)
2680{
2681 unsigned long i, sum = 0;
2682
0a945022 2683 for_each_possible_cpu(i)
1da177e4
LT
2684 sum += cpu_rq(i)->nr_uninterruptible;
2685
2686 /*
2687 * Since we read the counters lockless, it might be slightly
2688 * inaccurate. Do not allow it to go below zero though:
2689 */
2690 if (unlikely((long)sum < 0))
2691 sum = 0;
2692
2693 return sum;
2694}
2695
2696unsigned long long nr_context_switches(void)
2697{
cc94abfc
SR
2698 int i;
2699 unsigned long long sum = 0;
1da177e4 2700
0a945022 2701 for_each_possible_cpu(i)
1da177e4
LT
2702 sum += cpu_rq(i)->nr_switches;
2703
2704 return sum;
2705}
2706
2707unsigned long nr_iowait(void)
2708{
2709 unsigned long i, sum = 0;
2710
0a945022 2711 for_each_possible_cpu(i)
1da177e4
LT
2712 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2713
2714 return sum;
2715}
2716
db1b1fef
JS
2717unsigned long nr_active(void)
2718{
2719 unsigned long i, running = 0, uninterruptible = 0;
2720
2721 for_each_online_cpu(i) {
2722 running += cpu_rq(i)->nr_running;
2723 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2724 }
2725
2726 if (unlikely((long)uninterruptible < 0))
2727 uninterruptible = 0;
2728
2729 return running + uninterruptible;
2730}
2731
48f24c4d 2732/*
dd41f596
IM
2733 * Update rq->cpu_load[] statistics. This function is usually called every
2734 * scheduler tick (TICK_NSEC).
48f24c4d 2735 */
dd41f596 2736static void update_cpu_load(struct rq *this_rq)
48f24c4d 2737{
495eca49 2738 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2739 int i, scale;
2740
2741 this_rq->nr_load_updates++;
dd41f596
IM
2742
2743 /* Update our load: */
2744 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2745 unsigned long old_load, new_load;
2746
2747 /* scale is effectively 1 << i now, and >> i divides by scale */
2748
2749 old_load = this_rq->cpu_load[i];
2750 new_load = this_load;
a25707f3
IM
2751 /*
2752 * Round up the averaging division if load is increasing. This
2753 * prevents us from getting stuck on 9 if the load is 10, for
2754 * example.
2755 */
2756 if (new_load > old_load)
2757 new_load += scale-1;
dd41f596
IM
2758 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2759 }
48f24c4d
IM
2760}
2761
dd41f596
IM
2762#ifdef CONFIG_SMP
2763
1da177e4
LT
2764/*
2765 * double_rq_lock - safely lock two runqueues
2766 *
2767 * Note this does not disable interrupts like task_rq_lock,
2768 * you need to do so manually before calling.
2769 */
70b97a7f 2770static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2771 __acquires(rq1->lock)
2772 __acquires(rq2->lock)
2773{
054b9108 2774 BUG_ON(!irqs_disabled());
1da177e4
LT
2775 if (rq1 == rq2) {
2776 spin_lock(&rq1->lock);
2777 __acquire(rq2->lock); /* Fake it out ;) */
2778 } else {
c96d145e 2779 if (rq1 < rq2) {
1da177e4 2780 spin_lock(&rq1->lock);
5e710e37 2781 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2782 } else {
2783 spin_lock(&rq2->lock);
5e710e37 2784 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2785 }
2786 }
6e82a3be
IM
2787 update_rq_clock(rq1);
2788 update_rq_clock(rq2);
1da177e4
LT
2789}
2790
2791/*
2792 * double_rq_unlock - safely unlock two runqueues
2793 *
2794 * Note this does not restore interrupts like task_rq_unlock,
2795 * you need to do so manually after calling.
2796 */
70b97a7f 2797static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2798 __releases(rq1->lock)
2799 __releases(rq2->lock)
2800{
2801 spin_unlock(&rq1->lock);
2802 if (rq1 != rq2)
2803 spin_unlock(&rq2->lock);
2804 else
2805 __release(rq2->lock);
2806}
2807
2808/*
2809 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2810 */
e8fa1362 2811static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2812 __releases(this_rq->lock)
2813 __acquires(busiest->lock)
2814 __acquires(this_rq->lock)
2815{
e8fa1362
SR
2816 int ret = 0;
2817
054b9108
KK
2818 if (unlikely(!irqs_disabled())) {
2819 /* printk() doesn't work good under rq->lock */
2820 spin_unlock(&this_rq->lock);
2821 BUG_ON(1);
2822 }
1da177e4 2823 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2824 if (busiest < this_rq) {
1da177e4
LT
2825 spin_unlock(&this_rq->lock);
2826 spin_lock(&busiest->lock);
5e710e37 2827 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2828 ret = 1;
1da177e4 2829 } else
5e710e37 2830 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2831 }
e8fa1362 2832 return ret;
1da177e4
LT
2833}
2834
1b12bbc7
PZ
2835static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2836 __releases(busiest->lock)
2837{
2838 spin_unlock(&busiest->lock);
2839 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2840}
2841
1da177e4
LT
2842/*
2843 * If dest_cpu is allowed for this process, migrate the task to it.
2844 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2845 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2846 * the cpu_allowed mask is restored.
2847 */
36c8b586 2848static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2849{
70b97a7f 2850 struct migration_req req;
1da177e4 2851 unsigned long flags;
70b97a7f 2852 struct rq *rq;
1da177e4
LT
2853
2854 rq = task_rq_lock(p, &flags);
2855 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2856 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2857 goto out;
2858
2859 /* force the process onto the specified CPU */
2860 if (migrate_task(p, dest_cpu, &req)) {
2861 /* Need to wait for migration thread (might exit: take ref). */
2862 struct task_struct *mt = rq->migration_thread;
36c8b586 2863
1da177e4
LT
2864 get_task_struct(mt);
2865 task_rq_unlock(rq, &flags);
2866 wake_up_process(mt);
2867 put_task_struct(mt);
2868 wait_for_completion(&req.done);
36c8b586 2869
1da177e4
LT
2870 return;
2871 }
2872out:
2873 task_rq_unlock(rq, &flags);
2874}
2875
2876/*
476d139c
NP
2877 * sched_exec - execve() is a valuable balancing opportunity, because at
2878 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2879 */
2880void sched_exec(void)
2881{
1da177e4 2882 int new_cpu, this_cpu = get_cpu();
476d139c 2883 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2884 put_cpu();
476d139c
NP
2885 if (new_cpu != this_cpu)
2886 sched_migrate_task(current, new_cpu);
1da177e4
LT
2887}
2888
2889/*
2890 * pull_task - move a task from a remote runqueue to the local runqueue.
2891 * Both runqueues must be locked.
2892 */
dd41f596
IM
2893static void pull_task(struct rq *src_rq, struct task_struct *p,
2894 struct rq *this_rq, int this_cpu)
1da177e4 2895{
2e1cb74a 2896 deactivate_task(src_rq, p, 0);
1da177e4 2897 set_task_cpu(p, this_cpu);
dd41f596 2898 activate_task(this_rq, p, 0);
1da177e4
LT
2899 /*
2900 * Note that idle threads have a prio of MAX_PRIO, for this test
2901 * to be always true for them.
2902 */
dd41f596 2903 check_preempt_curr(this_rq, p);
1da177e4
LT
2904}
2905
2906/*
2907 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2908 */
858119e1 2909static
70b97a7f 2910int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2911 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2912 int *all_pinned)
1da177e4
LT
2913{
2914 /*
2915 * We do not migrate tasks that are:
2916 * 1) running (obviously), or
2917 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2918 * 3) are cache-hot on their current CPU.
2919 */
cc367732
IM
2920 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2921 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2922 return 0;
cc367732 2923 }
81026794
NP
2924 *all_pinned = 0;
2925
cc367732
IM
2926 if (task_running(rq, p)) {
2927 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2928 return 0;
cc367732 2929 }
1da177e4 2930
da84d961
IM
2931 /*
2932 * Aggressive migration if:
2933 * 1) task is cache cold, or
2934 * 2) too many balance attempts have failed.
2935 */
2936
6bc1665b
IM
2937 if (!task_hot(p, rq->clock, sd) ||
2938 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2939#ifdef CONFIG_SCHEDSTATS
cc367732 2940 if (task_hot(p, rq->clock, sd)) {
da84d961 2941 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2942 schedstat_inc(p, se.nr_forced_migrations);
2943 }
da84d961
IM
2944#endif
2945 return 1;
2946 }
2947
cc367732
IM
2948 if (task_hot(p, rq->clock, sd)) {
2949 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2950 return 0;
cc367732 2951 }
1da177e4
LT
2952 return 1;
2953}
2954
e1d1484f
PW
2955static unsigned long
2956balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2957 unsigned long max_load_move, struct sched_domain *sd,
2958 enum cpu_idle_type idle, int *all_pinned,
2959 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2960{
051c6764 2961 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2962 struct task_struct *p;
2963 long rem_load_move = max_load_move;
1da177e4 2964
e1d1484f 2965 if (max_load_move == 0)
1da177e4
LT
2966 goto out;
2967
81026794
NP
2968 pinned = 1;
2969
1da177e4 2970 /*
dd41f596 2971 * Start the load-balancing iterator:
1da177e4 2972 */
dd41f596
IM
2973 p = iterator->start(iterator->arg);
2974next:
b82d9fdd 2975 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2976 goto out;
051c6764
PZ
2977
2978 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2979 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2980 p = iterator->next(iterator->arg);
2981 goto next;
1da177e4
LT
2982 }
2983
dd41f596 2984 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2985 pulled++;
dd41f596 2986 rem_load_move -= p->se.load.weight;
1da177e4 2987
2dd73a4f 2988 /*
b82d9fdd 2989 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2990 */
e1d1484f 2991 if (rem_load_move > 0) {
a4ac01c3
PW
2992 if (p->prio < *this_best_prio)
2993 *this_best_prio = p->prio;
dd41f596
IM
2994 p = iterator->next(iterator->arg);
2995 goto next;
1da177e4
LT
2996 }
2997out:
2998 /*
e1d1484f 2999 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3000 * so we can safely collect pull_task() stats here rather than
3001 * inside pull_task().
3002 */
3003 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3004
3005 if (all_pinned)
3006 *all_pinned = pinned;
e1d1484f
PW
3007
3008 return max_load_move - rem_load_move;
1da177e4
LT
3009}
3010
dd41f596 3011/*
43010659
PW
3012 * move_tasks tries to move up to max_load_move weighted load from busiest to
3013 * this_rq, as part of a balancing operation within domain "sd".
3014 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3015 *
3016 * Called with both runqueues locked.
3017 */
3018static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3019 unsigned long max_load_move,
dd41f596
IM
3020 struct sched_domain *sd, enum cpu_idle_type idle,
3021 int *all_pinned)
3022{
5522d5d5 3023 const struct sched_class *class = sched_class_highest;
43010659 3024 unsigned long total_load_moved = 0;
a4ac01c3 3025 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3026
3027 do {
43010659
PW
3028 total_load_moved +=
3029 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3030 max_load_move - total_load_moved,
a4ac01c3 3031 sd, idle, all_pinned, &this_best_prio);
dd41f596 3032 class = class->next;
c4acb2c0
GH
3033
3034 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3035 break;
3036
43010659 3037 } while (class && max_load_move > total_load_moved);
dd41f596 3038
43010659
PW
3039 return total_load_moved > 0;
3040}
3041
e1d1484f
PW
3042static int
3043iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3044 struct sched_domain *sd, enum cpu_idle_type idle,
3045 struct rq_iterator *iterator)
3046{
3047 struct task_struct *p = iterator->start(iterator->arg);
3048 int pinned = 0;
3049
3050 while (p) {
3051 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3052 pull_task(busiest, p, this_rq, this_cpu);
3053 /*
3054 * Right now, this is only the second place pull_task()
3055 * is called, so we can safely collect pull_task()
3056 * stats here rather than inside pull_task().
3057 */
3058 schedstat_inc(sd, lb_gained[idle]);
3059
3060 return 1;
3061 }
3062 p = iterator->next(iterator->arg);
3063 }
3064
3065 return 0;
3066}
3067
43010659
PW
3068/*
3069 * move_one_task tries to move exactly one task from busiest to this_rq, as
3070 * part of active balancing operations within "domain".
3071 * Returns 1 if successful and 0 otherwise.
3072 *
3073 * Called with both runqueues locked.
3074 */
3075static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3076 struct sched_domain *sd, enum cpu_idle_type idle)
3077{
5522d5d5 3078 const struct sched_class *class;
43010659
PW
3079
3080 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3081 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3082 return 1;
3083
3084 return 0;
dd41f596
IM
3085}
3086
1da177e4
LT
3087/*
3088 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3089 * domain. It calculates and returns the amount of weighted load which
3090 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3091 */
3092static struct sched_group *
3093find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3094 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3095 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3096{
3097 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3098 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3099 unsigned long max_pull;
2dd73a4f
PW
3100 unsigned long busiest_load_per_task, busiest_nr_running;
3101 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3102 int load_idx, group_imb = 0;
5c45bf27
SS
3103#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3104 int power_savings_balance = 1;
3105 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3106 unsigned long min_nr_running = ULONG_MAX;
3107 struct sched_group *group_min = NULL, *group_leader = NULL;
3108#endif
1da177e4
LT
3109
3110 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3111 busiest_load_per_task = busiest_nr_running = 0;
3112 this_load_per_task = this_nr_running = 0;
408ed066 3113
d15bcfdb 3114 if (idle == CPU_NOT_IDLE)
7897986b 3115 load_idx = sd->busy_idx;
d15bcfdb 3116 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3117 load_idx = sd->newidle_idx;
3118 else
3119 load_idx = sd->idle_idx;
1da177e4
LT
3120
3121 do {
908a7c1b 3122 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3123 int local_group;
3124 int i;
908a7c1b 3125 int __group_imb = 0;
783609c6 3126 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3127 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3128 unsigned long sum_avg_load_per_task;
3129 unsigned long avg_load_per_task;
1da177e4
LT
3130
3131 local_group = cpu_isset(this_cpu, group->cpumask);
3132
783609c6
SS
3133 if (local_group)
3134 balance_cpu = first_cpu(group->cpumask);
3135
1da177e4 3136 /* Tally up the load of all CPUs in the group */
2dd73a4f 3137 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3138 sum_avg_load_per_task = avg_load_per_task = 0;
3139
908a7c1b
KC
3140 max_cpu_load = 0;
3141 min_cpu_load = ~0UL;
1da177e4 3142
363ab6f1 3143 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3144 struct rq *rq;
3145
3146 if (!cpu_isset(i, *cpus))
3147 continue;
3148
3149 rq = cpu_rq(i);
2dd73a4f 3150
9439aab8 3151 if (*sd_idle && rq->nr_running)
5969fe06
NP
3152 *sd_idle = 0;
3153
1da177e4 3154 /* Bias balancing toward cpus of our domain */
783609c6
SS
3155 if (local_group) {
3156 if (idle_cpu(i) && !first_idle_cpu) {
3157 first_idle_cpu = 1;
3158 balance_cpu = i;
3159 }
3160
a2000572 3161 load = target_load(i, load_idx);
908a7c1b 3162 } else {
a2000572 3163 load = source_load(i, load_idx);
908a7c1b
KC
3164 if (load > max_cpu_load)
3165 max_cpu_load = load;
3166 if (min_cpu_load > load)
3167 min_cpu_load = load;
3168 }
1da177e4
LT
3169
3170 avg_load += load;
2dd73a4f 3171 sum_nr_running += rq->nr_running;
dd41f596 3172 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3173
3174 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3175 }
3176
783609c6
SS
3177 /*
3178 * First idle cpu or the first cpu(busiest) in this sched group
3179 * is eligible for doing load balancing at this and above
9439aab8
SS
3180 * domains. In the newly idle case, we will allow all the cpu's
3181 * to do the newly idle load balance.
783609c6 3182 */
9439aab8
SS
3183 if (idle != CPU_NEWLY_IDLE && local_group &&
3184 balance_cpu != this_cpu && balance) {
783609c6
SS
3185 *balance = 0;
3186 goto ret;
3187 }
3188
1da177e4 3189 total_load += avg_load;
5517d86b 3190 total_pwr += group->__cpu_power;
1da177e4
LT
3191
3192 /* Adjust by relative CPU power of the group */
5517d86b
ED
3193 avg_load = sg_div_cpu_power(group,
3194 avg_load * SCHED_LOAD_SCALE);
1da177e4 3195
408ed066
PZ
3196
3197 /*
3198 * Consider the group unbalanced when the imbalance is larger
3199 * than the average weight of two tasks.
3200 *
3201 * APZ: with cgroup the avg task weight can vary wildly and
3202 * might not be a suitable number - should we keep a
3203 * normalized nr_running number somewhere that negates
3204 * the hierarchy?
3205 */
3206 avg_load_per_task = sg_div_cpu_power(group,
3207 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3208
3209 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3210 __group_imb = 1;
3211
5517d86b 3212 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3213
1da177e4
LT
3214 if (local_group) {
3215 this_load = avg_load;
3216 this = group;
2dd73a4f
PW
3217 this_nr_running = sum_nr_running;
3218 this_load_per_task = sum_weighted_load;
3219 } else if (avg_load > max_load &&
908a7c1b 3220 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3221 max_load = avg_load;
3222 busiest = group;
2dd73a4f
PW
3223 busiest_nr_running = sum_nr_running;
3224 busiest_load_per_task = sum_weighted_load;
908a7c1b 3225 group_imb = __group_imb;
1da177e4 3226 }
5c45bf27
SS
3227
3228#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3229 /*
3230 * Busy processors will not participate in power savings
3231 * balance.
3232 */
dd41f596
IM
3233 if (idle == CPU_NOT_IDLE ||
3234 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3235 goto group_next;
5c45bf27
SS
3236
3237 /*
3238 * If the local group is idle or completely loaded
3239 * no need to do power savings balance at this domain
3240 */
3241 if (local_group && (this_nr_running >= group_capacity ||
3242 !this_nr_running))
3243 power_savings_balance = 0;
3244
dd41f596 3245 /*
5c45bf27
SS
3246 * If a group is already running at full capacity or idle,
3247 * don't include that group in power savings calculations
dd41f596
IM
3248 */
3249 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3250 || !sum_nr_running)
dd41f596 3251 goto group_next;
5c45bf27 3252
dd41f596 3253 /*
5c45bf27 3254 * Calculate the group which has the least non-idle load.
dd41f596
IM
3255 * This is the group from where we need to pick up the load
3256 * for saving power
3257 */
3258 if ((sum_nr_running < min_nr_running) ||
3259 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3260 first_cpu(group->cpumask) <
3261 first_cpu(group_min->cpumask))) {
dd41f596
IM
3262 group_min = group;
3263 min_nr_running = sum_nr_running;
5c45bf27
SS
3264 min_load_per_task = sum_weighted_load /
3265 sum_nr_running;
dd41f596 3266 }
5c45bf27 3267
dd41f596 3268 /*
5c45bf27 3269 * Calculate the group which is almost near its
dd41f596
IM
3270 * capacity but still has some space to pick up some load
3271 * from other group and save more power
3272 */
3273 if (sum_nr_running <= group_capacity - 1) {
3274 if (sum_nr_running > leader_nr_running ||
3275 (sum_nr_running == leader_nr_running &&
3276 first_cpu(group->cpumask) >
3277 first_cpu(group_leader->cpumask))) {
3278 group_leader = group;
3279 leader_nr_running = sum_nr_running;
3280 }
48f24c4d 3281 }
5c45bf27
SS
3282group_next:
3283#endif
1da177e4
LT
3284 group = group->next;
3285 } while (group != sd->groups);
3286
2dd73a4f 3287 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3288 goto out_balanced;
3289
3290 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3291
3292 if (this_load >= avg_load ||
3293 100*max_load <= sd->imbalance_pct*this_load)
3294 goto out_balanced;
3295
2dd73a4f 3296 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3297 if (group_imb)
3298 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3299
1da177e4
LT
3300 /*
3301 * We're trying to get all the cpus to the average_load, so we don't
3302 * want to push ourselves above the average load, nor do we wish to
3303 * reduce the max loaded cpu below the average load, as either of these
3304 * actions would just result in more rebalancing later, and ping-pong
3305 * tasks around. Thus we look for the minimum possible imbalance.
3306 * Negative imbalances (*we* are more loaded than anyone else) will
3307 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3308 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3309 * appear as very large values with unsigned longs.
3310 */
2dd73a4f
PW
3311 if (max_load <= busiest_load_per_task)
3312 goto out_balanced;
3313
3314 /*
3315 * In the presence of smp nice balancing, certain scenarios can have
3316 * max load less than avg load(as we skip the groups at or below
3317 * its cpu_power, while calculating max_load..)
3318 */
3319 if (max_load < avg_load) {
3320 *imbalance = 0;
3321 goto small_imbalance;
3322 }
0c117f1b
SS
3323
3324 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3325 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3326
1da177e4 3327 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3328 *imbalance = min(max_pull * busiest->__cpu_power,
3329 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3330 / SCHED_LOAD_SCALE;
3331
2dd73a4f
PW
3332 /*
3333 * if *imbalance is less than the average load per runnable task
3334 * there is no gaurantee that any tasks will be moved so we'll have
3335 * a think about bumping its value to force at least one task to be
3336 * moved
3337 */
7fd0d2dd 3338 if (*imbalance < busiest_load_per_task) {
48f24c4d 3339 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3340 unsigned int imbn;
3341
3342small_imbalance:
3343 pwr_move = pwr_now = 0;
3344 imbn = 2;
3345 if (this_nr_running) {
3346 this_load_per_task /= this_nr_running;
3347 if (busiest_load_per_task > this_load_per_task)
3348 imbn = 1;
3349 } else
408ed066 3350 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3351
408ed066 3352 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3353 busiest_load_per_task * imbn) {
2dd73a4f 3354 *imbalance = busiest_load_per_task;
1da177e4
LT
3355 return busiest;
3356 }
3357
3358 /*
3359 * OK, we don't have enough imbalance to justify moving tasks,
3360 * however we may be able to increase total CPU power used by
3361 * moving them.
3362 */
3363
5517d86b
ED
3364 pwr_now += busiest->__cpu_power *
3365 min(busiest_load_per_task, max_load);
3366 pwr_now += this->__cpu_power *
3367 min(this_load_per_task, this_load);
1da177e4
LT
3368 pwr_now /= SCHED_LOAD_SCALE;
3369
3370 /* Amount of load we'd subtract */
5517d86b
ED
3371 tmp = sg_div_cpu_power(busiest,
3372 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3373 if (max_load > tmp)
5517d86b 3374 pwr_move += busiest->__cpu_power *
2dd73a4f 3375 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3376
3377 /* Amount of load we'd add */
5517d86b 3378 if (max_load * busiest->__cpu_power <
33859f7f 3379 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3380 tmp = sg_div_cpu_power(this,
3381 max_load * busiest->__cpu_power);
1da177e4 3382 else
5517d86b
ED
3383 tmp = sg_div_cpu_power(this,
3384 busiest_load_per_task * SCHED_LOAD_SCALE);
3385 pwr_move += this->__cpu_power *
3386 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3387 pwr_move /= SCHED_LOAD_SCALE;
3388
3389 /* Move if we gain throughput */
7fd0d2dd
SS
3390 if (pwr_move > pwr_now)
3391 *imbalance = busiest_load_per_task;
1da177e4
LT
3392 }
3393
1da177e4
LT
3394 return busiest;
3395
3396out_balanced:
5c45bf27 3397#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3398 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3399 goto ret;
1da177e4 3400
5c45bf27
SS
3401 if (this == group_leader && group_leader != group_min) {
3402 *imbalance = min_load_per_task;
3403 return group_min;
3404 }
5c45bf27 3405#endif
783609c6 3406ret:
1da177e4
LT
3407 *imbalance = 0;
3408 return NULL;
3409}
3410
3411/*
3412 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3413 */
70b97a7f 3414static struct rq *
d15bcfdb 3415find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3416 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3417{
70b97a7f 3418 struct rq *busiest = NULL, *rq;
2dd73a4f 3419 unsigned long max_load = 0;
1da177e4
LT
3420 int i;
3421
363ab6f1 3422 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3423 unsigned long wl;
0a2966b4
CL
3424
3425 if (!cpu_isset(i, *cpus))
3426 continue;
3427
48f24c4d 3428 rq = cpu_rq(i);
dd41f596 3429 wl = weighted_cpuload(i);
2dd73a4f 3430
dd41f596 3431 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3432 continue;
1da177e4 3433
dd41f596
IM
3434 if (wl > max_load) {
3435 max_load = wl;
48f24c4d 3436 busiest = rq;
1da177e4
LT
3437 }
3438 }
3439
3440 return busiest;
3441}
3442
77391d71
NP
3443/*
3444 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3445 * so long as it is large enough.
3446 */
3447#define MAX_PINNED_INTERVAL 512
3448
1da177e4
LT
3449/*
3450 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3451 * tasks if there is an imbalance.
1da177e4 3452 */
70b97a7f 3453static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3454 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3455 int *balance, cpumask_t *cpus)
1da177e4 3456{
43010659 3457 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3458 struct sched_group *group;
1da177e4 3459 unsigned long imbalance;
70b97a7f 3460 struct rq *busiest;
fe2eea3f 3461 unsigned long flags;
5969fe06 3462
7c16ec58
MT
3463 cpus_setall(*cpus);
3464
89c4710e
SS
3465 /*
3466 * When power savings policy is enabled for the parent domain, idle
3467 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3468 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3469 * portraying it as CPU_NOT_IDLE.
89c4710e 3470 */
d15bcfdb 3471 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3472 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3473 sd_idle = 1;
1da177e4 3474
2d72376b 3475 schedstat_inc(sd, lb_count[idle]);
1da177e4 3476
0a2966b4 3477redo:
c8cba857 3478 update_shares(sd);
0a2966b4 3479 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3480 cpus, balance);
783609c6 3481
06066714 3482 if (*balance == 0)
783609c6 3483 goto out_balanced;
783609c6 3484
1da177e4
LT
3485 if (!group) {
3486 schedstat_inc(sd, lb_nobusyg[idle]);
3487 goto out_balanced;
3488 }
3489
7c16ec58 3490 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3491 if (!busiest) {
3492 schedstat_inc(sd, lb_nobusyq[idle]);
3493 goto out_balanced;
3494 }
3495
db935dbd 3496 BUG_ON(busiest == this_rq);
1da177e4
LT
3497
3498 schedstat_add(sd, lb_imbalance[idle], imbalance);
3499
43010659 3500 ld_moved = 0;
1da177e4
LT
3501 if (busiest->nr_running > 1) {
3502 /*
3503 * Attempt to move tasks. If find_busiest_group has found
3504 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3505 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3506 * correctly treated as an imbalance.
3507 */
fe2eea3f 3508 local_irq_save(flags);
e17224bf 3509 double_rq_lock(this_rq, busiest);
43010659 3510 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3511 imbalance, sd, idle, &all_pinned);
e17224bf 3512 double_rq_unlock(this_rq, busiest);
fe2eea3f 3513 local_irq_restore(flags);
81026794 3514
46cb4b7c
SS
3515 /*
3516 * some other cpu did the load balance for us.
3517 */
43010659 3518 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3519 resched_cpu(this_cpu);
3520
81026794 3521 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3522 if (unlikely(all_pinned)) {
7c16ec58
MT
3523 cpu_clear(cpu_of(busiest), *cpus);
3524 if (!cpus_empty(*cpus))
0a2966b4 3525 goto redo;
81026794 3526 goto out_balanced;
0a2966b4 3527 }
1da177e4 3528 }
81026794 3529
43010659 3530 if (!ld_moved) {
1da177e4
LT
3531 schedstat_inc(sd, lb_failed[idle]);
3532 sd->nr_balance_failed++;
3533
3534 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3535
fe2eea3f 3536 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3537
3538 /* don't kick the migration_thread, if the curr
3539 * task on busiest cpu can't be moved to this_cpu
3540 */
3541 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3542 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3543 all_pinned = 1;
3544 goto out_one_pinned;
3545 }
3546
1da177e4
LT
3547 if (!busiest->active_balance) {
3548 busiest->active_balance = 1;
3549 busiest->push_cpu = this_cpu;
81026794 3550 active_balance = 1;
1da177e4 3551 }
fe2eea3f 3552 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3553 if (active_balance)
1da177e4
LT
3554 wake_up_process(busiest->migration_thread);
3555
3556 /*
3557 * We've kicked active balancing, reset the failure
3558 * counter.
3559 */
39507451 3560 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3561 }
81026794 3562 } else
1da177e4
LT
3563 sd->nr_balance_failed = 0;
3564
81026794 3565 if (likely(!active_balance)) {
1da177e4
LT
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd->balance_interval = sd->min_interval;
81026794
NP
3568 } else {
3569 /*
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3573 * move_tasks).
3574 */
3575 if (sd->balance_interval < sd->max_interval)
3576 sd->balance_interval *= 2;
1da177e4
LT
3577 }
3578
43010659 3579 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3580 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3581 ld_moved = -1;
3582
3583 goto out;
1da177e4
LT
3584
3585out_balanced:
1da177e4
LT
3586 schedstat_inc(sd, lb_balanced[idle]);
3587
16cfb1c0 3588 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3589
3590out_one_pinned:
1da177e4 3591 /* tune up the balancing interval */
77391d71
NP
3592 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3593 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3594 sd->balance_interval *= 2;
3595
48f24c4d 3596 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3597 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3598 ld_moved = -1;
3599 else
3600 ld_moved = 0;
3601out:
c8cba857
PZ
3602 if (ld_moved)
3603 update_shares(sd);
c09595f6 3604 return ld_moved;
1da177e4
LT
3605}
3606
3607/*
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3610 *
d15bcfdb 3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3612 * this_rq is locked.
3613 */
48f24c4d 3614static int
7c16ec58
MT
3615load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616 cpumask_t *cpus)
1da177e4
LT
3617{
3618 struct sched_group *group;
70b97a7f 3619 struct rq *busiest = NULL;
1da177e4 3620 unsigned long imbalance;
43010659 3621 int ld_moved = 0;
5969fe06 3622 int sd_idle = 0;
969bb4e4 3623 int all_pinned = 0;
7c16ec58
MT
3624
3625 cpus_setall(*cpus);
5969fe06 3626
89c4710e
SS
3627 /*
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3631 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3632 */
3633 if (sd->flags & SD_SHARE_CPUPOWER &&
3634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3635 sd_idle = 1;
1da177e4 3636
2d72376b 3637 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3638redo:
3e5459b4 3639 update_shares_locked(this_rq, sd);
d15bcfdb 3640 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3641 &sd_idle, cpus, NULL);
1da177e4 3642 if (!group) {
d15bcfdb 3643 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3644 goto out_balanced;
1da177e4
LT
3645 }
3646
7c16ec58 3647 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3648 if (!busiest) {
d15bcfdb 3649 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3650 goto out_balanced;
1da177e4
LT
3651 }
3652
db935dbd
NP
3653 BUG_ON(busiest == this_rq);
3654
d15bcfdb 3655 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3656
43010659 3657 ld_moved = 0;
d6d5cfaf
NP
3658 if (busiest->nr_running > 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest);
43010659 3663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3664 imbalance, sd, CPU_NEWLY_IDLE,
3665 &all_pinned);
1b12bbc7 3666 double_unlock_balance(this_rq, busiest);
0a2966b4 3667
969bb4e4 3668 if (unlikely(all_pinned)) {
7c16ec58
MT
3669 cpu_clear(cpu_of(busiest), *cpus);
3670 if (!cpus_empty(*cpus))
0a2966b4
CL
3671 goto redo;
3672 }
d6d5cfaf
NP
3673 }
3674
43010659 3675 if (!ld_moved) {
d15bcfdb 3676 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3677 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3678 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3679 return -1;
3680 } else
16cfb1c0 3681 sd->nr_balance_failed = 0;
1da177e4 3682
3e5459b4 3683 update_shares_locked(this_rq, sd);
43010659 3684 return ld_moved;
16cfb1c0
NP
3685
3686out_balanced:
d15bcfdb 3687 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3688 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3689 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3690 return -1;
16cfb1c0 3691 sd->nr_balance_failed = 0;
48f24c4d 3692
16cfb1c0 3693 return 0;
1da177e4
LT
3694}
3695
3696/*
3697 * idle_balance is called by schedule() if this_cpu is about to become
3698 * idle. Attempts to pull tasks from other CPUs.
3699 */
70b97a7f 3700static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3701{
3702 struct sched_domain *sd;
dd41f596
IM
3703 int pulled_task = -1;
3704 unsigned long next_balance = jiffies + HZ;
7c16ec58 3705 cpumask_t tmpmask;
1da177e4
LT
3706
3707 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3708 unsigned long interval;
3709
3710 if (!(sd->flags & SD_LOAD_BALANCE))
3711 continue;
3712
3713 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3714 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3715 pulled_task = load_balance_newidle(this_cpu, this_rq,
3716 sd, &tmpmask);
92c4ca5c
CL
3717
3718 interval = msecs_to_jiffies(sd->balance_interval);
3719 if (time_after(next_balance, sd->last_balance + interval))
3720 next_balance = sd->last_balance + interval;
3721 if (pulled_task)
3722 break;
1da177e4 3723 }
dd41f596 3724 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3725 /*
3726 * We are going idle. next_balance may be set based on
3727 * a busy processor. So reset next_balance.
3728 */
3729 this_rq->next_balance = next_balance;
dd41f596 3730 }
1da177e4
LT
3731}
3732
3733/*
3734 * active_load_balance is run by migration threads. It pushes running tasks
3735 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3736 * running on each physical CPU where possible, and avoids physical /
3737 * logical imbalances.
3738 *
3739 * Called with busiest_rq locked.
3740 */
70b97a7f 3741static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3742{
39507451 3743 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3744 struct sched_domain *sd;
3745 struct rq *target_rq;
39507451 3746
48f24c4d 3747 /* Is there any task to move? */
39507451 3748 if (busiest_rq->nr_running <= 1)
39507451
NP
3749 return;
3750
3751 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3752
3753 /*
39507451 3754 * This condition is "impossible", if it occurs
41a2d6cf 3755 * we need to fix it. Originally reported by
39507451 3756 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3757 */
39507451 3758 BUG_ON(busiest_rq == target_rq);
1da177e4 3759
39507451
NP
3760 /* move a task from busiest_rq to target_rq */
3761 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3762 update_rq_clock(busiest_rq);
3763 update_rq_clock(target_rq);
39507451
NP
3764
3765 /* Search for an sd spanning us and the target CPU. */
c96d145e 3766 for_each_domain(target_cpu, sd) {
39507451 3767 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3768 cpu_isset(busiest_cpu, sd->span))
39507451 3769 break;
c96d145e 3770 }
39507451 3771
48f24c4d 3772 if (likely(sd)) {
2d72376b 3773 schedstat_inc(sd, alb_count);
39507451 3774
43010659
PW
3775 if (move_one_task(target_rq, target_cpu, busiest_rq,
3776 sd, CPU_IDLE))
48f24c4d
IM
3777 schedstat_inc(sd, alb_pushed);
3778 else
3779 schedstat_inc(sd, alb_failed);
3780 }
1b12bbc7 3781 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3782}
3783
46cb4b7c
SS
3784#ifdef CONFIG_NO_HZ
3785static struct {
3786 atomic_t load_balancer;
41a2d6cf 3787 cpumask_t cpu_mask;
46cb4b7c
SS
3788} nohz ____cacheline_aligned = {
3789 .load_balancer = ATOMIC_INIT(-1),
3790 .cpu_mask = CPU_MASK_NONE,
3791};
3792
7835b98b 3793/*
46cb4b7c
SS
3794 * This routine will try to nominate the ilb (idle load balancing)
3795 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3796 * load balancing on behalf of all those cpus. If all the cpus in the system
3797 * go into this tickless mode, then there will be no ilb owner (as there is
3798 * no need for one) and all the cpus will sleep till the next wakeup event
3799 * arrives...
3800 *
3801 * For the ilb owner, tick is not stopped. And this tick will be used
3802 * for idle load balancing. ilb owner will still be part of
3803 * nohz.cpu_mask..
7835b98b 3804 *
46cb4b7c
SS
3805 * While stopping the tick, this cpu will become the ilb owner if there
3806 * is no other owner. And will be the owner till that cpu becomes busy
3807 * or if all cpus in the system stop their ticks at which point
3808 * there is no need for ilb owner.
3809 *
3810 * When the ilb owner becomes busy, it nominates another owner, during the
3811 * next busy scheduler_tick()
3812 */
3813int select_nohz_load_balancer(int stop_tick)
3814{
3815 int cpu = smp_processor_id();
3816
3817 if (stop_tick) {
3818 cpu_set(cpu, nohz.cpu_mask);
3819 cpu_rq(cpu)->in_nohz_recently = 1;
3820
3821 /*
3822 * If we are going offline and still the leader, give up!
3823 */
e761b772 3824 if (!cpu_active(cpu) &&
46cb4b7c
SS
3825 atomic_read(&nohz.load_balancer) == cpu) {
3826 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3827 BUG();
3828 return 0;
3829 }
3830
3831 /* time for ilb owner also to sleep */
3832 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3833 if (atomic_read(&nohz.load_balancer) == cpu)
3834 atomic_set(&nohz.load_balancer, -1);
3835 return 0;
3836 }
3837
3838 if (atomic_read(&nohz.load_balancer) == -1) {
3839 /* make me the ilb owner */
3840 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3841 return 1;
3842 } else if (atomic_read(&nohz.load_balancer) == cpu)
3843 return 1;
3844 } else {
3845 if (!cpu_isset(cpu, nohz.cpu_mask))
3846 return 0;
3847
3848 cpu_clear(cpu, nohz.cpu_mask);
3849
3850 if (atomic_read(&nohz.load_balancer) == cpu)
3851 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3852 BUG();
3853 }
3854 return 0;
3855}
3856#endif
3857
3858static DEFINE_SPINLOCK(balancing);
3859
3860/*
7835b98b
CL
3861 * It checks each scheduling domain to see if it is due to be balanced,
3862 * and initiates a balancing operation if so.
3863 *
3864 * Balancing parameters are set up in arch_init_sched_domains.
3865 */
a9957449 3866static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3867{
46cb4b7c
SS
3868 int balance = 1;
3869 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3870 unsigned long interval;
3871 struct sched_domain *sd;
46cb4b7c 3872 /* Earliest time when we have to do rebalance again */
c9819f45 3873 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3874 int update_next_balance = 0;
d07355f5 3875 int need_serialize;
7c16ec58 3876 cpumask_t tmp;
1da177e4 3877
46cb4b7c 3878 for_each_domain(cpu, sd) {
1da177e4
LT
3879 if (!(sd->flags & SD_LOAD_BALANCE))
3880 continue;
3881
3882 interval = sd->balance_interval;
d15bcfdb 3883 if (idle != CPU_IDLE)
1da177e4
LT
3884 interval *= sd->busy_factor;
3885
3886 /* scale ms to jiffies */
3887 interval = msecs_to_jiffies(interval);
3888 if (unlikely(!interval))
3889 interval = 1;
dd41f596
IM
3890 if (interval > HZ*NR_CPUS/10)
3891 interval = HZ*NR_CPUS/10;
3892
d07355f5 3893 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3894
d07355f5 3895 if (need_serialize) {
08c183f3
CL
3896 if (!spin_trylock(&balancing))
3897 goto out;
3898 }
3899
c9819f45 3900 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3901 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3902 /*
3903 * We've pulled tasks over so either we're no
5969fe06
NP
3904 * longer idle, or one of our SMT siblings is
3905 * not idle.
3906 */
d15bcfdb 3907 idle = CPU_NOT_IDLE;
1da177e4 3908 }
1bd77f2d 3909 sd->last_balance = jiffies;
1da177e4 3910 }
d07355f5 3911 if (need_serialize)
08c183f3
CL
3912 spin_unlock(&balancing);
3913out:
f549da84 3914 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3915 next_balance = sd->last_balance + interval;
f549da84
SS
3916 update_next_balance = 1;
3917 }
783609c6
SS
3918
3919 /*
3920 * Stop the load balance at this level. There is another
3921 * CPU in our sched group which is doing load balancing more
3922 * actively.
3923 */
3924 if (!balance)
3925 break;
1da177e4 3926 }
f549da84
SS
3927
3928 /*
3929 * next_balance will be updated only when there is a need.
3930 * When the cpu is attached to null domain for ex, it will not be
3931 * updated.
3932 */
3933 if (likely(update_next_balance))
3934 rq->next_balance = next_balance;
46cb4b7c
SS
3935}
3936
3937/*
3938 * run_rebalance_domains is triggered when needed from the scheduler tick.
3939 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3940 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3941 */
3942static void run_rebalance_domains(struct softirq_action *h)
3943{
dd41f596
IM
3944 int this_cpu = smp_processor_id();
3945 struct rq *this_rq = cpu_rq(this_cpu);
3946 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3947 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3948
dd41f596 3949 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3950
3951#ifdef CONFIG_NO_HZ
3952 /*
3953 * If this cpu is the owner for idle load balancing, then do the
3954 * balancing on behalf of the other idle cpus whose ticks are
3955 * stopped.
3956 */
dd41f596
IM
3957 if (this_rq->idle_at_tick &&
3958 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3959 cpumask_t cpus = nohz.cpu_mask;
3960 struct rq *rq;
3961 int balance_cpu;
3962
dd41f596 3963 cpu_clear(this_cpu, cpus);
363ab6f1 3964 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3965 /*
3966 * If this cpu gets work to do, stop the load balancing
3967 * work being done for other cpus. Next load
3968 * balancing owner will pick it up.
3969 */
3970 if (need_resched())
3971 break;
3972
de0cf899 3973 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3974
3975 rq = cpu_rq(balance_cpu);
dd41f596
IM
3976 if (time_after(this_rq->next_balance, rq->next_balance))
3977 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3978 }
3979 }
3980#endif
3981}
3982
3983/*
3984 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3985 *
3986 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3987 * idle load balancing owner or decide to stop the periodic load balancing,
3988 * if the whole system is idle.
3989 */
dd41f596 3990static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3991{
46cb4b7c
SS
3992#ifdef CONFIG_NO_HZ
3993 /*
3994 * If we were in the nohz mode recently and busy at the current
3995 * scheduler tick, then check if we need to nominate new idle
3996 * load balancer.
3997 */
3998 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3999 rq->in_nohz_recently = 0;
4000
4001 if (atomic_read(&nohz.load_balancer) == cpu) {
4002 cpu_clear(cpu, nohz.cpu_mask);
4003 atomic_set(&nohz.load_balancer, -1);
4004 }
4005
4006 if (atomic_read(&nohz.load_balancer) == -1) {
4007 /*
4008 * simple selection for now: Nominate the
4009 * first cpu in the nohz list to be the next
4010 * ilb owner.
4011 *
4012 * TBD: Traverse the sched domains and nominate
4013 * the nearest cpu in the nohz.cpu_mask.
4014 */
4015 int ilb = first_cpu(nohz.cpu_mask);
4016
434d53b0 4017 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4018 resched_cpu(ilb);
4019 }
4020 }
4021
4022 /*
4023 * If this cpu is idle and doing idle load balancing for all the
4024 * cpus with ticks stopped, is it time for that to stop?
4025 */
4026 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4027 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4028 resched_cpu(cpu);
4029 return;
4030 }
4031
4032 /*
4033 * If this cpu is idle and the idle load balancing is done by
4034 * someone else, then no need raise the SCHED_SOFTIRQ
4035 */
4036 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4037 cpu_isset(cpu, nohz.cpu_mask))
4038 return;
4039#endif
4040 if (time_after_eq(jiffies, rq->next_balance))
4041 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4042}
dd41f596
IM
4043
4044#else /* CONFIG_SMP */
4045
1da177e4
LT
4046/*
4047 * on UP we do not need to balance between CPUs:
4048 */
70b97a7f 4049static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4050{
4051}
dd41f596 4052
1da177e4
LT
4053#endif
4054
1da177e4
LT
4055DEFINE_PER_CPU(struct kernel_stat, kstat);
4056
4057EXPORT_PER_CPU_SYMBOL(kstat);
4058
4059/*
41b86e9c
IM
4060 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4061 * that have not yet been banked in case the task is currently running.
1da177e4 4062 */
41b86e9c 4063unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4064{
1da177e4 4065 unsigned long flags;
41b86e9c
IM
4066 u64 ns, delta_exec;
4067 struct rq *rq;
48f24c4d 4068
41b86e9c
IM
4069 rq = task_rq_lock(p, &flags);
4070 ns = p->se.sum_exec_runtime;
051a1d1a 4071 if (task_current(rq, p)) {
a8e504d2
IM
4072 update_rq_clock(rq);
4073 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4074 if ((s64)delta_exec > 0)
4075 ns += delta_exec;
4076 }
4077 task_rq_unlock(rq, &flags);
48f24c4d 4078
1da177e4
LT
4079 return ns;
4080}
4081
1da177e4
LT
4082/*
4083 * Account user cpu time to a process.
4084 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4085 * @cputime: the cpu time spent in user space since the last update
4086 */
4087void account_user_time(struct task_struct *p, cputime_t cputime)
4088{
4089 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4090 cputime64_t tmp;
4091
4092 p->utime = cputime_add(p->utime, cputime);
4093
4094 /* Add user time to cpustat. */
4095 tmp = cputime_to_cputime64(cputime);
4096 if (TASK_NICE(p) > 0)
4097 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4098 else
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4100 /* Account for user time used */
4101 acct_update_integrals(p);
1da177e4
LT
4102}
4103
94886b84
LV
4104/*
4105 * Account guest cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @cputime: the cpu time spent in virtual machine since the last update
4108 */
f7402e03 4109static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4110{
4111 cputime64_t tmp;
4112 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4113
4114 tmp = cputime_to_cputime64(cputime);
4115
4116 p->utime = cputime_add(p->utime, cputime);
4117 p->gtime = cputime_add(p->gtime, cputime);
4118
4119 cpustat->user = cputime64_add(cpustat->user, tmp);
4120 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4121}
4122
c66f08be
MN
4123/*
4124 * Account scaled user cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @cputime: the cpu time spent in user space since the last update
4127 */
4128void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4129{
4130 p->utimescaled = cputime_add(p->utimescaled, cputime);
4131}
4132
1da177e4
LT
4133/*
4134 * Account system cpu time to a process.
4135 * @p: the process that the cpu time gets accounted to
4136 * @hardirq_offset: the offset to subtract from hardirq_count()
4137 * @cputime: the cpu time spent in kernel space since the last update
4138 */
4139void account_system_time(struct task_struct *p, int hardirq_offset,
4140 cputime_t cputime)
4141{
4142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4143 struct rq *rq = this_rq();
1da177e4
LT
4144 cputime64_t tmp;
4145
983ed7a6
HH
4146 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4147 account_guest_time(p, cputime);
4148 return;
4149 }
94886b84 4150
1da177e4
LT
4151 p->stime = cputime_add(p->stime, cputime);
4152
4153 /* Add system time to cpustat. */
4154 tmp = cputime_to_cputime64(cputime);
4155 if (hardirq_count() - hardirq_offset)
4156 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4157 else if (softirq_count())
4158 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4159 else if (p != rq->idle)
1da177e4 4160 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4161 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4162 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4163 else
4164 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4165 /* Account for system time used */
4166 acct_update_integrals(p);
1da177e4
LT
4167}
4168
c66f08be
MN
4169/*
4170 * Account scaled system cpu time to a process.
4171 * @p: the process that the cpu time gets accounted to
4172 * @hardirq_offset: the offset to subtract from hardirq_count()
4173 * @cputime: the cpu time spent in kernel space since the last update
4174 */
4175void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4176{
4177 p->stimescaled = cputime_add(p->stimescaled, cputime);
4178}
4179
1da177e4
LT
4180/*
4181 * Account for involuntary wait time.
4182 * @p: the process from which the cpu time has been stolen
4183 * @steal: the cpu time spent in involuntary wait
4184 */
4185void account_steal_time(struct task_struct *p, cputime_t steal)
4186{
4187 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4188 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4189 struct rq *rq = this_rq();
1da177e4
LT
4190
4191 if (p == rq->idle) {
4192 p->stime = cputime_add(p->stime, steal);
4193 if (atomic_read(&rq->nr_iowait) > 0)
4194 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4195 else
4196 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4197 } else
1da177e4
LT
4198 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4199}
4200
7835b98b
CL
4201/*
4202 * This function gets called by the timer code, with HZ frequency.
4203 * We call it with interrupts disabled.
4204 *
4205 * It also gets called by the fork code, when changing the parent's
4206 * timeslices.
4207 */
4208void scheduler_tick(void)
4209{
7835b98b
CL
4210 int cpu = smp_processor_id();
4211 struct rq *rq = cpu_rq(cpu);
dd41f596 4212 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4213
4214 sched_clock_tick();
dd41f596
IM
4215
4216 spin_lock(&rq->lock);
3e51f33f 4217 update_rq_clock(rq);
f1a438d8 4218 update_cpu_load(rq);
fa85ae24 4219 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4220 spin_unlock(&rq->lock);
7835b98b 4221
e418e1c2 4222#ifdef CONFIG_SMP
dd41f596
IM
4223 rq->idle_at_tick = idle_cpu(cpu);
4224 trigger_load_balance(rq, cpu);
e418e1c2 4225#endif
1da177e4
LT
4226}
4227
6cd8a4bb
SR
4228#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4229 defined(CONFIG_PREEMPT_TRACER))
4230
4231static inline unsigned long get_parent_ip(unsigned long addr)
4232{
4233 if (in_lock_functions(addr)) {
4234 addr = CALLER_ADDR2;
4235 if (in_lock_functions(addr))
4236 addr = CALLER_ADDR3;
4237 }
4238 return addr;
4239}
1da177e4 4240
43627582 4241void __kprobes add_preempt_count(int val)
1da177e4 4242{
6cd8a4bb 4243#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4244 /*
4245 * Underflow?
4246 */
9a11b49a
IM
4247 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4248 return;
6cd8a4bb 4249#endif
1da177e4 4250 preempt_count() += val;
6cd8a4bb 4251#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4252 /*
4253 * Spinlock count overflowing soon?
4254 */
33859f7f
MOS
4255 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4256 PREEMPT_MASK - 10);
6cd8a4bb
SR
4257#endif
4258 if (preempt_count() == val)
4259 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4260}
4261EXPORT_SYMBOL(add_preempt_count);
4262
43627582 4263void __kprobes sub_preempt_count(int val)
1da177e4 4264{
6cd8a4bb 4265#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4266 /*
4267 * Underflow?
4268 */
9a11b49a
IM
4269 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4270 return;
1da177e4
LT
4271 /*
4272 * Is the spinlock portion underflowing?
4273 */
9a11b49a
IM
4274 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4275 !(preempt_count() & PREEMPT_MASK)))
4276 return;
6cd8a4bb 4277#endif
9a11b49a 4278
6cd8a4bb
SR
4279 if (preempt_count() == val)
4280 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4281 preempt_count() -= val;
4282}
4283EXPORT_SYMBOL(sub_preempt_count);
4284
4285#endif
4286
4287/*
dd41f596 4288 * Print scheduling while atomic bug:
1da177e4 4289 */
dd41f596 4290static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4291{
838225b4
SS
4292 struct pt_regs *regs = get_irq_regs();
4293
4294 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4295 prev->comm, prev->pid, preempt_count());
4296
dd41f596 4297 debug_show_held_locks(prev);
e21f5b15 4298 print_modules();
dd41f596
IM
4299 if (irqs_disabled())
4300 print_irqtrace_events(prev);
838225b4
SS
4301
4302 if (regs)
4303 show_regs(regs);
4304 else
4305 dump_stack();
dd41f596 4306}
1da177e4 4307
dd41f596
IM
4308/*
4309 * Various schedule()-time debugging checks and statistics:
4310 */
4311static inline void schedule_debug(struct task_struct *prev)
4312{
1da177e4 4313 /*
41a2d6cf 4314 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4315 * schedule() atomically, we ignore that path for now.
4316 * Otherwise, whine if we are scheduling when we should not be.
4317 */
3f33a7ce 4318 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4319 __schedule_bug(prev);
4320
1da177e4
LT
4321 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4322
2d72376b 4323 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4324#ifdef CONFIG_SCHEDSTATS
4325 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4326 schedstat_inc(this_rq(), bkl_count);
4327 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4328 }
4329#endif
dd41f596
IM
4330}
4331
4332/*
4333 * Pick up the highest-prio task:
4334 */
4335static inline struct task_struct *
ff95f3df 4336pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4337{
5522d5d5 4338 const struct sched_class *class;
dd41f596 4339 struct task_struct *p;
1da177e4
LT
4340
4341 /*
dd41f596
IM
4342 * Optimization: we know that if all tasks are in
4343 * the fair class we can call that function directly:
1da177e4 4344 */
dd41f596 4345 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4346 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4347 if (likely(p))
4348 return p;
1da177e4
LT
4349 }
4350
dd41f596
IM
4351 class = sched_class_highest;
4352 for ( ; ; ) {
fb8d4724 4353 p = class->pick_next_task(rq);
dd41f596
IM
4354 if (p)
4355 return p;
4356 /*
4357 * Will never be NULL as the idle class always
4358 * returns a non-NULL p:
4359 */
4360 class = class->next;
4361 }
4362}
1da177e4 4363
dd41f596
IM
4364/*
4365 * schedule() is the main scheduler function.
4366 */
4367asmlinkage void __sched schedule(void)
4368{
4369 struct task_struct *prev, *next;
67ca7bde 4370 unsigned long *switch_count;
dd41f596 4371 struct rq *rq;
31656519 4372 int cpu;
dd41f596
IM
4373
4374need_resched:
4375 preempt_disable();
4376 cpu = smp_processor_id();
4377 rq = cpu_rq(cpu);
4378 rcu_qsctr_inc(cpu);
4379 prev = rq->curr;
4380 switch_count = &prev->nivcsw;
4381
4382 release_kernel_lock(prev);
4383need_resched_nonpreemptible:
4384
4385 schedule_debug(prev);
1da177e4 4386
31656519 4387 if (sched_feat(HRTICK))
f333fdc9 4388 hrtick_clear(rq);
8f4d37ec 4389
1e819950
IM
4390 /*
4391 * Do the rq-clock update outside the rq lock:
4392 */
4393 local_irq_disable();
3e51f33f 4394 update_rq_clock(rq);
1e819950
IM
4395 spin_lock(&rq->lock);
4396 clear_tsk_need_resched(prev);
1da177e4 4397
1da177e4 4398 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4399 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4400 prev->state = TASK_RUNNING;
16882c1e 4401 else
2e1cb74a 4402 deactivate_task(rq, prev, 1);
dd41f596 4403 switch_count = &prev->nvcsw;
1da177e4
LT
4404 }
4405
9a897c5a
SR
4406#ifdef CONFIG_SMP
4407 if (prev->sched_class->pre_schedule)
4408 prev->sched_class->pre_schedule(rq, prev);
4409#endif
f65eda4f 4410
dd41f596 4411 if (unlikely(!rq->nr_running))
1da177e4 4412 idle_balance(cpu, rq);
1da177e4 4413
31ee529c 4414 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4415 next = pick_next_task(rq, prev);
1da177e4 4416
1da177e4 4417 if (likely(prev != next)) {
673a90a1
DS
4418 sched_info_switch(prev, next);
4419
1da177e4
LT
4420 rq->nr_switches++;
4421 rq->curr = next;
4422 ++*switch_count;
4423
dd41f596 4424 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4425 /*
4426 * the context switch might have flipped the stack from under
4427 * us, hence refresh the local variables.
4428 */
4429 cpu = smp_processor_id();
4430 rq = cpu_rq(cpu);
1da177e4
LT
4431 } else
4432 spin_unlock_irq(&rq->lock);
4433
8f4d37ec 4434 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4435 goto need_resched_nonpreemptible;
8f4d37ec 4436
1da177e4
LT
4437 preempt_enable_no_resched();
4438 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4439 goto need_resched;
4440}
1da177e4
LT
4441EXPORT_SYMBOL(schedule);
4442
4443#ifdef CONFIG_PREEMPT
4444/*
2ed6e34f 4445 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4446 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4447 * occur there and call schedule directly.
4448 */
4449asmlinkage void __sched preempt_schedule(void)
4450{
4451 struct thread_info *ti = current_thread_info();
6478d880 4452
1da177e4
LT
4453 /*
4454 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4455 * we do not want to preempt the current task. Just return..
1da177e4 4456 */
beed33a8 4457 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4458 return;
4459
3a5c359a
AK
4460 do {
4461 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4462 schedule();
3a5c359a 4463 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4464
3a5c359a
AK
4465 /*
4466 * Check again in case we missed a preemption opportunity
4467 * between schedule and now.
4468 */
4469 barrier();
4470 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4471}
1da177e4
LT
4472EXPORT_SYMBOL(preempt_schedule);
4473
4474/*
2ed6e34f 4475 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4476 * off of irq context.
4477 * Note, that this is called and return with irqs disabled. This will
4478 * protect us against recursive calling from irq.
4479 */
4480asmlinkage void __sched preempt_schedule_irq(void)
4481{
4482 struct thread_info *ti = current_thread_info();
6478d880 4483
2ed6e34f 4484 /* Catch callers which need to be fixed */
1da177e4
LT
4485 BUG_ON(ti->preempt_count || !irqs_disabled());
4486
3a5c359a
AK
4487 do {
4488 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4489 local_irq_enable();
4490 schedule();
4491 local_irq_disable();
3a5c359a 4492 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4493
3a5c359a
AK
4494 /*
4495 * Check again in case we missed a preemption opportunity
4496 * between schedule and now.
4497 */
4498 barrier();
4499 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4500}
4501
4502#endif /* CONFIG_PREEMPT */
4503
95cdf3b7
IM
4504int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4505 void *key)
1da177e4 4506{
48f24c4d 4507 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4508}
1da177e4
LT
4509EXPORT_SYMBOL(default_wake_function);
4510
4511/*
41a2d6cf
IM
4512 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4513 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4514 * number) then we wake all the non-exclusive tasks and one exclusive task.
4515 *
4516 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4517 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4518 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4519 */
4520static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4521 int nr_exclusive, int sync, void *key)
4522{
2e45874c 4523 wait_queue_t *curr, *next;
1da177e4 4524
2e45874c 4525 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4526 unsigned flags = curr->flags;
4527
1da177e4 4528 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4529 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4530 break;
4531 }
4532}
4533
4534/**
4535 * __wake_up - wake up threads blocked on a waitqueue.
4536 * @q: the waitqueue
4537 * @mode: which threads
4538 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4539 * @key: is directly passed to the wakeup function
1da177e4 4540 */
7ad5b3a5 4541void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4542 int nr_exclusive, void *key)
1da177e4
LT
4543{
4544 unsigned long flags;
4545
4546 spin_lock_irqsave(&q->lock, flags);
4547 __wake_up_common(q, mode, nr_exclusive, 0, key);
4548 spin_unlock_irqrestore(&q->lock, flags);
4549}
1da177e4
LT
4550EXPORT_SYMBOL(__wake_up);
4551
4552/*
4553 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4554 */
7ad5b3a5 4555void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4556{
4557 __wake_up_common(q, mode, 1, 0, NULL);
4558}
4559
4560/**
67be2dd1 4561 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4562 * @q: the waitqueue
4563 * @mode: which threads
4564 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4565 *
4566 * The sync wakeup differs that the waker knows that it will schedule
4567 * away soon, so while the target thread will be woken up, it will not
4568 * be migrated to another CPU - ie. the two threads are 'synchronized'
4569 * with each other. This can prevent needless bouncing between CPUs.
4570 *
4571 * On UP it can prevent extra preemption.
4572 */
7ad5b3a5 4573void
95cdf3b7 4574__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4575{
4576 unsigned long flags;
4577 int sync = 1;
4578
4579 if (unlikely(!q))
4580 return;
4581
4582 if (unlikely(!nr_exclusive))
4583 sync = 0;
4584
4585 spin_lock_irqsave(&q->lock, flags);
4586 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4587 spin_unlock_irqrestore(&q->lock, flags);
4588}
4589EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4590
b15136e9 4591void complete(struct completion *x)
1da177e4
LT
4592{
4593 unsigned long flags;
4594
4595 spin_lock_irqsave(&x->wait.lock, flags);
4596 x->done++;
d9514f6c 4597 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4598 spin_unlock_irqrestore(&x->wait.lock, flags);
4599}
4600EXPORT_SYMBOL(complete);
4601
b15136e9 4602void complete_all(struct completion *x)
1da177e4
LT
4603{
4604 unsigned long flags;
4605
4606 spin_lock_irqsave(&x->wait.lock, flags);
4607 x->done += UINT_MAX/2;
d9514f6c 4608 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4609 spin_unlock_irqrestore(&x->wait.lock, flags);
4610}
4611EXPORT_SYMBOL(complete_all);
4612
8cbbe86d
AK
4613static inline long __sched
4614do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4615{
1da177e4
LT
4616 if (!x->done) {
4617 DECLARE_WAITQUEUE(wait, current);
4618
4619 wait.flags |= WQ_FLAG_EXCLUSIVE;
4620 __add_wait_queue_tail(&x->wait, &wait);
4621 do {
009e577e
MW
4622 if ((state == TASK_INTERRUPTIBLE &&
4623 signal_pending(current)) ||
4624 (state == TASK_KILLABLE &&
4625 fatal_signal_pending(current))) {
ea71a546
ON
4626 timeout = -ERESTARTSYS;
4627 break;
8cbbe86d
AK
4628 }
4629 __set_current_state(state);
1da177e4
LT
4630 spin_unlock_irq(&x->wait.lock);
4631 timeout = schedule_timeout(timeout);
4632 spin_lock_irq(&x->wait.lock);
ea71a546 4633 } while (!x->done && timeout);
1da177e4 4634 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4635 if (!x->done)
4636 return timeout;
1da177e4
LT
4637 }
4638 x->done--;
ea71a546 4639 return timeout ?: 1;
1da177e4 4640}
1da177e4 4641
8cbbe86d
AK
4642static long __sched
4643wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4644{
1da177e4
LT
4645 might_sleep();
4646
4647 spin_lock_irq(&x->wait.lock);
8cbbe86d 4648 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4649 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4650 return timeout;
4651}
1da177e4 4652
b15136e9 4653void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4654{
4655 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4656}
8cbbe86d 4657EXPORT_SYMBOL(wait_for_completion);
1da177e4 4658
b15136e9 4659unsigned long __sched
8cbbe86d 4660wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4661{
8cbbe86d 4662 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4663}
8cbbe86d 4664EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4665
8cbbe86d 4666int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4667{
51e97990
AK
4668 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4669 if (t == -ERESTARTSYS)
4670 return t;
4671 return 0;
0fec171c 4672}
8cbbe86d 4673EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4674
b15136e9 4675unsigned long __sched
8cbbe86d
AK
4676wait_for_completion_interruptible_timeout(struct completion *x,
4677 unsigned long timeout)
0fec171c 4678{
8cbbe86d 4679 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4680}
8cbbe86d 4681EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4682
009e577e
MW
4683int __sched wait_for_completion_killable(struct completion *x)
4684{
4685 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4686 if (t == -ERESTARTSYS)
4687 return t;
4688 return 0;
4689}
4690EXPORT_SYMBOL(wait_for_completion_killable);
4691
be4de352
DC
4692/**
4693 * try_wait_for_completion - try to decrement a completion without blocking
4694 * @x: completion structure
4695 *
4696 * Returns: 0 if a decrement cannot be done without blocking
4697 * 1 if a decrement succeeded.
4698 *
4699 * If a completion is being used as a counting completion,
4700 * attempt to decrement the counter without blocking. This
4701 * enables us to avoid waiting if the resource the completion
4702 * is protecting is not available.
4703 */
4704bool try_wait_for_completion(struct completion *x)
4705{
4706 int ret = 1;
4707
4708 spin_lock_irq(&x->wait.lock);
4709 if (!x->done)
4710 ret = 0;
4711 else
4712 x->done--;
4713 spin_unlock_irq(&x->wait.lock);
4714 return ret;
4715}
4716EXPORT_SYMBOL(try_wait_for_completion);
4717
4718/**
4719 * completion_done - Test to see if a completion has any waiters
4720 * @x: completion structure
4721 *
4722 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4723 * 1 if there are no waiters.
4724 *
4725 */
4726bool completion_done(struct completion *x)
4727{
4728 int ret = 1;
4729
4730 spin_lock_irq(&x->wait.lock);
4731 if (!x->done)
4732 ret = 0;
4733 spin_unlock_irq(&x->wait.lock);
4734 return ret;
4735}
4736EXPORT_SYMBOL(completion_done);
4737
8cbbe86d
AK
4738static long __sched
4739sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4740{
0fec171c
IM
4741 unsigned long flags;
4742 wait_queue_t wait;
4743
4744 init_waitqueue_entry(&wait, current);
1da177e4 4745
8cbbe86d 4746 __set_current_state(state);
1da177e4 4747
8cbbe86d
AK
4748 spin_lock_irqsave(&q->lock, flags);
4749 __add_wait_queue(q, &wait);
4750 spin_unlock(&q->lock);
4751 timeout = schedule_timeout(timeout);
4752 spin_lock_irq(&q->lock);
4753 __remove_wait_queue(q, &wait);
4754 spin_unlock_irqrestore(&q->lock, flags);
4755
4756 return timeout;
4757}
4758
4759void __sched interruptible_sleep_on(wait_queue_head_t *q)
4760{
4761 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4762}
1da177e4
LT
4763EXPORT_SYMBOL(interruptible_sleep_on);
4764
0fec171c 4765long __sched
95cdf3b7 4766interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4767{
8cbbe86d 4768 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4769}
1da177e4
LT
4770EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4771
0fec171c 4772void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4773{
8cbbe86d 4774 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4775}
1da177e4
LT
4776EXPORT_SYMBOL(sleep_on);
4777
0fec171c 4778long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4779{
8cbbe86d 4780 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4781}
1da177e4
LT
4782EXPORT_SYMBOL(sleep_on_timeout);
4783
b29739f9
IM
4784#ifdef CONFIG_RT_MUTEXES
4785
4786/*
4787 * rt_mutex_setprio - set the current priority of a task
4788 * @p: task
4789 * @prio: prio value (kernel-internal form)
4790 *
4791 * This function changes the 'effective' priority of a task. It does
4792 * not touch ->normal_prio like __setscheduler().
4793 *
4794 * Used by the rt_mutex code to implement priority inheritance logic.
4795 */
36c8b586 4796void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4797{
4798 unsigned long flags;
83b699ed 4799 int oldprio, on_rq, running;
70b97a7f 4800 struct rq *rq;
cb469845 4801 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4802
4803 BUG_ON(prio < 0 || prio > MAX_PRIO);
4804
4805 rq = task_rq_lock(p, &flags);
a8e504d2 4806 update_rq_clock(rq);
b29739f9 4807
d5f9f942 4808 oldprio = p->prio;
dd41f596 4809 on_rq = p->se.on_rq;
051a1d1a 4810 running = task_current(rq, p);
0e1f3483 4811 if (on_rq)
69be72c1 4812 dequeue_task(rq, p, 0);
0e1f3483
HS
4813 if (running)
4814 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4815
4816 if (rt_prio(prio))
4817 p->sched_class = &rt_sched_class;
4818 else
4819 p->sched_class = &fair_sched_class;
4820
b29739f9
IM
4821 p->prio = prio;
4822
0e1f3483
HS
4823 if (running)
4824 p->sched_class->set_curr_task(rq);
dd41f596 4825 if (on_rq) {
8159f87e 4826 enqueue_task(rq, p, 0);
cb469845
SR
4827
4828 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4829 }
4830 task_rq_unlock(rq, &flags);
4831}
4832
4833#endif
4834
36c8b586 4835void set_user_nice(struct task_struct *p, long nice)
1da177e4 4836{
dd41f596 4837 int old_prio, delta, on_rq;
1da177e4 4838 unsigned long flags;
70b97a7f 4839 struct rq *rq;
1da177e4
LT
4840
4841 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4842 return;
4843 /*
4844 * We have to be careful, if called from sys_setpriority(),
4845 * the task might be in the middle of scheduling on another CPU.
4846 */
4847 rq = task_rq_lock(p, &flags);
a8e504d2 4848 update_rq_clock(rq);
1da177e4
LT
4849 /*
4850 * The RT priorities are set via sched_setscheduler(), but we still
4851 * allow the 'normal' nice value to be set - but as expected
4852 * it wont have any effect on scheduling until the task is
dd41f596 4853 * SCHED_FIFO/SCHED_RR:
1da177e4 4854 */
e05606d3 4855 if (task_has_rt_policy(p)) {
1da177e4
LT
4856 p->static_prio = NICE_TO_PRIO(nice);
4857 goto out_unlock;
4858 }
dd41f596 4859 on_rq = p->se.on_rq;
c09595f6 4860 if (on_rq)
69be72c1 4861 dequeue_task(rq, p, 0);
1da177e4 4862
1da177e4 4863 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4864 set_load_weight(p);
b29739f9
IM
4865 old_prio = p->prio;
4866 p->prio = effective_prio(p);
4867 delta = p->prio - old_prio;
1da177e4 4868
dd41f596 4869 if (on_rq) {
8159f87e 4870 enqueue_task(rq, p, 0);
1da177e4 4871 /*
d5f9f942
AM
4872 * If the task increased its priority or is running and
4873 * lowered its priority, then reschedule its CPU:
1da177e4 4874 */
d5f9f942 4875 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4876 resched_task(rq->curr);
4877 }
4878out_unlock:
4879 task_rq_unlock(rq, &flags);
4880}
1da177e4
LT
4881EXPORT_SYMBOL(set_user_nice);
4882
e43379f1
MM
4883/*
4884 * can_nice - check if a task can reduce its nice value
4885 * @p: task
4886 * @nice: nice value
4887 */
36c8b586 4888int can_nice(const struct task_struct *p, const int nice)
e43379f1 4889{
024f4747
MM
4890 /* convert nice value [19,-20] to rlimit style value [1,40] */
4891 int nice_rlim = 20 - nice;
48f24c4d 4892
e43379f1
MM
4893 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4894 capable(CAP_SYS_NICE));
4895}
4896
1da177e4
LT
4897#ifdef __ARCH_WANT_SYS_NICE
4898
4899/*
4900 * sys_nice - change the priority of the current process.
4901 * @increment: priority increment
4902 *
4903 * sys_setpriority is a more generic, but much slower function that
4904 * does similar things.
4905 */
4906asmlinkage long sys_nice(int increment)
4907{
48f24c4d 4908 long nice, retval;
1da177e4
LT
4909
4910 /*
4911 * Setpriority might change our priority at the same moment.
4912 * We don't have to worry. Conceptually one call occurs first
4913 * and we have a single winner.
4914 */
e43379f1
MM
4915 if (increment < -40)
4916 increment = -40;
1da177e4
LT
4917 if (increment > 40)
4918 increment = 40;
4919
4920 nice = PRIO_TO_NICE(current->static_prio) + increment;
4921 if (nice < -20)
4922 nice = -20;
4923 if (nice > 19)
4924 nice = 19;
4925
e43379f1
MM
4926 if (increment < 0 && !can_nice(current, nice))
4927 return -EPERM;
4928
1da177e4
LT
4929 retval = security_task_setnice(current, nice);
4930 if (retval)
4931 return retval;
4932
4933 set_user_nice(current, nice);
4934 return 0;
4935}
4936
4937#endif
4938
4939/**
4940 * task_prio - return the priority value of a given task.
4941 * @p: the task in question.
4942 *
4943 * This is the priority value as seen by users in /proc.
4944 * RT tasks are offset by -200. Normal tasks are centered
4945 * around 0, value goes from -16 to +15.
4946 */
36c8b586 4947int task_prio(const struct task_struct *p)
1da177e4
LT
4948{
4949 return p->prio - MAX_RT_PRIO;
4950}
4951
4952/**
4953 * task_nice - return the nice value of a given task.
4954 * @p: the task in question.
4955 */
36c8b586 4956int task_nice(const struct task_struct *p)
1da177e4
LT
4957{
4958 return TASK_NICE(p);
4959}
150d8bed 4960EXPORT_SYMBOL(task_nice);
1da177e4
LT
4961
4962/**
4963 * idle_cpu - is a given cpu idle currently?
4964 * @cpu: the processor in question.
4965 */
4966int idle_cpu(int cpu)
4967{
4968 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4969}
4970
1da177e4
LT
4971/**
4972 * idle_task - return the idle task for a given cpu.
4973 * @cpu: the processor in question.
4974 */
36c8b586 4975struct task_struct *idle_task(int cpu)
1da177e4
LT
4976{
4977 return cpu_rq(cpu)->idle;
4978}
4979
4980/**
4981 * find_process_by_pid - find a process with a matching PID value.
4982 * @pid: the pid in question.
4983 */
a9957449 4984static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4985{
228ebcbe 4986 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4987}
4988
4989/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4990static void
4991__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4992{
dd41f596 4993 BUG_ON(p->se.on_rq);
48f24c4d 4994
1da177e4 4995 p->policy = policy;
dd41f596
IM
4996 switch (p->policy) {
4997 case SCHED_NORMAL:
4998 case SCHED_BATCH:
4999 case SCHED_IDLE:
5000 p->sched_class = &fair_sched_class;
5001 break;
5002 case SCHED_FIFO:
5003 case SCHED_RR:
5004 p->sched_class = &rt_sched_class;
5005 break;
5006 }
5007
1da177e4 5008 p->rt_priority = prio;
b29739f9
IM
5009 p->normal_prio = normal_prio(p);
5010 /* we are holding p->pi_lock already */
5011 p->prio = rt_mutex_getprio(p);
2dd73a4f 5012 set_load_weight(p);
1da177e4
LT
5013}
5014
961ccddd
RR
5015static int __sched_setscheduler(struct task_struct *p, int policy,
5016 struct sched_param *param, bool user)
1da177e4 5017{
83b699ed 5018 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5019 unsigned long flags;
cb469845 5020 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5021 struct rq *rq;
1da177e4 5022
66e5393a
SR
5023 /* may grab non-irq protected spin_locks */
5024 BUG_ON(in_interrupt());
1da177e4
LT
5025recheck:
5026 /* double check policy once rq lock held */
5027 if (policy < 0)
5028 policy = oldpolicy = p->policy;
5029 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5030 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5031 policy != SCHED_IDLE)
b0a9499c 5032 return -EINVAL;
1da177e4
LT
5033 /*
5034 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5035 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5036 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5037 */
5038 if (param->sched_priority < 0 ||
95cdf3b7 5039 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5040 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5041 return -EINVAL;
e05606d3 5042 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5043 return -EINVAL;
5044
37e4ab3f
OC
5045 /*
5046 * Allow unprivileged RT tasks to decrease priority:
5047 */
961ccddd 5048 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5049 if (rt_policy(policy)) {
8dc3e909 5050 unsigned long rlim_rtprio;
8dc3e909
ON
5051
5052 if (!lock_task_sighand(p, &flags))
5053 return -ESRCH;
5054 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5055 unlock_task_sighand(p, &flags);
5056
5057 /* can't set/change the rt policy */
5058 if (policy != p->policy && !rlim_rtprio)
5059 return -EPERM;
5060
5061 /* can't increase priority */
5062 if (param->sched_priority > p->rt_priority &&
5063 param->sched_priority > rlim_rtprio)
5064 return -EPERM;
5065 }
dd41f596
IM
5066 /*
5067 * Like positive nice levels, dont allow tasks to
5068 * move out of SCHED_IDLE either:
5069 */
5070 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5071 return -EPERM;
5fe1d75f 5072
37e4ab3f
OC
5073 /* can't change other user's priorities */
5074 if ((current->euid != p->euid) &&
5075 (current->euid != p->uid))
5076 return -EPERM;
5077 }
1da177e4 5078
725aad24 5079 if (user) {
b68aa230 5080#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5081 /*
5082 * Do not allow realtime tasks into groups that have no runtime
5083 * assigned.
5084 */
9a7e0b18
PZ
5085 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5086 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5087 return -EPERM;
b68aa230
PZ
5088#endif
5089
725aad24
JF
5090 retval = security_task_setscheduler(p, policy, param);
5091 if (retval)
5092 return retval;
5093 }
5094
b29739f9
IM
5095 /*
5096 * make sure no PI-waiters arrive (or leave) while we are
5097 * changing the priority of the task:
5098 */
5099 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5100 /*
5101 * To be able to change p->policy safely, the apropriate
5102 * runqueue lock must be held.
5103 */
b29739f9 5104 rq = __task_rq_lock(p);
1da177e4
LT
5105 /* recheck policy now with rq lock held */
5106 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5107 policy = oldpolicy = -1;
b29739f9
IM
5108 __task_rq_unlock(rq);
5109 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5110 goto recheck;
5111 }
2daa3577 5112 update_rq_clock(rq);
dd41f596 5113 on_rq = p->se.on_rq;
051a1d1a 5114 running = task_current(rq, p);
0e1f3483 5115 if (on_rq)
2e1cb74a 5116 deactivate_task(rq, p, 0);
0e1f3483
HS
5117 if (running)
5118 p->sched_class->put_prev_task(rq, p);
f6b53205 5119
1da177e4 5120 oldprio = p->prio;
dd41f596 5121 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5122
0e1f3483
HS
5123 if (running)
5124 p->sched_class->set_curr_task(rq);
dd41f596
IM
5125 if (on_rq) {
5126 activate_task(rq, p, 0);
cb469845
SR
5127
5128 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5129 }
b29739f9
IM
5130 __task_rq_unlock(rq);
5131 spin_unlock_irqrestore(&p->pi_lock, flags);
5132
95e02ca9
TG
5133 rt_mutex_adjust_pi(p);
5134
1da177e4
LT
5135 return 0;
5136}
961ccddd
RR
5137
5138/**
5139 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5140 * @p: the task in question.
5141 * @policy: new policy.
5142 * @param: structure containing the new RT priority.
5143 *
5144 * NOTE that the task may be already dead.
5145 */
5146int sched_setscheduler(struct task_struct *p, int policy,
5147 struct sched_param *param)
5148{
5149 return __sched_setscheduler(p, policy, param, true);
5150}
1da177e4
LT
5151EXPORT_SYMBOL_GPL(sched_setscheduler);
5152
961ccddd
RR
5153/**
5154 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5155 * @p: the task in question.
5156 * @policy: new policy.
5157 * @param: structure containing the new RT priority.
5158 *
5159 * Just like sched_setscheduler, only don't bother checking if the
5160 * current context has permission. For example, this is needed in
5161 * stop_machine(): we create temporary high priority worker threads,
5162 * but our caller might not have that capability.
5163 */
5164int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5165 struct sched_param *param)
5166{
5167 return __sched_setscheduler(p, policy, param, false);
5168}
5169
95cdf3b7
IM
5170static int
5171do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5172{
1da177e4
LT
5173 struct sched_param lparam;
5174 struct task_struct *p;
36c8b586 5175 int retval;
1da177e4
LT
5176
5177 if (!param || pid < 0)
5178 return -EINVAL;
5179 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5180 return -EFAULT;
5fe1d75f
ON
5181
5182 rcu_read_lock();
5183 retval = -ESRCH;
1da177e4 5184 p = find_process_by_pid(pid);
5fe1d75f
ON
5185 if (p != NULL)
5186 retval = sched_setscheduler(p, policy, &lparam);
5187 rcu_read_unlock();
36c8b586 5188
1da177e4
LT
5189 return retval;
5190}
5191
5192/**
5193 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5194 * @pid: the pid in question.
5195 * @policy: new policy.
5196 * @param: structure containing the new RT priority.
5197 */
41a2d6cf
IM
5198asmlinkage long
5199sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5200{
c21761f1
JB
5201 /* negative values for policy are not valid */
5202 if (policy < 0)
5203 return -EINVAL;
5204
1da177e4
LT
5205 return do_sched_setscheduler(pid, policy, param);
5206}
5207
5208/**
5209 * sys_sched_setparam - set/change the RT priority of a thread
5210 * @pid: the pid in question.
5211 * @param: structure containing the new RT priority.
5212 */
5213asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5214{
5215 return do_sched_setscheduler(pid, -1, param);
5216}
5217
5218/**
5219 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5220 * @pid: the pid in question.
5221 */
5222asmlinkage long sys_sched_getscheduler(pid_t pid)
5223{
36c8b586 5224 struct task_struct *p;
3a5c359a 5225 int retval;
1da177e4
LT
5226
5227 if (pid < 0)
3a5c359a 5228 return -EINVAL;
1da177e4
LT
5229
5230 retval = -ESRCH;
5231 read_lock(&tasklist_lock);
5232 p = find_process_by_pid(pid);
5233 if (p) {
5234 retval = security_task_getscheduler(p);
5235 if (!retval)
5236 retval = p->policy;
5237 }
5238 read_unlock(&tasklist_lock);
1da177e4
LT
5239 return retval;
5240}
5241
5242/**
5243 * sys_sched_getscheduler - get the RT priority of a thread
5244 * @pid: the pid in question.
5245 * @param: structure containing the RT priority.
5246 */
5247asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5248{
5249 struct sched_param lp;
36c8b586 5250 struct task_struct *p;
3a5c359a 5251 int retval;
1da177e4
LT
5252
5253 if (!param || pid < 0)
3a5c359a 5254 return -EINVAL;
1da177e4
LT
5255
5256 read_lock(&tasklist_lock);
5257 p = find_process_by_pid(pid);
5258 retval = -ESRCH;
5259 if (!p)
5260 goto out_unlock;
5261
5262 retval = security_task_getscheduler(p);
5263 if (retval)
5264 goto out_unlock;
5265
5266 lp.sched_priority = p->rt_priority;
5267 read_unlock(&tasklist_lock);
5268
5269 /*
5270 * This one might sleep, we cannot do it with a spinlock held ...
5271 */
5272 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5273
1da177e4
LT
5274 return retval;
5275
5276out_unlock:
5277 read_unlock(&tasklist_lock);
5278 return retval;
5279}
5280
b53e921b 5281long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5282{
1da177e4 5283 cpumask_t cpus_allowed;
b53e921b 5284 cpumask_t new_mask = *in_mask;
36c8b586
IM
5285 struct task_struct *p;
5286 int retval;
1da177e4 5287
95402b38 5288 get_online_cpus();
1da177e4
LT
5289 read_lock(&tasklist_lock);
5290
5291 p = find_process_by_pid(pid);
5292 if (!p) {
5293 read_unlock(&tasklist_lock);
95402b38 5294 put_online_cpus();
1da177e4
LT
5295 return -ESRCH;
5296 }
5297
5298 /*
5299 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5300 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5301 * usage count and then drop tasklist_lock.
5302 */
5303 get_task_struct(p);
5304 read_unlock(&tasklist_lock);
5305
5306 retval = -EPERM;
5307 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5308 !capable(CAP_SYS_NICE))
5309 goto out_unlock;
5310
e7834f8f
DQ
5311 retval = security_task_setscheduler(p, 0, NULL);
5312 if (retval)
5313 goto out_unlock;
5314
f9a86fcb 5315 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5316 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5317 again:
7c16ec58 5318 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5319
8707d8b8 5320 if (!retval) {
f9a86fcb 5321 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5322 if (!cpus_subset(new_mask, cpus_allowed)) {
5323 /*
5324 * We must have raced with a concurrent cpuset
5325 * update. Just reset the cpus_allowed to the
5326 * cpuset's cpus_allowed
5327 */
5328 new_mask = cpus_allowed;
5329 goto again;
5330 }
5331 }
1da177e4
LT
5332out_unlock:
5333 put_task_struct(p);
95402b38 5334 put_online_cpus();
1da177e4
LT
5335 return retval;
5336}
5337
5338static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5339 cpumask_t *new_mask)
5340{
5341 if (len < sizeof(cpumask_t)) {
5342 memset(new_mask, 0, sizeof(cpumask_t));
5343 } else if (len > sizeof(cpumask_t)) {
5344 len = sizeof(cpumask_t);
5345 }
5346 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5347}
5348
5349/**
5350 * sys_sched_setaffinity - set the cpu affinity of a process
5351 * @pid: pid of the process
5352 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5353 * @user_mask_ptr: user-space pointer to the new cpu mask
5354 */
5355asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5356 unsigned long __user *user_mask_ptr)
5357{
5358 cpumask_t new_mask;
5359 int retval;
5360
5361 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5362 if (retval)
5363 return retval;
5364
b53e921b 5365 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5366}
5367
1da177e4
LT
5368long sched_getaffinity(pid_t pid, cpumask_t *mask)
5369{
36c8b586 5370 struct task_struct *p;
1da177e4 5371 int retval;
1da177e4 5372
95402b38 5373 get_online_cpus();
1da177e4
LT
5374 read_lock(&tasklist_lock);
5375
5376 retval = -ESRCH;
5377 p = find_process_by_pid(pid);
5378 if (!p)
5379 goto out_unlock;
5380
e7834f8f
DQ
5381 retval = security_task_getscheduler(p);
5382 if (retval)
5383 goto out_unlock;
5384
2f7016d9 5385 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5386
5387out_unlock:
5388 read_unlock(&tasklist_lock);
95402b38 5389 put_online_cpus();
1da177e4 5390
9531b62f 5391 return retval;
1da177e4
LT
5392}
5393
5394/**
5395 * sys_sched_getaffinity - get the cpu affinity of a process
5396 * @pid: pid of the process
5397 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5398 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5399 */
5400asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5401 unsigned long __user *user_mask_ptr)
5402{
5403 int ret;
5404 cpumask_t mask;
5405
5406 if (len < sizeof(cpumask_t))
5407 return -EINVAL;
5408
5409 ret = sched_getaffinity(pid, &mask);
5410 if (ret < 0)
5411 return ret;
5412
5413 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5414 return -EFAULT;
5415
5416 return sizeof(cpumask_t);
5417}
5418
5419/**
5420 * sys_sched_yield - yield the current processor to other threads.
5421 *
dd41f596
IM
5422 * This function yields the current CPU to other tasks. If there are no
5423 * other threads running on this CPU then this function will return.
1da177e4
LT
5424 */
5425asmlinkage long sys_sched_yield(void)
5426{
70b97a7f 5427 struct rq *rq = this_rq_lock();
1da177e4 5428
2d72376b 5429 schedstat_inc(rq, yld_count);
4530d7ab 5430 current->sched_class->yield_task(rq);
1da177e4
LT
5431
5432 /*
5433 * Since we are going to call schedule() anyway, there's
5434 * no need to preempt or enable interrupts:
5435 */
5436 __release(rq->lock);
8a25d5de 5437 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5438 _raw_spin_unlock(&rq->lock);
5439 preempt_enable_no_resched();
5440
5441 schedule();
5442
5443 return 0;
5444}
5445
e7b38404 5446static void __cond_resched(void)
1da177e4 5447{
8e0a43d8
IM
5448#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5449 __might_sleep(__FILE__, __LINE__);
5450#endif
5bbcfd90
IM
5451 /*
5452 * The BKS might be reacquired before we have dropped
5453 * PREEMPT_ACTIVE, which could trigger a second
5454 * cond_resched() call.
5455 */
1da177e4
LT
5456 do {
5457 add_preempt_count(PREEMPT_ACTIVE);
5458 schedule();
5459 sub_preempt_count(PREEMPT_ACTIVE);
5460 } while (need_resched());
5461}
5462
02b67cc3 5463int __sched _cond_resched(void)
1da177e4 5464{
9414232f
IM
5465 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5466 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5467 __cond_resched();
5468 return 1;
5469 }
5470 return 0;
5471}
02b67cc3 5472EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5473
5474/*
5475 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5476 * call schedule, and on return reacquire the lock.
5477 *
41a2d6cf 5478 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5479 * operations here to prevent schedule() from being called twice (once via
5480 * spin_unlock(), once by hand).
5481 */
95cdf3b7 5482int cond_resched_lock(spinlock_t *lock)
1da177e4 5483{
95c354fe 5484 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5485 int ret = 0;
5486
95c354fe 5487 if (spin_needbreak(lock) || resched) {
1da177e4 5488 spin_unlock(lock);
95c354fe
NP
5489 if (resched && need_resched())
5490 __cond_resched();
5491 else
5492 cpu_relax();
6df3cecb 5493 ret = 1;
1da177e4 5494 spin_lock(lock);
1da177e4 5495 }
6df3cecb 5496 return ret;
1da177e4 5497}
1da177e4
LT
5498EXPORT_SYMBOL(cond_resched_lock);
5499
5500int __sched cond_resched_softirq(void)
5501{
5502 BUG_ON(!in_softirq());
5503
9414232f 5504 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5505 local_bh_enable();
1da177e4
LT
5506 __cond_resched();
5507 local_bh_disable();
5508 return 1;
5509 }
5510 return 0;
5511}
1da177e4
LT
5512EXPORT_SYMBOL(cond_resched_softirq);
5513
1da177e4
LT
5514/**
5515 * yield - yield the current processor to other threads.
5516 *
72fd4a35 5517 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5518 * thread runnable and calls sys_sched_yield().
5519 */
5520void __sched yield(void)
5521{
5522 set_current_state(TASK_RUNNING);
5523 sys_sched_yield();
5524}
1da177e4
LT
5525EXPORT_SYMBOL(yield);
5526
5527/*
41a2d6cf 5528 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5529 * that process accounting knows that this is a task in IO wait state.
5530 *
5531 * But don't do that if it is a deliberate, throttling IO wait (this task
5532 * has set its backing_dev_info: the queue against which it should throttle)
5533 */
5534void __sched io_schedule(void)
5535{
70b97a7f 5536 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5537
0ff92245 5538 delayacct_blkio_start();
1da177e4
LT
5539 atomic_inc(&rq->nr_iowait);
5540 schedule();
5541 atomic_dec(&rq->nr_iowait);
0ff92245 5542 delayacct_blkio_end();
1da177e4 5543}
1da177e4
LT
5544EXPORT_SYMBOL(io_schedule);
5545
5546long __sched io_schedule_timeout(long timeout)
5547{
70b97a7f 5548 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5549 long ret;
5550
0ff92245 5551 delayacct_blkio_start();
1da177e4
LT
5552 atomic_inc(&rq->nr_iowait);
5553 ret = schedule_timeout(timeout);
5554 atomic_dec(&rq->nr_iowait);
0ff92245 5555 delayacct_blkio_end();
1da177e4
LT
5556 return ret;
5557}
5558
5559/**
5560 * sys_sched_get_priority_max - return maximum RT priority.
5561 * @policy: scheduling class.
5562 *
5563 * this syscall returns the maximum rt_priority that can be used
5564 * by a given scheduling class.
5565 */
5566asmlinkage long sys_sched_get_priority_max(int policy)
5567{
5568 int ret = -EINVAL;
5569
5570 switch (policy) {
5571 case SCHED_FIFO:
5572 case SCHED_RR:
5573 ret = MAX_USER_RT_PRIO-1;
5574 break;
5575 case SCHED_NORMAL:
b0a9499c 5576 case SCHED_BATCH:
dd41f596 5577 case SCHED_IDLE:
1da177e4
LT
5578 ret = 0;
5579 break;
5580 }
5581 return ret;
5582}
5583
5584/**
5585 * sys_sched_get_priority_min - return minimum RT priority.
5586 * @policy: scheduling class.
5587 *
5588 * this syscall returns the minimum rt_priority that can be used
5589 * by a given scheduling class.
5590 */
5591asmlinkage long sys_sched_get_priority_min(int policy)
5592{
5593 int ret = -EINVAL;
5594
5595 switch (policy) {
5596 case SCHED_FIFO:
5597 case SCHED_RR:
5598 ret = 1;
5599 break;
5600 case SCHED_NORMAL:
b0a9499c 5601 case SCHED_BATCH:
dd41f596 5602 case SCHED_IDLE:
1da177e4
LT
5603 ret = 0;
5604 }
5605 return ret;
5606}
5607
5608/**
5609 * sys_sched_rr_get_interval - return the default timeslice of a process.
5610 * @pid: pid of the process.
5611 * @interval: userspace pointer to the timeslice value.
5612 *
5613 * this syscall writes the default timeslice value of a given process
5614 * into the user-space timespec buffer. A value of '0' means infinity.
5615 */
5616asmlinkage
5617long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5618{
36c8b586 5619 struct task_struct *p;
a4ec24b4 5620 unsigned int time_slice;
3a5c359a 5621 int retval;
1da177e4 5622 struct timespec t;
1da177e4
LT
5623
5624 if (pid < 0)
3a5c359a 5625 return -EINVAL;
1da177e4
LT
5626
5627 retval = -ESRCH;
5628 read_lock(&tasklist_lock);
5629 p = find_process_by_pid(pid);
5630 if (!p)
5631 goto out_unlock;
5632
5633 retval = security_task_getscheduler(p);
5634 if (retval)
5635 goto out_unlock;
5636
77034937
IM
5637 /*
5638 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5639 * tasks that are on an otherwise idle runqueue:
5640 */
5641 time_slice = 0;
5642 if (p->policy == SCHED_RR) {
a4ec24b4 5643 time_slice = DEF_TIMESLICE;
1868f958 5644 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5645 struct sched_entity *se = &p->se;
5646 unsigned long flags;
5647 struct rq *rq;
5648
5649 rq = task_rq_lock(p, &flags);
77034937
IM
5650 if (rq->cfs.load.weight)
5651 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5652 task_rq_unlock(rq, &flags);
5653 }
1da177e4 5654 read_unlock(&tasklist_lock);
a4ec24b4 5655 jiffies_to_timespec(time_slice, &t);
1da177e4 5656 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5657 return retval;
3a5c359a 5658
1da177e4
LT
5659out_unlock:
5660 read_unlock(&tasklist_lock);
5661 return retval;
5662}
5663
7c731e0a 5664static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5665
82a1fcb9 5666void sched_show_task(struct task_struct *p)
1da177e4 5667{
1da177e4 5668 unsigned long free = 0;
36c8b586 5669 unsigned state;
1da177e4 5670
1da177e4 5671 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5672 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5673 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5674#if BITS_PER_LONG == 32
1da177e4 5675 if (state == TASK_RUNNING)
cc4ea795 5676 printk(KERN_CONT " running ");
1da177e4 5677 else
cc4ea795 5678 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5679#else
5680 if (state == TASK_RUNNING)
cc4ea795 5681 printk(KERN_CONT " running task ");
1da177e4 5682 else
cc4ea795 5683 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5684#endif
5685#ifdef CONFIG_DEBUG_STACK_USAGE
5686 {
10ebffde 5687 unsigned long *n = end_of_stack(p);
1da177e4
LT
5688 while (!*n)
5689 n++;
10ebffde 5690 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5691 }
5692#endif
ba25f9dc 5693 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5694 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5695
5fb5e6de 5696 show_stack(p, NULL);
1da177e4
LT
5697}
5698
e59e2ae2 5699void show_state_filter(unsigned long state_filter)
1da177e4 5700{
36c8b586 5701 struct task_struct *g, *p;
1da177e4 5702
4bd77321
IM
5703#if BITS_PER_LONG == 32
5704 printk(KERN_INFO
5705 " task PC stack pid father\n");
1da177e4 5706#else
4bd77321
IM
5707 printk(KERN_INFO
5708 " task PC stack pid father\n");
1da177e4
LT
5709#endif
5710 read_lock(&tasklist_lock);
5711 do_each_thread(g, p) {
5712 /*
5713 * reset the NMI-timeout, listing all files on a slow
5714 * console might take alot of time:
5715 */
5716 touch_nmi_watchdog();
39bc89fd 5717 if (!state_filter || (p->state & state_filter))
82a1fcb9 5718 sched_show_task(p);
1da177e4
LT
5719 } while_each_thread(g, p);
5720
04c9167f
JF
5721 touch_all_softlockup_watchdogs();
5722
dd41f596
IM
5723#ifdef CONFIG_SCHED_DEBUG
5724 sysrq_sched_debug_show();
5725#endif
1da177e4 5726 read_unlock(&tasklist_lock);
e59e2ae2
IM
5727 /*
5728 * Only show locks if all tasks are dumped:
5729 */
5730 if (state_filter == -1)
5731 debug_show_all_locks();
1da177e4
LT
5732}
5733
1df21055
IM
5734void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5735{
dd41f596 5736 idle->sched_class = &idle_sched_class;
1df21055
IM
5737}
5738
f340c0d1
IM
5739/**
5740 * init_idle - set up an idle thread for a given CPU
5741 * @idle: task in question
5742 * @cpu: cpu the idle task belongs to
5743 *
5744 * NOTE: this function does not set the idle thread's NEED_RESCHED
5745 * flag, to make booting more robust.
5746 */
5c1e1767 5747void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5748{
70b97a7f 5749 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5750 unsigned long flags;
5751
dd41f596
IM
5752 __sched_fork(idle);
5753 idle->se.exec_start = sched_clock();
5754
b29739f9 5755 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5756 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5757 __set_task_cpu(idle, cpu);
1da177e4
LT
5758
5759 spin_lock_irqsave(&rq->lock, flags);
5760 rq->curr = rq->idle = idle;
4866cde0
NP
5761#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5762 idle->oncpu = 1;
5763#endif
1da177e4
LT
5764 spin_unlock_irqrestore(&rq->lock, flags);
5765
5766 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5767#if defined(CONFIG_PREEMPT)
5768 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5769#else
a1261f54 5770 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5771#endif
dd41f596
IM
5772 /*
5773 * The idle tasks have their own, simple scheduling class:
5774 */
5775 idle->sched_class = &idle_sched_class;
1da177e4
LT
5776}
5777
5778/*
5779 * In a system that switches off the HZ timer nohz_cpu_mask
5780 * indicates which cpus entered this state. This is used
5781 * in the rcu update to wait only for active cpus. For system
5782 * which do not switch off the HZ timer nohz_cpu_mask should
5783 * always be CPU_MASK_NONE.
5784 */
5785cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5786
19978ca6
IM
5787/*
5788 * Increase the granularity value when there are more CPUs,
5789 * because with more CPUs the 'effective latency' as visible
5790 * to users decreases. But the relationship is not linear,
5791 * so pick a second-best guess by going with the log2 of the
5792 * number of CPUs.
5793 *
5794 * This idea comes from the SD scheduler of Con Kolivas:
5795 */
5796static inline void sched_init_granularity(void)
5797{
5798 unsigned int factor = 1 + ilog2(num_online_cpus());
5799 const unsigned long limit = 200000000;
5800
5801 sysctl_sched_min_granularity *= factor;
5802 if (sysctl_sched_min_granularity > limit)
5803 sysctl_sched_min_granularity = limit;
5804
5805 sysctl_sched_latency *= factor;
5806 if (sysctl_sched_latency > limit)
5807 sysctl_sched_latency = limit;
5808
5809 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5810
5811 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5812}
5813
1da177e4
LT
5814#ifdef CONFIG_SMP
5815/*
5816 * This is how migration works:
5817 *
70b97a7f 5818 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5819 * runqueue and wake up that CPU's migration thread.
5820 * 2) we down() the locked semaphore => thread blocks.
5821 * 3) migration thread wakes up (implicitly it forces the migrated
5822 * thread off the CPU)
5823 * 4) it gets the migration request and checks whether the migrated
5824 * task is still in the wrong runqueue.
5825 * 5) if it's in the wrong runqueue then the migration thread removes
5826 * it and puts it into the right queue.
5827 * 6) migration thread up()s the semaphore.
5828 * 7) we wake up and the migration is done.
5829 */
5830
5831/*
5832 * Change a given task's CPU affinity. Migrate the thread to a
5833 * proper CPU and schedule it away if the CPU it's executing on
5834 * is removed from the allowed bitmask.
5835 *
5836 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5837 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5838 * call is not atomic; no spinlocks may be held.
5839 */
cd8ba7cd 5840int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5841{
70b97a7f 5842 struct migration_req req;
1da177e4 5843 unsigned long flags;
70b97a7f 5844 struct rq *rq;
48f24c4d 5845 int ret = 0;
1da177e4
LT
5846
5847 rq = task_rq_lock(p, &flags);
cd8ba7cd 5848 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5849 ret = -EINVAL;
5850 goto out;
5851 }
5852
9985b0ba
DR
5853 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5854 !cpus_equal(p->cpus_allowed, *new_mask))) {
5855 ret = -EINVAL;
5856 goto out;
5857 }
5858
73fe6aae 5859 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5860 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5861 else {
cd8ba7cd
MT
5862 p->cpus_allowed = *new_mask;
5863 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5864 }
5865
1da177e4 5866 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5867 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5868 goto out;
5869
cd8ba7cd 5870 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5871 /* Need help from migration thread: drop lock and wait. */
5872 task_rq_unlock(rq, &flags);
5873 wake_up_process(rq->migration_thread);
5874 wait_for_completion(&req.done);
5875 tlb_migrate_finish(p->mm);
5876 return 0;
5877 }
5878out:
5879 task_rq_unlock(rq, &flags);
48f24c4d 5880
1da177e4
LT
5881 return ret;
5882}
cd8ba7cd 5883EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5884
5885/*
41a2d6cf 5886 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5887 * this because either it can't run here any more (set_cpus_allowed()
5888 * away from this CPU, or CPU going down), or because we're
5889 * attempting to rebalance this task on exec (sched_exec).
5890 *
5891 * So we race with normal scheduler movements, but that's OK, as long
5892 * as the task is no longer on this CPU.
efc30814
KK
5893 *
5894 * Returns non-zero if task was successfully migrated.
1da177e4 5895 */
efc30814 5896static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5897{
70b97a7f 5898 struct rq *rq_dest, *rq_src;
dd41f596 5899 int ret = 0, on_rq;
1da177e4 5900
e761b772 5901 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5902 return ret;
1da177e4
LT
5903
5904 rq_src = cpu_rq(src_cpu);
5905 rq_dest = cpu_rq(dest_cpu);
5906
5907 double_rq_lock(rq_src, rq_dest);
5908 /* Already moved. */
5909 if (task_cpu(p) != src_cpu)
b1e38734 5910 goto done;
1da177e4
LT
5911 /* Affinity changed (again). */
5912 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 5913 goto fail;
1da177e4 5914
dd41f596 5915 on_rq = p->se.on_rq;
6e82a3be 5916 if (on_rq)
2e1cb74a 5917 deactivate_task(rq_src, p, 0);
6e82a3be 5918
1da177e4 5919 set_task_cpu(p, dest_cpu);
dd41f596
IM
5920 if (on_rq) {
5921 activate_task(rq_dest, p, 0);
5922 check_preempt_curr(rq_dest, p);
1da177e4 5923 }
b1e38734 5924done:
efc30814 5925 ret = 1;
b1e38734 5926fail:
1da177e4 5927 double_rq_unlock(rq_src, rq_dest);
efc30814 5928 return ret;
1da177e4
LT
5929}
5930
5931/*
5932 * migration_thread - this is a highprio system thread that performs
5933 * thread migration by bumping thread off CPU then 'pushing' onto
5934 * another runqueue.
5935 */
95cdf3b7 5936static int migration_thread(void *data)
1da177e4 5937{
1da177e4 5938 int cpu = (long)data;
70b97a7f 5939 struct rq *rq;
1da177e4
LT
5940
5941 rq = cpu_rq(cpu);
5942 BUG_ON(rq->migration_thread != current);
5943
5944 set_current_state(TASK_INTERRUPTIBLE);
5945 while (!kthread_should_stop()) {
70b97a7f 5946 struct migration_req *req;
1da177e4 5947 struct list_head *head;
1da177e4 5948
1da177e4
LT
5949 spin_lock_irq(&rq->lock);
5950
5951 if (cpu_is_offline(cpu)) {
5952 spin_unlock_irq(&rq->lock);
5953 goto wait_to_die;
5954 }
5955
5956 if (rq->active_balance) {
5957 active_load_balance(rq, cpu);
5958 rq->active_balance = 0;
5959 }
5960
5961 head = &rq->migration_queue;
5962
5963 if (list_empty(head)) {
5964 spin_unlock_irq(&rq->lock);
5965 schedule();
5966 set_current_state(TASK_INTERRUPTIBLE);
5967 continue;
5968 }
70b97a7f 5969 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5970 list_del_init(head->next);
5971
674311d5
NP
5972 spin_unlock(&rq->lock);
5973 __migrate_task(req->task, cpu, req->dest_cpu);
5974 local_irq_enable();
1da177e4
LT
5975
5976 complete(&req->done);
5977 }
5978 __set_current_state(TASK_RUNNING);
5979 return 0;
5980
5981wait_to_die:
5982 /* Wait for kthread_stop */
5983 set_current_state(TASK_INTERRUPTIBLE);
5984 while (!kthread_should_stop()) {
5985 schedule();
5986 set_current_state(TASK_INTERRUPTIBLE);
5987 }
5988 __set_current_state(TASK_RUNNING);
5989 return 0;
5990}
5991
5992#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5993
5994static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5995{
5996 int ret;
5997
5998 local_irq_disable();
5999 ret = __migrate_task(p, src_cpu, dest_cpu);
6000 local_irq_enable();
6001 return ret;
6002}
6003
054b9108 6004/*
3a4fa0a2 6005 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6006 * NOTE: interrupts should be disabled by the caller
6007 */
48f24c4d 6008static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6009{
efc30814 6010 unsigned long flags;
1da177e4 6011 cpumask_t mask;
70b97a7f
IM
6012 struct rq *rq;
6013 int dest_cpu;
1da177e4 6014
3a5c359a
AK
6015 do {
6016 /* On same node? */
6017 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6018 cpus_and(mask, mask, p->cpus_allowed);
6019 dest_cpu = any_online_cpu(mask);
6020
6021 /* On any allowed CPU? */
434d53b0 6022 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6023 dest_cpu = any_online_cpu(p->cpus_allowed);
6024
6025 /* No more Mr. Nice Guy. */
434d53b0 6026 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6027 cpumask_t cpus_allowed;
6028
6029 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6030 /*
6031 * Try to stay on the same cpuset, where the
6032 * current cpuset may be a subset of all cpus.
6033 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6034 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6035 * called within calls to cpuset_lock/cpuset_unlock.
6036 */
3a5c359a 6037 rq = task_rq_lock(p, &flags);
470fd646 6038 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6039 dest_cpu = any_online_cpu(p->cpus_allowed);
6040 task_rq_unlock(rq, &flags);
1da177e4 6041
3a5c359a
AK
6042 /*
6043 * Don't tell them about moving exiting tasks or
6044 * kernel threads (both mm NULL), since they never
6045 * leave kernel.
6046 */
41a2d6cf 6047 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6048 printk(KERN_INFO "process %d (%s) no "
6049 "longer affine to cpu%d\n",
41a2d6cf
IM
6050 task_pid_nr(p), p->comm, dead_cpu);
6051 }
3a5c359a 6052 }
f7b4cddc 6053 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6054}
6055
6056/*
6057 * While a dead CPU has no uninterruptible tasks queued at this point,
6058 * it might still have a nonzero ->nr_uninterruptible counter, because
6059 * for performance reasons the counter is not stricly tracking tasks to
6060 * their home CPUs. So we just add the counter to another CPU's counter,
6061 * to keep the global sum constant after CPU-down:
6062 */
70b97a7f 6063static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6064{
7c16ec58 6065 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6066 unsigned long flags;
6067
6068 local_irq_save(flags);
6069 double_rq_lock(rq_src, rq_dest);
6070 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6071 rq_src->nr_uninterruptible = 0;
6072 double_rq_unlock(rq_src, rq_dest);
6073 local_irq_restore(flags);
6074}
6075
6076/* Run through task list and migrate tasks from the dead cpu. */
6077static void migrate_live_tasks(int src_cpu)
6078{
48f24c4d 6079 struct task_struct *p, *t;
1da177e4 6080
f7b4cddc 6081 read_lock(&tasklist_lock);
1da177e4 6082
48f24c4d
IM
6083 do_each_thread(t, p) {
6084 if (p == current)
1da177e4
LT
6085 continue;
6086
48f24c4d
IM
6087 if (task_cpu(p) == src_cpu)
6088 move_task_off_dead_cpu(src_cpu, p);
6089 } while_each_thread(t, p);
1da177e4 6090
f7b4cddc 6091 read_unlock(&tasklist_lock);
1da177e4
LT
6092}
6093
dd41f596
IM
6094/*
6095 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6096 * It does so by boosting its priority to highest possible.
6097 * Used by CPU offline code.
1da177e4
LT
6098 */
6099void sched_idle_next(void)
6100{
48f24c4d 6101 int this_cpu = smp_processor_id();
70b97a7f 6102 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6103 struct task_struct *p = rq->idle;
6104 unsigned long flags;
6105
6106 /* cpu has to be offline */
48f24c4d 6107 BUG_ON(cpu_online(this_cpu));
1da177e4 6108
48f24c4d
IM
6109 /*
6110 * Strictly not necessary since rest of the CPUs are stopped by now
6111 * and interrupts disabled on the current cpu.
1da177e4
LT
6112 */
6113 spin_lock_irqsave(&rq->lock, flags);
6114
dd41f596 6115 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6116
94bc9a7b
DA
6117 update_rq_clock(rq);
6118 activate_task(rq, p, 0);
1da177e4
LT
6119
6120 spin_unlock_irqrestore(&rq->lock, flags);
6121}
6122
48f24c4d
IM
6123/*
6124 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6125 * offline.
6126 */
6127void idle_task_exit(void)
6128{
6129 struct mm_struct *mm = current->active_mm;
6130
6131 BUG_ON(cpu_online(smp_processor_id()));
6132
6133 if (mm != &init_mm)
6134 switch_mm(mm, &init_mm, current);
6135 mmdrop(mm);
6136}
6137
054b9108 6138/* called under rq->lock with disabled interrupts */
36c8b586 6139static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6140{
70b97a7f 6141 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6142
6143 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6144 BUG_ON(!p->exit_state);
1da177e4
LT
6145
6146 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6147 BUG_ON(p->state == TASK_DEAD);
1da177e4 6148
48f24c4d 6149 get_task_struct(p);
1da177e4
LT
6150
6151 /*
6152 * Drop lock around migration; if someone else moves it,
41a2d6cf 6153 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6154 * fine.
6155 */
f7b4cddc 6156 spin_unlock_irq(&rq->lock);
48f24c4d 6157 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6158 spin_lock_irq(&rq->lock);
1da177e4 6159
48f24c4d 6160 put_task_struct(p);
1da177e4
LT
6161}
6162
6163/* release_task() removes task from tasklist, so we won't find dead tasks. */
6164static void migrate_dead_tasks(unsigned int dead_cpu)
6165{
70b97a7f 6166 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6167 struct task_struct *next;
48f24c4d 6168
dd41f596
IM
6169 for ( ; ; ) {
6170 if (!rq->nr_running)
6171 break;
a8e504d2 6172 update_rq_clock(rq);
ff95f3df 6173 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6174 if (!next)
6175 break;
79c53799 6176 next->sched_class->put_prev_task(rq, next);
dd41f596 6177 migrate_dead(dead_cpu, next);
e692ab53 6178
1da177e4
LT
6179 }
6180}
6181#endif /* CONFIG_HOTPLUG_CPU */
6182
e692ab53
NP
6183#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6184
6185static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6186 {
6187 .procname = "sched_domain",
c57baf1e 6188 .mode = 0555,
e0361851 6189 },
38605cae 6190 {0, },
e692ab53
NP
6191};
6192
6193static struct ctl_table sd_ctl_root[] = {
e0361851 6194 {
c57baf1e 6195 .ctl_name = CTL_KERN,
e0361851 6196 .procname = "kernel",
c57baf1e 6197 .mode = 0555,
e0361851
AD
6198 .child = sd_ctl_dir,
6199 },
38605cae 6200 {0, },
e692ab53
NP
6201};
6202
6203static struct ctl_table *sd_alloc_ctl_entry(int n)
6204{
6205 struct ctl_table *entry =
5cf9f062 6206 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6207
e692ab53
NP
6208 return entry;
6209}
6210
6382bc90
MM
6211static void sd_free_ctl_entry(struct ctl_table **tablep)
6212{
cd790076 6213 struct ctl_table *entry;
6382bc90 6214
cd790076
MM
6215 /*
6216 * In the intermediate directories, both the child directory and
6217 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6218 * will always be set. In the lowest directory the names are
cd790076
MM
6219 * static strings and all have proc handlers.
6220 */
6221 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6222 if (entry->child)
6223 sd_free_ctl_entry(&entry->child);
cd790076
MM
6224 if (entry->proc_handler == NULL)
6225 kfree(entry->procname);
6226 }
6382bc90
MM
6227
6228 kfree(*tablep);
6229 *tablep = NULL;
6230}
6231
e692ab53 6232static void
e0361851 6233set_table_entry(struct ctl_table *entry,
e692ab53
NP
6234 const char *procname, void *data, int maxlen,
6235 mode_t mode, proc_handler *proc_handler)
6236{
e692ab53
NP
6237 entry->procname = procname;
6238 entry->data = data;
6239 entry->maxlen = maxlen;
6240 entry->mode = mode;
6241 entry->proc_handler = proc_handler;
6242}
6243
6244static struct ctl_table *
6245sd_alloc_ctl_domain_table(struct sched_domain *sd)
6246{
ace8b3d6 6247 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6248
ad1cdc1d
MM
6249 if (table == NULL)
6250 return NULL;
6251
e0361851 6252 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6253 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6254 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6255 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6256 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6257 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6258 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6259 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6260 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6261 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6262 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6263 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6264 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6265 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6266 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6267 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6268 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6269 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6270 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6271 &sd->cache_nice_tries,
6272 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6273 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6274 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6275 /* &table[11] is terminator */
e692ab53
NP
6276
6277 return table;
6278}
6279
9a4e7159 6280static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6281{
6282 struct ctl_table *entry, *table;
6283 struct sched_domain *sd;
6284 int domain_num = 0, i;
6285 char buf[32];
6286
6287 for_each_domain(cpu, sd)
6288 domain_num++;
6289 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6290 if (table == NULL)
6291 return NULL;
e692ab53
NP
6292
6293 i = 0;
6294 for_each_domain(cpu, sd) {
6295 snprintf(buf, 32, "domain%d", i);
e692ab53 6296 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6297 entry->mode = 0555;
e692ab53
NP
6298 entry->child = sd_alloc_ctl_domain_table(sd);
6299 entry++;
6300 i++;
6301 }
6302 return table;
6303}
6304
6305static struct ctl_table_header *sd_sysctl_header;
6382bc90 6306static void register_sched_domain_sysctl(void)
e692ab53
NP
6307{
6308 int i, cpu_num = num_online_cpus();
6309 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6310 char buf[32];
6311
7378547f
MM
6312 WARN_ON(sd_ctl_dir[0].child);
6313 sd_ctl_dir[0].child = entry;
6314
ad1cdc1d
MM
6315 if (entry == NULL)
6316 return;
6317
97b6ea7b 6318 for_each_online_cpu(i) {
e692ab53 6319 snprintf(buf, 32, "cpu%d", i);
e692ab53 6320 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6321 entry->mode = 0555;
e692ab53 6322 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6323 entry++;
e692ab53 6324 }
7378547f
MM
6325
6326 WARN_ON(sd_sysctl_header);
e692ab53
NP
6327 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6328}
6382bc90 6329
7378547f 6330/* may be called multiple times per register */
6382bc90
MM
6331static void unregister_sched_domain_sysctl(void)
6332{
7378547f
MM
6333 if (sd_sysctl_header)
6334 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6335 sd_sysctl_header = NULL;
7378547f
MM
6336 if (sd_ctl_dir[0].child)
6337 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6338}
e692ab53 6339#else
6382bc90
MM
6340static void register_sched_domain_sysctl(void)
6341{
6342}
6343static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6344{
6345}
6346#endif
6347
1f11eb6a
GH
6348static void set_rq_online(struct rq *rq)
6349{
6350 if (!rq->online) {
6351 const struct sched_class *class;
6352
6353 cpu_set(rq->cpu, rq->rd->online);
6354 rq->online = 1;
6355
6356 for_each_class(class) {
6357 if (class->rq_online)
6358 class->rq_online(rq);
6359 }
6360 }
6361}
6362
6363static void set_rq_offline(struct rq *rq)
6364{
6365 if (rq->online) {
6366 const struct sched_class *class;
6367
6368 for_each_class(class) {
6369 if (class->rq_offline)
6370 class->rq_offline(rq);
6371 }
6372
6373 cpu_clear(rq->cpu, rq->rd->online);
6374 rq->online = 0;
6375 }
6376}
6377
1da177e4
LT
6378/*
6379 * migration_call - callback that gets triggered when a CPU is added.
6380 * Here we can start up the necessary migration thread for the new CPU.
6381 */
48f24c4d
IM
6382static int __cpuinit
6383migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6384{
1da177e4 6385 struct task_struct *p;
48f24c4d 6386 int cpu = (long)hcpu;
1da177e4 6387 unsigned long flags;
70b97a7f 6388 struct rq *rq;
1da177e4
LT
6389
6390 switch (action) {
5be9361c 6391
1da177e4 6392 case CPU_UP_PREPARE:
8bb78442 6393 case CPU_UP_PREPARE_FROZEN:
dd41f596 6394 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6395 if (IS_ERR(p))
6396 return NOTIFY_BAD;
1da177e4
LT
6397 kthread_bind(p, cpu);
6398 /* Must be high prio: stop_machine expects to yield to it. */
6399 rq = task_rq_lock(p, &flags);
dd41f596 6400 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6401 task_rq_unlock(rq, &flags);
6402 cpu_rq(cpu)->migration_thread = p;
6403 break;
48f24c4d 6404
1da177e4 6405 case CPU_ONLINE:
8bb78442 6406 case CPU_ONLINE_FROZEN:
3a4fa0a2 6407 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6408 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6409
6410 /* Update our root-domain */
6411 rq = cpu_rq(cpu);
6412 spin_lock_irqsave(&rq->lock, flags);
6413 if (rq->rd) {
6414 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6415
6416 set_rq_online(rq);
1f94ef59
GH
6417 }
6418 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6419 break;
48f24c4d 6420
1da177e4
LT
6421#ifdef CONFIG_HOTPLUG_CPU
6422 case CPU_UP_CANCELED:
8bb78442 6423 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6424 if (!cpu_rq(cpu)->migration_thread)
6425 break;
41a2d6cf 6426 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6427 kthread_bind(cpu_rq(cpu)->migration_thread,
6428 any_online_cpu(cpu_online_map));
1da177e4
LT
6429 kthread_stop(cpu_rq(cpu)->migration_thread);
6430 cpu_rq(cpu)->migration_thread = NULL;
6431 break;
48f24c4d 6432
1da177e4 6433 case CPU_DEAD:
8bb78442 6434 case CPU_DEAD_FROZEN:
470fd646 6435 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6436 migrate_live_tasks(cpu);
6437 rq = cpu_rq(cpu);
6438 kthread_stop(rq->migration_thread);
6439 rq->migration_thread = NULL;
6440 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6441 spin_lock_irq(&rq->lock);
a8e504d2 6442 update_rq_clock(rq);
2e1cb74a 6443 deactivate_task(rq, rq->idle, 0);
1da177e4 6444 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6445 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6446 rq->idle->sched_class = &idle_sched_class;
1da177e4 6447 migrate_dead_tasks(cpu);
d2da272a 6448 spin_unlock_irq(&rq->lock);
470fd646 6449 cpuset_unlock();
1da177e4
LT
6450 migrate_nr_uninterruptible(rq);
6451 BUG_ON(rq->nr_running != 0);
6452
41a2d6cf
IM
6453 /*
6454 * No need to migrate the tasks: it was best-effort if
6455 * they didn't take sched_hotcpu_mutex. Just wake up
6456 * the requestors.
6457 */
1da177e4
LT
6458 spin_lock_irq(&rq->lock);
6459 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6460 struct migration_req *req;
6461
1da177e4 6462 req = list_entry(rq->migration_queue.next,
70b97a7f 6463 struct migration_req, list);
1da177e4
LT
6464 list_del_init(&req->list);
6465 complete(&req->done);
6466 }
6467 spin_unlock_irq(&rq->lock);
6468 break;
57d885fe 6469
08f503b0
GH
6470 case CPU_DYING:
6471 case CPU_DYING_FROZEN:
57d885fe
GH
6472 /* Update our root-domain */
6473 rq = cpu_rq(cpu);
6474 spin_lock_irqsave(&rq->lock, flags);
6475 if (rq->rd) {
6476 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6477 set_rq_offline(rq);
57d885fe
GH
6478 }
6479 spin_unlock_irqrestore(&rq->lock, flags);
6480 break;
1da177e4
LT
6481#endif
6482 }
6483 return NOTIFY_OK;
6484}
6485
6486/* Register at highest priority so that task migration (migrate_all_tasks)
6487 * happens before everything else.
6488 */
26c2143b 6489static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6490 .notifier_call = migration_call,
6491 .priority = 10
6492};
6493
7babe8db 6494static int __init migration_init(void)
1da177e4
LT
6495{
6496 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6497 int err;
48f24c4d
IM
6498
6499 /* Start one for the boot CPU: */
07dccf33
AM
6500 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6501 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6502 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6503 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6504
6505 return err;
1da177e4 6506}
7babe8db 6507early_initcall(migration_init);
1da177e4
LT
6508#endif
6509
6510#ifdef CONFIG_SMP
476f3534 6511
3e9830dc 6512#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6513
099f98c8
GS
6514static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6515{
6516 switch (lvl) {
6517 case SD_LV_NONE:
6518 return "NONE";
6519 case SD_LV_SIBLING:
6520 return "SIBLING";
6521 case SD_LV_MC:
6522 return "MC";
6523 case SD_LV_CPU:
6524 return "CPU";
6525 case SD_LV_NODE:
6526 return "NODE";
6527 case SD_LV_ALLNODES:
6528 return "ALLNODES";
6529 case SD_LV_MAX:
6530 return "MAX";
6531
6532 }
6533 return "MAX";
6534}
6535
7c16ec58
MT
6536static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6537 cpumask_t *groupmask)
1da177e4 6538{
4dcf6aff 6539 struct sched_group *group = sd->groups;
434d53b0 6540 char str[256];
1da177e4 6541
434d53b0 6542 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6543 cpus_clear(*groupmask);
4dcf6aff
IM
6544
6545 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6546
6547 if (!(sd->flags & SD_LOAD_BALANCE)) {
6548 printk("does not load-balance\n");
6549 if (sd->parent)
6550 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6551 " has parent");
6552 return -1;
41c7ce9a
NP
6553 }
6554
099f98c8
GS
6555 printk(KERN_CONT "span %s level %s\n",
6556 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6557
6558 if (!cpu_isset(cpu, sd->span)) {
6559 printk(KERN_ERR "ERROR: domain->span does not contain "
6560 "CPU%d\n", cpu);
6561 }
6562 if (!cpu_isset(cpu, group->cpumask)) {
6563 printk(KERN_ERR "ERROR: domain->groups does not contain"
6564 " CPU%d\n", cpu);
6565 }
1da177e4 6566
4dcf6aff 6567 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6568 do {
4dcf6aff
IM
6569 if (!group) {
6570 printk("\n");
6571 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6572 break;
6573 }
6574
4dcf6aff
IM
6575 if (!group->__cpu_power) {
6576 printk(KERN_CONT "\n");
6577 printk(KERN_ERR "ERROR: domain->cpu_power not "
6578 "set\n");
6579 break;
6580 }
1da177e4 6581
4dcf6aff
IM
6582 if (!cpus_weight(group->cpumask)) {
6583 printk(KERN_CONT "\n");
6584 printk(KERN_ERR "ERROR: empty group\n");
6585 break;
6586 }
1da177e4 6587
7c16ec58 6588 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6589 printk(KERN_CONT "\n");
6590 printk(KERN_ERR "ERROR: repeated CPUs\n");
6591 break;
6592 }
1da177e4 6593
7c16ec58 6594 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6595
434d53b0 6596 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6597 printk(KERN_CONT " %s", str);
1da177e4 6598
4dcf6aff
IM
6599 group = group->next;
6600 } while (group != sd->groups);
6601 printk(KERN_CONT "\n");
1da177e4 6602
7c16ec58 6603 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6604 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6605
7c16ec58 6606 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6607 printk(KERN_ERR "ERROR: parent span is not a superset "
6608 "of domain->span\n");
6609 return 0;
6610}
1da177e4 6611
4dcf6aff
IM
6612static void sched_domain_debug(struct sched_domain *sd, int cpu)
6613{
7c16ec58 6614 cpumask_t *groupmask;
4dcf6aff 6615 int level = 0;
1da177e4 6616
4dcf6aff
IM
6617 if (!sd) {
6618 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6619 return;
6620 }
1da177e4 6621
4dcf6aff
IM
6622 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6623
7c16ec58
MT
6624 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6625 if (!groupmask) {
6626 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6627 return;
6628 }
6629
4dcf6aff 6630 for (;;) {
7c16ec58 6631 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6632 break;
1da177e4
LT
6633 level++;
6634 sd = sd->parent;
33859f7f 6635 if (!sd)
4dcf6aff
IM
6636 break;
6637 }
7c16ec58 6638 kfree(groupmask);
1da177e4 6639}
6d6bc0ad 6640#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6641# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6642#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6643
1a20ff27 6644static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6645{
6646 if (cpus_weight(sd->span) == 1)
6647 return 1;
6648
6649 /* Following flags need at least 2 groups */
6650 if (sd->flags & (SD_LOAD_BALANCE |
6651 SD_BALANCE_NEWIDLE |
6652 SD_BALANCE_FORK |
89c4710e
SS
6653 SD_BALANCE_EXEC |
6654 SD_SHARE_CPUPOWER |
6655 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6656 if (sd->groups != sd->groups->next)
6657 return 0;
6658 }
6659
6660 /* Following flags don't use groups */
6661 if (sd->flags & (SD_WAKE_IDLE |
6662 SD_WAKE_AFFINE |
6663 SD_WAKE_BALANCE))
6664 return 0;
6665
6666 return 1;
6667}
6668
48f24c4d
IM
6669static int
6670sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6671{
6672 unsigned long cflags = sd->flags, pflags = parent->flags;
6673
6674 if (sd_degenerate(parent))
6675 return 1;
6676
6677 if (!cpus_equal(sd->span, parent->span))
6678 return 0;
6679
6680 /* Does parent contain flags not in child? */
6681 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6682 if (cflags & SD_WAKE_AFFINE)
6683 pflags &= ~SD_WAKE_BALANCE;
6684 /* Flags needing groups don't count if only 1 group in parent */
6685 if (parent->groups == parent->groups->next) {
6686 pflags &= ~(SD_LOAD_BALANCE |
6687 SD_BALANCE_NEWIDLE |
6688 SD_BALANCE_FORK |
89c4710e
SS
6689 SD_BALANCE_EXEC |
6690 SD_SHARE_CPUPOWER |
6691 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6692 }
6693 if (~cflags & pflags)
6694 return 0;
6695
6696 return 1;
6697}
6698
57d885fe
GH
6699static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6700{
6701 unsigned long flags;
57d885fe
GH
6702
6703 spin_lock_irqsave(&rq->lock, flags);
6704
6705 if (rq->rd) {
6706 struct root_domain *old_rd = rq->rd;
6707
1f11eb6a
GH
6708 if (cpu_isset(rq->cpu, old_rd->online))
6709 set_rq_offline(rq);
57d885fe 6710
dc938520 6711 cpu_clear(rq->cpu, old_rd->span);
dc938520 6712
57d885fe
GH
6713 if (atomic_dec_and_test(&old_rd->refcount))
6714 kfree(old_rd);
6715 }
6716
6717 atomic_inc(&rd->refcount);
6718 rq->rd = rd;
6719
dc938520 6720 cpu_set(rq->cpu, rd->span);
1f94ef59 6721 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6722 set_rq_online(rq);
57d885fe
GH
6723
6724 spin_unlock_irqrestore(&rq->lock, flags);
6725}
6726
dc938520 6727static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6728{
6729 memset(rd, 0, sizeof(*rd));
6730
dc938520
GH
6731 cpus_clear(rd->span);
6732 cpus_clear(rd->online);
6e0534f2
GH
6733
6734 cpupri_init(&rd->cpupri);
57d885fe
GH
6735}
6736
6737static void init_defrootdomain(void)
6738{
dc938520 6739 init_rootdomain(&def_root_domain);
57d885fe
GH
6740 atomic_set(&def_root_domain.refcount, 1);
6741}
6742
dc938520 6743static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6744{
6745 struct root_domain *rd;
6746
6747 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6748 if (!rd)
6749 return NULL;
6750
dc938520 6751 init_rootdomain(rd);
57d885fe
GH
6752
6753 return rd;
6754}
6755
1da177e4 6756/*
0eab9146 6757 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6758 * hold the hotplug lock.
6759 */
0eab9146
IM
6760static void
6761cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6762{
70b97a7f 6763 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6764 struct sched_domain *tmp;
6765
6766 /* Remove the sched domains which do not contribute to scheduling. */
6767 for (tmp = sd; tmp; tmp = tmp->parent) {
6768 struct sched_domain *parent = tmp->parent;
6769 if (!parent)
6770 break;
1a848870 6771 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6772 tmp->parent = parent->parent;
1a848870
SS
6773 if (parent->parent)
6774 parent->parent->child = tmp;
6775 }
245af2c7
SS
6776 }
6777
1a848870 6778 if (sd && sd_degenerate(sd)) {
245af2c7 6779 sd = sd->parent;
1a848870
SS
6780 if (sd)
6781 sd->child = NULL;
6782 }
1da177e4
LT
6783
6784 sched_domain_debug(sd, cpu);
6785
57d885fe 6786 rq_attach_root(rq, rd);
674311d5 6787 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6788}
6789
6790/* cpus with isolated domains */
67af63a6 6791static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6792
6793/* Setup the mask of cpus configured for isolated domains */
6794static int __init isolated_cpu_setup(char *str)
6795{
13b40c1e
MT
6796 static int __initdata ints[NR_CPUS];
6797 int i;
1da177e4
LT
6798
6799 str = get_options(str, ARRAY_SIZE(ints), ints);
6800 cpus_clear(cpu_isolated_map);
6801 for (i = 1; i <= ints[0]; i++)
6802 if (ints[i] < NR_CPUS)
6803 cpu_set(ints[i], cpu_isolated_map);
6804 return 1;
6805}
6806
8927f494 6807__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6808
6809/*
6711cab4
SS
6810 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6811 * to a function which identifies what group(along with sched group) a CPU
6812 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6813 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6814 *
6815 * init_sched_build_groups will build a circular linked list of the groups
6816 * covered by the given span, and will set each group's ->cpumask correctly,
6817 * and ->cpu_power to 0.
6818 */
a616058b 6819static void
7c16ec58 6820init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6821 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6822 struct sched_group **sg,
6823 cpumask_t *tmpmask),
6824 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6825{
6826 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6827 int i;
6828
7c16ec58
MT
6829 cpus_clear(*covered);
6830
363ab6f1 6831 for_each_cpu_mask_nr(i, *span) {
6711cab4 6832 struct sched_group *sg;
7c16ec58 6833 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6834 int j;
6835
7c16ec58 6836 if (cpu_isset(i, *covered))
1da177e4
LT
6837 continue;
6838
7c16ec58 6839 cpus_clear(sg->cpumask);
5517d86b 6840 sg->__cpu_power = 0;
1da177e4 6841
363ab6f1 6842 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6843 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6844 continue;
6845
7c16ec58 6846 cpu_set(j, *covered);
1da177e4
LT
6847 cpu_set(j, sg->cpumask);
6848 }
6849 if (!first)
6850 first = sg;
6851 if (last)
6852 last->next = sg;
6853 last = sg;
6854 }
6855 last->next = first;
6856}
6857
9c1cfda2 6858#define SD_NODES_PER_DOMAIN 16
1da177e4 6859
9c1cfda2 6860#ifdef CONFIG_NUMA
198e2f18 6861
9c1cfda2
JH
6862/**
6863 * find_next_best_node - find the next node to include in a sched_domain
6864 * @node: node whose sched_domain we're building
6865 * @used_nodes: nodes already in the sched_domain
6866 *
41a2d6cf 6867 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6868 * finds the closest node not already in the @used_nodes map.
6869 *
6870 * Should use nodemask_t.
6871 */
c5f59f08 6872static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6873{
6874 int i, n, val, min_val, best_node = 0;
6875
6876 min_val = INT_MAX;
6877
076ac2af 6878 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6879 /* Start at @node */
076ac2af 6880 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6881
6882 if (!nr_cpus_node(n))
6883 continue;
6884
6885 /* Skip already used nodes */
c5f59f08 6886 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6887 continue;
6888
6889 /* Simple min distance search */
6890 val = node_distance(node, n);
6891
6892 if (val < min_val) {
6893 min_val = val;
6894 best_node = n;
6895 }
6896 }
6897
c5f59f08 6898 node_set(best_node, *used_nodes);
9c1cfda2
JH
6899 return best_node;
6900}
6901
6902/**
6903 * sched_domain_node_span - get a cpumask for a node's sched_domain
6904 * @node: node whose cpumask we're constructing
73486722 6905 * @span: resulting cpumask
9c1cfda2 6906 *
41a2d6cf 6907 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6908 * should be one that prevents unnecessary balancing, but also spreads tasks
6909 * out optimally.
6910 */
4bdbaad3 6911static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6912{
c5f59f08 6913 nodemask_t used_nodes;
c5f59f08 6914 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6915 int i;
9c1cfda2 6916
4bdbaad3 6917 cpus_clear(*span);
c5f59f08 6918 nodes_clear(used_nodes);
9c1cfda2 6919
4bdbaad3 6920 cpus_or(*span, *span, *nodemask);
c5f59f08 6921 node_set(node, used_nodes);
9c1cfda2
JH
6922
6923 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6924 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6925
c5f59f08 6926 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6927 cpus_or(*span, *span, *nodemask);
9c1cfda2 6928 }
9c1cfda2 6929}
6d6bc0ad 6930#endif /* CONFIG_NUMA */
9c1cfda2 6931
5c45bf27 6932int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6933
9c1cfda2 6934/*
48f24c4d 6935 * SMT sched-domains:
9c1cfda2 6936 */
1da177e4
LT
6937#ifdef CONFIG_SCHED_SMT
6938static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6939static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6940
41a2d6cf 6941static int
7c16ec58
MT
6942cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6943 cpumask_t *unused)
1da177e4 6944{
6711cab4
SS
6945 if (sg)
6946 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6947 return cpu;
6948}
6d6bc0ad 6949#endif /* CONFIG_SCHED_SMT */
1da177e4 6950
48f24c4d
IM
6951/*
6952 * multi-core sched-domains:
6953 */
1e9f28fa
SS
6954#ifdef CONFIG_SCHED_MC
6955static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6956static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6957#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6958
6959#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6960static int
7c16ec58
MT
6961cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6962 cpumask_t *mask)
1e9f28fa 6963{
6711cab4 6964 int group;
7c16ec58
MT
6965
6966 *mask = per_cpu(cpu_sibling_map, cpu);
6967 cpus_and(*mask, *mask, *cpu_map);
6968 group = first_cpu(*mask);
6711cab4
SS
6969 if (sg)
6970 *sg = &per_cpu(sched_group_core, group);
6971 return group;
1e9f28fa
SS
6972}
6973#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6974static int
7c16ec58
MT
6975cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6976 cpumask_t *unused)
1e9f28fa 6977{
6711cab4
SS
6978 if (sg)
6979 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6980 return cpu;
6981}
6982#endif
6983
1da177e4 6984static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6985static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6986
41a2d6cf 6987static int
7c16ec58
MT
6988cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6989 cpumask_t *mask)
1da177e4 6990{
6711cab4 6991 int group;
48f24c4d 6992#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6993 *mask = cpu_coregroup_map(cpu);
6994 cpus_and(*mask, *mask, *cpu_map);
6995 group = first_cpu(*mask);
1e9f28fa 6996#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6997 *mask = per_cpu(cpu_sibling_map, cpu);
6998 cpus_and(*mask, *mask, *cpu_map);
6999 group = first_cpu(*mask);
1da177e4 7000#else
6711cab4 7001 group = cpu;
1da177e4 7002#endif
6711cab4
SS
7003 if (sg)
7004 *sg = &per_cpu(sched_group_phys, group);
7005 return group;
1da177e4
LT
7006}
7007
7008#ifdef CONFIG_NUMA
1da177e4 7009/*
9c1cfda2
JH
7010 * The init_sched_build_groups can't handle what we want to do with node
7011 * groups, so roll our own. Now each node has its own list of groups which
7012 * gets dynamically allocated.
1da177e4 7013 */
9c1cfda2 7014static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7015static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7016
9c1cfda2 7017static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7018static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7019
6711cab4 7020static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7021 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7022{
6711cab4
SS
7023 int group;
7024
7c16ec58
MT
7025 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7026 cpus_and(*nodemask, *nodemask, *cpu_map);
7027 group = first_cpu(*nodemask);
6711cab4
SS
7028
7029 if (sg)
7030 *sg = &per_cpu(sched_group_allnodes, group);
7031 return group;
1da177e4 7032}
6711cab4 7033
08069033
SS
7034static void init_numa_sched_groups_power(struct sched_group *group_head)
7035{
7036 struct sched_group *sg = group_head;
7037 int j;
7038
7039 if (!sg)
7040 return;
3a5c359a 7041 do {
363ab6f1 7042 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7043 struct sched_domain *sd;
08069033 7044
3a5c359a
AK
7045 sd = &per_cpu(phys_domains, j);
7046 if (j != first_cpu(sd->groups->cpumask)) {
7047 /*
7048 * Only add "power" once for each
7049 * physical package.
7050 */
7051 continue;
7052 }
08069033 7053
3a5c359a
AK
7054 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7055 }
7056 sg = sg->next;
7057 } while (sg != group_head);
08069033 7058}
6d6bc0ad 7059#endif /* CONFIG_NUMA */
1da177e4 7060
a616058b 7061#ifdef CONFIG_NUMA
51888ca2 7062/* Free memory allocated for various sched_group structures */
7c16ec58 7063static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7064{
a616058b 7065 int cpu, i;
51888ca2 7066
363ab6f1 7067 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7068 struct sched_group **sched_group_nodes
7069 = sched_group_nodes_bycpu[cpu];
7070
51888ca2
SV
7071 if (!sched_group_nodes)
7072 continue;
7073
076ac2af 7074 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7075 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7076
7c16ec58
MT
7077 *nodemask = node_to_cpumask(i);
7078 cpus_and(*nodemask, *nodemask, *cpu_map);
7079 if (cpus_empty(*nodemask))
51888ca2
SV
7080 continue;
7081
7082 if (sg == NULL)
7083 continue;
7084 sg = sg->next;
7085next_sg:
7086 oldsg = sg;
7087 sg = sg->next;
7088 kfree(oldsg);
7089 if (oldsg != sched_group_nodes[i])
7090 goto next_sg;
7091 }
7092 kfree(sched_group_nodes);
7093 sched_group_nodes_bycpu[cpu] = NULL;
7094 }
51888ca2 7095}
6d6bc0ad 7096#else /* !CONFIG_NUMA */
7c16ec58 7097static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7098{
7099}
6d6bc0ad 7100#endif /* CONFIG_NUMA */
51888ca2 7101
89c4710e
SS
7102/*
7103 * Initialize sched groups cpu_power.
7104 *
7105 * cpu_power indicates the capacity of sched group, which is used while
7106 * distributing the load between different sched groups in a sched domain.
7107 * Typically cpu_power for all the groups in a sched domain will be same unless
7108 * there are asymmetries in the topology. If there are asymmetries, group
7109 * having more cpu_power will pickup more load compared to the group having
7110 * less cpu_power.
7111 *
7112 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7113 * the maximum number of tasks a group can handle in the presence of other idle
7114 * or lightly loaded groups in the same sched domain.
7115 */
7116static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7117{
7118 struct sched_domain *child;
7119 struct sched_group *group;
7120
7121 WARN_ON(!sd || !sd->groups);
7122
7123 if (cpu != first_cpu(sd->groups->cpumask))
7124 return;
7125
7126 child = sd->child;
7127
5517d86b
ED
7128 sd->groups->__cpu_power = 0;
7129
89c4710e
SS
7130 /*
7131 * For perf policy, if the groups in child domain share resources
7132 * (for example cores sharing some portions of the cache hierarchy
7133 * or SMT), then set this domain groups cpu_power such that each group
7134 * can handle only one task, when there are other idle groups in the
7135 * same sched domain.
7136 */
7137 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7138 (child->flags &
7139 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7140 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7141 return;
7142 }
7143
89c4710e
SS
7144 /*
7145 * add cpu_power of each child group to this groups cpu_power
7146 */
7147 group = child->groups;
7148 do {
5517d86b 7149 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7150 group = group->next;
7151 } while (group != child->groups);
7152}
7153
7c16ec58
MT
7154/*
7155 * Initializers for schedule domains
7156 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7157 */
7158
7159#define SD_INIT(sd, type) sd_init_##type(sd)
7160#define SD_INIT_FUNC(type) \
7161static noinline void sd_init_##type(struct sched_domain *sd) \
7162{ \
7163 memset(sd, 0, sizeof(*sd)); \
7164 *sd = SD_##type##_INIT; \
1d3504fc 7165 sd->level = SD_LV_##type; \
7c16ec58
MT
7166}
7167
7168SD_INIT_FUNC(CPU)
7169#ifdef CONFIG_NUMA
7170 SD_INIT_FUNC(ALLNODES)
7171 SD_INIT_FUNC(NODE)
7172#endif
7173#ifdef CONFIG_SCHED_SMT
7174 SD_INIT_FUNC(SIBLING)
7175#endif
7176#ifdef CONFIG_SCHED_MC
7177 SD_INIT_FUNC(MC)
7178#endif
7179
7180/*
7181 * To minimize stack usage kmalloc room for cpumasks and share the
7182 * space as the usage in build_sched_domains() dictates. Used only
7183 * if the amount of space is significant.
7184 */
7185struct allmasks {
7186 cpumask_t tmpmask; /* make this one first */
7187 union {
7188 cpumask_t nodemask;
7189 cpumask_t this_sibling_map;
7190 cpumask_t this_core_map;
7191 };
7192 cpumask_t send_covered;
7193
7194#ifdef CONFIG_NUMA
7195 cpumask_t domainspan;
7196 cpumask_t covered;
7197 cpumask_t notcovered;
7198#endif
7199};
7200
7201#if NR_CPUS > 128
7202#define SCHED_CPUMASK_ALLOC 1
7203#define SCHED_CPUMASK_FREE(v) kfree(v)
7204#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7205#else
7206#define SCHED_CPUMASK_ALLOC 0
7207#define SCHED_CPUMASK_FREE(v)
7208#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7209#endif
7210
7211#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7212 ((unsigned long)(a) + offsetof(struct allmasks, v))
7213
1d3504fc
HS
7214static int default_relax_domain_level = -1;
7215
7216static int __init setup_relax_domain_level(char *str)
7217{
30e0e178
LZ
7218 unsigned long val;
7219
7220 val = simple_strtoul(str, NULL, 0);
7221 if (val < SD_LV_MAX)
7222 default_relax_domain_level = val;
7223
1d3504fc
HS
7224 return 1;
7225}
7226__setup("relax_domain_level=", setup_relax_domain_level);
7227
7228static void set_domain_attribute(struct sched_domain *sd,
7229 struct sched_domain_attr *attr)
7230{
7231 int request;
7232
7233 if (!attr || attr->relax_domain_level < 0) {
7234 if (default_relax_domain_level < 0)
7235 return;
7236 else
7237 request = default_relax_domain_level;
7238 } else
7239 request = attr->relax_domain_level;
7240 if (request < sd->level) {
7241 /* turn off idle balance on this domain */
7242 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7243 } else {
7244 /* turn on idle balance on this domain */
7245 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7246 }
7247}
7248
1da177e4 7249/*
1a20ff27
DG
7250 * Build sched domains for a given set of cpus and attach the sched domains
7251 * to the individual cpus
1da177e4 7252 */
1d3504fc
HS
7253static int __build_sched_domains(const cpumask_t *cpu_map,
7254 struct sched_domain_attr *attr)
1da177e4
LT
7255{
7256 int i;
57d885fe 7257 struct root_domain *rd;
7c16ec58
MT
7258 SCHED_CPUMASK_DECLARE(allmasks);
7259 cpumask_t *tmpmask;
d1b55138
JH
7260#ifdef CONFIG_NUMA
7261 struct sched_group **sched_group_nodes = NULL;
6711cab4 7262 int sd_allnodes = 0;
d1b55138
JH
7263
7264 /*
7265 * Allocate the per-node list of sched groups
7266 */
076ac2af 7267 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7268 GFP_KERNEL);
d1b55138
JH
7269 if (!sched_group_nodes) {
7270 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7271 return -ENOMEM;
d1b55138 7272 }
d1b55138 7273#endif
1da177e4 7274
dc938520 7275 rd = alloc_rootdomain();
57d885fe
GH
7276 if (!rd) {
7277 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7278#ifdef CONFIG_NUMA
7279 kfree(sched_group_nodes);
7280#endif
57d885fe
GH
7281 return -ENOMEM;
7282 }
7283
7c16ec58
MT
7284#if SCHED_CPUMASK_ALLOC
7285 /* get space for all scratch cpumask variables */
7286 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7287 if (!allmasks) {
7288 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7289 kfree(rd);
7290#ifdef CONFIG_NUMA
7291 kfree(sched_group_nodes);
7292#endif
7293 return -ENOMEM;
7294 }
7295#endif
7296 tmpmask = (cpumask_t *)allmasks;
7297
7298
7299#ifdef CONFIG_NUMA
7300 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7301#endif
7302
1da177e4 7303 /*
1a20ff27 7304 * Set up domains for cpus specified by the cpu_map.
1da177e4 7305 */
363ab6f1 7306 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7307 struct sched_domain *sd = NULL, *p;
7c16ec58 7308 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7309
7c16ec58
MT
7310 *nodemask = node_to_cpumask(cpu_to_node(i));
7311 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7312
7313#ifdef CONFIG_NUMA
dd41f596 7314 if (cpus_weight(*cpu_map) >
7c16ec58 7315 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7316 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7317 SD_INIT(sd, ALLNODES);
1d3504fc 7318 set_domain_attribute(sd, attr);
9c1cfda2 7319 sd->span = *cpu_map;
7c16ec58 7320 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7321 p = sd;
6711cab4 7322 sd_allnodes = 1;
9c1cfda2
JH
7323 } else
7324 p = NULL;
7325
1da177e4 7326 sd = &per_cpu(node_domains, i);
7c16ec58 7327 SD_INIT(sd, NODE);
1d3504fc 7328 set_domain_attribute(sd, attr);
4bdbaad3 7329 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7330 sd->parent = p;
1a848870
SS
7331 if (p)
7332 p->child = sd;
9c1cfda2 7333 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7334#endif
7335
7336 p = sd;
7337 sd = &per_cpu(phys_domains, i);
7c16ec58 7338 SD_INIT(sd, CPU);
1d3504fc 7339 set_domain_attribute(sd, attr);
7c16ec58 7340 sd->span = *nodemask;
1da177e4 7341 sd->parent = p;
1a848870
SS
7342 if (p)
7343 p->child = sd;
7c16ec58 7344 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7345
1e9f28fa
SS
7346#ifdef CONFIG_SCHED_MC
7347 p = sd;
7348 sd = &per_cpu(core_domains, i);
7c16ec58 7349 SD_INIT(sd, MC);
1d3504fc 7350 set_domain_attribute(sd, attr);
1e9f28fa
SS
7351 sd->span = cpu_coregroup_map(i);
7352 cpus_and(sd->span, sd->span, *cpu_map);
7353 sd->parent = p;
1a848870 7354 p->child = sd;
7c16ec58 7355 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7356#endif
7357
1da177e4
LT
7358#ifdef CONFIG_SCHED_SMT
7359 p = sd;
7360 sd = &per_cpu(cpu_domains, i);
7c16ec58 7361 SD_INIT(sd, SIBLING);
1d3504fc 7362 set_domain_attribute(sd, attr);
d5a7430d 7363 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7364 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7365 sd->parent = p;
1a848870 7366 p->child = sd;
7c16ec58 7367 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7368#endif
7369 }
7370
7371#ifdef CONFIG_SCHED_SMT
7372 /* Set up CPU (sibling) groups */
363ab6f1 7373 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7374 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7375 SCHED_CPUMASK_VAR(send_covered, allmasks);
7376
7377 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7378 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7379 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7380 continue;
7381
dd41f596 7382 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7383 &cpu_to_cpu_group,
7384 send_covered, tmpmask);
1da177e4
LT
7385 }
7386#endif
7387
1e9f28fa
SS
7388#ifdef CONFIG_SCHED_MC
7389 /* Set up multi-core groups */
363ab6f1 7390 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7391 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7392 SCHED_CPUMASK_VAR(send_covered, allmasks);
7393
7394 *this_core_map = cpu_coregroup_map(i);
7395 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7396 if (i != first_cpu(*this_core_map))
1e9f28fa 7397 continue;
7c16ec58 7398
dd41f596 7399 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7400 &cpu_to_core_group,
7401 send_covered, tmpmask);
1e9f28fa
SS
7402 }
7403#endif
7404
1da177e4 7405 /* Set up physical groups */
076ac2af 7406 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7407 SCHED_CPUMASK_VAR(nodemask, allmasks);
7408 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7409
7c16ec58
MT
7410 *nodemask = node_to_cpumask(i);
7411 cpus_and(*nodemask, *nodemask, *cpu_map);
7412 if (cpus_empty(*nodemask))
1da177e4
LT
7413 continue;
7414
7c16ec58
MT
7415 init_sched_build_groups(nodemask, cpu_map,
7416 &cpu_to_phys_group,
7417 send_covered, tmpmask);
1da177e4
LT
7418 }
7419
7420#ifdef CONFIG_NUMA
7421 /* Set up node groups */
7c16ec58
MT
7422 if (sd_allnodes) {
7423 SCHED_CPUMASK_VAR(send_covered, allmasks);
7424
7425 init_sched_build_groups(cpu_map, cpu_map,
7426 &cpu_to_allnodes_group,
7427 send_covered, tmpmask);
7428 }
9c1cfda2 7429
076ac2af 7430 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7431 /* Set up node groups */
7432 struct sched_group *sg, *prev;
7c16ec58
MT
7433 SCHED_CPUMASK_VAR(nodemask, allmasks);
7434 SCHED_CPUMASK_VAR(domainspan, allmasks);
7435 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7436 int j;
7437
7c16ec58
MT
7438 *nodemask = node_to_cpumask(i);
7439 cpus_clear(*covered);
7440
7441 cpus_and(*nodemask, *nodemask, *cpu_map);
7442 if (cpus_empty(*nodemask)) {
d1b55138 7443 sched_group_nodes[i] = NULL;
9c1cfda2 7444 continue;
d1b55138 7445 }
9c1cfda2 7446
4bdbaad3 7447 sched_domain_node_span(i, domainspan);
7c16ec58 7448 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7449
15f0b676 7450 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7451 if (!sg) {
7452 printk(KERN_WARNING "Can not alloc domain group for "
7453 "node %d\n", i);
7454 goto error;
7455 }
9c1cfda2 7456 sched_group_nodes[i] = sg;
363ab6f1 7457 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7458 struct sched_domain *sd;
9761eea8 7459
9c1cfda2
JH
7460 sd = &per_cpu(node_domains, j);
7461 sd->groups = sg;
9c1cfda2 7462 }
5517d86b 7463 sg->__cpu_power = 0;
7c16ec58 7464 sg->cpumask = *nodemask;
51888ca2 7465 sg->next = sg;
7c16ec58 7466 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7467 prev = sg;
7468
076ac2af 7469 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7470 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7471 int n = (i + j) % nr_node_ids;
c5f59f08 7472 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7473
7c16ec58
MT
7474 cpus_complement(*notcovered, *covered);
7475 cpus_and(*tmpmask, *notcovered, *cpu_map);
7476 cpus_and(*tmpmask, *tmpmask, *domainspan);
7477 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7478 break;
7479
7c16ec58
MT
7480 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7481 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7482 continue;
7483
15f0b676
SV
7484 sg = kmalloc_node(sizeof(struct sched_group),
7485 GFP_KERNEL, i);
9c1cfda2
JH
7486 if (!sg) {
7487 printk(KERN_WARNING
7488 "Can not alloc domain group for node %d\n", j);
51888ca2 7489 goto error;
9c1cfda2 7490 }
5517d86b 7491 sg->__cpu_power = 0;
7c16ec58 7492 sg->cpumask = *tmpmask;
51888ca2 7493 sg->next = prev->next;
7c16ec58 7494 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7495 prev->next = sg;
7496 prev = sg;
7497 }
9c1cfda2 7498 }
1da177e4
LT
7499#endif
7500
7501 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7502#ifdef CONFIG_SCHED_SMT
363ab6f1 7503 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7504 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7505
89c4710e 7506 init_sched_groups_power(i, sd);
5c45bf27 7507 }
1da177e4 7508#endif
1e9f28fa 7509#ifdef CONFIG_SCHED_MC
363ab6f1 7510 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7511 struct sched_domain *sd = &per_cpu(core_domains, i);
7512
89c4710e 7513 init_sched_groups_power(i, sd);
5c45bf27
SS
7514 }
7515#endif
1e9f28fa 7516
363ab6f1 7517 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7518 struct sched_domain *sd = &per_cpu(phys_domains, i);
7519
89c4710e 7520 init_sched_groups_power(i, sd);
1da177e4
LT
7521 }
7522
9c1cfda2 7523#ifdef CONFIG_NUMA
076ac2af 7524 for (i = 0; i < nr_node_ids; i++)
08069033 7525 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7526
6711cab4
SS
7527 if (sd_allnodes) {
7528 struct sched_group *sg;
f712c0c7 7529
7c16ec58
MT
7530 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7531 tmpmask);
f712c0c7
SS
7532 init_numa_sched_groups_power(sg);
7533 }
9c1cfda2
JH
7534#endif
7535
1da177e4 7536 /* Attach the domains */
363ab6f1 7537 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7538 struct sched_domain *sd;
7539#ifdef CONFIG_SCHED_SMT
7540 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7541#elif defined(CONFIG_SCHED_MC)
7542 sd = &per_cpu(core_domains, i);
1da177e4
LT
7543#else
7544 sd = &per_cpu(phys_domains, i);
7545#endif
57d885fe 7546 cpu_attach_domain(sd, rd, i);
1da177e4 7547 }
51888ca2 7548
7c16ec58 7549 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7550 return 0;
7551
a616058b 7552#ifdef CONFIG_NUMA
51888ca2 7553error:
7c16ec58
MT
7554 free_sched_groups(cpu_map, tmpmask);
7555 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7556 return -ENOMEM;
a616058b 7557#endif
1da177e4 7558}
029190c5 7559
1d3504fc
HS
7560static int build_sched_domains(const cpumask_t *cpu_map)
7561{
7562 return __build_sched_domains(cpu_map, NULL);
7563}
7564
029190c5
PJ
7565static cpumask_t *doms_cur; /* current sched domains */
7566static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7567static struct sched_domain_attr *dattr_cur;
7568 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7569
7570/*
7571 * Special case: If a kmalloc of a doms_cur partition (array of
7572 * cpumask_t) fails, then fallback to a single sched domain,
7573 * as determined by the single cpumask_t fallback_doms.
7574 */
7575static cpumask_t fallback_doms;
7576
22e52b07
HC
7577void __attribute__((weak)) arch_update_cpu_topology(void)
7578{
7579}
7580
1a20ff27 7581/*
41a2d6cf 7582 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7583 * For now this just excludes isolated cpus, but could be used to
7584 * exclude other special cases in the future.
1a20ff27 7585 */
51888ca2 7586static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7587{
7378547f
MM
7588 int err;
7589
22e52b07 7590 arch_update_cpu_topology();
029190c5
PJ
7591 ndoms_cur = 1;
7592 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7593 if (!doms_cur)
7594 doms_cur = &fallback_doms;
7595 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7596 dattr_cur = NULL;
7378547f 7597 err = build_sched_domains(doms_cur);
6382bc90 7598 register_sched_domain_sysctl();
7378547f
MM
7599
7600 return err;
1a20ff27
DG
7601}
7602
7c16ec58
MT
7603static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7604 cpumask_t *tmpmask)
1da177e4 7605{
7c16ec58 7606 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7607}
1da177e4 7608
1a20ff27
DG
7609/*
7610 * Detach sched domains from a group of cpus specified in cpu_map
7611 * These cpus will now be attached to the NULL domain
7612 */
858119e1 7613static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7614{
7c16ec58 7615 cpumask_t tmpmask;
1a20ff27
DG
7616 int i;
7617
6382bc90
MM
7618 unregister_sched_domain_sysctl();
7619
363ab6f1 7620 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7621 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7622 synchronize_sched();
7c16ec58 7623 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7624}
7625
1d3504fc
HS
7626/* handle null as "default" */
7627static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7628 struct sched_domain_attr *new, int idx_new)
7629{
7630 struct sched_domain_attr tmp;
7631
7632 /* fast path */
7633 if (!new && !cur)
7634 return 1;
7635
7636 tmp = SD_ATTR_INIT;
7637 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7638 new ? (new + idx_new) : &tmp,
7639 sizeof(struct sched_domain_attr));
7640}
7641
029190c5
PJ
7642/*
7643 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7644 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7645 * doms_new[] to the current sched domain partitioning, doms_cur[].
7646 * It destroys each deleted domain and builds each new domain.
7647 *
7648 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7649 * The masks don't intersect (don't overlap.) We should setup one
7650 * sched domain for each mask. CPUs not in any of the cpumasks will
7651 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7652 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7653 * it as it is.
7654 *
41a2d6cf
IM
7655 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7656 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7657 * failed the kmalloc call, then it can pass in doms_new == NULL,
7658 * and partition_sched_domains() will fallback to the single partition
e761b772 7659 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5
PJ
7660 *
7661 * Call with hotplug lock held
7662 */
1d3504fc
HS
7663void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7664 struct sched_domain_attr *dattr_new)
029190c5
PJ
7665{
7666 int i, j;
7667
712555ee 7668 mutex_lock(&sched_domains_mutex);
a1835615 7669
7378547f
MM
7670 /* always unregister in case we don't destroy any domains */
7671 unregister_sched_domain_sysctl();
7672
e761b772
MK
7673 if (doms_new == NULL)
7674 ndoms_new = 0;
029190c5
PJ
7675
7676 /* Destroy deleted domains */
7677 for (i = 0; i < ndoms_cur; i++) {
7678 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7679 if (cpus_equal(doms_cur[i], doms_new[j])
7680 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7681 goto match1;
7682 }
7683 /* no match - a current sched domain not in new doms_new[] */
7684 detach_destroy_domains(doms_cur + i);
7685match1:
7686 ;
7687 }
7688
e761b772
MK
7689 if (doms_new == NULL) {
7690 ndoms_cur = 0;
7691 ndoms_new = 1;
7692 doms_new = &fallback_doms;
7693 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7694 dattr_new = NULL;
7695 }
7696
029190c5
PJ
7697 /* Build new domains */
7698 for (i = 0; i < ndoms_new; i++) {
7699 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7700 if (cpus_equal(doms_new[i], doms_cur[j])
7701 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7702 goto match2;
7703 }
7704 /* no match - add a new doms_new */
1d3504fc
HS
7705 __build_sched_domains(doms_new + i,
7706 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7707match2:
7708 ;
7709 }
7710
7711 /* Remember the new sched domains */
7712 if (doms_cur != &fallback_doms)
7713 kfree(doms_cur);
1d3504fc 7714 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7715 doms_cur = doms_new;
1d3504fc 7716 dattr_cur = dattr_new;
029190c5 7717 ndoms_cur = ndoms_new;
7378547f
MM
7718
7719 register_sched_domain_sysctl();
a1835615 7720
712555ee 7721 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7722}
7723
5c45bf27 7724#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7725int arch_reinit_sched_domains(void)
5c45bf27 7726{
95402b38 7727 get_online_cpus();
e761b772 7728 rebuild_sched_domains();
95402b38 7729 put_online_cpus();
e761b772 7730 return 0;
5c45bf27
SS
7731}
7732
7733static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7734{
7735 int ret;
7736
7737 if (buf[0] != '0' && buf[0] != '1')
7738 return -EINVAL;
7739
7740 if (smt)
7741 sched_smt_power_savings = (buf[0] == '1');
7742 else
7743 sched_mc_power_savings = (buf[0] == '1');
7744
7745 ret = arch_reinit_sched_domains();
7746
7747 return ret ? ret : count;
7748}
7749
5c45bf27 7750#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7751static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7752 char *page)
5c45bf27
SS
7753{
7754 return sprintf(page, "%u\n", sched_mc_power_savings);
7755}
f718cd4a 7756static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7757 const char *buf, size_t count)
5c45bf27
SS
7758{
7759 return sched_power_savings_store(buf, count, 0);
7760}
f718cd4a
AK
7761static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7762 sched_mc_power_savings_show,
7763 sched_mc_power_savings_store);
5c45bf27
SS
7764#endif
7765
7766#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7767static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7768 char *page)
5c45bf27
SS
7769{
7770 return sprintf(page, "%u\n", sched_smt_power_savings);
7771}
f718cd4a 7772static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7773 const char *buf, size_t count)
5c45bf27
SS
7774{
7775 return sched_power_savings_store(buf, count, 1);
7776}
f718cd4a
AK
7777static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7778 sched_smt_power_savings_show,
6707de00
AB
7779 sched_smt_power_savings_store);
7780#endif
7781
7782int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7783{
7784 int err = 0;
7785
7786#ifdef CONFIG_SCHED_SMT
7787 if (smt_capable())
7788 err = sysfs_create_file(&cls->kset.kobj,
7789 &attr_sched_smt_power_savings.attr);
7790#endif
7791#ifdef CONFIG_SCHED_MC
7792 if (!err && mc_capable())
7793 err = sysfs_create_file(&cls->kset.kobj,
7794 &attr_sched_mc_power_savings.attr);
7795#endif
7796 return err;
7797}
6d6bc0ad 7798#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7799
e761b772 7800#ifndef CONFIG_CPUSETS
1da177e4 7801/*
e761b772
MK
7802 * Add online and remove offline CPUs from the scheduler domains.
7803 * When cpusets are enabled they take over this function.
1da177e4
LT
7804 */
7805static int update_sched_domains(struct notifier_block *nfb,
7806 unsigned long action, void *hcpu)
e761b772
MK
7807{
7808 switch (action) {
7809 case CPU_ONLINE:
7810 case CPU_ONLINE_FROZEN:
7811 case CPU_DEAD:
7812 case CPU_DEAD_FROZEN:
7813 partition_sched_domains(0, NULL, NULL);
7814 return NOTIFY_OK;
7815
7816 default:
7817 return NOTIFY_DONE;
7818 }
7819}
7820#endif
7821
7822static int update_runtime(struct notifier_block *nfb,
7823 unsigned long action, void *hcpu)
1da177e4 7824{
7def2be1
PZ
7825 int cpu = (int)(long)hcpu;
7826
1da177e4 7827 switch (action) {
1da177e4 7828 case CPU_DOWN_PREPARE:
8bb78442 7829 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7830 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7831 return NOTIFY_OK;
7832
1da177e4 7833 case CPU_DOWN_FAILED:
8bb78442 7834 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7835 case CPU_ONLINE:
8bb78442 7836 case CPU_ONLINE_FROZEN:
7def2be1 7837 enable_runtime(cpu_rq(cpu));
e761b772
MK
7838 return NOTIFY_OK;
7839
1da177e4
LT
7840 default:
7841 return NOTIFY_DONE;
7842 }
1da177e4 7843}
1da177e4
LT
7844
7845void __init sched_init_smp(void)
7846{
5c1e1767
NP
7847 cpumask_t non_isolated_cpus;
7848
434d53b0
MT
7849#if defined(CONFIG_NUMA)
7850 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7851 GFP_KERNEL);
7852 BUG_ON(sched_group_nodes_bycpu == NULL);
7853#endif
95402b38 7854 get_online_cpus();
712555ee 7855 mutex_lock(&sched_domains_mutex);
1a20ff27 7856 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7857 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7858 if (cpus_empty(non_isolated_cpus))
7859 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7860 mutex_unlock(&sched_domains_mutex);
95402b38 7861 put_online_cpus();
e761b772
MK
7862
7863#ifndef CONFIG_CPUSETS
1da177e4
LT
7864 /* XXX: Theoretical race here - CPU may be hotplugged now */
7865 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7866#endif
7867
7868 /* RT runtime code needs to handle some hotplug events */
7869 hotcpu_notifier(update_runtime, 0);
7870
b328ca18 7871 init_hrtick();
5c1e1767
NP
7872
7873 /* Move init over to a non-isolated CPU */
7c16ec58 7874 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7875 BUG();
19978ca6 7876 sched_init_granularity();
1da177e4
LT
7877}
7878#else
7879void __init sched_init_smp(void)
7880{
19978ca6 7881 sched_init_granularity();
1da177e4
LT
7882}
7883#endif /* CONFIG_SMP */
7884
7885int in_sched_functions(unsigned long addr)
7886{
1da177e4
LT
7887 return in_lock_functions(addr) ||
7888 (addr >= (unsigned long)__sched_text_start
7889 && addr < (unsigned long)__sched_text_end);
7890}
7891
a9957449 7892static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7893{
7894 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7895 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7896#ifdef CONFIG_FAIR_GROUP_SCHED
7897 cfs_rq->rq = rq;
7898#endif
67e9fb2a 7899 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7900}
7901
fa85ae24
PZ
7902static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7903{
7904 struct rt_prio_array *array;
7905 int i;
7906
7907 array = &rt_rq->active;
7908 for (i = 0; i < MAX_RT_PRIO; i++) {
7909 INIT_LIST_HEAD(array->queue + i);
7910 __clear_bit(i, array->bitmap);
7911 }
7912 /* delimiter for bitsearch: */
7913 __set_bit(MAX_RT_PRIO, array->bitmap);
7914
052f1dc7 7915#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7916 rt_rq->highest_prio = MAX_RT_PRIO;
7917#endif
fa85ae24
PZ
7918#ifdef CONFIG_SMP
7919 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7920 rt_rq->overloaded = 0;
7921#endif
7922
7923 rt_rq->rt_time = 0;
7924 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7925 rt_rq->rt_runtime = 0;
7926 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7927
052f1dc7 7928#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7929 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7930 rt_rq->rq = rq;
7931#endif
fa85ae24
PZ
7932}
7933
6f505b16 7934#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7935static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7936 struct sched_entity *se, int cpu, int add,
7937 struct sched_entity *parent)
6f505b16 7938{
ec7dc8ac 7939 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7940 tg->cfs_rq[cpu] = cfs_rq;
7941 init_cfs_rq(cfs_rq, rq);
7942 cfs_rq->tg = tg;
7943 if (add)
7944 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7945
7946 tg->se[cpu] = se;
354d60c2
DG
7947 /* se could be NULL for init_task_group */
7948 if (!se)
7949 return;
7950
ec7dc8ac
DG
7951 if (!parent)
7952 se->cfs_rq = &rq->cfs;
7953 else
7954 se->cfs_rq = parent->my_q;
7955
6f505b16
PZ
7956 se->my_q = cfs_rq;
7957 se->load.weight = tg->shares;
e05510d0 7958 se->load.inv_weight = 0;
ec7dc8ac 7959 se->parent = parent;
6f505b16 7960}
052f1dc7 7961#endif
6f505b16 7962
052f1dc7 7963#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7964static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7965 struct sched_rt_entity *rt_se, int cpu, int add,
7966 struct sched_rt_entity *parent)
6f505b16 7967{
ec7dc8ac
DG
7968 struct rq *rq = cpu_rq(cpu);
7969
6f505b16
PZ
7970 tg->rt_rq[cpu] = rt_rq;
7971 init_rt_rq(rt_rq, rq);
7972 rt_rq->tg = tg;
7973 rt_rq->rt_se = rt_se;
ac086bc2 7974 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7975 if (add)
7976 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7977
7978 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7979 if (!rt_se)
7980 return;
7981
ec7dc8ac
DG
7982 if (!parent)
7983 rt_se->rt_rq = &rq->rt;
7984 else
7985 rt_se->rt_rq = parent->my_q;
7986
6f505b16 7987 rt_se->my_q = rt_rq;
ec7dc8ac 7988 rt_se->parent = parent;
6f505b16
PZ
7989 INIT_LIST_HEAD(&rt_se->run_list);
7990}
7991#endif
7992
1da177e4
LT
7993void __init sched_init(void)
7994{
dd41f596 7995 int i, j;
434d53b0
MT
7996 unsigned long alloc_size = 0, ptr;
7997
7998#ifdef CONFIG_FAIR_GROUP_SCHED
7999 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8000#endif
8001#ifdef CONFIG_RT_GROUP_SCHED
8002 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8003#endif
8004#ifdef CONFIG_USER_SCHED
8005 alloc_size *= 2;
434d53b0
MT
8006#endif
8007 /*
8008 * As sched_init() is called before page_alloc is setup,
8009 * we use alloc_bootmem().
8010 */
8011 if (alloc_size) {
5a9d3225 8012 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8013
8014#ifdef CONFIG_FAIR_GROUP_SCHED
8015 init_task_group.se = (struct sched_entity **)ptr;
8016 ptr += nr_cpu_ids * sizeof(void **);
8017
8018 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8019 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8020
8021#ifdef CONFIG_USER_SCHED
8022 root_task_group.se = (struct sched_entity **)ptr;
8023 ptr += nr_cpu_ids * sizeof(void **);
8024
8025 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8026 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8027#endif /* CONFIG_USER_SCHED */
8028#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8029#ifdef CONFIG_RT_GROUP_SCHED
8030 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8031 ptr += nr_cpu_ids * sizeof(void **);
8032
8033 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8034 ptr += nr_cpu_ids * sizeof(void **);
8035
8036#ifdef CONFIG_USER_SCHED
8037 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8038 ptr += nr_cpu_ids * sizeof(void **);
8039
8040 root_task_group.rt_rq = (struct rt_rq **)ptr;
8041 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8042#endif /* CONFIG_USER_SCHED */
8043#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8044 }
dd41f596 8045
57d885fe
GH
8046#ifdef CONFIG_SMP
8047 init_defrootdomain();
8048#endif
8049
d0b27fa7
PZ
8050 init_rt_bandwidth(&def_rt_bandwidth,
8051 global_rt_period(), global_rt_runtime());
8052
8053#ifdef CONFIG_RT_GROUP_SCHED
8054 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8055 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8056#ifdef CONFIG_USER_SCHED
8057 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8058 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8059#endif /* CONFIG_USER_SCHED */
8060#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8061
052f1dc7 8062#ifdef CONFIG_GROUP_SCHED
6f505b16 8063 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8064 INIT_LIST_HEAD(&init_task_group.children);
8065
8066#ifdef CONFIG_USER_SCHED
8067 INIT_LIST_HEAD(&root_task_group.children);
8068 init_task_group.parent = &root_task_group;
8069 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8070#endif /* CONFIG_USER_SCHED */
8071#endif /* CONFIG_GROUP_SCHED */
6f505b16 8072
0a945022 8073 for_each_possible_cpu(i) {
70b97a7f 8074 struct rq *rq;
1da177e4
LT
8075
8076 rq = cpu_rq(i);
8077 spin_lock_init(&rq->lock);
7897986b 8078 rq->nr_running = 0;
dd41f596 8079 init_cfs_rq(&rq->cfs, rq);
6f505b16 8080 init_rt_rq(&rq->rt, rq);
dd41f596 8081#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8082 init_task_group.shares = init_task_group_load;
6f505b16 8083 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8084#ifdef CONFIG_CGROUP_SCHED
8085 /*
8086 * How much cpu bandwidth does init_task_group get?
8087 *
8088 * In case of task-groups formed thr' the cgroup filesystem, it
8089 * gets 100% of the cpu resources in the system. This overall
8090 * system cpu resource is divided among the tasks of
8091 * init_task_group and its child task-groups in a fair manner,
8092 * based on each entity's (task or task-group's) weight
8093 * (se->load.weight).
8094 *
8095 * In other words, if init_task_group has 10 tasks of weight
8096 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8097 * then A0's share of the cpu resource is:
8098 *
8099 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8100 *
8101 * We achieve this by letting init_task_group's tasks sit
8102 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8103 */
ec7dc8ac 8104 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8105#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8106 root_task_group.shares = NICE_0_LOAD;
8107 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8108 /*
8109 * In case of task-groups formed thr' the user id of tasks,
8110 * init_task_group represents tasks belonging to root user.
8111 * Hence it forms a sibling of all subsequent groups formed.
8112 * In this case, init_task_group gets only a fraction of overall
8113 * system cpu resource, based on the weight assigned to root
8114 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8115 * by letting tasks of init_task_group sit in a separate cfs_rq
8116 * (init_cfs_rq) and having one entity represent this group of
8117 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8118 */
ec7dc8ac 8119 init_tg_cfs_entry(&init_task_group,
6f505b16 8120 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8121 &per_cpu(init_sched_entity, i), i, 1,
8122 root_task_group.se[i]);
6f505b16 8123
052f1dc7 8124#endif
354d60c2
DG
8125#endif /* CONFIG_FAIR_GROUP_SCHED */
8126
8127 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8128#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8129 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8130#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8131 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8132#elif defined CONFIG_USER_SCHED
eff766a6 8133 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8134 init_tg_rt_entry(&init_task_group,
6f505b16 8135 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8136 &per_cpu(init_sched_rt_entity, i), i, 1,
8137 root_task_group.rt_se[i]);
354d60c2 8138#endif
dd41f596 8139#endif
1da177e4 8140
dd41f596
IM
8141 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8142 rq->cpu_load[j] = 0;
1da177e4 8143#ifdef CONFIG_SMP
41c7ce9a 8144 rq->sd = NULL;
57d885fe 8145 rq->rd = NULL;
1da177e4 8146 rq->active_balance = 0;
dd41f596 8147 rq->next_balance = jiffies;
1da177e4 8148 rq->push_cpu = 0;
0a2966b4 8149 rq->cpu = i;
1f11eb6a 8150 rq->online = 0;
1da177e4
LT
8151 rq->migration_thread = NULL;
8152 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8153 rq_attach_root(rq, &def_root_domain);
1da177e4 8154#endif
8f4d37ec 8155 init_rq_hrtick(rq);
1da177e4 8156 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8157 }
8158
2dd73a4f 8159 set_load_weight(&init_task);
b50f60ce 8160
e107be36
AK
8161#ifdef CONFIG_PREEMPT_NOTIFIERS
8162 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8163#endif
8164
c9819f45 8165#ifdef CONFIG_SMP
962cf36c 8166 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8167#endif
8168
b50f60ce
HC
8169#ifdef CONFIG_RT_MUTEXES
8170 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8171#endif
8172
1da177e4
LT
8173 /*
8174 * The boot idle thread does lazy MMU switching as well:
8175 */
8176 atomic_inc(&init_mm.mm_count);
8177 enter_lazy_tlb(&init_mm, current);
8178
8179 /*
8180 * Make us the idle thread. Technically, schedule() should not be
8181 * called from this thread, however somewhere below it might be,
8182 * but because we are the idle thread, we just pick up running again
8183 * when this runqueue becomes "idle".
8184 */
8185 init_idle(current, smp_processor_id());
dd41f596
IM
8186 /*
8187 * During early bootup we pretend to be a normal task:
8188 */
8189 current->sched_class = &fair_sched_class;
6892b75e
IM
8190
8191 scheduler_running = 1;
1da177e4
LT
8192}
8193
8194#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8195void __might_sleep(char *file, int line)
8196{
48f24c4d 8197#ifdef in_atomic
1da177e4
LT
8198 static unsigned long prev_jiffy; /* ratelimiting */
8199
8200 if ((in_atomic() || irqs_disabled()) &&
8201 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8202 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8203 return;
8204 prev_jiffy = jiffies;
91368d73 8205 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8206 " context at %s:%d\n", file, line);
8207 printk("in_atomic():%d, irqs_disabled():%d\n",
8208 in_atomic(), irqs_disabled());
a4c410f0 8209 debug_show_held_locks(current);
3117df04
IM
8210 if (irqs_disabled())
8211 print_irqtrace_events(current);
1da177e4
LT
8212 dump_stack();
8213 }
8214#endif
8215}
8216EXPORT_SYMBOL(__might_sleep);
8217#endif
8218
8219#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8220static void normalize_task(struct rq *rq, struct task_struct *p)
8221{
8222 int on_rq;
3e51f33f 8223
3a5e4dc1
AK
8224 update_rq_clock(rq);
8225 on_rq = p->se.on_rq;
8226 if (on_rq)
8227 deactivate_task(rq, p, 0);
8228 __setscheduler(rq, p, SCHED_NORMAL, 0);
8229 if (on_rq) {
8230 activate_task(rq, p, 0);
8231 resched_task(rq->curr);
8232 }
8233}
8234
1da177e4
LT
8235void normalize_rt_tasks(void)
8236{
a0f98a1c 8237 struct task_struct *g, *p;
1da177e4 8238 unsigned long flags;
70b97a7f 8239 struct rq *rq;
1da177e4 8240
4cf5d77a 8241 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8242 do_each_thread(g, p) {
178be793
IM
8243 /*
8244 * Only normalize user tasks:
8245 */
8246 if (!p->mm)
8247 continue;
8248
6cfb0d5d 8249 p->se.exec_start = 0;
6cfb0d5d 8250#ifdef CONFIG_SCHEDSTATS
dd41f596 8251 p->se.wait_start = 0;
dd41f596 8252 p->se.sleep_start = 0;
dd41f596 8253 p->se.block_start = 0;
6cfb0d5d 8254#endif
dd41f596
IM
8255
8256 if (!rt_task(p)) {
8257 /*
8258 * Renice negative nice level userspace
8259 * tasks back to 0:
8260 */
8261 if (TASK_NICE(p) < 0 && p->mm)
8262 set_user_nice(p, 0);
1da177e4 8263 continue;
dd41f596 8264 }
1da177e4 8265
4cf5d77a 8266 spin_lock(&p->pi_lock);
b29739f9 8267 rq = __task_rq_lock(p);
1da177e4 8268
178be793 8269 normalize_task(rq, p);
3a5e4dc1 8270
b29739f9 8271 __task_rq_unlock(rq);
4cf5d77a 8272 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8273 } while_each_thread(g, p);
8274
4cf5d77a 8275 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8276}
8277
8278#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8279
8280#ifdef CONFIG_IA64
8281/*
8282 * These functions are only useful for the IA64 MCA handling.
8283 *
8284 * They can only be called when the whole system has been
8285 * stopped - every CPU needs to be quiescent, and no scheduling
8286 * activity can take place. Using them for anything else would
8287 * be a serious bug, and as a result, they aren't even visible
8288 * under any other configuration.
8289 */
8290
8291/**
8292 * curr_task - return the current task for a given cpu.
8293 * @cpu: the processor in question.
8294 *
8295 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8296 */
36c8b586 8297struct task_struct *curr_task(int cpu)
1df5c10a
LT
8298{
8299 return cpu_curr(cpu);
8300}
8301
8302/**
8303 * set_curr_task - set the current task for a given cpu.
8304 * @cpu: the processor in question.
8305 * @p: the task pointer to set.
8306 *
8307 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8308 * are serviced on a separate stack. It allows the architecture to switch the
8309 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8310 * must be called with all CPU's synchronized, and interrupts disabled, the
8311 * and caller must save the original value of the current task (see
8312 * curr_task() above) and restore that value before reenabling interrupts and
8313 * re-starting the system.
8314 *
8315 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8316 */
36c8b586 8317void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8318{
8319 cpu_curr(cpu) = p;
8320}
8321
8322#endif
29f59db3 8323
bccbe08a
PZ
8324#ifdef CONFIG_FAIR_GROUP_SCHED
8325static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8326{
8327 int i;
8328
8329 for_each_possible_cpu(i) {
8330 if (tg->cfs_rq)
8331 kfree(tg->cfs_rq[i]);
8332 if (tg->se)
8333 kfree(tg->se[i]);
6f505b16
PZ
8334 }
8335
8336 kfree(tg->cfs_rq);
8337 kfree(tg->se);
6f505b16
PZ
8338}
8339
ec7dc8ac
DG
8340static
8341int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8342{
29f59db3 8343 struct cfs_rq *cfs_rq;
ec7dc8ac 8344 struct sched_entity *se, *parent_se;
9b5b7751 8345 struct rq *rq;
29f59db3
SV
8346 int i;
8347
434d53b0 8348 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8349 if (!tg->cfs_rq)
8350 goto err;
434d53b0 8351 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8352 if (!tg->se)
8353 goto err;
052f1dc7
PZ
8354
8355 tg->shares = NICE_0_LOAD;
29f59db3
SV
8356
8357 for_each_possible_cpu(i) {
9b5b7751 8358 rq = cpu_rq(i);
29f59db3 8359
6f505b16
PZ
8360 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8361 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8362 if (!cfs_rq)
8363 goto err;
8364
6f505b16
PZ
8365 se = kmalloc_node(sizeof(struct sched_entity),
8366 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8367 if (!se)
8368 goto err;
8369
ec7dc8ac
DG
8370 parent_se = parent ? parent->se[i] : NULL;
8371 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8372 }
8373
8374 return 1;
8375
8376 err:
8377 return 0;
8378}
8379
8380static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8381{
8382 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8383 &cpu_rq(cpu)->leaf_cfs_rq_list);
8384}
8385
8386static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8387{
8388 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8389}
6d6bc0ad 8390#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8391static inline void free_fair_sched_group(struct task_group *tg)
8392{
8393}
8394
ec7dc8ac
DG
8395static inline
8396int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8397{
8398 return 1;
8399}
8400
8401static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8402{
8403}
8404
8405static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8406{
8407}
6d6bc0ad 8408#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8409
8410#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8411static void free_rt_sched_group(struct task_group *tg)
8412{
8413 int i;
8414
d0b27fa7
PZ
8415 destroy_rt_bandwidth(&tg->rt_bandwidth);
8416
bccbe08a
PZ
8417 for_each_possible_cpu(i) {
8418 if (tg->rt_rq)
8419 kfree(tg->rt_rq[i]);
8420 if (tg->rt_se)
8421 kfree(tg->rt_se[i]);
8422 }
8423
8424 kfree(tg->rt_rq);
8425 kfree(tg->rt_se);
8426}
8427
ec7dc8ac
DG
8428static
8429int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8430{
8431 struct rt_rq *rt_rq;
ec7dc8ac 8432 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8433 struct rq *rq;
8434 int i;
8435
434d53b0 8436 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8437 if (!tg->rt_rq)
8438 goto err;
434d53b0 8439 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8440 if (!tg->rt_se)
8441 goto err;
8442
d0b27fa7
PZ
8443 init_rt_bandwidth(&tg->rt_bandwidth,
8444 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8445
8446 for_each_possible_cpu(i) {
8447 rq = cpu_rq(i);
8448
6f505b16
PZ
8449 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8450 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8451 if (!rt_rq)
8452 goto err;
29f59db3 8453
6f505b16
PZ
8454 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8455 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8456 if (!rt_se)
8457 goto err;
29f59db3 8458
ec7dc8ac
DG
8459 parent_se = parent ? parent->rt_se[i] : NULL;
8460 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8461 }
8462
bccbe08a
PZ
8463 return 1;
8464
8465 err:
8466 return 0;
8467}
8468
8469static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8470{
8471 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8472 &cpu_rq(cpu)->leaf_rt_rq_list);
8473}
8474
8475static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8476{
8477 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8478}
6d6bc0ad 8479#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8480static inline void free_rt_sched_group(struct task_group *tg)
8481{
8482}
8483
ec7dc8ac
DG
8484static inline
8485int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8486{
8487 return 1;
8488}
8489
8490static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8491{
8492}
8493
8494static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8495{
8496}
6d6bc0ad 8497#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8498
d0b27fa7 8499#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8500static void free_sched_group(struct task_group *tg)
8501{
8502 free_fair_sched_group(tg);
8503 free_rt_sched_group(tg);
8504 kfree(tg);
8505}
8506
8507/* allocate runqueue etc for a new task group */
ec7dc8ac 8508struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8509{
8510 struct task_group *tg;
8511 unsigned long flags;
8512 int i;
8513
8514 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8515 if (!tg)
8516 return ERR_PTR(-ENOMEM);
8517
ec7dc8ac 8518 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8519 goto err;
8520
ec7dc8ac 8521 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8522 goto err;
8523
8ed36996 8524 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8525 for_each_possible_cpu(i) {
bccbe08a
PZ
8526 register_fair_sched_group(tg, i);
8527 register_rt_sched_group(tg, i);
9b5b7751 8528 }
6f505b16 8529 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8530
8531 WARN_ON(!parent); /* root should already exist */
8532
8533 tg->parent = parent;
f473aa5e 8534 INIT_LIST_HEAD(&tg->children);
09f2724a 8535 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8536 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8537
9b5b7751 8538 return tg;
29f59db3
SV
8539
8540err:
6f505b16 8541 free_sched_group(tg);
29f59db3
SV
8542 return ERR_PTR(-ENOMEM);
8543}
8544
9b5b7751 8545/* rcu callback to free various structures associated with a task group */
6f505b16 8546static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8547{
29f59db3 8548 /* now it should be safe to free those cfs_rqs */
6f505b16 8549 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8550}
8551
9b5b7751 8552/* Destroy runqueue etc associated with a task group */
4cf86d77 8553void sched_destroy_group(struct task_group *tg)
29f59db3 8554{
8ed36996 8555 unsigned long flags;
9b5b7751 8556 int i;
29f59db3 8557
8ed36996 8558 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8559 for_each_possible_cpu(i) {
bccbe08a
PZ
8560 unregister_fair_sched_group(tg, i);
8561 unregister_rt_sched_group(tg, i);
9b5b7751 8562 }
6f505b16 8563 list_del_rcu(&tg->list);
f473aa5e 8564 list_del_rcu(&tg->siblings);
8ed36996 8565 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8566
9b5b7751 8567 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8568 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8569}
8570
9b5b7751 8571/* change task's runqueue when it moves between groups.
3a252015
IM
8572 * The caller of this function should have put the task in its new group
8573 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8574 * reflect its new group.
9b5b7751
SV
8575 */
8576void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8577{
8578 int on_rq, running;
8579 unsigned long flags;
8580 struct rq *rq;
8581
8582 rq = task_rq_lock(tsk, &flags);
8583
29f59db3
SV
8584 update_rq_clock(rq);
8585
051a1d1a 8586 running = task_current(rq, tsk);
29f59db3
SV
8587 on_rq = tsk->se.on_rq;
8588
0e1f3483 8589 if (on_rq)
29f59db3 8590 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8591 if (unlikely(running))
8592 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8593
6f505b16 8594 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8595
810b3817
PZ
8596#ifdef CONFIG_FAIR_GROUP_SCHED
8597 if (tsk->sched_class->moved_group)
8598 tsk->sched_class->moved_group(tsk);
8599#endif
8600
0e1f3483
HS
8601 if (unlikely(running))
8602 tsk->sched_class->set_curr_task(rq);
8603 if (on_rq)
7074badb 8604 enqueue_task(rq, tsk, 0);
29f59db3 8605
29f59db3
SV
8606 task_rq_unlock(rq, &flags);
8607}
6d6bc0ad 8608#endif /* CONFIG_GROUP_SCHED */
29f59db3 8609
052f1dc7 8610#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8611static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8612{
8613 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8614 int on_rq;
8615
29f59db3 8616 on_rq = se->on_rq;
62fb1851 8617 if (on_rq)
29f59db3
SV
8618 dequeue_entity(cfs_rq, se, 0);
8619
8620 se->load.weight = shares;
e05510d0 8621 se->load.inv_weight = 0;
29f59db3 8622
62fb1851 8623 if (on_rq)
29f59db3 8624 enqueue_entity(cfs_rq, se, 0);
c09595f6 8625}
62fb1851 8626
c09595f6
PZ
8627static void set_se_shares(struct sched_entity *se, unsigned long shares)
8628{
8629 struct cfs_rq *cfs_rq = se->cfs_rq;
8630 struct rq *rq = cfs_rq->rq;
8631 unsigned long flags;
8632
8633 spin_lock_irqsave(&rq->lock, flags);
8634 __set_se_shares(se, shares);
8635 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8636}
8637
8ed36996
PZ
8638static DEFINE_MUTEX(shares_mutex);
8639
4cf86d77 8640int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8641{
8642 int i;
8ed36996 8643 unsigned long flags;
c61935fd 8644
ec7dc8ac
DG
8645 /*
8646 * We can't change the weight of the root cgroup.
8647 */
8648 if (!tg->se[0])
8649 return -EINVAL;
8650
18d95a28
PZ
8651 if (shares < MIN_SHARES)
8652 shares = MIN_SHARES;
cb4ad1ff
MX
8653 else if (shares > MAX_SHARES)
8654 shares = MAX_SHARES;
62fb1851 8655
8ed36996 8656 mutex_lock(&shares_mutex);
9b5b7751 8657 if (tg->shares == shares)
5cb350ba 8658 goto done;
29f59db3 8659
8ed36996 8660 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8661 for_each_possible_cpu(i)
8662 unregister_fair_sched_group(tg, i);
f473aa5e 8663 list_del_rcu(&tg->siblings);
8ed36996 8664 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8665
8666 /* wait for any ongoing reference to this group to finish */
8667 synchronize_sched();
8668
8669 /*
8670 * Now we are free to modify the group's share on each cpu
8671 * w/o tripping rebalance_share or load_balance_fair.
8672 */
9b5b7751 8673 tg->shares = shares;
c09595f6
PZ
8674 for_each_possible_cpu(i) {
8675 /*
8676 * force a rebalance
8677 */
8678 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8679 set_se_shares(tg->se[i], shares);
c09595f6 8680 }
29f59db3 8681
6b2d7700
SV
8682 /*
8683 * Enable load balance activity on this group, by inserting it back on
8684 * each cpu's rq->leaf_cfs_rq_list.
8685 */
8ed36996 8686 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8687 for_each_possible_cpu(i)
8688 register_fair_sched_group(tg, i);
f473aa5e 8689 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8690 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8691done:
8ed36996 8692 mutex_unlock(&shares_mutex);
9b5b7751 8693 return 0;
29f59db3
SV
8694}
8695
5cb350ba
DG
8696unsigned long sched_group_shares(struct task_group *tg)
8697{
8698 return tg->shares;
8699}
052f1dc7 8700#endif
5cb350ba 8701
052f1dc7 8702#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8703/*
9f0c1e56 8704 * Ensure that the real time constraints are schedulable.
6f505b16 8705 */
9f0c1e56
PZ
8706static DEFINE_MUTEX(rt_constraints_mutex);
8707
8708static unsigned long to_ratio(u64 period, u64 runtime)
8709{
8710 if (runtime == RUNTIME_INF)
9a7e0b18 8711 return 1ULL << 20;
9f0c1e56 8712
9a7e0b18 8713 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8714}
8715
9a7e0b18
PZ
8716/* Must be called with tasklist_lock held */
8717static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8718{
9a7e0b18 8719 struct task_struct *g, *p;
b40b2e8e 8720
9a7e0b18
PZ
8721 do_each_thread(g, p) {
8722 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8723 return 1;
8724 } while_each_thread(g, p);
b40b2e8e 8725
9a7e0b18
PZ
8726 return 0;
8727}
b40b2e8e 8728
9a7e0b18
PZ
8729struct rt_schedulable_data {
8730 struct task_group *tg;
8731 u64 rt_period;
8732 u64 rt_runtime;
8733};
b40b2e8e 8734
9a7e0b18
PZ
8735static int tg_schedulable(struct task_group *tg, void *data)
8736{
8737 struct rt_schedulable_data *d = data;
8738 struct task_group *child;
8739 unsigned long total, sum = 0;
8740 u64 period, runtime;
b40b2e8e 8741
9a7e0b18
PZ
8742 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8743 runtime = tg->rt_bandwidth.rt_runtime;
8744
8745 if (tg == d->tg) {
8746 period = d->rt_period;
8747 runtime = d->rt_runtime;
b40b2e8e 8748 }
b40b2e8e 8749
9a7e0b18
PZ
8750 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8751 return -EBUSY;
6f505b16 8752
9a7e0b18
PZ
8753 total = to_ratio(period, runtime);
8754
8755 list_for_each_entry_rcu(child, &tg->children, siblings) {
8756 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8757 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8758
9a7e0b18
PZ
8759 if (child == d->tg) {
8760 period = d->rt_period;
8761 runtime = d->rt_runtime;
8762 }
8763
8764 sum += to_ratio(period, runtime);
9f0c1e56 8765 }
6f505b16 8766
9a7e0b18
PZ
8767 if (sum > total)
8768 return -EINVAL;
8769
8770 return 0;
6f505b16
PZ
8771}
8772
9a7e0b18 8773static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8774{
9a7e0b18
PZ
8775 struct rt_schedulable_data data = {
8776 .tg = tg,
8777 .rt_period = period,
8778 .rt_runtime = runtime,
8779 };
8780
8781 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8782}
8783
d0b27fa7
PZ
8784static int tg_set_bandwidth(struct task_group *tg,
8785 u64 rt_period, u64 rt_runtime)
6f505b16 8786{
ac086bc2 8787 int i, err = 0;
9f0c1e56 8788
9f0c1e56 8789 mutex_lock(&rt_constraints_mutex);
521f1a24 8790 read_lock(&tasklist_lock);
9a7e0b18
PZ
8791 err = __rt_schedulable(tg, rt_period, rt_runtime);
8792 if (err)
9f0c1e56 8793 goto unlock;
ac086bc2
PZ
8794
8795 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8796 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8797 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8798
8799 for_each_possible_cpu(i) {
8800 struct rt_rq *rt_rq = tg->rt_rq[i];
8801
8802 spin_lock(&rt_rq->rt_runtime_lock);
8803 rt_rq->rt_runtime = rt_runtime;
8804 spin_unlock(&rt_rq->rt_runtime_lock);
8805 }
8806 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8807 unlock:
521f1a24 8808 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8809 mutex_unlock(&rt_constraints_mutex);
8810
8811 return err;
6f505b16
PZ
8812}
8813
d0b27fa7
PZ
8814int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8815{
8816 u64 rt_runtime, rt_period;
8817
8818 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8819 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8820 if (rt_runtime_us < 0)
8821 rt_runtime = RUNTIME_INF;
8822
8823 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8824}
8825
9f0c1e56
PZ
8826long sched_group_rt_runtime(struct task_group *tg)
8827{
8828 u64 rt_runtime_us;
8829
d0b27fa7 8830 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8831 return -1;
8832
d0b27fa7 8833 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8834 do_div(rt_runtime_us, NSEC_PER_USEC);
8835 return rt_runtime_us;
8836}
d0b27fa7
PZ
8837
8838int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8839{
8840 u64 rt_runtime, rt_period;
8841
8842 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8843 rt_runtime = tg->rt_bandwidth.rt_runtime;
8844
619b0488
R
8845 if (rt_period == 0)
8846 return -EINVAL;
8847
d0b27fa7
PZ
8848 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8849}
8850
8851long sched_group_rt_period(struct task_group *tg)
8852{
8853 u64 rt_period_us;
8854
8855 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8856 do_div(rt_period_us, NSEC_PER_USEC);
8857 return rt_period_us;
8858}
8859
8860static int sched_rt_global_constraints(void)
8861{
10b612f4
PZ
8862 struct task_group *tg = &root_task_group;
8863 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8864 int ret = 0;
8865
10b612f4
PZ
8866 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8867 rt_runtime = tg->rt_bandwidth.rt_runtime;
8868
d0b27fa7 8869 mutex_lock(&rt_constraints_mutex);
9a7e0b18
PZ
8870 read_lock(&tasklist_lock);
8871 ret = __rt_schedulable(tg, rt_period, rt_runtime);
8872 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8873 mutex_unlock(&rt_constraints_mutex);
8874
8875 return ret;
8876}
6d6bc0ad 8877#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8878static int sched_rt_global_constraints(void)
8879{
ac086bc2
PZ
8880 unsigned long flags;
8881 int i;
8882
8883 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8884 for_each_possible_cpu(i) {
8885 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8886
8887 spin_lock(&rt_rq->rt_runtime_lock);
8888 rt_rq->rt_runtime = global_rt_runtime();
8889 spin_unlock(&rt_rq->rt_runtime_lock);
8890 }
8891 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8892
d0b27fa7
PZ
8893 return 0;
8894}
6d6bc0ad 8895#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8896
8897int sched_rt_handler(struct ctl_table *table, int write,
8898 struct file *filp, void __user *buffer, size_t *lenp,
8899 loff_t *ppos)
8900{
8901 int ret;
8902 int old_period, old_runtime;
8903 static DEFINE_MUTEX(mutex);
8904
8905 mutex_lock(&mutex);
8906 old_period = sysctl_sched_rt_period;
8907 old_runtime = sysctl_sched_rt_runtime;
8908
8909 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8910
8911 if (!ret && write) {
8912 ret = sched_rt_global_constraints();
8913 if (ret) {
8914 sysctl_sched_rt_period = old_period;
8915 sysctl_sched_rt_runtime = old_runtime;
8916 } else {
8917 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8918 def_rt_bandwidth.rt_period =
8919 ns_to_ktime(global_rt_period());
8920 }
8921 }
8922 mutex_unlock(&mutex);
8923
8924 return ret;
8925}
68318b8e 8926
052f1dc7 8927#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8928
8929/* return corresponding task_group object of a cgroup */
2b01dfe3 8930static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8931{
2b01dfe3
PM
8932 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8933 struct task_group, css);
68318b8e
SV
8934}
8935
8936static struct cgroup_subsys_state *
2b01dfe3 8937cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8938{
ec7dc8ac 8939 struct task_group *tg, *parent;
68318b8e 8940
2b01dfe3 8941 if (!cgrp->parent) {
68318b8e 8942 /* This is early initialization for the top cgroup */
2b01dfe3 8943 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8944 return &init_task_group.css;
8945 }
8946
ec7dc8ac
DG
8947 parent = cgroup_tg(cgrp->parent);
8948 tg = sched_create_group(parent);
68318b8e
SV
8949 if (IS_ERR(tg))
8950 return ERR_PTR(-ENOMEM);
8951
8952 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8953 tg->css.cgroup = cgrp;
68318b8e
SV
8954
8955 return &tg->css;
8956}
8957
41a2d6cf
IM
8958static void
8959cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8960{
2b01dfe3 8961 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8962
8963 sched_destroy_group(tg);
8964}
8965
41a2d6cf
IM
8966static int
8967cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8968 struct task_struct *tsk)
68318b8e 8969{
b68aa230
PZ
8970#ifdef CONFIG_RT_GROUP_SCHED
8971 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8972 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8973 return -EINVAL;
8974#else
68318b8e
SV
8975 /* We don't support RT-tasks being in separate groups */
8976 if (tsk->sched_class != &fair_sched_class)
8977 return -EINVAL;
b68aa230 8978#endif
68318b8e
SV
8979
8980 return 0;
8981}
8982
8983static void
2b01dfe3 8984cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8985 struct cgroup *old_cont, struct task_struct *tsk)
8986{
8987 sched_move_task(tsk);
8988}
8989
052f1dc7 8990#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8991static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8992 u64 shareval)
68318b8e 8993{
2b01dfe3 8994 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8995}
8996
f4c753b7 8997static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8998{
2b01dfe3 8999 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9000
9001 return (u64) tg->shares;
9002}
6d6bc0ad 9003#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9004
052f1dc7 9005#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9006static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9007 s64 val)
6f505b16 9008{
06ecb27c 9009 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9010}
9011
06ecb27c 9012static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9013{
06ecb27c 9014 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9015}
d0b27fa7
PZ
9016
9017static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9018 u64 rt_period_us)
9019{
9020 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9021}
9022
9023static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9024{
9025 return sched_group_rt_period(cgroup_tg(cgrp));
9026}
6d6bc0ad 9027#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9028
fe5c7cc2 9029static struct cftype cpu_files[] = {
052f1dc7 9030#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9031 {
9032 .name = "shares",
f4c753b7
PM
9033 .read_u64 = cpu_shares_read_u64,
9034 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9035 },
052f1dc7
PZ
9036#endif
9037#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9038 {
9f0c1e56 9039 .name = "rt_runtime_us",
06ecb27c
PM
9040 .read_s64 = cpu_rt_runtime_read,
9041 .write_s64 = cpu_rt_runtime_write,
6f505b16 9042 },
d0b27fa7
PZ
9043 {
9044 .name = "rt_period_us",
f4c753b7
PM
9045 .read_u64 = cpu_rt_period_read_uint,
9046 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9047 },
052f1dc7 9048#endif
68318b8e
SV
9049};
9050
9051static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9052{
fe5c7cc2 9053 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9054}
9055
9056struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9057 .name = "cpu",
9058 .create = cpu_cgroup_create,
9059 .destroy = cpu_cgroup_destroy,
9060 .can_attach = cpu_cgroup_can_attach,
9061 .attach = cpu_cgroup_attach,
9062 .populate = cpu_cgroup_populate,
9063 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9064 .early_init = 1,
9065};
9066
052f1dc7 9067#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9068
9069#ifdef CONFIG_CGROUP_CPUACCT
9070
9071/*
9072 * CPU accounting code for task groups.
9073 *
9074 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9075 * (balbir@in.ibm.com).
9076 */
9077
9078/* track cpu usage of a group of tasks */
9079struct cpuacct {
9080 struct cgroup_subsys_state css;
9081 /* cpuusage holds pointer to a u64-type object on every cpu */
9082 u64 *cpuusage;
9083};
9084
9085struct cgroup_subsys cpuacct_subsys;
9086
9087/* return cpu accounting group corresponding to this container */
32cd756a 9088static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9089{
32cd756a 9090 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9091 struct cpuacct, css);
9092}
9093
9094/* return cpu accounting group to which this task belongs */
9095static inline struct cpuacct *task_ca(struct task_struct *tsk)
9096{
9097 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9098 struct cpuacct, css);
9099}
9100
9101/* create a new cpu accounting group */
9102static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9103 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9104{
9105 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9106
9107 if (!ca)
9108 return ERR_PTR(-ENOMEM);
9109
9110 ca->cpuusage = alloc_percpu(u64);
9111 if (!ca->cpuusage) {
9112 kfree(ca);
9113 return ERR_PTR(-ENOMEM);
9114 }
9115
9116 return &ca->css;
9117}
9118
9119/* destroy an existing cpu accounting group */
41a2d6cf 9120static void
32cd756a 9121cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9122{
32cd756a 9123 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9124
9125 free_percpu(ca->cpuusage);
9126 kfree(ca);
9127}
9128
9129/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9130static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9131{
32cd756a 9132 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9133 u64 totalcpuusage = 0;
9134 int i;
9135
9136 for_each_possible_cpu(i) {
9137 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9138
9139 /*
9140 * Take rq->lock to make 64-bit addition safe on 32-bit
9141 * platforms.
9142 */
9143 spin_lock_irq(&cpu_rq(i)->lock);
9144 totalcpuusage += *cpuusage;
9145 spin_unlock_irq(&cpu_rq(i)->lock);
9146 }
9147
9148 return totalcpuusage;
9149}
9150
0297b803
DG
9151static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9152 u64 reset)
9153{
9154 struct cpuacct *ca = cgroup_ca(cgrp);
9155 int err = 0;
9156 int i;
9157
9158 if (reset) {
9159 err = -EINVAL;
9160 goto out;
9161 }
9162
9163 for_each_possible_cpu(i) {
9164 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9165
9166 spin_lock_irq(&cpu_rq(i)->lock);
9167 *cpuusage = 0;
9168 spin_unlock_irq(&cpu_rq(i)->lock);
9169 }
9170out:
9171 return err;
9172}
9173
d842de87
SV
9174static struct cftype files[] = {
9175 {
9176 .name = "usage",
f4c753b7
PM
9177 .read_u64 = cpuusage_read,
9178 .write_u64 = cpuusage_write,
d842de87
SV
9179 },
9180};
9181
32cd756a 9182static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9183{
32cd756a 9184 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9185}
9186
9187/*
9188 * charge this task's execution time to its accounting group.
9189 *
9190 * called with rq->lock held.
9191 */
9192static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9193{
9194 struct cpuacct *ca;
9195
9196 if (!cpuacct_subsys.active)
9197 return;
9198
9199 ca = task_ca(tsk);
9200 if (ca) {
9201 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9202
9203 *cpuusage += cputime;
9204 }
9205}
9206
9207struct cgroup_subsys cpuacct_subsys = {
9208 .name = "cpuacct",
9209 .create = cpuacct_create,
9210 .destroy = cpuacct_destroy,
9211 .populate = cpuacct_populate,
9212 .subsys_id = cpuacct_subsys_id,
9213};
9214#endif /* CONFIG_CGROUP_CPUACCT */