]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Fix kernel-doc function parameter name
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 536#ifdef CONFIG_NO_HZ
15934a37 537 unsigned long last_tick_seen;
46cb4b7c
SS
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
23a185ca 544 u64 nr_migrations_in;
6aa645ea
IM
545
546 struct cfs_rq cfs;
6f505b16 547 struct rt_rq rt;
6f505b16 548
6aa645ea 549#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
552#endif
553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 554 struct list_head leaf_rt_rq_list;
1da177e4 555#endif
1da177e4
LT
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
36c8b586 565 struct task_struct *curr, *idle;
c9819f45 566 unsigned long next_balance;
1da177e4 567 struct mm_struct *prev_mm;
6aa645ea 568
3e51f33f 569 u64 clock;
6aa645ea 570
1da177e4
LT
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
0eab9146 574 struct root_domain *rd;
1da177e4
LT
575 struct sched_domain *sd;
576
a0a522ce 577 unsigned char idle_at_tick;
1da177e4 578 /* For active balancing */
3f029d3c 579 int post_schedule;
1da177e4
LT
580 int active_balance;
581 int push_cpu;
d8016491
IM
582 /* cpu of this runqueue: */
583 int cpu;
1f11eb6a 584 int online;
1da177e4 585
a8a51d5e 586 unsigned long avg_load_per_task;
1da177e4 587
36c8b586 588 struct task_struct *migration_thread;
1da177e4 589 struct list_head migration_queue;
e9e9250b
PZ
590
591 u64 rt_avg;
592 u64 age_stamp;
1da177e4
LT
593#endif
594
dce48a84
TG
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
8f4d37ec 599#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
600#ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603#endif
8f4d37ec
PZ
604 struct hrtimer hrtick_timer;
605#endif
606
1da177e4
LT
607#ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
9c2c4802
KC
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
612
613 /* sys_sched_yield() stats */
480b9434 614 unsigned int yld_count;
1da177e4
LT
615
616 /* schedule() stats */
480b9434
KC
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
1da177e4
LT
620
621 /* try_to_wake_up() stats */
480b9434
KC
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
b8efb561
IM
624
625 /* BKL stats */
480b9434 626 unsigned int bkl_count;
1da177e4
LT
627#endif
628};
629
f34e3b61 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 631
7d478721
PZ
632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 634{
7d478721 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
636}
637
0a2966b4
CL
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 661#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 662
aa9c4c0f 663inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
664{
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666}
667
bf5c91ba
IM
668/*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671#ifdef CONFIG_SCHED_DEBUG
672# define const_debug __read_mostly
673#else
674# define const_debug static const
675#endif
676
017730c1
IM
677/**
678 * runqueue_is_locked
e17b38bf 679 * @cpu: the processor in question.
017730c1
IM
680 *
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
684 */
89f19f04 685int runqueue_is_locked(int cpu)
017730c1 686{
89f19f04 687 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
688}
689
bf5c91ba
IM
690/*
691 * Debugging: various feature bits
692 */
f00b45c1
PZ
693
694#define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
696
bf5c91ba 697enum {
f00b45c1 698#include "sched_features.h"
bf5c91ba
IM
699};
700
f00b45c1
PZ
701#undef SCHED_FEAT
702
703#define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
705
bf5c91ba 706const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
707#include "sched_features.h"
708 0;
709
710#undef SCHED_FEAT
711
712#ifdef CONFIG_SCHED_DEBUG
713#define SCHED_FEAT(name, enabled) \
714 #name ,
715
983ed7a6 716static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
717#include "sched_features.h"
718 NULL
719};
720
721#undef SCHED_FEAT
722
34f3a814 723static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 724{
f00b45c1
PZ
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
728 if (!(sysctl_sched_features & (1UL << i)))
729 seq_puts(m, "NO_");
730 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 731 }
34f3a814 732 seq_puts(m, "\n");
f00b45c1 733
34f3a814 734 return 0;
f00b45c1
PZ
735}
736
737static ssize_t
738sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
740{
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
745
746 if (cnt > 63)
747 cnt = 63;
748
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
751
752 buf[cnt] = 0;
753
c24b7c52 754 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
755 neg = 1;
756 cmp += 3;
757 }
758
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
761
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
768 }
769 }
770
771 if (!sched_feat_names[i])
772 return -EINVAL;
773
774 filp->f_pos += cnt;
775
776 return cnt;
777}
778
34f3a814
LZ
779static int sched_feat_open(struct inode *inode, struct file *filp)
780{
781 return single_open(filp, sched_feat_show, NULL);
782}
783
828c0950 784static const struct file_operations sched_feat_fops = {
34f3a814
LZ
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
f00b45c1
PZ
790};
791
792static __init int sched_init_debug(void)
793{
f00b45c1
PZ
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798}
799late_initcall(sched_init_debug);
800
801#endif
802
803#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 804
b82d9fdd
PZ
805/*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
2398f2c6
PZ
811/*
812 * ratelimit for updating the group shares.
55cd5340 813 * default: 0.25ms
2398f2c6 814 */
55cd5340 815unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 816
ffda12a1
PZ
817/*
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
820 * default: 4
821 */
822unsigned int sysctl_sched_shares_thresh = 4;
823
e9e9250b
PZ
824/*
825 * period over which we average the RT time consumption, measured
826 * in ms.
827 *
828 * default: 1s
829 */
830const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
831
fa85ae24 832/*
9f0c1e56 833 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
834 * default: 1s
835 */
9f0c1e56 836unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 837
6892b75e
IM
838static __read_mostly int scheduler_running;
839
9f0c1e56
PZ
840/*
841 * part of the period that we allow rt tasks to run in us.
842 * default: 0.95s
843 */
844int sysctl_sched_rt_runtime = 950000;
fa85ae24 845
d0b27fa7
PZ
846static inline u64 global_rt_period(void)
847{
848 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
849}
850
851static inline u64 global_rt_runtime(void)
852{
e26873bb 853 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
854 return RUNTIME_INF;
855
856 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
857}
fa85ae24 858
1da177e4 859#ifndef prepare_arch_switch
4866cde0
NP
860# define prepare_arch_switch(next) do { } while (0)
861#endif
862#ifndef finish_arch_switch
863# define finish_arch_switch(prev) do { } while (0)
864#endif
865
051a1d1a
DA
866static inline int task_current(struct rq *rq, struct task_struct *p)
867{
868 return rq->curr == p;
869}
870
4866cde0 871#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 872static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 873{
051a1d1a 874 return task_current(rq, p);
4866cde0
NP
875}
876
70b97a7f 877static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
878{
879}
880
70b97a7f 881static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 882{
da04c035
IM
883#ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq->lock.owner = current;
886#endif
8a25d5de
IM
887 /*
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
890 * prev into current:
891 */
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893
4866cde0
NP
894 spin_unlock_irq(&rq->lock);
895}
896
897#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 898static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
899{
900#ifdef CONFIG_SMP
901 return p->oncpu;
902#else
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
913 * here.
914 */
915 next->oncpu = 1;
916#endif
917#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock);
919#else
920 spin_unlock(&rq->lock);
921#endif
922}
923
70b97a7f 924static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
925{
926#ifdef CONFIG_SMP
927 /*
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
930 * finished.
931 */
932 smp_wmb();
933 prev->oncpu = 0;
934#endif
935#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
936 local_irq_enable();
1da177e4 937#endif
4866cde0
NP
938}
939#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 940
b29739f9
IM
941/*
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
944 */
70b97a7f 945static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
946 __acquires(rq->lock)
947{
3a5c359a
AK
948 for (;;) {
949 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
b29739f9 953 spin_unlock(&rq->lock);
b29739f9 954 }
b29739f9
IM
955}
956
1da177e4
LT
957/*
958 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 959 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
960 * explicitly disabling preemption.
961 */
70b97a7f 962static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
963 __acquires(rq->lock)
964{
70b97a7f 965 struct rq *rq;
1da177e4 966
3a5c359a
AK
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
1da177e4 973 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 974 }
1da177e4
LT
975}
976
ad474cac
ON
977void task_rq_unlock_wait(struct task_struct *p)
978{
979 struct rq *rq = task_rq(p);
980
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock);
983}
984
a9957449 985static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
986 __releases(rq->lock)
987{
988 spin_unlock(&rq->lock);
989}
990
70b97a7f 991static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
992 __releases(rq->lock)
993{
994 spin_unlock_irqrestore(&rq->lock, *flags);
995}
996
1da177e4 997/*
cc2a73b5 998 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 999 */
a9957449 1000static struct rq *this_rq_lock(void)
1da177e4
LT
1001 __acquires(rq->lock)
1002{
70b97a7f 1003 struct rq *rq;
1da177e4
LT
1004
1005 local_irq_disable();
1006 rq = this_rq();
1007 spin_lock(&rq->lock);
1008
1009 return rq;
1010}
1011
8f4d37ec
PZ
1012#ifdef CONFIG_SCHED_HRTICK
1013/*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
8f4d37ec
PZ
1023
1024/*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029static inline int hrtick_enabled(struct rq *rq)
1030{
1031 if (!sched_feat(HRTICK))
1032 return 0;
ba42059f 1033 if (!cpu_active(cpu_of(rq)))
b328ca18 1034 return 0;
8f4d37ec
PZ
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038static void hrtick_clear(struct rq *rq)
1039{
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1042}
1043
8f4d37ec
PZ
1044/*
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1047 */
1048static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049{
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053
1054 spin_lock(&rq->lock);
3e51f33f 1055 update_rq_clock(rq);
8f4d37ec
PZ
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock);
1058
1059 return HRTIMER_NORESTART;
1060}
1061
95e904c7 1062#ifdef CONFIG_SMP
31656519
PZ
1063/*
1064 * called from hardirq (IPI) context
1065 */
1066static void __hrtick_start(void *arg)
b328ca18 1067{
31656519 1068 struct rq *rq = arg;
b328ca18 1069
31656519
PZ
1070 spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock);
b328ca18
PZ
1074}
1075
31656519
PZ
1076/*
1077 * Called to set the hrtick timer state.
1078 *
1079 * called with rq->lock held and irqs disabled
1080 */
1081static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1082{
31656519
PZ
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1085
cc584b21 1086 hrtimer_set_expires(timer, time);
31656519
PZ
1087
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
6e275637 1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1092 rq->hrtick_csd_pending = 1;
1093 }
b328ca18
PZ
1094}
1095
1096static int
1097hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098{
1099 int cpu = (int)(long)hcpu;
1100
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
31656519 1108 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1109 return NOTIFY_OK;
1110 }
1111
1112 return NOTIFY_DONE;
1113}
1114
fa748203 1115static __init void init_hrtick(void)
b328ca18
PZ
1116{
1117 hotcpu_notifier(hotplug_hrtick, 0);
1118}
31656519
PZ
1119#else
1120/*
1121 * Called to set the hrtick timer state.
1122 *
1123 * called with rq->lock held and irqs disabled
1124 */
1125static void hrtick_start(struct rq *rq, u64 delay)
1126{
7f1e2ca9 1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1128 HRTIMER_MODE_REL_PINNED, 0);
31656519 1129}
b328ca18 1130
006c75f1 1131static inline void init_hrtick(void)
8f4d37ec 1132{
8f4d37ec 1133}
31656519 1134#endif /* CONFIG_SMP */
8f4d37ec 1135
31656519 1136static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1137{
31656519
PZ
1138#ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
8f4d37ec 1140
31656519
PZ
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144#endif
8f4d37ec 1145
31656519
PZ
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
8f4d37ec 1148}
006c75f1 1149#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1150static inline void hrtick_clear(struct rq *rq)
1151{
1152}
1153
8f4d37ec
PZ
1154static inline void init_rq_hrtick(struct rq *rq)
1155{
1156}
1157
b328ca18
PZ
1158static inline void init_hrtick(void)
1159{
1160}
006c75f1 1161#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1162
c24d20db
IM
1163/*
1164 * resched_task - mark a task 'to be rescheduled now'.
1165 *
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1169 */
1170#ifdef CONFIG_SMP
1171
1172#ifndef tsk_is_polling
1173#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174#endif
1175
31656519 1176static void resched_task(struct task_struct *p)
c24d20db
IM
1177{
1178 int cpu;
1179
1180 assert_spin_locked(&task_rq(p)->lock);
1181
5ed0cec0 1182 if (test_tsk_need_resched(p))
c24d20db
IM
1183 return;
1184
5ed0cec0 1185 set_tsk_need_resched(p);
c24d20db
IM
1186
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1190
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1195}
1196
1197static void resched_cpu(int cpu)
1198{
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1201
1202 if (!spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags);
1206}
06d8308c
TG
1207
1208#ifdef CONFIG_NO_HZ
1209/*
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1218 */
1219void wake_up_idle_cpu(int cpu)
1220{
1221 struct rq *rq = cpu_rq(cpu);
1222
1223 if (cpu == smp_processor_id())
1224 return;
1225
1226 /*
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1232 */
1233 if (rq->curr != rq->idle)
1234 return;
1235
1236 /*
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1240 */
5ed0cec0 1241 set_tsk_need_resched(rq->idle);
06d8308c
TG
1242
1243 /* NEED_RESCHED must be visible before we test polling */
1244 smp_mb();
1245 if (!tsk_is_polling(rq->idle))
1246 smp_send_reschedule(cpu);
1247}
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263}
1264
1265static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266{
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269}
1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
e9e9250b
PZ
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280}
6d6bc0ad 1281#endif /* CONFIG_SMP */
c24d20db 1282
45bf76df
IM
1283#if BITS_PER_LONG == 32
1284# define WMULT_CONST (~0UL)
1285#else
1286# define WMULT_CONST (1UL << 32)
1287#endif
1288
1289#define WMULT_SHIFT 32
1290
194081eb
IM
1291/*
1292 * Shift right and round:
1293 */
cf2ab469 1294#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1295
a7be37ac
PZ
1296/*
1297 * delta *= weight / lw
1298 */
cb1c4fc9 1299static unsigned long
45bf76df
IM
1300calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302{
1303 u64 tmp;
1304
7a232e03
LJ
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
45bf76df
IM
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
194081eb 1317 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1319 WMULT_SHIFT/2);
1320 else
cf2ab469 1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1322
ecf691da 1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1327{
1328 lw->weight += inc;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1333{
1334 lw->weight -= dec;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
2dd73a4f
PW
1338/*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
cce7ade8
PZ
1347#define WEIGHT_IDLEPRIO 3
1348#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1349
1350/*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
dd41f596
IM
1361 */
1362static const int prio_to_weight[40] = {
254753dc
IM
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1371};
1372
5714d2de
IM
1373/*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
dd41f596 1380static const u32 prio_to_wmult[40] = {
254753dc
IM
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1389};
2dd73a4f 1390
dd41f596
IM
1391static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393/*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402};
1403
e1d1484f
PW
1404#ifdef CONFIG_SMP
1405static unsigned long
1406balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411static int
1412iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
e1d1484f 1415#endif
dd41f596 1416
ef12fefa
BR
1417/* Time spent by the tasks of the cpu accounting group executing in ... */
1418enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423};
1424
d842de87
SV
1425#ifdef CONFIG_CGROUP_CPUACCT
1426static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1427static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1429#else
1430static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1431static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1433#endif
1434
18d95a28
PZ
1435static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_add(&rq->load, load);
1438}
1439
1440static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_sub(&rq->load, load);
1443}
1444
7940ca36 1445#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1446typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
eb755805 1452static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1453{
1454 struct task_group *parent, *child;
eb755805 1455 int ret;
c09595f6
PZ
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
eb755805
PZ
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467up:
1468 continue;
1469 }
eb755805
PZ
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
c09595f6
PZ
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
eb755805 1478out_unlock:
c09595f6 1479 rcu_read_unlock();
eb755805
PZ
1480
1481 return ret;
c09595f6
PZ
1482}
1483
eb755805
PZ
1484static int tg_nop(struct task_group *tg, void *data)
1485{
1486 return 0;
c09595f6 1487}
eb755805
PZ
1488#endif
1489
1490#ifdef CONFIG_SMP
f5f08f39
PZ
1491/* Used instead of source_load when we know the type == 0 */
1492static unsigned long weighted_cpuload(const int cpu)
1493{
1494 return cpu_rq(cpu)->load.weight;
1495}
1496
1497/*
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1500 *
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1503 */
1504static unsigned long source_load(int cpu, int type)
1505{
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return min(rq->cpu_load[type-1], total);
1513}
1514
1515/*
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1518 */
1519static unsigned long target_load(int cpu, int type)
1520{
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1523
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1526
1527 return max(rq->cpu_load[type-1], total);
1528}
1529
ae154be1
PZ
1530static struct sched_group *group_of(int cpu)
1531{
1532 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1533
1534 if (!sd)
1535 return NULL;
1536
1537 return sd->groups;
1538}
1539
1540static unsigned long power_of(int cpu)
1541{
1542 struct sched_group *group = group_of(cpu);
1543
1544 if (!group)
1545 return SCHED_LOAD_SCALE;
1546
1547 return group->cpu_power;
1548}
1549
eb755805
PZ
1550static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1551
1552static unsigned long cpu_avg_load_per_task(int cpu)
1553{
1554 struct rq *rq = cpu_rq(cpu);
af6d596f 1555 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1556
4cd42620
SR
1557 if (nr_running)
1558 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1559 else
1560 rq->avg_load_per_task = 0;
eb755805
PZ
1561
1562 return rq->avg_load_per_task;
1563}
1564
1565#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1566
4a6cc4bd 1567static __read_mostly unsigned long *update_shares_data;
34d76c41 1568
c09595f6
PZ
1569static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1570
1571/*
1572 * Calculate and set the cpu's group shares.
1573 */
34d76c41
PZ
1574static void update_group_shares_cpu(struct task_group *tg, int cpu,
1575 unsigned long sd_shares,
1576 unsigned long sd_rq_weight,
4a6cc4bd 1577 unsigned long *usd_rq_weight)
18d95a28 1578{
34d76c41 1579 unsigned long shares, rq_weight;
a5004278 1580 int boost = 0;
c09595f6 1581
4a6cc4bd 1582 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1583 if (!rq_weight) {
1584 boost = 1;
1585 rq_weight = NICE_0_LOAD;
1586 }
c8cba857 1587
c09595f6 1588 /*
a8af7246
PZ
1589 * \Sum_j shares_j * rq_weight_i
1590 * shares_i = -----------------------------
1591 * \Sum_j rq_weight_j
c09595f6 1592 */
ec4e0e2f 1593 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1594 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1595
ffda12a1
PZ
1596 if (abs(shares - tg->se[cpu]->load.weight) >
1597 sysctl_sched_shares_thresh) {
1598 struct rq *rq = cpu_rq(cpu);
1599 unsigned long flags;
c09595f6 1600
ffda12a1 1601 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1602 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1603 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1604 __set_se_shares(tg->se[cpu], shares);
1605 spin_unlock_irqrestore(&rq->lock, flags);
1606 }
18d95a28 1607}
c09595f6
PZ
1608
1609/*
c8cba857
PZ
1610 * Re-compute the task group their per cpu shares over the given domain.
1611 * This needs to be done in a bottom-up fashion because the rq weight of a
1612 * parent group depends on the shares of its child groups.
c09595f6 1613 */
eb755805 1614static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1615{
34d76c41 1616 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1617 unsigned long *usd_rq_weight;
eb755805 1618 struct sched_domain *sd = data;
34d76c41 1619 unsigned long flags;
c8cba857 1620 int i;
c09595f6 1621
34d76c41
PZ
1622 if (!tg->se[0])
1623 return 0;
1624
1625 local_irq_save(flags);
4a6cc4bd 1626 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1627
758b2cdc 1628 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1629 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1630 usd_rq_weight[i] = weight;
34d76c41 1631
ec4e0e2f
KC
1632 /*
1633 * If there are currently no tasks on the cpu pretend there
1634 * is one of average load so that when a new task gets to
1635 * run here it will not get delayed by group starvation.
1636 */
ec4e0e2f
KC
1637 if (!weight)
1638 weight = NICE_0_LOAD;
1639
ec4e0e2f 1640 rq_weight += weight;
c8cba857 1641 shares += tg->cfs_rq[i]->shares;
c09595f6 1642 }
c09595f6 1643
c8cba857
PZ
1644 if ((!shares && rq_weight) || shares > tg->shares)
1645 shares = tg->shares;
1646
1647 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1648 shares = tg->shares;
c09595f6 1649
758b2cdc 1650 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1651 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1652
1653 local_irq_restore(flags);
eb755805
PZ
1654
1655 return 0;
c09595f6
PZ
1656}
1657
1658/*
c8cba857
PZ
1659 * Compute the cpu's hierarchical load factor for each task group.
1660 * This needs to be done in a top-down fashion because the load of a child
1661 * group is a fraction of its parents load.
c09595f6 1662 */
eb755805 1663static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1664{
c8cba857 1665 unsigned long load;
eb755805 1666 long cpu = (long)data;
c09595f6 1667
c8cba857
PZ
1668 if (!tg->parent) {
1669 load = cpu_rq(cpu)->load.weight;
1670 } else {
1671 load = tg->parent->cfs_rq[cpu]->h_load;
1672 load *= tg->cfs_rq[cpu]->shares;
1673 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1674 }
c09595f6 1675
c8cba857 1676 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1677
eb755805 1678 return 0;
c09595f6
PZ
1679}
1680
c8cba857 1681static void update_shares(struct sched_domain *sd)
4d8d595d 1682{
e7097159
PZ
1683 s64 elapsed;
1684 u64 now;
1685
1686 if (root_task_group_empty())
1687 return;
1688
1689 now = cpu_clock(raw_smp_processor_id());
1690 elapsed = now - sd->last_update;
2398f2c6
PZ
1691
1692 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1693 sd->last_update = now;
eb755805 1694 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1695 }
4d8d595d
PZ
1696}
1697
3e5459b4
PZ
1698static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1699{
e7097159
PZ
1700 if (root_task_group_empty())
1701 return;
1702
3e5459b4
PZ
1703 spin_unlock(&rq->lock);
1704 update_shares(sd);
1705 spin_lock(&rq->lock);
1706}
1707
eb755805 1708static void update_h_load(long cpu)
c09595f6 1709{
e7097159
PZ
1710 if (root_task_group_empty())
1711 return;
1712
eb755805 1713 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1714}
1715
c09595f6
PZ
1716#else
1717
c8cba857 1718static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1719{
1720}
1721
3e5459b4
PZ
1722static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1723{
1724}
1725
18d95a28
PZ
1726#endif
1727
8f45e2b5
GH
1728#ifdef CONFIG_PREEMPT
1729
b78bb868
PZ
1730static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1731
70574a99 1732/*
8f45e2b5
GH
1733 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1734 * way at the expense of forcing extra atomic operations in all
1735 * invocations. This assures that the double_lock is acquired using the
1736 * same underlying policy as the spinlock_t on this architecture, which
1737 * reduces latency compared to the unfair variant below. However, it
1738 * also adds more overhead and therefore may reduce throughput.
70574a99 1739 */
8f45e2b5
GH
1740static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1741 __releases(this_rq->lock)
1742 __acquires(busiest->lock)
1743 __acquires(this_rq->lock)
1744{
1745 spin_unlock(&this_rq->lock);
1746 double_rq_lock(this_rq, busiest);
1747
1748 return 1;
1749}
1750
1751#else
1752/*
1753 * Unfair double_lock_balance: Optimizes throughput at the expense of
1754 * latency by eliminating extra atomic operations when the locks are
1755 * already in proper order on entry. This favors lower cpu-ids and will
1756 * grant the double lock to lower cpus over higher ids under contention,
1757 * regardless of entry order into the function.
1758 */
1759static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1760 __releases(this_rq->lock)
1761 __acquires(busiest->lock)
1762 __acquires(this_rq->lock)
1763{
1764 int ret = 0;
1765
70574a99
AD
1766 if (unlikely(!spin_trylock(&busiest->lock))) {
1767 if (busiest < this_rq) {
1768 spin_unlock(&this_rq->lock);
1769 spin_lock(&busiest->lock);
1770 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1771 ret = 1;
1772 } else
1773 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1774 }
1775 return ret;
1776}
1777
8f45e2b5
GH
1778#endif /* CONFIG_PREEMPT */
1779
1780/*
1781 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1782 */
1783static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1784{
1785 if (unlikely(!irqs_disabled())) {
1786 /* printk() doesn't work good under rq->lock */
1787 spin_unlock(&this_rq->lock);
1788 BUG_ON(1);
1789 }
1790
1791 return _double_lock_balance(this_rq, busiest);
1792}
1793
70574a99
AD
1794static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1795 __releases(busiest->lock)
1796{
1797 spin_unlock(&busiest->lock);
1798 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1799}
18d95a28
PZ
1800#endif
1801
30432094 1802#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1803static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1804{
30432094 1805#ifdef CONFIG_SMP
34e83e85
IM
1806 cfs_rq->shares = shares;
1807#endif
1808}
30432094 1809#endif
e7693a36 1810
dce48a84
TG
1811static void calc_load_account_active(struct rq *this_rq);
1812
dd41f596 1813#include "sched_stats.h"
dd41f596 1814#include "sched_idletask.c"
5522d5d5
IM
1815#include "sched_fair.c"
1816#include "sched_rt.c"
dd41f596
IM
1817#ifdef CONFIG_SCHED_DEBUG
1818# include "sched_debug.c"
1819#endif
1820
1821#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1822#define for_each_class(class) \
1823 for (class = sched_class_highest; class; class = class->next)
dd41f596 1824
c09595f6 1825static void inc_nr_running(struct rq *rq)
9c217245
IM
1826{
1827 rq->nr_running++;
9c217245
IM
1828}
1829
c09595f6 1830static void dec_nr_running(struct rq *rq)
9c217245
IM
1831{
1832 rq->nr_running--;
9c217245
IM
1833}
1834
45bf76df
IM
1835static void set_load_weight(struct task_struct *p)
1836{
1837 if (task_has_rt_policy(p)) {
dd41f596
IM
1838 p->se.load.weight = prio_to_weight[0] * 2;
1839 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1840 return;
1841 }
45bf76df 1842
dd41f596
IM
1843 /*
1844 * SCHED_IDLE tasks get minimal weight:
1845 */
1846 if (p->policy == SCHED_IDLE) {
1847 p->se.load.weight = WEIGHT_IDLEPRIO;
1848 p->se.load.inv_weight = WMULT_IDLEPRIO;
1849 return;
1850 }
71f8bd46 1851
dd41f596
IM
1852 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1853 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1854}
1855
2087a1ad
GH
1856static void update_avg(u64 *avg, u64 sample)
1857{
1858 s64 diff = sample - *avg;
1859 *avg += diff >> 3;
1860}
1861
8159f87e 1862static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1863{
831451ac
PZ
1864 if (wakeup)
1865 p->se.start_runtime = p->se.sum_exec_runtime;
1866
dd41f596 1867 sched_info_queued(p);
fd390f6a 1868 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1869 p->se.on_rq = 1;
71f8bd46
IM
1870}
1871
69be72c1 1872static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1873{
831451ac
PZ
1874 if (sleep) {
1875 if (p->se.last_wakeup) {
1876 update_avg(&p->se.avg_overlap,
1877 p->se.sum_exec_runtime - p->se.last_wakeup);
1878 p->se.last_wakeup = 0;
1879 } else {
1880 update_avg(&p->se.avg_wakeup,
1881 sysctl_sched_wakeup_granularity);
1882 }
2087a1ad
GH
1883 }
1884
46ac22ba 1885 sched_info_dequeued(p);
f02231e5 1886 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1887 p->se.on_rq = 0;
71f8bd46
IM
1888}
1889
14531189 1890/*
dd41f596 1891 * __normal_prio - return the priority that is based on the static prio
14531189 1892 */
14531189
IM
1893static inline int __normal_prio(struct task_struct *p)
1894{
dd41f596 1895 return p->static_prio;
14531189
IM
1896}
1897
b29739f9
IM
1898/*
1899 * Calculate the expected normal priority: i.e. priority
1900 * without taking RT-inheritance into account. Might be
1901 * boosted by interactivity modifiers. Changes upon fork,
1902 * setprio syscalls, and whenever the interactivity
1903 * estimator recalculates.
1904 */
36c8b586 1905static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1906{
1907 int prio;
1908
e05606d3 1909 if (task_has_rt_policy(p))
b29739f9
IM
1910 prio = MAX_RT_PRIO-1 - p->rt_priority;
1911 else
1912 prio = __normal_prio(p);
1913 return prio;
1914}
1915
1916/*
1917 * Calculate the current priority, i.e. the priority
1918 * taken into account by the scheduler. This value might
1919 * be boosted by RT tasks, or might be boosted by
1920 * interactivity modifiers. Will be RT if the task got
1921 * RT-boosted. If not then it returns p->normal_prio.
1922 */
36c8b586 1923static int effective_prio(struct task_struct *p)
b29739f9
IM
1924{
1925 p->normal_prio = normal_prio(p);
1926 /*
1927 * If we are RT tasks or we were boosted to RT priority,
1928 * keep the priority unchanged. Otherwise, update priority
1929 * to the normal priority:
1930 */
1931 if (!rt_prio(p->prio))
1932 return p->normal_prio;
1933 return p->prio;
1934}
1935
1da177e4 1936/*
dd41f596 1937 * activate_task - move a task to the runqueue.
1da177e4 1938 */
dd41f596 1939static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1940{
d9514f6c 1941 if (task_contributes_to_load(p))
dd41f596 1942 rq->nr_uninterruptible--;
1da177e4 1943
8159f87e 1944 enqueue_task(rq, p, wakeup);
c09595f6 1945 inc_nr_running(rq);
1da177e4
LT
1946}
1947
1da177e4
LT
1948/*
1949 * deactivate_task - remove a task from the runqueue.
1950 */
2e1cb74a 1951static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1952{
d9514f6c 1953 if (task_contributes_to_load(p))
dd41f596
IM
1954 rq->nr_uninterruptible++;
1955
69be72c1 1956 dequeue_task(rq, p, sleep);
c09595f6 1957 dec_nr_running(rq);
1da177e4
LT
1958}
1959
1da177e4
LT
1960/**
1961 * task_curr - is this task currently executing on a CPU?
1962 * @p: the task in question.
1963 */
36c8b586 1964inline int task_curr(const struct task_struct *p)
1da177e4
LT
1965{
1966 return cpu_curr(task_cpu(p)) == p;
1967}
1968
dd41f596
IM
1969static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1970{
6f505b16 1971 set_task_rq(p, cpu);
dd41f596 1972#ifdef CONFIG_SMP
ce96b5ac
DA
1973 /*
1974 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1975 * successfuly executed on another CPU. We must ensure that updates of
1976 * per-task data have been completed by this moment.
1977 */
1978 smp_wmb();
dd41f596 1979 task_thread_info(p)->cpu = cpu;
dd41f596 1980#endif
2dd73a4f
PW
1981}
1982
cb469845
SR
1983static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986{
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993}
1994
b84ff7d6
MG
1995/**
1996 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 1997 * @p: thread created by kthread_create().
b84ff7d6
MG
1998 * @cpu: cpu (might not be online, must be possible) for @k to run on.
1999 *
2000 * Description: This function is equivalent to set_cpus_allowed(),
2001 * except that @cpu doesn't need to be online, and the thread must be
2002 * stopped (i.e., just returned from kthread_create()).
2003 *
2004 * Function lives here instead of kthread.c because it messes with
2005 * scheduler internals which require locking.
2006 */
2007void kthread_bind(struct task_struct *p, unsigned int cpu)
2008{
2009 struct rq *rq = cpu_rq(cpu);
2010 unsigned long flags;
2011
2012 /* Must have done schedule() in kthread() before we set_task_cpu */
2013 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2014 WARN_ON(1);
2015 return;
2016 }
2017
2018 spin_lock_irqsave(&rq->lock, flags);
2019 set_task_cpu(p, cpu);
2020 p->cpus_allowed = cpumask_of_cpu(cpu);
2021 p->rt.nr_cpus_allowed = 1;
2022 p->flags |= PF_THREAD_BOUND;
2023 spin_unlock_irqrestore(&rq->lock, flags);
2024}
2025EXPORT_SYMBOL(kthread_bind);
2026
1da177e4 2027#ifdef CONFIG_SMP
cc367732
IM
2028/*
2029 * Is this task likely cache-hot:
2030 */
e7693a36 2031static int
cc367732
IM
2032task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2033{
2034 s64 delta;
2035
f540a608
IM
2036 /*
2037 * Buddy candidates are cache hot:
2038 */
f685ceac 2039 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2040 (&p->se == cfs_rq_of(&p->se)->next ||
2041 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2042 return 1;
2043
cc367732
IM
2044 if (p->sched_class != &fair_sched_class)
2045 return 0;
2046
6bc1665b
IM
2047 if (sysctl_sched_migration_cost == -1)
2048 return 1;
2049 if (sysctl_sched_migration_cost == 0)
2050 return 0;
2051
cc367732
IM
2052 delta = now - p->se.exec_start;
2053
2054 return delta < (s64)sysctl_sched_migration_cost;
2055}
2056
2057
dd41f596 2058void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2059{
dd41f596
IM
2060 int old_cpu = task_cpu(p);
2061 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2062 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2063 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2064 u64 clock_offset;
dd41f596
IM
2065
2066 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2067
de1d7286 2068 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2069
6cfb0d5d
IM
2070#ifdef CONFIG_SCHEDSTATS
2071 if (p->se.wait_start)
2072 p->se.wait_start -= clock_offset;
dd41f596
IM
2073 if (p->se.sleep_start)
2074 p->se.sleep_start -= clock_offset;
2075 if (p->se.block_start)
2076 p->se.block_start -= clock_offset;
6c594c21 2077#endif
cc367732 2078 if (old_cpu != new_cpu) {
6c594c21 2079 p->se.nr_migrations++;
23a185ca 2080 new_rq->nr_migrations_in++;
6c594c21 2081#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2082 if (task_hot(p, old_rq->clock, NULL))
2083 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2084#endif
cdd6c482 2085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2086 1, 1, NULL, 0);
6c594c21 2087 }
2830cf8c
SV
2088 p->se.vruntime -= old_cfsrq->min_vruntime -
2089 new_cfsrq->min_vruntime;
dd41f596
IM
2090
2091 __set_task_cpu(p, new_cpu);
c65cc870
IM
2092}
2093
70b97a7f 2094struct migration_req {
1da177e4 2095 struct list_head list;
1da177e4 2096
36c8b586 2097 struct task_struct *task;
1da177e4
LT
2098 int dest_cpu;
2099
1da177e4 2100 struct completion done;
70b97a7f 2101};
1da177e4
LT
2102
2103/*
2104 * The task's runqueue lock must be held.
2105 * Returns true if you have to wait for migration thread.
2106 */
36c8b586 2107static int
70b97a7f 2108migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2109{
70b97a7f 2110 struct rq *rq = task_rq(p);
1da177e4
LT
2111
2112 /*
2113 * If the task is not on a runqueue (and not running), then
2114 * it is sufficient to simply update the task's cpu field.
2115 */
dd41f596 2116 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2117 set_task_cpu(p, dest_cpu);
2118 return 0;
2119 }
2120
2121 init_completion(&req->done);
1da177e4
LT
2122 req->task = p;
2123 req->dest_cpu = dest_cpu;
2124 list_add(&req->list, &rq->migration_queue);
48f24c4d 2125
1da177e4
LT
2126 return 1;
2127}
2128
a26b89f0
MM
2129/*
2130 * wait_task_context_switch - wait for a thread to complete at least one
2131 * context switch.
2132 *
2133 * @p must not be current.
2134 */
2135void wait_task_context_switch(struct task_struct *p)
2136{
2137 unsigned long nvcsw, nivcsw, flags;
2138 int running;
2139 struct rq *rq;
2140
2141 nvcsw = p->nvcsw;
2142 nivcsw = p->nivcsw;
2143 for (;;) {
2144 /*
2145 * The runqueue is assigned before the actual context
2146 * switch. We need to take the runqueue lock.
2147 *
2148 * We could check initially without the lock but it is
2149 * very likely that we need to take the lock in every
2150 * iteration.
2151 */
2152 rq = task_rq_lock(p, &flags);
2153 running = task_running(rq, p);
2154 task_rq_unlock(rq, &flags);
2155
2156 if (likely(!running))
2157 break;
2158 /*
2159 * The switch count is incremented before the actual
2160 * context switch. We thus wait for two switches to be
2161 * sure at least one completed.
2162 */
2163 if ((p->nvcsw - nvcsw) > 1)
2164 break;
2165 if ((p->nivcsw - nivcsw) > 1)
2166 break;
2167
2168 cpu_relax();
2169 }
2170}
2171
1da177e4
LT
2172/*
2173 * wait_task_inactive - wait for a thread to unschedule.
2174 *
85ba2d86
RM
2175 * If @match_state is nonzero, it's the @p->state value just checked and
2176 * not expected to change. If it changes, i.e. @p might have woken up,
2177 * then return zero. When we succeed in waiting for @p to be off its CPU,
2178 * we return a positive number (its total switch count). If a second call
2179 * a short while later returns the same number, the caller can be sure that
2180 * @p has remained unscheduled the whole time.
2181 *
1da177e4
LT
2182 * The caller must ensure that the task *will* unschedule sometime soon,
2183 * else this function might spin for a *long* time. This function can't
2184 * be called with interrupts off, or it may introduce deadlock with
2185 * smp_call_function() if an IPI is sent by the same process we are
2186 * waiting to become inactive.
2187 */
85ba2d86 2188unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2189{
2190 unsigned long flags;
dd41f596 2191 int running, on_rq;
85ba2d86 2192 unsigned long ncsw;
70b97a7f 2193 struct rq *rq;
1da177e4 2194
3a5c359a
AK
2195 for (;;) {
2196 /*
2197 * We do the initial early heuristics without holding
2198 * any task-queue locks at all. We'll only try to get
2199 * the runqueue lock when things look like they will
2200 * work out!
2201 */
2202 rq = task_rq(p);
fa490cfd 2203
3a5c359a
AK
2204 /*
2205 * If the task is actively running on another CPU
2206 * still, just relax and busy-wait without holding
2207 * any locks.
2208 *
2209 * NOTE! Since we don't hold any locks, it's not
2210 * even sure that "rq" stays as the right runqueue!
2211 * But we don't care, since "task_running()" will
2212 * return false if the runqueue has changed and p
2213 * is actually now running somewhere else!
2214 */
85ba2d86
RM
2215 while (task_running(rq, p)) {
2216 if (match_state && unlikely(p->state != match_state))
2217 return 0;
3a5c359a 2218 cpu_relax();
85ba2d86 2219 }
fa490cfd 2220
3a5c359a
AK
2221 /*
2222 * Ok, time to look more closely! We need the rq
2223 * lock now, to be *sure*. If we're wrong, we'll
2224 * just go back and repeat.
2225 */
2226 rq = task_rq_lock(p, &flags);
0a16b607 2227 trace_sched_wait_task(rq, p);
3a5c359a
AK
2228 running = task_running(rq, p);
2229 on_rq = p->se.on_rq;
85ba2d86 2230 ncsw = 0;
f31e11d8 2231 if (!match_state || p->state == match_state)
93dcf55f 2232 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2233 task_rq_unlock(rq, &flags);
fa490cfd 2234
85ba2d86
RM
2235 /*
2236 * If it changed from the expected state, bail out now.
2237 */
2238 if (unlikely(!ncsw))
2239 break;
2240
3a5c359a
AK
2241 /*
2242 * Was it really running after all now that we
2243 * checked with the proper locks actually held?
2244 *
2245 * Oops. Go back and try again..
2246 */
2247 if (unlikely(running)) {
2248 cpu_relax();
2249 continue;
2250 }
fa490cfd 2251
3a5c359a
AK
2252 /*
2253 * It's not enough that it's not actively running,
2254 * it must be off the runqueue _entirely_, and not
2255 * preempted!
2256 *
80dd99b3 2257 * So if it was still runnable (but just not actively
3a5c359a
AK
2258 * running right now), it's preempted, and we should
2259 * yield - it could be a while.
2260 */
2261 if (unlikely(on_rq)) {
2262 schedule_timeout_uninterruptible(1);
2263 continue;
2264 }
fa490cfd 2265
3a5c359a
AK
2266 /*
2267 * Ahh, all good. It wasn't running, and it wasn't
2268 * runnable, which means that it will never become
2269 * running in the future either. We're all done!
2270 */
2271 break;
2272 }
85ba2d86
RM
2273
2274 return ncsw;
1da177e4
LT
2275}
2276
2277/***
2278 * kick_process - kick a running thread to enter/exit the kernel
2279 * @p: the to-be-kicked thread
2280 *
2281 * Cause a process which is running on another CPU to enter
2282 * kernel-mode, without any delay. (to get signals handled.)
2283 *
2284 * NOTE: this function doesnt have to take the runqueue lock,
2285 * because all it wants to ensure is that the remote task enters
2286 * the kernel. If the IPI races and the task has been migrated
2287 * to another CPU then no harm is done and the purpose has been
2288 * achieved as well.
2289 */
36c8b586 2290void kick_process(struct task_struct *p)
1da177e4
LT
2291{
2292 int cpu;
2293
2294 preempt_disable();
2295 cpu = task_cpu(p);
2296 if ((cpu != smp_processor_id()) && task_curr(p))
2297 smp_send_reschedule(cpu);
2298 preempt_enable();
2299}
b43e3521 2300EXPORT_SYMBOL_GPL(kick_process);
476d139c 2301#endif /* CONFIG_SMP */
1da177e4 2302
0793a61d
TG
2303/**
2304 * task_oncpu_function_call - call a function on the cpu on which a task runs
2305 * @p: the task to evaluate
2306 * @func: the function to be called
2307 * @info: the function call argument
2308 *
2309 * Calls the function @func when the task is currently running. This might
2310 * be on the current CPU, which just calls the function directly
2311 */
2312void task_oncpu_function_call(struct task_struct *p,
2313 void (*func) (void *info), void *info)
2314{
2315 int cpu;
2316
2317 preempt_disable();
2318 cpu = task_cpu(p);
2319 if (task_curr(p))
2320 smp_call_function_single(cpu, func, info, 1);
2321 preempt_enable();
2322}
2323
1da177e4
LT
2324/***
2325 * try_to_wake_up - wake up a thread
2326 * @p: the to-be-woken-up thread
2327 * @state: the mask of task states that can be woken
2328 * @sync: do a synchronous wakeup?
2329 *
2330 * Put it on the run-queue if it's not already there. The "current"
2331 * thread is always on the run-queue (except when the actual
2332 * re-schedule is in progress), and as such you're allowed to do
2333 * the simpler "current->state = TASK_RUNNING" to mark yourself
2334 * runnable without the overhead of this.
2335 *
2336 * returns failure only if the task is already active.
2337 */
7d478721
PZ
2338static int try_to_wake_up(struct task_struct *p, unsigned int state,
2339 int wake_flags)
1da177e4 2340{
cc367732 2341 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2342 unsigned long flags;
f5dc3753 2343 struct rq *rq, *orig_rq;
1da177e4 2344
b85d0667 2345 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2346 wake_flags &= ~WF_SYNC;
2398f2c6 2347
e9c84311 2348 this_cpu = get_cpu();
2398f2c6 2349
04e2f174 2350 smp_wmb();
f5dc3753 2351 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2352 update_rq_clock(rq);
e9c84311 2353 if (!(p->state & state))
1da177e4
LT
2354 goto out;
2355
dd41f596 2356 if (p->se.on_rq)
1da177e4
LT
2357 goto out_running;
2358
2359 cpu = task_cpu(p);
cc367732 2360 orig_cpu = cpu;
1da177e4
LT
2361
2362#ifdef CONFIG_SMP
2363 if (unlikely(task_running(rq, p)))
2364 goto out_activate;
2365
e9c84311
PZ
2366 /*
2367 * In order to handle concurrent wakeups and release the rq->lock
2368 * we put the task in TASK_WAKING state.
eb24073b
IM
2369 *
2370 * First fix up the nr_uninterruptible count:
e9c84311 2371 */
eb24073b
IM
2372 if (task_contributes_to_load(p))
2373 rq->nr_uninterruptible--;
e9c84311
PZ
2374 p->state = TASK_WAKING;
2375 task_rq_unlock(rq, &flags);
2376
7d478721 2377 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2378 if (cpu != orig_cpu)
5d2f5a61 2379 set_task_cpu(p, cpu);
1da177e4 2380
e9c84311 2381 rq = task_rq_lock(p, &flags);
f5dc3753
MG
2382
2383 if (rq != orig_rq)
2384 update_rq_clock(rq);
2385
e9c84311
PZ
2386 WARN_ON(p->state != TASK_WAKING);
2387 cpu = task_cpu(p);
1da177e4 2388
e7693a36
GH
2389#ifdef CONFIG_SCHEDSTATS
2390 schedstat_inc(rq, ttwu_count);
2391 if (cpu == this_cpu)
2392 schedstat_inc(rq, ttwu_local);
2393 else {
2394 struct sched_domain *sd;
2395 for_each_domain(this_cpu, sd) {
758b2cdc 2396 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2397 schedstat_inc(sd, ttwu_wake_remote);
2398 break;
2399 }
2400 }
2401 }
6d6bc0ad 2402#endif /* CONFIG_SCHEDSTATS */
e7693a36 2403
1da177e4
LT
2404out_activate:
2405#endif /* CONFIG_SMP */
cc367732 2406 schedstat_inc(p, se.nr_wakeups);
7d478721 2407 if (wake_flags & WF_SYNC)
cc367732
IM
2408 schedstat_inc(p, se.nr_wakeups_sync);
2409 if (orig_cpu != cpu)
2410 schedstat_inc(p, se.nr_wakeups_migrate);
2411 if (cpu == this_cpu)
2412 schedstat_inc(p, se.nr_wakeups_local);
2413 else
2414 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2415 activate_task(rq, p, 1);
1da177e4
LT
2416 success = 1;
2417
831451ac
PZ
2418 /*
2419 * Only attribute actual wakeups done by this task.
2420 */
2421 if (!in_interrupt()) {
2422 struct sched_entity *se = &current->se;
2423 u64 sample = se->sum_exec_runtime;
2424
2425 if (se->last_wakeup)
2426 sample -= se->last_wakeup;
2427 else
2428 sample -= se->start_runtime;
2429 update_avg(&se->avg_wakeup, sample);
2430
2431 se->last_wakeup = se->sum_exec_runtime;
2432 }
2433
1da177e4 2434out_running:
468a15bb 2435 trace_sched_wakeup(rq, p, success);
7d478721 2436 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2437
1da177e4 2438 p->state = TASK_RUNNING;
9a897c5a
SR
2439#ifdef CONFIG_SMP
2440 if (p->sched_class->task_wake_up)
2441 p->sched_class->task_wake_up(rq, p);
2442#endif
1da177e4
LT
2443out:
2444 task_rq_unlock(rq, &flags);
e9c84311 2445 put_cpu();
1da177e4
LT
2446
2447 return success;
2448}
2449
50fa610a
DH
2450/**
2451 * wake_up_process - Wake up a specific process
2452 * @p: The process to be woken up.
2453 *
2454 * Attempt to wake up the nominated process and move it to the set of runnable
2455 * processes. Returns 1 if the process was woken up, 0 if it was already
2456 * running.
2457 *
2458 * It may be assumed that this function implies a write memory barrier before
2459 * changing the task state if and only if any tasks are woken up.
2460 */
7ad5b3a5 2461int wake_up_process(struct task_struct *p)
1da177e4 2462{
d9514f6c 2463 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2464}
1da177e4
LT
2465EXPORT_SYMBOL(wake_up_process);
2466
7ad5b3a5 2467int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2468{
2469 return try_to_wake_up(p, state, 0);
2470}
2471
1da177e4
LT
2472/*
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
dd41f596
IM
2475 *
2476 * __sched_fork() is basic setup used by init_idle() too:
2477 */
2478static void __sched_fork(struct task_struct *p)
2479{
dd41f596
IM
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
f6cf891c 2482 p->se.prev_sum_exec_runtime = 0;
6c594c21 2483 p->se.nr_migrations = 0;
4ae7d5ce
IM
2484 p->se.last_wakeup = 0;
2485 p->se.avg_overlap = 0;
831451ac
PZ
2486 p->se.start_runtime = 0;
2487 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2488 p->se.avg_running = 0;
6cfb0d5d
IM
2489
2490#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2491 p->se.wait_start = 0;
2492 p->se.wait_max = 0;
2493 p->se.wait_count = 0;
2494 p->se.wait_sum = 0;
2495
2496 p->se.sleep_start = 0;
2497 p->se.sleep_max = 0;
2498 p->se.sum_sleep_runtime = 0;
2499
2500 p->se.block_start = 0;
2501 p->se.block_max = 0;
2502 p->se.exec_max = 0;
2503 p->se.slice_max = 0;
2504
2505 p->se.nr_migrations_cold = 0;
2506 p->se.nr_failed_migrations_affine = 0;
2507 p->se.nr_failed_migrations_running = 0;
2508 p->se.nr_failed_migrations_hot = 0;
2509 p->se.nr_forced_migrations = 0;
2510 p->se.nr_forced2_migrations = 0;
2511
2512 p->se.nr_wakeups = 0;
2513 p->se.nr_wakeups_sync = 0;
2514 p->se.nr_wakeups_migrate = 0;
2515 p->se.nr_wakeups_local = 0;
2516 p->se.nr_wakeups_remote = 0;
2517 p->se.nr_wakeups_affine = 0;
2518 p->se.nr_wakeups_affine_attempts = 0;
2519 p->se.nr_wakeups_passive = 0;
2520 p->se.nr_wakeups_idle = 0;
2521
6cfb0d5d 2522#endif
476d139c 2523
fa717060 2524 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2525 p->se.on_rq = 0;
4a55bd5e 2526 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2527
e107be36
AK
2528#ifdef CONFIG_PREEMPT_NOTIFIERS
2529 INIT_HLIST_HEAD(&p->preempt_notifiers);
2530#endif
2531
1da177e4
LT
2532 /*
2533 * We mark the process as running here, but have not actually
2534 * inserted it onto the runqueue yet. This guarantees that
2535 * nobody will actually run it, and a signal or other external
2536 * event cannot wake it up and insert it on the runqueue either.
2537 */
2538 p->state = TASK_RUNNING;
dd41f596
IM
2539}
2540
2541/*
2542 * fork()/clone()-time setup:
2543 */
2544void sched_fork(struct task_struct *p, int clone_flags)
2545{
2546 int cpu = get_cpu();
2547
2548 __sched_fork(p);
2549
b9dc29e7
MG
2550 /*
2551 * Revert to default priority/policy on fork if requested.
2552 */
2553 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2554 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2555 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2556 p->normal_prio = p->static_prio;
2557 }
b9dc29e7 2558
6c697bdf
MG
2559 if (PRIO_TO_NICE(p->static_prio) < 0) {
2560 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2561 p->normal_prio = p->static_prio;
6c697bdf
MG
2562 set_load_weight(p);
2563 }
2564
b9dc29e7
MG
2565 /*
2566 * We don't need the reset flag anymore after the fork. It has
2567 * fulfilled its duty:
2568 */
2569 p->sched_reset_on_fork = 0;
2570 }
ca94c442 2571
f83f9ac2
PW
2572 /*
2573 * Make sure we do not leak PI boosting priority to the child.
2574 */
2575 p->prio = current->normal_prio;
2576
2ddbf952
HS
2577 if (!rt_prio(p->prio))
2578 p->sched_class = &fair_sched_class;
b29739f9 2579
5f3edc1b
PZ
2580#ifdef CONFIG_SMP
2581 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2582#endif
2583 set_task_cpu(p, cpu);
2584
52f17b6c 2585#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2586 if (likely(sched_info_on()))
52f17b6c 2587 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2588#endif
d6077cb8 2589#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2590 p->oncpu = 0;
2591#endif
1da177e4 2592#ifdef CONFIG_PREEMPT
4866cde0 2593 /* Want to start with kernel preemption disabled. */
a1261f54 2594 task_thread_info(p)->preempt_count = 1;
1da177e4 2595#endif
917b627d
GH
2596 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2597
476d139c 2598 put_cpu();
1da177e4
LT
2599}
2600
2601/*
2602 * wake_up_new_task - wake up a newly created task for the first time.
2603 *
2604 * This function will do some initial scheduler statistics housekeeping
2605 * that must be done for every newly created context, then puts the task
2606 * on the runqueue and wakes it.
2607 */
7ad5b3a5 2608void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2609{
2610 unsigned long flags;
dd41f596 2611 struct rq *rq;
1da177e4
LT
2612
2613 rq = task_rq_lock(p, &flags);
147cbb4b 2614 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2615 update_rq_clock(rq);
1da177e4 2616
b9dca1e0 2617 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2618 activate_task(rq, p, 0);
1da177e4 2619 } else {
1da177e4 2620 /*
dd41f596
IM
2621 * Let the scheduling class do new task startup
2622 * management (if any):
1da177e4 2623 */
ee0827d8 2624 p->sched_class->task_new(rq, p);
c09595f6 2625 inc_nr_running(rq);
1da177e4 2626 }
c71dd42d 2627 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2628 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2629#ifdef CONFIG_SMP
2630 if (p->sched_class->task_wake_up)
2631 p->sched_class->task_wake_up(rq, p);
2632#endif
dd41f596 2633 task_rq_unlock(rq, &flags);
1da177e4
LT
2634}
2635
e107be36
AK
2636#ifdef CONFIG_PREEMPT_NOTIFIERS
2637
2638/**
80dd99b3 2639 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2640 * @notifier: notifier struct to register
e107be36
AK
2641 */
2642void preempt_notifier_register(struct preempt_notifier *notifier)
2643{
2644 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2645}
2646EXPORT_SYMBOL_GPL(preempt_notifier_register);
2647
2648/**
2649 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2650 * @notifier: notifier struct to unregister
e107be36
AK
2651 *
2652 * This is safe to call from within a preemption notifier.
2653 */
2654void preempt_notifier_unregister(struct preempt_notifier *notifier)
2655{
2656 hlist_del(&notifier->link);
2657}
2658EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2659
2660static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2661{
2662 struct preempt_notifier *notifier;
2663 struct hlist_node *node;
2664
2665 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2666 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2667}
2668
2669static void
2670fire_sched_out_preempt_notifiers(struct task_struct *curr,
2671 struct task_struct *next)
2672{
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2675
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_out(notifier, next);
2678}
2679
6d6bc0ad 2680#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2681
2682static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2683{
2684}
2685
2686static void
2687fire_sched_out_preempt_notifiers(struct task_struct *curr,
2688 struct task_struct *next)
2689{
2690}
2691
6d6bc0ad 2692#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2693
4866cde0
NP
2694/**
2695 * prepare_task_switch - prepare to switch tasks
2696 * @rq: the runqueue preparing to switch
421cee29 2697 * @prev: the current task that is being switched out
4866cde0
NP
2698 * @next: the task we are going to switch to.
2699 *
2700 * This is called with the rq lock held and interrupts off. It must
2701 * be paired with a subsequent finish_task_switch after the context
2702 * switch.
2703 *
2704 * prepare_task_switch sets up locking and calls architecture specific
2705 * hooks.
2706 */
e107be36
AK
2707static inline void
2708prepare_task_switch(struct rq *rq, struct task_struct *prev,
2709 struct task_struct *next)
4866cde0 2710{
e107be36 2711 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2712 prepare_lock_switch(rq, next);
2713 prepare_arch_switch(next);
2714}
2715
1da177e4
LT
2716/**
2717 * finish_task_switch - clean up after a task-switch
344babaa 2718 * @rq: runqueue associated with task-switch
1da177e4
LT
2719 * @prev: the thread we just switched away from.
2720 *
4866cde0
NP
2721 * finish_task_switch must be called after the context switch, paired
2722 * with a prepare_task_switch call before the context switch.
2723 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2724 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2725 *
2726 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2727 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2728 * with the lock held can cause deadlocks; see schedule() for
2729 * details.)
2730 */
a9957449 2731static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2732 __releases(rq->lock)
2733{
1da177e4 2734 struct mm_struct *mm = rq->prev_mm;
55a101f8 2735 long prev_state;
1da177e4
LT
2736
2737 rq->prev_mm = NULL;
2738
2739 /*
2740 * A task struct has one reference for the use as "current".
c394cc9f 2741 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2742 * schedule one last time. The schedule call will never return, and
2743 * the scheduled task must drop that reference.
c394cc9f 2744 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2745 * still held, otherwise prev could be scheduled on another cpu, die
2746 * there before we look at prev->state, and then the reference would
2747 * be dropped twice.
2748 * Manfred Spraul <manfred@colorfullife.com>
2749 */
55a101f8 2750 prev_state = prev->state;
4866cde0 2751 finish_arch_switch(prev);
cdd6c482 2752 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2753 finish_lock_switch(rq, prev);
e8fa1362 2754
e107be36 2755 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2756 if (mm)
2757 mmdrop(mm);
c394cc9f 2758 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2759 /*
2760 * Remove function-return probe instances associated with this
2761 * task and put them back on the free list.
9761eea8 2762 */
c6fd91f0 2763 kprobe_flush_task(prev);
1da177e4 2764 put_task_struct(prev);
c6fd91f0 2765 }
1da177e4
LT
2766}
2767
3f029d3c
GH
2768#ifdef CONFIG_SMP
2769
2770/* assumes rq->lock is held */
2771static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2772{
2773 if (prev->sched_class->pre_schedule)
2774 prev->sched_class->pre_schedule(rq, prev);
2775}
2776
2777/* rq->lock is NOT held, but preemption is disabled */
2778static inline void post_schedule(struct rq *rq)
2779{
2780 if (rq->post_schedule) {
2781 unsigned long flags;
2782
2783 spin_lock_irqsave(&rq->lock, flags);
2784 if (rq->curr->sched_class->post_schedule)
2785 rq->curr->sched_class->post_schedule(rq);
2786 spin_unlock_irqrestore(&rq->lock, flags);
2787
2788 rq->post_schedule = 0;
2789 }
2790}
2791
2792#else
da19ab51 2793
3f029d3c
GH
2794static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2795{
2796}
2797
2798static inline void post_schedule(struct rq *rq)
2799{
1da177e4
LT
2800}
2801
3f029d3c
GH
2802#endif
2803
1da177e4
LT
2804/**
2805 * schedule_tail - first thing a freshly forked thread must call.
2806 * @prev: the thread we just switched away from.
2807 */
36c8b586 2808asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2809 __releases(rq->lock)
2810{
70b97a7f
IM
2811 struct rq *rq = this_rq();
2812
4866cde0 2813 finish_task_switch(rq, prev);
da19ab51 2814
3f029d3c
GH
2815 /*
2816 * FIXME: do we need to worry about rq being invalidated by the
2817 * task_switch?
2818 */
2819 post_schedule(rq);
70b97a7f 2820
4866cde0
NP
2821#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2822 /* In this case, finish_task_switch does not reenable preemption */
2823 preempt_enable();
2824#endif
1da177e4 2825 if (current->set_child_tid)
b488893a 2826 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2827}
2828
2829/*
2830 * context_switch - switch to the new MM and the new
2831 * thread's register state.
2832 */
dd41f596 2833static inline void
70b97a7f 2834context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2835 struct task_struct *next)
1da177e4 2836{
dd41f596 2837 struct mm_struct *mm, *oldmm;
1da177e4 2838
e107be36 2839 prepare_task_switch(rq, prev, next);
0a16b607 2840 trace_sched_switch(rq, prev, next);
dd41f596
IM
2841 mm = next->mm;
2842 oldmm = prev->active_mm;
9226d125
ZA
2843 /*
2844 * For paravirt, this is coupled with an exit in switch_to to
2845 * combine the page table reload and the switch backend into
2846 * one hypercall.
2847 */
224101ed 2848 arch_start_context_switch(prev);
9226d125 2849
dd41f596 2850 if (unlikely(!mm)) {
1da177e4
LT
2851 next->active_mm = oldmm;
2852 atomic_inc(&oldmm->mm_count);
2853 enter_lazy_tlb(oldmm, next);
2854 } else
2855 switch_mm(oldmm, mm, next);
2856
dd41f596 2857 if (unlikely(!prev->mm)) {
1da177e4 2858 prev->active_mm = NULL;
1da177e4
LT
2859 rq->prev_mm = oldmm;
2860 }
3a5f5e48
IM
2861 /*
2862 * Since the runqueue lock will be released by the next
2863 * task (which is an invalid locking op but in the case
2864 * of the scheduler it's an obvious special-case), so we
2865 * do an early lockdep release here:
2866 */
2867#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2868 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2869#endif
1da177e4
LT
2870
2871 /* Here we just switch the register state and the stack. */
2872 switch_to(prev, next, prev);
2873
dd41f596
IM
2874 barrier();
2875 /*
2876 * this_rq must be evaluated again because prev may have moved
2877 * CPUs since it called schedule(), thus the 'rq' on its stack
2878 * frame will be invalid.
2879 */
2880 finish_task_switch(this_rq(), prev);
1da177e4
LT
2881}
2882
2883/*
2884 * nr_running, nr_uninterruptible and nr_context_switches:
2885 *
2886 * externally visible scheduler statistics: current number of runnable
2887 * threads, current number of uninterruptible-sleeping threads, total
2888 * number of context switches performed since bootup.
2889 */
2890unsigned long nr_running(void)
2891{
2892 unsigned long i, sum = 0;
2893
2894 for_each_online_cpu(i)
2895 sum += cpu_rq(i)->nr_running;
2896
2897 return sum;
2898}
2899
2900unsigned long nr_uninterruptible(void)
2901{
2902 unsigned long i, sum = 0;
2903
0a945022 2904 for_each_possible_cpu(i)
1da177e4
LT
2905 sum += cpu_rq(i)->nr_uninterruptible;
2906
2907 /*
2908 * Since we read the counters lockless, it might be slightly
2909 * inaccurate. Do not allow it to go below zero though:
2910 */
2911 if (unlikely((long)sum < 0))
2912 sum = 0;
2913
2914 return sum;
2915}
2916
2917unsigned long long nr_context_switches(void)
2918{
cc94abfc
SR
2919 int i;
2920 unsigned long long sum = 0;
1da177e4 2921
0a945022 2922 for_each_possible_cpu(i)
1da177e4
LT
2923 sum += cpu_rq(i)->nr_switches;
2924
2925 return sum;
2926}
2927
2928unsigned long nr_iowait(void)
2929{
2930 unsigned long i, sum = 0;
2931
0a945022 2932 for_each_possible_cpu(i)
1da177e4
LT
2933 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2934
2935 return sum;
2936}
2937
69d25870
AV
2938unsigned long nr_iowait_cpu(void)
2939{
2940 struct rq *this = this_rq();
2941 return atomic_read(&this->nr_iowait);
2942}
2943
2944unsigned long this_cpu_load(void)
2945{
2946 struct rq *this = this_rq();
2947 return this->cpu_load[0];
2948}
2949
2950
dce48a84
TG
2951/* Variables and functions for calc_load */
2952static atomic_long_t calc_load_tasks;
2953static unsigned long calc_load_update;
2954unsigned long avenrun[3];
2955EXPORT_SYMBOL(avenrun);
2956
2d02494f
TG
2957/**
2958 * get_avenrun - get the load average array
2959 * @loads: pointer to dest load array
2960 * @offset: offset to add
2961 * @shift: shift count to shift the result left
2962 *
2963 * These values are estimates at best, so no need for locking.
2964 */
2965void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2966{
2967 loads[0] = (avenrun[0] + offset) << shift;
2968 loads[1] = (avenrun[1] + offset) << shift;
2969 loads[2] = (avenrun[2] + offset) << shift;
2970}
2971
dce48a84
TG
2972static unsigned long
2973calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2974{
dce48a84
TG
2975 load *= exp;
2976 load += active * (FIXED_1 - exp);
2977 return load >> FSHIFT;
2978}
db1b1fef 2979
dce48a84
TG
2980/*
2981 * calc_load - update the avenrun load estimates 10 ticks after the
2982 * CPUs have updated calc_load_tasks.
2983 */
2984void calc_global_load(void)
2985{
2986 unsigned long upd = calc_load_update + 10;
2987 long active;
2988
2989 if (time_before(jiffies, upd))
2990 return;
db1b1fef 2991
dce48a84
TG
2992 active = atomic_long_read(&calc_load_tasks);
2993 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2994
dce48a84
TG
2995 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2996 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2997 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2998
2999 calc_load_update += LOAD_FREQ;
3000}
3001
3002/*
3003 * Either called from update_cpu_load() or from a cpu going idle
3004 */
3005static void calc_load_account_active(struct rq *this_rq)
3006{
3007 long nr_active, delta;
3008
3009 nr_active = this_rq->nr_running;
3010 nr_active += (long) this_rq->nr_uninterruptible;
3011
3012 if (nr_active != this_rq->calc_load_active) {
3013 delta = nr_active - this_rq->calc_load_active;
3014 this_rq->calc_load_active = nr_active;
3015 atomic_long_add(delta, &calc_load_tasks);
3016 }
db1b1fef
JS
3017}
3018
23a185ca
PM
3019/*
3020 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3021 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3022 */
23a185ca
PM
3023u64 cpu_nr_migrations(int cpu)
3024{
3025 return cpu_rq(cpu)->nr_migrations_in;
3026}
3027
48f24c4d 3028/*
dd41f596
IM
3029 * Update rq->cpu_load[] statistics. This function is usually called every
3030 * scheduler tick (TICK_NSEC).
48f24c4d 3031 */
dd41f596 3032static void update_cpu_load(struct rq *this_rq)
48f24c4d 3033{
495eca49 3034 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3035 int i, scale;
3036
3037 this_rq->nr_load_updates++;
dd41f596
IM
3038
3039 /* Update our load: */
3040 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3041 unsigned long old_load, new_load;
3042
3043 /* scale is effectively 1 << i now, and >> i divides by scale */
3044
3045 old_load = this_rq->cpu_load[i];
3046 new_load = this_load;
a25707f3
IM
3047 /*
3048 * Round up the averaging division if load is increasing. This
3049 * prevents us from getting stuck on 9 if the load is 10, for
3050 * example.
3051 */
3052 if (new_load > old_load)
3053 new_load += scale-1;
dd41f596
IM
3054 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3055 }
dce48a84
TG
3056
3057 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3058 this_rq->calc_load_update += LOAD_FREQ;
3059 calc_load_account_active(this_rq);
3060 }
48f24c4d
IM
3061}
3062
dd41f596
IM
3063#ifdef CONFIG_SMP
3064
1da177e4
LT
3065/*
3066 * double_rq_lock - safely lock two runqueues
3067 *
3068 * Note this does not disable interrupts like task_rq_lock,
3069 * you need to do so manually before calling.
3070 */
70b97a7f 3071static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3072 __acquires(rq1->lock)
3073 __acquires(rq2->lock)
3074{
054b9108 3075 BUG_ON(!irqs_disabled());
1da177e4
LT
3076 if (rq1 == rq2) {
3077 spin_lock(&rq1->lock);
3078 __acquire(rq2->lock); /* Fake it out ;) */
3079 } else {
c96d145e 3080 if (rq1 < rq2) {
1da177e4 3081 spin_lock(&rq1->lock);
5e710e37 3082 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3083 } else {
3084 spin_lock(&rq2->lock);
5e710e37 3085 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3086 }
3087 }
6e82a3be
IM
3088 update_rq_clock(rq1);
3089 update_rq_clock(rq2);
1da177e4
LT
3090}
3091
3092/*
3093 * double_rq_unlock - safely unlock two runqueues
3094 *
3095 * Note this does not restore interrupts like task_rq_unlock,
3096 * you need to do so manually after calling.
3097 */
70b97a7f 3098static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3099 __releases(rq1->lock)
3100 __releases(rq2->lock)
3101{
3102 spin_unlock(&rq1->lock);
3103 if (rq1 != rq2)
3104 spin_unlock(&rq2->lock);
3105 else
3106 __release(rq2->lock);
3107}
3108
1da177e4
LT
3109/*
3110 * If dest_cpu is allowed for this process, migrate the task to it.
3111 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3112 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3113 * the cpu_allowed mask is restored.
3114 */
36c8b586 3115static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3116{
70b97a7f 3117 struct migration_req req;
1da177e4 3118 unsigned long flags;
70b97a7f 3119 struct rq *rq;
1da177e4
LT
3120
3121 rq = task_rq_lock(p, &flags);
96f874e2 3122 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3123 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3124 goto out;
3125
3126 /* force the process onto the specified CPU */
3127 if (migrate_task(p, dest_cpu, &req)) {
3128 /* Need to wait for migration thread (might exit: take ref). */
3129 struct task_struct *mt = rq->migration_thread;
36c8b586 3130
1da177e4
LT
3131 get_task_struct(mt);
3132 task_rq_unlock(rq, &flags);
3133 wake_up_process(mt);
3134 put_task_struct(mt);
3135 wait_for_completion(&req.done);
36c8b586 3136
1da177e4
LT
3137 return;
3138 }
3139out:
3140 task_rq_unlock(rq, &flags);
3141}
3142
3143/*
476d139c
NP
3144 * sched_exec - execve() is a valuable balancing opportunity, because at
3145 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3146 */
3147void sched_exec(void)
3148{
1da177e4 3149 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3150 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3151 put_cpu();
476d139c
NP
3152 if (new_cpu != this_cpu)
3153 sched_migrate_task(current, new_cpu);
1da177e4
LT
3154}
3155
3156/*
3157 * pull_task - move a task from a remote runqueue to the local runqueue.
3158 * Both runqueues must be locked.
3159 */
dd41f596
IM
3160static void pull_task(struct rq *src_rq, struct task_struct *p,
3161 struct rq *this_rq, int this_cpu)
1da177e4 3162{
2e1cb74a 3163 deactivate_task(src_rq, p, 0);
1da177e4 3164 set_task_cpu(p, this_cpu);
dd41f596 3165 activate_task(this_rq, p, 0);
1da177e4
LT
3166 /*
3167 * Note that idle threads have a prio of MAX_PRIO, for this test
3168 * to be always true for them.
3169 */
15afe09b 3170 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3171}
3172
3173/*
3174 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3175 */
858119e1 3176static
70b97a7f 3177int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3178 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3179 int *all_pinned)
1da177e4 3180{
708dc512 3181 int tsk_cache_hot = 0;
1da177e4
LT
3182 /*
3183 * We do not migrate tasks that are:
3184 * 1) running (obviously), or
3185 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3186 * 3) are cache-hot on their current CPU.
3187 */
96f874e2 3188 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3189 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3190 return 0;
cc367732 3191 }
81026794
NP
3192 *all_pinned = 0;
3193
cc367732
IM
3194 if (task_running(rq, p)) {
3195 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3196 return 0;
cc367732 3197 }
1da177e4 3198
da84d961
IM
3199 /*
3200 * Aggressive migration if:
3201 * 1) task is cache cold, or
3202 * 2) too many balance attempts have failed.
3203 */
3204
708dc512
LH
3205 tsk_cache_hot = task_hot(p, rq->clock, sd);
3206 if (!tsk_cache_hot ||
3207 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3208#ifdef CONFIG_SCHEDSTATS
708dc512 3209 if (tsk_cache_hot) {
da84d961 3210 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3211 schedstat_inc(p, se.nr_forced_migrations);
3212 }
da84d961
IM
3213#endif
3214 return 1;
3215 }
3216
708dc512 3217 if (tsk_cache_hot) {
cc367732 3218 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3219 return 0;
cc367732 3220 }
1da177e4
LT
3221 return 1;
3222}
3223
e1d1484f
PW
3224static unsigned long
3225balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3226 unsigned long max_load_move, struct sched_domain *sd,
3227 enum cpu_idle_type idle, int *all_pinned,
3228 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3229{
051c6764 3230 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3231 struct task_struct *p;
3232 long rem_load_move = max_load_move;
1da177e4 3233
e1d1484f 3234 if (max_load_move == 0)
1da177e4
LT
3235 goto out;
3236
81026794
NP
3237 pinned = 1;
3238
1da177e4 3239 /*
dd41f596 3240 * Start the load-balancing iterator:
1da177e4 3241 */
dd41f596
IM
3242 p = iterator->start(iterator->arg);
3243next:
b82d9fdd 3244 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3245 goto out;
051c6764
PZ
3246
3247 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3248 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3249 p = iterator->next(iterator->arg);
3250 goto next;
1da177e4
LT
3251 }
3252
dd41f596 3253 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3254 pulled++;
dd41f596 3255 rem_load_move -= p->se.load.weight;
1da177e4 3256
7e96fa58
GH
3257#ifdef CONFIG_PREEMPT
3258 /*
3259 * NEWIDLE balancing is a source of latency, so preemptible kernels
3260 * will stop after the first task is pulled to minimize the critical
3261 * section.
3262 */
3263 if (idle == CPU_NEWLY_IDLE)
3264 goto out;
3265#endif
3266
2dd73a4f 3267 /*
b82d9fdd 3268 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3269 */
e1d1484f 3270 if (rem_load_move > 0) {
a4ac01c3
PW
3271 if (p->prio < *this_best_prio)
3272 *this_best_prio = p->prio;
dd41f596
IM
3273 p = iterator->next(iterator->arg);
3274 goto next;
1da177e4
LT
3275 }
3276out:
3277 /*
e1d1484f 3278 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3279 * so we can safely collect pull_task() stats here rather than
3280 * inside pull_task().
3281 */
3282 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3283
3284 if (all_pinned)
3285 *all_pinned = pinned;
e1d1484f
PW
3286
3287 return max_load_move - rem_load_move;
1da177e4
LT
3288}
3289
dd41f596 3290/*
43010659
PW
3291 * move_tasks tries to move up to max_load_move weighted load from busiest to
3292 * this_rq, as part of a balancing operation within domain "sd".
3293 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3294 *
3295 * Called with both runqueues locked.
3296 */
3297static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3298 unsigned long max_load_move,
dd41f596
IM
3299 struct sched_domain *sd, enum cpu_idle_type idle,
3300 int *all_pinned)
3301{
5522d5d5 3302 const struct sched_class *class = sched_class_highest;
43010659 3303 unsigned long total_load_moved = 0;
a4ac01c3 3304 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3305
3306 do {
43010659
PW
3307 total_load_moved +=
3308 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3309 max_load_move - total_load_moved,
a4ac01c3 3310 sd, idle, all_pinned, &this_best_prio);
dd41f596 3311 class = class->next;
c4acb2c0 3312
7e96fa58
GH
3313#ifdef CONFIG_PREEMPT
3314 /*
3315 * NEWIDLE balancing is a source of latency, so preemptible
3316 * kernels will stop after the first task is pulled to minimize
3317 * the critical section.
3318 */
c4acb2c0
GH
3319 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3320 break;
7e96fa58 3321#endif
43010659 3322 } while (class && max_load_move > total_load_moved);
dd41f596 3323
43010659
PW
3324 return total_load_moved > 0;
3325}
3326
e1d1484f
PW
3327static int
3328iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3329 struct sched_domain *sd, enum cpu_idle_type idle,
3330 struct rq_iterator *iterator)
3331{
3332 struct task_struct *p = iterator->start(iterator->arg);
3333 int pinned = 0;
3334
3335 while (p) {
3336 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3337 pull_task(busiest, p, this_rq, this_cpu);
3338 /*
3339 * Right now, this is only the second place pull_task()
3340 * is called, so we can safely collect pull_task()
3341 * stats here rather than inside pull_task().
3342 */
3343 schedstat_inc(sd, lb_gained[idle]);
3344
3345 return 1;
3346 }
3347 p = iterator->next(iterator->arg);
3348 }
3349
3350 return 0;
3351}
3352
43010659
PW
3353/*
3354 * move_one_task tries to move exactly one task from busiest to this_rq, as
3355 * part of active balancing operations within "domain".
3356 * Returns 1 if successful and 0 otherwise.
3357 *
3358 * Called with both runqueues locked.
3359 */
3360static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3361 struct sched_domain *sd, enum cpu_idle_type idle)
3362{
5522d5d5 3363 const struct sched_class *class;
43010659 3364
cde7e5ca 3365 for_each_class(class) {
e1d1484f 3366 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3367 return 1;
cde7e5ca 3368 }
43010659
PW
3369
3370 return 0;
dd41f596 3371}
67bb6c03 3372/********** Helpers for find_busiest_group ************************/
1da177e4 3373/*
222d656d
GS
3374 * sd_lb_stats - Structure to store the statistics of a sched_domain
3375 * during load balancing.
1da177e4 3376 */
222d656d
GS
3377struct sd_lb_stats {
3378 struct sched_group *busiest; /* Busiest group in this sd */
3379 struct sched_group *this; /* Local group in this sd */
3380 unsigned long total_load; /* Total load of all groups in sd */
3381 unsigned long total_pwr; /* Total power of all groups in sd */
3382 unsigned long avg_load; /* Average load across all groups in sd */
3383
3384 /** Statistics of this group */
3385 unsigned long this_load;
3386 unsigned long this_load_per_task;
3387 unsigned long this_nr_running;
3388
3389 /* Statistics of the busiest group */
3390 unsigned long max_load;
3391 unsigned long busiest_load_per_task;
3392 unsigned long busiest_nr_running;
3393
3394 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3395#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3396 int power_savings_balance; /* Is powersave balance needed for this sd */
3397 struct sched_group *group_min; /* Least loaded group in sd */
3398 struct sched_group *group_leader; /* Group which relieves group_min */
3399 unsigned long min_load_per_task; /* load_per_task in group_min */
3400 unsigned long leader_nr_running; /* Nr running of group_leader */
3401 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3402#endif
222d656d 3403};
1da177e4 3404
d5ac537e 3405/*
381be78f
GS
3406 * sg_lb_stats - stats of a sched_group required for load_balancing
3407 */
3408struct sg_lb_stats {
3409 unsigned long avg_load; /*Avg load across the CPUs of the group */
3410 unsigned long group_load; /* Total load over the CPUs of the group */
3411 unsigned long sum_nr_running; /* Nr tasks running in the group */
3412 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3413 unsigned long group_capacity;
3414 int group_imb; /* Is there an imbalance in the group ? */
3415};
408ed066 3416
67bb6c03
GS
3417/**
3418 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3419 * @group: The group whose first cpu is to be returned.
3420 */
3421static inline unsigned int group_first_cpu(struct sched_group *group)
3422{
3423 return cpumask_first(sched_group_cpus(group));
3424}
3425
3426/**
3427 * get_sd_load_idx - Obtain the load index for a given sched domain.
3428 * @sd: The sched_domain whose load_idx is to be obtained.
3429 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3430 */
3431static inline int get_sd_load_idx(struct sched_domain *sd,
3432 enum cpu_idle_type idle)
3433{
3434 int load_idx;
3435
3436 switch (idle) {
3437 case CPU_NOT_IDLE:
7897986b 3438 load_idx = sd->busy_idx;
67bb6c03
GS
3439 break;
3440
3441 case CPU_NEWLY_IDLE:
7897986b 3442 load_idx = sd->newidle_idx;
67bb6c03
GS
3443 break;
3444 default:
7897986b 3445 load_idx = sd->idle_idx;
67bb6c03
GS
3446 break;
3447 }
1da177e4 3448
67bb6c03
GS
3449 return load_idx;
3450}
1da177e4 3451
1da177e4 3452
c071df18
GS
3453#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3454/**
3455 * init_sd_power_savings_stats - Initialize power savings statistics for
3456 * the given sched_domain, during load balancing.
3457 *
3458 * @sd: Sched domain whose power-savings statistics are to be initialized.
3459 * @sds: Variable containing the statistics for sd.
3460 * @idle: Idle status of the CPU at which we're performing load-balancing.
3461 */
3462static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3463 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3464{
3465 /*
3466 * Busy processors will not participate in power savings
3467 * balance.
3468 */
3469 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3470 sds->power_savings_balance = 0;
3471 else {
3472 sds->power_savings_balance = 1;
3473 sds->min_nr_running = ULONG_MAX;
3474 sds->leader_nr_running = 0;
3475 }
3476}
783609c6 3477
c071df18
GS
3478/**
3479 * update_sd_power_savings_stats - Update the power saving stats for a
3480 * sched_domain while performing load balancing.
3481 *
3482 * @group: sched_group belonging to the sched_domain under consideration.
3483 * @sds: Variable containing the statistics of the sched_domain
3484 * @local_group: Does group contain the CPU for which we're performing
3485 * load balancing ?
3486 * @sgs: Variable containing the statistics of the group.
3487 */
3488static inline void update_sd_power_savings_stats(struct sched_group *group,
3489 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3490{
408ed066 3491
c071df18
GS
3492 if (!sds->power_savings_balance)
3493 return;
1da177e4 3494
c071df18
GS
3495 /*
3496 * If the local group is idle or completely loaded
3497 * no need to do power savings balance at this domain
3498 */
3499 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3500 !sds->this_nr_running))
3501 sds->power_savings_balance = 0;
2dd73a4f 3502
c071df18
GS
3503 /*
3504 * If a group is already running at full capacity or idle,
3505 * don't include that group in power savings calculations
3506 */
3507 if (!sds->power_savings_balance ||
3508 sgs->sum_nr_running >= sgs->group_capacity ||
3509 !sgs->sum_nr_running)
3510 return;
5969fe06 3511
c071df18
GS
3512 /*
3513 * Calculate the group which has the least non-idle load.
3514 * This is the group from where we need to pick up the load
3515 * for saving power
3516 */
3517 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3518 (sgs->sum_nr_running == sds->min_nr_running &&
3519 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3520 sds->group_min = group;
3521 sds->min_nr_running = sgs->sum_nr_running;
3522 sds->min_load_per_task = sgs->sum_weighted_load /
3523 sgs->sum_nr_running;
3524 }
783609c6 3525
c071df18
GS
3526 /*
3527 * Calculate the group which is almost near its
3528 * capacity but still has some space to pick up some load
3529 * from other group and save more power
3530 */
d899a789 3531 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3532 return;
1da177e4 3533
c071df18
GS
3534 if (sgs->sum_nr_running > sds->leader_nr_running ||
3535 (sgs->sum_nr_running == sds->leader_nr_running &&
3536 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3537 sds->group_leader = group;
3538 sds->leader_nr_running = sgs->sum_nr_running;
3539 }
3540}
408ed066 3541
c071df18 3542/**
d5ac537e 3543 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3544 * @sds: Variable containing the statistics of the sched_domain
3545 * under consideration.
3546 * @this_cpu: Cpu at which we're currently performing load-balancing.
3547 * @imbalance: Variable to store the imbalance.
3548 *
d5ac537e
RD
3549 * Description:
3550 * Check if we have potential to perform some power-savings balance.
3551 * If yes, set the busiest group to be the least loaded group in the
3552 * sched_domain, so that it's CPUs can be put to idle.
3553 *
c071df18
GS
3554 * Returns 1 if there is potential to perform power-savings balance.
3555 * Else returns 0.
3556 */
3557static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3558 int this_cpu, unsigned long *imbalance)
3559{
3560 if (!sds->power_savings_balance)
3561 return 0;
1da177e4 3562
c071df18
GS
3563 if (sds->this != sds->group_leader ||
3564 sds->group_leader == sds->group_min)
3565 return 0;
783609c6 3566
c071df18
GS
3567 *imbalance = sds->min_load_per_task;
3568 sds->busiest = sds->group_min;
1da177e4 3569
c071df18 3570 return 1;
1da177e4 3571
c071df18
GS
3572}
3573#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3574static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3575 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3576{
3577 return;
3578}
408ed066 3579
c071df18
GS
3580static inline void update_sd_power_savings_stats(struct sched_group *group,
3581 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3582{
3583 return;
3584}
3585
3586static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3587 int this_cpu, unsigned long *imbalance)
3588{
3589 return 0;
3590}
3591#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3592
d6a59aa3
PZ
3593
3594unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3595{
3596 return SCHED_LOAD_SCALE;
3597}
3598
3599unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3600{
3601 return default_scale_freq_power(sd, cpu);
3602}
3603
3604unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3605{
3606 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3607 unsigned long smt_gain = sd->smt_gain;
3608
3609 smt_gain /= weight;
3610
3611 return smt_gain;
3612}
3613
d6a59aa3
PZ
3614unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3615{
3616 return default_scale_smt_power(sd, cpu);
3617}
3618
e9e9250b
PZ
3619unsigned long scale_rt_power(int cpu)
3620{
3621 struct rq *rq = cpu_rq(cpu);
3622 u64 total, available;
3623
3624 sched_avg_update(rq);
3625
3626 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3627 available = total - rq->rt_avg;
3628
3629 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3630 total = SCHED_LOAD_SCALE;
3631
3632 total >>= SCHED_LOAD_SHIFT;
3633
3634 return div_u64(available, total);
3635}
3636
ab29230e
PZ
3637static void update_cpu_power(struct sched_domain *sd, int cpu)
3638{
3639 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3640 unsigned long power = SCHED_LOAD_SCALE;
3641 struct sched_group *sdg = sd->groups;
ab29230e 3642
8e6598af
PZ
3643 if (sched_feat(ARCH_POWER))
3644 power *= arch_scale_freq_power(sd, cpu);
3645 else
3646 power *= default_scale_freq_power(sd, cpu);
3647
d6a59aa3 3648 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3649
3650 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3651 if (sched_feat(ARCH_POWER))
3652 power *= arch_scale_smt_power(sd, cpu);
3653 else
3654 power *= default_scale_smt_power(sd, cpu);
3655
ab29230e
PZ
3656 power >>= SCHED_LOAD_SHIFT;
3657 }
3658
e9e9250b
PZ
3659 power *= scale_rt_power(cpu);
3660 power >>= SCHED_LOAD_SHIFT;
3661
3662 if (!power)
3663 power = 1;
ab29230e 3664
18a3885f 3665 sdg->cpu_power = power;
ab29230e
PZ
3666}
3667
3668static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3669{
3670 struct sched_domain *child = sd->child;
3671 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3672 unsigned long power;
cc9fba7d
PZ
3673
3674 if (!child) {
ab29230e 3675 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3676 return;
3677 }
3678
d7ea17a7 3679 power = 0;
cc9fba7d
PZ
3680
3681 group = child->groups;
3682 do {
d7ea17a7 3683 power += group->cpu_power;
cc9fba7d
PZ
3684 group = group->next;
3685 } while (group != child->groups);
d7ea17a7
IM
3686
3687 sdg->cpu_power = power;
cc9fba7d 3688}
c071df18 3689
1f8c553d
GS
3690/**
3691 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3692 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3693 * @group: sched_group whose statistics are to be updated.
3694 * @this_cpu: Cpu for which load balance is currently performed.
3695 * @idle: Idle status of this_cpu
3696 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3697 * @sd_idle: Idle status of the sched_domain containing group.
3698 * @local_group: Does group contain this_cpu.
3699 * @cpus: Set of cpus considered for load balancing.
3700 * @balance: Should we balance.
3701 * @sgs: variable to hold the statistics for this group.
3702 */
cc9fba7d
PZ
3703static inline void update_sg_lb_stats(struct sched_domain *sd,
3704 struct sched_group *group, int this_cpu,
1f8c553d
GS
3705 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3706 int local_group, const struct cpumask *cpus,
3707 int *balance, struct sg_lb_stats *sgs)
3708{
3709 unsigned long load, max_cpu_load, min_cpu_load;
3710 int i;
3711 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3712 unsigned long sum_avg_load_per_task;
3713 unsigned long avg_load_per_task;
3714
cc9fba7d 3715 if (local_group) {
1f8c553d 3716 balance_cpu = group_first_cpu(group);
cc9fba7d 3717 if (balance_cpu == this_cpu)
ab29230e 3718 update_group_power(sd, this_cpu);
cc9fba7d 3719 }
1f8c553d
GS
3720
3721 /* Tally up the load of all CPUs in the group */
3722 sum_avg_load_per_task = avg_load_per_task = 0;
3723 max_cpu_load = 0;
3724 min_cpu_load = ~0UL;
408ed066 3725
1f8c553d
GS
3726 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3727 struct rq *rq = cpu_rq(i);
908a7c1b 3728
1f8c553d
GS
3729 if (*sd_idle && rq->nr_running)
3730 *sd_idle = 0;
5c45bf27 3731
1f8c553d 3732 /* Bias balancing toward cpus of our domain */
1da177e4 3733 if (local_group) {
1f8c553d
GS
3734 if (idle_cpu(i) && !first_idle_cpu) {
3735 first_idle_cpu = 1;
3736 balance_cpu = i;
3737 }
3738
3739 load = target_load(i, load_idx);
3740 } else {
3741 load = source_load(i, load_idx);
3742 if (load > max_cpu_load)
3743 max_cpu_load = load;
3744 if (min_cpu_load > load)
3745 min_cpu_load = load;
1da177e4 3746 }
5c45bf27 3747
1f8c553d
GS
3748 sgs->group_load += load;
3749 sgs->sum_nr_running += rq->nr_running;
3750 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3751
1f8c553d
GS
3752 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3753 }
5c45bf27 3754
1f8c553d
GS
3755 /*
3756 * First idle cpu or the first cpu(busiest) in this sched group
3757 * is eligible for doing load balancing at this and above
3758 * domains. In the newly idle case, we will allow all the cpu's
3759 * to do the newly idle load balance.
3760 */
3761 if (idle != CPU_NEWLY_IDLE && local_group &&
3762 balance_cpu != this_cpu && balance) {
3763 *balance = 0;
3764 return;
3765 }
5c45bf27 3766
1f8c553d 3767 /* Adjust by relative CPU power of the group */
18a3885f 3768 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3769
1f8c553d
GS
3770
3771 /*
3772 * Consider the group unbalanced when the imbalance is larger
3773 * than the average weight of two tasks.
3774 *
3775 * APZ: with cgroup the avg task weight can vary wildly and
3776 * might not be a suitable number - should we keep a
3777 * normalized nr_running number somewhere that negates
3778 * the hierarchy?
3779 */
18a3885f
PZ
3780 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3781 group->cpu_power;
1f8c553d
GS
3782
3783 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3784 sgs->group_imb = 1;
3785
bdb94aa5 3786 sgs->group_capacity =
18a3885f 3787 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3788}
dd41f596 3789
37abe198
GS
3790/**
3791 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3792 * @sd: sched_domain whose statistics are to be updated.
3793 * @this_cpu: Cpu for which load balance is currently performed.
3794 * @idle: Idle status of this_cpu
3795 * @sd_idle: Idle status of the sched_domain containing group.
3796 * @cpus: Set of cpus considered for load balancing.
3797 * @balance: Should we balance.
3798 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3799 */
37abe198
GS
3800static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3801 enum cpu_idle_type idle, int *sd_idle,
3802 const struct cpumask *cpus, int *balance,
3803 struct sd_lb_stats *sds)
1da177e4 3804{
b5d978e0 3805 struct sched_domain *child = sd->child;
222d656d 3806 struct sched_group *group = sd->groups;
37abe198 3807 struct sg_lb_stats sgs;
b5d978e0
PZ
3808 int load_idx, prefer_sibling = 0;
3809
3810 if (child && child->flags & SD_PREFER_SIBLING)
3811 prefer_sibling = 1;
222d656d 3812
c071df18 3813 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3814 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3815
3816 do {
1da177e4 3817 int local_group;
1da177e4 3818
758b2cdc
RR
3819 local_group = cpumask_test_cpu(this_cpu,
3820 sched_group_cpus(group));
381be78f 3821 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3822 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3823 local_group, cpus, balance, &sgs);
1da177e4 3824
37abe198
GS
3825 if (local_group && balance && !(*balance))
3826 return;
783609c6 3827
37abe198 3828 sds->total_load += sgs.group_load;
18a3885f 3829 sds->total_pwr += group->cpu_power;
1da177e4 3830
b5d978e0
PZ
3831 /*
3832 * In case the child domain prefers tasks go to siblings
3833 * first, lower the group capacity to one so that we'll try
3834 * and move all the excess tasks away.
3835 */
3836 if (prefer_sibling)
bdb94aa5 3837 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3838
1da177e4 3839 if (local_group) {
37abe198
GS
3840 sds->this_load = sgs.avg_load;
3841 sds->this = group;
3842 sds->this_nr_running = sgs.sum_nr_running;
3843 sds->this_load_per_task = sgs.sum_weighted_load;
3844 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3845 (sgs.sum_nr_running > sgs.group_capacity ||
3846 sgs.group_imb)) {
37abe198
GS
3847 sds->max_load = sgs.avg_load;
3848 sds->busiest = group;
3849 sds->busiest_nr_running = sgs.sum_nr_running;
3850 sds->busiest_load_per_task = sgs.sum_weighted_load;
3851 sds->group_imb = sgs.group_imb;
48f24c4d 3852 }
5c45bf27 3853
c071df18 3854 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3855 group = group->next;
3856 } while (group != sd->groups);
37abe198 3857}
1da177e4 3858
2e6f44ae
GS
3859/**
3860 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3861 * amongst the groups of a sched_domain, during
3862 * load balancing.
2e6f44ae
GS
3863 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3864 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3865 * @imbalance: Variable to store the imbalance.
3866 */
3867static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3868 int this_cpu, unsigned long *imbalance)
3869{
3870 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3871 unsigned int imbn = 2;
3872
3873 if (sds->this_nr_running) {
3874 sds->this_load_per_task /= sds->this_nr_running;
3875 if (sds->busiest_load_per_task >
3876 sds->this_load_per_task)
3877 imbn = 1;
3878 } else
3879 sds->this_load_per_task =
3880 cpu_avg_load_per_task(this_cpu);
1da177e4 3881
2e6f44ae
GS
3882 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3883 sds->busiest_load_per_task * imbn) {
3884 *imbalance = sds->busiest_load_per_task;
3885 return;
3886 }
908a7c1b 3887
1da177e4 3888 /*
2e6f44ae
GS
3889 * OK, we don't have enough imbalance to justify moving tasks,
3890 * however we may be able to increase total CPU power used by
3891 * moving them.
1da177e4 3892 */
2dd73a4f 3893
18a3885f 3894 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3895 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3896 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3897 min(sds->this_load_per_task, sds->this_load);
3898 pwr_now /= SCHED_LOAD_SCALE;
3899
3900 /* Amount of load we'd subtract */
18a3885f
PZ
3901 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3902 sds->busiest->cpu_power;
2e6f44ae 3903 if (sds->max_load > tmp)
18a3885f 3904 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3905 min(sds->busiest_load_per_task, sds->max_load - tmp);
3906
3907 /* Amount of load we'd add */
18a3885f 3908 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3909 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3910 tmp = (sds->max_load * sds->busiest->cpu_power) /
3911 sds->this->cpu_power;
2e6f44ae 3912 else
18a3885f
PZ
3913 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3914 sds->this->cpu_power;
3915 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3916 min(sds->this_load_per_task, sds->this_load + tmp);
3917 pwr_move /= SCHED_LOAD_SCALE;
3918
3919 /* Move if we gain throughput */
3920 if (pwr_move > pwr_now)
3921 *imbalance = sds->busiest_load_per_task;
3922}
dbc523a3
GS
3923
3924/**
3925 * calculate_imbalance - Calculate the amount of imbalance present within the
3926 * groups of a given sched_domain during load balance.
3927 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3928 * @this_cpu: Cpu for which currently load balance is being performed.
3929 * @imbalance: The variable to store the imbalance.
3930 */
3931static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3932 unsigned long *imbalance)
3933{
3934 unsigned long max_pull;
2dd73a4f
PW
3935 /*
3936 * In the presence of smp nice balancing, certain scenarios can have
3937 * max load less than avg load(as we skip the groups at or below
3938 * its cpu_power, while calculating max_load..)
3939 */
dbc523a3 3940 if (sds->max_load < sds->avg_load) {
2dd73a4f 3941 *imbalance = 0;
dbc523a3 3942 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3943 }
0c117f1b
SS
3944
3945 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3946 max_pull = min(sds->max_load - sds->avg_load,
3947 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3948
1da177e4 3949 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3950 *imbalance = min(max_pull * sds->busiest->cpu_power,
3951 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3952 / SCHED_LOAD_SCALE;
3953
2dd73a4f
PW
3954 /*
3955 * if *imbalance is less than the average load per runnable task
3956 * there is no gaurantee that any tasks will be moved so we'll have
3957 * a think about bumping its value to force at least one task to be
3958 * moved
3959 */
dbc523a3
GS
3960 if (*imbalance < sds->busiest_load_per_task)
3961 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3962
dbc523a3 3963}
37abe198 3964/******* find_busiest_group() helpers end here *********************/
1da177e4 3965
b7bb4c9b
GS
3966/**
3967 * find_busiest_group - Returns the busiest group within the sched_domain
3968 * if there is an imbalance. If there isn't an imbalance, and
3969 * the user has opted for power-savings, it returns a group whose
3970 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3971 * such a group exists.
3972 *
3973 * Also calculates the amount of weighted load which should be moved
3974 * to restore balance.
3975 *
3976 * @sd: The sched_domain whose busiest group is to be returned.
3977 * @this_cpu: The cpu for which load balancing is currently being performed.
3978 * @imbalance: Variable which stores amount of weighted load which should
3979 * be moved to restore balance/put a group to idle.
3980 * @idle: The idle status of this_cpu.
3981 * @sd_idle: The idleness of sd
3982 * @cpus: The set of CPUs under consideration for load-balancing.
3983 * @balance: Pointer to a variable indicating if this_cpu
3984 * is the appropriate cpu to perform load balancing at this_level.
3985 *
3986 * Returns: - the busiest group if imbalance exists.
3987 * - If no imbalance and user has opted for power-savings balance,
3988 * return the least loaded group whose CPUs can be
3989 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3990 */
3991static struct sched_group *
3992find_busiest_group(struct sched_domain *sd, int this_cpu,
3993 unsigned long *imbalance, enum cpu_idle_type idle,
3994 int *sd_idle, const struct cpumask *cpus, int *balance)
3995{
3996 struct sd_lb_stats sds;
1da177e4 3997
37abe198 3998 memset(&sds, 0, sizeof(sds));
1da177e4 3999
37abe198
GS
4000 /*
4001 * Compute the various statistics relavent for load balancing at
4002 * this level.
4003 */
4004 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4005 balance, &sds);
4006
b7bb4c9b
GS
4007 /* Cases where imbalance does not exist from POV of this_cpu */
4008 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4009 * at this level.
4010 * 2) There is no busy sibling group to pull from.
4011 * 3) This group is the busiest group.
4012 * 4) This group is more busy than the avg busieness at this
4013 * sched_domain.
4014 * 5) The imbalance is within the specified limit.
4015 * 6) Any rebalance would lead to ping-pong
4016 */
37abe198
GS
4017 if (balance && !(*balance))
4018 goto ret;
1da177e4 4019
b7bb4c9b
GS
4020 if (!sds.busiest || sds.busiest_nr_running == 0)
4021 goto out_balanced;
1da177e4 4022
b7bb4c9b 4023 if (sds.this_load >= sds.max_load)
1da177e4 4024 goto out_balanced;
1da177e4 4025
222d656d 4026 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4027
b7bb4c9b
GS
4028 if (sds.this_load >= sds.avg_load)
4029 goto out_balanced;
4030
4031 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4032 goto out_balanced;
4033
222d656d
GS
4034 sds.busiest_load_per_task /= sds.busiest_nr_running;
4035 if (sds.group_imb)
4036 sds.busiest_load_per_task =
4037 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4038
1da177e4
LT
4039 /*
4040 * We're trying to get all the cpus to the average_load, so we don't
4041 * want to push ourselves above the average load, nor do we wish to
4042 * reduce the max loaded cpu below the average load, as either of these
4043 * actions would just result in more rebalancing later, and ping-pong
4044 * tasks around. Thus we look for the minimum possible imbalance.
4045 * Negative imbalances (*we* are more loaded than anyone else) will
4046 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4047 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4048 * appear as very large values with unsigned longs.
4049 */
222d656d 4050 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4051 goto out_balanced;
4052
dbc523a3
GS
4053 /* Looks like there is an imbalance. Compute it */
4054 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4055 return sds.busiest;
1da177e4
LT
4056
4057out_balanced:
c071df18
GS
4058 /*
4059 * There is no obvious imbalance. But check if we can do some balancing
4060 * to save power.
4061 */
4062 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4063 return sds.busiest;
783609c6 4064ret:
1da177e4
LT
4065 *imbalance = 0;
4066 return NULL;
4067}
4068
4069/*
4070 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4071 */
70b97a7f 4072static struct rq *
d15bcfdb 4073find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4074 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4075{
70b97a7f 4076 struct rq *busiest = NULL, *rq;
2dd73a4f 4077 unsigned long max_load = 0;
1da177e4
LT
4078 int i;
4079
758b2cdc 4080 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4081 unsigned long power = power_of(i);
4082 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4083 unsigned long wl;
0a2966b4 4084
96f874e2 4085 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4086 continue;
4087
48f24c4d 4088 rq = cpu_rq(i);
bdb94aa5
PZ
4089 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4090 wl /= power;
2dd73a4f 4091
bdb94aa5 4092 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4093 continue;
1da177e4 4094
dd41f596
IM
4095 if (wl > max_load) {
4096 max_load = wl;
48f24c4d 4097 busiest = rq;
1da177e4
LT
4098 }
4099 }
4100
4101 return busiest;
4102}
4103
77391d71
NP
4104/*
4105 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4106 * so long as it is large enough.
4107 */
4108#define MAX_PINNED_INTERVAL 512
4109
df7c8e84
RR
4110/* Working cpumask for load_balance and load_balance_newidle. */
4111static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4112
1da177e4
LT
4113/*
4114 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4115 * tasks if there is an imbalance.
1da177e4 4116 */
70b97a7f 4117static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4118 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4119 int *balance)
1da177e4 4120{
43010659 4121 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4122 struct sched_group *group;
1da177e4 4123 unsigned long imbalance;
70b97a7f 4124 struct rq *busiest;
fe2eea3f 4125 unsigned long flags;
df7c8e84 4126 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4127
96f874e2 4128 cpumask_setall(cpus);
7c16ec58 4129
89c4710e
SS
4130 /*
4131 * When power savings policy is enabled for the parent domain, idle
4132 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4133 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4134 * portraying it as CPU_NOT_IDLE.
89c4710e 4135 */
d15bcfdb 4136 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4137 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4138 sd_idle = 1;
1da177e4 4139
2d72376b 4140 schedstat_inc(sd, lb_count[idle]);
1da177e4 4141
0a2966b4 4142redo:
c8cba857 4143 update_shares(sd);
0a2966b4 4144 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4145 cpus, balance);
783609c6 4146
06066714 4147 if (*balance == 0)
783609c6 4148 goto out_balanced;
783609c6 4149
1da177e4
LT
4150 if (!group) {
4151 schedstat_inc(sd, lb_nobusyg[idle]);
4152 goto out_balanced;
4153 }
4154
7c16ec58 4155 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4156 if (!busiest) {
4157 schedstat_inc(sd, lb_nobusyq[idle]);
4158 goto out_balanced;
4159 }
4160
db935dbd 4161 BUG_ON(busiest == this_rq);
1da177e4
LT
4162
4163 schedstat_add(sd, lb_imbalance[idle], imbalance);
4164
43010659 4165 ld_moved = 0;
1da177e4
LT
4166 if (busiest->nr_running > 1) {
4167 /*
4168 * Attempt to move tasks. If find_busiest_group has found
4169 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4170 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4171 * correctly treated as an imbalance.
4172 */
fe2eea3f 4173 local_irq_save(flags);
e17224bf 4174 double_rq_lock(this_rq, busiest);
43010659 4175 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4176 imbalance, sd, idle, &all_pinned);
e17224bf 4177 double_rq_unlock(this_rq, busiest);
fe2eea3f 4178 local_irq_restore(flags);
81026794 4179
46cb4b7c
SS
4180 /*
4181 * some other cpu did the load balance for us.
4182 */
43010659 4183 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4184 resched_cpu(this_cpu);
4185
81026794 4186 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4187 if (unlikely(all_pinned)) {
96f874e2
RR
4188 cpumask_clear_cpu(cpu_of(busiest), cpus);
4189 if (!cpumask_empty(cpus))
0a2966b4 4190 goto redo;
81026794 4191 goto out_balanced;
0a2966b4 4192 }
1da177e4 4193 }
81026794 4194
43010659 4195 if (!ld_moved) {
1da177e4
LT
4196 schedstat_inc(sd, lb_failed[idle]);
4197 sd->nr_balance_failed++;
4198
4199 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4200
fe2eea3f 4201 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4202
4203 /* don't kick the migration_thread, if the curr
4204 * task on busiest cpu can't be moved to this_cpu
4205 */
96f874e2
RR
4206 if (!cpumask_test_cpu(this_cpu,
4207 &busiest->curr->cpus_allowed)) {
fe2eea3f 4208 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4209 all_pinned = 1;
4210 goto out_one_pinned;
4211 }
4212
1da177e4
LT
4213 if (!busiest->active_balance) {
4214 busiest->active_balance = 1;
4215 busiest->push_cpu = this_cpu;
81026794 4216 active_balance = 1;
1da177e4 4217 }
fe2eea3f 4218 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4219 if (active_balance)
1da177e4
LT
4220 wake_up_process(busiest->migration_thread);
4221
4222 /*
4223 * We've kicked active balancing, reset the failure
4224 * counter.
4225 */
39507451 4226 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4227 }
81026794 4228 } else
1da177e4
LT
4229 sd->nr_balance_failed = 0;
4230
81026794 4231 if (likely(!active_balance)) {
1da177e4
LT
4232 /* We were unbalanced, so reset the balancing interval */
4233 sd->balance_interval = sd->min_interval;
81026794
NP
4234 } else {
4235 /*
4236 * If we've begun active balancing, start to back off. This
4237 * case may not be covered by the all_pinned logic if there
4238 * is only 1 task on the busy runqueue (because we don't call
4239 * move_tasks).
4240 */
4241 if (sd->balance_interval < sd->max_interval)
4242 sd->balance_interval *= 2;
1da177e4
LT
4243 }
4244
43010659 4245 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4246 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4247 ld_moved = -1;
4248
4249 goto out;
1da177e4
LT
4250
4251out_balanced:
1da177e4
LT
4252 schedstat_inc(sd, lb_balanced[idle]);
4253
16cfb1c0 4254 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4255
4256out_one_pinned:
1da177e4 4257 /* tune up the balancing interval */
77391d71
NP
4258 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4259 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4260 sd->balance_interval *= 2;
4261
48f24c4d 4262 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4263 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4264 ld_moved = -1;
4265 else
4266 ld_moved = 0;
4267out:
c8cba857
PZ
4268 if (ld_moved)
4269 update_shares(sd);
c09595f6 4270 return ld_moved;
1da177e4
LT
4271}
4272
4273/*
4274 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4275 * tasks if there is an imbalance.
4276 *
d15bcfdb 4277 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4278 * this_rq is locked.
4279 */
48f24c4d 4280static int
df7c8e84 4281load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4282{
4283 struct sched_group *group;
70b97a7f 4284 struct rq *busiest = NULL;
1da177e4 4285 unsigned long imbalance;
43010659 4286 int ld_moved = 0;
5969fe06 4287 int sd_idle = 0;
969bb4e4 4288 int all_pinned = 0;
df7c8e84 4289 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4290
96f874e2 4291 cpumask_setall(cpus);
5969fe06 4292
89c4710e
SS
4293 /*
4294 * When power savings policy is enabled for the parent domain, idle
4295 * sibling can pick up load irrespective of busy siblings. In this case,
4296 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4297 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4298 */
4299 if (sd->flags & SD_SHARE_CPUPOWER &&
4300 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4301 sd_idle = 1;
1da177e4 4302
2d72376b 4303 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4304redo:
3e5459b4 4305 update_shares_locked(this_rq, sd);
d15bcfdb 4306 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4307 &sd_idle, cpus, NULL);
1da177e4 4308 if (!group) {
d15bcfdb 4309 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4310 goto out_balanced;
1da177e4
LT
4311 }
4312
7c16ec58 4313 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4314 if (!busiest) {
d15bcfdb 4315 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4316 goto out_balanced;
1da177e4
LT
4317 }
4318
db935dbd
NP
4319 BUG_ON(busiest == this_rq);
4320
d15bcfdb 4321 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4322
43010659 4323 ld_moved = 0;
d6d5cfaf
NP
4324 if (busiest->nr_running > 1) {
4325 /* Attempt to move tasks */
4326 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4327 /* this_rq->clock is already updated */
4328 update_rq_clock(busiest);
43010659 4329 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4330 imbalance, sd, CPU_NEWLY_IDLE,
4331 &all_pinned);
1b12bbc7 4332 double_unlock_balance(this_rq, busiest);
0a2966b4 4333
969bb4e4 4334 if (unlikely(all_pinned)) {
96f874e2
RR
4335 cpumask_clear_cpu(cpu_of(busiest), cpus);
4336 if (!cpumask_empty(cpus))
0a2966b4
CL
4337 goto redo;
4338 }
d6d5cfaf
NP
4339 }
4340
43010659 4341 if (!ld_moved) {
36dffab6 4342 int active_balance = 0;
ad273b32 4343
d15bcfdb 4344 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4345 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4346 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4347 return -1;
ad273b32
VS
4348
4349 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4350 return -1;
4351
4352 if (sd->nr_balance_failed++ < 2)
4353 return -1;
4354
4355 /*
4356 * The only task running in a non-idle cpu can be moved to this
4357 * cpu in an attempt to completely freeup the other CPU
4358 * package. The same method used to move task in load_balance()
4359 * have been extended for load_balance_newidle() to speedup
4360 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4361 *
4362 * The package power saving logic comes from
4363 * find_busiest_group(). If there are no imbalance, then
4364 * f_b_g() will return NULL. However when sched_mc={1,2} then
4365 * f_b_g() will select a group from which a running task may be
4366 * pulled to this cpu in order to make the other package idle.
4367 * If there is no opportunity to make a package idle and if
4368 * there are no imbalance, then f_b_g() will return NULL and no
4369 * action will be taken in load_balance_newidle().
4370 *
4371 * Under normal task pull operation due to imbalance, there
4372 * will be more than one task in the source run queue and
4373 * move_tasks() will succeed. ld_moved will be true and this
4374 * active balance code will not be triggered.
4375 */
4376
4377 /* Lock busiest in correct order while this_rq is held */
4378 double_lock_balance(this_rq, busiest);
4379
4380 /*
4381 * don't kick the migration_thread, if the curr
4382 * task on busiest cpu can't be moved to this_cpu
4383 */
6ca09dfc 4384 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4385 double_unlock_balance(this_rq, busiest);
4386 all_pinned = 1;
4387 return ld_moved;
4388 }
4389
4390 if (!busiest->active_balance) {
4391 busiest->active_balance = 1;
4392 busiest->push_cpu = this_cpu;
4393 active_balance = 1;
4394 }
4395
4396 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4397 /*
4398 * Should not call ttwu while holding a rq->lock
4399 */
4400 spin_unlock(&this_rq->lock);
ad273b32
VS
4401 if (active_balance)
4402 wake_up_process(busiest->migration_thread);
da8d5089 4403 spin_lock(&this_rq->lock);
ad273b32 4404
5969fe06 4405 } else
16cfb1c0 4406 sd->nr_balance_failed = 0;
1da177e4 4407
3e5459b4 4408 update_shares_locked(this_rq, sd);
43010659 4409 return ld_moved;
16cfb1c0
NP
4410
4411out_balanced:
d15bcfdb 4412 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4413 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4414 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4415 return -1;
16cfb1c0 4416 sd->nr_balance_failed = 0;
48f24c4d 4417
16cfb1c0 4418 return 0;
1da177e4
LT
4419}
4420
4421/*
4422 * idle_balance is called by schedule() if this_cpu is about to become
4423 * idle. Attempts to pull tasks from other CPUs.
4424 */
70b97a7f 4425static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4426{
4427 struct sched_domain *sd;
efbe027e 4428 int pulled_task = 0;
dd41f596 4429 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4430
4431 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4432 unsigned long interval;
4433
4434 if (!(sd->flags & SD_LOAD_BALANCE))
4435 continue;
4436
4437 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4438 /* If we've pulled tasks over stop searching: */
7c16ec58 4439 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4440 sd);
92c4ca5c
CL
4441
4442 interval = msecs_to_jiffies(sd->balance_interval);
4443 if (time_after(next_balance, sd->last_balance + interval))
4444 next_balance = sd->last_balance + interval;
4445 if (pulled_task)
4446 break;
1da177e4 4447 }
dd41f596 4448 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4449 /*
4450 * We are going idle. next_balance may be set based on
4451 * a busy processor. So reset next_balance.
4452 */
4453 this_rq->next_balance = next_balance;
dd41f596 4454 }
1da177e4
LT
4455}
4456
4457/*
4458 * active_load_balance is run by migration threads. It pushes running tasks
4459 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4460 * running on each physical CPU where possible, and avoids physical /
4461 * logical imbalances.
4462 *
4463 * Called with busiest_rq locked.
4464 */
70b97a7f 4465static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4466{
39507451 4467 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4468 struct sched_domain *sd;
4469 struct rq *target_rq;
39507451 4470
48f24c4d 4471 /* Is there any task to move? */
39507451 4472 if (busiest_rq->nr_running <= 1)
39507451
NP
4473 return;
4474
4475 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4476
4477 /*
39507451 4478 * This condition is "impossible", if it occurs
41a2d6cf 4479 * we need to fix it. Originally reported by
39507451 4480 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4481 */
39507451 4482 BUG_ON(busiest_rq == target_rq);
1da177e4 4483
39507451
NP
4484 /* move a task from busiest_rq to target_rq */
4485 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4486 update_rq_clock(busiest_rq);
4487 update_rq_clock(target_rq);
39507451
NP
4488
4489 /* Search for an sd spanning us and the target CPU. */
c96d145e 4490 for_each_domain(target_cpu, sd) {
39507451 4491 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4492 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4493 break;
c96d145e 4494 }
39507451 4495
48f24c4d 4496 if (likely(sd)) {
2d72376b 4497 schedstat_inc(sd, alb_count);
39507451 4498
43010659
PW
4499 if (move_one_task(target_rq, target_cpu, busiest_rq,
4500 sd, CPU_IDLE))
48f24c4d
IM
4501 schedstat_inc(sd, alb_pushed);
4502 else
4503 schedstat_inc(sd, alb_failed);
4504 }
1b12bbc7 4505 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4506}
4507
46cb4b7c
SS
4508#ifdef CONFIG_NO_HZ
4509static struct {
4510 atomic_t load_balancer;
7d1e6a9b 4511 cpumask_var_t cpu_mask;
f711f609 4512 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4513} nohz ____cacheline_aligned = {
4514 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4515};
4516
eea08f32
AB
4517int get_nohz_load_balancer(void)
4518{
4519 return atomic_read(&nohz.load_balancer);
4520}
4521
f711f609
GS
4522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4523/**
4524 * lowest_flag_domain - Return lowest sched_domain containing flag.
4525 * @cpu: The cpu whose lowest level of sched domain is to
4526 * be returned.
4527 * @flag: The flag to check for the lowest sched_domain
4528 * for the given cpu.
4529 *
4530 * Returns the lowest sched_domain of a cpu which contains the given flag.
4531 */
4532static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4533{
4534 struct sched_domain *sd;
4535
4536 for_each_domain(cpu, sd)
4537 if (sd && (sd->flags & flag))
4538 break;
4539
4540 return sd;
4541}
4542
4543/**
4544 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4545 * @cpu: The cpu whose domains we're iterating over.
4546 * @sd: variable holding the value of the power_savings_sd
4547 * for cpu.
4548 * @flag: The flag to filter the sched_domains to be iterated.
4549 *
4550 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4551 * set, starting from the lowest sched_domain to the highest.
4552 */
4553#define for_each_flag_domain(cpu, sd, flag) \
4554 for (sd = lowest_flag_domain(cpu, flag); \
4555 (sd && (sd->flags & flag)); sd = sd->parent)
4556
4557/**
4558 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4559 * @ilb_group: group to be checked for semi-idleness
4560 *
4561 * Returns: 1 if the group is semi-idle. 0 otherwise.
4562 *
4563 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4564 * and atleast one non-idle CPU. This helper function checks if the given
4565 * sched_group is semi-idle or not.
4566 */
4567static inline int is_semi_idle_group(struct sched_group *ilb_group)
4568{
4569 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4570 sched_group_cpus(ilb_group));
4571
4572 /*
4573 * A sched_group is semi-idle when it has atleast one busy cpu
4574 * and atleast one idle cpu.
4575 */
4576 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4577 return 0;
4578
4579 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4580 return 0;
4581
4582 return 1;
4583}
4584/**
4585 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4586 * @cpu: The cpu which is nominating a new idle_load_balancer.
4587 *
4588 * Returns: Returns the id of the idle load balancer if it exists,
4589 * Else, returns >= nr_cpu_ids.
4590 *
4591 * This algorithm picks the idle load balancer such that it belongs to a
4592 * semi-idle powersavings sched_domain. The idea is to try and avoid
4593 * completely idle packages/cores just for the purpose of idle load balancing
4594 * when there are other idle cpu's which are better suited for that job.
4595 */
4596static int find_new_ilb(int cpu)
4597{
4598 struct sched_domain *sd;
4599 struct sched_group *ilb_group;
4600
4601 /*
4602 * Have idle load balancer selection from semi-idle packages only
4603 * when power-aware load balancing is enabled
4604 */
4605 if (!(sched_smt_power_savings || sched_mc_power_savings))
4606 goto out_done;
4607
4608 /*
4609 * Optimize for the case when we have no idle CPUs or only one
4610 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4611 */
4612 if (cpumask_weight(nohz.cpu_mask) < 2)
4613 goto out_done;
4614
4615 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4616 ilb_group = sd->groups;
4617
4618 do {
4619 if (is_semi_idle_group(ilb_group))
4620 return cpumask_first(nohz.ilb_grp_nohz_mask);
4621
4622 ilb_group = ilb_group->next;
4623
4624 } while (ilb_group != sd->groups);
4625 }
4626
4627out_done:
4628 return cpumask_first(nohz.cpu_mask);
4629}
4630#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4631static inline int find_new_ilb(int call_cpu)
4632{
6e29ec57 4633 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4634}
4635#endif
4636
7835b98b 4637/*
46cb4b7c
SS
4638 * This routine will try to nominate the ilb (idle load balancing)
4639 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4640 * load balancing on behalf of all those cpus. If all the cpus in the system
4641 * go into this tickless mode, then there will be no ilb owner (as there is
4642 * no need for one) and all the cpus will sleep till the next wakeup event
4643 * arrives...
4644 *
4645 * For the ilb owner, tick is not stopped. And this tick will be used
4646 * for idle load balancing. ilb owner will still be part of
4647 * nohz.cpu_mask..
7835b98b 4648 *
46cb4b7c
SS
4649 * While stopping the tick, this cpu will become the ilb owner if there
4650 * is no other owner. And will be the owner till that cpu becomes busy
4651 * or if all cpus in the system stop their ticks at which point
4652 * there is no need for ilb owner.
4653 *
4654 * When the ilb owner becomes busy, it nominates another owner, during the
4655 * next busy scheduler_tick()
4656 */
4657int select_nohz_load_balancer(int stop_tick)
4658{
4659 int cpu = smp_processor_id();
4660
4661 if (stop_tick) {
46cb4b7c
SS
4662 cpu_rq(cpu)->in_nohz_recently = 1;
4663
483b4ee6
SS
4664 if (!cpu_active(cpu)) {
4665 if (atomic_read(&nohz.load_balancer) != cpu)
4666 return 0;
4667
4668 /*
4669 * If we are going offline and still the leader,
4670 * give up!
4671 */
46cb4b7c
SS
4672 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4673 BUG();
483b4ee6 4674
46cb4b7c
SS
4675 return 0;
4676 }
4677
483b4ee6
SS
4678 cpumask_set_cpu(cpu, nohz.cpu_mask);
4679
46cb4b7c 4680 /* time for ilb owner also to sleep */
7d1e6a9b 4681 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4682 if (atomic_read(&nohz.load_balancer) == cpu)
4683 atomic_set(&nohz.load_balancer, -1);
4684 return 0;
4685 }
4686
4687 if (atomic_read(&nohz.load_balancer) == -1) {
4688 /* make me the ilb owner */
4689 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4690 return 1;
e790fb0b
GS
4691 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4692 int new_ilb;
4693
4694 if (!(sched_smt_power_savings ||
4695 sched_mc_power_savings))
4696 return 1;
4697 /*
4698 * Check to see if there is a more power-efficient
4699 * ilb.
4700 */
4701 new_ilb = find_new_ilb(cpu);
4702 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4703 atomic_set(&nohz.load_balancer, -1);
4704 resched_cpu(new_ilb);
4705 return 0;
4706 }
46cb4b7c 4707 return 1;
e790fb0b 4708 }
46cb4b7c 4709 } else {
7d1e6a9b 4710 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4711 return 0;
4712
7d1e6a9b 4713 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4714
4715 if (atomic_read(&nohz.load_balancer) == cpu)
4716 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4717 BUG();
4718 }
4719 return 0;
4720}
4721#endif
4722
4723static DEFINE_SPINLOCK(balancing);
4724
4725/*
7835b98b
CL
4726 * It checks each scheduling domain to see if it is due to be balanced,
4727 * and initiates a balancing operation if so.
4728 *
4729 * Balancing parameters are set up in arch_init_sched_domains.
4730 */
a9957449 4731static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4732{
46cb4b7c
SS
4733 int balance = 1;
4734 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4735 unsigned long interval;
4736 struct sched_domain *sd;
46cb4b7c 4737 /* Earliest time when we have to do rebalance again */
c9819f45 4738 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4739 int update_next_balance = 0;
d07355f5 4740 int need_serialize;
1da177e4 4741
46cb4b7c 4742 for_each_domain(cpu, sd) {
1da177e4
LT
4743 if (!(sd->flags & SD_LOAD_BALANCE))
4744 continue;
4745
4746 interval = sd->balance_interval;
d15bcfdb 4747 if (idle != CPU_IDLE)
1da177e4
LT
4748 interval *= sd->busy_factor;
4749
4750 /* scale ms to jiffies */
4751 interval = msecs_to_jiffies(interval);
4752 if (unlikely(!interval))
4753 interval = 1;
dd41f596
IM
4754 if (interval > HZ*NR_CPUS/10)
4755 interval = HZ*NR_CPUS/10;
4756
d07355f5 4757 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4758
d07355f5 4759 if (need_serialize) {
08c183f3
CL
4760 if (!spin_trylock(&balancing))
4761 goto out;
4762 }
4763
c9819f45 4764 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4765 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4766 /*
4767 * We've pulled tasks over so either we're no
5969fe06
NP
4768 * longer idle, or one of our SMT siblings is
4769 * not idle.
4770 */
d15bcfdb 4771 idle = CPU_NOT_IDLE;
1da177e4 4772 }
1bd77f2d 4773 sd->last_balance = jiffies;
1da177e4 4774 }
d07355f5 4775 if (need_serialize)
08c183f3
CL
4776 spin_unlock(&balancing);
4777out:
f549da84 4778 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4779 next_balance = sd->last_balance + interval;
f549da84
SS
4780 update_next_balance = 1;
4781 }
783609c6
SS
4782
4783 /*
4784 * Stop the load balance at this level. There is another
4785 * CPU in our sched group which is doing load balancing more
4786 * actively.
4787 */
4788 if (!balance)
4789 break;
1da177e4 4790 }
f549da84
SS
4791
4792 /*
4793 * next_balance will be updated only when there is a need.
4794 * When the cpu is attached to null domain for ex, it will not be
4795 * updated.
4796 */
4797 if (likely(update_next_balance))
4798 rq->next_balance = next_balance;
46cb4b7c
SS
4799}
4800
4801/*
4802 * run_rebalance_domains is triggered when needed from the scheduler tick.
4803 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4804 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4805 */
4806static void run_rebalance_domains(struct softirq_action *h)
4807{
dd41f596
IM
4808 int this_cpu = smp_processor_id();
4809 struct rq *this_rq = cpu_rq(this_cpu);
4810 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4811 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4812
dd41f596 4813 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4814
4815#ifdef CONFIG_NO_HZ
4816 /*
4817 * If this cpu is the owner for idle load balancing, then do the
4818 * balancing on behalf of the other idle cpus whose ticks are
4819 * stopped.
4820 */
dd41f596
IM
4821 if (this_rq->idle_at_tick &&
4822 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4823 struct rq *rq;
4824 int balance_cpu;
4825
7d1e6a9b
RR
4826 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4827 if (balance_cpu == this_cpu)
4828 continue;
4829
46cb4b7c
SS
4830 /*
4831 * If this cpu gets work to do, stop the load balancing
4832 * work being done for other cpus. Next load
4833 * balancing owner will pick it up.
4834 */
4835 if (need_resched())
4836 break;
4837
de0cf899 4838 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4839
4840 rq = cpu_rq(balance_cpu);
dd41f596
IM
4841 if (time_after(this_rq->next_balance, rq->next_balance))
4842 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4843 }
4844 }
4845#endif
4846}
4847
8a0be9ef
FW
4848static inline int on_null_domain(int cpu)
4849{
4850 return !rcu_dereference(cpu_rq(cpu)->sd);
4851}
4852
46cb4b7c
SS
4853/*
4854 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4855 *
4856 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4857 * idle load balancing owner or decide to stop the periodic load balancing,
4858 * if the whole system is idle.
4859 */
dd41f596 4860static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4861{
46cb4b7c
SS
4862#ifdef CONFIG_NO_HZ
4863 /*
4864 * If we were in the nohz mode recently and busy at the current
4865 * scheduler tick, then check if we need to nominate new idle
4866 * load balancer.
4867 */
4868 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4869 rq->in_nohz_recently = 0;
4870
4871 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4872 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4873 atomic_set(&nohz.load_balancer, -1);
4874 }
4875
4876 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4877 int ilb = find_new_ilb(cpu);
46cb4b7c 4878
434d53b0 4879 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4880 resched_cpu(ilb);
4881 }
4882 }
4883
4884 /*
4885 * If this cpu is idle and doing idle load balancing for all the
4886 * cpus with ticks stopped, is it time for that to stop?
4887 */
4888 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4889 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4890 resched_cpu(cpu);
4891 return;
4892 }
4893
4894 /*
4895 * If this cpu is idle and the idle load balancing is done by
4896 * someone else, then no need raise the SCHED_SOFTIRQ
4897 */
4898 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4899 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4900 return;
4901#endif
8a0be9ef
FW
4902 /* Don't need to rebalance while attached to NULL domain */
4903 if (time_after_eq(jiffies, rq->next_balance) &&
4904 likely(!on_null_domain(cpu)))
46cb4b7c 4905 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4906}
dd41f596
IM
4907
4908#else /* CONFIG_SMP */
4909
1da177e4
LT
4910/*
4911 * on UP we do not need to balance between CPUs:
4912 */
70b97a7f 4913static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4914{
4915}
dd41f596 4916
1da177e4
LT
4917#endif
4918
1da177e4
LT
4919DEFINE_PER_CPU(struct kernel_stat, kstat);
4920
4921EXPORT_PER_CPU_SYMBOL(kstat);
4922
4923/*
c5f8d995 4924 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4925 * @p in case that task is currently running.
c5f8d995
HS
4926 *
4927 * Called with task_rq_lock() held on @rq.
1da177e4 4928 */
c5f8d995
HS
4929static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4930{
4931 u64 ns = 0;
4932
4933 if (task_current(rq, p)) {
4934 update_rq_clock(rq);
4935 ns = rq->clock - p->se.exec_start;
4936 if ((s64)ns < 0)
4937 ns = 0;
4938 }
4939
4940 return ns;
4941}
4942
bb34d92f 4943unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4944{
1da177e4 4945 unsigned long flags;
41b86e9c 4946 struct rq *rq;
bb34d92f 4947 u64 ns = 0;
48f24c4d 4948
41b86e9c 4949 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4950 ns = do_task_delta_exec(p, rq);
4951 task_rq_unlock(rq, &flags);
1508487e 4952
c5f8d995
HS
4953 return ns;
4954}
f06febc9 4955
c5f8d995
HS
4956/*
4957 * Return accounted runtime for the task.
4958 * In case the task is currently running, return the runtime plus current's
4959 * pending runtime that have not been accounted yet.
4960 */
4961unsigned long long task_sched_runtime(struct task_struct *p)
4962{
4963 unsigned long flags;
4964 struct rq *rq;
4965 u64 ns = 0;
4966
4967 rq = task_rq_lock(p, &flags);
4968 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4969 task_rq_unlock(rq, &flags);
4970
4971 return ns;
4972}
48f24c4d 4973
c5f8d995
HS
4974/*
4975 * Return sum_exec_runtime for the thread group.
4976 * In case the task is currently running, return the sum plus current's
4977 * pending runtime that have not been accounted yet.
4978 *
4979 * Note that the thread group might have other running tasks as well,
4980 * so the return value not includes other pending runtime that other
4981 * running tasks might have.
4982 */
4983unsigned long long thread_group_sched_runtime(struct task_struct *p)
4984{
4985 struct task_cputime totals;
4986 unsigned long flags;
4987 struct rq *rq;
4988 u64 ns;
4989
4990 rq = task_rq_lock(p, &flags);
4991 thread_group_cputime(p, &totals);
4992 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4993 task_rq_unlock(rq, &flags);
48f24c4d 4994
1da177e4
LT
4995 return ns;
4996}
4997
1da177e4
LT
4998/*
4999 * Account user cpu time to a process.
5000 * @p: the process that the cpu time gets accounted to
1da177e4 5001 * @cputime: the cpu time spent in user space since the last update
457533a7 5002 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5003 */
457533a7
MS
5004void account_user_time(struct task_struct *p, cputime_t cputime,
5005 cputime_t cputime_scaled)
1da177e4
LT
5006{
5007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5008 cputime64_t tmp;
5009
457533a7 5010 /* Add user time to process. */
1da177e4 5011 p->utime = cputime_add(p->utime, cputime);
457533a7 5012 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5013 account_group_user_time(p, cputime);
1da177e4
LT
5014
5015 /* Add user time to cpustat. */
5016 tmp = cputime_to_cputime64(cputime);
5017 if (TASK_NICE(p) > 0)
5018 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5019 else
5020 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5021
5022 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5023 /* Account for user time used */
5024 acct_update_integrals(p);
1da177e4
LT
5025}
5026
94886b84
LV
5027/*
5028 * Account guest cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
5030 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5031 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5032 */
457533a7
MS
5033static void account_guest_time(struct task_struct *p, cputime_t cputime,
5034 cputime_t cputime_scaled)
94886b84
LV
5035{
5036 cputime64_t tmp;
5037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5038
5039 tmp = cputime_to_cputime64(cputime);
5040
457533a7 5041 /* Add guest time to process. */
94886b84 5042 p->utime = cputime_add(p->utime, cputime);
457533a7 5043 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5044 account_group_user_time(p, cputime);
94886b84
LV
5045 p->gtime = cputime_add(p->gtime, cputime);
5046
457533a7 5047 /* Add guest time to cpustat. */
94886b84
LV
5048 cpustat->user = cputime64_add(cpustat->user, tmp);
5049 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5050}
5051
1da177e4
LT
5052/*
5053 * Account system cpu time to a process.
5054 * @p: the process that the cpu time gets accounted to
5055 * @hardirq_offset: the offset to subtract from hardirq_count()
5056 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5057 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5058 */
5059void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5060 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5061{
5062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5063 cputime64_t tmp;
5064
983ed7a6 5065 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5066 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5067 return;
5068 }
94886b84 5069
457533a7 5070 /* Add system time to process. */
1da177e4 5071 p->stime = cputime_add(p->stime, cputime);
457533a7 5072 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5073 account_group_system_time(p, cputime);
1da177e4
LT
5074
5075 /* Add system time to cpustat. */
5076 tmp = cputime_to_cputime64(cputime);
5077 if (hardirq_count() - hardirq_offset)
5078 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5079 else if (softirq_count())
5080 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5081 else
79741dd3
MS
5082 cpustat->system = cputime64_add(cpustat->system, tmp);
5083
ef12fefa
BR
5084 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5085
1da177e4
LT
5086 /* Account for system time used */
5087 acct_update_integrals(p);
1da177e4
LT
5088}
5089
c66f08be 5090/*
1da177e4 5091 * Account for involuntary wait time.
1da177e4 5092 * @steal: the cpu time spent in involuntary wait
c66f08be 5093 */
79741dd3 5094void account_steal_time(cputime_t cputime)
c66f08be 5095{
79741dd3
MS
5096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5097 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5098
5099 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5100}
5101
1da177e4 5102/*
79741dd3
MS
5103 * Account for idle time.
5104 * @cputime: the cpu time spent in idle wait
1da177e4 5105 */
79741dd3 5106void account_idle_time(cputime_t cputime)
1da177e4
LT
5107{
5108 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5109 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5110 struct rq *rq = this_rq();
1da177e4 5111
79741dd3
MS
5112 if (atomic_read(&rq->nr_iowait) > 0)
5113 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5114 else
5115 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5116}
5117
79741dd3
MS
5118#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5119
5120/*
5121 * Account a single tick of cpu time.
5122 * @p: the process that the cpu time gets accounted to
5123 * @user_tick: indicates if the tick is a user or a system tick
5124 */
5125void account_process_tick(struct task_struct *p, int user_tick)
5126{
a42548a1 5127 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5128 struct rq *rq = this_rq();
5129
5130 if (user_tick)
a42548a1 5131 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5132 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5133 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5134 one_jiffy_scaled);
5135 else
a42548a1 5136 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5137}
5138
5139/*
5140 * Account multiple ticks of steal time.
5141 * @p: the process from which the cpu time has been stolen
5142 * @ticks: number of stolen ticks
5143 */
5144void account_steal_ticks(unsigned long ticks)
5145{
5146 account_steal_time(jiffies_to_cputime(ticks));
5147}
5148
5149/*
5150 * Account multiple ticks of idle time.
5151 * @ticks: number of stolen ticks
5152 */
5153void account_idle_ticks(unsigned long ticks)
5154{
5155 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5156}
5157
79741dd3
MS
5158#endif
5159
49048622
BS
5160/*
5161 * Use precise platform statistics if available:
5162 */
5163#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5164cputime_t task_utime(struct task_struct *p)
5165{
5166 return p->utime;
5167}
5168
5169cputime_t task_stime(struct task_struct *p)
5170{
5171 return p->stime;
5172}
5173#else
5174cputime_t task_utime(struct task_struct *p)
5175{
5176 clock_t utime = cputime_to_clock_t(p->utime),
5177 total = utime + cputime_to_clock_t(p->stime);
5178 u64 temp;
5179
5180 /*
5181 * Use CFS's precise accounting:
5182 */
5183 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5184
5185 if (total) {
5186 temp *= utime;
5187 do_div(temp, total);
5188 }
5189 utime = (clock_t)temp;
5190
5191 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5192 return p->prev_utime;
5193}
5194
5195cputime_t task_stime(struct task_struct *p)
5196{
5197 clock_t stime;
5198
5199 /*
5200 * Use CFS's precise accounting. (we subtract utime from
5201 * the total, to make sure the total observed by userspace
5202 * grows monotonically - apps rely on that):
5203 */
5204 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5205 cputime_to_clock_t(task_utime(p));
5206
5207 if (stime >= 0)
5208 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5209
5210 return p->prev_stime;
5211}
5212#endif
5213
5214inline cputime_t task_gtime(struct task_struct *p)
5215{
5216 return p->gtime;
5217}
5218
7835b98b
CL
5219/*
5220 * This function gets called by the timer code, with HZ frequency.
5221 * We call it with interrupts disabled.
5222 *
5223 * It also gets called by the fork code, when changing the parent's
5224 * timeslices.
5225 */
5226void scheduler_tick(void)
5227{
7835b98b
CL
5228 int cpu = smp_processor_id();
5229 struct rq *rq = cpu_rq(cpu);
dd41f596 5230 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5231
5232 sched_clock_tick();
dd41f596
IM
5233
5234 spin_lock(&rq->lock);
3e51f33f 5235 update_rq_clock(rq);
f1a438d8 5236 update_cpu_load(rq);
fa85ae24 5237 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5238 spin_unlock(&rq->lock);
7835b98b 5239
cdd6c482 5240 perf_event_task_tick(curr, cpu);
e220d2dc 5241
e418e1c2 5242#ifdef CONFIG_SMP
dd41f596
IM
5243 rq->idle_at_tick = idle_cpu(cpu);
5244 trigger_load_balance(rq, cpu);
e418e1c2 5245#endif
1da177e4
LT
5246}
5247
132380a0 5248notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5249{
5250 if (in_lock_functions(addr)) {
5251 addr = CALLER_ADDR2;
5252 if (in_lock_functions(addr))
5253 addr = CALLER_ADDR3;
5254 }
5255 return addr;
5256}
1da177e4 5257
7e49fcce
SR
5258#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5259 defined(CONFIG_PREEMPT_TRACER))
5260
43627582 5261void __kprobes add_preempt_count(int val)
1da177e4 5262{
6cd8a4bb 5263#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5264 /*
5265 * Underflow?
5266 */
9a11b49a
IM
5267 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5268 return;
6cd8a4bb 5269#endif
1da177e4 5270 preempt_count() += val;
6cd8a4bb 5271#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5272 /*
5273 * Spinlock count overflowing soon?
5274 */
33859f7f
MOS
5275 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5276 PREEMPT_MASK - 10);
6cd8a4bb
SR
5277#endif
5278 if (preempt_count() == val)
5279 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5280}
5281EXPORT_SYMBOL(add_preempt_count);
5282
43627582 5283void __kprobes sub_preempt_count(int val)
1da177e4 5284{
6cd8a4bb 5285#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5286 /*
5287 * Underflow?
5288 */
01e3eb82 5289 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5290 return;
1da177e4
LT
5291 /*
5292 * Is the spinlock portion underflowing?
5293 */
9a11b49a
IM
5294 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5295 !(preempt_count() & PREEMPT_MASK)))
5296 return;
6cd8a4bb 5297#endif
9a11b49a 5298
6cd8a4bb
SR
5299 if (preempt_count() == val)
5300 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5301 preempt_count() -= val;
5302}
5303EXPORT_SYMBOL(sub_preempt_count);
5304
5305#endif
5306
5307/*
dd41f596 5308 * Print scheduling while atomic bug:
1da177e4 5309 */
dd41f596 5310static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5311{
838225b4
SS
5312 struct pt_regs *regs = get_irq_regs();
5313
5314 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5315 prev->comm, prev->pid, preempt_count());
5316
dd41f596 5317 debug_show_held_locks(prev);
e21f5b15 5318 print_modules();
dd41f596
IM
5319 if (irqs_disabled())
5320 print_irqtrace_events(prev);
838225b4
SS
5321
5322 if (regs)
5323 show_regs(regs);
5324 else
5325 dump_stack();
dd41f596 5326}
1da177e4 5327
dd41f596
IM
5328/*
5329 * Various schedule()-time debugging checks and statistics:
5330 */
5331static inline void schedule_debug(struct task_struct *prev)
5332{
1da177e4 5333 /*
41a2d6cf 5334 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5335 * schedule() atomically, we ignore that path for now.
5336 * Otherwise, whine if we are scheduling when we should not be.
5337 */
3f33a7ce 5338 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5339 __schedule_bug(prev);
5340
1da177e4
LT
5341 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5342
2d72376b 5343 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5344#ifdef CONFIG_SCHEDSTATS
5345 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5346 schedstat_inc(this_rq(), bkl_count);
5347 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5348 }
5349#endif
dd41f596
IM
5350}
5351
ad4b78bb 5352static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5353{
ad4b78bb 5354 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5355
ad4b78bb 5356 update_avg(&p->se.avg_running, runtime);
df1c99d4 5357
ad4b78bb 5358 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5359 /*
5360 * In order to avoid avg_overlap growing stale when we are
5361 * indeed overlapping and hence not getting put to sleep, grow
5362 * the avg_overlap on preemption.
5363 *
5364 * We use the average preemption runtime because that
5365 * correlates to the amount of cache footprint a task can
5366 * build up.
5367 */
ad4b78bb
PZ
5368 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5369 update_avg(&p->se.avg_overlap, runtime);
5370 } else {
5371 update_avg(&p->se.avg_running, 0);
df1c99d4 5372 }
ad4b78bb 5373 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5374}
5375
dd41f596
IM
5376/*
5377 * Pick up the highest-prio task:
5378 */
5379static inline struct task_struct *
b67802ea 5380pick_next_task(struct rq *rq)
dd41f596 5381{
5522d5d5 5382 const struct sched_class *class;
dd41f596 5383 struct task_struct *p;
1da177e4
LT
5384
5385 /*
dd41f596
IM
5386 * Optimization: we know that if all tasks are in
5387 * the fair class we can call that function directly:
1da177e4 5388 */
dd41f596 5389 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5390 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5391 if (likely(p))
5392 return p;
1da177e4
LT
5393 }
5394
dd41f596
IM
5395 class = sched_class_highest;
5396 for ( ; ; ) {
fb8d4724 5397 p = class->pick_next_task(rq);
dd41f596
IM
5398 if (p)
5399 return p;
5400 /*
5401 * Will never be NULL as the idle class always
5402 * returns a non-NULL p:
5403 */
5404 class = class->next;
5405 }
5406}
1da177e4 5407
dd41f596
IM
5408/*
5409 * schedule() is the main scheduler function.
5410 */
ff743345 5411asmlinkage void __sched schedule(void)
dd41f596
IM
5412{
5413 struct task_struct *prev, *next;
67ca7bde 5414 unsigned long *switch_count;
dd41f596 5415 struct rq *rq;
31656519 5416 int cpu;
dd41f596 5417
ff743345
PZ
5418need_resched:
5419 preempt_disable();
dd41f596
IM
5420 cpu = smp_processor_id();
5421 rq = cpu_rq(cpu);
d6714c22 5422 rcu_sched_qs(cpu);
dd41f596
IM
5423 prev = rq->curr;
5424 switch_count = &prev->nivcsw;
5425
5426 release_kernel_lock(prev);
5427need_resched_nonpreemptible:
5428
5429 schedule_debug(prev);
1da177e4 5430
31656519 5431 if (sched_feat(HRTICK))
f333fdc9 5432 hrtick_clear(rq);
8f4d37ec 5433
8cd162ce 5434 spin_lock_irq(&rq->lock);
3e51f33f 5435 update_rq_clock(rq);
1e819950 5436 clear_tsk_need_resched(prev);
1da177e4 5437
1da177e4 5438 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5439 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5440 prev->state = TASK_RUNNING;
16882c1e 5441 else
2e1cb74a 5442 deactivate_task(rq, prev, 1);
dd41f596 5443 switch_count = &prev->nvcsw;
1da177e4
LT
5444 }
5445
3f029d3c 5446 pre_schedule(rq, prev);
f65eda4f 5447
dd41f596 5448 if (unlikely(!rq->nr_running))
1da177e4 5449 idle_balance(cpu, rq);
1da177e4 5450
df1c99d4 5451 put_prev_task(rq, prev);
b67802ea 5452 next = pick_next_task(rq);
1da177e4 5453
1da177e4 5454 if (likely(prev != next)) {
673a90a1 5455 sched_info_switch(prev, next);
cdd6c482 5456 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5457
1da177e4
LT
5458 rq->nr_switches++;
5459 rq->curr = next;
5460 ++*switch_count;
5461
dd41f596 5462 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5463 /*
5464 * the context switch might have flipped the stack from under
5465 * us, hence refresh the local variables.
5466 */
5467 cpu = smp_processor_id();
5468 rq = cpu_rq(cpu);
1da177e4
LT
5469 } else
5470 spin_unlock_irq(&rq->lock);
5471
3f029d3c 5472 post_schedule(rq);
1da177e4 5473
8f4d37ec 5474 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5475 goto need_resched_nonpreemptible;
8f4d37ec 5476
1da177e4 5477 preempt_enable_no_resched();
ff743345 5478 if (need_resched())
1da177e4
LT
5479 goto need_resched;
5480}
1da177e4
LT
5481EXPORT_SYMBOL(schedule);
5482
0d66bf6d
PZ
5483#ifdef CONFIG_SMP
5484/*
5485 * Look out! "owner" is an entirely speculative pointer
5486 * access and not reliable.
5487 */
5488int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5489{
5490 unsigned int cpu;
5491 struct rq *rq;
5492
5493 if (!sched_feat(OWNER_SPIN))
5494 return 0;
5495
5496#ifdef CONFIG_DEBUG_PAGEALLOC
5497 /*
5498 * Need to access the cpu field knowing that
5499 * DEBUG_PAGEALLOC could have unmapped it if
5500 * the mutex owner just released it and exited.
5501 */
5502 if (probe_kernel_address(&owner->cpu, cpu))
5503 goto out;
5504#else
5505 cpu = owner->cpu;
5506#endif
5507
5508 /*
5509 * Even if the access succeeded (likely case),
5510 * the cpu field may no longer be valid.
5511 */
5512 if (cpu >= nr_cpumask_bits)
5513 goto out;
5514
5515 /*
5516 * We need to validate that we can do a
5517 * get_cpu() and that we have the percpu area.
5518 */
5519 if (!cpu_online(cpu))
5520 goto out;
5521
5522 rq = cpu_rq(cpu);
5523
5524 for (;;) {
5525 /*
5526 * Owner changed, break to re-assess state.
5527 */
5528 if (lock->owner != owner)
5529 break;
5530
5531 /*
5532 * Is that owner really running on that cpu?
5533 */
5534 if (task_thread_info(rq->curr) != owner || need_resched())
5535 return 0;
5536
5537 cpu_relax();
5538 }
5539out:
5540 return 1;
5541}
5542#endif
5543
1da177e4
LT
5544#ifdef CONFIG_PREEMPT
5545/*
2ed6e34f 5546 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5547 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5548 * occur there and call schedule directly.
5549 */
5550asmlinkage void __sched preempt_schedule(void)
5551{
5552 struct thread_info *ti = current_thread_info();
6478d880 5553
1da177e4
LT
5554 /*
5555 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5556 * we do not want to preempt the current task. Just return..
1da177e4 5557 */
beed33a8 5558 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5559 return;
5560
3a5c359a
AK
5561 do {
5562 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5563 schedule();
3a5c359a 5564 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5565
3a5c359a
AK
5566 /*
5567 * Check again in case we missed a preemption opportunity
5568 * between schedule and now.
5569 */
5570 barrier();
5ed0cec0 5571 } while (need_resched());
1da177e4 5572}
1da177e4
LT
5573EXPORT_SYMBOL(preempt_schedule);
5574
5575/*
2ed6e34f 5576 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5577 * off of irq context.
5578 * Note, that this is called and return with irqs disabled. This will
5579 * protect us against recursive calling from irq.
5580 */
5581asmlinkage void __sched preempt_schedule_irq(void)
5582{
5583 struct thread_info *ti = current_thread_info();
6478d880 5584
2ed6e34f 5585 /* Catch callers which need to be fixed */
1da177e4
LT
5586 BUG_ON(ti->preempt_count || !irqs_disabled());
5587
3a5c359a
AK
5588 do {
5589 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5590 local_irq_enable();
5591 schedule();
5592 local_irq_disable();
3a5c359a 5593 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5594
3a5c359a
AK
5595 /*
5596 * Check again in case we missed a preemption opportunity
5597 * between schedule and now.
5598 */
5599 barrier();
5ed0cec0 5600 } while (need_resched());
1da177e4
LT
5601}
5602
5603#endif /* CONFIG_PREEMPT */
5604
63859d4f 5605int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5606 void *key)
1da177e4 5607{
63859d4f 5608 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5609}
1da177e4
LT
5610EXPORT_SYMBOL(default_wake_function);
5611
5612/*
41a2d6cf
IM
5613 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5614 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5615 * number) then we wake all the non-exclusive tasks and one exclusive task.
5616 *
5617 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5618 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5619 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5620 */
78ddb08f 5621static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5622 int nr_exclusive, int wake_flags, void *key)
1da177e4 5623{
2e45874c 5624 wait_queue_t *curr, *next;
1da177e4 5625
2e45874c 5626 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5627 unsigned flags = curr->flags;
5628
63859d4f 5629 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5630 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5631 break;
5632 }
5633}
5634
5635/**
5636 * __wake_up - wake up threads blocked on a waitqueue.
5637 * @q: the waitqueue
5638 * @mode: which threads
5639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5640 * @key: is directly passed to the wakeup function
50fa610a
DH
5641 *
5642 * It may be assumed that this function implies a write memory barrier before
5643 * changing the task state if and only if any tasks are woken up.
1da177e4 5644 */
7ad5b3a5 5645void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5646 int nr_exclusive, void *key)
1da177e4
LT
5647{
5648 unsigned long flags;
5649
5650 spin_lock_irqsave(&q->lock, flags);
5651 __wake_up_common(q, mode, nr_exclusive, 0, key);
5652 spin_unlock_irqrestore(&q->lock, flags);
5653}
1da177e4
LT
5654EXPORT_SYMBOL(__wake_up);
5655
5656/*
5657 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5658 */
7ad5b3a5 5659void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5660{
5661 __wake_up_common(q, mode, 1, 0, NULL);
5662}
5663
4ede816a
DL
5664void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5665{
5666 __wake_up_common(q, mode, 1, 0, key);
5667}
5668
1da177e4 5669/**
4ede816a 5670 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5671 * @q: the waitqueue
5672 * @mode: which threads
5673 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5674 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5675 *
5676 * The sync wakeup differs that the waker knows that it will schedule
5677 * away soon, so while the target thread will be woken up, it will not
5678 * be migrated to another CPU - ie. the two threads are 'synchronized'
5679 * with each other. This can prevent needless bouncing between CPUs.
5680 *
5681 * On UP it can prevent extra preemption.
50fa610a
DH
5682 *
5683 * It may be assumed that this function implies a write memory barrier before
5684 * changing the task state if and only if any tasks are woken up.
1da177e4 5685 */
4ede816a
DL
5686void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5687 int nr_exclusive, void *key)
1da177e4
LT
5688{
5689 unsigned long flags;
7d478721 5690 int wake_flags = WF_SYNC;
1da177e4
LT
5691
5692 if (unlikely(!q))
5693 return;
5694
5695 if (unlikely(!nr_exclusive))
7d478721 5696 wake_flags = 0;
1da177e4
LT
5697
5698 spin_lock_irqsave(&q->lock, flags);
7d478721 5699 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5700 spin_unlock_irqrestore(&q->lock, flags);
5701}
4ede816a
DL
5702EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5703
5704/*
5705 * __wake_up_sync - see __wake_up_sync_key()
5706 */
5707void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5708{
5709 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5710}
1da177e4
LT
5711EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5712
65eb3dc6
KD
5713/**
5714 * complete: - signals a single thread waiting on this completion
5715 * @x: holds the state of this particular completion
5716 *
5717 * This will wake up a single thread waiting on this completion. Threads will be
5718 * awakened in the same order in which they were queued.
5719 *
5720 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5721 *
5722 * It may be assumed that this function implies a write memory barrier before
5723 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5724 */
b15136e9 5725void complete(struct completion *x)
1da177e4
LT
5726{
5727 unsigned long flags;
5728
5729 spin_lock_irqsave(&x->wait.lock, flags);
5730 x->done++;
d9514f6c 5731 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5732 spin_unlock_irqrestore(&x->wait.lock, flags);
5733}
5734EXPORT_SYMBOL(complete);
5735
65eb3dc6
KD
5736/**
5737 * complete_all: - signals all threads waiting on this completion
5738 * @x: holds the state of this particular completion
5739 *
5740 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5741 *
5742 * It may be assumed that this function implies a write memory barrier before
5743 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5744 */
b15136e9 5745void complete_all(struct completion *x)
1da177e4
LT
5746{
5747 unsigned long flags;
5748
5749 spin_lock_irqsave(&x->wait.lock, flags);
5750 x->done += UINT_MAX/2;
d9514f6c 5751 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5752 spin_unlock_irqrestore(&x->wait.lock, flags);
5753}
5754EXPORT_SYMBOL(complete_all);
5755
8cbbe86d
AK
5756static inline long __sched
5757do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5758{
1da177e4
LT
5759 if (!x->done) {
5760 DECLARE_WAITQUEUE(wait, current);
5761
5762 wait.flags |= WQ_FLAG_EXCLUSIVE;
5763 __add_wait_queue_tail(&x->wait, &wait);
5764 do {
94d3d824 5765 if (signal_pending_state(state, current)) {
ea71a546
ON
5766 timeout = -ERESTARTSYS;
5767 break;
8cbbe86d
AK
5768 }
5769 __set_current_state(state);
1da177e4
LT
5770 spin_unlock_irq(&x->wait.lock);
5771 timeout = schedule_timeout(timeout);
5772 spin_lock_irq(&x->wait.lock);
ea71a546 5773 } while (!x->done && timeout);
1da177e4 5774 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5775 if (!x->done)
5776 return timeout;
1da177e4
LT
5777 }
5778 x->done--;
ea71a546 5779 return timeout ?: 1;
1da177e4 5780}
1da177e4 5781
8cbbe86d
AK
5782static long __sched
5783wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5784{
1da177e4
LT
5785 might_sleep();
5786
5787 spin_lock_irq(&x->wait.lock);
8cbbe86d 5788 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5789 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5790 return timeout;
5791}
1da177e4 5792
65eb3dc6
KD
5793/**
5794 * wait_for_completion: - waits for completion of a task
5795 * @x: holds the state of this particular completion
5796 *
5797 * This waits to be signaled for completion of a specific task. It is NOT
5798 * interruptible and there is no timeout.
5799 *
5800 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5801 * and interrupt capability. Also see complete().
5802 */
b15136e9 5803void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5804{
5805 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5806}
8cbbe86d 5807EXPORT_SYMBOL(wait_for_completion);
1da177e4 5808
65eb3dc6
KD
5809/**
5810 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5811 * @x: holds the state of this particular completion
5812 * @timeout: timeout value in jiffies
5813 *
5814 * This waits for either a completion of a specific task to be signaled or for a
5815 * specified timeout to expire. The timeout is in jiffies. It is not
5816 * interruptible.
5817 */
b15136e9 5818unsigned long __sched
8cbbe86d 5819wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5820{
8cbbe86d 5821 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5822}
8cbbe86d 5823EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5824
65eb3dc6
KD
5825/**
5826 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5827 * @x: holds the state of this particular completion
5828 *
5829 * This waits for completion of a specific task to be signaled. It is
5830 * interruptible.
5831 */
8cbbe86d 5832int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5833{
51e97990
AK
5834 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5835 if (t == -ERESTARTSYS)
5836 return t;
5837 return 0;
0fec171c 5838}
8cbbe86d 5839EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5840
65eb3dc6
KD
5841/**
5842 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5843 * @x: holds the state of this particular completion
5844 * @timeout: timeout value in jiffies
5845 *
5846 * This waits for either a completion of a specific task to be signaled or for a
5847 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5848 */
b15136e9 5849unsigned long __sched
8cbbe86d
AK
5850wait_for_completion_interruptible_timeout(struct completion *x,
5851 unsigned long timeout)
0fec171c 5852{
8cbbe86d 5853 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5854}
8cbbe86d 5855EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5856
65eb3dc6
KD
5857/**
5858 * wait_for_completion_killable: - waits for completion of a task (killable)
5859 * @x: holds the state of this particular completion
5860 *
5861 * This waits to be signaled for completion of a specific task. It can be
5862 * interrupted by a kill signal.
5863 */
009e577e
MW
5864int __sched wait_for_completion_killable(struct completion *x)
5865{
5866 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5867 if (t == -ERESTARTSYS)
5868 return t;
5869 return 0;
5870}
5871EXPORT_SYMBOL(wait_for_completion_killable);
5872
be4de352
DC
5873/**
5874 * try_wait_for_completion - try to decrement a completion without blocking
5875 * @x: completion structure
5876 *
5877 * Returns: 0 if a decrement cannot be done without blocking
5878 * 1 if a decrement succeeded.
5879 *
5880 * If a completion is being used as a counting completion,
5881 * attempt to decrement the counter without blocking. This
5882 * enables us to avoid waiting if the resource the completion
5883 * is protecting is not available.
5884 */
5885bool try_wait_for_completion(struct completion *x)
5886{
5887 int ret = 1;
5888
5889 spin_lock_irq(&x->wait.lock);
5890 if (!x->done)
5891 ret = 0;
5892 else
5893 x->done--;
5894 spin_unlock_irq(&x->wait.lock);
5895 return ret;
5896}
5897EXPORT_SYMBOL(try_wait_for_completion);
5898
5899/**
5900 * completion_done - Test to see if a completion has any waiters
5901 * @x: completion structure
5902 *
5903 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5904 * 1 if there are no waiters.
5905 *
5906 */
5907bool completion_done(struct completion *x)
5908{
5909 int ret = 1;
5910
5911 spin_lock_irq(&x->wait.lock);
5912 if (!x->done)
5913 ret = 0;
5914 spin_unlock_irq(&x->wait.lock);
5915 return ret;
5916}
5917EXPORT_SYMBOL(completion_done);
5918
8cbbe86d
AK
5919static long __sched
5920sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5921{
0fec171c
IM
5922 unsigned long flags;
5923 wait_queue_t wait;
5924
5925 init_waitqueue_entry(&wait, current);
1da177e4 5926
8cbbe86d 5927 __set_current_state(state);
1da177e4 5928
8cbbe86d
AK
5929 spin_lock_irqsave(&q->lock, flags);
5930 __add_wait_queue(q, &wait);
5931 spin_unlock(&q->lock);
5932 timeout = schedule_timeout(timeout);
5933 spin_lock_irq(&q->lock);
5934 __remove_wait_queue(q, &wait);
5935 spin_unlock_irqrestore(&q->lock, flags);
5936
5937 return timeout;
5938}
5939
5940void __sched interruptible_sleep_on(wait_queue_head_t *q)
5941{
5942 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5943}
1da177e4
LT
5944EXPORT_SYMBOL(interruptible_sleep_on);
5945
0fec171c 5946long __sched
95cdf3b7 5947interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5948{
8cbbe86d 5949 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5950}
1da177e4
LT
5951EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5952
0fec171c 5953void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5954{
8cbbe86d 5955 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5956}
1da177e4
LT
5957EXPORT_SYMBOL(sleep_on);
5958
0fec171c 5959long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5960{
8cbbe86d 5961 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5962}
1da177e4
LT
5963EXPORT_SYMBOL(sleep_on_timeout);
5964
b29739f9
IM
5965#ifdef CONFIG_RT_MUTEXES
5966
5967/*
5968 * rt_mutex_setprio - set the current priority of a task
5969 * @p: task
5970 * @prio: prio value (kernel-internal form)
5971 *
5972 * This function changes the 'effective' priority of a task. It does
5973 * not touch ->normal_prio like __setscheduler().
5974 *
5975 * Used by the rt_mutex code to implement priority inheritance logic.
5976 */
36c8b586 5977void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5978{
5979 unsigned long flags;
83b699ed 5980 int oldprio, on_rq, running;
70b97a7f 5981 struct rq *rq;
cb469845 5982 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5983
5984 BUG_ON(prio < 0 || prio > MAX_PRIO);
5985
5986 rq = task_rq_lock(p, &flags);
a8e504d2 5987 update_rq_clock(rq);
b29739f9 5988
d5f9f942 5989 oldprio = p->prio;
dd41f596 5990 on_rq = p->se.on_rq;
051a1d1a 5991 running = task_current(rq, p);
0e1f3483 5992 if (on_rq)
69be72c1 5993 dequeue_task(rq, p, 0);
0e1f3483
HS
5994 if (running)
5995 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5996
5997 if (rt_prio(prio))
5998 p->sched_class = &rt_sched_class;
5999 else
6000 p->sched_class = &fair_sched_class;
6001
b29739f9
IM
6002 p->prio = prio;
6003
0e1f3483
HS
6004 if (running)
6005 p->sched_class->set_curr_task(rq);
dd41f596 6006 if (on_rq) {
8159f87e 6007 enqueue_task(rq, p, 0);
cb469845
SR
6008
6009 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6010 }
6011 task_rq_unlock(rq, &flags);
6012}
6013
6014#endif
6015
36c8b586 6016void set_user_nice(struct task_struct *p, long nice)
1da177e4 6017{
dd41f596 6018 int old_prio, delta, on_rq;
1da177e4 6019 unsigned long flags;
70b97a7f 6020 struct rq *rq;
1da177e4
LT
6021
6022 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6023 return;
6024 /*
6025 * We have to be careful, if called from sys_setpriority(),
6026 * the task might be in the middle of scheduling on another CPU.
6027 */
6028 rq = task_rq_lock(p, &flags);
a8e504d2 6029 update_rq_clock(rq);
1da177e4
LT
6030 /*
6031 * The RT priorities are set via sched_setscheduler(), but we still
6032 * allow the 'normal' nice value to be set - but as expected
6033 * it wont have any effect on scheduling until the task is
dd41f596 6034 * SCHED_FIFO/SCHED_RR:
1da177e4 6035 */
e05606d3 6036 if (task_has_rt_policy(p)) {
1da177e4
LT
6037 p->static_prio = NICE_TO_PRIO(nice);
6038 goto out_unlock;
6039 }
dd41f596 6040 on_rq = p->se.on_rq;
c09595f6 6041 if (on_rq)
69be72c1 6042 dequeue_task(rq, p, 0);
1da177e4 6043
1da177e4 6044 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6045 set_load_weight(p);
b29739f9
IM
6046 old_prio = p->prio;
6047 p->prio = effective_prio(p);
6048 delta = p->prio - old_prio;
1da177e4 6049
dd41f596 6050 if (on_rq) {
8159f87e 6051 enqueue_task(rq, p, 0);
1da177e4 6052 /*
d5f9f942
AM
6053 * If the task increased its priority or is running and
6054 * lowered its priority, then reschedule its CPU:
1da177e4 6055 */
d5f9f942 6056 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6057 resched_task(rq->curr);
6058 }
6059out_unlock:
6060 task_rq_unlock(rq, &flags);
6061}
1da177e4
LT
6062EXPORT_SYMBOL(set_user_nice);
6063
e43379f1
MM
6064/*
6065 * can_nice - check if a task can reduce its nice value
6066 * @p: task
6067 * @nice: nice value
6068 */
36c8b586 6069int can_nice(const struct task_struct *p, const int nice)
e43379f1 6070{
024f4747
MM
6071 /* convert nice value [19,-20] to rlimit style value [1,40] */
6072 int nice_rlim = 20 - nice;
48f24c4d 6073
e43379f1
MM
6074 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6075 capable(CAP_SYS_NICE));
6076}
6077
1da177e4
LT
6078#ifdef __ARCH_WANT_SYS_NICE
6079
6080/*
6081 * sys_nice - change the priority of the current process.
6082 * @increment: priority increment
6083 *
6084 * sys_setpriority is a more generic, but much slower function that
6085 * does similar things.
6086 */
5add95d4 6087SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6088{
48f24c4d 6089 long nice, retval;
1da177e4
LT
6090
6091 /*
6092 * Setpriority might change our priority at the same moment.
6093 * We don't have to worry. Conceptually one call occurs first
6094 * and we have a single winner.
6095 */
e43379f1
MM
6096 if (increment < -40)
6097 increment = -40;
1da177e4
LT
6098 if (increment > 40)
6099 increment = 40;
6100
2b8f836f 6101 nice = TASK_NICE(current) + increment;
1da177e4
LT
6102 if (nice < -20)
6103 nice = -20;
6104 if (nice > 19)
6105 nice = 19;
6106
e43379f1
MM
6107 if (increment < 0 && !can_nice(current, nice))
6108 return -EPERM;
6109
1da177e4
LT
6110 retval = security_task_setnice(current, nice);
6111 if (retval)
6112 return retval;
6113
6114 set_user_nice(current, nice);
6115 return 0;
6116}
6117
6118#endif
6119
6120/**
6121 * task_prio - return the priority value of a given task.
6122 * @p: the task in question.
6123 *
6124 * This is the priority value as seen by users in /proc.
6125 * RT tasks are offset by -200. Normal tasks are centered
6126 * around 0, value goes from -16 to +15.
6127 */
36c8b586 6128int task_prio(const struct task_struct *p)
1da177e4
LT
6129{
6130 return p->prio - MAX_RT_PRIO;
6131}
6132
6133/**
6134 * task_nice - return the nice value of a given task.
6135 * @p: the task in question.
6136 */
36c8b586 6137int task_nice(const struct task_struct *p)
1da177e4
LT
6138{
6139 return TASK_NICE(p);
6140}
150d8bed 6141EXPORT_SYMBOL(task_nice);
1da177e4
LT
6142
6143/**
6144 * idle_cpu - is a given cpu idle currently?
6145 * @cpu: the processor in question.
6146 */
6147int idle_cpu(int cpu)
6148{
6149 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6150}
6151
1da177e4
LT
6152/**
6153 * idle_task - return the idle task for a given cpu.
6154 * @cpu: the processor in question.
6155 */
36c8b586 6156struct task_struct *idle_task(int cpu)
1da177e4
LT
6157{
6158 return cpu_rq(cpu)->idle;
6159}
6160
6161/**
6162 * find_process_by_pid - find a process with a matching PID value.
6163 * @pid: the pid in question.
6164 */
a9957449 6165static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6166{
228ebcbe 6167 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6168}
6169
6170/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6171static void
6172__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6173{
dd41f596 6174 BUG_ON(p->se.on_rq);
48f24c4d 6175
1da177e4 6176 p->policy = policy;
dd41f596
IM
6177 switch (p->policy) {
6178 case SCHED_NORMAL:
6179 case SCHED_BATCH:
6180 case SCHED_IDLE:
6181 p->sched_class = &fair_sched_class;
6182 break;
6183 case SCHED_FIFO:
6184 case SCHED_RR:
6185 p->sched_class = &rt_sched_class;
6186 break;
6187 }
6188
1da177e4 6189 p->rt_priority = prio;
b29739f9
IM
6190 p->normal_prio = normal_prio(p);
6191 /* we are holding p->pi_lock already */
6192 p->prio = rt_mutex_getprio(p);
2dd73a4f 6193 set_load_weight(p);
1da177e4
LT
6194}
6195
c69e8d9c
DH
6196/*
6197 * check the target process has a UID that matches the current process's
6198 */
6199static bool check_same_owner(struct task_struct *p)
6200{
6201 const struct cred *cred = current_cred(), *pcred;
6202 bool match;
6203
6204 rcu_read_lock();
6205 pcred = __task_cred(p);
6206 match = (cred->euid == pcred->euid ||
6207 cred->euid == pcred->uid);
6208 rcu_read_unlock();
6209 return match;
6210}
6211
961ccddd
RR
6212static int __sched_setscheduler(struct task_struct *p, int policy,
6213 struct sched_param *param, bool user)
1da177e4 6214{
83b699ed 6215 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6216 unsigned long flags;
cb469845 6217 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6218 struct rq *rq;
ca94c442 6219 int reset_on_fork;
1da177e4 6220
66e5393a
SR
6221 /* may grab non-irq protected spin_locks */
6222 BUG_ON(in_interrupt());
1da177e4
LT
6223recheck:
6224 /* double check policy once rq lock held */
ca94c442
LP
6225 if (policy < 0) {
6226 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6227 policy = oldpolicy = p->policy;
ca94c442
LP
6228 } else {
6229 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6230 policy &= ~SCHED_RESET_ON_FORK;
6231
6232 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6233 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6234 policy != SCHED_IDLE)
6235 return -EINVAL;
6236 }
6237
1da177e4
LT
6238 /*
6239 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6240 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6241 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6242 */
6243 if (param->sched_priority < 0 ||
95cdf3b7 6244 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6245 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6246 return -EINVAL;
e05606d3 6247 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6248 return -EINVAL;
6249
37e4ab3f
OC
6250 /*
6251 * Allow unprivileged RT tasks to decrease priority:
6252 */
961ccddd 6253 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6254 if (rt_policy(policy)) {
8dc3e909 6255 unsigned long rlim_rtprio;
8dc3e909
ON
6256
6257 if (!lock_task_sighand(p, &flags))
6258 return -ESRCH;
6259 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6260 unlock_task_sighand(p, &flags);
6261
6262 /* can't set/change the rt policy */
6263 if (policy != p->policy && !rlim_rtprio)
6264 return -EPERM;
6265
6266 /* can't increase priority */
6267 if (param->sched_priority > p->rt_priority &&
6268 param->sched_priority > rlim_rtprio)
6269 return -EPERM;
6270 }
dd41f596
IM
6271 /*
6272 * Like positive nice levels, dont allow tasks to
6273 * move out of SCHED_IDLE either:
6274 */
6275 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6276 return -EPERM;
5fe1d75f 6277
37e4ab3f 6278 /* can't change other user's priorities */
c69e8d9c 6279 if (!check_same_owner(p))
37e4ab3f 6280 return -EPERM;
ca94c442
LP
6281
6282 /* Normal users shall not reset the sched_reset_on_fork flag */
6283 if (p->sched_reset_on_fork && !reset_on_fork)
6284 return -EPERM;
37e4ab3f 6285 }
1da177e4 6286
725aad24 6287 if (user) {
b68aa230 6288#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6289 /*
6290 * Do not allow realtime tasks into groups that have no runtime
6291 * assigned.
6292 */
9a7e0b18
PZ
6293 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6294 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6295 return -EPERM;
b68aa230
PZ
6296#endif
6297
725aad24
JF
6298 retval = security_task_setscheduler(p, policy, param);
6299 if (retval)
6300 return retval;
6301 }
6302
b29739f9
IM
6303 /*
6304 * make sure no PI-waiters arrive (or leave) while we are
6305 * changing the priority of the task:
6306 */
6307 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6308 /*
6309 * To be able to change p->policy safely, the apropriate
6310 * runqueue lock must be held.
6311 */
b29739f9 6312 rq = __task_rq_lock(p);
1da177e4
LT
6313 /* recheck policy now with rq lock held */
6314 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6315 policy = oldpolicy = -1;
b29739f9
IM
6316 __task_rq_unlock(rq);
6317 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6318 goto recheck;
6319 }
2daa3577 6320 update_rq_clock(rq);
dd41f596 6321 on_rq = p->se.on_rq;
051a1d1a 6322 running = task_current(rq, p);
0e1f3483 6323 if (on_rq)
2e1cb74a 6324 deactivate_task(rq, p, 0);
0e1f3483
HS
6325 if (running)
6326 p->sched_class->put_prev_task(rq, p);
f6b53205 6327
ca94c442
LP
6328 p->sched_reset_on_fork = reset_on_fork;
6329
1da177e4 6330 oldprio = p->prio;
dd41f596 6331 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6332
0e1f3483
HS
6333 if (running)
6334 p->sched_class->set_curr_task(rq);
dd41f596
IM
6335 if (on_rq) {
6336 activate_task(rq, p, 0);
cb469845
SR
6337
6338 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6339 }
b29739f9
IM
6340 __task_rq_unlock(rq);
6341 spin_unlock_irqrestore(&p->pi_lock, flags);
6342
95e02ca9
TG
6343 rt_mutex_adjust_pi(p);
6344
1da177e4
LT
6345 return 0;
6346}
961ccddd
RR
6347
6348/**
6349 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6350 * @p: the task in question.
6351 * @policy: new policy.
6352 * @param: structure containing the new RT priority.
6353 *
6354 * NOTE that the task may be already dead.
6355 */
6356int sched_setscheduler(struct task_struct *p, int policy,
6357 struct sched_param *param)
6358{
6359 return __sched_setscheduler(p, policy, param, true);
6360}
1da177e4
LT
6361EXPORT_SYMBOL_GPL(sched_setscheduler);
6362
961ccddd
RR
6363/**
6364 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6365 * @p: the task in question.
6366 * @policy: new policy.
6367 * @param: structure containing the new RT priority.
6368 *
6369 * Just like sched_setscheduler, only don't bother checking if the
6370 * current context has permission. For example, this is needed in
6371 * stop_machine(): we create temporary high priority worker threads,
6372 * but our caller might not have that capability.
6373 */
6374int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6375 struct sched_param *param)
6376{
6377 return __sched_setscheduler(p, policy, param, false);
6378}
6379
95cdf3b7
IM
6380static int
6381do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6382{
1da177e4
LT
6383 struct sched_param lparam;
6384 struct task_struct *p;
36c8b586 6385 int retval;
1da177e4
LT
6386
6387 if (!param || pid < 0)
6388 return -EINVAL;
6389 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6390 return -EFAULT;
5fe1d75f
ON
6391
6392 rcu_read_lock();
6393 retval = -ESRCH;
1da177e4 6394 p = find_process_by_pid(pid);
5fe1d75f
ON
6395 if (p != NULL)
6396 retval = sched_setscheduler(p, policy, &lparam);
6397 rcu_read_unlock();
36c8b586 6398
1da177e4
LT
6399 return retval;
6400}
6401
6402/**
6403 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6404 * @pid: the pid in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6407 */
5add95d4
HC
6408SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6409 struct sched_param __user *, param)
1da177e4 6410{
c21761f1
JB
6411 /* negative values for policy are not valid */
6412 if (policy < 0)
6413 return -EINVAL;
6414
1da177e4
LT
6415 return do_sched_setscheduler(pid, policy, param);
6416}
6417
6418/**
6419 * sys_sched_setparam - set/change the RT priority of a thread
6420 * @pid: the pid in question.
6421 * @param: structure containing the new RT priority.
6422 */
5add95d4 6423SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6424{
6425 return do_sched_setscheduler(pid, -1, param);
6426}
6427
6428/**
6429 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6430 * @pid: the pid in question.
6431 */
5add95d4 6432SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6433{
36c8b586 6434 struct task_struct *p;
3a5c359a 6435 int retval;
1da177e4
LT
6436
6437 if (pid < 0)
3a5c359a 6438 return -EINVAL;
1da177e4
LT
6439
6440 retval = -ESRCH;
6441 read_lock(&tasklist_lock);
6442 p = find_process_by_pid(pid);
6443 if (p) {
6444 retval = security_task_getscheduler(p);
6445 if (!retval)
ca94c442
LP
6446 retval = p->policy
6447 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6448 }
6449 read_unlock(&tasklist_lock);
1da177e4
LT
6450 return retval;
6451}
6452
6453/**
ca94c442 6454 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6455 * @pid: the pid in question.
6456 * @param: structure containing the RT priority.
6457 */
5add95d4 6458SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6459{
6460 struct sched_param lp;
36c8b586 6461 struct task_struct *p;
3a5c359a 6462 int retval;
1da177e4
LT
6463
6464 if (!param || pid < 0)
3a5c359a 6465 return -EINVAL;
1da177e4
LT
6466
6467 read_lock(&tasklist_lock);
6468 p = find_process_by_pid(pid);
6469 retval = -ESRCH;
6470 if (!p)
6471 goto out_unlock;
6472
6473 retval = security_task_getscheduler(p);
6474 if (retval)
6475 goto out_unlock;
6476
6477 lp.sched_priority = p->rt_priority;
6478 read_unlock(&tasklist_lock);
6479
6480 /*
6481 * This one might sleep, we cannot do it with a spinlock held ...
6482 */
6483 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6484
1da177e4
LT
6485 return retval;
6486
6487out_unlock:
6488 read_unlock(&tasklist_lock);
6489 return retval;
6490}
6491
96f874e2 6492long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6493{
5a16f3d3 6494 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6495 struct task_struct *p;
6496 int retval;
1da177e4 6497
95402b38 6498 get_online_cpus();
1da177e4
LT
6499 read_lock(&tasklist_lock);
6500
6501 p = find_process_by_pid(pid);
6502 if (!p) {
6503 read_unlock(&tasklist_lock);
95402b38 6504 put_online_cpus();
1da177e4
LT
6505 return -ESRCH;
6506 }
6507
6508 /*
6509 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6510 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6511 * usage count and then drop tasklist_lock.
6512 */
6513 get_task_struct(p);
6514 read_unlock(&tasklist_lock);
6515
5a16f3d3
RR
6516 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6517 retval = -ENOMEM;
6518 goto out_put_task;
6519 }
6520 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6521 retval = -ENOMEM;
6522 goto out_free_cpus_allowed;
6523 }
1da177e4 6524 retval = -EPERM;
c69e8d9c 6525 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6526 goto out_unlock;
6527
e7834f8f
DQ
6528 retval = security_task_setscheduler(p, 0, NULL);
6529 if (retval)
6530 goto out_unlock;
6531
5a16f3d3
RR
6532 cpuset_cpus_allowed(p, cpus_allowed);
6533 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6534 again:
5a16f3d3 6535 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6536
8707d8b8 6537 if (!retval) {
5a16f3d3
RR
6538 cpuset_cpus_allowed(p, cpus_allowed);
6539 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6540 /*
6541 * We must have raced with a concurrent cpuset
6542 * update. Just reset the cpus_allowed to the
6543 * cpuset's cpus_allowed
6544 */
5a16f3d3 6545 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6546 goto again;
6547 }
6548 }
1da177e4 6549out_unlock:
5a16f3d3
RR
6550 free_cpumask_var(new_mask);
6551out_free_cpus_allowed:
6552 free_cpumask_var(cpus_allowed);
6553out_put_task:
1da177e4 6554 put_task_struct(p);
95402b38 6555 put_online_cpus();
1da177e4
LT
6556 return retval;
6557}
6558
6559static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6560 struct cpumask *new_mask)
1da177e4 6561{
96f874e2
RR
6562 if (len < cpumask_size())
6563 cpumask_clear(new_mask);
6564 else if (len > cpumask_size())
6565 len = cpumask_size();
6566
1da177e4
LT
6567 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6568}
6569
6570/**
6571 * sys_sched_setaffinity - set the cpu affinity of a process
6572 * @pid: pid of the process
6573 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6574 * @user_mask_ptr: user-space pointer to the new cpu mask
6575 */
5add95d4
HC
6576SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6577 unsigned long __user *, user_mask_ptr)
1da177e4 6578{
5a16f3d3 6579 cpumask_var_t new_mask;
1da177e4
LT
6580 int retval;
6581
5a16f3d3
RR
6582 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6583 return -ENOMEM;
1da177e4 6584
5a16f3d3
RR
6585 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6586 if (retval == 0)
6587 retval = sched_setaffinity(pid, new_mask);
6588 free_cpumask_var(new_mask);
6589 return retval;
1da177e4
LT
6590}
6591
96f874e2 6592long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6593{
36c8b586 6594 struct task_struct *p;
1da177e4 6595 int retval;
1da177e4 6596
95402b38 6597 get_online_cpus();
1da177e4
LT
6598 read_lock(&tasklist_lock);
6599
6600 retval = -ESRCH;
6601 p = find_process_by_pid(pid);
6602 if (!p)
6603 goto out_unlock;
6604
e7834f8f
DQ
6605 retval = security_task_getscheduler(p);
6606 if (retval)
6607 goto out_unlock;
6608
96f874e2 6609 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6610
6611out_unlock:
6612 read_unlock(&tasklist_lock);
95402b38 6613 put_online_cpus();
1da177e4 6614
9531b62f 6615 return retval;
1da177e4
LT
6616}
6617
6618/**
6619 * sys_sched_getaffinity - get the cpu affinity of a process
6620 * @pid: pid of the process
6621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6622 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6623 */
5add95d4
HC
6624SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6625 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6626{
6627 int ret;
f17c8607 6628 cpumask_var_t mask;
1da177e4 6629
f17c8607 6630 if (len < cpumask_size())
1da177e4
LT
6631 return -EINVAL;
6632
f17c8607
RR
6633 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6634 return -ENOMEM;
1da177e4 6635
f17c8607
RR
6636 ret = sched_getaffinity(pid, mask);
6637 if (ret == 0) {
6638 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6639 ret = -EFAULT;
6640 else
6641 ret = cpumask_size();
6642 }
6643 free_cpumask_var(mask);
1da177e4 6644
f17c8607 6645 return ret;
1da177e4
LT
6646}
6647
6648/**
6649 * sys_sched_yield - yield the current processor to other threads.
6650 *
dd41f596
IM
6651 * This function yields the current CPU to other tasks. If there are no
6652 * other threads running on this CPU then this function will return.
1da177e4 6653 */
5add95d4 6654SYSCALL_DEFINE0(sched_yield)
1da177e4 6655{
70b97a7f 6656 struct rq *rq = this_rq_lock();
1da177e4 6657
2d72376b 6658 schedstat_inc(rq, yld_count);
4530d7ab 6659 current->sched_class->yield_task(rq);
1da177e4
LT
6660
6661 /*
6662 * Since we are going to call schedule() anyway, there's
6663 * no need to preempt or enable interrupts:
6664 */
6665 __release(rq->lock);
8a25d5de 6666 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6667 _raw_spin_unlock(&rq->lock);
6668 preempt_enable_no_resched();
6669
6670 schedule();
6671
6672 return 0;
6673}
6674
d86ee480
PZ
6675static inline int should_resched(void)
6676{
6677 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6678}
6679
e7b38404 6680static void __cond_resched(void)
1da177e4 6681{
e7aaaa69
FW
6682 add_preempt_count(PREEMPT_ACTIVE);
6683 schedule();
6684 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6685}
6686
02b67cc3 6687int __sched _cond_resched(void)
1da177e4 6688{
d86ee480 6689 if (should_resched()) {
1da177e4
LT
6690 __cond_resched();
6691 return 1;
6692 }
6693 return 0;
6694}
02b67cc3 6695EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6696
6697/*
613afbf8 6698 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6699 * call schedule, and on return reacquire the lock.
6700 *
41a2d6cf 6701 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6702 * operations here to prevent schedule() from being called twice (once via
6703 * spin_unlock(), once by hand).
6704 */
613afbf8 6705int __cond_resched_lock(spinlock_t *lock)
1da177e4 6706{
d86ee480 6707 int resched = should_resched();
6df3cecb
JK
6708 int ret = 0;
6709
f607c668
PZ
6710 lockdep_assert_held(lock);
6711
95c354fe 6712 if (spin_needbreak(lock) || resched) {
1da177e4 6713 spin_unlock(lock);
d86ee480 6714 if (resched)
95c354fe
NP
6715 __cond_resched();
6716 else
6717 cpu_relax();
6df3cecb 6718 ret = 1;
1da177e4 6719 spin_lock(lock);
1da177e4 6720 }
6df3cecb 6721 return ret;
1da177e4 6722}
613afbf8 6723EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6724
613afbf8 6725int __sched __cond_resched_softirq(void)
1da177e4
LT
6726{
6727 BUG_ON(!in_softirq());
6728
d86ee480 6729 if (should_resched()) {
98d82567 6730 local_bh_enable();
1da177e4
LT
6731 __cond_resched();
6732 local_bh_disable();
6733 return 1;
6734 }
6735 return 0;
6736}
613afbf8 6737EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6738
1da177e4
LT
6739/**
6740 * yield - yield the current processor to other threads.
6741 *
72fd4a35 6742 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6743 * thread runnable and calls sys_sched_yield().
6744 */
6745void __sched yield(void)
6746{
6747 set_current_state(TASK_RUNNING);
6748 sys_sched_yield();
6749}
1da177e4
LT
6750EXPORT_SYMBOL(yield);
6751
6752/*
41a2d6cf 6753 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6754 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6755 */
6756void __sched io_schedule(void)
6757{
54d35f29 6758 struct rq *rq = raw_rq();
1da177e4 6759
0ff92245 6760 delayacct_blkio_start();
1da177e4 6761 atomic_inc(&rq->nr_iowait);
8f0dfc34 6762 current->in_iowait = 1;
1da177e4 6763 schedule();
8f0dfc34 6764 current->in_iowait = 0;
1da177e4 6765 atomic_dec(&rq->nr_iowait);
0ff92245 6766 delayacct_blkio_end();
1da177e4 6767}
1da177e4
LT
6768EXPORT_SYMBOL(io_schedule);
6769
6770long __sched io_schedule_timeout(long timeout)
6771{
54d35f29 6772 struct rq *rq = raw_rq();
1da177e4
LT
6773 long ret;
6774
0ff92245 6775 delayacct_blkio_start();
1da177e4 6776 atomic_inc(&rq->nr_iowait);
8f0dfc34 6777 current->in_iowait = 1;
1da177e4 6778 ret = schedule_timeout(timeout);
8f0dfc34 6779 current->in_iowait = 0;
1da177e4 6780 atomic_dec(&rq->nr_iowait);
0ff92245 6781 delayacct_blkio_end();
1da177e4
LT
6782 return ret;
6783}
6784
6785/**
6786 * sys_sched_get_priority_max - return maximum RT priority.
6787 * @policy: scheduling class.
6788 *
6789 * this syscall returns the maximum rt_priority that can be used
6790 * by a given scheduling class.
6791 */
5add95d4 6792SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6793{
6794 int ret = -EINVAL;
6795
6796 switch (policy) {
6797 case SCHED_FIFO:
6798 case SCHED_RR:
6799 ret = MAX_USER_RT_PRIO-1;
6800 break;
6801 case SCHED_NORMAL:
b0a9499c 6802 case SCHED_BATCH:
dd41f596 6803 case SCHED_IDLE:
1da177e4
LT
6804 ret = 0;
6805 break;
6806 }
6807 return ret;
6808}
6809
6810/**
6811 * sys_sched_get_priority_min - return minimum RT priority.
6812 * @policy: scheduling class.
6813 *
6814 * this syscall returns the minimum rt_priority that can be used
6815 * by a given scheduling class.
6816 */
5add95d4 6817SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6818{
6819 int ret = -EINVAL;
6820
6821 switch (policy) {
6822 case SCHED_FIFO:
6823 case SCHED_RR:
6824 ret = 1;
6825 break;
6826 case SCHED_NORMAL:
b0a9499c 6827 case SCHED_BATCH:
dd41f596 6828 case SCHED_IDLE:
1da177e4
LT
6829 ret = 0;
6830 }
6831 return ret;
6832}
6833
6834/**
6835 * sys_sched_rr_get_interval - return the default timeslice of a process.
6836 * @pid: pid of the process.
6837 * @interval: userspace pointer to the timeslice value.
6838 *
6839 * this syscall writes the default timeslice value of a given process
6840 * into the user-space timespec buffer. A value of '0' means infinity.
6841 */
17da2bd9 6842SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6843 struct timespec __user *, interval)
1da177e4 6844{
36c8b586 6845 struct task_struct *p;
a4ec24b4 6846 unsigned int time_slice;
3a5c359a 6847 int retval;
1da177e4 6848 struct timespec t;
1da177e4
LT
6849
6850 if (pid < 0)
3a5c359a 6851 return -EINVAL;
1da177e4
LT
6852
6853 retval = -ESRCH;
6854 read_lock(&tasklist_lock);
6855 p = find_process_by_pid(pid);
6856 if (!p)
6857 goto out_unlock;
6858
6859 retval = security_task_getscheduler(p);
6860 if (retval)
6861 goto out_unlock;
6862
0d721cea 6863 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6864
1da177e4 6865 read_unlock(&tasklist_lock);
a4ec24b4 6866 jiffies_to_timespec(time_slice, &t);
1da177e4 6867 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6868 return retval;
3a5c359a 6869
1da177e4
LT
6870out_unlock:
6871 read_unlock(&tasklist_lock);
6872 return retval;
6873}
6874
7c731e0a 6875static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6876
82a1fcb9 6877void sched_show_task(struct task_struct *p)
1da177e4 6878{
1da177e4 6879 unsigned long free = 0;
36c8b586 6880 unsigned state;
1da177e4 6881
1da177e4 6882 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6883 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6884 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6885#if BITS_PER_LONG == 32
1da177e4 6886 if (state == TASK_RUNNING)
cc4ea795 6887 printk(KERN_CONT " running ");
1da177e4 6888 else
cc4ea795 6889 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6890#else
6891 if (state == TASK_RUNNING)
cc4ea795 6892 printk(KERN_CONT " running task ");
1da177e4 6893 else
cc4ea795 6894 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6895#endif
6896#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6897 free = stack_not_used(p);
1da177e4 6898#endif
aa47b7e0
DR
6899 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6900 task_pid_nr(p), task_pid_nr(p->real_parent),
6901 (unsigned long)task_thread_info(p)->flags);
1da177e4 6902
5fb5e6de 6903 show_stack(p, NULL);
1da177e4
LT
6904}
6905
e59e2ae2 6906void show_state_filter(unsigned long state_filter)
1da177e4 6907{
36c8b586 6908 struct task_struct *g, *p;
1da177e4 6909
4bd77321
IM
6910#if BITS_PER_LONG == 32
6911 printk(KERN_INFO
6912 " task PC stack pid father\n");
1da177e4 6913#else
4bd77321
IM
6914 printk(KERN_INFO
6915 " task PC stack pid father\n");
1da177e4
LT
6916#endif
6917 read_lock(&tasklist_lock);
6918 do_each_thread(g, p) {
6919 /*
6920 * reset the NMI-timeout, listing all files on a slow
6921 * console might take alot of time:
6922 */
6923 touch_nmi_watchdog();
39bc89fd 6924 if (!state_filter || (p->state & state_filter))
82a1fcb9 6925 sched_show_task(p);
1da177e4
LT
6926 } while_each_thread(g, p);
6927
04c9167f
JF
6928 touch_all_softlockup_watchdogs();
6929
dd41f596
IM
6930#ifdef CONFIG_SCHED_DEBUG
6931 sysrq_sched_debug_show();
6932#endif
1da177e4 6933 read_unlock(&tasklist_lock);
e59e2ae2
IM
6934 /*
6935 * Only show locks if all tasks are dumped:
6936 */
6937 if (state_filter == -1)
6938 debug_show_all_locks();
1da177e4
LT
6939}
6940
1df21055
IM
6941void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6942{
dd41f596 6943 idle->sched_class = &idle_sched_class;
1df21055
IM
6944}
6945
f340c0d1
IM
6946/**
6947 * init_idle - set up an idle thread for a given CPU
6948 * @idle: task in question
6949 * @cpu: cpu the idle task belongs to
6950 *
6951 * NOTE: this function does not set the idle thread's NEED_RESCHED
6952 * flag, to make booting more robust.
6953 */
5c1e1767 6954void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6955{
70b97a7f 6956 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6957 unsigned long flags;
6958
5cbd54ef
IM
6959 spin_lock_irqsave(&rq->lock, flags);
6960
dd41f596
IM
6961 __sched_fork(idle);
6962 idle->se.exec_start = sched_clock();
6963
b29739f9 6964 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6965 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6966 __set_task_cpu(idle, cpu);
1da177e4 6967
1da177e4 6968 rq->curr = rq->idle = idle;
4866cde0
NP
6969#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6970 idle->oncpu = 1;
6971#endif
1da177e4
LT
6972 spin_unlock_irqrestore(&rq->lock, flags);
6973
6974 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6975#if defined(CONFIG_PREEMPT)
6976 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6977#else
a1261f54 6978 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6979#endif
dd41f596
IM
6980 /*
6981 * The idle tasks have their own, simple scheduling class:
6982 */
6983 idle->sched_class = &idle_sched_class;
fb52607a 6984 ftrace_graph_init_task(idle);
1da177e4
LT
6985}
6986
6987/*
6988 * In a system that switches off the HZ timer nohz_cpu_mask
6989 * indicates which cpus entered this state. This is used
6990 * in the rcu update to wait only for active cpus. For system
6991 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6992 * always be CPU_BITS_NONE.
1da177e4 6993 */
6a7b3dc3 6994cpumask_var_t nohz_cpu_mask;
1da177e4 6995
19978ca6
IM
6996/*
6997 * Increase the granularity value when there are more CPUs,
6998 * because with more CPUs the 'effective latency' as visible
6999 * to users decreases. But the relationship is not linear,
7000 * so pick a second-best guess by going with the log2 of the
7001 * number of CPUs.
7002 *
7003 * This idea comes from the SD scheduler of Con Kolivas:
7004 */
7005static inline void sched_init_granularity(void)
7006{
7007 unsigned int factor = 1 + ilog2(num_online_cpus());
7008 const unsigned long limit = 200000000;
7009
7010 sysctl_sched_min_granularity *= factor;
7011 if (sysctl_sched_min_granularity > limit)
7012 sysctl_sched_min_granularity = limit;
7013
7014 sysctl_sched_latency *= factor;
7015 if (sysctl_sched_latency > limit)
7016 sysctl_sched_latency = limit;
7017
7018 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7019
7020 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7021}
7022
1da177e4
LT
7023#ifdef CONFIG_SMP
7024/*
7025 * This is how migration works:
7026 *
70b97a7f 7027 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7028 * runqueue and wake up that CPU's migration thread.
7029 * 2) we down() the locked semaphore => thread blocks.
7030 * 3) migration thread wakes up (implicitly it forces the migrated
7031 * thread off the CPU)
7032 * 4) it gets the migration request and checks whether the migrated
7033 * task is still in the wrong runqueue.
7034 * 5) if it's in the wrong runqueue then the migration thread removes
7035 * it and puts it into the right queue.
7036 * 6) migration thread up()s the semaphore.
7037 * 7) we wake up and the migration is done.
7038 */
7039
7040/*
7041 * Change a given task's CPU affinity. Migrate the thread to a
7042 * proper CPU and schedule it away if the CPU it's executing on
7043 * is removed from the allowed bitmask.
7044 *
7045 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7046 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7047 * call is not atomic; no spinlocks may be held.
7048 */
96f874e2 7049int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7050{
70b97a7f 7051 struct migration_req req;
1da177e4 7052 unsigned long flags;
70b97a7f 7053 struct rq *rq;
48f24c4d 7054 int ret = 0;
1da177e4
LT
7055
7056 rq = task_rq_lock(p, &flags);
96f874e2 7057 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7058 ret = -EINVAL;
7059 goto out;
7060 }
7061
9985b0ba 7062 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7063 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7064 ret = -EINVAL;
7065 goto out;
7066 }
7067
73fe6aae 7068 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7069 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7070 else {
96f874e2
RR
7071 cpumask_copy(&p->cpus_allowed, new_mask);
7072 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7073 }
7074
1da177e4 7075 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7076 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7077 goto out;
7078
1e5ce4f4 7079 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7080 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7081 struct task_struct *mt = rq->migration_thread;
7082
7083 get_task_struct(mt);
1da177e4
LT
7084 task_rq_unlock(rq, &flags);
7085 wake_up_process(rq->migration_thread);
693525e3 7086 put_task_struct(mt);
1da177e4
LT
7087 wait_for_completion(&req.done);
7088 tlb_migrate_finish(p->mm);
7089 return 0;
7090 }
7091out:
7092 task_rq_unlock(rq, &flags);
48f24c4d 7093
1da177e4
LT
7094 return ret;
7095}
cd8ba7cd 7096EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7097
7098/*
41a2d6cf 7099 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7100 * this because either it can't run here any more (set_cpus_allowed()
7101 * away from this CPU, or CPU going down), or because we're
7102 * attempting to rebalance this task on exec (sched_exec).
7103 *
7104 * So we race with normal scheduler movements, but that's OK, as long
7105 * as the task is no longer on this CPU.
efc30814
KK
7106 *
7107 * Returns non-zero if task was successfully migrated.
1da177e4 7108 */
efc30814 7109static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7110{
70b97a7f 7111 struct rq *rq_dest, *rq_src;
dd41f596 7112 int ret = 0, on_rq;
1da177e4 7113
e761b772 7114 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7115 return ret;
1da177e4
LT
7116
7117 rq_src = cpu_rq(src_cpu);
7118 rq_dest = cpu_rq(dest_cpu);
7119
7120 double_rq_lock(rq_src, rq_dest);
7121 /* Already moved. */
7122 if (task_cpu(p) != src_cpu)
b1e38734 7123 goto done;
1da177e4 7124 /* Affinity changed (again). */
96f874e2 7125 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7126 goto fail;
1da177e4 7127
dd41f596 7128 on_rq = p->se.on_rq;
6e82a3be 7129 if (on_rq)
2e1cb74a 7130 deactivate_task(rq_src, p, 0);
6e82a3be 7131
1da177e4 7132 set_task_cpu(p, dest_cpu);
dd41f596
IM
7133 if (on_rq) {
7134 activate_task(rq_dest, p, 0);
15afe09b 7135 check_preempt_curr(rq_dest, p, 0);
1da177e4 7136 }
b1e38734 7137done:
efc30814 7138 ret = 1;
b1e38734 7139fail:
1da177e4 7140 double_rq_unlock(rq_src, rq_dest);
efc30814 7141 return ret;
1da177e4
LT
7142}
7143
03b042bf
PM
7144#define RCU_MIGRATION_IDLE 0
7145#define RCU_MIGRATION_NEED_QS 1
7146#define RCU_MIGRATION_GOT_QS 2
7147#define RCU_MIGRATION_MUST_SYNC 3
7148
1da177e4
LT
7149/*
7150 * migration_thread - this is a highprio system thread that performs
7151 * thread migration by bumping thread off CPU then 'pushing' onto
7152 * another runqueue.
7153 */
95cdf3b7 7154static int migration_thread(void *data)
1da177e4 7155{
03b042bf 7156 int badcpu;
1da177e4 7157 int cpu = (long)data;
70b97a7f 7158 struct rq *rq;
1da177e4
LT
7159
7160 rq = cpu_rq(cpu);
7161 BUG_ON(rq->migration_thread != current);
7162
7163 set_current_state(TASK_INTERRUPTIBLE);
7164 while (!kthread_should_stop()) {
70b97a7f 7165 struct migration_req *req;
1da177e4 7166 struct list_head *head;
1da177e4 7167
1da177e4
LT
7168 spin_lock_irq(&rq->lock);
7169
7170 if (cpu_is_offline(cpu)) {
7171 spin_unlock_irq(&rq->lock);
371cbb38 7172 break;
1da177e4
LT
7173 }
7174
7175 if (rq->active_balance) {
7176 active_load_balance(rq, cpu);
7177 rq->active_balance = 0;
7178 }
7179
7180 head = &rq->migration_queue;
7181
7182 if (list_empty(head)) {
7183 spin_unlock_irq(&rq->lock);
7184 schedule();
7185 set_current_state(TASK_INTERRUPTIBLE);
7186 continue;
7187 }
70b97a7f 7188 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7189 list_del_init(head->next);
7190
03b042bf
PM
7191 if (req->task != NULL) {
7192 spin_unlock(&rq->lock);
7193 __migrate_task(req->task, cpu, req->dest_cpu);
7194 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7195 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7196 spin_unlock(&rq->lock);
7197 } else {
7198 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7199 spin_unlock(&rq->lock);
7200 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7201 }
674311d5 7202 local_irq_enable();
1da177e4
LT
7203
7204 complete(&req->done);
7205 }
7206 __set_current_state(TASK_RUNNING);
1da177e4 7207
1da177e4
LT
7208 return 0;
7209}
7210
7211#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7212
7213static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7214{
7215 int ret;
7216
7217 local_irq_disable();
7218 ret = __migrate_task(p, src_cpu, dest_cpu);
7219 local_irq_enable();
7220 return ret;
7221}
7222
054b9108 7223/*
3a4fa0a2 7224 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7225 */
48f24c4d 7226static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7227{
70b97a7f 7228 int dest_cpu;
6ca09dfc 7229 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7230
7231again:
7232 /* Look for allowed, online CPU in same node. */
7233 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7234 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7235 goto move;
7236
7237 /* Any allowed, online CPU? */
7238 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7239 if (dest_cpu < nr_cpu_ids)
7240 goto move;
7241
7242 /* No more Mr. Nice Guy. */
7243 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7244 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7245 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7246
e76bd8d9
RR
7247 /*
7248 * Don't tell them about moving exiting tasks or
7249 * kernel threads (both mm NULL), since they never
7250 * leave kernel.
7251 */
7252 if (p->mm && printk_ratelimit()) {
7253 printk(KERN_INFO "process %d (%s) no "
7254 "longer affine to cpu%d\n",
7255 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7256 }
e76bd8d9
RR
7257 }
7258
7259move:
7260 /* It can have affinity changed while we were choosing. */
7261 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7262 goto again;
1da177e4
LT
7263}
7264
7265/*
7266 * While a dead CPU has no uninterruptible tasks queued at this point,
7267 * it might still have a nonzero ->nr_uninterruptible counter, because
7268 * for performance reasons the counter is not stricly tracking tasks to
7269 * their home CPUs. So we just add the counter to another CPU's counter,
7270 * to keep the global sum constant after CPU-down:
7271 */
70b97a7f 7272static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7273{
1e5ce4f4 7274 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7275 unsigned long flags;
7276
7277 local_irq_save(flags);
7278 double_rq_lock(rq_src, rq_dest);
7279 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7280 rq_src->nr_uninterruptible = 0;
7281 double_rq_unlock(rq_src, rq_dest);
7282 local_irq_restore(flags);
7283}
7284
7285/* Run through task list and migrate tasks from the dead cpu. */
7286static void migrate_live_tasks(int src_cpu)
7287{
48f24c4d 7288 struct task_struct *p, *t;
1da177e4 7289
f7b4cddc 7290 read_lock(&tasklist_lock);
1da177e4 7291
48f24c4d
IM
7292 do_each_thread(t, p) {
7293 if (p == current)
1da177e4
LT
7294 continue;
7295
48f24c4d
IM
7296 if (task_cpu(p) == src_cpu)
7297 move_task_off_dead_cpu(src_cpu, p);
7298 } while_each_thread(t, p);
1da177e4 7299
f7b4cddc 7300 read_unlock(&tasklist_lock);
1da177e4
LT
7301}
7302
dd41f596
IM
7303/*
7304 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7305 * It does so by boosting its priority to highest possible.
7306 * Used by CPU offline code.
1da177e4
LT
7307 */
7308void sched_idle_next(void)
7309{
48f24c4d 7310 int this_cpu = smp_processor_id();
70b97a7f 7311 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7312 struct task_struct *p = rq->idle;
7313 unsigned long flags;
7314
7315 /* cpu has to be offline */
48f24c4d 7316 BUG_ON(cpu_online(this_cpu));
1da177e4 7317
48f24c4d
IM
7318 /*
7319 * Strictly not necessary since rest of the CPUs are stopped by now
7320 * and interrupts disabled on the current cpu.
1da177e4
LT
7321 */
7322 spin_lock_irqsave(&rq->lock, flags);
7323
dd41f596 7324 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7325
94bc9a7b
DA
7326 update_rq_clock(rq);
7327 activate_task(rq, p, 0);
1da177e4
LT
7328
7329 spin_unlock_irqrestore(&rq->lock, flags);
7330}
7331
48f24c4d
IM
7332/*
7333 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7334 * offline.
7335 */
7336void idle_task_exit(void)
7337{
7338 struct mm_struct *mm = current->active_mm;
7339
7340 BUG_ON(cpu_online(smp_processor_id()));
7341
7342 if (mm != &init_mm)
7343 switch_mm(mm, &init_mm, current);
7344 mmdrop(mm);
7345}
7346
054b9108 7347/* called under rq->lock with disabled interrupts */
36c8b586 7348static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7349{
70b97a7f 7350 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7351
7352 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7353 BUG_ON(!p->exit_state);
1da177e4
LT
7354
7355 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7356 BUG_ON(p->state == TASK_DEAD);
1da177e4 7357
48f24c4d 7358 get_task_struct(p);
1da177e4
LT
7359
7360 /*
7361 * Drop lock around migration; if someone else moves it,
41a2d6cf 7362 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7363 * fine.
7364 */
f7b4cddc 7365 spin_unlock_irq(&rq->lock);
48f24c4d 7366 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7367 spin_lock_irq(&rq->lock);
1da177e4 7368
48f24c4d 7369 put_task_struct(p);
1da177e4
LT
7370}
7371
7372/* release_task() removes task from tasklist, so we won't find dead tasks. */
7373static void migrate_dead_tasks(unsigned int dead_cpu)
7374{
70b97a7f 7375 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7376 struct task_struct *next;
48f24c4d 7377
dd41f596
IM
7378 for ( ; ; ) {
7379 if (!rq->nr_running)
7380 break;
a8e504d2 7381 update_rq_clock(rq);
b67802ea 7382 next = pick_next_task(rq);
dd41f596
IM
7383 if (!next)
7384 break;
79c53799 7385 next->sched_class->put_prev_task(rq, next);
dd41f596 7386 migrate_dead(dead_cpu, next);
e692ab53 7387
1da177e4
LT
7388 }
7389}
dce48a84
TG
7390
7391/*
7392 * remove the tasks which were accounted by rq from calc_load_tasks.
7393 */
7394static void calc_global_load_remove(struct rq *rq)
7395{
7396 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7397 rq->calc_load_active = 0;
dce48a84 7398}
1da177e4
LT
7399#endif /* CONFIG_HOTPLUG_CPU */
7400
e692ab53
NP
7401#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7402
7403static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7404 {
7405 .procname = "sched_domain",
c57baf1e 7406 .mode = 0555,
e0361851 7407 },
38605cae 7408 {0, },
e692ab53
NP
7409};
7410
7411static struct ctl_table sd_ctl_root[] = {
e0361851 7412 {
c57baf1e 7413 .ctl_name = CTL_KERN,
e0361851 7414 .procname = "kernel",
c57baf1e 7415 .mode = 0555,
e0361851
AD
7416 .child = sd_ctl_dir,
7417 },
38605cae 7418 {0, },
e692ab53
NP
7419};
7420
7421static struct ctl_table *sd_alloc_ctl_entry(int n)
7422{
7423 struct ctl_table *entry =
5cf9f062 7424 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7425
e692ab53
NP
7426 return entry;
7427}
7428
6382bc90
MM
7429static void sd_free_ctl_entry(struct ctl_table **tablep)
7430{
cd790076 7431 struct ctl_table *entry;
6382bc90 7432
cd790076
MM
7433 /*
7434 * In the intermediate directories, both the child directory and
7435 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7436 * will always be set. In the lowest directory the names are
cd790076
MM
7437 * static strings and all have proc handlers.
7438 */
7439 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7440 if (entry->child)
7441 sd_free_ctl_entry(&entry->child);
cd790076
MM
7442 if (entry->proc_handler == NULL)
7443 kfree(entry->procname);
7444 }
6382bc90
MM
7445
7446 kfree(*tablep);
7447 *tablep = NULL;
7448}
7449
e692ab53 7450static void
e0361851 7451set_table_entry(struct ctl_table *entry,
e692ab53
NP
7452 const char *procname, void *data, int maxlen,
7453 mode_t mode, proc_handler *proc_handler)
7454{
e692ab53
NP
7455 entry->procname = procname;
7456 entry->data = data;
7457 entry->maxlen = maxlen;
7458 entry->mode = mode;
7459 entry->proc_handler = proc_handler;
7460}
7461
7462static struct ctl_table *
7463sd_alloc_ctl_domain_table(struct sched_domain *sd)
7464{
a5d8c348 7465 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7466
ad1cdc1d
MM
7467 if (table == NULL)
7468 return NULL;
7469
e0361851 7470 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7471 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7472 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7473 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7474 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7475 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7476 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7477 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7478 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7479 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7480 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7481 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7482 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7483 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7484 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7485 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7486 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7487 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7488 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7489 &sd->cache_nice_tries,
7490 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7491 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7492 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7493 set_table_entry(&table[11], "name", sd->name,
7494 CORENAME_MAX_SIZE, 0444, proc_dostring);
7495 /* &table[12] is terminator */
e692ab53
NP
7496
7497 return table;
7498}
7499
9a4e7159 7500static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7501{
7502 struct ctl_table *entry, *table;
7503 struct sched_domain *sd;
7504 int domain_num = 0, i;
7505 char buf[32];
7506
7507 for_each_domain(cpu, sd)
7508 domain_num++;
7509 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7510 if (table == NULL)
7511 return NULL;
e692ab53
NP
7512
7513 i = 0;
7514 for_each_domain(cpu, sd) {
7515 snprintf(buf, 32, "domain%d", i);
e692ab53 7516 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7517 entry->mode = 0555;
e692ab53
NP
7518 entry->child = sd_alloc_ctl_domain_table(sd);
7519 entry++;
7520 i++;
7521 }
7522 return table;
7523}
7524
7525static struct ctl_table_header *sd_sysctl_header;
6382bc90 7526static void register_sched_domain_sysctl(void)
e692ab53
NP
7527{
7528 int i, cpu_num = num_online_cpus();
7529 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7530 char buf[32];
7531
7378547f
MM
7532 WARN_ON(sd_ctl_dir[0].child);
7533 sd_ctl_dir[0].child = entry;
7534
ad1cdc1d
MM
7535 if (entry == NULL)
7536 return;
7537
97b6ea7b 7538 for_each_online_cpu(i) {
e692ab53 7539 snprintf(buf, 32, "cpu%d", i);
e692ab53 7540 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7541 entry->mode = 0555;
e692ab53 7542 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7543 entry++;
e692ab53 7544 }
7378547f
MM
7545
7546 WARN_ON(sd_sysctl_header);
e692ab53
NP
7547 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7548}
6382bc90 7549
7378547f 7550/* may be called multiple times per register */
6382bc90
MM
7551static void unregister_sched_domain_sysctl(void)
7552{
7378547f
MM
7553 if (sd_sysctl_header)
7554 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7555 sd_sysctl_header = NULL;
7378547f
MM
7556 if (sd_ctl_dir[0].child)
7557 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7558}
e692ab53 7559#else
6382bc90
MM
7560static void register_sched_domain_sysctl(void)
7561{
7562}
7563static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7564{
7565}
7566#endif
7567
1f11eb6a
GH
7568static void set_rq_online(struct rq *rq)
7569{
7570 if (!rq->online) {
7571 const struct sched_class *class;
7572
c6c4927b 7573 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7574 rq->online = 1;
7575
7576 for_each_class(class) {
7577 if (class->rq_online)
7578 class->rq_online(rq);
7579 }
7580 }
7581}
7582
7583static void set_rq_offline(struct rq *rq)
7584{
7585 if (rq->online) {
7586 const struct sched_class *class;
7587
7588 for_each_class(class) {
7589 if (class->rq_offline)
7590 class->rq_offline(rq);
7591 }
7592
c6c4927b 7593 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7594 rq->online = 0;
7595 }
7596}
7597
1da177e4
LT
7598/*
7599 * migration_call - callback that gets triggered when a CPU is added.
7600 * Here we can start up the necessary migration thread for the new CPU.
7601 */
48f24c4d
IM
7602static int __cpuinit
7603migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7604{
1da177e4 7605 struct task_struct *p;
48f24c4d 7606 int cpu = (long)hcpu;
1da177e4 7607 unsigned long flags;
70b97a7f 7608 struct rq *rq;
1da177e4
LT
7609
7610 switch (action) {
5be9361c 7611
1da177e4 7612 case CPU_UP_PREPARE:
8bb78442 7613 case CPU_UP_PREPARE_FROZEN:
dd41f596 7614 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7615 if (IS_ERR(p))
7616 return NOTIFY_BAD;
1da177e4
LT
7617 kthread_bind(p, cpu);
7618 /* Must be high prio: stop_machine expects to yield to it. */
7619 rq = task_rq_lock(p, &flags);
dd41f596 7620 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7621 task_rq_unlock(rq, &flags);
371cbb38 7622 get_task_struct(p);
1da177e4 7623 cpu_rq(cpu)->migration_thread = p;
a468d389 7624 rq->calc_load_update = calc_load_update;
1da177e4 7625 break;
48f24c4d 7626
1da177e4 7627 case CPU_ONLINE:
8bb78442 7628 case CPU_ONLINE_FROZEN:
3a4fa0a2 7629 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7630 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7631
7632 /* Update our root-domain */
7633 rq = cpu_rq(cpu);
7634 spin_lock_irqsave(&rq->lock, flags);
7635 if (rq->rd) {
c6c4927b 7636 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7637
7638 set_rq_online(rq);
1f94ef59
GH
7639 }
7640 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7641 break;
48f24c4d 7642
1da177e4
LT
7643#ifdef CONFIG_HOTPLUG_CPU
7644 case CPU_UP_CANCELED:
8bb78442 7645 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7646 if (!cpu_rq(cpu)->migration_thread)
7647 break;
41a2d6cf 7648 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7649 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7650 cpumask_any(cpu_online_mask));
1da177e4 7651 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7652 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7653 cpu_rq(cpu)->migration_thread = NULL;
7654 break;
48f24c4d 7655
1da177e4 7656 case CPU_DEAD:
8bb78442 7657 case CPU_DEAD_FROZEN:
470fd646 7658 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7659 migrate_live_tasks(cpu);
7660 rq = cpu_rq(cpu);
7661 kthread_stop(rq->migration_thread);
371cbb38 7662 put_task_struct(rq->migration_thread);
1da177e4
LT
7663 rq->migration_thread = NULL;
7664 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7665 spin_lock_irq(&rq->lock);
a8e504d2 7666 update_rq_clock(rq);
2e1cb74a 7667 deactivate_task(rq, rq->idle, 0);
1da177e4 7668 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7669 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7670 rq->idle->sched_class = &idle_sched_class;
1da177e4 7671 migrate_dead_tasks(cpu);
d2da272a 7672 spin_unlock_irq(&rq->lock);
470fd646 7673 cpuset_unlock();
1da177e4
LT
7674 migrate_nr_uninterruptible(rq);
7675 BUG_ON(rq->nr_running != 0);
dce48a84 7676 calc_global_load_remove(rq);
41a2d6cf
IM
7677 /*
7678 * No need to migrate the tasks: it was best-effort if
7679 * they didn't take sched_hotcpu_mutex. Just wake up
7680 * the requestors.
7681 */
1da177e4
LT
7682 spin_lock_irq(&rq->lock);
7683 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7684 struct migration_req *req;
7685
1da177e4 7686 req = list_entry(rq->migration_queue.next,
70b97a7f 7687 struct migration_req, list);
1da177e4 7688 list_del_init(&req->list);
9a2bd244 7689 spin_unlock_irq(&rq->lock);
1da177e4 7690 complete(&req->done);
9a2bd244 7691 spin_lock_irq(&rq->lock);
1da177e4
LT
7692 }
7693 spin_unlock_irq(&rq->lock);
7694 break;
57d885fe 7695
08f503b0
GH
7696 case CPU_DYING:
7697 case CPU_DYING_FROZEN:
57d885fe
GH
7698 /* Update our root-domain */
7699 rq = cpu_rq(cpu);
7700 spin_lock_irqsave(&rq->lock, flags);
7701 if (rq->rd) {
c6c4927b 7702 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7703 set_rq_offline(rq);
57d885fe
GH
7704 }
7705 spin_unlock_irqrestore(&rq->lock, flags);
7706 break;
1da177e4
LT
7707#endif
7708 }
7709 return NOTIFY_OK;
7710}
7711
f38b0820
PM
7712/*
7713 * Register at high priority so that task migration (migrate_all_tasks)
7714 * happens before everything else. This has to be lower priority than
cdd6c482 7715 * the notifier in the perf_event subsystem, though.
1da177e4 7716 */
26c2143b 7717static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7718 .notifier_call = migration_call,
7719 .priority = 10
7720};
7721
7babe8db 7722static int __init migration_init(void)
1da177e4
LT
7723{
7724 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7725 int err;
48f24c4d
IM
7726
7727 /* Start one for the boot CPU: */
07dccf33
AM
7728 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7729 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7730 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7731 register_cpu_notifier(&migration_notifier);
7babe8db 7732
a004cd42 7733 return 0;
1da177e4 7734}
7babe8db 7735early_initcall(migration_init);
1da177e4
LT
7736#endif
7737
7738#ifdef CONFIG_SMP
476f3534 7739
3e9830dc 7740#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7741
7c16ec58 7742static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7743 struct cpumask *groupmask)
1da177e4 7744{
4dcf6aff 7745 struct sched_group *group = sd->groups;
434d53b0 7746 char str[256];
1da177e4 7747
968ea6d8 7748 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7749 cpumask_clear(groupmask);
4dcf6aff
IM
7750
7751 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7752
7753 if (!(sd->flags & SD_LOAD_BALANCE)) {
7754 printk("does not load-balance\n");
7755 if (sd->parent)
7756 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7757 " has parent");
7758 return -1;
41c7ce9a
NP
7759 }
7760
eefd796a 7761 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7762
758b2cdc 7763 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7764 printk(KERN_ERR "ERROR: domain->span does not contain "
7765 "CPU%d\n", cpu);
7766 }
758b2cdc 7767 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7768 printk(KERN_ERR "ERROR: domain->groups does not contain"
7769 " CPU%d\n", cpu);
7770 }
1da177e4 7771
4dcf6aff 7772 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7773 do {
4dcf6aff
IM
7774 if (!group) {
7775 printk("\n");
7776 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7777 break;
7778 }
7779
18a3885f 7780 if (!group->cpu_power) {
4dcf6aff
IM
7781 printk(KERN_CONT "\n");
7782 printk(KERN_ERR "ERROR: domain->cpu_power not "
7783 "set\n");
7784 break;
7785 }
1da177e4 7786
758b2cdc 7787 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7788 printk(KERN_CONT "\n");
7789 printk(KERN_ERR "ERROR: empty group\n");
7790 break;
7791 }
1da177e4 7792
758b2cdc 7793 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7794 printk(KERN_CONT "\n");
7795 printk(KERN_ERR "ERROR: repeated CPUs\n");
7796 break;
7797 }
1da177e4 7798
758b2cdc 7799 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7800
968ea6d8 7801 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7802
7803 printk(KERN_CONT " %s", str);
18a3885f
PZ
7804 if (group->cpu_power != SCHED_LOAD_SCALE) {
7805 printk(KERN_CONT " (cpu_power = %d)",
7806 group->cpu_power);
381512cf 7807 }
1da177e4 7808
4dcf6aff
IM
7809 group = group->next;
7810 } while (group != sd->groups);
7811 printk(KERN_CONT "\n");
1da177e4 7812
758b2cdc 7813 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7814 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7815
758b2cdc
RR
7816 if (sd->parent &&
7817 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7818 printk(KERN_ERR "ERROR: parent span is not a superset "
7819 "of domain->span\n");
7820 return 0;
7821}
1da177e4 7822
4dcf6aff
IM
7823static void sched_domain_debug(struct sched_domain *sd, int cpu)
7824{
d5dd3db1 7825 cpumask_var_t groupmask;
4dcf6aff 7826 int level = 0;
1da177e4 7827
4dcf6aff
IM
7828 if (!sd) {
7829 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7830 return;
7831 }
1da177e4 7832
4dcf6aff
IM
7833 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7834
d5dd3db1 7835 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7836 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7837 return;
7838 }
7839
4dcf6aff 7840 for (;;) {
7c16ec58 7841 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7842 break;
1da177e4
LT
7843 level++;
7844 sd = sd->parent;
33859f7f 7845 if (!sd)
4dcf6aff
IM
7846 break;
7847 }
d5dd3db1 7848 free_cpumask_var(groupmask);
1da177e4 7849}
6d6bc0ad 7850#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7851# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7852#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7853
1a20ff27 7854static int sd_degenerate(struct sched_domain *sd)
245af2c7 7855{
758b2cdc 7856 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7857 return 1;
7858
7859 /* Following flags need at least 2 groups */
7860 if (sd->flags & (SD_LOAD_BALANCE |
7861 SD_BALANCE_NEWIDLE |
7862 SD_BALANCE_FORK |
89c4710e
SS
7863 SD_BALANCE_EXEC |
7864 SD_SHARE_CPUPOWER |
7865 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7866 if (sd->groups != sd->groups->next)
7867 return 0;
7868 }
7869
7870 /* Following flags don't use groups */
c88d5910 7871 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7872 return 0;
7873
7874 return 1;
7875}
7876
48f24c4d
IM
7877static int
7878sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7879{
7880 unsigned long cflags = sd->flags, pflags = parent->flags;
7881
7882 if (sd_degenerate(parent))
7883 return 1;
7884
758b2cdc 7885 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7886 return 0;
7887
245af2c7
SS
7888 /* Flags needing groups don't count if only 1 group in parent */
7889 if (parent->groups == parent->groups->next) {
7890 pflags &= ~(SD_LOAD_BALANCE |
7891 SD_BALANCE_NEWIDLE |
7892 SD_BALANCE_FORK |
89c4710e
SS
7893 SD_BALANCE_EXEC |
7894 SD_SHARE_CPUPOWER |
7895 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7896 if (nr_node_ids == 1)
7897 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7898 }
7899 if (~cflags & pflags)
7900 return 0;
7901
7902 return 1;
7903}
7904
c6c4927b
RR
7905static void free_rootdomain(struct root_domain *rd)
7906{
68e74568
RR
7907 cpupri_cleanup(&rd->cpupri);
7908
c6c4927b
RR
7909 free_cpumask_var(rd->rto_mask);
7910 free_cpumask_var(rd->online);
7911 free_cpumask_var(rd->span);
7912 kfree(rd);
7913}
7914
57d885fe
GH
7915static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7916{
a0490fa3 7917 struct root_domain *old_rd = NULL;
57d885fe 7918 unsigned long flags;
57d885fe
GH
7919
7920 spin_lock_irqsave(&rq->lock, flags);
7921
7922 if (rq->rd) {
a0490fa3 7923 old_rd = rq->rd;
57d885fe 7924
c6c4927b 7925 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7926 set_rq_offline(rq);
57d885fe 7927
c6c4927b 7928 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7929
a0490fa3
IM
7930 /*
7931 * If we dont want to free the old_rt yet then
7932 * set old_rd to NULL to skip the freeing later
7933 * in this function:
7934 */
7935 if (!atomic_dec_and_test(&old_rd->refcount))
7936 old_rd = NULL;
57d885fe
GH
7937 }
7938
7939 atomic_inc(&rd->refcount);
7940 rq->rd = rd;
7941
c6c4927b 7942 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7943 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7944 set_rq_online(rq);
57d885fe
GH
7945
7946 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7947
7948 if (old_rd)
7949 free_rootdomain(old_rd);
57d885fe
GH
7950}
7951
fd5e1b5d 7952static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7953{
36b7b6d4
PE
7954 gfp_t gfp = GFP_KERNEL;
7955
57d885fe
GH
7956 memset(rd, 0, sizeof(*rd));
7957
36b7b6d4
PE
7958 if (bootmem)
7959 gfp = GFP_NOWAIT;
c6c4927b 7960
36b7b6d4 7961 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7962 goto out;
36b7b6d4 7963 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7964 goto free_span;
36b7b6d4 7965 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7966 goto free_online;
6e0534f2 7967
0fb53029 7968 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7969 goto free_rto_mask;
c6c4927b 7970 return 0;
6e0534f2 7971
68e74568
RR
7972free_rto_mask:
7973 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7974free_online:
7975 free_cpumask_var(rd->online);
7976free_span:
7977 free_cpumask_var(rd->span);
0c910d28 7978out:
c6c4927b 7979 return -ENOMEM;
57d885fe
GH
7980}
7981
7982static void init_defrootdomain(void)
7983{
c6c4927b
RR
7984 init_rootdomain(&def_root_domain, true);
7985
57d885fe
GH
7986 atomic_set(&def_root_domain.refcount, 1);
7987}
7988
dc938520 7989static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7990{
7991 struct root_domain *rd;
7992
7993 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7994 if (!rd)
7995 return NULL;
7996
c6c4927b
RR
7997 if (init_rootdomain(rd, false) != 0) {
7998 kfree(rd);
7999 return NULL;
8000 }
57d885fe
GH
8001
8002 return rd;
8003}
8004
1da177e4 8005/*
0eab9146 8006 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8007 * hold the hotplug lock.
8008 */
0eab9146
IM
8009static void
8010cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8011{
70b97a7f 8012 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8013 struct sched_domain *tmp;
8014
8015 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8016 for (tmp = sd; tmp; ) {
245af2c7
SS
8017 struct sched_domain *parent = tmp->parent;
8018 if (!parent)
8019 break;
f29c9b1c 8020
1a848870 8021 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8022 tmp->parent = parent->parent;
1a848870
SS
8023 if (parent->parent)
8024 parent->parent->child = tmp;
f29c9b1c
LZ
8025 } else
8026 tmp = tmp->parent;
245af2c7
SS
8027 }
8028
1a848870 8029 if (sd && sd_degenerate(sd)) {
245af2c7 8030 sd = sd->parent;
1a848870
SS
8031 if (sd)
8032 sd->child = NULL;
8033 }
1da177e4
LT
8034
8035 sched_domain_debug(sd, cpu);
8036
57d885fe 8037 rq_attach_root(rq, rd);
674311d5 8038 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8039}
8040
8041/* cpus with isolated domains */
dcc30a35 8042static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8043
8044/* Setup the mask of cpus configured for isolated domains */
8045static int __init isolated_cpu_setup(char *str)
8046{
968ea6d8 8047 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8048 return 1;
8049}
8050
8927f494 8051__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8052
8053/*
6711cab4
SS
8054 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8055 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8056 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8057 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8058 *
8059 * init_sched_build_groups will build a circular linked list of the groups
8060 * covered by the given span, and will set each group's ->cpumask correctly,
8061 * and ->cpu_power to 0.
8062 */
a616058b 8063static void
96f874e2
RR
8064init_sched_build_groups(const struct cpumask *span,
8065 const struct cpumask *cpu_map,
8066 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8067 struct sched_group **sg,
96f874e2
RR
8068 struct cpumask *tmpmask),
8069 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8070{
8071 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8072 int i;
8073
96f874e2 8074 cpumask_clear(covered);
7c16ec58 8075
abcd083a 8076 for_each_cpu(i, span) {
6711cab4 8077 struct sched_group *sg;
7c16ec58 8078 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8079 int j;
8080
758b2cdc 8081 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8082 continue;
8083
758b2cdc 8084 cpumask_clear(sched_group_cpus(sg));
18a3885f 8085 sg->cpu_power = 0;
1da177e4 8086
abcd083a 8087 for_each_cpu(j, span) {
7c16ec58 8088 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8089 continue;
8090
96f874e2 8091 cpumask_set_cpu(j, covered);
758b2cdc 8092 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8093 }
8094 if (!first)
8095 first = sg;
8096 if (last)
8097 last->next = sg;
8098 last = sg;
8099 }
8100 last->next = first;
8101}
8102
9c1cfda2 8103#define SD_NODES_PER_DOMAIN 16
1da177e4 8104
9c1cfda2 8105#ifdef CONFIG_NUMA
198e2f18 8106
9c1cfda2
JH
8107/**
8108 * find_next_best_node - find the next node to include in a sched_domain
8109 * @node: node whose sched_domain we're building
8110 * @used_nodes: nodes already in the sched_domain
8111 *
41a2d6cf 8112 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8113 * finds the closest node not already in the @used_nodes map.
8114 *
8115 * Should use nodemask_t.
8116 */
c5f59f08 8117static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8118{
8119 int i, n, val, min_val, best_node = 0;
8120
8121 min_val = INT_MAX;
8122
076ac2af 8123 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8124 /* Start at @node */
076ac2af 8125 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8126
8127 if (!nr_cpus_node(n))
8128 continue;
8129
8130 /* Skip already used nodes */
c5f59f08 8131 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8132 continue;
8133
8134 /* Simple min distance search */
8135 val = node_distance(node, n);
8136
8137 if (val < min_val) {
8138 min_val = val;
8139 best_node = n;
8140 }
8141 }
8142
c5f59f08 8143 node_set(best_node, *used_nodes);
9c1cfda2
JH
8144 return best_node;
8145}
8146
8147/**
8148 * sched_domain_node_span - get a cpumask for a node's sched_domain
8149 * @node: node whose cpumask we're constructing
73486722 8150 * @span: resulting cpumask
9c1cfda2 8151 *
41a2d6cf 8152 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8153 * should be one that prevents unnecessary balancing, but also spreads tasks
8154 * out optimally.
8155 */
96f874e2 8156static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8157{
c5f59f08 8158 nodemask_t used_nodes;
48f24c4d 8159 int i;
9c1cfda2 8160
6ca09dfc 8161 cpumask_clear(span);
c5f59f08 8162 nodes_clear(used_nodes);
9c1cfda2 8163
6ca09dfc 8164 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8165 node_set(node, used_nodes);
9c1cfda2
JH
8166
8167 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8168 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8169
6ca09dfc 8170 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8171 }
9c1cfda2 8172}
6d6bc0ad 8173#endif /* CONFIG_NUMA */
9c1cfda2 8174
5c45bf27 8175int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8176
6c99e9ad
RR
8177/*
8178 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8179 *
8180 * ( See the the comments in include/linux/sched.h:struct sched_group
8181 * and struct sched_domain. )
6c99e9ad
RR
8182 */
8183struct static_sched_group {
8184 struct sched_group sg;
8185 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8186};
8187
8188struct static_sched_domain {
8189 struct sched_domain sd;
8190 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8191};
8192
49a02c51
AH
8193struct s_data {
8194#ifdef CONFIG_NUMA
8195 int sd_allnodes;
8196 cpumask_var_t domainspan;
8197 cpumask_var_t covered;
8198 cpumask_var_t notcovered;
8199#endif
8200 cpumask_var_t nodemask;
8201 cpumask_var_t this_sibling_map;
8202 cpumask_var_t this_core_map;
8203 cpumask_var_t send_covered;
8204 cpumask_var_t tmpmask;
8205 struct sched_group **sched_group_nodes;
8206 struct root_domain *rd;
8207};
8208
2109b99e
AH
8209enum s_alloc {
8210 sa_sched_groups = 0,
8211 sa_rootdomain,
8212 sa_tmpmask,
8213 sa_send_covered,
8214 sa_this_core_map,
8215 sa_this_sibling_map,
8216 sa_nodemask,
8217 sa_sched_group_nodes,
8218#ifdef CONFIG_NUMA
8219 sa_notcovered,
8220 sa_covered,
8221 sa_domainspan,
8222#endif
8223 sa_none,
8224};
8225
9c1cfda2 8226/*
48f24c4d 8227 * SMT sched-domains:
9c1cfda2 8228 */
1da177e4 8229#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8230static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8231static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8232
41a2d6cf 8233static int
96f874e2
RR
8234cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8235 struct sched_group **sg, struct cpumask *unused)
1da177e4 8236{
6711cab4 8237 if (sg)
6c99e9ad 8238 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8239 return cpu;
8240}
6d6bc0ad 8241#endif /* CONFIG_SCHED_SMT */
1da177e4 8242
48f24c4d
IM
8243/*
8244 * multi-core sched-domains:
8245 */
1e9f28fa 8246#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8247static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8248static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8249#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8250
8251#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8252static int
96f874e2
RR
8253cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8254 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8255{
6711cab4 8256 int group;
7c16ec58 8257
c69fc56d 8258 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8259 group = cpumask_first(mask);
6711cab4 8260 if (sg)
6c99e9ad 8261 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8262 return group;
1e9f28fa
SS
8263}
8264#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8265static int
96f874e2
RR
8266cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8267 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8268{
6711cab4 8269 if (sg)
6c99e9ad 8270 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8271 return cpu;
8272}
8273#endif
8274
6c99e9ad
RR
8275static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8276static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8277
41a2d6cf 8278static int
96f874e2
RR
8279cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8280 struct sched_group **sg, struct cpumask *mask)
1da177e4 8281{
6711cab4 8282 int group;
48f24c4d 8283#ifdef CONFIG_SCHED_MC
6ca09dfc 8284 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8285 group = cpumask_first(mask);
1e9f28fa 8286#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8287 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8288 group = cpumask_first(mask);
1da177e4 8289#else
6711cab4 8290 group = cpu;
1da177e4 8291#endif
6711cab4 8292 if (sg)
6c99e9ad 8293 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8294 return group;
1da177e4
LT
8295}
8296
8297#ifdef CONFIG_NUMA
1da177e4 8298/*
9c1cfda2
JH
8299 * The init_sched_build_groups can't handle what we want to do with node
8300 * groups, so roll our own. Now each node has its own list of groups which
8301 * gets dynamically allocated.
1da177e4 8302 */
62ea9ceb 8303static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8304static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8305
62ea9ceb 8306static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8307static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8308
96f874e2
RR
8309static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8310 struct sched_group **sg,
8311 struct cpumask *nodemask)
9c1cfda2 8312{
6711cab4
SS
8313 int group;
8314
6ca09dfc 8315 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8316 group = cpumask_first(nodemask);
6711cab4
SS
8317
8318 if (sg)
6c99e9ad 8319 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8320 return group;
1da177e4 8321}
6711cab4 8322
08069033
SS
8323static void init_numa_sched_groups_power(struct sched_group *group_head)
8324{
8325 struct sched_group *sg = group_head;
8326 int j;
8327
8328 if (!sg)
8329 return;
3a5c359a 8330 do {
758b2cdc 8331 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8332 struct sched_domain *sd;
08069033 8333
6c99e9ad 8334 sd = &per_cpu(phys_domains, j).sd;
13318a71 8335 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8336 /*
8337 * Only add "power" once for each
8338 * physical package.
8339 */
8340 continue;
8341 }
08069033 8342
18a3885f 8343 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8344 }
8345 sg = sg->next;
8346 } while (sg != group_head);
08069033 8347}
0601a88d
AH
8348
8349static int build_numa_sched_groups(struct s_data *d,
8350 const struct cpumask *cpu_map, int num)
8351{
8352 struct sched_domain *sd;
8353 struct sched_group *sg, *prev;
8354 int n, j;
8355
8356 cpumask_clear(d->covered);
8357 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8358 if (cpumask_empty(d->nodemask)) {
8359 d->sched_group_nodes[num] = NULL;
8360 goto out;
8361 }
8362
8363 sched_domain_node_span(num, d->domainspan);
8364 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8365
8366 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8367 GFP_KERNEL, num);
8368 if (!sg) {
8369 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8370 num);
8371 return -ENOMEM;
8372 }
8373 d->sched_group_nodes[num] = sg;
8374
8375 for_each_cpu(j, d->nodemask) {
8376 sd = &per_cpu(node_domains, j).sd;
8377 sd->groups = sg;
8378 }
8379
18a3885f 8380 sg->cpu_power = 0;
0601a88d
AH
8381 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8382 sg->next = sg;
8383 cpumask_or(d->covered, d->covered, d->nodemask);
8384
8385 prev = sg;
8386 for (j = 0; j < nr_node_ids; j++) {
8387 n = (num + j) % nr_node_ids;
8388 cpumask_complement(d->notcovered, d->covered);
8389 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8390 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8391 if (cpumask_empty(d->tmpmask))
8392 break;
8393 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8394 if (cpumask_empty(d->tmpmask))
8395 continue;
8396 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8397 GFP_KERNEL, num);
8398 if (!sg) {
8399 printk(KERN_WARNING
8400 "Can not alloc domain group for node %d\n", j);
8401 return -ENOMEM;
8402 }
18a3885f 8403 sg->cpu_power = 0;
0601a88d
AH
8404 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8405 sg->next = prev->next;
8406 cpumask_or(d->covered, d->covered, d->tmpmask);
8407 prev->next = sg;
8408 prev = sg;
8409 }
8410out:
8411 return 0;
8412}
6d6bc0ad 8413#endif /* CONFIG_NUMA */
1da177e4 8414
a616058b 8415#ifdef CONFIG_NUMA
51888ca2 8416/* Free memory allocated for various sched_group structures */
96f874e2
RR
8417static void free_sched_groups(const struct cpumask *cpu_map,
8418 struct cpumask *nodemask)
51888ca2 8419{
a616058b 8420 int cpu, i;
51888ca2 8421
abcd083a 8422 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8423 struct sched_group **sched_group_nodes
8424 = sched_group_nodes_bycpu[cpu];
8425
51888ca2
SV
8426 if (!sched_group_nodes)
8427 continue;
8428
076ac2af 8429 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8430 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8431
6ca09dfc 8432 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8433 if (cpumask_empty(nodemask))
51888ca2
SV
8434 continue;
8435
8436 if (sg == NULL)
8437 continue;
8438 sg = sg->next;
8439next_sg:
8440 oldsg = sg;
8441 sg = sg->next;
8442 kfree(oldsg);
8443 if (oldsg != sched_group_nodes[i])
8444 goto next_sg;
8445 }
8446 kfree(sched_group_nodes);
8447 sched_group_nodes_bycpu[cpu] = NULL;
8448 }
51888ca2 8449}
6d6bc0ad 8450#else /* !CONFIG_NUMA */
96f874e2
RR
8451static void free_sched_groups(const struct cpumask *cpu_map,
8452 struct cpumask *nodemask)
a616058b
SS
8453{
8454}
6d6bc0ad 8455#endif /* CONFIG_NUMA */
51888ca2 8456
89c4710e
SS
8457/*
8458 * Initialize sched groups cpu_power.
8459 *
8460 * cpu_power indicates the capacity of sched group, which is used while
8461 * distributing the load between different sched groups in a sched domain.
8462 * Typically cpu_power for all the groups in a sched domain will be same unless
8463 * there are asymmetries in the topology. If there are asymmetries, group
8464 * having more cpu_power will pickup more load compared to the group having
8465 * less cpu_power.
89c4710e
SS
8466 */
8467static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8468{
8469 struct sched_domain *child;
8470 struct sched_group *group;
f93e65c1
PZ
8471 long power;
8472 int weight;
89c4710e
SS
8473
8474 WARN_ON(!sd || !sd->groups);
8475
13318a71 8476 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8477 return;
8478
8479 child = sd->child;
8480
18a3885f 8481 sd->groups->cpu_power = 0;
5517d86b 8482
f93e65c1
PZ
8483 if (!child) {
8484 power = SCHED_LOAD_SCALE;
8485 weight = cpumask_weight(sched_domain_span(sd));
8486 /*
8487 * SMT siblings share the power of a single core.
a52bfd73
PZ
8488 * Usually multiple threads get a better yield out of
8489 * that one core than a single thread would have,
8490 * reflect that in sd->smt_gain.
f93e65c1 8491 */
a52bfd73
PZ
8492 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8493 power *= sd->smt_gain;
f93e65c1 8494 power /= weight;
a52bfd73
PZ
8495 power >>= SCHED_LOAD_SHIFT;
8496 }
18a3885f 8497 sd->groups->cpu_power += power;
89c4710e
SS
8498 return;
8499 }
8500
89c4710e 8501 /*
f93e65c1 8502 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8503 */
8504 group = child->groups;
8505 do {
18a3885f 8506 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8507 group = group->next;
8508 } while (group != child->groups);
8509}
8510
7c16ec58
MT
8511/*
8512 * Initializers for schedule domains
8513 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8514 */
8515
a5d8c348
IM
8516#ifdef CONFIG_SCHED_DEBUG
8517# define SD_INIT_NAME(sd, type) sd->name = #type
8518#else
8519# define SD_INIT_NAME(sd, type) do { } while (0)
8520#endif
8521
7c16ec58 8522#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8523
7c16ec58
MT
8524#define SD_INIT_FUNC(type) \
8525static noinline void sd_init_##type(struct sched_domain *sd) \
8526{ \
8527 memset(sd, 0, sizeof(*sd)); \
8528 *sd = SD_##type##_INIT; \
1d3504fc 8529 sd->level = SD_LV_##type; \
a5d8c348 8530 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8531}
8532
8533SD_INIT_FUNC(CPU)
8534#ifdef CONFIG_NUMA
8535 SD_INIT_FUNC(ALLNODES)
8536 SD_INIT_FUNC(NODE)
8537#endif
8538#ifdef CONFIG_SCHED_SMT
8539 SD_INIT_FUNC(SIBLING)
8540#endif
8541#ifdef CONFIG_SCHED_MC
8542 SD_INIT_FUNC(MC)
8543#endif
8544
1d3504fc
HS
8545static int default_relax_domain_level = -1;
8546
8547static int __init setup_relax_domain_level(char *str)
8548{
30e0e178
LZ
8549 unsigned long val;
8550
8551 val = simple_strtoul(str, NULL, 0);
8552 if (val < SD_LV_MAX)
8553 default_relax_domain_level = val;
8554
1d3504fc
HS
8555 return 1;
8556}
8557__setup("relax_domain_level=", setup_relax_domain_level);
8558
8559static void set_domain_attribute(struct sched_domain *sd,
8560 struct sched_domain_attr *attr)
8561{
8562 int request;
8563
8564 if (!attr || attr->relax_domain_level < 0) {
8565 if (default_relax_domain_level < 0)
8566 return;
8567 else
8568 request = default_relax_domain_level;
8569 } else
8570 request = attr->relax_domain_level;
8571 if (request < sd->level) {
8572 /* turn off idle balance on this domain */
c88d5910 8573 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8574 } else {
8575 /* turn on idle balance on this domain */
c88d5910 8576 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8577 }
8578}
8579
2109b99e
AH
8580static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8581 const struct cpumask *cpu_map)
8582{
8583 switch (what) {
8584 case sa_sched_groups:
8585 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8586 d->sched_group_nodes = NULL;
8587 case sa_rootdomain:
8588 free_rootdomain(d->rd); /* fall through */
8589 case sa_tmpmask:
8590 free_cpumask_var(d->tmpmask); /* fall through */
8591 case sa_send_covered:
8592 free_cpumask_var(d->send_covered); /* fall through */
8593 case sa_this_core_map:
8594 free_cpumask_var(d->this_core_map); /* fall through */
8595 case sa_this_sibling_map:
8596 free_cpumask_var(d->this_sibling_map); /* fall through */
8597 case sa_nodemask:
8598 free_cpumask_var(d->nodemask); /* fall through */
8599 case sa_sched_group_nodes:
d1b55138 8600#ifdef CONFIG_NUMA
2109b99e
AH
8601 kfree(d->sched_group_nodes); /* fall through */
8602 case sa_notcovered:
8603 free_cpumask_var(d->notcovered); /* fall through */
8604 case sa_covered:
8605 free_cpumask_var(d->covered); /* fall through */
8606 case sa_domainspan:
8607 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8608#endif
2109b99e
AH
8609 case sa_none:
8610 break;
8611 }
8612}
3404c8d9 8613
2109b99e
AH
8614static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8615 const struct cpumask *cpu_map)
8616{
3404c8d9 8617#ifdef CONFIG_NUMA
2109b99e
AH
8618 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8619 return sa_none;
8620 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8621 return sa_domainspan;
8622 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8623 return sa_covered;
8624 /* Allocate the per-node list of sched groups */
8625 d->sched_group_nodes = kcalloc(nr_node_ids,
8626 sizeof(struct sched_group *), GFP_KERNEL);
8627 if (!d->sched_group_nodes) {
d1b55138 8628 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8629 return sa_notcovered;
d1b55138 8630 }
2109b99e 8631 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8632#endif
2109b99e
AH
8633 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8634 return sa_sched_group_nodes;
8635 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8636 return sa_nodemask;
8637 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8638 return sa_this_sibling_map;
8639 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8640 return sa_this_core_map;
8641 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8642 return sa_send_covered;
8643 d->rd = alloc_rootdomain();
8644 if (!d->rd) {
57d885fe 8645 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8646 return sa_tmpmask;
57d885fe 8647 }
2109b99e
AH
8648 return sa_rootdomain;
8649}
57d885fe 8650
7f4588f3
AH
8651static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8652 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8653{
8654 struct sched_domain *sd = NULL;
7c16ec58 8655#ifdef CONFIG_NUMA
7f4588f3 8656 struct sched_domain *parent;
1da177e4 8657
7f4588f3
AH
8658 d->sd_allnodes = 0;
8659 if (cpumask_weight(cpu_map) >
8660 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8661 sd = &per_cpu(allnodes_domains, i).sd;
8662 SD_INIT(sd, ALLNODES);
1d3504fc 8663 set_domain_attribute(sd, attr);
7f4588f3
AH
8664 cpumask_copy(sched_domain_span(sd), cpu_map);
8665 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8666 d->sd_allnodes = 1;
8667 }
8668 parent = sd;
8669
8670 sd = &per_cpu(node_domains, i).sd;
8671 SD_INIT(sd, NODE);
8672 set_domain_attribute(sd, attr);
8673 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8674 sd->parent = parent;
8675 if (parent)
8676 parent->child = sd;
8677 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8678#endif
7f4588f3
AH
8679 return sd;
8680}
1da177e4 8681
87cce662
AH
8682static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8683 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8684 struct sched_domain *parent, int i)
8685{
8686 struct sched_domain *sd;
8687 sd = &per_cpu(phys_domains, i).sd;
8688 SD_INIT(sd, CPU);
8689 set_domain_attribute(sd, attr);
8690 cpumask_copy(sched_domain_span(sd), d->nodemask);
8691 sd->parent = parent;
8692 if (parent)
8693 parent->child = sd;
8694 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8695 return sd;
8696}
1da177e4 8697
410c4081
AH
8698static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8699 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8700 struct sched_domain *parent, int i)
8701{
8702 struct sched_domain *sd = parent;
1e9f28fa 8703#ifdef CONFIG_SCHED_MC
410c4081
AH
8704 sd = &per_cpu(core_domains, i).sd;
8705 SD_INIT(sd, MC);
8706 set_domain_attribute(sd, attr);
8707 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8708 sd->parent = parent;
8709 parent->child = sd;
8710 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8711#endif
410c4081
AH
8712 return sd;
8713}
1e9f28fa 8714
d8173535
AH
8715static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8716 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8717 struct sched_domain *parent, int i)
8718{
8719 struct sched_domain *sd = parent;
1da177e4 8720#ifdef CONFIG_SCHED_SMT
d8173535
AH
8721 sd = &per_cpu(cpu_domains, i).sd;
8722 SD_INIT(sd, SIBLING);
8723 set_domain_attribute(sd, attr);
8724 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8725 sd->parent = parent;
8726 parent->child = sd;
8727 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8728#endif
d8173535
AH
8729 return sd;
8730}
1da177e4 8731
0e8e85c9
AH
8732static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8733 const struct cpumask *cpu_map, int cpu)
8734{
8735 switch (l) {
1da177e4 8736#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8737 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8738 cpumask_and(d->this_sibling_map, cpu_map,
8739 topology_thread_cpumask(cpu));
8740 if (cpu == cpumask_first(d->this_sibling_map))
8741 init_sched_build_groups(d->this_sibling_map, cpu_map,
8742 &cpu_to_cpu_group,
8743 d->send_covered, d->tmpmask);
8744 break;
1da177e4 8745#endif
1e9f28fa 8746#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8747 case SD_LV_MC: /* set up multi-core groups */
8748 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8749 if (cpu == cpumask_first(d->this_core_map))
8750 init_sched_build_groups(d->this_core_map, cpu_map,
8751 &cpu_to_core_group,
8752 d->send_covered, d->tmpmask);
8753 break;
1e9f28fa 8754#endif
86548096
AH
8755 case SD_LV_CPU: /* set up physical groups */
8756 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8757 if (!cpumask_empty(d->nodemask))
8758 init_sched_build_groups(d->nodemask, cpu_map,
8759 &cpu_to_phys_group,
8760 d->send_covered, d->tmpmask);
8761 break;
1da177e4 8762#ifdef CONFIG_NUMA
de616e36
AH
8763 case SD_LV_ALLNODES:
8764 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8765 d->send_covered, d->tmpmask);
8766 break;
8767#endif
0e8e85c9
AH
8768 default:
8769 break;
7c16ec58 8770 }
0e8e85c9 8771}
9c1cfda2 8772
2109b99e
AH
8773/*
8774 * Build sched domains for a given set of cpus and attach the sched domains
8775 * to the individual cpus
8776 */
8777static int __build_sched_domains(const struct cpumask *cpu_map,
8778 struct sched_domain_attr *attr)
8779{
8780 enum s_alloc alloc_state = sa_none;
8781 struct s_data d;
294b0c96 8782 struct sched_domain *sd;
2109b99e 8783 int i;
7c16ec58 8784#ifdef CONFIG_NUMA
2109b99e 8785 d.sd_allnodes = 0;
7c16ec58 8786#endif
9c1cfda2 8787
2109b99e
AH
8788 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8789 if (alloc_state != sa_rootdomain)
8790 goto error;
8791 alloc_state = sa_sched_groups;
9c1cfda2 8792
1da177e4 8793 /*
1a20ff27 8794 * Set up domains for cpus specified by the cpu_map.
1da177e4 8795 */
abcd083a 8796 for_each_cpu(i, cpu_map) {
49a02c51
AH
8797 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8798 cpu_map);
9761eea8 8799
7f4588f3 8800 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8801 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8802 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8803 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8804 }
9c1cfda2 8805
abcd083a 8806 for_each_cpu(i, cpu_map) {
0e8e85c9 8807 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8808 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8809 }
9c1cfda2 8810
1da177e4 8811 /* Set up physical groups */
86548096
AH
8812 for (i = 0; i < nr_node_ids; i++)
8813 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8814
1da177e4
LT
8815#ifdef CONFIG_NUMA
8816 /* Set up node groups */
de616e36
AH
8817 if (d.sd_allnodes)
8818 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8819
0601a88d
AH
8820 for (i = 0; i < nr_node_ids; i++)
8821 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8822 goto error;
1da177e4
LT
8823#endif
8824
8825 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8826#ifdef CONFIG_SCHED_SMT
abcd083a 8827 for_each_cpu(i, cpu_map) {
294b0c96 8828 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8829 init_sched_groups_power(i, sd);
5c45bf27 8830 }
1da177e4 8831#endif
1e9f28fa 8832#ifdef CONFIG_SCHED_MC
abcd083a 8833 for_each_cpu(i, cpu_map) {
294b0c96 8834 sd = &per_cpu(core_domains, i).sd;
89c4710e 8835 init_sched_groups_power(i, sd);
5c45bf27
SS
8836 }
8837#endif
1e9f28fa 8838
abcd083a 8839 for_each_cpu(i, cpu_map) {
294b0c96 8840 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8841 init_sched_groups_power(i, sd);
1da177e4
LT
8842 }
8843
9c1cfda2 8844#ifdef CONFIG_NUMA
076ac2af 8845 for (i = 0; i < nr_node_ids; i++)
49a02c51 8846 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8847
49a02c51 8848 if (d.sd_allnodes) {
6711cab4 8849 struct sched_group *sg;
f712c0c7 8850
96f874e2 8851 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8852 d.tmpmask);
f712c0c7
SS
8853 init_numa_sched_groups_power(sg);
8854 }
9c1cfda2
JH
8855#endif
8856
1da177e4 8857 /* Attach the domains */
abcd083a 8858 for_each_cpu(i, cpu_map) {
1da177e4 8859#ifdef CONFIG_SCHED_SMT
6c99e9ad 8860 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8861#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8862 sd = &per_cpu(core_domains, i).sd;
1da177e4 8863#else
6c99e9ad 8864 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8865#endif
49a02c51 8866 cpu_attach_domain(sd, d.rd, i);
1da177e4 8867 }
51888ca2 8868
2109b99e
AH
8869 d.sched_group_nodes = NULL; /* don't free this we still need it */
8870 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8871 return 0;
51888ca2 8872
51888ca2 8873error:
2109b99e
AH
8874 __free_domain_allocs(&d, alloc_state, cpu_map);
8875 return -ENOMEM;
1da177e4 8876}
029190c5 8877
96f874e2 8878static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8879{
8880 return __build_sched_domains(cpu_map, NULL);
8881}
8882
96f874e2 8883static struct cpumask *doms_cur; /* current sched domains */
029190c5 8884static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8885static struct sched_domain_attr *dattr_cur;
8886 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8887
8888/*
8889 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8890 * cpumask) fails, then fallback to a single sched domain,
8891 * as determined by the single cpumask fallback_doms.
029190c5 8892 */
4212823f 8893static cpumask_var_t fallback_doms;
029190c5 8894
ee79d1bd
HC
8895/*
8896 * arch_update_cpu_topology lets virtualized architectures update the
8897 * cpu core maps. It is supposed to return 1 if the topology changed
8898 * or 0 if it stayed the same.
8899 */
8900int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8901{
ee79d1bd 8902 return 0;
22e52b07
HC
8903}
8904
1a20ff27 8905/*
41a2d6cf 8906 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8907 * For now this just excludes isolated cpus, but could be used to
8908 * exclude other special cases in the future.
1a20ff27 8909 */
96f874e2 8910static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8911{
7378547f
MM
8912 int err;
8913
22e52b07 8914 arch_update_cpu_topology();
029190c5 8915 ndoms_cur = 1;
96f874e2 8916 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8917 if (!doms_cur)
4212823f 8918 doms_cur = fallback_doms;
dcc30a35 8919 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8920 dattr_cur = NULL;
7378547f 8921 err = build_sched_domains(doms_cur);
6382bc90 8922 register_sched_domain_sysctl();
7378547f
MM
8923
8924 return err;
1a20ff27
DG
8925}
8926
96f874e2
RR
8927static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8928 struct cpumask *tmpmask)
1da177e4 8929{
7c16ec58 8930 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8931}
1da177e4 8932
1a20ff27
DG
8933/*
8934 * Detach sched domains from a group of cpus specified in cpu_map
8935 * These cpus will now be attached to the NULL domain
8936 */
96f874e2 8937static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8938{
96f874e2
RR
8939 /* Save because hotplug lock held. */
8940 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8941 int i;
8942
abcd083a 8943 for_each_cpu(i, cpu_map)
57d885fe 8944 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8945 synchronize_sched();
96f874e2 8946 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8947}
8948
1d3504fc
HS
8949/* handle null as "default" */
8950static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8951 struct sched_domain_attr *new, int idx_new)
8952{
8953 struct sched_domain_attr tmp;
8954
8955 /* fast path */
8956 if (!new && !cur)
8957 return 1;
8958
8959 tmp = SD_ATTR_INIT;
8960 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8961 new ? (new + idx_new) : &tmp,
8962 sizeof(struct sched_domain_attr));
8963}
8964
029190c5
PJ
8965/*
8966 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8967 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8968 * doms_new[] to the current sched domain partitioning, doms_cur[].
8969 * It destroys each deleted domain and builds each new domain.
8970 *
96f874e2 8971 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8972 * The masks don't intersect (don't overlap.) We should setup one
8973 * sched domain for each mask. CPUs not in any of the cpumasks will
8974 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8975 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8976 * it as it is.
8977 *
41a2d6cf
IM
8978 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8979 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8980 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8981 * ndoms_new == 1, and partition_sched_domains() will fallback to
8982 * the single partition 'fallback_doms', it also forces the domains
8983 * to be rebuilt.
029190c5 8984 *
96f874e2 8985 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8986 * ndoms_new == 0 is a special case for destroying existing domains,
8987 * and it will not create the default domain.
dfb512ec 8988 *
029190c5
PJ
8989 * Call with hotplug lock held
8990 */
96f874e2
RR
8991/* FIXME: Change to struct cpumask *doms_new[] */
8992void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8993 struct sched_domain_attr *dattr_new)
029190c5 8994{
dfb512ec 8995 int i, j, n;
d65bd5ec 8996 int new_topology;
029190c5 8997
712555ee 8998 mutex_lock(&sched_domains_mutex);
a1835615 8999
7378547f
MM
9000 /* always unregister in case we don't destroy any domains */
9001 unregister_sched_domain_sysctl();
9002
d65bd5ec
HC
9003 /* Let architecture update cpu core mappings. */
9004 new_topology = arch_update_cpu_topology();
9005
dfb512ec 9006 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9007
9008 /* Destroy deleted domains */
9009 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9010 for (j = 0; j < n && !new_topology; j++) {
96f874e2 9011 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 9012 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9013 goto match1;
9014 }
9015 /* no match - a current sched domain not in new doms_new[] */
9016 detach_destroy_domains(doms_cur + i);
9017match1:
9018 ;
9019 }
9020
e761b772
MK
9021 if (doms_new == NULL) {
9022 ndoms_cur = 0;
4212823f 9023 doms_new = fallback_doms;
dcc30a35 9024 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9025 WARN_ON_ONCE(dattr_new);
e761b772
MK
9026 }
9027
029190c5
PJ
9028 /* Build new domains */
9029 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9030 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9031 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9032 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9033 goto match2;
9034 }
9035 /* no match - add a new doms_new */
1d3504fc
HS
9036 __build_sched_domains(doms_new + i,
9037 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9038match2:
9039 ;
9040 }
9041
9042 /* Remember the new sched domains */
4212823f 9043 if (doms_cur != fallback_doms)
029190c5 9044 kfree(doms_cur);
1d3504fc 9045 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9046 doms_cur = doms_new;
1d3504fc 9047 dattr_cur = dattr_new;
029190c5 9048 ndoms_cur = ndoms_new;
7378547f
MM
9049
9050 register_sched_domain_sysctl();
a1835615 9051
712555ee 9052 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9053}
9054
5c45bf27 9055#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9056static void arch_reinit_sched_domains(void)
5c45bf27 9057{
95402b38 9058 get_online_cpus();
dfb512ec
MK
9059
9060 /* Destroy domains first to force the rebuild */
9061 partition_sched_domains(0, NULL, NULL);
9062
e761b772 9063 rebuild_sched_domains();
95402b38 9064 put_online_cpus();
5c45bf27
SS
9065}
9066
9067static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9068{
afb8a9b7 9069 unsigned int level = 0;
5c45bf27 9070
afb8a9b7
GS
9071 if (sscanf(buf, "%u", &level) != 1)
9072 return -EINVAL;
9073
9074 /*
9075 * level is always be positive so don't check for
9076 * level < POWERSAVINGS_BALANCE_NONE which is 0
9077 * What happens on 0 or 1 byte write,
9078 * need to check for count as well?
9079 */
9080
9081 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9082 return -EINVAL;
9083
9084 if (smt)
afb8a9b7 9085 sched_smt_power_savings = level;
5c45bf27 9086 else
afb8a9b7 9087 sched_mc_power_savings = level;
5c45bf27 9088
c70f22d2 9089 arch_reinit_sched_domains();
5c45bf27 9090
c70f22d2 9091 return count;
5c45bf27
SS
9092}
9093
5c45bf27 9094#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9095static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9096 char *page)
5c45bf27
SS
9097{
9098 return sprintf(page, "%u\n", sched_mc_power_savings);
9099}
f718cd4a 9100static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9101 const char *buf, size_t count)
5c45bf27
SS
9102{
9103 return sched_power_savings_store(buf, count, 0);
9104}
f718cd4a
AK
9105static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9106 sched_mc_power_savings_show,
9107 sched_mc_power_savings_store);
5c45bf27
SS
9108#endif
9109
9110#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9111static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9112 char *page)
5c45bf27
SS
9113{
9114 return sprintf(page, "%u\n", sched_smt_power_savings);
9115}
f718cd4a 9116static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9117 const char *buf, size_t count)
5c45bf27
SS
9118{
9119 return sched_power_savings_store(buf, count, 1);
9120}
f718cd4a
AK
9121static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9122 sched_smt_power_savings_show,
6707de00
AB
9123 sched_smt_power_savings_store);
9124#endif
9125
39aac648 9126int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9127{
9128 int err = 0;
9129
9130#ifdef CONFIG_SCHED_SMT
9131 if (smt_capable())
9132 err = sysfs_create_file(&cls->kset.kobj,
9133 &attr_sched_smt_power_savings.attr);
9134#endif
9135#ifdef CONFIG_SCHED_MC
9136 if (!err && mc_capable())
9137 err = sysfs_create_file(&cls->kset.kobj,
9138 &attr_sched_mc_power_savings.attr);
9139#endif
9140 return err;
9141}
6d6bc0ad 9142#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9143
e761b772 9144#ifndef CONFIG_CPUSETS
1da177e4 9145/*
e761b772
MK
9146 * Add online and remove offline CPUs from the scheduler domains.
9147 * When cpusets are enabled they take over this function.
1da177e4
LT
9148 */
9149static int update_sched_domains(struct notifier_block *nfb,
9150 unsigned long action, void *hcpu)
e761b772
MK
9151{
9152 switch (action) {
9153 case CPU_ONLINE:
9154 case CPU_ONLINE_FROZEN:
9155 case CPU_DEAD:
9156 case CPU_DEAD_FROZEN:
dfb512ec 9157 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9158 return NOTIFY_OK;
9159
9160 default:
9161 return NOTIFY_DONE;
9162 }
9163}
9164#endif
9165
9166static int update_runtime(struct notifier_block *nfb,
9167 unsigned long action, void *hcpu)
1da177e4 9168{
7def2be1
PZ
9169 int cpu = (int)(long)hcpu;
9170
1da177e4 9171 switch (action) {
1da177e4 9172 case CPU_DOWN_PREPARE:
8bb78442 9173 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9174 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9175 return NOTIFY_OK;
9176
1da177e4 9177 case CPU_DOWN_FAILED:
8bb78442 9178 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9179 case CPU_ONLINE:
8bb78442 9180 case CPU_ONLINE_FROZEN:
7def2be1 9181 enable_runtime(cpu_rq(cpu));
e761b772
MK
9182 return NOTIFY_OK;
9183
1da177e4
LT
9184 default:
9185 return NOTIFY_DONE;
9186 }
1da177e4 9187}
1da177e4
LT
9188
9189void __init sched_init_smp(void)
9190{
dcc30a35
RR
9191 cpumask_var_t non_isolated_cpus;
9192
9193 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9194 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9195
434d53b0
MT
9196#if defined(CONFIG_NUMA)
9197 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9198 GFP_KERNEL);
9199 BUG_ON(sched_group_nodes_bycpu == NULL);
9200#endif
95402b38 9201 get_online_cpus();
712555ee 9202 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9203 arch_init_sched_domains(cpu_online_mask);
9204 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9205 if (cpumask_empty(non_isolated_cpus))
9206 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9207 mutex_unlock(&sched_domains_mutex);
95402b38 9208 put_online_cpus();
e761b772
MK
9209
9210#ifndef CONFIG_CPUSETS
1da177e4
LT
9211 /* XXX: Theoretical race here - CPU may be hotplugged now */
9212 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9213#endif
9214
9215 /* RT runtime code needs to handle some hotplug events */
9216 hotcpu_notifier(update_runtime, 0);
9217
b328ca18 9218 init_hrtick();
5c1e1767
NP
9219
9220 /* Move init over to a non-isolated CPU */
dcc30a35 9221 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9222 BUG();
19978ca6 9223 sched_init_granularity();
dcc30a35 9224 free_cpumask_var(non_isolated_cpus);
4212823f 9225
0e3900e6 9226 init_sched_rt_class();
1da177e4
LT
9227}
9228#else
9229void __init sched_init_smp(void)
9230{
19978ca6 9231 sched_init_granularity();
1da177e4
LT
9232}
9233#endif /* CONFIG_SMP */
9234
cd1bb94b
AB
9235const_debug unsigned int sysctl_timer_migration = 1;
9236
1da177e4
LT
9237int in_sched_functions(unsigned long addr)
9238{
1da177e4
LT
9239 return in_lock_functions(addr) ||
9240 (addr >= (unsigned long)__sched_text_start
9241 && addr < (unsigned long)__sched_text_end);
9242}
9243
a9957449 9244static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9245{
9246 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9247 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9248#ifdef CONFIG_FAIR_GROUP_SCHED
9249 cfs_rq->rq = rq;
9250#endif
67e9fb2a 9251 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9252}
9253
fa85ae24
PZ
9254static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9255{
9256 struct rt_prio_array *array;
9257 int i;
9258
9259 array = &rt_rq->active;
9260 for (i = 0; i < MAX_RT_PRIO; i++) {
9261 INIT_LIST_HEAD(array->queue + i);
9262 __clear_bit(i, array->bitmap);
9263 }
9264 /* delimiter for bitsearch: */
9265 __set_bit(MAX_RT_PRIO, array->bitmap);
9266
052f1dc7 9267#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9268 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9269#ifdef CONFIG_SMP
e864c499 9270 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9271#endif
48d5e258 9272#endif
fa85ae24
PZ
9273#ifdef CONFIG_SMP
9274 rt_rq->rt_nr_migratory = 0;
fa85ae24 9275 rt_rq->overloaded = 0;
c20b08e3 9276 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9277#endif
9278
9279 rt_rq->rt_time = 0;
9280 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9281 rt_rq->rt_runtime = 0;
9282 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9283
052f1dc7 9284#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9285 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9286 rt_rq->rq = rq;
9287#endif
fa85ae24
PZ
9288}
9289
6f505b16 9290#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9291static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9292 struct sched_entity *se, int cpu, int add,
9293 struct sched_entity *parent)
6f505b16 9294{
ec7dc8ac 9295 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9296 tg->cfs_rq[cpu] = cfs_rq;
9297 init_cfs_rq(cfs_rq, rq);
9298 cfs_rq->tg = tg;
9299 if (add)
9300 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9301
9302 tg->se[cpu] = se;
354d60c2
DG
9303 /* se could be NULL for init_task_group */
9304 if (!se)
9305 return;
9306
ec7dc8ac
DG
9307 if (!parent)
9308 se->cfs_rq = &rq->cfs;
9309 else
9310 se->cfs_rq = parent->my_q;
9311
6f505b16
PZ
9312 se->my_q = cfs_rq;
9313 se->load.weight = tg->shares;
e05510d0 9314 se->load.inv_weight = 0;
ec7dc8ac 9315 se->parent = parent;
6f505b16 9316}
052f1dc7 9317#endif
6f505b16 9318
052f1dc7 9319#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9320static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9321 struct sched_rt_entity *rt_se, int cpu, int add,
9322 struct sched_rt_entity *parent)
6f505b16 9323{
ec7dc8ac
DG
9324 struct rq *rq = cpu_rq(cpu);
9325
6f505b16
PZ
9326 tg->rt_rq[cpu] = rt_rq;
9327 init_rt_rq(rt_rq, rq);
9328 rt_rq->tg = tg;
9329 rt_rq->rt_se = rt_se;
ac086bc2 9330 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9331 if (add)
9332 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9333
9334 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9335 if (!rt_se)
9336 return;
9337
ec7dc8ac
DG
9338 if (!parent)
9339 rt_se->rt_rq = &rq->rt;
9340 else
9341 rt_se->rt_rq = parent->my_q;
9342
6f505b16 9343 rt_se->my_q = rt_rq;
ec7dc8ac 9344 rt_se->parent = parent;
6f505b16
PZ
9345 INIT_LIST_HEAD(&rt_se->run_list);
9346}
9347#endif
9348
1da177e4
LT
9349void __init sched_init(void)
9350{
dd41f596 9351 int i, j;
434d53b0
MT
9352 unsigned long alloc_size = 0, ptr;
9353
9354#ifdef CONFIG_FAIR_GROUP_SCHED
9355 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9356#endif
9357#ifdef CONFIG_RT_GROUP_SCHED
9358 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9359#endif
9360#ifdef CONFIG_USER_SCHED
9361 alloc_size *= 2;
df7c8e84
RR
9362#endif
9363#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9364 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9365#endif
9366 /*
9367 * As sched_init() is called before page_alloc is setup,
9368 * we use alloc_bootmem().
9369 */
9370 if (alloc_size) {
36b7b6d4 9371 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9372
9373#ifdef CONFIG_FAIR_GROUP_SCHED
9374 init_task_group.se = (struct sched_entity **)ptr;
9375 ptr += nr_cpu_ids * sizeof(void **);
9376
9377 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9378 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9379
9380#ifdef CONFIG_USER_SCHED
9381 root_task_group.se = (struct sched_entity **)ptr;
9382 ptr += nr_cpu_ids * sizeof(void **);
9383
9384 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9385 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9386#endif /* CONFIG_USER_SCHED */
9387#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9388#ifdef CONFIG_RT_GROUP_SCHED
9389 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9390 ptr += nr_cpu_ids * sizeof(void **);
9391
9392 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9393 ptr += nr_cpu_ids * sizeof(void **);
9394
9395#ifdef CONFIG_USER_SCHED
9396 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9397 ptr += nr_cpu_ids * sizeof(void **);
9398
9399 root_task_group.rt_rq = (struct rt_rq **)ptr;
9400 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9401#endif /* CONFIG_USER_SCHED */
9402#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9403#ifdef CONFIG_CPUMASK_OFFSTACK
9404 for_each_possible_cpu(i) {
9405 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9406 ptr += cpumask_size();
9407 }
9408#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9409 }
dd41f596 9410
57d885fe
GH
9411#ifdef CONFIG_SMP
9412 init_defrootdomain();
9413#endif
9414
d0b27fa7
PZ
9415 init_rt_bandwidth(&def_rt_bandwidth,
9416 global_rt_period(), global_rt_runtime());
9417
9418#ifdef CONFIG_RT_GROUP_SCHED
9419 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9420 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9421#ifdef CONFIG_USER_SCHED
9422 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9423 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9424#endif /* CONFIG_USER_SCHED */
9425#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9426
052f1dc7 9427#ifdef CONFIG_GROUP_SCHED
6f505b16 9428 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9429 INIT_LIST_HEAD(&init_task_group.children);
9430
9431#ifdef CONFIG_USER_SCHED
9432 INIT_LIST_HEAD(&root_task_group.children);
9433 init_task_group.parent = &root_task_group;
9434 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9435#endif /* CONFIG_USER_SCHED */
9436#endif /* CONFIG_GROUP_SCHED */
6f505b16 9437
4a6cc4bd
JK
9438#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9439 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9440 __alignof__(unsigned long));
9441#endif
0a945022 9442 for_each_possible_cpu(i) {
70b97a7f 9443 struct rq *rq;
1da177e4
LT
9444
9445 rq = cpu_rq(i);
9446 spin_lock_init(&rq->lock);
7897986b 9447 rq->nr_running = 0;
dce48a84
TG
9448 rq->calc_load_active = 0;
9449 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9450 init_cfs_rq(&rq->cfs, rq);
6f505b16 9451 init_rt_rq(&rq->rt, rq);
dd41f596 9452#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9453 init_task_group.shares = init_task_group_load;
6f505b16 9454 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9455#ifdef CONFIG_CGROUP_SCHED
9456 /*
9457 * How much cpu bandwidth does init_task_group get?
9458 *
9459 * In case of task-groups formed thr' the cgroup filesystem, it
9460 * gets 100% of the cpu resources in the system. This overall
9461 * system cpu resource is divided among the tasks of
9462 * init_task_group and its child task-groups in a fair manner,
9463 * based on each entity's (task or task-group's) weight
9464 * (se->load.weight).
9465 *
9466 * In other words, if init_task_group has 10 tasks of weight
9467 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9468 * then A0's share of the cpu resource is:
9469 *
0d905bca 9470 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9471 *
9472 * We achieve this by letting init_task_group's tasks sit
9473 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9474 */
ec7dc8ac 9475 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9476#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9477 root_task_group.shares = NICE_0_LOAD;
9478 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9479 /*
9480 * In case of task-groups formed thr' the user id of tasks,
9481 * init_task_group represents tasks belonging to root user.
9482 * Hence it forms a sibling of all subsequent groups formed.
9483 * In this case, init_task_group gets only a fraction of overall
9484 * system cpu resource, based on the weight assigned to root
9485 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9486 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9487 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9488 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9489 */
ec7dc8ac 9490 init_tg_cfs_entry(&init_task_group,
84e9dabf 9491 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9492 &per_cpu(init_sched_entity, i), i, 1,
9493 root_task_group.se[i]);
6f505b16 9494
052f1dc7 9495#endif
354d60c2
DG
9496#endif /* CONFIG_FAIR_GROUP_SCHED */
9497
9498 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9499#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9500 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9501#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9502 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9503#elif defined CONFIG_USER_SCHED
eff766a6 9504 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9505 init_tg_rt_entry(&init_task_group,
6f505b16 9506 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9507 &per_cpu(init_sched_rt_entity, i), i, 1,
9508 root_task_group.rt_se[i]);
354d60c2 9509#endif
dd41f596 9510#endif
1da177e4 9511
dd41f596
IM
9512 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9513 rq->cpu_load[j] = 0;
1da177e4 9514#ifdef CONFIG_SMP
41c7ce9a 9515 rq->sd = NULL;
57d885fe 9516 rq->rd = NULL;
3f029d3c 9517 rq->post_schedule = 0;
1da177e4 9518 rq->active_balance = 0;
dd41f596 9519 rq->next_balance = jiffies;
1da177e4 9520 rq->push_cpu = 0;
0a2966b4 9521 rq->cpu = i;
1f11eb6a 9522 rq->online = 0;
1da177e4
LT
9523 rq->migration_thread = NULL;
9524 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9525 rq_attach_root(rq, &def_root_domain);
1da177e4 9526#endif
8f4d37ec 9527 init_rq_hrtick(rq);
1da177e4 9528 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9529 }
9530
2dd73a4f 9531 set_load_weight(&init_task);
b50f60ce 9532
e107be36
AK
9533#ifdef CONFIG_PREEMPT_NOTIFIERS
9534 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9535#endif
9536
c9819f45 9537#ifdef CONFIG_SMP
962cf36c 9538 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9539#endif
9540
b50f60ce
HC
9541#ifdef CONFIG_RT_MUTEXES
9542 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9543#endif
9544
1da177e4
LT
9545 /*
9546 * The boot idle thread does lazy MMU switching as well:
9547 */
9548 atomic_inc(&init_mm.mm_count);
9549 enter_lazy_tlb(&init_mm, current);
9550
9551 /*
9552 * Make us the idle thread. Technically, schedule() should not be
9553 * called from this thread, however somewhere below it might be,
9554 * but because we are the idle thread, we just pick up running again
9555 * when this runqueue becomes "idle".
9556 */
9557 init_idle(current, smp_processor_id());
dce48a84
TG
9558
9559 calc_load_update = jiffies + LOAD_FREQ;
9560
dd41f596
IM
9561 /*
9562 * During early bootup we pretend to be a normal task:
9563 */
9564 current->sched_class = &fair_sched_class;
6892b75e 9565
6a7b3dc3 9566 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9567 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9568#ifdef CONFIG_SMP
7d1e6a9b 9569#ifdef CONFIG_NO_HZ
49557e62 9570 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9571 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9572#endif
49557e62 9573 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9574#endif /* SMP */
6a7b3dc3 9575
cdd6c482 9576 perf_event_init();
0d905bca 9577
6892b75e 9578 scheduler_running = 1;
1da177e4
LT
9579}
9580
9581#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9582static inline int preempt_count_equals(int preempt_offset)
9583{
9584 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9585
9586 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9587}
9588
9589void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9590{
48f24c4d 9591#ifdef in_atomic
1da177e4
LT
9592 static unsigned long prev_jiffy; /* ratelimiting */
9593
e4aafea2
FW
9594 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9595 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9596 return;
9597 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9598 return;
9599 prev_jiffy = jiffies;
9600
9601 printk(KERN_ERR
9602 "BUG: sleeping function called from invalid context at %s:%d\n",
9603 file, line);
9604 printk(KERN_ERR
9605 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9606 in_atomic(), irqs_disabled(),
9607 current->pid, current->comm);
9608
9609 debug_show_held_locks(current);
9610 if (irqs_disabled())
9611 print_irqtrace_events(current);
9612 dump_stack();
1da177e4
LT
9613#endif
9614}
9615EXPORT_SYMBOL(__might_sleep);
9616#endif
9617
9618#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9619static void normalize_task(struct rq *rq, struct task_struct *p)
9620{
9621 int on_rq;
3e51f33f 9622
3a5e4dc1
AK
9623 update_rq_clock(rq);
9624 on_rq = p->se.on_rq;
9625 if (on_rq)
9626 deactivate_task(rq, p, 0);
9627 __setscheduler(rq, p, SCHED_NORMAL, 0);
9628 if (on_rq) {
9629 activate_task(rq, p, 0);
9630 resched_task(rq->curr);
9631 }
9632}
9633
1da177e4
LT
9634void normalize_rt_tasks(void)
9635{
a0f98a1c 9636 struct task_struct *g, *p;
1da177e4 9637 unsigned long flags;
70b97a7f 9638 struct rq *rq;
1da177e4 9639
4cf5d77a 9640 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9641 do_each_thread(g, p) {
178be793
IM
9642 /*
9643 * Only normalize user tasks:
9644 */
9645 if (!p->mm)
9646 continue;
9647
6cfb0d5d 9648 p->se.exec_start = 0;
6cfb0d5d 9649#ifdef CONFIG_SCHEDSTATS
dd41f596 9650 p->se.wait_start = 0;
dd41f596 9651 p->se.sleep_start = 0;
dd41f596 9652 p->se.block_start = 0;
6cfb0d5d 9653#endif
dd41f596
IM
9654
9655 if (!rt_task(p)) {
9656 /*
9657 * Renice negative nice level userspace
9658 * tasks back to 0:
9659 */
9660 if (TASK_NICE(p) < 0 && p->mm)
9661 set_user_nice(p, 0);
1da177e4 9662 continue;
dd41f596 9663 }
1da177e4 9664
4cf5d77a 9665 spin_lock(&p->pi_lock);
b29739f9 9666 rq = __task_rq_lock(p);
1da177e4 9667
178be793 9668 normalize_task(rq, p);
3a5e4dc1 9669
b29739f9 9670 __task_rq_unlock(rq);
4cf5d77a 9671 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9672 } while_each_thread(g, p);
9673
4cf5d77a 9674 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9675}
9676
9677#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9678
9679#ifdef CONFIG_IA64
9680/*
9681 * These functions are only useful for the IA64 MCA handling.
9682 *
9683 * They can only be called when the whole system has been
9684 * stopped - every CPU needs to be quiescent, and no scheduling
9685 * activity can take place. Using them for anything else would
9686 * be a serious bug, and as a result, they aren't even visible
9687 * under any other configuration.
9688 */
9689
9690/**
9691 * curr_task - return the current task for a given cpu.
9692 * @cpu: the processor in question.
9693 *
9694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9695 */
36c8b586 9696struct task_struct *curr_task(int cpu)
1df5c10a
LT
9697{
9698 return cpu_curr(cpu);
9699}
9700
9701/**
9702 * set_curr_task - set the current task for a given cpu.
9703 * @cpu: the processor in question.
9704 * @p: the task pointer to set.
9705 *
9706 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9707 * are serviced on a separate stack. It allows the architecture to switch the
9708 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9709 * must be called with all CPU's synchronized, and interrupts disabled, the
9710 * and caller must save the original value of the current task (see
9711 * curr_task() above) and restore that value before reenabling interrupts and
9712 * re-starting the system.
9713 *
9714 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9715 */
36c8b586 9716void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9717{
9718 cpu_curr(cpu) = p;
9719}
9720
9721#endif
29f59db3 9722
bccbe08a
PZ
9723#ifdef CONFIG_FAIR_GROUP_SCHED
9724static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9725{
9726 int i;
9727
9728 for_each_possible_cpu(i) {
9729 if (tg->cfs_rq)
9730 kfree(tg->cfs_rq[i]);
9731 if (tg->se)
9732 kfree(tg->se[i]);
6f505b16
PZ
9733 }
9734
9735 kfree(tg->cfs_rq);
9736 kfree(tg->se);
6f505b16
PZ
9737}
9738
ec7dc8ac
DG
9739static
9740int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9741{
29f59db3 9742 struct cfs_rq *cfs_rq;
eab17229 9743 struct sched_entity *se;
9b5b7751 9744 struct rq *rq;
29f59db3
SV
9745 int i;
9746
434d53b0 9747 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9748 if (!tg->cfs_rq)
9749 goto err;
434d53b0 9750 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9751 if (!tg->se)
9752 goto err;
052f1dc7
PZ
9753
9754 tg->shares = NICE_0_LOAD;
29f59db3
SV
9755
9756 for_each_possible_cpu(i) {
9b5b7751 9757 rq = cpu_rq(i);
29f59db3 9758
eab17229
LZ
9759 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9760 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9761 if (!cfs_rq)
9762 goto err;
9763
eab17229
LZ
9764 se = kzalloc_node(sizeof(struct sched_entity),
9765 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9766 if (!se)
9767 goto err;
9768
eab17229 9769 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9770 }
9771
9772 return 1;
9773
9774 err:
9775 return 0;
9776}
9777
9778static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9779{
9780 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9781 &cpu_rq(cpu)->leaf_cfs_rq_list);
9782}
9783
9784static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9785{
9786 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9787}
6d6bc0ad 9788#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9789static inline void free_fair_sched_group(struct task_group *tg)
9790{
9791}
9792
ec7dc8ac
DG
9793static inline
9794int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9795{
9796 return 1;
9797}
9798
9799static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9800{
9801}
9802
9803static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9804{
9805}
6d6bc0ad 9806#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9807
9808#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9809static void free_rt_sched_group(struct task_group *tg)
9810{
9811 int i;
9812
d0b27fa7
PZ
9813 destroy_rt_bandwidth(&tg->rt_bandwidth);
9814
bccbe08a
PZ
9815 for_each_possible_cpu(i) {
9816 if (tg->rt_rq)
9817 kfree(tg->rt_rq[i]);
9818 if (tg->rt_se)
9819 kfree(tg->rt_se[i]);
9820 }
9821
9822 kfree(tg->rt_rq);
9823 kfree(tg->rt_se);
9824}
9825
ec7dc8ac
DG
9826static
9827int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9828{
9829 struct rt_rq *rt_rq;
eab17229 9830 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9831 struct rq *rq;
9832 int i;
9833
434d53b0 9834 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9835 if (!tg->rt_rq)
9836 goto err;
434d53b0 9837 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9838 if (!tg->rt_se)
9839 goto err;
9840
d0b27fa7
PZ
9841 init_rt_bandwidth(&tg->rt_bandwidth,
9842 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9843
9844 for_each_possible_cpu(i) {
9845 rq = cpu_rq(i);
9846
eab17229
LZ
9847 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9848 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9849 if (!rt_rq)
9850 goto err;
29f59db3 9851
eab17229
LZ
9852 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9853 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9854 if (!rt_se)
9855 goto err;
29f59db3 9856
eab17229 9857 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9858 }
9859
bccbe08a
PZ
9860 return 1;
9861
9862 err:
9863 return 0;
9864}
9865
9866static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9867{
9868 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9869 &cpu_rq(cpu)->leaf_rt_rq_list);
9870}
9871
9872static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9873{
9874 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9875}
6d6bc0ad 9876#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9877static inline void free_rt_sched_group(struct task_group *tg)
9878{
9879}
9880
ec7dc8ac
DG
9881static inline
9882int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9883{
9884 return 1;
9885}
9886
9887static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9888{
9889}
9890
9891static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9892{
9893}
6d6bc0ad 9894#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9895
d0b27fa7 9896#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9897static void free_sched_group(struct task_group *tg)
9898{
9899 free_fair_sched_group(tg);
9900 free_rt_sched_group(tg);
9901 kfree(tg);
9902}
9903
9904/* allocate runqueue etc for a new task group */
ec7dc8ac 9905struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9906{
9907 struct task_group *tg;
9908 unsigned long flags;
9909 int i;
9910
9911 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9912 if (!tg)
9913 return ERR_PTR(-ENOMEM);
9914
ec7dc8ac 9915 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9916 goto err;
9917
ec7dc8ac 9918 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9919 goto err;
9920
8ed36996 9921 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9922 for_each_possible_cpu(i) {
bccbe08a
PZ
9923 register_fair_sched_group(tg, i);
9924 register_rt_sched_group(tg, i);
9b5b7751 9925 }
6f505b16 9926 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9927
9928 WARN_ON(!parent); /* root should already exist */
9929
9930 tg->parent = parent;
f473aa5e 9931 INIT_LIST_HEAD(&tg->children);
09f2724a 9932 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9933 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9934
9b5b7751 9935 return tg;
29f59db3
SV
9936
9937err:
6f505b16 9938 free_sched_group(tg);
29f59db3
SV
9939 return ERR_PTR(-ENOMEM);
9940}
9941
9b5b7751 9942/* rcu callback to free various structures associated with a task group */
6f505b16 9943static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9944{
29f59db3 9945 /* now it should be safe to free those cfs_rqs */
6f505b16 9946 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9947}
9948
9b5b7751 9949/* Destroy runqueue etc associated with a task group */
4cf86d77 9950void sched_destroy_group(struct task_group *tg)
29f59db3 9951{
8ed36996 9952 unsigned long flags;
9b5b7751 9953 int i;
29f59db3 9954
8ed36996 9955 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9956 for_each_possible_cpu(i) {
bccbe08a
PZ
9957 unregister_fair_sched_group(tg, i);
9958 unregister_rt_sched_group(tg, i);
9b5b7751 9959 }
6f505b16 9960 list_del_rcu(&tg->list);
f473aa5e 9961 list_del_rcu(&tg->siblings);
8ed36996 9962 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9963
9b5b7751 9964 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9965 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9966}
9967
9b5b7751 9968/* change task's runqueue when it moves between groups.
3a252015
IM
9969 * The caller of this function should have put the task in its new group
9970 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9971 * reflect its new group.
9b5b7751
SV
9972 */
9973void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9974{
9975 int on_rq, running;
9976 unsigned long flags;
9977 struct rq *rq;
9978
9979 rq = task_rq_lock(tsk, &flags);
9980
29f59db3
SV
9981 update_rq_clock(rq);
9982
051a1d1a 9983 running = task_current(rq, tsk);
29f59db3
SV
9984 on_rq = tsk->se.on_rq;
9985
0e1f3483 9986 if (on_rq)
29f59db3 9987 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9988 if (unlikely(running))
9989 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9990
6f505b16 9991 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9992
810b3817
PZ
9993#ifdef CONFIG_FAIR_GROUP_SCHED
9994 if (tsk->sched_class->moved_group)
9995 tsk->sched_class->moved_group(tsk);
9996#endif
9997
0e1f3483
HS
9998 if (unlikely(running))
9999 tsk->sched_class->set_curr_task(rq);
10000 if (on_rq)
7074badb 10001 enqueue_task(rq, tsk, 0);
29f59db3 10002
29f59db3
SV
10003 task_rq_unlock(rq, &flags);
10004}
6d6bc0ad 10005#endif /* CONFIG_GROUP_SCHED */
29f59db3 10006
052f1dc7 10007#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10008static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10009{
10010 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10011 int on_rq;
10012
29f59db3 10013 on_rq = se->on_rq;
62fb1851 10014 if (on_rq)
29f59db3
SV
10015 dequeue_entity(cfs_rq, se, 0);
10016
10017 se->load.weight = shares;
e05510d0 10018 se->load.inv_weight = 0;
29f59db3 10019
62fb1851 10020 if (on_rq)
29f59db3 10021 enqueue_entity(cfs_rq, se, 0);
c09595f6 10022}
62fb1851 10023
c09595f6
PZ
10024static void set_se_shares(struct sched_entity *se, unsigned long shares)
10025{
10026 struct cfs_rq *cfs_rq = se->cfs_rq;
10027 struct rq *rq = cfs_rq->rq;
10028 unsigned long flags;
10029
10030 spin_lock_irqsave(&rq->lock, flags);
10031 __set_se_shares(se, shares);
10032 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10033}
10034
8ed36996
PZ
10035static DEFINE_MUTEX(shares_mutex);
10036
4cf86d77 10037int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10038{
10039 int i;
8ed36996 10040 unsigned long flags;
c61935fd 10041
ec7dc8ac
DG
10042 /*
10043 * We can't change the weight of the root cgroup.
10044 */
10045 if (!tg->se[0])
10046 return -EINVAL;
10047
18d95a28
PZ
10048 if (shares < MIN_SHARES)
10049 shares = MIN_SHARES;
cb4ad1ff
MX
10050 else if (shares > MAX_SHARES)
10051 shares = MAX_SHARES;
62fb1851 10052
8ed36996 10053 mutex_lock(&shares_mutex);
9b5b7751 10054 if (tg->shares == shares)
5cb350ba 10055 goto done;
29f59db3 10056
8ed36996 10057 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10058 for_each_possible_cpu(i)
10059 unregister_fair_sched_group(tg, i);
f473aa5e 10060 list_del_rcu(&tg->siblings);
8ed36996 10061 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10062
10063 /* wait for any ongoing reference to this group to finish */
10064 synchronize_sched();
10065
10066 /*
10067 * Now we are free to modify the group's share on each cpu
10068 * w/o tripping rebalance_share or load_balance_fair.
10069 */
9b5b7751 10070 tg->shares = shares;
c09595f6
PZ
10071 for_each_possible_cpu(i) {
10072 /*
10073 * force a rebalance
10074 */
10075 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10076 set_se_shares(tg->se[i], shares);
c09595f6 10077 }
29f59db3 10078
6b2d7700
SV
10079 /*
10080 * Enable load balance activity on this group, by inserting it back on
10081 * each cpu's rq->leaf_cfs_rq_list.
10082 */
8ed36996 10083 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10084 for_each_possible_cpu(i)
10085 register_fair_sched_group(tg, i);
f473aa5e 10086 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10087 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10088done:
8ed36996 10089 mutex_unlock(&shares_mutex);
9b5b7751 10090 return 0;
29f59db3
SV
10091}
10092
5cb350ba
DG
10093unsigned long sched_group_shares(struct task_group *tg)
10094{
10095 return tg->shares;
10096}
052f1dc7 10097#endif
5cb350ba 10098
052f1dc7 10099#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10100/*
9f0c1e56 10101 * Ensure that the real time constraints are schedulable.
6f505b16 10102 */
9f0c1e56
PZ
10103static DEFINE_MUTEX(rt_constraints_mutex);
10104
10105static unsigned long to_ratio(u64 period, u64 runtime)
10106{
10107 if (runtime == RUNTIME_INF)
9a7e0b18 10108 return 1ULL << 20;
9f0c1e56 10109
9a7e0b18 10110 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10111}
10112
9a7e0b18
PZ
10113/* Must be called with tasklist_lock held */
10114static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10115{
9a7e0b18 10116 struct task_struct *g, *p;
b40b2e8e 10117
9a7e0b18
PZ
10118 do_each_thread(g, p) {
10119 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10120 return 1;
10121 } while_each_thread(g, p);
b40b2e8e 10122
9a7e0b18
PZ
10123 return 0;
10124}
b40b2e8e 10125
9a7e0b18
PZ
10126struct rt_schedulable_data {
10127 struct task_group *tg;
10128 u64 rt_period;
10129 u64 rt_runtime;
10130};
b40b2e8e 10131
9a7e0b18
PZ
10132static int tg_schedulable(struct task_group *tg, void *data)
10133{
10134 struct rt_schedulable_data *d = data;
10135 struct task_group *child;
10136 unsigned long total, sum = 0;
10137 u64 period, runtime;
b40b2e8e 10138
9a7e0b18
PZ
10139 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10140 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10141
9a7e0b18
PZ
10142 if (tg == d->tg) {
10143 period = d->rt_period;
10144 runtime = d->rt_runtime;
b40b2e8e 10145 }
b40b2e8e 10146
98a4826b
PZ
10147#ifdef CONFIG_USER_SCHED
10148 if (tg == &root_task_group) {
10149 period = global_rt_period();
10150 runtime = global_rt_runtime();
10151 }
10152#endif
10153
4653f803
PZ
10154 /*
10155 * Cannot have more runtime than the period.
10156 */
10157 if (runtime > period && runtime != RUNTIME_INF)
10158 return -EINVAL;
6f505b16 10159
4653f803
PZ
10160 /*
10161 * Ensure we don't starve existing RT tasks.
10162 */
9a7e0b18
PZ
10163 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10164 return -EBUSY;
6f505b16 10165
9a7e0b18 10166 total = to_ratio(period, runtime);
6f505b16 10167
4653f803
PZ
10168 /*
10169 * Nobody can have more than the global setting allows.
10170 */
10171 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10172 return -EINVAL;
6f505b16 10173
4653f803
PZ
10174 /*
10175 * The sum of our children's runtime should not exceed our own.
10176 */
9a7e0b18
PZ
10177 list_for_each_entry_rcu(child, &tg->children, siblings) {
10178 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10179 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10180
9a7e0b18
PZ
10181 if (child == d->tg) {
10182 period = d->rt_period;
10183 runtime = d->rt_runtime;
10184 }
6f505b16 10185
9a7e0b18 10186 sum += to_ratio(period, runtime);
9f0c1e56 10187 }
6f505b16 10188
9a7e0b18
PZ
10189 if (sum > total)
10190 return -EINVAL;
10191
10192 return 0;
6f505b16
PZ
10193}
10194
9a7e0b18 10195static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10196{
9a7e0b18
PZ
10197 struct rt_schedulable_data data = {
10198 .tg = tg,
10199 .rt_period = period,
10200 .rt_runtime = runtime,
10201 };
10202
10203 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10204}
10205
d0b27fa7
PZ
10206static int tg_set_bandwidth(struct task_group *tg,
10207 u64 rt_period, u64 rt_runtime)
6f505b16 10208{
ac086bc2 10209 int i, err = 0;
9f0c1e56 10210
9f0c1e56 10211 mutex_lock(&rt_constraints_mutex);
521f1a24 10212 read_lock(&tasklist_lock);
9a7e0b18
PZ
10213 err = __rt_schedulable(tg, rt_period, rt_runtime);
10214 if (err)
9f0c1e56 10215 goto unlock;
ac086bc2
PZ
10216
10217 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10218 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10219 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10220
10221 for_each_possible_cpu(i) {
10222 struct rt_rq *rt_rq = tg->rt_rq[i];
10223
10224 spin_lock(&rt_rq->rt_runtime_lock);
10225 rt_rq->rt_runtime = rt_runtime;
10226 spin_unlock(&rt_rq->rt_runtime_lock);
10227 }
10228 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10229 unlock:
521f1a24 10230 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10231 mutex_unlock(&rt_constraints_mutex);
10232
10233 return err;
6f505b16
PZ
10234}
10235
d0b27fa7
PZ
10236int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10237{
10238 u64 rt_runtime, rt_period;
10239
10240 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10241 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10242 if (rt_runtime_us < 0)
10243 rt_runtime = RUNTIME_INF;
10244
10245 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10246}
10247
9f0c1e56
PZ
10248long sched_group_rt_runtime(struct task_group *tg)
10249{
10250 u64 rt_runtime_us;
10251
d0b27fa7 10252 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10253 return -1;
10254
d0b27fa7 10255 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10256 do_div(rt_runtime_us, NSEC_PER_USEC);
10257 return rt_runtime_us;
10258}
d0b27fa7
PZ
10259
10260int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10261{
10262 u64 rt_runtime, rt_period;
10263
10264 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10265 rt_runtime = tg->rt_bandwidth.rt_runtime;
10266
619b0488
R
10267 if (rt_period == 0)
10268 return -EINVAL;
10269
d0b27fa7
PZ
10270 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10271}
10272
10273long sched_group_rt_period(struct task_group *tg)
10274{
10275 u64 rt_period_us;
10276
10277 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10278 do_div(rt_period_us, NSEC_PER_USEC);
10279 return rt_period_us;
10280}
10281
10282static int sched_rt_global_constraints(void)
10283{
4653f803 10284 u64 runtime, period;
d0b27fa7
PZ
10285 int ret = 0;
10286
ec5d4989
HS
10287 if (sysctl_sched_rt_period <= 0)
10288 return -EINVAL;
10289
4653f803
PZ
10290 runtime = global_rt_runtime();
10291 period = global_rt_period();
10292
10293 /*
10294 * Sanity check on the sysctl variables.
10295 */
10296 if (runtime > period && runtime != RUNTIME_INF)
10297 return -EINVAL;
10b612f4 10298
d0b27fa7 10299 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10300 read_lock(&tasklist_lock);
4653f803 10301 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10302 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10303 mutex_unlock(&rt_constraints_mutex);
10304
10305 return ret;
10306}
54e99124
DG
10307
10308int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10309{
10310 /* Don't accept realtime tasks when there is no way for them to run */
10311 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10312 return 0;
10313
10314 return 1;
10315}
10316
6d6bc0ad 10317#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10318static int sched_rt_global_constraints(void)
10319{
ac086bc2
PZ
10320 unsigned long flags;
10321 int i;
10322
ec5d4989
HS
10323 if (sysctl_sched_rt_period <= 0)
10324 return -EINVAL;
10325
60aa605d
PZ
10326 /*
10327 * There's always some RT tasks in the root group
10328 * -- migration, kstopmachine etc..
10329 */
10330 if (sysctl_sched_rt_runtime == 0)
10331 return -EBUSY;
10332
ac086bc2
PZ
10333 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10334 for_each_possible_cpu(i) {
10335 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10336
10337 spin_lock(&rt_rq->rt_runtime_lock);
10338 rt_rq->rt_runtime = global_rt_runtime();
10339 spin_unlock(&rt_rq->rt_runtime_lock);
10340 }
10341 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10342
d0b27fa7
PZ
10343 return 0;
10344}
6d6bc0ad 10345#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10346
10347int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10348 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10349 loff_t *ppos)
10350{
10351 int ret;
10352 int old_period, old_runtime;
10353 static DEFINE_MUTEX(mutex);
10354
10355 mutex_lock(&mutex);
10356 old_period = sysctl_sched_rt_period;
10357 old_runtime = sysctl_sched_rt_runtime;
10358
8d65af78 10359 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10360
10361 if (!ret && write) {
10362 ret = sched_rt_global_constraints();
10363 if (ret) {
10364 sysctl_sched_rt_period = old_period;
10365 sysctl_sched_rt_runtime = old_runtime;
10366 } else {
10367 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10368 def_rt_bandwidth.rt_period =
10369 ns_to_ktime(global_rt_period());
10370 }
10371 }
10372 mutex_unlock(&mutex);
10373
10374 return ret;
10375}
68318b8e 10376
052f1dc7 10377#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10378
10379/* return corresponding task_group object of a cgroup */
2b01dfe3 10380static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10381{
2b01dfe3
PM
10382 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10383 struct task_group, css);
68318b8e
SV
10384}
10385
10386static struct cgroup_subsys_state *
2b01dfe3 10387cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10388{
ec7dc8ac 10389 struct task_group *tg, *parent;
68318b8e 10390
2b01dfe3 10391 if (!cgrp->parent) {
68318b8e 10392 /* This is early initialization for the top cgroup */
68318b8e
SV
10393 return &init_task_group.css;
10394 }
10395
ec7dc8ac
DG
10396 parent = cgroup_tg(cgrp->parent);
10397 tg = sched_create_group(parent);
68318b8e
SV
10398 if (IS_ERR(tg))
10399 return ERR_PTR(-ENOMEM);
10400
68318b8e
SV
10401 return &tg->css;
10402}
10403
41a2d6cf
IM
10404static void
10405cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10406{
2b01dfe3 10407 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10408
10409 sched_destroy_group(tg);
10410}
10411
41a2d6cf 10412static int
be367d09 10413cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10414{
b68aa230 10415#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10416 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10417 return -EINVAL;
10418#else
68318b8e
SV
10419 /* We don't support RT-tasks being in separate groups */
10420 if (tsk->sched_class != &fair_sched_class)
10421 return -EINVAL;
b68aa230 10422#endif
be367d09
BB
10423 return 0;
10424}
68318b8e 10425
be367d09
BB
10426static int
10427cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10428 struct task_struct *tsk, bool threadgroup)
10429{
10430 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10431 if (retval)
10432 return retval;
10433 if (threadgroup) {
10434 struct task_struct *c;
10435 rcu_read_lock();
10436 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10437 retval = cpu_cgroup_can_attach_task(cgrp, c);
10438 if (retval) {
10439 rcu_read_unlock();
10440 return retval;
10441 }
10442 }
10443 rcu_read_unlock();
10444 }
68318b8e
SV
10445 return 0;
10446}
10447
10448static void
2b01dfe3 10449cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10450 struct cgroup *old_cont, struct task_struct *tsk,
10451 bool threadgroup)
68318b8e
SV
10452{
10453 sched_move_task(tsk);
be367d09
BB
10454 if (threadgroup) {
10455 struct task_struct *c;
10456 rcu_read_lock();
10457 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10458 sched_move_task(c);
10459 }
10460 rcu_read_unlock();
10461 }
68318b8e
SV
10462}
10463
052f1dc7 10464#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10465static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10466 u64 shareval)
68318b8e 10467{
2b01dfe3 10468 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10469}
10470
f4c753b7 10471static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10472{
2b01dfe3 10473 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10474
10475 return (u64) tg->shares;
10476}
6d6bc0ad 10477#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10478
052f1dc7 10479#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10480static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10481 s64 val)
6f505b16 10482{
06ecb27c 10483 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10484}
10485
06ecb27c 10486static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10487{
06ecb27c 10488 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10489}
d0b27fa7
PZ
10490
10491static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10492 u64 rt_period_us)
10493{
10494 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10495}
10496
10497static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10498{
10499 return sched_group_rt_period(cgroup_tg(cgrp));
10500}
6d6bc0ad 10501#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10502
fe5c7cc2 10503static struct cftype cpu_files[] = {
052f1dc7 10504#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10505 {
10506 .name = "shares",
f4c753b7
PM
10507 .read_u64 = cpu_shares_read_u64,
10508 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10509 },
052f1dc7
PZ
10510#endif
10511#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10512 {
9f0c1e56 10513 .name = "rt_runtime_us",
06ecb27c
PM
10514 .read_s64 = cpu_rt_runtime_read,
10515 .write_s64 = cpu_rt_runtime_write,
6f505b16 10516 },
d0b27fa7
PZ
10517 {
10518 .name = "rt_period_us",
f4c753b7
PM
10519 .read_u64 = cpu_rt_period_read_uint,
10520 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10521 },
052f1dc7 10522#endif
68318b8e
SV
10523};
10524
10525static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10526{
fe5c7cc2 10527 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10528}
10529
10530struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10531 .name = "cpu",
10532 .create = cpu_cgroup_create,
10533 .destroy = cpu_cgroup_destroy,
10534 .can_attach = cpu_cgroup_can_attach,
10535 .attach = cpu_cgroup_attach,
10536 .populate = cpu_cgroup_populate,
10537 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10538 .early_init = 1,
10539};
10540
052f1dc7 10541#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10542
10543#ifdef CONFIG_CGROUP_CPUACCT
10544
10545/*
10546 * CPU accounting code for task groups.
10547 *
10548 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10549 * (balbir@in.ibm.com).
10550 */
10551
934352f2 10552/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10553struct cpuacct {
10554 struct cgroup_subsys_state css;
10555 /* cpuusage holds pointer to a u64-type object on every cpu */
10556 u64 *cpuusage;
ef12fefa 10557 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10558 struct cpuacct *parent;
d842de87
SV
10559};
10560
10561struct cgroup_subsys cpuacct_subsys;
10562
10563/* return cpu accounting group corresponding to this container */
32cd756a 10564static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10565{
32cd756a 10566 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10567 struct cpuacct, css);
10568}
10569
10570/* return cpu accounting group to which this task belongs */
10571static inline struct cpuacct *task_ca(struct task_struct *tsk)
10572{
10573 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10574 struct cpuacct, css);
10575}
10576
10577/* create a new cpu accounting group */
10578static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10579 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10580{
10581 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10582 int i;
d842de87
SV
10583
10584 if (!ca)
ef12fefa 10585 goto out;
d842de87
SV
10586
10587 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10588 if (!ca->cpuusage)
10589 goto out_free_ca;
10590
10591 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10592 if (percpu_counter_init(&ca->cpustat[i], 0))
10593 goto out_free_counters;
d842de87 10594
934352f2
BR
10595 if (cgrp->parent)
10596 ca->parent = cgroup_ca(cgrp->parent);
10597
d842de87 10598 return &ca->css;
ef12fefa
BR
10599
10600out_free_counters:
10601 while (--i >= 0)
10602 percpu_counter_destroy(&ca->cpustat[i]);
10603 free_percpu(ca->cpuusage);
10604out_free_ca:
10605 kfree(ca);
10606out:
10607 return ERR_PTR(-ENOMEM);
d842de87
SV
10608}
10609
10610/* destroy an existing cpu accounting group */
41a2d6cf 10611static void
32cd756a 10612cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10613{
32cd756a 10614 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10615 int i;
d842de87 10616
ef12fefa
BR
10617 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10618 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10619 free_percpu(ca->cpuusage);
10620 kfree(ca);
10621}
10622
720f5498
KC
10623static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10624{
b36128c8 10625 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10626 u64 data;
10627
10628#ifndef CONFIG_64BIT
10629 /*
10630 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10631 */
10632 spin_lock_irq(&cpu_rq(cpu)->lock);
10633 data = *cpuusage;
10634 spin_unlock_irq(&cpu_rq(cpu)->lock);
10635#else
10636 data = *cpuusage;
10637#endif
10638
10639 return data;
10640}
10641
10642static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10643{
b36128c8 10644 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10645
10646#ifndef CONFIG_64BIT
10647 /*
10648 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10649 */
10650 spin_lock_irq(&cpu_rq(cpu)->lock);
10651 *cpuusage = val;
10652 spin_unlock_irq(&cpu_rq(cpu)->lock);
10653#else
10654 *cpuusage = val;
10655#endif
10656}
10657
d842de87 10658/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10659static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10660{
32cd756a 10661 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10662 u64 totalcpuusage = 0;
10663 int i;
10664
720f5498
KC
10665 for_each_present_cpu(i)
10666 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10667
10668 return totalcpuusage;
10669}
10670
0297b803
DG
10671static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10672 u64 reset)
10673{
10674 struct cpuacct *ca = cgroup_ca(cgrp);
10675 int err = 0;
10676 int i;
10677
10678 if (reset) {
10679 err = -EINVAL;
10680 goto out;
10681 }
10682
720f5498
KC
10683 for_each_present_cpu(i)
10684 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10685
0297b803
DG
10686out:
10687 return err;
10688}
10689
e9515c3c
KC
10690static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10691 struct seq_file *m)
10692{
10693 struct cpuacct *ca = cgroup_ca(cgroup);
10694 u64 percpu;
10695 int i;
10696
10697 for_each_present_cpu(i) {
10698 percpu = cpuacct_cpuusage_read(ca, i);
10699 seq_printf(m, "%llu ", (unsigned long long) percpu);
10700 }
10701 seq_printf(m, "\n");
10702 return 0;
10703}
10704
ef12fefa
BR
10705static const char *cpuacct_stat_desc[] = {
10706 [CPUACCT_STAT_USER] = "user",
10707 [CPUACCT_STAT_SYSTEM] = "system",
10708};
10709
10710static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10711 struct cgroup_map_cb *cb)
10712{
10713 struct cpuacct *ca = cgroup_ca(cgrp);
10714 int i;
10715
10716 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10717 s64 val = percpu_counter_read(&ca->cpustat[i]);
10718 val = cputime64_to_clock_t(val);
10719 cb->fill(cb, cpuacct_stat_desc[i], val);
10720 }
10721 return 0;
10722}
10723
d842de87
SV
10724static struct cftype files[] = {
10725 {
10726 .name = "usage",
f4c753b7
PM
10727 .read_u64 = cpuusage_read,
10728 .write_u64 = cpuusage_write,
d842de87 10729 },
e9515c3c
KC
10730 {
10731 .name = "usage_percpu",
10732 .read_seq_string = cpuacct_percpu_seq_read,
10733 },
ef12fefa
BR
10734 {
10735 .name = "stat",
10736 .read_map = cpuacct_stats_show,
10737 },
d842de87
SV
10738};
10739
32cd756a 10740static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10741{
32cd756a 10742 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10743}
10744
10745/*
10746 * charge this task's execution time to its accounting group.
10747 *
10748 * called with rq->lock held.
10749 */
10750static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10751{
10752 struct cpuacct *ca;
934352f2 10753 int cpu;
d842de87 10754
c40c6f85 10755 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10756 return;
10757
934352f2 10758 cpu = task_cpu(tsk);
a18b83b7
BR
10759
10760 rcu_read_lock();
10761
d842de87 10762 ca = task_ca(tsk);
d842de87 10763
934352f2 10764 for (; ca; ca = ca->parent) {
b36128c8 10765 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10766 *cpuusage += cputime;
10767 }
a18b83b7
BR
10768
10769 rcu_read_unlock();
d842de87
SV
10770}
10771
ef12fefa
BR
10772/*
10773 * Charge the system/user time to the task's accounting group.
10774 */
10775static void cpuacct_update_stats(struct task_struct *tsk,
10776 enum cpuacct_stat_index idx, cputime_t val)
10777{
10778 struct cpuacct *ca;
10779
10780 if (unlikely(!cpuacct_subsys.active))
10781 return;
10782
10783 rcu_read_lock();
10784 ca = task_ca(tsk);
10785
10786 do {
10787 percpu_counter_add(&ca->cpustat[idx], val);
10788 ca = ca->parent;
10789 } while (ca);
10790 rcu_read_unlock();
10791}
10792
d842de87
SV
10793struct cgroup_subsys cpuacct_subsys = {
10794 .name = "cpuacct",
10795 .create = cpuacct_create,
10796 .destroy = cpuacct_destroy,
10797 .populate = cpuacct_populate,
10798 .subsys_id = cpuacct_subsys_id,
10799};
10800#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10801
10802#ifndef CONFIG_SMP
10803
10804int rcu_expedited_torture_stats(char *page)
10805{
10806 return 0;
10807}
10808EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10809
10810void synchronize_sched_expedited(void)
10811{
10812}
10813EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10814
10815#else /* #ifndef CONFIG_SMP */
10816
10817static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10818static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10819
10820#define RCU_EXPEDITED_STATE_POST -2
10821#define RCU_EXPEDITED_STATE_IDLE -1
10822
10823static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10824
10825int rcu_expedited_torture_stats(char *page)
10826{
10827 int cnt = 0;
10828 int cpu;
10829
10830 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10831 for_each_online_cpu(cpu) {
10832 cnt += sprintf(&page[cnt], " %d:%d",
10833 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10834 }
10835 cnt += sprintf(&page[cnt], "\n");
10836 return cnt;
10837}
10838EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10839
10840static long synchronize_sched_expedited_count;
10841
10842/*
10843 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10844 * approach to force grace period to end quickly. This consumes
10845 * significant time on all CPUs, and is thus not recommended for
10846 * any sort of common-case code.
10847 *
10848 * Note that it is illegal to call this function while holding any
10849 * lock that is acquired by a CPU-hotplug notifier. Failing to
10850 * observe this restriction will result in deadlock.
10851 */
10852void synchronize_sched_expedited(void)
10853{
10854 int cpu;
10855 unsigned long flags;
10856 bool need_full_sync = 0;
10857 struct rq *rq;
10858 struct migration_req *req;
10859 long snap;
10860 int trycount = 0;
10861
10862 smp_mb(); /* ensure prior mod happens before capturing snap. */
10863 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10864 get_online_cpus();
10865 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10866 put_online_cpus();
10867 if (trycount++ < 10)
10868 udelay(trycount * num_online_cpus());
10869 else {
10870 synchronize_sched();
10871 return;
10872 }
10873 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10874 smp_mb(); /* ensure test happens before caller kfree */
10875 return;
10876 }
10877 get_online_cpus();
10878 }
10879 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10880 for_each_online_cpu(cpu) {
10881 rq = cpu_rq(cpu);
10882 req = &per_cpu(rcu_migration_req, cpu);
10883 init_completion(&req->done);
10884 req->task = NULL;
10885 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10886 spin_lock_irqsave(&rq->lock, flags);
10887 list_add(&req->list, &rq->migration_queue);
10888 spin_unlock_irqrestore(&rq->lock, flags);
10889 wake_up_process(rq->migration_thread);
10890 }
10891 for_each_online_cpu(cpu) {
10892 rcu_expedited_state = cpu;
10893 req = &per_cpu(rcu_migration_req, cpu);
10894 rq = cpu_rq(cpu);
10895 wait_for_completion(&req->done);
10896 spin_lock_irqsave(&rq->lock, flags);
10897 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10898 need_full_sync = 1;
10899 req->dest_cpu = RCU_MIGRATION_IDLE;
10900 spin_unlock_irqrestore(&rq->lock, flags);
10901 }
10902 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10903 mutex_unlock(&rcu_sched_expedited_mutex);
10904 put_online_cpus();
10905 if (need_full_sync)
10906 synchronize_sched();
10907}
10908EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10909
10910#endif /* #else #ifndef CONFIG_SMP */