]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: disable sleeper_fairness on SCHED_BATCH
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165};
166
167/* Default task group's sched entity on each cpu */
168static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
169/* Default task group's cfs_rq on each cpu */
170static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
171
9b5b7751
SV
172static struct sched_entity *init_sched_entity_p[NR_CPUS];
173static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
174
175/* Default task group.
3a252015 176 * Every task in system belong to this group at bootup.
29f59db3 177 */
4cf86d77 178struct task_group init_task_group = {
3a252015
IM
179 .se = init_sched_entity_p,
180 .cfs_rq = init_cfs_rq_p,
181};
9b5b7751 182
24e377a8 183#ifdef CONFIG_FAIR_USER_SCHED
3a252015 184# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 185#else
3a252015 186# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
187#endif
188
4cf86d77 189static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
190
191/* return group to which a task belongs */
4cf86d77 192static inline struct task_group *task_group(struct task_struct *p)
29f59db3 193{
4cf86d77 194 struct task_group *tg;
9b5b7751 195
24e377a8
SV
196#ifdef CONFIG_FAIR_USER_SCHED
197 tg = p->user->tg;
198#else
4cf86d77 199 tg = &init_task_group;
24e377a8 200#endif
9b5b7751
SV
201
202 return tg;
29f59db3
SV
203}
204
205/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
206static inline void set_task_cfs_rq(struct task_struct *p)
207{
4cf86d77
IM
208 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
209 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
210}
211
212#else
213
214static inline void set_task_cfs_rq(struct task_struct *p) { }
215
216#endif /* CONFIG_FAIR_GROUP_SCHED */
217
6aa645ea
IM
218/* CFS-related fields in a runqueue */
219struct cfs_rq {
220 struct load_weight load;
221 unsigned long nr_running;
222
6aa645ea 223 u64 exec_clock;
e9acbff6 224 u64 min_vruntime;
6aa645ea
IM
225
226 struct rb_root tasks_timeline;
227 struct rb_node *rb_leftmost;
228 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
229 /* 'curr' points to currently running entity on this cfs_rq.
230 * It is set to NULL otherwise (i.e when none are currently running).
231 */
232 struct sched_entity *curr;
ddc97297
PZ
233
234 unsigned long nr_spread_over;
235
62160e3f 236#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
237 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
238
239 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
240 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
241 * (like users, containers etc.)
242 *
243 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
244 * list is used during load balance.
245 */
246 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 247 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 248 struct rcu_head rcu;
6aa645ea
IM
249#endif
250};
1da177e4 251
6aa645ea
IM
252/* Real-Time classes' related field in a runqueue: */
253struct rt_rq {
254 struct rt_prio_array active;
255 int rt_load_balance_idx;
256 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
257};
258
1da177e4
LT
259/*
260 * This is the main, per-CPU runqueue data structure.
261 *
262 * Locking rule: those places that want to lock multiple runqueues
263 * (such as the load balancing or the thread migration code), lock
264 * acquire operations must be ordered by ascending &runqueue.
265 */
70b97a7f 266struct rq {
6aa645ea 267 spinlock_t lock; /* runqueue lock */
1da177e4
LT
268
269 /*
270 * nr_running and cpu_load should be in the same cacheline because
271 * remote CPUs use both these fields when doing load calculation.
272 */
273 unsigned long nr_running;
6aa645ea
IM
274 #define CPU_LOAD_IDX_MAX 5
275 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 276 unsigned char idle_at_tick;
46cb4b7c
SS
277#ifdef CONFIG_NO_HZ
278 unsigned char in_nohz_recently;
279#endif
495eca49 280 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
281 unsigned long nr_load_updates;
282 u64 nr_switches;
283
284 struct cfs_rq cfs;
285#ifdef CONFIG_FAIR_GROUP_SCHED
286 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 287#endif
6aa645ea 288 struct rt_rq rt;
1da177e4
LT
289
290 /*
291 * This is part of a global counter where only the total sum
292 * over all CPUs matters. A task can increase this counter on
293 * one CPU and if it got migrated afterwards it may decrease
294 * it on another CPU. Always updated under the runqueue lock:
295 */
296 unsigned long nr_uninterruptible;
297
36c8b586 298 struct task_struct *curr, *idle;
c9819f45 299 unsigned long next_balance;
1da177e4 300 struct mm_struct *prev_mm;
6aa645ea 301
6aa645ea
IM
302 u64 clock, prev_clock_raw;
303 s64 clock_max_delta;
304
305 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
306 u64 idle_clock;
307 unsigned int clock_deep_idle_events;
529c7726 308 u64 tick_timestamp;
6aa645ea 309
1da177e4
LT
310 atomic_t nr_iowait;
311
312#ifdef CONFIG_SMP
313 struct sched_domain *sd;
314
315 /* For active balancing */
316 int active_balance;
317 int push_cpu;
0a2966b4 318 int cpu; /* cpu of this runqueue */
1da177e4 319
36c8b586 320 struct task_struct *migration_thread;
1da177e4
LT
321 struct list_head migration_queue;
322#endif
323
324#ifdef CONFIG_SCHEDSTATS
325 /* latency stats */
326 struct sched_info rq_sched_info;
327
328 /* sys_sched_yield() stats */
329 unsigned long yld_exp_empty;
330 unsigned long yld_act_empty;
331 unsigned long yld_both_empty;
2d72376b 332 unsigned long yld_count;
1da177e4
LT
333
334 /* schedule() stats */
335 unsigned long sched_switch;
2d72376b 336 unsigned long sched_count;
1da177e4
LT
337 unsigned long sched_goidle;
338
339 /* try_to_wake_up() stats */
2d72376b 340 unsigned long ttwu_count;
1da177e4 341 unsigned long ttwu_local;
b8efb561
IM
342
343 /* BKL stats */
2d72376b 344 unsigned long bkl_count;
1da177e4 345#endif
fcb99371 346 struct lock_class_key rq_lock_key;
1da177e4
LT
347};
348
f34e3b61 349static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 350static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 351
dd41f596
IM
352static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
353{
354 rq->curr->sched_class->check_preempt_curr(rq, p);
355}
356
0a2966b4
CL
357static inline int cpu_of(struct rq *rq)
358{
359#ifdef CONFIG_SMP
360 return rq->cpu;
361#else
362 return 0;
363#endif
364}
365
20d315d4 366/*
b04a0f4c
IM
367 * Update the per-runqueue clock, as finegrained as the platform can give
368 * us, but without assuming monotonicity, etc.:
20d315d4 369 */
b04a0f4c 370static void __update_rq_clock(struct rq *rq)
20d315d4
IM
371{
372 u64 prev_raw = rq->prev_clock_raw;
373 u64 now = sched_clock();
374 s64 delta = now - prev_raw;
375 u64 clock = rq->clock;
376
b04a0f4c
IM
377#ifdef CONFIG_SCHED_DEBUG
378 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
379#endif
20d315d4
IM
380 /*
381 * Protect against sched_clock() occasionally going backwards:
382 */
383 if (unlikely(delta < 0)) {
384 clock++;
385 rq->clock_warps++;
386 } else {
387 /*
388 * Catch too large forward jumps too:
389 */
529c7726
IM
390 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
391 if (clock < rq->tick_timestamp + TICK_NSEC)
392 clock = rq->tick_timestamp + TICK_NSEC;
393 else
394 clock++;
20d315d4
IM
395 rq->clock_overflows++;
396 } else {
397 if (unlikely(delta > rq->clock_max_delta))
398 rq->clock_max_delta = delta;
399 clock += delta;
400 }
401 }
402
403 rq->prev_clock_raw = now;
404 rq->clock = clock;
b04a0f4c 405}
20d315d4 406
b04a0f4c
IM
407static void update_rq_clock(struct rq *rq)
408{
409 if (likely(smp_processor_id() == cpu_of(rq)))
410 __update_rq_clock(rq);
20d315d4
IM
411}
412
674311d5
NP
413/*
414 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 415 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
416 *
417 * The domain tree of any CPU may only be accessed from within
418 * preempt-disabled sections.
419 */
48f24c4d
IM
420#define for_each_domain(cpu, __sd) \
421 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
422
423#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
424#define this_rq() (&__get_cpu_var(runqueues))
425#define task_rq(p) cpu_rq(task_cpu(p))
426#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
427
bf5c91ba
IM
428/*
429 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
430 */
431#ifdef CONFIG_SCHED_DEBUG
432# define const_debug __read_mostly
433#else
434# define const_debug static const
435#endif
436
437/*
438 * Debugging: various feature bits
439 */
440enum {
bbdba7c0
IM
441 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
442 SCHED_FEAT_START_DEBIT = 2,
06877c33 443 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 444 SCHED_FEAT_APPROX_AVG = 8,
bf5c91ba
IM
445};
446
447const_debug unsigned int sysctl_sched_features =
bf5c91ba 448 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 449 SCHED_FEAT_START_DEBIT *1 |
06877c33 450 SCHED_FEAT_TREE_AVG *0 |
94dfb5e7 451 SCHED_FEAT_APPROX_AVG *0;
bf5c91ba
IM
452
453#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
454
e436d800
IM
455/*
456 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
457 * clock constructed from sched_clock():
458 */
459unsigned long long cpu_clock(int cpu)
460{
e436d800
IM
461 unsigned long long now;
462 unsigned long flags;
b04a0f4c 463 struct rq *rq;
e436d800 464
2cd4d0ea 465 local_irq_save(flags);
b04a0f4c
IM
466 rq = cpu_rq(cpu);
467 update_rq_clock(rq);
468 now = rq->clock;
2cd4d0ea 469 local_irq_restore(flags);
e436d800
IM
470
471 return now;
472}
a58f6f25 473EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 474
1da177e4 475#ifndef prepare_arch_switch
4866cde0
NP
476# define prepare_arch_switch(next) do { } while (0)
477#endif
478#ifndef finish_arch_switch
479# define finish_arch_switch(prev) do { } while (0)
480#endif
481
482#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 483static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
484{
485 return rq->curr == p;
486}
487
70b97a7f 488static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
489{
490}
491
70b97a7f 492static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 493{
da04c035
IM
494#ifdef CONFIG_DEBUG_SPINLOCK
495 /* this is a valid case when another task releases the spinlock */
496 rq->lock.owner = current;
497#endif
8a25d5de
IM
498 /*
499 * If we are tracking spinlock dependencies then we have to
500 * fix up the runqueue lock - which gets 'carried over' from
501 * prev into current:
502 */
503 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
504
4866cde0
NP
505 spin_unlock_irq(&rq->lock);
506}
507
508#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 509static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
510{
511#ifdef CONFIG_SMP
512 return p->oncpu;
513#else
514 return rq->curr == p;
515#endif
516}
517
70b97a7f 518static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
519{
520#ifdef CONFIG_SMP
521 /*
522 * We can optimise this out completely for !SMP, because the
523 * SMP rebalancing from interrupt is the only thing that cares
524 * here.
525 */
526 next->oncpu = 1;
527#endif
528#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
529 spin_unlock_irq(&rq->lock);
530#else
531 spin_unlock(&rq->lock);
532#endif
533}
534
70b97a7f 535static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
536{
537#ifdef CONFIG_SMP
538 /*
539 * After ->oncpu is cleared, the task can be moved to a different CPU.
540 * We must ensure this doesn't happen until the switch is completely
541 * finished.
542 */
543 smp_wmb();
544 prev->oncpu = 0;
545#endif
546#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
547 local_irq_enable();
1da177e4 548#endif
4866cde0
NP
549}
550#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 551
b29739f9
IM
552/*
553 * __task_rq_lock - lock the runqueue a given task resides on.
554 * Must be called interrupts disabled.
555 */
70b97a7f 556static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
557 __acquires(rq->lock)
558{
70b97a7f 559 struct rq *rq;
b29739f9
IM
560
561repeat_lock_task:
562 rq = task_rq(p);
563 spin_lock(&rq->lock);
564 if (unlikely(rq != task_rq(p))) {
565 spin_unlock(&rq->lock);
566 goto repeat_lock_task;
567 }
568 return rq;
569}
570
1da177e4
LT
571/*
572 * task_rq_lock - lock the runqueue a given task resides on and disable
573 * interrupts. Note the ordering: we can safely lookup the task_rq without
574 * explicitly disabling preemption.
575 */
70b97a7f 576static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
577 __acquires(rq->lock)
578{
70b97a7f 579 struct rq *rq;
1da177e4
LT
580
581repeat_lock_task:
582 local_irq_save(*flags);
583 rq = task_rq(p);
584 spin_lock(&rq->lock);
585 if (unlikely(rq != task_rq(p))) {
586 spin_unlock_irqrestore(&rq->lock, *flags);
587 goto repeat_lock_task;
588 }
589 return rq;
590}
591
a9957449 592static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
593 __releases(rq->lock)
594{
595 spin_unlock(&rq->lock);
596}
597
70b97a7f 598static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
599 __releases(rq->lock)
600{
601 spin_unlock_irqrestore(&rq->lock, *flags);
602}
603
1da177e4 604/*
cc2a73b5 605 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 606 */
a9957449 607static struct rq *this_rq_lock(void)
1da177e4
LT
608 __acquires(rq->lock)
609{
70b97a7f 610 struct rq *rq;
1da177e4
LT
611
612 local_irq_disable();
613 rq = this_rq();
614 spin_lock(&rq->lock);
615
616 return rq;
617}
618
1b9f19c2 619/*
2aa44d05 620 * We are going deep-idle (irqs are disabled):
1b9f19c2 621 */
2aa44d05 622void sched_clock_idle_sleep_event(void)
1b9f19c2 623{
2aa44d05
IM
624 struct rq *rq = cpu_rq(smp_processor_id());
625
626 spin_lock(&rq->lock);
627 __update_rq_clock(rq);
628 spin_unlock(&rq->lock);
629 rq->clock_deep_idle_events++;
630}
631EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
632
633/*
634 * We just idled delta nanoseconds (called with irqs disabled):
635 */
636void sched_clock_idle_wakeup_event(u64 delta_ns)
637{
638 struct rq *rq = cpu_rq(smp_processor_id());
639 u64 now = sched_clock();
1b9f19c2 640
2aa44d05
IM
641 rq->idle_clock += delta_ns;
642 /*
643 * Override the previous timestamp and ignore all
644 * sched_clock() deltas that occured while we idled,
645 * and use the PM-provided delta_ns to advance the
646 * rq clock:
647 */
648 spin_lock(&rq->lock);
649 rq->prev_clock_raw = now;
650 rq->clock += delta_ns;
651 spin_unlock(&rq->lock);
1b9f19c2 652}
2aa44d05 653EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 654
c24d20db
IM
655/*
656 * resched_task - mark a task 'to be rescheduled now'.
657 *
658 * On UP this means the setting of the need_resched flag, on SMP it
659 * might also involve a cross-CPU call to trigger the scheduler on
660 * the target CPU.
661 */
662#ifdef CONFIG_SMP
663
664#ifndef tsk_is_polling
665#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
666#endif
667
668static void resched_task(struct task_struct *p)
669{
670 int cpu;
671
672 assert_spin_locked(&task_rq(p)->lock);
673
674 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
675 return;
676
677 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
678
679 cpu = task_cpu(p);
680 if (cpu == smp_processor_id())
681 return;
682
683 /* NEED_RESCHED must be visible before we test polling */
684 smp_mb();
685 if (!tsk_is_polling(p))
686 smp_send_reschedule(cpu);
687}
688
689static void resched_cpu(int cpu)
690{
691 struct rq *rq = cpu_rq(cpu);
692 unsigned long flags;
693
694 if (!spin_trylock_irqsave(&rq->lock, flags))
695 return;
696 resched_task(cpu_curr(cpu));
697 spin_unlock_irqrestore(&rq->lock, flags);
698}
699#else
700static inline void resched_task(struct task_struct *p)
701{
702 assert_spin_locked(&task_rq(p)->lock);
703 set_tsk_need_resched(p);
704}
705#endif
706
45bf76df
IM
707#if BITS_PER_LONG == 32
708# define WMULT_CONST (~0UL)
709#else
710# define WMULT_CONST (1UL << 32)
711#endif
712
713#define WMULT_SHIFT 32
714
194081eb
IM
715/*
716 * Shift right and round:
717 */
cf2ab469 718#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 719
cb1c4fc9 720static unsigned long
45bf76df
IM
721calc_delta_mine(unsigned long delta_exec, unsigned long weight,
722 struct load_weight *lw)
723{
724 u64 tmp;
725
726 if (unlikely(!lw->inv_weight))
194081eb 727 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
728
729 tmp = (u64)delta_exec * weight;
730 /*
731 * Check whether we'd overflow the 64-bit multiplication:
732 */
194081eb 733 if (unlikely(tmp > WMULT_CONST))
cf2ab469 734 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
735 WMULT_SHIFT/2);
736 else
cf2ab469 737 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 738
ecf691da 739 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
740}
741
742static inline unsigned long
743calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
744{
745 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
746}
747
1091985b 748static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
749{
750 lw->weight += inc;
45bf76df
IM
751}
752
1091985b 753static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
754{
755 lw->weight -= dec;
45bf76df
IM
756}
757
2dd73a4f
PW
758/*
759 * To aid in avoiding the subversion of "niceness" due to uneven distribution
760 * of tasks with abnormal "nice" values across CPUs the contribution that
761 * each task makes to its run queue's load is weighted according to its
762 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
763 * scaled version of the new time slice allocation that they receive on time
764 * slice expiry etc.
765 */
766
dd41f596
IM
767#define WEIGHT_IDLEPRIO 2
768#define WMULT_IDLEPRIO (1 << 31)
769
770/*
771 * Nice levels are multiplicative, with a gentle 10% change for every
772 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
773 * nice 1, it will get ~10% less CPU time than another CPU-bound task
774 * that remained on nice 0.
775 *
776 * The "10% effect" is relative and cumulative: from _any_ nice level,
777 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
778 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
779 * If a task goes up by ~10% and another task goes down by ~10% then
780 * the relative distance between them is ~25%.)
dd41f596
IM
781 */
782static const int prio_to_weight[40] = {
254753dc
IM
783 /* -20 */ 88761, 71755, 56483, 46273, 36291,
784 /* -15 */ 29154, 23254, 18705, 14949, 11916,
785 /* -10 */ 9548, 7620, 6100, 4904, 3906,
786 /* -5 */ 3121, 2501, 1991, 1586, 1277,
787 /* 0 */ 1024, 820, 655, 526, 423,
788 /* 5 */ 335, 272, 215, 172, 137,
789 /* 10 */ 110, 87, 70, 56, 45,
790 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
791};
792
5714d2de
IM
793/*
794 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
795 *
796 * In cases where the weight does not change often, we can use the
797 * precalculated inverse to speed up arithmetics by turning divisions
798 * into multiplications:
799 */
dd41f596 800static const u32 prio_to_wmult[40] = {
254753dc
IM
801 /* -20 */ 48388, 59856, 76040, 92818, 118348,
802 /* -15 */ 147320, 184698, 229616, 287308, 360437,
803 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
804 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
805 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
806 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
807 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
808 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 809};
2dd73a4f 810
dd41f596
IM
811static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
812
813/*
814 * runqueue iterator, to support SMP load-balancing between different
815 * scheduling classes, without having to expose their internal data
816 * structures to the load-balancing proper:
817 */
818struct rq_iterator {
819 void *arg;
820 struct task_struct *(*start)(void *);
821 struct task_struct *(*next)(void *);
822};
823
824static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
825 unsigned long max_nr_move, unsigned long max_load_move,
826 struct sched_domain *sd, enum cpu_idle_type idle,
827 int *all_pinned, unsigned long *load_moved,
a4ac01c3 828 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
829
830#include "sched_stats.h"
dd41f596 831#include "sched_idletask.c"
5522d5d5
IM
832#include "sched_fair.c"
833#include "sched_rt.c"
dd41f596
IM
834#ifdef CONFIG_SCHED_DEBUG
835# include "sched_debug.c"
836#endif
837
838#define sched_class_highest (&rt_sched_class)
839
9c217245
IM
840/*
841 * Update delta_exec, delta_fair fields for rq.
842 *
843 * delta_fair clock advances at a rate inversely proportional to
495eca49 844 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
845 * delta_exec advances at the same rate as wall-clock (provided
846 * cpu is not idle).
847 *
848 * delta_exec / delta_fair is a measure of the (smoothened) load on this
849 * runqueue over any given interval. This (smoothened) load is used
850 * during load balance.
851 *
495eca49 852 * This function is called /before/ updating rq->load
9c217245
IM
853 * and when switching tasks.
854 */
29b4b623 855static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 856{
495eca49 857 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
858}
859
79b5dddf 860static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 861{
495eca49 862 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
863}
864
e5fa2237 865static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
866{
867 rq->nr_running++;
29b4b623 868 inc_load(rq, p);
9c217245
IM
869}
870
db53181e 871static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
872{
873 rq->nr_running--;
79b5dddf 874 dec_load(rq, p);
9c217245
IM
875}
876
45bf76df
IM
877static void set_load_weight(struct task_struct *p)
878{
879 if (task_has_rt_policy(p)) {
dd41f596
IM
880 p->se.load.weight = prio_to_weight[0] * 2;
881 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
882 return;
883 }
45bf76df 884
dd41f596
IM
885 /*
886 * SCHED_IDLE tasks get minimal weight:
887 */
888 if (p->policy == SCHED_IDLE) {
889 p->se.load.weight = WEIGHT_IDLEPRIO;
890 p->se.load.inv_weight = WMULT_IDLEPRIO;
891 return;
892 }
71f8bd46 893
dd41f596
IM
894 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
895 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
896}
897
8159f87e 898static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 899{
dd41f596 900 sched_info_queued(p);
fd390f6a 901 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 902 p->se.on_rq = 1;
71f8bd46
IM
903}
904
69be72c1 905static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 906{
f02231e5 907 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 908 p->se.on_rq = 0;
71f8bd46
IM
909}
910
14531189 911/*
dd41f596 912 * __normal_prio - return the priority that is based on the static prio
14531189 913 */
14531189
IM
914static inline int __normal_prio(struct task_struct *p)
915{
dd41f596 916 return p->static_prio;
14531189
IM
917}
918
b29739f9
IM
919/*
920 * Calculate the expected normal priority: i.e. priority
921 * without taking RT-inheritance into account. Might be
922 * boosted by interactivity modifiers. Changes upon fork,
923 * setprio syscalls, and whenever the interactivity
924 * estimator recalculates.
925 */
36c8b586 926static inline int normal_prio(struct task_struct *p)
b29739f9
IM
927{
928 int prio;
929
e05606d3 930 if (task_has_rt_policy(p))
b29739f9
IM
931 prio = MAX_RT_PRIO-1 - p->rt_priority;
932 else
933 prio = __normal_prio(p);
934 return prio;
935}
936
937/*
938 * Calculate the current priority, i.e. the priority
939 * taken into account by the scheduler. This value might
940 * be boosted by RT tasks, or might be boosted by
941 * interactivity modifiers. Will be RT if the task got
942 * RT-boosted. If not then it returns p->normal_prio.
943 */
36c8b586 944static int effective_prio(struct task_struct *p)
b29739f9
IM
945{
946 p->normal_prio = normal_prio(p);
947 /*
948 * If we are RT tasks or we were boosted to RT priority,
949 * keep the priority unchanged. Otherwise, update priority
950 * to the normal priority:
951 */
952 if (!rt_prio(p->prio))
953 return p->normal_prio;
954 return p->prio;
955}
956
1da177e4 957/*
dd41f596 958 * activate_task - move a task to the runqueue.
1da177e4 959 */
dd41f596 960static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 961{
dd41f596
IM
962 if (p->state == TASK_UNINTERRUPTIBLE)
963 rq->nr_uninterruptible--;
1da177e4 964
8159f87e 965 enqueue_task(rq, p, wakeup);
e5fa2237 966 inc_nr_running(p, rq);
1da177e4
LT
967}
968
1da177e4
LT
969/*
970 * deactivate_task - remove a task from the runqueue.
971 */
2e1cb74a 972static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 973{
dd41f596
IM
974 if (p->state == TASK_UNINTERRUPTIBLE)
975 rq->nr_uninterruptible++;
976
69be72c1 977 dequeue_task(rq, p, sleep);
db53181e 978 dec_nr_running(p, rq);
1da177e4
LT
979}
980
1da177e4
LT
981/**
982 * task_curr - is this task currently executing on a CPU?
983 * @p: the task in question.
984 */
36c8b586 985inline int task_curr(const struct task_struct *p)
1da177e4
LT
986{
987 return cpu_curr(task_cpu(p)) == p;
988}
989
2dd73a4f
PW
990/* Used instead of source_load when we know the type == 0 */
991unsigned long weighted_cpuload(const int cpu)
992{
495eca49 993 return cpu_rq(cpu)->load.weight;
dd41f596
IM
994}
995
996static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
997{
998#ifdef CONFIG_SMP
999 task_thread_info(p)->cpu = cpu;
dd41f596 1000#endif
29f59db3 1001 set_task_cfs_rq(p);
2dd73a4f
PW
1002}
1003
1da177e4 1004#ifdef CONFIG_SMP
c65cc870 1005
dd41f596 1006void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1007{
dd41f596
IM
1008 int old_cpu = task_cpu(p);
1009 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1010 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1011 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1012 u64 clock_offset;
dd41f596
IM
1013
1014 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1015
1016#ifdef CONFIG_SCHEDSTATS
1017 if (p->se.wait_start)
1018 p->se.wait_start -= clock_offset;
dd41f596
IM
1019 if (p->se.sleep_start)
1020 p->se.sleep_start -= clock_offset;
1021 if (p->se.block_start)
1022 p->se.block_start -= clock_offset;
6cfb0d5d 1023#endif
2830cf8c
SV
1024 p->se.vruntime -= old_cfsrq->min_vruntime -
1025 new_cfsrq->min_vruntime;
dd41f596
IM
1026
1027 __set_task_cpu(p, new_cpu);
c65cc870
IM
1028}
1029
70b97a7f 1030struct migration_req {
1da177e4 1031 struct list_head list;
1da177e4 1032
36c8b586 1033 struct task_struct *task;
1da177e4
LT
1034 int dest_cpu;
1035
1da177e4 1036 struct completion done;
70b97a7f 1037};
1da177e4
LT
1038
1039/*
1040 * The task's runqueue lock must be held.
1041 * Returns true if you have to wait for migration thread.
1042 */
36c8b586 1043static int
70b97a7f 1044migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1045{
70b97a7f 1046 struct rq *rq = task_rq(p);
1da177e4
LT
1047
1048 /*
1049 * If the task is not on a runqueue (and not running), then
1050 * it is sufficient to simply update the task's cpu field.
1051 */
dd41f596 1052 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1053 set_task_cpu(p, dest_cpu);
1054 return 0;
1055 }
1056
1057 init_completion(&req->done);
1da177e4
LT
1058 req->task = p;
1059 req->dest_cpu = dest_cpu;
1060 list_add(&req->list, &rq->migration_queue);
48f24c4d 1061
1da177e4
LT
1062 return 1;
1063}
1064
1065/*
1066 * wait_task_inactive - wait for a thread to unschedule.
1067 *
1068 * The caller must ensure that the task *will* unschedule sometime soon,
1069 * else this function might spin for a *long* time. This function can't
1070 * be called with interrupts off, or it may introduce deadlock with
1071 * smp_call_function() if an IPI is sent by the same process we are
1072 * waiting to become inactive.
1073 */
36c8b586 1074void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1075{
1076 unsigned long flags;
dd41f596 1077 int running, on_rq;
70b97a7f 1078 struct rq *rq;
1da177e4
LT
1079
1080repeat:
fa490cfd
LT
1081 /*
1082 * We do the initial early heuristics without holding
1083 * any task-queue locks at all. We'll only try to get
1084 * the runqueue lock when things look like they will
1085 * work out!
1086 */
1087 rq = task_rq(p);
1088
1089 /*
1090 * If the task is actively running on another CPU
1091 * still, just relax and busy-wait without holding
1092 * any locks.
1093 *
1094 * NOTE! Since we don't hold any locks, it's not
1095 * even sure that "rq" stays as the right runqueue!
1096 * But we don't care, since "task_running()" will
1097 * return false if the runqueue has changed and p
1098 * is actually now running somewhere else!
1099 */
1100 while (task_running(rq, p))
1101 cpu_relax();
1102
1103 /*
1104 * Ok, time to look more closely! We need the rq
1105 * lock now, to be *sure*. If we're wrong, we'll
1106 * just go back and repeat.
1107 */
1da177e4 1108 rq = task_rq_lock(p, &flags);
fa490cfd 1109 running = task_running(rq, p);
dd41f596 1110 on_rq = p->se.on_rq;
fa490cfd
LT
1111 task_rq_unlock(rq, &flags);
1112
1113 /*
1114 * Was it really running after all now that we
1115 * checked with the proper locks actually held?
1116 *
1117 * Oops. Go back and try again..
1118 */
1119 if (unlikely(running)) {
1da177e4 1120 cpu_relax();
1da177e4
LT
1121 goto repeat;
1122 }
fa490cfd
LT
1123
1124 /*
1125 * It's not enough that it's not actively running,
1126 * it must be off the runqueue _entirely_, and not
1127 * preempted!
1128 *
1129 * So if it wa still runnable (but just not actively
1130 * running right now), it's preempted, and we should
1131 * yield - it could be a while.
1132 */
dd41f596 1133 if (unlikely(on_rq)) {
fa490cfd
LT
1134 yield();
1135 goto repeat;
1136 }
1137
1138 /*
1139 * Ahh, all good. It wasn't running, and it wasn't
1140 * runnable, which means that it will never become
1141 * running in the future either. We're all done!
1142 */
1da177e4
LT
1143}
1144
1145/***
1146 * kick_process - kick a running thread to enter/exit the kernel
1147 * @p: the to-be-kicked thread
1148 *
1149 * Cause a process which is running on another CPU to enter
1150 * kernel-mode, without any delay. (to get signals handled.)
1151 *
1152 * NOTE: this function doesnt have to take the runqueue lock,
1153 * because all it wants to ensure is that the remote task enters
1154 * the kernel. If the IPI races and the task has been migrated
1155 * to another CPU then no harm is done and the purpose has been
1156 * achieved as well.
1157 */
36c8b586 1158void kick_process(struct task_struct *p)
1da177e4
LT
1159{
1160 int cpu;
1161
1162 preempt_disable();
1163 cpu = task_cpu(p);
1164 if ((cpu != smp_processor_id()) && task_curr(p))
1165 smp_send_reschedule(cpu);
1166 preempt_enable();
1167}
1168
1169/*
2dd73a4f
PW
1170 * Return a low guess at the load of a migration-source cpu weighted
1171 * according to the scheduling class and "nice" value.
1da177e4
LT
1172 *
1173 * We want to under-estimate the load of migration sources, to
1174 * balance conservatively.
1175 */
a9957449 1176static unsigned long source_load(int cpu, int type)
1da177e4 1177{
70b97a7f 1178 struct rq *rq = cpu_rq(cpu);
dd41f596 1179 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1180
3b0bd9bc 1181 if (type == 0)
dd41f596 1182 return total;
b910472d 1183
dd41f596 1184 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1185}
1186
1187/*
2dd73a4f
PW
1188 * Return a high guess at the load of a migration-target cpu weighted
1189 * according to the scheduling class and "nice" value.
1da177e4 1190 */
a9957449 1191static unsigned long target_load(int cpu, int type)
1da177e4 1192{
70b97a7f 1193 struct rq *rq = cpu_rq(cpu);
dd41f596 1194 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1195
7897986b 1196 if (type == 0)
dd41f596 1197 return total;
3b0bd9bc 1198
dd41f596 1199 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1200}
1201
1202/*
1203 * Return the average load per task on the cpu's run queue
1204 */
1205static inline unsigned long cpu_avg_load_per_task(int cpu)
1206{
70b97a7f 1207 struct rq *rq = cpu_rq(cpu);
dd41f596 1208 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1209 unsigned long n = rq->nr_running;
1210
dd41f596 1211 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1212}
1213
147cbb4b
NP
1214/*
1215 * find_idlest_group finds and returns the least busy CPU group within the
1216 * domain.
1217 */
1218static struct sched_group *
1219find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1220{
1221 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1222 unsigned long min_load = ULONG_MAX, this_load = 0;
1223 int load_idx = sd->forkexec_idx;
1224 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1225
1226 do {
1227 unsigned long load, avg_load;
1228 int local_group;
1229 int i;
1230
da5a5522
BD
1231 /* Skip over this group if it has no CPUs allowed */
1232 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1233 goto nextgroup;
1234
147cbb4b 1235 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1236
1237 /* Tally up the load of all CPUs in the group */
1238 avg_load = 0;
1239
1240 for_each_cpu_mask(i, group->cpumask) {
1241 /* Bias balancing toward cpus of our domain */
1242 if (local_group)
1243 load = source_load(i, load_idx);
1244 else
1245 load = target_load(i, load_idx);
1246
1247 avg_load += load;
1248 }
1249
1250 /* Adjust by relative CPU power of the group */
5517d86b
ED
1251 avg_load = sg_div_cpu_power(group,
1252 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1253
1254 if (local_group) {
1255 this_load = avg_load;
1256 this = group;
1257 } else if (avg_load < min_load) {
1258 min_load = avg_load;
1259 idlest = group;
1260 }
da5a5522 1261nextgroup:
147cbb4b
NP
1262 group = group->next;
1263 } while (group != sd->groups);
1264
1265 if (!idlest || 100*this_load < imbalance*min_load)
1266 return NULL;
1267 return idlest;
1268}
1269
1270/*
0feaece9 1271 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1272 */
95cdf3b7
IM
1273static int
1274find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1275{
da5a5522 1276 cpumask_t tmp;
147cbb4b
NP
1277 unsigned long load, min_load = ULONG_MAX;
1278 int idlest = -1;
1279 int i;
1280
da5a5522
BD
1281 /* Traverse only the allowed CPUs */
1282 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1283
1284 for_each_cpu_mask(i, tmp) {
2dd73a4f 1285 load = weighted_cpuload(i);
147cbb4b
NP
1286
1287 if (load < min_load || (load == min_load && i == this_cpu)) {
1288 min_load = load;
1289 idlest = i;
1290 }
1291 }
1292
1293 return idlest;
1294}
1295
476d139c
NP
1296/*
1297 * sched_balance_self: balance the current task (running on cpu) in domains
1298 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1299 * SD_BALANCE_EXEC.
1300 *
1301 * Balance, ie. select the least loaded group.
1302 *
1303 * Returns the target CPU number, or the same CPU if no balancing is needed.
1304 *
1305 * preempt must be disabled.
1306 */
1307static int sched_balance_self(int cpu, int flag)
1308{
1309 struct task_struct *t = current;
1310 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1311
c96d145e 1312 for_each_domain(cpu, tmp) {
9761eea8
IM
1313 /*
1314 * If power savings logic is enabled for a domain, stop there.
1315 */
5c45bf27
SS
1316 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1317 break;
476d139c
NP
1318 if (tmp->flags & flag)
1319 sd = tmp;
c96d145e 1320 }
476d139c
NP
1321
1322 while (sd) {
1323 cpumask_t span;
1324 struct sched_group *group;
1a848870
SS
1325 int new_cpu, weight;
1326
1327 if (!(sd->flags & flag)) {
1328 sd = sd->child;
1329 continue;
1330 }
476d139c
NP
1331
1332 span = sd->span;
1333 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1334 if (!group) {
1335 sd = sd->child;
1336 continue;
1337 }
476d139c 1338
da5a5522 1339 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1340 if (new_cpu == -1 || new_cpu == cpu) {
1341 /* Now try balancing at a lower domain level of cpu */
1342 sd = sd->child;
1343 continue;
1344 }
476d139c 1345
1a848870 1346 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1347 cpu = new_cpu;
476d139c
NP
1348 sd = NULL;
1349 weight = cpus_weight(span);
1350 for_each_domain(cpu, tmp) {
1351 if (weight <= cpus_weight(tmp->span))
1352 break;
1353 if (tmp->flags & flag)
1354 sd = tmp;
1355 }
1356 /* while loop will break here if sd == NULL */
1357 }
1358
1359 return cpu;
1360}
1361
1362#endif /* CONFIG_SMP */
1da177e4
LT
1363
1364/*
1365 * wake_idle() will wake a task on an idle cpu if task->cpu is
1366 * not idle and an idle cpu is available. The span of cpus to
1367 * search starts with cpus closest then further out as needed,
1368 * so we always favor a closer, idle cpu.
1369 *
1370 * Returns the CPU we should wake onto.
1371 */
1372#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1373static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1374{
1375 cpumask_t tmp;
1376 struct sched_domain *sd;
1377 int i;
1378
4953198b
SS
1379 /*
1380 * If it is idle, then it is the best cpu to run this task.
1381 *
1382 * This cpu is also the best, if it has more than one task already.
1383 * Siblings must be also busy(in most cases) as they didn't already
1384 * pickup the extra load from this cpu and hence we need not check
1385 * sibling runqueue info. This will avoid the checks and cache miss
1386 * penalities associated with that.
1387 */
1388 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1389 return cpu;
1390
1391 for_each_domain(cpu, sd) {
1392 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1393 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1394 for_each_cpu_mask(i, tmp) {
1395 if (idle_cpu(i))
1396 return i;
1397 }
9761eea8 1398 } else {
e0f364f4 1399 break;
9761eea8 1400 }
1da177e4
LT
1401 }
1402 return cpu;
1403}
1404#else
36c8b586 1405static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1406{
1407 return cpu;
1408}
1409#endif
1410
1411/***
1412 * try_to_wake_up - wake up a thread
1413 * @p: the to-be-woken-up thread
1414 * @state: the mask of task states that can be woken
1415 * @sync: do a synchronous wakeup?
1416 *
1417 * Put it on the run-queue if it's not already there. The "current"
1418 * thread is always on the run-queue (except when the actual
1419 * re-schedule is in progress), and as such you're allowed to do
1420 * the simpler "current->state = TASK_RUNNING" to mark yourself
1421 * runnable without the overhead of this.
1422 *
1423 * returns failure only if the task is already active.
1424 */
36c8b586 1425static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1426{
1427 int cpu, this_cpu, success = 0;
1428 unsigned long flags;
1429 long old_state;
70b97a7f 1430 struct rq *rq;
1da177e4 1431#ifdef CONFIG_SMP
7897986b 1432 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1433 unsigned long load, this_load;
1da177e4
LT
1434 int new_cpu;
1435#endif
1436
1437 rq = task_rq_lock(p, &flags);
1438 old_state = p->state;
1439 if (!(old_state & state))
1440 goto out;
1441
dd41f596 1442 if (p->se.on_rq)
1da177e4
LT
1443 goto out_running;
1444
1445 cpu = task_cpu(p);
1446 this_cpu = smp_processor_id();
1447
1448#ifdef CONFIG_SMP
1449 if (unlikely(task_running(rq, p)))
1450 goto out_activate;
1451
7897986b
NP
1452 new_cpu = cpu;
1453
2d72376b 1454 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1455 if (cpu == this_cpu) {
1456 schedstat_inc(rq, ttwu_local);
7897986b
NP
1457 goto out_set_cpu;
1458 }
1459
1460 for_each_domain(this_cpu, sd) {
1461 if (cpu_isset(cpu, sd->span)) {
1462 schedstat_inc(sd, ttwu_wake_remote);
1463 this_sd = sd;
1464 break;
1da177e4
LT
1465 }
1466 }
1da177e4 1467
7897986b 1468 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1469 goto out_set_cpu;
1470
1da177e4 1471 /*
7897986b 1472 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1473 */
7897986b
NP
1474 if (this_sd) {
1475 int idx = this_sd->wake_idx;
1476 unsigned int imbalance;
1da177e4 1477
a3f21bce
NP
1478 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1479
7897986b
NP
1480 load = source_load(cpu, idx);
1481 this_load = target_load(this_cpu, idx);
1da177e4 1482
7897986b
NP
1483 new_cpu = this_cpu; /* Wake to this CPU if we can */
1484
a3f21bce
NP
1485 if (this_sd->flags & SD_WAKE_AFFINE) {
1486 unsigned long tl = this_load;
33859f7f
MOS
1487 unsigned long tl_per_task;
1488
1489 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1490
1da177e4 1491 /*
a3f21bce
NP
1492 * If sync wakeup then subtract the (maximum possible)
1493 * effect of the currently running task from the load
1494 * of the current CPU:
1da177e4 1495 */
a3f21bce 1496 if (sync)
dd41f596 1497 tl -= current->se.load.weight;
a3f21bce
NP
1498
1499 if ((tl <= load &&
2dd73a4f 1500 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1501 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1502 /*
1503 * This domain has SD_WAKE_AFFINE and
1504 * p is cache cold in this domain, and
1505 * there is no bad imbalance.
1506 */
1507 schedstat_inc(this_sd, ttwu_move_affine);
1508 goto out_set_cpu;
1509 }
1510 }
1511
1512 /*
1513 * Start passive balancing when half the imbalance_pct
1514 * limit is reached.
1515 */
1516 if (this_sd->flags & SD_WAKE_BALANCE) {
1517 if (imbalance*this_load <= 100*load) {
1518 schedstat_inc(this_sd, ttwu_move_balance);
1519 goto out_set_cpu;
1520 }
1da177e4
LT
1521 }
1522 }
1523
1524 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1525out_set_cpu:
1526 new_cpu = wake_idle(new_cpu, p);
1527 if (new_cpu != cpu) {
1528 set_task_cpu(p, new_cpu);
1529 task_rq_unlock(rq, &flags);
1530 /* might preempt at this point */
1531 rq = task_rq_lock(p, &flags);
1532 old_state = p->state;
1533 if (!(old_state & state))
1534 goto out;
dd41f596 1535 if (p->se.on_rq)
1da177e4
LT
1536 goto out_running;
1537
1538 this_cpu = smp_processor_id();
1539 cpu = task_cpu(p);
1540 }
1541
1542out_activate:
1543#endif /* CONFIG_SMP */
2daa3577 1544 update_rq_clock(rq);
dd41f596 1545 activate_task(rq, p, 1);
1da177e4
LT
1546 /*
1547 * Sync wakeups (i.e. those types of wakeups where the waker
1548 * has indicated that it will leave the CPU in short order)
1549 * don't trigger a preemption, if the woken up task will run on
1550 * this cpu. (in this case the 'I will reschedule' promise of
1551 * the waker guarantees that the freshly woken up task is going
1552 * to be considered on this CPU.)
1553 */
dd41f596
IM
1554 if (!sync || cpu != this_cpu)
1555 check_preempt_curr(rq, p);
1da177e4
LT
1556 success = 1;
1557
1558out_running:
1559 p->state = TASK_RUNNING;
1560out:
1561 task_rq_unlock(rq, &flags);
1562
1563 return success;
1564}
1565
36c8b586 1566int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1567{
1568 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1569 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1570}
1da177e4
LT
1571EXPORT_SYMBOL(wake_up_process);
1572
36c8b586 1573int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1574{
1575 return try_to_wake_up(p, state, 0);
1576}
1577
1da177e4
LT
1578/*
1579 * Perform scheduler related setup for a newly forked process p.
1580 * p is forked by current.
dd41f596
IM
1581 *
1582 * __sched_fork() is basic setup used by init_idle() too:
1583 */
1584static void __sched_fork(struct task_struct *p)
1585{
dd41f596
IM
1586 p->se.exec_start = 0;
1587 p->se.sum_exec_runtime = 0;
f6cf891c 1588 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1589
1590#ifdef CONFIG_SCHEDSTATS
1591 p->se.wait_start = 0;
dd41f596
IM
1592 p->se.sum_sleep_runtime = 0;
1593 p->se.sleep_start = 0;
dd41f596
IM
1594 p->se.block_start = 0;
1595 p->se.sleep_max = 0;
1596 p->se.block_max = 0;
1597 p->se.exec_max = 0;
eba1ed4b 1598 p->se.slice_max = 0;
dd41f596 1599 p->se.wait_max = 0;
6cfb0d5d 1600#endif
476d139c 1601
dd41f596
IM
1602 INIT_LIST_HEAD(&p->run_list);
1603 p->se.on_rq = 0;
476d139c 1604
e107be36
AK
1605#ifdef CONFIG_PREEMPT_NOTIFIERS
1606 INIT_HLIST_HEAD(&p->preempt_notifiers);
1607#endif
1608
1da177e4
LT
1609 /*
1610 * We mark the process as running here, but have not actually
1611 * inserted it onto the runqueue yet. This guarantees that
1612 * nobody will actually run it, and a signal or other external
1613 * event cannot wake it up and insert it on the runqueue either.
1614 */
1615 p->state = TASK_RUNNING;
dd41f596
IM
1616}
1617
1618/*
1619 * fork()/clone()-time setup:
1620 */
1621void sched_fork(struct task_struct *p, int clone_flags)
1622{
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
1626
1627#ifdef CONFIG_SMP
1628 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1629#endif
02e4bac2 1630 set_task_cpu(p, cpu);
b29739f9
IM
1631
1632 /*
1633 * Make sure we do not leak PI boosting priority to the child:
1634 */
1635 p->prio = current->normal_prio;
2ddbf952
HS
1636 if (!rt_prio(p->prio))
1637 p->sched_class = &fair_sched_class;
b29739f9 1638
52f17b6c 1639#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1640 if (likely(sched_info_on()))
52f17b6c 1641 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1642#endif
d6077cb8 1643#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1644 p->oncpu = 0;
1645#endif
1da177e4 1646#ifdef CONFIG_PREEMPT
4866cde0 1647 /* Want to start with kernel preemption disabled. */
a1261f54 1648 task_thread_info(p)->preempt_count = 1;
1da177e4 1649#endif
476d139c 1650 put_cpu();
1da177e4
LT
1651}
1652
1653/*
1654 * wake_up_new_task - wake up a newly created task for the first time.
1655 *
1656 * This function will do some initial scheduler statistics housekeeping
1657 * that must be done for every newly created context, then puts the task
1658 * on the runqueue and wakes it.
1659 */
36c8b586 1660void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1661{
1662 unsigned long flags;
dd41f596 1663 struct rq *rq;
1da177e4
LT
1664
1665 rq = task_rq_lock(p, &flags);
147cbb4b 1666 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1667 update_rq_clock(rq);
1da177e4
LT
1668
1669 p->prio = effective_prio(p);
1670
00bf7bfc 1671 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1672 activate_task(rq, p, 0);
1da177e4 1673 } else {
1da177e4 1674 /*
dd41f596
IM
1675 * Let the scheduling class do new task startup
1676 * management (if any):
1da177e4 1677 */
ee0827d8 1678 p->sched_class->task_new(rq, p);
e5fa2237 1679 inc_nr_running(p, rq);
1da177e4 1680 }
dd41f596
IM
1681 check_preempt_curr(rq, p);
1682 task_rq_unlock(rq, &flags);
1da177e4
LT
1683}
1684
e107be36
AK
1685#ifdef CONFIG_PREEMPT_NOTIFIERS
1686
1687/**
421cee29
RD
1688 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1689 * @notifier: notifier struct to register
e107be36
AK
1690 */
1691void preempt_notifier_register(struct preempt_notifier *notifier)
1692{
1693 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1694}
1695EXPORT_SYMBOL_GPL(preempt_notifier_register);
1696
1697/**
1698 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1699 * @notifier: notifier struct to unregister
e107be36
AK
1700 *
1701 * This is safe to call from within a preemption notifier.
1702 */
1703void preempt_notifier_unregister(struct preempt_notifier *notifier)
1704{
1705 hlist_del(&notifier->link);
1706}
1707EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1708
1709static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1710{
1711 struct preempt_notifier *notifier;
1712 struct hlist_node *node;
1713
1714 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1715 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1716}
1717
1718static void
1719fire_sched_out_preempt_notifiers(struct task_struct *curr,
1720 struct task_struct *next)
1721{
1722 struct preempt_notifier *notifier;
1723 struct hlist_node *node;
1724
1725 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1726 notifier->ops->sched_out(notifier, next);
1727}
1728
1729#else
1730
1731static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1732{
1733}
1734
1735static void
1736fire_sched_out_preempt_notifiers(struct task_struct *curr,
1737 struct task_struct *next)
1738{
1739}
1740
1741#endif
1742
4866cde0
NP
1743/**
1744 * prepare_task_switch - prepare to switch tasks
1745 * @rq: the runqueue preparing to switch
421cee29 1746 * @prev: the current task that is being switched out
4866cde0
NP
1747 * @next: the task we are going to switch to.
1748 *
1749 * This is called with the rq lock held and interrupts off. It must
1750 * be paired with a subsequent finish_task_switch after the context
1751 * switch.
1752 *
1753 * prepare_task_switch sets up locking and calls architecture specific
1754 * hooks.
1755 */
e107be36
AK
1756static inline void
1757prepare_task_switch(struct rq *rq, struct task_struct *prev,
1758 struct task_struct *next)
4866cde0 1759{
e107be36 1760 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1761 prepare_lock_switch(rq, next);
1762 prepare_arch_switch(next);
1763}
1764
1da177e4
LT
1765/**
1766 * finish_task_switch - clean up after a task-switch
344babaa 1767 * @rq: runqueue associated with task-switch
1da177e4
LT
1768 * @prev: the thread we just switched away from.
1769 *
4866cde0
NP
1770 * finish_task_switch must be called after the context switch, paired
1771 * with a prepare_task_switch call before the context switch.
1772 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1773 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1774 *
1775 * Note that we may have delayed dropping an mm in context_switch(). If
1776 * so, we finish that here outside of the runqueue lock. (Doing it
1777 * with the lock held can cause deadlocks; see schedule() for
1778 * details.)
1779 */
a9957449 1780static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1781 __releases(rq->lock)
1782{
1da177e4 1783 struct mm_struct *mm = rq->prev_mm;
55a101f8 1784 long prev_state;
1da177e4
LT
1785
1786 rq->prev_mm = NULL;
1787
1788 /*
1789 * A task struct has one reference for the use as "current".
c394cc9f 1790 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1791 * schedule one last time. The schedule call will never return, and
1792 * the scheduled task must drop that reference.
c394cc9f 1793 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1794 * still held, otherwise prev could be scheduled on another cpu, die
1795 * there before we look at prev->state, and then the reference would
1796 * be dropped twice.
1797 * Manfred Spraul <manfred@colorfullife.com>
1798 */
55a101f8 1799 prev_state = prev->state;
4866cde0
NP
1800 finish_arch_switch(prev);
1801 finish_lock_switch(rq, prev);
e107be36 1802 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1803 if (mm)
1804 mmdrop(mm);
c394cc9f 1805 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1806 /*
1807 * Remove function-return probe instances associated with this
1808 * task and put them back on the free list.
9761eea8 1809 */
c6fd91f0 1810 kprobe_flush_task(prev);
1da177e4 1811 put_task_struct(prev);
c6fd91f0 1812 }
1da177e4
LT
1813}
1814
1815/**
1816 * schedule_tail - first thing a freshly forked thread must call.
1817 * @prev: the thread we just switched away from.
1818 */
36c8b586 1819asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1820 __releases(rq->lock)
1821{
70b97a7f
IM
1822 struct rq *rq = this_rq();
1823
4866cde0
NP
1824 finish_task_switch(rq, prev);
1825#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1826 /* In this case, finish_task_switch does not reenable preemption */
1827 preempt_enable();
1828#endif
1da177e4
LT
1829 if (current->set_child_tid)
1830 put_user(current->pid, current->set_child_tid);
1831}
1832
1833/*
1834 * context_switch - switch to the new MM and the new
1835 * thread's register state.
1836 */
dd41f596 1837static inline void
70b97a7f 1838context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1839 struct task_struct *next)
1da177e4 1840{
dd41f596 1841 struct mm_struct *mm, *oldmm;
1da177e4 1842
e107be36 1843 prepare_task_switch(rq, prev, next);
dd41f596
IM
1844 mm = next->mm;
1845 oldmm = prev->active_mm;
9226d125
ZA
1846 /*
1847 * For paravirt, this is coupled with an exit in switch_to to
1848 * combine the page table reload and the switch backend into
1849 * one hypercall.
1850 */
1851 arch_enter_lazy_cpu_mode();
1852
dd41f596 1853 if (unlikely(!mm)) {
1da177e4
LT
1854 next->active_mm = oldmm;
1855 atomic_inc(&oldmm->mm_count);
1856 enter_lazy_tlb(oldmm, next);
1857 } else
1858 switch_mm(oldmm, mm, next);
1859
dd41f596 1860 if (unlikely(!prev->mm)) {
1da177e4 1861 prev->active_mm = NULL;
1da177e4
LT
1862 rq->prev_mm = oldmm;
1863 }
3a5f5e48
IM
1864 /*
1865 * Since the runqueue lock will be released by the next
1866 * task (which is an invalid locking op but in the case
1867 * of the scheduler it's an obvious special-case), so we
1868 * do an early lockdep release here:
1869 */
1870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1871 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1872#endif
1da177e4
LT
1873
1874 /* Here we just switch the register state and the stack. */
1875 switch_to(prev, next, prev);
1876
dd41f596
IM
1877 barrier();
1878 /*
1879 * this_rq must be evaluated again because prev may have moved
1880 * CPUs since it called schedule(), thus the 'rq' on its stack
1881 * frame will be invalid.
1882 */
1883 finish_task_switch(this_rq(), prev);
1da177e4
LT
1884}
1885
1886/*
1887 * nr_running, nr_uninterruptible and nr_context_switches:
1888 *
1889 * externally visible scheduler statistics: current number of runnable
1890 * threads, current number of uninterruptible-sleeping threads, total
1891 * number of context switches performed since bootup.
1892 */
1893unsigned long nr_running(void)
1894{
1895 unsigned long i, sum = 0;
1896
1897 for_each_online_cpu(i)
1898 sum += cpu_rq(i)->nr_running;
1899
1900 return sum;
1901}
1902
1903unsigned long nr_uninterruptible(void)
1904{
1905 unsigned long i, sum = 0;
1906
0a945022 1907 for_each_possible_cpu(i)
1da177e4
LT
1908 sum += cpu_rq(i)->nr_uninterruptible;
1909
1910 /*
1911 * Since we read the counters lockless, it might be slightly
1912 * inaccurate. Do not allow it to go below zero though:
1913 */
1914 if (unlikely((long)sum < 0))
1915 sum = 0;
1916
1917 return sum;
1918}
1919
1920unsigned long long nr_context_switches(void)
1921{
cc94abfc
SR
1922 int i;
1923 unsigned long long sum = 0;
1da177e4 1924
0a945022 1925 for_each_possible_cpu(i)
1da177e4
LT
1926 sum += cpu_rq(i)->nr_switches;
1927
1928 return sum;
1929}
1930
1931unsigned long nr_iowait(void)
1932{
1933 unsigned long i, sum = 0;
1934
0a945022 1935 for_each_possible_cpu(i)
1da177e4
LT
1936 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1937
1938 return sum;
1939}
1940
db1b1fef
JS
1941unsigned long nr_active(void)
1942{
1943 unsigned long i, running = 0, uninterruptible = 0;
1944
1945 for_each_online_cpu(i) {
1946 running += cpu_rq(i)->nr_running;
1947 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1948 }
1949
1950 if (unlikely((long)uninterruptible < 0))
1951 uninterruptible = 0;
1952
1953 return running + uninterruptible;
1954}
1955
48f24c4d 1956/*
dd41f596
IM
1957 * Update rq->cpu_load[] statistics. This function is usually called every
1958 * scheduler tick (TICK_NSEC).
48f24c4d 1959 */
dd41f596 1960static void update_cpu_load(struct rq *this_rq)
48f24c4d 1961{
495eca49 1962 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
1963 int i, scale;
1964
1965 this_rq->nr_load_updates++;
dd41f596
IM
1966
1967 /* Update our load: */
1968 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1969 unsigned long old_load, new_load;
1970
1971 /* scale is effectively 1 << i now, and >> i divides by scale */
1972
1973 old_load = this_rq->cpu_load[i];
1974 new_load = this_load;
a25707f3
IM
1975 /*
1976 * Round up the averaging division if load is increasing. This
1977 * prevents us from getting stuck on 9 if the load is 10, for
1978 * example.
1979 */
1980 if (new_load > old_load)
1981 new_load += scale-1;
dd41f596
IM
1982 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1983 }
48f24c4d
IM
1984}
1985
dd41f596
IM
1986#ifdef CONFIG_SMP
1987
1da177e4
LT
1988/*
1989 * double_rq_lock - safely lock two runqueues
1990 *
1991 * Note this does not disable interrupts like task_rq_lock,
1992 * you need to do so manually before calling.
1993 */
70b97a7f 1994static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1995 __acquires(rq1->lock)
1996 __acquires(rq2->lock)
1997{
054b9108 1998 BUG_ON(!irqs_disabled());
1da177e4
LT
1999 if (rq1 == rq2) {
2000 spin_lock(&rq1->lock);
2001 __acquire(rq2->lock); /* Fake it out ;) */
2002 } else {
c96d145e 2003 if (rq1 < rq2) {
1da177e4
LT
2004 spin_lock(&rq1->lock);
2005 spin_lock(&rq2->lock);
2006 } else {
2007 spin_lock(&rq2->lock);
2008 spin_lock(&rq1->lock);
2009 }
2010 }
6e82a3be
IM
2011 update_rq_clock(rq1);
2012 update_rq_clock(rq2);
1da177e4
LT
2013}
2014
2015/*
2016 * double_rq_unlock - safely unlock two runqueues
2017 *
2018 * Note this does not restore interrupts like task_rq_unlock,
2019 * you need to do so manually after calling.
2020 */
70b97a7f 2021static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2022 __releases(rq1->lock)
2023 __releases(rq2->lock)
2024{
2025 spin_unlock(&rq1->lock);
2026 if (rq1 != rq2)
2027 spin_unlock(&rq2->lock);
2028 else
2029 __release(rq2->lock);
2030}
2031
2032/*
2033 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2034 */
70b97a7f 2035static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2036 __releases(this_rq->lock)
2037 __acquires(busiest->lock)
2038 __acquires(this_rq->lock)
2039{
054b9108
KK
2040 if (unlikely(!irqs_disabled())) {
2041 /* printk() doesn't work good under rq->lock */
2042 spin_unlock(&this_rq->lock);
2043 BUG_ON(1);
2044 }
1da177e4 2045 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2046 if (busiest < this_rq) {
1da177e4
LT
2047 spin_unlock(&this_rq->lock);
2048 spin_lock(&busiest->lock);
2049 spin_lock(&this_rq->lock);
2050 } else
2051 spin_lock(&busiest->lock);
2052 }
2053}
2054
1da177e4
LT
2055/*
2056 * If dest_cpu is allowed for this process, migrate the task to it.
2057 * This is accomplished by forcing the cpu_allowed mask to only
2058 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2059 * the cpu_allowed mask is restored.
2060 */
36c8b586 2061static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2062{
70b97a7f 2063 struct migration_req req;
1da177e4 2064 unsigned long flags;
70b97a7f 2065 struct rq *rq;
1da177e4
LT
2066
2067 rq = task_rq_lock(p, &flags);
2068 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2069 || unlikely(cpu_is_offline(dest_cpu)))
2070 goto out;
2071
2072 /* force the process onto the specified CPU */
2073 if (migrate_task(p, dest_cpu, &req)) {
2074 /* Need to wait for migration thread (might exit: take ref). */
2075 struct task_struct *mt = rq->migration_thread;
36c8b586 2076
1da177e4
LT
2077 get_task_struct(mt);
2078 task_rq_unlock(rq, &flags);
2079 wake_up_process(mt);
2080 put_task_struct(mt);
2081 wait_for_completion(&req.done);
36c8b586 2082
1da177e4
LT
2083 return;
2084 }
2085out:
2086 task_rq_unlock(rq, &flags);
2087}
2088
2089/*
476d139c
NP
2090 * sched_exec - execve() is a valuable balancing opportunity, because at
2091 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2092 */
2093void sched_exec(void)
2094{
1da177e4 2095 int new_cpu, this_cpu = get_cpu();
476d139c 2096 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2097 put_cpu();
476d139c
NP
2098 if (new_cpu != this_cpu)
2099 sched_migrate_task(current, new_cpu);
1da177e4
LT
2100}
2101
2102/*
2103 * pull_task - move a task from a remote runqueue to the local runqueue.
2104 * Both runqueues must be locked.
2105 */
dd41f596
IM
2106static void pull_task(struct rq *src_rq, struct task_struct *p,
2107 struct rq *this_rq, int this_cpu)
1da177e4 2108{
2e1cb74a 2109 deactivate_task(src_rq, p, 0);
1da177e4 2110 set_task_cpu(p, this_cpu);
dd41f596 2111 activate_task(this_rq, p, 0);
1da177e4
LT
2112 /*
2113 * Note that idle threads have a prio of MAX_PRIO, for this test
2114 * to be always true for them.
2115 */
dd41f596 2116 check_preempt_curr(this_rq, p);
1da177e4
LT
2117}
2118
2119/*
2120 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2121 */
858119e1 2122static
70b97a7f 2123int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2124 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2125 int *all_pinned)
1da177e4
LT
2126{
2127 /*
2128 * We do not migrate tasks that are:
2129 * 1) running (obviously), or
2130 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2131 * 3) are cache-hot on their current CPU.
2132 */
1da177e4
LT
2133 if (!cpu_isset(this_cpu, p->cpus_allowed))
2134 return 0;
81026794
NP
2135 *all_pinned = 0;
2136
2137 if (task_running(rq, p))
2138 return 0;
1da177e4 2139
1da177e4
LT
2140 return 1;
2141}
2142
dd41f596 2143static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2144 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2145 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2146 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2147 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2148{
dd41f596
IM
2149 int pulled = 0, pinned = 0, skip_for_load;
2150 struct task_struct *p;
2151 long rem_load_move = max_load_move;
1da177e4 2152
2dd73a4f 2153 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2154 goto out;
2155
81026794
NP
2156 pinned = 1;
2157
1da177e4 2158 /*
dd41f596 2159 * Start the load-balancing iterator:
1da177e4 2160 */
dd41f596
IM
2161 p = iterator->start(iterator->arg);
2162next:
2163 if (!p)
1da177e4 2164 goto out;
50ddd969
PW
2165 /*
2166 * To help distribute high priority tasks accross CPUs we don't
2167 * skip a task if it will be the highest priority task (i.e. smallest
2168 * prio value) on its new queue regardless of its load weight
2169 */
dd41f596
IM
2170 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2171 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2172 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2173 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2174 p = iterator->next(iterator->arg);
2175 goto next;
1da177e4
LT
2176 }
2177
dd41f596 2178 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2179 pulled++;
dd41f596 2180 rem_load_move -= p->se.load.weight;
1da177e4 2181
2dd73a4f
PW
2182 /*
2183 * We only want to steal up to the prescribed number of tasks
2184 * and the prescribed amount of weighted load.
2185 */
2186 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2187 if (p->prio < *this_best_prio)
2188 *this_best_prio = p->prio;
dd41f596
IM
2189 p = iterator->next(iterator->arg);
2190 goto next;
1da177e4
LT
2191 }
2192out:
2193 /*
2194 * Right now, this is the only place pull_task() is called,
2195 * so we can safely collect pull_task() stats here rather than
2196 * inside pull_task().
2197 */
2198 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2199
2200 if (all_pinned)
2201 *all_pinned = pinned;
dd41f596 2202 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2203 return pulled;
2204}
2205
dd41f596 2206/*
43010659
PW
2207 * move_tasks tries to move up to max_load_move weighted load from busiest to
2208 * this_rq, as part of a balancing operation within domain "sd".
2209 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2210 *
2211 * Called with both runqueues locked.
2212 */
2213static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2214 unsigned long max_load_move,
dd41f596
IM
2215 struct sched_domain *sd, enum cpu_idle_type idle,
2216 int *all_pinned)
2217{
5522d5d5 2218 const struct sched_class *class = sched_class_highest;
43010659 2219 unsigned long total_load_moved = 0;
a4ac01c3 2220 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2221
2222 do {
43010659
PW
2223 total_load_moved +=
2224 class->load_balance(this_rq, this_cpu, busiest,
2225 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2226 sd, idle, all_pinned, &this_best_prio);
dd41f596 2227 class = class->next;
43010659 2228 } while (class && max_load_move > total_load_moved);
dd41f596 2229
43010659
PW
2230 return total_load_moved > 0;
2231}
2232
2233/*
2234 * move_one_task tries to move exactly one task from busiest to this_rq, as
2235 * part of active balancing operations within "domain".
2236 * Returns 1 if successful and 0 otherwise.
2237 *
2238 * Called with both runqueues locked.
2239 */
2240static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2241 struct sched_domain *sd, enum cpu_idle_type idle)
2242{
5522d5d5 2243 const struct sched_class *class;
a4ac01c3 2244 int this_best_prio = MAX_PRIO;
43010659
PW
2245
2246 for (class = sched_class_highest; class; class = class->next)
2247 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2248 1, ULONG_MAX, sd, idle, NULL,
2249 &this_best_prio))
43010659
PW
2250 return 1;
2251
2252 return 0;
dd41f596
IM
2253}
2254
1da177e4
LT
2255/*
2256 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2257 * domain. It calculates and returns the amount of weighted load which
2258 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2259 */
2260static struct sched_group *
2261find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2262 unsigned long *imbalance, enum cpu_idle_type idle,
2263 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2264{
2265 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2266 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2267 unsigned long max_pull;
2dd73a4f
PW
2268 unsigned long busiest_load_per_task, busiest_nr_running;
2269 unsigned long this_load_per_task, this_nr_running;
7897986b 2270 int load_idx;
5c45bf27
SS
2271#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2272 int power_savings_balance = 1;
2273 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2274 unsigned long min_nr_running = ULONG_MAX;
2275 struct sched_group *group_min = NULL, *group_leader = NULL;
2276#endif
1da177e4
LT
2277
2278 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2279 busiest_load_per_task = busiest_nr_running = 0;
2280 this_load_per_task = this_nr_running = 0;
d15bcfdb 2281 if (idle == CPU_NOT_IDLE)
7897986b 2282 load_idx = sd->busy_idx;
d15bcfdb 2283 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2284 load_idx = sd->newidle_idx;
2285 else
2286 load_idx = sd->idle_idx;
1da177e4
LT
2287
2288 do {
5c45bf27 2289 unsigned long load, group_capacity;
1da177e4
LT
2290 int local_group;
2291 int i;
783609c6 2292 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2293 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2294
2295 local_group = cpu_isset(this_cpu, group->cpumask);
2296
783609c6
SS
2297 if (local_group)
2298 balance_cpu = first_cpu(group->cpumask);
2299
1da177e4 2300 /* Tally up the load of all CPUs in the group */
2dd73a4f 2301 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2302
2303 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2304 struct rq *rq;
2305
2306 if (!cpu_isset(i, *cpus))
2307 continue;
2308
2309 rq = cpu_rq(i);
2dd73a4f 2310
9439aab8 2311 if (*sd_idle && rq->nr_running)
5969fe06
NP
2312 *sd_idle = 0;
2313
1da177e4 2314 /* Bias balancing toward cpus of our domain */
783609c6
SS
2315 if (local_group) {
2316 if (idle_cpu(i) && !first_idle_cpu) {
2317 first_idle_cpu = 1;
2318 balance_cpu = i;
2319 }
2320
a2000572 2321 load = target_load(i, load_idx);
783609c6 2322 } else
a2000572 2323 load = source_load(i, load_idx);
1da177e4
LT
2324
2325 avg_load += load;
2dd73a4f 2326 sum_nr_running += rq->nr_running;
dd41f596 2327 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2328 }
2329
783609c6
SS
2330 /*
2331 * First idle cpu or the first cpu(busiest) in this sched group
2332 * is eligible for doing load balancing at this and above
9439aab8
SS
2333 * domains. In the newly idle case, we will allow all the cpu's
2334 * to do the newly idle load balance.
783609c6 2335 */
9439aab8
SS
2336 if (idle != CPU_NEWLY_IDLE && local_group &&
2337 balance_cpu != this_cpu && balance) {
783609c6
SS
2338 *balance = 0;
2339 goto ret;
2340 }
2341
1da177e4 2342 total_load += avg_load;
5517d86b 2343 total_pwr += group->__cpu_power;
1da177e4
LT
2344
2345 /* Adjust by relative CPU power of the group */
5517d86b
ED
2346 avg_load = sg_div_cpu_power(group,
2347 avg_load * SCHED_LOAD_SCALE);
1da177e4 2348
5517d86b 2349 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2350
1da177e4
LT
2351 if (local_group) {
2352 this_load = avg_load;
2353 this = group;
2dd73a4f
PW
2354 this_nr_running = sum_nr_running;
2355 this_load_per_task = sum_weighted_load;
2356 } else if (avg_load > max_load &&
5c45bf27 2357 sum_nr_running > group_capacity) {
1da177e4
LT
2358 max_load = avg_load;
2359 busiest = group;
2dd73a4f
PW
2360 busiest_nr_running = sum_nr_running;
2361 busiest_load_per_task = sum_weighted_load;
1da177e4 2362 }
5c45bf27
SS
2363
2364#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2365 /*
2366 * Busy processors will not participate in power savings
2367 * balance.
2368 */
dd41f596
IM
2369 if (idle == CPU_NOT_IDLE ||
2370 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2371 goto group_next;
5c45bf27
SS
2372
2373 /*
2374 * If the local group is idle or completely loaded
2375 * no need to do power savings balance at this domain
2376 */
2377 if (local_group && (this_nr_running >= group_capacity ||
2378 !this_nr_running))
2379 power_savings_balance = 0;
2380
dd41f596 2381 /*
5c45bf27
SS
2382 * If a group is already running at full capacity or idle,
2383 * don't include that group in power savings calculations
dd41f596
IM
2384 */
2385 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2386 || !sum_nr_running)
dd41f596 2387 goto group_next;
5c45bf27 2388
dd41f596 2389 /*
5c45bf27 2390 * Calculate the group which has the least non-idle load.
dd41f596
IM
2391 * This is the group from where we need to pick up the load
2392 * for saving power
2393 */
2394 if ((sum_nr_running < min_nr_running) ||
2395 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2396 first_cpu(group->cpumask) <
2397 first_cpu(group_min->cpumask))) {
dd41f596
IM
2398 group_min = group;
2399 min_nr_running = sum_nr_running;
5c45bf27
SS
2400 min_load_per_task = sum_weighted_load /
2401 sum_nr_running;
dd41f596 2402 }
5c45bf27 2403
dd41f596 2404 /*
5c45bf27 2405 * Calculate the group which is almost near its
dd41f596
IM
2406 * capacity but still has some space to pick up some load
2407 * from other group and save more power
2408 */
2409 if (sum_nr_running <= group_capacity - 1) {
2410 if (sum_nr_running > leader_nr_running ||
2411 (sum_nr_running == leader_nr_running &&
2412 first_cpu(group->cpumask) >
2413 first_cpu(group_leader->cpumask))) {
2414 group_leader = group;
2415 leader_nr_running = sum_nr_running;
2416 }
48f24c4d 2417 }
5c45bf27
SS
2418group_next:
2419#endif
1da177e4
LT
2420 group = group->next;
2421 } while (group != sd->groups);
2422
2dd73a4f 2423 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2424 goto out_balanced;
2425
2426 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2427
2428 if (this_load >= avg_load ||
2429 100*max_load <= sd->imbalance_pct*this_load)
2430 goto out_balanced;
2431
2dd73a4f 2432 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2433 /*
2434 * We're trying to get all the cpus to the average_load, so we don't
2435 * want to push ourselves above the average load, nor do we wish to
2436 * reduce the max loaded cpu below the average load, as either of these
2437 * actions would just result in more rebalancing later, and ping-pong
2438 * tasks around. Thus we look for the minimum possible imbalance.
2439 * Negative imbalances (*we* are more loaded than anyone else) will
2440 * be counted as no imbalance for these purposes -- we can't fix that
2441 * by pulling tasks to us. Be careful of negative numbers as they'll
2442 * appear as very large values with unsigned longs.
2443 */
2dd73a4f
PW
2444 if (max_load <= busiest_load_per_task)
2445 goto out_balanced;
2446
2447 /*
2448 * In the presence of smp nice balancing, certain scenarios can have
2449 * max load less than avg load(as we skip the groups at or below
2450 * its cpu_power, while calculating max_load..)
2451 */
2452 if (max_load < avg_load) {
2453 *imbalance = 0;
2454 goto small_imbalance;
2455 }
0c117f1b
SS
2456
2457 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2458 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2459
1da177e4 2460 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2461 *imbalance = min(max_pull * busiest->__cpu_power,
2462 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2463 / SCHED_LOAD_SCALE;
2464
2dd73a4f
PW
2465 /*
2466 * if *imbalance is less than the average load per runnable task
2467 * there is no gaurantee that any tasks will be moved so we'll have
2468 * a think about bumping its value to force at least one task to be
2469 * moved
2470 */
7fd0d2dd 2471 if (*imbalance < busiest_load_per_task) {
48f24c4d 2472 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2473 unsigned int imbn;
2474
2475small_imbalance:
2476 pwr_move = pwr_now = 0;
2477 imbn = 2;
2478 if (this_nr_running) {
2479 this_load_per_task /= this_nr_running;
2480 if (busiest_load_per_task > this_load_per_task)
2481 imbn = 1;
2482 } else
2483 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2484
dd41f596
IM
2485 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2486 busiest_load_per_task * imbn) {
2dd73a4f 2487 *imbalance = busiest_load_per_task;
1da177e4
LT
2488 return busiest;
2489 }
2490
2491 /*
2492 * OK, we don't have enough imbalance to justify moving tasks,
2493 * however we may be able to increase total CPU power used by
2494 * moving them.
2495 */
2496
5517d86b
ED
2497 pwr_now += busiest->__cpu_power *
2498 min(busiest_load_per_task, max_load);
2499 pwr_now += this->__cpu_power *
2500 min(this_load_per_task, this_load);
1da177e4
LT
2501 pwr_now /= SCHED_LOAD_SCALE;
2502
2503 /* Amount of load we'd subtract */
5517d86b
ED
2504 tmp = sg_div_cpu_power(busiest,
2505 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2506 if (max_load > tmp)
5517d86b 2507 pwr_move += busiest->__cpu_power *
2dd73a4f 2508 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2509
2510 /* Amount of load we'd add */
5517d86b 2511 if (max_load * busiest->__cpu_power <
33859f7f 2512 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2513 tmp = sg_div_cpu_power(this,
2514 max_load * busiest->__cpu_power);
1da177e4 2515 else
5517d86b
ED
2516 tmp = sg_div_cpu_power(this,
2517 busiest_load_per_task * SCHED_LOAD_SCALE);
2518 pwr_move += this->__cpu_power *
2519 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2520 pwr_move /= SCHED_LOAD_SCALE;
2521
2522 /* Move if we gain throughput */
7fd0d2dd
SS
2523 if (pwr_move > pwr_now)
2524 *imbalance = busiest_load_per_task;
1da177e4
LT
2525 }
2526
1da177e4
LT
2527 return busiest;
2528
2529out_balanced:
5c45bf27 2530#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2531 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2532 goto ret;
1da177e4 2533
5c45bf27
SS
2534 if (this == group_leader && group_leader != group_min) {
2535 *imbalance = min_load_per_task;
2536 return group_min;
2537 }
5c45bf27 2538#endif
783609c6 2539ret:
1da177e4
LT
2540 *imbalance = 0;
2541 return NULL;
2542}
2543
2544/*
2545 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2546 */
70b97a7f 2547static struct rq *
d15bcfdb 2548find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2549 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2550{
70b97a7f 2551 struct rq *busiest = NULL, *rq;
2dd73a4f 2552 unsigned long max_load = 0;
1da177e4
LT
2553 int i;
2554
2555 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2556 unsigned long wl;
0a2966b4
CL
2557
2558 if (!cpu_isset(i, *cpus))
2559 continue;
2560
48f24c4d 2561 rq = cpu_rq(i);
dd41f596 2562 wl = weighted_cpuload(i);
2dd73a4f 2563
dd41f596 2564 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2565 continue;
1da177e4 2566
dd41f596
IM
2567 if (wl > max_load) {
2568 max_load = wl;
48f24c4d 2569 busiest = rq;
1da177e4
LT
2570 }
2571 }
2572
2573 return busiest;
2574}
2575
77391d71
NP
2576/*
2577 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2578 * so long as it is large enough.
2579 */
2580#define MAX_PINNED_INTERVAL 512
2581
1da177e4
LT
2582/*
2583 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2584 * tasks if there is an imbalance.
1da177e4 2585 */
70b97a7f 2586static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2587 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2588 int *balance)
1da177e4 2589{
43010659 2590 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2591 struct sched_group *group;
1da177e4 2592 unsigned long imbalance;
70b97a7f 2593 struct rq *busiest;
0a2966b4 2594 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2595 unsigned long flags;
5969fe06 2596
89c4710e
SS
2597 /*
2598 * When power savings policy is enabled for the parent domain, idle
2599 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2600 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2601 * portraying it as CPU_NOT_IDLE.
89c4710e 2602 */
d15bcfdb 2603 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2604 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2605 sd_idle = 1;
1da177e4 2606
2d72376b 2607 schedstat_inc(sd, lb_count[idle]);
1da177e4 2608
0a2966b4
CL
2609redo:
2610 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2611 &cpus, balance);
2612
06066714 2613 if (*balance == 0)
783609c6 2614 goto out_balanced;
783609c6 2615
1da177e4
LT
2616 if (!group) {
2617 schedstat_inc(sd, lb_nobusyg[idle]);
2618 goto out_balanced;
2619 }
2620
0a2966b4 2621 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2622 if (!busiest) {
2623 schedstat_inc(sd, lb_nobusyq[idle]);
2624 goto out_balanced;
2625 }
2626
db935dbd 2627 BUG_ON(busiest == this_rq);
1da177e4
LT
2628
2629 schedstat_add(sd, lb_imbalance[idle], imbalance);
2630
43010659 2631 ld_moved = 0;
1da177e4
LT
2632 if (busiest->nr_running > 1) {
2633 /*
2634 * Attempt to move tasks. If find_busiest_group has found
2635 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2636 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2637 * correctly treated as an imbalance.
2638 */
fe2eea3f 2639 local_irq_save(flags);
e17224bf 2640 double_rq_lock(this_rq, busiest);
43010659 2641 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2642 imbalance, sd, idle, &all_pinned);
e17224bf 2643 double_rq_unlock(this_rq, busiest);
fe2eea3f 2644 local_irq_restore(flags);
81026794 2645
46cb4b7c
SS
2646 /*
2647 * some other cpu did the load balance for us.
2648 */
43010659 2649 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2650 resched_cpu(this_cpu);
2651
81026794 2652 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2653 if (unlikely(all_pinned)) {
2654 cpu_clear(cpu_of(busiest), cpus);
2655 if (!cpus_empty(cpus))
2656 goto redo;
81026794 2657 goto out_balanced;
0a2966b4 2658 }
1da177e4 2659 }
81026794 2660
43010659 2661 if (!ld_moved) {
1da177e4
LT
2662 schedstat_inc(sd, lb_failed[idle]);
2663 sd->nr_balance_failed++;
2664
2665 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2666
fe2eea3f 2667 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2668
2669 /* don't kick the migration_thread, if the curr
2670 * task on busiest cpu can't be moved to this_cpu
2671 */
2672 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2673 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2674 all_pinned = 1;
2675 goto out_one_pinned;
2676 }
2677
1da177e4
LT
2678 if (!busiest->active_balance) {
2679 busiest->active_balance = 1;
2680 busiest->push_cpu = this_cpu;
81026794 2681 active_balance = 1;
1da177e4 2682 }
fe2eea3f 2683 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2684 if (active_balance)
1da177e4
LT
2685 wake_up_process(busiest->migration_thread);
2686
2687 /*
2688 * We've kicked active balancing, reset the failure
2689 * counter.
2690 */
39507451 2691 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2692 }
81026794 2693 } else
1da177e4
LT
2694 sd->nr_balance_failed = 0;
2695
81026794 2696 if (likely(!active_balance)) {
1da177e4
LT
2697 /* We were unbalanced, so reset the balancing interval */
2698 sd->balance_interval = sd->min_interval;
81026794
NP
2699 } else {
2700 /*
2701 * If we've begun active balancing, start to back off. This
2702 * case may not be covered by the all_pinned logic if there
2703 * is only 1 task on the busy runqueue (because we don't call
2704 * move_tasks).
2705 */
2706 if (sd->balance_interval < sd->max_interval)
2707 sd->balance_interval *= 2;
1da177e4
LT
2708 }
2709
43010659 2710 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2711 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2712 return -1;
43010659 2713 return ld_moved;
1da177e4
LT
2714
2715out_balanced:
1da177e4
LT
2716 schedstat_inc(sd, lb_balanced[idle]);
2717
16cfb1c0 2718 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2719
2720out_one_pinned:
1da177e4 2721 /* tune up the balancing interval */
77391d71
NP
2722 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2723 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2724 sd->balance_interval *= 2;
2725
48f24c4d 2726 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2727 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2728 return -1;
1da177e4
LT
2729 return 0;
2730}
2731
2732/*
2733 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2734 * tasks if there is an imbalance.
2735 *
d15bcfdb 2736 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2737 * this_rq is locked.
2738 */
48f24c4d 2739static int
70b97a7f 2740load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2741{
2742 struct sched_group *group;
70b97a7f 2743 struct rq *busiest = NULL;
1da177e4 2744 unsigned long imbalance;
43010659 2745 int ld_moved = 0;
5969fe06 2746 int sd_idle = 0;
969bb4e4 2747 int all_pinned = 0;
0a2966b4 2748 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2749
89c4710e
SS
2750 /*
2751 * When power savings policy is enabled for the parent domain, idle
2752 * sibling can pick up load irrespective of busy siblings. In this case,
2753 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2754 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2755 */
2756 if (sd->flags & SD_SHARE_CPUPOWER &&
2757 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2758 sd_idle = 1;
1da177e4 2759
2d72376b 2760 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2761redo:
d15bcfdb 2762 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2763 &sd_idle, &cpus, NULL);
1da177e4 2764 if (!group) {
d15bcfdb 2765 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2766 goto out_balanced;
1da177e4
LT
2767 }
2768
d15bcfdb 2769 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2770 &cpus);
db935dbd 2771 if (!busiest) {
d15bcfdb 2772 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2773 goto out_balanced;
1da177e4
LT
2774 }
2775
db935dbd
NP
2776 BUG_ON(busiest == this_rq);
2777
d15bcfdb 2778 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2779
43010659 2780 ld_moved = 0;
d6d5cfaf
NP
2781 if (busiest->nr_running > 1) {
2782 /* Attempt to move tasks */
2783 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2784 /* this_rq->clock is already updated */
2785 update_rq_clock(busiest);
43010659 2786 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2787 imbalance, sd, CPU_NEWLY_IDLE,
2788 &all_pinned);
d6d5cfaf 2789 spin_unlock(&busiest->lock);
0a2966b4 2790
969bb4e4 2791 if (unlikely(all_pinned)) {
0a2966b4
CL
2792 cpu_clear(cpu_of(busiest), cpus);
2793 if (!cpus_empty(cpus))
2794 goto redo;
2795 }
d6d5cfaf
NP
2796 }
2797
43010659 2798 if (!ld_moved) {
d15bcfdb 2799 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2800 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2801 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2802 return -1;
2803 } else
16cfb1c0 2804 sd->nr_balance_failed = 0;
1da177e4 2805
43010659 2806 return ld_moved;
16cfb1c0
NP
2807
2808out_balanced:
d15bcfdb 2809 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2810 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2811 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2812 return -1;
16cfb1c0 2813 sd->nr_balance_failed = 0;
48f24c4d 2814
16cfb1c0 2815 return 0;
1da177e4
LT
2816}
2817
2818/*
2819 * idle_balance is called by schedule() if this_cpu is about to become
2820 * idle. Attempts to pull tasks from other CPUs.
2821 */
70b97a7f 2822static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2823{
2824 struct sched_domain *sd;
dd41f596
IM
2825 int pulled_task = -1;
2826 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2827
2828 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2829 unsigned long interval;
2830
2831 if (!(sd->flags & SD_LOAD_BALANCE))
2832 continue;
2833
2834 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2835 /* If we've pulled tasks over stop searching: */
1bd77f2d 2836 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2837 this_rq, sd);
2838
2839 interval = msecs_to_jiffies(sd->balance_interval);
2840 if (time_after(next_balance, sd->last_balance + interval))
2841 next_balance = sd->last_balance + interval;
2842 if (pulled_task)
2843 break;
1da177e4 2844 }
dd41f596 2845 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2846 /*
2847 * We are going idle. next_balance may be set based on
2848 * a busy processor. So reset next_balance.
2849 */
2850 this_rq->next_balance = next_balance;
dd41f596 2851 }
1da177e4
LT
2852}
2853
2854/*
2855 * active_load_balance is run by migration threads. It pushes running tasks
2856 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2857 * running on each physical CPU where possible, and avoids physical /
2858 * logical imbalances.
2859 *
2860 * Called with busiest_rq locked.
2861 */
70b97a7f 2862static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2863{
39507451 2864 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2865 struct sched_domain *sd;
2866 struct rq *target_rq;
39507451 2867
48f24c4d 2868 /* Is there any task to move? */
39507451 2869 if (busiest_rq->nr_running <= 1)
39507451
NP
2870 return;
2871
2872 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2873
2874 /*
39507451
NP
2875 * This condition is "impossible", if it occurs
2876 * we need to fix it. Originally reported by
2877 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2878 */
39507451 2879 BUG_ON(busiest_rq == target_rq);
1da177e4 2880
39507451
NP
2881 /* move a task from busiest_rq to target_rq */
2882 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2883 update_rq_clock(busiest_rq);
2884 update_rq_clock(target_rq);
39507451
NP
2885
2886 /* Search for an sd spanning us and the target CPU. */
c96d145e 2887 for_each_domain(target_cpu, sd) {
39507451 2888 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2889 cpu_isset(busiest_cpu, sd->span))
39507451 2890 break;
c96d145e 2891 }
39507451 2892
48f24c4d 2893 if (likely(sd)) {
2d72376b 2894 schedstat_inc(sd, alb_count);
39507451 2895
43010659
PW
2896 if (move_one_task(target_rq, target_cpu, busiest_rq,
2897 sd, CPU_IDLE))
48f24c4d
IM
2898 schedstat_inc(sd, alb_pushed);
2899 else
2900 schedstat_inc(sd, alb_failed);
2901 }
39507451 2902 spin_unlock(&target_rq->lock);
1da177e4
LT
2903}
2904
46cb4b7c
SS
2905#ifdef CONFIG_NO_HZ
2906static struct {
2907 atomic_t load_balancer;
2908 cpumask_t cpu_mask;
2909} nohz ____cacheline_aligned = {
2910 .load_balancer = ATOMIC_INIT(-1),
2911 .cpu_mask = CPU_MASK_NONE,
2912};
2913
7835b98b 2914/*
46cb4b7c
SS
2915 * This routine will try to nominate the ilb (idle load balancing)
2916 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2917 * load balancing on behalf of all those cpus. If all the cpus in the system
2918 * go into this tickless mode, then there will be no ilb owner (as there is
2919 * no need for one) and all the cpus will sleep till the next wakeup event
2920 * arrives...
2921 *
2922 * For the ilb owner, tick is not stopped. And this tick will be used
2923 * for idle load balancing. ilb owner will still be part of
2924 * nohz.cpu_mask..
7835b98b 2925 *
46cb4b7c
SS
2926 * While stopping the tick, this cpu will become the ilb owner if there
2927 * is no other owner. And will be the owner till that cpu becomes busy
2928 * or if all cpus in the system stop their ticks at which point
2929 * there is no need for ilb owner.
2930 *
2931 * When the ilb owner becomes busy, it nominates another owner, during the
2932 * next busy scheduler_tick()
2933 */
2934int select_nohz_load_balancer(int stop_tick)
2935{
2936 int cpu = smp_processor_id();
2937
2938 if (stop_tick) {
2939 cpu_set(cpu, nohz.cpu_mask);
2940 cpu_rq(cpu)->in_nohz_recently = 1;
2941
2942 /*
2943 * If we are going offline and still the leader, give up!
2944 */
2945 if (cpu_is_offline(cpu) &&
2946 atomic_read(&nohz.load_balancer) == cpu) {
2947 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2948 BUG();
2949 return 0;
2950 }
2951
2952 /* time for ilb owner also to sleep */
2953 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2954 if (atomic_read(&nohz.load_balancer) == cpu)
2955 atomic_set(&nohz.load_balancer, -1);
2956 return 0;
2957 }
2958
2959 if (atomic_read(&nohz.load_balancer) == -1) {
2960 /* make me the ilb owner */
2961 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2962 return 1;
2963 } else if (atomic_read(&nohz.load_balancer) == cpu)
2964 return 1;
2965 } else {
2966 if (!cpu_isset(cpu, nohz.cpu_mask))
2967 return 0;
2968
2969 cpu_clear(cpu, nohz.cpu_mask);
2970
2971 if (atomic_read(&nohz.load_balancer) == cpu)
2972 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2973 BUG();
2974 }
2975 return 0;
2976}
2977#endif
2978
2979static DEFINE_SPINLOCK(balancing);
2980
2981/*
7835b98b
CL
2982 * It checks each scheduling domain to see if it is due to be balanced,
2983 * and initiates a balancing operation if so.
2984 *
2985 * Balancing parameters are set up in arch_init_sched_domains.
2986 */
a9957449 2987static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2988{
46cb4b7c
SS
2989 int balance = 1;
2990 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2991 unsigned long interval;
2992 struct sched_domain *sd;
46cb4b7c 2993 /* Earliest time when we have to do rebalance again */
c9819f45 2994 unsigned long next_balance = jiffies + 60*HZ;
f549da84 2995 int update_next_balance = 0;
1da177e4 2996
46cb4b7c 2997 for_each_domain(cpu, sd) {
1da177e4
LT
2998 if (!(sd->flags & SD_LOAD_BALANCE))
2999 continue;
3000
3001 interval = sd->balance_interval;
d15bcfdb 3002 if (idle != CPU_IDLE)
1da177e4
LT
3003 interval *= sd->busy_factor;
3004
3005 /* scale ms to jiffies */
3006 interval = msecs_to_jiffies(interval);
3007 if (unlikely(!interval))
3008 interval = 1;
dd41f596
IM
3009 if (interval > HZ*NR_CPUS/10)
3010 interval = HZ*NR_CPUS/10;
3011
1da177e4 3012
08c183f3
CL
3013 if (sd->flags & SD_SERIALIZE) {
3014 if (!spin_trylock(&balancing))
3015 goto out;
3016 }
3017
c9819f45 3018 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3019 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3020 /*
3021 * We've pulled tasks over so either we're no
5969fe06
NP
3022 * longer idle, or one of our SMT siblings is
3023 * not idle.
3024 */
d15bcfdb 3025 idle = CPU_NOT_IDLE;
1da177e4 3026 }
1bd77f2d 3027 sd->last_balance = jiffies;
1da177e4 3028 }
08c183f3
CL
3029 if (sd->flags & SD_SERIALIZE)
3030 spin_unlock(&balancing);
3031out:
f549da84 3032 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3033 next_balance = sd->last_balance + interval;
f549da84
SS
3034 update_next_balance = 1;
3035 }
783609c6
SS
3036
3037 /*
3038 * Stop the load balance at this level. There is another
3039 * CPU in our sched group which is doing load balancing more
3040 * actively.
3041 */
3042 if (!balance)
3043 break;
1da177e4 3044 }
f549da84
SS
3045
3046 /*
3047 * next_balance will be updated only when there is a need.
3048 * When the cpu is attached to null domain for ex, it will not be
3049 * updated.
3050 */
3051 if (likely(update_next_balance))
3052 rq->next_balance = next_balance;
46cb4b7c
SS
3053}
3054
3055/*
3056 * run_rebalance_domains is triggered when needed from the scheduler tick.
3057 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3058 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3059 */
3060static void run_rebalance_domains(struct softirq_action *h)
3061{
dd41f596
IM
3062 int this_cpu = smp_processor_id();
3063 struct rq *this_rq = cpu_rq(this_cpu);
3064 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3065 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3066
dd41f596 3067 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3068
3069#ifdef CONFIG_NO_HZ
3070 /*
3071 * If this cpu is the owner for idle load balancing, then do the
3072 * balancing on behalf of the other idle cpus whose ticks are
3073 * stopped.
3074 */
dd41f596
IM
3075 if (this_rq->idle_at_tick &&
3076 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3077 cpumask_t cpus = nohz.cpu_mask;
3078 struct rq *rq;
3079 int balance_cpu;
3080
dd41f596 3081 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3082 for_each_cpu_mask(balance_cpu, cpus) {
3083 /*
3084 * If this cpu gets work to do, stop the load balancing
3085 * work being done for other cpus. Next load
3086 * balancing owner will pick it up.
3087 */
3088 if (need_resched())
3089 break;
3090
de0cf899 3091 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3092
3093 rq = cpu_rq(balance_cpu);
dd41f596
IM
3094 if (time_after(this_rq->next_balance, rq->next_balance))
3095 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3096 }
3097 }
3098#endif
3099}
3100
3101/*
3102 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3103 *
3104 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3105 * idle load balancing owner or decide to stop the periodic load balancing,
3106 * if the whole system is idle.
3107 */
dd41f596 3108static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3109{
46cb4b7c
SS
3110#ifdef CONFIG_NO_HZ
3111 /*
3112 * If we were in the nohz mode recently and busy at the current
3113 * scheduler tick, then check if we need to nominate new idle
3114 * load balancer.
3115 */
3116 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3117 rq->in_nohz_recently = 0;
3118
3119 if (atomic_read(&nohz.load_balancer) == cpu) {
3120 cpu_clear(cpu, nohz.cpu_mask);
3121 atomic_set(&nohz.load_balancer, -1);
3122 }
3123
3124 if (atomic_read(&nohz.load_balancer) == -1) {
3125 /*
3126 * simple selection for now: Nominate the
3127 * first cpu in the nohz list to be the next
3128 * ilb owner.
3129 *
3130 * TBD: Traverse the sched domains and nominate
3131 * the nearest cpu in the nohz.cpu_mask.
3132 */
3133 int ilb = first_cpu(nohz.cpu_mask);
3134
3135 if (ilb != NR_CPUS)
3136 resched_cpu(ilb);
3137 }
3138 }
3139
3140 /*
3141 * If this cpu is idle and doing idle load balancing for all the
3142 * cpus with ticks stopped, is it time for that to stop?
3143 */
3144 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3145 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3146 resched_cpu(cpu);
3147 return;
3148 }
3149
3150 /*
3151 * If this cpu is idle and the idle load balancing is done by
3152 * someone else, then no need raise the SCHED_SOFTIRQ
3153 */
3154 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3155 cpu_isset(cpu, nohz.cpu_mask))
3156 return;
3157#endif
3158 if (time_after_eq(jiffies, rq->next_balance))
3159 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3160}
dd41f596
IM
3161
3162#else /* CONFIG_SMP */
3163
1da177e4
LT
3164/*
3165 * on UP we do not need to balance between CPUs:
3166 */
70b97a7f 3167static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3168{
3169}
dd41f596
IM
3170
3171/* Avoid "used but not defined" warning on UP */
3172static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3173 unsigned long max_nr_move, unsigned long max_load_move,
3174 struct sched_domain *sd, enum cpu_idle_type idle,
3175 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3176 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3177{
3178 *load_moved = 0;
3179
3180 return 0;
3181}
3182
1da177e4
LT
3183#endif
3184
1da177e4
LT
3185DEFINE_PER_CPU(struct kernel_stat, kstat);
3186
3187EXPORT_PER_CPU_SYMBOL(kstat);
3188
3189/*
41b86e9c
IM
3190 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3191 * that have not yet been banked in case the task is currently running.
1da177e4 3192 */
41b86e9c 3193unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3194{
1da177e4 3195 unsigned long flags;
41b86e9c
IM
3196 u64 ns, delta_exec;
3197 struct rq *rq;
48f24c4d 3198
41b86e9c
IM
3199 rq = task_rq_lock(p, &flags);
3200 ns = p->se.sum_exec_runtime;
3201 if (rq->curr == p) {
a8e504d2
IM
3202 update_rq_clock(rq);
3203 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3204 if ((s64)delta_exec > 0)
3205 ns += delta_exec;
3206 }
3207 task_rq_unlock(rq, &flags);
48f24c4d 3208
1da177e4
LT
3209 return ns;
3210}
3211
1da177e4
LT
3212/*
3213 * Account user cpu time to a process.
3214 * @p: the process that the cpu time gets accounted to
3215 * @hardirq_offset: the offset to subtract from hardirq_count()
3216 * @cputime: the cpu time spent in user space since the last update
3217 */
3218void account_user_time(struct task_struct *p, cputime_t cputime)
3219{
3220 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3221 cputime64_t tmp;
3222
3223 p->utime = cputime_add(p->utime, cputime);
3224
3225 /* Add user time to cpustat. */
3226 tmp = cputime_to_cputime64(cputime);
3227 if (TASK_NICE(p) > 0)
3228 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3229 else
3230 cpustat->user = cputime64_add(cpustat->user, tmp);
3231}
3232
3233/*
3234 * Account system cpu time to a process.
3235 * @p: the process that the cpu time gets accounted to
3236 * @hardirq_offset: the offset to subtract from hardirq_count()
3237 * @cputime: the cpu time spent in kernel space since the last update
3238 */
3239void account_system_time(struct task_struct *p, int hardirq_offset,
3240 cputime_t cputime)
3241{
3242 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3243 struct rq *rq = this_rq();
1da177e4
LT
3244 cputime64_t tmp;
3245
3246 p->stime = cputime_add(p->stime, cputime);
3247
3248 /* Add system time to cpustat. */
3249 tmp = cputime_to_cputime64(cputime);
3250 if (hardirq_count() - hardirq_offset)
3251 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3252 else if (softirq_count())
3253 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3254 else if (p != rq->idle)
3255 cpustat->system = cputime64_add(cpustat->system, tmp);
3256 else if (atomic_read(&rq->nr_iowait) > 0)
3257 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3258 else
3259 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3260 /* Account for system time used */
3261 acct_update_integrals(p);
1da177e4
LT
3262}
3263
3264/*
3265 * Account for involuntary wait time.
3266 * @p: the process from which the cpu time has been stolen
3267 * @steal: the cpu time spent in involuntary wait
3268 */
3269void account_steal_time(struct task_struct *p, cputime_t steal)
3270{
3271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3272 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3273 struct rq *rq = this_rq();
1da177e4
LT
3274
3275 if (p == rq->idle) {
3276 p->stime = cputime_add(p->stime, steal);
3277 if (atomic_read(&rq->nr_iowait) > 0)
3278 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3279 else
3280 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3281 } else
3282 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3283}
3284
7835b98b
CL
3285/*
3286 * This function gets called by the timer code, with HZ frequency.
3287 * We call it with interrupts disabled.
3288 *
3289 * It also gets called by the fork code, when changing the parent's
3290 * timeslices.
3291 */
3292void scheduler_tick(void)
3293{
7835b98b
CL
3294 int cpu = smp_processor_id();
3295 struct rq *rq = cpu_rq(cpu);
dd41f596 3296 struct task_struct *curr = rq->curr;
529c7726 3297 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3298
3299 spin_lock(&rq->lock);
546fe3c9 3300 __update_rq_clock(rq);
529c7726
IM
3301 /*
3302 * Let rq->clock advance by at least TICK_NSEC:
3303 */
3304 if (unlikely(rq->clock < next_tick))
3305 rq->clock = next_tick;
3306 rq->tick_timestamp = rq->clock;
f1a438d8 3307 update_cpu_load(rq);
dd41f596
IM
3308 if (curr != rq->idle) /* FIXME: needed? */
3309 curr->sched_class->task_tick(rq, curr);
dd41f596 3310 spin_unlock(&rq->lock);
7835b98b 3311
e418e1c2 3312#ifdef CONFIG_SMP
dd41f596
IM
3313 rq->idle_at_tick = idle_cpu(cpu);
3314 trigger_load_balance(rq, cpu);
e418e1c2 3315#endif
1da177e4
LT
3316}
3317
1da177e4
LT
3318#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3319
3320void fastcall add_preempt_count(int val)
3321{
3322 /*
3323 * Underflow?
3324 */
9a11b49a
IM
3325 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3326 return;
1da177e4
LT
3327 preempt_count() += val;
3328 /*
3329 * Spinlock count overflowing soon?
3330 */
33859f7f
MOS
3331 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3332 PREEMPT_MASK - 10);
1da177e4
LT
3333}
3334EXPORT_SYMBOL(add_preempt_count);
3335
3336void fastcall sub_preempt_count(int val)
3337{
3338 /*
3339 * Underflow?
3340 */
9a11b49a
IM
3341 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3342 return;
1da177e4
LT
3343 /*
3344 * Is the spinlock portion underflowing?
3345 */
9a11b49a
IM
3346 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3347 !(preempt_count() & PREEMPT_MASK)))
3348 return;
3349
1da177e4
LT
3350 preempt_count() -= val;
3351}
3352EXPORT_SYMBOL(sub_preempt_count);
3353
3354#endif
3355
3356/*
dd41f596 3357 * Print scheduling while atomic bug:
1da177e4 3358 */
dd41f596 3359static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3360{
dd41f596
IM
3361 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3362 prev->comm, preempt_count(), prev->pid);
3363 debug_show_held_locks(prev);
3364 if (irqs_disabled())
3365 print_irqtrace_events(prev);
3366 dump_stack();
3367}
1da177e4 3368
dd41f596
IM
3369/*
3370 * Various schedule()-time debugging checks and statistics:
3371 */
3372static inline void schedule_debug(struct task_struct *prev)
3373{
1da177e4
LT
3374 /*
3375 * Test if we are atomic. Since do_exit() needs to call into
3376 * schedule() atomically, we ignore that path for now.
3377 * Otherwise, whine if we are scheduling when we should not be.
3378 */
dd41f596
IM
3379 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3380 __schedule_bug(prev);
3381
1da177e4
LT
3382 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3383
2d72376b 3384 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3385#ifdef CONFIG_SCHEDSTATS
3386 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3387 schedstat_inc(this_rq(), bkl_count);
3388 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3389 }
3390#endif
dd41f596
IM
3391}
3392
3393/*
3394 * Pick up the highest-prio task:
3395 */
3396static inline struct task_struct *
ff95f3df 3397pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3398{
5522d5d5 3399 const struct sched_class *class;
dd41f596 3400 struct task_struct *p;
1da177e4
LT
3401
3402 /*
dd41f596
IM
3403 * Optimization: we know that if all tasks are in
3404 * the fair class we can call that function directly:
1da177e4 3405 */
dd41f596 3406 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3407 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3408 if (likely(p))
3409 return p;
1da177e4
LT
3410 }
3411
dd41f596
IM
3412 class = sched_class_highest;
3413 for ( ; ; ) {
fb8d4724 3414 p = class->pick_next_task(rq);
dd41f596
IM
3415 if (p)
3416 return p;
3417 /*
3418 * Will never be NULL as the idle class always
3419 * returns a non-NULL p:
3420 */
3421 class = class->next;
3422 }
3423}
1da177e4 3424
dd41f596
IM
3425/*
3426 * schedule() is the main scheduler function.
3427 */
3428asmlinkage void __sched schedule(void)
3429{
3430 struct task_struct *prev, *next;
3431 long *switch_count;
3432 struct rq *rq;
dd41f596
IM
3433 int cpu;
3434
3435need_resched:
3436 preempt_disable();
3437 cpu = smp_processor_id();
3438 rq = cpu_rq(cpu);
3439 rcu_qsctr_inc(cpu);
3440 prev = rq->curr;
3441 switch_count = &prev->nivcsw;
3442
3443 release_kernel_lock(prev);
3444need_resched_nonpreemptible:
3445
3446 schedule_debug(prev);
1da177e4 3447
1e819950
IM
3448 /*
3449 * Do the rq-clock update outside the rq lock:
3450 */
3451 local_irq_disable();
c1b3da3e 3452 __update_rq_clock(rq);
1e819950
IM
3453 spin_lock(&rq->lock);
3454 clear_tsk_need_resched(prev);
1da177e4 3455
1da177e4 3456 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3457 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3458 unlikely(signal_pending(prev)))) {
1da177e4 3459 prev->state = TASK_RUNNING;
dd41f596 3460 } else {
2e1cb74a 3461 deactivate_task(rq, prev, 1);
1da177e4 3462 }
dd41f596 3463 switch_count = &prev->nvcsw;
1da177e4
LT
3464 }
3465
dd41f596 3466 if (unlikely(!rq->nr_running))
1da177e4 3467 idle_balance(cpu, rq);
1da177e4 3468
31ee529c 3469 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3470 next = pick_next_task(rq, prev);
1da177e4
LT
3471
3472 sched_info_switch(prev, next);
dd41f596 3473
1da177e4 3474 if (likely(prev != next)) {
1da177e4
LT
3475 rq->nr_switches++;
3476 rq->curr = next;
3477 ++*switch_count;
3478
dd41f596 3479 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3480 } else
3481 spin_unlock_irq(&rq->lock);
3482
dd41f596
IM
3483 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3484 cpu = smp_processor_id();
3485 rq = cpu_rq(cpu);
1da177e4 3486 goto need_resched_nonpreemptible;
dd41f596 3487 }
1da177e4
LT
3488 preempt_enable_no_resched();
3489 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3490 goto need_resched;
3491}
1da177e4
LT
3492EXPORT_SYMBOL(schedule);
3493
3494#ifdef CONFIG_PREEMPT
3495/*
2ed6e34f 3496 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3497 * off of preempt_enable. Kernel preemptions off return from interrupt
3498 * occur there and call schedule directly.
3499 */
3500asmlinkage void __sched preempt_schedule(void)
3501{
3502 struct thread_info *ti = current_thread_info();
3503#ifdef CONFIG_PREEMPT_BKL
3504 struct task_struct *task = current;
3505 int saved_lock_depth;
3506#endif
3507 /*
3508 * If there is a non-zero preempt_count or interrupts are disabled,
3509 * we do not want to preempt the current task. Just return..
3510 */
beed33a8 3511 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3512 return;
3513
3514need_resched:
3515 add_preempt_count(PREEMPT_ACTIVE);
3516 /*
3517 * We keep the big kernel semaphore locked, but we
3518 * clear ->lock_depth so that schedule() doesnt
3519 * auto-release the semaphore:
3520 */
3521#ifdef CONFIG_PREEMPT_BKL
3522 saved_lock_depth = task->lock_depth;
3523 task->lock_depth = -1;
3524#endif
3525 schedule();
3526#ifdef CONFIG_PREEMPT_BKL
3527 task->lock_depth = saved_lock_depth;
3528#endif
3529 sub_preempt_count(PREEMPT_ACTIVE);
3530
3531 /* we could miss a preemption opportunity between schedule and now */
3532 barrier();
3533 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3534 goto need_resched;
3535}
1da177e4
LT
3536EXPORT_SYMBOL(preempt_schedule);
3537
3538/*
2ed6e34f 3539 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3540 * off of irq context.
3541 * Note, that this is called and return with irqs disabled. This will
3542 * protect us against recursive calling from irq.
3543 */
3544asmlinkage void __sched preempt_schedule_irq(void)
3545{
3546 struct thread_info *ti = current_thread_info();
3547#ifdef CONFIG_PREEMPT_BKL
3548 struct task_struct *task = current;
3549 int saved_lock_depth;
3550#endif
2ed6e34f 3551 /* Catch callers which need to be fixed */
1da177e4
LT
3552 BUG_ON(ti->preempt_count || !irqs_disabled());
3553
3554need_resched:
3555 add_preempt_count(PREEMPT_ACTIVE);
3556 /*
3557 * We keep the big kernel semaphore locked, but we
3558 * clear ->lock_depth so that schedule() doesnt
3559 * auto-release the semaphore:
3560 */
3561#ifdef CONFIG_PREEMPT_BKL
3562 saved_lock_depth = task->lock_depth;
3563 task->lock_depth = -1;
3564#endif
3565 local_irq_enable();
3566 schedule();
3567 local_irq_disable();
3568#ifdef CONFIG_PREEMPT_BKL
3569 task->lock_depth = saved_lock_depth;
3570#endif
3571 sub_preempt_count(PREEMPT_ACTIVE);
3572
3573 /* we could miss a preemption opportunity between schedule and now */
3574 barrier();
3575 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3576 goto need_resched;
3577}
3578
3579#endif /* CONFIG_PREEMPT */
3580
95cdf3b7
IM
3581int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3582 void *key)
1da177e4 3583{
48f24c4d 3584 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3585}
1da177e4
LT
3586EXPORT_SYMBOL(default_wake_function);
3587
3588/*
3589 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3590 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3591 * number) then we wake all the non-exclusive tasks and one exclusive task.
3592 *
3593 * There are circumstances in which we can try to wake a task which has already
3594 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3595 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3596 */
3597static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3598 int nr_exclusive, int sync, void *key)
3599{
2e45874c 3600 wait_queue_t *curr, *next;
1da177e4 3601
2e45874c 3602 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3603 unsigned flags = curr->flags;
3604
1da177e4 3605 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3606 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3607 break;
3608 }
3609}
3610
3611/**
3612 * __wake_up - wake up threads blocked on a waitqueue.
3613 * @q: the waitqueue
3614 * @mode: which threads
3615 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3616 * @key: is directly passed to the wakeup function
1da177e4
LT
3617 */
3618void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3619 int nr_exclusive, void *key)
1da177e4
LT
3620{
3621 unsigned long flags;
3622
3623 spin_lock_irqsave(&q->lock, flags);
3624 __wake_up_common(q, mode, nr_exclusive, 0, key);
3625 spin_unlock_irqrestore(&q->lock, flags);
3626}
1da177e4
LT
3627EXPORT_SYMBOL(__wake_up);
3628
3629/*
3630 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3631 */
3632void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3633{
3634 __wake_up_common(q, mode, 1, 0, NULL);
3635}
3636
3637/**
67be2dd1 3638 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3639 * @q: the waitqueue
3640 * @mode: which threads
3641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3642 *
3643 * The sync wakeup differs that the waker knows that it will schedule
3644 * away soon, so while the target thread will be woken up, it will not
3645 * be migrated to another CPU - ie. the two threads are 'synchronized'
3646 * with each other. This can prevent needless bouncing between CPUs.
3647 *
3648 * On UP it can prevent extra preemption.
3649 */
95cdf3b7
IM
3650void fastcall
3651__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3652{
3653 unsigned long flags;
3654 int sync = 1;
3655
3656 if (unlikely(!q))
3657 return;
3658
3659 if (unlikely(!nr_exclusive))
3660 sync = 0;
3661
3662 spin_lock_irqsave(&q->lock, flags);
3663 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3664 spin_unlock_irqrestore(&q->lock, flags);
3665}
3666EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3667
3668void fastcall complete(struct completion *x)
3669{
3670 unsigned long flags;
3671
3672 spin_lock_irqsave(&x->wait.lock, flags);
3673 x->done++;
3674 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3675 1, 0, NULL);
3676 spin_unlock_irqrestore(&x->wait.lock, flags);
3677}
3678EXPORT_SYMBOL(complete);
3679
3680void fastcall complete_all(struct completion *x)
3681{
3682 unsigned long flags;
3683
3684 spin_lock_irqsave(&x->wait.lock, flags);
3685 x->done += UINT_MAX/2;
3686 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3687 0, 0, NULL);
3688 spin_unlock_irqrestore(&x->wait.lock, flags);
3689}
3690EXPORT_SYMBOL(complete_all);
3691
3692void fastcall __sched wait_for_completion(struct completion *x)
3693{
3694 might_sleep();
48f24c4d 3695
1da177e4
LT
3696 spin_lock_irq(&x->wait.lock);
3697 if (!x->done) {
3698 DECLARE_WAITQUEUE(wait, current);
3699
3700 wait.flags |= WQ_FLAG_EXCLUSIVE;
3701 __add_wait_queue_tail(&x->wait, &wait);
3702 do {
3703 __set_current_state(TASK_UNINTERRUPTIBLE);
3704 spin_unlock_irq(&x->wait.lock);
3705 schedule();
3706 spin_lock_irq(&x->wait.lock);
3707 } while (!x->done);
3708 __remove_wait_queue(&x->wait, &wait);
3709 }
3710 x->done--;
3711 spin_unlock_irq(&x->wait.lock);
3712}
3713EXPORT_SYMBOL(wait_for_completion);
3714
3715unsigned long fastcall __sched
3716wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3717{
3718 might_sleep();
3719
3720 spin_lock_irq(&x->wait.lock);
3721 if (!x->done) {
3722 DECLARE_WAITQUEUE(wait, current);
3723
3724 wait.flags |= WQ_FLAG_EXCLUSIVE;
3725 __add_wait_queue_tail(&x->wait, &wait);
3726 do {
3727 __set_current_state(TASK_UNINTERRUPTIBLE);
3728 spin_unlock_irq(&x->wait.lock);
3729 timeout = schedule_timeout(timeout);
3730 spin_lock_irq(&x->wait.lock);
3731 if (!timeout) {
3732 __remove_wait_queue(&x->wait, &wait);
3733 goto out;
3734 }
3735 } while (!x->done);
3736 __remove_wait_queue(&x->wait, &wait);
3737 }
3738 x->done--;
3739out:
3740 spin_unlock_irq(&x->wait.lock);
3741 return timeout;
3742}
3743EXPORT_SYMBOL(wait_for_completion_timeout);
3744
3745int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3746{
3747 int ret = 0;
3748
3749 might_sleep();
3750
3751 spin_lock_irq(&x->wait.lock);
3752 if (!x->done) {
3753 DECLARE_WAITQUEUE(wait, current);
3754
3755 wait.flags |= WQ_FLAG_EXCLUSIVE;
3756 __add_wait_queue_tail(&x->wait, &wait);
3757 do {
3758 if (signal_pending(current)) {
3759 ret = -ERESTARTSYS;
3760 __remove_wait_queue(&x->wait, &wait);
3761 goto out;
3762 }
3763 __set_current_state(TASK_INTERRUPTIBLE);
3764 spin_unlock_irq(&x->wait.lock);
3765 schedule();
3766 spin_lock_irq(&x->wait.lock);
3767 } while (!x->done);
3768 __remove_wait_queue(&x->wait, &wait);
3769 }
3770 x->done--;
3771out:
3772 spin_unlock_irq(&x->wait.lock);
3773
3774 return ret;
3775}
3776EXPORT_SYMBOL(wait_for_completion_interruptible);
3777
3778unsigned long fastcall __sched
3779wait_for_completion_interruptible_timeout(struct completion *x,
3780 unsigned long timeout)
3781{
3782 might_sleep();
3783
3784 spin_lock_irq(&x->wait.lock);
3785 if (!x->done) {
3786 DECLARE_WAITQUEUE(wait, current);
3787
3788 wait.flags |= WQ_FLAG_EXCLUSIVE;
3789 __add_wait_queue_tail(&x->wait, &wait);
3790 do {
3791 if (signal_pending(current)) {
3792 timeout = -ERESTARTSYS;
3793 __remove_wait_queue(&x->wait, &wait);
3794 goto out;
3795 }
3796 __set_current_state(TASK_INTERRUPTIBLE);
3797 spin_unlock_irq(&x->wait.lock);
3798 timeout = schedule_timeout(timeout);
3799 spin_lock_irq(&x->wait.lock);
3800 if (!timeout) {
3801 __remove_wait_queue(&x->wait, &wait);
3802 goto out;
3803 }
3804 } while (!x->done);
3805 __remove_wait_queue(&x->wait, &wait);
3806 }
3807 x->done--;
3808out:
3809 spin_unlock_irq(&x->wait.lock);
3810 return timeout;
3811}
3812EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3813
0fec171c
IM
3814static inline void
3815sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3816{
3817 spin_lock_irqsave(&q->lock, *flags);
3818 __add_wait_queue(q, wait);
1da177e4 3819 spin_unlock(&q->lock);
0fec171c 3820}
1da177e4 3821
0fec171c
IM
3822static inline void
3823sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3824{
3825 spin_lock_irq(&q->lock);
3826 __remove_wait_queue(q, wait);
3827 spin_unlock_irqrestore(&q->lock, *flags);
3828}
1da177e4 3829
0fec171c 3830void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3831{
0fec171c
IM
3832 unsigned long flags;
3833 wait_queue_t wait;
3834
3835 init_waitqueue_entry(&wait, current);
1da177e4
LT
3836
3837 current->state = TASK_INTERRUPTIBLE;
3838
0fec171c 3839 sleep_on_head(q, &wait, &flags);
1da177e4 3840 schedule();
0fec171c 3841 sleep_on_tail(q, &wait, &flags);
1da177e4 3842}
1da177e4
LT
3843EXPORT_SYMBOL(interruptible_sleep_on);
3844
0fec171c 3845long __sched
95cdf3b7 3846interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3847{
0fec171c
IM
3848 unsigned long flags;
3849 wait_queue_t wait;
3850
3851 init_waitqueue_entry(&wait, current);
1da177e4
LT
3852
3853 current->state = TASK_INTERRUPTIBLE;
3854
0fec171c 3855 sleep_on_head(q, &wait, &flags);
1da177e4 3856 timeout = schedule_timeout(timeout);
0fec171c 3857 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3858
3859 return timeout;
3860}
1da177e4
LT
3861EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3862
0fec171c 3863void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3864{
0fec171c
IM
3865 unsigned long flags;
3866 wait_queue_t wait;
3867
3868 init_waitqueue_entry(&wait, current);
1da177e4
LT
3869
3870 current->state = TASK_UNINTERRUPTIBLE;
3871
0fec171c 3872 sleep_on_head(q, &wait, &flags);
1da177e4 3873 schedule();
0fec171c 3874 sleep_on_tail(q, &wait, &flags);
1da177e4 3875}
1da177e4
LT
3876EXPORT_SYMBOL(sleep_on);
3877
0fec171c 3878long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3879{
0fec171c
IM
3880 unsigned long flags;
3881 wait_queue_t wait;
3882
3883 init_waitqueue_entry(&wait, current);
1da177e4
LT
3884
3885 current->state = TASK_UNINTERRUPTIBLE;
3886
0fec171c 3887 sleep_on_head(q, &wait, &flags);
1da177e4 3888 timeout = schedule_timeout(timeout);
0fec171c 3889 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3890
3891 return timeout;
3892}
1da177e4
LT
3893EXPORT_SYMBOL(sleep_on_timeout);
3894
b29739f9
IM
3895#ifdef CONFIG_RT_MUTEXES
3896
3897/*
3898 * rt_mutex_setprio - set the current priority of a task
3899 * @p: task
3900 * @prio: prio value (kernel-internal form)
3901 *
3902 * This function changes the 'effective' priority of a task. It does
3903 * not touch ->normal_prio like __setscheduler().
3904 *
3905 * Used by the rt_mutex code to implement priority inheritance logic.
3906 */
36c8b586 3907void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3908{
3909 unsigned long flags;
83b699ed 3910 int oldprio, on_rq, running;
70b97a7f 3911 struct rq *rq;
b29739f9
IM
3912
3913 BUG_ON(prio < 0 || prio > MAX_PRIO);
3914
3915 rq = task_rq_lock(p, &flags);
a8e504d2 3916 update_rq_clock(rq);
b29739f9 3917
d5f9f942 3918 oldprio = p->prio;
dd41f596 3919 on_rq = p->se.on_rq;
83b699ed
SV
3920 running = task_running(rq, p);
3921 if (on_rq) {
69be72c1 3922 dequeue_task(rq, p, 0);
83b699ed
SV
3923 if (running)
3924 p->sched_class->put_prev_task(rq, p);
3925 }
dd41f596
IM
3926
3927 if (rt_prio(prio))
3928 p->sched_class = &rt_sched_class;
3929 else
3930 p->sched_class = &fair_sched_class;
3931
b29739f9
IM
3932 p->prio = prio;
3933
dd41f596 3934 if (on_rq) {
83b699ed
SV
3935 if (running)
3936 p->sched_class->set_curr_task(rq);
8159f87e 3937 enqueue_task(rq, p, 0);
b29739f9
IM
3938 /*
3939 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3940 * our priority decreased, or if we are not currently running on
3941 * this runqueue and our priority is higher than the current's
b29739f9 3942 */
83b699ed 3943 if (running) {
d5f9f942
AM
3944 if (p->prio > oldprio)
3945 resched_task(rq->curr);
dd41f596
IM
3946 } else {
3947 check_preempt_curr(rq, p);
3948 }
b29739f9
IM
3949 }
3950 task_rq_unlock(rq, &flags);
3951}
3952
3953#endif
3954
36c8b586 3955void set_user_nice(struct task_struct *p, long nice)
1da177e4 3956{
dd41f596 3957 int old_prio, delta, on_rq;
1da177e4 3958 unsigned long flags;
70b97a7f 3959 struct rq *rq;
1da177e4
LT
3960
3961 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3962 return;
3963 /*
3964 * We have to be careful, if called from sys_setpriority(),
3965 * the task might be in the middle of scheduling on another CPU.
3966 */
3967 rq = task_rq_lock(p, &flags);
a8e504d2 3968 update_rq_clock(rq);
1da177e4
LT
3969 /*
3970 * The RT priorities are set via sched_setscheduler(), but we still
3971 * allow the 'normal' nice value to be set - but as expected
3972 * it wont have any effect on scheduling until the task is
dd41f596 3973 * SCHED_FIFO/SCHED_RR:
1da177e4 3974 */
e05606d3 3975 if (task_has_rt_policy(p)) {
1da177e4
LT
3976 p->static_prio = NICE_TO_PRIO(nice);
3977 goto out_unlock;
3978 }
dd41f596
IM
3979 on_rq = p->se.on_rq;
3980 if (on_rq) {
69be72c1 3981 dequeue_task(rq, p, 0);
79b5dddf 3982 dec_load(rq, p);
2dd73a4f 3983 }
1da177e4 3984
1da177e4 3985 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3986 set_load_weight(p);
b29739f9
IM
3987 old_prio = p->prio;
3988 p->prio = effective_prio(p);
3989 delta = p->prio - old_prio;
1da177e4 3990
dd41f596 3991 if (on_rq) {
8159f87e 3992 enqueue_task(rq, p, 0);
29b4b623 3993 inc_load(rq, p);
1da177e4 3994 /*
d5f9f942
AM
3995 * If the task increased its priority or is running and
3996 * lowered its priority, then reschedule its CPU:
1da177e4 3997 */
d5f9f942 3998 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3999 resched_task(rq->curr);
4000 }
4001out_unlock:
4002 task_rq_unlock(rq, &flags);
4003}
1da177e4
LT
4004EXPORT_SYMBOL(set_user_nice);
4005
e43379f1
MM
4006/*
4007 * can_nice - check if a task can reduce its nice value
4008 * @p: task
4009 * @nice: nice value
4010 */
36c8b586 4011int can_nice(const struct task_struct *p, const int nice)
e43379f1 4012{
024f4747
MM
4013 /* convert nice value [19,-20] to rlimit style value [1,40] */
4014 int nice_rlim = 20 - nice;
48f24c4d 4015
e43379f1
MM
4016 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4017 capable(CAP_SYS_NICE));
4018}
4019
1da177e4
LT
4020#ifdef __ARCH_WANT_SYS_NICE
4021
4022/*
4023 * sys_nice - change the priority of the current process.
4024 * @increment: priority increment
4025 *
4026 * sys_setpriority is a more generic, but much slower function that
4027 * does similar things.
4028 */
4029asmlinkage long sys_nice(int increment)
4030{
48f24c4d 4031 long nice, retval;
1da177e4
LT
4032
4033 /*
4034 * Setpriority might change our priority at the same moment.
4035 * We don't have to worry. Conceptually one call occurs first
4036 * and we have a single winner.
4037 */
e43379f1
MM
4038 if (increment < -40)
4039 increment = -40;
1da177e4
LT
4040 if (increment > 40)
4041 increment = 40;
4042
4043 nice = PRIO_TO_NICE(current->static_prio) + increment;
4044 if (nice < -20)
4045 nice = -20;
4046 if (nice > 19)
4047 nice = 19;
4048
e43379f1
MM
4049 if (increment < 0 && !can_nice(current, nice))
4050 return -EPERM;
4051
1da177e4
LT
4052 retval = security_task_setnice(current, nice);
4053 if (retval)
4054 return retval;
4055
4056 set_user_nice(current, nice);
4057 return 0;
4058}
4059
4060#endif
4061
4062/**
4063 * task_prio - return the priority value of a given task.
4064 * @p: the task in question.
4065 *
4066 * This is the priority value as seen by users in /proc.
4067 * RT tasks are offset by -200. Normal tasks are centered
4068 * around 0, value goes from -16 to +15.
4069 */
36c8b586 4070int task_prio(const struct task_struct *p)
1da177e4
LT
4071{
4072 return p->prio - MAX_RT_PRIO;
4073}
4074
4075/**
4076 * task_nice - return the nice value of a given task.
4077 * @p: the task in question.
4078 */
36c8b586 4079int task_nice(const struct task_struct *p)
1da177e4
LT
4080{
4081 return TASK_NICE(p);
4082}
1da177e4 4083EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4084
4085/**
4086 * idle_cpu - is a given cpu idle currently?
4087 * @cpu: the processor in question.
4088 */
4089int idle_cpu(int cpu)
4090{
4091 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4092}
4093
1da177e4
LT
4094/**
4095 * idle_task - return the idle task for a given cpu.
4096 * @cpu: the processor in question.
4097 */
36c8b586 4098struct task_struct *idle_task(int cpu)
1da177e4
LT
4099{
4100 return cpu_rq(cpu)->idle;
4101}
4102
4103/**
4104 * find_process_by_pid - find a process with a matching PID value.
4105 * @pid: the pid in question.
4106 */
a9957449 4107static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4108{
4109 return pid ? find_task_by_pid(pid) : current;
4110}
4111
4112/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4113static void
4114__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4115{
dd41f596 4116 BUG_ON(p->se.on_rq);
48f24c4d 4117
1da177e4 4118 p->policy = policy;
dd41f596
IM
4119 switch (p->policy) {
4120 case SCHED_NORMAL:
4121 case SCHED_BATCH:
4122 case SCHED_IDLE:
4123 p->sched_class = &fair_sched_class;
4124 break;
4125 case SCHED_FIFO:
4126 case SCHED_RR:
4127 p->sched_class = &rt_sched_class;
4128 break;
4129 }
4130
1da177e4 4131 p->rt_priority = prio;
b29739f9
IM
4132 p->normal_prio = normal_prio(p);
4133 /* we are holding p->pi_lock already */
4134 p->prio = rt_mutex_getprio(p);
2dd73a4f 4135 set_load_weight(p);
1da177e4
LT
4136}
4137
4138/**
72fd4a35 4139 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4140 * @p: the task in question.
4141 * @policy: new policy.
4142 * @param: structure containing the new RT priority.
5fe1d75f 4143 *
72fd4a35 4144 * NOTE that the task may be already dead.
1da177e4 4145 */
95cdf3b7
IM
4146int sched_setscheduler(struct task_struct *p, int policy,
4147 struct sched_param *param)
1da177e4 4148{
83b699ed 4149 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4150 unsigned long flags;
70b97a7f 4151 struct rq *rq;
1da177e4 4152
66e5393a
SR
4153 /* may grab non-irq protected spin_locks */
4154 BUG_ON(in_interrupt());
1da177e4
LT
4155recheck:
4156 /* double check policy once rq lock held */
4157 if (policy < 0)
4158 policy = oldpolicy = p->policy;
4159 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4160 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4161 policy != SCHED_IDLE)
b0a9499c 4162 return -EINVAL;
1da177e4
LT
4163 /*
4164 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4165 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4166 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4167 */
4168 if (param->sched_priority < 0 ||
95cdf3b7 4169 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4170 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4171 return -EINVAL;
e05606d3 4172 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4173 return -EINVAL;
4174
37e4ab3f
OC
4175 /*
4176 * Allow unprivileged RT tasks to decrease priority:
4177 */
4178 if (!capable(CAP_SYS_NICE)) {
e05606d3 4179 if (rt_policy(policy)) {
8dc3e909 4180 unsigned long rlim_rtprio;
8dc3e909
ON
4181
4182 if (!lock_task_sighand(p, &flags))
4183 return -ESRCH;
4184 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4185 unlock_task_sighand(p, &flags);
4186
4187 /* can't set/change the rt policy */
4188 if (policy != p->policy && !rlim_rtprio)
4189 return -EPERM;
4190
4191 /* can't increase priority */
4192 if (param->sched_priority > p->rt_priority &&
4193 param->sched_priority > rlim_rtprio)
4194 return -EPERM;
4195 }
dd41f596
IM
4196 /*
4197 * Like positive nice levels, dont allow tasks to
4198 * move out of SCHED_IDLE either:
4199 */
4200 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4201 return -EPERM;
5fe1d75f 4202
37e4ab3f
OC
4203 /* can't change other user's priorities */
4204 if ((current->euid != p->euid) &&
4205 (current->euid != p->uid))
4206 return -EPERM;
4207 }
1da177e4
LT
4208
4209 retval = security_task_setscheduler(p, policy, param);
4210 if (retval)
4211 return retval;
b29739f9
IM
4212 /*
4213 * make sure no PI-waiters arrive (or leave) while we are
4214 * changing the priority of the task:
4215 */
4216 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4217 /*
4218 * To be able to change p->policy safely, the apropriate
4219 * runqueue lock must be held.
4220 */
b29739f9 4221 rq = __task_rq_lock(p);
1da177e4
LT
4222 /* recheck policy now with rq lock held */
4223 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4224 policy = oldpolicy = -1;
b29739f9
IM
4225 __task_rq_unlock(rq);
4226 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4227 goto recheck;
4228 }
2daa3577 4229 update_rq_clock(rq);
dd41f596 4230 on_rq = p->se.on_rq;
83b699ed
SV
4231 running = task_running(rq, p);
4232 if (on_rq) {
2e1cb74a 4233 deactivate_task(rq, p, 0);
83b699ed
SV
4234 if (running)
4235 p->sched_class->put_prev_task(rq, p);
4236 }
f6b53205 4237
1da177e4 4238 oldprio = p->prio;
dd41f596 4239 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4240
dd41f596 4241 if (on_rq) {
83b699ed
SV
4242 if (running)
4243 p->sched_class->set_curr_task(rq);
dd41f596 4244 activate_task(rq, p, 0);
1da177e4
LT
4245 /*
4246 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4247 * our priority decreased, or if we are not currently running on
4248 * this runqueue and our priority is higher than the current's
1da177e4 4249 */
83b699ed 4250 if (running) {
d5f9f942
AM
4251 if (p->prio > oldprio)
4252 resched_task(rq->curr);
dd41f596
IM
4253 } else {
4254 check_preempt_curr(rq, p);
4255 }
1da177e4 4256 }
b29739f9
IM
4257 __task_rq_unlock(rq);
4258 spin_unlock_irqrestore(&p->pi_lock, flags);
4259
95e02ca9
TG
4260 rt_mutex_adjust_pi(p);
4261
1da177e4
LT
4262 return 0;
4263}
4264EXPORT_SYMBOL_GPL(sched_setscheduler);
4265
95cdf3b7
IM
4266static int
4267do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4268{
1da177e4
LT
4269 struct sched_param lparam;
4270 struct task_struct *p;
36c8b586 4271 int retval;
1da177e4
LT
4272
4273 if (!param || pid < 0)
4274 return -EINVAL;
4275 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4276 return -EFAULT;
5fe1d75f
ON
4277
4278 rcu_read_lock();
4279 retval = -ESRCH;
1da177e4 4280 p = find_process_by_pid(pid);
5fe1d75f
ON
4281 if (p != NULL)
4282 retval = sched_setscheduler(p, policy, &lparam);
4283 rcu_read_unlock();
36c8b586 4284
1da177e4
LT
4285 return retval;
4286}
4287
4288/**
4289 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4290 * @pid: the pid in question.
4291 * @policy: new policy.
4292 * @param: structure containing the new RT priority.
4293 */
4294asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4295 struct sched_param __user *param)
4296{
c21761f1
JB
4297 /* negative values for policy are not valid */
4298 if (policy < 0)
4299 return -EINVAL;
4300
1da177e4
LT
4301 return do_sched_setscheduler(pid, policy, param);
4302}
4303
4304/**
4305 * sys_sched_setparam - set/change the RT priority of a thread
4306 * @pid: the pid in question.
4307 * @param: structure containing the new RT priority.
4308 */
4309asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4310{
4311 return do_sched_setscheduler(pid, -1, param);
4312}
4313
4314/**
4315 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4316 * @pid: the pid in question.
4317 */
4318asmlinkage long sys_sched_getscheduler(pid_t pid)
4319{
36c8b586 4320 struct task_struct *p;
1da177e4 4321 int retval = -EINVAL;
1da177e4
LT
4322
4323 if (pid < 0)
4324 goto out_nounlock;
4325
4326 retval = -ESRCH;
4327 read_lock(&tasklist_lock);
4328 p = find_process_by_pid(pid);
4329 if (p) {
4330 retval = security_task_getscheduler(p);
4331 if (!retval)
4332 retval = p->policy;
4333 }
4334 read_unlock(&tasklist_lock);
4335
4336out_nounlock:
4337 return retval;
4338}
4339
4340/**
4341 * sys_sched_getscheduler - get the RT priority of a thread
4342 * @pid: the pid in question.
4343 * @param: structure containing the RT priority.
4344 */
4345asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4346{
4347 struct sched_param lp;
36c8b586 4348 struct task_struct *p;
1da177e4 4349 int retval = -EINVAL;
1da177e4
LT
4350
4351 if (!param || pid < 0)
4352 goto out_nounlock;
4353
4354 read_lock(&tasklist_lock);
4355 p = find_process_by_pid(pid);
4356 retval = -ESRCH;
4357 if (!p)
4358 goto out_unlock;
4359
4360 retval = security_task_getscheduler(p);
4361 if (retval)
4362 goto out_unlock;
4363
4364 lp.sched_priority = p->rt_priority;
4365 read_unlock(&tasklist_lock);
4366
4367 /*
4368 * This one might sleep, we cannot do it with a spinlock held ...
4369 */
4370 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4371
4372out_nounlock:
4373 return retval;
4374
4375out_unlock:
4376 read_unlock(&tasklist_lock);
4377 return retval;
4378}
4379
4380long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4381{
1da177e4 4382 cpumask_t cpus_allowed;
36c8b586
IM
4383 struct task_struct *p;
4384 int retval;
1da177e4 4385
5be9361c 4386 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4387 read_lock(&tasklist_lock);
4388
4389 p = find_process_by_pid(pid);
4390 if (!p) {
4391 read_unlock(&tasklist_lock);
5be9361c 4392 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4393 return -ESRCH;
4394 }
4395
4396 /*
4397 * It is not safe to call set_cpus_allowed with the
4398 * tasklist_lock held. We will bump the task_struct's
4399 * usage count and then drop tasklist_lock.
4400 */
4401 get_task_struct(p);
4402 read_unlock(&tasklist_lock);
4403
4404 retval = -EPERM;
4405 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4406 !capable(CAP_SYS_NICE))
4407 goto out_unlock;
4408
e7834f8f
DQ
4409 retval = security_task_setscheduler(p, 0, NULL);
4410 if (retval)
4411 goto out_unlock;
4412
1da177e4
LT
4413 cpus_allowed = cpuset_cpus_allowed(p);
4414 cpus_and(new_mask, new_mask, cpus_allowed);
4415 retval = set_cpus_allowed(p, new_mask);
4416
4417out_unlock:
4418 put_task_struct(p);
5be9361c 4419 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4420 return retval;
4421}
4422
4423static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4424 cpumask_t *new_mask)
4425{
4426 if (len < sizeof(cpumask_t)) {
4427 memset(new_mask, 0, sizeof(cpumask_t));
4428 } else if (len > sizeof(cpumask_t)) {
4429 len = sizeof(cpumask_t);
4430 }
4431 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4432}
4433
4434/**
4435 * sys_sched_setaffinity - set the cpu affinity of a process
4436 * @pid: pid of the process
4437 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4438 * @user_mask_ptr: user-space pointer to the new cpu mask
4439 */
4440asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4441 unsigned long __user *user_mask_ptr)
4442{
4443 cpumask_t new_mask;
4444 int retval;
4445
4446 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4447 if (retval)
4448 return retval;
4449
4450 return sched_setaffinity(pid, new_mask);
4451}
4452
4453/*
4454 * Represents all cpu's present in the system
4455 * In systems capable of hotplug, this map could dynamically grow
4456 * as new cpu's are detected in the system via any platform specific
4457 * method, such as ACPI for e.g.
4458 */
4459
4cef0c61 4460cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4461EXPORT_SYMBOL(cpu_present_map);
4462
4463#ifndef CONFIG_SMP
4cef0c61 4464cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4465EXPORT_SYMBOL(cpu_online_map);
4466
4cef0c61 4467cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4468EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4469#endif
4470
4471long sched_getaffinity(pid_t pid, cpumask_t *mask)
4472{
36c8b586 4473 struct task_struct *p;
1da177e4 4474 int retval;
1da177e4 4475
5be9361c 4476 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4477 read_lock(&tasklist_lock);
4478
4479 retval = -ESRCH;
4480 p = find_process_by_pid(pid);
4481 if (!p)
4482 goto out_unlock;
4483
e7834f8f
DQ
4484 retval = security_task_getscheduler(p);
4485 if (retval)
4486 goto out_unlock;
4487
2f7016d9 4488 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4489
4490out_unlock:
4491 read_unlock(&tasklist_lock);
5be9361c 4492 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4493
9531b62f 4494 return retval;
1da177e4
LT
4495}
4496
4497/**
4498 * sys_sched_getaffinity - get the cpu affinity of a process
4499 * @pid: pid of the process
4500 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4501 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4502 */
4503asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4504 unsigned long __user *user_mask_ptr)
4505{
4506 int ret;
4507 cpumask_t mask;
4508
4509 if (len < sizeof(cpumask_t))
4510 return -EINVAL;
4511
4512 ret = sched_getaffinity(pid, &mask);
4513 if (ret < 0)
4514 return ret;
4515
4516 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4517 return -EFAULT;
4518
4519 return sizeof(cpumask_t);
4520}
4521
4522/**
4523 * sys_sched_yield - yield the current processor to other threads.
4524 *
dd41f596
IM
4525 * This function yields the current CPU to other tasks. If there are no
4526 * other threads running on this CPU then this function will return.
1da177e4
LT
4527 */
4528asmlinkage long sys_sched_yield(void)
4529{
70b97a7f 4530 struct rq *rq = this_rq_lock();
1da177e4 4531
2d72376b 4532 schedstat_inc(rq, yld_count);
4530d7ab 4533 current->sched_class->yield_task(rq);
1da177e4
LT
4534
4535 /*
4536 * Since we are going to call schedule() anyway, there's
4537 * no need to preempt or enable interrupts:
4538 */
4539 __release(rq->lock);
8a25d5de 4540 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4541 _raw_spin_unlock(&rq->lock);
4542 preempt_enable_no_resched();
4543
4544 schedule();
4545
4546 return 0;
4547}
4548
e7b38404 4549static void __cond_resched(void)
1da177e4 4550{
8e0a43d8
IM
4551#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4552 __might_sleep(__FILE__, __LINE__);
4553#endif
5bbcfd90
IM
4554 /*
4555 * The BKS might be reacquired before we have dropped
4556 * PREEMPT_ACTIVE, which could trigger a second
4557 * cond_resched() call.
4558 */
1da177e4
LT
4559 do {
4560 add_preempt_count(PREEMPT_ACTIVE);
4561 schedule();
4562 sub_preempt_count(PREEMPT_ACTIVE);
4563 } while (need_resched());
4564}
4565
4566int __sched cond_resched(void)
4567{
9414232f
IM
4568 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4569 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4570 __cond_resched();
4571 return 1;
4572 }
4573 return 0;
4574}
1da177e4
LT
4575EXPORT_SYMBOL(cond_resched);
4576
4577/*
4578 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4579 * call schedule, and on return reacquire the lock.
4580 *
4581 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4582 * operations here to prevent schedule() from being called twice (once via
4583 * spin_unlock(), once by hand).
4584 */
95cdf3b7 4585int cond_resched_lock(spinlock_t *lock)
1da177e4 4586{
6df3cecb
JK
4587 int ret = 0;
4588
1da177e4
LT
4589 if (need_lockbreak(lock)) {
4590 spin_unlock(lock);
4591 cpu_relax();
6df3cecb 4592 ret = 1;
1da177e4
LT
4593 spin_lock(lock);
4594 }
9414232f 4595 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4596 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4597 _raw_spin_unlock(lock);
4598 preempt_enable_no_resched();
4599 __cond_resched();
6df3cecb 4600 ret = 1;
1da177e4 4601 spin_lock(lock);
1da177e4 4602 }
6df3cecb 4603 return ret;
1da177e4 4604}
1da177e4
LT
4605EXPORT_SYMBOL(cond_resched_lock);
4606
4607int __sched cond_resched_softirq(void)
4608{
4609 BUG_ON(!in_softirq());
4610
9414232f 4611 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4612 local_bh_enable();
1da177e4
LT
4613 __cond_resched();
4614 local_bh_disable();
4615 return 1;
4616 }
4617 return 0;
4618}
1da177e4
LT
4619EXPORT_SYMBOL(cond_resched_softirq);
4620
1da177e4
LT
4621/**
4622 * yield - yield the current processor to other threads.
4623 *
72fd4a35 4624 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4625 * thread runnable and calls sys_sched_yield().
4626 */
4627void __sched yield(void)
4628{
4629 set_current_state(TASK_RUNNING);
4630 sys_sched_yield();
4631}
1da177e4
LT
4632EXPORT_SYMBOL(yield);
4633
4634/*
4635 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4636 * that process accounting knows that this is a task in IO wait state.
4637 *
4638 * But don't do that if it is a deliberate, throttling IO wait (this task
4639 * has set its backing_dev_info: the queue against which it should throttle)
4640 */
4641void __sched io_schedule(void)
4642{
70b97a7f 4643 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4644
0ff92245 4645 delayacct_blkio_start();
1da177e4
LT
4646 atomic_inc(&rq->nr_iowait);
4647 schedule();
4648 atomic_dec(&rq->nr_iowait);
0ff92245 4649 delayacct_blkio_end();
1da177e4 4650}
1da177e4
LT
4651EXPORT_SYMBOL(io_schedule);
4652
4653long __sched io_schedule_timeout(long timeout)
4654{
70b97a7f 4655 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4656 long ret;
4657
0ff92245 4658 delayacct_blkio_start();
1da177e4
LT
4659 atomic_inc(&rq->nr_iowait);
4660 ret = schedule_timeout(timeout);
4661 atomic_dec(&rq->nr_iowait);
0ff92245 4662 delayacct_blkio_end();
1da177e4
LT
4663 return ret;
4664}
4665
4666/**
4667 * sys_sched_get_priority_max - return maximum RT priority.
4668 * @policy: scheduling class.
4669 *
4670 * this syscall returns the maximum rt_priority that can be used
4671 * by a given scheduling class.
4672 */
4673asmlinkage long sys_sched_get_priority_max(int policy)
4674{
4675 int ret = -EINVAL;
4676
4677 switch (policy) {
4678 case SCHED_FIFO:
4679 case SCHED_RR:
4680 ret = MAX_USER_RT_PRIO-1;
4681 break;
4682 case SCHED_NORMAL:
b0a9499c 4683 case SCHED_BATCH:
dd41f596 4684 case SCHED_IDLE:
1da177e4
LT
4685 ret = 0;
4686 break;
4687 }
4688 return ret;
4689}
4690
4691/**
4692 * sys_sched_get_priority_min - return minimum RT priority.
4693 * @policy: scheduling class.
4694 *
4695 * this syscall returns the minimum rt_priority that can be used
4696 * by a given scheduling class.
4697 */
4698asmlinkage long sys_sched_get_priority_min(int policy)
4699{
4700 int ret = -EINVAL;
4701
4702 switch (policy) {
4703 case SCHED_FIFO:
4704 case SCHED_RR:
4705 ret = 1;
4706 break;
4707 case SCHED_NORMAL:
b0a9499c 4708 case SCHED_BATCH:
dd41f596 4709 case SCHED_IDLE:
1da177e4
LT
4710 ret = 0;
4711 }
4712 return ret;
4713}
4714
4715/**
4716 * sys_sched_rr_get_interval - return the default timeslice of a process.
4717 * @pid: pid of the process.
4718 * @interval: userspace pointer to the timeslice value.
4719 *
4720 * this syscall writes the default timeslice value of a given process
4721 * into the user-space timespec buffer. A value of '0' means infinity.
4722 */
4723asmlinkage
4724long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4725{
36c8b586 4726 struct task_struct *p;
a4ec24b4 4727 unsigned int time_slice;
1da177e4
LT
4728 int retval = -EINVAL;
4729 struct timespec t;
1da177e4
LT
4730
4731 if (pid < 0)
4732 goto out_nounlock;
4733
4734 retval = -ESRCH;
4735 read_lock(&tasklist_lock);
4736 p = find_process_by_pid(pid);
4737 if (!p)
4738 goto out_unlock;
4739
4740 retval = security_task_getscheduler(p);
4741 if (retval)
4742 goto out_unlock;
4743
a4ec24b4
DA
4744 if (p->policy == SCHED_FIFO)
4745 time_slice = 0;
4746 else if (p->policy == SCHED_RR)
4747 time_slice = DEF_TIMESLICE;
4748 else {
4749 struct sched_entity *se = &p->se;
4750 unsigned long flags;
4751 struct rq *rq;
4752
4753 rq = task_rq_lock(p, &flags);
4754 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4755 task_rq_unlock(rq, &flags);
4756 }
1da177e4 4757 read_unlock(&tasklist_lock);
a4ec24b4 4758 jiffies_to_timespec(time_slice, &t);
1da177e4
LT
4759 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4760out_nounlock:
4761 return retval;
4762out_unlock:
4763 read_unlock(&tasklist_lock);
4764 return retval;
4765}
4766
2ed6e34f 4767static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4768
4769static void show_task(struct task_struct *p)
1da177e4 4770{
1da177e4 4771 unsigned long free = 0;
36c8b586 4772 unsigned state;
1da177e4 4773
1da177e4 4774 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4775 printk("%-13.13s %c", p->comm,
4776 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4777#if BITS_PER_LONG == 32
1da177e4 4778 if (state == TASK_RUNNING)
4bd77321 4779 printk(" running ");
1da177e4 4780 else
4bd77321 4781 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4782#else
4783 if (state == TASK_RUNNING)
4bd77321 4784 printk(" running task ");
1da177e4
LT
4785 else
4786 printk(" %016lx ", thread_saved_pc(p));
4787#endif
4788#ifdef CONFIG_DEBUG_STACK_USAGE
4789 {
10ebffde 4790 unsigned long *n = end_of_stack(p);
1da177e4
LT
4791 while (!*n)
4792 n++;
10ebffde 4793 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4794 }
4795#endif
4bd77321 4796 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4797
4798 if (state != TASK_RUNNING)
4799 show_stack(p, NULL);
4800}
4801
e59e2ae2 4802void show_state_filter(unsigned long state_filter)
1da177e4 4803{
36c8b586 4804 struct task_struct *g, *p;
1da177e4 4805
4bd77321
IM
4806#if BITS_PER_LONG == 32
4807 printk(KERN_INFO
4808 " task PC stack pid father\n");
1da177e4 4809#else
4bd77321
IM
4810 printk(KERN_INFO
4811 " task PC stack pid father\n");
1da177e4
LT
4812#endif
4813 read_lock(&tasklist_lock);
4814 do_each_thread(g, p) {
4815 /*
4816 * reset the NMI-timeout, listing all files on a slow
4817 * console might take alot of time:
4818 */
4819 touch_nmi_watchdog();
39bc89fd 4820 if (!state_filter || (p->state & state_filter))
e59e2ae2 4821 show_task(p);
1da177e4
LT
4822 } while_each_thread(g, p);
4823
04c9167f
JF
4824 touch_all_softlockup_watchdogs();
4825
dd41f596
IM
4826#ifdef CONFIG_SCHED_DEBUG
4827 sysrq_sched_debug_show();
4828#endif
1da177e4 4829 read_unlock(&tasklist_lock);
e59e2ae2
IM
4830 /*
4831 * Only show locks if all tasks are dumped:
4832 */
4833 if (state_filter == -1)
4834 debug_show_all_locks();
1da177e4
LT
4835}
4836
1df21055
IM
4837void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4838{
dd41f596 4839 idle->sched_class = &idle_sched_class;
1df21055
IM
4840}
4841
f340c0d1
IM
4842/**
4843 * init_idle - set up an idle thread for a given CPU
4844 * @idle: task in question
4845 * @cpu: cpu the idle task belongs to
4846 *
4847 * NOTE: this function does not set the idle thread's NEED_RESCHED
4848 * flag, to make booting more robust.
4849 */
5c1e1767 4850void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4851{
70b97a7f 4852 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4853 unsigned long flags;
4854
dd41f596
IM
4855 __sched_fork(idle);
4856 idle->se.exec_start = sched_clock();
4857
b29739f9 4858 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4859 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4860 __set_task_cpu(idle, cpu);
1da177e4
LT
4861
4862 spin_lock_irqsave(&rq->lock, flags);
4863 rq->curr = rq->idle = idle;
4866cde0
NP
4864#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4865 idle->oncpu = 1;
4866#endif
1da177e4
LT
4867 spin_unlock_irqrestore(&rq->lock, flags);
4868
4869 /* Set the preempt count _outside_ the spinlocks! */
4870#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4871 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4872#else
a1261f54 4873 task_thread_info(idle)->preempt_count = 0;
1da177e4 4874#endif
dd41f596
IM
4875 /*
4876 * The idle tasks have their own, simple scheduling class:
4877 */
4878 idle->sched_class = &idle_sched_class;
1da177e4
LT
4879}
4880
4881/*
4882 * In a system that switches off the HZ timer nohz_cpu_mask
4883 * indicates which cpus entered this state. This is used
4884 * in the rcu update to wait only for active cpus. For system
4885 * which do not switch off the HZ timer nohz_cpu_mask should
4886 * always be CPU_MASK_NONE.
4887 */
4888cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4889
4890#ifdef CONFIG_SMP
4891/*
4892 * This is how migration works:
4893 *
70b97a7f 4894 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4895 * runqueue and wake up that CPU's migration thread.
4896 * 2) we down() the locked semaphore => thread blocks.
4897 * 3) migration thread wakes up (implicitly it forces the migrated
4898 * thread off the CPU)
4899 * 4) it gets the migration request and checks whether the migrated
4900 * task is still in the wrong runqueue.
4901 * 5) if it's in the wrong runqueue then the migration thread removes
4902 * it and puts it into the right queue.
4903 * 6) migration thread up()s the semaphore.
4904 * 7) we wake up and the migration is done.
4905 */
4906
4907/*
4908 * Change a given task's CPU affinity. Migrate the thread to a
4909 * proper CPU and schedule it away if the CPU it's executing on
4910 * is removed from the allowed bitmask.
4911 *
4912 * NOTE: the caller must have a valid reference to the task, the
4913 * task must not exit() & deallocate itself prematurely. The
4914 * call is not atomic; no spinlocks may be held.
4915 */
36c8b586 4916int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4917{
70b97a7f 4918 struct migration_req req;
1da177e4 4919 unsigned long flags;
70b97a7f 4920 struct rq *rq;
48f24c4d 4921 int ret = 0;
1da177e4
LT
4922
4923 rq = task_rq_lock(p, &flags);
4924 if (!cpus_intersects(new_mask, cpu_online_map)) {
4925 ret = -EINVAL;
4926 goto out;
4927 }
4928
4929 p->cpus_allowed = new_mask;
4930 /* Can the task run on the task's current CPU? If so, we're done */
4931 if (cpu_isset(task_cpu(p), new_mask))
4932 goto out;
4933
4934 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4935 /* Need help from migration thread: drop lock and wait. */
4936 task_rq_unlock(rq, &flags);
4937 wake_up_process(rq->migration_thread);
4938 wait_for_completion(&req.done);
4939 tlb_migrate_finish(p->mm);
4940 return 0;
4941 }
4942out:
4943 task_rq_unlock(rq, &flags);
48f24c4d 4944
1da177e4
LT
4945 return ret;
4946}
1da177e4
LT
4947EXPORT_SYMBOL_GPL(set_cpus_allowed);
4948
4949/*
4950 * Move (not current) task off this cpu, onto dest cpu. We're doing
4951 * this because either it can't run here any more (set_cpus_allowed()
4952 * away from this CPU, or CPU going down), or because we're
4953 * attempting to rebalance this task on exec (sched_exec).
4954 *
4955 * So we race with normal scheduler movements, but that's OK, as long
4956 * as the task is no longer on this CPU.
efc30814
KK
4957 *
4958 * Returns non-zero if task was successfully migrated.
1da177e4 4959 */
efc30814 4960static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4961{
70b97a7f 4962 struct rq *rq_dest, *rq_src;
dd41f596 4963 int ret = 0, on_rq;
1da177e4
LT
4964
4965 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4966 return ret;
1da177e4
LT
4967
4968 rq_src = cpu_rq(src_cpu);
4969 rq_dest = cpu_rq(dest_cpu);
4970
4971 double_rq_lock(rq_src, rq_dest);
4972 /* Already moved. */
4973 if (task_cpu(p) != src_cpu)
4974 goto out;
4975 /* Affinity changed (again). */
4976 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4977 goto out;
4978
dd41f596 4979 on_rq = p->se.on_rq;
6e82a3be 4980 if (on_rq)
2e1cb74a 4981 deactivate_task(rq_src, p, 0);
6e82a3be 4982
1da177e4 4983 set_task_cpu(p, dest_cpu);
dd41f596
IM
4984 if (on_rq) {
4985 activate_task(rq_dest, p, 0);
4986 check_preempt_curr(rq_dest, p);
1da177e4 4987 }
efc30814 4988 ret = 1;
1da177e4
LT
4989out:
4990 double_rq_unlock(rq_src, rq_dest);
efc30814 4991 return ret;
1da177e4
LT
4992}
4993
4994/*
4995 * migration_thread - this is a highprio system thread that performs
4996 * thread migration by bumping thread off CPU then 'pushing' onto
4997 * another runqueue.
4998 */
95cdf3b7 4999static int migration_thread(void *data)
1da177e4 5000{
1da177e4 5001 int cpu = (long)data;
70b97a7f 5002 struct rq *rq;
1da177e4
LT
5003
5004 rq = cpu_rq(cpu);
5005 BUG_ON(rq->migration_thread != current);
5006
5007 set_current_state(TASK_INTERRUPTIBLE);
5008 while (!kthread_should_stop()) {
70b97a7f 5009 struct migration_req *req;
1da177e4 5010 struct list_head *head;
1da177e4 5011
1da177e4
LT
5012 spin_lock_irq(&rq->lock);
5013
5014 if (cpu_is_offline(cpu)) {
5015 spin_unlock_irq(&rq->lock);
5016 goto wait_to_die;
5017 }
5018
5019 if (rq->active_balance) {
5020 active_load_balance(rq, cpu);
5021 rq->active_balance = 0;
5022 }
5023
5024 head = &rq->migration_queue;
5025
5026 if (list_empty(head)) {
5027 spin_unlock_irq(&rq->lock);
5028 schedule();
5029 set_current_state(TASK_INTERRUPTIBLE);
5030 continue;
5031 }
70b97a7f 5032 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5033 list_del_init(head->next);
5034
674311d5
NP
5035 spin_unlock(&rq->lock);
5036 __migrate_task(req->task, cpu, req->dest_cpu);
5037 local_irq_enable();
1da177e4
LT
5038
5039 complete(&req->done);
5040 }
5041 __set_current_state(TASK_RUNNING);
5042 return 0;
5043
5044wait_to_die:
5045 /* Wait for kthread_stop */
5046 set_current_state(TASK_INTERRUPTIBLE);
5047 while (!kthread_should_stop()) {
5048 schedule();
5049 set_current_state(TASK_INTERRUPTIBLE);
5050 }
5051 __set_current_state(TASK_RUNNING);
5052 return 0;
5053}
5054
5055#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5056/*
5057 * Figure out where task on dead CPU should go, use force if neccessary.
5058 * NOTE: interrupts should be disabled by the caller
5059 */
48f24c4d 5060static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5061{
efc30814 5062 unsigned long flags;
1da177e4 5063 cpumask_t mask;
70b97a7f
IM
5064 struct rq *rq;
5065 int dest_cpu;
1da177e4 5066
efc30814 5067restart:
1da177e4
LT
5068 /* On same node? */
5069 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5070 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5071 dest_cpu = any_online_cpu(mask);
5072
5073 /* On any allowed CPU? */
5074 if (dest_cpu == NR_CPUS)
48f24c4d 5075 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5076
5077 /* No more Mr. Nice Guy. */
5078 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5079 rq = task_rq_lock(p, &flags);
5080 cpus_setall(p->cpus_allowed);
5081 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5082 task_rq_unlock(rq, &flags);
1da177e4
LT
5083
5084 /*
5085 * Don't tell them about moving exiting tasks or
5086 * kernel threads (both mm NULL), since they never
5087 * leave kernel.
5088 */
48f24c4d 5089 if (p->mm && printk_ratelimit())
1da177e4
LT
5090 printk(KERN_INFO "process %d (%s) no "
5091 "longer affine to cpu%d\n",
48f24c4d 5092 p->pid, p->comm, dead_cpu);
1da177e4 5093 }
48f24c4d 5094 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5095 goto restart;
1da177e4
LT
5096}
5097
5098/*
5099 * While a dead CPU has no uninterruptible tasks queued at this point,
5100 * it might still have a nonzero ->nr_uninterruptible counter, because
5101 * for performance reasons the counter is not stricly tracking tasks to
5102 * their home CPUs. So we just add the counter to another CPU's counter,
5103 * to keep the global sum constant after CPU-down:
5104 */
70b97a7f 5105static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5106{
70b97a7f 5107 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5108 unsigned long flags;
5109
5110 local_irq_save(flags);
5111 double_rq_lock(rq_src, rq_dest);
5112 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5113 rq_src->nr_uninterruptible = 0;
5114 double_rq_unlock(rq_src, rq_dest);
5115 local_irq_restore(flags);
5116}
5117
5118/* Run through task list and migrate tasks from the dead cpu. */
5119static void migrate_live_tasks(int src_cpu)
5120{
48f24c4d 5121 struct task_struct *p, *t;
1da177e4
LT
5122
5123 write_lock_irq(&tasklist_lock);
5124
48f24c4d
IM
5125 do_each_thread(t, p) {
5126 if (p == current)
1da177e4
LT
5127 continue;
5128
48f24c4d
IM
5129 if (task_cpu(p) == src_cpu)
5130 move_task_off_dead_cpu(src_cpu, p);
5131 } while_each_thread(t, p);
1da177e4
LT
5132
5133 write_unlock_irq(&tasklist_lock);
5134}
5135
a9957449
AD
5136/*
5137 * activate_idle_task - move idle task to the _front_ of runqueue.
5138 */
5139static void activate_idle_task(struct task_struct *p, struct rq *rq)
5140{
5141 update_rq_clock(rq);
5142
5143 if (p->state == TASK_UNINTERRUPTIBLE)
5144 rq->nr_uninterruptible--;
5145
5146 enqueue_task(rq, p, 0);
5147 inc_nr_running(p, rq);
5148}
5149
dd41f596
IM
5150/*
5151 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5152 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5153 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5154 */
5155void sched_idle_next(void)
5156{
48f24c4d 5157 int this_cpu = smp_processor_id();
70b97a7f 5158 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5159 struct task_struct *p = rq->idle;
5160 unsigned long flags;
5161
5162 /* cpu has to be offline */
48f24c4d 5163 BUG_ON(cpu_online(this_cpu));
1da177e4 5164
48f24c4d
IM
5165 /*
5166 * Strictly not necessary since rest of the CPUs are stopped by now
5167 * and interrupts disabled on the current cpu.
1da177e4
LT
5168 */
5169 spin_lock_irqsave(&rq->lock, flags);
5170
dd41f596 5171 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5172
5173 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5174 activate_idle_task(p, rq);
1da177e4
LT
5175
5176 spin_unlock_irqrestore(&rq->lock, flags);
5177}
5178
48f24c4d
IM
5179/*
5180 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5181 * offline.
5182 */
5183void idle_task_exit(void)
5184{
5185 struct mm_struct *mm = current->active_mm;
5186
5187 BUG_ON(cpu_online(smp_processor_id()));
5188
5189 if (mm != &init_mm)
5190 switch_mm(mm, &init_mm, current);
5191 mmdrop(mm);
5192}
5193
054b9108 5194/* called under rq->lock with disabled interrupts */
36c8b586 5195static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5196{
70b97a7f 5197 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5198
5199 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5200 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5201
5202 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5203 BUG_ON(p->state == TASK_DEAD);
1da177e4 5204
48f24c4d 5205 get_task_struct(p);
1da177e4
LT
5206
5207 /*
5208 * Drop lock around migration; if someone else moves it,
5209 * that's OK. No task can be added to this CPU, so iteration is
5210 * fine.
054b9108 5211 * NOTE: interrupts should be left disabled --dev@
1da177e4 5212 */
054b9108 5213 spin_unlock(&rq->lock);
48f24c4d 5214 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5215 spin_lock(&rq->lock);
1da177e4 5216
48f24c4d 5217 put_task_struct(p);
1da177e4
LT
5218}
5219
5220/* release_task() removes task from tasklist, so we won't find dead tasks. */
5221static void migrate_dead_tasks(unsigned int dead_cpu)
5222{
70b97a7f 5223 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5224 struct task_struct *next;
48f24c4d 5225
dd41f596
IM
5226 for ( ; ; ) {
5227 if (!rq->nr_running)
5228 break;
a8e504d2 5229 update_rq_clock(rq);
ff95f3df 5230 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5231 if (!next)
5232 break;
5233 migrate_dead(dead_cpu, next);
e692ab53 5234
1da177e4
LT
5235 }
5236}
5237#endif /* CONFIG_HOTPLUG_CPU */
5238
e692ab53
NP
5239#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5240
5241static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5242 {
5243 .procname = "sched_domain",
c57baf1e 5244 .mode = 0555,
e0361851 5245 },
e692ab53
NP
5246 {0,},
5247};
5248
5249static struct ctl_table sd_ctl_root[] = {
e0361851 5250 {
c57baf1e 5251 .ctl_name = CTL_KERN,
e0361851 5252 .procname = "kernel",
c57baf1e 5253 .mode = 0555,
e0361851
AD
5254 .child = sd_ctl_dir,
5255 },
e692ab53
NP
5256 {0,},
5257};
5258
5259static struct ctl_table *sd_alloc_ctl_entry(int n)
5260{
5261 struct ctl_table *entry =
5262 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5263
5264 BUG_ON(!entry);
5265 memset(entry, 0, n * sizeof(struct ctl_table));
5266
5267 return entry;
5268}
5269
5270static void
e0361851 5271set_table_entry(struct ctl_table *entry,
e692ab53
NP
5272 const char *procname, void *data, int maxlen,
5273 mode_t mode, proc_handler *proc_handler)
5274{
e692ab53
NP
5275 entry->procname = procname;
5276 entry->data = data;
5277 entry->maxlen = maxlen;
5278 entry->mode = mode;
5279 entry->proc_handler = proc_handler;
5280}
5281
5282static struct ctl_table *
5283sd_alloc_ctl_domain_table(struct sched_domain *sd)
5284{
5285 struct ctl_table *table = sd_alloc_ctl_entry(14);
5286
e0361851 5287 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5288 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5289 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5290 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5291 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5292 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5293 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5294 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5295 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5296 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5297 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5298 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5299 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5300 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5301 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5302 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5303 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5304 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5305 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5306 &sd->cache_nice_tries,
5307 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5308 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5309 sizeof(int), 0644, proc_dointvec_minmax);
5310
5311 return table;
5312}
5313
5314static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5315{
5316 struct ctl_table *entry, *table;
5317 struct sched_domain *sd;
5318 int domain_num = 0, i;
5319 char buf[32];
5320
5321 for_each_domain(cpu, sd)
5322 domain_num++;
5323 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5324
5325 i = 0;
5326 for_each_domain(cpu, sd) {
5327 snprintf(buf, 32, "domain%d", i);
e692ab53 5328 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5329 entry->mode = 0555;
e692ab53
NP
5330 entry->child = sd_alloc_ctl_domain_table(sd);
5331 entry++;
5332 i++;
5333 }
5334 return table;
5335}
5336
5337static struct ctl_table_header *sd_sysctl_header;
5338static void init_sched_domain_sysctl(void)
5339{
5340 int i, cpu_num = num_online_cpus();
5341 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5342 char buf[32];
5343
5344 sd_ctl_dir[0].child = entry;
5345
5346 for (i = 0; i < cpu_num; i++, entry++) {
5347 snprintf(buf, 32, "cpu%d", i);
e692ab53 5348 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5349 entry->mode = 0555;
e692ab53
NP
5350 entry->child = sd_alloc_ctl_cpu_table(i);
5351 }
5352 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5353}
5354#else
5355static void init_sched_domain_sysctl(void)
5356{
5357}
5358#endif
5359
1da177e4
LT
5360/*
5361 * migration_call - callback that gets triggered when a CPU is added.
5362 * Here we can start up the necessary migration thread for the new CPU.
5363 */
48f24c4d
IM
5364static int __cpuinit
5365migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5366{
1da177e4 5367 struct task_struct *p;
48f24c4d 5368 int cpu = (long)hcpu;
1da177e4 5369 unsigned long flags;
70b97a7f 5370 struct rq *rq;
1da177e4
LT
5371
5372 switch (action) {
5be9361c
GS
5373 case CPU_LOCK_ACQUIRE:
5374 mutex_lock(&sched_hotcpu_mutex);
5375 break;
5376
1da177e4 5377 case CPU_UP_PREPARE:
8bb78442 5378 case CPU_UP_PREPARE_FROZEN:
dd41f596 5379 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5380 if (IS_ERR(p))
5381 return NOTIFY_BAD;
1da177e4
LT
5382 kthread_bind(p, cpu);
5383 /* Must be high prio: stop_machine expects to yield to it. */
5384 rq = task_rq_lock(p, &flags);
dd41f596 5385 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5386 task_rq_unlock(rq, &flags);
5387 cpu_rq(cpu)->migration_thread = p;
5388 break;
48f24c4d 5389
1da177e4 5390 case CPU_ONLINE:
8bb78442 5391 case CPU_ONLINE_FROZEN:
1da177e4
LT
5392 /* Strictly unneccessary, as first user will wake it. */
5393 wake_up_process(cpu_rq(cpu)->migration_thread);
5394 break;
48f24c4d 5395
1da177e4
LT
5396#ifdef CONFIG_HOTPLUG_CPU
5397 case CPU_UP_CANCELED:
8bb78442 5398 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5399 if (!cpu_rq(cpu)->migration_thread)
5400 break;
1da177e4 5401 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5402 kthread_bind(cpu_rq(cpu)->migration_thread,
5403 any_online_cpu(cpu_online_map));
1da177e4
LT
5404 kthread_stop(cpu_rq(cpu)->migration_thread);
5405 cpu_rq(cpu)->migration_thread = NULL;
5406 break;
48f24c4d 5407
1da177e4 5408 case CPU_DEAD:
8bb78442 5409 case CPU_DEAD_FROZEN:
1da177e4
LT
5410 migrate_live_tasks(cpu);
5411 rq = cpu_rq(cpu);
5412 kthread_stop(rq->migration_thread);
5413 rq->migration_thread = NULL;
5414 /* Idle task back to normal (off runqueue, low prio) */
5415 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5416 update_rq_clock(rq);
2e1cb74a 5417 deactivate_task(rq, rq->idle, 0);
1da177e4 5418 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5419 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5420 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5421 migrate_dead_tasks(cpu);
5422 task_rq_unlock(rq, &flags);
5423 migrate_nr_uninterruptible(rq);
5424 BUG_ON(rq->nr_running != 0);
5425
5426 /* No need to migrate the tasks: it was best-effort if
5be9361c 5427 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5428 * the requestors. */
5429 spin_lock_irq(&rq->lock);
5430 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5431 struct migration_req *req;
5432
1da177e4 5433 req = list_entry(rq->migration_queue.next,
70b97a7f 5434 struct migration_req, list);
1da177e4
LT
5435 list_del_init(&req->list);
5436 complete(&req->done);
5437 }
5438 spin_unlock_irq(&rq->lock);
5439 break;
5440#endif
5be9361c
GS
5441 case CPU_LOCK_RELEASE:
5442 mutex_unlock(&sched_hotcpu_mutex);
5443 break;
1da177e4
LT
5444 }
5445 return NOTIFY_OK;
5446}
5447
5448/* Register at highest priority so that task migration (migrate_all_tasks)
5449 * happens before everything else.
5450 */
26c2143b 5451static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5452 .notifier_call = migration_call,
5453 .priority = 10
5454};
5455
5456int __init migration_init(void)
5457{
5458 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5459 int err;
48f24c4d
IM
5460
5461 /* Start one for the boot CPU: */
07dccf33
AM
5462 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5463 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5464 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5465 register_cpu_notifier(&migration_notifier);
48f24c4d 5466
1da177e4
LT
5467 return 0;
5468}
5469#endif
5470
5471#ifdef CONFIG_SMP
476f3534
CL
5472
5473/* Number of possible processor ids */
5474int nr_cpu_ids __read_mostly = NR_CPUS;
5475EXPORT_SYMBOL(nr_cpu_ids);
5476
3e9830dc 5477#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5478static void sched_domain_debug(struct sched_domain *sd, int cpu)
5479{
5480 int level = 0;
5481
41c7ce9a
NP
5482 if (!sd) {
5483 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5484 return;
5485 }
5486
1da177e4
LT
5487 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5488
5489 do {
5490 int i;
5491 char str[NR_CPUS];
5492 struct sched_group *group = sd->groups;
5493 cpumask_t groupmask;
5494
5495 cpumask_scnprintf(str, NR_CPUS, sd->span);
5496 cpus_clear(groupmask);
5497
5498 printk(KERN_DEBUG);
5499 for (i = 0; i < level + 1; i++)
5500 printk(" ");
5501 printk("domain %d: ", level);
5502
5503 if (!(sd->flags & SD_LOAD_BALANCE)) {
5504 printk("does not load-balance\n");
5505 if (sd->parent)
33859f7f
MOS
5506 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5507 " has parent");
1da177e4
LT
5508 break;
5509 }
5510
5511 printk("span %s\n", str);
5512
5513 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5514 printk(KERN_ERR "ERROR: domain->span does not contain "
5515 "CPU%d\n", cpu);
1da177e4 5516 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5517 printk(KERN_ERR "ERROR: domain->groups does not contain"
5518 " CPU%d\n", cpu);
1da177e4
LT
5519
5520 printk(KERN_DEBUG);
5521 for (i = 0; i < level + 2; i++)
5522 printk(" ");
5523 printk("groups:");
5524 do {
5525 if (!group) {
5526 printk("\n");
5527 printk(KERN_ERR "ERROR: group is NULL\n");
5528 break;
5529 }
5530
5517d86b 5531 if (!group->__cpu_power) {
1da177e4 5532 printk("\n");
33859f7f
MOS
5533 printk(KERN_ERR "ERROR: domain->cpu_power not "
5534 "set\n");
26797a34 5535 break;
1da177e4
LT
5536 }
5537
5538 if (!cpus_weight(group->cpumask)) {
5539 printk("\n");
5540 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5541 break;
1da177e4
LT
5542 }
5543
5544 if (cpus_intersects(groupmask, group->cpumask)) {
5545 printk("\n");
5546 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5547 break;
1da177e4
LT
5548 }
5549
5550 cpus_or(groupmask, groupmask, group->cpumask);
5551
5552 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5553 printk(" %s", str);
5554
5555 group = group->next;
5556 } while (group != sd->groups);
5557 printk("\n");
5558
5559 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5560 printk(KERN_ERR "ERROR: groups don't span "
5561 "domain->span\n");
1da177e4
LT
5562
5563 level++;
5564 sd = sd->parent;
33859f7f
MOS
5565 if (!sd)
5566 continue;
1da177e4 5567
33859f7f
MOS
5568 if (!cpus_subset(groupmask, sd->span))
5569 printk(KERN_ERR "ERROR: parent span is not a superset "
5570 "of domain->span\n");
1da177e4
LT
5571
5572 } while (sd);
5573}
5574#else
48f24c4d 5575# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5576#endif
5577
1a20ff27 5578static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5579{
5580 if (cpus_weight(sd->span) == 1)
5581 return 1;
5582
5583 /* Following flags need at least 2 groups */
5584 if (sd->flags & (SD_LOAD_BALANCE |
5585 SD_BALANCE_NEWIDLE |
5586 SD_BALANCE_FORK |
89c4710e
SS
5587 SD_BALANCE_EXEC |
5588 SD_SHARE_CPUPOWER |
5589 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5590 if (sd->groups != sd->groups->next)
5591 return 0;
5592 }
5593
5594 /* Following flags don't use groups */
5595 if (sd->flags & (SD_WAKE_IDLE |
5596 SD_WAKE_AFFINE |
5597 SD_WAKE_BALANCE))
5598 return 0;
5599
5600 return 1;
5601}
5602
48f24c4d
IM
5603static int
5604sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5605{
5606 unsigned long cflags = sd->flags, pflags = parent->flags;
5607
5608 if (sd_degenerate(parent))
5609 return 1;
5610
5611 if (!cpus_equal(sd->span, parent->span))
5612 return 0;
5613
5614 /* Does parent contain flags not in child? */
5615 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5616 if (cflags & SD_WAKE_AFFINE)
5617 pflags &= ~SD_WAKE_BALANCE;
5618 /* Flags needing groups don't count if only 1 group in parent */
5619 if (parent->groups == parent->groups->next) {
5620 pflags &= ~(SD_LOAD_BALANCE |
5621 SD_BALANCE_NEWIDLE |
5622 SD_BALANCE_FORK |
89c4710e
SS
5623 SD_BALANCE_EXEC |
5624 SD_SHARE_CPUPOWER |
5625 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5626 }
5627 if (~cflags & pflags)
5628 return 0;
5629
5630 return 1;
5631}
5632
1da177e4
LT
5633/*
5634 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5635 * hold the hotplug lock.
5636 */
9c1cfda2 5637static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5638{
70b97a7f 5639 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5640 struct sched_domain *tmp;
5641
5642 /* Remove the sched domains which do not contribute to scheduling. */
5643 for (tmp = sd; tmp; tmp = tmp->parent) {
5644 struct sched_domain *parent = tmp->parent;
5645 if (!parent)
5646 break;
1a848870 5647 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5648 tmp->parent = parent->parent;
1a848870
SS
5649 if (parent->parent)
5650 parent->parent->child = tmp;
5651 }
245af2c7
SS
5652 }
5653
1a848870 5654 if (sd && sd_degenerate(sd)) {
245af2c7 5655 sd = sd->parent;
1a848870
SS
5656 if (sd)
5657 sd->child = NULL;
5658 }
1da177e4
LT
5659
5660 sched_domain_debug(sd, cpu);
5661
674311d5 5662 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5663}
5664
5665/* cpus with isolated domains */
67af63a6 5666static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5667
5668/* Setup the mask of cpus configured for isolated domains */
5669static int __init isolated_cpu_setup(char *str)
5670{
5671 int ints[NR_CPUS], i;
5672
5673 str = get_options(str, ARRAY_SIZE(ints), ints);
5674 cpus_clear(cpu_isolated_map);
5675 for (i = 1; i <= ints[0]; i++)
5676 if (ints[i] < NR_CPUS)
5677 cpu_set(ints[i], cpu_isolated_map);
5678 return 1;
5679}
5680
8927f494 5681__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5682
5683/*
6711cab4
SS
5684 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5685 * to a function which identifies what group(along with sched group) a CPU
5686 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5687 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5688 *
5689 * init_sched_build_groups will build a circular linked list of the groups
5690 * covered by the given span, and will set each group's ->cpumask correctly,
5691 * and ->cpu_power to 0.
5692 */
a616058b 5693static void
6711cab4
SS
5694init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5695 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5696 struct sched_group **sg))
1da177e4
LT
5697{
5698 struct sched_group *first = NULL, *last = NULL;
5699 cpumask_t covered = CPU_MASK_NONE;
5700 int i;
5701
5702 for_each_cpu_mask(i, span) {
6711cab4
SS
5703 struct sched_group *sg;
5704 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5705 int j;
5706
5707 if (cpu_isset(i, covered))
5708 continue;
5709
5710 sg->cpumask = CPU_MASK_NONE;
5517d86b 5711 sg->__cpu_power = 0;
1da177e4
LT
5712
5713 for_each_cpu_mask(j, span) {
6711cab4 5714 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5715 continue;
5716
5717 cpu_set(j, covered);
5718 cpu_set(j, sg->cpumask);
5719 }
5720 if (!first)
5721 first = sg;
5722 if (last)
5723 last->next = sg;
5724 last = sg;
5725 }
5726 last->next = first;
5727}
5728
9c1cfda2 5729#define SD_NODES_PER_DOMAIN 16
1da177e4 5730
9c1cfda2 5731#ifdef CONFIG_NUMA
198e2f18 5732
9c1cfda2
JH
5733/**
5734 * find_next_best_node - find the next node to include in a sched_domain
5735 * @node: node whose sched_domain we're building
5736 * @used_nodes: nodes already in the sched_domain
5737 *
5738 * Find the next node to include in a given scheduling domain. Simply
5739 * finds the closest node not already in the @used_nodes map.
5740 *
5741 * Should use nodemask_t.
5742 */
5743static int find_next_best_node(int node, unsigned long *used_nodes)
5744{
5745 int i, n, val, min_val, best_node = 0;
5746
5747 min_val = INT_MAX;
5748
5749 for (i = 0; i < MAX_NUMNODES; i++) {
5750 /* Start at @node */
5751 n = (node + i) % MAX_NUMNODES;
5752
5753 if (!nr_cpus_node(n))
5754 continue;
5755
5756 /* Skip already used nodes */
5757 if (test_bit(n, used_nodes))
5758 continue;
5759
5760 /* Simple min distance search */
5761 val = node_distance(node, n);
5762
5763 if (val < min_val) {
5764 min_val = val;
5765 best_node = n;
5766 }
5767 }
5768
5769 set_bit(best_node, used_nodes);
5770 return best_node;
5771}
5772
5773/**
5774 * sched_domain_node_span - get a cpumask for a node's sched_domain
5775 * @node: node whose cpumask we're constructing
5776 * @size: number of nodes to include in this span
5777 *
5778 * Given a node, construct a good cpumask for its sched_domain to span. It
5779 * should be one that prevents unnecessary balancing, but also spreads tasks
5780 * out optimally.
5781 */
5782static cpumask_t sched_domain_node_span(int node)
5783{
9c1cfda2 5784 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5785 cpumask_t span, nodemask;
5786 int i;
9c1cfda2
JH
5787
5788 cpus_clear(span);
5789 bitmap_zero(used_nodes, MAX_NUMNODES);
5790
5791 nodemask = node_to_cpumask(node);
5792 cpus_or(span, span, nodemask);
5793 set_bit(node, used_nodes);
5794
5795 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5796 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5797
9c1cfda2
JH
5798 nodemask = node_to_cpumask(next_node);
5799 cpus_or(span, span, nodemask);
5800 }
5801
5802 return span;
5803}
5804#endif
5805
5c45bf27 5806int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5807
9c1cfda2 5808/*
48f24c4d 5809 * SMT sched-domains:
9c1cfda2 5810 */
1da177e4
LT
5811#ifdef CONFIG_SCHED_SMT
5812static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5813static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5814
6711cab4
SS
5815static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5816 struct sched_group **sg)
1da177e4 5817{
6711cab4
SS
5818 if (sg)
5819 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5820 return cpu;
5821}
5822#endif
5823
48f24c4d
IM
5824/*
5825 * multi-core sched-domains:
5826 */
1e9f28fa
SS
5827#ifdef CONFIG_SCHED_MC
5828static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5829static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5830#endif
5831
5832#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5833static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5834 struct sched_group **sg)
1e9f28fa 5835{
6711cab4 5836 int group;
a616058b
SS
5837 cpumask_t mask = cpu_sibling_map[cpu];
5838 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5839 group = first_cpu(mask);
5840 if (sg)
5841 *sg = &per_cpu(sched_group_core, group);
5842 return group;
1e9f28fa
SS
5843}
5844#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5845static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5846 struct sched_group **sg)
1e9f28fa 5847{
6711cab4
SS
5848 if (sg)
5849 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5850 return cpu;
5851}
5852#endif
5853
1da177e4 5854static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5855static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5856
6711cab4
SS
5857static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5858 struct sched_group **sg)
1da177e4 5859{
6711cab4 5860 int group;
48f24c4d 5861#ifdef CONFIG_SCHED_MC
1e9f28fa 5862 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5863 cpus_and(mask, mask, *cpu_map);
6711cab4 5864 group = first_cpu(mask);
1e9f28fa 5865#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5866 cpumask_t mask = cpu_sibling_map[cpu];
5867 cpus_and(mask, mask, *cpu_map);
6711cab4 5868 group = first_cpu(mask);
1da177e4 5869#else
6711cab4 5870 group = cpu;
1da177e4 5871#endif
6711cab4
SS
5872 if (sg)
5873 *sg = &per_cpu(sched_group_phys, group);
5874 return group;
1da177e4
LT
5875}
5876
5877#ifdef CONFIG_NUMA
1da177e4 5878/*
9c1cfda2
JH
5879 * The init_sched_build_groups can't handle what we want to do with node
5880 * groups, so roll our own. Now each node has its own list of groups which
5881 * gets dynamically allocated.
1da177e4 5882 */
9c1cfda2 5883static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5884static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5885
9c1cfda2 5886static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5887static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5888
6711cab4
SS
5889static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5890 struct sched_group **sg)
9c1cfda2 5891{
6711cab4
SS
5892 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5893 int group;
5894
5895 cpus_and(nodemask, nodemask, *cpu_map);
5896 group = first_cpu(nodemask);
5897
5898 if (sg)
5899 *sg = &per_cpu(sched_group_allnodes, group);
5900 return group;
1da177e4 5901}
6711cab4 5902
08069033
SS
5903static void init_numa_sched_groups_power(struct sched_group *group_head)
5904{
5905 struct sched_group *sg = group_head;
5906 int j;
5907
5908 if (!sg)
5909 return;
5910next_sg:
5911 for_each_cpu_mask(j, sg->cpumask) {
5912 struct sched_domain *sd;
5913
5914 sd = &per_cpu(phys_domains, j);
5915 if (j != first_cpu(sd->groups->cpumask)) {
5916 /*
5917 * Only add "power" once for each
5918 * physical package.
5919 */
5920 continue;
5921 }
5922
5517d86b 5923 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5924 }
5925 sg = sg->next;
5926 if (sg != group_head)
5927 goto next_sg;
5928}
1da177e4
LT
5929#endif
5930
a616058b 5931#ifdef CONFIG_NUMA
51888ca2
SV
5932/* Free memory allocated for various sched_group structures */
5933static void free_sched_groups(const cpumask_t *cpu_map)
5934{
a616058b 5935 int cpu, i;
51888ca2
SV
5936
5937 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5938 struct sched_group **sched_group_nodes
5939 = sched_group_nodes_bycpu[cpu];
5940
51888ca2
SV
5941 if (!sched_group_nodes)
5942 continue;
5943
5944 for (i = 0; i < MAX_NUMNODES; i++) {
5945 cpumask_t nodemask = node_to_cpumask(i);
5946 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5947
5948 cpus_and(nodemask, nodemask, *cpu_map);
5949 if (cpus_empty(nodemask))
5950 continue;
5951
5952 if (sg == NULL)
5953 continue;
5954 sg = sg->next;
5955next_sg:
5956 oldsg = sg;
5957 sg = sg->next;
5958 kfree(oldsg);
5959 if (oldsg != sched_group_nodes[i])
5960 goto next_sg;
5961 }
5962 kfree(sched_group_nodes);
5963 sched_group_nodes_bycpu[cpu] = NULL;
5964 }
51888ca2 5965}
a616058b
SS
5966#else
5967static void free_sched_groups(const cpumask_t *cpu_map)
5968{
5969}
5970#endif
51888ca2 5971
89c4710e
SS
5972/*
5973 * Initialize sched groups cpu_power.
5974 *
5975 * cpu_power indicates the capacity of sched group, which is used while
5976 * distributing the load between different sched groups in a sched domain.
5977 * Typically cpu_power for all the groups in a sched domain will be same unless
5978 * there are asymmetries in the topology. If there are asymmetries, group
5979 * having more cpu_power will pickup more load compared to the group having
5980 * less cpu_power.
5981 *
5982 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5983 * the maximum number of tasks a group can handle in the presence of other idle
5984 * or lightly loaded groups in the same sched domain.
5985 */
5986static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5987{
5988 struct sched_domain *child;
5989 struct sched_group *group;
5990
5991 WARN_ON(!sd || !sd->groups);
5992
5993 if (cpu != first_cpu(sd->groups->cpumask))
5994 return;
5995
5996 child = sd->child;
5997
5517d86b
ED
5998 sd->groups->__cpu_power = 0;
5999
89c4710e
SS
6000 /*
6001 * For perf policy, if the groups in child domain share resources
6002 * (for example cores sharing some portions of the cache hierarchy
6003 * or SMT), then set this domain groups cpu_power such that each group
6004 * can handle only one task, when there are other idle groups in the
6005 * same sched domain.
6006 */
6007 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6008 (child->flags &
6009 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6010 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6011 return;
6012 }
6013
89c4710e
SS
6014 /*
6015 * add cpu_power of each child group to this groups cpu_power
6016 */
6017 group = child->groups;
6018 do {
5517d86b 6019 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6020 group = group->next;
6021 } while (group != child->groups);
6022}
6023
1da177e4 6024/*
1a20ff27
DG
6025 * Build sched domains for a given set of cpus and attach the sched domains
6026 * to the individual cpus
1da177e4 6027 */
51888ca2 6028static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6029{
6030 int i;
d1b55138
JH
6031#ifdef CONFIG_NUMA
6032 struct sched_group **sched_group_nodes = NULL;
6711cab4 6033 int sd_allnodes = 0;
d1b55138
JH
6034
6035 /*
6036 * Allocate the per-node list of sched groups
6037 */
dd41f596 6038 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6039 GFP_KERNEL);
d1b55138
JH
6040 if (!sched_group_nodes) {
6041 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6042 return -ENOMEM;
d1b55138
JH
6043 }
6044 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6045#endif
1da177e4
LT
6046
6047 /*
1a20ff27 6048 * Set up domains for cpus specified by the cpu_map.
1da177e4 6049 */
1a20ff27 6050 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6051 struct sched_domain *sd = NULL, *p;
6052 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6053
1a20ff27 6054 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6055
6056#ifdef CONFIG_NUMA
dd41f596
IM
6057 if (cpus_weight(*cpu_map) >
6058 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6059 sd = &per_cpu(allnodes_domains, i);
6060 *sd = SD_ALLNODES_INIT;
6061 sd->span = *cpu_map;
6711cab4 6062 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6063 p = sd;
6711cab4 6064 sd_allnodes = 1;
9c1cfda2
JH
6065 } else
6066 p = NULL;
6067
1da177e4 6068 sd = &per_cpu(node_domains, i);
1da177e4 6069 *sd = SD_NODE_INIT;
9c1cfda2
JH
6070 sd->span = sched_domain_node_span(cpu_to_node(i));
6071 sd->parent = p;
1a848870
SS
6072 if (p)
6073 p->child = sd;
9c1cfda2 6074 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6075#endif
6076
6077 p = sd;
6078 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6079 *sd = SD_CPU_INIT;
6080 sd->span = nodemask;
6081 sd->parent = p;
1a848870
SS
6082 if (p)
6083 p->child = sd;
6711cab4 6084 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6085
1e9f28fa
SS
6086#ifdef CONFIG_SCHED_MC
6087 p = sd;
6088 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6089 *sd = SD_MC_INIT;
6090 sd->span = cpu_coregroup_map(i);
6091 cpus_and(sd->span, sd->span, *cpu_map);
6092 sd->parent = p;
1a848870 6093 p->child = sd;
6711cab4 6094 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6095#endif
6096
1da177e4
LT
6097#ifdef CONFIG_SCHED_SMT
6098 p = sd;
6099 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6100 *sd = SD_SIBLING_INIT;
6101 sd->span = cpu_sibling_map[i];
1a20ff27 6102 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6103 sd->parent = p;
1a848870 6104 p->child = sd;
6711cab4 6105 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6106#endif
6107 }
6108
6109#ifdef CONFIG_SCHED_SMT
6110 /* Set up CPU (sibling) groups */
9c1cfda2 6111 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6112 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6113 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6114 if (i != first_cpu(this_sibling_map))
6115 continue;
6116
dd41f596
IM
6117 init_sched_build_groups(this_sibling_map, cpu_map,
6118 &cpu_to_cpu_group);
1da177e4
LT
6119 }
6120#endif
6121
1e9f28fa
SS
6122#ifdef CONFIG_SCHED_MC
6123 /* Set up multi-core groups */
6124 for_each_cpu_mask(i, *cpu_map) {
6125 cpumask_t this_core_map = cpu_coregroup_map(i);
6126 cpus_and(this_core_map, this_core_map, *cpu_map);
6127 if (i != first_cpu(this_core_map))
6128 continue;
dd41f596
IM
6129 init_sched_build_groups(this_core_map, cpu_map,
6130 &cpu_to_core_group);
1e9f28fa
SS
6131 }
6132#endif
6133
1da177e4
LT
6134 /* Set up physical groups */
6135 for (i = 0; i < MAX_NUMNODES; i++) {
6136 cpumask_t nodemask = node_to_cpumask(i);
6137
1a20ff27 6138 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6139 if (cpus_empty(nodemask))
6140 continue;
6141
6711cab4 6142 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6143 }
6144
6145#ifdef CONFIG_NUMA
6146 /* Set up node groups */
6711cab4 6147 if (sd_allnodes)
dd41f596
IM
6148 init_sched_build_groups(*cpu_map, cpu_map,
6149 &cpu_to_allnodes_group);
9c1cfda2
JH
6150
6151 for (i = 0; i < MAX_NUMNODES; i++) {
6152 /* Set up node groups */
6153 struct sched_group *sg, *prev;
6154 cpumask_t nodemask = node_to_cpumask(i);
6155 cpumask_t domainspan;
6156 cpumask_t covered = CPU_MASK_NONE;
6157 int j;
6158
6159 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6160 if (cpus_empty(nodemask)) {
6161 sched_group_nodes[i] = NULL;
9c1cfda2 6162 continue;
d1b55138 6163 }
9c1cfda2
JH
6164
6165 domainspan = sched_domain_node_span(i);
6166 cpus_and(domainspan, domainspan, *cpu_map);
6167
15f0b676 6168 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6169 if (!sg) {
6170 printk(KERN_WARNING "Can not alloc domain group for "
6171 "node %d\n", i);
6172 goto error;
6173 }
9c1cfda2
JH
6174 sched_group_nodes[i] = sg;
6175 for_each_cpu_mask(j, nodemask) {
6176 struct sched_domain *sd;
9761eea8 6177
9c1cfda2
JH
6178 sd = &per_cpu(node_domains, j);
6179 sd->groups = sg;
9c1cfda2 6180 }
5517d86b 6181 sg->__cpu_power = 0;
9c1cfda2 6182 sg->cpumask = nodemask;
51888ca2 6183 sg->next = sg;
9c1cfda2
JH
6184 cpus_or(covered, covered, nodemask);
6185 prev = sg;
6186
6187 for (j = 0; j < MAX_NUMNODES; j++) {
6188 cpumask_t tmp, notcovered;
6189 int n = (i + j) % MAX_NUMNODES;
6190
6191 cpus_complement(notcovered, covered);
6192 cpus_and(tmp, notcovered, *cpu_map);
6193 cpus_and(tmp, tmp, domainspan);
6194 if (cpus_empty(tmp))
6195 break;
6196
6197 nodemask = node_to_cpumask(n);
6198 cpus_and(tmp, tmp, nodemask);
6199 if (cpus_empty(tmp))
6200 continue;
6201
15f0b676
SV
6202 sg = kmalloc_node(sizeof(struct sched_group),
6203 GFP_KERNEL, i);
9c1cfda2
JH
6204 if (!sg) {
6205 printk(KERN_WARNING
6206 "Can not alloc domain group for node %d\n", j);
51888ca2 6207 goto error;
9c1cfda2 6208 }
5517d86b 6209 sg->__cpu_power = 0;
9c1cfda2 6210 sg->cpumask = tmp;
51888ca2 6211 sg->next = prev->next;
9c1cfda2
JH
6212 cpus_or(covered, covered, tmp);
6213 prev->next = sg;
6214 prev = sg;
6215 }
9c1cfda2 6216 }
1da177e4
LT
6217#endif
6218
6219 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6220#ifdef CONFIG_SCHED_SMT
1a20ff27 6221 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6222 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6223
89c4710e 6224 init_sched_groups_power(i, sd);
5c45bf27 6225 }
1da177e4 6226#endif
1e9f28fa 6227#ifdef CONFIG_SCHED_MC
5c45bf27 6228 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6229 struct sched_domain *sd = &per_cpu(core_domains, i);
6230
89c4710e 6231 init_sched_groups_power(i, sd);
5c45bf27
SS
6232 }
6233#endif
1e9f28fa 6234
5c45bf27 6235 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6236 struct sched_domain *sd = &per_cpu(phys_domains, i);
6237
89c4710e 6238 init_sched_groups_power(i, sd);
1da177e4
LT
6239 }
6240
9c1cfda2 6241#ifdef CONFIG_NUMA
08069033
SS
6242 for (i = 0; i < MAX_NUMNODES; i++)
6243 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6244
6711cab4
SS
6245 if (sd_allnodes) {
6246 struct sched_group *sg;
f712c0c7 6247
6711cab4 6248 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6249 init_numa_sched_groups_power(sg);
6250 }
9c1cfda2
JH
6251#endif
6252
1da177e4 6253 /* Attach the domains */
1a20ff27 6254 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6255 struct sched_domain *sd;
6256#ifdef CONFIG_SCHED_SMT
6257 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6258#elif defined(CONFIG_SCHED_MC)
6259 sd = &per_cpu(core_domains, i);
1da177e4
LT
6260#else
6261 sd = &per_cpu(phys_domains, i);
6262#endif
6263 cpu_attach_domain(sd, i);
6264 }
51888ca2
SV
6265
6266 return 0;
6267
a616058b 6268#ifdef CONFIG_NUMA
51888ca2
SV
6269error:
6270 free_sched_groups(cpu_map);
6271 return -ENOMEM;
a616058b 6272#endif
1da177e4 6273}
1a20ff27
DG
6274/*
6275 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6276 */
51888ca2 6277static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6278{
6279 cpumask_t cpu_default_map;
51888ca2 6280 int err;
1da177e4 6281
1a20ff27
DG
6282 /*
6283 * Setup mask for cpus without special case scheduling requirements.
6284 * For now this just excludes isolated cpus, but could be used to
6285 * exclude other special cases in the future.
6286 */
6287 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6288
51888ca2
SV
6289 err = build_sched_domains(&cpu_default_map);
6290
6291 return err;
1a20ff27
DG
6292}
6293
6294static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6295{
51888ca2 6296 free_sched_groups(cpu_map);
9c1cfda2 6297}
1da177e4 6298
1a20ff27
DG
6299/*
6300 * Detach sched domains from a group of cpus specified in cpu_map
6301 * These cpus will now be attached to the NULL domain
6302 */
858119e1 6303static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6304{
6305 int i;
6306
6307 for_each_cpu_mask(i, *cpu_map)
6308 cpu_attach_domain(NULL, i);
6309 synchronize_sched();
6310 arch_destroy_sched_domains(cpu_map);
6311}
6312
6313/*
6314 * Partition sched domains as specified by the cpumasks below.
6315 * This attaches all cpus from the cpumasks to the NULL domain,
6316 * waits for a RCU quiescent period, recalculates sched
6317 * domain information and then attaches them back to the
6318 * correct sched domains
6319 * Call with hotplug lock held
6320 */
51888ca2 6321int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6322{
6323 cpumask_t change_map;
51888ca2 6324 int err = 0;
1a20ff27
DG
6325
6326 cpus_and(*partition1, *partition1, cpu_online_map);
6327 cpus_and(*partition2, *partition2, cpu_online_map);
6328 cpus_or(change_map, *partition1, *partition2);
6329
6330 /* Detach sched domains from all of the affected cpus */
6331 detach_destroy_domains(&change_map);
6332 if (!cpus_empty(*partition1))
51888ca2
SV
6333 err = build_sched_domains(partition1);
6334 if (!err && !cpus_empty(*partition2))
6335 err = build_sched_domains(partition2);
6336
6337 return err;
1a20ff27
DG
6338}
6339
5c45bf27 6340#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6341static int arch_reinit_sched_domains(void)
5c45bf27
SS
6342{
6343 int err;
6344
5be9361c 6345 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6346 detach_destroy_domains(&cpu_online_map);
6347 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6348 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6349
6350 return err;
6351}
6352
6353static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6354{
6355 int ret;
6356
6357 if (buf[0] != '0' && buf[0] != '1')
6358 return -EINVAL;
6359
6360 if (smt)
6361 sched_smt_power_savings = (buf[0] == '1');
6362 else
6363 sched_mc_power_savings = (buf[0] == '1');
6364
6365 ret = arch_reinit_sched_domains();
6366
6367 return ret ? ret : count;
6368}
6369
5c45bf27
SS
6370#ifdef CONFIG_SCHED_MC
6371static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6372{
6373 return sprintf(page, "%u\n", sched_mc_power_savings);
6374}
48f24c4d
IM
6375static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6376 const char *buf, size_t count)
5c45bf27
SS
6377{
6378 return sched_power_savings_store(buf, count, 0);
6379}
6707de00
AB
6380static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6381 sched_mc_power_savings_store);
5c45bf27
SS
6382#endif
6383
6384#ifdef CONFIG_SCHED_SMT
6385static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6386{
6387 return sprintf(page, "%u\n", sched_smt_power_savings);
6388}
48f24c4d
IM
6389static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6390 const char *buf, size_t count)
5c45bf27
SS
6391{
6392 return sched_power_savings_store(buf, count, 1);
6393}
6707de00
AB
6394static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6395 sched_smt_power_savings_store);
6396#endif
6397
6398int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6399{
6400 int err = 0;
6401
6402#ifdef CONFIG_SCHED_SMT
6403 if (smt_capable())
6404 err = sysfs_create_file(&cls->kset.kobj,
6405 &attr_sched_smt_power_savings.attr);
6406#endif
6407#ifdef CONFIG_SCHED_MC
6408 if (!err && mc_capable())
6409 err = sysfs_create_file(&cls->kset.kobj,
6410 &attr_sched_mc_power_savings.attr);
6411#endif
6412 return err;
6413}
5c45bf27
SS
6414#endif
6415
1da177e4
LT
6416/*
6417 * Force a reinitialization of the sched domains hierarchy. The domains
6418 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6419 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6420 * which will prevent rebalancing while the sched domains are recalculated.
6421 */
6422static int update_sched_domains(struct notifier_block *nfb,
6423 unsigned long action, void *hcpu)
6424{
1da177e4
LT
6425 switch (action) {
6426 case CPU_UP_PREPARE:
8bb78442 6427 case CPU_UP_PREPARE_FROZEN:
1da177e4 6428 case CPU_DOWN_PREPARE:
8bb78442 6429 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6430 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6431 return NOTIFY_OK;
6432
6433 case CPU_UP_CANCELED:
8bb78442 6434 case CPU_UP_CANCELED_FROZEN:
1da177e4 6435 case CPU_DOWN_FAILED:
8bb78442 6436 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6437 case CPU_ONLINE:
8bb78442 6438 case CPU_ONLINE_FROZEN:
1da177e4 6439 case CPU_DEAD:
8bb78442 6440 case CPU_DEAD_FROZEN:
1da177e4
LT
6441 /*
6442 * Fall through and re-initialise the domains.
6443 */
6444 break;
6445 default:
6446 return NOTIFY_DONE;
6447 }
6448
6449 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6450 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6451
6452 return NOTIFY_OK;
6453}
1da177e4
LT
6454
6455void __init sched_init_smp(void)
6456{
5c1e1767
NP
6457 cpumask_t non_isolated_cpus;
6458
5be9361c 6459 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6460 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6461 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6462 if (cpus_empty(non_isolated_cpus))
6463 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6464 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6465 /* XXX: Theoretical race here - CPU may be hotplugged now */
6466 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6467
e692ab53
NP
6468 init_sched_domain_sysctl();
6469
5c1e1767
NP
6470 /* Move init over to a non-isolated CPU */
6471 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6472 BUG();
1da177e4
LT
6473}
6474#else
6475void __init sched_init_smp(void)
6476{
6477}
6478#endif /* CONFIG_SMP */
6479
6480int in_sched_functions(unsigned long addr)
6481{
6482 /* Linker adds these: start and end of __sched functions */
6483 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6484
1da177e4
LT
6485 return in_lock_functions(addr) ||
6486 (addr >= (unsigned long)__sched_text_start
6487 && addr < (unsigned long)__sched_text_end);
6488}
6489
a9957449 6490static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6491{
6492 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6493#ifdef CONFIG_FAIR_GROUP_SCHED
6494 cfs_rq->rq = rq;
6495#endif
67e9fb2a 6496 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6497}
6498
1da177e4
LT
6499void __init sched_init(void)
6500{
476f3534 6501 int highest_cpu = 0;
dd41f596
IM
6502 int i, j;
6503
0a945022 6504 for_each_possible_cpu(i) {
dd41f596 6505 struct rt_prio_array *array;
70b97a7f 6506 struct rq *rq;
1da177e4
LT
6507
6508 rq = cpu_rq(i);
6509 spin_lock_init(&rq->lock);
fcb99371 6510 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6511 rq->nr_running = 0;
dd41f596
IM
6512 rq->clock = 1;
6513 init_cfs_rq(&rq->cfs, rq);
6514#ifdef CONFIG_FAIR_GROUP_SCHED
6515 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6516 {
6517 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6518 struct sched_entity *se =
6519 &per_cpu(init_sched_entity, i);
6520
6521 init_cfs_rq_p[i] = cfs_rq;
6522 init_cfs_rq(cfs_rq, rq);
4cf86d77 6523 cfs_rq->tg = &init_task_group;
3a252015 6524 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6525 &rq->leaf_cfs_rq_list);
6526
3a252015
IM
6527 init_sched_entity_p[i] = se;
6528 se->cfs_rq = &rq->cfs;
6529 se->my_q = cfs_rq;
4cf86d77 6530 se->load.weight = init_task_group_load;
9b5b7751 6531 se->load.inv_weight =
4cf86d77 6532 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6533 se->parent = NULL;
6534 }
4cf86d77 6535 init_task_group.shares = init_task_group_load;
dd41f596 6536#endif
1da177e4 6537
dd41f596
IM
6538 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6539 rq->cpu_load[j] = 0;
1da177e4 6540#ifdef CONFIG_SMP
41c7ce9a 6541 rq->sd = NULL;
1da177e4 6542 rq->active_balance = 0;
dd41f596 6543 rq->next_balance = jiffies;
1da177e4 6544 rq->push_cpu = 0;
0a2966b4 6545 rq->cpu = i;
1da177e4
LT
6546 rq->migration_thread = NULL;
6547 INIT_LIST_HEAD(&rq->migration_queue);
6548#endif
6549 atomic_set(&rq->nr_iowait, 0);
6550
dd41f596
IM
6551 array = &rq->rt.active;
6552 for (j = 0; j < MAX_RT_PRIO; j++) {
6553 INIT_LIST_HEAD(array->queue + j);
6554 __clear_bit(j, array->bitmap);
1da177e4 6555 }
476f3534 6556 highest_cpu = i;
dd41f596
IM
6557 /* delimiter for bitsearch: */
6558 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6559 }
6560
2dd73a4f 6561 set_load_weight(&init_task);
b50f60ce 6562
e107be36
AK
6563#ifdef CONFIG_PREEMPT_NOTIFIERS
6564 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6565#endif
6566
c9819f45 6567#ifdef CONFIG_SMP
476f3534 6568 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6569 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6570#endif
6571
b50f60ce
HC
6572#ifdef CONFIG_RT_MUTEXES
6573 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6574#endif
6575
1da177e4
LT
6576 /*
6577 * The boot idle thread does lazy MMU switching as well:
6578 */
6579 atomic_inc(&init_mm.mm_count);
6580 enter_lazy_tlb(&init_mm, current);
6581
6582 /*
6583 * Make us the idle thread. Technically, schedule() should not be
6584 * called from this thread, however somewhere below it might be,
6585 * but because we are the idle thread, we just pick up running again
6586 * when this runqueue becomes "idle".
6587 */
6588 init_idle(current, smp_processor_id());
dd41f596
IM
6589 /*
6590 * During early bootup we pretend to be a normal task:
6591 */
6592 current->sched_class = &fair_sched_class;
1da177e4
LT
6593}
6594
6595#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6596void __might_sleep(char *file, int line)
6597{
48f24c4d 6598#ifdef in_atomic
1da177e4
LT
6599 static unsigned long prev_jiffy; /* ratelimiting */
6600
6601 if ((in_atomic() || irqs_disabled()) &&
6602 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6603 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6604 return;
6605 prev_jiffy = jiffies;
91368d73 6606 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6607 " context at %s:%d\n", file, line);
6608 printk("in_atomic():%d, irqs_disabled():%d\n",
6609 in_atomic(), irqs_disabled());
a4c410f0 6610 debug_show_held_locks(current);
3117df04
IM
6611 if (irqs_disabled())
6612 print_irqtrace_events(current);
1da177e4
LT
6613 dump_stack();
6614 }
6615#endif
6616}
6617EXPORT_SYMBOL(__might_sleep);
6618#endif
6619
6620#ifdef CONFIG_MAGIC_SYSRQ
6621void normalize_rt_tasks(void)
6622{
a0f98a1c 6623 struct task_struct *g, *p;
1da177e4 6624 unsigned long flags;
70b97a7f 6625 struct rq *rq;
dd41f596 6626 int on_rq;
1da177e4
LT
6627
6628 read_lock_irq(&tasklist_lock);
a0f98a1c 6629 do_each_thread(g, p) {
6cfb0d5d 6630 p->se.exec_start = 0;
6cfb0d5d 6631#ifdef CONFIG_SCHEDSTATS
dd41f596 6632 p->se.wait_start = 0;
dd41f596 6633 p->se.sleep_start = 0;
dd41f596 6634 p->se.block_start = 0;
6cfb0d5d 6635#endif
dd41f596
IM
6636 task_rq(p)->clock = 0;
6637
6638 if (!rt_task(p)) {
6639 /*
6640 * Renice negative nice level userspace
6641 * tasks back to 0:
6642 */
6643 if (TASK_NICE(p) < 0 && p->mm)
6644 set_user_nice(p, 0);
1da177e4 6645 continue;
dd41f596 6646 }
1da177e4 6647
b29739f9
IM
6648 spin_lock_irqsave(&p->pi_lock, flags);
6649 rq = __task_rq_lock(p);
dd41f596
IM
6650#ifdef CONFIG_SMP
6651 /*
6652 * Do not touch the migration thread:
6653 */
6654 if (p == rq->migration_thread)
6655 goto out_unlock;
6656#endif
1da177e4 6657
2daa3577 6658 update_rq_clock(rq);
dd41f596 6659 on_rq = p->se.on_rq;
2daa3577
IM
6660 if (on_rq)
6661 deactivate_task(rq, p, 0);
dd41f596
IM
6662 __setscheduler(rq, p, SCHED_NORMAL, 0);
6663 if (on_rq) {
2daa3577 6664 activate_task(rq, p, 0);
1da177e4
LT
6665 resched_task(rq->curr);
6666 }
dd41f596
IM
6667#ifdef CONFIG_SMP
6668 out_unlock:
6669#endif
b29739f9
IM
6670 __task_rq_unlock(rq);
6671 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6672 } while_each_thread(g, p);
6673
1da177e4
LT
6674 read_unlock_irq(&tasklist_lock);
6675}
6676
6677#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6678
6679#ifdef CONFIG_IA64
6680/*
6681 * These functions are only useful for the IA64 MCA handling.
6682 *
6683 * They can only be called when the whole system has been
6684 * stopped - every CPU needs to be quiescent, and no scheduling
6685 * activity can take place. Using them for anything else would
6686 * be a serious bug, and as a result, they aren't even visible
6687 * under any other configuration.
6688 */
6689
6690/**
6691 * curr_task - return the current task for a given cpu.
6692 * @cpu: the processor in question.
6693 *
6694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6695 */
36c8b586 6696struct task_struct *curr_task(int cpu)
1df5c10a
LT
6697{
6698 return cpu_curr(cpu);
6699}
6700
6701/**
6702 * set_curr_task - set the current task for a given cpu.
6703 * @cpu: the processor in question.
6704 * @p: the task pointer to set.
6705 *
6706 * Description: This function must only be used when non-maskable interrupts
6707 * are serviced on a separate stack. It allows the architecture to switch the
6708 * notion of the current task on a cpu in a non-blocking manner. This function
6709 * must be called with all CPU's synchronized, and interrupts disabled, the
6710 * and caller must save the original value of the current task (see
6711 * curr_task() above) and restore that value before reenabling interrupts and
6712 * re-starting the system.
6713 *
6714 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6715 */
36c8b586 6716void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6717{
6718 cpu_curr(cpu) = p;
6719}
6720
6721#endif
29f59db3
SV
6722
6723#ifdef CONFIG_FAIR_GROUP_SCHED
6724
29f59db3 6725/* allocate runqueue etc for a new task group */
4cf86d77 6726struct task_group *sched_create_group(void)
29f59db3 6727{
4cf86d77 6728 struct task_group *tg;
29f59db3
SV
6729 struct cfs_rq *cfs_rq;
6730 struct sched_entity *se;
9b5b7751 6731 struct rq *rq;
29f59db3
SV
6732 int i;
6733
29f59db3
SV
6734 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6735 if (!tg)
6736 return ERR_PTR(-ENOMEM);
6737
9b5b7751 6738 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6739 if (!tg->cfs_rq)
6740 goto err;
9b5b7751 6741 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6742 if (!tg->se)
6743 goto err;
6744
6745 for_each_possible_cpu(i) {
9b5b7751 6746 rq = cpu_rq(i);
29f59db3
SV
6747
6748 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6749 cpu_to_node(i));
6750 if (!cfs_rq)
6751 goto err;
6752
6753 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6754 cpu_to_node(i));
6755 if (!se)
6756 goto err;
6757
6758 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6759 memset(se, 0, sizeof(struct sched_entity));
6760
6761 tg->cfs_rq[i] = cfs_rq;
6762 init_cfs_rq(cfs_rq, rq);
6763 cfs_rq->tg = tg;
29f59db3
SV
6764
6765 tg->se[i] = se;
6766 se->cfs_rq = &rq->cfs;
6767 se->my_q = cfs_rq;
6768 se->load.weight = NICE_0_LOAD;
6769 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6770 se->parent = NULL;
6771 }
6772
9b5b7751
SV
6773 for_each_possible_cpu(i) {
6774 rq = cpu_rq(i);
6775 cfs_rq = tg->cfs_rq[i];
6776 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6777 }
29f59db3 6778
9b5b7751 6779 tg->shares = NICE_0_LOAD;
29f59db3 6780
9b5b7751 6781 return tg;
29f59db3
SV
6782
6783err:
6784 for_each_possible_cpu(i) {
a65914b3 6785 if (tg->cfs_rq)
29f59db3 6786 kfree(tg->cfs_rq[i]);
a65914b3 6787 if (tg->se)
29f59db3
SV
6788 kfree(tg->se[i]);
6789 }
a65914b3
IM
6790 kfree(tg->cfs_rq);
6791 kfree(tg->se);
6792 kfree(tg);
29f59db3
SV
6793
6794 return ERR_PTR(-ENOMEM);
6795}
6796
9b5b7751
SV
6797/* rcu callback to free various structures associated with a task group */
6798static void free_sched_group(struct rcu_head *rhp)
29f59db3 6799{
9b5b7751 6800 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6801 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6802 struct sched_entity *se;
6803 int i;
6804
29f59db3
SV
6805 /* now it should be safe to free those cfs_rqs */
6806 for_each_possible_cpu(i) {
6807 cfs_rq = tg->cfs_rq[i];
6808 kfree(cfs_rq);
6809
6810 se = tg->se[i];
6811 kfree(se);
6812 }
6813
6814 kfree(tg->cfs_rq);
6815 kfree(tg->se);
6816 kfree(tg);
6817}
6818
9b5b7751 6819/* Destroy runqueue etc associated with a task group */
4cf86d77 6820void sched_destroy_group(struct task_group *tg)
29f59db3 6821{
9b5b7751
SV
6822 struct cfs_rq *cfs_rq;
6823 int i;
29f59db3 6824
9b5b7751
SV
6825 for_each_possible_cpu(i) {
6826 cfs_rq = tg->cfs_rq[i];
6827 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6828 }
6829
6830 cfs_rq = tg->cfs_rq[0];
6831
6832 /* wait for possible concurrent references to cfs_rqs complete */
6833 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6834}
6835
9b5b7751 6836/* change task's runqueue when it moves between groups.
3a252015
IM
6837 * The caller of this function should have put the task in its new group
6838 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6839 * reflect its new group.
9b5b7751
SV
6840 */
6841void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6842{
6843 int on_rq, running;
6844 unsigned long flags;
6845 struct rq *rq;
6846
6847 rq = task_rq_lock(tsk, &flags);
6848
6849 if (tsk->sched_class != &fair_sched_class)
6850 goto done;
6851
6852 update_rq_clock(rq);
6853
6854 running = task_running(rq, tsk);
6855 on_rq = tsk->se.on_rq;
6856
83b699ed 6857 if (on_rq) {
29f59db3 6858 dequeue_task(rq, tsk, 0);
83b699ed
SV
6859 if (unlikely(running))
6860 tsk->sched_class->put_prev_task(rq, tsk);
6861 }
29f59db3
SV
6862
6863 set_task_cfs_rq(tsk);
6864
83b699ed
SV
6865 if (on_rq) {
6866 if (unlikely(running))
6867 tsk->sched_class->set_curr_task(rq);
7074badb 6868 enqueue_task(rq, tsk, 0);
83b699ed 6869 }
29f59db3
SV
6870
6871done:
6872 task_rq_unlock(rq, &flags);
6873}
6874
6875static void set_se_shares(struct sched_entity *se, unsigned long shares)
6876{
6877 struct cfs_rq *cfs_rq = se->cfs_rq;
6878 struct rq *rq = cfs_rq->rq;
6879 int on_rq;
6880
6881 spin_lock_irq(&rq->lock);
6882
6883 on_rq = se->on_rq;
6884 if (on_rq)
6885 dequeue_entity(cfs_rq, se, 0);
6886
6887 se->load.weight = shares;
6888 se->load.inv_weight = div64_64((1ULL<<32), shares);
6889
6890 if (on_rq)
6891 enqueue_entity(cfs_rq, se, 0);
6892
6893 spin_unlock_irq(&rq->lock);
6894}
6895
4cf86d77 6896int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6897{
6898 int i;
29f59db3 6899
9b5b7751
SV
6900 if (tg->shares == shares)
6901 return 0;
29f59db3 6902
9b5b7751 6903 /* return -EINVAL if the new value is not sane */
29f59db3 6904
9b5b7751 6905 tg->shares = shares;
29f59db3 6906 for_each_possible_cpu(i)
9b5b7751 6907 set_se_shares(tg->se[i], shares);
29f59db3 6908
9b5b7751 6909 return 0;
29f59db3
SV
6910}
6911
3a252015 6912#endif /* CONFIG_FAIR_GROUP_SCHED */