]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: micro-optimize mmdrop()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
dff06c15 25#include <linux/uaccess.h>
1da177e4
LT
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
5517d86b 55#include <linux/reciprocal_div.h>
dff06c15 56#include <linux/unistd.h>
1da177e4 57
5517d86b 58#include <asm/tlb.h>
1da177e4 59
b035b6de
AD
60/*
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
1da177e4
LT
70/*
71 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
6aa645ea
IM
94#define NICE_0_LOAD SCHED_LOAD_SCALE
95#define NICE_0_SHIFT SCHED_LOAD_SHIFT
96
1da177e4
LT
97/*
98 * These are the 'tuning knobs' of the scheduler:
99 *
100 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
101 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
102 * Timeslices get refilled after they expire.
103 */
104#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
105#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 106
5517d86b
ED
107#ifdef CONFIG_SMP
108/*
109 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
110 * Since cpu_power is a 'constant', we can use a reciprocal divide.
111 */
112static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
113{
114 return reciprocal_divide(load, sg->reciprocal_cpu_power);
115}
116
117/*
118 * Each time a sched group cpu_power is changed,
119 * we must compute its reciprocal value
120 */
121static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
122{
123 sg->__cpu_power += val;
124 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
125}
126#endif
127
634fa8c9
IM
128#define SCALE_PRIO(x, prio) \
129 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
130
91fcdd4e 131/*
634fa8c9 132 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 133 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 134 */
634fa8c9 135static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 136{
634fa8c9
IM
137 if (static_prio == NICE_TO_PRIO(19))
138 return 1;
139
140 if (static_prio < NICE_TO_PRIO(0))
141 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
142 else
143 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
144}
145
e05606d3
IM
146static inline int rt_policy(int policy)
147{
148 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
149 return 1;
150 return 0;
151}
152
153static inline int task_has_rt_policy(struct task_struct *p)
154{
155 return rt_policy(p->policy);
156}
157
1da177e4 158/*
6aa645ea 159 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 160 */
6aa645ea
IM
161struct rt_prio_array {
162 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
163 struct list_head queue[MAX_RT_PRIO];
164};
165
166struct load_stat {
167 struct load_weight load;
168 u64 load_update_start, load_update_last;
169 unsigned long delta_fair, delta_exec, delta_stat;
170};
171
172/* CFS-related fields in a runqueue */
173struct cfs_rq {
174 struct load_weight load;
175 unsigned long nr_running;
176
177 s64 fair_clock;
178 u64 exec_clock;
179 s64 wait_runtime;
180 u64 sleeper_bonus;
181 unsigned long wait_runtime_overruns, wait_runtime_underruns;
182
183 struct rb_root tasks_timeline;
184 struct rb_node *rb_leftmost;
185 struct rb_node *rb_load_balance_curr;
186#ifdef CONFIG_FAIR_GROUP_SCHED
187 /* 'curr' points to currently running entity on this cfs_rq.
188 * It is set to NULL otherwise (i.e when none are currently running).
189 */
190 struct sched_entity *curr;
191 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
192
193 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
194 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
195 * (like users, containers etc.)
196 *
197 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
198 * list is used during load balance.
199 */
200 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
201#endif
202};
1da177e4 203
6aa645ea
IM
204/* Real-Time classes' related field in a runqueue: */
205struct rt_rq {
206 struct rt_prio_array active;
207 int rt_load_balance_idx;
208 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
209};
210
1da177e4
LT
211/*
212 * This is the main, per-CPU runqueue data structure.
213 *
214 * Locking rule: those places that want to lock multiple runqueues
215 * (such as the load balancing or the thread migration code), lock
216 * acquire operations must be ordered by ascending &runqueue.
217 */
70b97a7f 218struct rq {
6aa645ea 219 spinlock_t lock; /* runqueue lock */
1da177e4
LT
220
221 /*
222 * nr_running and cpu_load should be in the same cacheline because
223 * remote CPUs use both these fields when doing load calculation.
224 */
225 unsigned long nr_running;
6aa645ea
IM
226 #define CPU_LOAD_IDX_MAX 5
227 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 228 unsigned char idle_at_tick;
46cb4b7c
SS
229#ifdef CONFIG_NO_HZ
230 unsigned char in_nohz_recently;
231#endif
6aa645ea
IM
232 struct load_stat ls; /* capture load from *all* tasks on this cpu */
233 unsigned long nr_load_updates;
234 u64 nr_switches;
235
236 struct cfs_rq cfs;
237#ifdef CONFIG_FAIR_GROUP_SCHED
238 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 239#endif
6aa645ea 240 struct rt_rq rt;
1da177e4
LT
241
242 /*
243 * This is part of a global counter where only the total sum
244 * over all CPUs matters. A task can increase this counter on
245 * one CPU and if it got migrated afterwards it may decrease
246 * it on another CPU. Always updated under the runqueue lock:
247 */
248 unsigned long nr_uninterruptible;
249
36c8b586 250 struct task_struct *curr, *idle;
c9819f45 251 unsigned long next_balance;
1da177e4 252 struct mm_struct *prev_mm;
6aa645ea 253
6aa645ea
IM
254 u64 clock, prev_clock_raw;
255 s64 clock_max_delta;
256
257 unsigned int clock_warps, clock_overflows;
258 unsigned int clock_unstable_events;
259
260 struct sched_class *load_balance_class;
261
1da177e4
LT
262 atomic_t nr_iowait;
263
264#ifdef CONFIG_SMP
265 struct sched_domain *sd;
266
267 /* For active balancing */
268 int active_balance;
269 int push_cpu;
0a2966b4 270 int cpu; /* cpu of this runqueue */
1da177e4 271
36c8b586 272 struct task_struct *migration_thread;
1da177e4
LT
273 struct list_head migration_queue;
274#endif
275
276#ifdef CONFIG_SCHEDSTATS
277 /* latency stats */
278 struct sched_info rq_sched_info;
279
280 /* sys_sched_yield() stats */
281 unsigned long yld_exp_empty;
282 unsigned long yld_act_empty;
283 unsigned long yld_both_empty;
284 unsigned long yld_cnt;
285
286 /* schedule() stats */
287 unsigned long sched_switch;
288 unsigned long sched_cnt;
289 unsigned long sched_goidle;
290
291 /* try_to_wake_up() stats */
292 unsigned long ttwu_cnt;
293 unsigned long ttwu_local;
294#endif
fcb99371 295 struct lock_class_key rq_lock_key;
1da177e4
LT
296};
297
c3396620 298static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
5be9361c 299static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 300
dd41f596
IM
301static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
302{
303 rq->curr->sched_class->check_preempt_curr(rq, p);
304}
305
0a2966b4
CL
306static inline int cpu_of(struct rq *rq)
307{
308#ifdef CONFIG_SMP
309 return rq->cpu;
310#else
311 return 0;
312#endif
313}
314
20d315d4
IM
315/*
316 * Per-runqueue clock, as finegrained as the platform can give us:
317 */
318static unsigned long long __rq_clock(struct rq *rq)
319{
320 u64 prev_raw = rq->prev_clock_raw;
321 u64 now = sched_clock();
322 s64 delta = now - prev_raw;
323 u64 clock = rq->clock;
324
325 /*
326 * Protect against sched_clock() occasionally going backwards:
327 */
328 if (unlikely(delta < 0)) {
329 clock++;
330 rq->clock_warps++;
331 } else {
332 /*
333 * Catch too large forward jumps too:
334 */
335 if (unlikely(delta > 2*TICK_NSEC)) {
336 clock++;
337 rq->clock_overflows++;
338 } else {
339 if (unlikely(delta > rq->clock_max_delta))
340 rq->clock_max_delta = delta;
341 clock += delta;
342 }
343 }
344
345 rq->prev_clock_raw = now;
346 rq->clock = clock;
347
348 return clock;
349}
350
351static inline unsigned long long rq_clock(struct rq *rq)
352{
353 int this_cpu = smp_processor_id();
354
355 if (this_cpu == cpu_of(rq))
356 return __rq_clock(rq);
357
358 return rq->clock;
359}
360
674311d5
NP
361/*
362 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 363 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
364 *
365 * The domain tree of any CPU may only be accessed from within
366 * preempt-disabled sections.
367 */
48f24c4d
IM
368#define for_each_domain(cpu, __sd) \
369 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
370
371#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
372#define this_rq() (&__get_cpu_var(runqueues))
373#define task_rq(p) cpu_rq(task_cpu(p))
374#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
375
138a8aeb
IM
376#ifdef CONFIG_FAIR_GROUP_SCHED
377/* Change a task's ->cfs_rq if it moves across CPUs */
378static inline void set_task_cfs_rq(struct task_struct *p)
379{
380 p->se.cfs_rq = &task_rq(p)->cfs;
381}
382#else
383static inline void set_task_cfs_rq(struct task_struct *p)
384{
385}
386#endif
387
1da177e4 388#ifndef prepare_arch_switch
4866cde0
NP
389# define prepare_arch_switch(next) do { } while (0)
390#endif
391#ifndef finish_arch_switch
392# define finish_arch_switch(prev) do { } while (0)
393#endif
394
395#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 396static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
397{
398 return rq->curr == p;
399}
400
70b97a7f 401static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
402{
403}
404
70b97a7f 405static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 406{
da04c035
IM
407#ifdef CONFIG_DEBUG_SPINLOCK
408 /* this is a valid case when another task releases the spinlock */
409 rq->lock.owner = current;
410#endif
8a25d5de
IM
411 /*
412 * If we are tracking spinlock dependencies then we have to
413 * fix up the runqueue lock - which gets 'carried over' from
414 * prev into current:
415 */
416 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
417
4866cde0
NP
418 spin_unlock_irq(&rq->lock);
419}
420
421#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 422static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
423{
424#ifdef CONFIG_SMP
425 return p->oncpu;
426#else
427 return rq->curr == p;
428#endif
429}
430
70b97a7f 431static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
432{
433#ifdef CONFIG_SMP
434 /*
435 * We can optimise this out completely for !SMP, because the
436 * SMP rebalancing from interrupt is the only thing that cares
437 * here.
438 */
439 next->oncpu = 1;
440#endif
441#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
442 spin_unlock_irq(&rq->lock);
443#else
444 spin_unlock(&rq->lock);
445#endif
446}
447
70b97a7f 448static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
449{
450#ifdef CONFIG_SMP
451 /*
452 * After ->oncpu is cleared, the task can be moved to a different CPU.
453 * We must ensure this doesn't happen until the switch is completely
454 * finished.
455 */
456 smp_wmb();
457 prev->oncpu = 0;
458#endif
459#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
460 local_irq_enable();
1da177e4 461#endif
4866cde0
NP
462}
463#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 464
b29739f9
IM
465/*
466 * __task_rq_lock - lock the runqueue a given task resides on.
467 * Must be called interrupts disabled.
468 */
70b97a7f 469static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
470 __acquires(rq->lock)
471{
70b97a7f 472 struct rq *rq;
b29739f9
IM
473
474repeat_lock_task:
475 rq = task_rq(p);
476 spin_lock(&rq->lock);
477 if (unlikely(rq != task_rq(p))) {
478 spin_unlock(&rq->lock);
479 goto repeat_lock_task;
480 }
481 return rq;
482}
483
1da177e4
LT
484/*
485 * task_rq_lock - lock the runqueue a given task resides on and disable
486 * interrupts. Note the ordering: we can safely lookup the task_rq without
487 * explicitly disabling preemption.
488 */
70b97a7f 489static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
490 __acquires(rq->lock)
491{
70b97a7f 492 struct rq *rq;
1da177e4
LT
493
494repeat_lock_task:
495 local_irq_save(*flags);
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock_irqrestore(&rq->lock, *flags);
500 goto repeat_lock_task;
501 }
502 return rq;
503}
504
70b97a7f 505static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
506 __releases(rq->lock)
507{
508 spin_unlock(&rq->lock);
509}
510
70b97a7f 511static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
512 __releases(rq->lock)
513{
514 spin_unlock_irqrestore(&rq->lock, *flags);
515}
516
1da177e4 517/*
cc2a73b5 518 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 519 */
70b97a7f 520static inline struct rq *this_rq_lock(void)
1da177e4
LT
521 __acquires(rq->lock)
522{
70b97a7f 523 struct rq *rq;
1da177e4
LT
524
525 local_irq_disable();
526 rq = this_rq();
527 spin_lock(&rq->lock);
528
529 return rq;
530}
531
1b9f19c2
IM
532/*
533 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
534 */
535void sched_clock_unstable_event(void)
536{
537 unsigned long flags;
538 struct rq *rq;
539
540 rq = task_rq_lock(current, &flags);
541 rq->prev_clock_raw = sched_clock();
542 rq->clock_unstable_events++;
543 task_rq_unlock(rq, &flags);
544}
545
c24d20db
IM
546/*
547 * resched_task - mark a task 'to be rescheduled now'.
548 *
549 * On UP this means the setting of the need_resched flag, on SMP it
550 * might also involve a cross-CPU call to trigger the scheduler on
551 * the target CPU.
552 */
553#ifdef CONFIG_SMP
554
555#ifndef tsk_is_polling
556#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
557#endif
558
559static void resched_task(struct task_struct *p)
560{
561 int cpu;
562
563 assert_spin_locked(&task_rq(p)->lock);
564
565 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
566 return;
567
568 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
569
570 cpu = task_cpu(p);
571 if (cpu == smp_processor_id())
572 return;
573
574 /* NEED_RESCHED must be visible before we test polling */
575 smp_mb();
576 if (!tsk_is_polling(p))
577 smp_send_reschedule(cpu);
578}
579
580static void resched_cpu(int cpu)
581{
582 struct rq *rq = cpu_rq(cpu);
583 unsigned long flags;
584
585 if (!spin_trylock_irqsave(&rq->lock, flags))
586 return;
587 resched_task(cpu_curr(cpu));
588 spin_unlock_irqrestore(&rq->lock, flags);
589}
590#else
591static inline void resched_task(struct task_struct *p)
592{
593 assert_spin_locked(&task_rq(p)->lock);
594 set_tsk_need_resched(p);
595}
596#endif
597
45bf76df
IM
598static u64 div64_likely32(u64 divident, unsigned long divisor)
599{
600#if BITS_PER_LONG == 32
601 if (likely(divident <= 0xffffffffULL))
602 return (u32)divident / divisor;
603 do_div(divident, divisor);
604
605 return divident;
606#else
607 return divident / divisor;
608#endif
609}
610
611#if BITS_PER_LONG == 32
612# define WMULT_CONST (~0UL)
613#else
614# define WMULT_CONST (1UL << 32)
615#endif
616
617#define WMULT_SHIFT 32
618
619static inline unsigned long
620calc_delta_mine(unsigned long delta_exec, unsigned long weight,
621 struct load_weight *lw)
622{
623 u64 tmp;
624
625 if (unlikely(!lw->inv_weight))
626 lw->inv_weight = WMULT_CONST / lw->weight;
627
628 tmp = (u64)delta_exec * weight;
629 /*
630 * Check whether we'd overflow the 64-bit multiplication:
631 */
632 if (unlikely(tmp > WMULT_CONST)) {
633 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
634 >> (WMULT_SHIFT/2);
635 } else {
636 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
637 }
638
639 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
640}
641
642static inline unsigned long
643calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
644{
645 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
646}
647
648static void update_load_add(struct load_weight *lw, unsigned long inc)
649{
650 lw->weight += inc;
651 lw->inv_weight = 0;
652}
653
654static void update_load_sub(struct load_weight *lw, unsigned long dec)
655{
656 lw->weight -= dec;
657 lw->inv_weight = 0;
658}
659
660static void __update_curr_load(struct rq *rq, struct load_stat *ls)
661{
662 if (rq->curr != rq->idle && ls->load.weight) {
663 ls->delta_exec += ls->delta_stat;
664 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
665 ls->delta_stat = 0;
666 }
667}
668
669/*
670 * Update delta_exec, delta_fair fields for rq.
671 *
672 * delta_fair clock advances at a rate inversely proportional to
673 * total load (rq->ls.load.weight) on the runqueue, while
674 * delta_exec advances at the same rate as wall-clock (provided
675 * cpu is not idle).
676 *
677 * delta_exec / delta_fair is a measure of the (smoothened) load on this
678 * runqueue over any given interval. This (smoothened) load is used
679 * during load balance.
680 *
681 * This function is called /before/ updating rq->ls.load
682 * and when switching tasks.
683 */
684static void update_curr_load(struct rq *rq, u64 now)
685{
686 struct load_stat *ls = &rq->ls;
687 u64 start;
688
689 start = ls->load_update_start;
690 ls->load_update_start = now;
691 ls->delta_stat += now - start;
692 /*
693 * Stagger updates to ls->delta_fair. Very frequent updates
694 * can be expensive.
695 */
696 if (ls->delta_stat >= sysctl_sched_stat_granularity)
697 __update_curr_load(rq, ls);
698}
699
2dd73a4f
PW
700/*
701 * To aid in avoiding the subversion of "niceness" due to uneven distribution
702 * of tasks with abnormal "nice" values across CPUs the contribution that
703 * each task makes to its run queue's load is weighted according to its
704 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
705 * scaled version of the new time slice allocation that they receive on time
706 * slice expiry etc.
707 */
708
709/*
710 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
711 * If static_prio_timeslice() is ever changed to break this assumption then
712 * this code will need modification
713 */
714#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
dd41f596 715#define load_weight(lp) \
2dd73a4f
PW
716 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
717#define PRIO_TO_LOAD_WEIGHT(prio) \
dd41f596 718 load_weight(static_prio_timeslice(prio))
2dd73a4f 719#define RTPRIO_TO_LOAD_WEIGHT(rp) \
dd41f596
IM
720 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
721
722#define WEIGHT_IDLEPRIO 2
723#define WMULT_IDLEPRIO (1 << 31)
724
725/*
726 * Nice levels are multiplicative, with a gentle 10% change for every
727 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
728 * nice 1, it will get ~10% less CPU time than another CPU-bound task
729 * that remained on nice 0.
730 *
731 * The "10% effect" is relative and cumulative: from _any_ nice level,
732 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
733 * it's +10% CPU usage.
734 */
735static const int prio_to_weight[40] = {
736/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
737/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
738/* 0 */ NICE_0_LOAD /* 1024 */,
739/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
740/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
741};
742
743static const u32 prio_to_wmult[40] = {
744 48356, 60446, 75558, 94446, 118058, 147573,
745 184467, 230589, 288233, 360285, 450347,
746 562979, 703746, 879575, 1099582, 1374389,
747 717986, 2147483, 2684354, 3355443, 4194304,
748 244160, 6557201, 8196502, 10250518, 12782640,
749 16025997, 19976592, 24970740, 31350126, 39045157,
750 49367440, 61356675, 76695844, 95443717, 119304647,
751 148102320, 186737708, 238609294, 286331153,
752};
2dd73a4f 753
36c8b586 754static inline void
dd41f596 755inc_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 756{
dd41f596
IM
757 update_curr_load(rq, now);
758 update_load_add(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
759}
760
36c8b586 761static inline void
dd41f596 762dec_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 763{
dd41f596
IM
764 update_curr_load(rq, now);
765 update_load_sub(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
766}
767
dd41f596 768static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
769{
770 rq->nr_running++;
dd41f596 771 inc_load(rq, p, now);
2dd73a4f
PW
772}
773
dd41f596 774static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
775{
776 rq->nr_running--;
dd41f596 777 dec_load(rq, p, now);
2dd73a4f
PW
778}
779
dd41f596
IM
780static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
781
782/*
783 * runqueue iterator, to support SMP load-balancing between different
784 * scheduling classes, without having to expose their internal data
785 * structures to the load-balancing proper:
786 */
787struct rq_iterator {
788 void *arg;
789 struct task_struct *(*start)(void *);
790 struct task_struct *(*next)(void *);
791};
792
793static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
794 unsigned long max_nr_move, unsigned long max_load_move,
795 struct sched_domain *sd, enum cpu_idle_type idle,
796 int *all_pinned, unsigned long *load_moved,
797 int this_best_prio, int best_prio, int best_prio_seen,
798 struct rq_iterator *iterator);
799
800#include "sched_stats.h"
801#include "sched_rt.c"
802#include "sched_fair.c"
803#include "sched_idletask.c"
804#ifdef CONFIG_SCHED_DEBUG
805# include "sched_debug.c"
806#endif
807
808#define sched_class_highest (&rt_sched_class)
809
45bf76df
IM
810static void set_load_weight(struct task_struct *p)
811{
dd41f596
IM
812 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
813 p->se.wait_runtime = 0;
814
45bf76df 815 if (task_has_rt_policy(p)) {
dd41f596
IM
816 p->se.load.weight = prio_to_weight[0] * 2;
817 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
818 return;
819 }
45bf76df 820
dd41f596
IM
821 /*
822 * SCHED_IDLE tasks get minimal weight:
823 */
824 if (p->policy == SCHED_IDLE) {
825 p->se.load.weight = WEIGHT_IDLEPRIO;
826 p->se.load.inv_weight = WMULT_IDLEPRIO;
827 return;
828 }
71f8bd46 829
dd41f596
IM
830 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
831 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
832}
833
dd41f596
IM
834static void
835enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 836{
dd41f596
IM
837 sched_info_queued(p);
838 p->sched_class->enqueue_task(rq, p, wakeup, now);
839 p->se.on_rq = 1;
71f8bd46
IM
840}
841
dd41f596
IM
842static void
843dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 844{
dd41f596
IM
845 p->sched_class->dequeue_task(rq, p, sleep, now);
846 p->se.on_rq = 0;
71f8bd46
IM
847}
848
14531189 849/*
dd41f596 850 * __normal_prio - return the priority that is based on the static prio
14531189 851 */
14531189
IM
852static inline int __normal_prio(struct task_struct *p)
853{
dd41f596 854 return p->static_prio;
14531189
IM
855}
856
b29739f9
IM
857/*
858 * Calculate the expected normal priority: i.e. priority
859 * without taking RT-inheritance into account. Might be
860 * boosted by interactivity modifiers. Changes upon fork,
861 * setprio syscalls, and whenever the interactivity
862 * estimator recalculates.
863 */
36c8b586 864static inline int normal_prio(struct task_struct *p)
b29739f9
IM
865{
866 int prio;
867
e05606d3 868 if (task_has_rt_policy(p))
b29739f9
IM
869 prio = MAX_RT_PRIO-1 - p->rt_priority;
870 else
871 prio = __normal_prio(p);
872 return prio;
873}
874
875/*
876 * Calculate the current priority, i.e. the priority
877 * taken into account by the scheduler. This value might
878 * be boosted by RT tasks, or might be boosted by
879 * interactivity modifiers. Will be RT if the task got
880 * RT-boosted. If not then it returns p->normal_prio.
881 */
36c8b586 882static int effective_prio(struct task_struct *p)
b29739f9
IM
883{
884 p->normal_prio = normal_prio(p);
885 /*
886 * If we are RT tasks or we were boosted to RT priority,
887 * keep the priority unchanged. Otherwise, update priority
888 * to the normal priority:
889 */
890 if (!rt_prio(p->prio))
891 return p->normal_prio;
892 return p->prio;
893}
894
1da177e4 895/*
dd41f596 896 * activate_task - move a task to the runqueue.
1da177e4 897 */
dd41f596 898static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 899{
dd41f596 900 u64 now = rq_clock(rq);
d425b274 901
dd41f596
IM
902 if (p->state == TASK_UNINTERRUPTIBLE)
903 rq->nr_uninterruptible--;
1da177e4 904
dd41f596
IM
905 enqueue_task(rq, p, wakeup, now);
906 inc_nr_running(p, rq, now);
1da177e4
LT
907}
908
909/*
dd41f596 910 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 911 */
dd41f596 912static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 913{
dd41f596 914 u64 now = rq_clock(rq);
1da177e4 915
dd41f596
IM
916 if (p->state == TASK_UNINTERRUPTIBLE)
917 rq->nr_uninterruptible--;
ece8a684 918
dd41f596
IM
919 enqueue_task(rq, p, 0, now);
920 inc_nr_running(p, rq, now);
1da177e4
LT
921}
922
923/*
924 * deactivate_task - remove a task from the runqueue.
925 */
dd41f596 926static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 927{
dd41f596
IM
928 u64 now = rq_clock(rq);
929
930 if (p->state == TASK_UNINTERRUPTIBLE)
931 rq->nr_uninterruptible++;
932
933 dequeue_task(rq, p, sleep, now);
934 dec_nr_running(p, rq, now);
1da177e4
LT
935}
936
1da177e4
LT
937/**
938 * task_curr - is this task currently executing on a CPU?
939 * @p: the task in question.
940 */
36c8b586 941inline int task_curr(const struct task_struct *p)
1da177e4
LT
942{
943 return cpu_curr(task_cpu(p)) == p;
944}
945
2dd73a4f
PW
946/* Used instead of source_load when we know the type == 0 */
947unsigned long weighted_cpuload(const int cpu)
948{
dd41f596
IM
949 return cpu_rq(cpu)->ls.load.weight;
950}
951
952static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
953{
954#ifdef CONFIG_SMP
955 task_thread_info(p)->cpu = cpu;
956 set_task_cfs_rq(p);
957#endif
2dd73a4f
PW
958}
959
1da177e4 960#ifdef CONFIG_SMP
c65cc870 961
dd41f596 962void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 963{
dd41f596
IM
964 int old_cpu = task_cpu(p);
965 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
966 u64 clock_offset, fair_clock_offset;
967
968 clock_offset = old_rq->clock - new_rq->clock;
969 fair_clock_offset = old_rq->cfs.fair_clock -
970 new_rq->cfs.fair_clock;
971 if (p->se.wait_start)
972 p->se.wait_start -= clock_offset;
973 if (p->se.wait_start_fair)
974 p->se.wait_start_fair -= fair_clock_offset;
975 if (p->se.sleep_start)
976 p->se.sleep_start -= clock_offset;
977 if (p->se.block_start)
978 p->se.block_start -= clock_offset;
979 if (p->se.sleep_start_fair)
980 p->se.sleep_start_fair -= fair_clock_offset;
981
982 __set_task_cpu(p, new_cpu);
c65cc870
IM
983}
984
70b97a7f 985struct migration_req {
1da177e4 986 struct list_head list;
1da177e4 987
36c8b586 988 struct task_struct *task;
1da177e4
LT
989 int dest_cpu;
990
1da177e4 991 struct completion done;
70b97a7f 992};
1da177e4
LT
993
994/*
995 * The task's runqueue lock must be held.
996 * Returns true if you have to wait for migration thread.
997 */
36c8b586 998static int
70b97a7f 999migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1000{
70b97a7f 1001 struct rq *rq = task_rq(p);
1da177e4
LT
1002
1003 /*
1004 * If the task is not on a runqueue (and not running), then
1005 * it is sufficient to simply update the task's cpu field.
1006 */
dd41f596 1007 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1008 set_task_cpu(p, dest_cpu);
1009 return 0;
1010 }
1011
1012 init_completion(&req->done);
1da177e4
LT
1013 req->task = p;
1014 req->dest_cpu = dest_cpu;
1015 list_add(&req->list, &rq->migration_queue);
48f24c4d 1016
1da177e4
LT
1017 return 1;
1018}
1019
1020/*
1021 * wait_task_inactive - wait for a thread to unschedule.
1022 *
1023 * The caller must ensure that the task *will* unschedule sometime soon,
1024 * else this function might spin for a *long* time. This function can't
1025 * be called with interrupts off, or it may introduce deadlock with
1026 * smp_call_function() if an IPI is sent by the same process we are
1027 * waiting to become inactive.
1028 */
36c8b586 1029void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1030{
1031 unsigned long flags;
dd41f596 1032 int running, on_rq;
70b97a7f 1033 struct rq *rq;
1da177e4
LT
1034
1035repeat:
fa490cfd
LT
1036 /*
1037 * We do the initial early heuristics without holding
1038 * any task-queue locks at all. We'll only try to get
1039 * the runqueue lock when things look like they will
1040 * work out!
1041 */
1042 rq = task_rq(p);
1043
1044 /*
1045 * If the task is actively running on another CPU
1046 * still, just relax and busy-wait without holding
1047 * any locks.
1048 *
1049 * NOTE! Since we don't hold any locks, it's not
1050 * even sure that "rq" stays as the right runqueue!
1051 * But we don't care, since "task_running()" will
1052 * return false if the runqueue has changed and p
1053 * is actually now running somewhere else!
1054 */
1055 while (task_running(rq, p))
1056 cpu_relax();
1057
1058 /*
1059 * Ok, time to look more closely! We need the rq
1060 * lock now, to be *sure*. If we're wrong, we'll
1061 * just go back and repeat.
1062 */
1da177e4 1063 rq = task_rq_lock(p, &flags);
fa490cfd 1064 running = task_running(rq, p);
dd41f596 1065 on_rq = p->se.on_rq;
fa490cfd
LT
1066 task_rq_unlock(rq, &flags);
1067
1068 /*
1069 * Was it really running after all now that we
1070 * checked with the proper locks actually held?
1071 *
1072 * Oops. Go back and try again..
1073 */
1074 if (unlikely(running)) {
1da177e4 1075 cpu_relax();
1da177e4
LT
1076 goto repeat;
1077 }
fa490cfd
LT
1078
1079 /*
1080 * It's not enough that it's not actively running,
1081 * it must be off the runqueue _entirely_, and not
1082 * preempted!
1083 *
1084 * So if it wa still runnable (but just not actively
1085 * running right now), it's preempted, and we should
1086 * yield - it could be a while.
1087 */
dd41f596 1088 if (unlikely(on_rq)) {
fa490cfd
LT
1089 yield();
1090 goto repeat;
1091 }
1092
1093 /*
1094 * Ahh, all good. It wasn't running, and it wasn't
1095 * runnable, which means that it will never become
1096 * running in the future either. We're all done!
1097 */
1da177e4
LT
1098}
1099
1100/***
1101 * kick_process - kick a running thread to enter/exit the kernel
1102 * @p: the to-be-kicked thread
1103 *
1104 * Cause a process which is running on another CPU to enter
1105 * kernel-mode, without any delay. (to get signals handled.)
1106 *
1107 * NOTE: this function doesnt have to take the runqueue lock,
1108 * because all it wants to ensure is that the remote task enters
1109 * the kernel. If the IPI races and the task has been migrated
1110 * to another CPU then no harm is done and the purpose has been
1111 * achieved as well.
1112 */
36c8b586 1113void kick_process(struct task_struct *p)
1da177e4
LT
1114{
1115 int cpu;
1116
1117 preempt_disable();
1118 cpu = task_cpu(p);
1119 if ((cpu != smp_processor_id()) && task_curr(p))
1120 smp_send_reschedule(cpu);
1121 preempt_enable();
1122}
1123
1124/*
2dd73a4f
PW
1125 * Return a low guess at the load of a migration-source cpu weighted
1126 * according to the scheduling class and "nice" value.
1da177e4
LT
1127 *
1128 * We want to under-estimate the load of migration sources, to
1129 * balance conservatively.
1130 */
a2000572 1131static inline unsigned long source_load(int cpu, int type)
1da177e4 1132{
70b97a7f 1133 struct rq *rq = cpu_rq(cpu);
dd41f596 1134 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1135
3b0bd9bc 1136 if (type == 0)
dd41f596 1137 return total;
b910472d 1138
dd41f596 1139 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1140}
1141
1142/*
2dd73a4f
PW
1143 * Return a high guess at the load of a migration-target cpu weighted
1144 * according to the scheduling class and "nice" value.
1da177e4 1145 */
a2000572 1146static inline unsigned long target_load(int cpu, int type)
1da177e4 1147{
70b97a7f 1148 struct rq *rq = cpu_rq(cpu);
dd41f596 1149 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1150
7897986b 1151 if (type == 0)
dd41f596 1152 return total;
3b0bd9bc 1153
dd41f596 1154 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1155}
1156
1157/*
1158 * Return the average load per task on the cpu's run queue
1159 */
1160static inline unsigned long cpu_avg_load_per_task(int cpu)
1161{
70b97a7f 1162 struct rq *rq = cpu_rq(cpu);
dd41f596 1163 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1164 unsigned long n = rq->nr_running;
1165
dd41f596 1166 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1167}
1168
147cbb4b
NP
1169/*
1170 * find_idlest_group finds and returns the least busy CPU group within the
1171 * domain.
1172 */
1173static struct sched_group *
1174find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1175{
1176 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1177 unsigned long min_load = ULONG_MAX, this_load = 0;
1178 int load_idx = sd->forkexec_idx;
1179 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1180
1181 do {
1182 unsigned long load, avg_load;
1183 int local_group;
1184 int i;
1185
da5a5522
BD
1186 /* Skip over this group if it has no CPUs allowed */
1187 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1188 goto nextgroup;
1189
147cbb4b 1190 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1191
1192 /* Tally up the load of all CPUs in the group */
1193 avg_load = 0;
1194
1195 for_each_cpu_mask(i, group->cpumask) {
1196 /* Bias balancing toward cpus of our domain */
1197 if (local_group)
1198 load = source_load(i, load_idx);
1199 else
1200 load = target_load(i, load_idx);
1201
1202 avg_load += load;
1203 }
1204
1205 /* Adjust by relative CPU power of the group */
5517d86b
ED
1206 avg_load = sg_div_cpu_power(group,
1207 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1208
1209 if (local_group) {
1210 this_load = avg_load;
1211 this = group;
1212 } else if (avg_load < min_load) {
1213 min_load = avg_load;
1214 idlest = group;
1215 }
da5a5522 1216nextgroup:
147cbb4b
NP
1217 group = group->next;
1218 } while (group != sd->groups);
1219
1220 if (!idlest || 100*this_load < imbalance*min_load)
1221 return NULL;
1222 return idlest;
1223}
1224
1225/*
0feaece9 1226 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1227 */
95cdf3b7
IM
1228static int
1229find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1230{
da5a5522 1231 cpumask_t tmp;
147cbb4b
NP
1232 unsigned long load, min_load = ULONG_MAX;
1233 int idlest = -1;
1234 int i;
1235
da5a5522
BD
1236 /* Traverse only the allowed CPUs */
1237 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1238
1239 for_each_cpu_mask(i, tmp) {
2dd73a4f 1240 load = weighted_cpuload(i);
147cbb4b
NP
1241
1242 if (load < min_load || (load == min_load && i == this_cpu)) {
1243 min_load = load;
1244 idlest = i;
1245 }
1246 }
1247
1248 return idlest;
1249}
1250
476d139c
NP
1251/*
1252 * sched_balance_self: balance the current task (running on cpu) in domains
1253 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1254 * SD_BALANCE_EXEC.
1255 *
1256 * Balance, ie. select the least loaded group.
1257 *
1258 * Returns the target CPU number, or the same CPU if no balancing is needed.
1259 *
1260 * preempt must be disabled.
1261 */
1262static int sched_balance_self(int cpu, int flag)
1263{
1264 struct task_struct *t = current;
1265 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1266
c96d145e 1267 for_each_domain(cpu, tmp) {
9761eea8
IM
1268 /*
1269 * If power savings logic is enabled for a domain, stop there.
1270 */
5c45bf27
SS
1271 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1272 break;
476d139c
NP
1273 if (tmp->flags & flag)
1274 sd = tmp;
c96d145e 1275 }
476d139c
NP
1276
1277 while (sd) {
1278 cpumask_t span;
1279 struct sched_group *group;
1a848870
SS
1280 int new_cpu, weight;
1281
1282 if (!(sd->flags & flag)) {
1283 sd = sd->child;
1284 continue;
1285 }
476d139c
NP
1286
1287 span = sd->span;
1288 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1289 if (!group) {
1290 sd = sd->child;
1291 continue;
1292 }
476d139c 1293
da5a5522 1294 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1295 if (new_cpu == -1 || new_cpu == cpu) {
1296 /* Now try balancing at a lower domain level of cpu */
1297 sd = sd->child;
1298 continue;
1299 }
476d139c 1300
1a848870 1301 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1302 cpu = new_cpu;
476d139c
NP
1303 sd = NULL;
1304 weight = cpus_weight(span);
1305 for_each_domain(cpu, tmp) {
1306 if (weight <= cpus_weight(tmp->span))
1307 break;
1308 if (tmp->flags & flag)
1309 sd = tmp;
1310 }
1311 /* while loop will break here if sd == NULL */
1312 }
1313
1314 return cpu;
1315}
1316
1317#endif /* CONFIG_SMP */
1da177e4
LT
1318
1319/*
1320 * wake_idle() will wake a task on an idle cpu if task->cpu is
1321 * not idle and an idle cpu is available. The span of cpus to
1322 * search starts with cpus closest then further out as needed,
1323 * so we always favor a closer, idle cpu.
1324 *
1325 * Returns the CPU we should wake onto.
1326 */
1327#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1328static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1329{
1330 cpumask_t tmp;
1331 struct sched_domain *sd;
1332 int i;
1333
4953198b
SS
1334 /*
1335 * If it is idle, then it is the best cpu to run this task.
1336 *
1337 * This cpu is also the best, if it has more than one task already.
1338 * Siblings must be also busy(in most cases) as they didn't already
1339 * pickup the extra load from this cpu and hence we need not check
1340 * sibling runqueue info. This will avoid the checks and cache miss
1341 * penalities associated with that.
1342 */
1343 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1344 return cpu;
1345
1346 for_each_domain(cpu, sd) {
1347 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1348 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1349 for_each_cpu_mask(i, tmp) {
1350 if (idle_cpu(i))
1351 return i;
1352 }
9761eea8 1353 } else {
e0f364f4 1354 break;
9761eea8 1355 }
1da177e4
LT
1356 }
1357 return cpu;
1358}
1359#else
36c8b586 1360static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1361{
1362 return cpu;
1363}
1364#endif
1365
1366/***
1367 * try_to_wake_up - wake up a thread
1368 * @p: the to-be-woken-up thread
1369 * @state: the mask of task states that can be woken
1370 * @sync: do a synchronous wakeup?
1371 *
1372 * Put it on the run-queue if it's not already there. The "current"
1373 * thread is always on the run-queue (except when the actual
1374 * re-schedule is in progress), and as such you're allowed to do
1375 * the simpler "current->state = TASK_RUNNING" to mark yourself
1376 * runnable without the overhead of this.
1377 *
1378 * returns failure only if the task is already active.
1379 */
36c8b586 1380static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1381{
1382 int cpu, this_cpu, success = 0;
1383 unsigned long flags;
1384 long old_state;
70b97a7f 1385 struct rq *rq;
1da177e4 1386#ifdef CONFIG_SMP
7897986b 1387 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1388 unsigned long load, this_load;
1da177e4
LT
1389 int new_cpu;
1390#endif
1391
1392 rq = task_rq_lock(p, &flags);
1393 old_state = p->state;
1394 if (!(old_state & state))
1395 goto out;
1396
dd41f596 1397 if (p->se.on_rq)
1da177e4
LT
1398 goto out_running;
1399
1400 cpu = task_cpu(p);
1401 this_cpu = smp_processor_id();
1402
1403#ifdef CONFIG_SMP
1404 if (unlikely(task_running(rq, p)))
1405 goto out_activate;
1406
7897986b
NP
1407 new_cpu = cpu;
1408
1da177e4
LT
1409 schedstat_inc(rq, ttwu_cnt);
1410 if (cpu == this_cpu) {
1411 schedstat_inc(rq, ttwu_local);
7897986b
NP
1412 goto out_set_cpu;
1413 }
1414
1415 for_each_domain(this_cpu, sd) {
1416 if (cpu_isset(cpu, sd->span)) {
1417 schedstat_inc(sd, ttwu_wake_remote);
1418 this_sd = sd;
1419 break;
1da177e4
LT
1420 }
1421 }
1da177e4 1422
7897986b 1423 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1424 goto out_set_cpu;
1425
1da177e4 1426 /*
7897986b 1427 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1428 */
7897986b
NP
1429 if (this_sd) {
1430 int idx = this_sd->wake_idx;
1431 unsigned int imbalance;
1da177e4 1432
a3f21bce
NP
1433 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1434
7897986b
NP
1435 load = source_load(cpu, idx);
1436 this_load = target_load(this_cpu, idx);
1da177e4 1437
7897986b
NP
1438 new_cpu = this_cpu; /* Wake to this CPU if we can */
1439
a3f21bce
NP
1440 if (this_sd->flags & SD_WAKE_AFFINE) {
1441 unsigned long tl = this_load;
33859f7f
MOS
1442 unsigned long tl_per_task;
1443
1444 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1445
1da177e4 1446 /*
a3f21bce
NP
1447 * If sync wakeup then subtract the (maximum possible)
1448 * effect of the currently running task from the load
1449 * of the current CPU:
1da177e4 1450 */
a3f21bce 1451 if (sync)
dd41f596 1452 tl -= current->se.load.weight;
a3f21bce
NP
1453
1454 if ((tl <= load &&
2dd73a4f 1455 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1456 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1457 /*
1458 * This domain has SD_WAKE_AFFINE and
1459 * p is cache cold in this domain, and
1460 * there is no bad imbalance.
1461 */
1462 schedstat_inc(this_sd, ttwu_move_affine);
1463 goto out_set_cpu;
1464 }
1465 }
1466
1467 /*
1468 * Start passive balancing when half the imbalance_pct
1469 * limit is reached.
1470 */
1471 if (this_sd->flags & SD_WAKE_BALANCE) {
1472 if (imbalance*this_load <= 100*load) {
1473 schedstat_inc(this_sd, ttwu_move_balance);
1474 goto out_set_cpu;
1475 }
1da177e4
LT
1476 }
1477 }
1478
1479 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1480out_set_cpu:
1481 new_cpu = wake_idle(new_cpu, p);
1482 if (new_cpu != cpu) {
1483 set_task_cpu(p, new_cpu);
1484 task_rq_unlock(rq, &flags);
1485 /* might preempt at this point */
1486 rq = task_rq_lock(p, &flags);
1487 old_state = p->state;
1488 if (!(old_state & state))
1489 goto out;
dd41f596 1490 if (p->se.on_rq)
1da177e4
LT
1491 goto out_running;
1492
1493 this_cpu = smp_processor_id();
1494 cpu = task_cpu(p);
1495 }
1496
1497out_activate:
1498#endif /* CONFIG_SMP */
dd41f596 1499 activate_task(rq, p, 1);
1da177e4
LT
1500 /*
1501 * Sync wakeups (i.e. those types of wakeups where the waker
1502 * has indicated that it will leave the CPU in short order)
1503 * don't trigger a preemption, if the woken up task will run on
1504 * this cpu. (in this case the 'I will reschedule' promise of
1505 * the waker guarantees that the freshly woken up task is going
1506 * to be considered on this CPU.)
1507 */
dd41f596
IM
1508 if (!sync || cpu != this_cpu)
1509 check_preempt_curr(rq, p);
1da177e4
LT
1510 success = 1;
1511
1512out_running:
1513 p->state = TASK_RUNNING;
1514out:
1515 task_rq_unlock(rq, &flags);
1516
1517 return success;
1518}
1519
36c8b586 1520int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1521{
1522 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1523 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1524}
1da177e4
LT
1525EXPORT_SYMBOL(wake_up_process);
1526
36c8b586 1527int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1528{
1529 return try_to_wake_up(p, state, 0);
1530}
1531
1da177e4
LT
1532/*
1533 * Perform scheduler related setup for a newly forked process p.
1534 * p is forked by current.
dd41f596
IM
1535 *
1536 * __sched_fork() is basic setup used by init_idle() too:
1537 */
1538static void __sched_fork(struct task_struct *p)
1539{
1540 p->se.wait_start_fair = 0;
1541 p->se.wait_start = 0;
1542 p->se.exec_start = 0;
1543 p->se.sum_exec_runtime = 0;
1544 p->se.delta_exec = 0;
1545 p->se.delta_fair_run = 0;
1546 p->se.delta_fair_sleep = 0;
1547 p->se.wait_runtime = 0;
1548 p->se.sum_wait_runtime = 0;
1549 p->se.sum_sleep_runtime = 0;
1550 p->se.sleep_start = 0;
1551 p->se.sleep_start_fair = 0;
1552 p->se.block_start = 0;
1553 p->se.sleep_max = 0;
1554 p->se.block_max = 0;
1555 p->se.exec_max = 0;
1556 p->se.wait_max = 0;
1557 p->se.wait_runtime_overruns = 0;
1558 p->se.wait_runtime_underruns = 0;
476d139c 1559
dd41f596
IM
1560 INIT_LIST_HEAD(&p->run_list);
1561 p->se.on_rq = 0;
476d139c 1562
1da177e4
LT
1563 /*
1564 * We mark the process as running here, but have not actually
1565 * inserted it onto the runqueue yet. This guarantees that
1566 * nobody will actually run it, and a signal or other external
1567 * event cannot wake it up and insert it on the runqueue either.
1568 */
1569 p->state = TASK_RUNNING;
dd41f596
IM
1570}
1571
1572/*
1573 * fork()/clone()-time setup:
1574 */
1575void sched_fork(struct task_struct *p, int clone_flags)
1576{
1577 int cpu = get_cpu();
1578
1579 __sched_fork(p);
1580
1581#ifdef CONFIG_SMP
1582 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1583#endif
1584 __set_task_cpu(p, cpu);
b29739f9
IM
1585
1586 /*
1587 * Make sure we do not leak PI boosting priority to the child:
1588 */
1589 p->prio = current->normal_prio;
1590
52f17b6c 1591#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1592 if (likely(sched_info_on()))
52f17b6c 1593 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1594#endif
d6077cb8 1595#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1596 p->oncpu = 0;
1597#endif
1da177e4 1598#ifdef CONFIG_PREEMPT
4866cde0 1599 /* Want to start with kernel preemption disabled. */
a1261f54 1600 task_thread_info(p)->preempt_count = 1;
1da177e4 1601#endif
476d139c 1602 put_cpu();
1da177e4
LT
1603}
1604
dd41f596
IM
1605/*
1606 * After fork, child runs first. (default) If set to 0 then
1607 * parent will (try to) run first.
1608 */
1609unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1610
1da177e4
LT
1611/*
1612 * wake_up_new_task - wake up a newly created task for the first time.
1613 *
1614 * This function will do some initial scheduler statistics housekeeping
1615 * that must be done for every newly created context, then puts the task
1616 * on the runqueue and wakes it.
1617 */
36c8b586 1618void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1619{
1620 unsigned long flags;
dd41f596
IM
1621 struct rq *rq;
1622 int this_cpu;
1da177e4
LT
1623
1624 rq = task_rq_lock(p, &flags);
147cbb4b 1625 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1626 this_cpu = smp_processor_id(); /* parent's CPU */
1da177e4
LT
1627
1628 p->prio = effective_prio(p);
1629
dd41f596
IM
1630 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1631 task_cpu(p) != this_cpu || !current->se.on_rq) {
1632 activate_task(rq, p, 0);
1da177e4 1633 } else {
1da177e4 1634 /*
dd41f596
IM
1635 * Let the scheduling class do new task startup
1636 * management (if any):
1da177e4 1637 */
dd41f596 1638 p->sched_class->task_new(rq, p);
1da177e4 1639 }
dd41f596
IM
1640 check_preempt_curr(rq, p);
1641 task_rq_unlock(rq, &flags);
1da177e4
LT
1642}
1643
4866cde0
NP
1644/**
1645 * prepare_task_switch - prepare to switch tasks
1646 * @rq: the runqueue preparing to switch
1647 * @next: the task we are going to switch to.
1648 *
1649 * This is called with the rq lock held and interrupts off. It must
1650 * be paired with a subsequent finish_task_switch after the context
1651 * switch.
1652 *
1653 * prepare_task_switch sets up locking and calls architecture specific
1654 * hooks.
1655 */
70b97a7f 1656static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1657{
1658 prepare_lock_switch(rq, next);
1659 prepare_arch_switch(next);
1660}
1661
1da177e4
LT
1662/**
1663 * finish_task_switch - clean up after a task-switch
344babaa 1664 * @rq: runqueue associated with task-switch
1da177e4
LT
1665 * @prev: the thread we just switched away from.
1666 *
4866cde0
NP
1667 * finish_task_switch must be called after the context switch, paired
1668 * with a prepare_task_switch call before the context switch.
1669 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1670 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1671 *
1672 * Note that we may have delayed dropping an mm in context_switch(). If
1673 * so, we finish that here outside of the runqueue lock. (Doing it
1674 * with the lock held can cause deadlocks; see schedule() for
1675 * details.)
1676 */
70b97a7f 1677static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1678 __releases(rq->lock)
1679{
1da177e4 1680 struct mm_struct *mm = rq->prev_mm;
55a101f8 1681 long prev_state;
1da177e4
LT
1682
1683 rq->prev_mm = NULL;
1684
1685 /*
1686 * A task struct has one reference for the use as "current".
c394cc9f 1687 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1688 * schedule one last time. The schedule call will never return, and
1689 * the scheduled task must drop that reference.
c394cc9f 1690 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1691 * still held, otherwise prev could be scheduled on another cpu, die
1692 * there before we look at prev->state, and then the reference would
1693 * be dropped twice.
1694 * Manfred Spraul <manfred@colorfullife.com>
1695 */
55a101f8 1696 prev_state = prev->state;
4866cde0
NP
1697 finish_arch_switch(prev);
1698 finish_lock_switch(rq, prev);
1da177e4
LT
1699 if (mm)
1700 mmdrop(mm);
c394cc9f 1701 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1702 /*
1703 * Remove function-return probe instances associated with this
1704 * task and put them back on the free list.
9761eea8 1705 */
c6fd91f0 1706 kprobe_flush_task(prev);
1da177e4 1707 put_task_struct(prev);
c6fd91f0 1708 }
1da177e4
LT
1709}
1710
1711/**
1712 * schedule_tail - first thing a freshly forked thread must call.
1713 * @prev: the thread we just switched away from.
1714 */
36c8b586 1715asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1716 __releases(rq->lock)
1717{
70b97a7f
IM
1718 struct rq *rq = this_rq();
1719
4866cde0
NP
1720 finish_task_switch(rq, prev);
1721#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1722 /* In this case, finish_task_switch does not reenable preemption */
1723 preempt_enable();
1724#endif
1da177e4
LT
1725 if (current->set_child_tid)
1726 put_user(current->pid, current->set_child_tid);
1727}
1728
1729/*
1730 * context_switch - switch to the new MM and the new
1731 * thread's register state.
1732 */
dd41f596 1733static inline void
70b97a7f 1734context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1735 struct task_struct *next)
1da177e4 1736{
dd41f596 1737 struct mm_struct *mm, *oldmm;
1da177e4 1738
dd41f596
IM
1739 prepare_task_switch(rq, next);
1740 mm = next->mm;
1741 oldmm = prev->active_mm;
9226d125
ZA
1742 /*
1743 * For paravirt, this is coupled with an exit in switch_to to
1744 * combine the page table reload and the switch backend into
1745 * one hypercall.
1746 */
1747 arch_enter_lazy_cpu_mode();
1748
dd41f596 1749 if (unlikely(!mm)) {
1da177e4
LT
1750 next->active_mm = oldmm;
1751 atomic_inc(&oldmm->mm_count);
1752 enter_lazy_tlb(oldmm, next);
1753 } else
1754 switch_mm(oldmm, mm, next);
1755
dd41f596 1756 if (unlikely(!prev->mm)) {
1da177e4 1757 prev->active_mm = NULL;
1da177e4
LT
1758 rq->prev_mm = oldmm;
1759 }
3a5f5e48
IM
1760 /*
1761 * Since the runqueue lock will be released by the next
1762 * task (which is an invalid locking op but in the case
1763 * of the scheduler it's an obvious special-case), so we
1764 * do an early lockdep release here:
1765 */
1766#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1767 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1768#endif
1da177e4
LT
1769
1770 /* Here we just switch the register state and the stack. */
1771 switch_to(prev, next, prev);
1772
dd41f596
IM
1773 barrier();
1774 /*
1775 * this_rq must be evaluated again because prev may have moved
1776 * CPUs since it called schedule(), thus the 'rq' on its stack
1777 * frame will be invalid.
1778 */
1779 finish_task_switch(this_rq(), prev);
1da177e4
LT
1780}
1781
1782/*
1783 * nr_running, nr_uninterruptible and nr_context_switches:
1784 *
1785 * externally visible scheduler statistics: current number of runnable
1786 * threads, current number of uninterruptible-sleeping threads, total
1787 * number of context switches performed since bootup.
1788 */
1789unsigned long nr_running(void)
1790{
1791 unsigned long i, sum = 0;
1792
1793 for_each_online_cpu(i)
1794 sum += cpu_rq(i)->nr_running;
1795
1796 return sum;
1797}
1798
1799unsigned long nr_uninterruptible(void)
1800{
1801 unsigned long i, sum = 0;
1802
0a945022 1803 for_each_possible_cpu(i)
1da177e4
LT
1804 sum += cpu_rq(i)->nr_uninterruptible;
1805
1806 /*
1807 * Since we read the counters lockless, it might be slightly
1808 * inaccurate. Do not allow it to go below zero though:
1809 */
1810 if (unlikely((long)sum < 0))
1811 sum = 0;
1812
1813 return sum;
1814}
1815
1816unsigned long long nr_context_switches(void)
1817{
cc94abfc
SR
1818 int i;
1819 unsigned long long sum = 0;
1da177e4 1820
0a945022 1821 for_each_possible_cpu(i)
1da177e4
LT
1822 sum += cpu_rq(i)->nr_switches;
1823
1824 return sum;
1825}
1826
1827unsigned long nr_iowait(void)
1828{
1829 unsigned long i, sum = 0;
1830
0a945022 1831 for_each_possible_cpu(i)
1da177e4
LT
1832 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1833
1834 return sum;
1835}
1836
db1b1fef
JS
1837unsigned long nr_active(void)
1838{
1839 unsigned long i, running = 0, uninterruptible = 0;
1840
1841 for_each_online_cpu(i) {
1842 running += cpu_rq(i)->nr_running;
1843 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1844 }
1845
1846 if (unlikely((long)uninterruptible < 0))
1847 uninterruptible = 0;
1848
1849 return running + uninterruptible;
1850}
1851
48f24c4d 1852/*
dd41f596
IM
1853 * Update rq->cpu_load[] statistics. This function is usually called every
1854 * scheduler tick (TICK_NSEC).
48f24c4d 1855 */
dd41f596 1856static void update_cpu_load(struct rq *this_rq)
48f24c4d 1857{
dd41f596
IM
1858 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1859 unsigned long total_load = this_rq->ls.load.weight;
1860 unsigned long this_load = total_load;
1861 struct load_stat *ls = &this_rq->ls;
1862 u64 now = __rq_clock(this_rq);
1863 int i, scale;
1864
1865 this_rq->nr_load_updates++;
1866 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1867 goto do_avg;
1868
1869 /* Update delta_fair/delta_exec fields first */
1870 update_curr_load(this_rq, now);
1871
1872 fair_delta64 = ls->delta_fair + 1;
1873 ls->delta_fair = 0;
1874
1875 exec_delta64 = ls->delta_exec + 1;
1876 ls->delta_exec = 0;
1877
1878 sample_interval64 = now - ls->load_update_last;
1879 ls->load_update_last = now;
1880
1881 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1882 sample_interval64 = TICK_NSEC;
1883
1884 if (exec_delta64 > sample_interval64)
1885 exec_delta64 = sample_interval64;
1886
1887 idle_delta64 = sample_interval64 - exec_delta64;
1888
1889 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1890 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1891
1892 this_load = (unsigned long)tmp64;
1893
1894do_avg:
1895
1896 /* Update our load: */
1897 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1898 unsigned long old_load, new_load;
1899
1900 /* scale is effectively 1 << i now, and >> i divides by scale */
1901
1902 old_load = this_rq->cpu_load[i];
1903 new_load = this_load;
1904
1905 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1906 }
48f24c4d
IM
1907}
1908
dd41f596
IM
1909#ifdef CONFIG_SMP
1910
1da177e4
LT
1911/*
1912 * double_rq_lock - safely lock two runqueues
1913 *
1914 * Note this does not disable interrupts like task_rq_lock,
1915 * you need to do so manually before calling.
1916 */
70b97a7f 1917static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1918 __acquires(rq1->lock)
1919 __acquires(rq2->lock)
1920{
054b9108 1921 BUG_ON(!irqs_disabled());
1da177e4
LT
1922 if (rq1 == rq2) {
1923 spin_lock(&rq1->lock);
1924 __acquire(rq2->lock); /* Fake it out ;) */
1925 } else {
c96d145e 1926 if (rq1 < rq2) {
1da177e4
LT
1927 spin_lock(&rq1->lock);
1928 spin_lock(&rq2->lock);
1929 } else {
1930 spin_lock(&rq2->lock);
1931 spin_lock(&rq1->lock);
1932 }
1933 }
1934}
1935
1936/*
1937 * double_rq_unlock - safely unlock two runqueues
1938 *
1939 * Note this does not restore interrupts like task_rq_unlock,
1940 * you need to do so manually after calling.
1941 */
70b97a7f 1942static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1943 __releases(rq1->lock)
1944 __releases(rq2->lock)
1945{
1946 spin_unlock(&rq1->lock);
1947 if (rq1 != rq2)
1948 spin_unlock(&rq2->lock);
1949 else
1950 __release(rq2->lock);
1951}
1952
1953/*
1954 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1955 */
70b97a7f 1956static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
1957 __releases(this_rq->lock)
1958 __acquires(busiest->lock)
1959 __acquires(this_rq->lock)
1960{
054b9108
KK
1961 if (unlikely(!irqs_disabled())) {
1962 /* printk() doesn't work good under rq->lock */
1963 spin_unlock(&this_rq->lock);
1964 BUG_ON(1);
1965 }
1da177e4 1966 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 1967 if (busiest < this_rq) {
1da177e4
LT
1968 spin_unlock(&this_rq->lock);
1969 spin_lock(&busiest->lock);
1970 spin_lock(&this_rq->lock);
1971 } else
1972 spin_lock(&busiest->lock);
1973 }
1974}
1975
1da177e4
LT
1976/*
1977 * If dest_cpu is allowed for this process, migrate the task to it.
1978 * This is accomplished by forcing the cpu_allowed mask to only
1979 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1980 * the cpu_allowed mask is restored.
1981 */
36c8b586 1982static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 1983{
70b97a7f 1984 struct migration_req req;
1da177e4 1985 unsigned long flags;
70b97a7f 1986 struct rq *rq;
1da177e4
LT
1987
1988 rq = task_rq_lock(p, &flags);
1989 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1990 || unlikely(cpu_is_offline(dest_cpu)))
1991 goto out;
1992
1993 /* force the process onto the specified CPU */
1994 if (migrate_task(p, dest_cpu, &req)) {
1995 /* Need to wait for migration thread (might exit: take ref). */
1996 struct task_struct *mt = rq->migration_thread;
36c8b586 1997
1da177e4
LT
1998 get_task_struct(mt);
1999 task_rq_unlock(rq, &flags);
2000 wake_up_process(mt);
2001 put_task_struct(mt);
2002 wait_for_completion(&req.done);
36c8b586 2003
1da177e4
LT
2004 return;
2005 }
2006out:
2007 task_rq_unlock(rq, &flags);
2008}
2009
2010/*
476d139c
NP
2011 * sched_exec - execve() is a valuable balancing opportunity, because at
2012 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2013 */
2014void sched_exec(void)
2015{
1da177e4 2016 int new_cpu, this_cpu = get_cpu();
476d139c 2017 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2018 put_cpu();
476d139c
NP
2019 if (new_cpu != this_cpu)
2020 sched_migrate_task(current, new_cpu);
1da177e4
LT
2021}
2022
2023/*
2024 * pull_task - move a task from a remote runqueue to the local runqueue.
2025 * Both runqueues must be locked.
2026 */
dd41f596
IM
2027static void pull_task(struct rq *src_rq, struct task_struct *p,
2028 struct rq *this_rq, int this_cpu)
1da177e4 2029{
dd41f596 2030 deactivate_task(src_rq, p, 0);
1da177e4 2031 set_task_cpu(p, this_cpu);
dd41f596 2032 activate_task(this_rq, p, 0);
1da177e4
LT
2033 /*
2034 * Note that idle threads have a prio of MAX_PRIO, for this test
2035 * to be always true for them.
2036 */
dd41f596 2037 check_preempt_curr(this_rq, p);
1da177e4
LT
2038}
2039
2040/*
2041 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2042 */
858119e1 2043static
70b97a7f 2044int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2045 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2046 int *all_pinned)
1da177e4
LT
2047{
2048 /*
2049 * We do not migrate tasks that are:
2050 * 1) running (obviously), or
2051 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2052 * 3) are cache-hot on their current CPU.
2053 */
1da177e4
LT
2054 if (!cpu_isset(this_cpu, p->cpus_allowed))
2055 return 0;
81026794
NP
2056 *all_pinned = 0;
2057
2058 if (task_running(rq, p))
2059 return 0;
1da177e4
LT
2060
2061 /*
dd41f596 2062 * Aggressive migration if too many balance attempts have failed:
1da177e4 2063 */
dd41f596 2064 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2065 return 1;
2066
1da177e4
LT
2067 return 1;
2068}
2069
dd41f596 2070static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2071 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2072 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596
IM
2073 int *all_pinned, unsigned long *load_moved,
2074 int this_best_prio, int best_prio, int best_prio_seen,
2075 struct rq_iterator *iterator)
1da177e4 2076{
dd41f596
IM
2077 int pulled = 0, pinned = 0, skip_for_load;
2078 struct task_struct *p;
2079 long rem_load_move = max_load_move;
1da177e4 2080
2dd73a4f 2081 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2082 goto out;
2083
81026794
NP
2084 pinned = 1;
2085
1da177e4 2086 /*
dd41f596 2087 * Start the load-balancing iterator:
1da177e4 2088 */
dd41f596
IM
2089 p = iterator->start(iterator->arg);
2090next:
2091 if (!p)
1da177e4 2092 goto out;
50ddd969
PW
2093 /*
2094 * To help distribute high priority tasks accross CPUs we don't
2095 * skip a task if it will be the highest priority task (i.e. smallest
2096 * prio value) on its new queue regardless of its load weight
2097 */
dd41f596
IM
2098 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2099 SCHED_LOAD_SCALE_FUZZ;
2100 if (skip_for_load && p->prio < this_best_prio)
2101 skip_for_load = !best_prio_seen && p->prio == best_prio;
615052dc 2102 if (skip_for_load ||
dd41f596 2103 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d 2104
dd41f596
IM
2105 best_prio_seen |= p->prio == best_prio;
2106 p = iterator->next(iterator->arg);
2107 goto next;
1da177e4
LT
2108 }
2109
dd41f596 2110 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2111 pulled++;
dd41f596 2112 rem_load_move -= p->se.load.weight;
1da177e4 2113
2dd73a4f
PW
2114 /*
2115 * We only want to steal up to the prescribed number of tasks
2116 * and the prescribed amount of weighted load.
2117 */
2118 if (pulled < max_nr_move && rem_load_move > 0) {
dd41f596
IM
2119 if (p->prio < this_best_prio)
2120 this_best_prio = p->prio;
2121 p = iterator->next(iterator->arg);
2122 goto next;
1da177e4
LT
2123 }
2124out:
2125 /*
2126 * Right now, this is the only place pull_task() is called,
2127 * so we can safely collect pull_task() stats here rather than
2128 * inside pull_task().
2129 */
2130 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2131
2132 if (all_pinned)
2133 *all_pinned = pinned;
dd41f596 2134 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2135 return pulled;
2136}
2137
dd41f596
IM
2138/*
2139 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2140 * load from busiest to this_rq, as part of a balancing operation within
2141 * "domain". Returns the number of tasks moved.
2142 *
2143 * Called with both runqueues locked.
2144 */
2145static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146 unsigned long max_nr_move, unsigned long max_load_move,
2147 struct sched_domain *sd, enum cpu_idle_type idle,
2148 int *all_pinned)
2149{
2150 struct sched_class *class = sched_class_highest;
2151 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2152 long rem_load_move = max_load_move;
2153
2154 do {
2155 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2156 max_nr_move, (unsigned long)rem_load_move,
2157 sd, idle, all_pinned, &load_moved);
2158 total_nr_moved += nr_moved;
2159 max_nr_move -= nr_moved;
2160 rem_load_move -= load_moved;
2161 class = class->next;
2162 } while (class && max_nr_move && rem_load_move > 0);
2163
2164 return total_nr_moved;
2165}
2166
1da177e4
LT
2167/*
2168 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2169 * domain. It calculates and returns the amount of weighted load which
2170 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2171 */
2172static struct sched_group *
2173find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2174 unsigned long *imbalance, enum cpu_idle_type idle,
2175 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2176{
2177 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2178 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2179 unsigned long max_pull;
2dd73a4f
PW
2180 unsigned long busiest_load_per_task, busiest_nr_running;
2181 unsigned long this_load_per_task, this_nr_running;
7897986b 2182 int load_idx;
5c45bf27
SS
2183#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2184 int power_savings_balance = 1;
2185 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2186 unsigned long min_nr_running = ULONG_MAX;
2187 struct sched_group *group_min = NULL, *group_leader = NULL;
2188#endif
1da177e4
LT
2189
2190 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2191 busiest_load_per_task = busiest_nr_running = 0;
2192 this_load_per_task = this_nr_running = 0;
d15bcfdb 2193 if (idle == CPU_NOT_IDLE)
7897986b 2194 load_idx = sd->busy_idx;
d15bcfdb 2195 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2196 load_idx = sd->newidle_idx;
2197 else
2198 load_idx = sd->idle_idx;
1da177e4
LT
2199
2200 do {
5c45bf27 2201 unsigned long load, group_capacity;
1da177e4
LT
2202 int local_group;
2203 int i;
783609c6 2204 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2205 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2206
2207 local_group = cpu_isset(this_cpu, group->cpumask);
2208
783609c6
SS
2209 if (local_group)
2210 balance_cpu = first_cpu(group->cpumask);
2211
1da177e4 2212 /* Tally up the load of all CPUs in the group */
2dd73a4f 2213 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2214
2215 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2216 struct rq *rq;
2217
2218 if (!cpu_isset(i, *cpus))
2219 continue;
2220
2221 rq = cpu_rq(i);
2dd73a4f 2222
5969fe06
NP
2223 if (*sd_idle && !idle_cpu(i))
2224 *sd_idle = 0;
2225
1da177e4 2226 /* Bias balancing toward cpus of our domain */
783609c6
SS
2227 if (local_group) {
2228 if (idle_cpu(i) && !first_idle_cpu) {
2229 first_idle_cpu = 1;
2230 balance_cpu = i;
2231 }
2232
a2000572 2233 load = target_load(i, load_idx);
783609c6 2234 } else
a2000572 2235 load = source_load(i, load_idx);
1da177e4
LT
2236
2237 avg_load += load;
2dd73a4f 2238 sum_nr_running += rq->nr_running;
dd41f596 2239 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2240 }
2241
783609c6
SS
2242 /*
2243 * First idle cpu or the first cpu(busiest) in this sched group
2244 * is eligible for doing load balancing at this and above
2245 * domains.
2246 */
2247 if (local_group && balance_cpu != this_cpu && balance) {
2248 *balance = 0;
2249 goto ret;
2250 }
2251
1da177e4 2252 total_load += avg_load;
5517d86b 2253 total_pwr += group->__cpu_power;
1da177e4
LT
2254
2255 /* Adjust by relative CPU power of the group */
5517d86b
ED
2256 avg_load = sg_div_cpu_power(group,
2257 avg_load * SCHED_LOAD_SCALE);
1da177e4 2258
5517d86b 2259 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2260
1da177e4
LT
2261 if (local_group) {
2262 this_load = avg_load;
2263 this = group;
2dd73a4f
PW
2264 this_nr_running = sum_nr_running;
2265 this_load_per_task = sum_weighted_load;
2266 } else if (avg_load > max_load &&
5c45bf27 2267 sum_nr_running > group_capacity) {
1da177e4
LT
2268 max_load = avg_load;
2269 busiest = group;
2dd73a4f
PW
2270 busiest_nr_running = sum_nr_running;
2271 busiest_load_per_task = sum_weighted_load;
1da177e4 2272 }
5c45bf27
SS
2273
2274#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2275 /*
2276 * Busy processors will not participate in power savings
2277 * balance.
2278 */
dd41f596
IM
2279 if (idle == CPU_NOT_IDLE ||
2280 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2281 goto group_next;
5c45bf27
SS
2282
2283 /*
2284 * If the local group is idle or completely loaded
2285 * no need to do power savings balance at this domain
2286 */
2287 if (local_group && (this_nr_running >= group_capacity ||
2288 !this_nr_running))
2289 power_savings_balance = 0;
2290
dd41f596 2291 /*
5c45bf27
SS
2292 * If a group is already running at full capacity or idle,
2293 * don't include that group in power savings calculations
dd41f596
IM
2294 */
2295 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2296 || !sum_nr_running)
dd41f596 2297 goto group_next;
5c45bf27 2298
dd41f596 2299 /*
5c45bf27 2300 * Calculate the group which has the least non-idle load.
dd41f596
IM
2301 * This is the group from where we need to pick up the load
2302 * for saving power
2303 */
2304 if ((sum_nr_running < min_nr_running) ||
2305 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2306 first_cpu(group->cpumask) <
2307 first_cpu(group_min->cpumask))) {
dd41f596
IM
2308 group_min = group;
2309 min_nr_running = sum_nr_running;
5c45bf27
SS
2310 min_load_per_task = sum_weighted_load /
2311 sum_nr_running;
dd41f596 2312 }
5c45bf27 2313
dd41f596 2314 /*
5c45bf27 2315 * Calculate the group which is almost near its
dd41f596
IM
2316 * capacity but still has some space to pick up some load
2317 * from other group and save more power
2318 */
2319 if (sum_nr_running <= group_capacity - 1) {
2320 if (sum_nr_running > leader_nr_running ||
2321 (sum_nr_running == leader_nr_running &&
2322 first_cpu(group->cpumask) >
2323 first_cpu(group_leader->cpumask))) {
2324 group_leader = group;
2325 leader_nr_running = sum_nr_running;
2326 }
48f24c4d 2327 }
5c45bf27
SS
2328group_next:
2329#endif
1da177e4
LT
2330 group = group->next;
2331 } while (group != sd->groups);
2332
2dd73a4f 2333 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2334 goto out_balanced;
2335
2336 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2337
2338 if (this_load >= avg_load ||
2339 100*max_load <= sd->imbalance_pct*this_load)
2340 goto out_balanced;
2341
2dd73a4f 2342 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2343 /*
2344 * We're trying to get all the cpus to the average_load, so we don't
2345 * want to push ourselves above the average load, nor do we wish to
2346 * reduce the max loaded cpu below the average load, as either of these
2347 * actions would just result in more rebalancing later, and ping-pong
2348 * tasks around. Thus we look for the minimum possible imbalance.
2349 * Negative imbalances (*we* are more loaded than anyone else) will
2350 * be counted as no imbalance for these purposes -- we can't fix that
2351 * by pulling tasks to us. Be careful of negative numbers as they'll
2352 * appear as very large values with unsigned longs.
2353 */
2dd73a4f
PW
2354 if (max_load <= busiest_load_per_task)
2355 goto out_balanced;
2356
2357 /*
2358 * In the presence of smp nice balancing, certain scenarios can have
2359 * max load less than avg load(as we skip the groups at or below
2360 * its cpu_power, while calculating max_load..)
2361 */
2362 if (max_load < avg_load) {
2363 *imbalance = 0;
2364 goto small_imbalance;
2365 }
0c117f1b
SS
2366
2367 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2368 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2369
1da177e4 2370 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2371 *imbalance = min(max_pull * busiest->__cpu_power,
2372 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2373 / SCHED_LOAD_SCALE;
2374
2dd73a4f
PW
2375 /*
2376 * if *imbalance is less than the average load per runnable task
2377 * there is no gaurantee that any tasks will be moved so we'll have
2378 * a think about bumping its value to force at least one task to be
2379 * moved
2380 */
dd41f596 2381 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2382 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2383 unsigned int imbn;
2384
2385small_imbalance:
2386 pwr_move = pwr_now = 0;
2387 imbn = 2;
2388 if (this_nr_running) {
2389 this_load_per_task /= this_nr_running;
2390 if (busiest_load_per_task > this_load_per_task)
2391 imbn = 1;
2392 } else
2393 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2394
dd41f596
IM
2395 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2396 busiest_load_per_task * imbn) {
2dd73a4f 2397 *imbalance = busiest_load_per_task;
1da177e4
LT
2398 return busiest;
2399 }
2400
2401 /*
2402 * OK, we don't have enough imbalance to justify moving tasks,
2403 * however we may be able to increase total CPU power used by
2404 * moving them.
2405 */
2406
5517d86b
ED
2407 pwr_now += busiest->__cpu_power *
2408 min(busiest_load_per_task, max_load);
2409 pwr_now += this->__cpu_power *
2410 min(this_load_per_task, this_load);
1da177e4
LT
2411 pwr_now /= SCHED_LOAD_SCALE;
2412
2413 /* Amount of load we'd subtract */
5517d86b
ED
2414 tmp = sg_div_cpu_power(busiest,
2415 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2416 if (max_load > tmp)
5517d86b 2417 pwr_move += busiest->__cpu_power *
2dd73a4f 2418 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2419
2420 /* Amount of load we'd add */
5517d86b 2421 if (max_load * busiest->__cpu_power <
33859f7f 2422 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2423 tmp = sg_div_cpu_power(this,
2424 max_load * busiest->__cpu_power);
1da177e4 2425 else
5517d86b
ED
2426 tmp = sg_div_cpu_power(this,
2427 busiest_load_per_task * SCHED_LOAD_SCALE);
2428 pwr_move += this->__cpu_power *
2429 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2430 pwr_move /= SCHED_LOAD_SCALE;
2431
2432 /* Move if we gain throughput */
2433 if (pwr_move <= pwr_now)
2434 goto out_balanced;
2435
2dd73a4f 2436 *imbalance = busiest_load_per_task;
1da177e4
LT
2437 }
2438
1da177e4
LT
2439 return busiest;
2440
2441out_balanced:
5c45bf27 2442#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2443 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2444 goto ret;
1da177e4 2445
5c45bf27
SS
2446 if (this == group_leader && group_leader != group_min) {
2447 *imbalance = min_load_per_task;
2448 return group_min;
2449 }
5c45bf27 2450#endif
783609c6 2451ret:
1da177e4
LT
2452 *imbalance = 0;
2453 return NULL;
2454}
2455
2456/*
2457 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2458 */
70b97a7f 2459static struct rq *
d15bcfdb 2460find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2461 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2462{
70b97a7f 2463 struct rq *busiest = NULL, *rq;
2dd73a4f 2464 unsigned long max_load = 0;
1da177e4
LT
2465 int i;
2466
2467 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2468 unsigned long wl;
0a2966b4
CL
2469
2470 if (!cpu_isset(i, *cpus))
2471 continue;
2472
48f24c4d 2473 rq = cpu_rq(i);
dd41f596 2474 wl = weighted_cpuload(i);
2dd73a4f 2475
dd41f596 2476 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2477 continue;
1da177e4 2478
dd41f596
IM
2479 if (wl > max_load) {
2480 max_load = wl;
48f24c4d 2481 busiest = rq;
1da177e4
LT
2482 }
2483 }
2484
2485 return busiest;
2486}
2487
77391d71
NP
2488/*
2489 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2490 * so long as it is large enough.
2491 */
2492#define MAX_PINNED_INTERVAL 512
2493
48f24c4d
IM
2494static inline unsigned long minus_1_or_zero(unsigned long n)
2495{
2496 return n > 0 ? n - 1 : 0;
2497}
2498
1da177e4
LT
2499/*
2500 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2501 * tasks if there is an imbalance.
1da177e4 2502 */
70b97a7f 2503static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2504 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2505 int *balance)
1da177e4 2506{
48f24c4d 2507 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2508 struct sched_group *group;
1da177e4 2509 unsigned long imbalance;
70b97a7f 2510 struct rq *busiest;
0a2966b4 2511 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2512 unsigned long flags;
5969fe06 2513
89c4710e
SS
2514 /*
2515 * When power savings policy is enabled for the parent domain, idle
2516 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2517 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2518 * portraying it as CPU_NOT_IDLE.
89c4710e 2519 */
d15bcfdb 2520 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2521 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2522 sd_idle = 1;
1da177e4 2523
1da177e4
LT
2524 schedstat_inc(sd, lb_cnt[idle]);
2525
0a2966b4
CL
2526redo:
2527 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2528 &cpus, balance);
2529
06066714 2530 if (*balance == 0)
783609c6 2531 goto out_balanced;
783609c6 2532
1da177e4
LT
2533 if (!group) {
2534 schedstat_inc(sd, lb_nobusyg[idle]);
2535 goto out_balanced;
2536 }
2537
0a2966b4 2538 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2539 if (!busiest) {
2540 schedstat_inc(sd, lb_nobusyq[idle]);
2541 goto out_balanced;
2542 }
2543
db935dbd 2544 BUG_ON(busiest == this_rq);
1da177e4
LT
2545
2546 schedstat_add(sd, lb_imbalance[idle], imbalance);
2547
2548 nr_moved = 0;
2549 if (busiest->nr_running > 1) {
2550 /*
2551 * Attempt to move tasks. If find_busiest_group has found
2552 * an imbalance but busiest->nr_running <= 1, the group is
2553 * still unbalanced. nr_moved simply stays zero, so it is
2554 * correctly treated as an imbalance.
2555 */
fe2eea3f 2556 local_irq_save(flags);
e17224bf 2557 double_rq_lock(this_rq, busiest);
1da177e4 2558 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2559 minus_1_or_zero(busiest->nr_running),
2560 imbalance, sd, idle, &all_pinned);
e17224bf 2561 double_rq_unlock(this_rq, busiest);
fe2eea3f 2562 local_irq_restore(flags);
81026794 2563
46cb4b7c
SS
2564 /*
2565 * some other cpu did the load balance for us.
2566 */
2567 if (nr_moved && this_cpu != smp_processor_id())
2568 resched_cpu(this_cpu);
2569
81026794 2570 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2571 if (unlikely(all_pinned)) {
2572 cpu_clear(cpu_of(busiest), cpus);
2573 if (!cpus_empty(cpus))
2574 goto redo;
81026794 2575 goto out_balanced;
0a2966b4 2576 }
1da177e4 2577 }
81026794 2578
1da177e4
LT
2579 if (!nr_moved) {
2580 schedstat_inc(sd, lb_failed[idle]);
2581 sd->nr_balance_failed++;
2582
2583 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2584
fe2eea3f 2585 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2586
2587 /* don't kick the migration_thread, if the curr
2588 * task on busiest cpu can't be moved to this_cpu
2589 */
2590 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2591 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2592 all_pinned = 1;
2593 goto out_one_pinned;
2594 }
2595
1da177e4
LT
2596 if (!busiest->active_balance) {
2597 busiest->active_balance = 1;
2598 busiest->push_cpu = this_cpu;
81026794 2599 active_balance = 1;
1da177e4 2600 }
fe2eea3f 2601 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2602 if (active_balance)
1da177e4
LT
2603 wake_up_process(busiest->migration_thread);
2604
2605 /*
2606 * We've kicked active balancing, reset the failure
2607 * counter.
2608 */
39507451 2609 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2610 }
81026794 2611 } else
1da177e4
LT
2612 sd->nr_balance_failed = 0;
2613
81026794 2614 if (likely(!active_balance)) {
1da177e4
LT
2615 /* We were unbalanced, so reset the balancing interval */
2616 sd->balance_interval = sd->min_interval;
81026794
NP
2617 } else {
2618 /*
2619 * If we've begun active balancing, start to back off. This
2620 * case may not be covered by the all_pinned logic if there
2621 * is only 1 task on the busy runqueue (because we don't call
2622 * move_tasks).
2623 */
2624 if (sd->balance_interval < sd->max_interval)
2625 sd->balance_interval *= 2;
1da177e4
LT
2626 }
2627
5c45bf27 2628 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2629 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2630 return -1;
1da177e4
LT
2631 return nr_moved;
2632
2633out_balanced:
1da177e4
LT
2634 schedstat_inc(sd, lb_balanced[idle]);
2635
16cfb1c0 2636 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2637
2638out_one_pinned:
1da177e4 2639 /* tune up the balancing interval */
77391d71
NP
2640 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2641 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2642 sd->balance_interval *= 2;
2643
48f24c4d 2644 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2645 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2646 return -1;
1da177e4
LT
2647 return 0;
2648}
2649
2650/*
2651 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2652 * tasks if there is an imbalance.
2653 *
d15bcfdb 2654 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2655 * this_rq is locked.
2656 */
48f24c4d 2657static int
70b97a7f 2658load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2659{
2660 struct sched_group *group;
70b97a7f 2661 struct rq *busiest = NULL;
1da177e4
LT
2662 unsigned long imbalance;
2663 int nr_moved = 0;
5969fe06 2664 int sd_idle = 0;
0a2966b4 2665 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2666
89c4710e
SS
2667 /*
2668 * When power savings policy is enabled for the parent domain, idle
2669 * sibling can pick up load irrespective of busy siblings. In this case,
2670 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2671 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2672 */
2673 if (sd->flags & SD_SHARE_CPUPOWER &&
2674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2675 sd_idle = 1;
1da177e4 2676
d15bcfdb 2677 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2678redo:
d15bcfdb 2679 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2680 &sd_idle, &cpus, NULL);
1da177e4 2681 if (!group) {
d15bcfdb 2682 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2683 goto out_balanced;
1da177e4
LT
2684 }
2685
d15bcfdb 2686 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2687 &cpus);
db935dbd 2688 if (!busiest) {
d15bcfdb 2689 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2690 goto out_balanced;
1da177e4
LT
2691 }
2692
db935dbd
NP
2693 BUG_ON(busiest == this_rq);
2694
d15bcfdb 2695 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2696
2697 nr_moved = 0;
2698 if (busiest->nr_running > 1) {
2699 /* Attempt to move tasks */
2700 double_lock_balance(this_rq, busiest);
2701 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2702 minus_1_or_zero(busiest->nr_running),
d15bcfdb 2703 imbalance, sd, CPU_NEWLY_IDLE, NULL);
d6d5cfaf 2704 spin_unlock(&busiest->lock);
0a2966b4
CL
2705
2706 if (!nr_moved) {
2707 cpu_clear(cpu_of(busiest), cpus);
2708 if (!cpus_empty(cpus))
2709 goto redo;
2710 }
d6d5cfaf
NP
2711 }
2712
5969fe06 2713 if (!nr_moved) {
d15bcfdb 2714 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2715 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2716 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2717 return -1;
2718 } else
16cfb1c0 2719 sd->nr_balance_failed = 0;
1da177e4 2720
1da177e4 2721 return nr_moved;
16cfb1c0
NP
2722
2723out_balanced:
d15bcfdb 2724 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2725 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2726 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2727 return -1;
16cfb1c0 2728 sd->nr_balance_failed = 0;
48f24c4d 2729
16cfb1c0 2730 return 0;
1da177e4
LT
2731}
2732
2733/*
2734 * idle_balance is called by schedule() if this_cpu is about to become
2735 * idle. Attempts to pull tasks from other CPUs.
2736 */
70b97a7f 2737static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2738{
2739 struct sched_domain *sd;
dd41f596
IM
2740 int pulled_task = -1;
2741 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2742
2743 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2744 unsigned long interval;
2745
2746 if (!(sd->flags & SD_LOAD_BALANCE))
2747 continue;
2748
2749 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2750 /* If we've pulled tasks over stop searching: */
1bd77f2d 2751 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2752 this_rq, sd);
2753
2754 interval = msecs_to_jiffies(sd->balance_interval);
2755 if (time_after(next_balance, sd->last_balance + interval))
2756 next_balance = sd->last_balance + interval;
2757 if (pulled_task)
2758 break;
1da177e4 2759 }
dd41f596 2760 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2761 /*
2762 * We are going idle. next_balance may be set based on
2763 * a busy processor. So reset next_balance.
2764 */
2765 this_rq->next_balance = next_balance;
dd41f596 2766 }
1da177e4
LT
2767}
2768
2769/*
2770 * active_load_balance is run by migration threads. It pushes running tasks
2771 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2772 * running on each physical CPU where possible, and avoids physical /
2773 * logical imbalances.
2774 *
2775 * Called with busiest_rq locked.
2776 */
70b97a7f 2777static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2778{
39507451 2779 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2780 struct sched_domain *sd;
2781 struct rq *target_rq;
39507451 2782
48f24c4d 2783 /* Is there any task to move? */
39507451 2784 if (busiest_rq->nr_running <= 1)
39507451
NP
2785 return;
2786
2787 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2788
2789 /*
39507451
NP
2790 * This condition is "impossible", if it occurs
2791 * we need to fix it. Originally reported by
2792 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2793 */
39507451 2794 BUG_ON(busiest_rq == target_rq);
1da177e4 2795
39507451
NP
2796 /* move a task from busiest_rq to target_rq */
2797 double_lock_balance(busiest_rq, target_rq);
2798
2799 /* Search for an sd spanning us and the target CPU. */
c96d145e 2800 for_each_domain(target_cpu, sd) {
39507451 2801 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2802 cpu_isset(busiest_cpu, sd->span))
39507451 2803 break;
c96d145e 2804 }
39507451 2805
48f24c4d
IM
2806 if (likely(sd)) {
2807 schedstat_inc(sd, alb_cnt);
39507451 2808
48f24c4d 2809 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
d15bcfdb 2810 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
48f24c4d
IM
2811 NULL))
2812 schedstat_inc(sd, alb_pushed);
2813 else
2814 schedstat_inc(sd, alb_failed);
2815 }
39507451 2816 spin_unlock(&target_rq->lock);
1da177e4
LT
2817}
2818
46cb4b7c
SS
2819#ifdef CONFIG_NO_HZ
2820static struct {
2821 atomic_t load_balancer;
2822 cpumask_t cpu_mask;
2823} nohz ____cacheline_aligned = {
2824 .load_balancer = ATOMIC_INIT(-1),
2825 .cpu_mask = CPU_MASK_NONE,
2826};
2827
7835b98b 2828/*
46cb4b7c
SS
2829 * This routine will try to nominate the ilb (idle load balancing)
2830 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2831 * load balancing on behalf of all those cpus. If all the cpus in the system
2832 * go into this tickless mode, then there will be no ilb owner (as there is
2833 * no need for one) and all the cpus will sleep till the next wakeup event
2834 * arrives...
2835 *
2836 * For the ilb owner, tick is not stopped. And this tick will be used
2837 * for idle load balancing. ilb owner will still be part of
2838 * nohz.cpu_mask..
7835b98b 2839 *
46cb4b7c
SS
2840 * While stopping the tick, this cpu will become the ilb owner if there
2841 * is no other owner. And will be the owner till that cpu becomes busy
2842 * or if all cpus in the system stop their ticks at which point
2843 * there is no need for ilb owner.
2844 *
2845 * When the ilb owner becomes busy, it nominates another owner, during the
2846 * next busy scheduler_tick()
2847 */
2848int select_nohz_load_balancer(int stop_tick)
2849{
2850 int cpu = smp_processor_id();
2851
2852 if (stop_tick) {
2853 cpu_set(cpu, nohz.cpu_mask);
2854 cpu_rq(cpu)->in_nohz_recently = 1;
2855
2856 /*
2857 * If we are going offline and still the leader, give up!
2858 */
2859 if (cpu_is_offline(cpu) &&
2860 atomic_read(&nohz.load_balancer) == cpu) {
2861 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2862 BUG();
2863 return 0;
2864 }
2865
2866 /* time for ilb owner also to sleep */
2867 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2868 if (atomic_read(&nohz.load_balancer) == cpu)
2869 atomic_set(&nohz.load_balancer, -1);
2870 return 0;
2871 }
2872
2873 if (atomic_read(&nohz.load_balancer) == -1) {
2874 /* make me the ilb owner */
2875 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2876 return 1;
2877 } else if (atomic_read(&nohz.load_balancer) == cpu)
2878 return 1;
2879 } else {
2880 if (!cpu_isset(cpu, nohz.cpu_mask))
2881 return 0;
2882
2883 cpu_clear(cpu, nohz.cpu_mask);
2884
2885 if (atomic_read(&nohz.load_balancer) == cpu)
2886 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2887 BUG();
2888 }
2889 return 0;
2890}
2891#endif
2892
2893static DEFINE_SPINLOCK(balancing);
2894
2895/*
7835b98b
CL
2896 * It checks each scheduling domain to see if it is due to be balanced,
2897 * and initiates a balancing operation if so.
2898 *
2899 * Balancing parameters are set up in arch_init_sched_domains.
2900 */
d15bcfdb 2901static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2902{
46cb4b7c
SS
2903 int balance = 1;
2904 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2905 unsigned long interval;
2906 struct sched_domain *sd;
46cb4b7c 2907 /* Earliest time when we have to do rebalance again */
c9819f45 2908 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 2909
46cb4b7c 2910 for_each_domain(cpu, sd) {
1da177e4
LT
2911 if (!(sd->flags & SD_LOAD_BALANCE))
2912 continue;
2913
2914 interval = sd->balance_interval;
d15bcfdb 2915 if (idle != CPU_IDLE)
1da177e4
LT
2916 interval *= sd->busy_factor;
2917
2918 /* scale ms to jiffies */
2919 interval = msecs_to_jiffies(interval);
2920 if (unlikely(!interval))
2921 interval = 1;
dd41f596
IM
2922 if (interval > HZ*NR_CPUS/10)
2923 interval = HZ*NR_CPUS/10;
2924
1da177e4 2925
08c183f3
CL
2926 if (sd->flags & SD_SERIALIZE) {
2927 if (!spin_trylock(&balancing))
2928 goto out;
2929 }
2930
c9819f45 2931 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 2932 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
2933 /*
2934 * We've pulled tasks over so either we're no
5969fe06
NP
2935 * longer idle, or one of our SMT siblings is
2936 * not idle.
2937 */
d15bcfdb 2938 idle = CPU_NOT_IDLE;
1da177e4 2939 }
1bd77f2d 2940 sd->last_balance = jiffies;
1da177e4 2941 }
08c183f3
CL
2942 if (sd->flags & SD_SERIALIZE)
2943 spin_unlock(&balancing);
2944out:
c9819f45
CL
2945 if (time_after(next_balance, sd->last_balance + interval))
2946 next_balance = sd->last_balance + interval;
783609c6
SS
2947
2948 /*
2949 * Stop the load balance at this level. There is another
2950 * CPU in our sched group which is doing load balancing more
2951 * actively.
2952 */
2953 if (!balance)
2954 break;
1da177e4 2955 }
46cb4b7c
SS
2956 rq->next_balance = next_balance;
2957}
2958
2959/*
2960 * run_rebalance_domains is triggered when needed from the scheduler tick.
2961 * In CONFIG_NO_HZ case, the idle load balance owner will do the
2962 * rebalancing for all the cpus for whom scheduler ticks are stopped.
2963 */
2964static void run_rebalance_domains(struct softirq_action *h)
2965{
dd41f596
IM
2966 int this_cpu = smp_processor_id();
2967 struct rq *this_rq = cpu_rq(this_cpu);
2968 enum cpu_idle_type idle = this_rq->idle_at_tick ?
2969 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 2970
dd41f596 2971 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
2972
2973#ifdef CONFIG_NO_HZ
2974 /*
2975 * If this cpu is the owner for idle load balancing, then do the
2976 * balancing on behalf of the other idle cpus whose ticks are
2977 * stopped.
2978 */
dd41f596
IM
2979 if (this_rq->idle_at_tick &&
2980 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
2981 cpumask_t cpus = nohz.cpu_mask;
2982 struct rq *rq;
2983 int balance_cpu;
2984
dd41f596 2985 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
2986 for_each_cpu_mask(balance_cpu, cpus) {
2987 /*
2988 * If this cpu gets work to do, stop the load balancing
2989 * work being done for other cpus. Next load
2990 * balancing owner will pick it up.
2991 */
2992 if (need_resched())
2993 break;
2994
dd41f596 2995 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
2996
2997 rq = cpu_rq(balance_cpu);
dd41f596
IM
2998 if (time_after(this_rq->next_balance, rq->next_balance))
2999 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3000 }
3001 }
3002#endif
3003}
3004
3005/*
3006 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3007 *
3008 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3009 * idle load balancing owner or decide to stop the periodic load balancing,
3010 * if the whole system is idle.
3011 */
dd41f596 3012static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3013{
46cb4b7c
SS
3014#ifdef CONFIG_NO_HZ
3015 /*
3016 * If we were in the nohz mode recently and busy at the current
3017 * scheduler tick, then check if we need to nominate new idle
3018 * load balancer.
3019 */
3020 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3021 rq->in_nohz_recently = 0;
3022
3023 if (atomic_read(&nohz.load_balancer) == cpu) {
3024 cpu_clear(cpu, nohz.cpu_mask);
3025 atomic_set(&nohz.load_balancer, -1);
3026 }
3027
3028 if (atomic_read(&nohz.load_balancer) == -1) {
3029 /*
3030 * simple selection for now: Nominate the
3031 * first cpu in the nohz list to be the next
3032 * ilb owner.
3033 *
3034 * TBD: Traverse the sched domains and nominate
3035 * the nearest cpu in the nohz.cpu_mask.
3036 */
3037 int ilb = first_cpu(nohz.cpu_mask);
3038
3039 if (ilb != NR_CPUS)
3040 resched_cpu(ilb);
3041 }
3042 }
3043
3044 /*
3045 * If this cpu is idle and doing idle load balancing for all the
3046 * cpus with ticks stopped, is it time for that to stop?
3047 */
3048 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3049 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3050 resched_cpu(cpu);
3051 return;
3052 }
3053
3054 /*
3055 * If this cpu is idle and the idle load balancing is done by
3056 * someone else, then no need raise the SCHED_SOFTIRQ
3057 */
3058 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3059 cpu_isset(cpu, nohz.cpu_mask))
3060 return;
3061#endif
3062 if (time_after_eq(jiffies, rq->next_balance))
3063 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3064}
dd41f596
IM
3065
3066#else /* CONFIG_SMP */
3067
1da177e4
LT
3068/*
3069 * on UP we do not need to balance between CPUs:
3070 */
70b97a7f 3071static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3072{
3073}
dd41f596
IM
3074
3075/* Avoid "used but not defined" warning on UP */
3076static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3077 unsigned long max_nr_move, unsigned long max_load_move,
3078 struct sched_domain *sd, enum cpu_idle_type idle,
3079 int *all_pinned, unsigned long *load_moved,
3080 int this_best_prio, int best_prio, int best_prio_seen,
3081 struct rq_iterator *iterator)
3082{
3083 *load_moved = 0;
3084
3085 return 0;
3086}
3087
1da177e4
LT
3088#endif
3089
1da177e4
LT
3090DEFINE_PER_CPU(struct kernel_stat, kstat);
3091
3092EXPORT_PER_CPU_SYMBOL(kstat);
3093
3094/*
41b86e9c
IM
3095 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3096 * that have not yet been banked in case the task is currently running.
1da177e4 3097 */
41b86e9c 3098unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3099{
1da177e4 3100 unsigned long flags;
41b86e9c
IM
3101 u64 ns, delta_exec;
3102 struct rq *rq;
48f24c4d 3103
41b86e9c
IM
3104 rq = task_rq_lock(p, &flags);
3105 ns = p->se.sum_exec_runtime;
3106 if (rq->curr == p) {
3107 delta_exec = rq_clock(rq) - p->se.exec_start;
3108 if ((s64)delta_exec > 0)
3109 ns += delta_exec;
3110 }
3111 task_rq_unlock(rq, &flags);
48f24c4d 3112
1da177e4
LT
3113 return ns;
3114}
3115
1da177e4
LT
3116/*
3117 * Account user cpu time to a process.
3118 * @p: the process that the cpu time gets accounted to
3119 * @hardirq_offset: the offset to subtract from hardirq_count()
3120 * @cputime: the cpu time spent in user space since the last update
3121 */
3122void account_user_time(struct task_struct *p, cputime_t cputime)
3123{
3124 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3125 cputime64_t tmp;
3126
3127 p->utime = cputime_add(p->utime, cputime);
3128
3129 /* Add user time to cpustat. */
3130 tmp = cputime_to_cputime64(cputime);
3131 if (TASK_NICE(p) > 0)
3132 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3133 else
3134 cpustat->user = cputime64_add(cpustat->user, tmp);
3135}
3136
3137/*
3138 * Account system cpu time to a process.
3139 * @p: the process that the cpu time gets accounted to
3140 * @hardirq_offset: the offset to subtract from hardirq_count()
3141 * @cputime: the cpu time spent in kernel space since the last update
3142 */
3143void account_system_time(struct task_struct *p, int hardirq_offset,
3144 cputime_t cputime)
3145{
3146 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3147 struct rq *rq = this_rq();
1da177e4
LT
3148 cputime64_t tmp;
3149
3150 p->stime = cputime_add(p->stime, cputime);
3151
3152 /* Add system time to cpustat. */
3153 tmp = cputime_to_cputime64(cputime);
3154 if (hardirq_count() - hardirq_offset)
3155 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3156 else if (softirq_count())
3157 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3158 else if (p != rq->idle)
3159 cpustat->system = cputime64_add(cpustat->system, tmp);
3160 else if (atomic_read(&rq->nr_iowait) > 0)
3161 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3162 else
3163 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3164 /* Account for system time used */
3165 acct_update_integrals(p);
1da177e4
LT
3166}
3167
3168/*
3169 * Account for involuntary wait time.
3170 * @p: the process from which the cpu time has been stolen
3171 * @steal: the cpu time spent in involuntary wait
3172 */
3173void account_steal_time(struct task_struct *p, cputime_t steal)
3174{
3175 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3176 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3177 struct rq *rq = this_rq();
1da177e4
LT
3178
3179 if (p == rq->idle) {
3180 p->stime = cputime_add(p->stime, steal);
3181 if (atomic_read(&rq->nr_iowait) > 0)
3182 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3183 else
3184 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3185 } else
3186 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3187}
3188
7835b98b
CL
3189/*
3190 * This function gets called by the timer code, with HZ frequency.
3191 * We call it with interrupts disabled.
3192 *
3193 * It also gets called by the fork code, when changing the parent's
3194 * timeslices.
3195 */
3196void scheduler_tick(void)
3197{
7835b98b
CL
3198 int cpu = smp_processor_id();
3199 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3200 struct task_struct *curr = rq->curr;
3201
3202 spin_lock(&rq->lock);
3203 if (curr != rq->idle) /* FIXME: needed? */
3204 curr->sched_class->task_tick(rq, curr);
3205 update_cpu_load(rq);
3206 spin_unlock(&rq->lock);
7835b98b 3207
e418e1c2 3208#ifdef CONFIG_SMP
dd41f596
IM
3209 rq->idle_at_tick = idle_cpu(cpu);
3210 trigger_load_balance(rq, cpu);
e418e1c2 3211#endif
1da177e4
LT
3212}
3213
1da177e4
LT
3214#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3215
3216void fastcall add_preempt_count(int val)
3217{
3218 /*
3219 * Underflow?
3220 */
9a11b49a
IM
3221 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3222 return;
1da177e4
LT
3223 preempt_count() += val;
3224 /*
3225 * Spinlock count overflowing soon?
3226 */
33859f7f
MOS
3227 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3228 PREEMPT_MASK - 10);
1da177e4
LT
3229}
3230EXPORT_SYMBOL(add_preempt_count);
3231
3232void fastcall sub_preempt_count(int val)
3233{
3234 /*
3235 * Underflow?
3236 */
9a11b49a
IM
3237 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3238 return;
1da177e4
LT
3239 /*
3240 * Is the spinlock portion underflowing?
3241 */
9a11b49a
IM
3242 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3243 !(preempt_count() & PREEMPT_MASK)))
3244 return;
3245
1da177e4
LT
3246 preempt_count() -= val;
3247}
3248EXPORT_SYMBOL(sub_preempt_count);
3249
3250#endif
3251
3252/*
dd41f596 3253 * Print scheduling while atomic bug:
1da177e4 3254 */
dd41f596 3255static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3256{
dd41f596
IM
3257 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3258 prev->comm, preempt_count(), prev->pid);
3259 debug_show_held_locks(prev);
3260 if (irqs_disabled())
3261 print_irqtrace_events(prev);
3262 dump_stack();
3263}
1da177e4 3264
dd41f596
IM
3265/*
3266 * Various schedule()-time debugging checks and statistics:
3267 */
3268static inline void schedule_debug(struct task_struct *prev)
3269{
1da177e4
LT
3270 /*
3271 * Test if we are atomic. Since do_exit() needs to call into
3272 * schedule() atomically, we ignore that path for now.
3273 * Otherwise, whine if we are scheduling when we should not be.
3274 */
dd41f596
IM
3275 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3276 __schedule_bug(prev);
3277
1da177e4
LT
3278 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3279
dd41f596
IM
3280 schedstat_inc(this_rq(), sched_cnt);
3281}
3282
3283/*
3284 * Pick up the highest-prio task:
3285 */
3286static inline struct task_struct *
3287pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3288{
3289 struct sched_class *class;
3290 struct task_struct *p;
1da177e4
LT
3291
3292 /*
dd41f596
IM
3293 * Optimization: we know that if all tasks are in
3294 * the fair class we can call that function directly:
1da177e4 3295 */
dd41f596
IM
3296 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3297 p = fair_sched_class.pick_next_task(rq, now);
3298 if (likely(p))
3299 return p;
1da177e4
LT
3300 }
3301
dd41f596
IM
3302 class = sched_class_highest;
3303 for ( ; ; ) {
3304 p = class->pick_next_task(rq, now);
3305 if (p)
3306 return p;
3307 /*
3308 * Will never be NULL as the idle class always
3309 * returns a non-NULL p:
3310 */
3311 class = class->next;
3312 }
3313}
1da177e4 3314
dd41f596
IM
3315/*
3316 * schedule() is the main scheduler function.
3317 */
3318asmlinkage void __sched schedule(void)
3319{
3320 struct task_struct *prev, *next;
3321 long *switch_count;
3322 struct rq *rq;
3323 u64 now;
3324 int cpu;
3325
3326need_resched:
3327 preempt_disable();
3328 cpu = smp_processor_id();
3329 rq = cpu_rq(cpu);
3330 rcu_qsctr_inc(cpu);
3331 prev = rq->curr;
3332 switch_count = &prev->nivcsw;
3333
3334 release_kernel_lock(prev);
3335need_resched_nonpreemptible:
3336
3337 schedule_debug(prev);
1da177e4
LT
3338
3339 spin_lock_irq(&rq->lock);
dd41f596 3340 clear_tsk_need_resched(prev);
1da177e4 3341
1da177e4 3342 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3343 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3344 unlikely(signal_pending(prev)))) {
1da177e4 3345 prev->state = TASK_RUNNING;
dd41f596
IM
3346 } else {
3347 deactivate_task(rq, prev, 1);
1da177e4 3348 }
dd41f596 3349 switch_count = &prev->nvcsw;
1da177e4
LT
3350 }
3351
dd41f596 3352 if (unlikely(!rq->nr_running))
1da177e4 3353 idle_balance(cpu, rq);
1da177e4 3354
dd41f596
IM
3355 now = __rq_clock(rq);
3356 prev->sched_class->put_prev_task(rq, prev, now);
3357 next = pick_next_task(rq, prev, now);
1da177e4
LT
3358
3359 sched_info_switch(prev, next);
dd41f596 3360
1da177e4 3361 if (likely(prev != next)) {
1da177e4
LT
3362 rq->nr_switches++;
3363 rq->curr = next;
3364 ++*switch_count;
3365
dd41f596 3366 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3367 } else
3368 spin_unlock_irq(&rq->lock);
3369
dd41f596
IM
3370 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3371 cpu = smp_processor_id();
3372 rq = cpu_rq(cpu);
1da177e4 3373 goto need_resched_nonpreemptible;
dd41f596 3374 }
1da177e4
LT
3375 preempt_enable_no_resched();
3376 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3377 goto need_resched;
3378}
1da177e4
LT
3379EXPORT_SYMBOL(schedule);
3380
3381#ifdef CONFIG_PREEMPT
3382/*
2ed6e34f 3383 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3384 * off of preempt_enable. Kernel preemptions off return from interrupt
3385 * occur there and call schedule directly.
3386 */
3387asmlinkage void __sched preempt_schedule(void)
3388{
3389 struct thread_info *ti = current_thread_info();
3390#ifdef CONFIG_PREEMPT_BKL
3391 struct task_struct *task = current;
3392 int saved_lock_depth;
3393#endif
3394 /*
3395 * If there is a non-zero preempt_count or interrupts are disabled,
3396 * we do not want to preempt the current task. Just return..
3397 */
beed33a8 3398 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3399 return;
3400
3401need_resched:
3402 add_preempt_count(PREEMPT_ACTIVE);
3403 /*
3404 * We keep the big kernel semaphore locked, but we
3405 * clear ->lock_depth so that schedule() doesnt
3406 * auto-release the semaphore:
3407 */
3408#ifdef CONFIG_PREEMPT_BKL
3409 saved_lock_depth = task->lock_depth;
3410 task->lock_depth = -1;
3411#endif
3412 schedule();
3413#ifdef CONFIG_PREEMPT_BKL
3414 task->lock_depth = saved_lock_depth;
3415#endif
3416 sub_preempt_count(PREEMPT_ACTIVE);
3417
3418 /* we could miss a preemption opportunity between schedule and now */
3419 barrier();
3420 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3421 goto need_resched;
3422}
1da177e4
LT
3423EXPORT_SYMBOL(preempt_schedule);
3424
3425/*
2ed6e34f 3426 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3427 * off of irq context.
3428 * Note, that this is called and return with irqs disabled. This will
3429 * protect us against recursive calling from irq.
3430 */
3431asmlinkage void __sched preempt_schedule_irq(void)
3432{
3433 struct thread_info *ti = current_thread_info();
3434#ifdef CONFIG_PREEMPT_BKL
3435 struct task_struct *task = current;
3436 int saved_lock_depth;
3437#endif
2ed6e34f 3438 /* Catch callers which need to be fixed */
1da177e4
LT
3439 BUG_ON(ti->preempt_count || !irqs_disabled());
3440
3441need_resched:
3442 add_preempt_count(PREEMPT_ACTIVE);
3443 /*
3444 * We keep the big kernel semaphore locked, but we
3445 * clear ->lock_depth so that schedule() doesnt
3446 * auto-release the semaphore:
3447 */
3448#ifdef CONFIG_PREEMPT_BKL
3449 saved_lock_depth = task->lock_depth;
3450 task->lock_depth = -1;
3451#endif
3452 local_irq_enable();
3453 schedule();
3454 local_irq_disable();
3455#ifdef CONFIG_PREEMPT_BKL
3456 task->lock_depth = saved_lock_depth;
3457#endif
3458 sub_preempt_count(PREEMPT_ACTIVE);
3459
3460 /* we could miss a preemption opportunity between schedule and now */
3461 barrier();
3462 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3463 goto need_resched;
3464}
3465
3466#endif /* CONFIG_PREEMPT */
3467
95cdf3b7
IM
3468int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3469 void *key)
1da177e4 3470{
48f24c4d 3471 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3472}
1da177e4
LT
3473EXPORT_SYMBOL(default_wake_function);
3474
3475/*
3476 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3477 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3478 * number) then we wake all the non-exclusive tasks and one exclusive task.
3479 *
3480 * There are circumstances in which we can try to wake a task which has already
3481 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3482 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3483 */
3484static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3485 int nr_exclusive, int sync, void *key)
3486{
3487 struct list_head *tmp, *next;
3488
3489 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3490 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3491 unsigned flags = curr->flags;
3492
1da177e4 3493 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3494 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3495 break;
3496 }
3497}
3498
3499/**
3500 * __wake_up - wake up threads blocked on a waitqueue.
3501 * @q: the waitqueue
3502 * @mode: which threads
3503 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3504 * @key: is directly passed to the wakeup function
1da177e4
LT
3505 */
3506void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3507 int nr_exclusive, void *key)
1da177e4
LT
3508{
3509 unsigned long flags;
3510
3511 spin_lock_irqsave(&q->lock, flags);
3512 __wake_up_common(q, mode, nr_exclusive, 0, key);
3513 spin_unlock_irqrestore(&q->lock, flags);
3514}
1da177e4
LT
3515EXPORT_SYMBOL(__wake_up);
3516
3517/*
3518 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3519 */
3520void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3521{
3522 __wake_up_common(q, mode, 1, 0, NULL);
3523}
3524
3525/**
67be2dd1 3526 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3527 * @q: the waitqueue
3528 * @mode: which threads
3529 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3530 *
3531 * The sync wakeup differs that the waker knows that it will schedule
3532 * away soon, so while the target thread will be woken up, it will not
3533 * be migrated to another CPU - ie. the two threads are 'synchronized'
3534 * with each other. This can prevent needless bouncing between CPUs.
3535 *
3536 * On UP it can prevent extra preemption.
3537 */
95cdf3b7
IM
3538void fastcall
3539__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3540{
3541 unsigned long flags;
3542 int sync = 1;
3543
3544 if (unlikely(!q))
3545 return;
3546
3547 if (unlikely(!nr_exclusive))
3548 sync = 0;
3549
3550 spin_lock_irqsave(&q->lock, flags);
3551 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3552 spin_unlock_irqrestore(&q->lock, flags);
3553}
3554EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3555
3556void fastcall complete(struct completion *x)
3557{
3558 unsigned long flags;
3559
3560 spin_lock_irqsave(&x->wait.lock, flags);
3561 x->done++;
3562 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3563 1, 0, NULL);
3564 spin_unlock_irqrestore(&x->wait.lock, flags);
3565}
3566EXPORT_SYMBOL(complete);
3567
3568void fastcall complete_all(struct completion *x)
3569{
3570 unsigned long flags;
3571
3572 spin_lock_irqsave(&x->wait.lock, flags);
3573 x->done += UINT_MAX/2;
3574 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3575 0, 0, NULL);
3576 spin_unlock_irqrestore(&x->wait.lock, flags);
3577}
3578EXPORT_SYMBOL(complete_all);
3579
3580void fastcall __sched wait_for_completion(struct completion *x)
3581{
3582 might_sleep();
48f24c4d 3583
1da177e4
LT
3584 spin_lock_irq(&x->wait.lock);
3585 if (!x->done) {
3586 DECLARE_WAITQUEUE(wait, current);
3587
3588 wait.flags |= WQ_FLAG_EXCLUSIVE;
3589 __add_wait_queue_tail(&x->wait, &wait);
3590 do {
3591 __set_current_state(TASK_UNINTERRUPTIBLE);
3592 spin_unlock_irq(&x->wait.lock);
3593 schedule();
3594 spin_lock_irq(&x->wait.lock);
3595 } while (!x->done);
3596 __remove_wait_queue(&x->wait, &wait);
3597 }
3598 x->done--;
3599 spin_unlock_irq(&x->wait.lock);
3600}
3601EXPORT_SYMBOL(wait_for_completion);
3602
3603unsigned long fastcall __sched
3604wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3605{
3606 might_sleep();
3607
3608 spin_lock_irq(&x->wait.lock);
3609 if (!x->done) {
3610 DECLARE_WAITQUEUE(wait, current);
3611
3612 wait.flags |= WQ_FLAG_EXCLUSIVE;
3613 __add_wait_queue_tail(&x->wait, &wait);
3614 do {
3615 __set_current_state(TASK_UNINTERRUPTIBLE);
3616 spin_unlock_irq(&x->wait.lock);
3617 timeout = schedule_timeout(timeout);
3618 spin_lock_irq(&x->wait.lock);
3619 if (!timeout) {
3620 __remove_wait_queue(&x->wait, &wait);
3621 goto out;
3622 }
3623 } while (!x->done);
3624 __remove_wait_queue(&x->wait, &wait);
3625 }
3626 x->done--;
3627out:
3628 spin_unlock_irq(&x->wait.lock);
3629 return timeout;
3630}
3631EXPORT_SYMBOL(wait_for_completion_timeout);
3632
3633int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3634{
3635 int ret = 0;
3636
3637 might_sleep();
3638
3639 spin_lock_irq(&x->wait.lock);
3640 if (!x->done) {
3641 DECLARE_WAITQUEUE(wait, current);
3642
3643 wait.flags |= WQ_FLAG_EXCLUSIVE;
3644 __add_wait_queue_tail(&x->wait, &wait);
3645 do {
3646 if (signal_pending(current)) {
3647 ret = -ERESTARTSYS;
3648 __remove_wait_queue(&x->wait, &wait);
3649 goto out;
3650 }
3651 __set_current_state(TASK_INTERRUPTIBLE);
3652 spin_unlock_irq(&x->wait.lock);
3653 schedule();
3654 spin_lock_irq(&x->wait.lock);
3655 } while (!x->done);
3656 __remove_wait_queue(&x->wait, &wait);
3657 }
3658 x->done--;
3659out:
3660 spin_unlock_irq(&x->wait.lock);
3661
3662 return ret;
3663}
3664EXPORT_SYMBOL(wait_for_completion_interruptible);
3665
3666unsigned long fastcall __sched
3667wait_for_completion_interruptible_timeout(struct completion *x,
3668 unsigned long timeout)
3669{
3670 might_sleep();
3671
3672 spin_lock_irq(&x->wait.lock);
3673 if (!x->done) {
3674 DECLARE_WAITQUEUE(wait, current);
3675
3676 wait.flags |= WQ_FLAG_EXCLUSIVE;
3677 __add_wait_queue_tail(&x->wait, &wait);
3678 do {
3679 if (signal_pending(current)) {
3680 timeout = -ERESTARTSYS;
3681 __remove_wait_queue(&x->wait, &wait);
3682 goto out;
3683 }
3684 __set_current_state(TASK_INTERRUPTIBLE);
3685 spin_unlock_irq(&x->wait.lock);
3686 timeout = schedule_timeout(timeout);
3687 spin_lock_irq(&x->wait.lock);
3688 if (!timeout) {
3689 __remove_wait_queue(&x->wait, &wait);
3690 goto out;
3691 }
3692 } while (!x->done);
3693 __remove_wait_queue(&x->wait, &wait);
3694 }
3695 x->done--;
3696out:
3697 spin_unlock_irq(&x->wait.lock);
3698 return timeout;
3699}
3700EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3701
0fec171c
IM
3702static inline void
3703sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3704{
3705 spin_lock_irqsave(&q->lock, *flags);
3706 __add_wait_queue(q, wait);
1da177e4 3707 spin_unlock(&q->lock);
0fec171c 3708}
1da177e4 3709
0fec171c
IM
3710static inline void
3711sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3712{
3713 spin_lock_irq(&q->lock);
3714 __remove_wait_queue(q, wait);
3715 spin_unlock_irqrestore(&q->lock, *flags);
3716}
1da177e4 3717
0fec171c 3718void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3719{
0fec171c
IM
3720 unsigned long flags;
3721 wait_queue_t wait;
3722
3723 init_waitqueue_entry(&wait, current);
1da177e4
LT
3724
3725 current->state = TASK_INTERRUPTIBLE;
3726
0fec171c 3727 sleep_on_head(q, &wait, &flags);
1da177e4 3728 schedule();
0fec171c 3729 sleep_on_tail(q, &wait, &flags);
1da177e4 3730}
1da177e4
LT
3731EXPORT_SYMBOL(interruptible_sleep_on);
3732
0fec171c 3733long __sched
95cdf3b7 3734interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3735{
0fec171c
IM
3736 unsigned long flags;
3737 wait_queue_t wait;
3738
3739 init_waitqueue_entry(&wait, current);
1da177e4
LT
3740
3741 current->state = TASK_INTERRUPTIBLE;
3742
0fec171c 3743 sleep_on_head(q, &wait, &flags);
1da177e4 3744 timeout = schedule_timeout(timeout);
0fec171c 3745 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3746
3747 return timeout;
3748}
1da177e4
LT
3749EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3750
0fec171c 3751void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3752{
0fec171c
IM
3753 unsigned long flags;
3754 wait_queue_t wait;
3755
3756 init_waitqueue_entry(&wait, current);
1da177e4
LT
3757
3758 current->state = TASK_UNINTERRUPTIBLE;
3759
0fec171c 3760 sleep_on_head(q, &wait, &flags);
1da177e4 3761 schedule();
0fec171c 3762 sleep_on_tail(q, &wait, &flags);
1da177e4 3763}
1da177e4
LT
3764EXPORT_SYMBOL(sleep_on);
3765
0fec171c 3766long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3767{
0fec171c
IM
3768 unsigned long flags;
3769 wait_queue_t wait;
3770
3771 init_waitqueue_entry(&wait, current);
1da177e4
LT
3772
3773 current->state = TASK_UNINTERRUPTIBLE;
3774
0fec171c 3775 sleep_on_head(q, &wait, &flags);
1da177e4 3776 timeout = schedule_timeout(timeout);
0fec171c 3777 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3778
3779 return timeout;
3780}
1da177e4
LT
3781EXPORT_SYMBOL(sleep_on_timeout);
3782
b29739f9
IM
3783#ifdef CONFIG_RT_MUTEXES
3784
3785/*
3786 * rt_mutex_setprio - set the current priority of a task
3787 * @p: task
3788 * @prio: prio value (kernel-internal form)
3789 *
3790 * This function changes the 'effective' priority of a task. It does
3791 * not touch ->normal_prio like __setscheduler().
3792 *
3793 * Used by the rt_mutex code to implement priority inheritance logic.
3794 */
36c8b586 3795void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3796{
3797 unsigned long flags;
dd41f596 3798 int oldprio, on_rq;
70b97a7f 3799 struct rq *rq;
dd41f596 3800 u64 now;
b29739f9
IM
3801
3802 BUG_ON(prio < 0 || prio > MAX_PRIO);
3803
3804 rq = task_rq_lock(p, &flags);
dd41f596 3805 now = rq_clock(rq);
b29739f9 3806
d5f9f942 3807 oldprio = p->prio;
dd41f596
IM
3808 on_rq = p->se.on_rq;
3809 if (on_rq)
3810 dequeue_task(rq, p, 0, now);
3811
3812 if (rt_prio(prio))
3813 p->sched_class = &rt_sched_class;
3814 else
3815 p->sched_class = &fair_sched_class;
3816
b29739f9
IM
3817 p->prio = prio;
3818
dd41f596
IM
3819 if (on_rq) {
3820 enqueue_task(rq, p, 0, now);
b29739f9
IM
3821 /*
3822 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3823 * our priority decreased, or if we are not currently running on
3824 * this runqueue and our priority is higher than the current's
b29739f9 3825 */
d5f9f942
AM
3826 if (task_running(rq, p)) {
3827 if (p->prio > oldprio)
3828 resched_task(rq->curr);
dd41f596
IM
3829 } else {
3830 check_preempt_curr(rq, p);
3831 }
b29739f9
IM
3832 }
3833 task_rq_unlock(rq, &flags);
3834}
3835
3836#endif
3837
36c8b586 3838void set_user_nice(struct task_struct *p, long nice)
1da177e4 3839{
dd41f596 3840 int old_prio, delta, on_rq;
1da177e4 3841 unsigned long flags;
70b97a7f 3842 struct rq *rq;
dd41f596 3843 u64 now;
1da177e4
LT
3844
3845 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3846 return;
3847 /*
3848 * We have to be careful, if called from sys_setpriority(),
3849 * the task might be in the middle of scheduling on another CPU.
3850 */
3851 rq = task_rq_lock(p, &flags);
dd41f596 3852 now = rq_clock(rq);
1da177e4
LT
3853 /*
3854 * The RT priorities are set via sched_setscheduler(), but we still
3855 * allow the 'normal' nice value to be set - but as expected
3856 * it wont have any effect on scheduling until the task is
dd41f596 3857 * SCHED_FIFO/SCHED_RR:
1da177e4 3858 */
e05606d3 3859 if (task_has_rt_policy(p)) {
1da177e4
LT
3860 p->static_prio = NICE_TO_PRIO(nice);
3861 goto out_unlock;
3862 }
dd41f596
IM
3863 on_rq = p->se.on_rq;
3864 if (on_rq) {
3865 dequeue_task(rq, p, 0, now);
3866 dec_load(rq, p, now);
2dd73a4f 3867 }
1da177e4 3868
1da177e4 3869 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3870 set_load_weight(p);
b29739f9
IM
3871 old_prio = p->prio;
3872 p->prio = effective_prio(p);
3873 delta = p->prio - old_prio;
1da177e4 3874
dd41f596
IM
3875 if (on_rq) {
3876 enqueue_task(rq, p, 0, now);
3877 inc_load(rq, p, now);
1da177e4 3878 /*
d5f9f942
AM
3879 * If the task increased its priority or is running and
3880 * lowered its priority, then reschedule its CPU:
1da177e4 3881 */
d5f9f942 3882 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3883 resched_task(rq->curr);
3884 }
3885out_unlock:
3886 task_rq_unlock(rq, &flags);
3887}
1da177e4
LT
3888EXPORT_SYMBOL(set_user_nice);
3889
e43379f1
MM
3890/*
3891 * can_nice - check if a task can reduce its nice value
3892 * @p: task
3893 * @nice: nice value
3894 */
36c8b586 3895int can_nice(const struct task_struct *p, const int nice)
e43379f1 3896{
024f4747
MM
3897 /* convert nice value [19,-20] to rlimit style value [1,40] */
3898 int nice_rlim = 20 - nice;
48f24c4d 3899
e43379f1
MM
3900 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3901 capable(CAP_SYS_NICE));
3902}
3903
1da177e4
LT
3904#ifdef __ARCH_WANT_SYS_NICE
3905
3906/*
3907 * sys_nice - change the priority of the current process.
3908 * @increment: priority increment
3909 *
3910 * sys_setpriority is a more generic, but much slower function that
3911 * does similar things.
3912 */
3913asmlinkage long sys_nice(int increment)
3914{
48f24c4d 3915 long nice, retval;
1da177e4
LT
3916
3917 /*
3918 * Setpriority might change our priority at the same moment.
3919 * We don't have to worry. Conceptually one call occurs first
3920 * and we have a single winner.
3921 */
e43379f1
MM
3922 if (increment < -40)
3923 increment = -40;
1da177e4
LT
3924 if (increment > 40)
3925 increment = 40;
3926
3927 nice = PRIO_TO_NICE(current->static_prio) + increment;
3928 if (nice < -20)
3929 nice = -20;
3930 if (nice > 19)
3931 nice = 19;
3932
e43379f1
MM
3933 if (increment < 0 && !can_nice(current, nice))
3934 return -EPERM;
3935
1da177e4
LT
3936 retval = security_task_setnice(current, nice);
3937 if (retval)
3938 return retval;
3939
3940 set_user_nice(current, nice);
3941 return 0;
3942}
3943
3944#endif
3945
3946/**
3947 * task_prio - return the priority value of a given task.
3948 * @p: the task in question.
3949 *
3950 * This is the priority value as seen by users in /proc.
3951 * RT tasks are offset by -200. Normal tasks are centered
3952 * around 0, value goes from -16 to +15.
3953 */
36c8b586 3954int task_prio(const struct task_struct *p)
1da177e4
LT
3955{
3956 return p->prio - MAX_RT_PRIO;
3957}
3958
3959/**
3960 * task_nice - return the nice value of a given task.
3961 * @p: the task in question.
3962 */
36c8b586 3963int task_nice(const struct task_struct *p)
1da177e4
LT
3964{
3965 return TASK_NICE(p);
3966}
1da177e4 3967EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3968
3969/**
3970 * idle_cpu - is a given cpu idle currently?
3971 * @cpu: the processor in question.
3972 */
3973int idle_cpu(int cpu)
3974{
3975 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3976}
3977
1da177e4
LT
3978/**
3979 * idle_task - return the idle task for a given cpu.
3980 * @cpu: the processor in question.
3981 */
36c8b586 3982struct task_struct *idle_task(int cpu)
1da177e4
LT
3983{
3984 return cpu_rq(cpu)->idle;
3985}
3986
3987/**
3988 * find_process_by_pid - find a process with a matching PID value.
3989 * @pid: the pid in question.
3990 */
36c8b586 3991static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
3992{
3993 return pid ? find_task_by_pid(pid) : current;
3994}
3995
3996/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3997static void
3998__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3999{
dd41f596 4000 BUG_ON(p->se.on_rq);
48f24c4d 4001
1da177e4 4002 p->policy = policy;
dd41f596
IM
4003 switch (p->policy) {
4004 case SCHED_NORMAL:
4005 case SCHED_BATCH:
4006 case SCHED_IDLE:
4007 p->sched_class = &fair_sched_class;
4008 break;
4009 case SCHED_FIFO:
4010 case SCHED_RR:
4011 p->sched_class = &rt_sched_class;
4012 break;
4013 }
4014
1da177e4 4015 p->rt_priority = prio;
b29739f9
IM
4016 p->normal_prio = normal_prio(p);
4017 /* we are holding p->pi_lock already */
4018 p->prio = rt_mutex_getprio(p);
2dd73a4f 4019 set_load_weight(p);
1da177e4
LT
4020}
4021
4022/**
72fd4a35 4023 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4024 * @p: the task in question.
4025 * @policy: new policy.
4026 * @param: structure containing the new RT priority.
5fe1d75f 4027 *
72fd4a35 4028 * NOTE that the task may be already dead.
1da177e4 4029 */
95cdf3b7
IM
4030int sched_setscheduler(struct task_struct *p, int policy,
4031 struct sched_param *param)
1da177e4 4032{
dd41f596 4033 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4034 unsigned long flags;
70b97a7f 4035 struct rq *rq;
1da177e4 4036
66e5393a
SR
4037 /* may grab non-irq protected spin_locks */
4038 BUG_ON(in_interrupt());
1da177e4
LT
4039recheck:
4040 /* double check policy once rq lock held */
4041 if (policy < 0)
4042 policy = oldpolicy = p->policy;
4043 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4044 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4045 policy != SCHED_IDLE)
b0a9499c 4046 return -EINVAL;
1da177e4
LT
4047 /*
4048 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4049 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4050 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4051 */
4052 if (param->sched_priority < 0 ||
95cdf3b7 4053 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4054 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4055 return -EINVAL;
e05606d3 4056 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4057 return -EINVAL;
4058
37e4ab3f
OC
4059 /*
4060 * Allow unprivileged RT tasks to decrease priority:
4061 */
4062 if (!capable(CAP_SYS_NICE)) {
e05606d3 4063 if (rt_policy(policy)) {
8dc3e909 4064 unsigned long rlim_rtprio;
8dc3e909
ON
4065
4066 if (!lock_task_sighand(p, &flags))
4067 return -ESRCH;
4068 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4069 unlock_task_sighand(p, &flags);
4070
4071 /* can't set/change the rt policy */
4072 if (policy != p->policy && !rlim_rtprio)
4073 return -EPERM;
4074
4075 /* can't increase priority */
4076 if (param->sched_priority > p->rt_priority &&
4077 param->sched_priority > rlim_rtprio)
4078 return -EPERM;
4079 }
dd41f596
IM
4080 /*
4081 * Like positive nice levels, dont allow tasks to
4082 * move out of SCHED_IDLE either:
4083 */
4084 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4085 return -EPERM;
5fe1d75f 4086
37e4ab3f
OC
4087 /* can't change other user's priorities */
4088 if ((current->euid != p->euid) &&
4089 (current->euid != p->uid))
4090 return -EPERM;
4091 }
1da177e4
LT
4092
4093 retval = security_task_setscheduler(p, policy, param);
4094 if (retval)
4095 return retval;
b29739f9
IM
4096 /*
4097 * make sure no PI-waiters arrive (or leave) while we are
4098 * changing the priority of the task:
4099 */
4100 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4101 /*
4102 * To be able to change p->policy safely, the apropriate
4103 * runqueue lock must be held.
4104 */
b29739f9 4105 rq = __task_rq_lock(p);
1da177e4
LT
4106 /* recheck policy now with rq lock held */
4107 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4108 policy = oldpolicy = -1;
b29739f9
IM
4109 __task_rq_unlock(rq);
4110 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4111 goto recheck;
4112 }
dd41f596
IM
4113 on_rq = p->se.on_rq;
4114 if (on_rq)
4115 deactivate_task(rq, p, 0);
1da177e4 4116 oldprio = p->prio;
dd41f596
IM
4117 __setscheduler(rq, p, policy, param->sched_priority);
4118 if (on_rq) {
4119 activate_task(rq, p, 0);
1da177e4
LT
4120 /*
4121 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4122 * our priority decreased, or if we are not currently running on
4123 * this runqueue and our priority is higher than the current's
1da177e4 4124 */
d5f9f942
AM
4125 if (task_running(rq, p)) {
4126 if (p->prio > oldprio)
4127 resched_task(rq->curr);
dd41f596
IM
4128 } else {
4129 check_preempt_curr(rq, p);
4130 }
1da177e4 4131 }
b29739f9
IM
4132 __task_rq_unlock(rq);
4133 spin_unlock_irqrestore(&p->pi_lock, flags);
4134
95e02ca9
TG
4135 rt_mutex_adjust_pi(p);
4136
1da177e4
LT
4137 return 0;
4138}
4139EXPORT_SYMBOL_GPL(sched_setscheduler);
4140
95cdf3b7
IM
4141static int
4142do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4143{
1da177e4
LT
4144 struct sched_param lparam;
4145 struct task_struct *p;
36c8b586 4146 int retval;
1da177e4
LT
4147
4148 if (!param || pid < 0)
4149 return -EINVAL;
4150 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4151 return -EFAULT;
5fe1d75f
ON
4152
4153 rcu_read_lock();
4154 retval = -ESRCH;
1da177e4 4155 p = find_process_by_pid(pid);
5fe1d75f
ON
4156 if (p != NULL)
4157 retval = sched_setscheduler(p, policy, &lparam);
4158 rcu_read_unlock();
36c8b586 4159
1da177e4
LT
4160 return retval;
4161}
4162
4163/**
4164 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4165 * @pid: the pid in question.
4166 * @policy: new policy.
4167 * @param: structure containing the new RT priority.
4168 */
4169asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4170 struct sched_param __user *param)
4171{
c21761f1
JB
4172 /* negative values for policy are not valid */
4173 if (policy < 0)
4174 return -EINVAL;
4175
1da177e4
LT
4176 return do_sched_setscheduler(pid, policy, param);
4177}
4178
4179/**
4180 * sys_sched_setparam - set/change the RT priority of a thread
4181 * @pid: the pid in question.
4182 * @param: structure containing the new RT priority.
4183 */
4184asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4185{
4186 return do_sched_setscheduler(pid, -1, param);
4187}
4188
4189/**
4190 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4191 * @pid: the pid in question.
4192 */
4193asmlinkage long sys_sched_getscheduler(pid_t pid)
4194{
36c8b586 4195 struct task_struct *p;
1da177e4 4196 int retval = -EINVAL;
1da177e4
LT
4197
4198 if (pid < 0)
4199 goto out_nounlock;
4200
4201 retval = -ESRCH;
4202 read_lock(&tasklist_lock);
4203 p = find_process_by_pid(pid);
4204 if (p) {
4205 retval = security_task_getscheduler(p);
4206 if (!retval)
4207 retval = p->policy;
4208 }
4209 read_unlock(&tasklist_lock);
4210
4211out_nounlock:
4212 return retval;
4213}
4214
4215/**
4216 * sys_sched_getscheduler - get the RT priority of a thread
4217 * @pid: the pid in question.
4218 * @param: structure containing the RT priority.
4219 */
4220asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4221{
4222 struct sched_param lp;
36c8b586 4223 struct task_struct *p;
1da177e4 4224 int retval = -EINVAL;
1da177e4
LT
4225
4226 if (!param || pid < 0)
4227 goto out_nounlock;
4228
4229 read_lock(&tasklist_lock);
4230 p = find_process_by_pid(pid);
4231 retval = -ESRCH;
4232 if (!p)
4233 goto out_unlock;
4234
4235 retval = security_task_getscheduler(p);
4236 if (retval)
4237 goto out_unlock;
4238
4239 lp.sched_priority = p->rt_priority;
4240 read_unlock(&tasklist_lock);
4241
4242 /*
4243 * This one might sleep, we cannot do it with a spinlock held ...
4244 */
4245 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4246
4247out_nounlock:
4248 return retval;
4249
4250out_unlock:
4251 read_unlock(&tasklist_lock);
4252 return retval;
4253}
4254
4255long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4256{
1da177e4 4257 cpumask_t cpus_allowed;
36c8b586
IM
4258 struct task_struct *p;
4259 int retval;
1da177e4 4260
5be9361c 4261 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4262 read_lock(&tasklist_lock);
4263
4264 p = find_process_by_pid(pid);
4265 if (!p) {
4266 read_unlock(&tasklist_lock);
5be9361c 4267 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4268 return -ESRCH;
4269 }
4270
4271 /*
4272 * It is not safe to call set_cpus_allowed with the
4273 * tasklist_lock held. We will bump the task_struct's
4274 * usage count and then drop tasklist_lock.
4275 */
4276 get_task_struct(p);
4277 read_unlock(&tasklist_lock);
4278
4279 retval = -EPERM;
4280 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4281 !capable(CAP_SYS_NICE))
4282 goto out_unlock;
4283
e7834f8f
DQ
4284 retval = security_task_setscheduler(p, 0, NULL);
4285 if (retval)
4286 goto out_unlock;
4287
1da177e4
LT
4288 cpus_allowed = cpuset_cpus_allowed(p);
4289 cpus_and(new_mask, new_mask, cpus_allowed);
4290 retval = set_cpus_allowed(p, new_mask);
4291
4292out_unlock:
4293 put_task_struct(p);
5be9361c 4294 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4295 return retval;
4296}
4297
4298static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4299 cpumask_t *new_mask)
4300{
4301 if (len < sizeof(cpumask_t)) {
4302 memset(new_mask, 0, sizeof(cpumask_t));
4303 } else if (len > sizeof(cpumask_t)) {
4304 len = sizeof(cpumask_t);
4305 }
4306 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4307}
4308
4309/**
4310 * sys_sched_setaffinity - set the cpu affinity of a process
4311 * @pid: pid of the process
4312 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4313 * @user_mask_ptr: user-space pointer to the new cpu mask
4314 */
4315asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4316 unsigned long __user *user_mask_ptr)
4317{
4318 cpumask_t new_mask;
4319 int retval;
4320
4321 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4322 if (retval)
4323 return retval;
4324
4325 return sched_setaffinity(pid, new_mask);
4326}
4327
4328/*
4329 * Represents all cpu's present in the system
4330 * In systems capable of hotplug, this map could dynamically grow
4331 * as new cpu's are detected in the system via any platform specific
4332 * method, such as ACPI for e.g.
4333 */
4334
4cef0c61 4335cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4336EXPORT_SYMBOL(cpu_present_map);
4337
4338#ifndef CONFIG_SMP
4cef0c61 4339cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4340EXPORT_SYMBOL(cpu_online_map);
4341
4cef0c61 4342cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4343EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4344#endif
4345
4346long sched_getaffinity(pid_t pid, cpumask_t *mask)
4347{
36c8b586 4348 struct task_struct *p;
1da177e4 4349 int retval;
1da177e4 4350
5be9361c 4351 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4352 read_lock(&tasklist_lock);
4353
4354 retval = -ESRCH;
4355 p = find_process_by_pid(pid);
4356 if (!p)
4357 goto out_unlock;
4358
e7834f8f
DQ
4359 retval = security_task_getscheduler(p);
4360 if (retval)
4361 goto out_unlock;
4362
2f7016d9 4363 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4364
4365out_unlock:
4366 read_unlock(&tasklist_lock);
5be9361c 4367 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4368 if (retval)
4369 return retval;
4370
4371 return 0;
4372}
4373
4374/**
4375 * sys_sched_getaffinity - get the cpu affinity of a process
4376 * @pid: pid of the process
4377 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4378 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4379 */
4380asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4381 unsigned long __user *user_mask_ptr)
4382{
4383 int ret;
4384 cpumask_t mask;
4385
4386 if (len < sizeof(cpumask_t))
4387 return -EINVAL;
4388
4389 ret = sched_getaffinity(pid, &mask);
4390 if (ret < 0)
4391 return ret;
4392
4393 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4394 return -EFAULT;
4395
4396 return sizeof(cpumask_t);
4397}
4398
4399/**
4400 * sys_sched_yield - yield the current processor to other threads.
4401 *
dd41f596
IM
4402 * This function yields the current CPU to other tasks. If there are no
4403 * other threads running on this CPU then this function will return.
1da177e4
LT
4404 */
4405asmlinkage long sys_sched_yield(void)
4406{
70b97a7f 4407 struct rq *rq = this_rq_lock();
1da177e4
LT
4408
4409 schedstat_inc(rq, yld_cnt);
dd41f596 4410 if (unlikely(rq->nr_running == 1))
1da177e4 4411 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4412 else
4413 current->sched_class->yield_task(rq, current);
1da177e4
LT
4414
4415 /*
4416 * Since we are going to call schedule() anyway, there's
4417 * no need to preempt or enable interrupts:
4418 */
4419 __release(rq->lock);
8a25d5de 4420 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4421 _raw_spin_unlock(&rq->lock);
4422 preempt_enable_no_resched();
4423
4424 schedule();
4425
4426 return 0;
4427}
4428
e7b38404 4429static void __cond_resched(void)
1da177e4 4430{
8e0a43d8
IM
4431#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4432 __might_sleep(__FILE__, __LINE__);
4433#endif
5bbcfd90
IM
4434 /*
4435 * The BKS might be reacquired before we have dropped
4436 * PREEMPT_ACTIVE, which could trigger a second
4437 * cond_resched() call.
4438 */
1da177e4
LT
4439 do {
4440 add_preempt_count(PREEMPT_ACTIVE);
4441 schedule();
4442 sub_preempt_count(PREEMPT_ACTIVE);
4443 } while (need_resched());
4444}
4445
4446int __sched cond_resched(void)
4447{
9414232f
IM
4448 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4449 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4450 __cond_resched();
4451 return 1;
4452 }
4453 return 0;
4454}
1da177e4
LT
4455EXPORT_SYMBOL(cond_resched);
4456
4457/*
4458 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4459 * call schedule, and on return reacquire the lock.
4460 *
4461 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4462 * operations here to prevent schedule() from being called twice (once via
4463 * spin_unlock(), once by hand).
4464 */
95cdf3b7 4465int cond_resched_lock(spinlock_t *lock)
1da177e4 4466{
6df3cecb
JK
4467 int ret = 0;
4468
1da177e4
LT
4469 if (need_lockbreak(lock)) {
4470 spin_unlock(lock);
4471 cpu_relax();
6df3cecb 4472 ret = 1;
1da177e4
LT
4473 spin_lock(lock);
4474 }
9414232f 4475 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4476 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4477 _raw_spin_unlock(lock);
4478 preempt_enable_no_resched();
4479 __cond_resched();
6df3cecb 4480 ret = 1;
1da177e4 4481 spin_lock(lock);
1da177e4 4482 }
6df3cecb 4483 return ret;
1da177e4 4484}
1da177e4
LT
4485EXPORT_SYMBOL(cond_resched_lock);
4486
4487int __sched cond_resched_softirq(void)
4488{
4489 BUG_ON(!in_softirq());
4490
9414232f 4491 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4492 local_bh_enable();
1da177e4
LT
4493 __cond_resched();
4494 local_bh_disable();
4495 return 1;
4496 }
4497 return 0;
4498}
1da177e4
LT
4499EXPORT_SYMBOL(cond_resched_softirq);
4500
1da177e4
LT
4501/**
4502 * yield - yield the current processor to other threads.
4503 *
72fd4a35 4504 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4505 * thread runnable and calls sys_sched_yield().
4506 */
4507void __sched yield(void)
4508{
4509 set_current_state(TASK_RUNNING);
4510 sys_sched_yield();
4511}
1da177e4
LT
4512EXPORT_SYMBOL(yield);
4513
4514/*
4515 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4516 * that process accounting knows that this is a task in IO wait state.
4517 *
4518 * But don't do that if it is a deliberate, throttling IO wait (this task
4519 * has set its backing_dev_info: the queue against which it should throttle)
4520 */
4521void __sched io_schedule(void)
4522{
70b97a7f 4523 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4524
0ff92245 4525 delayacct_blkio_start();
1da177e4
LT
4526 atomic_inc(&rq->nr_iowait);
4527 schedule();
4528 atomic_dec(&rq->nr_iowait);
0ff92245 4529 delayacct_blkio_end();
1da177e4 4530}
1da177e4
LT
4531EXPORT_SYMBOL(io_schedule);
4532
4533long __sched io_schedule_timeout(long timeout)
4534{
70b97a7f 4535 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4536 long ret;
4537
0ff92245 4538 delayacct_blkio_start();
1da177e4
LT
4539 atomic_inc(&rq->nr_iowait);
4540 ret = schedule_timeout(timeout);
4541 atomic_dec(&rq->nr_iowait);
0ff92245 4542 delayacct_blkio_end();
1da177e4
LT
4543 return ret;
4544}
4545
4546/**
4547 * sys_sched_get_priority_max - return maximum RT priority.
4548 * @policy: scheduling class.
4549 *
4550 * this syscall returns the maximum rt_priority that can be used
4551 * by a given scheduling class.
4552 */
4553asmlinkage long sys_sched_get_priority_max(int policy)
4554{
4555 int ret = -EINVAL;
4556
4557 switch (policy) {
4558 case SCHED_FIFO:
4559 case SCHED_RR:
4560 ret = MAX_USER_RT_PRIO-1;
4561 break;
4562 case SCHED_NORMAL:
b0a9499c 4563 case SCHED_BATCH:
dd41f596 4564 case SCHED_IDLE:
1da177e4
LT
4565 ret = 0;
4566 break;
4567 }
4568 return ret;
4569}
4570
4571/**
4572 * sys_sched_get_priority_min - return minimum RT priority.
4573 * @policy: scheduling class.
4574 *
4575 * this syscall returns the minimum rt_priority that can be used
4576 * by a given scheduling class.
4577 */
4578asmlinkage long sys_sched_get_priority_min(int policy)
4579{
4580 int ret = -EINVAL;
4581
4582 switch (policy) {
4583 case SCHED_FIFO:
4584 case SCHED_RR:
4585 ret = 1;
4586 break;
4587 case SCHED_NORMAL:
b0a9499c 4588 case SCHED_BATCH:
dd41f596 4589 case SCHED_IDLE:
1da177e4
LT
4590 ret = 0;
4591 }
4592 return ret;
4593}
4594
4595/**
4596 * sys_sched_rr_get_interval - return the default timeslice of a process.
4597 * @pid: pid of the process.
4598 * @interval: userspace pointer to the timeslice value.
4599 *
4600 * this syscall writes the default timeslice value of a given process
4601 * into the user-space timespec buffer. A value of '0' means infinity.
4602 */
4603asmlinkage
4604long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4605{
36c8b586 4606 struct task_struct *p;
1da177e4
LT
4607 int retval = -EINVAL;
4608 struct timespec t;
1da177e4
LT
4609
4610 if (pid < 0)
4611 goto out_nounlock;
4612
4613 retval = -ESRCH;
4614 read_lock(&tasklist_lock);
4615 p = find_process_by_pid(pid);
4616 if (!p)
4617 goto out_unlock;
4618
4619 retval = security_task_getscheduler(p);
4620 if (retval)
4621 goto out_unlock;
4622
b78709cf 4623 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4624 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4625 read_unlock(&tasklist_lock);
4626 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4627out_nounlock:
4628 return retval;
4629out_unlock:
4630 read_unlock(&tasklist_lock);
4631 return retval;
4632}
4633
2ed6e34f 4634static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4635
4636static void show_task(struct task_struct *p)
1da177e4 4637{
1da177e4 4638 unsigned long free = 0;
36c8b586 4639 unsigned state;
1da177e4 4640
1da177e4 4641 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4642 printk("%-13.13s %c", p->comm,
4643 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4644#if (BITS_PER_LONG == 32)
4645 if (state == TASK_RUNNING)
4646 printk(" running ");
4647 else
4648 printk(" %08lX ", thread_saved_pc(p));
4649#else
4650 if (state == TASK_RUNNING)
4651 printk(" running task ");
4652 else
4653 printk(" %016lx ", thread_saved_pc(p));
4654#endif
4655#ifdef CONFIG_DEBUG_STACK_USAGE
4656 {
10ebffde 4657 unsigned long *n = end_of_stack(p);
1da177e4
LT
4658 while (!*n)
4659 n++;
10ebffde 4660 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4661 }
4662#endif
35f6f753 4663 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
1da177e4
LT
4664 if (!p->mm)
4665 printk(" (L-TLB)\n");
4666 else
4667 printk(" (NOTLB)\n");
4668
4669 if (state != TASK_RUNNING)
4670 show_stack(p, NULL);
4671}
4672
e59e2ae2 4673void show_state_filter(unsigned long state_filter)
1da177e4 4674{
36c8b586 4675 struct task_struct *g, *p;
1da177e4
LT
4676
4677#if (BITS_PER_LONG == 32)
4678 printk("\n"
301827ac
CC
4679 " free sibling\n");
4680 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4681#else
4682 printk("\n"
301827ac
CC
4683 " free sibling\n");
4684 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4685#endif
4686 read_lock(&tasklist_lock);
4687 do_each_thread(g, p) {
4688 /*
4689 * reset the NMI-timeout, listing all files on a slow
4690 * console might take alot of time:
4691 */
4692 touch_nmi_watchdog();
39bc89fd 4693 if (!state_filter || (p->state & state_filter))
e59e2ae2 4694 show_task(p);
1da177e4
LT
4695 } while_each_thread(g, p);
4696
04c9167f
JF
4697 touch_all_softlockup_watchdogs();
4698
dd41f596
IM
4699#ifdef CONFIG_SCHED_DEBUG
4700 sysrq_sched_debug_show();
4701#endif
1da177e4 4702 read_unlock(&tasklist_lock);
e59e2ae2
IM
4703 /*
4704 * Only show locks if all tasks are dumped:
4705 */
4706 if (state_filter == -1)
4707 debug_show_all_locks();
1da177e4
LT
4708}
4709
1df21055
IM
4710void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4711{
dd41f596 4712 idle->sched_class = &idle_sched_class;
1df21055
IM
4713}
4714
f340c0d1
IM
4715/**
4716 * init_idle - set up an idle thread for a given CPU
4717 * @idle: task in question
4718 * @cpu: cpu the idle task belongs to
4719 *
4720 * NOTE: this function does not set the idle thread's NEED_RESCHED
4721 * flag, to make booting more robust.
4722 */
5c1e1767 4723void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4724{
70b97a7f 4725 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4726 unsigned long flags;
4727
dd41f596
IM
4728 __sched_fork(idle);
4729 idle->se.exec_start = sched_clock();
4730
b29739f9 4731 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4732 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4733 __set_task_cpu(idle, cpu);
1da177e4
LT
4734
4735 spin_lock_irqsave(&rq->lock, flags);
4736 rq->curr = rq->idle = idle;
4866cde0
NP
4737#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4738 idle->oncpu = 1;
4739#endif
1da177e4
LT
4740 spin_unlock_irqrestore(&rq->lock, flags);
4741
4742 /* Set the preempt count _outside_ the spinlocks! */
4743#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4744 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4745#else
a1261f54 4746 task_thread_info(idle)->preempt_count = 0;
1da177e4 4747#endif
dd41f596
IM
4748 /*
4749 * The idle tasks have their own, simple scheduling class:
4750 */
4751 idle->sched_class = &idle_sched_class;
1da177e4
LT
4752}
4753
4754/*
4755 * In a system that switches off the HZ timer nohz_cpu_mask
4756 * indicates which cpus entered this state. This is used
4757 * in the rcu update to wait only for active cpus. For system
4758 * which do not switch off the HZ timer nohz_cpu_mask should
4759 * always be CPU_MASK_NONE.
4760 */
4761cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4762
dd41f596
IM
4763/*
4764 * Increase the granularity value when there are more CPUs,
4765 * because with more CPUs the 'effective latency' as visible
4766 * to users decreases. But the relationship is not linear,
4767 * so pick a second-best guess by going with the log2 of the
4768 * number of CPUs.
4769 *
4770 * This idea comes from the SD scheduler of Con Kolivas:
4771 */
4772static inline void sched_init_granularity(void)
4773{
4774 unsigned int factor = 1 + ilog2(num_online_cpus());
4775 const unsigned long gran_limit = 10000000;
4776
4777 sysctl_sched_granularity *= factor;
4778 if (sysctl_sched_granularity > gran_limit)
4779 sysctl_sched_granularity = gran_limit;
4780
4781 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4782 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4783}
4784
1da177e4
LT
4785#ifdef CONFIG_SMP
4786/*
4787 * This is how migration works:
4788 *
70b97a7f 4789 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4790 * runqueue and wake up that CPU's migration thread.
4791 * 2) we down() the locked semaphore => thread blocks.
4792 * 3) migration thread wakes up (implicitly it forces the migrated
4793 * thread off the CPU)
4794 * 4) it gets the migration request and checks whether the migrated
4795 * task is still in the wrong runqueue.
4796 * 5) if it's in the wrong runqueue then the migration thread removes
4797 * it and puts it into the right queue.
4798 * 6) migration thread up()s the semaphore.
4799 * 7) we wake up and the migration is done.
4800 */
4801
4802/*
4803 * Change a given task's CPU affinity. Migrate the thread to a
4804 * proper CPU and schedule it away if the CPU it's executing on
4805 * is removed from the allowed bitmask.
4806 *
4807 * NOTE: the caller must have a valid reference to the task, the
4808 * task must not exit() & deallocate itself prematurely. The
4809 * call is not atomic; no spinlocks may be held.
4810 */
36c8b586 4811int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4812{
70b97a7f 4813 struct migration_req req;
1da177e4 4814 unsigned long flags;
70b97a7f 4815 struct rq *rq;
48f24c4d 4816 int ret = 0;
1da177e4
LT
4817
4818 rq = task_rq_lock(p, &flags);
4819 if (!cpus_intersects(new_mask, cpu_online_map)) {
4820 ret = -EINVAL;
4821 goto out;
4822 }
4823
4824 p->cpus_allowed = new_mask;
4825 /* Can the task run on the task's current CPU? If so, we're done */
4826 if (cpu_isset(task_cpu(p), new_mask))
4827 goto out;
4828
4829 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4830 /* Need help from migration thread: drop lock and wait. */
4831 task_rq_unlock(rq, &flags);
4832 wake_up_process(rq->migration_thread);
4833 wait_for_completion(&req.done);
4834 tlb_migrate_finish(p->mm);
4835 return 0;
4836 }
4837out:
4838 task_rq_unlock(rq, &flags);
48f24c4d 4839
1da177e4
LT
4840 return ret;
4841}
1da177e4
LT
4842EXPORT_SYMBOL_GPL(set_cpus_allowed);
4843
4844/*
4845 * Move (not current) task off this cpu, onto dest cpu. We're doing
4846 * this because either it can't run here any more (set_cpus_allowed()
4847 * away from this CPU, or CPU going down), or because we're
4848 * attempting to rebalance this task on exec (sched_exec).
4849 *
4850 * So we race with normal scheduler movements, but that's OK, as long
4851 * as the task is no longer on this CPU.
efc30814
KK
4852 *
4853 * Returns non-zero if task was successfully migrated.
1da177e4 4854 */
efc30814 4855static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4856{
70b97a7f 4857 struct rq *rq_dest, *rq_src;
dd41f596 4858 int ret = 0, on_rq;
1da177e4
LT
4859
4860 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4861 return ret;
1da177e4
LT
4862
4863 rq_src = cpu_rq(src_cpu);
4864 rq_dest = cpu_rq(dest_cpu);
4865
4866 double_rq_lock(rq_src, rq_dest);
4867 /* Already moved. */
4868 if (task_cpu(p) != src_cpu)
4869 goto out;
4870 /* Affinity changed (again). */
4871 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4872 goto out;
4873
dd41f596
IM
4874 on_rq = p->se.on_rq;
4875 if (on_rq)
4876 deactivate_task(rq_src, p, 0);
1da177e4 4877 set_task_cpu(p, dest_cpu);
dd41f596
IM
4878 if (on_rq) {
4879 activate_task(rq_dest, p, 0);
4880 check_preempt_curr(rq_dest, p);
1da177e4 4881 }
efc30814 4882 ret = 1;
1da177e4
LT
4883out:
4884 double_rq_unlock(rq_src, rq_dest);
efc30814 4885 return ret;
1da177e4
LT
4886}
4887
4888/*
4889 * migration_thread - this is a highprio system thread that performs
4890 * thread migration by bumping thread off CPU then 'pushing' onto
4891 * another runqueue.
4892 */
95cdf3b7 4893static int migration_thread(void *data)
1da177e4 4894{
1da177e4 4895 int cpu = (long)data;
70b97a7f 4896 struct rq *rq;
1da177e4
LT
4897
4898 rq = cpu_rq(cpu);
4899 BUG_ON(rq->migration_thread != current);
4900
4901 set_current_state(TASK_INTERRUPTIBLE);
4902 while (!kthread_should_stop()) {
70b97a7f 4903 struct migration_req *req;
1da177e4 4904 struct list_head *head;
1da177e4 4905
3e1d1d28 4906 try_to_freeze();
1da177e4
LT
4907
4908 spin_lock_irq(&rq->lock);
4909
4910 if (cpu_is_offline(cpu)) {
4911 spin_unlock_irq(&rq->lock);
4912 goto wait_to_die;
4913 }
4914
4915 if (rq->active_balance) {
4916 active_load_balance(rq, cpu);
4917 rq->active_balance = 0;
4918 }
4919
4920 head = &rq->migration_queue;
4921
4922 if (list_empty(head)) {
4923 spin_unlock_irq(&rq->lock);
4924 schedule();
4925 set_current_state(TASK_INTERRUPTIBLE);
4926 continue;
4927 }
70b97a7f 4928 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
4929 list_del_init(head->next);
4930
674311d5
NP
4931 spin_unlock(&rq->lock);
4932 __migrate_task(req->task, cpu, req->dest_cpu);
4933 local_irq_enable();
1da177e4
LT
4934
4935 complete(&req->done);
4936 }
4937 __set_current_state(TASK_RUNNING);
4938 return 0;
4939
4940wait_to_die:
4941 /* Wait for kthread_stop */
4942 set_current_state(TASK_INTERRUPTIBLE);
4943 while (!kthread_should_stop()) {
4944 schedule();
4945 set_current_state(TASK_INTERRUPTIBLE);
4946 }
4947 __set_current_state(TASK_RUNNING);
4948 return 0;
4949}
4950
4951#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
4952/*
4953 * Figure out where task on dead CPU should go, use force if neccessary.
4954 * NOTE: interrupts should be disabled by the caller
4955 */
48f24c4d 4956static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 4957{
efc30814 4958 unsigned long flags;
1da177e4 4959 cpumask_t mask;
70b97a7f
IM
4960 struct rq *rq;
4961 int dest_cpu;
1da177e4 4962
efc30814 4963restart:
1da177e4
LT
4964 /* On same node? */
4965 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 4966 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
4967 dest_cpu = any_online_cpu(mask);
4968
4969 /* On any allowed CPU? */
4970 if (dest_cpu == NR_CPUS)
48f24c4d 4971 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
4972
4973 /* No more Mr. Nice Guy. */
4974 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
4975 rq = task_rq_lock(p, &flags);
4976 cpus_setall(p->cpus_allowed);
4977 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 4978 task_rq_unlock(rq, &flags);
1da177e4
LT
4979
4980 /*
4981 * Don't tell them about moving exiting tasks or
4982 * kernel threads (both mm NULL), since they never
4983 * leave kernel.
4984 */
48f24c4d 4985 if (p->mm && printk_ratelimit())
1da177e4
LT
4986 printk(KERN_INFO "process %d (%s) no "
4987 "longer affine to cpu%d\n",
48f24c4d 4988 p->pid, p->comm, dead_cpu);
1da177e4 4989 }
48f24c4d 4990 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 4991 goto restart;
1da177e4
LT
4992}
4993
4994/*
4995 * While a dead CPU has no uninterruptible tasks queued at this point,
4996 * it might still have a nonzero ->nr_uninterruptible counter, because
4997 * for performance reasons the counter is not stricly tracking tasks to
4998 * their home CPUs. So we just add the counter to another CPU's counter,
4999 * to keep the global sum constant after CPU-down:
5000 */
70b97a7f 5001static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5002{
70b97a7f 5003 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5004 unsigned long flags;
5005
5006 local_irq_save(flags);
5007 double_rq_lock(rq_src, rq_dest);
5008 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5009 rq_src->nr_uninterruptible = 0;
5010 double_rq_unlock(rq_src, rq_dest);
5011 local_irq_restore(flags);
5012}
5013
5014/* Run through task list and migrate tasks from the dead cpu. */
5015static void migrate_live_tasks(int src_cpu)
5016{
48f24c4d 5017 struct task_struct *p, *t;
1da177e4
LT
5018
5019 write_lock_irq(&tasklist_lock);
5020
48f24c4d
IM
5021 do_each_thread(t, p) {
5022 if (p == current)
1da177e4
LT
5023 continue;
5024
48f24c4d
IM
5025 if (task_cpu(p) == src_cpu)
5026 move_task_off_dead_cpu(src_cpu, p);
5027 } while_each_thread(t, p);
1da177e4
LT
5028
5029 write_unlock_irq(&tasklist_lock);
5030}
5031
dd41f596
IM
5032/*
5033 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5034 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5035 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5036 */
5037void sched_idle_next(void)
5038{
48f24c4d 5039 int this_cpu = smp_processor_id();
70b97a7f 5040 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5041 struct task_struct *p = rq->idle;
5042 unsigned long flags;
5043
5044 /* cpu has to be offline */
48f24c4d 5045 BUG_ON(cpu_online(this_cpu));
1da177e4 5046
48f24c4d
IM
5047 /*
5048 * Strictly not necessary since rest of the CPUs are stopped by now
5049 * and interrupts disabled on the current cpu.
1da177e4
LT
5050 */
5051 spin_lock_irqsave(&rq->lock, flags);
5052
dd41f596 5053 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5054
5055 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5056 activate_idle_task(p, rq);
1da177e4
LT
5057
5058 spin_unlock_irqrestore(&rq->lock, flags);
5059}
5060
48f24c4d
IM
5061/*
5062 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5063 * offline.
5064 */
5065void idle_task_exit(void)
5066{
5067 struct mm_struct *mm = current->active_mm;
5068
5069 BUG_ON(cpu_online(smp_processor_id()));
5070
5071 if (mm != &init_mm)
5072 switch_mm(mm, &init_mm, current);
5073 mmdrop(mm);
5074}
5075
054b9108 5076/* called under rq->lock with disabled interrupts */
36c8b586 5077static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5078{
70b97a7f 5079 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5080
5081 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5082 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5083
5084 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5085 BUG_ON(p->state == TASK_DEAD);
1da177e4 5086
48f24c4d 5087 get_task_struct(p);
1da177e4
LT
5088
5089 /*
5090 * Drop lock around migration; if someone else moves it,
5091 * that's OK. No task can be added to this CPU, so iteration is
5092 * fine.
054b9108 5093 * NOTE: interrupts should be left disabled --dev@
1da177e4 5094 */
054b9108 5095 spin_unlock(&rq->lock);
48f24c4d 5096 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5097 spin_lock(&rq->lock);
1da177e4 5098
48f24c4d 5099 put_task_struct(p);
1da177e4
LT
5100}
5101
5102/* release_task() removes task from tasklist, so we won't find dead tasks. */
5103static void migrate_dead_tasks(unsigned int dead_cpu)
5104{
70b97a7f 5105 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5106 struct task_struct *next;
48f24c4d 5107
dd41f596
IM
5108 for ( ; ; ) {
5109 if (!rq->nr_running)
5110 break;
5111 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5112 if (!next)
5113 break;
5114 migrate_dead(dead_cpu, next);
1da177e4
LT
5115 }
5116}
5117#endif /* CONFIG_HOTPLUG_CPU */
5118
5119/*
5120 * migration_call - callback that gets triggered when a CPU is added.
5121 * Here we can start up the necessary migration thread for the new CPU.
5122 */
48f24c4d
IM
5123static int __cpuinit
5124migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5125{
1da177e4 5126 struct task_struct *p;
48f24c4d 5127 int cpu = (long)hcpu;
1da177e4 5128 unsigned long flags;
70b97a7f 5129 struct rq *rq;
1da177e4
LT
5130
5131 switch (action) {
5be9361c
GS
5132 case CPU_LOCK_ACQUIRE:
5133 mutex_lock(&sched_hotcpu_mutex);
5134 break;
5135
1da177e4 5136 case CPU_UP_PREPARE:
8bb78442 5137 case CPU_UP_PREPARE_FROZEN:
dd41f596 5138 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5139 if (IS_ERR(p))
5140 return NOTIFY_BAD;
5141 p->flags |= PF_NOFREEZE;
5142 kthread_bind(p, cpu);
5143 /* Must be high prio: stop_machine expects to yield to it. */
5144 rq = task_rq_lock(p, &flags);
dd41f596 5145 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5146 task_rq_unlock(rq, &flags);
5147 cpu_rq(cpu)->migration_thread = p;
5148 break;
48f24c4d 5149
1da177e4 5150 case CPU_ONLINE:
8bb78442 5151 case CPU_ONLINE_FROZEN:
1da177e4
LT
5152 /* Strictly unneccessary, as first user will wake it. */
5153 wake_up_process(cpu_rq(cpu)->migration_thread);
5154 break;
48f24c4d 5155
1da177e4
LT
5156#ifdef CONFIG_HOTPLUG_CPU
5157 case CPU_UP_CANCELED:
8bb78442 5158 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5159 if (!cpu_rq(cpu)->migration_thread)
5160 break;
1da177e4 5161 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5162 kthread_bind(cpu_rq(cpu)->migration_thread,
5163 any_online_cpu(cpu_online_map));
1da177e4
LT
5164 kthread_stop(cpu_rq(cpu)->migration_thread);
5165 cpu_rq(cpu)->migration_thread = NULL;
5166 break;
48f24c4d 5167
1da177e4 5168 case CPU_DEAD:
8bb78442 5169 case CPU_DEAD_FROZEN:
1da177e4
LT
5170 migrate_live_tasks(cpu);
5171 rq = cpu_rq(cpu);
5172 kthread_stop(rq->migration_thread);
5173 rq->migration_thread = NULL;
5174 /* Idle task back to normal (off runqueue, low prio) */
5175 rq = task_rq_lock(rq->idle, &flags);
dd41f596 5176 deactivate_task(rq, rq->idle, 0);
1da177e4 5177 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5178 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5179 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5180 migrate_dead_tasks(cpu);
5181 task_rq_unlock(rq, &flags);
5182 migrate_nr_uninterruptible(rq);
5183 BUG_ON(rq->nr_running != 0);
5184
5185 /* No need to migrate the tasks: it was best-effort if
5be9361c 5186 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5187 * the requestors. */
5188 spin_lock_irq(&rq->lock);
5189 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5190 struct migration_req *req;
5191
1da177e4 5192 req = list_entry(rq->migration_queue.next,
70b97a7f 5193 struct migration_req, list);
1da177e4
LT
5194 list_del_init(&req->list);
5195 complete(&req->done);
5196 }
5197 spin_unlock_irq(&rq->lock);
5198 break;
5199#endif
5be9361c
GS
5200 case CPU_LOCK_RELEASE:
5201 mutex_unlock(&sched_hotcpu_mutex);
5202 break;
1da177e4
LT
5203 }
5204 return NOTIFY_OK;
5205}
5206
5207/* Register at highest priority so that task migration (migrate_all_tasks)
5208 * happens before everything else.
5209 */
26c2143b 5210static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5211 .notifier_call = migration_call,
5212 .priority = 10
5213};
5214
5215int __init migration_init(void)
5216{
5217 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5218 int err;
48f24c4d
IM
5219
5220 /* Start one for the boot CPU: */
07dccf33
AM
5221 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5222 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5223 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5224 register_cpu_notifier(&migration_notifier);
48f24c4d 5225
1da177e4
LT
5226 return 0;
5227}
5228#endif
5229
5230#ifdef CONFIG_SMP
476f3534
CL
5231
5232/* Number of possible processor ids */
5233int nr_cpu_ids __read_mostly = NR_CPUS;
5234EXPORT_SYMBOL(nr_cpu_ids);
5235
1a20ff27 5236#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5237#ifdef SCHED_DOMAIN_DEBUG
5238static void sched_domain_debug(struct sched_domain *sd, int cpu)
5239{
5240 int level = 0;
5241
41c7ce9a
NP
5242 if (!sd) {
5243 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5244 return;
5245 }
5246
1da177e4
LT
5247 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5248
5249 do {
5250 int i;
5251 char str[NR_CPUS];
5252 struct sched_group *group = sd->groups;
5253 cpumask_t groupmask;
5254
5255 cpumask_scnprintf(str, NR_CPUS, sd->span);
5256 cpus_clear(groupmask);
5257
5258 printk(KERN_DEBUG);
5259 for (i = 0; i < level + 1; i++)
5260 printk(" ");
5261 printk("domain %d: ", level);
5262
5263 if (!(sd->flags & SD_LOAD_BALANCE)) {
5264 printk("does not load-balance\n");
5265 if (sd->parent)
33859f7f
MOS
5266 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5267 " has parent");
1da177e4
LT
5268 break;
5269 }
5270
5271 printk("span %s\n", str);
5272
5273 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5274 printk(KERN_ERR "ERROR: domain->span does not contain "
5275 "CPU%d\n", cpu);
1da177e4 5276 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5277 printk(KERN_ERR "ERROR: domain->groups does not contain"
5278 " CPU%d\n", cpu);
1da177e4
LT
5279
5280 printk(KERN_DEBUG);
5281 for (i = 0; i < level + 2; i++)
5282 printk(" ");
5283 printk("groups:");
5284 do {
5285 if (!group) {
5286 printk("\n");
5287 printk(KERN_ERR "ERROR: group is NULL\n");
5288 break;
5289 }
5290
5517d86b 5291 if (!group->__cpu_power) {
1da177e4 5292 printk("\n");
33859f7f
MOS
5293 printk(KERN_ERR "ERROR: domain->cpu_power not "
5294 "set\n");
1da177e4
LT
5295 }
5296
5297 if (!cpus_weight(group->cpumask)) {
5298 printk("\n");
5299 printk(KERN_ERR "ERROR: empty group\n");
5300 }
5301
5302 if (cpus_intersects(groupmask, group->cpumask)) {
5303 printk("\n");
5304 printk(KERN_ERR "ERROR: repeated CPUs\n");
5305 }
5306
5307 cpus_or(groupmask, groupmask, group->cpumask);
5308
5309 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5310 printk(" %s", str);
5311
5312 group = group->next;
5313 } while (group != sd->groups);
5314 printk("\n");
5315
5316 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5317 printk(KERN_ERR "ERROR: groups don't span "
5318 "domain->span\n");
1da177e4
LT
5319
5320 level++;
5321 sd = sd->parent;
33859f7f
MOS
5322 if (!sd)
5323 continue;
1da177e4 5324
33859f7f
MOS
5325 if (!cpus_subset(groupmask, sd->span))
5326 printk(KERN_ERR "ERROR: parent span is not a superset "
5327 "of domain->span\n");
1da177e4
LT
5328
5329 } while (sd);
5330}
5331#else
48f24c4d 5332# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5333#endif
5334
1a20ff27 5335static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5336{
5337 if (cpus_weight(sd->span) == 1)
5338 return 1;
5339
5340 /* Following flags need at least 2 groups */
5341 if (sd->flags & (SD_LOAD_BALANCE |
5342 SD_BALANCE_NEWIDLE |
5343 SD_BALANCE_FORK |
89c4710e
SS
5344 SD_BALANCE_EXEC |
5345 SD_SHARE_CPUPOWER |
5346 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5347 if (sd->groups != sd->groups->next)
5348 return 0;
5349 }
5350
5351 /* Following flags don't use groups */
5352 if (sd->flags & (SD_WAKE_IDLE |
5353 SD_WAKE_AFFINE |
5354 SD_WAKE_BALANCE))
5355 return 0;
5356
5357 return 1;
5358}
5359
48f24c4d
IM
5360static int
5361sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5362{
5363 unsigned long cflags = sd->flags, pflags = parent->flags;
5364
5365 if (sd_degenerate(parent))
5366 return 1;
5367
5368 if (!cpus_equal(sd->span, parent->span))
5369 return 0;
5370
5371 /* Does parent contain flags not in child? */
5372 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5373 if (cflags & SD_WAKE_AFFINE)
5374 pflags &= ~SD_WAKE_BALANCE;
5375 /* Flags needing groups don't count if only 1 group in parent */
5376 if (parent->groups == parent->groups->next) {
5377 pflags &= ~(SD_LOAD_BALANCE |
5378 SD_BALANCE_NEWIDLE |
5379 SD_BALANCE_FORK |
89c4710e
SS
5380 SD_BALANCE_EXEC |
5381 SD_SHARE_CPUPOWER |
5382 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5383 }
5384 if (~cflags & pflags)
5385 return 0;
5386
5387 return 1;
5388}
5389
1da177e4
LT
5390/*
5391 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5392 * hold the hotplug lock.
5393 */
9c1cfda2 5394static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5395{
70b97a7f 5396 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5397 struct sched_domain *tmp;
5398
5399 /* Remove the sched domains which do not contribute to scheduling. */
5400 for (tmp = sd; tmp; tmp = tmp->parent) {
5401 struct sched_domain *parent = tmp->parent;
5402 if (!parent)
5403 break;
1a848870 5404 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5405 tmp->parent = parent->parent;
1a848870
SS
5406 if (parent->parent)
5407 parent->parent->child = tmp;
5408 }
245af2c7
SS
5409 }
5410
1a848870 5411 if (sd && sd_degenerate(sd)) {
245af2c7 5412 sd = sd->parent;
1a848870
SS
5413 if (sd)
5414 sd->child = NULL;
5415 }
1da177e4
LT
5416
5417 sched_domain_debug(sd, cpu);
5418
674311d5 5419 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5420}
5421
5422/* cpus with isolated domains */
67af63a6 5423static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5424
5425/* Setup the mask of cpus configured for isolated domains */
5426static int __init isolated_cpu_setup(char *str)
5427{
5428 int ints[NR_CPUS], i;
5429
5430 str = get_options(str, ARRAY_SIZE(ints), ints);
5431 cpus_clear(cpu_isolated_map);
5432 for (i = 1; i <= ints[0]; i++)
5433 if (ints[i] < NR_CPUS)
5434 cpu_set(ints[i], cpu_isolated_map);
5435 return 1;
5436}
5437
5438__setup ("isolcpus=", isolated_cpu_setup);
5439
5440/*
6711cab4
SS
5441 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5442 * to a function which identifies what group(along with sched group) a CPU
5443 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5444 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5445 *
5446 * init_sched_build_groups will build a circular linked list of the groups
5447 * covered by the given span, and will set each group's ->cpumask correctly,
5448 * and ->cpu_power to 0.
5449 */
a616058b 5450static void
6711cab4
SS
5451init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5452 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5453 struct sched_group **sg))
1da177e4
LT
5454{
5455 struct sched_group *first = NULL, *last = NULL;
5456 cpumask_t covered = CPU_MASK_NONE;
5457 int i;
5458
5459 for_each_cpu_mask(i, span) {
6711cab4
SS
5460 struct sched_group *sg;
5461 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5462 int j;
5463
5464 if (cpu_isset(i, covered))
5465 continue;
5466
5467 sg->cpumask = CPU_MASK_NONE;
5517d86b 5468 sg->__cpu_power = 0;
1da177e4
LT
5469
5470 for_each_cpu_mask(j, span) {
6711cab4 5471 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5472 continue;
5473
5474 cpu_set(j, covered);
5475 cpu_set(j, sg->cpumask);
5476 }
5477 if (!first)
5478 first = sg;
5479 if (last)
5480 last->next = sg;
5481 last = sg;
5482 }
5483 last->next = first;
5484}
5485
9c1cfda2 5486#define SD_NODES_PER_DOMAIN 16
1da177e4 5487
9c1cfda2 5488#ifdef CONFIG_NUMA
198e2f18 5489
9c1cfda2
JH
5490/**
5491 * find_next_best_node - find the next node to include in a sched_domain
5492 * @node: node whose sched_domain we're building
5493 * @used_nodes: nodes already in the sched_domain
5494 *
5495 * Find the next node to include in a given scheduling domain. Simply
5496 * finds the closest node not already in the @used_nodes map.
5497 *
5498 * Should use nodemask_t.
5499 */
5500static int find_next_best_node(int node, unsigned long *used_nodes)
5501{
5502 int i, n, val, min_val, best_node = 0;
5503
5504 min_val = INT_MAX;
5505
5506 for (i = 0; i < MAX_NUMNODES; i++) {
5507 /* Start at @node */
5508 n = (node + i) % MAX_NUMNODES;
5509
5510 if (!nr_cpus_node(n))
5511 continue;
5512
5513 /* Skip already used nodes */
5514 if (test_bit(n, used_nodes))
5515 continue;
5516
5517 /* Simple min distance search */
5518 val = node_distance(node, n);
5519
5520 if (val < min_val) {
5521 min_val = val;
5522 best_node = n;
5523 }
5524 }
5525
5526 set_bit(best_node, used_nodes);
5527 return best_node;
5528}
5529
5530/**
5531 * sched_domain_node_span - get a cpumask for a node's sched_domain
5532 * @node: node whose cpumask we're constructing
5533 * @size: number of nodes to include in this span
5534 *
5535 * Given a node, construct a good cpumask for its sched_domain to span. It
5536 * should be one that prevents unnecessary balancing, but also spreads tasks
5537 * out optimally.
5538 */
5539static cpumask_t sched_domain_node_span(int node)
5540{
9c1cfda2 5541 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5542 cpumask_t span, nodemask;
5543 int i;
9c1cfda2
JH
5544
5545 cpus_clear(span);
5546 bitmap_zero(used_nodes, MAX_NUMNODES);
5547
5548 nodemask = node_to_cpumask(node);
5549 cpus_or(span, span, nodemask);
5550 set_bit(node, used_nodes);
5551
5552 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5553 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5554
9c1cfda2
JH
5555 nodemask = node_to_cpumask(next_node);
5556 cpus_or(span, span, nodemask);
5557 }
5558
5559 return span;
5560}
5561#endif
5562
5c45bf27 5563int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5564
9c1cfda2 5565/*
48f24c4d 5566 * SMT sched-domains:
9c1cfda2 5567 */
1da177e4
LT
5568#ifdef CONFIG_SCHED_SMT
5569static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5570static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5571
6711cab4
SS
5572static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5573 struct sched_group **sg)
1da177e4 5574{
6711cab4
SS
5575 if (sg)
5576 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5577 return cpu;
5578}
5579#endif
5580
48f24c4d
IM
5581/*
5582 * multi-core sched-domains:
5583 */
1e9f28fa
SS
5584#ifdef CONFIG_SCHED_MC
5585static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5586static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5587#endif
5588
5589#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5590static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5591 struct sched_group **sg)
1e9f28fa 5592{
6711cab4 5593 int group;
a616058b
SS
5594 cpumask_t mask = cpu_sibling_map[cpu];
5595 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5596 group = first_cpu(mask);
5597 if (sg)
5598 *sg = &per_cpu(sched_group_core, group);
5599 return group;
1e9f28fa
SS
5600}
5601#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5602static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5603 struct sched_group **sg)
1e9f28fa 5604{
6711cab4
SS
5605 if (sg)
5606 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5607 return cpu;
5608}
5609#endif
5610
1da177e4 5611static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5612static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5613
6711cab4
SS
5614static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5615 struct sched_group **sg)
1da177e4 5616{
6711cab4 5617 int group;
48f24c4d 5618#ifdef CONFIG_SCHED_MC
1e9f28fa 5619 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5620 cpus_and(mask, mask, *cpu_map);
6711cab4 5621 group = first_cpu(mask);
1e9f28fa 5622#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5623 cpumask_t mask = cpu_sibling_map[cpu];
5624 cpus_and(mask, mask, *cpu_map);
6711cab4 5625 group = first_cpu(mask);
1da177e4 5626#else
6711cab4 5627 group = cpu;
1da177e4 5628#endif
6711cab4
SS
5629 if (sg)
5630 *sg = &per_cpu(sched_group_phys, group);
5631 return group;
1da177e4
LT
5632}
5633
5634#ifdef CONFIG_NUMA
1da177e4 5635/*
9c1cfda2
JH
5636 * The init_sched_build_groups can't handle what we want to do with node
5637 * groups, so roll our own. Now each node has its own list of groups which
5638 * gets dynamically allocated.
1da177e4 5639 */
9c1cfda2 5640static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5641static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5642
9c1cfda2 5643static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5644static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5645
6711cab4
SS
5646static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5647 struct sched_group **sg)
9c1cfda2 5648{
6711cab4
SS
5649 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5650 int group;
5651
5652 cpus_and(nodemask, nodemask, *cpu_map);
5653 group = first_cpu(nodemask);
5654
5655 if (sg)
5656 *sg = &per_cpu(sched_group_allnodes, group);
5657 return group;
1da177e4 5658}
6711cab4 5659
08069033
SS
5660static void init_numa_sched_groups_power(struct sched_group *group_head)
5661{
5662 struct sched_group *sg = group_head;
5663 int j;
5664
5665 if (!sg)
5666 return;
5667next_sg:
5668 for_each_cpu_mask(j, sg->cpumask) {
5669 struct sched_domain *sd;
5670
5671 sd = &per_cpu(phys_domains, j);
5672 if (j != first_cpu(sd->groups->cpumask)) {
5673 /*
5674 * Only add "power" once for each
5675 * physical package.
5676 */
5677 continue;
5678 }
5679
5517d86b 5680 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5681 }
5682 sg = sg->next;
5683 if (sg != group_head)
5684 goto next_sg;
5685}
1da177e4
LT
5686#endif
5687
a616058b 5688#ifdef CONFIG_NUMA
51888ca2
SV
5689/* Free memory allocated for various sched_group structures */
5690static void free_sched_groups(const cpumask_t *cpu_map)
5691{
a616058b 5692 int cpu, i;
51888ca2
SV
5693
5694 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5695 struct sched_group **sched_group_nodes
5696 = sched_group_nodes_bycpu[cpu];
5697
51888ca2
SV
5698 if (!sched_group_nodes)
5699 continue;
5700
5701 for (i = 0; i < MAX_NUMNODES; i++) {
5702 cpumask_t nodemask = node_to_cpumask(i);
5703 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5704
5705 cpus_and(nodemask, nodemask, *cpu_map);
5706 if (cpus_empty(nodemask))
5707 continue;
5708
5709 if (sg == NULL)
5710 continue;
5711 sg = sg->next;
5712next_sg:
5713 oldsg = sg;
5714 sg = sg->next;
5715 kfree(oldsg);
5716 if (oldsg != sched_group_nodes[i])
5717 goto next_sg;
5718 }
5719 kfree(sched_group_nodes);
5720 sched_group_nodes_bycpu[cpu] = NULL;
5721 }
51888ca2 5722}
a616058b
SS
5723#else
5724static void free_sched_groups(const cpumask_t *cpu_map)
5725{
5726}
5727#endif
51888ca2 5728
89c4710e
SS
5729/*
5730 * Initialize sched groups cpu_power.
5731 *
5732 * cpu_power indicates the capacity of sched group, which is used while
5733 * distributing the load between different sched groups in a sched domain.
5734 * Typically cpu_power for all the groups in a sched domain will be same unless
5735 * there are asymmetries in the topology. If there are asymmetries, group
5736 * having more cpu_power will pickup more load compared to the group having
5737 * less cpu_power.
5738 *
5739 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5740 * the maximum number of tasks a group can handle in the presence of other idle
5741 * or lightly loaded groups in the same sched domain.
5742 */
5743static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5744{
5745 struct sched_domain *child;
5746 struct sched_group *group;
5747
5748 WARN_ON(!sd || !sd->groups);
5749
5750 if (cpu != first_cpu(sd->groups->cpumask))
5751 return;
5752
5753 child = sd->child;
5754
5517d86b
ED
5755 sd->groups->__cpu_power = 0;
5756
89c4710e
SS
5757 /*
5758 * For perf policy, if the groups in child domain share resources
5759 * (for example cores sharing some portions of the cache hierarchy
5760 * or SMT), then set this domain groups cpu_power such that each group
5761 * can handle only one task, when there are other idle groups in the
5762 * same sched domain.
5763 */
5764 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5765 (child->flags &
5766 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5767 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5768 return;
5769 }
5770
89c4710e
SS
5771 /*
5772 * add cpu_power of each child group to this groups cpu_power
5773 */
5774 group = child->groups;
5775 do {
5517d86b 5776 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5777 group = group->next;
5778 } while (group != child->groups);
5779}
5780
1da177e4 5781/*
1a20ff27
DG
5782 * Build sched domains for a given set of cpus and attach the sched domains
5783 * to the individual cpus
1da177e4 5784 */
51888ca2 5785static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5786{
5787 int i;
d1b55138
JH
5788#ifdef CONFIG_NUMA
5789 struct sched_group **sched_group_nodes = NULL;
6711cab4 5790 int sd_allnodes = 0;
d1b55138
JH
5791
5792 /*
5793 * Allocate the per-node list of sched groups
5794 */
dd41f596 5795 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5796 GFP_KERNEL);
d1b55138
JH
5797 if (!sched_group_nodes) {
5798 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5799 return -ENOMEM;
d1b55138
JH
5800 }
5801 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5802#endif
1da177e4
LT
5803
5804 /*
1a20ff27 5805 * Set up domains for cpus specified by the cpu_map.
1da177e4 5806 */
1a20ff27 5807 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5808 struct sched_domain *sd = NULL, *p;
5809 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5810
1a20ff27 5811 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5812
5813#ifdef CONFIG_NUMA
dd41f596
IM
5814 if (cpus_weight(*cpu_map) >
5815 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
5816 sd = &per_cpu(allnodes_domains, i);
5817 *sd = SD_ALLNODES_INIT;
5818 sd->span = *cpu_map;
6711cab4 5819 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 5820 p = sd;
6711cab4 5821 sd_allnodes = 1;
9c1cfda2
JH
5822 } else
5823 p = NULL;
5824
1da177e4 5825 sd = &per_cpu(node_domains, i);
1da177e4 5826 *sd = SD_NODE_INIT;
9c1cfda2
JH
5827 sd->span = sched_domain_node_span(cpu_to_node(i));
5828 sd->parent = p;
1a848870
SS
5829 if (p)
5830 p->child = sd;
9c1cfda2 5831 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5832#endif
5833
5834 p = sd;
5835 sd = &per_cpu(phys_domains, i);
1da177e4
LT
5836 *sd = SD_CPU_INIT;
5837 sd->span = nodemask;
5838 sd->parent = p;
1a848870
SS
5839 if (p)
5840 p->child = sd;
6711cab4 5841 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 5842
1e9f28fa
SS
5843#ifdef CONFIG_SCHED_MC
5844 p = sd;
5845 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
5846 *sd = SD_MC_INIT;
5847 sd->span = cpu_coregroup_map(i);
5848 cpus_and(sd->span, sd->span, *cpu_map);
5849 sd->parent = p;
1a848870 5850 p->child = sd;
6711cab4 5851 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
5852#endif
5853
1da177e4
LT
5854#ifdef CONFIG_SCHED_SMT
5855 p = sd;
5856 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
5857 *sd = SD_SIBLING_INIT;
5858 sd->span = cpu_sibling_map[i];
1a20ff27 5859 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 5860 sd->parent = p;
1a848870 5861 p->child = sd;
6711cab4 5862 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
5863#endif
5864 }
5865
5866#ifdef CONFIG_SCHED_SMT
5867 /* Set up CPU (sibling) groups */
9c1cfda2 5868 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5869 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5870 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5871 if (i != first_cpu(this_sibling_map))
5872 continue;
5873
dd41f596
IM
5874 init_sched_build_groups(this_sibling_map, cpu_map,
5875 &cpu_to_cpu_group);
1da177e4
LT
5876 }
5877#endif
5878
1e9f28fa
SS
5879#ifdef CONFIG_SCHED_MC
5880 /* Set up multi-core groups */
5881 for_each_cpu_mask(i, *cpu_map) {
5882 cpumask_t this_core_map = cpu_coregroup_map(i);
5883 cpus_and(this_core_map, this_core_map, *cpu_map);
5884 if (i != first_cpu(this_core_map))
5885 continue;
dd41f596
IM
5886 init_sched_build_groups(this_core_map, cpu_map,
5887 &cpu_to_core_group);
1e9f28fa
SS
5888 }
5889#endif
5890
1da177e4
LT
5891 /* Set up physical groups */
5892 for (i = 0; i < MAX_NUMNODES; i++) {
5893 cpumask_t nodemask = node_to_cpumask(i);
5894
1a20ff27 5895 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5896 if (cpus_empty(nodemask))
5897 continue;
5898
6711cab4 5899 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
5900 }
5901
5902#ifdef CONFIG_NUMA
5903 /* Set up node groups */
6711cab4 5904 if (sd_allnodes)
dd41f596
IM
5905 init_sched_build_groups(*cpu_map, cpu_map,
5906 &cpu_to_allnodes_group);
9c1cfda2
JH
5907
5908 for (i = 0; i < MAX_NUMNODES; i++) {
5909 /* Set up node groups */
5910 struct sched_group *sg, *prev;
5911 cpumask_t nodemask = node_to_cpumask(i);
5912 cpumask_t domainspan;
5913 cpumask_t covered = CPU_MASK_NONE;
5914 int j;
5915
5916 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5917 if (cpus_empty(nodemask)) {
5918 sched_group_nodes[i] = NULL;
9c1cfda2 5919 continue;
d1b55138 5920 }
9c1cfda2
JH
5921
5922 domainspan = sched_domain_node_span(i);
5923 cpus_and(domainspan, domainspan, *cpu_map);
5924
15f0b676 5925 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
5926 if (!sg) {
5927 printk(KERN_WARNING "Can not alloc domain group for "
5928 "node %d\n", i);
5929 goto error;
5930 }
9c1cfda2
JH
5931 sched_group_nodes[i] = sg;
5932 for_each_cpu_mask(j, nodemask) {
5933 struct sched_domain *sd;
9761eea8 5934
9c1cfda2
JH
5935 sd = &per_cpu(node_domains, j);
5936 sd->groups = sg;
9c1cfda2 5937 }
5517d86b 5938 sg->__cpu_power = 0;
9c1cfda2 5939 sg->cpumask = nodemask;
51888ca2 5940 sg->next = sg;
9c1cfda2
JH
5941 cpus_or(covered, covered, nodemask);
5942 prev = sg;
5943
5944 for (j = 0; j < MAX_NUMNODES; j++) {
5945 cpumask_t tmp, notcovered;
5946 int n = (i + j) % MAX_NUMNODES;
5947
5948 cpus_complement(notcovered, covered);
5949 cpus_and(tmp, notcovered, *cpu_map);
5950 cpus_and(tmp, tmp, domainspan);
5951 if (cpus_empty(tmp))
5952 break;
5953
5954 nodemask = node_to_cpumask(n);
5955 cpus_and(tmp, tmp, nodemask);
5956 if (cpus_empty(tmp))
5957 continue;
5958
15f0b676
SV
5959 sg = kmalloc_node(sizeof(struct sched_group),
5960 GFP_KERNEL, i);
9c1cfda2
JH
5961 if (!sg) {
5962 printk(KERN_WARNING
5963 "Can not alloc domain group for node %d\n", j);
51888ca2 5964 goto error;
9c1cfda2 5965 }
5517d86b 5966 sg->__cpu_power = 0;
9c1cfda2 5967 sg->cpumask = tmp;
51888ca2 5968 sg->next = prev->next;
9c1cfda2
JH
5969 cpus_or(covered, covered, tmp);
5970 prev->next = sg;
5971 prev = sg;
5972 }
9c1cfda2 5973 }
1da177e4
LT
5974#endif
5975
5976 /* Calculate CPU power for physical packages and nodes */
5c45bf27 5977#ifdef CONFIG_SCHED_SMT
1a20ff27 5978 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
5979 struct sched_domain *sd = &per_cpu(cpu_domains, i);
5980
89c4710e 5981 init_sched_groups_power(i, sd);
5c45bf27 5982 }
1da177e4 5983#endif
1e9f28fa 5984#ifdef CONFIG_SCHED_MC
5c45bf27 5985 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
5986 struct sched_domain *sd = &per_cpu(core_domains, i);
5987
89c4710e 5988 init_sched_groups_power(i, sd);
5c45bf27
SS
5989 }
5990#endif
1e9f28fa 5991
5c45bf27 5992 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
5993 struct sched_domain *sd = &per_cpu(phys_domains, i);
5994
89c4710e 5995 init_sched_groups_power(i, sd);
1da177e4
LT
5996 }
5997
9c1cfda2 5998#ifdef CONFIG_NUMA
08069033
SS
5999 for (i = 0; i < MAX_NUMNODES; i++)
6000 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6001
6711cab4
SS
6002 if (sd_allnodes) {
6003 struct sched_group *sg;
f712c0c7 6004
6711cab4 6005 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6006 init_numa_sched_groups_power(sg);
6007 }
9c1cfda2
JH
6008#endif
6009
1da177e4 6010 /* Attach the domains */
1a20ff27 6011 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6012 struct sched_domain *sd;
6013#ifdef CONFIG_SCHED_SMT
6014 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6015#elif defined(CONFIG_SCHED_MC)
6016 sd = &per_cpu(core_domains, i);
1da177e4
LT
6017#else
6018 sd = &per_cpu(phys_domains, i);
6019#endif
6020 cpu_attach_domain(sd, i);
6021 }
51888ca2
SV
6022
6023 return 0;
6024
a616058b 6025#ifdef CONFIG_NUMA
51888ca2
SV
6026error:
6027 free_sched_groups(cpu_map);
6028 return -ENOMEM;
a616058b 6029#endif
1da177e4 6030}
1a20ff27
DG
6031/*
6032 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6033 */
51888ca2 6034static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6035{
6036 cpumask_t cpu_default_map;
51888ca2 6037 int err;
1da177e4 6038
1a20ff27
DG
6039 /*
6040 * Setup mask for cpus without special case scheduling requirements.
6041 * For now this just excludes isolated cpus, but could be used to
6042 * exclude other special cases in the future.
6043 */
6044 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6045
51888ca2
SV
6046 err = build_sched_domains(&cpu_default_map);
6047
6048 return err;
1a20ff27
DG
6049}
6050
6051static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6052{
51888ca2 6053 free_sched_groups(cpu_map);
9c1cfda2 6054}
1da177e4 6055
1a20ff27
DG
6056/*
6057 * Detach sched domains from a group of cpus specified in cpu_map
6058 * These cpus will now be attached to the NULL domain
6059 */
858119e1 6060static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6061{
6062 int i;
6063
6064 for_each_cpu_mask(i, *cpu_map)
6065 cpu_attach_domain(NULL, i);
6066 synchronize_sched();
6067 arch_destroy_sched_domains(cpu_map);
6068}
6069
6070/*
6071 * Partition sched domains as specified by the cpumasks below.
6072 * This attaches all cpus from the cpumasks to the NULL domain,
6073 * waits for a RCU quiescent period, recalculates sched
6074 * domain information and then attaches them back to the
6075 * correct sched domains
6076 * Call with hotplug lock held
6077 */
51888ca2 6078int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6079{
6080 cpumask_t change_map;
51888ca2 6081 int err = 0;
1a20ff27
DG
6082
6083 cpus_and(*partition1, *partition1, cpu_online_map);
6084 cpus_and(*partition2, *partition2, cpu_online_map);
6085 cpus_or(change_map, *partition1, *partition2);
6086
6087 /* Detach sched domains from all of the affected cpus */
6088 detach_destroy_domains(&change_map);
6089 if (!cpus_empty(*partition1))
51888ca2
SV
6090 err = build_sched_domains(partition1);
6091 if (!err && !cpus_empty(*partition2))
6092 err = build_sched_domains(partition2);
6093
6094 return err;
1a20ff27
DG
6095}
6096
5c45bf27
SS
6097#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6098int arch_reinit_sched_domains(void)
6099{
6100 int err;
6101
5be9361c 6102 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6103 detach_destroy_domains(&cpu_online_map);
6104 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6105 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6106
6107 return err;
6108}
6109
6110static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6111{
6112 int ret;
6113
6114 if (buf[0] != '0' && buf[0] != '1')
6115 return -EINVAL;
6116
6117 if (smt)
6118 sched_smt_power_savings = (buf[0] == '1');
6119 else
6120 sched_mc_power_savings = (buf[0] == '1');
6121
6122 ret = arch_reinit_sched_domains();
6123
6124 return ret ? ret : count;
6125}
6126
6127int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6128{
6129 int err = 0;
48f24c4d 6130
5c45bf27
SS
6131#ifdef CONFIG_SCHED_SMT
6132 if (smt_capable())
6133 err = sysfs_create_file(&cls->kset.kobj,
6134 &attr_sched_smt_power_savings.attr);
6135#endif
6136#ifdef CONFIG_SCHED_MC
6137 if (!err && mc_capable())
6138 err = sysfs_create_file(&cls->kset.kobj,
6139 &attr_sched_mc_power_savings.attr);
6140#endif
6141 return err;
6142}
6143#endif
6144
6145#ifdef CONFIG_SCHED_MC
6146static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6147{
6148 return sprintf(page, "%u\n", sched_mc_power_savings);
6149}
48f24c4d
IM
6150static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6151 const char *buf, size_t count)
5c45bf27
SS
6152{
6153 return sched_power_savings_store(buf, count, 0);
6154}
6155SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6156 sched_mc_power_savings_store);
6157#endif
6158
6159#ifdef CONFIG_SCHED_SMT
6160static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6161{
6162 return sprintf(page, "%u\n", sched_smt_power_savings);
6163}
48f24c4d
IM
6164static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6165 const char *buf, size_t count)
5c45bf27
SS
6166{
6167 return sched_power_savings_store(buf, count, 1);
6168}
6169SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6170 sched_smt_power_savings_store);
6171#endif
6172
1da177e4
LT
6173/*
6174 * Force a reinitialization of the sched domains hierarchy. The domains
6175 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6176 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6177 * which will prevent rebalancing while the sched domains are recalculated.
6178 */
6179static int update_sched_domains(struct notifier_block *nfb,
6180 unsigned long action, void *hcpu)
6181{
1da177e4
LT
6182 switch (action) {
6183 case CPU_UP_PREPARE:
8bb78442 6184 case CPU_UP_PREPARE_FROZEN:
1da177e4 6185 case CPU_DOWN_PREPARE:
8bb78442 6186 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6187 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6188 return NOTIFY_OK;
6189
6190 case CPU_UP_CANCELED:
8bb78442 6191 case CPU_UP_CANCELED_FROZEN:
1da177e4 6192 case CPU_DOWN_FAILED:
8bb78442 6193 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6194 case CPU_ONLINE:
8bb78442 6195 case CPU_ONLINE_FROZEN:
1da177e4 6196 case CPU_DEAD:
8bb78442 6197 case CPU_DEAD_FROZEN:
1da177e4
LT
6198 /*
6199 * Fall through and re-initialise the domains.
6200 */
6201 break;
6202 default:
6203 return NOTIFY_DONE;
6204 }
6205
6206 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6207 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6208
6209 return NOTIFY_OK;
6210}
1da177e4
LT
6211
6212void __init sched_init_smp(void)
6213{
5c1e1767
NP
6214 cpumask_t non_isolated_cpus;
6215
5be9361c 6216 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6217 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6218 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6219 if (cpus_empty(non_isolated_cpus))
6220 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6221 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6222 /* XXX: Theoretical race here - CPU may be hotplugged now */
6223 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6224
6225 /* Move init over to a non-isolated CPU */
6226 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6227 BUG();
dd41f596 6228 sched_init_granularity();
1da177e4
LT
6229}
6230#else
6231void __init sched_init_smp(void)
6232{
dd41f596 6233 sched_init_granularity();
1da177e4
LT
6234}
6235#endif /* CONFIG_SMP */
6236
6237int in_sched_functions(unsigned long addr)
6238{
6239 /* Linker adds these: start and end of __sched functions */
6240 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6241
1da177e4
LT
6242 return in_lock_functions(addr) ||
6243 (addr >= (unsigned long)__sched_text_start
6244 && addr < (unsigned long)__sched_text_end);
6245}
6246
dd41f596
IM
6247static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6248{
6249 cfs_rq->tasks_timeline = RB_ROOT;
6250 cfs_rq->fair_clock = 1;
6251#ifdef CONFIG_FAIR_GROUP_SCHED
6252 cfs_rq->rq = rq;
6253#endif
6254}
6255
1da177e4
LT
6256void __init sched_init(void)
6257{
dd41f596 6258 u64 now = sched_clock();
476f3534 6259 int highest_cpu = 0;
dd41f596
IM
6260 int i, j;
6261
6262 /*
6263 * Link up the scheduling class hierarchy:
6264 */
6265 rt_sched_class.next = &fair_sched_class;
6266 fair_sched_class.next = &idle_sched_class;
6267 idle_sched_class.next = NULL;
1da177e4 6268
0a945022 6269 for_each_possible_cpu(i) {
dd41f596 6270 struct rt_prio_array *array;
70b97a7f 6271 struct rq *rq;
1da177e4
LT
6272
6273 rq = cpu_rq(i);
6274 spin_lock_init(&rq->lock);
fcb99371 6275 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6276 rq->nr_running = 0;
dd41f596
IM
6277 rq->clock = 1;
6278 init_cfs_rq(&rq->cfs, rq);
6279#ifdef CONFIG_FAIR_GROUP_SCHED
6280 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6281 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6282#endif
6283 rq->ls.load_update_last = now;
6284 rq->ls.load_update_start = now;
1da177e4 6285
dd41f596
IM
6286 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6287 rq->cpu_load[j] = 0;
1da177e4 6288#ifdef CONFIG_SMP
41c7ce9a 6289 rq->sd = NULL;
1da177e4 6290 rq->active_balance = 0;
dd41f596 6291 rq->next_balance = jiffies;
1da177e4 6292 rq->push_cpu = 0;
0a2966b4 6293 rq->cpu = i;
1da177e4
LT
6294 rq->migration_thread = NULL;
6295 INIT_LIST_HEAD(&rq->migration_queue);
6296#endif
6297 atomic_set(&rq->nr_iowait, 0);
6298
dd41f596
IM
6299 array = &rq->rt.active;
6300 for (j = 0; j < MAX_RT_PRIO; j++) {
6301 INIT_LIST_HEAD(array->queue + j);
6302 __clear_bit(j, array->bitmap);
1da177e4 6303 }
476f3534 6304 highest_cpu = i;
dd41f596
IM
6305 /* delimiter for bitsearch: */
6306 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6307 }
6308
2dd73a4f 6309 set_load_weight(&init_task);
b50f60ce 6310
c9819f45 6311#ifdef CONFIG_SMP
476f3534 6312 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6313 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6314#endif
6315
b50f60ce
HC
6316#ifdef CONFIG_RT_MUTEXES
6317 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6318#endif
6319
1da177e4
LT
6320 /*
6321 * The boot idle thread does lazy MMU switching as well:
6322 */
6323 atomic_inc(&init_mm.mm_count);
6324 enter_lazy_tlb(&init_mm, current);
6325
6326 /*
6327 * Make us the idle thread. Technically, schedule() should not be
6328 * called from this thread, however somewhere below it might be,
6329 * but because we are the idle thread, we just pick up running again
6330 * when this runqueue becomes "idle".
6331 */
6332 init_idle(current, smp_processor_id());
dd41f596
IM
6333 /*
6334 * During early bootup we pretend to be a normal task:
6335 */
6336 current->sched_class = &fair_sched_class;
1da177e4
LT
6337}
6338
6339#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6340void __might_sleep(char *file, int line)
6341{
48f24c4d 6342#ifdef in_atomic
1da177e4
LT
6343 static unsigned long prev_jiffy; /* ratelimiting */
6344
6345 if ((in_atomic() || irqs_disabled()) &&
6346 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6347 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6348 return;
6349 prev_jiffy = jiffies;
91368d73 6350 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6351 " context at %s:%d\n", file, line);
6352 printk("in_atomic():%d, irqs_disabled():%d\n",
6353 in_atomic(), irqs_disabled());
a4c410f0 6354 debug_show_held_locks(current);
3117df04
IM
6355 if (irqs_disabled())
6356 print_irqtrace_events(current);
1da177e4
LT
6357 dump_stack();
6358 }
6359#endif
6360}
6361EXPORT_SYMBOL(__might_sleep);
6362#endif
6363
6364#ifdef CONFIG_MAGIC_SYSRQ
6365void normalize_rt_tasks(void)
6366{
a0f98a1c 6367 struct task_struct *g, *p;
1da177e4 6368 unsigned long flags;
70b97a7f 6369 struct rq *rq;
dd41f596 6370 int on_rq;
1da177e4
LT
6371
6372 read_lock_irq(&tasklist_lock);
a0f98a1c 6373 do_each_thread(g, p) {
dd41f596
IM
6374 p->se.fair_key = 0;
6375 p->se.wait_runtime = 0;
6376 p->se.wait_start_fair = 0;
6377 p->se.wait_start = 0;
6378 p->se.exec_start = 0;
6379 p->se.sleep_start = 0;
6380 p->se.sleep_start_fair = 0;
6381 p->se.block_start = 0;
6382 task_rq(p)->cfs.fair_clock = 0;
6383 task_rq(p)->clock = 0;
6384
6385 if (!rt_task(p)) {
6386 /*
6387 * Renice negative nice level userspace
6388 * tasks back to 0:
6389 */
6390 if (TASK_NICE(p) < 0 && p->mm)
6391 set_user_nice(p, 0);
1da177e4 6392 continue;
dd41f596 6393 }
1da177e4 6394
b29739f9
IM
6395 spin_lock_irqsave(&p->pi_lock, flags);
6396 rq = __task_rq_lock(p);
dd41f596
IM
6397#ifdef CONFIG_SMP
6398 /*
6399 * Do not touch the migration thread:
6400 */
6401 if (p == rq->migration_thread)
6402 goto out_unlock;
6403#endif
1da177e4 6404
dd41f596
IM
6405 on_rq = p->se.on_rq;
6406 if (on_rq)
6407 deactivate_task(task_rq(p), p, 0);
6408 __setscheduler(rq, p, SCHED_NORMAL, 0);
6409 if (on_rq) {
6410 activate_task(task_rq(p), p, 0);
1da177e4
LT
6411 resched_task(rq->curr);
6412 }
dd41f596
IM
6413#ifdef CONFIG_SMP
6414 out_unlock:
6415#endif
b29739f9
IM
6416 __task_rq_unlock(rq);
6417 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6418 } while_each_thread(g, p);
6419
1da177e4
LT
6420 read_unlock_irq(&tasklist_lock);
6421}
6422
6423#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6424
6425#ifdef CONFIG_IA64
6426/*
6427 * These functions are only useful for the IA64 MCA handling.
6428 *
6429 * They can only be called when the whole system has been
6430 * stopped - every CPU needs to be quiescent, and no scheduling
6431 * activity can take place. Using them for anything else would
6432 * be a serious bug, and as a result, they aren't even visible
6433 * under any other configuration.
6434 */
6435
6436/**
6437 * curr_task - return the current task for a given cpu.
6438 * @cpu: the processor in question.
6439 *
6440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6441 */
36c8b586 6442struct task_struct *curr_task(int cpu)
1df5c10a
LT
6443{
6444 return cpu_curr(cpu);
6445}
6446
6447/**
6448 * set_curr_task - set the current task for a given cpu.
6449 * @cpu: the processor in question.
6450 * @p: the task pointer to set.
6451 *
6452 * Description: This function must only be used when non-maskable interrupts
6453 * are serviced on a separate stack. It allows the architecture to switch the
6454 * notion of the current task on a cpu in a non-blocking manner. This function
6455 * must be called with all CPU's synchronized, and interrupts disabled, the
6456 * and caller must save the original value of the current task (see
6457 * curr_task() above) and restore that value before reenabling interrupts and
6458 * re-starting the system.
6459 *
6460 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6461 */
36c8b586 6462void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6463{
6464 cpu_curr(cpu) = p;
6465}
6466
6467#endif