]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Remove the CONFIG_PREEMPT_BKL case definition of cond_resched()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4
LT
618 /* For active balancing */
619 int active_balance;
620 int push_cpu;
d8016491
IM
621 /* cpu of this runqueue: */
622 int cpu;
1f11eb6a 623 int online;
1da177e4 624
a8a51d5e 625 unsigned long avg_load_per_task;
1da177e4 626
36c8b586 627 struct task_struct *migration_thread;
1da177e4
LT
628 struct list_head migration_queue;
629#endif
630
dce48a84
TG
631 /* calc_load related fields */
632 unsigned long calc_load_update;
633 long calc_load_active;
634
8f4d37ec 635#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
636#ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639#endif
8f4d37ec
PZ
640 struct hrtimer hrtick_timer;
641#endif
642
1da177e4
LT
643#ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
9c2c4802
KC
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
648
649 /* sys_sched_yield() stats */
480b9434 650 unsigned int yld_count;
1da177e4
LT
651
652 /* schedule() stats */
480b9434
KC
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
1da177e4
LT
656
657 /* try_to_wake_up() stats */
480b9434
KC
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
b8efb561
IM
660
661 /* BKL stats */
480b9434 662 unsigned int bkl_count;
1da177e4
LT
663#endif
664};
665
f34e3b61 666static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 667
15afe09b 668static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 669{
15afe09b 670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
671}
672
0a2966b4
CL
673static inline int cpu_of(struct rq *rq)
674{
675#ifdef CONFIG_SMP
676 return rq->cpu;
677#else
678 return 0;
679#endif
680}
681
674311d5
NP
682/*
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 684 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
685 *
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
688 */
48f24c4d
IM
689#define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
691
692#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 696#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 697
aa9c4c0f 698inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
699{
700 rq->clock = sched_clock_cpu(cpu_of(rq));
701}
702
bf5c91ba
IM
703/*
704 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
705 */
706#ifdef CONFIG_SCHED_DEBUG
707# define const_debug __read_mostly
708#else
709# define const_debug static const
710#endif
711
017730c1
IM
712/**
713 * runqueue_is_locked
714 *
715 * Returns true if the current cpu runqueue is locked.
716 * This interface allows printk to be called with the runqueue lock
717 * held and know whether or not it is OK to wake up the klogd.
718 */
719int runqueue_is_locked(void)
720{
721 int cpu = get_cpu();
722 struct rq *rq = cpu_rq(cpu);
723 int ret;
724
725 ret = spin_is_locked(&rq->lock);
726 put_cpu();
727 return ret;
728}
729
bf5c91ba
IM
730/*
731 * Debugging: various feature bits
732 */
f00b45c1
PZ
733
734#define SCHED_FEAT(name, enabled) \
735 __SCHED_FEAT_##name ,
736
bf5c91ba 737enum {
f00b45c1 738#include "sched_features.h"
bf5c91ba
IM
739};
740
f00b45c1
PZ
741#undef SCHED_FEAT
742
743#define SCHED_FEAT(name, enabled) \
744 (1UL << __SCHED_FEAT_##name) * enabled |
745
bf5c91ba 746const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
747#include "sched_features.h"
748 0;
749
750#undef SCHED_FEAT
751
752#ifdef CONFIG_SCHED_DEBUG
753#define SCHED_FEAT(name, enabled) \
754 #name ,
755
983ed7a6 756static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
757#include "sched_features.h"
758 NULL
759};
760
761#undef SCHED_FEAT
762
34f3a814 763static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 764{
f00b45c1
PZ
765 int i;
766
767 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
768 if (!(sysctl_sched_features & (1UL << i)))
769 seq_puts(m, "NO_");
770 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 771 }
34f3a814 772 seq_puts(m, "\n");
f00b45c1 773
34f3a814 774 return 0;
f00b45c1
PZ
775}
776
777static ssize_t
778sched_feat_write(struct file *filp, const char __user *ubuf,
779 size_t cnt, loff_t *ppos)
780{
781 char buf[64];
782 char *cmp = buf;
783 int neg = 0;
784 int i;
785
786 if (cnt > 63)
787 cnt = 63;
788
789 if (copy_from_user(&buf, ubuf, cnt))
790 return -EFAULT;
791
792 buf[cnt] = 0;
793
c24b7c52 794 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
795 neg = 1;
796 cmp += 3;
797 }
798
799 for (i = 0; sched_feat_names[i]; i++) {
800 int len = strlen(sched_feat_names[i]);
801
802 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
803 if (neg)
804 sysctl_sched_features &= ~(1UL << i);
805 else
806 sysctl_sched_features |= (1UL << i);
807 break;
808 }
809 }
810
811 if (!sched_feat_names[i])
812 return -EINVAL;
813
814 filp->f_pos += cnt;
815
816 return cnt;
817}
818
34f3a814
LZ
819static int sched_feat_open(struct inode *inode, struct file *filp)
820{
821 return single_open(filp, sched_feat_show, NULL);
822}
823
f00b45c1 824static struct file_operations sched_feat_fops = {
34f3a814
LZ
825 .open = sched_feat_open,
826 .write = sched_feat_write,
827 .read = seq_read,
828 .llseek = seq_lseek,
829 .release = single_release,
f00b45c1
PZ
830};
831
832static __init int sched_init_debug(void)
833{
f00b45c1
PZ
834 debugfs_create_file("sched_features", 0644, NULL, NULL,
835 &sched_feat_fops);
836
837 return 0;
838}
839late_initcall(sched_init_debug);
840
841#endif
842
843#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 844
b82d9fdd
PZ
845/*
846 * Number of tasks to iterate in a single balance run.
847 * Limited because this is done with IRQs disabled.
848 */
849const_debug unsigned int sysctl_sched_nr_migrate = 32;
850
2398f2c6
PZ
851/*
852 * ratelimit for updating the group shares.
55cd5340 853 * default: 0.25ms
2398f2c6 854 */
55cd5340 855unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 856
ffda12a1
PZ
857/*
858 * Inject some fuzzyness into changing the per-cpu group shares
859 * this avoids remote rq-locks at the expense of fairness.
860 * default: 4
861 */
862unsigned int sysctl_sched_shares_thresh = 4;
863
fa85ae24 864/*
9f0c1e56 865 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
866 * default: 1s
867 */
9f0c1e56 868unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 869
6892b75e
IM
870static __read_mostly int scheduler_running;
871
9f0c1e56
PZ
872/*
873 * part of the period that we allow rt tasks to run in us.
874 * default: 0.95s
875 */
876int sysctl_sched_rt_runtime = 950000;
fa85ae24 877
d0b27fa7
PZ
878static inline u64 global_rt_period(void)
879{
880 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881}
882
883static inline u64 global_rt_runtime(void)
884{
e26873bb 885 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
886 return RUNTIME_INF;
887
888 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889}
fa85ae24 890
1da177e4 891#ifndef prepare_arch_switch
4866cde0
NP
892# define prepare_arch_switch(next) do { } while (0)
893#endif
894#ifndef finish_arch_switch
895# define finish_arch_switch(prev) do { } while (0)
896#endif
897
051a1d1a
DA
898static inline int task_current(struct rq *rq, struct task_struct *p)
899{
900 return rq->curr == p;
901}
902
4866cde0 903#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 904static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 905{
051a1d1a 906 return task_current(rq, p);
4866cde0
NP
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911}
912
70b97a7f 913static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 914{
da04c035
IM
915#ifdef CONFIG_DEBUG_SPINLOCK
916 /* this is a valid case when another task releases the spinlock */
917 rq->lock.owner = current;
918#endif
8a25d5de
IM
919 /*
920 * If we are tracking spinlock dependencies then we have to
921 * fix up the runqueue lock - which gets 'carried over' from
922 * prev into current:
923 */
924 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
925
4866cde0
NP
926 spin_unlock_irq(&rq->lock);
927}
928
929#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 930static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
931{
932#ifdef CONFIG_SMP
933 return p->oncpu;
934#else
051a1d1a 935 return task_current(rq, p);
4866cde0
NP
936#endif
937}
938
70b97a7f 939static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
940{
941#ifdef CONFIG_SMP
942 /*
943 * We can optimise this out completely for !SMP, because the
944 * SMP rebalancing from interrupt is the only thing that cares
945 * here.
946 */
947 next->oncpu = 1;
948#endif
949#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
950 spin_unlock_irq(&rq->lock);
951#else
952 spin_unlock(&rq->lock);
953#endif
954}
955
70b97a7f 956static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
957{
958#ifdef CONFIG_SMP
959 /*
960 * After ->oncpu is cleared, the task can be moved to a different CPU.
961 * We must ensure this doesn't happen until the switch is completely
962 * finished.
963 */
964 smp_wmb();
965 prev->oncpu = 0;
966#endif
967#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 local_irq_enable();
1da177e4 969#endif
4866cde0
NP
970}
971#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 972
b29739f9
IM
973/*
974 * __task_rq_lock - lock the runqueue a given task resides on.
975 * Must be called interrupts disabled.
976 */
70b97a7f 977static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
978 __acquires(rq->lock)
979{
3a5c359a
AK
980 for (;;) {
981 struct rq *rq = task_rq(p);
982 spin_lock(&rq->lock);
983 if (likely(rq == task_rq(p)))
984 return rq;
b29739f9 985 spin_unlock(&rq->lock);
b29739f9 986 }
b29739f9
IM
987}
988
1da177e4
LT
989/*
990 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 991 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
992 * explicitly disabling preemption.
993 */
70b97a7f 994static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4 998
3a5c359a
AK
999 for (;;) {
1000 local_irq_save(*flags);
1001 rq = task_rq(p);
1002 spin_lock(&rq->lock);
1003 if (likely(rq == task_rq(p)))
1004 return rq;
1da177e4 1005 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1006 }
1da177e4
LT
1007}
1008
ad474cac
ON
1009void task_rq_unlock_wait(struct task_struct *p)
1010{
1011 struct rq *rq = task_rq(p);
1012
1013 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1014 spin_unlock_wait(&rq->lock);
1015}
1016
a9957449 1017static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1018 __releases(rq->lock)
1019{
1020 spin_unlock(&rq->lock);
1021}
1022
70b97a7f 1023static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1024 __releases(rq->lock)
1025{
1026 spin_unlock_irqrestore(&rq->lock, *flags);
1027}
1028
1da177e4 1029/*
cc2a73b5 1030 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1031 */
a9957449 1032static struct rq *this_rq_lock(void)
1da177e4
LT
1033 __acquires(rq->lock)
1034{
70b97a7f 1035 struct rq *rq;
1da177e4
LT
1036
1037 local_irq_disable();
1038 rq = this_rq();
1039 spin_lock(&rq->lock);
1040
1041 return rq;
1042}
1043
8f4d37ec
PZ
1044#ifdef CONFIG_SCHED_HRTICK
1045/*
1046 * Use HR-timers to deliver accurate preemption points.
1047 *
1048 * Its all a bit involved since we cannot program an hrt while holding the
1049 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1050 * reschedule event.
1051 *
1052 * When we get rescheduled we reprogram the hrtick_timer outside of the
1053 * rq->lock.
1054 */
8f4d37ec
PZ
1055
1056/*
1057 * Use hrtick when:
1058 * - enabled by features
1059 * - hrtimer is actually high res
1060 */
1061static inline int hrtick_enabled(struct rq *rq)
1062{
1063 if (!sched_feat(HRTICK))
1064 return 0;
ba42059f 1065 if (!cpu_active(cpu_of(rq)))
b328ca18 1066 return 0;
8f4d37ec
PZ
1067 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068}
1069
8f4d37ec
PZ
1070static void hrtick_clear(struct rq *rq)
1071{
1072 if (hrtimer_active(&rq->hrtick_timer))
1073 hrtimer_cancel(&rq->hrtick_timer);
1074}
1075
8f4d37ec
PZ
1076/*
1077 * High-resolution timer tick.
1078 * Runs from hardirq context with interrupts disabled.
1079 */
1080static enum hrtimer_restart hrtick(struct hrtimer *timer)
1081{
1082 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1083
1084 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1085
1086 spin_lock(&rq->lock);
3e51f33f 1087 update_rq_clock(rq);
8f4d37ec
PZ
1088 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1089 spin_unlock(&rq->lock);
1090
1091 return HRTIMER_NORESTART;
1092}
1093
95e904c7 1094#ifdef CONFIG_SMP
31656519
PZ
1095/*
1096 * called from hardirq (IPI) context
1097 */
1098static void __hrtick_start(void *arg)
b328ca18 1099{
31656519 1100 struct rq *rq = arg;
b328ca18 1101
31656519
PZ
1102 spin_lock(&rq->lock);
1103 hrtimer_restart(&rq->hrtick_timer);
1104 rq->hrtick_csd_pending = 0;
1105 spin_unlock(&rq->lock);
b328ca18
PZ
1106}
1107
31656519
PZ
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1114{
31656519
PZ
1115 struct hrtimer *timer = &rq->hrtick_timer;
1116 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1117
cc584b21 1118 hrtimer_set_expires(timer, time);
31656519
PZ
1119
1120 if (rq == this_rq()) {
1121 hrtimer_restart(timer);
1122 } else if (!rq->hrtick_csd_pending) {
6e275637 1123 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1124 rq->hrtick_csd_pending = 1;
1125 }
b328ca18
PZ
1126}
1127
1128static int
1129hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1130{
1131 int cpu = (int)(long)hcpu;
1132
1133 switch (action) {
1134 case CPU_UP_CANCELED:
1135 case CPU_UP_CANCELED_FROZEN:
1136 case CPU_DOWN_PREPARE:
1137 case CPU_DOWN_PREPARE_FROZEN:
1138 case CPU_DEAD:
1139 case CPU_DEAD_FROZEN:
31656519 1140 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1141 return NOTIFY_OK;
1142 }
1143
1144 return NOTIFY_DONE;
1145}
1146
fa748203 1147static __init void init_hrtick(void)
b328ca18
PZ
1148{
1149 hotcpu_notifier(hotplug_hrtick, 0);
1150}
31656519
PZ
1151#else
1152/*
1153 * Called to set the hrtick timer state.
1154 *
1155 * called with rq->lock held and irqs disabled
1156 */
1157static void hrtick_start(struct rq *rq, u64 delay)
1158{
7f1e2ca9 1159 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1160 HRTIMER_MODE_REL_PINNED, 0);
31656519 1161}
b328ca18 1162
006c75f1 1163static inline void init_hrtick(void)
8f4d37ec 1164{
8f4d37ec 1165}
31656519 1166#endif /* CONFIG_SMP */
8f4d37ec 1167
31656519 1168static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1169{
31656519
PZ
1170#ifdef CONFIG_SMP
1171 rq->hrtick_csd_pending = 0;
8f4d37ec 1172
31656519
PZ
1173 rq->hrtick_csd.flags = 0;
1174 rq->hrtick_csd.func = __hrtick_start;
1175 rq->hrtick_csd.info = rq;
1176#endif
8f4d37ec 1177
31656519
PZ
1178 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 rq->hrtick_timer.function = hrtick;
8f4d37ec 1180}
006c75f1 1181#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1182static inline void hrtick_clear(struct rq *rq)
1183{
1184}
1185
8f4d37ec
PZ
1186static inline void init_rq_hrtick(struct rq *rq)
1187{
1188}
1189
b328ca18
PZ
1190static inline void init_hrtick(void)
1191{
1192}
006c75f1 1193#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1194
c24d20db
IM
1195/*
1196 * resched_task - mark a task 'to be rescheduled now'.
1197 *
1198 * On UP this means the setting of the need_resched flag, on SMP it
1199 * might also involve a cross-CPU call to trigger the scheduler on
1200 * the target CPU.
1201 */
1202#ifdef CONFIG_SMP
1203
1204#ifndef tsk_is_polling
1205#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1206#endif
1207
31656519 1208static void resched_task(struct task_struct *p)
c24d20db
IM
1209{
1210 int cpu;
1211
1212 assert_spin_locked(&task_rq(p)->lock);
1213
5ed0cec0 1214 if (test_tsk_need_resched(p))
c24d20db
IM
1215 return;
1216
5ed0cec0 1217 set_tsk_need_resched(p);
c24d20db
IM
1218
1219 cpu = task_cpu(p);
1220 if (cpu == smp_processor_id())
1221 return;
1222
1223 /* NEED_RESCHED must be visible before we test polling */
1224 smp_mb();
1225 if (!tsk_is_polling(p))
1226 smp_send_reschedule(cpu);
1227}
1228
1229static void resched_cpu(int cpu)
1230{
1231 struct rq *rq = cpu_rq(cpu);
1232 unsigned long flags;
1233
1234 if (!spin_trylock_irqsave(&rq->lock, flags))
1235 return;
1236 resched_task(cpu_curr(cpu));
1237 spin_unlock_irqrestore(&rq->lock, flags);
1238}
06d8308c
TG
1239
1240#ifdef CONFIG_NO_HZ
1241/*
1242 * When add_timer_on() enqueues a timer into the timer wheel of an
1243 * idle CPU then this timer might expire before the next timer event
1244 * which is scheduled to wake up that CPU. In case of a completely
1245 * idle system the next event might even be infinite time into the
1246 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1247 * leaves the inner idle loop so the newly added timer is taken into
1248 * account when the CPU goes back to idle and evaluates the timer
1249 * wheel for the next timer event.
1250 */
1251void wake_up_idle_cpu(int cpu)
1252{
1253 struct rq *rq = cpu_rq(cpu);
1254
1255 if (cpu == smp_processor_id())
1256 return;
1257
1258 /*
1259 * This is safe, as this function is called with the timer
1260 * wheel base lock of (cpu) held. When the CPU is on the way
1261 * to idle and has not yet set rq->curr to idle then it will
1262 * be serialized on the timer wheel base lock and take the new
1263 * timer into account automatically.
1264 */
1265 if (rq->curr != rq->idle)
1266 return;
1267
1268 /*
1269 * We can set TIF_RESCHED on the idle task of the other CPU
1270 * lockless. The worst case is that the other CPU runs the
1271 * idle task through an additional NOOP schedule()
1272 */
5ed0cec0 1273 set_tsk_need_resched(rq->idle);
06d8308c
TG
1274
1275 /* NEED_RESCHED must be visible before we test polling */
1276 smp_mb();
1277 if (!tsk_is_polling(rq->idle))
1278 smp_send_reschedule(cpu);
1279}
6d6bc0ad 1280#endif /* CONFIG_NO_HZ */
06d8308c 1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db
IM
1284{
1285 assert_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
6d6bc0ad 1288#endif /* CONFIG_SMP */
c24d20db 1289
45bf76df
IM
1290#if BITS_PER_LONG == 32
1291# define WMULT_CONST (~0UL)
1292#else
1293# define WMULT_CONST (1UL << 32)
1294#endif
1295
1296#define WMULT_SHIFT 32
1297
194081eb
IM
1298/*
1299 * Shift right and round:
1300 */
cf2ab469 1301#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1302
a7be37ac
PZ
1303/*
1304 * delta *= weight / lw
1305 */
cb1c4fc9 1306static unsigned long
45bf76df
IM
1307calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1308 struct load_weight *lw)
1309{
1310 u64 tmp;
1311
7a232e03
LJ
1312 if (!lw->inv_weight) {
1313 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1314 lw->inv_weight = 1;
1315 else
1316 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 / (lw->weight+1);
1318 }
45bf76df
IM
1319
1320 tmp = (u64)delta_exec * weight;
1321 /*
1322 * Check whether we'd overflow the 64-bit multiplication:
1323 */
194081eb 1324 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1325 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1326 WMULT_SHIFT/2);
1327 else
cf2ab469 1328 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1329
ecf691da 1330 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1334{
1335 lw->weight += inc;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
1091985b 1339static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1340{
1341 lw->weight -= dec;
e89996ae 1342 lw->inv_weight = 0;
45bf76df
IM
1343}
1344
2dd73a4f
PW
1345/*
1346 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1347 * of tasks with abnormal "nice" values across CPUs the contribution that
1348 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1349 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1350 * scaled version of the new time slice allocation that they receive on time
1351 * slice expiry etc.
1352 */
1353
cce7ade8
PZ
1354#define WEIGHT_IDLEPRIO 3
1355#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1356
1357/*
1358 * Nice levels are multiplicative, with a gentle 10% change for every
1359 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1360 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1361 * that remained on nice 0.
1362 *
1363 * The "10% effect" is relative and cumulative: from _any_ nice level,
1364 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1365 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1366 * If a task goes up by ~10% and another task goes down by ~10% then
1367 * the relative distance between them is ~25%.)
dd41f596
IM
1368 */
1369static const int prio_to_weight[40] = {
254753dc
IM
1370 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1371 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1372 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1373 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1374 /* 0 */ 1024, 820, 655, 526, 423,
1375 /* 5 */ 335, 272, 215, 172, 137,
1376 /* 10 */ 110, 87, 70, 56, 45,
1377 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1378};
1379
5714d2de
IM
1380/*
1381 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 *
1383 * In cases where the weight does not change often, we can use the
1384 * precalculated inverse to speed up arithmetics by turning divisions
1385 * into multiplications:
1386 */
dd41f596 1387static const u32 prio_to_wmult[40] = {
254753dc
IM
1388 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1389 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1390 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1391 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1392 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1393 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1394 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1395 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1396};
2dd73a4f 1397
dd41f596
IM
1398static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399
1400/*
1401 * runqueue iterator, to support SMP load-balancing between different
1402 * scheduling classes, without having to expose their internal data
1403 * structures to the load-balancing proper:
1404 */
1405struct rq_iterator {
1406 void *arg;
1407 struct task_struct *(*start)(void *);
1408 struct task_struct *(*next)(void *);
1409};
1410
e1d1484f
PW
1411#ifdef CONFIG_SMP
1412static unsigned long
1413balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 unsigned long max_load_move, struct sched_domain *sd,
1415 enum cpu_idle_type idle, int *all_pinned,
1416 int *this_best_prio, struct rq_iterator *iterator);
1417
1418static int
1419iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1420 struct sched_domain *sd, enum cpu_idle_type idle,
1421 struct rq_iterator *iterator);
e1d1484f 1422#endif
dd41f596 1423
ef12fefa
BR
1424/* Time spent by the tasks of the cpu accounting group executing in ... */
1425enum cpuacct_stat_index {
1426 CPUACCT_STAT_USER, /* ... user mode */
1427 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1428
1429 CPUACCT_STAT_NSTATS,
1430};
1431
d842de87
SV
1432#ifdef CONFIG_CGROUP_CPUACCT
1433static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1434static void cpuacct_update_stats(struct task_struct *tsk,
1435 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1436#else
1437static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1438static inline void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1440#endif
1441
18d95a28
PZ
1442static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_add(&rq->load, load);
1445}
1446
1447static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1448{
1449 update_load_sub(&rq->load, load);
1450}
1451
7940ca36 1452#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1453typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1454
1455/*
1456 * Iterate the full tree, calling @down when first entering a node and @up when
1457 * leaving it for the final time.
1458 */
eb755805 1459static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1460{
1461 struct task_group *parent, *child;
eb755805 1462 int ret;
c09595f6
PZ
1463
1464 rcu_read_lock();
1465 parent = &root_task_group;
1466down:
eb755805
PZ
1467 ret = (*down)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470 list_for_each_entry_rcu(child, &parent->children, siblings) {
1471 parent = child;
1472 goto down;
1473
1474up:
1475 continue;
1476 }
eb755805
PZ
1477 ret = (*up)(parent, data);
1478 if (ret)
1479 goto out_unlock;
c09595f6
PZ
1480
1481 child = parent;
1482 parent = parent->parent;
1483 if (parent)
1484 goto up;
eb755805 1485out_unlock:
c09595f6 1486 rcu_read_unlock();
eb755805
PZ
1487
1488 return ret;
c09595f6
PZ
1489}
1490
eb755805
PZ
1491static int tg_nop(struct task_group *tg, void *data)
1492{
1493 return 0;
c09595f6 1494}
eb755805
PZ
1495#endif
1496
1497#ifdef CONFIG_SMP
1498static unsigned long source_load(int cpu, int type);
1499static unsigned long target_load(int cpu, int type);
1500static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1501
1502static unsigned long cpu_avg_load_per_task(int cpu)
1503{
1504 struct rq *rq = cpu_rq(cpu);
af6d596f 1505 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1506
4cd42620
SR
1507 if (nr_running)
1508 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1509 else
1510 rq->avg_load_per_task = 0;
eb755805
PZ
1511
1512 return rq->avg_load_per_task;
1513}
1514
1515#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1516
c09595f6
PZ
1517static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518
1519/*
1520 * Calculate and set the cpu's group shares.
1521 */
1522static void
ffda12a1
PZ
1523update_group_shares_cpu(struct task_group *tg, int cpu,
1524 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1525{
c09595f6
PZ
1526 unsigned long shares;
1527 unsigned long rq_weight;
1528
c8cba857 1529 if (!tg->se[cpu])
c09595f6
PZ
1530 return;
1531
ec4e0e2f 1532 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1533
c09595f6
PZ
1534 /*
1535 * \Sum shares * rq_weight
1536 * shares = -----------------------
1537 * \Sum rq_weight
1538 *
1539 */
ec4e0e2f 1540 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1541 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1542
ffda12a1
PZ
1543 if (abs(shares - tg->se[cpu]->load.weight) >
1544 sysctl_sched_shares_thresh) {
1545 struct rq *rq = cpu_rq(cpu);
1546 unsigned long flags;
c09595f6 1547
ffda12a1 1548 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1549 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1550
ffda12a1
PZ
1551 __set_se_shares(tg->se[cpu], shares);
1552 spin_unlock_irqrestore(&rq->lock, flags);
1553 }
18d95a28 1554}
c09595f6
PZ
1555
1556/*
c8cba857
PZ
1557 * Re-compute the task group their per cpu shares over the given domain.
1558 * This needs to be done in a bottom-up fashion because the rq weight of a
1559 * parent group depends on the shares of its child groups.
c09595f6 1560 */
eb755805 1561static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1562{
ec4e0e2f 1563 unsigned long weight, rq_weight = 0;
c8cba857 1564 unsigned long shares = 0;
eb755805 1565 struct sched_domain *sd = data;
c8cba857 1566 int i;
c09595f6 1567
758b2cdc 1568 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1569 /*
1570 * If there are currently no tasks on the cpu pretend there
1571 * is one of average load so that when a new task gets to
1572 * run here it will not get delayed by group starvation.
1573 */
1574 weight = tg->cfs_rq[i]->load.weight;
1575 if (!weight)
1576 weight = NICE_0_LOAD;
1577
1578 tg->cfs_rq[i]->rq_weight = weight;
1579 rq_weight += weight;
c8cba857 1580 shares += tg->cfs_rq[i]->shares;
c09595f6 1581 }
c09595f6 1582
c8cba857
PZ
1583 if ((!shares && rq_weight) || shares > tg->shares)
1584 shares = tg->shares;
1585
1586 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1587 shares = tg->shares;
c09595f6 1588
758b2cdc 1589 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1590 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1591
1592 return 0;
c09595f6
PZ
1593}
1594
1595/*
c8cba857
PZ
1596 * Compute the cpu's hierarchical load factor for each task group.
1597 * This needs to be done in a top-down fashion because the load of a child
1598 * group is a fraction of its parents load.
c09595f6 1599 */
eb755805 1600static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1601{
c8cba857 1602 unsigned long load;
eb755805 1603 long cpu = (long)data;
c09595f6 1604
c8cba857
PZ
1605 if (!tg->parent) {
1606 load = cpu_rq(cpu)->load.weight;
1607 } else {
1608 load = tg->parent->cfs_rq[cpu]->h_load;
1609 load *= tg->cfs_rq[cpu]->shares;
1610 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1611 }
c09595f6 1612
c8cba857 1613 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1614
eb755805 1615 return 0;
c09595f6
PZ
1616}
1617
c8cba857 1618static void update_shares(struct sched_domain *sd)
4d8d595d 1619{
2398f2c6
PZ
1620 u64 now = cpu_clock(raw_smp_processor_id());
1621 s64 elapsed = now - sd->last_update;
1622
1623 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1624 sd->last_update = now;
eb755805 1625 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1626 }
4d8d595d
PZ
1627}
1628
3e5459b4
PZ
1629static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1630{
1631 spin_unlock(&rq->lock);
1632 update_shares(sd);
1633 spin_lock(&rq->lock);
1634}
1635
eb755805 1636static void update_h_load(long cpu)
c09595f6 1637{
eb755805 1638 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1639}
1640
c09595f6
PZ
1641#else
1642
c8cba857 1643static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1644{
1645}
1646
3e5459b4
PZ
1647static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1648{
1649}
1650
18d95a28
PZ
1651#endif
1652
8f45e2b5
GH
1653#ifdef CONFIG_PREEMPT
1654
70574a99 1655/*
8f45e2b5
GH
1656 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1657 * way at the expense of forcing extra atomic operations in all
1658 * invocations. This assures that the double_lock is acquired using the
1659 * same underlying policy as the spinlock_t on this architecture, which
1660 * reduces latency compared to the unfair variant below. However, it
1661 * also adds more overhead and therefore may reduce throughput.
70574a99 1662 */
8f45e2b5
GH
1663static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1664 __releases(this_rq->lock)
1665 __acquires(busiest->lock)
1666 __acquires(this_rq->lock)
1667{
1668 spin_unlock(&this_rq->lock);
1669 double_rq_lock(this_rq, busiest);
1670
1671 return 1;
1672}
1673
1674#else
1675/*
1676 * Unfair double_lock_balance: Optimizes throughput at the expense of
1677 * latency by eliminating extra atomic operations when the locks are
1678 * already in proper order on entry. This favors lower cpu-ids and will
1679 * grant the double lock to lower cpus over higher ids under contention,
1680 * regardless of entry order into the function.
1681 */
1682static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1683 __releases(this_rq->lock)
1684 __acquires(busiest->lock)
1685 __acquires(this_rq->lock)
1686{
1687 int ret = 0;
1688
70574a99
AD
1689 if (unlikely(!spin_trylock(&busiest->lock))) {
1690 if (busiest < this_rq) {
1691 spin_unlock(&this_rq->lock);
1692 spin_lock(&busiest->lock);
1693 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1694 ret = 1;
1695 } else
1696 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1697 }
1698 return ret;
1699}
1700
8f45e2b5
GH
1701#endif /* CONFIG_PREEMPT */
1702
1703/*
1704 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1705 */
1706static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707{
1708 if (unlikely(!irqs_disabled())) {
1709 /* printk() doesn't work good under rq->lock */
1710 spin_unlock(&this_rq->lock);
1711 BUG_ON(1);
1712 }
1713
1714 return _double_lock_balance(this_rq, busiest);
1715}
1716
70574a99
AD
1717static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1718 __releases(busiest->lock)
1719{
1720 spin_unlock(&busiest->lock);
1721 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1722}
18d95a28
PZ
1723#endif
1724
30432094 1725#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1726static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1727{
30432094 1728#ifdef CONFIG_SMP
34e83e85
IM
1729 cfs_rq->shares = shares;
1730#endif
1731}
30432094 1732#endif
e7693a36 1733
dce48a84
TG
1734static void calc_load_account_active(struct rq *this_rq);
1735
dd41f596 1736#include "sched_stats.h"
dd41f596 1737#include "sched_idletask.c"
5522d5d5
IM
1738#include "sched_fair.c"
1739#include "sched_rt.c"
dd41f596
IM
1740#ifdef CONFIG_SCHED_DEBUG
1741# include "sched_debug.c"
1742#endif
1743
1744#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1745#define for_each_class(class) \
1746 for (class = sched_class_highest; class; class = class->next)
dd41f596 1747
c09595f6 1748static void inc_nr_running(struct rq *rq)
9c217245
IM
1749{
1750 rq->nr_running++;
9c217245
IM
1751}
1752
c09595f6 1753static void dec_nr_running(struct rq *rq)
9c217245
IM
1754{
1755 rq->nr_running--;
9c217245
IM
1756}
1757
45bf76df
IM
1758static void set_load_weight(struct task_struct *p)
1759{
1760 if (task_has_rt_policy(p)) {
dd41f596
IM
1761 p->se.load.weight = prio_to_weight[0] * 2;
1762 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1763 return;
1764 }
45bf76df 1765
dd41f596
IM
1766 /*
1767 * SCHED_IDLE tasks get minimal weight:
1768 */
1769 if (p->policy == SCHED_IDLE) {
1770 p->se.load.weight = WEIGHT_IDLEPRIO;
1771 p->se.load.inv_weight = WMULT_IDLEPRIO;
1772 return;
1773 }
71f8bd46 1774
dd41f596
IM
1775 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1776 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1777}
1778
2087a1ad
GH
1779static void update_avg(u64 *avg, u64 sample)
1780{
1781 s64 diff = sample - *avg;
1782 *avg += diff >> 3;
1783}
1784
8159f87e 1785static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1786{
831451ac
PZ
1787 if (wakeup)
1788 p->se.start_runtime = p->se.sum_exec_runtime;
1789
dd41f596 1790 sched_info_queued(p);
fd390f6a 1791 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1792 p->se.on_rq = 1;
71f8bd46
IM
1793}
1794
69be72c1 1795static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1796{
831451ac
PZ
1797 if (sleep) {
1798 if (p->se.last_wakeup) {
1799 update_avg(&p->se.avg_overlap,
1800 p->se.sum_exec_runtime - p->se.last_wakeup);
1801 p->se.last_wakeup = 0;
1802 } else {
1803 update_avg(&p->se.avg_wakeup,
1804 sysctl_sched_wakeup_granularity);
1805 }
2087a1ad
GH
1806 }
1807
46ac22ba 1808 sched_info_dequeued(p);
f02231e5 1809 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1810 p->se.on_rq = 0;
71f8bd46
IM
1811}
1812
14531189 1813/*
dd41f596 1814 * __normal_prio - return the priority that is based on the static prio
14531189 1815 */
14531189
IM
1816static inline int __normal_prio(struct task_struct *p)
1817{
dd41f596 1818 return p->static_prio;
14531189
IM
1819}
1820
b29739f9
IM
1821/*
1822 * Calculate the expected normal priority: i.e. priority
1823 * without taking RT-inheritance into account. Might be
1824 * boosted by interactivity modifiers. Changes upon fork,
1825 * setprio syscalls, and whenever the interactivity
1826 * estimator recalculates.
1827 */
36c8b586 1828static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1829{
1830 int prio;
1831
e05606d3 1832 if (task_has_rt_policy(p))
b29739f9
IM
1833 prio = MAX_RT_PRIO-1 - p->rt_priority;
1834 else
1835 prio = __normal_prio(p);
1836 return prio;
1837}
1838
1839/*
1840 * Calculate the current priority, i.e. the priority
1841 * taken into account by the scheduler. This value might
1842 * be boosted by RT tasks, or might be boosted by
1843 * interactivity modifiers. Will be RT if the task got
1844 * RT-boosted. If not then it returns p->normal_prio.
1845 */
36c8b586 1846static int effective_prio(struct task_struct *p)
b29739f9
IM
1847{
1848 p->normal_prio = normal_prio(p);
1849 /*
1850 * If we are RT tasks or we were boosted to RT priority,
1851 * keep the priority unchanged. Otherwise, update priority
1852 * to the normal priority:
1853 */
1854 if (!rt_prio(p->prio))
1855 return p->normal_prio;
1856 return p->prio;
1857}
1858
1da177e4 1859/*
dd41f596 1860 * activate_task - move a task to the runqueue.
1da177e4 1861 */
dd41f596 1862static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1863{
d9514f6c 1864 if (task_contributes_to_load(p))
dd41f596 1865 rq->nr_uninterruptible--;
1da177e4 1866
8159f87e 1867 enqueue_task(rq, p, wakeup);
c09595f6 1868 inc_nr_running(rq);
1da177e4
LT
1869}
1870
1da177e4
LT
1871/*
1872 * deactivate_task - remove a task from the runqueue.
1873 */
2e1cb74a 1874static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1875{
d9514f6c 1876 if (task_contributes_to_load(p))
dd41f596
IM
1877 rq->nr_uninterruptible++;
1878
69be72c1 1879 dequeue_task(rq, p, sleep);
c09595f6 1880 dec_nr_running(rq);
1da177e4
LT
1881}
1882
1da177e4
LT
1883/**
1884 * task_curr - is this task currently executing on a CPU?
1885 * @p: the task in question.
1886 */
36c8b586 1887inline int task_curr(const struct task_struct *p)
1da177e4
LT
1888{
1889 return cpu_curr(task_cpu(p)) == p;
1890}
1891
dd41f596
IM
1892static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1893{
6f505b16 1894 set_task_rq(p, cpu);
dd41f596 1895#ifdef CONFIG_SMP
ce96b5ac
DA
1896 /*
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfuly executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1900 */
1901 smp_wmb();
dd41f596 1902 task_thread_info(p)->cpu = cpu;
dd41f596 1903#endif
2dd73a4f
PW
1904}
1905
cb469845
SR
1906static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1907 const struct sched_class *prev_class,
1908 int oldprio, int running)
1909{
1910 if (prev_class != p->sched_class) {
1911 if (prev_class->switched_from)
1912 prev_class->switched_from(rq, p, running);
1913 p->sched_class->switched_to(rq, p, running);
1914 } else
1915 p->sched_class->prio_changed(rq, p, oldprio, running);
1916}
1917
1da177e4 1918#ifdef CONFIG_SMP
c65cc870 1919
e958b360
TG
1920/* Used instead of source_load when we know the type == 0 */
1921static unsigned long weighted_cpuload(const int cpu)
1922{
1923 return cpu_rq(cpu)->load.weight;
1924}
1925
cc367732
IM
1926/*
1927 * Is this task likely cache-hot:
1928 */
e7693a36 1929static int
cc367732
IM
1930task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1931{
1932 s64 delta;
1933
f540a608
IM
1934 /*
1935 * Buddy candidates are cache hot:
1936 */
4793241b
PZ
1937 if (sched_feat(CACHE_HOT_BUDDY) &&
1938 (&p->se == cfs_rq_of(&p->se)->next ||
1939 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1940 return 1;
1941
cc367732
IM
1942 if (p->sched_class != &fair_sched_class)
1943 return 0;
1944
6bc1665b
IM
1945 if (sysctl_sched_migration_cost == -1)
1946 return 1;
1947 if (sysctl_sched_migration_cost == 0)
1948 return 0;
1949
cc367732
IM
1950 delta = now - p->se.exec_start;
1951
1952 return delta < (s64)sysctl_sched_migration_cost;
1953}
1954
1955
dd41f596 1956void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1957{
dd41f596
IM
1958 int old_cpu = task_cpu(p);
1959 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1960 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1961 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1962 u64 clock_offset;
dd41f596
IM
1963
1964 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1965
de1d7286 1966 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1967
6cfb0d5d
IM
1968#ifdef CONFIG_SCHEDSTATS
1969 if (p->se.wait_start)
1970 p->se.wait_start -= clock_offset;
dd41f596
IM
1971 if (p->se.sleep_start)
1972 p->se.sleep_start -= clock_offset;
1973 if (p->se.block_start)
1974 p->se.block_start -= clock_offset;
6c594c21 1975#endif
cc367732 1976 if (old_cpu != new_cpu) {
6c594c21 1977 p->se.nr_migrations++;
23a185ca 1978 new_rq->nr_migrations_in++;
6c594c21 1979#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1980 if (task_hot(p, old_rq->clock, NULL))
1981 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1982#endif
e5289d4a
PZ
1983 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
1984 1, 1, NULL, 0);
6c594c21 1985 }
2830cf8c
SV
1986 p->se.vruntime -= old_cfsrq->min_vruntime -
1987 new_cfsrq->min_vruntime;
dd41f596
IM
1988
1989 __set_task_cpu(p, new_cpu);
c65cc870
IM
1990}
1991
70b97a7f 1992struct migration_req {
1da177e4 1993 struct list_head list;
1da177e4 1994
36c8b586 1995 struct task_struct *task;
1da177e4
LT
1996 int dest_cpu;
1997
1da177e4 1998 struct completion done;
70b97a7f 1999};
1da177e4
LT
2000
2001/*
2002 * The task's runqueue lock must be held.
2003 * Returns true if you have to wait for migration thread.
2004 */
36c8b586 2005static int
70b97a7f 2006migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2007{
70b97a7f 2008 struct rq *rq = task_rq(p);
1da177e4
LT
2009
2010 /*
2011 * If the task is not on a runqueue (and not running), then
2012 * it is sufficient to simply update the task's cpu field.
2013 */
dd41f596 2014 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2015 set_task_cpu(p, dest_cpu);
2016 return 0;
2017 }
2018
2019 init_completion(&req->done);
1da177e4
LT
2020 req->task = p;
2021 req->dest_cpu = dest_cpu;
2022 list_add(&req->list, &rq->migration_queue);
48f24c4d 2023
1da177e4
LT
2024 return 1;
2025}
2026
a26b89f0
MM
2027/*
2028 * wait_task_context_switch - wait for a thread to complete at least one
2029 * context switch.
2030 *
2031 * @p must not be current.
2032 */
2033void wait_task_context_switch(struct task_struct *p)
2034{
2035 unsigned long nvcsw, nivcsw, flags;
2036 int running;
2037 struct rq *rq;
2038
2039 nvcsw = p->nvcsw;
2040 nivcsw = p->nivcsw;
2041 for (;;) {
2042 /*
2043 * The runqueue is assigned before the actual context
2044 * switch. We need to take the runqueue lock.
2045 *
2046 * We could check initially without the lock but it is
2047 * very likely that we need to take the lock in every
2048 * iteration.
2049 */
2050 rq = task_rq_lock(p, &flags);
2051 running = task_running(rq, p);
2052 task_rq_unlock(rq, &flags);
2053
2054 if (likely(!running))
2055 break;
2056 /*
2057 * The switch count is incremented before the actual
2058 * context switch. We thus wait for two switches to be
2059 * sure at least one completed.
2060 */
2061 if ((p->nvcsw - nvcsw) > 1)
2062 break;
2063 if ((p->nivcsw - nivcsw) > 1)
2064 break;
2065
2066 cpu_relax();
2067 }
2068}
2069
1da177e4
LT
2070/*
2071 * wait_task_inactive - wait for a thread to unschedule.
2072 *
85ba2d86
RM
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2079 *
1da177e4
LT
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2085 */
85ba2d86 2086unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2087{
2088 unsigned long flags;
dd41f596 2089 int running, on_rq;
85ba2d86 2090 unsigned long ncsw;
70b97a7f 2091 struct rq *rq;
1da177e4 2092
3a5c359a
AK
2093 for (;;) {
2094 /*
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2098 * work out!
2099 */
2100 rq = task_rq(p);
fa490cfd 2101
3a5c359a
AK
2102 /*
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2105 * any locks.
2106 *
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2112 */
85ba2d86
RM
2113 while (task_running(rq, p)) {
2114 if (match_state && unlikely(p->state != match_state))
2115 return 0;
3a5c359a 2116 cpu_relax();
85ba2d86 2117 }
fa490cfd 2118
3a5c359a
AK
2119 /*
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2123 */
2124 rq = task_rq_lock(p, &flags);
0a16b607 2125 trace_sched_wait_task(rq, p);
3a5c359a
AK
2126 running = task_running(rq, p);
2127 on_rq = p->se.on_rq;
85ba2d86 2128 ncsw = 0;
f31e11d8 2129 if (!match_state || p->state == match_state)
93dcf55f 2130 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2131 task_rq_unlock(rq, &flags);
fa490cfd 2132
85ba2d86
RM
2133 /*
2134 * If it changed from the expected state, bail out now.
2135 */
2136 if (unlikely(!ncsw))
2137 break;
2138
3a5c359a
AK
2139 /*
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2142 *
2143 * Oops. Go back and try again..
2144 */
2145 if (unlikely(running)) {
2146 cpu_relax();
2147 continue;
2148 }
fa490cfd 2149
3a5c359a
AK
2150 /*
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2153 * preempted!
2154 *
80dd99b3 2155 * So if it was still runnable (but just not actively
3a5c359a
AK
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2158 */
2159 if (unlikely(on_rq)) {
2160 schedule_timeout_uninterruptible(1);
2161 continue;
2162 }
fa490cfd 2163
3a5c359a
AK
2164 /*
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2168 */
2169 break;
2170 }
85ba2d86
RM
2171
2172 return ncsw;
1da177e4
LT
2173}
2174
2175/***
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2178 *
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2181 *
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2186 * achieved as well.
2187 */
36c8b586 2188void kick_process(struct task_struct *p)
1da177e4
LT
2189{
2190 int cpu;
2191
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if ((cpu != smp_processor_id()) && task_curr(p))
2195 smp_send_reschedule(cpu);
2196 preempt_enable();
2197}
b43e3521 2198EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2199
2200/*
2dd73a4f
PW
2201 * Return a low guess at the load of a migration-source cpu weighted
2202 * according to the scheduling class and "nice" value.
1da177e4
LT
2203 *
2204 * We want to under-estimate the load of migration sources, to
2205 * balance conservatively.
2206 */
a9957449 2207static unsigned long source_load(int cpu, int type)
1da177e4 2208{
70b97a7f 2209 struct rq *rq = cpu_rq(cpu);
dd41f596 2210 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2211
93b75217 2212 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2213 return total;
b910472d 2214
dd41f596 2215 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2216}
2217
2218/*
2dd73a4f
PW
2219 * Return a high guess at the load of a migration-target cpu weighted
2220 * according to the scheduling class and "nice" value.
1da177e4 2221 */
a9957449 2222static unsigned long target_load(int cpu, int type)
1da177e4 2223{
70b97a7f 2224 struct rq *rq = cpu_rq(cpu);
dd41f596 2225 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2226
93b75217 2227 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2228 return total;
3b0bd9bc 2229
dd41f596 2230 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2231}
2232
147cbb4b
NP
2233/*
2234 * find_idlest_group finds and returns the least busy CPU group within the
2235 * domain.
2236 */
2237static struct sched_group *
2238find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2239{
2240 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2241 unsigned long min_load = ULONG_MAX, this_load = 0;
2242 int load_idx = sd->forkexec_idx;
2243 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2244
2245 do {
2246 unsigned long load, avg_load;
2247 int local_group;
2248 int i;
2249
da5a5522 2250 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2251 if (!cpumask_intersects(sched_group_cpus(group),
2252 &p->cpus_allowed))
3a5c359a 2253 continue;
da5a5522 2254
758b2cdc
RR
2255 local_group = cpumask_test_cpu(this_cpu,
2256 sched_group_cpus(group));
147cbb4b
NP
2257
2258 /* Tally up the load of all CPUs in the group */
2259 avg_load = 0;
2260
758b2cdc 2261 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2262 /* Bias balancing toward cpus of our domain */
2263 if (local_group)
2264 load = source_load(i, load_idx);
2265 else
2266 load = target_load(i, load_idx);
2267
2268 avg_load += load;
2269 }
2270
2271 /* Adjust by relative CPU power of the group */
5517d86b
ED
2272 avg_load = sg_div_cpu_power(group,
2273 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2274
2275 if (local_group) {
2276 this_load = avg_load;
2277 this = group;
2278 } else if (avg_load < min_load) {
2279 min_load = avg_load;
2280 idlest = group;
2281 }
3a5c359a 2282 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2283
2284 if (!idlest || 100*this_load < imbalance*min_load)
2285 return NULL;
2286 return idlest;
2287}
2288
2289/*
0feaece9 2290 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2291 */
95cdf3b7 2292static int
758b2cdc 2293find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2294{
2295 unsigned long load, min_load = ULONG_MAX;
2296 int idlest = -1;
2297 int i;
2298
da5a5522 2299 /* Traverse only the allowed CPUs */
758b2cdc 2300 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2301 load = weighted_cpuload(i);
147cbb4b
NP
2302
2303 if (load < min_load || (load == min_load && i == this_cpu)) {
2304 min_load = load;
2305 idlest = i;
2306 }
2307 }
2308
2309 return idlest;
2310}
2311
476d139c
NP
2312/*
2313 * sched_balance_self: balance the current task (running on cpu) in domains
2314 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2315 * SD_BALANCE_EXEC.
2316 *
2317 * Balance, ie. select the least loaded group.
2318 *
2319 * Returns the target CPU number, or the same CPU if no balancing is needed.
2320 *
2321 * preempt must be disabled.
2322 */
2323static int sched_balance_self(int cpu, int flag)
2324{
2325 struct task_struct *t = current;
2326 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2327
c96d145e 2328 for_each_domain(cpu, tmp) {
9761eea8
IM
2329 /*
2330 * If power savings logic is enabled for a domain, stop there.
2331 */
5c45bf27
SS
2332 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2333 break;
476d139c
NP
2334 if (tmp->flags & flag)
2335 sd = tmp;
c96d145e 2336 }
476d139c 2337
039a1c41
PZ
2338 if (sd)
2339 update_shares(sd);
2340
476d139c 2341 while (sd) {
476d139c 2342 struct sched_group *group;
1a848870
SS
2343 int new_cpu, weight;
2344
2345 if (!(sd->flags & flag)) {
2346 sd = sd->child;
2347 continue;
2348 }
476d139c 2349
476d139c 2350 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2351 if (!group) {
2352 sd = sd->child;
2353 continue;
2354 }
476d139c 2355
758b2cdc 2356 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2357 if (new_cpu == -1 || new_cpu == cpu) {
2358 /* Now try balancing at a lower domain level of cpu */
2359 sd = sd->child;
2360 continue;
2361 }
476d139c 2362
1a848870 2363 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2364 cpu = new_cpu;
758b2cdc 2365 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2366 sd = NULL;
476d139c 2367 for_each_domain(cpu, tmp) {
758b2cdc 2368 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2369 break;
2370 if (tmp->flags & flag)
2371 sd = tmp;
2372 }
2373 /* while loop will break here if sd == NULL */
2374 }
2375
2376 return cpu;
2377}
2378
2379#endif /* CONFIG_SMP */
1da177e4 2380
0793a61d
TG
2381/**
2382 * task_oncpu_function_call - call a function on the cpu on which a task runs
2383 * @p: the task to evaluate
2384 * @func: the function to be called
2385 * @info: the function call argument
2386 *
2387 * Calls the function @func when the task is currently running. This might
2388 * be on the current CPU, which just calls the function directly
2389 */
2390void task_oncpu_function_call(struct task_struct *p,
2391 void (*func) (void *info), void *info)
2392{
2393 int cpu;
2394
2395 preempt_disable();
2396 cpu = task_cpu(p);
2397 if (task_curr(p))
2398 smp_call_function_single(cpu, func, info, 1);
2399 preempt_enable();
2400}
2401
1da177e4
LT
2402/***
2403 * try_to_wake_up - wake up a thread
2404 * @p: the to-be-woken-up thread
2405 * @state: the mask of task states that can be woken
2406 * @sync: do a synchronous wakeup?
2407 *
2408 * Put it on the run-queue if it's not already there. The "current"
2409 * thread is always on the run-queue (except when the actual
2410 * re-schedule is in progress), and as such you're allowed to do
2411 * the simpler "current->state = TASK_RUNNING" to mark yourself
2412 * runnable without the overhead of this.
2413 *
2414 * returns failure only if the task is already active.
2415 */
36c8b586 2416static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2417{
cc367732 2418 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2419 unsigned long flags;
2420 long old_state;
70b97a7f 2421 struct rq *rq;
1da177e4 2422
b85d0667
IM
2423 if (!sched_feat(SYNC_WAKEUPS))
2424 sync = 0;
2425
2398f2c6 2426#ifdef CONFIG_SMP
57310a98 2427 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2428 struct sched_domain *sd;
2429
2430 this_cpu = raw_smp_processor_id();
2431 cpu = task_cpu(p);
2432
2433 for_each_domain(this_cpu, sd) {
758b2cdc 2434 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2435 update_shares(sd);
2436 break;
2437 }
2438 }
2439 }
2440#endif
2441
04e2f174 2442 smp_wmb();
1da177e4 2443 rq = task_rq_lock(p, &flags);
03e89e45 2444 update_rq_clock(rq);
1da177e4
LT
2445 old_state = p->state;
2446 if (!(old_state & state))
2447 goto out;
2448
dd41f596 2449 if (p->se.on_rq)
1da177e4
LT
2450 goto out_running;
2451
2452 cpu = task_cpu(p);
cc367732 2453 orig_cpu = cpu;
1da177e4
LT
2454 this_cpu = smp_processor_id();
2455
2456#ifdef CONFIG_SMP
2457 if (unlikely(task_running(rq, p)))
2458 goto out_activate;
2459
5d2f5a61
DA
2460 cpu = p->sched_class->select_task_rq(p, sync);
2461 if (cpu != orig_cpu) {
2462 set_task_cpu(p, cpu);
1da177e4
LT
2463 task_rq_unlock(rq, &flags);
2464 /* might preempt at this point */
2465 rq = task_rq_lock(p, &flags);
2466 old_state = p->state;
2467 if (!(old_state & state))
2468 goto out;
dd41f596 2469 if (p->se.on_rq)
1da177e4
LT
2470 goto out_running;
2471
2472 this_cpu = smp_processor_id();
2473 cpu = task_cpu(p);
2474 }
2475
e7693a36
GH
2476#ifdef CONFIG_SCHEDSTATS
2477 schedstat_inc(rq, ttwu_count);
2478 if (cpu == this_cpu)
2479 schedstat_inc(rq, ttwu_local);
2480 else {
2481 struct sched_domain *sd;
2482 for_each_domain(this_cpu, sd) {
758b2cdc 2483 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2484 schedstat_inc(sd, ttwu_wake_remote);
2485 break;
2486 }
2487 }
2488 }
6d6bc0ad 2489#endif /* CONFIG_SCHEDSTATS */
e7693a36 2490
1da177e4
LT
2491out_activate:
2492#endif /* CONFIG_SMP */
cc367732
IM
2493 schedstat_inc(p, se.nr_wakeups);
2494 if (sync)
2495 schedstat_inc(p, se.nr_wakeups_sync);
2496 if (orig_cpu != cpu)
2497 schedstat_inc(p, se.nr_wakeups_migrate);
2498 if (cpu == this_cpu)
2499 schedstat_inc(p, se.nr_wakeups_local);
2500 else
2501 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2502 activate_task(rq, p, 1);
1da177e4
LT
2503 success = 1;
2504
831451ac
PZ
2505 /*
2506 * Only attribute actual wakeups done by this task.
2507 */
2508 if (!in_interrupt()) {
2509 struct sched_entity *se = &current->se;
2510 u64 sample = se->sum_exec_runtime;
2511
2512 if (se->last_wakeup)
2513 sample -= se->last_wakeup;
2514 else
2515 sample -= se->start_runtime;
2516 update_avg(&se->avg_wakeup, sample);
2517
2518 se->last_wakeup = se->sum_exec_runtime;
2519 }
2520
1da177e4 2521out_running:
468a15bb 2522 trace_sched_wakeup(rq, p, success);
15afe09b 2523 check_preempt_curr(rq, p, sync);
4ae7d5ce 2524
1da177e4 2525 p->state = TASK_RUNNING;
9a897c5a
SR
2526#ifdef CONFIG_SMP
2527 if (p->sched_class->task_wake_up)
2528 p->sched_class->task_wake_up(rq, p);
2529#endif
1da177e4
LT
2530out:
2531 task_rq_unlock(rq, &flags);
2532
2533 return success;
2534}
2535
50fa610a
DH
2536/**
2537 * wake_up_process - Wake up a specific process
2538 * @p: The process to be woken up.
2539 *
2540 * Attempt to wake up the nominated process and move it to the set of runnable
2541 * processes. Returns 1 if the process was woken up, 0 if it was already
2542 * running.
2543 *
2544 * It may be assumed that this function implies a write memory barrier before
2545 * changing the task state if and only if any tasks are woken up.
2546 */
7ad5b3a5 2547int wake_up_process(struct task_struct *p)
1da177e4 2548{
d9514f6c 2549 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2550}
1da177e4
LT
2551EXPORT_SYMBOL(wake_up_process);
2552
7ad5b3a5 2553int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2554{
2555 return try_to_wake_up(p, state, 0);
2556}
2557
1da177e4
LT
2558/*
2559 * Perform scheduler related setup for a newly forked process p.
2560 * p is forked by current.
dd41f596
IM
2561 *
2562 * __sched_fork() is basic setup used by init_idle() too:
2563 */
2564static void __sched_fork(struct task_struct *p)
2565{
dd41f596
IM
2566 p->se.exec_start = 0;
2567 p->se.sum_exec_runtime = 0;
f6cf891c 2568 p->se.prev_sum_exec_runtime = 0;
6c594c21 2569 p->se.nr_migrations = 0;
4ae7d5ce
IM
2570 p->se.last_wakeup = 0;
2571 p->se.avg_overlap = 0;
831451ac
PZ
2572 p->se.start_runtime = 0;
2573 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2574
2575#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2576 p->se.wait_start = 0;
2577 p->se.wait_max = 0;
2578 p->se.wait_count = 0;
2579 p->se.wait_sum = 0;
2580
2581 p->se.sleep_start = 0;
2582 p->se.sleep_max = 0;
2583 p->se.sum_sleep_runtime = 0;
2584
2585 p->se.block_start = 0;
2586 p->se.block_max = 0;
2587 p->se.exec_max = 0;
2588 p->se.slice_max = 0;
2589
2590 p->se.nr_migrations_cold = 0;
2591 p->se.nr_failed_migrations_affine = 0;
2592 p->se.nr_failed_migrations_running = 0;
2593 p->se.nr_failed_migrations_hot = 0;
2594 p->se.nr_forced_migrations = 0;
2595 p->se.nr_forced2_migrations = 0;
2596
2597 p->se.nr_wakeups = 0;
2598 p->se.nr_wakeups_sync = 0;
2599 p->se.nr_wakeups_migrate = 0;
2600 p->se.nr_wakeups_local = 0;
2601 p->se.nr_wakeups_remote = 0;
2602 p->se.nr_wakeups_affine = 0;
2603 p->se.nr_wakeups_affine_attempts = 0;
2604 p->se.nr_wakeups_passive = 0;
2605 p->se.nr_wakeups_idle = 0;
2606
6cfb0d5d 2607#endif
476d139c 2608
fa717060 2609 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2610 p->se.on_rq = 0;
4a55bd5e 2611 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2612
e107be36
AK
2613#ifdef CONFIG_PREEMPT_NOTIFIERS
2614 INIT_HLIST_HEAD(&p->preempt_notifiers);
2615#endif
2616
1da177e4
LT
2617 /*
2618 * We mark the process as running here, but have not actually
2619 * inserted it onto the runqueue yet. This guarantees that
2620 * nobody will actually run it, and a signal or other external
2621 * event cannot wake it up and insert it on the runqueue either.
2622 */
2623 p->state = TASK_RUNNING;
dd41f596
IM
2624}
2625
2626/*
2627 * fork()/clone()-time setup:
2628 */
2629void sched_fork(struct task_struct *p, int clone_flags)
2630{
2631 int cpu = get_cpu();
2632
2633 __sched_fork(p);
2634
2635#ifdef CONFIG_SMP
2636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2637#endif
02e4bac2 2638 set_task_cpu(p, cpu);
b29739f9
IM
2639
2640 /*
b9dc29e7 2641 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2642 */
b9dc29e7 2643 p->prio = current->normal_prio;
ca94c442 2644
b9dc29e7
MG
2645 /*
2646 * Revert to default priority/policy on fork if requested.
2647 */
2648 if (unlikely(p->sched_reset_on_fork)) {
2649 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2650 p->policy = SCHED_NORMAL;
2651
2652 if (p->normal_prio < DEFAULT_PRIO)
2653 p->prio = DEFAULT_PRIO;
2654
6c697bdf
MG
2655 if (PRIO_TO_NICE(p->static_prio) < 0) {
2656 p->static_prio = NICE_TO_PRIO(0);
2657 set_load_weight(p);
2658 }
2659
b9dc29e7
MG
2660 /*
2661 * We don't need the reset flag anymore after the fork. It has
2662 * fulfilled its duty:
2663 */
2664 p->sched_reset_on_fork = 0;
2665 }
ca94c442 2666
2ddbf952
HS
2667 if (!rt_prio(p->prio))
2668 p->sched_class = &fair_sched_class;
b29739f9 2669
52f17b6c 2670#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2671 if (likely(sched_info_on()))
52f17b6c 2672 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2673#endif
d6077cb8 2674#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2675 p->oncpu = 0;
2676#endif
1da177e4 2677#ifdef CONFIG_PREEMPT
4866cde0 2678 /* Want to start with kernel preemption disabled. */
a1261f54 2679 task_thread_info(p)->preempt_count = 1;
1da177e4 2680#endif
917b627d
GH
2681 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2682
476d139c 2683 put_cpu();
1da177e4
LT
2684}
2685
2686/*
2687 * wake_up_new_task - wake up a newly created task for the first time.
2688 *
2689 * This function will do some initial scheduler statistics housekeeping
2690 * that must be done for every newly created context, then puts the task
2691 * on the runqueue and wakes it.
2692 */
7ad5b3a5 2693void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2694{
2695 unsigned long flags;
dd41f596 2696 struct rq *rq;
1da177e4
LT
2697
2698 rq = task_rq_lock(p, &flags);
147cbb4b 2699 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2700 update_rq_clock(rq);
1da177e4
LT
2701
2702 p->prio = effective_prio(p);
2703
b9dca1e0 2704 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2705 activate_task(rq, p, 0);
1da177e4 2706 } else {
1da177e4 2707 /*
dd41f596
IM
2708 * Let the scheduling class do new task startup
2709 * management (if any):
1da177e4 2710 */
ee0827d8 2711 p->sched_class->task_new(rq, p);
c09595f6 2712 inc_nr_running(rq);
1da177e4 2713 }
c71dd42d 2714 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2715 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2716#ifdef CONFIG_SMP
2717 if (p->sched_class->task_wake_up)
2718 p->sched_class->task_wake_up(rq, p);
2719#endif
dd41f596 2720 task_rq_unlock(rq, &flags);
1da177e4
LT
2721}
2722
e107be36
AK
2723#ifdef CONFIG_PREEMPT_NOTIFIERS
2724
2725/**
80dd99b3 2726 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2727 * @notifier: notifier struct to register
e107be36
AK
2728 */
2729void preempt_notifier_register(struct preempt_notifier *notifier)
2730{
2731 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2732}
2733EXPORT_SYMBOL_GPL(preempt_notifier_register);
2734
2735/**
2736 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2737 * @notifier: notifier struct to unregister
e107be36
AK
2738 *
2739 * This is safe to call from within a preemption notifier.
2740 */
2741void preempt_notifier_unregister(struct preempt_notifier *notifier)
2742{
2743 hlist_del(&notifier->link);
2744}
2745EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2746
2747static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2748{
2749 struct preempt_notifier *notifier;
2750 struct hlist_node *node;
2751
2752 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2753 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2754}
2755
2756static void
2757fire_sched_out_preempt_notifiers(struct task_struct *curr,
2758 struct task_struct *next)
2759{
2760 struct preempt_notifier *notifier;
2761 struct hlist_node *node;
2762
2763 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2764 notifier->ops->sched_out(notifier, next);
2765}
2766
6d6bc0ad 2767#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2768
2769static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2770{
2771}
2772
2773static void
2774fire_sched_out_preempt_notifiers(struct task_struct *curr,
2775 struct task_struct *next)
2776{
2777}
2778
6d6bc0ad 2779#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2780
4866cde0
NP
2781/**
2782 * prepare_task_switch - prepare to switch tasks
2783 * @rq: the runqueue preparing to switch
421cee29 2784 * @prev: the current task that is being switched out
4866cde0
NP
2785 * @next: the task we are going to switch to.
2786 *
2787 * This is called with the rq lock held and interrupts off. It must
2788 * be paired with a subsequent finish_task_switch after the context
2789 * switch.
2790 *
2791 * prepare_task_switch sets up locking and calls architecture specific
2792 * hooks.
2793 */
e107be36
AK
2794static inline void
2795prepare_task_switch(struct rq *rq, struct task_struct *prev,
2796 struct task_struct *next)
4866cde0 2797{
e107be36 2798 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2799 prepare_lock_switch(rq, next);
2800 prepare_arch_switch(next);
2801}
2802
1da177e4
LT
2803/**
2804 * finish_task_switch - clean up after a task-switch
344babaa 2805 * @rq: runqueue associated with task-switch
1da177e4
LT
2806 * @prev: the thread we just switched away from.
2807 *
4866cde0
NP
2808 * finish_task_switch must be called after the context switch, paired
2809 * with a prepare_task_switch call before the context switch.
2810 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2811 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2812 *
2813 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2814 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2815 * with the lock held can cause deadlocks; see schedule() for
2816 * details.)
2817 */
a9957449 2818static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2819 __releases(rq->lock)
2820{
1da177e4 2821 struct mm_struct *mm = rq->prev_mm;
55a101f8 2822 long prev_state;
967fc046
GH
2823#ifdef CONFIG_SMP
2824 int post_schedule = 0;
2825
2826 if (current->sched_class->needs_post_schedule)
2827 post_schedule = current->sched_class->needs_post_schedule(rq);
2828#endif
1da177e4
LT
2829
2830 rq->prev_mm = NULL;
2831
2832 /*
2833 * A task struct has one reference for the use as "current".
c394cc9f 2834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2835 * schedule one last time. The schedule call will never return, and
2836 * the scheduled task must drop that reference.
c394cc9f 2837 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2838 * still held, otherwise prev could be scheduled on another cpu, die
2839 * there before we look at prev->state, and then the reference would
2840 * be dropped twice.
2841 * Manfred Spraul <manfred@colorfullife.com>
2842 */
55a101f8 2843 prev_state = prev->state;
4866cde0 2844 finish_arch_switch(prev);
0793a61d 2845 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2846 finish_lock_switch(rq, prev);
9a897c5a 2847#ifdef CONFIG_SMP
967fc046 2848 if (post_schedule)
9a897c5a
SR
2849 current->sched_class->post_schedule(rq);
2850#endif
e8fa1362 2851
e107be36 2852 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2853 if (mm)
2854 mmdrop(mm);
c394cc9f 2855 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2856 /*
2857 * Remove function-return probe instances associated with this
2858 * task and put them back on the free list.
9761eea8 2859 */
c6fd91f0 2860 kprobe_flush_task(prev);
1da177e4 2861 put_task_struct(prev);
c6fd91f0 2862 }
1da177e4
LT
2863}
2864
2865/**
2866 * schedule_tail - first thing a freshly forked thread must call.
2867 * @prev: the thread we just switched away from.
2868 */
36c8b586 2869asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2870 __releases(rq->lock)
2871{
70b97a7f
IM
2872 struct rq *rq = this_rq();
2873
4866cde0
NP
2874 finish_task_switch(rq, prev);
2875#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2876 /* In this case, finish_task_switch does not reenable preemption */
2877 preempt_enable();
2878#endif
1da177e4 2879 if (current->set_child_tid)
b488893a 2880 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2881}
2882
2883/*
2884 * context_switch - switch to the new MM and the new
2885 * thread's register state.
2886 */
dd41f596 2887static inline void
70b97a7f 2888context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2889 struct task_struct *next)
1da177e4 2890{
dd41f596 2891 struct mm_struct *mm, *oldmm;
1da177e4 2892
e107be36 2893 prepare_task_switch(rq, prev, next);
0a16b607 2894 trace_sched_switch(rq, prev, next);
dd41f596
IM
2895 mm = next->mm;
2896 oldmm = prev->active_mm;
9226d125
ZA
2897 /*
2898 * For paravirt, this is coupled with an exit in switch_to to
2899 * combine the page table reload and the switch backend into
2900 * one hypercall.
2901 */
224101ed 2902 arch_start_context_switch(prev);
9226d125 2903
dd41f596 2904 if (unlikely(!mm)) {
1da177e4
LT
2905 next->active_mm = oldmm;
2906 atomic_inc(&oldmm->mm_count);
2907 enter_lazy_tlb(oldmm, next);
2908 } else
2909 switch_mm(oldmm, mm, next);
2910
dd41f596 2911 if (unlikely(!prev->mm)) {
1da177e4 2912 prev->active_mm = NULL;
1da177e4
LT
2913 rq->prev_mm = oldmm;
2914 }
3a5f5e48
IM
2915 /*
2916 * Since the runqueue lock will be released by the next
2917 * task (which is an invalid locking op but in the case
2918 * of the scheduler it's an obvious special-case), so we
2919 * do an early lockdep release here:
2920 */
2921#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2922 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2923#endif
1da177e4
LT
2924
2925 /* Here we just switch the register state and the stack. */
2926 switch_to(prev, next, prev);
2927
dd41f596
IM
2928 barrier();
2929 /*
2930 * this_rq must be evaluated again because prev may have moved
2931 * CPUs since it called schedule(), thus the 'rq' on its stack
2932 * frame will be invalid.
2933 */
2934 finish_task_switch(this_rq(), prev);
1da177e4
LT
2935}
2936
2937/*
2938 * nr_running, nr_uninterruptible and nr_context_switches:
2939 *
2940 * externally visible scheduler statistics: current number of runnable
2941 * threads, current number of uninterruptible-sleeping threads, total
2942 * number of context switches performed since bootup.
2943 */
2944unsigned long nr_running(void)
2945{
2946 unsigned long i, sum = 0;
2947
2948 for_each_online_cpu(i)
2949 sum += cpu_rq(i)->nr_running;
2950
2951 return sum;
2952}
2953
2954unsigned long nr_uninterruptible(void)
2955{
2956 unsigned long i, sum = 0;
2957
0a945022 2958 for_each_possible_cpu(i)
1da177e4
LT
2959 sum += cpu_rq(i)->nr_uninterruptible;
2960
2961 /*
2962 * Since we read the counters lockless, it might be slightly
2963 * inaccurate. Do not allow it to go below zero though:
2964 */
2965 if (unlikely((long)sum < 0))
2966 sum = 0;
2967
2968 return sum;
2969}
2970
2971unsigned long long nr_context_switches(void)
2972{
cc94abfc
SR
2973 int i;
2974 unsigned long long sum = 0;
1da177e4 2975
0a945022 2976 for_each_possible_cpu(i)
1da177e4
LT
2977 sum += cpu_rq(i)->nr_switches;
2978
2979 return sum;
2980}
2981
2982unsigned long nr_iowait(void)
2983{
2984 unsigned long i, sum = 0;
2985
0a945022 2986 for_each_possible_cpu(i)
1da177e4
LT
2987 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2988
2989 return sum;
2990}
2991
dce48a84
TG
2992/* Variables and functions for calc_load */
2993static atomic_long_t calc_load_tasks;
2994static unsigned long calc_load_update;
2995unsigned long avenrun[3];
2996EXPORT_SYMBOL(avenrun);
2997
2d02494f
TG
2998/**
2999 * get_avenrun - get the load average array
3000 * @loads: pointer to dest load array
3001 * @offset: offset to add
3002 * @shift: shift count to shift the result left
3003 *
3004 * These values are estimates at best, so no need for locking.
3005 */
3006void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3007{
3008 loads[0] = (avenrun[0] + offset) << shift;
3009 loads[1] = (avenrun[1] + offset) << shift;
3010 loads[2] = (avenrun[2] + offset) << shift;
3011}
3012
dce48a84
TG
3013static unsigned long
3014calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3015{
dce48a84
TG
3016 load *= exp;
3017 load += active * (FIXED_1 - exp);
3018 return load >> FSHIFT;
3019}
db1b1fef 3020
dce48a84
TG
3021/*
3022 * calc_load - update the avenrun load estimates 10 ticks after the
3023 * CPUs have updated calc_load_tasks.
3024 */
3025void calc_global_load(void)
3026{
3027 unsigned long upd = calc_load_update + 10;
3028 long active;
3029
3030 if (time_before(jiffies, upd))
3031 return;
db1b1fef 3032
dce48a84
TG
3033 active = atomic_long_read(&calc_load_tasks);
3034 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3035
dce48a84
TG
3036 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3037 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3038 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3039
3040 calc_load_update += LOAD_FREQ;
3041}
3042
3043/*
3044 * Either called from update_cpu_load() or from a cpu going idle
3045 */
3046static void calc_load_account_active(struct rq *this_rq)
3047{
3048 long nr_active, delta;
3049
3050 nr_active = this_rq->nr_running;
3051 nr_active += (long) this_rq->nr_uninterruptible;
3052
3053 if (nr_active != this_rq->calc_load_active) {
3054 delta = nr_active - this_rq->calc_load_active;
3055 this_rq->calc_load_active = nr_active;
3056 atomic_long_add(delta, &calc_load_tasks);
3057 }
db1b1fef
JS
3058}
3059
23a185ca
PM
3060/*
3061 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3062 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3063 */
23a185ca
PM
3064u64 cpu_nr_migrations(int cpu)
3065{
3066 return cpu_rq(cpu)->nr_migrations_in;
3067}
3068
48f24c4d 3069/*
dd41f596
IM
3070 * Update rq->cpu_load[] statistics. This function is usually called every
3071 * scheduler tick (TICK_NSEC).
48f24c4d 3072 */
dd41f596 3073static void update_cpu_load(struct rq *this_rq)
48f24c4d 3074{
495eca49 3075 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3076 int i, scale;
3077
3078 this_rq->nr_load_updates++;
dd41f596
IM
3079
3080 /* Update our load: */
3081 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3082 unsigned long old_load, new_load;
3083
3084 /* scale is effectively 1 << i now, and >> i divides by scale */
3085
3086 old_load = this_rq->cpu_load[i];
3087 new_load = this_load;
a25707f3
IM
3088 /*
3089 * Round up the averaging division if load is increasing. This
3090 * prevents us from getting stuck on 9 if the load is 10, for
3091 * example.
3092 */
3093 if (new_load > old_load)
3094 new_load += scale-1;
dd41f596
IM
3095 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3096 }
dce48a84
TG
3097
3098 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3099 this_rq->calc_load_update += LOAD_FREQ;
3100 calc_load_account_active(this_rq);
3101 }
48f24c4d
IM
3102}
3103
dd41f596
IM
3104#ifdef CONFIG_SMP
3105
1da177e4
LT
3106/*
3107 * double_rq_lock - safely lock two runqueues
3108 *
3109 * Note this does not disable interrupts like task_rq_lock,
3110 * you need to do so manually before calling.
3111 */
70b97a7f 3112static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3113 __acquires(rq1->lock)
3114 __acquires(rq2->lock)
3115{
054b9108 3116 BUG_ON(!irqs_disabled());
1da177e4
LT
3117 if (rq1 == rq2) {
3118 spin_lock(&rq1->lock);
3119 __acquire(rq2->lock); /* Fake it out ;) */
3120 } else {
c96d145e 3121 if (rq1 < rq2) {
1da177e4 3122 spin_lock(&rq1->lock);
5e710e37 3123 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3124 } else {
3125 spin_lock(&rq2->lock);
5e710e37 3126 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3127 }
3128 }
6e82a3be
IM
3129 update_rq_clock(rq1);
3130 update_rq_clock(rq2);
1da177e4
LT
3131}
3132
3133/*
3134 * double_rq_unlock - safely unlock two runqueues
3135 *
3136 * Note this does not restore interrupts like task_rq_unlock,
3137 * you need to do so manually after calling.
3138 */
70b97a7f 3139static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3140 __releases(rq1->lock)
3141 __releases(rq2->lock)
3142{
3143 spin_unlock(&rq1->lock);
3144 if (rq1 != rq2)
3145 spin_unlock(&rq2->lock);
3146 else
3147 __release(rq2->lock);
3148}
3149
1da177e4
LT
3150/*
3151 * If dest_cpu is allowed for this process, migrate the task to it.
3152 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3153 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3154 * the cpu_allowed mask is restored.
3155 */
36c8b586 3156static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3157{
70b97a7f 3158 struct migration_req req;
1da177e4 3159 unsigned long flags;
70b97a7f 3160 struct rq *rq;
1da177e4
LT
3161
3162 rq = task_rq_lock(p, &flags);
96f874e2 3163 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3164 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3165 goto out;
3166
3167 /* force the process onto the specified CPU */
3168 if (migrate_task(p, dest_cpu, &req)) {
3169 /* Need to wait for migration thread (might exit: take ref). */
3170 struct task_struct *mt = rq->migration_thread;
36c8b586 3171
1da177e4
LT
3172 get_task_struct(mt);
3173 task_rq_unlock(rq, &flags);
3174 wake_up_process(mt);
3175 put_task_struct(mt);
3176 wait_for_completion(&req.done);
36c8b586 3177
1da177e4
LT
3178 return;
3179 }
3180out:
3181 task_rq_unlock(rq, &flags);
3182}
3183
3184/*
476d139c
NP
3185 * sched_exec - execve() is a valuable balancing opportunity, because at
3186 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3187 */
3188void sched_exec(void)
3189{
1da177e4 3190 int new_cpu, this_cpu = get_cpu();
476d139c 3191 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3192 put_cpu();
476d139c
NP
3193 if (new_cpu != this_cpu)
3194 sched_migrate_task(current, new_cpu);
1da177e4
LT
3195}
3196
3197/*
3198 * pull_task - move a task from a remote runqueue to the local runqueue.
3199 * Both runqueues must be locked.
3200 */
dd41f596
IM
3201static void pull_task(struct rq *src_rq, struct task_struct *p,
3202 struct rq *this_rq, int this_cpu)
1da177e4 3203{
2e1cb74a 3204 deactivate_task(src_rq, p, 0);
1da177e4 3205 set_task_cpu(p, this_cpu);
dd41f596 3206 activate_task(this_rq, p, 0);
1da177e4
LT
3207 /*
3208 * Note that idle threads have a prio of MAX_PRIO, for this test
3209 * to be always true for them.
3210 */
15afe09b 3211 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3212}
3213
3214/*
3215 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3216 */
858119e1 3217static
70b97a7f 3218int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3219 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3220 int *all_pinned)
1da177e4 3221{
708dc512 3222 int tsk_cache_hot = 0;
1da177e4
LT
3223 /*
3224 * We do not migrate tasks that are:
3225 * 1) running (obviously), or
3226 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3227 * 3) are cache-hot on their current CPU.
3228 */
96f874e2 3229 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3230 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3231 return 0;
cc367732 3232 }
81026794
NP
3233 *all_pinned = 0;
3234
cc367732
IM
3235 if (task_running(rq, p)) {
3236 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3237 return 0;
cc367732 3238 }
1da177e4 3239
da84d961
IM
3240 /*
3241 * Aggressive migration if:
3242 * 1) task is cache cold, or
3243 * 2) too many balance attempts have failed.
3244 */
3245
708dc512
LH
3246 tsk_cache_hot = task_hot(p, rq->clock, sd);
3247 if (!tsk_cache_hot ||
3248 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3249#ifdef CONFIG_SCHEDSTATS
708dc512 3250 if (tsk_cache_hot) {
da84d961 3251 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3252 schedstat_inc(p, se.nr_forced_migrations);
3253 }
da84d961
IM
3254#endif
3255 return 1;
3256 }
3257
708dc512 3258 if (tsk_cache_hot) {
cc367732 3259 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3260 return 0;
cc367732 3261 }
1da177e4
LT
3262 return 1;
3263}
3264
e1d1484f
PW
3265static unsigned long
3266balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3267 unsigned long max_load_move, struct sched_domain *sd,
3268 enum cpu_idle_type idle, int *all_pinned,
3269 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3270{
051c6764 3271 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3272 struct task_struct *p;
3273 long rem_load_move = max_load_move;
1da177e4 3274
e1d1484f 3275 if (max_load_move == 0)
1da177e4
LT
3276 goto out;
3277
81026794
NP
3278 pinned = 1;
3279
1da177e4 3280 /*
dd41f596 3281 * Start the load-balancing iterator:
1da177e4 3282 */
dd41f596
IM
3283 p = iterator->start(iterator->arg);
3284next:
b82d9fdd 3285 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3286 goto out;
051c6764
PZ
3287
3288 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3289 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3290 p = iterator->next(iterator->arg);
3291 goto next;
1da177e4
LT
3292 }
3293
dd41f596 3294 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3295 pulled++;
dd41f596 3296 rem_load_move -= p->se.load.weight;
1da177e4 3297
7e96fa58
GH
3298#ifdef CONFIG_PREEMPT
3299 /*
3300 * NEWIDLE balancing is a source of latency, so preemptible kernels
3301 * will stop after the first task is pulled to minimize the critical
3302 * section.
3303 */
3304 if (idle == CPU_NEWLY_IDLE)
3305 goto out;
3306#endif
3307
2dd73a4f 3308 /*
b82d9fdd 3309 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3310 */
e1d1484f 3311 if (rem_load_move > 0) {
a4ac01c3
PW
3312 if (p->prio < *this_best_prio)
3313 *this_best_prio = p->prio;
dd41f596
IM
3314 p = iterator->next(iterator->arg);
3315 goto next;
1da177e4
LT
3316 }
3317out:
3318 /*
e1d1484f 3319 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3320 * so we can safely collect pull_task() stats here rather than
3321 * inside pull_task().
3322 */
3323 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3324
3325 if (all_pinned)
3326 *all_pinned = pinned;
e1d1484f
PW
3327
3328 return max_load_move - rem_load_move;
1da177e4
LT
3329}
3330
dd41f596 3331/*
43010659
PW
3332 * move_tasks tries to move up to max_load_move weighted load from busiest to
3333 * this_rq, as part of a balancing operation within domain "sd".
3334 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3335 *
3336 * Called with both runqueues locked.
3337 */
3338static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3339 unsigned long max_load_move,
dd41f596
IM
3340 struct sched_domain *sd, enum cpu_idle_type idle,
3341 int *all_pinned)
3342{
5522d5d5 3343 const struct sched_class *class = sched_class_highest;
43010659 3344 unsigned long total_load_moved = 0;
a4ac01c3 3345 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3346
3347 do {
43010659
PW
3348 total_load_moved +=
3349 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3350 max_load_move - total_load_moved,
a4ac01c3 3351 sd, idle, all_pinned, &this_best_prio);
dd41f596 3352 class = class->next;
c4acb2c0 3353
7e96fa58
GH
3354#ifdef CONFIG_PREEMPT
3355 /*
3356 * NEWIDLE balancing is a source of latency, so preemptible
3357 * kernels will stop after the first task is pulled to minimize
3358 * the critical section.
3359 */
c4acb2c0
GH
3360 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3361 break;
7e96fa58 3362#endif
43010659 3363 } while (class && max_load_move > total_load_moved);
dd41f596 3364
43010659
PW
3365 return total_load_moved > 0;
3366}
3367
e1d1484f
PW
3368static int
3369iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3370 struct sched_domain *sd, enum cpu_idle_type idle,
3371 struct rq_iterator *iterator)
3372{
3373 struct task_struct *p = iterator->start(iterator->arg);
3374 int pinned = 0;
3375
3376 while (p) {
3377 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3378 pull_task(busiest, p, this_rq, this_cpu);
3379 /*
3380 * Right now, this is only the second place pull_task()
3381 * is called, so we can safely collect pull_task()
3382 * stats here rather than inside pull_task().
3383 */
3384 schedstat_inc(sd, lb_gained[idle]);
3385
3386 return 1;
3387 }
3388 p = iterator->next(iterator->arg);
3389 }
3390
3391 return 0;
3392}
3393
43010659
PW
3394/*
3395 * move_one_task tries to move exactly one task from busiest to this_rq, as
3396 * part of active balancing operations within "domain".
3397 * Returns 1 if successful and 0 otherwise.
3398 *
3399 * Called with both runqueues locked.
3400 */
3401static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3402 struct sched_domain *sd, enum cpu_idle_type idle)
3403{
5522d5d5 3404 const struct sched_class *class;
43010659
PW
3405
3406 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3407 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3408 return 1;
3409
3410 return 0;
dd41f596 3411}
67bb6c03 3412/********** Helpers for find_busiest_group ************************/
1da177e4 3413/*
222d656d
GS
3414 * sd_lb_stats - Structure to store the statistics of a sched_domain
3415 * during load balancing.
1da177e4 3416 */
222d656d
GS
3417struct sd_lb_stats {
3418 struct sched_group *busiest; /* Busiest group in this sd */
3419 struct sched_group *this; /* Local group in this sd */
3420 unsigned long total_load; /* Total load of all groups in sd */
3421 unsigned long total_pwr; /* Total power of all groups in sd */
3422 unsigned long avg_load; /* Average load across all groups in sd */
3423
3424 /** Statistics of this group */
3425 unsigned long this_load;
3426 unsigned long this_load_per_task;
3427 unsigned long this_nr_running;
3428
3429 /* Statistics of the busiest group */
3430 unsigned long max_load;
3431 unsigned long busiest_load_per_task;
3432 unsigned long busiest_nr_running;
3433
3434 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3435#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3436 int power_savings_balance; /* Is powersave balance needed for this sd */
3437 struct sched_group *group_min; /* Least loaded group in sd */
3438 struct sched_group *group_leader; /* Group which relieves group_min */
3439 unsigned long min_load_per_task; /* load_per_task in group_min */
3440 unsigned long leader_nr_running; /* Nr running of group_leader */
3441 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3442#endif
222d656d 3443};
1da177e4 3444
d5ac537e 3445/*
381be78f
GS
3446 * sg_lb_stats - stats of a sched_group required for load_balancing
3447 */
3448struct sg_lb_stats {
3449 unsigned long avg_load; /*Avg load across the CPUs of the group */
3450 unsigned long group_load; /* Total load over the CPUs of the group */
3451 unsigned long sum_nr_running; /* Nr tasks running in the group */
3452 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3453 unsigned long group_capacity;
3454 int group_imb; /* Is there an imbalance in the group ? */
3455};
408ed066 3456
67bb6c03
GS
3457/**
3458 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3459 * @group: The group whose first cpu is to be returned.
3460 */
3461static inline unsigned int group_first_cpu(struct sched_group *group)
3462{
3463 return cpumask_first(sched_group_cpus(group));
3464}
3465
3466/**
3467 * get_sd_load_idx - Obtain the load index for a given sched domain.
3468 * @sd: The sched_domain whose load_idx is to be obtained.
3469 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3470 */
3471static inline int get_sd_load_idx(struct sched_domain *sd,
3472 enum cpu_idle_type idle)
3473{
3474 int load_idx;
3475
3476 switch (idle) {
3477 case CPU_NOT_IDLE:
7897986b 3478 load_idx = sd->busy_idx;
67bb6c03
GS
3479 break;
3480
3481 case CPU_NEWLY_IDLE:
7897986b 3482 load_idx = sd->newidle_idx;
67bb6c03
GS
3483 break;
3484 default:
7897986b 3485 load_idx = sd->idle_idx;
67bb6c03
GS
3486 break;
3487 }
1da177e4 3488
67bb6c03
GS
3489 return load_idx;
3490}
1da177e4 3491
1da177e4 3492
c071df18
GS
3493#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3494/**
3495 * init_sd_power_savings_stats - Initialize power savings statistics for
3496 * the given sched_domain, during load balancing.
3497 *
3498 * @sd: Sched domain whose power-savings statistics are to be initialized.
3499 * @sds: Variable containing the statistics for sd.
3500 * @idle: Idle status of the CPU at which we're performing load-balancing.
3501 */
3502static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3503 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3504{
3505 /*
3506 * Busy processors will not participate in power savings
3507 * balance.
3508 */
3509 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3510 sds->power_savings_balance = 0;
3511 else {
3512 sds->power_savings_balance = 1;
3513 sds->min_nr_running = ULONG_MAX;
3514 sds->leader_nr_running = 0;
3515 }
3516}
783609c6 3517
c071df18
GS
3518/**
3519 * update_sd_power_savings_stats - Update the power saving stats for a
3520 * sched_domain while performing load balancing.
3521 *
3522 * @group: sched_group belonging to the sched_domain under consideration.
3523 * @sds: Variable containing the statistics of the sched_domain
3524 * @local_group: Does group contain the CPU for which we're performing
3525 * load balancing ?
3526 * @sgs: Variable containing the statistics of the group.
3527 */
3528static inline void update_sd_power_savings_stats(struct sched_group *group,
3529 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3530{
408ed066 3531
c071df18
GS
3532 if (!sds->power_savings_balance)
3533 return;
1da177e4 3534
c071df18
GS
3535 /*
3536 * If the local group is idle or completely loaded
3537 * no need to do power savings balance at this domain
3538 */
3539 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3540 !sds->this_nr_running))
3541 sds->power_savings_balance = 0;
2dd73a4f 3542
c071df18
GS
3543 /*
3544 * If a group is already running at full capacity or idle,
3545 * don't include that group in power savings calculations
3546 */
3547 if (!sds->power_savings_balance ||
3548 sgs->sum_nr_running >= sgs->group_capacity ||
3549 !sgs->sum_nr_running)
3550 return;
5969fe06 3551
c071df18
GS
3552 /*
3553 * Calculate the group which has the least non-idle load.
3554 * This is the group from where we need to pick up the load
3555 * for saving power
3556 */
3557 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3558 (sgs->sum_nr_running == sds->min_nr_running &&
3559 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3560 sds->group_min = group;
3561 sds->min_nr_running = sgs->sum_nr_running;
3562 sds->min_load_per_task = sgs->sum_weighted_load /
3563 sgs->sum_nr_running;
3564 }
783609c6 3565
c071df18
GS
3566 /*
3567 * Calculate the group which is almost near its
3568 * capacity but still has some space to pick up some load
3569 * from other group and save more power
3570 */
3571 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3572 return;
1da177e4 3573
c071df18
GS
3574 if (sgs->sum_nr_running > sds->leader_nr_running ||
3575 (sgs->sum_nr_running == sds->leader_nr_running &&
3576 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3577 sds->group_leader = group;
3578 sds->leader_nr_running = sgs->sum_nr_running;
3579 }
3580}
408ed066 3581
c071df18 3582/**
d5ac537e 3583 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3584 * @sds: Variable containing the statistics of the sched_domain
3585 * under consideration.
3586 * @this_cpu: Cpu at which we're currently performing load-balancing.
3587 * @imbalance: Variable to store the imbalance.
3588 *
d5ac537e
RD
3589 * Description:
3590 * Check if we have potential to perform some power-savings balance.
3591 * If yes, set the busiest group to be the least loaded group in the
3592 * sched_domain, so that it's CPUs can be put to idle.
3593 *
c071df18
GS
3594 * Returns 1 if there is potential to perform power-savings balance.
3595 * Else returns 0.
3596 */
3597static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3598 int this_cpu, unsigned long *imbalance)
3599{
3600 if (!sds->power_savings_balance)
3601 return 0;
1da177e4 3602
c071df18
GS
3603 if (sds->this != sds->group_leader ||
3604 sds->group_leader == sds->group_min)
3605 return 0;
783609c6 3606
c071df18
GS
3607 *imbalance = sds->min_load_per_task;
3608 sds->busiest = sds->group_min;
1da177e4 3609
c071df18
GS
3610 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3611 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3612 group_first_cpu(sds->group_leader);
3613 }
3614
3615 return 1;
1da177e4 3616
c071df18
GS
3617}
3618#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3619static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3620 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3621{
3622 return;
3623}
408ed066 3624
c071df18
GS
3625static inline void update_sd_power_savings_stats(struct sched_group *group,
3626 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3627{
3628 return;
3629}
3630
3631static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3632 int this_cpu, unsigned long *imbalance)
3633{
3634 return 0;
3635}
3636#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3637
3638
1f8c553d
GS
3639/**
3640 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3641 * @group: sched_group whose statistics are to be updated.
3642 * @this_cpu: Cpu for which load balance is currently performed.
3643 * @idle: Idle status of this_cpu
3644 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3645 * @sd_idle: Idle status of the sched_domain containing group.
3646 * @local_group: Does group contain this_cpu.
3647 * @cpus: Set of cpus considered for load balancing.
3648 * @balance: Should we balance.
3649 * @sgs: variable to hold the statistics for this group.
3650 */
3651static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3652 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3653 int local_group, const struct cpumask *cpus,
3654 int *balance, struct sg_lb_stats *sgs)
3655{
3656 unsigned long load, max_cpu_load, min_cpu_load;
3657 int i;
3658 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3659 unsigned long sum_avg_load_per_task;
3660 unsigned long avg_load_per_task;
3661
3662 if (local_group)
3663 balance_cpu = group_first_cpu(group);
3664
3665 /* Tally up the load of all CPUs in the group */
3666 sum_avg_load_per_task = avg_load_per_task = 0;
3667 max_cpu_load = 0;
3668 min_cpu_load = ~0UL;
408ed066 3669
1f8c553d
GS
3670 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3671 struct rq *rq = cpu_rq(i);
908a7c1b 3672
1f8c553d
GS
3673 if (*sd_idle && rq->nr_running)
3674 *sd_idle = 0;
5c45bf27 3675
1f8c553d 3676 /* Bias balancing toward cpus of our domain */
1da177e4 3677 if (local_group) {
1f8c553d
GS
3678 if (idle_cpu(i) && !first_idle_cpu) {
3679 first_idle_cpu = 1;
3680 balance_cpu = i;
3681 }
3682
3683 load = target_load(i, load_idx);
3684 } else {
3685 load = source_load(i, load_idx);
3686 if (load > max_cpu_load)
3687 max_cpu_load = load;
3688 if (min_cpu_load > load)
3689 min_cpu_load = load;
1da177e4 3690 }
5c45bf27 3691
1f8c553d
GS
3692 sgs->group_load += load;
3693 sgs->sum_nr_running += rq->nr_running;
3694 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3695
1f8c553d
GS
3696 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3697 }
5c45bf27 3698
1f8c553d
GS
3699 /*
3700 * First idle cpu or the first cpu(busiest) in this sched group
3701 * is eligible for doing load balancing at this and above
3702 * domains. In the newly idle case, we will allow all the cpu's
3703 * to do the newly idle load balance.
3704 */
3705 if (idle != CPU_NEWLY_IDLE && local_group &&
3706 balance_cpu != this_cpu && balance) {
3707 *balance = 0;
3708 return;
3709 }
5c45bf27 3710
1f8c553d
GS
3711 /* Adjust by relative CPU power of the group */
3712 sgs->avg_load = sg_div_cpu_power(group,
3713 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3714
1f8c553d
GS
3715
3716 /*
3717 * Consider the group unbalanced when the imbalance is larger
3718 * than the average weight of two tasks.
3719 *
3720 * APZ: with cgroup the avg task weight can vary wildly and
3721 * might not be a suitable number - should we keep a
3722 * normalized nr_running number somewhere that negates
3723 * the hierarchy?
3724 */
3725 avg_load_per_task = sg_div_cpu_power(group,
3726 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3727
3728 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3729 sgs->group_imb = 1;
3730
3731 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3732
3733}
dd41f596 3734
37abe198
GS
3735/**
3736 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3737 * @sd: sched_domain whose statistics are to be updated.
3738 * @this_cpu: Cpu for which load balance is currently performed.
3739 * @idle: Idle status of this_cpu
3740 * @sd_idle: Idle status of the sched_domain containing group.
3741 * @cpus: Set of cpus considered for load balancing.
3742 * @balance: Should we balance.
3743 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3744 */
37abe198
GS
3745static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3746 enum cpu_idle_type idle, int *sd_idle,
3747 const struct cpumask *cpus, int *balance,
3748 struct sd_lb_stats *sds)
1da177e4 3749{
222d656d 3750 struct sched_group *group = sd->groups;
37abe198 3751 struct sg_lb_stats sgs;
222d656d
GS
3752 int load_idx;
3753
c071df18 3754 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3755 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3756
3757 do {
1da177e4 3758 int local_group;
1da177e4 3759
758b2cdc
RR
3760 local_group = cpumask_test_cpu(this_cpu,
3761 sched_group_cpus(group));
381be78f 3762 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3763 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3764 local_group, cpus, balance, &sgs);
1da177e4 3765
37abe198
GS
3766 if (local_group && balance && !(*balance))
3767 return;
783609c6 3768
37abe198
GS
3769 sds->total_load += sgs.group_load;
3770 sds->total_pwr += group->__cpu_power;
1da177e4 3771
1da177e4 3772 if (local_group) {
37abe198
GS
3773 sds->this_load = sgs.avg_load;
3774 sds->this = group;
3775 sds->this_nr_running = sgs.sum_nr_running;
3776 sds->this_load_per_task = sgs.sum_weighted_load;
3777 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3778 (sgs.sum_nr_running > sgs.group_capacity ||
3779 sgs.group_imb)) {
37abe198
GS
3780 sds->max_load = sgs.avg_load;
3781 sds->busiest = group;
3782 sds->busiest_nr_running = sgs.sum_nr_running;
3783 sds->busiest_load_per_task = sgs.sum_weighted_load;
3784 sds->group_imb = sgs.group_imb;
48f24c4d 3785 }
5c45bf27 3786
c071df18 3787 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3788 group = group->next;
3789 } while (group != sd->groups);
3790
37abe198 3791}
1da177e4 3792
2e6f44ae
GS
3793/**
3794 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3795 * amongst the groups of a sched_domain, during
3796 * load balancing.
2e6f44ae
GS
3797 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3798 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3799 * @imbalance: Variable to store the imbalance.
3800 */
3801static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3802 int this_cpu, unsigned long *imbalance)
3803{
3804 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3805 unsigned int imbn = 2;
3806
3807 if (sds->this_nr_running) {
3808 sds->this_load_per_task /= sds->this_nr_running;
3809 if (sds->busiest_load_per_task >
3810 sds->this_load_per_task)
3811 imbn = 1;
3812 } else
3813 sds->this_load_per_task =
3814 cpu_avg_load_per_task(this_cpu);
1da177e4 3815
2e6f44ae
GS
3816 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3817 sds->busiest_load_per_task * imbn) {
3818 *imbalance = sds->busiest_load_per_task;
3819 return;
3820 }
908a7c1b 3821
1da177e4 3822 /*
2e6f44ae
GS
3823 * OK, we don't have enough imbalance to justify moving tasks,
3824 * however we may be able to increase total CPU power used by
3825 * moving them.
1da177e4 3826 */
2dd73a4f 3827
2e6f44ae
GS
3828 pwr_now += sds->busiest->__cpu_power *
3829 min(sds->busiest_load_per_task, sds->max_load);
3830 pwr_now += sds->this->__cpu_power *
3831 min(sds->this_load_per_task, sds->this_load);
3832 pwr_now /= SCHED_LOAD_SCALE;
3833
3834 /* Amount of load we'd subtract */
3835 tmp = sg_div_cpu_power(sds->busiest,
3836 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3837 if (sds->max_load > tmp)
3838 pwr_move += sds->busiest->__cpu_power *
3839 min(sds->busiest_load_per_task, sds->max_load - tmp);
3840
3841 /* Amount of load we'd add */
3842 if (sds->max_load * sds->busiest->__cpu_power <
3843 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3844 tmp = sg_div_cpu_power(sds->this,
3845 sds->max_load * sds->busiest->__cpu_power);
3846 else
3847 tmp = sg_div_cpu_power(sds->this,
3848 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3849 pwr_move += sds->this->__cpu_power *
3850 min(sds->this_load_per_task, sds->this_load + tmp);
3851 pwr_move /= SCHED_LOAD_SCALE;
3852
3853 /* Move if we gain throughput */
3854 if (pwr_move > pwr_now)
3855 *imbalance = sds->busiest_load_per_task;
3856}
dbc523a3
GS
3857
3858/**
3859 * calculate_imbalance - Calculate the amount of imbalance present within the
3860 * groups of a given sched_domain during load balance.
3861 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3862 * @this_cpu: Cpu for which currently load balance is being performed.
3863 * @imbalance: The variable to store the imbalance.
3864 */
3865static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3866 unsigned long *imbalance)
3867{
3868 unsigned long max_pull;
2dd73a4f
PW
3869 /*
3870 * In the presence of smp nice balancing, certain scenarios can have
3871 * max load less than avg load(as we skip the groups at or below
3872 * its cpu_power, while calculating max_load..)
3873 */
dbc523a3 3874 if (sds->max_load < sds->avg_load) {
2dd73a4f 3875 *imbalance = 0;
dbc523a3 3876 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3877 }
0c117f1b
SS
3878
3879 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3880 max_pull = min(sds->max_load - sds->avg_load,
3881 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3882
1da177e4 3883 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3884 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3885 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3886 / SCHED_LOAD_SCALE;
3887
2dd73a4f
PW
3888 /*
3889 * if *imbalance is less than the average load per runnable task
3890 * there is no gaurantee that any tasks will be moved so we'll have
3891 * a think about bumping its value to force at least one task to be
3892 * moved
3893 */
dbc523a3
GS
3894 if (*imbalance < sds->busiest_load_per_task)
3895 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3896
dbc523a3 3897}
37abe198 3898/******* find_busiest_group() helpers end here *********************/
1da177e4 3899
b7bb4c9b
GS
3900/**
3901 * find_busiest_group - Returns the busiest group within the sched_domain
3902 * if there is an imbalance. If there isn't an imbalance, and
3903 * the user has opted for power-savings, it returns a group whose
3904 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3905 * such a group exists.
3906 *
3907 * Also calculates the amount of weighted load which should be moved
3908 * to restore balance.
3909 *
3910 * @sd: The sched_domain whose busiest group is to be returned.
3911 * @this_cpu: The cpu for which load balancing is currently being performed.
3912 * @imbalance: Variable which stores amount of weighted load which should
3913 * be moved to restore balance/put a group to idle.
3914 * @idle: The idle status of this_cpu.
3915 * @sd_idle: The idleness of sd
3916 * @cpus: The set of CPUs under consideration for load-balancing.
3917 * @balance: Pointer to a variable indicating if this_cpu
3918 * is the appropriate cpu to perform load balancing at this_level.
3919 *
3920 * Returns: - the busiest group if imbalance exists.
3921 * - If no imbalance and user has opted for power-savings balance,
3922 * return the least loaded group whose CPUs can be
3923 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3924 */
3925static struct sched_group *
3926find_busiest_group(struct sched_domain *sd, int this_cpu,
3927 unsigned long *imbalance, enum cpu_idle_type idle,
3928 int *sd_idle, const struct cpumask *cpus, int *balance)
3929{
3930 struct sd_lb_stats sds;
1da177e4 3931
37abe198 3932 memset(&sds, 0, sizeof(sds));
1da177e4 3933
37abe198
GS
3934 /*
3935 * Compute the various statistics relavent for load balancing at
3936 * this level.
3937 */
3938 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3939 balance, &sds);
3940
b7bb4c9b
GS
3941 /* Cases where imbalance does not exist from POV of this_cpu */
3942 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3943 * at this level.
3944 * 2) There is no busy sibling group to pull from.
3945 * 3) This group is the busiest group.
3946 * 4) This group is more busy than the avg busieness at this
3947 * sched_domain.
3948 * 5) The imbalance is within the specified limit.
3949 * 6) Any rebalance would lead to ping-pong
3950 */
37abe198
GS
3951 if (balance && !(*balance))
3952 goto ret;
1da177e4 3953
b7bb4c9b
GS
3954 if (!sds.busiest || sds.busiest_nr_running == 0)
3955 goto out_balanced;
1da177e4 3956
b7bb4c9b 3957 if (sds.this_load >= sds.max_load)
1da177e4 3958 goto out_balanced;
1da177e4 3959
222d656d 3960 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3961
b7bb4c9b
GS
3962 if (sds.this_load >= sds.avg_load)
3963 goto out_balanced;
3964
3965 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3966 goto out_balanced;
3967
222d656d
GS
3968 sds.busiest_load_per_task /= sds.busiest_nr_running;
3969 if (sds.group_imb)
3970 sds.busiest_load_per_task =
3971 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3972
1da177e4
LT
3973 /*
3974 * We're trying to get all the cpus to the average_load, so we don't
3975 * want to push ourselves above the average load, nor do we wish to
3976 * reduce the max loaded cpu below the average load, as either of these
3977 * actions would just result in more rebalancing later, and ping-pong
3978 * tasks around. Thus we look for the minimum possible imbalance.
3979 * Negative imbalances (*we* are more loaded than anyone else) will
3980 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3981 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3982 * appear as very large values with unsigned longs.
3983 */
222d656d 3984 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3985 goto out_balanced;
3986
dbc523a3
GS
3987 /* Looks like there is an imbalance. Compute it */
3988 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3989 return sds.busiest;
1da177e4
LT
3990
3991out_balanced:
c071df18
GS
3992 /*
3993 * There is no obvious imbalance. But check if we can do some balancing
3994 * to save power.
3995 */
3996 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3997 return sds.busiest;
783609c6 3998ret:
1da177e4
LT
3999 *imbalance = 0;
4000 return NULL;
4001}
4002
4003/*
4004 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4005 */
70b97a7f 4006static struct rq *
d15bcfdb 4007find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4008 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4009{
70b97a7f 4010 struct rq *busiest = NULL, *rq;
2dd73a4f 4011 unsigned long max_load = 0;
1da177e4
LT
4012 int i;
4013
758b2cdc 4014 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4015 unsigned long wl;
0a2966b4 4016
96f874e2 4017 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4018 continue;
4019
48f24c4d 4020 rq = cpu_rq(i);
dd41f596 4021 wl = weighted_cpuload(i);
2dd73a4f 4022
dd41f596 4023 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4024 continue;
1da177e4 4025
dd41f596
IM
4026 if (wl > max_load) {
4027 max_load = wl;
48f24c4d 4028 busiest = rq;
1da177e4
LT
4029 }
4030 }
4031
4032 return busiest;
4033}
4034
77391d71
NP
4035/*
4036 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4037 * so long as it is large enough.
4038 */
4039#define MAX_PINNED_INTERVAL 512
4040
df7c8e84
RR
4041/* Working cpumask for load_balance and load_balance_newidle. */
4042static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4043
1da177e4
LT
4044/*
4045 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4046 * tasks if there is an imbalance.
1da177e4 4047 */
70b97a7f 4048static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4049 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4050 int *balance)
1da177e4 4051{
43010659 4052 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4053 struct sched_group *group;
1da177e4 4054 unsigned long imbalance;
70b97a7f 4055 struct rq *busiest;
fe2eea3f 4056 unsigned long flags;
df7c8e84 4057 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4058
96f874e2 4059 cpumask_setall(cpus);
7c16ec58 4060
89c4710e
SS
4061 /*
4062 * When power savings policy is enabled for the parent domain, idle
4063 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4064 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4065 * portraying it as CPU_NOT_IDLE.
89c4710e 4066 */
d15bcfdb 4067 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4068 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4069 sd_idle = 1;
1da177e4 4070
2d72376b 4071 schedstat_inc(sd, lb_count[idle]);
1da177e4 4072
0a2966b4 4073redo:
c8cba857 4074 update_shares(sd);
0a2966b4 4075 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4076 cpus, balance);
783609c6 4077
06066714 4078 if (*balance == 0)
783609c6 4079 goto out_balanced;
783609c6 4080
1da177e4
LT
4081 if (!group) {
4082 schedstat_inc(sd, lb_nobusyg[idle]);
4083 goto out_balanced;
4084 }
4085
7c16ec58 4086 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4087 if (!busiest) {
4088 schedstat_inc(sd, lb_nobusyq[idle]);
4089 goto out_balanced;
4090 }
4091
db935dbd 4092 BUG_ON(busiest == this_rq);
1da177e4
LT
4093
4094 schedstat_add(sd, lb_imbalance[idle], imbalance);
4095
43010659 4096 ld_moved = 0;
1da177e4
LT
4097 if (busiest->nr_running > 1) {
4098 /*
4099 * Attempt to move tasks. If find_busiest_group has found
4100 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4101 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4102 * correctly treated as an imbalance.
4103 */
fe2eea3f 4104 local_irq_save(flags);
e17224bf 4105 double_rq_lock(this_rq, busiest);
43010659 4106 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4107 imbalance, sd, idle, &all_pinned);
e17224bf 4108 double_rq_unlock(this_rq, busiest);
fe2eea3f 4109 local_irq_restore(flags);
81026794 4110
46cb4b7c
SS
4111 /*
4112 * some other cpu did the load balance for us.
4113 */
43010659 4114 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4115 resched_cpu(this_cpu);
4116
81026794 4117 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4118 if (unlikely(all_pinned)) {
96f874e2
RR
4119 cpumask_clear_cpu(cpu_of(busiest), cpus);
4120 if (!cpumask_empty(cpus))
0a2966b4 4121 goto redo;
81026794 4122 goto out_balanced;
0a2966b4 4123 }
1da177e4 4124 }
81026794 4125
43010659 4126 if (!ld_moved) {
1da177e4
LT
4127 schedstat_inc(sd, lb_failed[idle]);
4128 sd->nr_balance_failed++;
4129
4130 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4131
fe2eea3f 4132 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4133
4134 /* don't kick the migration_thread, if the curr
4135 * task on busiest cpu can't be moved to this_cpu
4136 */
96f874e2
RR
4137 if (!cpumask_test_cpu(this_cpu,
4138 &busiest->curr->cpus_allowed)) {
fe2eea3f 4139 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4140 all_pinned = 1;
4141 goto out_one_pinned;
4142 }
4143
1da177e4
LT
4144 if (!busiest->active_balance) {
4145 busiest->active_balance = 1;
4146 busiest->push_cpu = this_cpu;
81026794 4147 active_balance = 1;
1da177e4 4148 }
fe2eea3f 4149 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4150 if (active_balance)
1da177e4
LT
4151 wake_up_process(busiest->migration_thread);
4152
4153 /*
4154 * We've kicked active balancing, reset the failure
4155 * counter.
4156 */
39507451 4157 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4158 }
81026794 4159 } else
1da177e4
LT
4160 sd->nr_balance_failed = 0;
4161
81026794 4162 if (likely(!active_balance)) {
1da177e4
LT
4163 /* We were unbalanced, so reset the balancing interval */
4164 sd->balance_interval = sd->min_interval;
81026794
NP
4165 } else {
4166 /*
4167 * If we've begun active balancing, start to back off. This
4168 * case may not be covered by the all_pinned logic if there
4169 * is only 1 task on the busy runqueue (because we don't call
4170 * move_tasks).
4171 */
4172 if (sd->balance_interval < sd->max_interval)
4173 sd->balance_interval *= 2;
1da177e4
LT
4174 }
4175
43010659 4176 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4177 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4178 ld_moved = -1;
4179
4180 goto out;
1da177e4
LT
4181
4182out_balanced:
1da177e4
LT
4183 schedstat_inc(sd, lb_balanced[idle]);
4184
16cfb1c0 4185 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4186
4187out_one_pinned:
1da177e4 4188 /* tune up the balancing interval */
77391d71
NP
4189 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4190 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4191 sd->balance_interval *= 2;
4192
48f24c4d 4193 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4194 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4195 ld_moved = -1;
4196 else
4197 ld_moved = 0;
4198out:
c8cba857
PZ
4199 if (ld_moved)
4200 update_shares(sd);
c09595f6 4201 return ld_moved;
1da177e4
LT
4202}
4203
4204/*
4205 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4206 * tasks if there is an imbalance.
4207 *
d15bcfdb 4208 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4209 * this_rq is locked.
4210 */
48f24c4d 4211static int
df7c8e84 4212load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4213{
4214 struct sched_group *group;
70b97a7f 4215 struct rq *busiest = NULL;
1da177e4 4216 unsigned long imbalance;
43010659 4217 int ld_moved = 0;
5969fe06 4218 int sd_idle = 0;
969bb4e4 4219 int all_pinned = 0;
df7c8e84 4220 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4221
96f874e2 4222 cpumask_setall(cpus);
5969fe06 4223
89c4710e
SS
4224 /*
4225 * When power savings policy is enabled for the parent domain, idle
4226 * sibling can pick up load irrespective of busy siblings. In this case,
4227 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4228 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4229 */
4230 if (sd->flags & SD_SHARE_CPUPOWER &&
4231 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4232 sd_idle = 1;
1da177e4 4233
2d72376b 4234 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4235redo:
3e5459b4 4236 update_shares_locked(this_rq, sd);
d15bcfdb 4237 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4238 &sd_idle, cpus, NULL);
1da177e4 4239 if (!group) {
d15bcfdb 4240 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4241 goto out_balanced;
1da177e4
LT
4242 }
4243
7c16ec58 4244 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4245 if (!busiest) {
d15bcfdb 4246 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4247 goto out_balanced;
1da177e4
LT
4248 }
4249
db935dbd
NP
4250 BUG_ON(busiest == this_rq);
4251
d15bcfdb 4252 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4253
43010659 4254 ld_moved = 0;
d6d5cfaf
NP
4255 if (busiest->nr_running > 1) {
4256 /* Attempt to move tasks */
4257 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4258 /* this_rq->clock is already updated */
4259 update_rq_clock(busiest);
43010659 4260 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4261 imbalance, sd, CPU_NEWLY_IDLE,
4262 &all_pinned);
1b12bbc7 4263 double_unlock_balance(this_rq, busiest);
0a2966b4 4264
969bb4e4 4265 if (unlikely(all_pinned)) {
96f874e2
RR
4266 cpumask_clear_cpu(cpu_of(busiest), cpus);
4267 if (!cpumask_empty(cpus))
0a2966b4
CL
4268 goto redo;
4269 }
d6d5cfaf
NP
4270 }
4271
43010659 4272 if (!ld_moved) {
36dffab6 4273 int active_balance = 0;
ad273b32 4274
d15bcfdb 4275 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4276 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4277 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4278 return -1;
ad273b32
VS
4279
4280 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4281 return -1;
4282
4283 if (sd->nr_balance_failed++ < 2)
4284 return -1;
4285
4286 /*
4287 * The only task running in a non-idle cpu can be moved to this
4288 * cpu in an attempt to completely freeup the other CPU
4289 * package. The same method used to move task in load_balance()
4290 * have been extended for load_balance_newidle() to speedup
4291 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4292 *
4293 * The package power saving logic comes from
4294 * find_busiest_group(). If there are no imbalance, then
4295 * f_b_g() will return NULL. However when sched_mc={1,2} then
4296 * f_b_g() will select a group from which a running task may be
4297 * pulled to this cpu in order to make the other package idle.
4298 * If there is no opportunity to make a package idle and if
4299 * there are no imbalance, then f_b_g() will return NULL and no
4300 * action will be taken in load_balance_newidle().
4301 *
4302 * Under normal task pull operation due to imbalance, there
4303 * will be more than one task in the source run queue and
4304 * move_tasks() will succeed. ld_moved will be true and this
4305 * active balance code will not be triggered.
4306 */
4307
4308 /* Lock busiest in correct order while this_rq is held */
4309 double_lock_balance(this_rq, busiest);
4310
4311 /*
4312 * don't kick the migration_thread, if the curr
4313 * task on busiest cpu can't be moved to this_cpu
4314 */
6ca09dfc 4315 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4316 double_unlock_balance(this_rq, busiest);
4317 all_pinned = 1;
4318 return ld_moved;
4319 }
4320
4321 if (!busiest->active_balance) {
4322 busiest->active_balance = 1;
4323 busiest->push_cpu = this_cpu;
4324 active_balance = 1;
4325 }
4326
4327 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4328 /*
4329 * Should not call ttwu while holding a rq->lock
4330 */
4331 spin_unlock(&this_rq->lock);
ad273b32
VS
4332 if (active_balance)
4333 wake_up_process(busiest->migration_thread);
da8d5089 4334 spin_lock(&this_rq->lock);
ad273b32 4335
5969fe06 4336 } else
16cfb1c0 4337 sd->nr_balance_failed = 0;
1da177e4 4338
3e5459b4 4339 update_shares_locked(this_rq, sd);
43010659 4340 return ld_moved;
16cfb1c0
NP
4341
4342out_balanced:
d15bcfdb 4343 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4344 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4345 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4346 return -1;
16cfb1c0 4347 sd->nr_balance_failed = 0;
48f24c4d 4348
16cfb1c0 4349 return 0;
1da177e4
LT
4350}
4351
4352/*
4353 * idle_balance is called by schedule() if this_cpu is about to become
4354 * idle. Attempts to pull tasks from other CPUs.
4355 */
70b97a7f 4356static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4357{
4358 struct sched_domain *sd;
efbe027e 4359 int pulled_task = 0;
dd41f596 4360 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4361
4362 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4363 unsigned long interval;
4364
4365 if (!(sd->flags & SD_LOAD_BALANCE))
4366 continue;
4367
4368 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4369 /* If we've pulled tasks over stop searching: */
7c16ec58 4370 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4371 sd);
92c4ca5c
CL
4372
4373 interval = msecs_to_jiffies(sd->balance_interval);
4374 if (time_after(next_balance, sd->last_balance + interval))
4375 next_balance = sd->last_balance + interval;
4376 if (pulled_task)
4377 break;
1da177e4 4378 }
dd41f596 4379 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4380 /*
4381 * We are going idle. next_balance may be set based on
4382 * a busy processor. So reset next_balance.
4383 */
4384 this_rq->next_balance = next_balance;
dd41f596 4385 }
1da177e4
LT
4386}
4387
4388/*
4389 * active_load_balance is run by migration threads. It pushes running tasks
4390 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4391 * running on each physical CPU where possible, and avoids physical /
4392 * logical imbalances.
4393 *
4394 * Called with busiest_rq locked.
4395 */
70b97a7f 4396static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4397{
39507451 4398 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4399 struct sched_domain *sd;
4400 struct rq *target_rq;
39507451 4401
48f24c4d 4402 /* Is there any task to move? */
39507451 4403 if (busiest_rq->nr_running <= 1)
39507451
NP
4404 return;
4405
4406 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4407
4408 /*
39507451 4409 * This condition is "impossible", if it occurs
41a2d6cf 4410 * we need to fix it. Originally reported by
39507451 4411 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4412 */
39507451 4413 BUG_ON(busiest_rq == target_rq);
1da177e4 4414
39507451
NP
4415 /* move a task from busiest_rq to target_rq */
4416 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4417 update_rq_clock(busiest_rq);
4418 update_rq_clock(target_rq);
39507451
NP
4419
4420 /* Search for an sd spanning us and the target CPU. */
c96d145e 4421 for_each_domain(target_cpu, sd) {
39507451 4422 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4423 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4424 break;
c96d145e 4425 }
39507451 4426
48f24c4d 4427 if (likely(sd)) {
2d72376b 4428 schedstat_inc(sd, alb_count);
39507451 4429
43010659
PW
4430 if (move_one_task(target_rq, target_cpu, busiest_rq,
4431 sd, CPU_IDLE))
48f24c4d
IM
4432 schedstat_inc(sd, alb_pushed);
4433 else
4434 schedstat_inc(sd, alb_failed);
4435 }
1b12bbc7 4436 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4437}
4438
46cb4b7c
SS
4439#ifdef CONFIG_NO_HZ
4440static struct {
4441 atomic_t load_balancer;
7d1e6a9b 4442 cpumask_var_t cpu_mask;
f711f609 4443 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4444} nohz ____cacheline_aligned = {
4445 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4446};
4447
eea08f32
AB
4448int get_nohz_load_balancer(void)
4449{
4450 return atomic_read(&nohz.load_balancer);
4451}
4452
f711f609
GS
4453#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4454/**
4455 * lowest_flag_domain - Return lowest sched_domain containing flag.
4456 * @cpu: The cpu whose lowest level of sched domain is to
4457 * be returned.
4458 * @flag: The flag to check for the lowest sched_domain
4459 * for the given cpu.
4460 *
4461 * Returns the lowest sched_domain of a cpu which contains the given flag.
4462 */
4463static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4464{
4465 struct sched_domain *sd;
4466
4467 for_each_domain(cpu, sd)
4468 if (sd && (sd->flags & flag))
4469 break;
4470
4471 return sd;
4472}
4473
4474/**
4475 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4476 * @cpu: The cpu whose domains we're iterating over.
4477 * @sd: variable holding the value of the power_savings_sd
4478 * for cpu.
4479 * @flag: The flag to filter the sched_domains to be iterated.
4480 *
4481 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4482 * set, starting from the lowest sched_domain to the highest.
4483 */
4484#define for_each_flag_domain(cpu, sd, flag) \
4485 for (sd = lowest_flag_domain(cpu, flag); \
4486 (sd && (sd->flags & flag)); sd = sd->parent)
4487
4488/**
4489 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4490 * @ilb_group: group to be checked for semi-idleness
4491 *
4492 * Returns: 1 if the group is semi-idle. 0 otherwise.
4493 *
4494 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4495 * and atleast one non-idle CPU. This helper function checks if the given
4496 * sched_group is semi-idle or not.
4497 */
4498static inline int is_semi_idle_group(struct sched_group *ilb_group)
4499{
4500 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4501 sched_group_cpus(ilb_group));
4502
4503 /*
4504 * A sched_group is semi-idle when it has atleast one busy cpu
4505 * and atleast one idle cpu.
4506 */
4507 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4508 return 0;
4509
4510 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4511 return 0;
4512
4513 return 1;
4514}
4515/**
4516 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4517 * @cpu: The cpu which is nominating a new idle_load_balancer.
4518 *
4519 * Returns: Returns the id of the idle load balancer if it exists,
4520 * Else, returns >= nr_cpu_ids.
4521 *
4522 * This algorithm picks the idle load balancer such that it belongs to a
4523 * semi-idle powersavings sched_domain. The idea is to try and avoid
4524 * completely idle packages/cores just for the purpose of idle load balancing
4525 * when there are other idle cpu's which are better suited for that job.
4526 */
4527static int find_new_ilb(int cpu)
4528{
4529 struct sched_domain *sd;
4530 struct sched_group *ilb_group;
4531
4532 /*
4533 * Have idle load balancer selection from semi-idle packages only
4534 * when power-aware load balancing is enabled
4535 */
4536 if (!(sched_smt_power_savings || sched_mc_power_savings))
4537 goto out_done;
4538
4539 /*
4540 * Optimize for the case when we have no idle CPUs or only one
4541 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4542 */
4543 if (cpumask_weight(nohz.cpu_mask) < 2)
4544 goto out_done;
4545
4546 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4547 ilb_group = sd->groups;
4548
4549 do {
4550 if (is_semi_idle_group(ilb_group))
4551 return cpumask_first(nohz.ilb_grp_nohz_mask);
4552
4553 ilb_group = ilb_group->next;
4554
4555 } while (ilb_group != sd->groups);
4556 }
4557
4558out_done:
4559 return cpumask_first(nohz.cpu_mask);
4560}
4561#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4562static inline int find_new_ilb(int call_cpu)
4563{
6e29ec57 4564 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4565}
4566#endif
4567
7835b98b 4568/*
46cb4b7c
SS
4569 * This routine will try to nominate the ilb (idle load balancing)
4570 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4571 * load balancing on behalf of all those cpus. If all the cpus in the system
4572 * go into this tickless mode, then there will be no ilb owner (as there is
4573 * no need for one) and all the cpus will sleep till the next wakeup event
4574 * arrives...
4575 *
4576 * For the ilb owner, tick is not stopped. And this tick will be used
4577 * for idle load balancing. ilb owner will still be part of
4578 * nohz.cpu_mask..
7835b98b 4579 *
46cb4b7c
SS
4580 * While stopping the tick, this cpu will become the ilb owner if there
4581 * is no other owner. And will be the owner till that cpu becomes busy
4582 * or if all cpus in the system stop their ticks at which point
4583 * there is no need for ilb owner.
4584 *
4585 * When the ilb owner becomes busy, it nominates another owner, during the
4586 * next busy scheduler_tick()
4587 */
4588int select_nohz_load_balancer(int stop_tick)
4589{
4590 int cpu = smp_processor_id();
4591
4592 if (stop_tick) {
46cb4b7c
SS
4593 cpu_rq(cpu)->in_nohz_recently = 1;
4594
483b4ee6
SS
4595 if (!cpu_active(cpu)) {
4596 if (atomic_read(&nohz.load_balancer) != cpu)
4597 return 0;
4598
4599 /*
4600 * If we are going offline and still the leader,
4601 * give up!
4602 */
46cb4b7c
SS
4603 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4604 BUG();
483b4ee6 4605
46cb4b7c
SS
4606 return 0;
4607 }
4608
483b4ee6
SS
4609 cpumask_set_cpu(cpu, nohz.cpu_mask);
4610
46cb4b7c 4611 /* time for ilb owner also to sleep */
7d1e6a9b 4612 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4613 if (atomic_read(&nohz.load_balancer) == cpu)
4614 atomic_set(&nohz.load_balancer, -1);
4615 return 0;
4616 }
4617
4618 if (atomic_read(&nohz.load_balancer) == -1) {
4619 /* make me the ilb owner */
4620 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4621 return 1;
e790fb0b
GS
4622 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4623 int new_ilb;
4624
4625 if (!(sched_smt_power_savings ||
4626 sched_mc_power_savings))
4627 return 1;
4628 /*
4629 * Check to see if there is a more power-efficient
4630 * ilb.
4631 */
4632 new_ilb = find_new_ilb(cpu);
4633 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4634 atomic_set(&nohz.load_balancer, -1);
4635 resched_cpu(new_ilb);
4636 return 0;
4637 }
46cb4b7c 4638 return 1;
e790fb0b 4639 }
46cb4b7c 4640 } else {
7d1e6a9b 4641 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4642 return 0;
4643
7d1e6a9b 4644 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4645
4646 if (atomic_read(&nohz.load_balancer) == cpu)
4647 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4648 BUG();
4649 }
4650 return 0;
4651}
4652#endif
4653
4654static DEFINE_SPINLOCK(balancing);
4655
4656/*
7835b98b
CL
4657 * It checks each scheduling domain to see if it is due to be balanced,
4658 * and initiates a balancing operation if so.
4659 *
4660 * Balancing parameters are set up in arch_init_sched_domains.
4661 */
a9957449 4662static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4663{
46cb4b7c
SS
4664 int balance = 1;
4665 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4666 unsigned long interval;
4667 struct sched_domain *sd;
46cb4b7c 4668 /* Earliest time when we have to do rebalance again */
c9819f45 4669 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4670 int update_next_balance = 0;
d07355f5 4671 int need_serialize;
1da177e4 4672
46cb4b7c 4673 for_each_domain(cpu, sd) {
1da177e4
LT
4674 if (!(sd->flags & SD_LOAD_BALANCE))
4675 continue;
4676
4677 interval = sd->balance_interval;
d15bcfdb 4678 if (idle != CPU_IDLE)
1da177e4
LT
4679 interval *= sd->busy_factor;
4680
4681 /* scale ms to jiffies */
4682 interval = msecs_to_jiffies(interval);
4683 if (unlikely(!interval))
4684 interval = 1;
dd41f596
IM
4685 if (interval > HZ*NR_CPUS/10)
4686 interval = HZ*NR_CPUS/10;
4687
d07355f5 4688 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4689
d07355f5 4690 if (need_serialize) {
08c183f3
CL
4691 if (!spin_trylock(&balancing))
4692 goto out;
4693 }
4694
c9819f45 4695 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4696 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4697 /*
4698 * We've pulled tasks over so either we're no
5969fe06
NP
4699 * longer idle, or one of our SMT siblings is
4700 * not idle.
4701 */
d15bcfdb 4702 idle = CPU_NOT_IDLE;
1da177e4 4703 }
1bd77f2d 4704 sd->last_balance = jiffies;
1da177e4 4705 }
d07355f5 4706 if (need_serialize)
08c183f3
CL
4707 spin_unlock(&balancing);
4708out:
f549da84 4709 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4710 next_balance = sd->last_balance + interval;
f549da84
SS
4711 update_next_balance = 1;
4712 }
783609c6
SS
4713
4714 /*
4715 * Stop the load balance at this level. There is another
4716 * CPU in our sched group which is doing load balancing more
4717 * actively.
4718 */
4719 if (!balance)
4720 break;
1da177e4 4721 }
f549da84
SS
4722
4723 /*
4724 * next_balance will be updated only when there is a need.
4725 * When the cpu is attached to null domain for ex, it will not be
4726 * updated.
4727 */
4728 if (likely(update_next_balance))
4729 rq->next_balance = next_balance;
46cb4b7c
SS
4730}
4731
4732/*
4733 * run_rebalance_domains is triggered when needed from the scheduler tick.
4734 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4735 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4736 */
4737static void run_rebalance_domains(struct softirq_action *h)
4738{
dd41f596
IM
4739 int this_cpu = smp_processor_id();
4740 struct rq *this_rq = cpu_rq(this_cpu);
4741 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4742 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4743
dd41f596 4744 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4745
4746#ifdef CONFIG_NO_HZ
4747 /*
4748 * If this cpu is the owner for idle load balancing, then do the
4749 * balancing on behalf of the other idle cpus whose ticks are
4750 * stopped.
4751 */
dd41f596
IM
4752 if (this_rq->idle_at_tick &&
4753 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4754 struct rq *rq;
4755 int balance_cpu;
4756
7d1e6a9b
RR
4757 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4758 if (balance_cpu == this_cpu)
4759 continue;
4760
46cb4b7c
SS
4761 /*
4762 * If this cpu gets work to do, stop the load balancing
4763 * work being done for other cpus. Next load
4764 * balancing owner will pick it up.
4765 */
4766 if (need_resched())
4767 break;
4768
de0cf899 4769 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4770
4771 rq = cpu_rq(balance_cpu);
dd41f596
IM
4772 if (time_after(this_rq->next_balance, rq->next_balance))
4773 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4774 }
4775 }
4776#endif
4777}
4778
8a0be9ef
FW
4779static inline int on_null_domain(int cpu)
4780{
4781 return !rcu_dereference(cpu_rq(cpu)->sd);
4782}
4783
46cb4b7c
SS
4784/*
4785 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4786 *
4787 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4788 * idle load balancing owner or decide to stop the periodic load balancing,
4789 * if the whole system is idle.
4790 */
dd41f596 4791static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4792{
46cb4b7c
SS
4793#ifdef CONFIG_NO_HZ
4794 /*
4795 * If we were in the nohz mode recently and busy at the current
4796 * scheduler tick, then check if we need to nominate new idle
4797 * load balancer.
4798 */
4799 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4800 rq->in_nohz_recently = 0;
4801
4802 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4803 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4804 atomic_set(&nohz.load_balancer, -1);
4805 }
4806
4807 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4808 int ilb = find_new_ilb(cpu);
46cb4b7c 4809
434d53b0 4810 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4811 resched_cpu(ilb);
4812 }
4813 }
4814
4815 /*
4816 * If this cpu is idle and doing idle load balancing for all the
4817 * cpus with ticks stopped, is it time for that to stop?
4818 */
4819 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4820 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4821 resched_cpu(cpu);
4822 return;
4823 }
4824
4825 /*
4826 * If this cpu is idle and the idle load balancing is done by
4827 * someone else, then no need raise the SCHED_SOFTIRQ
4828 */
4829 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4830 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4831 return;
4832#endif
8a0be9ef
FW
4833 /* Don't need to rebalance while attached to NULL domain */
4834 if (time_after_eq(jiffies, rq->next_balance) &&
4835 likely(!on_null_domain(cpu)))
46cb4b7c 4836 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4837}
dd41f596
IM
4838
4839#else /* CONFIG_SMP */
4840
1da177e4
LT
4841/*
4842 * on UP we do not need to balance between CPUs:
4843 */
70b97a7f 4844static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4845{
4846}
dd41f596 4847
1da177e4
LT
4848#endif
4849
1da177e4
LT
4850DEFINE_PER_CPU(struct kernel_stat, kstat);
4851
4852EXPORT_PER_CPU_SYMBOL(kstat);
4853
4854/*
c5f8d995 4855 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4856 * @p in case that task is currently running.
c5f8d995
HS
4857 *
4858 * Called with task_rq_lock() held on @rq.
1da177e4 4859 */
c5f8d995
HS
4860static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4861{
4862 u64 ns = 0;
4863
4864 if (task_current(rq, p)) {
4865 update_rq_clock(rq);
4866 ns = rq->clock - p->se.exec_start;
4867 if ((s64)ns < 0)
4868 ns = 0;
4869 }
4870
4871 return ns;
4872}
4873
bb34d92f 4874unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4875{
1da177e4 4876 unsigned long flags;
41b86e9c 4877 struct rq *rq;
bb34d92f 4878 u64 ns = 0;
48f24c4d 4879
41b86e9c 4880 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4881 ns = do_task_delta_exec(p, rq);
4882 task_rq_unlock(rq, &flags);
1508487e 4883
c5f8d995
HS
4884 return ns;
4885}
f06febc9 4886
c5f8d995
HS
4887/*
4888 * Return accounted runtime for the task.
4889 * In case the task is currently running, return the runtime plus current's
4890 * pending runtime that have not been accounted yet.
4891 */
4892unsigned long long task_sched_runtime(struct task_struct *p)
4893{
4894 unsigned long flags;
4895 struct rq *rq;
4896 u64 ns = 0;
4897
4898 rq = task_rq_lock(p, &flags);
4899 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4900 task_rq_unlock(rq, &flags);
4901
4902 return ns;
4903}
48f24c4d 4904
c5f8d995
HS
4905/*
4906 * Return sum_exec_runtime for the thread group.
4907 * In case the task is currently running, return the sum plus current's
4908 * pending runtime that have not been accounted yet.
4909 *
4910 * Note that the thread group might have other running tasks as well,
4911 * so the return value not includes other pending runtime that other
4912 * running tasks might have.
4913 */
4914unsigned long long thread_group_sched_runtime(struct task_struct *p)
4915{
4916 struct task_cputime totals;
4917 unsigned long flags;
4918 struct rq *rq;
4919 u64 ns;
4920
4921 rq = task_rq_lock(p, &flags);
4922 thread_group_cputime(p, &totals);
4923 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4924 task_rq_unlock(rq, &flags);
48f24c4d 4925
1da177e4
LT
4926 return ns;
4927}
4928
1da177e4
LT
4929/*
4930 * Account user cpu time to a process.
4931 * @p: the process that the cpu time gets accounted to
1da177e4 4932 * @cputime: the cpu time spent in user space since the last update
457533a7 4933 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4934 */
457533a7
MS
4935void account_user_time(struct task_struct *p, cputime_t cputime,
4936 cputime_t cputime_scaled)
1da177e4
LT
4937{
4938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4939 cputime64_t tmp;
4940
457533a7 4941 /* Add user time to process. */
1da177e4 4942 p->utime = cputime_add(p->utime, cputime);
457533a7 4943 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4944 account_group_user_time(p, cputime);
1da177e4
LT
4945
4946 /* Add user time to cpustat. */
4947 tmp = cputime_to_cputime64(cputime);
4948 if (TASK_NICE(p) > 0)
4949 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4950 else
4951 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4952
4953 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4954 /* Account for user time used */
4955 acct_update_integrals(p);
1da177e4
LT
4956}
4957
94886b84
LV
4958/*
4959 * Account guest cpu time to a process.
4960 * @p: the process that the cpu time gets accounted to
4961 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4962 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4963 */
457533a7
MS
4964static void account_guest_time(struct task_struct *p, cputime_t cputime,
4965 cputime_t cputime_scaled)
94886b84
LV
4966{
4967 cputime64_t tmp;
4968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4969
4970 tmp = cputime_to_cputime64(cputime);
4971
457533a7 4972 /* Add guest time to process. */
94886b84 4973 p->utime = cputime_add(p->utime, cputime);
457533a7 4974 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4975 account_group_user_time(p, cputime);
94886b84
LV
4976 p->gtime = cputime_add(p->gtime, cputime);
4977
457533a7 4978 /* Add guest time to cpustat. */
94886b84
LV
4979 cpustat->user = cputime64_add(cpustat->user, tmp);
4980 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4981}
4982
1da177e4
LT
4983/*
4984 * Account system cpu time to a process.
4985 * @p: the process that the cpu time gets accounted to
4986 * @hardirq_offset: the offset to subtract from hardirq_count()
4987 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4988 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4989 */
4990void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4991 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4992{
4993 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4994 cputime64_t tmp;
4995
983ed7a6 4996 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4997 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4998 return;
4999 }
94886b84 5000
457533a7 5001 /* Add system time to process. */
1da177e4 5002 p->stime = cputime_add(p->stime, cputime);
457533a7 5003 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5004 account_group_system_time(p, cputime);
1da177e4
LT
5005
5006 /* Add system time to cpustat. */
5007 tmp = cputime_to_cputime64(cputime);
5008 if (hardirq_count() - hardirq_offset)
5009 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5010 else if (softirq_count())
5011 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5012 else
79741dd3
MS
5013 cpustat->system = cputime64_add(cpustat->system, tmp);
5014
ef12fefa
BR
5015 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5016
1da177e4
LT
5017 /* Account for system time used */
5018 acct_update_integrals(p);
1da177e4
LT
5019}
5020
c66f08be 5021/*
1da177e4 5022 * Account for involuntary wait time.
1da177e4 5023 * @steal: the cpu time spent in involuntary wait
c66f08be 5024 */
79741dd3 5025void account_steal_time(cputime_t cputime)
c66f08be 5026{
79741dd3
MS
5027 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5028 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5029
5030 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5031}
5032
1da177e4 5033/*
79741dd3
MS
5034 * Account for idle time.
5035 * @cputime: the cpu time spent in idle wait
1da177e4 5036 */
79741dd3 5037void account_idle_time(cputime_t cputime)
1da177e4
LT
5038{
5039 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5040 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5041 struct rq *rq = this_rq();
1da177e4 5042
79741dd3
MS
5043 if (atomic_read(&rq->nr_iowait) > 0)
5044 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5045 else
5046 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5047}
5048
79741dd3
MS
5049#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5050
5051/*
5052 * Account a single tick of cpu time.
5053 * @p: the process that the cpu time gets accounted to
5054 * @user_tick: indicates if the tick is a user or a system tick
5055 */
5056void account_process_tick(struct task_struct *p, int user_tick)
5057{
5058 cputime_t one_jiffy = jiffies_to_cputime(1);
5059 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5060 struct rq *rq = this_rq();
5061
5062 if (user_tick)
5063 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5064 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5065 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5066 one_jiffy_scaled);
5067 else
5068 account_idle_time(one_jiffy);
5069}
5070
5071/*
5072 * Account multiple ticks of steal time.
5073 * @p: the process from which the cpu time has been stolen
5074 * @ticks: number of stolen ticks
5075 */
5076void account_steal_ticks(unsigned long ticks)
5077{
5078 account_steal_time(jiffies_to_cputime(ticks));
5079}
5080
5081/*
5082 * Account multiple ticks of idle time.
5083 * @ticks: number of stolen ticks
5084 */
5085void account_idle_ticks(unsigned long ticks)
5086{
5087 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5088}
5089
79741dd3
MS
5090#endif
5091
49048622
BS
5092/*
5093 * Use precise platform statistics if available:
5094 */
5095#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5096cputime_t task_utime(struct task_struct *p)
5097{
5098 return p->utime;
5099}
5100
5101cputime_t task_stime(struct task_struct *p)
5102{
5103 return p->stime;
5104}
5105#else
5106cputime_t task_utime(struct task_struct *p)
5107{
5108 clock_t utime = cputime_to_clock_t(p->utime),
5109 total = utime + cputime_to_clock_t(p->stime);
5110 u64 temp;
5111
5112 /*
5113 * Use CFS's precise accounting:
5114 */
5115 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5116
5117 if (total) {
5118 temp *= utime;
5119 do_div(temp, total);
5120 }
5121 utime = (clock_t)temp;
5122
5123 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5124 return p->prev_utime;
5125}
5126
5127cputime_t task_stime(struct task_struct *p)
5128{
5129 clock_t stime;
5130
5131 /*
5132 * Use CFS's precise accounting. (we subtract utime from
5133 * the total, to make sure the total observed by userspace
5134 * grows monotonically - apps rely on that):
5135 */
5136 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5137 cputime_to_clock_t(task_utime(p));
5138
5139 if (stime >= 0)
5140 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5141
5142 return p->prev_stime;
5143}
5144#endif
5145
5146inline cputime_t task_gtime(struct task_struct *p)
5147{
5148 return p->gtime;
5149}
5150
7835b98b
CL
5151/*
5152 * This function gets called by the timer code, with HZ frequency.
5153 * We call it with interrupts disabled.
5154 *
5155 * It also gets called by the fork code, when changing the parent's
5156 * timeslices.
5157 */
5158void scheduler_tick(void)
5159{
7835b98b
CL
5160 int cpu = smp_processor_id();
5161 struct rq *rq = cpu_rq(cpu);
dd41f596 5162 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5163
5164 sched_clock_tick();
dd41f596
IM
5165
5166 spin_lock(&rq->lock);
3e51f33f 5167 update_rq_clock(rq);
f1a438d8 5168 update_cpu_load(rq);
fa85ae24 5169 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5170 spin_unlock(&rq->lock);
7835b98b 5171
e220d2dc
PZ
5172 perf_counter_task_tick(curr, cpu);
5173
e418e1c2 5174#ifdef CONFIG_SMP
dd41f596
IM
5175 rq->idle_at_tick = idle_cpu(cpu);
5176 trigger_load_balance(rq, cpu);
e418e1c2 5177#endif
1da177e4
LT
5178}
5179
132380a0 5180notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5181{
5182 if (in_lock_functions(addr)) {
5183 addr = CALLER_ADDR2;
5184 if (in_lock_functions(addr))
5185 addr = CALLER_ADDR3;
5186 }
5187 return addr;
5188}
1da177e4 5189
7e49fcce
SR
5190#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5191 defined(CONFIG_PREEMPT_TRACER))
5192
43627582 5193void __kprobes add_preempt_count(int val)
1da177e4 5194{
6cd8a4bb 5195#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5196 /*
5197 * Underflow?
5198 */
9a11b49a
IM
5199 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5200 return;
6cd8a4bb 5201#endif
1da177e4 5202 preempt_count() += val;
6cd8a4bb 5203#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5204 /*
5205 * Spinlock count overflowing soon?
5206 */
33859f7f
MOS
5207 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5208 PREEMPT_MASK - 10);
6cd8a4bb
SR
5209#endif
5210 if (preempt_count() == val)
5211 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5212}
5213EXPORT_SYMBOL(add_preempt_count);
5214
43627582 5215void __kprobes sub_preempt_count(int val)
1da177e4 5216{
6cd8a4bb 5217#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5218 /*
5219 * Underflow?
5220 */
01e3eb82 5221 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5222 return;
1da177e4
LT
5223 /*
5224 * Is the spinlock portion underflowing?
5225 */
9a11b49a
IM
5226 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5227 !(preempt_count() & PREEMPT_MASK)))
5228 return;
6cd8a4bb 5229#endif
9a11b49a 5230
6cd8a4bb
SR
5231 if (preempt_count() == val)
5232 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5233 preempt_count() -= val;
5234}
5235EXPORT_SYMBOL(sub_preempt_count);
5236
5237#endif
5238
5239/*
dd41f596 5240 * Print scheduling while atomic bug:
1da177e4 5241 */
dd41f596 5242static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5243{
838225b4
SS
5244 struct pt_regs *regs = get_irq_regs();
5245
5246 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5247 prev->comm, prev->pid, preempt_count());
5248
dd41f596 5249 debug_show_held_locks(prev);
e21f5b15 5250 print_modules();
dd41f596
IM
5251 if (irqs_disabled())
5252 print_irqtrace_events(prev);
838225b4
SS
5253
5254 if (regs)
5255 show_regs(regs);
5256 else
5257 dump_stack();
dd41f596 5258}
1da177e4 5259
dd41f596
IM
5260/*
5261 * Various schedule()-time debugging checks and statistics:
5262 */
5263static inline void schedule_debug(struct task_struct *prev)
5264{
1da177e4 5265 /*
41a2d6cf 5266 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5267 * schedule() atomically, we ignore that path for now.
5268 * Otherwise, whine if we are scheduling when we should not be.
5269 */
3f33a7ce 5270 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5271 __schedule_bug(prev);
5272
1da177e4
LT
5273 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5274
2d72376b 5275 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5276#ifdef CONFIG_SCHEDSTATS
5277 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5278 schedstat_inc(this_rq(), bkl_count);
5279 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5280 }
5281#endif
dd41f596
IM
5282}
5283
df1c99d4
MG
5284static void put_prev_task(struct rq *rq, struct task_struct *prev)
5285{
5286 if (prev->state == TASK_RUNNING) {
5287 u64 runtime = prev->se.sum_exec_runtime;
5288
5289 runtime -= prev->se.prev_sum_exec_runtime;
5290 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5291
5292 /*
5293 * In order to avoid avg_overlap growing stale when we are
5294 * indeed overlapping and hence not getting put to sleep, grow
5295 * the avg_overlap on preemption.
5296 *
5297 * We use the average preemption runtime because that
5298 * correlates to the amount of cache footprint a task can
5299 * build up.
5300 */
5301 update_avg(&prev->se.avg_overlap, runtime);
5302 }
5303 prev->sched_class->put_prev_task(rq, prev);
5304}
5305
dd41f596
IM
5306/*
5307 * Pick up the highest-prio task:
5308 */
5309static inline struct task_struct *
b67802ea 5310pick_next_task(struct rq *rq)
dd41f596 5311{
5522d5d5 5312 const struct sched_class *class;
dd41f596 5313 struct task_struct *p;
1da177e4
LT
5314
5315 /*
dd41f596
IM
5316 * Optimization: we know that if all tasks are in
5317 * the fair class we can call that function directly:
1da177e4 5318 */
dd41f596 5319 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5320 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5321 if (likely(p))
5322 return p;
1da177e4
LT
5323 }
5324
dd41f596
IM
5325 class = sched_class_highest;
5326 for ( ; ; ) {
fb8d4724 5327 p = class->pick_next_task(rq);
dd41f596
IM
5328 if (p)
5329 return p;
5330 /*
5331 * Will never be NULL as the idle class always
5332 * returns a non-NULL p:
5333 */
5334 class = class->next;
5335 }
5336}
1da177e4 5337
dd41f596
IM
5338/*
5339 * schedule() is the main scheduler function.
5340 */
ff743345 5341asmlinkage void __sched schedule(void)
dd41f596
IM
5342{
5343 struct task_struct *prev, *next;
67ca7bde 5344 unsigned long *switch_count;
dd41f596 5345 struct rq *rq;
31656519 5346 int cpu;
dd41f596 5347
ff743345
PZ
5348need_resched:
5349 preempt_disable();
dd41f596
IM
5350 cpu = smp_processor_id();
5351 rq = cpu_rq(cpu);
5352 rcu_qsctr_inc(cpu);
5353 prev = rq->curr;
5354 switch_count = &prev->nivcsw;
5355
5356 release_kernel_lock(prev);
5357need_resched_nonpreemptible:
5358
5359 schedule_debug(prev);
1da177e4 5360
31656519 5361 if (sched_feat(HRTICK))
f333fdc9 5362 hrtick_clear(rq);
8f4d37ec 5363
8cd162ce 5364 spin_lock_irq(&rq->lock);
3e51f33f 5365 update_rq_clock(rq);
1e819950 5366 clear_tsk_need_resched(prev);
1da177e4 5367
1da177e4 5368 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5369 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5370 prev->state = TASK_RUNNING;
16882c1e 5371 else
2e1cb74a 5372 deactivate_task(rq, prev, 1);
dd41f596 5373 switch_count = &prev->nvcsw;
1da177e4
LT
5374 }
5375
9a897c5a
SR
5376#ifdef CONFIG_SMP
5377 if (prev->sched_class->pre_schedule)
5378 prev->sched_class->pre_schedule(rq, prev);
5379#endif
f65eda4f 5380
dd41f596 5381 if (unlikely(!rq->nr_running))
1da177e4 5382 idle_balance(cpu, rq);
1da177e4 5383
df1c99d4 5384 put_prev_task(rq, prev);
b67802ea 5385 next = pick_next_task(rq);
1da177e4 5386
1da177e4 5387 if (likely(prev != next)) {
673a90a1 5388 sched_info_switch(prev, next);
564c2b21 5389 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5390
1da177e4
LT
5391 rq->nr_switches++;
5392 rq->curr = next;
5393 ++*switch_count;
5394
dd41f596 5395 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5396 /*
5397 * the context switch might have flipped the stack from under
5398 * us, hence refresh the local variables.
5399 */
5400 cpu = smp_processor_id();
5401 rq = cpu_rq(cpu);
1da177e4
LT
5402 } else
5403 spin_unlock_irq(&rq->lock);
5404
8f4d37ec 5405 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5406 goto need_resched_nonpreemptible;
8f4d37ec 5407
1da177e4 5408 preempt_enable_no_resched();
ff743345 5409 if (need_resched())
1da177e4
LT
5410 goto need_resched;
5411}
1da177e4
LT
5412EXPORT_SYMBOL(schedule);
5413
0d66bf6d
PZ
5414#ifdef CONFIG_SMP
5415/*
5416 * Look out! "owner" is an entirely speculative pointer
5417 * access and not reliable.
5418 */
5419int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5420{
5421 unsigned int cpu;
5422 struct rq *rq;
5423
5424 if (!sched_feat(OWNER_SPIN))
5425 return 0;
5426
5427#ifdef CONFIG_DEBUG_PAGEALLOC
5428 /*
5429 * Need to access the cpu field knowing that
5430 * DEBUG_PAGEALLOC could have unmapped it if
5431 * the mutex owner just released it and exited.
5432 */
5433 if (probe_kernel_address(&owner->cpu, cpu))
5434 goto out;
5435#else
5436 cpu = owner->cpu;
5437#endif
5438
5439 /*
5440 * Even if the access succeeded (likely case),
5441 * the cpu field may no longer be valid.
5442 */
5443 if (cpu >= nr_cpumask_bits)
5444 goto out;
5445
5446 /*
5447 * We need to validate that we can do a
5448 * get_cpu() and that we have the percpu area.
5449 */
5450 if (!cpu_online(cpu))
5451 goto out;
5452
5453 rq = cpu_rq(cpu);
5454
5455 for (;;) {
5456 /*
5457 * Owner changed, break to re-assess state.
5458 */
5459 if (lock->owner != owner)
5460 break;
5461
5462 /*
5463 * Is that owner really running on that cpu?
5464 */
5465 if (task_thread_info(rq->curr) != owner || need_resched())
5466 return 0;
5467
5468 cpu_relax();
5469 }
5470out:
5471 return 1;
5472}
5473#endif
5474
1da177e4
LT
5475#ifdef CONFIG_PREEMPT
5476/*
2ed6e34f 5477 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5478 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5479 * occur there and call schedule directly.
5480 */
5481asmlinkage void __sched preempt_schedule(void)
5482{
5483 struct thread_info *ti = current_thread_info();
6478d880 5484
1da177e4
LT
5485 /*
5486 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5487 * we do not want to preempt the current task. Just return..
1da177e4 5488 */
beed33a8 5489 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5490 return;
5491
3a5c359a
AK
5492 do {
5493 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5494 schedule();
3a5c359a 5495 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5496
3a5c359a
AK
5497 /*
5498 * Check again in case we missed a preemption opportunity
5499 * between schedule and now.
5500 */
5501 barrier();
5ed0cec0 5502 } while (need_resched());
1da177e4 5503}
1da177e4
LT
5504EXPORT_SYMBOL(preempt_schedule);
5505
5506/*
2ed6e34f 5507 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5508 * off of irq context.
5509 * Note, that this is called and return with irqs disabled. This will
5510 * protect us against recursive calling from irq.
5511 */
5512asmlinkage void __sched preempt_schedule_irq(void)
5513{
5514 struct thread_info *ti = current_thread_info();
6478d880 5515
2ed6e34f 5516 /* Catch callers which need to be fixed */
1da177e4
LT
5517 BUG_ON(ti->preempt_count || !irqs_disabled());
5518
3a5c359a
AK
5519 do {
5520 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5521 local_irq_enable();
5522 schedule();
5523 local_irq_disable();
3a5c359a 5524 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5525
3a5c359a
AK
5526 /*
5527 * Check again in case we missed a preemption opportunity
5528 * between schedule and now.
5529 */
5530 barrier();
5ed0cec0 5531 } while (need_resched());
1da177e4
LT
5532}
5533
5534#endif /* CONFIG_PREEMPT */
5535
95cdf3b7
IM
5536int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5537 void *key)
1da177e4 5538{
48f24c4d 5539 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5540}
1da177e4
LT
5541EXPORT_SYMBOL(default_wake_function);
5542
5543/*
41a2d6cf
IM
5544 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5545 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5546 * number) then we wake all the non-exclusive tasks and one exclusive task.
5547 *
5548 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5549 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5550 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5551 */
78ddb08f 5552static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5553 int nr_exclusive, int sync, void *key)
1da177e4 5554{
2e45874c 5555 wait_queue_t *curr, *next;
1da177e4 5556
2e45874c 5557 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5558 unsigned flags = curr->flags;
5559
1da177e4 5560 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5561 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5562 break;
5563 }
5564}
5565
5566/**
5567 * __wake_up - wake up threads blocked on a waitqueue.
5568 * @q: the waitqueue
5569 * @mode: which threads
5570 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5571 * @key: is directly passed to the wakeup function
50fa610a
DH
5572 *
5573 * It may be assumed that this function implies a write memory barrier before
5574 * changing the task state if and only if any tasks are woken up.
1da177e4 5575 */
7ad5b3a5 5576void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5577 int nr_exclusive, void *key)
1da177e4
LT
5578{
5579 unsigned long flags;
5580
5581 spin_lock_irqsave(&q->lock, flags);
5582 __wake_up_common(q, mode, nr_exclusive, 0, key);
5583 spin_unlock_irqrestore(&q->lock, flags);
5584}
1da177e4
LT
5585EXPORT_SYMBOL(__wake_up);
5586
5587/*
5588 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5589 */
7ad5b3a5 5590void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5591{
5592 __wake_up_common(q, mode, 1, 0, NULL);
5593}
5594
4ede816a
DL
5595void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5596{
5597 __wake_up_common(q, mode, 1, 0, key);
5598}
5599
1da177e4 5600/**
4ede816a 5601 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5602 * @q: the waitqueue
5603 * @mode: which threads
5604 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5605 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5606 *
5607 * The sync wakeup differs that the waker knows that it will schedule
5608 * away soon, so while the target thread will be woken up, it will not
5609 * be migrated to another CPU - ie. the two threads are 'synchronized'
5610 * with each other. This can prevent needless bouncing between CPUs.
5611 *
5612 * On UP it can prevent extra preemption.
50fa610a
DH
5613 *
5614 * It may be assumed that this function implies a write memory barrier before
5615 * changing the task state if and only if any tasks are woken up.
1da177e4 5616 */
4ede816a
DL
5617void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5618 int nr_exclusive, void *key)
1da177e4
LT
5619{
5620 unsigned long flags;
5621 int sync = 1;
5622
5623 if (unlikely(!q))
5624 return;
5625
5626 if (unlikely(!nr_exclusive))
5627 sync = 0;
5628
5629 spin_lock_irqsave(&q->lock, flags);
4ede816a 5630 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5631 spin_unlock_irqrestore(&q->lock, flags);
5632}
4ede816a
DL
5633EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5634
5635/*
5636 * __wake_up_sync - see __wake_up_sync_key()
5637 */
5638void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5639{
5640 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5641}
1da177e4
LT
5642EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5643
65eb3dc6
KD
5644/**
5645 * complete: - signals a single thread waiting on this completion
5646 * @x: holds the state of this particular completion
5647 *
5648 * This will wake up a single thread waiting on this completion. Threads will be
5649 * awakened in the same order in which they were queued.
5650 *
5651 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5652 *
5653 * It may be assumed that this function implies a write memory barrier before
5654 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5655 */
b15136e9 5656void complete(struct completion *x)
1da177e4
LT
5657{
5658 unsigned long flags;
5659
5660 spin_lock_irqsave(&x->wait.lock, flags);
5661 x->done++;
d9514f6c 5662 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5663 spin_unlock_irqrestore(&x->wait.lock, flags);
5664}
5665EXPORT_SYMBOL(complete);
5666
65eb3dc6
KD
5667/**
5668 * complete_all: - signals all threads waiting on this completion
5669 * @x: holds the state of this particular completion
5670 *
5671 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5672 *
5673 * It may be assumed that this function implies a write memory barrier before
5674 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5675 */
b15136e9 5676void complete_all(struct completion *x)
1da177e4
LT
5677{
5678 unsigned long flags;
5679
5680 spin_lock_irqsave(&x->wait.lock, flags);
5681 x->done += UINT_MAX/2;
d9514f6c 5682 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5683 spin_unlock_irqrestore(&x->wait.lock, flags);
5684}
5685EXPORT_SYMBOL(complete_all);
5686
8cbbe86d
AK
5687static inline long __sched
5688do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5689{
1da177e4
LT
5690 if (!x->done) {
5691 DECLARE_WAITQUEUE(wait, current);
5692
5693 wait.flags |= WQ_FLAG_EXCLUSIVE;
5694 __add_wait_queue_tail(&x->wait, &wait);
5695 do {
94d3d824 5696 if (signal_pending_state(state, current)) {
ea71a546
ON
5697 timeout = -ERESTARTSYS;
5698 break;
8cbbe86d
AK
5699 }
5700 __set_current_state(state);
1da177e4
LT
5701 spin_unlock_irq(&x->wait.lock);
5702 timeout = schedule_timeout(timeout);
5703 spin_lock_irq(&x->wait.lock);
ea71a546 5704 } while (!x->done && timeout);
1da177e4 5705 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5706 if (!x->done)
5707 return timeout;
1da177e4
LT
5708 }
5709 x->done--;
ea71a546 5710 return timeout ?: 1;
1da177e4 5711}
1da177e4 5712
8cbbe86d
AK
5713static long __sched
5714wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5715{
1da177e4
LT
5716 might_sleep();
5717
5718 spin_lock_irq(&x->wait.lock);
8cbbe86d 5719 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5720 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5721 return timeout;
5722}
1da177e4 5723
65eb3dc6
KD
5724/**
5725 * wait_for_completion: - waits for completion of a task
5726 * @x: holds the state of this particular completion
5727 *
5728 * This waits to be signaled for completion of a specific task. It is NOT
5729 * interruptible and there is no timeout.
5730 *
5731 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5732 * and interrupt capability. Also see complete().
5733 */
b15136e9 5734void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5735{
5736 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5737}
8cbbe86d 5738EXPORT_SYMBOL(wait_for_completion);
1da177e4 5739
65eb3dc6
KD
5740/**
5741 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5742 * @x: holds the state of this particular completion
5743 * @timeout: timeout value in jiffies
5744 *
5745 * This waits for either a completion of a specific task to be signaled or for a
5746 * specified timeout to expire. The timeout is in jiffies. It is not
5747 * interruptible.
5748 */
b15136e9 5749unsigned long __sched
8cbbe86d 5750wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5751{
8cbbe86d 5752 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5753}
8cbbe86d 5754EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5755
65eb3dc6
KD
5756/**
5757 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5758 * @x: holds the state of this particular completion
5759 *
5760 * This waits for completion of a specific task to be signaled. It is
5761 * interruptible.
5762 */
8cbbe86d 5763int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5764{
51e97990
AK
5765 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5766 if (t == -ERESTARTSYS)
5767 return t;
5768 return 0;
0fec171c 5769}
8cbbe86d 5770EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5771
65eb3dc6
KD
5772/**
5773 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5774 * @x: holds the state of this particular completion
5775 * @timeout: timeout value in jiffies
5776 *
5777 * This waits for either a completion of a specific task to be signaled or for a
5778 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5779 */
b15136e9 5780unsigned long __sched
8cbbe86d
AK
5781wait_for_completion_interruptible_timeout(struct completion *x,
5782 unsigned long timeout)
0fec171c 5783{
8cbbe86d 5784 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5785}
8cbbe86d 5786EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5787
65eb3dc6
KD
5788/**
5789 * wait_for_completion_killable: - waits for completion of a task (killable)
5790 * @x: holds the state of this particular completion
5791 *
5792 * This waits to be signaled for completion of a specific task. It can be
5793 * interrupted by a kill signal.
5794 */
009e577e
MW
5795int __sched wait_for_completion_killable(struct completion *x)
5796{
5797 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5798 if (t == -ERESTARTSYS)
5799 return t;
5800 return 0;
5801}
5802EXPORT_SYMBOL(wait_for_completion_killable);
5803
be4de352
DC
5804/**
5805 * try_wait_for_completion - try to decrement a completion without blocking
5806 * @x: completion structure
5807 *
5808 * Returns: 0 if a decrement cannot be done without blocking
5809 * 1 if a decrement succeeded.
5810 *
5811 * If a completion is being used as a counting completion,
5812 * attempt to decrement the counter without blocking. This
5813 * enables us to avoid waiting if the resource the completion
5814 * is protecting is not available.
5815 */
5816bool try_wait_for_completion(struct completion *x)
5817{
5818 int ret = 1;
5819
5820 spin_lock_irq(&x->wait.lock);
5821 if (!x->done)
5822 ret = 0;
5823 else
5824 x->done--;
5825 spin_unlock_irq(&x->wait.lock);
5826 return ret;
5827}
5828EXPORT_SYMBOL(try_wait_for_completion);
5829
5830/**
5831 * completion_done - Test to see if a completion has any waiters
5832 * @x: completion structure
5833 *
5834 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5835 * 1 if there are no waiters.
5836 *
5837 */
5838bool completion_done(struct completion *x)
5839{
5840 int ret = 1;
5841
5842 spin_lock_irq(&x->wait.lock);
5843 if (!x->done)
5844 ret = 0;
5845 spin_unlock_irq(&x->wait.lock);
5846 return ret;
5847}
5848EXPORT_SYMBOL(completion_done);
5849
8cbbe86d
AK
5850static long __sched
5851sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5852{
0fec171c
IM
5853 unsigned long flags;
5854 wait_queue_t wait;
5855
5856 init_waitqueue_entry(&wait, current);
1da177e4 5857
8cbbe86d 5858 __set_current_state(state);
1da177e4 5859
8cbbe86d
AK
5860 spin_lock_irqsave(&q->lock, flags);
5861 __add_wait_queue(q, &wait);
5862 spin_unlock(&q->lock);
5863 timeout = schedule_timeout(timeout);
5864 spin_lock_irq(&q->lock);
5865 __remove_wait_queue(q, &wait);
5866 spin_unlock_irqrestore(&q->lock, flags);
5867
5868 return timeout;
5869}
5870
5871void __sched interruptible_sleep_on(wait_queue_head_t *q)
5872{
5873 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5874}
1da177e4
LT
5875EXPORT_SYMBOL(interruptible_sleep_on);
5876
0fec171c 5877long __sched
95cdf3b7 5878interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5879{
8cbbe86d 5880 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5881}
1da177e4
LT
5882EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5883
0fec171c 5884void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5885{
8cbbe86d 5886 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5887}
1da177e4
LT
5888EXPORT_SYMBOL(sleep_on);
5889
0fec171c 5890long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5891{
8cbbe86d 5892 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5893}
1da177e4
LT
5894EXPORT_SYMBOL(sleep_on_timeout);
5895
b29739f9
IM
5896#ifdef CONFIG_RT_MUTEXES
5897
5898/*
5899 * rt_mutex_setprio - set the current priority of a task
5900 * @p: task
5901 * @prio: prio value (kernel-internal form)
5902 *
5903 * This function changes the 'effective' priority of a task. It does
5904 * not touch ->normal_prio like __setscheduler().
5905 *
5906 * Used by the rt_mutex code to implement priority inheritance logic.
5907 */
36c8b586 5908void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5909{
5910 unsigned long flags;
83b699ed 5911 int oldprio, on_rq, running;
70b97a7f 5912 struct rq *rq;
cb469845 5913 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5914
5915 BUG_ON(prio < 0 || prio > MAX_PRIO);
5916
5917 rq = task_rq_lock(p, &flags);
a8e504d2 5918 update_rq_clock(rq);
b29739f9 5919
d5f9f942 5920 oldprio = p->prio;
dd41f596 5921 on_rq = p->se.on_rq;
051a1d1a 5922 running = task_current(rq, p);
0e1f3483 5923 if (on_rq)
69be72c1 5924 dequeue_task(rq, p, 0);
0e1f3483
HS
5925 if (running)
5926 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5927
5928 if (rt_prio(prio))
5929 p->sched_class = &rt_sched_class;
5930 else
5931 p->sched_class = &fair_sched_class;
5932
b29739f9
IM
5933 p->prio = prio;
5934
0e1f3483
HS
5935 if (running)
5936 p->sched_class->set_curr_task(rq);
dd41f596 5937 if (on_rq) {
8159f87e 5938 enqueue_task(rq, p, 0);
cb469845
SR
5939
5940 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5941 }
5942 task_rq_unlock(rq, &flags);
5943}
5944
5945#endif
5946
36c8b586 5947void set_user_nice(struct task_struct *p, long nice)
1da177e4 5948{
dd41f596 5949 int old_prio, delta, on_rq;
1da177e4 5950 unsigned long flags;
70b97a7f 5951 struct rq *rq;
1da177e4
LT
5952
5953 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5954 return;
5955 /*
5956 * We have to be careful, if called from sys_setpriority(),
5957 * the task might be in the middle of scheduling on another CPU.
5958 */
5959 rq = task_rq_lock(p, &flags);
a8e504d2 5960 update_rq_clock(rq);
1da177e4
LT
5961 /*
5962 * The RT priorities are set via sched_setscheduler(), but we still
5963 * allow the 'normal' nice value to be set - but as expected
5964 * it wont have any effect on scheduling until the task is
dd41f596 5965 * SCHED_FIFO/SCHED_RR:
1da177e4 5966 */
e05606d3 5967 if (task_has_rt_policy(p)) {
1da177e4
LT
5968 p->static_prio = NICE_TO_PRIO(nice);
5969 goto out_unlock;
5970 }
dd41f596 5971 on_rq = p->se.on_rq;
c09595f6 5972 if (on_rq)
69be72c1 5973 dequeue_task(rq, p, 0);
1da177e4 5974
1da177e4 5975 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5976 set_load_weight(p);
b29739f9
IM
5977 old_prio = p->prio;
5978 p->prio = effective_prio(p);
5979 delta = p->prio - old_prio;
1da177e4 5980
dd41f596 5981 if (on_rq) {
8159f87e 5982 enqueue_task(rq, p, 0);
1da177e4 5983 /*
d5f9f942
AM
5984 * If the task increased its priority or is running and
5985 * lowered its priority, then reschedule its CPU:
1da177e4 5986 */
d5f9f942 5987 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5988 resched_task(rq->curr);
5989 }
5990out_unlock:
5991 task_rq_unlock(rq, &flags);
5992}
1da177e4
LT
5993EXPORT_SYMBOL(set_user_nice);
5994
e43379f1
MM
5995/*
5996 * can_nice - check if a task can reduce its nice value
5997 * @p: task
5998 * @nice: nice value
5999 */
36c8b586 6000int can_nice(const struct task_struct *p, const int nice)
e43379f1 6001{
024f4747
MM
6002 /* convert nice value [19,-20] to rlimit style value [1,40] */
6003 int nice_rlim = 20 - nice;
48f24c4d 6004
e43379f1
MM
6005 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6006 capable(CAP_SYS_NICE));
6007}
6008
1da177e4
LT
6009#ifdef __ARCH_WANT_SYS_NICE
6010
6011/*
6012 * sys_nice - change the priority of the current process.
6013 * @increment: priority increment
6014 *
6015 * sys_setpriority is a more generic, but much slower function that
6016 * does similar things.
6017 */
5add95d4 6018SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6019{
48f24c4d 6020 long nice, retval;
1da177e4
LT
6021
6022 /*
6023 * Setpriority might change our priority at the same moment.
6024 * We don't have to worry. Conceptually one call occurs first
6025 * and we have a single winner.
6026 */
e43379f1
MM
6027 if (increment < -40)
6028 increment = -40;
1da177e4
LT
6029 if (increment > 40)
6030 increment = 40;
6031
2b8f836f 6032 nice = TASK_NICE(current) + increment;
1da177e4
LT
6033 if (nice < -20)
6034 nice = -20;
6035 if (nice > 19)
6036 nice = 19;
6037
e43379f1
MM
6038 if (increment < 0 && !can_nice(current, nice))
6039 return -EPERM;
6040
1da177e4
LT
6041 retval = security_task_setnice(current, nice);
6042 if (retval)
6043 return retval;
6044
6045 set_user_nice(current, nice);
6046 return 0;
6047}
6048
6049#endif
6050
6051/**
6052 * task_prio - return the priority value of a given task.
6053 * @p: the task in question.
6054 *
6055 * This is the priority value as seen by users in /proc.
6056 * RT tasks are offset by -200. Normal tasks are centered
6057 * around 0, value goes from -16 to +15.
6058 */
36c8b586 6059int task_prio(const struct task_struct *p)
1da177e4
LT
6060{
6061 return p->prio - MAX_RT_PRIO;
6062}
6063
6064/**
6065 * task_nice - return the nice value of a given task.
6066 * @p: the task in question.
6067 */
36c8b586 6068int task_nice(const struct task_struct *p)
1da177e4
LT
6069{
6070 return TASK_NICE(p);
6071}
150d8bed 6072EXPORT_SYMBOL(task_nice);
1da177e4
LT
6073
6074/**
6075 * idle_cpu - is a given cpu idle currently?
6076 * @cpu: the processor in question.
6077 */
6078int idle_cpu(int cpu)
6079{
6080 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6081}
6082
1da177e4
LT
6083/**
6084 * idle_task - return the idle task for a given cpu.
6085 * @cpu: the processor in question.
6086 */
36c8b586 6087struct task_struct *idle_task(int cpu)
1da177e4
LT
6088{
6089 return cpu_rq(cpu)->idle;
6090}
6091
6092/**
6093 * find_process_by_pid - find a process with a matching PID value.
6094 * @pid: the pid in question.
6095 */
a9957449 6096static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6097{
228ebcbe 6098 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6099}
6100
6101/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6102static void
6103__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6104{
dd41f596 6105 BUG_ON(p->se.on_rq);
48f24c4d 6106
1da177e4 6107 p->policy = policy;
dd41f596
IM
6108 switch (p->policy) {
6109 case SCHED_NORMAL:
6110 case SCHED_BATCH:
6111 case SCHED_IDLE:
6112 p->sched_class = &fair_sched_class;
6113 break;
6114 case SCHED_FIFO:
6115 case SCHED_RR:
6116 p->sched_class = &rt_sched_class;
6117 break;
6118 }
6119
1da177e4 6120 p->rt_priority = prio;
b29739f9
IM
6121 p->normal_prio = normal_prio(p);
6122 /* we are holding p->pi_lock already */
6123 p->prio = rt_mutex_getprio(p);
2dd73a4f 6124 set_load_weight(p);
1da177e4
LT
6125}
6126
c69e8d9c
DH
6127/*
6128 * check the target process has a UID that matches the current process's
6129 */
6130static bool check_same_owner(struct task_struct *p)
6131{
6132 const struct cred *cred = current_cred(), *pcred;
6133 bool match;
6134
6135 rcu_read_lock();
6136 pcred = __task_cred(p);
6137 match = (cred->euid == pcred->euid ||
6138 cred->euid == pcred->uid);
6139 rcu_read_unlock();
6140 return match;
6141}
6142
961ccddd
RR
6143static int __sched_setscheduler(struct task_struct *p, int policy,
6144 struct sched_param *param, bool user)
1da177e4 6145{
83b699ed 6146 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6147 unsigned long flags;
cb469845 6148 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6149 struct rq *rq;
ca94c442 6150 int reset_on_fork;
1da177e4 6151
66e5393a
SR
6152 /* may grab non-irq protected spin_locks */
6153 BUG_ON(in_interrupt());
1da177e4
LT
6154recheck:
6155 /* double check policy once rq lock held */
ca94c442
LP
6156 if (policy < 0) {
6157 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6158 policy = oldpolicy = p->policy;
ca94c442
LP
6159 } else {
6160 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6161 policy &= ~SCHED_RESET_ON_FORK;
6162
6163 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6164 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6165 policy != SCHED_IDLE)
6166 return -EINVAL;
6167 }
6168
1da177e4
LT
6169 /*
6170 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6171 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6172 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6173 */
6174 if (param->sched_priority < 0 ||
95cdf3b7 6175 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6176 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6177 return -EINVAL;
e05606d3 6178 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6179 return -EINVAL;
6180
37e4ab3f
OC
6181 /*
6182 * Allow unprivileged RT tasks to decrease priority:
6183 */
961ccddd 6184 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6185 if (rt_policy(policy)) {
8dc3e909 6186 unsigned long rlim_rtprio;
8dc3e909
ON
6187
6188 if (!lock_task_sighand(p, &flags))
6189 return -ESRCH;
6190 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6191 unlock_task_sighand(p, &flags);
6192
6193 /* can't set/change the rt policy */
6194 if (policy != p->policy && !rlim_rtprio)
6195 return -EPERM;
6196
6197 /* can't increase priority */
6198 if (param->sched_priority > p->rt_priority &&
6199 param->sched_priority > rlim_rtprio)
6200 return -EPERM;
6201 }
dd41f596
IM
6202 /*
6203 * Like positive nice levels, dont allow tasks to
6204 * move out of SCHED_IDLE either:
6205 */
6206 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6207 return -EPERM;
5fe1d75f 6208
37e4ab3f 6209 /* can't change other user's priorities */
c69e8d9c 6210 if (!check_same_owner(p))
37e4ab3f 6211 return -EPERM;
ca94c442
LP
6212
6213 /* Normal users shall not reset the sched_reset_on_fork flag */
6214 if (p->sched_reset_on_fork && !reset_on_fork)
6215 return -EPERM;
37e4ab3f 6216 }
1da177e4 6217
725aad24 6218 if (user) {
b68aa230 6219#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6220 /*
6221 * Do not allow realtime tasks into groups that have no runtime
6222 * assigned.
6223 */
9a7e0b18
PZ
6224 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6225 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6226 return -EPERM;
b68aa230
PZ
6227#endif
6228
725aad24
JF
6229 retval = security_task_setscheduler(p, policy, param);
6230 if (retval)
6231 return retval;
6232 }
6233
b29739f9
IM
6234 /*
6235 * make sure no PI-waiters arrive (or leave) while we are
6236 * changing the priority of the task:
6237 */
6238 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6239 /*
6240 * To be able to change p->policy safely, the apropriate
6241 * runqueue lock must be held.
6242 */
b29739f9 6243 rq = __task_rq_lock(p);
1da177e4
LT
6244 /* recheck policy now with rq lock held */
6245 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6246 policy = oldpolicy = -1;
b29739f9
IM
6247 __task_rq_unlock(rq);
6248 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6249 goto recheck;
6250 }
2daa3577 6251 update_rq_clock(rq);
dd41f596 6252 on_rq = p->se.on_rq;
051a1d1a 6253 running = task_current(rq, p);
0e1f3483 6254 if (on_rq)
2e1cb74a 6255 deactivate_task(rq, p, 0);
0e1f3483
HS
6256 if (running)
6257 p->sched_class->put_prev_task(rq, p);
f6b53205 6258
ca94c442
LP
6259 p->sched_reset_on_fork = reset_on_fork;
6260
1da177e4 6261 oldprio = p->prio;
dd41f596 6262 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6263
0e1f3483
HS
6264 if (running)
6265 p->sched_class->set_curr_task(rq);
dd41f596
IM
6266 if (on_rq) {
6267 activate_task(rq, p, 0);
cb469845
SR
6268
6269 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6270 }
b29739f9
IM
6271 __task_rq_unlock(rq);
6272 spin_unlock_irqrestore(&p->pi_lock, flags);
6273
95e02ca9
TG
6274 rt_mutex_adjust_pi(p);
6275
1da177e4
LT
6276 return 0;
6277}
961ccddd
RR
6278
6279/**
6280 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6281 * @p: the task in question.
6282 * @policy: new policy.
6283 * @param: structure containing the new RT priority.
6284 *
6285 * NOTE that the task may be already dead.
6286 */
6287int sched_setscheduler(struct task_struct *p, int policy,
6288 struct sched_param *param)
6289{
6290 return __sched_setscheduler(p, policy, param, true);
6291}
1da177e4
LT
6292EXPORT_SYMBOL_GPL(sched_setscheduler);
6293
961ccddd
RR
6294/**
6295 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6296 * @p: the task in question.
6297 * @policy: new policy.
6298 * @param: structure containing the new RT priority.
6299 *
6300 * Just like sched_setscheduler, only don't bother checking if the
6301 * current context has permission. For example, this is needed in
6302 * stop_machine(): we create temporary high priority worker threads,
6303 * but our caller might not have that capability.
6304 */
6305int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6306 struct sched_param *param)
6307{
6308 return __sched_setscheduler(p, policy, param, false);
6309}
6310
95cdf3b7
IM
6311static int
6312do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6313{
1da177e4
LT
6314 struct sched_param lparam;
6315 struct task_struct *p;
36c8b586 6316 int retval;
1da177e4
LT
6317
6318 if (!param || pid < 0)
6319 return -EINVAL;
6320 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6321 return -EFAULT;
5fe1d75f
ON
6322
6323 rcu_read_lock();
6324 retval = -ESRCH;
1da177e4 6325 p = find_process_by_pid(pid);
5fe1d75f
ON
6326 if (p != NULL)
6327 retval = sched_setscheduler(p, policy, &lparam);
6328 rcu_read_unlock();
36c8b586 6329
1da177e4
LT
6330 return retval;
6331}
6332
6333/**
6334 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6335 * @pid: the pid in question.
6336 * @policy: new policy.
6337 * @param: structure containing the new RT priority.
6338 */
5add95d4
HC
6339SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6340 struct sched_param __user *, param)
1da177e4 6341{
c21761f1
JB
6342 /* negative values for policy are not valid */
6343 if (policy < 0)
6344 return -EINVAL;
6345
1da177e4
LT
6346 return do_sched_setscheduler(pid, policy, param);
6347}
6348
6349/**
6350 * sys_sched_setparam - set/change the RT priority of a thread
6351 * @pid: the pid in question.
6352 * @param: structure containing the new RT priority.
6353 */
5add95d4 6354SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6355{
6356 return do_sched_setscheduler(pid, -1, param);
6357}
6358
6359/**
6360 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6361 * @pid: the pid in question.
6362 */
5add95d4 6363SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6364{
36c8b586 6365 struct task_struct *p;
3a5c359a 6366 int retval;
1da177e4
LT
6367
6368 if (pid < 0)
3a5c359a 6369 return -EINVAL;
1da177e4
LT
6370
6371 retval = -ESRCH;
6372 read_lock(&tasklist_lock);
6373 p = find_process_by_pid(pid);
6374 if (p) {
6375 retval = security_task_getscheduler(p);
6376 if (!retval)
ca94c442
LP
6377 retval = p->policy
6378 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6379 }
6380 read_unlock(&tasklist_lock);
1da177e4
LT
6381 return retval;
6382}
6383
6384/**
ca94c442 6385 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6386 * @pid: the pid in question.
6387 * @param: structure containing the RT priority.
6388 */
5add95d4 6389SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6390{
6391 struct sched_param lp;
36c8b586 6392 struct task_struct *p;
3a5c359a 6393 int retval;
1da177e4
LT
6394
6395 if (!param || pid < 0)
3a5c359a 6396 return -EINVAL;
1da177e4
LT
6397
6398 read_lock(&tasklist_lock);
6399 p = find_process_by_pid(pid);
6400 retval = -ESRCH;
6401 if (!p)
6402 goto out_unlock;
6403
6404 retval = security_task_getscheduler(p);
6405 if (retval)
6406 goto out_unlock;
6407
6408 lp.sched_priority = p->rt_priority;
6409 read_unlock(&tasklist_lock);
6410
6411 /*
6412 * This one might sleep, we cannot do it with a spinlock held ...
6413 */
6414 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6415
1da177e4
LT
6416 return retval;
6417
6418out_unlock:
6419 read_unlock(&tasklist_lock);
6420 return retval;
6421}
6422
96f874e2 6423long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6424{
5a16f3d3 6425 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6426 struct task_struct *p;
6427 int retval;
1da177e4 6428
95402b38 6429 get_online_cpus();
1da177e4
LT
6430 read_lock(&tasklist_lock);
6431
6432 p = find_process_by_pid(pid);
6433 if (!p) {
6434 read_unlock(&tasklist_lock);
95402b38 6435 put_online_cpus();
1da177e4
LT
6436 return -ESRCH;
6437 }
6438
6439 /*
6440 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6441 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6442 * usage count and then drop tasklist_lock.
6443 */
6444 get_task_struct(p);
6445 read_unlock(&tasklist_lock);
6446
5a16f3d3
RR
6447 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6448 retval = -ENOMEM;
6449 goto out_put_task;
6450 }
6451 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6452 retval = -ENOMEM;
6453 goto out_free_cpus_allowed;
6454 }
1da177e4 6455 retval = -EPERM;
c69e8d9c 6456 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6457 goto out_unlock;
6458
e7834f8f
DQ
6459 retval = security_task_setscheduler(p, 0, NULL);
6460 if (retval)
6461 goto out_unlock;
6462
5a16f3d3
RR
6463 cpuset_cpus_allowed(p, cpus_allowed);
6464 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6465 again:
5a16f3d3 6466 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6467
8707d8b8 6468 if (!retval) {
5a16f3d3
RR
6469 cpuset_cpus_allowed(p, cpus_allowed);
6470 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6471 /*
6472 * We must have raced with a concurrent cpuset
6473 * update. Just reset the cpus_allowed to the
6474 * cpuset's cpus_allowed
6475 */
5a16f3d3 6476 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6477 goto again;
6478 }
6479 }
1da177e4 6480out_unlock:
5a16f3d3
RR
6481 free_cpumask_var(new_mask);
6482out_free_cpus_allowed:
6483 free_cpumask_var(cpus_allowed);
6484out_put_task:
1da177e4 6485 put_task_struct(p);
95402b38 6486 put_online_cpus();
1da177e4
LT
6487 return retval;
6488}
6489
6490static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6491 struct cpumask *new_mask)
1da177e4 6492{
96f874e2
RR
6493 if (len < cpumask_size())
6494 cpumask_clear(new_mask);
6495 else if (len > cpumask_size())
6496 len = cpumask_size();
6497
1da177e4
LT
6498 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6499}
6500
6501/**
6502 * sys_sched_setaffinity - set the cpu affinity of a process
6503 * @pid: pid of the process
6504 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6505 * @user_mask_ptr: user-space pointer to the new cpu mask
6506 */
5add95d4
HC
6507SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6508 unsigned long __user *, user_mask_ptr)
1da177e4 6509{
5a16f3d3 6510 cpumask_var_t new_mask;
1da177e4
LT
6511 int retval;
6512
5a16f3d3
RR
6513 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6514 return -ENOMEM;
1da177e4 6515
5a16f3d3
RR
6516 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6517 if (retval == 0)
6518 retval = sched_setaffinity(pid, new_mask);
6519 free_cpumask_var(new_mask);
6520 return retval;
1da177e4
LT
6521}
6522
96f874e2 6523long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6524{
36c8b586 6525 struct task_struct *p;
1da177e4 6526 int retval;
1da177e4 6527
95402b38 6528 get_online_cpus();
1da177e4
LT
6529 read_lock(&tasklist_lock);
6530
6531 retval = -ESRCH;
6532 p = find_process_by_pid(pid);
6533 if (!p)
6534 goto out_unlock;
6535
e7834f8f
DQ
6536 retval = security_task_getscheduler(p);
6537 if (retval)
6538 goto out_unlock;
6539
96f874e2 6540 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6541
6542out_unlock:
6543 read_unlock(&tasklist_lock);
95402b38 6544 put_online_cpus();
1da177e4 6545
9531b62f 6546 return retval;
1da177e4
LT
6547}
6548
6549/**
6550 * sys_sched_getaffinity - get the cpu affinity of a process
6551 * @pid: pid of the process
6552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6553 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6554 */
5add95d4
HC
6555SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6556 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6557{
6558 int ret;
f17c8607 6559 cpumask_var_t mask;
1da177e4 6560
f17c8607 6561 if (len < cpumask_size())
1da177e4
LT
6562 return -EINVAL;
6563
f17c8607
RR
6564 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6565 return -ENOMEM;
1da177e4 6566
f17c8607
RR
6567 ret = sched_getaffinity(pid, mask);
6568 if (ret == 0) {
6569 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6570 ret = -EFAULT;
6571 else
6572 ret = cpumask_size();
6573 }
6574 free_cpumask_var(mask);
1da177e4 6575
f17c8607 6576 return ret;
1da177e4
LT
6577}
6578
6579/**
6580 * sys_sched_yield - yield the current processor to other threads.
6581 *
dd41f596
IM
6582 * This function yields the current CPU to other tasks. If there are no
6583 * other threads running on this CPU then this function will return.
1da177e4 6584 */
5add95d4 6585SYSCALL_DEFINE0(sched_yield)
1da177e4 6586{
70b97a7f 6587 struct rq *rq = this_rq_lock();
1da177e4 6588
2d72376b 6589 schedstat_inc(rq, yld_count);
4530d7ab 6590 current->sched_class->yield_task(rq);
1da177e4
LT
6591
6592 /*
6593 * Since we are going to call schedule() anyway, there's
6594 * no need to preempt or enable interrupts:
6595 */
6596 __release(rq->lock);
8a25d5de 6597 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6598 _raw_spin_unlock(&rq->lock);
6599 preempt_enable_no_resched();
6600
6601 schedule();
6602
6603 return 0;
6604}
6605
d86ee480
PZ
6606static inline int should_resched(void)
6607{
6608 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6609}
6610
e7b38404 6611static void __cond_resched(void)
1da177e4 6612{
e4aafea2 6613 __might_sleep(__FILE__, __LINE__, 0);
e09758fa 6614
e7aaaa69
FW
6615 add_preempt_count(PREEMPT_ACTIVE);
6616 schedule();
6617 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6618}
6619
02b67cc3 6620int __sched _cond_resched(void)
1da177e4 6621{
d86ee480 6622 if (should_resched()) {
1da177e4
LT
6623 __cond_resched();
6624 return 1;
6625 }
6626 return 0;
6627}
02b67cc3 6628EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6629
6630/*
6631 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6632 * call schedule, and on return reacquire the lock.
6633 *
41a2d6cf 6634 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6635 * operations here to prevent schedule() from being called twice (once via
6636 * spin_unlock(), once by hand).
6637 */
95cdf3b7 6638int cond_resched_lock(spinlock_t *lock)
1da177e4 6639{
d86ee480 6640 int resched = should_resched();
6df3cecb
JK
6641 int ret = 0;
6642
95c354fe 6643 if (spin_needbreak(lock) || resched) {
1da177e4 6644 spin_unlock(lock);
d86ee480 6645 if (resched)
95c354fe
NP
6646 __cond_resched();
6647 else
6648 cpu_relax();
6df3cecb 6649 ret = 1;
1da177e4 6650 spin_lock(lock);
1da177e4 6651 }
6df3cecb 6652 return ret;
1da177e4 6653}
1da177e4
LT
6654EXPORT_SYMBOL(cond_resched_lock);
6655
6656int __sched cond_resched_softirq(void)
6657{
6658 BUG_ON(!in_softirq());
6659
d86ee480 6660 if (should_resched()) {
98d82567 6661 local_bh_enable();
1da177e4
LT
6662 __cond_resched();
6663 local_bh_disable();
6664 return 1;
6665 }
6666 return 0;
6667}
1da177e4
LT
6668EXPORT_SYMBOL(cond_resched_softirq);
6669
1da177e4
LT
6670/**
6671 * yield - yield the current processor to other threads.
6672 *
72fd4a35 6673 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6674 * thread runnable and calls sys_sched_yield().
6675 */
6676void __sched yield(void)
6677{
6678 set_current_state(TASK_RUNNING);
6679 sys_sched_yield();
6680}
1da177e4
LT
6681EXPORT_SYMBOL(yield);
6682
6683/*
41a2d6cf 6684 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6685 * that process accounting knows that this is a task in IO wait state.
6686 *
6687 * But don't do that if it is a deliberate, throttling IO wait (this task
6688 * has set its backing_dev_info: the queue against which it should throttle)
6689 */
6690void __sched io_schedule(void)
6691{
54d35f29 6692 struct rq *rq = raw_rq();
1da177e4 6693
0ff92245 6694 delayacct_blkio_start();
1da177e4
LT
6695 atomic_inc(&rq->nr_iowait);
6696 schedule();
6697 atomic_dec(&rq->nr_iowait);
0ff92245 6698 delayacct_blkio_end();
1da177e4 6699}
1da177e4
LT
6700EXPORT_SYMBOL(io_schedule);
6701
6702long __sched io_schedule_timeout(long timeout)
6703{
54d35f29 6704 struct rq *rq = raw_rq();
1da177e4
LT
6705 long ret;
6706
0ff92245 6707 delayacct_blkio_start();
1da177e4
LT
6708 atomic_inc(&rq->nr_iowait);
6709 ret = schedule_timeout(timeout);
6710 atomic_dec(&rq->nr_iowait);
0ff92245 6711 delayacct_blkio_end();
1da177e4
LT
6712 return ret;
6713}
6714
6715/**
6716 * sys_sched_get_priority_max - return maximum RT priority.
6717 * @policy: scheduling class.
6718 *
6719 * this syscall returns the maximum rt_priority that can be used
6720 * by a given scheduling class.
6721 */
5add95d4 6722SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6723{
6724 int ret = -EINVAL;
6725
6726 switch (policy) {
6727 case SCHED_FIFO:
6728 case SCHED_RR:
6729 ret = MAX_USER_RT_PRIO-1;
6730 break;
6731 case SCHED_NORMAL:
b0a9499c 6732 case SCHED_BATCH:
dd41f596 6733 case SCHED_IDLE:
1da177e4
LT
6734 ret = 0;
6735 break;
6736 }
6737 return ret;
6738}
6739
6740/**
6741 * sys_sched_get_priority_min - return minimum RT priority.
6742 * @policy: scheduling class.
6743 *
6744 * this syscall returns the minimum rt_priority that can be used
6745 * by a given scheduling class.
6746 */
5add95d4 6747SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6748{
6749 int ret = -EINVAL;
6750
6751 switch (policy) {
6752 case SCHED_FIFO:
6753 case SCHED_RR:
6754 ret = 1;
6755 break;
6756 case SCHED_NORMAL:
b0a9499c 6757 case SCHED_BATCH:
dd41f596 6758 case SCHED_IDLE:
1da177e4
LT
6759 ret = 0;
6760 }
6761 return ret;
6762}
6763
6764/**
6765 * sys_sched_rr_get_interval - return the default timeslice of a process.
6766 * @pid: pid of the process.
6767 * @interval: userspace pointer to the timeslice value.
6768 *
6769 * this syscall writes the default timeslice value of a given process
6770 * into the user-space timespec buffer. A value of '0' means infinity.
6771 */
17da2bd9 6772SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6773 struct timespec __user *, interval)
1da177e4 6774{
36c8b586 6775 struct task_struct *p;
a4ec24b4 6776 unsigned int time_slice;
3a5c359a 6777 int retval;
1da177e4 6778 struct timespec t;
1da177e4
LT
6779
6780 if (pid < 0)
3a5c359a 6781 return -EINVAL;
1da177e4
LT
6782
6783 retval = -ESRCH;
6784 read_lock(&tasklist_lock);
6785 p = find_process_by_pid(pid);
6786 if (!p)
6787 goto out_unlock;
6788
6789 retval = security_task_getscheduler(p);
6790 if (retval)
6791 goto out_unlock;
6792
77034937
IM
6793 /*
6794 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6795 * tasks that are on an otherwise idle runqueue:
6796 */
6797 time_slice = 0;
6798 if (p->policy == SCHED_RR) {
a4ec24b4 6799 time_slice = DEF_TIMESLICE;
1868f958 6800 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6801 struct sched_entity *se = &p->se;
6802 unsigned long flags;
6803 struct rq *rq;
6804
6805 rq = task_rq_lock(p, &flags);
77034937
IM
6806 if (rq->cfs.load.weight)
6807 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6808 task_rq_unlock(rq, &flags);
6809 }
1da177e4 6810 read_unlock(&tasklist_lock);
a4ec24b4 6811 jiffies_to_timespec(time_slice, &t);
1da177e4 6812 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6813 return retval;
3a5c359a 6814
1da177e4
LT
6815out_unlock:
6816 read_unlock(&tasklist_lock);
6817 return retval;
6818}
6819
7c731e0a 6820static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6821
82a1fcb9 6822void sched_show_task(struct task_struct *p)
1da177e4 6823{
1da177e4 6824 unsigned long free = 0;
36c8b586 6825 unsigned state;
1da177e4 6826
1da177e4 6827 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6828 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6829 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6830#if BITS_PER_LONG == 32
1da177e4 6831 if (state == TASK_RUNNING)
cc4ea795 6832 printk(KERN_CONT " running ");
1da177e4 6833 else
cc4ea795 6834 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6835#else
6836 if (state == TASK_RUNNING)
cc4ea795 6837 printk(KERN_CONT " running task ");
1da177e4 6838 else
cc4ea795 6839 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6840#endif
6841#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6842 free = stack_not_used(p);
1da177e4 6843#endif
aa47b7e0
DR
6844 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6845 task_pid_nr(p), task_pid_nr(p->real_parent),
6846 (unsigned long)task_thread_info(p)->flags);
1da177e4 6847
5fb5e6de 6848 show_stack(p, NULL);
1da177e4
LT
6849}
6850
e59e2ae2 6851void show_state_filter(unsigned long state_filter)
1da177e4 6852{
36c8b586 6853 struct task_struct *g, *p;
1da177e4 6854
4bd77321
IM
6855#if BITS_PER_LONG == 32
6856 printk(KERN_INFO
6857 " task PC stack pid father\n");
1da177e4 6858#else
4bd77321
IM
6859 printk(KERN_INFO
6860 " task PC stack pid father\n");
1da177e4
LT
6861#endif
6862 read_lock(&tasklist_lock);
6863 do_each_thread(g, p) {
6864 /*
6865 * reset the NMI-timeout, listing all files on a slow
6866 * console might take alot of time:
6867 */
6868 touch_nmi_watchdog();
39bc89fd 6869 if (!state_filter || (p->state & state_filter))
82a1fcb9 6870 sched_show_task(p);
1da177e4
LT
6871 } while_each_thread(g, p);
6872
04c9167f
JF
6873 touch_all_softlockup_watchdogs();
6874
dd41f596
IM
6875#ifdef CONFIG_SCHED_DEBUG
6876 sysrq_sched_debug_show();
6877#endif
1da177e4 6878 read_unlock(&tasklist_lock);
e59e2ae2
IM
6879 /*
6880 * Only show locks if all tasks are dumped:
6881 */
6882 if (state_filter == -1)
6883 debug_show_all_locks();
1da177e4
LT
6884}
6885
1df21055
IM
6886void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6887{
dd41f596 6888 idle->sched_class = &idle_sched_class;
1df21055
IM
6889}
6890
f340c0d1
IM
6891/**
6892 * init_idle - set up an idle thread for a given CPU
6893 * @idle: task in question
6894 * @cpu: cpu the idle task belongs to
6895 *
6896 * NOTE: this function does not set the idle thread's NEED_RESCHED
6897 * flag, to make booting more robust.
6898 */
5c1e1767 6899void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6900{
70b97a7f 6901 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6902 unsigned long flags;
6903
5cbd54ef
IM
6904 spin_lock_irqsave(&rq->lock, flags);
6905
dd41f596
IM
6906 __sched_fork(idle);
6907 idle->se.exec_start = sched_clock();
6908
b29739f9 6909 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6910 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6911 __set_task_cpu(idle, cpu);
1da177e4 6912
1da177e4 6913 rq->curr = rq->idle = idle;
4866cde0
NP
6914#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6915 idle->oncpu = 1;
6916#endif
1da177e4
LT
6917 spin_unlock_irqrestore(&rq->lock, flags);
6918
6919 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6920#if defined(CONFIG_PREEMPT)
6921 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6922#else
a1261f54 6923 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6924#endif
dd41f596
IM
6925 /*
6926 * The idle tasks have their own, simple scheduling class:
6927 */
6928 idle->sched_class = &idle_sched_class;
fb52607a 6929 ftrace_graph_init_task(idle);
1da177e4
LT
6930}
6931
6932/*
6933 * In a system that switches off the HZ timer nohz_cpu_mask
6934 * indicates which cpus entered this state. This is used
6935 * in the rcu update to wait only for active cpus. For system
6936 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6937 * always be CPU_BITS_NONE.
1da177e4 6938 */
6a7b3dc3 6939cpumask_var_t nohz_cpu_mask;
1da177e4 6940
19978ca6
IM
6941/*
6942 * Increase the granularity value when there are more CPUs,
6943 * because with more CPUs the 'effective latency' as visible
6944 * to users decreases. But the relationship is not linear,
6945 * so pick a second-best guess by going with the log2 of the
6946 * number of CPUs.
6947 *
6948 * This idea comes from the SD scheduler of Con Kolivas:
6949 */
6950static inline void sched_init_granularity(void)
6951{
6952 unsigned int factor = 1 + ilog2(num_online_cpus());
6953 const unsigned long limit = 200000000;
6954
6955 sysctl_sched_min_granularity *= factor;
6956 if (sysctl_sched_min_granularity > limit)
6957 sysctl_sched_min_granularity = limit;
6958
6959 sysctl_sched_latency *= factor;
6960 if (sysctl_sched_latency > limit)
6961 sysctl_sched_latency = limit;
6962
6963 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6964
6965 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6966}
6967
1da177e4
LT
6968#ifdef CONFIG_SMP
6969/*
6970 * This is how migration works:
6971 *
70b97a7f 6972 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6973 * runqueue and wake up that CPU's migration thread.
6974 * 2) we down() the locked semaphore => thread blocks.
6975 * 3) migration thread wakes up (implicitly it forces the migrated
6976 * thread off the CPU)
6977 * 4) it gets the migration request and checks whether the migrated
6978 * task is still in the wrong runqueue.
6979 * 5) if it's in the wrong runqueue then the migration thread removes
6980 * it and puts it into the right queue.
6981 * 6) migration thread up()s the semaphore.
6982 * 7) we wake up and the migration is done.
6983 */
6984
6985/*
6986 * Change a given task's CPU affinity. Migrate the thread to a
6987 * proper CPU and schedule it away if the CPU it's executing on
6988 * is removed from the allowed bitmask.
6989 *
6990 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6991 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6992 * call is not atomic; no spinlocks may be held.
6993 */
96f874e2 6994int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6995{
70b97a7f 6996 struct migration_req req;
1da177e4 6997 unsigned long flags;
70b97a7f 6998 struct rq *rq;
48f24c4d 6999 int ret = 0;
1da177e4
LT
7000
7001 rq = task_rq_lock(p, &flags);
96f874e2 7002 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7003 ret = -EINVAL;
7004 goto out;
7005 }
7006
9985b0ba 7007 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7008 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7009 ret = -EINVAL;
7010 goto out;
7011 }
7012
73fe6aae 7013 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7014 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7015 else {
96f874e2
RR
7016 cpumask_copy(&p->cpus_allowed, new_mask);
7017 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7018 }
7019
1da177e4 7020 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7021 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7022 goto out;
7023
1e5ce4f4 7024 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
7025 /* Need help from migration thread: drop lock and wait. */
7026 task_rq_unlock(rq, &flags);
7027 wake_up_process(rq->migration_thread);
7028 wait_for_completion(&req.done);
7029 tlb_migrate_finish(p->mm);
7030 return 0;
7031 }
7032out:
7033 task_rq_unlock(rq, &flags);
48f24c4d 7034
1da177e4
LT
7035 return ret;
7036}
cd8ba7cd 7037EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7038
7039/*
41a2d6cf 7040 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7041 * this because either it can't run here any more (set_cpus_allowed()
7042 * away from this CPU, or CPU going down), or because we're
7043 * attempting to rebalance this task on exec (sched_exec).
7044 *
7045 * So we race with normal scheduler movements, but that's OK, as long
7046 * as the task is no longer on this CPU.
efc30814
KK
7047 *
7048 * Returns non-zero if task was successfully migrated.
1da177e4 7049 */
efc30814 7050static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7051{
70b97a7f 7052 struct rq *rq_dest, *rq_src;
dd41f596 7053 int ret = 0, on_rq;
1da177e4 7054
e761b772 7055 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7056 return ret;
1da177e4
LT
7057
7058 rq_src = cpu_rq(src_cpu);
7059 rq_dest = cpu_rq(dest_cpu);
7060
7061 double_rq_lock(rq_src, rq_dest);
7062 /* Already moved. */
7063 if (task_cpu(p) != src_cpu)
b1e38734 7064 goto done;
1da177e4 7065 /* Affinity changed (again). */
96f874e2 7066 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7067 goto fail;
1da177e4 7068
dd41f596 7069 on_rq = p->se.on_rq;
6e82a3be 7070 if (on_rq)
2e1cb74a 7071 deactivate_task(rq_src, p, 0);
6e82a3be 7072
1da177e4 7073 set_task_cpu(p, dest_cpu);
dd41f596
IM
7074 if (on_rq) {
7075 activate_task(rq_dest, p, 0);
15afe09b 7076 check_preempt_curr(rq_dest, p, 0);
1da177e4 7077 }
b1e38734 7078done:
efc30814 7079 ret = 1;
b1e38734 7080fail:
1da177e4 7081 double_rq_unlock(rq_src, rq_dest);
efc30814 7082 return ret;
1da177e4
LT
7083}
7084
7085/*
7086 * migration_thread - this is a highprio system thread that performs
7087 * thread migration by bumping thread off CPU then 'pushing' onto
7088 * another runqueue.
7089 */
95cdf3b7 7090static int migration_thread(void *data)
1da177e4 7091{
1da177e4 7092 int cpu = (long)data;
70b97a7f 7093 struct rq *rq;
1da177e4
LT
7094
7095 rq = cpu_rq(cpu);
7096 BUG_ON(rq->migration_thread != current);
7097
7098 set_current_state(TASK_INTERRUPTIBLE);
7099 while (!kthread_should_stop()) {
70b97a7f 7100 struct migration_req *req;
1da177e4 7101 struct list_head *head;
1da177e4 7102
1da177e4
LT
7103 spin_lock_irq(&rq->lock);
7104
7105 if (cpu_is_offline(cpu)) {
7106 spin_unlock_irq(&rq->lock);
371cbb38 7107 break;
1da177e4
LT
7108 }
7109
7110 if (rq->active_balance) {
7111 active_load_balance(rq, cpu);
7112 rq->active_balance = 0;
7113 }
7114
7115 head = &rq->migration_queue;
7116
7117 if (list_empty(head)) {
7118 spin_unlock_irq(&rq->lock);
7119 schedule();
7120 set_current_state(TASK_INTERRUPTIBLE);
7121 continue;
7122 }
70b97a7f 7123 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7124 list_del_init(head->next);
7125
674311d5
NP
7126 spin_unlock(&rq->lock);
7127 __migrate_task(req->task, cpu, req->dest_cpu);
7128 local_irq_enable();
1da177e4
LT
7129
7130 complete(&req->done);
7131 }
7132 __set_current_state(TASK_RUNNING);
1da177e4 7133
1da177e4
LT
7134 return 0;
7135}
7136
7137#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7138
7139static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7140{
7141 int ret;
7142
7143 local_irq_disable();
7144 ret = __migrate_task(p, src_cpu, dest_cpu);
7145 local_irq_enable();
7146 return ret;
7147}
7148
054b9108 7149/*
3a4fa0a2 7150 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7151 */
48f24c4d 7152static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7153{
70b97a7f 7154 int dest_cpu;
6ca09dfc 7155 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7156
7157again:
7158 /* Look for allowed, online CPU in same node. */
7159 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7160 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7161 goto move;
7162
7163 /* Any allowed, online CPU? */
7164 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7165 if (dest_cpu < nr_cpu_ids)
7166 goto move;
7167
7168 /* No more Mr. Nice Guy. */
7169 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7170 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7171 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7172
e76bd8d9
RR
7173 /*
7174 * Don't tell them about moving exiting tasks or
7175 * kernel threads (both mm NULL), since they never
7176 * leave kernel.
7177 */
7178 if (p->mm && printk_ratelimit()) {
7179 printk(KERN_INFO "process %d (%s) no "
7180 "longer affine to cpu%d\n",
7181 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7182 }
e76bd8d9
RR
7183 }
7184
7185move:
7186 /* It can have affinity changed while we were choosing. */
7187 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7188 goto again;
1da177e4
LT
7189}
7190
7191/*
7192 * While a dead CPU has no uninterruptible tasks queued at this point,
7193 * it might still have a nonzero ->nr_uninterruptible counter, because
7194 * for performance reasons the counter is not stricly tracking tasks to
7195 * their home CPUs. So we just add the counter to another CPU's counter,
7196 * to keep the global sum constant after CPU-down:
7197 */
70b97a7f 7198static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7199{
1e5ce4f4 7200 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7201 unsigned long flags;
7202
7203 local_irq_save(flags);
7204 double_rq_lock(rq_src, rq_dest);
7205 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7206 rq_src->nr_uninterruptible = 0;
7207 double_rq_unlock(rq_src, rq_dest);
7208 local_irq_restore(flags);
7209}
7210
7211/* Run through task list and migrate tasks from the dead cpu. */
7212static void migrate_live_tasks(int src_cpu)
7213{
48f24c4d 7214 struct task_struct *p, *t;
1da177e4 7215
f7b4cddc 7216 read_lock(&tasklist_lock);
1da177e4 7217
48f24c4d
IM
7218 do_each_thread(t, p) {
7219 if (p == current)
1da177e4
LT
7220 continue;
7221
48f24c4d
IM
7222 if (task_cpu(p) == src_cpu)
7223 move_task_off_dead_cpu(src_cpu, p);
7224 } while_each_thread(t, p);
1da177e4 7225
f7b4cddc 7226 read_unlock(&tasklist_lock);
1da177e4
LT
7227}
7228
dd41f596
IM
7229/*
7230 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7231 * It does so by boosting its priority to highest possible.
7232 * Used by CPU offline code.
1da177e4
LT
7233 */
7234void sched_idle_next(void)
7235{
48f24c4d 7236 int this_cpu = smp_processor_id();
70b97a7f 7237 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7238 struct task_struct *p = rq->idle;
7239 unsigned long flags;
7240
7241 /* cpu has to be offline */
48f24c4d 7242 BUG_ON(cpu_online(this_cpu));
1da177e4 7243
48f24c4d
IM
7244 /*
7245 * Strictly not necessary since rest of the CPUs are stopped by now
7246 * and interrupts disabled on the current cpu.
1da177e4
LT
7247 */
7248 spin_lock_irqsave(&rq->lock, flags);
7249
dd41f596 7250 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7251
94bc9a7b
DA
7252 update_rq_clock(rq);
7253 activate_task(rq, p, 0);
1da177e4
LT
7254
7255 spin_unlock_irqrestore(&rq->lock, flags);
7256}
7257
48f24c4d
IM
7258/*
7259 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7260 * offline.
7261 */
7262void idle_task_exit(void)
7263{
7264 struct mm_struct *mm = current->active_mm;
7265
7266 BUG_ON(cpu_online(smp_processor_id()));
7267
7268 if (mm != &init_mm)
7269 switch_mm(mm, &init_mm, current);
7270 mmdrop(mm);
7271}
7272
054b9108 7273/* called under rq->lock with disabled interrupts */
36c8b586 7274static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7275{
70b97a7f 7276 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7277
7278 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7279 BUG_ON(!p->exit_state);
1da177e4
LT
7280
7281 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7282 BUG_ON(p->state == TASK_DEAD);
1da177e4 7283
48f24c4d 7284 get_task_struct(p);
1da177e4
LT
7285
7286 /*
7287 * Drop lock around migration; if someone else moves it,
41a2d6cf 7288 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7289 * fine.
7290 */
f7b4cddc 7291 spin_unlock_irq(&rq->lock);
48f24c4d 7292 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7293 spin_lock_irq(&rq->lock);
1da177e4 7294
48f24c4d 7295 put_task_struct(p);
1da177e4
LT
7296}
7297
7298/* release_task() removes task from tasklist, so we won't find dead tasks. */
7299static void migrate_dead_tasks(unsigned int dead_cpu)
7300{
70b97a7f 7301 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7302 struct task_struct *next;
48f24c4d 7303
dd41f596
IM
7304 for ( ; ; ) {
7305 if (!rq->nr_running)
7306 break;
a8e504d2 7307 update_rq_clock(rq);
b67802ea 7308 next = pick_next_task(rq);
dd41f596
IM
7309 if (!next)
7310 break;
79c53799 7311 next->sched_class->put_prev_task(rq, next);
dd41f596 7312 migrate_dead(dead_cpu, next);
e692ab53 7313
1da177e4
LT
7314 }
7315}
dce48a84
TG
7316
7317/*
7318 * remove the tasks which were accounted by rq from calc_load_tasks.
7319 */
7320static void calc_global_load_remove(struct rq *rq)
7321{
7322 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7323}
1da177e4
LT
7324#endif /* CONFIG_HOTPLUG_CPU */
7325
e692ab53
NP
7326#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7327
7328static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7329 {
7330 .procname = "sched_domain",
c57baf1e 7331 .mode = 0555,
e0361851 7332 },
38605cae 7333 {0, },
e692ab53
NP
7334};
7335
7336static struct ctl_table sd_ctl_root[] = {
e0361851 7337 {
c57baf1e 7338 .ctl_name = CTL_KERN,
e0361851 7339 .procname = "kernel",
c57baf1e 7340 .mode = 0555,
e0361851
AD
7341 .child = sd_ctl_dir,
7342 },
38605cae 7343 {0, },
e692ab53
NP
7344};
7345
7346static struct ctl_table *sd_alloc_ctl_entry(int n)
7347{
7348 struct ctl_table *entry =
5cf9f062 7349 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7350
e692ab53
NP
7351 return entry;
7352}
7353
6382bc90
MM
7354static void sd_free_ctl_entry(struct ctl_table **tablep)
7355{
cd790076 7356 struct ctl_table *entry;
6382bc90 7357
cd790076
MM
7358 /*
7359 * In the intermediate directories, both the child directory and
7360 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7361 * will always be set. In the lowest directory the names are
cd790076
MM
7362 * static strings and all have proc handlers.
7363 */
7364 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7365 if (entry->child)
7366 sd_free_ctl_entry(&entry->child);
cd790076
MM
7367 if (entry->proc_handler == NULL)
7368 kfree(entry->procname);
7369 }
6382bc90
MM
7370
7371 kfree(*tablep);
7372 *tablep = NULL;
7373}
7374
e692ab53 7375static void
e0361851 7376set_table_entry(struct ctl_table *entry,
e692ab53
NP
7377 const char *procname, void *data, int maxlen,
7378 mode_t mode, proc_handler *proc_handler)
7379{
e692ab53
NP
7380 entry->procname = procname;
7381 entry->data = data;
7382 entry->maxlen = maxlen;
7383 entry->mode = mode;
7384 entry->proc_handler = proc_handler;
7385}
7386
7387static struct ctl_table *
7388sd_alloc_ctl_domain_table(struct sched_domain *sd)
7389{
a5d8c348 7390 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7391
ad1cdc1d
MM
7392 if (table == NULL)
7393 return NULL;
7394
e0361851 7395 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7396 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7397 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7398 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7399 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7400 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7401 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7402 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7403 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7404 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7405 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7406 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7407 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7408 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7409 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7410 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7411 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7412 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7413 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7414 &sd->cache_nice_tries,
7415 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7416 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7417 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7418 set_table_entry(&table[11], "name", sd->name,
7419 CORENAME_MAX_SIZE, 0444, proc_dostring);
7420 /* &table[12] is terminator */
e692ab53
NP
7421
7422 return table;
7423}
7424
9a4e7159 7425static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7426{
7427 struct ctl_table *entry, *table;
7428 struct sched_domain *sd;
7429 int domain_num = 0, i;
7430 char buf[32];
7431
7432 for_each_domain(cpu, sd)
7433 domain_num++;
7434 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7435 if (table == NULL)
7436 return NULL;
e692ab53
NP
7437
7438 i = 0;
7439 for_each_domain(cpu, sd) {
7440 snprintf(buf, 32, "domain%d", i);
e692ab53 7441 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7442 entry->mode = 0555;
e692ab53
NP
7443 entry->child = sd_alloc_ctl_domain_table(sd);
7444 entry++;
7445 i++;
7446 }
7447 return table;
7448}
7449
7450static struct ctl_table_header *sd_sysctl_header;
6382bc90 7451static void register_sched_domain_sysctl(void)
e692ab53
NP
7452{
7453 int i, cpu_num = num_online_cpus();
7454 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7455 char buf[32];
7456
7378547f
MM
7457 WARN_ON(sd_ctl_dir[0].child);
7458 sd_ctl_dir[0].child = entry;
7459
ad1cdc1d
MM
7460 if (entry == NULL)
7461 return;
7462
97b6ea7b 7463 for_each_online_cpu(i) {
e692ab53 7464 snprintf(buf, 32, "cpu%d", i);
e692ab53 7465 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7466 entry->mode = 0555;
e692ab53 7467 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7468 entry++;
e692ab53 7469 }
7378547f
MM
7470
7471 WARN_ON(sd_sysctl_header);
e692ab53
NP
7472 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7473}
6382bc90 7474
7378547f 7475/* may be called multiple times per register */
6382bc90
MM
7476static void unregister_sched_domain_sysctl(void)
7477{
7378547f
MM
7478 if (sd_sysctl_header)
7479 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7480 sd_sysctl_header = NULL;
7378547f
MM
7481 if (sd_ctl_dir[0].child)
7482 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7483}
e692ab53 7484#else
6382bc90
MM
7485static void register_sched_domain_sysctl(void)
7486{
7487}
7488static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7489{
7490}
7491#endif
7492
1f11eb6a
GH
7493static void set_rq_online(struct rq *rq)
7494{
7495 if (!rq->online) {
7496 const struct sched_class *class;
7497
c6c4927b 7498 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7499 rq->online = 1;
7500
7501 for_each_class(class) {
7502 if (class->rq_online)
7503 class->rq_online(rq);
7504 }
7505 }
7506}
7507
7508static void set_rq_offline(struct rq *rq)
7509{
7510 if (rq->online) {
7511 const struct sched_class *class;
7512
7513 for_each_class(class) {
7514 if (class->rq_offline)
7515 class->rq_offline(rq);
7516 }
7517
c6c4927b 7518 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7519 rq->online = 0;
7520 }
7521}
7522
1da177e4
LT
7523/*
7524 * migration_call - callback that gets triggered when a CPU is added.
7525 * Here we can start up the necessary migration thread for the new CPU.
7526 */
48f24c4d
IM
7527static int __cpuinit
7528migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7529{
1da177e4 7530 struct task_struct *p;
48f24c4d 7531 int cpu = (long)hcpu;
1da177e4 7532 unsigned long flags;
70b97a7f 7533 struct rq *rq;
1da177e4
LT
7534
7535 switch (action) {
5be9361c 7536
1da177e4 7537 case CPU_UP_PREPARE:
8bb78442 7538 case CPU_UP_PREPARE_FROZEN:
dd41f596 7539 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7540 if (IS_ERR(p))
7541 return NOTIFY_BAD;
1da177e4
LT
7542 kthread_bind(p, cpu);
7543 /* Must be high prio: stop_machine expects to yield to it. */
7544 rq = task_rq_lock(p, &flags);
dd41f596 7545 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7546 task_rq_unlock(rq, &flags);
371cbb38 7547 get_task_struct(p);
1da177e4
LT
7548 cpu_rq(cpu)->migration_thread = p;
7549 break;
48f24c4d 7550
1da177e4 7551 case CPU_ONLINE:
8bb78442 7552 case CPU_ONLINE_FROZEN:
3a4fa0a2 7553 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7554 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7555
7556 /* Update our root-domain */
7557 rq = cpu_rq(cpu);
7558 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7559 rq->calc_load_update = calc_load_update;
7560 rq->calc_load_active = 0;
1f94ef59 7561 if (rq->rd) {
c6c4927b 7562 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7563
7564 set_rq_online(rq);
1f94ef59
GH
7565 }
7566 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7567 break;
48f24c4d 7568
1da177e4
LT
7569#ifdef CONFIG_HOTPLUG_CPU
7570 case CPU_UP_CANCELED:
8bb78442 7571 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7572 if (!cpu_rq(cpu)->migration_thread)
7573 break;
41a2d6cf 7574 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7575 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7576 cpumask_any(cpu_online_mask));
1da177e4 7577 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7578 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7579 cpu_rq(cpu)->migration_thread = NULL;
7580 break;
48f24c4d 7581
1da177e4 7582 case CPU_DEAD:
8bb78442 7583 case CPU_DEAD_FROZEN:
470fd646 7584 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7585 migrate_live_tasks(cpu);
7586 rq = cpu_rq(cpu);
7587 kthread_stop(rq->migration_thread);
371cbb38 7588 put_task_struct(rq->migration_thread);
1da177e4
LT
7589 rq->migration_thread = NULL;
7590 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7591 spin_lock_irq(&rq->lock);
a8e504d2 7592 update_rq_clock(rq);
2e1cb74a 7593 deactivate_task(rq, rq->idle, 0);
1da177e4 7594 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7595 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7596 rq->idle->sched_class = &idle_sched_class;
1da177e4 7597 migrate_dead_tasks(cpu);
d2da272a 7598 spin_unlock_irq(&rq->lock);
470fd646 7599 cpuset_unlock();
1da177e4
LT
7600 migrate_nr_uninterruptible(rq);
7601 BUG_ON(rq->nr_running != 0);
dce48a84 7602 calc_global_load_remove(rq);
41a2d6cf
IM
7603 /*
7604 * No need to migrate the tasks: it was best-effort if
7605 * they didn't take sched_hotcpu_mutex. Just wake up
7606 * the requestors.
7607 */
1da177e4
LT
7608 spin_lock_irq(&rq->lock);
7609 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7610 struct migration_req *req;
7611
1da177e4 7612 req = list_entry(rq->migration_queue.next,
70b97a7f 7613 struct migration_req, list);
1da177e4 7614 list_del_init(&req->list);
9a2bd244 7615 spin_unlock_irq(&rq->lock);
1da177e4 7616 complete(&req->done);
9a2bd244 7617 spin_lock_irq(&rq->lock);
1da177e4
LT
7618 }
7619 spin_unlock_irq(&rq->lock);
7620 break;
57d885fe 7621
08f503b0
GH
7622 case CPU_DYING:
7623 case CPU_DYING_FROZEN:
57d885fe
GH
7624 /* Update our root-domain */
7625 rq = cpu_rq(cpu);
7626 spin_lock_irqsave(&rq->lock, flags);
7627 if (rq->rd) {
c6c4927b 7628 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7629 set_rq_offline(rq);
57d885fe
GH
7630 }
7631 spin_unlock_irqrestore(&rq->lock, flags);
7632 break;
1da177e4
LT
7633#endif
7634 }
7635 return NOTIFY_OK;
7636}
7637
f38b0820
PM
7638/*
7639 * Register at high priority so that task migration (migrate_all_tasks)
7640 * happens before everything else. This has to be lower priority than
7641 * the notifier in the perf_counter subsystem, though.
1da177e4 7642 */
26c2143b 7643static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7644 .notifier_call = migration_call,
7645 .priority = 10
7646};
7647
7babe8db 7648static int __init migration_init(void)
1da177e4
LT
7649{
7650 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7651 int err;
48f24c4d
IM
7652
7653 /* Start one for the boot CPU: */
07dccf33
AM
7654 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7655 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7656 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7657 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7658
7659 return err;
1da177e4 7660}
7babe8db 7661early_initcall(migration_init);
1da177e4
LT
7662#endif
7663
7664#ifdef CONFIG_SMP
476f3534 7665
3e9830dc 7666#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7667
7c16ec58 7668static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7669 struct cpumask *groupmask)
1da177e4 7670{
4dcf6aff 7671 struct sched_group *group = sd->groups;
434d53b0 7672 char str[256];
1da177e4 7673
968ea6d8 7674 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7675 cpumask_clear(groupmask);
4dcf6aff
IM
7676
7677 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7678
7679 if (!(sd->flags & SD_LOAD_BALANCE)) {
7680 printk("does not load-balance\n");
7681 if (sd->parent)
7682 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7683 " has parent");
7684 return -1;
41c7ce9a
NP
7685 }
7686
eefd796a 7687 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7688
758b2cdc 7689 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7690 printk(KERN_ERR "ERROR: domain->span does not contain "
7691 "CPU%d\n", cpu);
7692 }
758b2cdc 7693 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7694 printk(KERN_ERR "ERROR: domain->groups does not contain"
7695 " CPU%d\n", cpu);
7696 }
1da177e4 7697
4dcf6aff 7698 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7699 do {
4dcf6aff
IM
7700 if (!group) {
7701 printk("\n");
7702 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7703 break;
7704 }
7705
4dcf6aff
IM
7706 if (!group->__cpu_power) {
7707 printk(KERN_CONT "\n");
7708 printk(KERN_ERR "ERROR: domain->cpu_power not "
7709 "set\n");
7710 break;
7711 }
1da177e4 7712
758b2cdc 7713 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7714 printk(KERN_CONT "\n");
7715 printk(KERN_ERR "ERROR: empty group\n");
7716 break;
7717 }
1da177e4 7718
758b2cdc 7719 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7720 printk(KERN_CONT "\n");
7721 printk(KERN_ERR "ERROR: repeated CPUs\n");
7722 break;
7723 }
1da177e4 7724
758b2cdc 7725 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7726
968ea6d8 7727 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7728
7729 printk(KERN_CONT " %s", str);
7730 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7731 printk(KERN_CONT " (__cpu_power = %d)",
7732 group->__cpu_power);
7733 }
1da177e4 7734
4dcf6aff
IM
7735 group = group->next;
7736 } while (group != sd->groups);
7737 printk(KERN_CONT "\n");
1da177e4 7738
758b2cdc 7739 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7740 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7741
758b2cdc
RR
7742 if (sd->parent &&
7743 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7744 printk(KERN_ERR "ERROR: parent span is not a superset "
7745 "of domain->span\n");
7746 return 0;
7747}
1da177e4 7748
4dcf6aff
IM
7749static void sched_domain_debug(struct sched_domain *sd, int cpu)
7750{
d5dd3db1 7751 cpumask_var_t groupmask;
4dcf6aff 7752 int level = 0;
1da177e4 7753
4dcf6aff
IM
7754 if (!sd) {
7755 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7756 return;
7757 }
1da177e4 7758
4dcf6aff
IM
7759 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7760
d5dd3db1 7761 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7762 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7763 return;
7764 }
7765
4dcf6aff 7766 for (;;) {
7c16ec58 7767 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7768 break;
1da177e4
LT
7769 level++;
7770 sd = sd->parent;
33859f7f 7771 if (!sd)
4dcf6aff
IM
7772 break;
7773 }
d5dd3db1 7774 free_cpumask_var(groupmask);
1da177e4 7775}
6d6bc0ad 7776#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7777# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7778#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7779
1a20ff27 7780static int sd_degenerate(struct sched_domain *sd)
245af2c7 7781{
758b2cdc 7782 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7783 return 1;
7784
7785 /* Following flags need at least 2 groups */
7786 if (sd->flags & (SD_LOAD_BALANCE |
7787 SD_BALANCE_NEWIDLE |
7788 SD_BALANCE_FORK |
89c4710e
SS
7789 SD_BALANCE_EXEC |
7790 SD_SHARE_CPUPOWER |
7791 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7792 if (sd->groups != sd->groups->next)
7793 return 0;
7794 }
7795
7796 /* Following flags don't use groups */
7797 if (sd->flags & (SD_WAKE_IDLE |
7798 SD_WAKE_AFFINE |
7799 SD_WAKE_BALANCE))
7800 return 0;
7801
7802 return 1;
7803}
7804
48f24c4d
IM
7805static int
7806sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7807{
7808 unsigned long cflags = sd->flags, pflags = parent->flags;
7809
7810 if (sd_degenerate(parent))
7811 return 1;
7812
758b2cdc 7813 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7814 return 0;
7815
7816 /* Does parent contain flags not in child? */
7817 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7818 if (cflags & SD_WAKE_AFFINE)
7819 pflags &= ~SD_WAKE_BALANCE;
7820 /* Flags needing groups don't count if only 1 group in parent */
7821 if (parent->groups == parent->groups->next) {
7822 pflags &= ~(SD_LOAD_BALANCE |
7823 SD_BALANCE_NEWIDLE |
7824 SD_BALANCE_FORK |
89c4710e
SS
7825 SD_BALANCE_EXEC |
7826 SD_SHARE_CPUPOWER |
7827 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7828 if (nr_node_ids == 1)
7829 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7830 }
7831 if (~cflags & pflags)
7832 return 0;
7833
7834 return 1;
7835}
7836
c6c4927b
RR
7837static void free_rootdomain(struct root_domain *rd)
7838{
68e74568
RR
7839 cpupri_cleanup(&rd->cpupri);
7840
c6c4927b
RR
7841 free_cpumask_var(rd->rto_mask);
7842 free_cpumask_var(rd->online);
7843 free_cpumask_var(rd->span);
7844 kfree(rd);
7845}
7846
57d885fe
GH
7847static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7848{
a0490fa3 7849 struct root_domain *old_rd = NULL;
57d885fe 7850 unsigned long flags;
57d885fe
GH
7851
7852 spin_lock_irqsave(&rq->lock, flags);
7853
7854 if (rq->rd) {
a0490fa3 7855 old_rd = rq->rd;
57d885fe 7856
c6c4927b 7857 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7858 set_rq_offline(rq);
57d885fe 7859
c6c4927b 7860 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7861
a0490fa3
IM
7862 /*
7863 * If we dont want to free the old_rt yet then
7864 * set old_rd to NULL to skip the freeing later
7865 * in this function:
7866 */
7867 if (!atomic_dec_and_test(&old_rd->refcount))
7868 old_rd = NULL;
57d885fe
GH
7869 }
7870
7871 atomic_inc(&rd->refcount);
7872 rq->rd = rd;
7873
c6c4927b
RR
7874 cpumask_set_cpu(rq->cpu, rd->span);
7875 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7876 set_rq_online(rq);
57d885fe
GH
7877
7878 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7879
7880 if (old_rd)
7881 free_rootdomain(old_rd);
57d885fe
GH
7882}
7883
fd5e1b5d 7884static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7885{
36b7b6d4
PE
7886 gfp_t gfp = GFP_KERNEL;
7887
57d885fe
GH
7888 memset(rd, 0, sizeof(*rd));
7889
36b7b6d4
PE
7890 if (bootmem)
7891 gfp = GFP_NOWAIT;
c6c4927b 7892
36b7b6d4 7893 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7894 goto out;
36b7b6d4 7895 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7896 goto free_span;
36b7b6d4 7897 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7898 goto free_online;
6e0534f2 7899
0fb53029 7900 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7901 goto free_rto_mask;
c6c4927b 7902 return 0;
6e0534f2 7903
68e74568
RR
7904free_rto_mask:
7905 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7906free_online:
7907 free_cpumask_var(rd->online);
7908free_span:
7909 free_cpumask_var(rd->span);
0c910d28 7910out:
c6c4927b 7911 return -ENOMEM;
57d885fe
GH
7912}
7913
7914static void init_defrootdomain(void)
7915{
c6c4927b
RR
7916 init_rootdomain(&def_root_domain, true);
7917
57d885fe
GH
7918 atomic_set(&def_root_domain.refcount, 1);
7919}
7920
dc938520 7921static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7922{
7923 struct root_domain *rd;
7924
7925 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7926 if (!rd)
7927 return NULL;
7928
c6c4927b
RR
7929 if (init_rootdomain(rd, false) != 0) {
7930 kfree(rd);
7931 return NULL;
7932 }
57d885fe
GH
7933
7934 return rd;
7935}
7936
1da177e4 7937/*
0eab9146 7938 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7939 * hold the hotplug lock.
7940 */
0eab9146
IM
7941static void
7942cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7943{
70b97a7f 7944 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7945 struct sched_domain *tmp;
7946
7947 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7948 for (tmp = sd; tmp; ) {
245af2c7
SS
7949 struct sched_domain *parent = tmp->parent;
7950 if (!parent)
7951 break;
f29c9b1c 7952
1a848870 7953 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7954 tmp->parent = parent->parent;
1a848870
SS
7955 if (parent->parent)
7956 parent->parent->child = tmp;
f29c9b1c
LZ
7957 } else
7958 tmp = tmp->parent;
245af2c7
SS
7959 }
7960
1a848870 7961 if (sd && sd_degenerate(sd)) {
245af2c7 7962 sd = sd->parent;
1a848870
SS
7963 if (sd)
7964 sd->child = NULL;
7965 }
1da177e4
LT
7966
7967 sched_domain_debug(sd, cpu);
7968
57d885fe 7969 rq_attach_root(rq, rd);
674311d5 7970 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7971}
7972
7973/* cpus with isolated domains */
dcc30a35 7974static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7975
7976/* Setup the mask of cpus configured for isolated domains */
7977static int __init isolated_cpu_setup(char *str)
7978{
968ea6d8 7979 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7980 return 1;
7981}
7982
8927f494 7983__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7984
7985/*
6711cab4
SS
7986 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7987 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7988 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7989 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7990 *
7991 * init_sched_build_groups will build a circular linked list of the groups
7992 * covered by the given span, and will set each group's ->cpumask correctly,
7993 * and ->cpu_power to 0.
7994 */
a616058b 7995static void
96f874e2
RR
7996init_sched_build_groups(const struct cpumask *span,
7997 const struct cpumask *cpu_map,
7998 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7999 struct sched_group **sg,
96f874e2
RR
8000 struct cpumask *tmpmask),
8001 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8002{
8003 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8004 int i;
8005
96f874e2 8006 cpumask_clear(covered);
7c16ec58 8007
abcd083a 8008 for_each_cpu(i, span) {
6711cab4 8009 struct sched_group *sg;
7c16ec58 8010 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8011 int j;
8012
758b2cdc 8013 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8014 continue;
8015
758b2cdc 8016 cpumask_clear(sched_group_cpus(sg));
5517d86b 8017 sg->__cpu_power = 0;
1da177e4 8018
abcd083a 8019 for_each_cpu(j, span) {
7c16ec58 8020 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8021 continue;
8022
96f874e2 8023 cpumask_set_cpu(j, covered);
758b2cdc 8024 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8025 }
8026 if (!first)
8027 first = sg;
8028 if (last)
8029 last->next = sg;
8030 last = sg;
8031 }
8032 last->next = first;
8033}
8034
9c1cfda2 8035#define SD_NODES_PER_DOMAIN 16
1da177e4 8036
9c1cfda2 8037#ifdef CONFIG_NUMA
198e2f18 8038
9c1cfda2
JH
8039/**
8040 * find_next_best_node - find the next node to include in a sched_domain
8041 * @node: node whose sched_domain we're building
8042 * @used_nodes: nodes already in the sched_domain
8043 *
41a2d6cf 8044 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8045 * finds the closest node not already in the @used_nodes map.
8046 *
8047 * Should use nodemask_t.
8048 */
c5f59f08 8049static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8050{
8051 int i, n, val, min_val, best_node = 0;
8052
8053 min_val = INT_MAX;
8054
076ac2af 8055 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8056 /* Start at @node */
076ac2af 8057 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8058
8059 if (!nr_cpus_node(n))
8060 continue;
8061
8062 /* Skip already used nodes */
c5f59f08 8063 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8064 continue;
8065
8066 /* Simple min distance search */
8067 val = node_distance(node, n);
8068
8069 if (val < min_val) {
8070 min_val = val;
8071 best_node = n;
8072 }
8073 }
8074
c5f59f08 8075 node_set(best_node, *used_nodes);
9c1cfda2
JH
8076 return best_node;
8077}
8078
8079/**
8080 * sched_domain_node_span - get a cpumask for a node's sched_domain
8081 * @node: node whose cpumask we're constructing
73486722 8082 * @span: resulting cpumask
9c1cfda2 8083 *
41a2d6cf 8084 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8085 * should be one that prevents unnecessary balancing, but also spreads tasks
8086 * out optimally.
8087 */
96f874e2 8088static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8089{
c5f59f08 8090 nodemask_t used_nodes;
48f24c4d 8091 int i;
9c1cfda2 8092
6ca09dfc 8093 cpumask_clear(span);
c5f59f08 8094 nodes_clear(used_nodes);
9c1cfda2 8095
6ca09dfc 8096 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8097 node_set(node, used_nodes);
9c1cfda2
JH
8098
8099 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8100 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8101
6ca09dfc 8102 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8103 }
9c1cfda2 8104}
6d6bc0ad 8105#endif /* CONFIG_NUMA */
9c1cfda2 8106
5c45bf27 8107int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8108
6c99e9ad
RR
8109/*
8110 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8111 *
8112 * ( See the the comments in include/linux/sched.h:struct sched_group
8113 * and struct sched_domain. )
6c99e9ad
RR
8114 */
8115struct static_sched_group {
8116 struct sched_group sg;
8117 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8118};
8119
8120struct static_sched_domain {
8121 struct sched_domain sd;
8122 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8123};
8124
9c1cfda2 8125/*
48f24c4d 8126 * SMT sched-domains:
9c1cfda2 8127 */
1da177e4 8128#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8129static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8130static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8131
41a2d6cf 8132static int
96f874e2
RR
8133cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8134 struct sched_group **sg, struct cpumask *unused)
1da177e4 8135{
6711cab4 8136 if (sg)
6c99e9ad 8137 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8138 return cpu;
8139}
6d6bc0ad 8140#endif /* CONFIG_SCHED_SMT */
1da177e4 8141
48f24c4d
IM
8142/*
8143 * multi-core sched-domains:
8144 */
1e9f28fa 8145#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8146static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8147static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8148#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8149
8150#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8151static int
96f874e2
RR
8152cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8153 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8154{
6711cab4 8155 int group;
7c16ec58 8156
c69fc56d 8157 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8158 group = cpumask_first(mask);
6711cab4 8159 if (sg)
6c99e9ad 8160 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8161 return group;
1e9f28fa
SS
8162}
8163#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8164static int
96f874e2
RR
8165cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8166 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8167{
6711cab4 8168 if (sg)
6c99e9ad 8169 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8170 return cpu;
8171}
8172#endif
8173
6c99e9ad
RR
8174static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8175static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8176
41a2d6cf 8177static int
96f874e2
RR
8178cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8179 struct sched_group **sg, struct cpumask *mask)
1da177e4 8180{
6711cab4 8181 int group;
48f24c4d 8182#ifdef CONFIG_SCHED_MC
6ca09dfc 8183 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8184 group = cpumask_first(mask);
1e9f28fa 8185#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8186 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8187 group = cpumask_first(mask);
1da177e4 8188#else
6711cab4 8189 group = cpu;
1da177e4 8190#endif
6711cab4 8191 if (sg)
6c99e9ad 8192 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8193 return group;
1da177e4
LT
8194}
8195
8196#ifdef CONFIG_NUMA
1da177e4 8197/*
9c1cfda2
JH
8198 * The init_sched_build_groups can't handle what we want to do with node
8199 * groups, so roll our own. Now each node has its own list of groups which
8200 * gets dynamically allocated.
1da177e4 8201 */
62ea9ceb 8202static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8203static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8204
62ea9ceb 8205static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8206static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8207
96f874e2
RR
8208static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8209 struct sched_group **sg,
8210 struct cpumask *nodemask)
9c1cfda2 8211{
6711cab4
SS
8212 int group;
8213
6ca09dfc 8214 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8215 group = cpumask_first(nodemask);
6711cab4
SS
8216
8217 if (sg)
6c99e9ad 8218 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8219 return group;
1da177e4 8220}
6711cab4 8221
08069033
SS
8222static void init_numa_sched_groups_power(struct sched_group *group_head)
8223{
8224 struct sched_group *sg = group_head;
8225 int j;
8226
8227 if (!sg)
8228 return;
3a5c359a 8229 do {
758b2cdc 8230 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8231 struct sched_domain *sd;
08069033 8232
6c99e9ad 8233 sd = &per_cpu(phys_domains, j).sd;
13318a71 8234 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8235 /*
8236 * Only add "power" once for each
8237 * physical package.
8238 */
8239 continue;
8240 }
08069033 8241
3a5c359a
AK
8242 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8243 }
8244 sg = sg->next;
8245 } while (sg != group_head);
08069033 8246}
6d6bc0ad 8247#endif /* CONFIG_NUMA */
1da177e4 8248
a616058b 8249#ifdef CONFIG_NUMA
51888ca2 8250/* Free memory allocated for various sched_group structures */
96f874e2
RR
8251static void free_sched_groups(const struct cpumask *cpu_map,
8252 struct cpumask *nodemask)
51888ca2 8253{
a616058b 8254 int cpu, i;
51888ca2 8255
abcd083a 8256 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8257 struct sched_group **sched_group_nodes
8258 = sched_group_nodes_bycpu[cpu];
8259
51888ca2
SV
8260 if (!sched_group_nodes)
8261 continue;
8262
076ac2af 8263 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8264 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8265
6ca09dfc 8266 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8267 if (cpumask_empty(nodemask))
51888ca2
SV
8268 continue;
8269
8270 if (sg == NULL)
8271 continue;
8272 sg = sg->next;
8273next_sg:
8274 oldsg = sg;
8275 sg = sg->next;
8276 kfree(oldsg);
8277 if (oldsg != sched_group_nodes[i])
8278 goto next_sg;
8279 }
8280 kfree(sched_group_nodes);
8281 sched_group_nodes_bycpu[cpu] = NULL;
8282 }
51888ca2 8283}
6d6bc0ad 8284#else /* !CONFIG_NUMA */
96f874e2
RR
8285static void free_sched_groups(const struct cpumask *cpu_map,
8286 struct cpumask *nodemask)
a616058b
SS
8287{
8288}
6d6bc0ad 8289#endif /* CONFIG_NUMA */
51888ca2 8290
89c4710e
SS
8291/*
8292 * Initialize sched groups cpu_power.
8293 *
8294 * cpu_power indicates the capacity of sched group, which is used while
8295 * distributing the load between different sched groups in a sched domain.
8296 * Typically cpu_power for all the groups in a sched domain will be same unless
8297 * there are asymmetries in the topology. If there are asymmetries, group
8298 * having more cpu_power will pickup more load compared to the group having
8299 * less cpu_power.
8300 *
8301 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8302 * the maximum number of tasks a group can handle in the presence of other idle
8303 * or lightly loaded groups in the same sched domain.
8304 */
8305static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8306{
8307 struct sched_domain *child;
8308 struct sched_group *group;
8309
8310 WARN_ON(!sd || !sd->groups);
8311
13318a71 8312 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8313 return;
8314
8315 child = sd->child;
8316
5517d86b
ED
8317 sd->groups->__cpu_power = 0;
8318
89c4710e
SS
8319 /*
8320 * For perf policy, if the groups in child domain share resources
8321 * (for example cores sharing some portions of the cache hierarchy
8322 * or SMT), then set this domain groups cpu_power such that each group
8323 * can handle only one task, when there are other idle groups in the
8324 * same sched domain.
8325 */
8326 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8327 (child->flags &
8328 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8329 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8330 return;
8331 }
8332
89c4710e
SS
8333 /*
8334 * add cpu_power of each child group to this groups cpu_power
8335 */
8336 group = child->groups;
8337 do {
5517d86b 8338 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8339 group = group->next;
8340 } while (group != child->groups);
8341}
8342
7c16ec58
MT
8343/*
8344 * Initializers for schedule domains
8345 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8346 */
8347
a5d8c348
IM
8348#ifdef CONFIG_SCHED_DEBUG
8349# define SD_INIT_NAME(sd, type) sd->name = #type
8350#else
8351# define SD_INIT_NAME(sd, type) do { } while (0)
8352#endif
8353
7c16ec58 8354#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8355
7c16ec58
MT
8356#define SD_INIT_FUNC(type) \
8357static noinline void sd_init_##type(struct sched_domain *sd) \
8358{ \
8359 memset(sd, 0, sizeof(*sd)); \
8360 *sd = SD_##type##_INIT; \
1d3504fc 8361 sd->level = SD_LV_##type; \
a5d8c348 8362 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8363}
8364
8365SD_INIT_FUNC(CPU)
8366#ifdef CONFIG_NUMA
8367 SD_INIT_FUNC(ALLNODES)
8368 SD_INIT_FUNC(NODE)
8369#endif
8370#ifdef CONFIG_SCHED_SMT
8371 SD_INIT_FUNC(SIBLING)
8372#endif
8373#ifdef CONFIG_SCHED_MC
8374 SD_INIT_FUNC(MC)
8375#endif
8376
1d3504fc
HS
8377static int default_relax_domain_level = -1;
8378
8379static int __init setup_relax_domain_level(char *str)
8380{
30e0e178
LZ
8381 unsigned long val;
8382
8383 val = simple_strtoul(str, NULL, 0);
8384 if (val < SD_LV_MAX)
8385 default_relax_domain_level = val;
8386
1d3504fc
HS
8387 return 1;
8388}
8389__setup("relax_domain_level=", setup_relax_domain_level);
8390
8391static void set_domain_attribute(struct sched_domain *sd,
8392 struct sched_domain_attr *attr)
8393{
8394 int request;
8395
8396 if (!attr || attr->relax_domain_level < 0) {
8397 if (default_relax_domain_level < 0)
8398 return;
8399 else
8400 request = default_relax_domain_level;
8401 } else
8402 request = attr->relax_domain_level;
8403 if (request < sd->level) {
8404 /* turn off idle balance on this domain */
8405 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8406 } else {
8407 /* turn on idle balance on this domain */
8408 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8409 }
8410}
8411
1da177e4 8412/*
1a20ff27
DG
8413 * Build sched domains for a given set of cpus and attach the sched domains
8414 * to the individual cpus
1da177e4 8415 */
96f874e2 8416static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8417 struct sched_domain_attr *attr)
1da177e4 8418{
3404c8d9 8419 int i, err = -ENOMEM;
57d885fe 8420 struct root_domain *rd;
3404c8d9
RR
8421 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8422 tmpmask;
d1b55138 8423#ifdef CONFIG_NUMA
3404c8d9 8424 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8425 struct sched_group **sched_group_nodes = NULL;
6711cab4 8426 int sd_allnodes = 0;
d1b55138 8427
3404c8d9
RR
8428 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8429 goto out;
8430 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8431 goto free_domainspan;
8432 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8433 goto free_covered;
8434#endif
8435
8436 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8437 goto free_notcovered;
8438 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8439 goto free_nodemask;
8440 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8441 goto free_this_sibling_map;
8442 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8443 goto free_this_core_map;
8444 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8445 goto free_send_covered;
8446
8447#ifdef CONFIG_NUMA
d1b55138
JH
8448 /*
8449 * Allocate the per-node list of sched groups
8450 */
076ac2af 8451 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8452 GFP_KERNEL);
d1b55138
JH
8453 if (!sched_group_nodes) {
8454 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8455 goto free_tmpmask;
d1b55138 8456 }
d1b55138 8457#endif
1da177e4 8458
dc938520 8459 rd = alloc_rootdomain();
57d885fe
GH
8460 if (!rd) {
8461 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8462 goto free_sched_groups;
57d885fe
GH
8463 }
8464
7c16ec58 8465#ifdef CONFIG_NUMA
96f874e2 8466 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8467#endif
8468
1da177e4 8469 /*
1a20ff27 8470 * Set up domains for cpus specified by the cpu_map.
1da177e4 8471 */
abcd083a 8472 for_each_cpu(i, cpu_map) {
1da177e4 8473 struct sched_domain *sd = NULL, *p;
1da177e4 8474
6ca09dfc 8475 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8476
8477#ifdef CONFIG_NUMA
96f874e2
RR
8478 if (cpumask_weight(cpu_map) >
8479 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8480 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8481 SD_INIT(sd, ALLNODES);
1d3504fc 8482 set_domain_attribute(sd, attr);
758b2cdc 8483 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8484 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8485 p = sd;
6711cab4 8486 sd_allnodes = 1;
9c1cfda2
JH
8487 } else
8488 p = NULL;
8489
62ea9ceb 8490 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8491 SD_INIT(sd, NODE);
1d3504fc 8492 set_domain_attribute(sd, attr);
758b2cdc 8493 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8494 sd->parent = p;
1a848870
SS
8495 if (p)
8496 p->child = sd;
758b2cdc
RR
8497 cpumask_and(sched_domain_span(sd),
8498 sched_domain_span(sd), cpu_map);
1da177e4
LT
8499#endif
8500
8501 p = sd;
6c99e9ad 8502 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8503 SD_INIT(sd, CPU);
1d3504fc 8504 set_domain_attribute(sd, attr);
758b2cdc 8505 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8506 sd->parent = p;
1a848870
SS
8507 if (p)
8508 p->child = sd;
7c16ec58 8509 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8510
1e9f28fa
SS
8511#ifdef CONFIG_SCHED_MC
8512 p = sd;
6c99e9ad 8513 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8514 SD_INIT(sd, MC);
1d3504fc 8515 set_domain_attribute(sd, attr);
6ca09dfc
MT
8516 cpumask_and(sched_domain_span(sd), cpu_map,
8517 cpu_coregroup_mask(i));
1e9f28fa 8518 sd->parent = p;
1a848870 8519 p->child = sd;
7c16ec58 8520 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8521#endif
8522
1da177e4
LT
8523#ifdef CONFIG_SCHED_SMT
8524 p = sd;
6c99e9ad 8525 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8526 SD_INIT(sd, SIBLING);
1d3504fc 8527 set_domain_attribute(sd, attr);
758b2cdc 8528 cpumask_and(sched_domain_span(sd),
c69fc56d 8529 topology_thread_cpumask(i), cpu_map);
1da177e4 8530 sd->parent = p;
1a848870 8531 p->child = sd;
7c16ec58 8532 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8533#endif
8534 }
8535
8536#ifdef CONFIG_SCHED_SMT
8537 /* Set up CPU (sibling) groups */
abcd083a 8538 for_each_cpu(i, cpu_map) {
96f874e2 8539 cpumask_and(this_sibling_map,
c69fc56d 8540 topology_thread_cpumask(i), cpu_map);
96f874e2 8541 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8542 continue;
8543
dd41f596 8544 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8545 &cpu_to_cpu_group,
8546 send_covered, tmpmask);
1da177e4
LT
8547 }
8548#endif
8549
1e9f28fa
SS
8550#ifdef CONFIG_SCHED_MC
8551 /* Set up multi-core groups */
abcd083a 8552 for_each_cpu(i, cpu_map) {
6ca09dfc 8553 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8554 if (i != cpumask_first(this_core_map))
1e9f28fa 8555 continue;
7c16ec58 8556
dd41f596 8557 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8558 &cpu_to_core_group,
8559 send_covered, tmpmask);
1e9f28fa
SS
8560 }
8561#endif
8562
1da177e4 8563 /* Set up physical groups */
076ac2af 8564 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8565 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8566 if (cpumask_empty(nodemask))
1da177e4
LT
8567 continue;
8568
7c16ec58
MT
8569 init_sched_build_groups(nodemask, cpu_map,
8570 &cpu_to_phys_group,
8571 send_covered, tmpmask);
1da177e4
LT
8572 }
8573
8574#ifdef CONFIG_NUMA
8575 /* Set up node groups */
7c16ec58 8576 if (sd_allnodes) {
7c16ec58
MT
8577 init_sched_build_groups(cpu_map, cpu_map,
8578 &cpu_to_allnodes_group,
8579 send_covered, tmpmask);
8580 }
9c1cfda2 8581
076ac2af 8582 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8583 /* Set up node groups */
8584 struct sched_group *sg, *prev;
9c1cfda2
JH
8585 int j;
8586
96f874e2 8587 cpumask_clear(covered);
6ca09dfc 8588 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8589 if (cpumask_empty(nodemask)) {
d1b55138 8590 sched_group_nodes[i] = NULL;
9c1cfda2 8591 continue;
d1b55138 8592 }
9c1cfda2 8593
4bdbaad3 8594 sched_domain_node_span(i, domainspan);
96f874e2 8595 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8596
6c99e9ad
RR
8597 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8598 GFP_KERNEL, i);
51888ca2
SV
8599 if (!sg) {
8600 printk(KERN_WARNING "Can not alloc domain group for "
8601 "node %d\n", i);
8602 goto error;
8603 }
9c1cfda2 8604 sched_group_nodes[i] = sg;
abcd083a 8605 for_each_cpu(j, nodemask) {
9c1cfda2 8606 struct sched_domain *sd;
9761eea8 8607
62ea9ceb 8608 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8609 sd->groups = sg;
9c1cfda2 8610 }
5517d86b 8611 sg->__cpu_power = 0;
758b2cdc 8612 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8613 sg->next = sg;
96f874e2 8614 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8615 prev = sg;
8616
076ac2af 8617 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8618 int n = (i + j) % nr_node_ids;
9c1cfda2 8619
96f874e2
RR
8620 cpumask_complement(notcovered, covered);
8621 cpumask_and(tmpmask, notcovered, cpu_map);
8622 cpumask_and(tmpmask, tmpmask, domainspan);
8623 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8624 break;
8625
6ca09dfc 8626 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8627 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8628 continue;
8629
6c99e9ad
RR
8630 sg = kmalloc_node(sizeof(struct sched_group) +
8631 cpumask_size(),
15f0b676 8632 GFP_KERNEL, i);
9c1cfda2
JH
8633 if (!sg) {
8634 printk(KERN_WARNING
8635 "Can not alloc domain group for node %d\n", j);
51888ca2 8636 goto error;
9c1cfda2 8637 }
5517d86b 8638 sg->__cpu_power = 0;
758b2cdc 8639 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8640 sg->next = prev->next;
96f874e2 8641 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8642 prev->next = sg;
8643 prev = sg;
8644 }
9c1cfda2 8645 }
1da177e4
LT
8646#endif
8647
8648 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8649#ifdef CONFIG_SCHED_SMT
abcd083a 8650 for_each_cpu(i, cpu_map) {
6c99e9ad 8651 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8652
89c4710e 8653 init_sched_groups_power(i, sd);
5c45bf27 8654 }
1da177e4 8655#endif
1e9f28fa 8656#ifdef CONFIG_SCHED_MC
abcd083a 8657 for_each_cpu(i, cpu_map) {
6c99e9ad 8658 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8659
89c4710e 8660 init_sched_groups_power(i, sd);
5c45bf27
SS
8661 }
8662#endif
1e9f28fa 8663
abcd083a 8664 for_each_cpu(i, cpu_map) {
6c99e9ad 8665 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8666
89c4710e 8667 init_sched_groups_power(i, sd);
1da177e4
LT
8668 }
8669
9c1cfda2 8670#ifdef CONFIG_NUMA
076ac2af 8671 for (i = 0; i < nr_node_ids; i++)
08069033 8672 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8673
6711cab4
SS
8674 if (sd_allnodes) {
8675 struct sched_group *sg;
f712c0c7 8676
96f874e2 8677 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8678 tmpmask);
f712c0c7
SS
8679 init_numa_sched_groups_power(sg);
8680 }
9c1cfda2
JH
8681#endif
8682
1da177e4 8683 /* Attach the domains */
abcd083a 8684 for_each_cpu(i, cpu_map) {
1da177e4
LT
8685 struct sched_domain *sd;
8686#ifdef CONFIG_SCHED_SMT
6c99e9ad 8687 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8688#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8689 sd = &per_cpu(core_domains, i).sd;
1da177e4 8690#else
6c99e9ad 8691 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8692#endif
57d885fe 8693 cpu_attach_domain(sd, rd, i);
1da177e4 8694 }
51888ca2 8695
3404c8d9
RR
8696 err = 0;
8697
8698free_tmpmask:
8699 free_cpumask_var(tmpmask);
8700free_send_covered:
8701 free_cpumask_var(send_covered);
8702free_this_core_map:
8703 free_cpumask_var(this_core_map);
8704free_this_sibling_map:
8705 free_cpumask_var(this_sibling_map);
8706free_nodemask:
8707 free_cpumask_var(nodemask);
8708free_notcovered:
8709#ifdef CONFIG_NUMA
8710 free_cpumask_var(notcovered);
8711free_covered:
8712 free_cpumask_var(covered);
8713free_domainspan:
8714 free_cpumask_var(domainspan);
8715out:
8716#endif
8717 return err;
8718
8719free_sched_groups:
8720#ifdef CONFIG_NUMA
8721 kfree(sched_group_nodes);
8722#endif
8723 goto free_tmpmask;
51888ca2 8724
a616058b 8725#ifdef CONFIG_NUMA
51888ca2 8726error:
7c16ec58 8727 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8728 free_rootdomain(rd);
3404c8d9 8729 goto free_tmpmask;
a616058b 8730#endif
1da177e4 8731}
029190c5 8732
96f874e2 8733static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8734{
8735 return __build_sched_domains(cpu_map, NULL);
8736}
8737
96f874e2 8738static struct cpumask *doms_cur; /* current sched domains */
029190c5 8739static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8740static struct sched_domain_attr *dattr_cur;
8741 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8742
8743/*
8744 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8745 * cpumask) fails, then fallback to a single sched domain,
8746 * as determined by the single cpumask fallback_doms.
029190c5 8747 */
4212823f 8748static cpumask_var_t fallback_doms;
029190c5 8749
ee79d1bd
HC
8750/*
8751 * arch_update_cpu_topology lets virtualized architectures update the
8752 * cpu core maps. It is supposed to return 1 if the topology changed
8753 * or 0 if it stayed the same.
8754 */
8755int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8756{
ee79d1bd 8757 return 0;
22e52b07
HC
8758}
8759
1a20ff27 8760/*
41a2d6cf 8761 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8762 * For now this just excludes isolated cpus, but could be used to
8763 * exclude other special cases in the future.
1a20ff27 8764 */
96f874e2 8765static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8766{
7378547f
MM
8767 int err;
8768
22e52b07 8769 arch_update_cpu_topology();
029190c5 8770 ndoms_cur = 1;
96f874e2 8771 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8772 if (!doms_cur)
4212823f 8773 doms_cur = fallback_doms;
dcc30a35 8774 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8775 dattr_cur = NULL;
7378547f 8776 err = build_sched_domains(doms_cur);
6382bc90 8777 register_sched_domain_sysctl();
7378547f
MM
8778
8779 return err;
1a20ff27
DG
8780}
8781
96f874e2
RR
8782static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8783 struct cpumask *tmpmask)
1da177e4 8784{
7c16ec58 8785 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8786}
1da177e4 8787
1a20ff27
DG
8788/*
8789 * Detach sched domains from a group of cpus specified in cpu_map
8790 * These cpus will now be attached to the NULL domain
8791 */
96f874e2 8792static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8793{
96f874e2
RR
8794 /* Save because hotplug lock held. */
8795 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8796 int i;
8797
abcd083a 8798 for_each_cpu(i, cpu_map)
57d885fe 8799 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8800 synchronize_sched();
96f874e2 8801 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8802}
8803
1d3504fc
HS
8804/* handle null as "default" */
8805static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8806 struct sched_domain_attr *new, int idx_new)
8807{
8808 struct sched_domain_attr tmp;
8809
8810 /* fast path */
8811 if (!new && !cur)
8812 return 1;
8813
8814 tmp = SD_ATTR_INIT;
8815 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8816 new ? (new + idx_new) : &tmp,
8817 sizeof(struct sched_domain_attr));
8818}
8819
029190c5
PJ
8820/*
8821 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8822 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8823 * doms_new[] to the current sched domain partitioning, doms_cur[].
8824 * It destroys each deleted domain and builds each new domain.
8825 *
96f874e2 8826 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8827 * The masks don't intersect (don't overlap.) We should setup one
8828 * sched domain for each mask. CPUs not in any of the cpumasks will
8829 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8830 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8831 * it as it is.
8832 *
41a2d6cf
IM
8833 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8834 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8835 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8836 * ndoms_new == 1, and partition_sched_domains() will fallback to
8837 * the single partition 'fallback_doms', it also forces the domains
8838 * to be rebuilt.
029190c5 8839 *
96f874e2 8840 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8841 * ndoms_new == 0 is a special case for destroying existing domains,
8842 * and it will not create the default domain.
dfb512ec 8843 *
029190c5
PJ
8844 * Call with hotplug lock held
8845 */
96f874e2
RR
8846/* FIXME: Change to struct cpumask *doms_new[] */
8847void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8848 struct sched_domain_attr *dattr_new)
029190c5 8849{
dfb512ec 8850 int i, j, n;
d65bd5ec 8851 int new_topology;
029190c5 8852
712555ee 8853 mutex_lock(&sched_domains_mutex);
a1835615 8854
7378547f
MM
8855 /* always unregister in case we don't destroy any domains */
8856 unregister_sched_domain_sysctl();
8857
d65bd5ec
HC
8858 /* Let architecture update cpu core mappings. */
8859 new_topology = arch_update_cpu_topology();
8860
dfb512ec 8861 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8862
8863 /* Destroy deleted domains */
8864 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8865 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8866 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8867 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8868 goto match1;
8869 }
8870 /* no match - a current sched domain not in new doms_new[] */
8871 detach_destroy_domains(doms_cur + i);
8872match1:
8873 ;
8874 }
8875
e761b772
MK
8876 if (doms_new == NULL) {
8877 ndoms_cur = 0;
4212823f 8878 doms_new = fallback_doms;
dcc30a35 8879 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8880 WARN_ON_ONCE(dattr_new);
e761b772
MK
8881 }
8882
029190c5
PJ
8883 /* Build new domains */
8884 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8885 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8886 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8887 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8888 goto match2;
8889 }
8890 /* no match - add a new doms_new */
1d3504fc
HS
8891 __build_sched_domains(doms_new + i,
8892 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8893match2:
8894 ;
8895 }
8896
8897 /* Remember the new sched domains */
4212823f 8898 if (doms_cur != fallback_doms)
029190c5 8899 kfree(doms_cur);
1d3504fc 8900 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8901 doms_cur = doms_new;
1d3504fc 8902 dattr_cur = dattr_new;
029190c5 8903 ndoms_cur = ndoms_new;
7378547f
MM
8904
8905 register_sched_domain_sysctl();
a1835615 8906
712555ee 8907 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8908}
8909
5c45bf27 8910#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8911static void arch_reinit_sched_domains(void)
5c45bf27 8912{
95402b38 8913 get_online_cpus();
dfb512ec
MK
8914
8915 /* Destroy domains first to force the rebuild */
8916 partition_sched_domains(0, NULL, NULL);
8917
e761b772 8918 rebuild_sched_domains();
95402b38 8919 put_online_cpus();
5c45bf27
SS
8920}
8921
8922static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8923{
afb8a9b7 8924 unsigned int level = 0;
5c45bf27 8925
afb8a9b7
GS
8926 if (sscanf(buf, "%u", &level) != 1)
8927 return -EINVAL;
8928
8929 /*
8930 * level is always be positive so don't check for
8931 * level < POWERSAVINGS_BALANCE_NONE which is 0
8932 * What happens on 0 or 1 byte write,
8933 * need to check for count as well?
8934 */
8935
8936 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8937 return -EINVAL;
8938
8939 if (smt)
afb8a9b7 8940 sched_smt_power_savings = level;
5c45bf27 8941 else
afb8a9b7 8942 sched_mc_power_savings = level;
5c45bf27 8943
c70f22d2 8944 arch_reinit_sched_domains();
5c45bf27 8945
c70f22d2 8946 return count;
5c45bf27
SS
8947}
8948
5c45bf27 8949#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8950static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8951 char *page)
5c45bf27
SS
8952{
8953 return sprintf(page, "%u\n", sched_mc_power_savings);
8954}
f718cd4a 8955static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8956 const char *buf, size_t count)
5c45bf27
SS
8957{
8958 return sched_power_savings_store(buf, count, 0);
8959}
f718cd4a
AK
8960static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8961 sched_mc_power_savings_show,
8962 sched_mc_power_savings_store);
5c45bf27
SS
8963#endif
8964
8965#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8966static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8967 char *page)
5c45bf27
SS
8968{
8969 return sprintf(page, "%u\n", sched_smt_power_savings);
8970}
f718cd4a 8971static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8972 const char *buf, size_t count)
5c45bf27
SS
8973{
8974 return sched_power_savings_store(buf, count, 1);
8975}
f718cd4a
AK
8976static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8977 sched_smt_power_savings_show,
6707de00
AB
8978 sched_smt_power_savings_store);
8979#endif
8980
39aac648 8981int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8982{
8983 int err = 0;
8984
8985#ifdef CONFIG_SCHED_SMT
8986 if (smt_capable())
8987 err = sysfs_create_file(&cls->kset.kobj,
8988 &attr_sched_smt_power_savings.attr);
8989#endif
8990#ifdef CONFIG_SCHED_MC
8991 if (!err && mc_capable())
8992 err = sysfs_create_file(&cls->kset.kobj,
8993 &attr_sched_mc_power_savings.attr);
8994#endif
8995 return err;
8996}
6d6bc0ad 8997#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8998
e761b772 8999#ifndef CONFIG_CPUSETS
1da177e4 9000/*
e761b772
MK
9001 * Add online and remove offline CPUs from the scheduler domains.
9002 * When cpusets are enabled they take over this function.
1da177e4
LT
9003 */
9004static int update_sched_domains(struct notifier_block *nfb,
9005 unsigned long action, void *hcpu)
e761b772
MK
9006{
9007 switch (action) {
9008 case CPU_ONLINE:
9009 case CPU_ONLINE_FROZEN:
9010 case CPU_DEAD:
9011 case CPU_DEAD_FROZEN:
dfb512ec 9012 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9013 return NOTIFY_OK;
9014
9015 default:
9016 return NOTIFY_DONE;
9017 }
9018}
9019#endif
9020
9021static int update_runtime(struct notifier_block *nfb,
9022 unsigned long action, void *hcpu)
1da177e4 9023{
7def2be1
PZ
9024 int cpu = (int)(long)hcpu;
9025
1da177e4 9026 switch (action) {
1da177e4 9027 case CPU_DOWN_PREPARE:
8bb78442 9028 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9029 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9030 return NOTIFY_OK;
9031
1da177e4 9032 case CPU_DOWN_FAILED:
8bb78442 9033 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9034 case CPU_ONLINE:
8bb78442 9035 case CPU_ONLINE_FROZEN:
7def2be1 9036 enable_runtime(cpu_rq(cpu));
e761b772
MK
9037 return NOTIFY_OK;
9038
1da177e4
LT
9039 default:
9040 return NOTIFY_DONE;
9041 }
1da177e4 9042}
1da177e4
LT
9043
9044void __init sched_init_smp(void)
9045{
dcc30a35
RR
9046 cpumask_var_t non_isolated_cpus;
9047
9048 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9049
434d53b0
MT
9050#if defined(CONFIG_NUMA)
9051 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9052 GFP_KERNEL);
9053 BUG_ON(sched_group_nodes_bycpu == NULL);
9054#endif
95402b38 9055 get_online_cpus();
712555ee 9056 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9057 arch_init_sched_domains(cpu_online_mask);
9058 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9059 if (cpumask_empty(non_isolated_cpus))
9060 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9061 mutex_unlock(&sched_domains_mutex);
95402b38 9062 put_online_cpus();
e761b772
MK
9063
9064#ifndef CONFIG_CPUSETS
1da177e4
LT
9065 /* XXX: Theoretical race here - CPU may be hotplugged now */
9066 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9067#endif
9068
9069 /* RT runtime code needs to handle some hotplug events */
9070 hotcpu_notifier(update_runtime, 0);
9071
b328ca18 9072 init_hrtick();
5c1e1767
NP
9073
9074 /* Move init over to a non-isolated CPU */
dcc30a35 9075 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9076 BUG();
19978ca6 9077 sched_init_granularity();
dcc30a35 9078 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9079
9080 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9081 init_sched_rt_class();
1da177e4
LT
9082}
9083#else
9084void __init sched_init_smp(void)
9085{
19978ca6 9086 sched_init_granularity();
1da177e4
LT
9087}
9088#endif /* CONFIG_SMP */
9089
cd1bb94b
AB
9090const_debug unsigned int sysctl_timer_migration = 1;
9091
1da177e4
LT
9092int in_sched_functions(unsigned long addr)
9093{
1da177e4
LT
9094 return in_lock_functions(addr) ||
9095 (addr >= (unsigned long)__sched_text_start
9096 && addr < (unsigned long)__sched_text_end);
9097}
9098
a9957449 9099static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9100{
9101 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9102 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9103#ifdef CONFIG_FAIR_GROUP_SCHED
9104 cfs_rq->rq = rq;
9105#endif
67e9fb2a 9106 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9107}
9108
fa85ae24
PZ
9109static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9110{
9111 struct rt_prio_array *array;
9112 int i;
9113
9114 array = &rt_rq->active;
9115 for (i = 0; i < MAX_RT_PRIO; i++) {
9116 INIT_LIST_HEAD(array->queue + i);
9117 __clear_bit(i, array->bitmap);
9118 }
9119 /* delimiter for bitsearch: */
9120 __set_bit(MAX_RT_PRIO, array->bitmap);
9121
052f1dc7 9122#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9123 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9124#ifdef CONFIG_SMP
e864c499 9125 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9126#endif
48d5e258 9127#endif
fa85ae24
PZ
9128#ifdef CONFIG_SMP
9129 rt_rq->rt_nr_migratory = 0;
fa85ae24 9130 rt_rq->overloaded = 0;
c20b08e3 9131 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9132#endif
9133
9134 rt_rq->rt_time = 0;
9135 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9136 rt_rq->rt_runtime = 0;
9137 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9138
052f1dc7 9139#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9140 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9141 rt_rq->rq = rq;
9142#endif
fa85ae24
PZ
9143}
9144
6f505b16 9145#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9146static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9147 struct sched_entity *se, int cpu, int add,
9148 struct sched_entity *parent)
6f505b16 9149{
ec7dc8ac 9150 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9151 tg->cfs_rq[cpu] = cfs_rq;
9152 init_cfs_rq(cfs_rq, rq);
9153 cfs_rq->tg = tg;
9154 if (add)
9155 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9156
9157 tg->se[cpu] = se;
354d60c2
DG
9158 /* se could be NULL for init_task_group */
9159 if (!se)
9160 return;
9161
ec7dc8ac
DG
9162 if (!parent)
9163 se->cfs_rq = &rq->cfs;
9164 else
9165 se->cfs_rq = parent->my_q;
9166
6f505b16
PZ
9167 se->my_q = cfs_rq;
9168 se->load.weight = tg->shares;
e05510d0 9169 se->load.inv_weight = 0;
ec7dc8ac 9170 se->parent = parent;
6f505b16 9171}
052f1dc7 9172#endif
6f505b16 9173
052f1dc7 9174#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9175static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9176 struct sched_rt_entity *rt_se, int cpu, int add,
9177 struct sched_rt_entity *parent)
6f505b16 9178{
ec7dc8ac
DG
9179 struct rq *rq = cpu_rq(cpu);
9180
6f505b16
PZ
9181 tg->rt_rq[cpu] = rt_rq;
9182 init_rt_rq(rt_rq, rq);
9183 rt_rq->tg = tg;
9184 rt_rq->rt_se = rt_se;
ac086bc2 9185 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9186 if (add)
9187 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9188
9189 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9190 if (!rt_se)
9191 return;
9192
ec7dc8ac
DG
9193 if (!parent)
9194 rt_se->rt_rq = &rq->rt;
9195 else
9196 rt_se->rt_rq = parent->my_q;
9197
6f505b16 9198 rt_se->my_q = rt_rq;
ec7dc8ac 9199 rt_se->parent = parent;
6f505b16
PZ
9200 INIT_LIST_HEAD(&rt_se->run_list);
9201}
9202#endif
9203
1da177e4
LT
9204void __init sched_init(void)
9205{
dd41f596 9206 int i, j;
434d53b0
MT
9207 unsigned long alloc_size = 0, ptr;
9208
9209#ifdef CONFIG_FAIR_GROUP_SCHED
9210 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9211#endif
9212#ifdef CONFIG_RT_GROUP_SCHED
9213 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9214#endif
9215#ifdef CONFIG_USER_SCHED
9216 alloc_size *= 2;
df7c8e84
RR
9217#endif
9218#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9219 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9220#endif
9221 /*
9222 * As sched_init() is called before page_alloc is setup,
9223 * we use alloc_bootmem().
9224 */
9225 if (alloc_size) {
36b7b6d4 9226 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9227
9228#ifdef CONFIG_FAIR_GROUP_SCHED
9229 init_task_group.se = (struct sched_entity **)ptr;
9230 ptr += nr_cpu_ids * sizeof(void **);
9231
9232 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9233 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9234
9235#ifdef CONFIG_USER_SCHED
9236 root_task_group.se = (struct sched_entity **)ptr;
9237 ptr += nr_cpu_ids * sizeof(void **);
9238
9239 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9240 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9241#endif /* CONFIG_USER_SCHED */
9242#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9243#ifdef CONFIG_RT_GROUP_SCHED
9244 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9245 ptr += nr_cpu_ids * sizeof(void **);
9246
9247 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9248 ptr += nr_cpu_ids * sizeof(void **);
9249
9250#ifdef CONFIG_USER_SCHED
9251 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9252 ptr += nr_cpu_ids * sizeof(void **);
9253
9254 root_task_group.rt_rq = (struct rt_rq **)ptr;
9255 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9256#endif /* CONFIG_USER_SCHED */
9257#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9258#ifdef CONFIG_CPUMASK_OFFSTACK
9259 for_each_possible_cpu(i) {
9260 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9261 ptr += cpumask_size();
9262 }
9263#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9264 }
dd41f596 9265
57d885fe
GH
9266#ifdef CONFIG_SMP
9267 init_defrootdomain();
9268#endif
9269
d0b27fa7
PZ
9270 init_rt_bandwidth(&def_rt_bandwidth,
9271 global_rt_period(), global_rt_runtime());
9272
9273#ifdef CONFIG_RT_GROUP_SCHED
9274 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9275 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9276#ifdef CONFIG_USER_SCHED
9277 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9278 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9279#endif /* CONFIG_USER_SCHED */
9280#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9281
052f1dc7 9282#ifdef CONFIG_GROUP_SCHED
6f505b16 9283 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9284 INIT_LIST_HEAD(&init_task_group.children);
9285
9286#ifdef CONFIG_USER_SCHED
9287 INIT_LIST_HEAD(&root_task_group.children);
9288 init_task_group.parent = &root_task_group;
9289 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9290#endif /* CONFIG_USER_SCHED */
9291#endif /* CONFIG_GROUP_SCHED */
6f505b16 9292
0a945022 9293 for_each_possible_cpu(i) {
70b97a7f 9294 struct rq *rq;
1da177e4
LT
9295
9296 rq = cpu_rq(i);
9297 spin_lock_init(&rq->lock);
7897986b 9298 rq->nr_running = 0;
dce48a84
TG
9299 rq->calc_load_active = 0;
9300 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9301 init_cfs_rq(&rq->cfs, rq);
6f505b16 9302 init_rt_rq(&rq->rt, rq);
dd41f596 9303#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9304 init_task_group.shares = init_task_group_load;
6f505b16 9305 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9306#ifdef CONFIG_CGROUP_SCHED
9307 /*
9308 * How much cpu bandwidth does init_task_group get?
9309 *
9310 * In case of task-groups formed thr' the cgroup filesystem, it
9311 * gets 100% of the cpu resources in the system. This overall
9312 * system cpu resource is divided among the tasks of
9313 * init_task_group and its child task-groups in a fair manner,
9314 * based on each entity's (task or task-group's) weight
9315 * (se->load.weight).
9316 *
9317 * In other words, if init_task_group has 10 tasks of weight
9318 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9319 * then A0's share of the cpu resource is:
9320 *
0d905bca 9321 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9322 *
9323 * We achieve this by letting init_task_group's tasks sit
9324 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9325 */
ec7dc8ac 9326 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9327#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9328 root_task_group.shares = NICE_0_LOAD;
9329 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9330 /*
9331 * In case of task-groups formed thr' the user id of tasks,
9332 * init_task_group represents tasks belonging to root user.
9333 * Hence it forms a sibling of all subsequent groups formed.
9334 * In this case, init_task_group gets only a fraction of overall
9335 * system cpu resource, based on the weight assigned to root
9336 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9337 * by letting tasks of init_task_group sit in a separate cfs_rq
9338 * (init_cfs_rq) and having one entity represent this group of
9339 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9340 */
ec7dc8ac 9341 init_tg_cfs_entry(&init_task_group,
6f505b16 9342 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9343 &per_cpu(init_sched_entity, i), i, 1,
9344 root_task_group.se[i]);
6f505b16 9345
052f1dc7 9346#endif
354d60c2
DG
9347#endif /* CONFIG_FAIR_GROUP_SCHED */
9348
9349 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9350#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9351 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9352#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9353 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9354#elif defined CONFIG_USER_SCHED
eff766a6 9355 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9356 init_tg_rt_entry(&init_task_group,
6f505b16 9357 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9358 &per_cpu(init_sched_rt_entity, i), i, 1,
9359 root_task_group.rt_se[i]);
354d60c2 9360#endif
dd41f596 9361#endif
1da177e4 9362
dd41f596
IM
9363 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9364 rq->cpu_load[j] = 0;
1da177e4 9365#ifdef CONFIG_SMP
41c7ce9a 9366 rq->sd = NULL;
57d885fe 9367 rq->rd = NULL;
1da177e4 9368 rq->active_balance = 0;
dd41f596 9369 rq->next_balance = jiffies;
1da177e4 9370 rq->push_cpu = 0;
0a2966b4 9371 rq->cpu = i;
1f11eb6a 9372 rq->online = 0;
1da177e4
LT
9373 rq->migration_thread = NULL;
9374 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9375 rq_attach_root(rq, &def_root_domain);
1da177e4 9376#endif
8f4d37ec 9377 init_rq_hrtick(rq);
1da177e4 9378 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9379 }
9380
2dd73a4f 9381 set_load_weight(&init_task);
b50f60ce 9382
e107be36
AK
9383#ifdef CONFIG_PREEMPT_NOTIFIERS
9384 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9385#endif
9386
c9819f45 9387#ifdef CONFIG_SMP
962cf36c 9388 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9389#endif
9390
b50f60ce
HC
9391#ifdef CONFIG_RT_MUTEXES
9392 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9393#endif
9394
1da177e4
LT
9395 /*
9396 * The boot idle thread does lazy MMU switching as well:
9397 */
9398 atomic_inc(&init_mm.mm_count);
9399 enter_lazy_tlb(&init_mm, current);
9400
9401 /*
9402 * Make us the idle thread. Technically, schedule() should not be
9403 * called from this thread, however somewhere below it might be,
9404 * but because we are the idle thread, we just pick up running again
9405 * when this runqueue becomes "idle".
9406 */
9407 init_idle(current, smp_processor_id());
dce48a84
TG
9408
9409 calc_load_update = jiffies + LOAD_FREQ;
9410
dd41f596
IM
9411 /*
9412 * During early bootup we pretend to be a normal task:
9413 */
9414 current->sched_class = &fair_sched_class;
6892b75e 9415
6a7b3dc3 9416 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9417 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9418#ifdef CONFIG_SMP
7d1e6a9b 9419#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9420 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9421 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9422#endif
4bdddf8f 9423 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9424#endif /* SMP */
6a7b3dc3 9425
0d905bca
IM
9426 perf_counter_init();
9427
6892b75e 9428 scheduler_running = 1;
1da177e4
LT
9429}
9430
9431#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9432static inline int preempt_count_equals(int preempt_offset)
9433{
9434 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9435
9436 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9437}
9438
9439void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9440{
48f24c4d 9441#ifdef in_atomic
1da177e4
LT
9442 static unsigned long prev_jiffy; /* ratelimiting */
9443
e4aafea2
FW
9444 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9445 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9446 return;
9447 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9448 return;
9449 prev_jiffy = jiffies;
9450
9451 printk(KERN_ERR
9452 "BUG: sleeping function called from invalid context at %s:%d\n",
9453 file, line);
9454 printk(KERN_ERR
9455 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9456 in_atomic(), irqs_disabled(),
9457 current->pid, current->comm);
9458
9459 debug_show_held_locks(current);
9460 if (irqs_disabled())
9461 print_irqtrace_events(current);
9462 dump_stack();
1da177e4
LT
9463#endif
9464}
9465EXPORT_SYMBOL(__might_sleep);
9466#endif
9467
9468#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9469static void normalize_task(struct rq *rq, struct task_struct *p)
9470{
9471 int on_rq;
3e51f33f 9472
3a5e4dc1
AK
9473 update_rq_clock(rq);
9474 on_rq = p->se.on_rq;
9475 if (on_rq)
9476 deactivate_task(rq, p, 0);
9477 __setscheduler(rq, p, SCHED_NORMAL, 0);
9478 if (on_rq) {
9479 activate_task(rq, p, 0);
9480 resched_task(rq->curr);
9481 }
9482}
9483
1da177e4
LT
9484void normalize_rt_tasks(void)
9485{
a0f98a1c 9486 struct task_struct *g, *p;
1da177e4 9487 unsigned long flags;
70b97a7f 9488 struct rq *rq;
1da177e4 9489
4cf5d77a 9490 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9491 do_each_thread(g, p) {
178be793
IM
9492 /*
9493 * Only normalize user tasks:
9494 */
9495 if (!p->mm)
9496 continue;
9497
6cfb0d5d 9498 p->se.exec_start = 0;
6cfb0d5d 9499#ifdef CONFIG_SCHEDSTATS
dd41f596 9500 p->se.wait_start = 0;
dd41f596 9501 p->se.sleep_start = 0;
dd41f596 9502 p->se.block_start = 0;
6cfb0d5d 9503#endif
dd41f596
IM
9504
9505 if (!rt_task(p)) {
9506 /*
9507 * Renice negative nice level userspace
9508 * tasks back to 0:
9509 */
9510 if (TASK_NICE(p) < 0 && p->mm)
9511 set_user_nice(p, 0);
1da177e4 9512 continue;
dd41f596 9513 }
1da177e4 9514
4cf5d77a 9515 spin_lock(&p->pi_lock);
b29739f9 9516 rq = __task_rq_lock(p);
1da177e4 9517
178be793 9518 normalize_task(rq, p);
3a5e4dc1 9519
b29739f9 9520 __task_rq_unlock(rq);
4cf5d77a 9521 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9522 } while_each_thread(g, p);
9523
4cf5d77a 9524 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9525}
9526
9527#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9528
9529#ifdef CONFIG_IA64
9530/*
9531 * These functions are only useful for the IA64 MCA handling.
9532 *
9533 * They can only be called when the whole system has been
9534 * stopped - every CPU needs to be quiescent, and no scheduling
9535 * activity can take place. Using them for anything else would
9536 * be a serious bug, and as a result, they aren't even visible
9537 * under any other configuration.
9538 */
9539
9540/**
9541 * curr_task - return the current task for a given cpu.
9542 * @cpu: the processor in question.
9543 *
9544 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9545 */
36c8b586 9546struct task_struct *curr_task(int cpu)
1df5c10a
LT
9547{
9548 return cpu_curr(cpu);
9549}
9550
9551/**
9552 * set_curr_task - set the current task for a given cpu.
9553 * @cpu: the processor in question.
9554 * @p: the task pointer to set.
9555 *
9556 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9557 * are serviced on a separate stack. It allows the architecture to switch the
9558 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9559 * must be called with all CPU's synchronized, and interrupts disabled, the
9560 * and caller must save the original value of the current task (see
9561 * curr_task() above) and restore that value before reenabling interrupts and
9562 * re-starting the system.
9563 *
9564 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9565 */
36c8b586 9566void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9567{
9568 cpu_curr(cpu) = p;
9569}
9570
9571#endif
29f59db3 9572
bccbe08a
PZ
9573#ifdef CONFIG_FAIR_GROUP_SCHED
9574static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9575{
9576 int i;
9577
9578 for_each_possible_cpu(i) {
9579 if (tg->cfs_rq)
9580 kfree(tg->cfs_rq[i]);
9581 if (tg->se)
9582 kfree(tg->se[i]);
6f505b16
PZ
9583 }
9584
9585 kfree(tg->cfs_rq);
9586 kfree(tg->se);
6f505b16
PZ
9587}
9588
ec7dc8ac
DG
9589static
9590int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9591{
29f59db3 9592 struct cfs_rq *cfs_rq;
eab17229 9593 struct sched_entity *se;
9b5b7751 9594 struct rq *rq;
29f59db3
SV
9595 int i;
9596
434d53b0 9597 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9598 if (!tg->cfs_rq)
9599 goto err;
434d53b0 9600 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9601 if (!tg->se)
9602 goto err;
052f1dc7
PZ
9603
9604 tg->shares = NICE_0_LOAD;
29f59db3
SV
9605
9606 for_each_possible_cpu(i) {
9b5b7751 9607 rq = cpu_rq(i);
29f59db3 9608
eab17229
LZ
9609 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9610 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9611 if (!cfs_rq)
9612 goto err;
9613
eab17229
LZ
9614 se = kzalloc_node(sizeof(struct sched_entity),
9615 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9616 if (!se)
9617 goto err;
9618
eab17229 9619 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9620 }
9621
9622 return 1;
9623
9624 err:
9625 return 0;
9626}
9627
9628static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9629{
9630 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9631 &cpu_rq(cpu)->leaf_cfs_rq_list);
9632}
9633
9634static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9635{
9636 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9637}
6d6bc0ad 9638#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9639static inline void free_fair_sched_group(struct task_group *tg)
9640{
9641}
9642
ec7dc8ac
DG
9643static inline
9644int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9645{
9646 return 1;
9647}
9648
9649static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9650{
9651}
9652
9653static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9654{
9655}
6d6bc0ad 9656#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9657
9658#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9659static void free_rt_sched_group(struct task_group *tg)
9660{
9661 int i;
9662
d0b27fa7
PZ
9663 destroy_rt_bandwidth(&tg->rt_bandwidth);
9664
bccbe08a
PZ
9665 for_each_possible_cpu(i) {
9666 if (tg->rt_rq)
9667 kfree(tg->rt_rq[i]);
9668 if (tg->rt_se)
9669 kfree(tg->rt_se[i]);
9670 }
9671
9672 kfree(tg->rt_rq);
9673 kfree(tg->rt_se);
9674}
9675
ec7dc8ac
DG
9676static
9677int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9678{
9679 struct rt_rq *rt_rq;
eab17229 9680 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9681 struct rq *rq;
9682 int i;
9683
434d53b0 9684 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9685 if (!tg->rt_rq)
9686 goto err;
434d53b0 9687 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9688 if (!tg->rt_se)
9689 goto err;
9690
d0b27fa7
PZ
9691 init_rt_bandwidth(&tg->rt_bandwidth,
9692 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9693
9694 for_each_possible_cpu(i) {
9695 rq = cpu_rq(i);
9696
eab17229
LZ
9697 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9698 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9699 if (!rt_rq)
9700 goto err;
29f59db3 9701
eab17229
LZ
9702 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9703 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9704 if (!rt_se)
9705 goto err;
29f59db3 9706
eab17229 9707 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9708 }
9709
bccbe08a
PZ
9710 return 1;
9711
9712 err:
9713 return 0;
9714}
9715
9716static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9717{
9718 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9719 &cpu_rq(cpu)->leaf_rt_rq_list);
9720}
9721
9722static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9723{
9724 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9725}
6d6bc0ad 9726#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9727static inline void free_rt_sched_group(struct task_group *tg)
9728{
9729}
9730
ec7dc8ac
DG
9731static inline
9732int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9733{
9734 return 1;
9735}
9736
9737static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9738{
9739}
9740
9741static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9742{
9743}
6d6bc0ad 9744#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9745
d0b27fa7 9746#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9747static void free_sched_group(struct task_group *tg)
9748{
9749 free_fair_sched_group(tg);
9750 free_rt_sched_group(tg);
9751 kfree(tg);
9752}
9753
9754/* allocate runqueue etc for a new task group */
ec7dc8ac 9755struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9756{
9757 struct task_group *tg;
9758 unsigned long flags;
9759 int i;
9760
9761 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9762 if (!tg)
9763 return ERR_PTR(-ENOMEM);
9764
ec7dc8ac 9765 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9766 goto err;
9767
ec7dc8ac 9768 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9769 goto err;
9770
8ed36996 9771 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9772 for_each_possible_cpu(i) {
bccbe08a
PZ
9773 register_fair_sched_group(tg, i);
9774 register_rt_sched_group(tg, i);
9b5b7751 9775 }
6f505b16 9776 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9777
9778 WARN_ON(!parent); /* root should already exist */
9779
9780 tg->parent = parent;
f473aa5e 9781 INIT_LIST_HEAD(&tg->children);
09f2724a 9782 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9783 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9784
9b5b7751 9785 return tg;
29f59db3
SV
9786
9787err:
6f505b16 9788 free_sched_group(tg);
29f59db3
SV
9789 return ERR_PTR(-ENOMEM);
9790}
9791
9b5b7751 9792/* rcu callback to free various structures associated with a task group */
6f505b16 9793static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9794{
29f59db3 9795 /* now it should be safe to free those cfs_rqs */
6f505b16 9796 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9797}
9798
9b5b7751 9799/* Destroy runqueue etc associated with a task group */
4cf86d77 9800void sched_destroy_group(struct task_group *tg)
29f59db3 9801{
8ed36996 9802 unsigned long flags;
9b5b7751 9803 int i;
29f59db3 9804
8ed36996 9805 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9806 for_each_possible_cpu(i) {
bccbe08a
PZ
9807 unregister_fair_sched_group(tg, i);
9808 unregister_rt_sched_group(tg, i);
9b5b7751 9809 }
6f505b16 9810 list_del_rcu(&tg->list);
f473aa5e 9811 list_del_rcu(&tg->siblings);
8ed36996 9812 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9813
9b5b7751 9814 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9815 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9816}
9817
9b5b7751 9818/* change task's runqueue when it moves between groups.
3a252015
IM
9819 * The caller of this function should have put the task in its new group
9820 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9821 * reflect its new group.
9b5b7751
SV
9822 */
9823void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9824{
9825 int on_rq, running;
9826 unsigned long flags;
9827 struct rq *rq;
9828
9829 rq = task_rq_lock(tsk, &flags);
9830
29f59db3
SV
9831 update_rq_clock(rq);
9832
051a1d1a 9833 running = task_current(rq, tsk);
29f59db3
SV
9834 on_rq = tsk->se.on_rq;
9835
0e1f3483 9836 if (on_rq)
29f59db3 9837 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9838 if (unlikely(running))
9839 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9840
6f505b16 9841 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9842
810b3817
PZ
9843#ifdef CONFIG_FAIR_GROUP_SCHED
9844 if (tsk->sched_class->moved_group)
9845 tsk->sched_class->moved_group(tsk);
9846#endif
9847
0e1f3483
HS
9848 if (unlikely(running))
9849 tsk->sched_class->set_curr_task(rq);
9850 if (on_rq)
7074badb 9851 enqueue_task(rq, tsk, 0);
29f59db3 9852
29f59db3
SV
9853 task_rq_unlock(rq, &flags);
9854}
6d6bc0ad 9855#endif /* CONFIG_GROUP_SCHED */
29f59db3 9856
052f1dc7 9857#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9858static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9859{
9860 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9861 int on_rq;
9862
29f59db3 9863 on_rq = se->on_rq;
62fb1851 9864 if (on_rq)
29f59db3
SV
9865 dequeue_entity(cfs_rq, se, 0);
9866
9867 se->load.weight = shares;
e05510d0 9868 se->load.inv_weight = 0;
29f59db3 9869
62fb1851 9870 if (on_rq)
29f59db3 9871 enqueue_entity(cfs_rq, se, 0);
c09595f6 9872}
62fb1851 9873
c09595f6
PZ
9874static void set_se_shares(struct sched_entity *se, unsigned long shares)
9875{
9876 struct cfs_rq *cfs_rq = se->cfs_rq;
9877 struct rq *rq = cfs_rq->rq;
9878 unsigned long flags;
9879
9880 spin_lock_irqsave(&rq->lock, flags);
9881 __set_se_shares(se, shares);
9882 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9883}
9884
8ed36996
PZ
9885static DEFINE_MUTEX(shares_mutex);
9886
4cf86d77 9887int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9888{
9889 int i;
8ed36996 9890 unsigned long flags;
c61935fd 9891
ec7dc8ac
DG
9892 /*
9893 * We can't change the weight of the root cgroup.
9894 */
9895 if (!tg->se[0])
9896 return -EINVAL;
9897
18d95a28
PZ
9898 if (shares < MIN_SHARES)
9899 shares = MIN_SHARES;
cb4ad1ff
MX
9900 else if (shares > MAX_SHARES)
9901 shares = MAX_SHARES;
62fb1851 9902
8ed36996 9903 mutex_lock(&shares_mutex);
9b5b7751 9904 if (tg->shares == shares)
5cb350ba 9905 goto done;
29f59db3 9906
8ed36996 9907 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9908 for_each_possible_cpu(i)
9909 unregister_fair_sched_group(tg, i);
f473aa5e 9910 list_del_rcu(&tg->siblings);
8ed36996 9911 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9912
9913 /* wait for any ongoing reference to this group to finish */
9914 synchronize_sched();
9915
9916 /*
9917 * Now we are free to modify the group's share on each cpu
9918 * w/o tripping rebalance_share or load_balance_fair.
9919 */
9b5b7751 9920 tg->shares = shares;
c09595f6
PZ
9921 for_each_possible_cpu(i) {
9922 /*
9923 * force a rebalance
9924 */
9925 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9926 set_se_shares(tg->se[i], shares);
c09595f6 9927 }
29f59db3 9928
6b2d7700
SV
9929 /*
9930 * Enable load balance activity on this group, by inserting it back on
9931 * each cpu's rq->leaf_cfs_rq_list.
9932 */
8ed36996 9933 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9934 for_each_possible_cpu(i)
9935 register_fair_sched_group(tg, i);
f473aa5e 9936 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9937 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9938done:
8ed36996 9939 mutex_unlock(&shares_mutex);
9b5b7751 9940 return 0;
29f59db3
SV
9941}
9942
5cb350ba
DG
9943unsigned long sched_group_shares(struct task_group *tg)
9944{
9945 return tg->shares;
9946}
052f1dc7 9947#endif
5cb350ba 9948
052f1dc7 9949#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9950/*
9f0c1e56 9951 * Ensure that the real time constraints are schedulable.
6f505b16 9952 */
9f0c1e56
PZ
9953static DEFINE_MUTEX(rt_constraints_mutex);
9954
9955static unsigned long to_ratio(u64 period, u64 runtime)
9956{
9957 if (runtime == RUNTIME_INF)
9a7e0b18 9958 return 1ULL << 20;
9f0c1e56 9959
9a7e0b18 9960 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9961}
9962
9a7e0b18
PZ
9963/* Must be called with tasklist_lock held */
9964static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9965{
9a7e0b18 9966 struct task_struct *g, *p;
b40b2e8e 9967
9a7e0b18
PZ
9968 do_each_thread(g, p) {
9969 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9970 return 1;
9971 } while_each_thread(g, p);
b40b2e8e 9972
9a7e0b18
PZ
9973 return 0;
9974}
b40b2e8e 9975
9a7e0b18
PZ
9976struct rt_schedulable_data {
9977 struct task_group *tg;
9978 u64 rt_period;
9979 u64 rt_runtime;
9980};
b40b2e8e 9981
9a7e0b18
PZ
9982static int tg_schedulable(struct task_group *tg, void *data)
9983{
9984 struct rt_schedulable_data *d = data;
9985 struct task_group *child;
9986 unsigned long total, sum = 0;
9987 u64 period, runtime;
b40b2e8e 9988
9a7e0b18
PZ
9989 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9990 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9991
9a7e0b18
PZ
9992 if (tg == d->tg) {
9993 period = d->rt_period;
9994 runtime = d->rt_runtime;
b40b2e8e 9995 }
b40b2e8e 9996
98a4826b
PZ
9997#ifdef CONFIG_USER_SCHED
9998 if (tg == &root_task_group) {
9999 period = global_rt_period();
10000 runtime = global_rt_runtime();
10001 }
10002#endif
10003
4653f803
PZ
10004 /*
10005 * Cannot have more runtime than the period.
10006 */
10007 if (runtime > period && runtime != RUNTIME_INF)
10008 return -EINVAL;
6f505b16 10009
4653f803
PZ
10010 /*
10011 * Ensure we don't starve existing RT tasks.
10012 */
9a7e0b18
PZ
10013 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10014 return -EBUSY;
6f505b16 10015
9a7e0b18 10016 total = to_ratio(period, runtime);
6f505b16 10017
4653f803
PZ
10018 /*
10019 * Nobody can have more than the global setting allows.
10020 */
10021 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10022 return -EINVAL;
6f505b16 10023
4653f803
PZ
10024 /*
10025 * The sum of our children's runtime should not exceed our own.
10026 */
9a7e0b18
PZ
10027 list_for_each_entry_rcu(child, &tg->children, siblings) {
10028 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10029 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10030
9a7e0b18
PZ
10031 if (child == d->tg) {
10032 period = d->rt_period;
10033 runtime = d->rt_runtime;
10034 }
6f505b16 10035
9a7e0b18 10036 sum += to_ratio(period, runtime);
9f0c1e56 10037 }
6f505b16 10038
9a7e0b18
PZ
10039 if (sum > total)
10040 return -EINVAL;
10041
10042 return 0;
6f505b16
PZ
10043}
10044
9a7e0b18 10045static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10046{
9a7e0b18
PZ
10047 struct rt_schedulable_data data = {
10048 .tg = tg,
10049 .rt_period = period,
10050 .rt_runtime = runtime,
10051 };
10052
10053 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10054}
10055
d0b27fa7
PZ
10056static int tg_set_bandwidth(struct task_group *tg,
10057 u64 rt_period, u64 rt_runtime)
6f505b16 10058{
ac086bc2 10059 int i, err = 0;
9f0c1e56 10060
9f0c1e56 10061 mutex_lock(&rt_constraints_mutex);
521f1a24 10062 read_lock(&tasklist_lock);
9a7e0b18
PZ
10063 err = __rt_schedulable(tg, rt_period, rt_runtime);
10064 if (err)
9f0c1e56 10065 goto unlock;
ac086bc2
PZ
10066
10067 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10068 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10069 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10070
10071 for_each_possible_cpu(i) {
10072 struct rt_rq *rt_rq = tg->rt_rq[i];
10073
10074 spin_lock(&rt_rq->rt_runtime_lock);
10075 rt_rq->rt_runtime = rt_runtime;
10076 spin_unlock(&rt_rq->rt_runtime_lock);
10077 }
10078 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10079 unlock:
521f1a24 10080 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10081 mutex_unlock(&rt_constraints_mutex);
10082
10083 return err;
6f505b16
PZ
10084}
10085
d0b27fa7
PZ
10086int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10087{
10088 u64 rt_runtime, rt_period;
10089
10090 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10091 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10092 if (rt_runtime_us < 0)
10093 rt_runtime = RUNTIME_INF;
10094
10095 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10096}
10097
9f0c1e56
PZ
10098long sched_group_rt_runtime(struct task_group *tg)
10099{
10100 u64 rt_runtime_us;
10101
d0b27fa7 10102 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10103 return -1;
10104
d0b27fa7 10105 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10106 do_div(rt_runtime_us, NSEC_PER_USEC);
10107 return rt_runtime_us;
10108}
d0b27fa7
PZ
10109
10110int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10111{
10112 u64 rt_runtime, rt_period;
10113
10114 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10115 rt_runtime = tg->rt_bandwidth.rt_runtime;
10116
619b0488
R
10117 if (rt_period == 0)
10118 return -EINVAL;
10119
d0b27fa7
PZ
10120 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10121}
10122
10123long sched_group_rt_period(struct task_group *tg)
10124{
10125 u64 rt_period_us;
10126
10127 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10128 do_div(rt_period_us, NSEC_PER_USEC);
10129 return rt_period_us;
10130}
10131
10132static int sched_rt_global_constraints(void)
10133{
4653f803 10134 u64 runtime, period;
d0b27fa7
PZ
10135 int ret = 0;
10136
ec5d4989
HS
10137 if (sysctl_sched_rt_period <= 0)
10138 return -EINVAL;
10139
4653f803
PZ
10140 runtime = global_rt_runtime();
10141 period = global_rt_period();
10142
10143 /*
10144 * Sanity check on the sysctl variables.
10145 */
10146 if (runtime > period && runtime != RUNTIME_INF)
10147 return -EINVAL;
10b612f4 10148
d0b27fa7 10149 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10150 read_lock(&tasklist_lock);
4653f803 10151 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10152 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10153 mutex_unlock(&rt_constraints_mutex);
10154
10155 return ret;
10156}
54e99124
DG
10157
10158int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10159{
10160 /* Don't accept realtime tasks when there is no way for them to run */
10161 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10162 return 0;
10163
10164 return 1;
10165}
10166
6d6bc0ad 10167#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10168static int sched_rt_global_constraints(void)
10169{
ac086bc2
PZ
10170 unsigned long flags;
10171 int i;
10172
ec5d4989
HS
10173 if (sysctl_sched_rt_period <= 0)
10174 return -EINVAL;
10175
60aa605d
PZ
10176 /*
10177 * There's always some RT tasks in the root group
10178 * -- migration, kstopmachine etc..
10179 */
10180 if (sysctl_sched_rt_runtime == 0)
10181 return -EBUSY;
10182
ac086bc2
PZ
10183 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10184 for_each_possible_cpu(i) {
10185 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10186
10187 spin_lock(&rt_rq->rt_runtime_lock);
10188 rt_rq->rt_runtime = global_rt_runtime();
10189 spin_unlock(&rt_rq->rt_runtime_lock);
10190 }
10191 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10192
d0b27fa7
PZ
10193 return 0;
10194}
6d6bc0ad 10195#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10196
10197int sched_rt_handler(struct ctl_table *table, int write,
10198 struct file *filp, void __user *buffer, size_t *lenp,
10199 loff_t *ppos)
10200{
10201 int ret;
10202 int old_period, old_runtime;
10203 static DEFINE_MUTEX(mutex);
10204
10205 mutex_lock(&mutex);
10206 old_period = sysctl_sched_rt_period;
10207 old_runtime = sysctl_sched_rt_runtime;
10208
10209 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10210
10211 if (!ret && write) {
10212 ret = sched_rt_global_constraints();
10213 if (ret) {
10214 sysctl_sched_rt_period = old_period;
10215 sysctl_sched_rt_runtime = old_runtime;
10216 } else {
10217 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10218 def_rt_bandwidth.rt_period =
10219 ns_to_ktime(global_rt_period());
10220 }
10221 }
10222 mutex_unlock(&mutex);
10223
10224 return ret;
10225}
68318b8e 10226
052f1dc7 10227#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10228
10229/* return corresponding task_group object of a cgroup */
2b01dfe3 10230static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10231{
2b01dfe3
PM
10232 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10233 struct task_group, css);
68318b8e
SV
10234}
10235
10236static struct cgroup_subsys_state *
2b01dfe3 10237cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10238{
ec7dc8ac 10239 struct task_group *tg, *parent;
68318b8e 10240
2b01dfe3 10241 if (!cgrp->parent) {
68318b8e 10242 /* This is early initialization for the top cgroup */
68318b8e
SV
10243 return &init_task_group.css;
10244 }
10245
ec7dc8ac
DG
10246 parent = cgroup_tg(cgrp->parent);
10247 tg = sched_create_group(parent);
68318b8e
SV
10248 if (IS_ERR(tg))
10249 return ERR_PTR(-ENOMEM);
10250
68318b8e
SV
10251 return &tg->css;
10252}
10253
41a2d6cf
IM
10254static void
10255cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10256{
2b01dfe3 10257 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10258
10259 sched_destroy_group(tg);
10260}
10261
41a2d6cf
IM
10262static int
10263cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10264 struct task_struct *tsk)
68318b8e 10265{
b68aa230 10266#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10267 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10268 return -EINVAL;
10269#else
68318b8e
SV
10270 /* We don't support RT-tasks being in separate groups */
10271 if (tsk->sched_class != &fair_sched_class)
10272 return -EINVAL;
b68aa230 10273#endif
68318b8e
SV
10274
10275 return 0;
10276}
10277
10278static void
2b01dfe3 10279cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10280 struct cgroup *old_cont, struct task_struct *tsk)
10281{
10282 sched_move_task(tsk);
10283}
10284
052f1dc7 10285#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10286static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10287 u64 shareval)
68318b8e 10288{
2b01dfe3 10289 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10290}
10291
f4c753b7 10292static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10293{
2b01dfe3 10294 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10295
10296 return (u64) tg->shares;
10297}
6d6bc0ad 10298#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10299
052f1dc7 10300#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10301static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10302 s64 val)
6f505b16 10303{
06ecb27c 10304 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10305}
10306
06ecb27c 10307static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10308{
06ecb27c 10309 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10310}
d0b27fa7
PZ
10311
10312static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10313 u64 rt_period_us)
10314{
10315 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10316}
10317
10318static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10319{
10320 return sched_group_rt_period(cgroup_tg(cgrp));
10321}
6d6bc0ad 10322#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10323
fe5c7cc2 10324static struct cftype cpu_files[] = {
052f1dc7 10325#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10326 {
10327 .name = "shares",
f4c753b7
PM
10328 .read_u64 = cpu_shares_read_u64,
10329 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10330 },
052f1dc7
PZ
10331#endif
10332#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10333 {
9f0c1e56 10334 .name = "rt_runtime_us",
06ecb27c
PM
10335 .read_s64 = cpu_rt_runtime_read,
10336 .write_s64 = cpu_rt_runtime_write,
6f505b16 10337 },
d0b27fa7
PZ
10338 {
10339 .name = "rt_period_us",
f4c753b7
PM
10340 .read_u64 = cpu_rt_period_read_uint,
10341 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10342 },
052f1dc7 10343#endif
68318b8e
SV
10344};
10345
10346static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10347{
fe5c7cc2 10348 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10349}
10350
10351struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10352 .name = "cpu",
10353 .create = cpu_cgroup_create,
10354 .destroy = cpu_cgroup_destroy,
10355 .can_attach = cpu_cgroup_can_attach,
10356 .attach = cpu_cgroup_attach,
10357 .populate = cpu_cgroup_populate,
10358 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10359 .early_init = 1,
10360};
10361
052f1dc7 10362#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10363
10364#ifdef CONFIG_CGROUP_CPUACCT
10365
10366/*
10367 * CPU accounting code for task groups.
10368 *
10369 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10370 * (balbir@in.ibm.com).
10371 */
10372
934352f2 10373/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10374struct cpuacct {
10375 struct cgroup_subsys_state css;
10376 /* cpuusage holds pointer to a u64-type object on every cpu */
10377 u64 *cpuusage;
ef12fefa 10378 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10379 struct cpuacct *parent;
d842de87
SV
10380};
10381
10382struct cgroup_subsys cpuacct_subsys;
10383
10384/* return cpu accounting group corresponding to this container */
32cd756a 10385static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10386{
32cd756a 10387 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10388 struct cpuacct, css);
10389}
10390
10391/* return cpu accounting group to which this task belongs */
10392static inline struct cpuacct *task_ca(struct task_struct *tsk)
10393{
10394 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10395 struct cpuacct, css);
10396}
10397
10398/* create a new cpu accounting group */
10399static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10400 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10401{
10402 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10403 int i;
d842de87
SV
10404
10405 if (!ca)
ef12fefa 10406 goto out;
d842de87
SV
10407
10408 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10409 if (!ca->cpuusage)
10410 goto out_free_ca;
10411
10412 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10413 if (percpu_counter_init(&ca->cpustat[i], 0))
10414 goto out_free_counters;
d842de87 10415
934352f2
BR
10416 if (cgrp->parent)
10417 ca->parent = cgroup_ca(cgrp->parent);
10418
d842de87 10419 return &ca->css;
ef12fefa
BR
10420
10421out_free_counters:
10422 while (--i >= 0)
10423 percpu_counter_destroy(&ca->cpustat[i]);
10424 free_percpu(ca->cpuusage);
10425out_free_ca:
10426 kfree(ca);
10427out:
10428 return ERR_PTR(-ENOMEM);
d842de87
SV
10429}
10430
10431/* destroy an existing cpu accounting group */
41a2d6cf 10432static void
32cd756a 10433cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10434{
32cd756a 10435 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10436 int i;
d842de87 10437
ef12fefa
BR
10438 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10439 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10440 free_percpu(ca->cpuusage);
10441 kfree(ca);
10442}
10443
720f5498
KC
10444static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10445{
b36128c8 10446 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10447 u64 data;
10448
10449#ifndef CONFIG_64BIT
10450 /*
10451 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10452 */
10453 spin_lock_irq(&cpu_rq(cpu)->lock);
10454 data = *cpuusage;
10455 spin_unlock_irq(&cpu_rq(cpu)->lock);
10456#else
10457 data = *cpuusage;
10458#endif
10459
10460 return data;
10461}
10462
10463static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10464{
b36128c8 10465 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10466
10467#ifndef CONFIG_64BIT
10468 /*
10469 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10470 */
10471 spin_lock_irq(&cpu_rq(cpu)->lock);
10472 *cpuusage = val;
10473 spin_unlock_irq(&cpu_rq(cpu)->lock);
10474#else
10475 *cpuusage = val;
10476#endif
10477}
10478
d842de87 10479/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10480static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10481{
32cd756a 10482 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10483 u64 totalcpuusage = 0;
10484 int i;
10485
720f5498
KC
10486 for_each_present_cpu(i)
10487 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10488
10489 return totalcpuusage;
10490}
10491
0297b803
DG
10492static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10493 u64 reset)
10494{
10495 struct cpuacct *ca = cgroup_ca(cgrp);
10496 int err = 0;
10497 int i;
10498
10499 if (reset) {
10500 err = -EINVAL;
10501 goto out;
10502 }
10503
720f5498
KC
10504 for_each_present_cpu(i)
10505 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10506
0297b803
DG
10507out:
10508 return err;
10509}
10510
e9515c3c
KC
10511static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10512 struct seq_file *m)
10513{
10514 struct cpuacct *ca = cgroup_ca(cgroup);
10515 u64 percpu;
10516 int i;
10517
10518 for_each_present_cpu(i) {
10519 percpu = cpuacct_cpuusage_read(ca, i);
10520 seq_printf(m, "%llu ", (unsigned long long) percpu);
10521 }
10522 seq_printf(m, "\n");
10523 return 0;
10524}
10525
ef12fefa
BR
10526static const char *cpuacct_stat_desc[] = {
10527 [CPUACCT_STAT_USER] = "user",
10528 [CPUACCT_STAT_SYSTEM] = "system",
10529};
10530
10531static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10532 struct cgroup_map_cb *cb)
10533{
10534 struct cpuacct *ca = cgroup_ca(cgrp);
10535 int i;
10536
10537 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10538 s64 val = percpu_counter_read(&ca->cpustat[i]);
10539 val = cputime64_to_clock_t(val);
10540 cb->fill(cb, cpuacct_stat_desc[i], val);
10541 }
10542 return 0;
10543}
10544
d842de87
SV
10545static struct cftype files[] = {
10546 {
10547 .name = "usage",
f4c753b7
PM
10548 .read_u64 = cpuusage_read,
10549 .write_u64 = cpuusage_write,
d842de87 10550 },
e9515c3c
KC
10551 {
10552 .name = "usage_percpu",
10553 .read_seq_string = cpuacct_percpu_seq_read,
10554 },
ef12fefa
BR
10555 {
10556 .name = "stat",
10557 .read_map = cpuacct_stats_show,
10558 },
d842de87
SV
10559};
10560
32cd756a 10561static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10562{
32cd756a 10563 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10564}
10565
10566/*
10567 * charge this task's execution time to its accounting group.
10568 *
10569 * called with rq->lock held.
10570 */
10571static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10572{
10573 struct cpuacct *ca;
934352f2 10574 int cpu;
d842de87 10575
c40c6f85 10576 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10577 return;
10578
934352f2 10579 cpu = task_cpu(tsk);
a18b83b7
BR
10580
10581 rcu_read_lock();
10582
d842de87 10583 ca = task_ca(tsk);
d842de87 10584
934352f2 10585 for (; ca; ca = ca->parent) {
b36128c8 10586 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10587 *cpuusage += cputime;
10588 }
a18b83b7
BR
10589
10590 rcu_read_unlock();
d842de87
SV
10591}
10592
ef12fefa
BR
10593/*
10594 * Charge the system/user time to the task's accounting group.
10595 */
10596static void cpuacct_update_stats(struct task_struct *tsk,
10597 enum cpuacct_stat_index idx, cputime_t val)
10598{
10599 struct cpuacct *ca;
10600
10601 if (unlikely(!cpuacct_subsys.active))
10602 return;
10603
10604 rcu_read_lock();
10605 ca = task_ca(tsk);
10606
10607 do {
10608 percpu_counter_add(&ca->cpustat[idx], val);
10609 ca = ca->parent;
10610 } while (ca);
10611 rcu_read_unlock();
10612}
10613
d842de87
SV
10614struct cgroup_subsys cpuacct_subsys = {
10615 .name = "cpuacct",
10616 .create = cpuacct_create,
10617 .destroy = cpuacct_destroy,
10618 .populate = cpuacct_populate,
10619 .subsys_id = cpuacct_subsys_id,
10620};
10621#endif /* CONFIG_CGROUP_CPUACCT */