]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Use pr_fmt() and pr_<level>()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5
IM
145 /* nests inside the rq lock: */
146 spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
ac086bc2
PZ
183 spin_lock_init(&rt_b->rt_runtime_lock);
184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
221 }
222 spin_unlock(&rt_b->rt_runtime_lock);
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
ac086bc2 475 spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491
IM
529 /* runqueue lock: */
530 spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
89f19f04 690 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
4866cde0
NP
898 spin_unlock_irq(&rq->lock);
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 spin_unlock_irq(&rq->lock);
923#else
924 spin_unlock(&rq->lock);
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
b29739f9 957 spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
1da177e4 977 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 spin_unlock_wait(&rq->lock);
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
992 spin_unlock(&rq->lock);
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
998 spin_unlock_irqrestore(&rq->lock, *flags);
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
1011 spin_lock(&rq->lock);
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
1058 spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec
PZ
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 spin_unlock(&rq->lock);
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
31656519
PZ
1074 spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
1184 assert_spin_locked(&task_rq(p)->lock);
1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db
IM
1277{
1278 assert_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
ffda12a1 1605 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
3e5459b4
PZ
1711 spin_unlock(&rq->lock);
1712 update_shares(sd);
1713 spin_lock(&rq->lock);
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
1753 spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
70574a99
AD
1774 if (unlikely(!spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 spin_unlock(&this_rq->lock);
1777 spin_lock(&busiest->lock);
1778 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1779 ret = 1;
1780 } else
1781 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1782 }
1783 return ret;
1784}
1785
8f45e2b5
GH
1786#endif /* CONFIG_PREEMPT */
1787
1788/*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792{
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 spin_unlock(&this_rq->lock);
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800}
1801
70574a99
AD
1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804{
1805 spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807}
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
dce48a84 1819static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
dce48a84 1822
cd29fe6f
PZ
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
dce48a84 1836
dd41f596 1837#include "sched_stats.h"
dd41f596 1838#include "sched_idletask.c"
5522d5d5
IM
1839#include "sched_fair.c"
1840#include "sched_rt.c"
dd41f596
IM
1841#ifdef CONFIG_SCHED_DEBUG
1842# include "sched_debug.c"
1843#endif
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
c09595f6 1849static void inc_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running++;
9c217245
IM
1852}
1853
c09595f6 1854static void dec_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running--;
9c217245
IM
1857}
1858
45bf76df
IM
1859static void set_load_weight(struct task_struct *p)
1860{
1861 if (task_has_rt_policy(p)) {
dd41f596
IM
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
45bf76df 1866
dd41f596
IM
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
71f8bd46 1875
dd41f596
IM
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1878}
1879
2087a1ad
GH
1880static void update_avg(u64 *avg, u64 sample)
1881{
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884}
1885
8159f87e 1886static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1887{
831451ac
PZ
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
dd41f596 1891 sched_info_queued(p);
fd390f6a 1892 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1893 p->se.on_rq = 1;
71f8bd46
IM
1894}
1895
69be72c1 1896static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1897{
831451ac
PZ
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
2087a1ad
GH
1907 }
1908
46ac22ba 1909 sched_info_dequeued(p);
f02231e5 1910 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1911 p->se.on_rq = 0;
71f8bd46
IM
1912}
1913
14531189 1914/*
dd41f596 1915 * __normal_prio - return the priority that is based on the static prio
14531189 1916 */
14531189
IM
1917static inline int __normal_prio(struct task_struct *p)
1918{
dd41f596 1919 return p->static_prio;
14531189
IM
1920}
1921
b29739f9
IM
1922/*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
36c8b586 1929static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1930{
1931 int prio;
1932
e05606d3 1933 if (task_has_rt_policy(p))
b29739f9
IM
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938}
1939
1940/*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
36c8b586 1947static int effective_prio(struct task_struct *p)
b29739f9
IM
1948{
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958}
1959
1da177e4 1960/*
dd41f596 1961 * activate_task - move a task to the runqueue.
1da177e4 1962 */
dd41f596 1963static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1964{
d9514f6c 1965 if (task_contributes_to_load(p))
dd41f596 1966 rq->nr_uninterruptible--;
1da177e4 1967
8159f87e 1968 enqueue_task(rq, p, wakeup);
c09595f6 1969 inc_nr_running(rq);
1da177e4
LT
1970}
1971
1da177e4
LT
1972/*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
2e1cb74a 1975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1976{
d9514f6c 1977 if (task_contributes_to_load(p))
dd41f596
IM
1978 rq->nr_uninterruptible++;
1979
69be72c1 1980 dequeue_task(rq, p, sleep);
c09595f6 1981 dec_nr_running(rq);
1da177e4
LT
1982}
1983
1da177e4
LT
1984/**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
36c8b586 1988inline int task_curr(const struct task_struct *p)
1da177e4
LT
1989{
1990 return cpu_curr(task_cpu(p)) == p;
1991}
1992
cb469845
SR
1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996{
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003}
2004
b84ff7d6
MG
2005/**
2006 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 2007 * @p: thread created by kthread_create().
b84ff7d6
MG
2008 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2009 *
2010 * Description: This function is equivalent to set_cpus_allowed(),
2011 * except that @cpu doesn't need to be online, and the thread must be
2012 * stopped (i.e., just returned from kthread_create()).
2013 *
2014 * Function lives here instead of kthread.c because it messes with
2015 * scheduler internals which require locking.
2016 */
2017void kthread_bind(struct task_struct *p, unsigned int cpu)
2018{
2019 struct rq *rq = cpu_rq(cpu);
2020 unsigned long flags;
2021
2022 /* Must have done schedule() in kthread() before we set_task_cpu */
2023 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2024 WARN_ON(1);
2025 return;
2026 }
2027
2028 spin_lock_irqsave(&rq->lock, flags);
055a0086 2029 update_rq_clock(rq);
b84ff7d6
MG
2030 set_task_cpu(p, cpu);
2031 p->cpus_allowed = cpumask_of_cpu(cpu);
2032 p->rt.nr_cpus_allowed = 1;
2033 p->flags |= PF_THREAD_BOUND;
2034 spin_unlock_irqrestore(&rq->lock, flags);
2035}
2036EXPORT_SYMBOL(kthread_bind);
2037
1da177e4 2038#ifdef CONFIG_SMP
cc367732
IM
2039/*
2040 * Is this task likely cache-hot:
2041 */
e7693a36 2042static int
cc367732
IM
2043task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2044{
2045 s64 delta;
2046
f540a608
IM
2047 /*
2048 * Buddy candidates are cache hot:
2049 */
f685ceac 2050 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2051 (&p->se == cfs_rq_of(&p->se)->next ||
2052 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2053 return 1;
2054
cc367732
IM
2055 if (p->sched_class != &fair_sched_class)
2056 return 0;
2057
6bc1665b
IM
2058 if (sysctl_sched_migration_cost == -1)
2059 return 1;
2060 if (sysctl_sched_migration_cost == 0)
2061 return 0;
2062
cc367732
IM
2063 delta = now - p->se.exec_start;
2064
2065 return delta < (s64)sysctl_sched_migration_cost;
2066}
2067
2068
dd41f596 2069void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2070{
dd41f596 2071 int old_cpu = task_cpu(p);
2830cf8c
SV
2072 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2073 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2074
de1d7286 2075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2076
cc367732 2077 if (old_cpu != new_cpu) {
6c594c21 2078 p->se.nr_migrations++;
cdd6c482 2079 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2080 1, 1, NULL, 0);
6c594c21 2081 }
2830cf8c
SV
2082 p->se.vruntime -= old_cfsrq->min_vruntime -
2083 new_cfsrq->min_vruntime;
dd41f596
IM
2084
2085 __set_task_cpu(p, new_cpu);
c65cc870
IM
2086}
2087
70b97a7f 2088struct migration_req {
1da177e4 2089 struct list_head list;
1da177e4 2090
36c8b586 2091 struct task_struct *task;
1da177e4
LT
2092 int dest_cpu;
2093
1da177e4 2094 struct completion done;
70b97a7f 2095};
1da177e4
LT
2096
2097/*
2098 * The task's runqueue lock must be held.
2099 * Returns true if you have to wait for migration thread.
2100 */
36c8b586 2101static int
70b97a7f 2102migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2103{
70b97a7f 2104 struct rq *rq = task_rq(p);
1da177e4
LT
2105
2106 /*
2107 * If the task is not on a runqueue (and not running), then
2108 * it is sufficient to simply update the task's cpu field.
2109 */
dd41f596 2110 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2111 update_rq_clock(rq);
1da177e4
LT
2112 set_task_cpu(p, dest_cpu);
2113 return 0;
2114 }
2115
2116 init_completion(&req->done);
1da177e4
LT
2117 req->task = p;
2118 req->dest_cpu = dest_cpu;
2119 list_add(&req->list, &rq->migration_queue);
48f24c4d 2120
1da177e4
LT
2121 return 1;
2122}
2123
a26b89f0
MM
2124/*
2125 * wait_task_context_switch - wait for a thread to complete at least one
2126 * context switch.
2127 *
2128 * @p must not be current.
2129 */
2130void wait_task_context_switch(struct task_struct *p)
2131{
2132 unsigned long nvcsw, nivcsw, flags;
2133 int running;
2134 struct rq *rq;
2135
2136 nvcsw = p->nvcsw;
2137 nivcsw = p->nivcsw;
2138 for (;;) {
2139 /*
2140 * The runqueue is assigned before the actual context
2141 * switch. We need to take the runqueue lock.
2142 *
2143 * We could check initially without the lock but it is
2144 * very likely that we need to take the lock in every
2145 * iteration.
2146 */
2147 rq = task_rq_lock(p, &flags);
2148 running = task_running(rq, p);
2149 task_rq_unlock(rq, &flags);
2150
2151 if (likely(!running))
2152 break;
2153 /*
2154 * The switch count is incremented before the actual
2155 * context switch. We thus wait for two switches to be
2156 * sure at least one completed.
2157 */
2158 if ((p->nvcsw - nvcsw) > 1)
2159 break;
2160 if ((p->nivcsw - nivcsw) > 1)
2161 break;
2162
2163 cpu_relax();
2164 }
2165}
2166
1da177e4
LT
2167/*
2168 * wait_task_inactive - wait for a thread to unschedule.
2169 *
85ba2d86
RM
2170 * If @match_state is nonzero, it's the @p->state value just checked and
2171 * not expected to change. If it changes, i.e. @p might have woken up,
2172 * then return zero. When we succeed in waiting for @p to be off its CPU,
2173 * we return a positive number (its total switch count). If a second call
2174 * a short while later returns the same number, the caller can be sure that
2175 * @p has remained unscheduled the whole time.
2176 *
1da177e4
LT
2177 * The caller must ensure that the task *will* unschedule sometime soon,
2178 * else this function might spin for a *long* time. This function can't
2179 * be called with interrupts off, or it may introduce deadlock with
2180 * smp_call_function() if an IPI is sent by the same process we are
2181 * waiting to become inactive.
2182 */
85ba2d86 2183unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2184{
2185 unsigned long flags;
dd41f596 2186 int running, on_rq;
85ba2d86 2187 unsigned long ncsw;
70b97a7f 2188 struct rq *rq;
1da177e4 2189
3a5c359a
AK
2190 for (;;) {
2191 /*
2192 * We do the initial early heuristics without holding
2193 * any task-queue locks at all. We'll only try to get
2194 * the runqueue lock when things look like they will
2195 * work out!
2196 */
2197 rq = task_rq(p);
fa490cfd 2198
3a5c359a
AK
2199 /*
2200 * If the task is actively running on another CPU
2201 * still, just relax and busy-wait without holding
2202 * any locks.
2203 *
2204 * NOTE! Since we don't hold any locks, it's not
2205 * even sure that "rq" stays as the right runqueue!
2206 * But we don't care, since "task_running()" will
2207 * return false if the runqueue has changed and p
2208 * is actually now running somewhere else!
2209 */
85ba2d86
RM
2210 while (task_running(rq, p)) {
2211 if (match_state && unlikely(p->state != match_state))
2212 return 0;
3a5c359a 2213 cpu_relax();
85ba2d86 2214 }
fa490cfd 2215
3a5c359a
AK
2216 /*
2217 * Ok, time to look more closely! We need the rq
2218 * lock now, to be *sure*. If we're wrong, we'll
2219 * just go back and repeat.
2220 */
2221 rq = task_rq_lock(p, &flags);
0a16b607 2222 trace_sched_wait_task(rq, p);
3a5c359a
AK
2223 running = task_running(rq, p);
2224 on_rq = p->se.on_rq;
85ba2d86 2225 ncsw = 0;
f31e11d8 2226 if (!match_state || p->state == match_state)
93dcf55f 2227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2228 task_rq_unlock(rq, &flags);
fa490cfd 2229
85ba2d86
RM
2230 /*
2231 * If it changed from the expected state, bail out now.
2232 */
2233 if (unlikely(!ncsw))
2234 break;
2235
3a5c359a
AK
2236 /*
2237 * Was it really running after all now that we
2238 * checked with the proper locks actually held?
2239 *
2240 * Oops. Go back and try again..
2241 */
2242 if (unlikely(running)) {
2243 cpu_relax();
2244 continue;
2245 }
fa490cfd 2246
3a5c359a
AK
2247 /*
2248 * It's not enough that it's not actively running,
2249 * it must be off the runqueue _entirely_, and not
2250 * preempted!
2251 *
80dd99b3 2252 * So if it was still runnable (but just not actively
3a5c359a
AK
2253 * running right now), it's preempted, and we should
2254 * yield - it could be a while.
2255 */
2256 if (unlikely(on_rq)) {
2257 schedule_timeout_uninterruptible(1);
2258 continue;
2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ahh, all good. It wasn't running, and it wasn't
2263 * runnable, which means that it will never become
2264 * running in the future either. We're all done!
2265 */
2266 break;
2267 }
85ba2d86
RM
2268
2269 return ncsw;
1da177e4
LT
2270}
2271
2272/***
2273 * kick_process - kick a running thread to enter/exit the kernel
2274 * @p: the to-be-kicked thread
2275 *
2276 * Cause a process which is running on another CPU to enter
2277 * kernel-mode, without any delay. (to get signals handled.)
2278 *
2279 * NOTE: this function doesnt have to take the runqueue lock,
2280 * because all it wants to ensure is that the remote task enters
2281 * the kernel. If the IPI races and the task has been migrated
2282 * to another CPU then no harm is done and the purpose has been
2283 * achieved as well.
2284 */
36c8b586 2285void kick_process(struct task_struct *p)
1da177e4
LT
2286{
2287 int cpu;
2288
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if ((cpu != smp_processor_id()) && task_curr(p))
2292 smp_send_reschedule(cpu);
2293 preempt_enable();
2294}
b43e3521 2295EXPORT_SYMBOL_GPL(kick_process);
476d139c 2296#endif /* CONFIG_SMP */
1da177e4 2297
0793a61d
TG
2298/**
2299 * task_oncpu_function_call - call a function on the cpu on which a task runs
2300 * @p: the task to evaluate
2301 * @func: the function to be called
2302 * @info: the function call argument
2303 *
2304 * Calls the function @func when the task is currently running. This might
2305 * be on the current CPU, which just calls the function directly
2306 */
2307void task_oncpu_function_call(struct task_struct *p,
2308 void (*func) (void *info), void *info)
2309{
2310 int cpu;
2311
2312 preempt_disable();
2313 cpu = task_cpu(p);
2314 if (task_curr(p))
2315 smp_call_function_single(cpu, func, info, 1);
2316 preempt_enable();
2317}
2318
970b13ba
PZ
2319#ifdef CONFIG_SMP
2320static inline
2321int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322{
2323 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324}
2325#endif
2326
1da177e4
LT
2327/***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2332 *
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2338 *
2339 * returns failure only if the task is already active.
2340 */
7d478721
PZ
2341static int try_to_wake_up(struct task_struct *p, unsigned int state,
2342 int wake_flags)
1da177e4 2343{
cc367732 2344 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2345 unsigned long flags;
f5dc3753 2346 struct rq *rq, *orig_rq;
1da177e4 2347
b85d0667 2348 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2349 wake_flags &= ~WF_SYNC;
2398f2c6 2350
e9c84311 2351 this_cpu = get_cpu();
2398f2c6 2352
04e2f174 2353 smp_wmb();
f5dc3753 2354 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2355 update_rq_clock(rq);
e9c84311 2356 if (!(p->state & state))
1da177e4
LT
2357 goto out;
2358
dd41f596 2359 if (p->se.on_rq)
1da177e4
LT
2360 goto out_running;
2361
2362 cpu = task_cpu(p);
cc367732 2363 orig_cpu = cpu;
1da177e4
LT
2364
2365#ifdef CONFIG_SMP
2366 if (unlikely(task_running(rq, p)))
2367 goto out_activate;
2368
e9c84311
PZ
2369 /*
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
eb24073b
IM
2372 *
2373 * First fix up the nr_uninterruptible count:
e9c84311 2374 */
eb24073b
IM
2375 if (task_contributes_to_load(p))
2376 rq->nr_uninterruptible--;
e9c84311 2377 p->state = TASK_WAKING;
ab19cb23 2378 __task_rq_unlock(rq);
e9c84311 2379
970b13ba 2380 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2381 if (cpu != orig_cpu)
5d2f5a61 2382 set_task_cpu(p, cpu);
ab19cb23
PZ
2383
2384 rq = __task_rq_lock(p);
2385 update_rq_clock(rq);
f5dc3753 2386
e9c84311
PZ
2387 WARN_ON(p->state != TASK_WAKING);
2388 cpu = task_cpu(p);
1da177e4 2389
e7693a36
GH
2390#ifdef CONFIG_SCHEDSTATS
2391 schedstat_inc(rq, ttwu_count);
2392 if (cpu == this_cpu)
2393 schedstat_inc(rq, ttwu_local);
2394 else {
2395 struct sched_domain *sd;
2396 for_each_domain(this_cpu, sd) {
758b2cdc 2397 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2398 schedstat_inc(sd, ttwu_wake_remote);
2399 break;
2400 }
2401 }
2402 }
6d6bc0ad 2403#endif /* CONFIG_SCHEDSTATS */
e7693a36 2404
1da177e4
LT
2405out_activate:
2406#endif /* CONFIG_SMP */
cc367732 2407 schedstat_inc(p, se.nr_wakeups);
7d478721 2408 if (wake_flags & WF_SYNC)
cc367732
IM
2409 schedstat_inc(p, se.nr_wakeups_sync);
2410 if (orig_cpu != cpu)
2411 schedstat_inc(p, se.nr_wakeups_migrate);
2412 if (cpu == this_cpu)
2413 schedstat_inc(p, se.nr_wakeups_local);
2414 else
2415 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2416 activate_task(rq, p, 1);
1da177e4
LT
2417 success = 1;
2418
831451ac
PZ
2419 /*
2420 * Only attribute actual wakeups done by this task.
2421 */
2422 if (!in_interrupt()) {
2423 struct sched_entity *se = &current->se;
2424 u64 sample = se->sum_exec_runtime;
2425
2426 if (se->last_wakeup)
2427 sample -= se->last_wakeup;
2428 else
2429 sample -= se->start_runtime;
2430 update_avg(&se->avg_wakeup, sample);
2431
2432 se->last_wakeup = se->sum_exec_runtime;
2433 }
2434
1da177e4 2435out_running:
468a15bb 2436 trace_sched_wakeup(rq, p, success);
7d478721 2437 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2438
1da177e4 2439 p->state = TASK_RUNNING;
9a897c5a
SR
2440#ifdef CONFIG_SMP
2441 if (p->sched_class->task_wake_up)
2442 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2443
2444 if (unlikely(rq->idle_stamp)) {
2445 u64 delta = rq->clock - rq->idle_stamp;
2446 u64 max = 2*sysctl_sched_migration_cost;
2447
2448 if (delta > max)
2449 rq->avg_idle = max;
2450 else
2451 update_avg(&rq->avg_idle, delta);
2452 rq->idle_stamp = 0;
2453 }
9a897c5a 2454#endif
1da177e4
LT
2455out:
2456 task_rq_unlock(rq, &flags);
e9c84311 2457 put_cpu();
1da177e4
LT
2458
2459 return success;
2460}
2461
50fa610a
DH
2462/**
2463 * wake_up_process - Wake up a specific process
2464 * @p: The process to be woken up.
2465 *
2466 * Attempt to wake up the nominated process and move it to the set of runnable
2467 * processes. Returns 1 if the process was woken up, 0 if it was already
2468 * running.
2469 *
2470 * It may be assumed that this function implies a write memory barrier before
2471 * changing the task state if and only if any tasks are woken up.
2472 */
7ad5b3a5 2473int wake_up_process(struct task_struct *p)
1da177e4 2474{
d9514f6c 2475 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2476}
1da177e4
LT
2477EXPORT_SYMBOL(wake_up_process);
2478
7ad5b3a5 2479int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2480{
2481 return try_to_wake_up(p, state, 0);
2482}
2483
1da177e4
LT
2484/*
2485 * Perform scheduler related setup for a newly forked process p.
2486 * p is forked by current.
dd41f596
IM
2487 *
2488 * __sched_fork() is basic setup used by init_idle() too:
2489 */
2490static void __sched_fork(struct task_struct *p)
2491{
dd41f596
IM
2492 p->se.exec_start = 0;
2493 p->se.sum_exec_runtime = 0;
f6cf891c 2494 p->se.prev_sum_exec_runtime = 0;
6c594c21 2495 p->se.nr_migrations = 0;
4ae7d5ce
IM
2496 p->se.last_wakeup = 0;
2497 p->se.avg_overlap = 0;
831451ac
PZ
2498 p->se.start_runtime = 0;
2499 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2500
2501#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2502 p->se.wait_start = 0;
2503 p->se.wait_max = 0;
2504 p->se.wait_count = 0;
2505 p->se.wait_sum = 0;
2506
2507 p->se.sleep_start = 0;
2508 p->se.sleep_max = 0;
2509 p->se.sum_sleep_runtime = 0;
2510
2511 p->se.block_start = 0;
2512 p->se.block_max = 0;
2513 p->se.exec_max = 0;
2514 p->se.slice_max = 0;
2515
2516 p->se.nr_migrations_cold = 0;
2517 p->se.nr_failed_migrations_affine = 0;
2518 p->se.nr_failed_migrations_running = 0;
2519 p->se.nr_failed_migrations_hot = 0;
2520 p->se.nr_forced_migrations = 0;
7793527b
LDM
2521
2522 p->se.nr_wakeups = 0;
2523 p->se.nr_wakeups_sync = 0;
2524 p->se.nr_wakeups_migrate = 0;
2525 p->se.nr_wakeups_local = 0;
2526 p->se.nr_wakeups_remote = 0;
2527 p->se.nr_wakeups_affine = 0;
2528 p->se.nr_wakeups_affine_attempts = 0;
2529 p->se.nr_wakeups_passive = 0;
2530 p->se.nr_wakeups_idle = 0;
2531
6cfb0d5d 2532#endif
476d139c 2533
fa717060 2534 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2535 p->se.on_rq = 0;
4a55bd5e 2536 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2537
e107be36
AK
2538#ifdef CONFIG_PREEMPT_NOTIFIERS
2539 INIT_HLIST_HEAD(&p->preempt_notifiers);
2540#endif
2541
1da177e4
LT
2542 /*
2543 * We mark the process as running here, but have not actually
2544 * inserted it onto the runqueue yet. This guarantees that
2545 * nobody will actually run it, and a signal or other external
2546 * event cannot wake it up and insert it on the runqueue either.
2547 */
2548 p->state = TASK_RUNNING;
dd41f596
IM
2549}
2550
2551/*
2552 * fork()/clone()-time setup:
2553 */
2554void sched_fork(struct task_struct *p, int clone_flags)
2555{
2556 int cpu = get_cpu();
2557
2558 __sched_fork(p);
2559
b9dc29e7
MG
2560 /*
2561 * Revert to default priority/policy on fork if requested.
2562 */
2563 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2564 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2565 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2566 p->normal_prio = p->static_prio;
2567 }
b9dc29e7 2568
6c697bdf
MG
2569 if (PRIO_TO_NICE(p->static_prio) < 0) {
2570 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2571 p->normal_prio = p->static_prio;
6c697bdf
MG
2572 set_load_weight(p);
2573 }
2574
b9dc29e7
MG
2575 /*
2576 * We don't need the reset flag anymore after the fork. It has
2577 * fulfilled its duty:
2578 */
2579 p->sched_reset_on_fork = 0;
2580 }
ca94c442 2581
f83f9ac2
PW
2582 /*
2583 * Make sure we do not leak PI boosting priority to the child.
2584 */
2585 p->prio = current->normal_prio;
2586
2ddbf952
HS
2587 if (!rt_prio(p->prio))
2588 p->sched_class = &fair_sched_class;
b29739f9 2589
cd29fe6f
PZ
2590 if (p->sched_class->task_fork)
2591 p->sched_class->task_fork(p);
2592
5f3edc1b 2593#ifdef CONFIG_SMP
970b13ba 2594 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2595#endif
2596 set_task_cpu(p, cpu);
2597
52f17b6c 2598#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2599 if (likely(sched_info_on()))
52f17b6c 2600 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2601#endif
d6077cb8 2602#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2603 p->oncpu = 0;
2604#endif
1da177e4 2605#ifdef CONFIG_PREEMPT
4866cde0 2606 /* Want to start with kernel preemption disabled. */
a1261f54 2607 task_thread_info(p)->preempt_count = 1;
1da177e4 2608#endif
917b627d
GH
2609 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2610
476d139c 2611 put_cpu();
1da177e4
LT
2612}
2613
2614/*
2615 * wake_up_new_task - wake up a newly created task for the first time.
2616 *
2617 * This function will do some initial scheduler statistics housekeeping
2618 * that must be done for every newly created context, then puts the task
2619 * on the runqueue and wakes it.
2620 */
7ad5b3a5 2621void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2622{
2623 unsigned long flags;
dd41f596 2624 struct rq *rq;
1da177e4
LT
2625
2626 rq = task_rq_lock(p, &flags);
147cbb4b 2627 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2628 update_rq_clock(rq);
cd29fe6f 2629 activate_task(rq, p, 0);
c71dd42d 2630 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2631 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2632#ifdef CONFIG_SMP
2633 if (p->sched_class->task_wake_up)
2634 p->sched_class->task_wake_up(rq, p);
2635#endif
dd41f596 2636 task_rq_unlock(rq, &flags);
1da177e4
LT
2637}
2638
e107be36
AK
2639#ifdef CONFIG_PREEMPT_NOTIFIERS
2640
2641/**
80dd99b3 2642 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2643 * @notifier: notifier struct to register
e107be36
AK
2644 */
2645void preempt_notifier_register(struct preempt_notifier *notifier)
2646{
2647 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2648}
2649EXPORT_SYMBOL_GPL(preempt_notifier_register);
2650
2651/**
2652 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2653 * @notifier: notifier struct to unregister
e107be36
AK
2654 *
2655 * This is safe to call from within a preemption notifier.
2656 */
2657void preempt_notifier_unregister(struct preempt_notifier *notifier)
2658{
2659 hlist_del(&notifier->link);
2660}
2661EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2662
2663static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2664{
2665 struct preempt_notifier *notifier;
2666 struct hlist_node *node;
2667
2668 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2669 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2670}
2671
2672static void
2673fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675{
2676 struct preempt_notifier *notifier;
2677 struct hlist_node *node;
2678
2679 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2680 notifier->ops->sched_out(notifier, next);
2681}
2682
6d6bc0ad 2683#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2684
2685static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2686{
2687}
2688
2689static void
2690fire_sched_out_preempt_notifiers(struct task_struct *curr,
2691 struct task_struct *next)
2692{
2693}
2694
6d6bc0ad 2695#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2696
4866cde0
NP
2697/**
2698 * prepare_task_switch - prepare to switch tasks
2699 * @rq: the runqueue preparing to switch
421cee29 2700 * @prev: the current task that is being switched out
4866cde0
NP
2701 * @next: the task we are going to switch to.
2702 *
2703 * This is called with the rq lock held and interrupts off. It must
2704 * be paired with a subsequent finish_task_switch after the context
2705 * switch.
2706 *
2707 * prepare_task_switch sets up locking and calls architecture specific
2708 * hooks.
2709 */
e107be36
AK
2710static inline void
2711prepare_task_switch(struct rq *rq, struct task_struct *prev,
2712 struct task_struct *next)
4866cde0 2713{
e107be36 2714 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2715 prepare_lock_switch(rq, next);
2716 prepare_arch_switch(next);
2717}
2718
1da177e4
LT
2719/**
2720 * finish_task_switch - clean up after a task-switch
344babaa 2721 * @rq: runqueue associated with task-switch
1da177e4
LT
2722 * @prev: the thread we just switched away from.
2723 *
4866cde0
NP
2724 * finish_task_switch must be called after the context switch, paired
2725 * with a prepare_task_switch call before the context switch.
2726 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2727 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2728 *
2729 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2730 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2731 * with the lock held can cause deadlocks; see schedule() for
2732 * details.)
2733 */
a9957449 2734static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2735 __releases(rq->lock)
2736{
1da177e4 2737 struct mm_struct *mm = rq->prev_mm;
55a101f8 2738 long prev_state;
1da177e4
LT
2739
2740 rq->prev_mm = NULL;
2741
2742 /*
2743 * A task struct has one reference for the use as "current".
c394cc9f 2744 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2745 * schedule one last time. The schedule call will never return, and
2746 * the scheduled task must drop that reference.
c394cc9f 2747 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2748 * still held, otherwise prev could be scheduled on another cpu, die
2749 * there before we look at prev->state, and then the reference would
2750 * be dropped twice.
2751 * Manfred Spraul <manfred@colorfullife.com>
2752 */
55a101f8 2753 prev_state = prev->state;
4866cde0 2754 finish_arch_switch(prev);
cdd6c482 2755 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2756 finish_lock_switch(rq, prev);
e8fa1362 2757
e107be36 2758 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2759 if (mm)
2760 mmdrop(mm);
c394cc9f 2761 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2762 /*
2763 * Remove function-return probe instances associated with this
2764 * task and put them back on the free list.
9761eea8 2765 */
c6fd91f0 2766 kprobe_flush_task(prev);
1da177e4 2767 put_task_struct(prev);
c6fd91f0 2768 }
1da177e4
LT
2769}
2770
3f029d3c
GH
2771#ifdef CONFIG_SMP
2772
2773/* assumes rq->lock is held */
2774static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2775{
2776 if (prev->sched_class->pre_schedule)
2777 prev->sched_class->pre_schedule(rq, prev);
2778}
2779
2780/* rq->lock is NOT held, but preemption is disabled */
2781static inline void post_schedule(struct rq *rq)
2782{
2783 if (rq->post_schedule) {
2784 unsigned long flags;
2785
2786 spin_lock_irqsave(&rq->lock, flags);
2787 if (rq->curr->sched_class->post_schedule)
2788 rq->curr->sched_class->post_schedule(rq);
2789 spin_unlock_irqrestore(&rq->lock, flags);
2790
2791 rq->post_schedule = 0;
2792 }
2793}
2794
2795#else
da19ab51 2796
3f029d3c
GH
2797static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2798{
2799}
2800
2801static inline void post_schedule(struct rq *rq)
2802{
1da177e4
LT
2803}
2804
3f029d3c
GH
2805#endif
2806
1da177e4
LT
2807/**
2808 * schedule_tail - first thing a freshly forked thread must call.
2809 * @prev: the thread we just switched away from.
2810 */
36c8b586 2811asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2812 __releases(rq->lock)
2813{
70b97a7f
IM
2814 struct rq *rq = this_rq();
2815
4866cde0 2816 finish_task_switch(rq, prev);
da19ab51 2817
3f029d3c
GH
2818 /*
2819 * FIXME: do we need to worry about rq being invalidated by the
2820 * task_switch?
2821 */
2822 post_schedule(rq);
70b97a7f 2823
4866cde0
NP
2824#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2825 /* In this case, finish_task_switch does not reenable preemption */
2826 preempt_enable();
2827#endif
1da177e4 2828 if (current->set_child_tid)
b488893a 2829 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2830}
2831
2832/*
2833 * context_switch - switch to the new MM and the new
2834 * thread's register state.
2835 */
dd41f596 2836static inline void
70b97a7f 2837context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2838 struct task_struct *next)
1da177e4 2839{
dd41f596 2840 struct mm_struct *mm, *oldmm;
1da177e4 2841
e107be36 2842 prepare_task_switch(rq, prev, next);
0a16b607 2843 trace_sched_switch(rq, prev, next);
dd41f596
IM
2844 mm = next->mm;
2845 oldmm = prev->active_mm;
9226d125
ZA
2846 /*
2847 * For paravirt, this is coupled with an exit in switch_to to
2848 * combine the page table reload and the switch backend into
2849 * one hypercall.
2850 */
224101ed 2851 arch_start_context_switch(prev);
9226d125 2852
710390d9 2853 if (likely(!mm)) {
1da177e4
LT
2854 next->active_mm = oldmm;
2855 atomic_inc(&oldmm->mm_count);
2856 enter_lazy_tlb(oldmm, next);
2857 } else
2858 switch_mm(oldmm, mm, next);
2859
710390d9 2860 if (likely(!prev->mm)) {
1da177e4 2861 prev->active_mm = NULL;
1da177e4
LT
2862 rq->prev_mm = oldmm;
2863 }
3a5f5e48
IM
2864 /*
2865 * Since the runqueue lock will be released by the next
2866 * task (which is an invalid locking op but in the case
2867 * of the scheduler it's an obvious special-case), so we
2868 * do an early lockdep release here:
2869 */
2870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2871 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2872#endif
1da177e4
LT
2873
2874 /* Here we just switch the register state and the stack. */
2875 switch_to(prev, next, prev);
2876
dd41f596
IM
2877 barrier();
2878 /*
2879 * this_rq must be evaluated again because prev may have moved
2880 * CPUs since it called schedule(), thus the 'rq' on its stack
2881 * frame will be invalid.
2882 */
2883 finish_task_switch(this_rq(), prev);
1da177e4
LT
2884}
2885
2886/*
2887 * nr_running, nr_uninterruptible and nr_context_switches:
2888 *
2889 * externally visible scheduler statistics: current number of runnable
2890 * threads, current number of uninterruptible-sleeping threads, total
2891 * number of context switches performed since bootup.
2892 */
2893unsigned long nr_running(void)
2894{
2895 unsigned long i, sum = 0;
2896
2897 for_each_online_cpu(i)
2898 sum += cpu_rq(i)->nr_running;
2899
2900 return sum;
2901}
2902
2903unsigned long nr_uninterruptible(void)
2904{
2905 unsigned long i, sum = 0;
2906
0a945022 2907 for_each_possible_cpu(i)
1da177e4
LT
2908 sum += cpu_rq(i)->nr_uninterruptible;
2909
2910 /*
2911 * Since we read the counters lockless, it might be slightly
2912 * inaccurate. Do not allow it to go below zero though:
2913 */
2914 if (unlikely((long)sum < 0))
2915 sum = 0;
2916
2917 return sum;
2918}
2919
2920unsigned long long nr_context_switches(void)
2921{
cc94abfc
SR
2922 int i;
2923 unsigned long long sum = 0;
1da177e4 2924
0a945022 2925 for_each_possible_cpu(i)
1da177e4
LT
2926 sum += cpu_rq(i)->nr_switches;
2927
2928 return sum;
2929}
2930
2931unsigned long nr_iowait(void)
2932{
2933 unsigned long i, sum = 0;
2934
0a945022 2935 for_each_possible_cpu(i)
1da177e4
LT
2936 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2937
2938 return sum;
2939}
2940
69d25870
AV
2941unsigned long nr_iowait_cpu(void)
2942{
2943 struct rq *this = this_rq();
2944 return atomic_read(&this->nr_iowait);
2945}
2946
2947unsigned long this_cpu_load(void)
2948{
2949 struct rq *this = this_rq();
2950 return this->cpu_load[0];
2951}
2952
2953
dce48a84
TG
2954/* Variables and functions for calc_load */
2955static atomic_long_t calc_load_tasks;
2956static unsigned long calc_load_update;
2957unsigned long avenrun[3];
2958EXPORT_SYMBOL(avenrun);
2959
2d02494f
TG
2960/**
2961 * get_avenrun - get the load average array
2962 * @loads: pointer to dest load array
2963 * @offset: offset to add
2964 * @shift: shift count to shift the result left
2965 *
2966 * These values are estimates at best, so no need for locking.
2967 */
2968void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2969{
2970 loads[0] = (avenrun[0] + offset) << shift;
2971 loads[1] = (avenrun[1] + offset) << shift;
2972 loads[2] = (avenrun[2] + offset) << shift;
2973}
2974
dce48a84
TG
2975static unsigned long
2976calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2977{
dce48a84
TG
2978 load *= exp;
2979 load += active * (FIXED_1 - exp);
2980 return load >> FSHIFT;
2981}
db1b1fef 2982
dce48a84
TG
2983/*
2984 * calc_load - update the avenrun load estimates 10 ticks after the
2985 * CPUs have updated calc_load_tasks.
2986 */
2987void calc_global_load(void)
2988{
2989 unsigned long upd = calc_load_update + 10;
2990 long active;
2991
2992 if (time_before(jiffies, upd))
2993 return;
db1b1fef 2994
dce48a84
TG
2995 active = atomic_long_read(&calc_load_tasks);
2996 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2997
dce48a84
TG
2998 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2999 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3000 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3001
3002 calc_load_update += LOAD_FREQ;
3003}
3004
3005/*
3006 * Either called from update_cpu_load() or from a cpu going idle
3007 */
3008static void calc_load_account_active(struct rq *this_rq)
3009{
3010 long nr_active, delta;
3011
3012 nr_active = this_rq->nr_running;
3013 nr_active += (long) this_rq->nr_uninterruptible;
3014
3015 if (nr_active != this_rq->calc_load_active) {
3016 delta = nr_active - this_rq->calc_load_active;
3017 this_rq->calc_load_active = nr_active;
3018 atomic_long_add(delta, &calc_load_tasks);
3019 }
db1b1fef
JS
3020}
3021
48f24c4d 3022/*
dd41f596
IM
3023 * Update rq->cpu_load[] statistics. This function is usually called every
3024 * scheduler tick (TICK_NSEC).
48f24c4d 3025 */
dd41f596 3026static void update_cpu_load(struct rq *this_rq)
48f24c4d 3027{
495eca49 3028 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3029 int i, scale;
3030
3031 this_rq->nr_load_updates++;
dd41f596
IM
3032
3033 /* Update our load: */
3034 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3035 unsigned long old_load, new_load;
3036
3037 /* scale is effectively 1 << i now, and >> i divides by scale */
3038
3039 old_load = this_rq->cpu_load[i];
3040 new_load = this_load;
a25707f3
IM
3041 /*
3042 * Round up the averaging division if load is increasing. This
3043 * prevents us from getting stuck on 9 if the load is 10, for
3044 * example.
3045 */
3046 if (new_load > old_load)
3047 new_load += scale-1;
dd41f596
IM
3048 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3049 }
dce48a84
TG
3050
3051 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3052 this_rq->calc_load_update += LOAD_FREQ;
3053 calc_load_account_active(this_rq);
3054 }
48f24c4d
IM
3055}
3056
dd41f596
IM
3057#ifdef CONFIG_SMP
3058
1da177e4
LT
3059/*
3060 * double_rq_lock - safely lock two runqueues
3061 *
3062 * Note this does not disable interrupts like task_rq_lock,
3063 * you need to do so manually before calling.
3064 */
70b97a7f 3065static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3066 __acquires(rq1->lock)
3067 __acquires(rq2->lock)
3068{
054b9108 3069 BUG_ON(!irqs_disabled());
1da177e4
LT
3070 if (rq1 == rq2) {
3071 spin_lock(&rq1->lock);
3072 __acquire(rq2->lock); /* Fake it out ;) */
3073 } else {
c96d145e 3074 if (rq1 < rq2) {
1da177e4 3075 spin_lock(&rq1->lock);
5e710e37 3076 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3077 } else {
3078 spin_lock(&rq2->lock);
5e710e37 3079 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3080 }
3081 }
6e82a3be
IM
3082 update_rq_clock(rq1);
3083 update_rq_clock(rq2);
1da177e4
LT
3084}
3085
3086/*
3087 * double_rq_unlock - safely unlock two runqueues
3088 *
3089 * Note this does not restore interrupts like task_rq_unlock,
3090 * you need to do so manually after calling.
3091 */
70b97a7f 3092static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3093 __releases(rq1->lock)
3094 __releases(rq2->lock)
3095{
3096 spin_unlock(&rq1->lock);
3097 if (rq1 != rq2)
3098 spin_unlock(&rq2->lock);
3099 else
3100 __release(rq2->lock);
3101}
3102
1da177e4
LT
3103/*
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3107 * the cpu_allowed mask is restored.
3108 */
36c8b586 3109static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3110{
70b97a7f 3111 struct migration_req req;
1da177e4 3112 unsigned long flags;
70b97a7f 3113 struct rq *rq;
1da177e4
LT
3114
3115 rq = task_rq_lock(p, &flags);
96f874e2 3116 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3117 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3118 goto out;
3119
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p, dest_cpu, &req)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct *mt = rq->migration_thread;
36c8b586 3124
1da177e4
LT
3125 get_task_struct(mt);
3126 task_rq_unlock(rq, &flags);
3127 wake_up_process(mt);
3128 put_task_struct(mt);
3129 wait_for_completion(&req.done);
36c8b586 3130
1da177e4
LT
3131 return;
3132 }
3133out:
3134 task_rq_unlock(rq, &flags);
3135}
3136
3137/*
476d139c
NP
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3140 */
3141void sched_exec(void)
3142{
1da177e4 3143 int new_cpu, this_cpu = get_cpu();
970b13ba 3144 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3145 put_cpu();
476d139c
NP
3146 if (new_cpu != this_cpu)
3147 sched_migrate_task(current, new_cpu);
1da177e4
LT
3148}
3149
3150/*
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3153 */
dd41f596
IM
3154static void pull_task(struct rq *src_rq, struct task_struct *p,
3155 struct rq *this_rq, int this_cpu)
1da177e4 3156{
2e1cb74a 3157 deactivate_task(src_rq, p, 0);
1da177e4 3158 set_task_cpu(p, this_cpu);
dd41f596 3159 activate_task(this_rq, p, 0);
15afe09b 3160 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3161}
3162
3163/*
3164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3165 */
858119e1 3166static
70b97a7f 3167int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3168 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3169 int *all_pinned)
1da177e4 3170{
708dc512 3171 int tsk_cache_hot = 0;
1da177e4
LT
3172 /*
3173 * We do not migrate tasks that are:
3174 * 1) running (obviously), or
3175 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3176 * 3) are cache-hot on their current CPU.
3177 */
96f874e2 3178 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3179 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3180 return 0;
cc367732 3181 }
81026794
NP
3182 *all_pinned = 0;
3183
cc367732
IM
3184 if (task_running(rq, p)) {
3185 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3186 return 0;
cc367732 3187 }
1da177e4 3188
da84d961
IM
3189 /*
3190 * Aggressive migration if:
3191 * 1) task is cache cold, or
3192 * 2) too many balance attempts have failed.
3193 */
3194
708dc512
LH
3195 tsk_cache_hot = task_hot(p, rq->clock, sd);
3196 if (!tsk_cache_hot ||
3197 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3198#ifdef CONFIG_SCHEDSTATS
708dc512 3199 if (tsk_cache_hot) {
da84d961 3200 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3201 schedstat_inc(p, se.nr_forced_migrations);
3202 }
da84d961
IM
3203#endif
3204 return 1;
3205 }
3206
708dc512 3207 if (tsk_cache_hot) {
cc367732 3208 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3209 return 0;
cc367732 3210 }
1da177e4
LT
3211 return 1;
3212}
3213
e1d1484f
PW
3214static unsigned long
3215balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3216 unsigned long max_load_move, struct sched_domain *sd,
3217 enum cpu_idle_type idle, int *all_pinned,
3218 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3219{
051c6764 3220 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3221 struct task_struct *p;
3222 long rem_load_move = max_load_move;
1da177e4 3223
e1d1484f 3224 if (max_load_move == 0)
1da177e4
LT
3225 goto out;
3226
81026794
NP
3227 pinned = 1;
3228
1da177e4 3229 /*
dd41f596 3230 * Start the load-balancing iterator:
1da177e4 3231 */
dd41f596
IM
3232 p = iterator->start(iterator->arg);
3233next:
b82d9fdd 3234 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3235 goto out;
051c6764
PZ
3236
3237 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3238 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3239 p = iterator->next(iterator->arg);
3240 goto next;
1da177e4
LT
3241 }
3242
dd41f596 3243 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3244 pulled++;
dd41f596 3245 rem_load_move -= p->se.load.weight;
1da177e4 3246
7e96fa58
GH
3247#ifdef CONFIG_PREEMPT
3248 /*
3249 * NEWIDLE balancing is a source of latency, so preemptible kernels
3250 * will stop after the first task is pulled to minimize the critical
3251 * section.
3252 */
3253 if (idle == CPU_NEWLY_IDLE)
3254 goto out;
3255#endif
3256
2dd73a4f 3257 /*
b82d9fdd 3258 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3259 */
e1d1484f 3260 if (rem_load_move > 0) {
a4ac01c3
PW
3261 if (p->prio < *this_best_prio)
3262 *this_best_prio = p->prio;
dd41f596
IM
3263 p = iterator->next(iterator->arg);
3264 goto next;
1da177e4
LT
3265 }
3266out:
3267 /*
e1d1484f 3268 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3269 * so we can safely collect pull_task() stats here rather than
3270 * inside pull_task().
3271 */
3272 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3273
3274 if (all_pinned)
3275 *all_pinned = pinned;
e1d1484f
PW
3276
3277 return max_load_move - rem_load_move;
1da177e4
LT
3278}
3279
dd41f596 3280/*
43010659
PW
3281 * move_tasks tries to move up to max_load_move weighted load from busiest to
3282 * this_rq, as part of a balancing operation within domain "sd".
3283 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3284 *
3285 * Called with both runqueues locked.
3286 */
3287static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3288 unsigned long max_load_move,
dd41f596
IM
3289 struct sched_domain *sd, enum cpu_idle_type idle,
3290 int *all_pinned)
3291{
5522d5d5 3292 const struct sched_class *class = sched_class_highest;
43010659 3293 unsigned long total_load_moved = 0;
a4ac01c3 3294 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3295
3296 do {
43010659
PW
3297 total_load_moved +=
3298 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3299 max_load_move - total_load_moved,
a4ac01c3 3300 sd, idle, all_pinned, &this_best_prio);
dd41f596 3301 class = class->next;
c4acb2c0 3302
7e96fa58
GH
3303#ifdef CONFIG_PREEMPT
3304 /*
3305 * NEWIDLE balancing is a source of latency, so preemptible
3306 * kernels will stop after the first task is pulled to minimize
3307 * the critical section.
3308 */
c4acb2c0
GH
3309 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3310 break;
7e96fa58 3311#endif
43010659 3312 } while (class && max_load_move > total_load_moved);
dd41f596 3313
43010659
PW
3314 return total_load_moved > 0;
3315}
3316
e1d1484f
PW
3317static int
3318iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3319 struct sched_domain *sd, enum cpu_idle_type idle,
3320 struct rq_iterator *iterator)
3321{
3322 struct task_struct *p = iterator->start(iterator->arg);
3323 int pinned = 0;
3324
3325 while (p) {
3326 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3327 pull_task(busiest, p, this_rq, this_cpu);
3328 /*
3329 * Right now, this is only the second place pull_task()
3330 * is called, so we can safely collect pull_task()
3331 * stats here rather than inside pull_task().
3332 */
3333 schedstat_inc(sd, lb_gained[idle]);
3334
3335 return 1;
3336 }
3337 p = iterator->next(iterator->arg);
3338 }
3339
3340 return 0;
3341}
3342
43010659
PW
3343/*
3344 * move_one_task tries to move exactly one task from busiest to this_rq, as
3345 * part of active balancing operations within "domain".
3346 * Returns 1 if successful and 0 otherwise.
3347 *
3348 * Called with both runqueues locked.
3349 */
3350static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3351 struct sched_domain *sd, enum cpu_idle_type idle)
3352{
5522d5d5 3353 const struct sched_class *class;
43010659 3354
cde7e5ca 3355 for_each_class(class) {
e1d1484f 3356 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3357 return 1;
cde7e5ca 3358 }
43010659
PW
3359
3360 return 0;
dd41f596 3361}
67bb6c03 3362/********** Helpers for find_busiest_group ************************/
1da177e4 3363/*
222d656d
GS
3364 * sd_lb_stats - Structure to store the statistics of a sched_domain
3365 * during load balancing.
1da177e4 3366 */
222d656d
GS
3367struct sd_lb_stats {
3368 struct sched_group *busiest; /* Busiest group in this sd */
3369 struct sched_group *this; /* Local group in this sd */
3370 unsigned long total_load; /* Total load of all groups in sd */
3371 unsigned long total_pwr; /* Total power of all groups in sd */
3372 unsigned long avg_load; /* Average load across all groups in sd */
3373
3374 /** Statistics of this group */
3375 unsigned long this_load;
3376 unsigned long this_load_per_task;
3377 unsigned long this_nr_running;
3378
3379 /* Statistics of the busiest group */
3380 unsigned long max_load;
3381 unsigned long busiest_load_per_task;
3382 unsigned long busiest_nr_running;
3383
3384 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3385#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3386 int power_savings_balance; /* Is powersave balance needed for this sd */
3387 struct sched_group *group_min; /* Least loaded group in sd */
3388 struct sched_group *group_leader; /* Group which relieves group_min */
3389 unsigned long min_load_per_task; /* load_per_task in group_min */
3390 unsigned long leader_nr_running; /* Nr running of group_leader */
3391 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3392#endif
222d656d 3393};
1da177e4 3394
d5ac537e 3395/*
381be78f
GS
3396 * sg_lb_stats - stats of a sched_group required for load_balancing
3397 */
3398struct sg_lb_stats {
3399 unsigned long avg_load; /*Avg load across the CPUs of the group */
3400 unsigned long group_load; /* Total load over the CPUs of the group */
3401 unsigned long sum_nr_running; /* Nr tasks running in the group */
3402 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3403 unsigned long group_capacity;
3404 int group_imb; /* Is there an imbalance in the group ? */
3405};
408ed066 3406
67bb6c03
GS
3407/**
3408 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3409 * @group: The group whose first cpu is to be returned.
3410 */
3411static inline unsigned int group_first_cpu(struct sched_group *group)
3412{
3413 return cpumask_first(sched_group_cpus(group));
3414}
3415
3416/**
3417 * get_sd_load_idx - Obtain the load index for a given sched domain.
3418 * @sd: The sched_domain whose load_idx is to be obtained.
3419 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3420 */
3421static inline int get_sd_load_idx(struct sched_domain *sd,
3422 enum cpu_idle_type idle)
3423{
3424 int load_idx;
3425
3426 switch (idle) {
3427 case CPU_NOT_IDLE:
7897986b 3428 load_idx = sd->busy_idx;
67bb6c03
GS
3429 break;
3430
3431 case CPU_NEWLY_IDLE:
7897986b 3432 load_idx = sd->newidle_idx;
67bb6c03
GS
3433 break;
3434 default:
7897986b 3435 load_idx = sd->idle_idx;
67bb6c03
GS
3436 break;
3437 }
1da177e4 3438
67bb6c03
GS
3439 return load_idx;
3440}
1da177e4 3441
1da177e4 3442
c071df18
GS
3443#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3444/**
3445 * init_sd_power_savings_stats - Initialize power savings statistics for
3446 * the given sched_domain, during load balancing.
3447 *
3448 * @sd: Sched domain whose power-savings statistics are to be initialized.
3449 * @sds: Variable containing the statistics for sd.
3450 * @idle: Idle status of the CPU at which we're performing load-balancing.
3451 */
3452static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3453 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3454{
3455 /*
3456 * Busy processors will not participate in power savings
3457 * balance.
3458 */
3459 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3460 sds->power_savings_balance = 0;
3461 else {
3462 sds->power_savings_balance = 1;
3463 sds->min_nr_running = ULONG_MAX;
3464 sds->leader_nr_running = 0;
3465 }
3466}
783609c6 3467
c071df18
GS
3468/**
3469 * update_sd_power_savings_stats - Update the power saving stats for a
3470 * sched_domain while performing load balancing.
3471 *
3472 * @group: sched_group belonging to the sched_domain under consideration.
3473 * @sds: Variable containing the statistics of the sched_domain
3474 * @local_group: Does group contain the CPU for which we're performing
3475 * load balancing ?
3476 * @sgs: Variable containing the statistics of the group.
3477 */
3478static inline void update_sd_power_savings_stats(struct sched_group *group,
3479 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3480{
408ed066 3481
c071df18
GS
3482 if (!sds->power_savings_balance)
3483 return;
1da177e4 3484
c071df18
GS
3485 /*
3486 * If the local group is idle or completely loaded
3487 * no need to do power savings balance at this domain
3488 */
3489 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3490 !sds->this_nr_running))
3491 sds->power_savings_balance = 0;
2dd73a4f 3492
c071df18
GS
3493 /*
3494 * If a group is already running at full capacity or idle,
3495 * don't include that group in power savings calculations
3496 */
3497 if (!sds->power_savings_balance ||
3498 sgs->sum_nr_running >= sgs->group_capacity ||
3499 !sgs->sum_nr_running)
3500 return;
5969fe06 3501
c071df18
GS
3502 /*
3503 * Calculate the group which has the least non-idle load.
3504 * This is the group from where we need to pick up the load
3505 * for saving power
3506 */
3507 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3508 (sgs->sum_nr_running == sds->min_nr_running &&
3509 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3510 sds->group_min = group;
3511 sds->min_nr_running = sgs->sum_nr_running;
3512 sds->min_load_per_task = sgs->sum_weighted_load /
3513 sgs->sum_nr_running;
3514 }
783609c6 3515
c071df18
GS
3516 /*
3517 * Calculate the group which is almost near its
3518 * capacity but still has some space to pick up some load
3519 * from other group and save more power
3520 */
d899a789 3521 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3522 return;
1da177e4 3523
c071df18
GS
3524 if (sgs->sum_nr_running > sds->leader_nr_running ||
3525 (sgs->sum_nr_running == sds->leader_nr_running &&
3526 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3527 sds->group_leader = group;
3528 sds->leader_nr_running = sgs->sum_nr_running;
3529 }
3530}
408ed066 3531
c071df18 3532/**
d5ac537e 3533 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3534 * @sds: Variable containing the statistics of the sched_domain
3535 * under consideration.
3536 * @this_cpu: Cpu at which we're currently performing load-balancing.
3537 * @imbalance: Variable to store the imbalance.
3538 *
d5ac537e
RD
3539 * Description:
3540 * Check if we have potential to perform some power-savings balance.
3541 * If yes, set the busiest group to be the least loaded group in the
3542 * sched_domain, so that it's CPUs can be put to idle.
3543 *
c071df18
GS
3544 * Returns 1 if there is potential to perform power-savings balance.
3545 * Else returns 0.
3546 */
3547static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3548 int this_cpu, unsigned long *imbalance)
3549{
3550 if (!sds->power_savings_balance)
3551 return 0;
1da177e4 3552
c071df18
GS
3553 if (sds->this != sds->group_leader ||
3554 sds->group_leader == sds->group_min)
3555 return 0;
783609c6 3556
c071df18
GS
3557 *imbalance = sds->min_load_per_task;
3558 sds->busiest = sds->group_min;
1da177e4 3559
c071df18 3560 return 1;
1da177e4 3561
c071df18
GS
3562}
3563#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3564static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3565 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3566{
3567 return;
3568}
408ed066 3569
c071df18
GS
3570static inline void update_sd_power_savings_stats(struct sched_group *group,
3571 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3572{
3573 return;
3574}
3575
3576static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3577 int this_cpu, unsigned long *imbalance)
3578{
3579 return 0;
3580}
3581#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3582
d6a59aa3
PZ
3583
3584unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3585{
3586 return SCHED_LOAD_SCALE;
3587}
3588
3589unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3590{
3591 return default_scale_freq_power(sd, cpu);
3592}
3593
3594unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3595{
3596 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3597 unsigned long smt_gain = sd->smt_gain;
3598
3599 smt_gain /= weight;
3600
3601 return smt_gain;
3602}
3603
d6a59aa3
PZ
3604unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3605{
3606 return default_scale_smt_power(sd, cpu);
3607}
3608
e9e9250b
PZ
3609unsigned long scale_rt_power(int cpu)
3610{
3611 struct rq *rq = cpu_rq(cpu);
3612 u64 total, available;
3613
3614 sched_avg_update(rq);
3615
3616 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3617 available = total - rq->rt_avg;
3618
3619 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3620 total = SCHED_LOAD_SCALE;
3621
3622 total >>= SCHED_LOAD_SHIFT;
3623
3624 return div_u64(available, total);
3625}
3626
ab29230e
PZ
3627static void update_cpu_power(struct sched_domain *sd, int cpu)
3628{
3629 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3630 unsigned long power = SCHED_LOAD_SCALE;
3631 struct sched_group *sdg = sd->groups;
ab29230e 3632
8e6598af
PZ
3633 if (sched_feat(ARCH_POWER))
3634 power *= arch_scale_freq_power(sd, cpu);
3635 else
3636 power *= default_scale_freq_power(sd, cpu);
3637
d6a59aa3 3638 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3639
3640 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3641 if (sched_feat(ARCH_POWER))
3642 power *= arch_scale_smt_power(sd, cpu);
3643 else
3644 power *= default_scale_smt_power(sd, cpu);
3645
ab29230e
PZ
3646 power >>= SCHED_LOAD_SHIFT;
3647 }
3648
e9e9250b
PZ
3649 power *= scale_rt_power(cpu);
3650 power >>= SCHED_LOAD_SHIFT;
3651
3652 if (!power)
3653 power = 1;
ab29230e 3654
18a3885f 3655 sdg->cpu_power = power;
ab29230e
PZ
3656}
3657
3658static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3659{
3660 struct sched_domain *child = sd->child;
3661 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3662 unsigned long power;
cc9fba7d
PZ
3663
3664 if (!child) {
ab29230e 3665 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3666 return;
3667 }
3668
d7ea17a7 3669 power = 0;
cc9fba7d
PZ
3670
3671 group = child->groups;
3672 do {
d7ea17a7 3673 power += group->cpu_power;
cc9fba7d
PZ
3674 group = group->next;
3675 } while (group != child->groups);
d7ea17a7
IM
3676
3677 sdg->cpu_power = power;
cc9fba7d 3678}
c071df18 3679
1f8c553d
GS
3680/**
3681 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3682 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3683 * @group: sched_group whose statistics are to be updated.
3684 * @this_cpu: Cpu for which load balance is currently performed.
3685 * @idle: Idle status of this_cpu
3686 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3687 * @sd_idle: Idle status of the sched_domain containing group.
3688 * @local_group: Does group contain this_cpu.
3689 * @cpus: Set of cpus considered for load balancing.
3690 * @balance: Should we balance.
3691 * @sgs: variable to hold the statistics for this group.
3692 */
cc9fba7d
PZ
3693static inline void update_sg_lb_stats(struct sched_domain *sd,
3694 struct sched_group *group, int this_cpu,
1f8c553d
GS
3695 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3696 int local_group, const struct cpumask *cpus,
3697 int *balance, struct sg_lb_stats *sgs)
3698{
3699 unsigned long load, max_cpu_load, min_cpu_load;
3700 int i;
3701 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3702 unsigned long sum_avg_load_per_task;
3703 unsigned long avg_load_per_task;
3704
cc9fba7d 3705 if (local_group) {
1f8c553d 3706 balance_cpu = group_first_cpu(group);
cc9fba7d 3707 if (balance_cpu == this_cpu)
ab29230e 3708 update_group_power(sd, this_cpu);
cc9fba7d 3709 }
1f8c553d
GS
3710
3711 /* Tally up the load of all CPUs in the group */
3712 sum_avg_load_per_task = avg_load_per_task = 0;
3713 max_cpu_load = 0;
3714 min_cpu_load = ~0UL;
408ed066 3715
1f8c553d
GS
3716 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3717 struct rq *rq = cpu_rq(i);
908a7c1b 3718
1f8c553d
GS
3719 if (*sd_idle && rq->nr_running)
3720 *sd_idle = 0;
5c45bf27 3721
1f8c553d 3722 /* Bias balancing toward cpus of our domain */
1da177e4 3723 if (local_group) {
1f8c553d
GS
3724 if (idle_cpu(i) && !first_idle_cpu) {
3725 first_idle_cpu = 1;
3726 balance_cpu = i;
3727 }
3728
3729 load = target_load(i, load_idx);
3730 } else {
3731 load = source_load(i, load_idx);
3732 if (load > max_cpu_load)
3733 max_cpu_load = load;
3734 if (min_cpu_load > load)
3735 min_cpu_load = load;
1da177e4 3736 }
5c45bf27 3737
1f8c553d
GS
3738 sgs->group_load += load;
3739 sgs->sum_nr_running += rq->nr_running;
3740 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3741
1f8c553d
GS
3742 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3743 }
5c45bf27 3744
1f8c553d
GS
3745 /*
3746 * First idle cpu or the first cpu(busiest) in this sched group
3747 * is eligible for doing load balancing at this and above
3748 * domains. In the newly idle case, we will allow all the cpu's
3749 * to do the newly idle load balance.
3750 */
3751 if (idle != CPU_NEWLY_IDLE && local_group &&
3752 balance_cpu != this_cpu && balance) {
3753 *balance = 0;
3754 return;
3755 }
5c45bf27 3756
1f8c553d 3757 /* Adjust by relative CPU power of the group */
18a3885f 3758 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3759
1f8c553d
GS
3760
3761 /*
3762 * Consider the group unbalanced when the imbalance is larger
3763 * than the average weight of two tasks.
3764 *
3765 * APZ: with cgroup the avg task weight can vary wildly and
3766 * might not be a suitable number - should we keep a
3767 * normalized nr_running number somewhere that negates
3768 * the hierarchy?
3769 */
18a3885f
PZ
3770 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3771 group->cpu_power;
1f8c553d
GS
3772
3773 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3774 sgs->group_imb = 1;
3775
bdb94aa5 3776 sgs->group_capacity =
18a3885f 3777 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3778}
dd41f596 3779
37abe198
GS
3780/**
3781 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3782 * @sd: sched_domain whose statistics are to be updated.
3783 * @this_cpu: Cpu for which load balance is currently performed.
3784 * @idle: Idle status of this_cpu
3785 * @sd_idle: Idle status of the sched_domain containing group.
3786 * @cpus: Set of cpus considered for load balancing.
3787 * @balance: Should we balance.
3788 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3789 */
37abe198
GS
3790static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3791 enum cpu_idle_type idle, int *sd_idle,
3792 const struct cpumask *cpus, int *balance,
3793 struct sd_lb_stats *sds)
1da177e4 3794{
b5d978e0 3795 struct sched_domain *child = sd->child;
222d656d 3796 struct sched_group *group = sd->groups;
37abe198 3797 struct sg_lb_stats sgs;
b5d978e0
PZ
3798 int load_idx, prefer_sibling = 0;
3799
3800 if (child && child->flags & SD_PREFER_SIBLING)
3801 prefer_sibling = 1;
222d656d 3802
c071df18 3803 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3804 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3805
3806 do {
1da177e4 3807 int local_group;
1da177e4 3808
758b2cdc
RR
3809 local_group = cpumask_test_cpu(this_cpu,
3810 sched_group_cpus(group));
381be78f 3811 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3812 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3813 local_group, cpus, balance, &sgs);
1da177e4 3814
37abe198
GS
3815 if (local_group && balance && !(*balance))
3816 return;
783609c6 3817
37abe198 3818 sds->total_load += sgs.group_load;
18a3885f 3819 sds->total_pwr += group->cpu_power;
1da177e4 3820
b5d978e0
PZ
3821 /*
3822 * In case the child domain prefers tasks go to siblings
3823 * first, lower the group capacity to one so that we'll try
3824 * and move all the excess tasks away.
3825 */
3826 if (prefer_sibling)
bdb94aa5 3827 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3828
1da177e4 3829 if (local_group) {
37abe198
GS
3830 sds->this_load = sgs.avg_load;
3831 sds->this = group;
3832 sds->this_nr_running = sgs.sum_nr_running;
3833 sds->this_load_per_task = sgs.sum_weighted_load;
3834 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3835 (sgs.sum_nr_running > sgs.group_capacity ||
3836 sgs.group_imb)) {
37abe198
GS
3837 sds->max_load = sgs.avg_load;
3838 sds->busiest = group;
3839 sds->busiest_nr_running = sgs.sum_nr_running;
3840 sds->busiest_load_per_task = sgs.sum_weighted_load;
3841 sds->group_imb = sgs.group_imb;
48f24c4d 3842 }
5c45bf27 3843
c071df18 3844 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3845 group = group->next;
3846 } while (group != sd->groups);
37abe198 3847}
1da177e4 3848
2e6f44ae
GS
3849/**
3850 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3851 * amongst the groups of a sched_domain, during
3852 * load balancing.
2e6f44ae
GS
3853 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3854 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3855 * @imbalance: Variable to store the imbalance.
3856 */
3857static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3858 int this_cpu, unsigned long *imbalance)
3859{
3860 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3861 unsigned int imbn = 2;
3862
3863 if (sds->this_nr_running) {
3864 sds->this_load_per_task /= sds->this_nr_running;
3865 if (sds->busiest_load_per_task >
3866 sds->this_load_per_task)
3867 imbn = 1;
3868 } else
3869 sds->this_load_per_task =
3870 cpu_avg_load_per_task(this_cpu);
1da177e4 3871
2e6f44ae
GS
3872 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3873 sds->busiest_load_per_task * imbn) {
3874 *imbalance = sds->busiest_load_per_task;
3875 return;
3876 }
908a7c1b 3877
1da177e4 3878 /*
2e6f44ae
GS
3879 * OK, we don't have enough imbalance to justify moving tasks,
3880 * however we may be able to increase total CPU power used by
3881 * moving them.
1da177e4 3882 */
2dd73a4f 3883
18a3885f 3884 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3885 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3886 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3887 min(sds->this_load_per_task, sds->this_load);
3888 pwr_now /= SCHED_LOAD_SCALE;
3889
3890 /* Amount of load we'd subtract */
18a3885f
PZ
3891 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3892 sds->busiest->cpu_power;
2e6f44ae 3893 if (sds->max_load > tmp)
18a3885f 3894 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3895 min(sds->busiest_load_per_task, sds->max_load - tmp);
3896
3897 /* Amount of load we'd add */
18a3885f 3898 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3899 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3900 tmp = (sds->max_load * sds->busiest->cpu_power) /
3901 sds->this->cpu_power;
2e6f44ae 3902 else
18a3885f
PZ
3903 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3904 sds->this->cpu_power;
3905 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3906 min(sds->this_load_per_task, sds->this_load + tmp);
3907 pwr_move /= SCHED_LOAD_SCALE;
3908
3909 /* Move if we gain throughput */
3910 if (pwr_move > pwr_now)
3911 *imbalance = sds->busiest_load_per_task;
3912}
dbc523a3
GS
3913
3914/**
3915 * calculate_imbalance - Calculate the amount of imbalance present within the
3916 * groups of a given sched_domain during load balance.
3917 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3918 * @this_cpu: Cpu for which currently load balance is being performed.
3919 * @imbalance: The variable to store the imbalance.
3920 */
3921static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3922 unsigned long *imbalance)
3923{
3924 unsigned long max_pull;
2dd73a4f
PW
3925 /*
3926 * In the presence of smp nice balancing, certain scenarios can have
3927 * max load less than avg load(as we skip the groups at or below
3928 * its cpu_power, while calculating max_load..)
3929 */
dbc523a3 3930 if (sds->max_load < sds->avg_load) {
2dd73a4f 3931 *imbalance = 0;
dbc523a3 3932 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3933 }
0c117f1b
SS
3934
3935 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3936 max_pull = min(sds->max_load - sds->avg_load,
3937 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3938
1da177e4 3939 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3940 *imbalance = min(max_pull * sds->busiest->cpu_power,
3941 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3942 / SCHED_LOAD_SCALE;
3943
2dd73a4f
PW
3944 /*
3945 * if *imbalance is less than the average load per runnable task
3946 * there is no gaurantee that any tasks will be moved so we'll have
3947 * a think about bumping its value to force at least one task to be
3948 * moved
3949 */
dbc523a3
GS
3950 if (*imbalance < sds->busiest_load_per_task)
3951 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3952
dbc523a3 3953}
37abe198 3954/******* find_busiest_group() helpers end here *********************/
1da177e4 3955
b7bb4c9b
GS
3956/**
3957 * find_busiest_group - Returns the busiest group within the sched_domain
3958 * if there is an imbalance. If there isn't an imbalance, and
3959 * the user has opted for power-savings, it returns a group whose
3960 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3961 * such a group exists.
3962 *
3963 * Also calculates the amount of weighted load which should be moved
3964 * to restore balance.
3965 *
3966 * @sd: The sched_domain whose busiest group is to be returned.
3967 * @this_cpu: The cpu for which load balancing is currently being performed.
3968 * @imbalance: Variable which stores amount of weighted load which should
3969 * be moved to restore balance/put a group to idle.
3970 * @idle: The idle status of this_cpu.
3971 * @sd_idle: The idleness of sd
3972 * @cpus: The set of CPUs under consideration for load-balancing.
3973 * @balance: Pointer to a variable indicating if this_cpu
3974 * is the appropriate cpu to perform load balancing at this_level.
3975 *
3976 * Returns: - the busiest group if imbalance exists.
3977 * - If no imbalance and user has opted for power-savings balance,
3978 * return the least loaded group whose CPUs can be
3979 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3980 */
3981static struct sched_group *
3982find_busiest_group(struct sched_domain *sd, int this_cpu,
3983 unsigned long *imbalance, enum cpu_idle_type idle,
3984 int *sd_idle, const struct cpumask *cpus, int *balance)
3985{
3986 struct sd_lb_stats sds;
1da177e4 3987
37abe198 3988 memset(&sds, 0, sizeof(sds));
1da177e4 3989
37abe198
GS
3990 /*
3991 * Compute the various statistics relavent for load balancing at
3992 * this level.
3993 */
3994 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3995 balance, &sds);
3996
b7bb4c9b
GS
3997 /* Cases where imbalance does not exist from POV of this_cpu */
3998 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3999 * at this level.
4000 * 2) There is no busy sibling group to pull from.
4001 * 3) This group is the busiest group.
4002 * 4) This group is more busy than the avg busieness at this
4003 * sched_domain.
4004 * 5) The imbalance is within the specified limit.
4005 * 6) Any rebalance would lead to ping-pong
4006 */
37abe198
GS
4007 if (balance && !(*balance))
4008 goto ret;
1da177e4 4009
b7bb4c9b
GS
4010 if (!sds.busiest || sds.busiest_nr_running == 0)
4011 goto out_balanced;
1da177e4 4012
b7bb4c9b 4013 if (sds.this_load >= sds.max_load)
1da177e4 4014 goto out_balanced;
1da177e4 4015
222d656d 4016 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4017
b7bb4c9b
GS
4018 if (sds.this_load >= sds.avg_load)
4019 goto out_balanced;
4020
4021 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4022 goto out_balanced;
4023
222d656d
GS
4024 sds.busiest_load_per_task /= sds.busiest_nr_running;
4025 if (sds.group_imb)
4026 sds.busiest_load_per_task =
4027 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4028
1da177e4
LT
4029 /*
4030 * We're trying to get all the cpus to the average_load, so we don't
4031 * want to push ourselves above the average load, nor do we wish to
4032 * reduce the max loaded cpu below the average load, as either of these
4033 * actions would just result in more rebalancing later, and ping-pong
4034 * tasks around. Thus we look for the minimum possible imbalance.
4035 * Negative imbalances (*we* are more loaded than anyone else) will
4036 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4037 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4038 * appear as very large values with unsigned longs.
4039 */
222d656d 4040 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4041 goto out_balanced;
4042
dbc523a3
GS
4043 /* Looks like there is an imbalance. Compute it */
4044 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4045 return sds.busiest;
1da177e4
LT
4046
4047out_balanced:
c071df18
GS
4048 /*
4049 * There is no obvious imbalance. But check if we can do some balancing
4050 * to save power.
4051 */
4052 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4053 return sds.busiest;
783609c6 4054ret:
1da177e4
LT
4055 *imbalance = 0;
4056 return NULL;
4057}
4058
4059/*
4060 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4061 */
70b97a7f 4062static struct rq *
d15bcfdb 4063find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4064 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4065{
70b97a7f 4066 struct rq *busiest = NULL, *rq;
2dd73a4f 4067 unsigned long max_load = 0;
1da177e4
LT
4068 int i;
4069
758b2cdc 4070 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4071 unsigned long power = power_of(i);
4072 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4073 unsigned long wl;
0a2966b4 4074
96f874e2 4075 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4076 continue;
4077
48f24c4d 4078 rq = cpu_rq(i);
bdb94aa5
PZ
4079 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4080 wl /= power;
2dd73a4f 4081
bdb94aa5 4082 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4083 continue;
1da177e4 4084
dd41f596
IM
4085 if (wl > max_load) {
4086 max_load = wl;
48f24c4d 4087 busiest = rq;
1da177e4
LT
4088 }
4089 }
4090
4091 return busiest;
4092}
4093
77391d71
NP
4094/*
4095 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4096 * so long as it is large enough.
4097 */
4098#define MAX_PINNED_INTERVAL 512
4099
df7c8e84
RR
4100/* Working cpumask for load_balance and load_balance_newidle. */
4101static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4102
1da177e4
LT
4103/*
4104 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4105 * tasks if there is an imbalance.
1da177e4 4106 */
70b97a7f 4107static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4108 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4109 int *balance)
1da177e4 4110{
43010659 4111 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4112 struct sched_group *group;
1da177e4 4113 unsigned long imbalance;
70b97a7f 4114 struct rq *busiest;
fe2eea3f 4115 unsigned long flags;
df7c8e84 4116 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4117
6ad4c188 4118 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4119
89c4710e
SS
4120 /*
4121 * When power savings policy is enabled for the parent domain, idle
4122 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4123 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4124 * portraying it as CPU_NOT_IDLE.
89c4710e 4125 */
d15bcfdb 4126 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4127 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4128 sd_idle = 1;
1da177e4 4129
2d72376b 4130 schedstat_inc(sd, lb_count[idle]);
1da177e4 4131
0a2966b4 4132redo:
c8cba857 4133 update_shares(sd);
0a2966b4 4134 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4135 cpus, balance);
783609c6 4136
06066714 4137 if (*balance == 0)
783609c6 4138 goto out_balanced;
783609c6 4139
1da177e4
LT
4140 if (!group) {
4141 schedstat_inc(sd, lb_nobusyg[idle]);
4142 goto out_balanced;
4143 }
4144
7c16ec58 4145 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4146 if (!busiest) {
4147 schedstat_inc(sd, lb_nobusyq[idle]);
4148 goto out_balanced;
4149 }
4150
db935dbd 4151 BUG_ON(busiest == this_rq);
1da177e4
LT
4152
4153 schedstat_add(sd, lb_imbalance[idle], imbalance);
4154
43010659 4155 ld_moved = 0;
1da177e4
LT
4156 if (busiest->nr_running > 1) {
4157 /*
4158 * Attempt to move tasks. If find_busiest_group has found
4159 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4160 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4161 * correctly treated as an imbalance.
4162 */
fe2eea3f 4163 local_irq_save(flags);
e17224bf 4164 double_rq_lock(this_rq, busiest);
43010659 4165 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4166 imbalance, sd, idle, &all_pinned);
e17224bf 4167 double_rq_unlock(this_rq, busiest);
fe2eea3f 4168 local_irq_restore(flags);
81026794 4169
46cb4b7c
SS
4170 /*
4171 * some other cpu did the load balance for us.
4172 */
43010659 4173 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4174 resched_cpu(this_cpu);
4175
81026794 4176 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4177 if (unlikely(all_pinned)) {
96f874e2
RR
4178 cpumask_clear_cpu(cpu_of(busiest), cpus);
4179 if (!cpumask_empty(cpus))
0a2966b4 4180 goto redo;
81026794 4181 goto out_balanced;
0a2966b4 4182 }
1da177e4 4183 }
81026794 4184
43010659 4185 if (!ld_moved) {
1da177e4
LT
4186 schedstat_inc(sd, lb_failed[idle]);
4187 sd->nr_balance_failed++;
4188
4189 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4190
fe2eea3f 4191 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4192
4193 /* don't kick the migration_thread, if the curr
4194 * task on busiest cpu can't be moved to this_cpu
4195 */
96f874e2
RR
4196 if (!cpumask_test_cpu(this_cpu,
4197 &busiest->curr->cpus_allowed)) {
fe2eea3f 4198 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4199 all_pinned = 1;
4200 goto out_one_pinned;
4201 }
4202
1da177e4
LT
4203 if (!busiest->active_balance) {
4204 busiest->active_balance = 1;
4205 busiest->push_cpu = this_cpu;
81026794 4206 active_balance = 1;
1da177e4 4207 }
fe2eea3f 4208 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4209 if (active_balance)
1da177e4
LT
4210 wake_up_process(busiest->migration_thread);
4211
4212 /*
4213 * We've kicked active balancing, reset the failure
4214 * counter.
4215 */
39507451 4216 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4217 }
81026794 4218 } else
1da177e4
LT
4219 sd->nr_balance_failed = 0;
4220
81026794 4221 if (likely(!active_balance)) {
1da177e4
LT
4222 /* We were unbalanced, so reset the balancing interval */
4223 sd->balance_interval = sd->min_interval;
81026794
NP
4224 } else {
4225 /*
4226 * If we've begun active balancing, start to back off. This
4227 * case may not be covered by the all_pinned logic if there
4228 * is only 1 task on the busy runqueue (because we don't call
4229 * move_tasks).
4230 */
4231 if (sd->balance_interval < sd->max_interval)
4232 sd->balance_interval *= 2;
1da177e4
LT
4233 }
4234
43010659 4235 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4236 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4237 ld_moved = -1;
4238
4239 goto out;
1da177e4
LT
4240
4241out_balanced:
1da177e4
LT
4242 schedstat_inc(sd, lb_balanced[idle]);
4243
16cfb1c0 4244 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4245
4246out_one_pinned:
1da177e4 4247 /* tune up the balancing interval */
77391d71
NP
4248 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4249 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4250 sd->balance_interval *= 2;
4251
48f24c4d 4252 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4253 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4254 ld_moved = -1;
4255 else
4256 ld_moved = 0;
4257out:
c8cba857
PZ
4258 if (ld_moved)
4259 update_shares(sd);
c09595f6 4260 return ld_moved;
1da177e4
LT
4261}
4262
4263/*
4264 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4265 * tasks if there is an imbalance.
4266 *
d15bcfdb 4267 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4268 * this_rq is locked.
4269 */
48f24c4d 4270static int
df7c8e84 4271load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4272{
4273 struct sched_group *group;
70b97a7f 4274 struct rq *busiest = NULL;
1da177e4 4275 unsigned long imbalance;
43010659 4276 int ld_moved = 0;
5969fe06 4277 int sd_idle = 0;
969bb4e4 4278 int all_pinned = 0;
df7c8e84 4279 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4280
6ad4c188 4281 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4282
89c4710e
SS
4283 /*
4284 * When power savings policy is enabled for the parent domain, idle
4285 * sibling can pick up load irrespective of busy siblings. In this case,
4286 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4287 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4288 */
4289 if (sd->flags & SD_SHARE_CPUPOWER &&
4290 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4291 sd_idle = 1;
1da177e4 4292
2d72376b 4293 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4294redo:
3e5459b4 4295 update_shares_locked(this_rq, sd);
d15bcfdb 4296 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4297 &sd_idle, cpus, NULL);
1da177e4 4298 if (!group) {
d15bcfdb 4299 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4300 goto out_balanced;
1da177e4
LT
4301 }
4302
7c16ec58 4303 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4304 if (!busiest) {
d15bcfdb 4305 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4306 goto out_balanced;
1da177e4
LT
4307 }
4308
db935dbd
NP
4309 BUG_ON(busiest == this_rq);
4310
d15bcfdb 4311 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4312
43010659 4313 ld_moved = 0;
d6d5cfaf
NP
4314 if (busiest->nr_running > 1) {
4315 /* Attempt to move tasks */
4316 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4317 /* this_rq->clock is already updated */
4318 update_rq_clock(busiest);
43010659 4319 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4320 imbalance, sd, CPU_NEWLY_IDLE,
4321 &all_pinned);
1b12bbc7 4322 double_unlock_balance(this_rq, busiest);
0a2966b4 4323
969bb4e4 4324 if (unlikely(all_pinned)) {
96f874e2
RR
4325 cpumask_clear_cpu(cpu_of(busiest), cpus);
4326 if (!cpumask_empty(cpus))
0a2966b4
CL
4327 goto redo;
4328 }
d6d5cfaf
NP
4329 }
4330
43010659 4331 if (!ld_moved) {
36dffab6 4332 int active_balance = 0;
ad273b32 4333
d15bcfdb 4334 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4335 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4336 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4337 return -1;
ad273b32
VS
4338
4339 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4340 return -1;
4341
4342 if (sd->nr_balance_failed++ < 2)
4343 return -1;
4344
4345 /*
4346 * The only task running in a non-idle cpu can be moved to this
4347 * cpu in an attempt to completely freeup the other CPU
4348 * package. The same method used to move task in load_balance()
4349 * have been extended for load_balance_newidle() to speedup
4350 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4351 *
4352 * The package power saving logic comes from
4353 * find_busiest_group(). If there are no imbalance, then
4354 * f_b_g() will return NULL. However when sched_mc={1,2} then
4355 * f_b_g() will select a group from which a running task may be
4356 * pulled to this cpu in order to make the other package idle.
4357 * If there is no opportunity to make a package idle and if
4358 * there are no imbalance, then f_b_g() will return NULL and no
4359 * action will be taken in load_balance_newidle().
4360 *
4361 * Under normal task pull operation due to imbalance, there
4362 * will be more than one task in the source run queue and
4363 * move_tasks() will succeed. ld_moved will be true and this
4364 * active balance code will not be triggered.
4365 */
4366
4367 /* Lock busiest in correct order while this_rq is held */
4368 double_lock_balance(this_rq, busiest);
4369
4370 /*
4371 * don't kick the migration_thread, if the curr
4372 * task on busiest cpu can't be moved to this_cpu
4373 */
6ca09dfc 4374 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4375 double_unlock_balance(this_rq, busiest);
4376 all_pinned = 1;
4377 return ld_moved;
4378 }
4379
4380 if (!busiest->active_balance) {
4381 busiest->active_balance = 1;
4382 busiest->push_cpu = this_cpu;
4383 active_balance = 1;
4384 }
4385
4386 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4387 /*
4388 * Should not call ttwu while holding a rq->lock
4389 */
4390 spin_unlock(&this_rq->lock);
ad273b32
VS
4391 if (active_balance)
4392 wake_up_process(busiest->migration_thread);
da8d5089 4393 spin_lock(&this_rq->lock);
ad273b32 4394
5969fe06 4395 } else
16cfb1c0 4396 sd->nr_balance_failed = 0;
1da177e4 4397
3e5459b4 4398 update_shares_locked(this_rq, sd);
43010659 4399 return ld_moved;
16cfb1c0
NP
4400
4401out_balanced:
d15bcfdb 4402 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4405 return -1;
16cfb1c0 4406 sd->nr_balance_failed = 0;
48f24c4d 4407
16cfb1c0 4408 return 0;
1da177e4
LT
4409}
4410
4411/*
4412 * idle_balance is called by schedule() if this_cpu is about to become
4413 * idle. Attempts to pull tasks from other CPUs.
4414 */
70b97a7f 4415static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4416{
4417 struct sched_domain *sd;
efbe027e 4418 int pulled_task = 0;
dd41f596 4419 unsigned long next_balance = jiffies + HZ;
1da177e4 4420
1b9508f6
MG
4421 this_rq->idle_stamp = this_rq->clock;
4422
4423 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4424 return;
4425
1da177e4 4426 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4427 unsigned long interval;
4428
4429 if (!(sd->flags & SD_LOAD_BALANCE))
4430 continue;
4431
4432 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4433 /* If we've pulled tasks over stop searching: */
7c16ec58 4434 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4435 sd);
92c4ca5c
CL
4436
4437 interval = msecs_to_jiffies(sd->balance_interval);
4438 if (time_after(next_balance, sd->last_balance + interval))
4439 next_balance = sd->last_balance + interval;
1b9508f6
MG
4440 if (pulled_task) {
4441 this_rq->idle_stamp = 0;
92c4ca5c 4442 break;
1b9508f6 4443 }
1da177e4 4444 }
dd41f596 4445 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4446 /*
4447 * We are going idle. next_balance may be set based on
4448 * a busy processor. So reset next_balance.
4449 */
4450 this_rq->next_balance = next_balance;
dd41f596 4451 }
1da177e4
LT
4452}
4453
4454/*
4455 * active_load_balance is run by migration threads. It pushes running tasks
4456 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4457 * running on each physical CPU where possible, and avoids physical /
4458 * logical imbalances.
4459 *
4460 * Called with busiest_rq locked.
4461 */
70b97a7f 4462static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4463{
39507451 4464 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4465 struct sched_domain *sd;
4466 struct rq *target_rq;
39507451 4467
48f24c4d 4468 /* Is there any task to move? */
39507451 4469 if (busiest_rq->nr_running <= 1)
39507451
NP
4470 return;
4471
4472 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4473
4474 /*
39507451 4475 * This condition is "impossible", if it occurs
41a2d6cf 4476 * we need to fix it. Originally reported by
39507451 4477 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4478 */
39507451 4479 BUG_ON(busiest_rq == target_rq);
1da177e4 4480
39507451
NP
4481 /* move a task from busiest_rq to target_rq */
4482 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4483 update_rq_clock(busiest_rq);
4484 update_rq_clock(target_rq);
39507451
NP
4485
4486 /* Search for an sd spanning us and the target CPU. */
c96d145e 4487 for_each_domain(target_cpu, sd) {
39507451 4488 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4489 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4490 break;
c96d145e 4491 }
39507451 4492
48f24c4d 4493 if (likely(sd)) {
2d72376b 4494 schedstat_inc(sd, alb_count);
39507451 4495
43010659
PW
4496 if (move_one_task(target_rq, target_cpu, busiest_rq,
4497 sd, CPU_IDLE))
48f24c4d
IM
4498 schedstat_inc(sd, alb_pushed);
4499 else
4500 schedstat_inc(sd, alb_failed);
4501 }
1b12bbc7 4502 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4503}
4504
46cb4b7c
SS
4505#ifdef CONFIG_NO_HZ
4506static struct {
4507 atomic_t load_balancer;
7d1e6a9b 4508 cpumask_var_t cpu_mask;
f711f609 4509 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4510} nohz ____cacheline_aligned = {
4511 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4512};
4513
eea08f32
AB
4514int get_nohz_load_balancer(void)
4515{
4516 return atomic_read(&nohz.load_balancer);
4517}
4518
f711f609
GS
4519#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4520/**
4521 * lowest_flag_domain - Return lowest sched_domain containing flag.
4522 * @cpu: The cpu whose lowest level of sched domain is to
4523 * be returned.
4524 * @flag: The flag to check for the lowest sched_domain
4525 * for the given cpu.
4526 *
4527 * Returns the lowest sched_domain of a cpu which contains the given flag.
4528 */
4529static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4530{
4531 struct sched_domain *sd;
4532
4533 for_each_domain(cpu, sd)
4534 if (sd && (sd->flags & flag))
4535 break;
4536
4537 return sd;
4538}
4539
4540/**
4541 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4542 * @cpu: The cpu whose domains we're iterating over.
4543 * @sd: variable holding the value of the power_savings_sd
4544 * for cpu.
4545 * @flag: The flag to filter the sched_domains to be iterated.
4546 *
4547 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4548 * set, starting from the lowest sched_domain to the highest.
4549 */
4550#define for_each_flag_domain(cpu, sd, flag) \
4551 for (sd = lowest_flag_domain(cpu, flag); \
4552 (sd && (sd->flags & flag)); sd = sd->parent)
4553
4554/**
4555 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4556 * @ilb_group: group to be checked for semi-idleness
4557 *
4558 * Returns: 1 if the group is semi-idle. 0 otherwise.
4559 *
4560 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4561 * and atleast one non-idle CPU. This helper function checks if the given
4562 * sched_group is semi-idle or not.
4563 */
4564static inline int is_semi_idle_group(struct sched_group *ilb_group)
4565{
4566 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4567 sched_group_cpus(ilb_group));
4568
4569 /*
4570 * A sched_group is semi-idle when it has atleast one busy cpu
4571 * and atleast one idle cpu.
4572 */
4573 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4574 return 0;
4575
4576 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4577 return 0;
4578
4579 return 1;
4580}
4581/**
4582 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4583 * @cpu: The cpu which is nominating a new idle_load_balancer.
4584 *
4585 * Returns: Returns the id of the idle load balancer if it exists,
4586 * Else, returns >= nr_cpu_ids.
4587 *
4588 * This algorithm picks the idle load balancer such that it belongs to a
4589 * semi-idle powersavings sched_domain. The idea is to try and avoid
4590 * completely idle packages/cores just for the purpose of idle load balancing
4591 * when there are other idle cpu's which are better suited for that job.
4592 */
4593static int find_new_ilb(int cpu)
4594{
4595 struct sched_domain *sd;
4596 struct sched_group *ilb_group;
4597
4598 /*
4599 * Have idle load balancer selection from semi-idle packages only
4600 * when power-aware load balancing is enabled
4601 */
4602 if (!(sched_smt_power_savings || sched_mc_power_savings))
4603 goto out_done;
4604
4605 /*
4606 * Optimize for the case when we have no idle CPUs or only one
4607 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4608 */
4609 if (cpumask_weight(nohz.cpu_mask) < 2)
4610 goto out_done;
4611
4612 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4613 ilb_group = sd->groups;
4614
4615 do {
4616 if (is_semi_idle_group(ilb_group))
4617 return cpumask_first(nohz.ilb_grp_nohz_mask);
4618
4619 ilb_group = ilb_group->next;
4620
4621 } while (ilb_group != sd->groups);
4622 }
4623
4624out_done:
4625 return cpumask_first(nohz.cpu_mask);
4626}
4627#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4628static inline int find_new_ilb(int call_cpu)
4629{
6e29ec57 4630 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4631}
4632#endif
4633
7835b98b 4634/*
46cb4b7c
SS
4635 * This routine will try to nominate the ilb (idle load balancing)
4636 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4637 * load balancing on behalf of all those cpus. If all the cpus in the system
4638 * go into this tickless mode, then there will be no ilb owner (as there is
4639 * no need for one) and all the cpus will sleep till the next wakeup event
4640 * arrives...
4641 *
4642 * For the ilb owner, tick is not stopped. And this tick will be used
4643 * for idle load balancing. ilb owner will still be part of
4644 * nohz.cpu_mask..
7835b98b 4645 *
46cb4b7c
SS
4646 * While stopping the tick, this cpu will become the ilb owner if there
4647 * is no other owner. And will be the owner till that cpu becomes busy
4648 * or if all cpus in the system stop their ticks at which point
4649 * there is no need for ilb owner.
4650 *
4651 * When the ilb owner becomes busy, it nominates another owner, during the
4652 * next busy scheduler_tick()
4653 */
4654int select_nohz_load_balancer(int stop_tick)
4655{
4656 int cpu = smp_processor_id();
4657
4658 if (stop_tick) {
46cb4b7c
SS
4659 cpu_rq(cpu)->in_nohz_recently = 1;
4660
483b4ee6
SS
4661 if (!cpu_active(cpu)) {
4662 if (atomic_read(&nohz.load_balancer) != cpu)
4663 return 0;
4664
4665 /*
4666 * If we are going offline and still the leader,
4667 * give up!
4668 */
46cb4b7c
SS
4669 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4670 BUG();
483b4ee6 4671
46cb4b7c
SS
4672 return 0;
4673 }
4674
483b4ee6
SS
4675 cpumask_set_cpu(cpu, nohz.cpu_mask);
4676
46cb4b7c 4677 /* time for ilb owner also to sleep */
6ad4c188 4678 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4679 if (atomic_read(&nohz.load_balancer) == cpu)
4680 atomic_set(&nohz.load_balancer, -1);
4681 return 0;
4682 }
4683
4684 if (atomic_read(&nohz.load_balancer) == -1) {
4685 /* make me the ilb owner */
4686 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4687 return 1;
e790fb0b
GS
4688 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4689 int new_ilb;
4690
4691 if (!(sched_smt_power_savings ||
4692 sched_mc_power_savings))
4693 return 1;
4694 /*
4695 * Check to see if there is a more power-efficient
4696 * ilb.
4697 */
4698 new_ilb = find_new_ilb(cpu);
4699 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4700 atomic_set(&nohz.load_balancer, -1);
4701 resched_cpu(new_ilb);
4702 return 0;
4703 }
46cb4b7c 4704 return 1;
e790fb0b 4705 }
46cb4b7c 4706 } else {
7d1e6a9b 4707 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4708 return 0;
4709
7d1e6a9b 4710 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4711
4712 if (atomic_read(&nohz.load_balancer) == cpu)
4713 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4714 BUG();
4715 }
4716 return 0;
4717}
4718#endif
4719
4720static DEFINE_SPINLOCK(balancing);
4721
4722/*
7835b98b
CL
4723 * It checks each scheduling domain to see if it is due to be balanced,
4724 * and initiates a balancing operation if so.
4725 *
4726 * Balancing parameters are set up in arch_init_sched_domains.
4727 */
a9957449 4728static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4729{
46cb4b7c
SS
4730 int balance = 1;
4731 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4732 unsigned long interval;
4733 struct sched_domain *sd;
46cb4b7c 4734 /* Earliest time when we have to do rebalance again */
c9819f45 4735 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4736 int update_next_balance = 0;
d07355f5 4737 int need_serialize;
1da177e4 4738
46cb4b7c 4739 for_each_domain(cpu, sd) {
1da177e4
LT
4740 if (!(sd->flags & SD_LOAD_BALANCE))
4741 continue;
4742
4743 interval = sd->balance_interval;
d15bcfdb 4744 if (idle != CPU_IDLE)
1da177e4
LT
4745 interval *= sd->busy_factor;
4746
4747 /* scale ms to jiffies */
4748 interval = msecs_to_jiffies(interval);
4749 if (unlikely(!interval))
4750 interval = 1;
dd41f596
IM
4751 if (interval > HZ*NR_CPUS/10)
4752 interval = HZ*NR_CPUS/10;
4753
d07355f5 4754 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4755
d07355f5 4756 if (need_serialize) {
08c183f3
CL
4757 if (!spin_trylock(&balancing))
4758 goto out;
4759 }
4760
c9819f45 4761 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4762 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4763 /*
4764 * We've pulled tasks over so either we're no
5969fe06
NP
4765 * longer idle, or one of our SMT siblings is
4766 * not idle.
4767 */
d15bcfdb 4768 idle = CPU_NOT_IDLE;
1da177e4 4769 }
1bd77f2d 4770 sd->last_balance = jiffies;
1da177e4 4771 }
d07355f5 4772 if (need_serialize)
08c183f3
CL
4773 spin_unlock(&balancing);
4774out:
f549da84 4775 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4776 next_balance = sd->last_balance + interval;
f549da84
SS
4777 update_next_balance = 1;
4778 }
783609c6
SS
4779
4780 /*
4781 * Stop the load balance at this level. There is another
4782 * CPU in our sched group which is doing load balancing more
4783 * actively.
4784 */
4785 if (!balance)
4786 break;
1da177e4 4787 }
f549da84
SS
4788
4789 /*
4790 * next_balance will be updated only when there is a need.
4791 * When the cpu is attached to null domain for ex, it will not be
4792 * updated.
4793 */
4794 if (likely(update_next_balance))
4795 rq->next_balance = next_balance;
46cb4b7c
SS
4796}
4797
4798/*
4799 * run_rebalance_domains is triggered when needed from the scheduler tick.
4800 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4801 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4802 */
4803static void run_rebalance_domains(struct softirq_action *h)
4804{
dd41f596
IM
4805 int this_cpu = smp_processor_id();
4806 struct rq *this_rq = cpu_rq(this_cpu);
4807 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4808 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4809
dd41f596 4810 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4811
4812#ifdef CONFIG_NO_HZ
4813 /*
4814 * If this cpu is the owner for idle load balancing, then do the
4815 * balancing on behalf of the other idle cpus whose ticks are
4816 * stopped.
4817 */
dd41f596
IM
4818 if (this_rq->idle_at_tick &&
4819 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4820 struct rq *rq;
4821 int balance_cpu;
4822
7d1e6a9b
RR
4823 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4824 if (balance_cpu == this_cpu)
4825 continue;
4826
46cb4b7c
SS
4827 /*
4828 * If this cpu gets work to do, stop the load balancing
4829 * work being done for other cpus. Next load
4830 * balancing owner will pick it up.
4831 */
4832 if (need_resched())
4833 break;
4834
de0cf899 4835 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4836
4837 rq = cpu_rq(balance_cpu);
dd41f596
IM
4838 if (time_after(this_rq->next_balance, rq->next_balance))
4839 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4840 }
4841 }
4842#endif
4843}
4844
8a0be9ef
FW
4845static inline int on_null_domain(int cpu)
4846{
4847 return !rcu_dereference(cpu_rq(cpu)->sd);
4848}
4849
46cb4b7c
SS
4850/*
4851 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4852 *
4853 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4854 * idle load balancing owner or decide to stop the periodic load balancing,
4855 * if the whole system is idle.
4856 */
dd41f596 4857static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4858{
46cb4b7c
SS
4859#ifdef CONFIG_NO_HZ
4860 /*
4861 * If we were in the nohz mode recently and busy at the current
4862 * scheduler tick, then check if we need to nominate new idle
4863 * load balancer.
4864 */
4865 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4866 rq->in_nohz_recently = 0;
4867
4868 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4869 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4870 atomic_set(&nohz.load_balancer, -1);
4871 }
4872
4873 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4874 int ilb = find_new_ilb(cpu);
46cb4b7c 4875
434d53b0 4876 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4877 resched_cpu(ilb);
4878 }
4879 }
4880
4881 /*
4882 * If this cpu is idle and doing idle load balancing for all the
4883 * cpus with ticks stopped, is it time for that to stop?
4884 */
4885 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4886 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4887 resched_cpu(cpu);
4888 return;
4889 }
4890
4891 /*
4892 * If this cpu is idle and the idle load balancing is done by
4893 * someone else, then no need raise the SCHED_SOFTIRQ
4894 */
4895 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4896 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4897 return;
4898#endif
8a0be9ef
FW
4899 /* Don't need to rebalance while attached to NULL domain */
4900 if (time_after_eq(jiffies, rq->next_balance) &&
4901 likely(!on_null_domain(cpu)))
46cb4b7c 4902 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4903}
dd41f596
IM
4904
4905#else /* CONFIG_SMP */
4906
1da177e4
LT
4907/*
4908 * on UP we do not need to balance between CPUs:
4909 */
70b97a7f 4910static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4911{
4912}
dd41f596 4913
1da177e4
LT
4914#endif
4915
1da177e4
LT
4916DEFINE_PER_CPU(struct kernel_stat, kstat);
4917
4918EXPORT_PER_CPU_SYMBOL(kstat);
4919
4920/*
c5f8d995 4921 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4922 * @p in case that task is currently running.
c5f8d995
HS
4923 *
4924 * Called with task_rq_lock() held on @rq.
1da177e4 4925 */
c5f8d995
HS
4926static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4927{
4928 u64 ns = 0;
4929
4930 if (task_current(rq, p)) {
4931 update_rq_clock(rq);
4932 ns = rq->clock - p->se.exec_start;
4933 if ((s64)ns < 0)
4934 ns = 0;
4935 }
4936
4937 return ns;
4938}
4939
bb34d92f 4940unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4941{
1da177e4 4942 unsigned long flags;
41b86e9c 4943 struct rq *rq;
bb34d92f 4944 u64 ns = 0;
48f24c4d 4945
41b86e9c 4946 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4947 ns = do_task_delta_exec(p, rq);
4948 task_rq_unlock(rq, &flags);
1508487e 4949
c5f8d995
HS
4950 return ns;
4951}
f06febc9 4952
c5f8d995
HS
4953/*
4954 * Return accounted runtime for the task.
4955 * In case the task is currently running, return the runtime plus current's
4956 * pending runtime that have not been accounted yet.
4957 */
4958unsigned long long task_sched_runtime(struct task_struct *p)
4959{
4960 unsigned long flags;
4961 struct rq *rq;
4962 u64 ns = 0;
4963
4964 rq = task_rq_lock(p, &flags);
4965 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4966 task_rq_unlock(rq, &flags);
4967
4968 return ns;
4969}
48f24c4d 4970
c5f8d995
HS
4971/*
4972 * Return sum_exec_runtime for the thread group.
4973 * In case the task is currently running, return the sum plus current's
4974 * pending runtime that have not been accounted yet.
4975 *
4976 * Note that the thread group might have other running tasks as well,
4977 * so the return value not includes other pending runtime that other
4978 * running tasks might have.
4979 */
4980unsigned long long thread_group_sched_runtime(struct task_struct *p)
4981{
4982 struct task_cputime totals;
4983 unsigned long flags;
4984 struct rq *rq;
4985 u64 ns;
4986
4987 rq = task_rq_lock(p, &flags);
4988 thread_group_cputime(p, &totals);
4989 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4990 task_rq_unlock(rq, &flags);
48f24c4d 4991
1da177e4
LT
4992 return ns;
4993}
4994
1da177e4
LT
4995/*
4996 * Account user cpu time to a process.
4997 * @p: the process that the cpu time gets accounted to
1da177e4 4998 * @cputime: the cpu time spent in user space since the last update
457533a7 4999 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5000 */
457533a7
MS
5001void account_user_time(struct task_struct *p, cputime_t cputime,
5002 cputime_t cputime_scaled)
1da177e4
LT
5003{
5004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5005 cputime64_t tmp;
5006
457533a7 5007 /* Add user time to process. */
1da177e4 5008 p->utime = cputime_add(p->utime, cputime);
457533a7 5009 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5010 account_group_user_time(p, cputime);
1da177e4
LT
5011
5012 /* Add user time to cpustat. */
5013 tmp = cputime_to_cputime64(cputime);
5014 if (TASK_NICE(p) > 0)
5015 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5016 else
5017 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5018
5019 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5020 /* Account for user time used */
5021 acct_update_integrals(p);
1da177e4
LT
5022}
5023
94886b84
LV
5024/*
5025 * Account guest cpu time to a process.
5026 * @p: the process that the cpu time gets accounted to
5027 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5028 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5029 */
457533a7
MS
5030static void account_guest_time(struct task_struct *p, cputime_t cputime,
5031 cputime_t cputime_scaled)
94886b84
LV
5032{
5033 cputime64_t tmp;
5034 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5035
5036 tmp = cputime_to_cputime64(cputime);
5037
457533a7 5038 /* Add guest time to process. */
94886b84 5039 p->utime = cputime_add(p->utime, cputime);
457533a7 5040 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5041 account_group_user_time(p, cputime);
94886b84
LV
5042 p->gtime = cputime_add(p->gtime, cputime);
5043
457533a7 5044 /* Add guest time to cpustat. */
ce0e7b28
RO
5045 if (TASK_NICE(p) > 0) {
5046 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5047 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5048 } else {
5049 cpustat->user = cputime64_add(cpustat->user, tmp);
5050 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5051 }
94886b84
LV
5052}
5053
1da177e4
LT
5054/*
5055 * Account system cpu time to a process.
5056 * @p: the process that the cpu time gets accounted to
5057 * @hardirq_offset: the offset to subtract from hardirq_count()
5058 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5059 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5060 */
5061void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5062 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5063{
5064 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5065 cputime64_t tmp;
5066
983ed7a6 5067 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5068 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5069 return;
5070 }
94886b84 5071
457533a7 5072 /* Add system time to process. */
1da177e4 5073 p->stime = cputime_add(p->stime, cputime);
457533a7 5074 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5075 account_group_system_time(p, cputime);
1da177e4
LT
5076
5077 /* Add system time to cpustat. */
5078 tmp = cputime_to_cputime64(cputime);
5079 if (hardirq_count() - hardirq_offset)
5080 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5081 else if (softirq_count())
5082 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5083 else
79741dd3
MS
5084 cpustat->system = cputime64_add(cpustat->system, tmp);
5085
ef12fefa
BR
5086 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5087
1da177e4
LT
5088 /* Account for system time used */
5089 acct_update_integrals(p);
1da177e4
LT
5090}
5091
c66f08be 5092/*
1da177e4 5093 * Account for involuntary wait time.
1da177e4 5094 * @steal: the cpu time spent in involuntary wait
c66f08be 5095 */
79741dd3 5096void account_steal_time(cputime_t cputime)
c66f08be 5097{
79741dd3
MS
5098 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5099 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5100
5101 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5102}
5103
1da177e4 5104/*
79741dd3
MS
5105 * Account for idle time.
5106 * @cputime: the cpu time spent in idle wait
1da177e4 5107 */
79741dd3 5108void account_idle_time(cputime_t cputime)
1da177e4
LT
5109{
5110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5111 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5112 struct rq *rq = this_rq();
1da177e4 5113
79741dd3
MS
5114 if (atomic_read(&rq->nr_iowait) > 0)
5115 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5116 else
5117 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5118}
5119
79741dd3
MS
5120#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5121
5122/*
5123 * Account a single tick of cpu time.
5124 * @p: the process that the cpu time gets accounted to
5125 * @user_tick: indicates if the tick is a user or a system tick
5126 */
5127void account_process_tick(struct task_struct *p, int user_tick)
5128{
a42548a1 5129 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5130 struct rq *rq = this_rq();
5131
5132 if (user_tick)
a42548a1 5133 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5134 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5135 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5136 one_jiffy_scaled);
5137 else
a42548a1 5138 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5139}
5140
5141/*
5142 * Account multiple ticks of steal time.
5143 * @p: the process from which the cpu time has been stolen
5144 * @ticks: number of stolen ticks
5145 */
5146void account_steal_ticks(unsigned long ticks)
5147{
5148 account_steal_time(jiffies_to_cputime(ticks));
5149}
5150
5151/*
5152 * Account multiple ticks of idle time.
5153 * @ticks: number of stolen ticks
5154 */
5155void account_idle_ticks(unsigned long ticks)
5156{
5157 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5158}
5159
79741dd3
MS
5160#endif
5161
49048622
BS
5162/*
5163 * Use precise platform statistics if available:
5164 */
5165#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5166void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5167{
d99ca3b9
HS
5168 *ut = p->utime;
5169 *st = p->stime;
49048622
BS
5170}
5171
0cf55e1e 5172void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5173{
0cf55e1e
HS
5174 struct task_cputime cputime;
5175
5176 thread_group_cputime(p, &cputime);
5177
5178 *ut = cputime.utime;
5179 *st = cputime.stime;
49048622
BS
5180}
5181#else
761b1d26
HS
5182
5183#ifndef nsecs_to_cputime
b7b20df9 5184# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5185#endif
5186
d180c5bc 5187void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5188{
d99ca3b9 5189 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5190
5191 /*
5192 * Use CFS's precise accounting:
5193 */
d180c5bc 5194 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5195
5196 if (total) {
d180c5bc
HS
5197 u64 temp;
5198
5199 temp = (u64)(rtime * utime);
49048622 5200 do_div(temp, total);
d180c5bc
HS
5201 utime = (cputime_t)temp;
5202 } else
5203 utime = rtime;
49048622 5204
d180c5bc
HS
5205 /*
5206 * Compare with previous values, to keep monotonicity:
5207 */
761b1d26 5208 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5209 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5210
d99ca3b9
HS
5211 *ut = p->prev_utime;
5212 *st = p->prev_stime;
49048622
BS
5213}
5214
0cf55e1e
HS
5215/*
5216 * Must be called with siglock held.
5217 */
5218void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5219{
0cf55e1e
HS
5220 struct signal_struct *sig = p->signal;
5221 struct task_cputime cputime;
5222 cputime_t rtime, utime, total;
49048622 5223
0cf55e1e 5224 thread_group_cputime(p, &cputime);
49048622 5225
0cf55e1e
HS
5226 total = cputime_add(cputime.utime, cputime.stime);
5227 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5228
0cf55e1e
HS
5229 if (total) {
5230 u64 temp;
49048622 5231
0cf55e1e
HS
5232 temp = (u64)(rtime * cputime.utime);
5233 do_div(temp, total);
5234 utime = (cputime_t)temp;
5235 } else
5236 utime = rtime;
5237
5238 sig->prev_utime = max(sig->prev_utime, utime);
5239 sig->prev_stime = max(sig->prev_stime,
5240 cputime_sub(rtime, sig->prev_utime));
5241
5242 *ut = sig->prev_utime;
5243 *st = sig->prev_stime;
49048622 5244}
49048622 5245#endif
49048622 5246
7835b98b
CL
5247/*
5248 * This function gets called by the timer code, with HZ frequency.
5249 * We call it with interrupts disabled.
5250 *
5251 * It also gets called by the fork code, when changing the parent's
5252 * timeslices.
5253 */
5254void scheduler_tick(void)
5255{
7835b98b
CL
5256 int cpu = smp_processor_id();
5257 struct rq *rq = cpu_rq(cpu);
dd41f596 5258 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5259
5260 sched_clock_tick();
dd41f596
IM
5261
5262 spin_lock(&rq->lock);
3e51f33f 5263 update_rq_clock(rq);
f1a438d8 5264 update_cpu_load(rq);
fa85ae24 5265 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5266 spin_unlock(&rq->lock);
7835b98b 5267
cdd6c482 5268 perf_event_task_tick(curr, cpu);
e220d2dc 5269
e418e1c2 5270#ifdef CONFIG_SMP
dd41f596
IM
5271 rq->idle_at_tick = idle_cpu(cpu);
5272 trigger_load_balance(rq, cpu);
e418e1c2 5273#endif
1da177e4
LT
5274}
5275
132380a0 5276notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5277{
5278 if (in_lock_functions(addr)) {
5279 addr = CALLER_ADDR2;
5280 if (in_lock_functions(addr))
5281 addr = CALLER_ADDR3;
5282 }
5283 return addr;
5284}
1da177e4 5285
7e49fcce
SR
5286#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5287 defined(CONFIG_PREEMPT_TRACER))
5288
43627582 5289void __kprobes add_preempt_count(int val)
1da177e4 5290{
6cd8a4bb 5291#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5292 /*
5293 * Underflow?
5294 */
9a11b49a
IM
5295 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5296 return;
6cd8a4bb 5297#endif
1da177e4 5298 preempt_count() += val;
6cd8a4bb 5299#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5300 /*
5301 * Spinlock count overflowing soon?
5302 */
33859f7f
MOS
5303 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5304 PREEMPT_MASK - 10);
6cd8a4bb
SR
5305#endif
5306 if (preempt_count() == val)
5307 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5308}
5309EXPORT_SYMBOL(add_preempt_count);
5310
43627582 5311void __kprobes sub_preempt_count(int val)
1da177e4 5312{
6cd8a4bb 5313#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5314 /*
5315 * Underflow?
5316 */
01e3eb82 5317 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5318 return;
1da177e4
LT
5319 /*
5320 * Is the spinlock portion underflowing?
5321 */
9a11b49a
IM
5322 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5323 !(preempt_count() & PREEMPT_MASK)))
5324 return;
6cd8a4bb 5325#endif
9a11b49a 5326
6cd8a4bb
SR
5327 if (preempt_count() == val)
5328 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5329 preempt_count() -= val;
5330}
5331EXPORT_SYMBOL(sub_preempt_count);
5332
5333#endif
5334
5335/*
dd41f596 5336 * Print scheduling while atomic bug:
1da177e4 5337 */
dd41f596 5338static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5339{
838225b4
SS
5340 struct pt_regs *regs = get_irq_regs();
5341
663997d4
JP
5342 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5343 prev->comm, prev->pid, preempt_count());
838225b4 5344
dd41f596 5345 debug_show_held_locks(prev);
e21f5b15 5346 print_modules();
dd41f596
IM
5347 if (irqs_disabled())
5348 print_irqtrace_events(prev);
838225b4
SS
5349
5350 if (regs)
5351 show_regs(regs);
5352 else
5353 dump_stack();
dd41f596 5354}
1da177e4 5355
dd41f596
IM
5356/*
5357 * Various schedule()-time debugging checks and statistics:
5358 */
5359static inline void schedule_debug(struct task_struct *prev)
5360{
1da177e4 5361 /*
41a2d6cf 5362 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5363 * schedule() atomically, we ignore that path for now.
5364 * Otherwise, whine if we are scheduling when we should not be.
5365 */
3f33a7ce 5366 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5367 __schedule_bug(prev);
5368
1da177e4
LT
5369 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5370
2d72376b 5371 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5372#ifdef CONFIG_SCHEDSTATS
5373 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5374 schedstat_inc(this_rq(), bkl_count);
5375 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5376 }
5377#endif
dd41f596
IM
5378}
5379
6cecd084 5380static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5381{
6cecd084
PZ
5382 if (prev->state == TASK_RUNNING) {
5383 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5384
6cecd084
PZ
5385 runtime -= prev->se.prev_sum_exec_runtime;
5386 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5387
5388 /*
5389 * In order to avoid avg_overlap growing stale when we are
5390 * indeed overlapping and hence not getting put to sleep, grow
5391 * the avg_overlap on preemption.
5392 *
5393 * We use the average preemption runtime because that
5394 * correlates to the amount of cache footprint a task can
5395 * build up.
5396 */
6cecd084 5397 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5398 }
6cecd084 5399 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5400}
5401
dd41f596
IM
5402/*
5403 * Pick up the highest-prio task:
5404 */
5405static inline struct task_struct *
b67802ea 5406pick_next_task(struct rq *rq)
dd41f596 5407{
5522d5d5 5408 const struct sched_class *class;
dd41f596 5409 struct task_struct *p;
1da177e4
LT
5410
5411 /*
dd41f596
IM
5412 * Optimization: we know that if all tasks are in
5413 * the fair class we can call that function directly:
1da177e4 5414 */
dd41f596 5415 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5416 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5417 if (likely(p))
5418 return p;
1da177e4
LT
5419 }
5420
dd41f596
IM
5421 class = sched_class_highest;
5422 for ( ; ; ) {
fb8d4724 5423 p = class->pick_next_task(rq);
dd41f596
IM
5424 if (p)
5425 return p;
5426 /*
5427 * Will never be NULL as the idle class always
5428 * returns a non-NULL p:
5429 */
5430 class = class->next;
5431 }
5432}
1da177e4 5433
dd41f596
IM
5434/*
5435 * schedule() is the main scheduler function.
5436 */
ff743345 5437asmlinkage void __sched schedule(void)
dd41f596
IM
5438{
5439 struct task_struct *prev, *next;
67ca7bde 5440 unsigned long *switch_count;
dd41f596 5441 struct rq *rq;
31656519 5442 int cpu;
dd41f596 5443
ff743345
PZ
5444need_resched:
5445 preempt_disable();
dd41f596
IM
5446 cpu = smp_processor_id();
5447 rq = cpu_rq(cpu);
d6714c22 5448 rcu_sched_qs(cpu);
dd41f596
IM
5449 prev = rq->curr;
5450 switch_count = &prev->nivcsw;
5451
5452 release_kernel_lock(prev);
5453need_resched_nonpreemptible:
5454
5455 schedule_debug(prev);
1da177e4 5456
31656519 5457 if (sched_feat(HRTICK))
f333fdc9 5458 hrtick_clear(rq);
8f4d37ec 5459
8cd162ce 5460 spin_lock_irq(&rq->lock);
3e51f33f 5461 update_rq_clock(rq);
1e819950 5462 clear_tsk_need_resched(prev);
1da177e4 5463
1da177e4 5464 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5465 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5466 prev->state = TASK_RUNNING;
16882c1e 5467 else
2e1cb74a 5468 deactivate_task(rq, prev, 1);
dd41f596 5469 switch_count = &prev->nvcsw;
1da177e4
LT
5470 }
5471
3f029d3c 5472 pre_schedule(rq, prev);
f65eda4f 5473
dd41f596 5474 if (unlikely(!rq->nr_running))
1da177e4 5475 idle_balance(cpu, rq);
1da177e4 5476
df1c99d4 5477 put_prev_task(rq, prev);
b67802ea 5478 next = pick_next_task(rq);
1da177e4 5479
1da177e4 5480 if (likely(prev != next)) {
673a90a1 5481 sched_info_switch(prev, next);
cdd6c482 5482 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5483
1da177e4
LT
5484 rq->nr_switches++;
5485 rq->curr = next;
5486 ++*switch_count;
5487
dd41f596 5488 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5489 /*
5490 * the context switch might have flipped the stack from under
5491 * us, hence refresh the local variables.
5492 */
5493 cpu = smp_processor_id();
5494 rq = cpu_rq(cpu);
1da177e4
LT
5495 } else
5496 spin_unlock_irq(&rq->lock);
5497
3f029d3c 5498 post_schedule(rq);
1da177e4 5499
8f4d37ec 5500 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5501 goto need_resched_nonpreemptible;
8f4d37ec 5502
1da177e4 5503 preempt_enable_no_resched();
ff743345 5504 if (need_resched())
1da177e4
LT
5505 goto need_resched;
5506}
1da177e4
LT
5507EXPORT_SYMBOL(schedule);
5508
c08f7829 5509#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5510/*
5511 * Look out! "owner" is an entirely speculative pointer
5512 * access and not reliable.
5513 */
5514int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5515{
5516 unsigned int cpu;
5517 struct rq *rq;
5518
5519 if (!sched_feat(OWNER_SPIN))
5520 return 0;
5521
5522#ifdef CONFIG_DEBUG_PAGEALLOC
5523 /*
5524 * Need to access the cpu field knowing that
5525 * DEBUG_PAGEALLOC could have unmapped it if
5526 * the mutex owner just released it and exited.
5527 */
5528 if (probe_kernel_address(&owner->cpu, cpu))
5529 goto out;
5530#else
5531 cpu = owner->cpu;
5532#endif
5533
5534 /*
5535 * Even if the access succeeded (likely case),
5536 * the cpu field may no longer be valid.
5537 */
5538 if (cpu >= nr_cpumask_bits)
5539 goto out;
5540
5541 /*
5542 * We need to validate that we can do a
5543 * get_cpu() and that we have the percpu area.
5544 */
5545 if (!cpu_online(cpu))
5546 goto out;
5547
5548 rq = cpu_rq(cpu);
5549
5550 for (;;) {
5551 /*
5552 * Owner changed, break to re-assess state.
5553 */
5554 if (lock->owner != owner)
5555 break;
5556
5557 /*
5558 * Is that owner really running on that cpu?
5559 */
5560 if (task_thread_info(rq->curr) != owner || need_resched())
5561 return 0;
5562
5563 cpu_relax();
5564 }
5565out:
5566 return 1;
5567}
5568#endif
5569
1da177e4
LT
5570#ifdef CONFIG_PREEMPT
5571/*
2ed6e34f 5572 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5573 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5574 * occur there and call schedule directly.
5575 */
5576asmlinkage void __sched preempt_schedule(void)
5577{
5578 struct thread_info *ti = current_thread_info();
6478d880 5579
1da177e4
LT
5580 /*
5581 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5582 * we do not want to preempt the current task. Just return..
1da177e4 5583 */
beed33a8 5584 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5585 return;
5586
3a5c359a
AK
5587 do {
5588 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5589 schedule();
3a5c359a 5590 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5591
3a5c359a
AK
5592 /*
5593 * Check again in case we missed a preemption opportunity
5594 * between schedule and now.
5595 */
5596 barrier();
5ed0cec0 5597 } while (need_resched());
1da177e4 5598}
1da177e4
LT
5599EXPORT_SYMBOL(preempt_schedule);
5600
5601/*
2ed6e34f 5602 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5603 * off of irq context.
5604 * Note, that this is called and return with irqs disabled. This will
5605 * protect us against recursive calling from irq.
5606 */
5607asmlinkage void __sched preempt_schedule_irq(void)
5608{
5609 struct thread_info *ti = current_thread_info();
6478d880 5610
2ed6e34f 5611 /* Catch callers which need to be fixed */
1da177e4
LT
5612 BUG_ON(ti->preempt_count || !irqs_disabled());
5613
3a5c359a
AK
5614 do {
5615 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5616 local_irq_enable();
5617 schedule();
5618 local_irq_disable();
3a5c359a 5619 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5620
3a5c359a
AK
5621 /*
5622 * Check again in case we missed a preemption opportunity
5623 * between schedule and now.
5624 */
5625 barrier();
5ed0cec0 5626 } while (need_resched());
1da177e4
LT
5627}
5628
5629#endif /* CONFIG_PREEMPT */
5630
63859d4f 5631int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5632 void *key)
1da177e4 5633{
63859d4f 5634 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5635}
1da177e4
LT
5636EXPORT_SYMBOL(default_wake_function);
5637
5638/*
41a2d6cf
IM
5639 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5640 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5641 * number) then we wake all the non-exclusive tasks and one exclusive task.
5642 *
5643 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5644 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5645 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5646 */
78ddb08f 5647static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5648 int nr_exclusive, int wake_flags, void *key)
1da177e4 5649{
2e45874c 5650 wait_queue_t *curr, *next;
1da177e4 5651
2e45874c 5652 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5653 unsigned flags = curr->flags;
5654
63859d4f 5655 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5656 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5657 break;
5658 }
5659}
5660
5661/**
5662 * __wake_up - wake up threads blocked on a waitqueue.
5663 * @q: the waitqueue
5664 * @mode: which threads
5665 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5666 * @key: is directly passed to the wakeup function
50fa610a
DH
5667 *
5668 * It may be assumed that this function implies a write memory barrier before
5669 * changing the task state if and only if any tasks are woken up.
1da177e4 5670 */
7ad5b3a5 5671void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5672 int nr_exclusive, void *key)
1da177e4
LT
5673{
5674 unsigned long flags;
5675
5676 spin_lock_irqsave(&q->lock, flags);
5677 __wake_up_common(q, mode, nr_exclusive, 0, key);
5678 spin_unlock_irqrestore(&q->lock, flags);
5679}
1da177e4
LT
5680EXPORT_SYMBOL(__wake_up);
5681
5682/*
5683 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5684 */
7ad5b3a5 5685void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5686{
5687 __wake_up_common(q, mode, 1, 0, NULL);
5688}
5689
4ede816a
DL
5690void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5691{
5692 __wake_up_common(q, mode, 1, 0, key);
5693}
5694
1da177e4 5695/**
4ede816a 5696 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5697 * @q: the waitqueue
5698 * @mode: which threads
5699 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5700 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5701 *
5702 * The sync wakeup differs that the waker knows that it will schedule
5703 * away soon, so while the target thread will be woken up, it will not
5704 * be migrated to another CPU - ie. the two threads are 'synchronized'
5705 * with each other. This can prevent needless bouncing between CPUs.
5706 *
5707 * On UP it can prevent extra preemption.
50fa610a
DH
5708 *
5709 * It may be assumed that this function implies a write memory barrier before
5710 * changing the task state if and only if any tasks are woken up.
1da177e4 5711 */
4ede816a
DL
5712void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5713 int nr_exclusive, void *key)
1da177e4
LT
5714{
5715 unsigned long flags;
7d478721 5716 int wake_flags = WF_SYNC;
1da177e4
LT
5717
5718 if (unlikely(!q))
5719 return;
5720
5721 if (unlikely(!nr_exclusive))
7d478721 5722 wake_flags = 0;
1da177e4
LT
5723
5724 spin_lock_irqsave(&q->lock, flags);
7d478721 5725 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5726 spin_unlock_irqrestore(&q->lock, flags);
5727}
4ede816a
DL
5728EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5729
5730/*
5731 * __wake_up_sync - see __wake_up_sync_key()
5732 */
5733void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5734{
5735 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5736}
1da177e4
LT
5737EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5738
65eb3dc6
KD
5739/**
5740 * complete: - signals a single thread waiting on this completion
5741 * @x: holds the state of this particular completion
5742 *
5743 * This will wake up a single thread waiting on this completion. Threads will be
5744 * awakened in the same order in which they were queued.
5745 *
5746 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5747 *
5748 * It may be assumed that this function implies a write memory barrier before
5749 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5750 */
b15136e9 5751void complete(struct completion *x)
1da177e4
LT
5752{
5753 unsigned long flags;
5754
5755 spin_lock_irqsave(&x->wait.lock, flags);
5756 x->done++;
d9514f6c 5757 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5758 spin_unlock_irqrestore(&x->wait.lock, flags);
5759}
5760EXPORT_SYMBOL(complete);
5761
65eb3dc6
KD
5762/**
5763 * complete_all: - signals all threads waiting on this completion
5764 * @x: holds the state of this particular completion
5765 *
5766 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5767 *
5768 * It may be assumed that this function implies a write memory barrier before
5769 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5770 */
b15136e9 5771void complete_all(struct completion *x)
1da177e4
LT
5772{
5773 unsigned long flags;
5774
5775 spin_lock_irqsave(&x->wait.lock, flags);
5776 x->done += UINT_MAX/2;
d9514f6c 5777 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5778 spin_unlock_irqrestore(&x->wait.lock, flags);
5779}
5780EXPORT_SYMBOL(complete_all);
5781
8cbbe86d
AK
5782static inline long __sched
5783do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5784{
1da177e4
LT
5785 if (!x->done) {
5786 DECLARE_WAITQUEUE(wait, current);
5787
5788 wait.flags |= WQ_FLAG_EXCLUSIVE;
5789 __add_wait_queue_tail(&x->wait, &wait);
5790 do {
94d3d824 5791 if (signal_pending_state(state, current)) {
ea71a546
ON
5792 timeout = -ERESTARTSYS;
5793 break;
8cbbe86d
AK
5794 }
5795 __set_current_state(state);
1da177e4
LT
5796 spin_unlock_irq(&x->wait.lock);
5797 timeout = schedule_timeout(timeout);
5798 spin_lock_irq(&x->wait.lock);
ea71a546 5799 } while (!x->done && timeout);
1da177e4 5800 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5801 if (!x->done)
5802 return timeout;
1da177e4
LT
5803 }
5804 x->done--;
ea71a546 5805 return timeout ?: 1;
1da177e4 5806}
1da177e4 5807
8cbbe86d
AK
5808static long __sched
5809wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5810{
1da177e4
LT
5811 might_sleep();
5812
5813 spin_lock_irq(&x->wait.lock);
8cbbe86d 5814 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5815 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5816 return timeout;
5817}
1da177e4 5818
65eb3dc6
KD
5819/**
5820 * wait_for_completion: - waits for completion of a task
5821 * @x: holds the state of this particular completion
5822 *
5823 * This waits to be signaled for completion of a specific task. It is NOT
5824 * interruptible and there is no timeout.
5825 *
5826 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5827 * and interrupt capability. Also see complete().
5828 */
b15136e9 5829void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5830{
5831 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5832}
8cbbe86d 5833EXPORT_SYMBOL(wait_for_completion);
1da177e4 5834
65eb3dc6
KD
5835/**
5836 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5837 * @x: holds the state of this particular completion
5838 * @timeout: timeout value in jiffies
5839 *
5840 * This waits for either a completion of a specific task to be signaled or for a
5841 * specified timeout to expire. The timeout is in jiffies. It is not
5842 * interruptible.
5843 */
b15136e9 5844unsigned long __sched
8cbbe86d 5845wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5846{
8cbbe86d 5847 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5848}
8cbbe86d 5849EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5850
65eb3dc6
KD
5851/**
5852 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5853 * @x: holds the state of this particular completion
5854 *
5855 * This waits for completion of a specific task to be signaled. It is
5856 * interruptible.
5857 */
8cbbe86d 5858int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5859{
51e97990
AK
5860 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5861 if (t == -ERESTARTSYS)
5862 return t;
5863 return 0;
0fec171c 5864}
8cbbe86d 5865EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5866
65eb3dc6
KD
5867/**
5868 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5869 * @x: holds the state of this particular completion
5870 * @timeout: timeout value in jiffies
5871 *
5872 * This waits for either a completion of a specific task to be signaled or for a
5873 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5874 */
b15136e9 5875unsigned long __sched
8cbbe86d
AK
5876wait_for_completion_interruptible_timeout(struct completion *x,
5877 unsigned long timeout)
0fec171c 5878{
8cbbe86d 5879 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5880}
8cbbe86d 5881EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5882
65eb3dc6
KD
5883/**
5884 * wait_for_completion_killable: - waits for completion of a task (killable)
5885 * @x: holds the state of this particular completion
5886 *
5887 * This waits to be signaled for completion of a specific task. It can be
5888 * interrupted by a kill signal.
5889 */
009e577e
MW
5890int __sched wait_for_completion_killable(struct completion *x)
5891{
5892 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5893 if (t == -ERESTARTSYS)
5894 return t;
5895 return 0;
5896}
5897EXPORT_SYMBOL(wait_for_completion_killable);
5898
be4de352
DC
5899/**
5900 * try_wait_for_completion - try to decrement a completion without blocking
5901 * @x: completion structure
5902 *
5903 * Returns: 0 if a decrement cannot be done without blocking
5904 * 1 if a decrement succeeded.
5905 *
5906 * If a completion is being used as a counting completion,
5907 * attempt to decrement the counter without blocking. This
5908 * enables us to avoid waiting if the resource the completion
5909 * is protecting is not available.
5910 */
5911bool try_wait_for_completion(struct completion *x)
5912{
7539a3b3 5913 unsigned long flags;
be4de352
DC
5914 int ret = 1;
5915
7539a3b3 5916 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5917 if (!x->done)
5918 ret = 0;
5919 else
5920 x->done--;
7539a3b3 5921 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5922 return ret;
5923}
5924EXPORT_SYMBOL(try_wait_for_completion);
5925
5926/**
5927 * completion_done - Test to see if a completion has any waiters
5928 * @x: completion structure
5929 *
5930 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5931 * 1 if there are no waiters.
5932 *
5933 */
5934bool completion_done(struct completion *x)
5935{
7539a3b3 5936 unsigned long flags;
be4de352
DC
5937 int ret = 1;
5938
7539a3b3 5939 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5940 if (!x->done)
5941 ret = 0;
7539a3b3 5942 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5943 return ret;
5944}
5945EXPORT_SYMBOL(completion_done);
5946
8cbbe86d
AK
5947static long __sched
5948sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5949{
0fec171c
IM
5950 unsigned long flags;
5951 wait_queue_t wait;
5952
5953 init_waitqueue_entry(&wait, current);
1da177e4 5954
8cbbe86d 5955 __set_current_state(state);
1da177e4 5956
8cbbe86d
AK
5957 spin_lock_irqsave(&q->lock, flags);
5958 __add_wait_queue(q, &wait);
5959 spin_unlock(&q->lock);
5960 timeout = schedule_timeout(timeout);
5961 spin_lock_irq(&q->lock);
5962 __remove_wait_queue(q, &wait);
5963 spin_unlock_irqrestore(&q->lock, flags);
5964
5965 return timeout;
5966}
5967
5968void __sched interruptible_sleep_on(wait_queue_head_t *q)
5969{
5970 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5971}
1da177e4
LT
5972EXPORT_SYMBOL(interruptible_sleep_on);
5973
0fec171c 5974long __sched
95cdf3b7 5975interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5976{
8cbbe86d 5977 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5978}
1da177e4
LT
5979EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5980
0fec171c 5981void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5982{
8cbbe86d 5983 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5984}
1da177e4
LT
5985EXPORT_SYMBOL(sleep_on);
5986
0fec171c 5987long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5988{
8cbbe86d 5989 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5990}
1da177e4
LT
5991EXPORT_SYMBOL(sleep_on_timeout);
5992
b29739f9
IM
5993#ifdef CONFIG_RT_MUTEXES
5994
5995/*
5996 * rt_mutex_setprio - set the current priority of a task
5997 * @p: task
5998 * @prio: prio value (kernel-internal form)
5999 *
6000 * This function changes the 'effective' priority of a task. It does
6001 * not touch ->normal_prio like __setscheduler().
6002 *
6003 * Used by the rt_mutex code to implement priority inheritance logic.
6004 */
36c8b586 6005void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6006{
6007 unsigned long flags;
83b699ed 6008 int oldprio, on_rq, running;
70b97a7f 6009 struct rq *rq;
cb469845 6010 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6011
6012 BUG_ON(prio < 0 || prio > MAX_PRIO);
6013
6014 rq = task_rq_lock(p, &flags);
a8e504d2 6015 update_rq_clock(rq);
b29739f9 6016
d5f9f942 6017 oldprio = p->prio;
dd41f596 6018 on_rq = p->se.on_rq;
051a1d1a 6019 running = task_current(rq, p);
0e1f3483 6020 if (on_rq)
69be72c1 6021 dequeue_task(rq, p, 0);
0e1f3483
HS
6022 if (running)
6023 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6024
6025 if (rt_prio(prio))
6026 p->sched_class = &rt_sched_class;
6027 else
6028 p->sched_class = &fair_sched_class;
6029
b29739f9
IM
6030 p->prio = prio;
6031
0e1f3483
HS
6032 if (running)
6033 p->sched_class->set_curr_task(rq);
dd41f596 6034 if (on_rq) {
8159f87e 6035 enqueue_task(rq, p, 0);
cb469845
SR
6036
6037 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6038 }
6039 task_rq_unlock(rq, &flags);
6040}
6041
6042#endif
6043
36c8b586 6044void set_user_nice(struct task_struct *p, long nice)
1da177e4 6045{
dd41f596 6046 int old_prio, delta, on_rq;
1da177e4 6047 unsigned long flags;
70b97a7f 6048 struct rq *rq;
1da177e4
LT
6049
6050 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6051 return;
6052 /*
6053 * We have to be careful, if called from sys_setpriority(),
6054 * the task might be in the middle of scheduling on another CPU.
6055 */
6056 rq = task_rq_lock(p, &flags);
a8e504d2 6057 update_rq_clock(rq);
1da177e4
LT
6058 /*
6059 * The RT priorities are set via sched_setscheduler(), but we still
6060 * allow the 'normal' nice value to be set - but as expected
6061 * it wont have any effect on scheduling until the task is
dd41f596 6062 * SCHED_FIFO/SCHED_RR:
1da177e4 6063 */
e05606d3 6064 if (task_has_rt_policy(p)) {
1da177e4
LT
6065 p->static_prio = NICE_TO_PRIO(nice);
6066 goto out_unlock;
6067 }
dd41f596 6068 on_rq = p->se.on_rq;
c09595f6 6069 if (on_rq)
69be72c1 6070 dequeue_task(rq, p, 0);
1da177e4 6071
1da177e4 6072 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6073 set_load_weight(p);
b29739f9
IM
6074 old_prio = p->prio;
6075 p->prio = effective_prio(p);
6076 delta = p->prio - old_prio;
1da177e4 6077
dd41f596 6078 if (on_rq) {
8159f87e 6079 enqueue_task(rq, p, 0);
1da177e4 6080 /*
d5f9f942
AM
6081 * If the task increased its priority or is running and
6082 * lowered its priority, then reschedule its CPU:
1da177e4 6083 */
d5f9f942 6084 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6085 resched_task(rq->curr);
6086 }
6087out_unlock:
6088 task_rq_unlock(rq, &flags);
6089}
1da177e4
LT
6090EXPORT_SYMBOL(set_user_nice);
6091
e43379f1
MM
6092/*
6093 * can_nice - check if a task can reduce its nice value
6094 * @p: task
6095 * @nice: nice value
6096 */
36c8b586 6097int can_nice(const struct task_struct *p, const int nice)
e43379f1 6098{
024f4747
MM
6099 /* convert nice value [19,-20] to rlimit style value [1,40] */
6100 int nice_rlim = 20 - nice;
48f24c4d 6101
e43379f1
MM
6102 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6103 capable(CAP_SYS_NICE));
6104}
6105
1da177e4
LT
6106#ifdef __ARCH_WANT_SYS_NICE
6107
6108/*
6109 * sys_nice - change the priority of the current process.
6110 * @increment: priority increment
6111 *
6112 * sys_setpriority is a more generic, but much slower function that
6113 * does similar things.
6114 */
5add95d4 6115SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6116{
48f24c4d 6117 long nice, retval;
1da177e4
LT
6118
6119 /*
6120 * Setpriority might change our priority at the same moment.
6121 * We don't have to worry. Conceptually one call occurs first
6122 * and we have a single winner.
6123 */
e43379f1
MM
6124 if (increment < -40)
6125 increment = -40;
1da177e4
LT
6126 if (increment > 40)
6127 increment = 40;
6128
2b8f836f 6129 nice = TASK_NICE(current) + increment;
1da177e4
LT
6130 if (nice < -20)
6131 nice = -20;
6132 if (nice > 19)
6133 nice = 19;
6134
e43379f1
MM
6135 if (increment < 0 && !can_nice(current, nice))
6136 return -EPERM;
6137
1da177e4
LT
6138 retval = security_task_setnice(current, nice);
6139 if (retval)
6140 return retval;
6141
6142 set_user_nice(current, nice);
6143 return 0;
6144}
6145
6146#endif
6147
6148/**
6149 * task_prio - return the priority value of a given task.
6150 * @p: the task in question.
6151 *
6152 * This is the priority value as seen by users in /proc.
6153 * RT tasks are offset by -200. Normal tasks are centered
6154 * around 0, value goes from -16 to +15.
6155 */
36c8b586 6156int task_prio(const struct task_struct *p)
1da177e4
LT
6157{
6158 return p->prio - MAX_RT_PRIO;
6159}
6160
6161/**
6162 * task_nice - return the nice value of a given task.
6163 * @p: the task in question.
6164 */
36c8b586 6165int task_nice(const struct task_struct *p)
1da177e4
LT
6166{
6167 return TASK_NICE(p);
6168}
150d8bed 6169EXPORT_SYMBOL(task_nice);
1da177e4
LT
6170
6171/**
6172 * idle_cpu - is a given cpu idle currently?
6173 * @cpu: the processor in question.
6174 */
6175int idle_cpu(int cpu)
6176{
6177 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6178}
6179
1da177e4
LT
6180/**
6181 * idle_task - return the idle task for a given cpu.
6182 * @cpu: the processor in question.
6183 */
36c8b586 6184struct task_struct *idle_task(int cpu)
1da177e4
LT
6185{
6186 return cpu_rq(cpu)->idle;
6187}
6188
6189/**
6190 * find_process_by_pid - find a process with a matching PID value.
6191 * @pid: the pid in question.
6192 */
a9957449 6193static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6194{
228ebcbe 6195 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6196}
6197
6198/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6199static void
6200__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6201{
dd41f596 6202 BUG_ON(p->se.on_rq);
48f24c4d 6203
1da177e4
LT
6204 p->policy = policy;
6205 p->rt_priority = prio;
b29739f9
IM
6206 p->normal_prio = normal_prio(p);
6207 /* we are holding p->pi_lock already */
6208 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6209 if (rt_prio(p->prio))
6210 p->sched_class = &rt_sched_class;
6211 else
6212 p->sched_class = &fair_sched_class;
2dd73a4f 6213 set_load_weight(p);
1da177e4
LT
6214}
6215
c69e8d9c
DH
6216/*
6217 * check the target process has a UID that matches the current process's
6218 */
6219static bool check_same_owner(struct task_struct *p)
6220{
6221 const struct cred *cred = current_cred(), *pcred;
6222 bool match;
6223
6224 rcu_read_lock();
6225 pcred = __task_cred(p);
6226 match = (cred->euid == pcred->euid ||
6227 cred->euid == pcred->uid);
6228 rcu_read_unlock();
6229 return match;
6230}
6231
961ccddd
RR
6232static int __sched_setscheduler(struct task_struct *p, int policy,
6233 struct sched_param *param, bool user)
1da177e4 6234{
83b699ed 6235 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6236 unsigned long flags;
cb469845 6237 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6238 struct rq *rq;
ca94c442 6239 int reset_on_fork;
1da177e4 6240
66e5393a
SR
6241 /* may grab non-irq protected spin_locks */
6242 BUG_ON(in_interrupt());
1da177e4
LT
6243recheck:
6244 /* double check policy once rq lock held */
ca94c442
LP
6245 if (policy < 0) {
6246 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6247 policy = oldpolicy = p->policy;
ca94c442
LP
6248 } else {
6249 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6250 policy &= ~SCHED_RESET_ON_FORK;
6251
6252 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6253 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6254 policy != SCHED_IDLE)
6255 return -EINVAL;
6256 }
6257
1da177e4
LT
6258 /*
6259 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6260 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6261 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6262 */
6263 if (param->sched_priority < 0 ||
95cdf3b7 6264 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6265 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6266 return -EINVAL;
e05606d3 6267 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6268 return -EINVAL;
6269
37e4ab3f
OC
6270 /*
6271 * Allow unprivileged RT tasks to decrease priority:
6272 */
961ccddd 6273 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6274 if (rt_policy(policy)) {
8dc3e909 6275 unsigned long rlim_rtprio;
8dc3e909
ON
6276
6277 if (!lock_task_sighand(p, &flags))
6278 return -ESRCH;
6279 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6280 unlock_task_sighand(p, &flags);
6281
6282 /* can't set/change the rt policy */
6283 if (policy != p->policy && !rlim_rtprio)
6284 return -EPERM;
6285
6286 /* can't increase priority */
6287 if (param->sched_priority > p->rt_priority &&
6288 param->sched_priority > rlim_rtprio)
6289 return -EPERM;
6290 }
dd41f596
IM
6291 /*
6292 * Like positive nice levels, dont allow tasks to
6293 * move out of SCHED_IDLE either:
6294 */
6295 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6296 return -EPERM;
5fe1d75f 6297
37e4ab3f 6298 /* can't change other user's priorities */
c69e8d9c 6299 if (!check_same_owner(p))
37e4ab3f 6300 return -EPERM;
ca94c442
LP
6301
6302 /* Normal users shall not reset the sched_reset_on_fork flag */
6303 if (p->sched_reset_on_fork && !reset_on_fork)
6304 return -EPERM;
37e4ab3f 6305 }
1da177e4 6306
725aad24 6307 if (user) {
b68aa230 6308#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6309 /*
6310 * Do not allow realtime tasks into groups that have no runtime
6311 * assigned.
6312 */
9a7e0b18
PZ
6313 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6314 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6315 return -EPERM;
b68aa230
PZ
6316#endif
6317
725aad24
JF
6318 retval = security_task_setscheduler(p, policy, param);
6319 if (retval)
6320 return retval;
6321 }
6322
b29739f9
IM
6323 /*
6324 * make sure no PI-waiters arrive (or leave) while we are
6325 * changing the priority of the task:
6326 */
6327 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6328 /*
6329 * To be able to change p->policy safely, the apropriate
6330 * runqueue lock must be held.
6331 */
b29739f9 6332 rq = __task_rq_lock(p);
1da177e4
LT
6333 /* recheck policy now with rq lock held */
6334 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6335 policy = oldpolicy = -1;
b29739f9
IM
6336 __task_rq_unlock(rq);
6337 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6338 goto recheck;
6339 }
2daa3577 6340 update_rq_clock(rq);
dd41f596 6341 on_rq = p->se.on_rq;
051a1d1a 6342 running = task_current(rq, p);
0e1f3483 6343 if (on_rq)
2e1cb74a 6344 deactivate_task(rq, p, 0);
0e1f3483
HS
6345 if (running)
6346 p->sched_class->put_prev_task(rq, p);
f6b53205 6347
ca94c442
LP
6348 p->sched_reset_on_fork = reset_on_fork;
6349
1da177e4 6350 oldprio = p->prio;
dd41f596 6351 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6352
0e1f3483
HS
6353 if (running)
6354 p->sched_class->set_curr_task(rq);
dd41f596
IM
6355 if (on_rq) {
6356 activate_task(rq, p, 0);
cb469845
SR
6357
6358 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6359 }
b29739f9
IM
6360 __task_rq_unlock(rq);
6361 spin_unlock_irqrestore(&p->pi_lock, flags);
6362
95e02ca9
TG
6363 rt_mutex_adjust_pi(p);
6364
1da177e4
LT
6365 return 0;
6366}
961ccddd
RR
6367
6368/**
6369 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6370 * @p: the task in question.
6371 * @policy: new policy.
6372 * @param: structure containing the new RT priority.
6373 *
6374 * NOTE that the task may be already dead.
6375 */
6376int sched_setscheduler(struct task_struct *p, int policy,
6377 struct sched_param *param)
6378{
6379 return __sched_setscheduler(p, policy, param, true);
6380}
1da177e4
LT
6381EXPORT_SYMBOL_GPL(sched_setscheduler);
6382
961ccddd
RR
6383/**
6384 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6385 * @p: the task in question.
6386 * @policy: new policy.
6387 * @param: structure containing the new RT priority.
6388 *
6389 * Just like sched_setscheduler, only don't bother checking if the
6390 * current context has permission. For example, this is needed in
6391 * stop_machine(): we create temporary high priority worker threads,
6392 * but our caller might not have that capability.
6393 */
6394int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6395 struct sched_param *param)
6396{
6397 return __sched_setscheduler(p, policy, param, false);
6398}
6399
95cdf3b7
IM
6400static int
6401do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6402{
1da177e4
LT
6403 struct sched_param lparam;
6404 struct task_struct *p;
36c8b586 6405 int retval;
1da177e4
LT
6406
6407 if (!param || pid < 0)
6408 return -EINVAL;
6409 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6410 return -EFAULT;
5fe1d75f
ON
6411
6412 rcu_read_lock();
6413 retval = -ESRCH;
1da177e4 6414 p = find_process_by_pid(pid);
5fe1d75f
ON
6415 if (p != NULL)
6416 retval = sched_setscheduler(p, policy, &lparam);
6417 rcu_read_unlock();
36c8b586 6418
1da177e4
LT
6419 return retval;
6420}
6421
6422/**
6423 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6424 * @pid: the pid in question.
6425 * @policy: new policy.
6426 * @param: structure containing the new RT priority.
6427 */
5add95d4
HC
6428SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6429 struct sched_param __user *, param)
1da177e4 6430{
c21761f1
JB
6431 /* negative values for policy are not valid */
6432 if (policy < 0)
6433 return -EINVAL;
6434
1da177e4
LT
6435 return do_sched_setscheduler(pid, policy, param);
6436}
6437
6438/**
6439 * sys_sched_setparam - set/change the RT priority of a thread
6440 * @pid: the pid in question.
6441 * @param: structure containing the new RT priority.
6442 */
5add95d4 6443SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6444{
6445 return do_sched_setscheduler(pid, -1, param);
6446}
6447
6448/**
6449 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6450 * @pid: the pid in question.
6451 */
5add95d4 6452SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6453{
36c8b586 6454 struct task_struct *p;
3a5c359a 6455 int retval;
1da177e4
LT
6456
6457 if (pid < 0)
3a5c359a 6458 return -EINVAL;
1da177e4
LT
6459
6460 retval = -ESRCH;
6461 read_lock(&tasklist_lock);
6462 p = find_process_by_pid(pid);
6463 if (p) {
6464 retval = security_task_getscheduler(p);
6465 if (!retval)
ca94c442
LP
6466 retval = p->policy
6467 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6468 }
6469 read_unlock(&tasklist_lock);
1da177e4
LT
6470 return retval;
6471}
6472
6473/**
ca94c442 6474 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6475 * @pid: the pid in question.
6476 * @param: structure containing the RT priority.
6477 */
5add95d4 6478SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6479{
6480 struct sched_param lp;
36c8b586 6481 struct task_struct *p;
3a5c359a 6482 int retval;
1da177e4
LT
6483
6484 if (!param || pid < 0)
3a5c359a 6485 return -EINVAL;
1da177e4
LT
6486
6487 read_lock(&tasklist_lock);
6488 p = find_process_by_pid(pid);
6489 retval = -ESRCH;
6490 if (!p)
6491 goto out_unlock;
6492
6493 retval = security_task_getscheduler(p);
6494 if (retval)
6495 goto out_unlock;
6496
6497 lp.sched_priority = p->rt_priority;
6498 read_unlock(&tasklist_lock);
6499
6500 /*
6501 * This one might sleep, we cannot do it with a spinlock held ...
6502 */
6503 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6504
1da177e4
LT
6505 return retval;
6506
6507out_unlock:
6508 read_unlock(&tasklist_lock);
6509 return retval;
6510}
6511
96f874e2 6512long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6513{
5a16f3d3 6514 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6515 struct task_struct *p;
6516 int retval;
1da177e4 6517
95402b38 6518 get_online_cpus();
1da177e4
LT
6519 read_lock(&tasklist_lock);
6520
6521 p = find_process_by_pid(pid);
6522 if (!p) {
6523 read_unlock(&tasklist_lock);
95402b38 6524 put_online_cpus();
1da177e4
LT
6525 return -ESRCH;
6526 }
6527
6528 /*
6529 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6530 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6531 * usage count and then drop tasklist_lock.
6532 */
6533 get_task_struct(p);
6534 read_unlock(&tasklist_lock);
6535
5a16f3d3
RR
6536 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6537 retval = -ENOMEM;
6538 goto out_put_task;
6539 }
6540 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6541 retval = -ENOMEM;
6542 goto out_free_cpus_allowed;
6543 }
1da177e4 6544 retval = -EPERM;
c69e8d9c 6545 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6546 goto out_unlock;
6547
e7834f8f
DQ
6548 retval = security_task_setscheduler(p, 0, NULL);
6549 if (retval)
6550 goto out_unlock;
6551
5a16f3d3
RR
6552 cpuset_cpus_allowed(p, cpus_allowed);
6553 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6554 again:
5a16f3d3 6555 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6556
8707d8b8 6557 if (!retval) {
5a16f3d3
RR
6558 cpuset_cpus_allowed(p, cpus_allowed);
6559 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6560 /*
6561 * We must have raced with a concurrent cpuset
6562 * update. Just reset the cpus_allowed to the
6563 * cpuset's cpus_allowed
6564 */
5a16f3d3 6565 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6566 goto again;
6567 }
6568 }
1da177e4 6569out_unlock:
5a16f3d3
RR
6570 free_cpumask_var(new_mask);
6571out_free_cpus_allowed:
6572 free_cpumask_var(cpus_allowed);
6573out_put_task:
1da177e4 6574 put_task_struct(p);
95402b38 6575 put_online_cpus();
1da177e4
LT
6576 return retval;
6577}
6578
6579static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6580 struct cpumask *new_mask)
1da177e4 6581{
96f874e2
RR
6582 if (len < cpumask_size())
6583 cpumask_clear(new_mask);
6584 else if (len > cpumask_size())
6585 len = cpumask_size();
6586
1da177e4
LT
6587 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6588}
6589
6590/**
6591 * sys_sched_setaffinity - set the cpu affinity of a process
6592 * @pid: pid of the process
6593 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6594 * @user_mask_ptr: user-space pointer to the new cpu mask
6595 */
5add95d4
HC
6596SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6597 unsigned long __user *, user_mask_ptr)
1da177e4 6598{
5a16f3d3 6599 cpumask_var_t new_mask;
1da177e4
LT
6600 int retval;
6601
5a16f3d3
RR
6602 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6603 return -ENOMEM;
1da177e4 6604
5a16f3d3
RR
6605 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6606 if (retval == 0)
6607 retval = sched_setaffinity(pid, new_mask);
6608 free_cpumask_var(new_mask);
6609 return retval;
1da177e4
LT
6610}
6611
96f874e2 6612long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6613{
36c8b586 6614 struct task_struct *p;
31605683
TG
6615 unsigned long flags;
6616 struct rq *rq;
1da177e4 6617 int retval;
1da177e4 6618
95402b38 6619 get_online_cpus();
1da177e4
LT
6620 read_lock(&tasklist_lock);
6621
6622 retval = -ESRCH;
6623 p = find_process_by_pid(pid);
6624 if (!p)
6625 goto out_unlock;
6626
e7834f8f
DQ
6627 retval = security_task_getscheduler(p);
6628 if (retval)
6629 goto out_unlock;
6630
31605683 6631 rq = task_rq_lock(p, &flags);
96f874e2 6632 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6633 task_rq_unlock(rq, &flags);
1da177e4
LT
6634
6635out_unlock:
6636 read_unlock(&tasklist_lock);
95402b38 6637 put_online_cpus();
1da177e4 6638
9531b62f 6639 return retval;
1da177e4
LT
6640}
6641
6642/**
6643 * sys_sched_getaffinity - get the cpu affinity of a process
6644 * @pid: pid of the process
6645 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6646 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6647 */
5add95d4
HC
6648SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6649 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6650{
6651 int ret;
f17c8607 6652 cpumask_var_t mask;
1da177e4 6653
f17c8607 6654 if (len < cpumask_size())
1da177e4
LT
6655 return -EINVAL;
6656
f17c8607
RR
6657 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6658 return -ENOMEM;
1da177e4 6659
f17c8607
RR
6660 ret = sched_getaffinity(pid, mask);
6661 if (ret == 0) {
6662 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6663 ret = -EFAULT;
6664 else
6665 ret = cpumask_size();
6666 }
6667 free_cpumask_var(mask);
1da177e4 6668
f17c8607 6669 return ret;
1da177e4
LT
6670}
6671
6672/**
6673 * sys_sched_yield - yield the current processor to other threads.
6674 *
dd41f596
IM
6675 * This function yields the current CPU to other tasks. If there are no
6676 * other threads running on this CPU then this function will return.
1da177e4 6677 */
5add95d4 6678SYSCALL_DEFINE0(sched_yield)
1da177e4 6679{
70b97a7f 6680 struct rq *rq = this_rq_lock();
1da177e4 6681
2d72376b 6682 schedstat_inc(rq, yld_count);
4530d7ab 6683 current->sched_class->yield_task(rq);
1da177e4
LT
6684
6685 /*
6686 * Since we are going to call schedule() anyway, there's
6687 * no need to preempt or enable interrupts:
6688 */
6689 __release(rq->lock);
8a25d5de 6690 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6691 _raw_spin_unlock(&rq->lock);
6692 preempt_enable_no_resched();
6693
6694 schedule();
6695
6696 return 0;
6697}
6698
d86ee480
PZ
6699static inline int should_resched(void)
6700{
6701 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6702}
6703
e7b38404 6704static void __cond_resched(void)
1da177e4 6705{
e7aaaa69
FW
6706 add_preempt_count(PREEMPT_ACTIVE);
6707 schedule();
6708 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6709}
6710
02b67cc3 6711int __sched _cond_resched(void)
1da177e4 6712{
d86ee480 6713 if (should_resched()) {
1da177e4
LT
6714 __cond_resched();
6715 return 1;
6716 }
6717 return 0;
6718}
02b67cc3 6719EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6720
6721/*
613afbf8 6722 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6723 * call schedule, and on return reacquire the lock.
6724 *
41a2d6cf 6725 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6726 * operations here to prevent schedule() from being called twice (once via
6727 * spin_unlock(), once by hand).
6728 */
613afbf8 6729int __cond_resched_lock(spinlock_t *lock)
1da177e4 6730{
d86ee480 6731 int resched = should_resched();
6df3cecb
JK
6732 int ret = 0;
6733
f607c668
PZ
6734 lockdep_assert_held(lock);
6735
95c354fe 6736 if (spin_needbreak(lock) || resched) {
1da177e4 6737 spin_unlock(lock);
d86ee480 6738 if (resched)
95c354fe
NP
6739 __cond_resched();
6740 else
6741 cpu_relax();
6df3cecb 6742 ret = 1;
1da177e4 6743 spin_lock(lock);
1da177e4 6744 }
6df3cecb 6745 return ret;
1da177e4 6746}
613afbf8 6747EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6748
613afbf8 6749int __sched __cond_resched_softirq(void)
1da177e4
LT
6750{
6751 BUG_ON(!in_softirq());
6752
d86ee480 6753 if (should_resched()) {
98d82567 6754 local_bh_enable();
1da177e4
LT
6755 __cond_resched();
6756 local_bh_disable();
6757 return 1;
6758 }
6759 return 0;
6760}
613afbf8 6761EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6762
1da177e4
LT
6763/**
6764 * yield - yield the current processor to other threads.
6765 *
72fd4a35 6766 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6767 * thread runnable and calls sys_sched_yield().
6768 */
6769void __sched yield(void)
6770{
6771 set_current_state(TASK_RUNNING);
6772 sys_sched_yield();
6773}
1da177e4
LT
6774EXPORT_SYMBOL(yield);
6775
6776/*
41a2d6cf 6777 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6778 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6779 */
6780void __sched io_schedule(void)
6781{
54d35f29 6782 struct rq *rq = raw_rq();
1da177e4 6783
0ff92245 6784 delayacct_blkio_start();
1da177e4 6785 atomic_inc(&rq->nr_iowait);
8f0dfc34 6786 current->in_iowait = 1;
1da177e4 6787 schedule();
8f0dfc34 6788 current->in_iowait = 0;
1da177e4 6789 atomic_dec(&rq->nr_iowait);
0ff92245 6790 delayacct_blkio_end();
1da177e4 6791}
1da177e4
LT
6792EXPORT_SYMBOL(io_schedule);
6793
6794long __sched io_schedule_timeout(long timeout)
6795{
54d35f29 6796 struct rq *rq = raw_rq();
1da177e4
LT
6797 long ret;
6798
0ff92245 6799 delayacct_blkio_start();
1da177e4 6800 atomic_inc(&rq->nr_iowait);
8f0dfc34 6801 current->in_iowait = 1;
1da177e4 6802 ret = schedule_timeout(timeout);
8f0dfc34 6803 current->in_iowait = 0;
1da177e4 6804 atomic_dec(&rq->nr_iowait);
0ff92245 6805 delayacct_blkio_end();
1da177e4
LT
6806 return ret;
6807}
6808
6809/**
6810 * sys_sched_get_priority_max - return maximum RT priority.
6811 * @policy: scheduling class.
6812 *
6813 * this syscall returns the maximum rt_priority that can be used
6814 * by a given scheduling class.
6815 */
5add95d4 6816SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6817{
6818 int ret = -EINVAL;
6819
6820 switch (policy) {
6821 case SCHED_FIFO:
6822 case SCHED_RR:
6823 ret = MAX_USER_RT_PRIO-1;
6824 break;
6825 case SCHED_NORMAL:
b0a9499c 6826 case SCHED_BATCH:
dd41f596 6827 case SCHED_IDLE:
1da177e4
LT
6828 ret = 0;
6829 break;
6830 }
6831 return ret;
6832}
6833
6834/**
6835 * sys_sched_get_priority_min - return minimum RT priority.
6836 * @policy: scheduling class.
6837 *
6838 * this syscall returns the minimum rt_priority that can be used
6839 * by a given scheduling class.
6840 */
5add95d4 6841SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6842{
6843 int ret = -EINVAL;
6844
6845 switch (policy) {
6846 case SCHED_FIFO:
6847 case SCHED_RR:
6848 ret = 1;
6849 break;
6850 case SCHED_NORMAL:
b0a9499c 6851 case SCHED_BATCH:
dd41f596 6852 case SCHED_IDLE:
1da177e4
LT
6853 ret = 0;
6854 }
6855 return ret;
6856}
6857
6858/**
6859 * sys_sched_rr_get_interval - return the default timeslice of a process.
6860 * @pid: pid of the process.
6861 * @interval: userspace pointer to the timeslice value.
6862 *
6863 * this syscall writes the default timeslice value of a given process
6864 * into the user-space timespec buffer. A value of '0' means infinity.
6865 */
17da2bd9 6866SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6867 struct timespec __user *, interval)
1da177e4 6868{
36c8b586 6869 struct task_struct *p;
a4ec24b4 6870 unsigned int time_slice;
dba091b9
TG
6871 unsigned long flags;
6872 struct rq *rq;
3a5c359a 6873 int retval;
1da177e4 6874 struct timespec t;
1da177e4
LT
6875
6876 if (pid < 0)
3a5c359a 6877 return -EINVAL;
1da177e4
LT
6878
6879 retval = -ESRCH;
6880 read_lock(&tasklist_lock);
6881 p = find_process_by_pid(pid);
6882 if (!p)
6883 goto out_unlock;
6884
6885 retval = security_task_getscheduler(p);
6886 if (retval)
6887 goto out_unlock;
6888
dba091b9
TG
6889 rq = task_rq_lock(p, &flags);
6890 time_slice = p->sched_class->get_rr_interval(rq, p);
6891 task_rq_unlock(rq, &flags);
a4ec24b4 6892
1da177e4 6893 read_unlock(&tasklist_lock);
a4ec24b4 6894 jiffies_to_timespec(time_slice, &t);
1da177e4 6895 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6896 return retval;
3a5c359a 6897
1da177e4
LT
6898out_unlock:
6899 read_unlock(&tasklist_lock);
6900 return retval;
6901}
6902
7c731e0a 6903static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6904
82a1fcb9 6905void sched_show_task(struct task_struct *p)
1da177e4 6906{
1da177e4 6907 unsigned long free = 0;
36c8b586 6908 unsigned state;
1da177e4 6909
1da177e4 6910 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6911 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6912 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6913#if BITS_PER_LONG == 32
1da177e4 6914 if (state == TASK_RUNNING)
663997d4 6915 pr_cont(" running ");
1da177e4 6916 else
663997d4 6917 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6918#else
6919 if (state == TASK_RUNNING)
663997d4 6920 pr_cont(" running task ");
1da177e4 6921 else
663997d4 6922 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6923#endif
6924#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6925 free = stack_not_used(p);
1da177e4 6926#endif
663997d4 6927 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6928 task_pid_nr(p), task_pid_nr(p->real_parent),
6929 (unsigned long)task_thread_info(p)->flags);
1da177e4 6930
5fb5e6de 6931 show_stack(p, NULL);
1da177e4
LT
6932}
6933
e59e2ae2 6934void show_state_filter(unsigned long state_filter)
1da177e4 6935{
36c8b586 6936 struct task_struct *g, *p;
1da177e4 6937
4bd77321 6938#if BITS_PER_LONG == 32
663997d4 6939 pr_info(" task PC stack pid father\n");
1da177e4 6940#else
663997d4 6941 pr_info(" task PC stack pid father\n");
1da177e4
LT
6942#endif
6943 read_lock(&tasklist_lock);
6944 do_each_thread(g, p) {
6945 /*
6946 * reset the NMI-timeout, listing all files on a slow
6947 * console might take alot of time:
6948 */
6949 touch_nmi_watchdog();
39bc89fd 6950 if (!state_filter || (p->state & state_filter))
82a1fcb9 6951 sched_show_task(p);
1da177e4
LT
6952 } while_each_thread(g, p);
6953
04c9167f
JF
6954 touch_all_softlockup_watchdogs();
6955
dd41f596
IM
6956#ifdef CONFIG_SCHED_DEBUG
6957 sysrq_sched_debug_show();
6958#endif
1da177e4 6959 read_unlock(&tasklist_lock);
e59e2ae2
IM
6960 /*
6961 * Only show locks if all tasks are dumped:
6962 */
93335a21 6963 if (!state_filter)
e59e2ae2 6964 debug_show_all_locks();
1da177e4
LT
6965}
6966
1df21055
IM
6967void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6968{
dd41f596 6969 idle->sched_class = &idle_sched_class;
1df21055
IM
6970}
6971
f340c0d1
IM
6972/**
6973 * init_idle - set up an idle thread for a given CPU
6974 * @idle: task in question
6975 * @cpu: cpu the idle task belongs to
6976 *
6977 * NOTE: this function does not set the idle thread's NEED_RESCHED
6978 * flag, to make booting more robust.
6979 */
5c1e1767 6980void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6981{
70b97a7f 6982 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6983 unsigned long flags;
6984
5cbd54ef
IM
6985 spin_lock_irqsave(&rq->lock, flags);
6986
dd41f596
IM
6987 __sched_fork(idle);
6988 idle->se.exec_start = sched_clock();
6989
96f874e2 6990 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6991 __set_task_cpu(idle, cpu);
1da177e4 6992
1da177e4 6993 rq->curr = rq->idle = idle;
4866cde0
NP
6994#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6995 idle->oncpu = 1;
6996#endif
1da177e4
LT
6997 spin_unlock_irqrestore(&rq->lock, flags);
6998
6999 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7000#if defined(CONFIG_PREEMPT)
7001 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7002#else
a1261f54 7003 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7004#endif
dd41f596
IM
7005 /*
7006 * The idle tasks have their own, simple scheduling class:
7007 */
7008 idle->sched_class = &idle_sched_class;
fb52607a 7009 ftrace_graph_init_task(idle);
1da177e4
LT
7010}
7011
7012/*
7013 * In a system that switches off the HZ timer nohz_cpu_mask
7014 * indicates which cpus entered this state. This is used
7015 * in the rcu update to wait only for active cpus. For system
7016 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7017 * always be CPU_BITS_NONE.
1da177e4 7018 */
6a7b3dc3 7019cpumask_var_t nohz_cpu_mask;
1da177e4 7020
19978ca6
IM
7021/*
7022 * Increase the granularity value when there are more CPUs,
7023 * because with more CPUs the 'effective latency' as visible
7024 * to users decreases. But the relationship is not linear,
7025 * so pick a second-best guess by going with the log2 of the
7026 * number of CPUs.
7027 *
7028 * This idea comes from the SD scheduler of Con Kolivas:
7029 */
acb4a848 7030static int get_update_sysctl_factor(void)
19978ca6 7031{
4ca3ef71 7032 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7033 unsigned int factor;
7034
7035 switch (sysctl_sched_tunable_scaling) {
7036 case SCHED_TUNABLESCALING_NONE:
7037 factor = 1;
7038 break;
7039 case SCHED_TUNABLESCALING_LINEAR:
7040 factor = cpus;
7041 break;
7042 case SCHED_TUNABLESCALING_LOG:
7043 default:
7044 factor = 1 + ilog2(cpus);
7045 break;
7046 }
19978ca6 7047
acb4a848
CE
7048 return factor;
7049}
19978ca6 7050
acb4a848
CE
7051static void update_sysctl(void)
7052{
7053 unsigned int factor = get_update_sysctl_factor();
19978ca6 7054
0bcdcf28
CE
7055#define SET_SYSCTL(name) \
7056 (sysctl_##name = (factor) * normalized_sysctl_##name)
7057 SET_SYSCTL(sched_min_granularity);
7058 SET_SYSCTL(sched_latency);
7059 SET_SYSCTL(sched_wakeup_granularity);
7060 SET_SYSCTL(sched_shares_ratelimit);
7061#undef SET_SYSCTL
7062}
55cd5340 7063
0bcdcf28
CE
7064static inline void sched_init_granularity(void)
7065{
7066 update_sysctl();
19978ca6
IM
7067}
7068
1da177e4
LT
7069#ifdef CONFIG_SMP
7070/*
7071 * This is how migration works:
7072 *
70b97a7f 7073 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7074 * runqueue and wake up that CPU's migration thread.
7075 * 2) we down() the locked semaphore => thread blocks.
7076 * 3) migration thread wakes up (implicitly it forces the migrated
7077 * thread off the CPU)
7078 * 4) it gets the migration request and checks whether the migrated
7079 * task is still in the wrong runqueue.
7080 * 5) if it's in the wrong runqueue then the migration thread removes
7081 * it and puts it into the right queue.
7082 * 6) migration thread up()s the semaphore.
7083 * 7) we wake up and the migration is done.
7084 */
7085
7086/*
7087 * Change a given task's CPU affinity. Migrate the thread to a
7088 * proper CPU and schedule it away if the CPU it's executing on
7089 * is removed from the allowed bitmask.
7090 *
7091 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7092 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7093 * call is not atomic; no spinlocks may be held.
7094 */
96f874e2 7095int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7096{
70b97a7f 7097 struct migration_req req;
1da177e4 7098 unsigned long flags;
70b97a7f 7099 struct rq *rq;
48f24c4d 7100 int ret = 0;
1da177e4
LT
7101
7102 rq = task_rq_lock(p, &flags);
6ad4c188 7103 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7104 ret = -EINVAL;
7105 goto out;
7106 }
7107
9985b0ba 7108 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7109 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7110 ret = -EINVAL;
7111 goto out;
7112 }
7113
73fe6aae 7114 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7115 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7116 else {
96f874e2
RR
7117 cpumask_copy(&p->cpus_allowed, new_mask);
7118 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7119 }
7120
1da177e4 7121 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7122 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7123 goto out;
7124
6ad4c188 7125 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7126 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7127 struct task_struct *mt = rq->migration_thread;
7128
7129 get_task_struct(mt);
1da177e4
LT
7130 task_rq_unlock(rq, &flags);
7131 wake_up_process(rq->migration_thread);
693525e3 7132 put_task_struct(mt);
1da177e4
LT
7133 wait_for_completion(&req.done);
7134 tlb_migrate_finish(p->mm);
7135 return 0;
7136 }
7137out:
7138 task_rq_unlock(rq, &flags);
48f24c4d 7139
1da177e4
LT
7140 return ret;
7141}
cd8ba7cd 7142EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7143
7144/*
41a2d6cf 7145 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7146 * this because either it can't run here any more (set_cpus_allowed()
7147 * away from this CPU, or CPU going down), or because we're
7148 * attempting to rebalance this task on exec (sched_exec).
7149 *
7150 * So we race with normal scheduler movements, but that's OK, as long
7151 * as the task is no longer on this CPU.
efc30814
KK
7152 *
7153 * Returns non-zero if task was successfully migrated.
1da177e4 7154 */
efc30814 7155static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7156{
70b97a7f 7157 struct rq *rq_dest, *rq_src;
dd41f596 7158 int ret = 0, on_rq;
1da177e4 7159
e761b772 7160 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7161 return ret;
1da177e4
LT
7162
7163 rq_src = cpu_rq(src_cpu);
7164 rq_dest = cpu_rq(dest_cpu);
7165
7166 double_rq_lock(rq_src, rq_dest);
7167 /* Already moved. */
7168 if (task_cpu(p) != src_cpu)
b1e38734 7169 goto done;
1da177e4 7170 /* Affinity changed (again). */
96f874e2 7171 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7172 goto fail;
1da177e4 7173
dd41f596 7174 on_rq = p->se.on_rq;
6e82a3be 7175 if (on_rq)
2e1cb74a 7176 deactivate_task(rq_src, p, 0);
6e82a3be 7177
1da177e4 7178 set_task_cpu(p, dest_cpu);
dd41f596
IM
7179 if (on_rq) {
7180 activate_task(rq_dest, p, 0);
15afe09b 7181 check_preempt_curr(rq_dest, p, 0);
1da177e4 7182 }
b1e38734 7183done:
efc30814 7184 ret = 1;
b1e38734 7185fail:
1da177e4 7186 double_rq_unlock(rq_src, rq_dest);
efc30814 7187 return ret;
1da177e4
LT
7188}
7189
03b042bf
PM
7190#define RCU_MIGRATION_IDLE 0
7191#define RCU_MIGRATION_NEED_QS 1
7192#define RCU_MIGRATION_GOT_QS 2
7193#define RCU_MIGRATION_MUST_SYNC 3
7194
1da177e4
LT
7195/*
7196 * migration_thread - this is a highprio system thread that performs
7197 * thread migration by bumping thread off CPU then 'pushing' onto
7198 * another runqueue.
7199 */
95cdf3b7 7200static int migration_thread(void *data)
1da177e4 7201{
03b042bf 7202 int badcpu;
1da177e4 7203 int cpu = (long)data;
70b97a7f 7204 struct rq *rq;
1da177e4
LT
7205
7206 rq = cpu_rq(cpu);
7207 BUG_ON(rq->migration_thread != current);
7208
7209 set_current_state(TASK_INTERRUPTIBLE);
7210 while (!kthread_should_stop()) {
70b97a7f 7211 struct migration_req *req;
1da177e4 7212 struct list_head *head;
1da177e4 7213
1da177e4
LT
7214 spin_lock_irq(&rq->lock);
7215
7216 if (cpu_is_offline(cpu)) {
7217 spin_unlock_irq(&rq->lock);
371cbb38 7218 break;
1da177e4
LT
7219 }
7220
7221 if (rq->active_balance) {
7222 active_load_balance(rq, cpu);
7223 rq->active_balance = 0;
7224 }
7225
7226 head = &rq->migration_queue;
7227
7228 if (list_empty(head)) {
7229 spin_unlock_irq(&rq->lock);
7230 schedule();
7231 set_current_state(TASK_INTERRUPTIBLE);
7232 continue;
7233 }
70b97a7f 7234 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7235 list_del_init(head->next);
7236
03b042bf
PM
7237 if (req->task != NULL) {
7238 spin_unlock(&rq->lock);
7239 __migrate_task(req->task, cpu, req->dest_cpu);
7240 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7241 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7242 spin_unlock(&rq->lock);
7243 } else {
7244 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7245 spin_unlock(&rq->lock);
7246 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7247 }
674311d5 7248 local_irq_enable();
1da177e4
LT
7249
7250 complete(&req->done);
7251 }
7252 __set_current_state(TASK_RUNNING);
1da177e4 7253
1da177e4
LT
7254 return 0;
7255}
7256
7257#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7258
7259static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7260{
7261 int ret;
7262
7263 local_irq_disable();
7264 ret = __migrate_task(p, src_cpu, dest_cpu);
7265 local_irq_enable();
7266 return ret;
7267}
7268
054b9108 7269/*
3a4fa0a2 7270 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7271 */
48f24c4d 7272static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7273{
70b97a7f 7274 int dest_cpu;
6ca09dfc 7275 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7276
7277again:
7278 /* Look for allowed, online CPU in same node. */
6ad4c188 7279 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7280 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7281 goto move;
7282
7283 /* Any allowed, online CPU? */
6ad4c188 7284 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7285 if (dest_cpu < nr_cpu_ids)
7286 goto move;
7287
7288 /* No more Mr. Nice Guy. */
7289 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7290 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7291 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7292
e76bd8d9
RR
7293 /*
7294 * Don't tell them about moving exiting tasks or
7295 * kernel threads (both mm NULL), since they never
7296 * leave kernel.
7297 */
7298 if (p->mm && printk_ratelimit()) {
663997d4
JP
7299 pr_info("process %d (%s) no longer affine to cpu%d\n",
7300 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7301 }
e76bd8d9
RR
7302 }
7303
7304move:
7305 /* It can have affinity changed while we were choosing. */
7306 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7307 goto again;
1da177e4
LT
7308}
7309
7310/*
7311 * While a dead CPU has no uninterruptible tasks queued at this point,
7312 * it might still have a nonzero ->nr_uninterruptible counter, because
7313 * for performance reasons the counter is not stricly tracking tasks to
7314 * their home CPUs. So we just add the counter to another CPU's counter,
7315 * to keep the global sum constant after CPU-down:
7316 */
70b97a7f 7317static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7318{
6ad4c188 7319 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7320 unsigned long flags;
7321
7322 local_irq_save(flags);
7323 double_rq_lock(rq_src, rq_dest);
7324 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7325 rq_src->nr_uninterruptible = 0;
7326 double_rq_unlock(rq_src, rq_dest);
7327 local_irq_restore(flags);
7328}
7329
7330/* Run through task list and migrate tasks from the dead cpu. */
7331static void migrate_live_tasks(int src_cpu)
7332{
48f24c4d 7333 struct task_struct *p, *t;
1da177e4 7334
f7b4cddc 7335 read_lock(&tasklist_lock);
1da177e4 7336
48f24c4d
IM
7337 do_each_thread(t, p) {
7338 if (p == current)
1da177e4
LT
7339 continue;
7340
48f24c4d
IM
7341 if (task_cpu(p) == src_cpu)
7342 move_task_off_dead_cpu(src_cpu, p);
7343 } while_each_thread(t, p);
1da177e4 7344
f7b4cddc 7345 read_unlock(&tasklist_lock);
1da177e4
LT
7346}
7347
dd41f596
IM
7348/*
7349 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7350 * It does so by boosting its priority to highest possible.
7351 * Used by CPU offline code.
1da177e4
LT
7352 */
7353void sched_idle_next(void)
7354{
48f24c4d 7355 int this_cpu = smp_processor_id();
70b97a7f 7356 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7357 struct task_struct *p = rq->idle;
7358 unsigned long flags;
7359
7360 /* cpu has to be offline */
48f24c4d 7361 BUG_ON(cpu_online(this_cpu));
1da177e4 7362
48f24c4d
IM
7363 /*
7364 * Strictly not necessary since rest of the CPUs are stopped by now
7365 * and interrupts disabled on the current cpu.
1da177e4
LT
7366 */
7367 spin_lock_irqsave(&rq->lock, flags);
7368
dd41f596 7369 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7370
94bc9a7b
DA
7371 update_rq_clock(rq);
7372 activate_task(rq, p, 0);
1da177e4
LT
7373
7374 spin_unlock_irqrestore(&rq->lock, flags);
7375}
7376
48f24c4d
IM
7377/*
7378 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7379 * offline.
7380 */
7381void idle_task_exit(void)
7382{
7383 struct mm_struct *mm = current->active_mm;
7384
7385 BUG_ON(cpu_online(smp_processor_id()));
7386
7387 if (mm != &init_mm)
7388 switch_mm(mm, &init_mm, current);
7389 mmdrop(mm);
7390}
7391
054b9108 7392/* called under rq->lock with disabled interrupts */
36c8b586 7393static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7394{
70b97a7f 7395 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7396
7397 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7398 BUG_ON(!p->exit_state);
1da177e4
LT
7399
7400 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7401 BUG_ON(p->state == TASK_DEAD);
1da177e4 7402
48f24c4d 7403 get_task_struct(p);
1da177e4
LT
7404
7405 /*
7406 * Drop lock around migration; if someone else moves it,
41a2d6cf 7407 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7408 * fine.
7409 */
f7b4cddc 7410 spin_unlock_irq(&rq->lock);
48f24c4d 7411 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7412 spin_lock_irq(&rq->lock);
1da177e4 7413
48f24c4d 7414 put_task_struct(p);
1da177e4
LT
7415}
7416
7417/* release_task() removes task from tasklist, so we won't find dead tasks. */
7418static void migrate_dead_tasks(unsigned int dead_cpu)
7419{
70b97a7f 7420 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7421 struct task_struct *next;
48f24c4d 7422
dd41f596
IM
7423 for ( ; ; ) {
7424 if (!rq->nr_running)
7425 break;
a8e504d2 7426 update_rq_clock(rq);
b67802ea 7427 next = pick_next_task(rq);
dd41f596
IM
7428 if (!next)
7429 break;
79c53799 7430 next->sched_class->put_prev_task(rq, next);
dd41f596 7431 migrate_dead(dead_cpu, next);
e692ab53 7432
1da177e4
LT
7433 }
7434}
dce48a84
TG
7435
7436/*
7437 * remove the tasks which were accounted by rq from calc_load_tasks.
7438 */
7439static void calc_global_load_remove(struct rq *rq)
7440{
7441 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7442 rq->calc_load_active = 0;
dce48a84 7443}
1da177e4
LT
7444#endif /* CONFIG_HOTPLUG_CPU */
7445
e692ab53
NP
7446#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7447
7448static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7449 {
7450 .procname = "sched_domain",
c57baf1e 7451 .mode = 0555,
e0361851 7452 },
56992309 7453 {}
e692ab53
NP
7454};
7455
7456static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7457 {
7458 .procname = "kernel",
c57baf1e 7459 .mode = 0555,
e0361851
AD
7460 .child = sd_ctl_dir,
7461 },
56992309 7462 {}
e692ab53
NP
7463};
7464
7465static struct ctl_table *sd_alloc_ctl_entry(int n)
7466{
7467 struct ctl_table *entry =
5cf9f062 7468 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7469
e692ab53
NP
7470 return entry;
7471}
7472
6382bc90
MM
7473static void sd_free_ctl_entry(struct ctl_table **tablep)
7474{
cd790076 7475 struct ctl_table *entry;
6382bc90 7476
cd790076
MM
7477 /*
7478 * In the intermediate directories, both the child directory and
7479 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7480 * will always be set. In the lowest directory the names are
cd790076
MM
7481 * static strings and all have proc handlers.
7482 */
7483 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7484 if (entry->child)
7485 sd_free_ctl_entry(&entry->child);
cd790076
MM
7486 if (entry->proc_handler == NULL)
7487 kfree(entry->procname);
7488 }
6382bc90
MM
7489
7490 kfree(*tablep);
7491 *tablep = NULL;
7492}
7493
e692ab53 7494static void
e0361851 7495set_table_entry(struct ctl_table *entry,
e692ab53
NP
7496 const char *procname, void *data, int maxlen,
7497 mode_t mode, proc_handler *proc_handler)
7498{
e692ab53
NP
7499 entry->procname = procname;
7500 entry->data = data;
7501 entry->maxlen = maxlen;
7502 entry->mode = mode;
7503 entry->proc_handler = proc_handler;
7504}
7505
7506static struct ctl_table *
7507sd_alloc_ctl_domain_table(struct sched_domain *sd)
7508{
a5d8c348 7509 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7510
ad1cdc1d
MM
7511 if (table == NULL)
7512 return NULL;
7513
e0361851 7514 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7515 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7516 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7517 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7518 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7519 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7520 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7521 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7522 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7523 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7524 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7525 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7526 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7527 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7528 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7529 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7530 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7531 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7532 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7533 &sd->cache_nice_tries,
7534 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7535 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7536 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7537 set_table_entry(&table[11], "name", sd->name,
7538 CORENAME_MAX_SIZE, 0444, proc_dostring);
7539 /* &table[12] is terminator */
e692ab53
NP
7540
7541 return table;
7542}
7543
9a4e7159 7544static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7545{
7546 struct ctl_table *entry, *table;
7547 struct sched_domain *sd;
7548 int domain_num = 0, i;
7549 char buf[32];
7550
7551 for_each_domain(cpu, sd)
7552 domain_num++;
7553 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7554 if (table == NULL)
7555 return NULL;
e692ab53
NP
7556
7557 i = 0;
7558 for_each_domain(cpu, sd) {
7559 snprintf(buf, 32, "domain%d", i);
e692ab53 7560 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7561 entry->mode = 0555;
e692ab53
NP
7562 entry->child = sd_alloc_ctl_domain_table(sd);
7563 entry++;
7564 i++;
7565 }
7566 return table;
7567}
7568
7569static struct ctl_table_header *sd_sysctl_header;
6382bc90 7570static void register_sched_domain_sysctl(void)
e692ab53 7571{
6ad4c188 7572 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7573 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7574 char buf[32];
7575
7378547f
MM
7576 WARN_ON(sd_ctl_dir[0].child);
7577 sd_ctl_dir[0].child = entry;
7578
ad1cdc1d
MM
7579 if (entry == NULL)
7580 return;
7581
6ad4c188 7582 for_each_possible_cpu(i) {
e692ab53 7583 snprintf(buf, 32, "cpu%d", i);
e692ab53 7584 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7585 entry->mode = 0555;
e692ab53 7586 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7587 entry++;
e692ab53 7588 }
7378547f
MM
7589
7590 WARN_ON(sd_sysctl_header);
e692ab53
NP
7591 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7592}
6382bc90 7593
7378547f 7594/* may be called multiple times per register */
6382bc90
MM
7595static void unregister_sched_domain_sysctl(void)
7596{
7378547f
MM
7597 if (sd_sysctl_header)
7598 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7599 sd_sysctl_header = NULL;
7378547f
MM
7600 if (sd_ctl_dir[0].child)
7601 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7602}
e692ab53 7603#else
6382bc90
MM
7604static void register_sched_domain_sysctl(void)
7605{
7606}
7607static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7608{
7609}
7610#endif
7611
1f11eb6a
GH
7612static void set_rq_online(struct rq *rq)
7613{
7614 if (!rq->online) {
7615 const struct sched_class *class;
7616
c6c4927b 7617 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7618 rq->online = 1;
7619
7620 for_each_class(class) {
7621 if (class->rq_online)
7622 class->rq_online(rq);
7623 }
7624 }
7625}
7626
7627static void set_rq_offline(struct rq *rq)
7628{
7629 if (rq->online) {
7630 const struct sched_class *class;
7631
7632 for_each_class(class) {
7633 if (class->rq_offline)
7634 class->rq_offline(rq);
7635 }
7636
c6c4927b 7637 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7638 rq->online = 0;
7639 }
7640}
7641
1da177e4
LT
7642/*
7643 * migration_call - callback that gets triggered when a CPU is added.
7644 * Here we can start up the necessary migration thread for the new CPU.
7645 */
48f24c4d
IM
7646static int __cpuinit
7647migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7648{
1da177e4 7649 struct task_struct *p;
48f24c4d 7650 int cpu = (long)hcpu;
1da177e4 7651 unsigned long flags;
70b97a7f 7652 struct rq *rq;
1da177e4
LT
7653
7654 switch (action) {
5be9361c 7655
1da177e4 7656 case CPU_UP_PREPARE:
8bb78442 7657 case CPU_UP_PREPARE_FROZEN:
dd41f596 7658 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7659 if (IS_ERR(p))
7660 return NOTIFY_BAD;
1da177e4
LT
7661 kthread_bind(p, cpu);
7662 /* Must be high prio: stop_machine expects to yield to it. */
7663 rq = task_rq_lock(p, &flags);
dd41f596 7664 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7665 task_rq_unlock(rq, &flags);
371cbb38 7666 get_task_struct(p);
1da177e4 7667 cpu_rq(cpu)->migration_thread = p;
a468d389 7668 rq->calc_load_update = calc_load_update;
1da177e4 7669 break;
48f24c4d 7670
1da177e4 7671 case CPU_ONLINE:
8bb78442 7672 case CPU_ONLINE_FROZEN:
3a4fa0a2 7673 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7674 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7675
7676 /* Update our root-domain */
7677 rq = cpu_rq(cpu);
7678 spin_lock_irqsave(&rq->lock, flags);
7679 if (rq->rd) {
c6c4927b 7680 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7681
7682 set_rq_online(rq);
1f94ef59
GH
7683 }
7684 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7685 break;
48f24c4d 7686
1da177e4
LT
7687#ifdef CONFIG_HOTPLUG_CPU
7688 case CPU_UP_CANCELED:
8bb78442 7689 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7690 if (!cpu_rq(cpu)->migration_thread)
7691 break;
41a2d6cf 7692 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7693 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7694 cpumask_any(cpu_online_mask));
1da177e4 7695 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7696 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7697 cpu_rq(cpu)->migration_thread = NULL;
7698 break;
48f24c4d 7699
1da177e4 7700 case CPU_DEAD:
8bb78442 7701 case CPU_DEAD_FROZEN:
470fd646 7702 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7703 migrate_live_tasks(cpu);
7704 rq = cpu_rq(cpu);
7705 kthread_stop(rq->migration_thread);
371cbb38 7706 put_task_struct(rq->migration_thread);
1da177e4
LT
7707 rq->migration_thread = NULL;
7708 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7709 spin_lock_irq(&rq->lock);
a8e504d2 7710 update_rq_clock(rq);
2e1cb74a 7711 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7712 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7713 rq->idle->sched_class = &idle_sched_class;
1da177e4 7714 migrate_dead_tasks(cpu);
d2da272a 7715 spin_unlock_irq(&rq->lock);
470fd646 7716 cpuset_unlock();
1da177e4
LT
7717 migrate_nr_uninterruptible(rq);
7718 BUG_ON(rq->nr_running != 0);
dce48a84 7719 calc_global_load_remove(rq);
41a2d6cf
IM
7720 /*
7721 * No need to migrate the tasks: it was best-effort if
7722 * they didn't take sched_hotcpu_mutex. Just wake up
7723 * the requestors.
7724 */
1da177e4
LT
7725 spin_lock_irq(&rq->lock);
7726 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7727 struct migration_req *req;
7728
1da177e4 7729 req = list_entry(rq->migration_queue.next,
70b97a7f 7730 struct migration_req, list);
1da177e4 7731 list_del_init(&req->list);
9a2bd244 7732 spin_unlock_irq(&rq->lock);
1da177e4 7733 complete(&req->done);
9a2bd244 7734 spin_lock_irq(&rq->lock);
1da177e4
LT
7735 }
7736 spin_unlock_irq(&rq->lock);
7737 break;
57d885fe 7738
08f503b0
GH
7739 case CPU_DYING:
7740 case CPU_DYING_FROZEN:
57d885fe
GH
7741 /* Update our root-domain */
7742 rq = cpu_rq(cpu);
7743 spin_lock_irqsave(&rq->lock, flags);
7744 if (rq->rd) {
c6c4927b 7745 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7746 set_rq_offline(rq);
57d885fe
GH
7747 }
7748 spin_unlock_irqrestore(&rq->lock, flags);
7749 break;
1da177e4
LT
7750#endif
7751 }
7752 return NOTIFY_OK;
7753}
7754
f38b0820
PM
7755/*
7756 * Register at high priority so that task migration (migrate_all_tasks)
7757 * happens before everything else. This has to be lower priority than
cdd6c482 7758 * the notifier in the perf_event subsystem, though.
1da177e4 7759 */
26c2143b 7760static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7761 .notifier_call = migration_call,
7762 .priority = 10
7763};
7764
7babe8db 7765static int __init migration_init(void)
1da177e4
LT
7766{
7767 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7768 int err;
48f24c4d
IM
7769
7770 /* Start one for the boot CPU: */
07dccf33
AM
7771 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7772 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7773 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7774 register_cpu_notifier(&migration_notifier);
7babe8db 7775
a004cd42 7776 return 0;
1da177e4 7777}
7babe8db 7778early_initcall(migration_init);
1da177e4
LT
7779#endif
7780
7781#ifdef CONFIG_SMP
476f3534 7782
3e9830dc 7783#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7784
f6630114
MT
7785static __read_mostly int sched_domain_debug_enabled;
7786
7787static int __init sched_domain_debug_setup(char *str)
7788{
7789 sched_domain_debug_enabled = 1;
7790
7791 return 0;
7792}
7793early_param("sched_debug", sched_domain_debug_setup);
7794
7c16ec58 7795static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7796 struct cpumask *groupmask)
1da177e4 7797{
4dcf6aff 7798 struct sched_group *group = sd->groups;
434d53b0 7799 char str[256];
1da177e4 7800
968ea6d8 7801 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7802 cpumask_clear(groupmask);
4dcf6aff
IM
7803
7804 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7805
7806 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7807 pr_cont("does not load-balance\n");
4dcf6aff 7808 if (sd->parent)
663997d4 7809 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7810 return -1;
41c7ce9a
NP
7811 }
7812
663997d4 7813 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7814
758b2cdc 7815 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7816 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7817 }
758b2cdc 7818 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7819 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7820 }
1da177e4 7821
4dcf6aff 7822 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7823 do {
4dcf6aff 7824 if (!group) {
663997d4
JP
7825 pr_cont("\n");
7826 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7827 break;
7828 }
7829
18a3885f 7830 if (!group->cpu_power) {
663997d4
JP
7831 pr_cont("\n");
7832 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7833 break;
7834 }
1da177e4 7835
758b2cdc 7836 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7837 pr_cont("\n");
7838 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7839 break;
7840 }
1da177e4 7841
758b2cdc 7842 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7843 pr_cont("\n");
7844 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7845 break;
7846 }
1da177e4 7847
758b2cdc 7848 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7849
968ea6d8 7850 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7851
663997d4 7852 pr_cont(" %s", str);
18a3885f 7853 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7854 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7855 }
1da177e4 7856
4dcf6aff
IM
7857 group = group->next;
7858 } while (group != sd->groups);
663997d4 7859 pr_cont("\n");
1da177e4 7860
758b2cdc 7861 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7862 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7863
758b2cdc
RR
7864 if (sd->parent &&
7865 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7866 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7867 return 0;
7868}
1da177e4 7869
4dcf6aff
IM
7870static void sched_domain_debug(struct sched_domain *sd, int cpu)
7871{
d5dd3db1 7872 cpumask_var_t groupmask;
4dcf6aff 7873 int level = 0;
1da177e4 7874
f6630114
MT
7875 if (!sched_domain_debug_enabled)
7876 return;
7877
4dcf6aff
IM
7878 if (!sd) {
7879 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7880 return;
7881 }
1da177e4 7882
4dcf6aff
IM
7883 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7884
d5dd3db1 7885 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7886 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7887 return;
7888 }
7889
4dcf6aff 7890 for (;;) {
7c16ec58 7891 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7892 break;
1da177e4
LT
7893 level++;
7894 sd = sd->parent;
33859f7f 7895 if (!sd)
4dcf6aff
IM
7896 break;
7897 }
d5dd3db1 7898 free_cpumask_var(groupmask);
1da177e4 7899}
6d6bc0ad 7900#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7901# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7902#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7903
1a20ff27 7904static int sd_degenerate(struct sched_domain *sd)
245af2c7 7905{
758b2cdc 7906 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7907 return 1;
7908
7909 /* Following flags need at least 2 groups */
7910 if (sd->flags & (SD_LOAD_BALANCE |
7911 SD_BALANCE_NEWIDLE |
7912 SD_BALANCE_FORK |
89c4710e
SS
7913 SD_BALANCE_EXEC |
7914 SD_SHARE_CPUPOWER |
7915 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7916 if (sd->groups != sd->groups->next)
7917 return 0;
7918 }
7919
7920 /* Following flags don't use groups */
c88d5910 7921 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7922 return 0;
7923
7924 return 1;
7925}
7926
48f24c4d
IM
7927static int
7928sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7929{
7930 unsigned long cflags = sd->flags, pflags = parent->flags;
7931
7932 if (sd_degenerate(parent))
7933 return 1;
7934
758b2cdc 7935 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7936 return 0;
7937
245af2c7
SS
7938 /* Flags needing groups don't count if only 1 group in parent */
7939 if (parent->groups == parent->groups->next) {
7940 pflags &= ~(SD_LOAD_BALANCE |
7941 SD_BALANCE_NEWIDLE |
7942 SD_BALANCE_FORK |
89c4710e
SS
7943 SD_BALANCE_EXEC |
7944 SD_SHARE_CPUPOWER |
7945 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7946 if (nr_node_ids == 1)
7947 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7948 }
7949 if (~cflags & pflags)
7950 return 0;
7951
7952 return 1;
7953}
7954
c6c4927b
RR
7955static void free_rootdomain(struct root_domain *rd)
7956{
047106ad
PZ
7957 synchronize_sched();
7958
68e74568
RR
7959 cpupri_cleanup(&rd->cpupri);
7960
c6c4927b
RR
7961 free_cpumask_var(rd->rto_mask);
7962 free_cpumask_var(rd->online);
7963 free_cpumask_var(rd->span);
7964 kfree(rd);
7965}
7966
57d885fe
GH
7967static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7968{
a0490fa3 7969 struct root_domain *old_rd = NULL;
57d885fe 7970 unsigned long flags;
57d885fe
GH
7971
7972 spin_lock_irqsave(&rq->lock, flags);
7973
7974 if (rq->rd) {
a0490fa3 7975 old_rd = rq->rd;
57d885fe 7976
c6c4927b 7977 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7978 set_rq_offline(rq);
57d885fe 7979
c6c4927b 7980 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7981
a0490fa3
IM
7982 /*
7983 * If we dont want to free the old_rt yet then
7984 * set old_rd to NULL to skip the freeing later
7985 * in this function:
7986 */
7987 if (!atomic_dec_and_test(&old_rd->refcount))
7988 old_rd = NULL;
57d885fe
GH
7989 }
7990
7991 atomic_inc(&rd->refcount);
7992 rq->rd = rd;
7993
c6c4927b 7994 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7995 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7996 set_rq_online(rq);
57d885fe
GH
7997
7998 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7999
8000 if (old_rd)
8001 free_rootdomain(old_rd);
57d885fe
GH
8002}
8003
fd5e1b5d 8004static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8005{
36b7b6d4
PE
8006 gfp_t gfp = GFP_KERNEL;
8007
57d885fe
GH
8008 memset(rd, 0, sizeof(*rd));
8009
36b7b6d4
PE
8010 if (bootmem)
8011 gfp = GFP_NOWAIT;
c6c4927b 8012
36b7b6d4 8013 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8014 goto out;
36b7b6d4 8015 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8016 goto free_span;
36b7b6d4 8017 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8018 goto free_online;
6e0534f2 8019
0fb53029 8020 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8021 goto free_rto_mask;
c6c4927b 8022 return 0;
6e0534f2 8023
68e74568
RR
8024free_rto_mask:
8025 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8026free_online:
8027 free_cpumask_var(rd->online);
8028free_span:
8029 free_cpumask_var(rd->span);
0c910d28 8030out:
c6c4927b 8031 return -ENOMEM;
57d885fe
GH
8032}
8033
8034static void init_defrootdomain(void)
8035{
c6c4927b
RR
8036 init_rootdomain(&def_root_domain, true);
8037
57d885fe
GH
8038 atomic_set(&def_root_domain.refcount, 1);
8039}
8040
dc938520 8041static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8042{
8043 struct root_domain *rd;
8044
8045 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8046 if (!rd)
8047 return NULL;
8048
c6c4927b
RR
8049 if (init_rootdomain(rd, false) != 0) {
8050 kfree(rd);
8051 return NULL;
8052 }
57d885fe
GH
8053
8054 return rd;
8055}
8056
1da177e4 8057/*
0eab9146 8058 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8059 * hold the hotplug lock.
8060 */
0eab9146
IM
8061static void
8062cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8063{
70b97a7f 8064 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8065 struct sched_domain *tmp;
8066
8067 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8068 for (tmp = sd; tmp; ) {
245af2c7
SS
8069 struct sched_domain *parent = tmp->parent;
8070 if (!parent)
8071 break;
f29c9b1c 8072
1a848870 8073 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8074 tmp->parent = parent->parent;
1a848870
SS
8075 if (parent->parent)
8076 parent->parent->child = tmp;
f29c9b1c
LZ
8077 } else
8078 tmp = tmp->parent;
245af2c7
SS
8079 }
8080
1a848870 8081 if (sd && sd_degenerate(sd)) {
245af2c7 8082 sd = sd->parent;
1a848870
SS
8083 if (sd)
8084 sd->child = NULL;
8085 }
1da177e4
LT
8086
8087 sched_domain_debug(sd, cpu);
8088
57d885fe 8089 rq_attach_root(rq, rd);
674311d5 8090 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8091}
8092
8093/* cpus with isolated domains */
dcc30a35 8094static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8095
8096/* Setup the mask of cpus configured for isolated domains */
8097static int __init isolated_cpu_setup(char *str)
8098{
bdddd296 8099 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8100 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8101 return 1;
8102}
8103
8927f494 8104__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8105
8106/*
6711cab4
SS
8107 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8108 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8109 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8110 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8111 *
8112 * init_sched_build_groups will build a circular linked list of the groups
8113 * covered by the given span, and will set each group's ->cpumask correctly,
8114 * and ->cpu_power to 0.
8115 */
a616058b 8116static void
96f874e2
RR
8117init_sched_build_groups(const struct cpumask *span,
8118 const struct cpumask *cpu_map,
8119 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8120 struct sched_group **sg,
96f874e2
RR
8121 struct cpumask *tmpmask),
8122 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8123{
8124 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8125 int i;
8126
96f874e2 8127 cpumask_clear(covered);
7c16ec58 8128
abcd083a 8129 for_each_cpu(i, span) {
6711cab4 8130 struct sched_group *sg;
7c16ec58 8131 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8132 int j;
8133
758b2cdc 8134 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8135 continue;
8136
758b2cdc 8137 cpumask_clear(sched_group_cpus(sg));
18a3885f 8138 sg->cpu_power = 0;
1da177e4 8139
abcd083a 8140 for_each_cpu(j, span) {
7c16ec58 8141 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8142 continue;
8143
96f874e2 8144 cpumask_set_cpu(j, covered);
758b2cdc 8145 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8146 }
8147 if (!first)
8148 first = sg;
8149 if (last)
8150 last->next = sg;
8151 last = sg;
8152 }
8153 last->next = first;
8154}
8155
9c1cfda2 8156#define SD_NODES_PER_DOMAIN 16
1da177e4 8157
9c1cfda2 8158#ifdef CONFIG_NUMA
198e2f18 8159
9c1cfda2
JH
8160/**
8161 * find_next_best_node - find the next node to include in a sched_domain
8162 * @node: node whose sched_domain we're building
8163 * @used_nodes: nodes already in the sched_domain
8164 *
41a2d6cf 8165 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8166 * finds the closest node not already in the @used_nodes map.
8167 *
8168 * Should use nodemask_t.
8169 */
c5f59f08 8170static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8171{
8172 int i, n, val, min_val, best_node = 0;
8173
8174 min_val = INT_MAX;
8175
076ac2af 8176 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8177 /* Start at @node */
076ac2af 8178 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8179
8180 if (!nr_cpus_node(n))
8181 continue;
8182
8183 /* Skip already used nodes */
c5f59f08 8184 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8185 continue;
8186
8187 /* Simple min distance search */
8188 val = node_distance(node, n);
8189
8190 if (val < min_val) {
8191 min_val = val;
8192 best_node = n;
8193 }
8194 }
8195
c5f59f08 8196 node_set(best_node, *used_nodes);
9c1cfda2
JH
8197 return best_node;
8198}
8199
8200/**
8201 * sched_domain_node_span - get a cpumask for a node's sched_domain
8202 * @node: node whose cpumask we're constructing
73486722 8203 * @span: resulting cpumask
9c1cfda2 8204 *
41a2d6cf 8205 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8206 * should be one that prevents unnecessary balancing, but also spreads tasks
8207 * out optimally.
8208 */
96f874e2 8209static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8210{
c5f59f08 8211 nodemask_t used_nodes;
48f24c4d 8212 int i;
9c1cfda2 8213
6ca09dfc 8214 cpumask_clear(span);
c5f59f08 8215 nodes_clear(used_nodes);
9c1cfda2 8216
6ca09dfc 8217 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8218 node_set(node, used_nodes);
9c1cfda2
JH
8219
8220 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8221 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8222
6ca09dfc 8223 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8224 }
9c1cfda2 8225}
6d6bc0ad 8226#endif /* CONFIG_NUMA */
9c1cfda2 8227
5c45bf27 8228int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8229
6c99e9ad
RR
8230/*
8231 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8232 *
8233 * ( See the the comments in include/linux/sched.h:struct sched_group
8234 * and struct sched_domain. )
6c99e9ad
RR
8235 */
8236struct static_sched_group {
8237 struct sched_group sg;
8238 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8239};
8240
8241struct static_sched_domain {
8242 struct sched_domain sd;
8243 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8244};
8245
49a02c51
AH
8246struct s_data {
8247#ifdef CONFIG_NUMA
8248 int sd_allnodes;
8249 cpumask_var_t domainspan;
8250 cpumask_var_t covered;
8251 cpumask_var_t notcovered;
8252#endif
8253 cpumask_var_t nodemask;
8254 cpumask_var_t this_sibling_map;
8255 cpumask_var_t this_core_map;
8256 cpumask_var_t send_covered;
8257 cpumask_var_t tmpmask;
8258 struct sched_group **sched_group_nodes;
8259 struct root_domain *rd;
8260};
8261
2109b99e
AH
8262enum s_alloc {
8263 sa_sched_groups = 0,
8264 sa_rootdomain,
8265 sa_tmpmask,
8266 sa_send_covered,
8267 sa_this_core_map,
8268 sa_this_sibling_map,
8269 sa_nodemask,
8270 sa_sched_group_nodes,
8271#ifdef CONFIG_NUMA
8272 sa_notcovered,
8273 sa_covered,
8274 sa_domainspan,
8275#endif
8276 sa_none,
8277};
8278
9c1cfda2 8279/*
48f24c4d 8280 * SMT sched-domains:
9c1cfda2 8281 */
1da177e4 8282#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8283static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8284static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8285
41a2d6cf 8286static int
96f874e2
RR
8287cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8288 struct sched_group **sg, struct cpumask *unused)
1da177e4 8289{
6711cab4 8290 if (sg)
6c99e9ad 8291 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8292 return cpu;
8293}
6d6bc0ad 8294#endif /* CONFIG_SCHED_SMT */
1da177e4 8295
48f24c4d
IM
8296/*
8297 * multi-core sched-domains:
8298 */
1e9f28fa 8299#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8300static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8301static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8302#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8303
8304#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8305static int
96f874e2
RR
8306cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8307 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8308{
6711cab4 8309 int group;
7c16ec58 8310
c69fc56d 8311 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8312 group = cpumask_first(mask);
6711cab4 8313 if (sg)
6c99e9ad 8314 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8315 return group;
1e9f28fa
SS
8316}
8317#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8318static int
96f874e2
RR
8319cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8320 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8321{
6711cab4 8322 if (sg)
6c99e9ad 8323 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8324 return cpu;
8325}
8326#endif
8327
6c99e9ad
RR
8328static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8329static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8330
41a2d6cf 8331static int
96f874e2
RR
8332cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8333 struct sched_group **sg, struct cpumask *mask)
1da177e4 8334{
6711cab4 8335 int group;
48f24c4d 8336#ifdef CONFIG_SCHED_MC
6ca09dfc 8337 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8338 group = cpumask_first(mask);
1e9f28fa 8339#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8340 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8341 group = cpumask_first(mask);
1da177e4 8342#else
6711cab4 8343 group = cpu;
1da177e4 8344#endif
6711cab4 8345 if (sg)
6c99e9ad 8346 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8347 return group;
1da177e4
LT
8348}
8349
8350#ifdef CONFIG_NUMA
1da177e4 8351/*
9c1cfda2
JH
8352 * The init_sched_build_groups can't handle what we want to do with node
8353 * groups, so roll our own. Now each node has its own list of groups which
8354 * gets dynamically allocated.
1da177e4 8355 */
62ea9ceb 8356static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8357static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8358
62ea9ceb 8359static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8360static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8361
96f874e2
RR
8362static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8363 struct sched_group **sg,
8364 struct cpumask *nodemask)
9c1cfda2 8365{
6711cab4
SS
8366 int group;
8367
6ca09dfc 8368 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8369 group = cpumask_first(nodemask);
6711cab4
SS
8370
8371 if (sg)
6c99e9ad 8372 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8373 return group;
1da177e4 8374}
6711cab4 8375
08069033
SS
8376static void init_numa_sched_groups_power(struct sched_group *group_head)
8377{
8378 struct sched_group *sg = group_head;
8379 int j;
8380
8381 if (!sg)
8382 return;
3a5c359a 8383 do {
758b2cdc 8384 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8385 struct sched_domain *sd;
08069033 8386
6c99e9ad 8387 sd = &per_cpu(phys_domains, j).sd;
13318a71 8388 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8389 /*
8390 * Only add "power" once for each
8391 * physical package.
8392 */
8393 continue;
8394 }
08069033 8395
18a3885f 8396 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8397 }
8398 sg = sg->next;
8399 } while (sg != group_head);
08069033 8400}
0601a88d
AH
8401
8402static int build_numa_sched_groups(struct s_data *d,
8403 const struct cpumask *cpu_map, int num)
8404{
8405 struct sched_domain *sd;
8406 struct sched_group *sg, *prev;
8407 int n, j;
8408
8409 cpumask_clear(d->covered);
8410 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8411 if (cpumask_empty(d->nodemask)) {
8412 d->sched_group_nodes[num] = NULL;
8413 goto out;
8414 }
8415
8416 sched_domain_node_span(num, d->domainspan);
8417 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8418
8419 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8420 GFP_KERNEL, num);
8421 if (!sg) {
663997d4 8422 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8423 return -ENOMEM;
8424 }
8425 d->sched_group_nodes[num] = sg;
8426
8427 for_each_cpu(j, d->nodemask) {
8428 sd = &per_cpu(node_domains, j).sd;
8429 sd->groups = sg;
8430 }
8431
18a3885f 8432 sg->cpu_power = 0;
0601a88d
AH
8433 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8434 sg->next = sg;
8435 cpumask_or(d->covered, d->covered, d->nodemask);
8436
8437 prev = sg;
8438 for (j = 0; j < nr_node_ids; j++) {
8439 n = (num + j) % nr_node_ids;
8440 cpumask_complement(d->notcovered, d->covered);
8441 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8442 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8443 if (cpumask_empty(d->tmpmask))
8444 break;
8445 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8446 if (cpumask_empty(d->tmpmask))
8447 continue;
8448 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8449 GFP_KERNEL, num);
8450 if (!sg) {
663997d4
JP
8451 pr_warning("Can not alloc domain group for node %d\n",
8452 j);
0601a88d
AH
8453 return -ENOMEM;
8454 }
18a3885f 8455 sg->cpu_power = 0;
0601a88d
AH
8456 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8457 sg->next = prev->next;
8458 cpumask_or(d->covered, d->covered, d->tmpmask);
8459 prev->next = sg;
8460 prev = sg;
8461 }
8462out:
8463 return 0;
8464}
6d6bc0ad 8465#endif /* CONFIG_NUMA */
1da177e4 8466
a616058b 8467#ifdef CONFIG_NUMA
51888ca2 8468/* Free memory allocated for various sched_group structures */
96f874e2
RR
8469static void free_sched_groups(const struct cpumask *cpu_map,
8470 struct cpumask *nodemask)
51888ca2 8471{
a616058b 8472 int cpu, i;
51888ca2 8473
abcd083a 8474 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8475 struct sched_group **sched_group_nodes
8476 = sched_group_nodes_bycpu[cpu];
8477
51888ca2
SV
8478 if (!sched_group_nodes)
8479 continue;
8480
076ac2af 8481 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8482 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8483
6ca09dfc 8484 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8485 if (cpumask_empty(nodemask))
51888ca2
SV
8486 continue;
8487
8488 if (sg == NULL)
8489 continue;
8490 sg = sg->next;
8491next_sg:
8492 oldsg = sg;
8493 sg = sg->next;
8494 kfree(oldsg);
8495 if (oldsg != sched_group_nodes[i])
8496 goto next_sg;
8497 }
8498 kfree(sched_group_nodes);
8499 sched_group_nodes_bycpu[cpu] = NULL;
8500 }
51888ca2 8501}
6d6bc0ad 8502#else /* !CONFIG_NUMA */
96f874e2
RR
8503static void free_sched_groups(const struct cpumask *cpu_map,
8504 struct cpumask *nodemask)
a616058b
SS
8505{
8506}
6d6bc0ad 8507#endif /* CONFIG_NUMA */
51888ca2 8508
89c4710e
SS
8509/*
8510 * Initialize sched groups cpu_power.
8511 *
8512 * cpu_power indicates the capacity of sched group, which is used while
8513 * distributing the load between different sched groups in a sched domain.
8514 * Typically cpu_power for all the groups in a sched domain will be same unless
8515 * there are asymmetries in the topology. If there are asymmetries, group
8516 * having more cpu_power will pickup more load compared to the group having
8517 * less cpu_power.
89c4710e
SS
8518 */
8519static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8520{
8521 struct sched_domain *child;
8522 struct sched_group *group;
f93e65c1
PZ
8523 long power;
8524 int weight;
89c4710e
SS
8525
8526 WARN_ON(!sd || !sd->groups);
8527
13318a71 8528 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8529 return;
8530
8531 child = sd->child;
8532
18a3885f 8533 sd->groups->cpu_power = 0;
5517d86b 8534
f93e65c1
PZ
8535 if (!child) {
8536 power = SCHED_LOAD_SCALE;
8537 weight = cpumask_weight(sched_domain_span(sd));
8538 /*
8539 * SMT siblings share the power of a single core.
a52bfd73
PZ
8540 * Usually multiple threads get a better yield out of
8541 * that one core than a single thread would have,
8542 * reflect that in sd->smt_gain.
f93e65c1 8543 */
a52bfd73
PZ
8544 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8545 power *= sd->smt_gain;
f93e65c1 8546 power /= weight;
a52bfd73
PZ
8547 power >>= SCHED_LOAD_SHIFT;
8548 }
18a3885f 8549 sd->groups->cpu_power += power;
89c4710e
SS
8550 return;
8551 }
8552
89c4710e 8553 /*
f93e65c1 8554 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8555 */
8556 group = child->groups;
8557 do {
18a3885f 8558 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8559 group = group->next;
8560 } while (group != child->groups);
8561}
8562
7c16ec58
MT
8563/*
8564 * Initializers for schedule domains
8565 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8566 */
8567
a5d8c348
IM
8568#ifdef CONFIG_SCHED_DEBUG
8569# define SD_INIT_NAME(sd, type) sd->name = #type
8570#else
8571# define SD_INIT_NAME(sd, type) do { } while (0)
8572#endif
8573
7c16ec58 8574#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8575
7c16ec58
MT
8576#define SD_INIT_FUNC(type) \
8577static noinline void sd_init_##type(struct sched_domain *sd) \
8578{ \
8579 memset(sd, 0, sizeof(*sd)); \
8580 *sd = SD_##type##_INIT; \
1d3504fc 8581 sd->level = SD_LV_##type; \
a5d8c348 8582 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8583}
8584
8585SD_INIT_FUNC(CPU)
8586#ifdef CONFIG_NUMA
8587 SD_INIT_FUNC(ALLNODES)
8588 SD_INIT_FUNC(NODE)
8589#endif
8590#ifdef CONFIG_SCHED_SMT
8591 SD_INIT_FUNC(SIBLING)
8592#endif
8593#ifdef CONFIG_SCHED_MC
8594 SD_INIT_FUNC(MC)
8595#endif
8596
1d3504fc
HS
8597static int default_relax_domain_level = -1;
8598
8599static int __init setup_relax_domain_level(char *str)
8600{
30e0e178
LZ
8601 unsigned long val;
8602
8603 val = simple_strtoul(str, NULL, 0);
8604 if (val < SD_LV_MAX)
8605 default_relax_domain_level = val;
8606
1d3504fc
HS
8607 return 1;
8608}
8609__setup("relax_domain_level=", setup_relax_domain_level);
8610
8611static void set_domain_attribute(struct sched_domain *sd,
8612 struct sched_domain_attr *attr)
8613{
8614 int request;
8615
8616 if (!attr || attr->relax_domain_level < 0) {
8617 if (default_relax_domain_level < 0)
8618 return;
8619 else
8620 request = default_relax_domain_level;
8621 } else
8622 request = attr->relax_domain_level;
8623 if (request < sd->level) {
8624 /* turn off idle balance on this domain */
c88d5910 8625 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8626 } else {
8627 /* turn on idle balance on this domain */
c88d5910 8628 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8629 }
8630}
8631
2109b99e
AH
8632static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8633 const struct cpumask *cpu_map)
8634{
8635 switch (what) {
8636 case sa_sched_groups:
8637 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8638 d->sched_group_nodes = NULL;
8639 case sa_rootdomain:
8640 free_rootdomain(d->rd); /* fall through */
8641 case sa_tmpmask:
8642 free_cpumask_var(d->tmpmask); /* fall through */
8643 case sa_send_covered:
8644 free_cpumask_var(d->send_covered); /* fall through */
8645 case sa_this_core_map:
8646 free_cpumask_var(d->this_core_map); /* fall through */
8647 case sa_this_sibling_map:
8648 free_cpumask_var(d->this_sibling_map); /* fall through */
8649 case sa_nodemask:
8650 free_cpumask_var(d->nodemask); /* fall through */
8651 case sa_sched_group_nodes:
d1b55138 8652#ifdef CONFIG_NUMA
2109b99e
AH
8653 kfree(d->sched_group_nodes); /* fall through */
8654 case sa_notcovered:
8655 free_cpumask_var(d->notcovered); /* fall through */
8656 case sa_covered:
8657 free_cpumask_var(d->covered); /* fall through */
8658 case sa_domainspan:
8659 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8660#endif
2109b99e
AH
8661 case sa_none:
8662 break;
8663 }
8664}
3404c8d9 8665
2109b99e
AH
8666static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8667 const struct cpumask *cpu_map)
8668{
3404c8d9 8669#ifdef CONFIG_NUMA
2109b99e
AH
8670 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8671 return sa_none;
8672 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8673 return sa_domainspan;
8674 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8675 return sa_covered;
8676 /* Allocate the per-node list of sched groups */
8677 d->sched_group_nodes = kcalloc(nr_node_ids,
8678 sizeof(struct sched_group *), GFP_KERNEL);
8679 if (!d->sched_group_nodes) {
663997d4 8680 pr_warning("Can not alloc sched group node list\n");
2109b99e 8681 return sa_notcovered;
d1b55138 8682 }
2109b99e 8683 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8684#endif
2109b99e
AH
8685 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8686 return sa_sched_group_nodes;
8687 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8688 return sa_nodemask;
8689 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8690 return sa_this_sibling_map;
8691 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8692 return sa_this_core_map;
8693 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8694 return sa_send_covered;
8695 d->rd = alloc_rootdomain();
8696 if (!d->rd) {
663997d4 8697 pr_warning("Cannot alloc root domain\n");
2109b99e 8698 return sa_tmpmask;
57d885fe 8699 }
2109b99e
AH
8700 return sa_rootdomain;
8701}
57d885fe 8702
7f4588f3
AH
8703static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8704 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8705{
8706 struct sched_domain *sd = NULL;
7c16ec58 8707#ifdef CONFIG_NUMA
7f4588f3 8708 struct sched_domain *parent;
1da177e4 8709
7f4588f3
AH
8710 d->sd_allnodes = 0;
8711 if (cpumask_weight(cpu_map) >
8712 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8713 sd = &per_cpu(allnodes_domains, i).sd;
8714 SD_INIT(sd, ALLNODES);
1d3504fc 8715 set_domain_attribute(sd, attr);
7f4588f3
AH
8716 cpumask_copy(sched_domain_span(sd), cpu_map);
8717 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8718 d->sd_allnodes = 1;
8719 }
8720 parent = sd;
8721
8722 sd = &per_cpu(node_domains, i).sd;
8723 SD_INIT(sd, NODE);
8724 set_domain_attribute(sd, attr);
8725 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8726 sd->parent = parent;
8727 if (parent)
8728 parent->child = sd;
8729 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8730#endif
7f4588f3
AH
8731 return sd;
8732}
1da177e4 8733
87cce662
AH
8734static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8735 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8736 struct sched_domain *parent, int i)
8737{
8738 struct sched_domain *sd;
8739 sd = &per_cpu(phys_domains, i).sd;
8740 SD_INIT(sd, CPU);
8741 set_domain_attribute(sd, attr);
8742 cpumask_copy(sched_domain_span(sd), d->nodemask);
8743 sd->parent = parent;
8744 if (parent)
8745 parent->child = sd;
8746 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8747 return sd;
8748}
1da177e4 8749
410c4081
AH
8750static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8751 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8752 struct sched_domain *parent, int i)
8753{
8754 struct sched_domain *sd = parent;
1e9f28fa 8755#ifdef CONFIG_SCHED_MC
410c4081
AH
8756 sd = &per_cpu(core_domains, i).sd;
8757 SD_INIT(sd, MC);
8758 set_domain_attribute(sd, attr);
8759 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8760 sd->parent = parent;
8761 parent->child = sd;
8762 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8763#endif
410c4081
AH
8764 return sd;
8765}
1e9f28fa 8766
d8173535
AH
8767static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8768 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8769 struct sched_domain *parent, int i)
8770{
8771 struct sched_domain *sd = parent;
1da177e4 8772#ifdef CONFIG_SCHED_SMT
d8173535
AH
8773 sd = &per_cpu(cpu_domains, i).sd;
8774 SD_INIT(sd, SIBLING);
8775 set_domain_attribute(sd, attr);
8776 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8777 sd->parent = parent;
8778 parent->child = sd;
8779 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8780#endif
d8173535
AH
8781 return sd;
8782}
1da177e4 8783
0e8e85c9
AH
8784static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8785 const struct cpumask *cpu_map, int cpu)
8786{
8787 switch (l) {
1da177e4 8788#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8789 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8790 cpumask_and(d->this_sibling_map, cpu_map,
8791 topology_thread_cpumask(cpu));
8792 if (cpu == cpumask_first(d->this_sibling_map))
8793 init_sched_build_groups(d->this_sibling_map, cpu_map,
8794 &cpu_to_cpu_group,
8795 d->send_covered, d->tmpmask);
8796 break;
1da177e4 8797#endif
1e9f28fa 8798#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8799 case SD_LV_MC: /* set up multi-core groups */
8800 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8801 if (cpu == cpumask_first(d->this_core_map))
8802 init_sched_build_groups(d->this_core_map, cpu_map,
8803 &cpu_to_core_group,
8804 d->send_covered, d->tmpmask);
8805 break;
1e9f28fa 8806#endif
86548096
AH
8807 case SD_LV_CPU: /* set up physical groups */
8808 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8809 if (!cpumask_empty(d->nodemask))
8810 init_sched_build_groups(d->nodemask, cpu_map,
8811 &cpu_to_phys_group,
8812 d->send_covered, d->tmpmask);
8813 break;
1da177e4 8814#ifdef CONFIG_NUMA
de616e36
AH
8815 case SD_LV_ALLNODES:
8816 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8817 d->send_covered, d->tmpmask);
8818 break;
8819#endif
0e8e85c9
AH
8820 default:
8821 break;
7c16ec58 8822 }
0e8e85c9 8823}
9c1cfda2 8824
2109b99e
AH
8825/*
8826 * Build sched domains for a given set of cpus and attach the sched domains
8827 * to the individual cpus
8828 */
8829static int __build_sched_domains(const struct cpumask *cpu_map,
8830 struct sched_domain_attr *attr)
8831{
8832 enum s_alloc alloc_state = sa_none;
8833 struct s_data d;
294b0c96 8834 struct sched_domain *sd;
2109b99e 8835 int i;
7c16ec58 8836#ifdef CONFIG_NUMA
2109b99e 8837 d.sd_allnodes = 0;
7c16ec58 8838#endif
9c1cfda2 8839
2109b99e
AH
8840 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8841 if (alloc_state != sa_rootdomain)
8842 goto error;
8843 alloc_state = sa_sched_groups;
9c1cfda2 8844
1da177e4 8845 /*
1a20ff27 8846 * Set up domains for cpus specified by the cpu_map.
1da177e4 8847 */
abcd083a 8848 for_each_cpu(i, cpu_map) {
49a02c51
AH
8849 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8850 cpu_map);
9761eea8 8851
7f4588f3 8852 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8853 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8854 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8855 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8856 }
9c1cfda2 8857
abcd083a 8858 for_each_cpu(i, cpu_map) {
0e8e85c9 8859 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8860 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8861 }
9c1cfda2 8862
1da177e4 8863 /* Set up physical groups */
86548096
AH
8864 for (i = 0; i < nr_node_ids; i++)
8865 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8866
1da177e4
LT
8867#ifdef CONFIG_NUMA
8868 /* Set up node groups */
de616e36
AH
8869 if (d.sd_allnodes)
8870 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8871
0601a88d
AH
8872 for (i = 0; i < nr_node_ids; i++)
8873 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8874 goto error;
1da177e4
LT
8875#endif
8876
8877 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8878#ifdef CONFIG_SCHED_SMT
abcd083a 8879 for_each_cpu(i, cpu_map) {
294b0c96 8880 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8881 init_sched_groups_power(i, sd);
5c45bf27 8882 }
1da177e4 8883#endif
1e9f28fa 8884#ifdef CONFIG_SCHED_MC
abcd083a 8885 for_each_cpu(i, cpu_map) {
294b0c96 8886 sd = &per_cpu(core_domains, i).sd;
89c4710e 8887 init_sched_groups_power(i, sd);
5c45bf27
SS
8888 }
8889#endif
1e9f28fa 8890
abcd083a 8891 for_each_cpu(i, cpu_map) {
294b0c96 8892 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8893 init_sched_groups_power(i, sd);
1da177e4
LT
8894 }
8895
9c1cfda2 8896#ifdef CONFIG_NUMA
076ac2af 8897 for (i = 0; i < nr_node_ids; i++)
49a02c51 8898 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8899
49a02c51 8900 if (d.sd_allnodes) {
6711cab4 8901 struct sched_group *sg;
f712c0c7 8902
96f874e2 8903 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8904 d.tmpmask);
f712c0c7
SS
8905 init_numa_sched_groups_power(sg);
8906 }
9c1cfda2
JH
8907#endif
8908
1da177e4 8909 /* Attach the domains */
abcd083a 8910 for_each_cpu(i, cpu_map) {
1da177e4 8911#ifdef CONFIG_SCHED_SMT
6c99e9ad 8912 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8913#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8914 sd = &per_cpu(core_domains, i).sd;
1da177e4 8915#else
6c99e9ad 8916 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8917#endif
49a02c51 8918 cpu_attach_domain(sd, d.rd, i);
1da177e4 8919 }
51888ca2 8920
2109b99e
AH
8921 d.sched_group_nodes = NULL; /* don't free this we still need it */
8922 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8923 return 0;
51888ca2 8924
51888ca2 8925error:
2109b99e
AH
8926 __free_domain_allocs(&d, alloc_state, cpu_map);
8927 return -ENOMEM;
1da177e4 8928}
029190c5 8929
96f874e2 8930static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8931{
8932 return __build_sched_domains(cpu_map, NULL);
8933}
8934
acc3f5d7 8935static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8936static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8937static struct sched_domain_attr *dattr_cur;
8938 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8939
8940/*
8941 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8942 * cpumask) fails, then fallback to a single sched domain,
8943 * as determined by the single cpumask fallback_doms.
029190c5 8944 */
4212823f 8945static cpumask_var_t fallback_doms;
029190c5 8946
ee79d1bd
HC
8947/*
8948 * arch_update_cpu_topology lets virtualized architectures update the
8949 * cpu core maps. It is supposed to return 1 if the topology changed
8950 * or 0 if it stayed the same.
8951 */
8952int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8953{
ee79d1bd 8954 return 0;
22e52b07
HC
8955}
8956
acc3f5d7
RR
8957cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8958{
8959 int i;
8960 cpumask_var_t *doms;
8961
8962 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8963 if (!doms)
8964 return NULL;
8965 for (i = 0; i < ndoms; i++) {
8966 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8967 free_sched_domains(doms, i);
8968 return NULL;
8969 }
8970 }
8971 return doms;
8972}
8973
8974void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8975{
8976 unsigned int i;
8977 for (i = 0; i < ndoms; i++)
8978 free_cpumask_var(doms[i]);
8979 kfree(doms);
8980}
8981
1a20ff27 8982/*
41a2d6cf 8983 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8984 * For now this just excludes isolated cpus, but could be used to
8985 * exclude other special cases in the future.
1a20ff27 8986 */
96f874e2 8987static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8988{
7378547f
MM
8989 int err;
8990
22e52b07 8991 arch_update_cpu_topology();
029190c5 8992 ndoms_cur = 1;
acc3f5d7 8993 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 8994 if (!doms_cur)
acc3f5d7
RR
8995 doms_cur = &fallback_doms;
8996 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 8997 dattr_cur = NULL;
acc3f5d7 8998 err = build_sched_domains(doms_cur[0]);
6382bc90 8999 register_sched_domain_sysctl();
7378547f
MM
9000
9001 return err;
1a20ff27
DG
9002}
9003
96f874e2
RR
9004static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9005 struct cpumask *tmpmask)
1da177e4 9006{
7c16ec58 9007 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9008}
1da177e4 9009
1a20ff27
DG
9010/*
9011 * Detach sched domains from a group of cpus specified in cpu_map
9012 * These cpus will now be attached to the NULL domain
9013 */
96f874e2 9014static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9015{
96f874e2
RR
9016 /* Save because hotplug lock held. */
9017 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9018 int i;
9019
abcd083a 9020 for_each_cpu(i, cpu_map)
57d885fe 9021 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9022 synchronize_sched();
96f874e2 9023 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9024}
9025
1d3504fc
HS
9026/* handle null as "default" */
9027static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9028 struct sched_domain_attr *new, int idx_new)
9029{
9030 struct sched_domain_attr tmp;
9031
9032 /* fast path */
9033 if (!new && !cur)
9034 return 1;
9035
9036 tmp = SD_ATTR_INIT;
9037 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9038 new ? (new + idx_new) : &tmp,
9039 sizeof(struct sched_domain_attr));
9040}
9041
029190c5
PJ
9042/*
9043 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9044 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9045 * doms_new[] to the current sched domain partitioning, doms_cur[].
9046 * It destroys each deleted domain and builds each new domain.
9047 *
acc3f5d7 9048 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9049 * The masks don't intersect (don't overlap.) We should setup one
9050 * sched domain for each mask. CPUs not in any of the cpumasks will
9051 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9052 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9053 * it as it is.
9054 *
acc3f5d7
RR
9055 * The passed in 'doms_new' should be allocated using
9056 * alloc_sched_domains. This routine takes ownership of it and will
9057 * free_sched_domains it when done with it. If the caller failed the
9058 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9059 * and partition_sched_domains() will fallback to the single partition
9060 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9061 *
96f874e2 9062 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9063 * ndoms_new == 0 is a special case for destroying existing domains,
9064 * and it will not create the default domain.
dfb512ec 9065 *
029190c5
PJ
9066 * Call with hotplug lock held
9067 */
acc3f5d7 9068void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9069 struct sched_domain_attr *dattr_new)
029190c5 9070{
dfb512ec 9071 int i, j, n;
d65bd5ec 9072 int new_topology;
029190c5 9073
712555ee 9074 mutex_lock(&sched_domains_mutex);
a1835615 9075
7378547f
MM
9076 /* always unregister in case we don't destroy any domains */
9077 unregister_sched_domain_sysctl();
9078
d65bd5ec
HC
9079 /* Let architecture update cpu core mappings. */
9080 new_topology = arch_update_cpu_topology();
9081
dfb512ec 9082 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9083
9084 /* Destroy deleted domains */
9085 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9086 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9087 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9088 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9089 goto match1;
9090 }
9091 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9092 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9093match1:
9094 ;
9095 }
9096
e761b772
MK
9097 if (doms_new == NULL) {
9098 ndoms_cur = 0;
acc3f5d7 9099 doms_new = &fallback_doms;
6ad4c188 9100 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9101 WARN_ON_ONCE(dattr_new);
e761b772
MK
9102 }
9103
029190c5
PJ
9104 /* Build new domains */
9105 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9106 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9107 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9108 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9109 goto match2;
9110 }
9111 /* no match - add a new doms_new */
acc3f5d7 9112 __build_sched_domains(doms_new[i],
1d3504fc 9113 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9114match2:
9115 ;
9116 }
9117
9118 /* Remember the new sched domains */
acc3f5d7
RR
9119 if (doms_cur != &fallback_doms)
9120 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9121 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9122 doms_cur = doms_new;
1d3504fc 9123 dattr_cur = dattr_new;
029190c5 9124 ndoms_cur = ndoms_new;
7378547f
MM
9125
9126 register_sched_domain_sysctl();
a1835615 9127
712555ee 9128 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9129}
9130
5c45bf27 9131#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9132static void arch_reinit_sched_domains(void)
5c45bf27 9133{
95402b38 9134 get_online_cpus();
dfb512ec
MK
9135
9136 /* Destroy domains first to force the rebuild */
9137 partition_sched_domains(0, NULL, NULL);
9138
e761b772 9139 rebuild_sched_domains();
95402b38 9140 put_online_cpus();
5c45bf27
SS
9141}
9142
9143static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9144{
afb8a9b7 9145 unsigned int level = 0;
5c45bf27 9146
afb8a9b7
GS
9147 if (sscanf(buf, "%u", &level) != 1)
9148 return -EINVAL;
9149
9150 /*
9151 * level is always be positive so don't check for
9152 * level < POWERSAVINGS_BALANCE_NONE which is 0
9153 * What happens on 0 or 1 byte write,
9154 * need to check for count as well?
9155 */
9156
9157 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9158 return -EINVAL;
9159
9160 if (smt)
afb8a9b7 9161 sched_smt_power_savings = level;
5c45bf27 9162 else
afb8a9b7 9163 sched_mc_power_savings = level;
5c45bf27 9164
c70f22d2 9165 arch_reinit_sched_domains();
5c45bf27 9166
c70f22d2 9167 return count;
5c45bf27
SS
9168}
9169
5c45bf27 9170#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9171static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9172 char *page)
5c45bf27
SS
9173{
9174 return sprintf(page, "%u\n", sched_mc_power_savings);
9175}
f718cd4a 9176static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9177 const char *buf, size_t count)
5c45bf27
SS
9178{
9179 return sched_power_savings_store(buf, count, 0);
9180}
f718cd4a
AK
9181static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9182 sched_mc_power_savings_show,
9183 sched_mc_power_savings_store);
5c45bf27
SS
9184#endif
9185
9186#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9187static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9188 char *page)
5c45bf27
SS
9189{
9190 return sprintf(page, "%u\n", sched_smt_power_savings);
9191}
f718cd4a 9192static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9193 const char *buf, size_t count)
5c45bf27
SS
9194{
9195 return sched_power_savings_store(buf, count, 1);
9196}
f718cd4a
AK
9197static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9198 sched_smt_power_savings_show,
6707de00
AB
9199 sched_smt_power_savings_store);
9200#endif
9201
39aac648 9202int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9203{
9204 int err = 0;
9205
9206#ifdef CONFIG_SCHED_SMT
9207 if (smt_capable())
9208 err = sysfs_create_file(&cls->kset.kobj,
9209 &attr_sched_smt_power_savings.attr);
9210#endif
9211#ifdef CONFIG_SCHED_MC
9212 if (!err && mc_capable())
9213 err = sysfs_create_file(&cls->kset.kobj,
9214 &attr_sched_mc_power_savings.attr);
9215#endif
9216 return err;
9217}
6d6bc0ad 9218#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9219
e761b772 9220#ifndef CONFIG_CPUSETS
1da177e4 9221/*
e761b772
MK
9222 * Add online and remove offline CPUs from the scheduler domains.
9223 * When cpusets are enabled they take over this function.
1da177e4
LT
9224 */
9225static int update_sched_domains(struct notifier_block *nfb,
9226 unsigned long action, void *hcpu)
e761b772
MK
9227{
9228 switch (action) {
9229 case CPU_ONLINE:
9230 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9231 case CPU_DOWN_PREPARE:
9232 case CPU_DOWN_PREPARE_FROZEN:
9233 case CPU_DOWN_FAILED:
9234 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9235 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9236 return NOTIFY_OK;
9237
9238 default:
9239 return NOTIFY_DONE;
9240 }
9241}
9242#endif
9243
9244static int update_runtime(struct notifier_block *nfb,
9245 unsigned long action, void *hcpu)
1da177e4 9246{
7def2be1
PZ
9247 int cpu = (int)(long)hcpu;
9248
1da177e4 9249 switch (action) {
1da177e4 9250 case CPU_DOWN_PREPARE:
8bb78442 9251 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9252 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9253 return NOTIFY_OK;
9254
1da177e4 9255 case CPU_DOWN_FAILED:
8bb78442 9256 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9257 case CPU_ONLINE:
8bb78442 9258 case CPU_ONLINE_FROZEN:
7def2be1 9259 enable_runtime(cpu_rq(cpu));
e761b772
MK
9260 return NOTIFY_OK;
9261
1da177e4
LT
9262 default:
9263 return NOTIFY_DONE;
9264 }
1da177e4 9265}
1da177e4
LT
9266
9267void __init sched_init_smp(void)
9268{
dcc30a35
RR
9269 cpumask_var_t non_isolated_cpus;
9270
9271 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9272 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9273
434d53b0
MT
9274#if defined(CONFIG_NUMA)
9275 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9276 GFP_KERNEL);
9277 BUG_ON(sched_group_nodes_bycpu == NULL);
9278#endif
95402b38 9279 get_online_cpus();
712555ee 9280 mutex_lock(&sched_domains_mutex);
6ad4c188 9281 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9282 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9283 if (cpumask_empty(non_isolated_cpus))
9284 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9285 mutex_unlock(&sched_domains_mutex);
95402b38 9286 put_online_cpus();
e761b772
MK
9287
9288#ifndef CONFIG_CPUSETS
1da177e4
LT
9289 /* XXX: Theoretical race here - CPU may be hotplugged now */
9290 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9291#endif
9292
9293 /* RT runtime code needs to handle some hotplug events */
9294 hotcpu_notifier(update_runtime, 0);
9295
b328ca18 9296 init_hrtick();
5c1e1767
NP
9297
9298 /* Move init over to a non-isolated CPU */
dcc30a35 9299 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9300 BUG();
19978ca6 9301 sched_init_granularity();
dcc30a35 9302 free_cpumask_var(non_isolated_cpus);
4212823f 9303
0e3900e6 9304 init_sched_rt_class();
1da177e4
LT
9305}
9306#else
9307void __init sched_init_smp(void)
9308{
19978ca6 9309 sched_init_granularity();
1da177e4
LT
9310}
9311#endif /* CONFIG_SMP */
9312
cd1bb94b
AB
9313const_debug unsigned int sysctl_timer_migration = 1;
9314
1da177e4
LT
9315int in_sched_functions(unsigned long addr)
9316{
1da177e4
LT
9317 return in_lock_functions(addr) ||
9318 (addr >= (unsigned long)__sched_text_start
9319 && addr < (unsigned long)__sched_text_end);
9320}
9321
a9957449 9322static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9323{
9324 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9325 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9326#ifdef CONFIG_FAIR_GROUP_SCHED
9327 cfs_rq->rq = rq;
9328#endif
67e9fb2a 9329 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9330}
9331
fa85ae24
PZ
9332static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9333{
9334 struct rt_prio_array *array;
9335 int i;
9336
9337 array = &rt_rq->active;
9338 for (i = 0; i < MAX_RT_PRIO; i++) {
9339 INIT_LIST_HEAD(array->queue + i);
9340 __clear_bit(i, array->bitmap);
9341 }
9342 /* delimiter for bitsearch: */
9343 __set_bit(MAX_RT_PRIO, array->bitmap);
9344
052f1dc7 9345#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9346 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9347#ifdef CONFIG_SMP
e864c499 9348 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9349#endif
48d5e258 9350#endif
fa85ae24
PZ
9351#ifdef CONFIG_SMP
9352 rt_rq->rt_nr_migratory = 0;
fa85ae24 9353 rt_rq->overloaded = 0;
c20b08e3 9354 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9355#endif
9356
9357 rt_rq->rt_time = 0;
9358 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9359 rt_rq->rt_runtime = 0;
9360 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9361
052f1dc7 9362#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9363 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9364 rt_rq->rq = rq;
9365#endif
fa85ae24
PZ
9366}
9367
6f505b16 9368#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9369static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9370 struct sched_entity *se, int cpu, int add,
9371 struct sched_entity *parent)
6f505b16 9372{
ec7dc8ac 9373 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9374 tg->cfs_rq[cpu] = cfs_rq;
9375 init_cfs_rq(cfs_rq, rq);
9376 cfs_rq->tg = tg;
9377 if (add)
9378 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9379
9380 tg->se[cpu] = se;
354d60c2
DG
9381 /* se could be NULL for init_task_group */
9382 if (!se)
9383 return;
9384
ec7dc8ac
DG
9385 if (!parent)
9386 se->cfs_rq = &rq->cfs;
9387 else
9388 se->cfs_rq = parent->my_q;
9389
6f505b16
PZ
9390 se->my_q = cfs_rq;
9391 se->load.weight = tg->shares;
e05510d0 9392 se->load.inv_weight = 0;
ec7dc8ac 9393 se->parent = parent;
6f505b16 9394}
052f1dc7 9395#endif
6f505b16 9396
052f1dc7 9397#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9398static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9399 struct sched_rt_entity *rt_se, int cpu, int add,
9400 struct sched_rt_entity *parent)
6f505b16 9401{
ec7dc8ac
DG
9402 struct rq *rq = cpu_rq(cpu);
9403
6f505b16
PZ
9404 tg->rt_rq[cpu] = rt_rq;
9405 init_rt_rq(rt_rq, rq);
9406 rt_rq->tg = tg;
9407 rt_rq->rt_se = rt_se;
ac086bc2 9408 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9409 if (add)
9410 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9411
9412 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9413 if (!rt_se)
9414 return;
9415
ec7dc8ac
DG
9416 if (!parent)
9417 rt_se->rt_rq = &rq->rt;
9418 else
9419 rt_se->rt_rq = parent->my_q;
9420
6f505b16 9421 rt_se->my_q = rt_rq;
ec7dc8ac 9422 rt_se->parent = parent;
6f505b16
PZ
9423 INIT_LIST_HEAD(&rt_se->run_list);
9424}
9425#endif
9426
1da177e4
LT
9427void __init sched_init(void)
9428{
dd41f596 9429 int i, j;
434d53b0
MT
9430 unsigned long alloc_size = 0, ptr;
9431
9432#ifdef CONFIG_FAIR_GROUP_SCHED
9433 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9434#endif
9435#ifdef CONFIG_RT_GROUP_SCHED
9436 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9437#endif
9438#ifdef CONFIG_USER_SCHED
9439 alloc_size *= 2;
df7c8e84
RR
9440#endif
9441#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9442 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9443#endif
434d53b0 9444 if (alloc_size) {
36b7b6d4 9445 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9446
9447#ifdef CONFIG_FAIR_GROUP_SCHED
9448 init_task_group.se = (struct sched_entity **)ptr;
9449 ptr += nr_cpu_ids * sizeof(void **);
9450
9451 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9452 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9453
9454#ifdef CONFIG_USER_SCHED
9455 root_task_group.se = (struct sched_entity **)ptr;
9456 ptr += nr_cpu_ids * sizeof(void **);
9457
9458 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9459 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9460#endif /* CONFIG_USER_SCHED */
9461#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9462#ifdef CONFIG_RT_GROUP_SCHED
9463 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9464 ptr += nr_cpu_ids * sizeof(void **);
9465
9466 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9467 ptr += nr_cpu_ids * sizeof(void **);
9468
9469#ifdef CONFIG_USER_SCHED
9470 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9471 ptr += nr_cpu_ids * sizeof(void **);
9472
9473 root_task_group.rt_rq = (struct rt_rq **)ptr;
9474 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9475#endif /* CONFIG_USER_SCHED */
9476#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9477#ifdef CONFIG_CPUMASK_OFFSTACK
9478 for_each_possible_cpu(i) {
9479 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9480 ptr += cpumask_size();
9481 }
9482#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9483 }
dd41f596 9484
57d885fe
GH
9485#ifdef CONFIG_SMP
9486 init_defrootdomain();
9487#endif
9488
d0b27fa7
PZ
9489 init_rt_bandwidth(&def_rt_bandwidth,
9490 global_rt_period(), global_rt_runtime());
9491
9492#ifdef CONFIG_RT_GROUP_SCHED
9493 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9494 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9495#ifdef CONFIG_USER_SCHED
9496 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9497 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9498#endif /* CONFIG_USER_SCHED */
9499#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9500
052f1dc7 9501#ifdef CONFIG_GROUP_SCHED
6f505b16 9502 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9503 INIT_LIST_HEAD(&init_task_group.children);
9504
9505#ifdef CONFIG_USER_SCHED
9506 INIT_LIST_HEAD(&root_task_group.children);
9507 init_task_group.parent = &root_task_group;
9508 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9509#endif /* CONFIG_USER_SCHED */
9510#endif /* CONFIG_GROUP_SCHED */
6f505b16 9511
4a6cc4bd
JK
9512#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9513 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9514 __alignof__(unsigned long));
9515#endif
0a945022 9516 for_each_possible_cpu(i) {
70b97a7f 9517 struct rq *rq;
1da177e4
LT
9518
9519 rq = cpu_rq(i);
9520 spin_lock_init(&rq->lock);
7897986b 9521 rq->nr_running = 0;
dce48a84
TG
9522 rq->calc_load_active = 0;
9523 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9524 init_cfs_rq(&rq->cfs, rq);
6f505b16 9525 init_rt_rq(&rq->rt, rq);
dd41f596 9526#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9527 init_task_group.shares = init_task_group_load;
6f505b16 9528 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9529#ifdef CONFIG_CGROUP_SCHED
9530 /*
9531 * How much cpu bandwidth does init_task_group get?
9532 *
9533 * In case of task-groups formed thr' the cgroup filesystem, it
9534 * gets 100% of the cpu resources in the system. This overall
9535 * system cpu resource is divided among the tasks of
9536 * init_task_group and its child task-groups in a fair manner,
9537 * based on each entity's (task or task-group's) weight
9538 * (se->load.weight).
9539 *
9540 * In other words, if init_task_group has 10 tasks of weight
9541 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9542 * then A0's share of the cpu resource is:
9543 *
0d905bca 9544 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9545 *
9546 * We achieve this by letting init_task_group's tasks sit
9547 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9548 */
ec7dc8ac 9549 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9550#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9551 root_task_group.shares = NICE_0_LOAD;
9552 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9553 /*
9554 * In case of task-groups formed thr' the user id of tasks,
9555 * init_task_group represents tasks belonging to root user.
9556 * Hence it forms a sibling of all subsequent groups formed.
9557 * In this case, init_task_group gets only a fraction of overall
9558 * system cpu resource, based on the weight assigned to root
9559 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9560 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9561 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9562 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9563 */
ec7dc8ac 9564 init_tg_cfs_entry(&init_task_group,
84e9dabf 9565 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9566 &per_cpu(init_sched_entity, i), i, 1,
9567 root_task_group.se[i]);
6f505b16 9568
052f1dc7 9569#endif
354d60c2
DG
9570#endif /* CONFIG_FAIR_GROUP_SCHED */
9571
9572 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9573#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9574 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9575#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9576 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9577#elif defined CONFIG_USER_SCHED
eff766a6 9578 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9579 init_tg_rt_entry(&init_task_group,
6f505b16 9580 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9581 &per_cpu(init_sched_rt_entity, i), i, 1,
9582 root_task_group.rt_se[i]);
354d60c2 9583#endif
dd41f596 9584#endif
1da177e4 9585
dd41f596
IM
9586 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9587 rq->cpu_load[j] = 0;
1da177e4 9588#ifdef CONFIG_SMP
41c7ce9a 9589 rq->sd = NULL;
57d885fe 9590 rq->rd = NULL;
3f029d3c 9591 rq->post_schedule = 0;
1da177e4 9592 rq->active_balance = 0;
dd41f596 9593 rq->next_balance = jiffies;
1da177e4 9594 rq->push_cpu = 0;
0a2966b4 9595 rq->cpu = i;
1f11eb6a 9596 rq->online = 0;
1da177e4 9597 rq->migration_thread = NULL;
eae0c9df
MG
9598 rq->idle_stamp = 0;
9599 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9600 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9601 rq_attach_root(rq, &def_root_domain);
1da177e4 9602#endif
8f4d37ec 9603 init_rq_hrtick(rq);
1da177e4 9604 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9605 }
9606
2dd73a4f 9607 set_load_weight(&init_task);
b50f60ce 9608
e107be36
AK
9609#ifdef CONFIG_PREEMPT_NOTIFIERS
9610 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9611#endif
9612
c9819f45 9613#ifdef CONFIG_SMP
962cf36c 9614 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9615#endif
9616
b50f60ce
HC
9617#ifdef CONFIG_RT_MUTEXES
9618 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9619#endif
9620
1da177e4
LT
9621 /*
9622 * The boot idle thread does lazy MMU switching as well:
9623 */
9624 atomic_inc(&init_mm.mm_count);
9625 enter_lazy_tlb(&init_mm, current);
9626
9627 /*
9628 * Make us the idle thread. Technically, schedule() should not be
9629 * called from this thread, however somewhere below it might be,
9630 * but because we are the idle thread, we just pick up running again
9631 * when this runqueue becomes "idle".
9632 */
9633 init_idle(current, smp_processor_id());
dce48a84
TG
9634
9635 calc_load_update = jiffies + LOAD_FREQ;
9636
dd41f596
IM
9637 /*
9638 * During early bootup we pretend to be a normal task:
9639 */
9640 current->sched_class = &fair_sched_class;
6892b75e 9641
6a7b3dc3 9642 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9643 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9644#ifdef CONFIG_SMP
7d1e6a9b 9645#ifdef CONFIG_NO_HZ
49557e62 9646 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9647 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9648#endif
bdddd296
RR
9649 /* May be allocated at isolcpus cmdline parse time */
9650 if (cpu_isolated_map == NULL)
9651 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9652#endif /* SMP */
6a7b3dc3 9653
cdd6c482 9654 perf_event_init();
0d905bca 9655
6892b75e 9656 scheduler_running = 1;
1da177e4
LT
9657}
9658
9659#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9660static inline int preempt_count_equals(int preempt_offset)
9661{
9662 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9663
9664 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9665}
9666
9667void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9668{
48f24c4d 9669#ifdef in_atomic
1da177e4
LT
9670 static unsigned long prev_jiffy; /* ratelimiting */
9671
e4aafea2
FW
9672 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9673 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9674 return;
9675 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9676 return;
9677 prev_jiffy = jiffies;
9678
663997d4
JP
9679 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9680 file, line);
9681 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9682 in_atomic(), irqs_disabled(),
9683 current->pid, current->comm);
aef745fc
IM
9684
9685 debug_show_held_locks(current);
9686 if (irqs_disabled())
9687 print_irqtrace_events(current);
9688 dump_stack();
1da177e4
LT
9689#endif
9690}
9691EXPORT_SYMBOL(__might_sleep);
9692#endif
9693
9694#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9695static void normalize_task(struct rq *rq, struct task_struct *p)
9696{
9697 int on_rq;
3e51f33f 9698
3a5e4dc1
AK
9699 update_rq_clock(rq);
9700 on_rq = p->se.on_rq;
9701 if (on_rq)
9702 deactivate_task(rq, p, 0);
9703 __setscheduler(rq, p, SCHED_NORMAL, 0);
9704 if (on_rq) {
9705 activate_task(rq, p, 0);
9706 resched_task(rq->curr);
9707 }
9708}
9709
1da177e4
LT
9710void normalize_rt_tasks(void)
9711{
a0f98a1c 9712 struct task_struct *g, *p;
1da177e4 9713 unsigned long flags;
70b97a7f 9714 struct rq *rq;
1da177e4 9715
4cf5d77a 9716 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9717 do_each_thread(g, p) {
178be793
IM
9718 /*
9719 * Only normalize user tasks:
9720 */
9721 if (!p->mm)
9722 continue;
9723
6cfb0d5d 9724 p->se.exec_start = 0;
6cfb0d5d 9725#ifdef CONFIG_SCHEDSTATS
dd41f596 9726 p->se.wait_start = 0;
dd41f596 9727 p->se.sleep_start = 0;
dd41f596 9728 p->se.block_start = 0;
6cfb0d5d 9729#endif
dd41f596
IM
9730
9731 if (!rt_task(p)) {
9732 /*
9733 * Renice negative nice level userspace
9734 * tasks back to 0:
9735 */
9736 if (TASK_NICE(p) < 0 && p->mm)
9737 set_user_nice(p, 0);
1da177e4 9738 continue;
dd41f596 9739 }
1da177e4 9740
4cf5d77a 9741 spin_lock(&p->pi_lock);
b29739f9 9742 rq = __task_rq_lock(p);
1da177e4 9743
178be793 9744 normalize_task(rq, p);
3a5e4dc1 9745
b29739f9 9746 __task_rq_unlock(rq);
4cf5d77a 9747 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9748 } while_each_thread(g, p);
9749
4cf5d77a 9750 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9751}
9752
9753#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9754
9755#ifdef CONFIG_IA64
9756/*
9757 * These functions are only useful for the IA64 MCA handling.
9758 *
9759 * They can only be called when the whole system has been
9760 * stopped - every CPU needs to be quiescent, and no scheduling
9761 * activity can take place. Using them for anything else would
9762 * be a serious bug, and as a result, they aren't even visible
9763 * under any other configuration.
9764 */
9765
9766/**
9767 * curr_task - return the current task for a given cpu.
9768 * @cpu: the processor in question.
9769 *
9770 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9771 */
36c8b586 9772struct task_struct *curr_task(int cpu)
1df5c10a
LT
9773{
9774 return cpu_curr(cpu);
9775}
9776
9777/**
9778 * set_curr_task - set the current task for a given cpu.
9779 * @cpu: the processor in question.
9780 * @p: the task pointer to set.
9781 *
9782 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9783 * are serviced on a separate stack. It allows the architecture to switch the
9784 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9785 * must be called with all CPU's synchronized, and interrupts disabled, the
9786 * and caller must save the original value of the current task (see
9787 * curr_task() above) and restore that value before reenabling interrupts and
9788 * re-starting the system.
9789 *
9790 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9791 */
36c8b586 9792void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9793{
9794 cpu_curr(cpu) = p;
9795}
9796
9797#endif
29f59db3 9798
bccbe08a
PZ
9799#ifdef CONFIG_FAIR_GROUP_SCHED
9800static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9801{
9802 int i;
9803
9804 for_each_possible_cpu(i) {
9805 if (tg->cfs_rq)
9806 kfree(tg->cfs_rq[i]);
9807 if (tg->se)
9808 kfree(tg->se[i]);
6f505b16
PZ
9809 }
9810
9811 kfree(tg->cfs_rq);
9812 kfree(tg->se);
6f505b16
PZ
9813}
9814
ec7dc8ac
DG
9815static
9816int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9817{
29f59db3 9818 struct cfs_rq *cfs_rq;
eab17229 9819 struct sched_entity *se;
9b5b7751 9820 struct rq *rq;
29f59db3
SV
9821 int i;
9822
434d53b0 9823 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9824 if (!tg->cfs_rq)
9825 goto err;
434d53b0 9826 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9827 if (!tg->se)
9828 goto err;
052f1dc7
PZ
9829
9830 tg->shares = NICE_0_LOAD;
29f59db3
SV
9831
9832 for_each_possible_cpu(i) {
9b5b7751 9833 rq = cpu_rq(i);
29f59db3 9834
eab17229
LZ
9835 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9836 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9837 if (!cfs_rq)
9838 goto err;
9839
eab17229
LZ
9840 se = kzalloc_node(sizeof(struct sched_entity),
9841 GFP_KERNEL, cpu_to_node(i));
29f59db3 9842 if (!se)
dfc12eb2 9843 goto err_free_rq;
29f59db3 9844
eab17229 9845 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9846 }
9847
9848 return 1;
9849
dfc12eb2
PC
9850 err_free_rq:
9851 kfree(cfs_rq);
bccbe08a
PZ
9852 err:
9853 return 0;
9854}
9855
9856static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9857{
9858 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9859 &cpu_rq(cpu)->leaf_cfs_rq_list);
9860}
9861
9862static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9863{
9864 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9865}
6d6bc0ad 9866#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9867static inline void free_fair_sched_group(struct task_group *tg)
9868{
9869}
9870
ec7dc8ac
DG
9871static inline
9872int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9873{
9874 return 1;
9875}
9876
9877static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9878{
9879}
9880
9881static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9882{
9883}
6d6bc0ad 9884#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9885
9886#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9887static void free_rt_sched_group(struct task_group *tg)
9888{
9889 int i;
9890
d0b27fa7
PZ
9891 destroy_rt_bandwidth(&tg->rt_bandwidth);
9892
bccbe08a
PZ
9893 for_each_possible_cpu(i) {
9894 if (tg->rt_rq)
9895 kfree(tg->rt_rq[i]);
9896 if (tg->rt_se)
9897 kfree(tg->rt_se[i]);
9898 }
9899
9900 kfree(tg->rt_rq);
9901 kfree(tg->rt_se);
9902}
9903
ec7dc8ac
DG
9904static
9905int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9906{
9907 struct rt_rq *rt_rq;
eab17229 9908 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9909 struct rq *rq;
9910 int i;
9911
434d53b0 9912 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9913 if (!tg->rt_rq)
9914 goto err;
434d53b0 9915 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9916 if (!tg->rt_se)
9917 goto err;
9918
d0b27fa7
PZ
9919 init_rt_bandwidth(&tg->rt_bandwidth,
9920 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9921
9922 for_each_possible_cpu(i) {
9923 rq = cpu_rq(i);
9924
eab17229
LZ
9925 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9926 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9927 if (!rt_rq)
9928 goto err;
29f59db3 9929
eab17229
LZ
9930 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9931 GFP_KERNEL, cpu_to_node(i));
6f505b16 9932 if (!rt_se)
dfc12eb2 9933 goto err_free_rq;
29f59db3 9934
eab17229 9935 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9936 }
9937
bccbe08a
PZ
9938 return 1;
9939
dfc12eb2
PC
9940 err_free_rq:
9941 kfree(rt_rq);
bccbe08a
PZ
9942 err:
9943 return 0;
9944}
9945
9946static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9947{
9948 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9949 &cpu_rq(cpu)->leaf_rt_rq_list);
9950}
9951
9952static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9953{
9954 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9955}
6d6bc0ad 9956#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9957static inline void free_rt_sched_group(struct task_group *tg)
9958{
9959}
9960
ec7dc8ac
DG
9961static inline
9962int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9963{
9964 return 1;
9965}
9966
9967static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9968{
9969}
9970
9971static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9972{
9973}
6d6bc0ad 9974#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9975
d0b27fa7 9976#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9977static void free_sched_group(struct task_group *tg)
9978{
9979 free_fair_sched_group(tg);
9980 free_rt_sched_group(tg);
9981 kfree(tg);
9982}
9983
9984/* allocate runqueue etc for a new task group */
ec7dc8ac 9985struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9986{
9987 struct task_group *tg;
9988 unsigned long flags;
9989 int i;
9990
9991 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9992 if (!tg)
9993 return ERR_PTR(-ENOMEM);
9994
ec7dc8ac 9995 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9996 goto err;
9997
ec7dc8ac 9998 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9999 goto err;
10000
8ed36996 10001 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10002 for_each_possible_cpu(i) {
bccbe08a
PZ
10003 register_fair_sched_group(tg, i);
10004 register_rt_sched_group(tg, i);
9b5b7751 10005 }
6f505b16 10006 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10007
10008 WARN_ON(!parent); /* root should already exist */
10009
10010 tg->parent = parent;
f473aa5e 10011 INIT_LIST_HEAD(&tg->children);
09f2724a 10012 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10013 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10014
9b5b7751 10015 return tg;
29f59db3
SV
10016
10017err:
6f505b16 10018 free_sched_group(tg);
29f59db3
SV
10019 return ERR_PTR(-ENOMEM);
10020}
10021
9b5b7751 10022/* rcu callback to free various structures associated with a task group */
6f505b16 10023static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10024{
29f59db3 10025 /* now it should be safe to free those cfs_rqs */
6f505b16 10026 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10027}
10028
9b5b7751 10029/* Destroy runqueue etc associated with a task group */
4cf86d77 10030void sched_destroy_group(struct task_group *tg)
29f59db3 10031{
8ed36996 10032 unsigned long flags;
9b5b7751 10033 int i;
29f59db3 10034
8ed36996 10035 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10036 for_each_possible_cpu(i) {
bccbe08a
PZ
10037 unregister_fair_sched_group(tg, i);
10038 unregister_rt_sched_group(tg, i);
9b5b7751 10039 }
6f505b16 10040 list_del_rcu(&tg->list);
f473aa5e 10041 list_del_rcu(&tg->siblings);
8ed36996 10042 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10043
9b5b7751 10044 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10045 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10046}
10047
9b5b7751 10048/* change task's runqueue when it moves between groups.
3a252015
IM
10049 * The caller of this function should have put the task in its new group
10050 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10051 * reflect its new group.
9b5b7751
SV
10052 */
10053void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10054{
10055 int on_rq, running;
10056 unsigned long flags;
10057 struct rq *rq;
10058
10059 rq = task_rq_lock(tsk, &flags);
10060
29f59db3
SV
10061 update_rq_clock(rq);
10062
051a1d1a 10063 running = task_current(rq, tsk);
29f59db3
SV
10064 on_rq = tsk->se.on_rq;
10065
0e1f3483 10066 if (on_rq)
29f59db3 10067 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10068 if (unlikely(running))
10069 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10070
6f505b16 10071 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10072
810b3817
PZ
10073#ifdef CONFIG_FAIR_GROUP_SCHED
10074 if (tsk->sched_class->moved_group)
10075 tsk->sched_class->moved_group(tsk);
10076#endif
10077
0e1f3483
HS
10078 if (unlikely(running))
10079 tsk->sched_class->set_curr_task(rq);
10080 if (on_rq)
7074badb 10081 enqueue_task(rq, tsk, 0);
29f59db3 10082
29f59db3
SV
10083 task_rq_unlock(rq, &flags);
10084}
6d6bc0ad 10085#endif /* CONFIG_GROUP_SCHED */
29f59db3 10086
052f1dc7 10087#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10088static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10089{
10090 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10091 int on_rq;
10092
29f59db3 10093 on_rq = se->on_rq;
62fb1851 10094 if (on_rq)
29f59db3
SV
10095 dequeue_entity(cfs_rq, se, 0);
10096
10097 se->load.weight = shares;
e05510d0 10098 se->load.inv_weight = 0;
29f59db3 10099
62fb1851 10100 if (on_rq)
29f59db3 10101 enqueue_entity(cfs_rq, se, 0);
c09595f6 10102}
62fb1851 10103
c09595f6
PZ
10104static void set_se_shares(struct sched_entity *se, unsigned long shares)
10105{
10106 struct cfs_rq *cfs_rq = se->cfs_rq;
10107 struct rq *rq = cfs_rq->rq;
10108 unsigned long flags;
10109
10110 spin_lock_irqsave(&rq->lock, flags);
10111 __set_se_shares(se, shares);
10112 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10113}
10114
8ed36996
PZ
10115static DEFINE_MUTEX(shares_mutex);
10116
4cf86d77 10117int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10118{
10119 int i;
8ed36996 10120 unsigned long flags;
c61935fd 10121
ec7dc8ac
DG
10122 /*
10123 * We can't change the weight of the root cgroup.
10124 */
10125 if (!tg->se[0])
10126 return -EINVAL;
10127
18d95a28
PZ
10128 if (shares < MIN_SHARES)
10129 shares = MIN_SHARES;
cb4ad1ff
MX
10130 else if (shares > MAX_SHARES)
10131 shares = MAX_SHARES;
62fb1851 10132
8ed36996 10133 mutex_lock(&shares_mutex);
9b5b7751 10134 if (tg->shares == shares)
5cb350ba 10135 goto done;
29f59db3 10136
8ed36996 10137 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10138 for_each_possible_cpu(i)
10139 unregister_fair_sched_group(tg, i);
f473aa5e 10140 list_del_rcu(&tg->siblings);
8ed36996 10141 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10142
10143 /* wait for any ongoing reference to this group to finish */
10144 synchronize_sched();
10145
10146 /*
10147 * Now we are free to modify the group's share on each cpu
10148 * w/o tripping rebalance_share or load_balance_fair.
10149 */
9b5b7751 10150 tg->shares = shares;
c09595f6
PZ
10151 for_each_possible_cpu(i) {
10152 /*
10153 * force a rebalance
10154 */
10155 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10156 set_se_shares(tg->se[i], shares);
c09595f6 10157 }
29f59db3 10158
6b2d7700
SV
10159 /*
10160 * Enable load balance activity on this group, by inserting it back on
10161 * each cpu's rq->leaf_cfs_rq_list.
10162 */
8ed36996 10163 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10164 for_each_possible_cpu(i)
10165 register_fair_sched_group(tg, i);
f473aa5e 10166 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10167 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10168done:
8ed36996 10169 mutex_unlock(&shares_mutex);
9b5b7751 10170 return 0;
29f59db3
SV
10171}
10172
5cb350ba
DG
10173unsigned long sched_group_shares(struct task_group *tg)
10174{
10175 return tg->shares;
10176}
052f1dc7 10177#endif
5cb350ba 10178
052f1dc7 10179#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10180/*
9f0c1e56 10181 * Ensure that the real time constraints are schedulable.
6f505b16 10182 */
9f0c1e56
PZ
10183static DEFINE_MUTEX(rt_constraints_mutex);
10184
10185static unsigned long to_ratio(u64 period, u64 runtime)
10186{
10187 if (runtime == RUNTIME_INF)
9a7e0b18 10188 return 1ULL << 20;
9f0c1e56 10189
9a7e0b18 10190 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10191}
10192
9a7e0b18
PZ
10193/* Must be called with tasklist_lock held */
10194static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10195{
9a7e0b18 10196 struct task_struct *g, *p;
b40b2e8e 10197
9a7e0b18
PZ
10198 do_each_thread(g, p) {
10199 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10200 return 1;
10201 } while_each_thread(g, p);
b40b2e8e 10202
9a7e0b18
PZ
10203 return 0;
10204}
b40b2e8e 10205
9a7e0b18
PZ
10206struct rt_schedulable_data {
10207 struct task_group *tg;
10208 u64 rt_period;
10209 u64 rt_runtime;
10210};
b40b2e8e 10211
9a7e0b18
PZ
10212static int tg_schedulable(struct task_group *tg, void *data)
10213{
10214 struct rt_schedulable_data *d = data;
10215 struct task_group *child;
10216 unsigned long total, sum = 0;
10217 u64 period, runtime;
b40b2e8e 10218
9a7e0b18
PZ
10219 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10220 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10221
9a7e0b18
PZ
10222 if (tg == d->tg) {
10223 period = d->rt_period;
10224 runtime = d->rt_runtime;
b40b2e8e 10225 }
b40b2e8e 10226
98a4826b
PZ
10227#ifdef CONFIG_USER_SCHED
10228 if (tg == &root_task_group) {
10229 period = global_rt_period();
10230 runtime = global_rt_runtime();
10231 }
10232#endif
10233
4653f803
PZ
10234 /*
10235 * Cannot have more runtime than the period.
10236 */
10237 if (runtime > period && runtime != RUNTIME_INF)
10238 return -EINVAL;
6f505b16 10239
4653f803
PZ
10240 /*
10241 * Ensure we don't starve existing RT tasks.
10242 */
9a7e0b18
PZ
10243 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10244 return -EBUSY;
6f505b16 10245
9a7e0b18 10246 total = to_ratio(period, runtime);
6f505b16 10247
4653f803
PZ
10248 /*
10249 * Nobody can have more than the global setting allows.
10250 */
10251 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10252 return -EINVAL;
6f505b16 10253
4653f803
PZ
10254 /*
10255 * The sum of our children's runtime should not exceed our own.
10256 */
9a7e0b18
PZ
10257 list_for_each_entry_rcu(child, &tg->children, siblings) {
10258 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10259 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10260
9a7e0b18
PZ
10261 if (child == d->tg) {
10262 period = d->rt_period;
10263 runtime = d->rt_runtime;
10264 }
6f505b16 10265
9a7e0b18 10266 sum += to_ratio(period, runtime);
9f0c1e56 10267 }
6f505b16 10268
9a7e0b18
PZ
10269 if (sum > total)
10270 return -EINVAL;
10271
10272 return 0;
6f505b16
PZ
10273}
10274
9a7e0b18 10275static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10276{
9a7e0b18
PZ
10277 struct rt_schedulable_data data = {
10278 .tg = tg,
10279 .rt_period = period,
10280 .rt_runtime = runtime,
10281 };
10282
10283 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10284}
10285
d0b27fa7
PZ
10286static int tg_set_bandwidth(struct task_group *tg,
10287 u64 rt_period, u64 rt_runtime)
6f505b16 10288{
ac086bc2 10289 int i, err = 0;
9f0c1e56 10290
9f0c1e56 10291 mutex_lock(&rt_constraints_mutex);
521f1a24 10292 read_lock(&tasklist_lock);
9a7e0b18
PZ
10293 err = __rt_schedulable(tg, rt_period, rt_runtime);
10294 if (err)
9f0c1e56 10295 goto unlock;
ac086bc2
PZ
10296
10297 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10298 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10299 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10300
10301 for_each_possible_cpu(i) {
10302 struct rt_rq *rt_rq = tg->rt_rq[i];
10303
10304 spin_lock(&rt_rq->rt_runtime_lock);
10305 rt_rq->rt_runtime = rt_runtime;
10306 spin_unlock(&rt_rq->rt_runtime_lock);
10307 }
10308 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10309 unlock:
521f1a24 10310 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10311 mutex_unlock(&rt_constraints_mutex);
10312
10313 return err;
6f505b16
PZ
10314}
10315
d0b27fa7
PZ
10316int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10317{
10318 u64 rt_runtime, rt_period;
10319
10320 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10321 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10322 if (rt_runtime_us < 0)
10323 rt_runtime = RUNTIME_INF;
10324
10325 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10326}
10327
9f0c1e56
PZ
10328long sched_group_rt_runtime(struct task_group *tg)
10329{
10330 u64 rt_runtime_us;
10331
d0b27fa7 10332 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10333 return -1;
10334
d0b27fa7 10335 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10336 do_div(rt_runtime_us, NSEC_PER_USEC);
10337 return rt_runtime_us;
10338}
d0b27fa7
PZ
10339
10340int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10341{
10342 u64 rt_runtime, rt_period;
10343
10344 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10345 rt_runtime = tg->rt_bandwidth.rt_runtime;
10346
619b0488
R
10347 if (rt_period == 0)
10348 return -EINVAL;
10349
d0b27fa7
PZ
10350 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10351}
10352
10353long sched_group_rt_period(struct task_group *tg)
10354{
10355 u64 rt_period_us;
10356
10357 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10358 do_div(rt_period_us, NSEC_PER_USEC);
10359 return rt_period_us;
10360}
10361
10362static int sched_rt_global_constraints(void)
10363{
4653f803 10364 u64 runtime, period;
d0b27fa7
PZ
10365 int ret = 0;
10366
ec5d4989
HS
10367 if (sysctl_sched_rt_period <= 0)
10368 return -EINVAL;
10369
4653f803
PZ
10370 runtime = global_rt_runtime();
10371 period = global_rt_period();
10372
10373 /*
10374 * Sanity check on the sysctl variables.
10375 */
10376 if (runtime > period && runtime != RUNTIME_INF)
10377 return -EINVAL;
10b612f4 10378
d0b27fa7 10379 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10380 read_lock(&tasklist_lock);
4653f803 10381 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10382 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10383 mutex_unlock(&rt_constraints_mutex);
10384
10385 return ret;
10386}
54e99124
DG
10387
10388int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10389{
10390 /* Don't accept realtime tasks when there is no way for them to run */
10391 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10392 return 0;
10393
10394 return 1;
10395}
10396
6d6bc0ad 10397#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10398static int sched_rt_global_constraints(void)
10399{
ac086bc2
PZ
10400 unsigned long flags;
10401 int i;
10402
ec5d4989
HS
10403 if (sysctl_sched_rt_period <= 0)
10404 return -EINVAL;
10405
60aa605d
PZ
10406 /*
10407 * There's always some RT tasks in the root group
10408 * -- migration, kstopmachine etc..
10409 */
10410 if (sysctl_sched_rt_runtime == 0)
10411 return -EBUSY;
10412
ac086bc2
PZ
10413 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10414 for_each_possible_cpu(i) {
10415 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10416
10417 spin_lock(&rt_rq->rt_runtime_lock);
10418 rt_rq->rt_runtime = global_rt_runtime();
10419 spin_unlock(&rt_rq->rt_runtime_lock);
10420 }
10421 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10422
d0b27fa7
PZ
10423 return 0;
10424}
6d6bc0ad 10425#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10426
10427int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10428 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10429 loff_t *ppos)
10430{
10431 int ret;
10432 int old_period, old_runtime;
10433 static DEFINE_MUTEX(mutex);
10434
10435 mutex_lock(&mutex);
10436 old_period = sysctl_sched_rt_period;
10437 old_runtime = sysctl_sched_rt_runtime;
10438
8d65af78 10439 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10440
10441 if (!ret && write) {
10442 ret = sched_rt_global_constraints();
10443 if (ret) {
10444 sysctl_sched_rt_period = old_period;
10445 sysctl_sched_rt_runtime = old_runtime;
10446 } else {
10447 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10448 def_rt_bandwidth.rt_period =
10449 ns_to_ktime(global_rt_period());
10450 }
10451 }
10452 mutex_unlock(&mutex);
10453
10454 return ret;
10455}
68318b8e 10456
052f1dc7 10457#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10458
10459/* return corresponding task_group object of a cgroup */
2b01dfe3 10460static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10461{
2b01dfe3
PM
10462 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10463 struct task_group, css);
68318b8e
SV
10464}
10465
10466static struct cgroup_subsys_state *
2b01dfe3 10467cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10468{
ec7dc8ac 10469 struct task_group *tg, *parent;
68318b8e 10470
2b01dfe3 10471 if (!cgrp->parent) {
68318b8e 10472 /* This is early initialization for the top cgroup */
68318b8e
SV
10473 return &init_task_group.css;
10474 }
10475
ec7dc8ac
DG
10476 parent = cgroup_tg(cgrp->parent);
10477 tg = sched_create_group(parent);
68318b8e
SV
10478 if (IS_ERR(tg))
10479 return ERR_PTR(-ENOMEM);
10480
68318b8e
SV
10481 return &tg->css;
10482}
10483
41a2d6cf
IM
10484static void
10485cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10486{
2b01dfe3 10487 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10488
10489 sched_destroy_group(tg);
10490}
10491
41a2d6cf 10492static int
be367d09 10493cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10494{
b68aa230 10495#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10496 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10497 return -EINVAL;
10498#else
68318b8e
SV
10499 /* We don't support RT-tasks being in separate groups */
10500 if (tsk->sched_class != &fair_sched_class)
10501 return -EINVAL;
b68aa230 10502#endif
be367d09
BB
10503 return 0;
10504}
68318b8e 10505
be367d09
BB
10506static int
10507cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10508 struct task_struct *tsk, bool threadgroup)
10509{
10510 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10511 if (retval)
10512 return retval;
10513 if (threadgroup) {
10514 struct task_struct *c;
10515 rcu_read_lock();
10516 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10517 retval = cpu_cgroup_can_attach_task(cgrp, c);
10518 if (retval) {
10519 rcu_read_unlock();
10520 return retval;
10521 }
10522 }
10523 rcu_read_unlock();
10524 }
68318b8e
SV
10525 return 0;
10526}
10527
10528static void
2b01dfe3 10529cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10530 struct cgroup *old_cont, struct task_struct *tsk,
10531 bool threadgroup)
68318b8e
SV
10532{
10533 sched_move_task(tsk);
be367d09
BB
10534 if (threadgroup) {
10535 struct task_struct *c;
10536 rcu_read_lock();
10537 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10538 sched_move_task(c);
10539 }
10540 rcu_read_unlock();
10541 }
68318b8e
SV
10542}
10543
052f1dc7 10544#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10545static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10546 u64 shareval)
68318b8e 10547{
2b01dfe3 10548 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10549}
10550
f4c753b7 10551static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10552{
2b01dfe3 10553 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10554
10555 return (u64) tg->shares;
10556}
6d6bc0ad 10557#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10558
052f1dc7 10559#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10560static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10561 s64 val)
6f505b16 10562{
06ecb27c 10563 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10564}
10565
06ecb27c 10566static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10567{
06ecb27c 10568 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10569}
d0b27fa7
PZ
10570
10571static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10572 u64 rt_period_us)
10573{
10574 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10575}
10576
10577static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10578{
10579 return sched_group_rt_period(cgroup_tg(cgrp));
10580}
6d6bc0ad 10581#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10582
fe5c7cc2 10583static struct cftype cpu_files[] = {
052f1dc7 10584#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10585 {
10586 .name = "shares",
f4c753b7
PM
10587 .read_u64 = cpu_shares_read_u64,
10588 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10589 },
052f1dc7
PZ
10590#endif
10591#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10592 {
9f0c1e56 10593 .name = "rt_runtime_us",
06ecb27c
PM
10594 .read_s64 = cpu_rt_runtime_read,
10595 .write_s64 = cpu_rt_runtime_write,
6f505b16 10596 },
d0b27fa7
PZ
10597 {
10598 .name = "rt_period_us",
f4c753b7
PM
10599 .read_u64 = cpu_rt_period_read_uint,
10600 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10601 },
052f1dc7 10602#endif
68318b8e
SV
10603};
10604
10605static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10606{
fe5c7cc2 10607 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10608}
10609
10610struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10611 .name = "cpu",
10612 .create = cpu_cgroup_create,
10613 .destroy = cpu_cgroup_destroy,
10614 .can_attach = cpu_cgroup_can_attach,
10615 .attach = cpu_cgroup_attach,
10616 .populate = cpu_cgroup_populate,
10617 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10618 .early_init = 1,
10619};
10620
052f1dc7 10621#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10622
10623#ifdef CONFIG_CGROUP_CPUACCT
10624
10625/*
10626 * CPU accounting code for task groups.
10627 *
10628 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10629 * (balbir@in.ibm.com).
10630 */
10631
934352f2 10632/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10633struct cpuacct {
10634 struct cgroup_subsys_state css;
10635 /* cpuusage holds pointer to a u64-type object on every cpu */
10636 u64 *cpuusage;
ef12fefa 10637 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10638 struct cpuacct *parent;
d842de87
SV
10639};
10640
10641struct cgroup_subsys cpuacct_subsys;
10642
10643/* return cpu accounting group corresponding to this container */
32cd756a 10644static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10645{
32cd756a 10646 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10647 struct cpuacct, css);
10648}
10649
10650/* return cpu accounting group to which this task belongs */
10651static inline struct cpuacct *task_ca(struct task_struct *tsk)
10652{
10653 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10654 struct cpuacct, css);
10655}
10656
10657/* create a new cpu accounting group */
10658static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10659 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10660{
10661 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10662 int i;
d842de87
SV
10663
10664 if (!ca)
ef12fefa 10665 goto out;
d842de87
SV
10666
10667 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10668 if (!ca->cpuusage)
10669 goto out_free_ca;
10670
10671 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10672 if (percpu_counter_init(&ca->cpustat[i], 0))
10673 goto out_free_counters;
d842de87 10674
934352f2
BR
10675 if (cgrp->parent)
10676 ca->parent = cgroup_ca(cgrp->parent);
10677
d842de87 10678 return &ca->css;
ef12fefa
BR
10679
10680out_free_counters:
10681 while (--i >= 0)
10682 percpu_counter_destroy(&ca->cpustat[i]);
10683 free_percpu(ca->cpuusage);
10684out_free_ca:
10685 kfree(ca);
10686out:
10687 return ERR_PTR(-ENOMEM);
d842de87
SV
10688}
10689
10690/* destroy an existing cpu accounting group */
41a2d6cf 10691static void
32cd756a 10692cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10693{
32cd756a 10694 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10695 int i;
d842de87 10696
ef12fefa
BR
10697 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10698 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10699 free_percpu(ca->cpuusage);
10700 kfree(ca);
10701}
10702
720f5498
KC
10703static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10704{
b36128c8 10705 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10706 u64 data;
10707
10708#ifndef CONFIG_64BIT
10709 /*
10710 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10711 */
10712 spin_lock_irq(&cpu_rq(cpu)->lock);
10713 data = *cpuusage;
10714 spin_unlock_irq(&cpu_rq(cpu)->lock);
10715#else
10716 data = *cpuusage;
10717#endif
10718
10719 return data;
10720}
10721
10722static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10723{
b36128c8 10724 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10725
10726#ifndef CONFIG_64BIT
10727 /*
10728 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10729 */
10730 spin_lock_irq(&cpu_rq(cpu)->lock);
10731 *cpuusage = val;
10732 spin_unlock_irq(&cpu_rq(cpu)->lock);
10733#else
10734 *cpuusage = val;
10735#endif
10736}
10737
d842de87 10738/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10739static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10740{
32cd756a 10741 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10742 u64 totalcpuusage = 0;
10743 int i;
10744
720f5498
KC
10745 for_each_present_cpu(i)
10746 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10747
10748 return totalcpuusage;
10749}
10750
0297b803
DG
10751static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10752 u64 reset)
10753{
10754 struct cpuacct *ca = cgroup_ca(cgrp);
10755 int err = 0;
10756 int i;
10757
10758 if (reset) {
10759 err = -EINVAL;
10760 goto out;
10761 }
10762
720f5498
KC
10763 for_each_present_cpu(i)
10764 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10765
0297b803
DG
10766out:
10767 return err;
10768}
10769
e9515c3c
KC
10770static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10771 struct seq_file *m)
10772{
10773 struct cpuacct *ca = cgroup_ca(cgroup);
10774 u64 percpu;
10775 int i;
10776
10777 for_each_present_cpu(i) {
10778 percpu = cpuacct_cpuusage_read(ca, i);
10779 seq_printf(m, "%llu ", (unsigned long long) percpu);
10780 }
10781 seq_printf(m, "\n");
10782 return 0;
10783}
10784
ef12fefa
BR
10785static const char *cpuacct_stat_desc[] = {
10786 [CPUACCT_STAT_USER] = "user",
10787 [CPUACCT_STAT_SYSTEM] = "system",
10788};
10789
10790static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10791 struct cgroup_map_cb *cb)
10792{
10793 struct cpuacct *ca = cgroup_ca(cgrp);
10794 int i;
10795
10796 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10797 s64 val = percpu_counter_read(&ca->cpustat[i]);
10798 val = cputime64_to_clock_t(val);
10799 cb->fill(cb, cpuacct_stat_desc[i], val);
10800 }
10801 return 0;
10802}
10803
d842de87
SV
10804static struct cftype files[] = {
10805 {
10806 .name = "usage",
f4c753b7
PM
10807 .read_u64 = cpuusage_read,
10808 .write_u64 = cpuusage_write,
d842de87 10809 },
e9515c3c
KC
10810 {
10811 .name = "usage_percpu",
10812 .read_seq_string = cpuacct_percpu_seq_read,
10813 },
ef12fefa
BR
10814 {
10815 .name = "stat",
10816 .read_map = cpuacct_stats_show,
10817 },
d842de87
SV
10818};
10819
32cd756a 10820static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10821{
32cd756a 10822 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10823}
10824
10825/*
10826 * charge this task's execution time to its accounting group.
10827 *
10828 * called with rq->lock held.
10829 */
10830static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10831{
10832 struct cpuacct *ca;
934352f2 10833 int cpu;
d842de87 10834
c40c6f85 10835 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10836 return;
10837
934352f2 10838 cpu = task_cpu(tsk);
a18b83b7
BR
10839
10840 rcu_read_lock();
10841
d842de87 10842 ca = task_ca(tsk);
d842de87 10843
934352f2 10844 for (; ca; ca = ca->parent) {
b36128c8 10845 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10846 *cpuusage += cputime;
10847 }
a18b83b7
BR
10848
10849 rcu_read_unlock();
d842de87
SV
10850}
10851
ef12fefa
BR
10852/*
10853 * Charge the system/user time to the task's accounting group.
10854 */
10855static void cpuacct_update_stats(struct task_struct *tsk,
10856 enum cpuacct_stat_index idx, cputime_t val)
10857{
10858 struct cpuacct *ca;
10859
10860 if (unlikely(!cpuacct_subsys.active))
10861 return;
10862
10863 rcu_read_lock();
10864 ca = task_ca(tsk);
10865
10866 do {
10867 percpu_counter_add(&ca->cpustat[idx], val);
10868 ca = ca->parent;
10869 } while (ca);
10870 rcu_read_unlock();
10871}
10872
d842de87
SV
10873struct cgroup_subsys cpuacct_subsys = {
10874 .name = "cpuacct",
10875 .create = cpuacct_create,
10876 .destroy = cpuacct_destroy,
10877 .populate = cpuacct_populate,
10878 .subsys_id = cpuacct_subsys_id,
10879};
10880#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10881
10882#ifndef CONFIG_SMP
10883
10884int rcu_expedited_torture_stats(char *page)
10885{
10886 return 0;
10887}
10888EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10889
10890void synchronize_sched_expedited(void)
10891{
10892}
10893EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10894
10895#else /* #ifndef CONFIG_SMP */
10896
10897static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10898static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10899
10900#define RCU_EXPEDITED_STATE_POST -2
10901#define RCU_EXPEDITED_STATE_IDLE -1
10902
10903static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10904
10905int rcu_expedited_torture_stats(char *page)
10906{
10907 int cnt = 0;
10908 int cpu;
10909
10910 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10911 for_each_online_cpu(cpu) {
10912 cnt += sprintf(&page[cnt], " %d:%d",
10913 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10914 }
10915 cnt += sprintf(&page[cnt], "\n");
10916 return cnt;
10917}
10918EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10919
10920static long synchronize_sched_expedited_count;
10921
10922/*
10923 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10924 * approach to force grace period to end quickly. This consumes
10925 * significant time on all CPUs, and is thus not recommended for
10926 * any sort of common-case code.
10927 *
10928 * Note that it is illegal to call this function while holding any
10929 * lock that is acquired by a CPU-hotplug notifier. Failing to
10930 * observe this restriction will result in deadlock.
10931 */
10932void synchronize_sched_expedited(void)
10933{
10934 int cpu;
10935 unsigned long flags;
10936 bool need_full_sync = 0;
10937 struct rq *rq;
10938 struct migration_req *req;
10939 long snap;
10940 int trycount = 0;
10941
10942 smp_mb(); /* ensure prior mod happens before capturing snap. */
10943 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10944 get_online_cpus();
10945 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10946 put_online_cpus();
10947 if (trycount++ < 10)
10948 udelay(trycount * num_online_cpus());
10949 else {
10950 synchronize_sched();
10951 return;
10952 }
10953 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10954 smp_mb(); /* ensure test happens before caller kfree */
10955 return;
10956 }
10957 get_online_cpus();
10958 }
10959 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10960 for_each_online_cpu(cpu) {
10961 rq = cpu_rq(cpu);
10962 req = &per_cpu(rcu_migration_req, cpu);
10963 init_completion(&req->done);
10964 req->task = NULL;
10965 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10966 spin_lock_irqsave(&rq->lock, flags);
10967 list_add(&req->list, &rq->migration_queue);
10968 spin_unlock_irqrestore(&rq->lock, flags);
10969 wake_up_process(rq->migration_thread);
10970 }
10971 for_each_online_cpu(cpu) {
10972 rcu_expedited_state = cpu;
10973 req = &per_cpu(rcu_migration_req, cpu);
10974 rq = cpu_rq(cpu);
10975 wait_for_completion(&req->done);
10976 spin_lock_irqsave(&rq->lock, flags);
10977 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10978 need_full_sync = 1;
10979 req->dest_cpu = RCU_MIGRATION_IDLE;
10980 spin_unlock_irqrestore(&rq->lock, flags);
10981 }
10982 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10983 synchronize_sched_expedited_count++;
03b042bf
PM
10984 mutex_unlock(&rcu_sched_expedited_mutex);
10985 put_online_cpus();
10986 if (need_full_sync)
10987 synchronize_sched();
10988}
10989EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10990
10991#endif /* #else #ifndef CONFIG_SMP */