]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: pull_rt_task() cleanup
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
1da177e4 69
5517d86b 70#include <asm/tlb.h>
838225b4 71#include <asm/irq_regs.h>
1da177e4 72
b035b6de
AD
73/*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78unsigned long long __attribute__((weak)) sched_clock(void)
79{
d6322faf 80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
81}
82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
5517d86b
ED
117#ifdef CONFIG_SMP
118/*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123{
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125}
126
127/*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132{
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135}
136#endif
137
e05606d3
IM
138static inline int rt_policy(int policy)
139{
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143}
144
145static inline int task_has_rt_policy(struct task_struct *p)
146{
147 return rt_policy(p->policy);
148}
149
1da177e4 150/*
6aa645ea 151 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 152 */
6aa645ea
IM
153struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156};
157
29f59db3
SV
158#ifdef CONFIG_FAIR_GROUP_SCHED
159
68318b8e
SV
160#include <linux/cgroup.h>
161
29f59db3
SV
162struct cfs_rq;
163
6f505b16
PZ
164static LIST_HEAD(task_groups);
165
29f59db3 166/* task group related information */
4cf86d77 167struct task_group {
68318b8e
SV
168#ifdef CONFIG_FAIR_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170#endif
29f59db3
SV
171 /* schedulable entities of this group on each cpu */
172 struct sched_entity **se;
173 /* runqueue "owned" by this group on each cpu */
174 struct cfs_rq **cfs_rq;
6b2d7700 175
6f505b16
PZ
176 struct sched_rt_entity **rt_se;
177 struct rt_rq **rt_rq;
178
179 unsigned int rt_ratio;
180
6b2d7700
SV
181 /*
182 * shares assigned to a task group governs how much of cpu bandwidth
183 * is allocated to the group. The more shares a group has, the more is
184 * the cpu bandwidth allocated to it.
185 *
186 * For ex, lets say that there are three task groups, A, B and C which
187 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
188 * cpu bandwidth allocated by the scheduler to task groups A, B and C
189 * should be:
190 *
191 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
192 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
03319ec8 193 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
6b2d7700
SV
194 *
195 * The weight assigned to a task group's schedulable entities on every
196 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
197 * group's shares. For ex: lets say that task group A has been
198 * assigned shares of 1000 and there are two CPUs in a system. Then,
199 *
200 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
201 *
202 * Note: It's not necessary that each of a task's group schedulable
03319ec8
IM
203 * entity have the same weight on all CPUs. If the group
204 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
205 * better distribution of weight could be:
6b2d7700
SV
206 *
207 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
208 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
209 *
210 * rebalance_shares() is responsible for distributing the shares of a
211 * task groups like this among the group's schedulable entities across
212 * cpus.
213 *
214 */
29f59db3 215 unsigned long shares;
6b2d7700 216
ae8393e5 217 struct rcu_head rcu;
6f505b16 218 struct list_head list;
29f59db3
SV
219};
220
221/* Default task group's sched entity on each cpu */
222static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
223/* Default task group's cfs_rq on each cpu */
224static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
225
6f505b16
PZ
226static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
227static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
228
9b5b7751
SV
229static struct sched_entity *init_sched_entity_p[NR_CPUS];
230static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 231
6f505b16
PZ
232static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
233static struct rt_rq *init_rt_rq_p[NR_CPUS];
234
ec2c507f
SV
235/* task_group_mutex serializes add/remove of task groups and also changes to
236 * a task group's cpu shares.
237 */
238static DEFINE_MUTEX(task_group_mutex);
239
a1835615
SV
240/* doms_cur_mutex serializes access to doms_cur[] array */
241static DEFINE_MUTEX(doms_cur_mutex);
242
6b2d7700
SV
243#ifdef CONFIG_SMP
244/* kernel thread that runs rebalance_shares() periodically */
245static struct task_struct *lb_monitor_task;
246static int load_balance_monitor(void *unused);
247#endif
248
249static void set_se_shares(struct sched_entity *se, unsigned long shares);
250
29f59db3 251/* Default task group.
3a252015 252 * Every task in system belong to this group at bootup.
29f59db3 253 */
4cf86d77 254struct task_group init_task_group = {
0eab9146 255 .se = init_sched_entity_p,
3a252015 256 .cfs_rq = init_cfs_rq_p,
6f505b16
PZ
257
258 .rt_se = init_sched_rt_entity_p,
259 .rt_rq = init_rt_rq_p,
3a252015 260};
9b5b7751 261
24e377a8 262#ifdef CONFIG_FAIR_USER_SCHED
0eab9146 263# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
24e377a8 264#else
93f992cc 265# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
266#endif
267
0eab9146 268#define MIN_GROUP_SHARES 2
6b2d7700 269
93f992cc 270static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
271
272/* return group to which a task belongs */
4cf86d77 273static inline struct task_group *task_group(struct task_struct *p)
29f59db3 274{
4cf86d77 275 struct task_group *tg;
9b5b7751 276
24e377a8
SV
277#ifdef CONFIG_FAIR_USER_SCHED
278 tg = p->user->tg;
68318b8e
SV
279#elif defined(CONFIG_FAIR_CGROUP_SCHED)
280 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
281 struct task_group, css);
24e377a8 282#else
41a2d6cf 283 tg = &init_task_group;
24e377a8 284#endif
9b5b7751 285 return tg;
29f59db3
SV
286}
287
288/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 289static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 290{
ce96b5ac
DA
291 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
292 p->se.parent = task_group(p)->se[cpu];
6f505b16
PZ
293
294 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
295 p->rt.parent = task_group(p)->rt_se[cpu];
29f59db3
SV
296}
297
ec2c507f
SV
298static inline void lock_task_group_list(void)
299{
300 mutex_lock(&task_group_mutex);
301}
302
303static inline void unlock_task_group_list(void)
304{
305 mutex_unlock(&task_group_mutex);
306}
307
a1835615
SV
308static inline void lock_doms_cur(void)
309{
310 mutex_lock(&doms_cur_mutex);
311}
312
313static inline void unlock_doms_cur(void)
314{
315 mutex_unlock(&doms_cur_mutex);
316}
317
29f59db3
SV
318#else
319
6f505b16 320static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
321static inline void lock_task_group_list(void) { }
322static inline void unlock_task_group_list(void) { }
a1835615
SV
323static inline void lock_doms_cur(void) { }
324static inline void unlock_doms_cur(void) { }
29f59db3
SV
325
326#endif /* CONFIG_FAIR_GROUP_SCHED */
327
6aa645ea
IM
328/* CFS-related fields in a runqueue */
329struct cfs_rq {
330 struct load_weight load;
331 unsigned long nr_running;
332
6aa645ea 333 u64 exec_clock;
e9acbff6 334 u64 min_vruntime;
6aa645ea
IM
335
336 struct rb_root tasks_timeline;
337 struct rb_node *rb_leftmost;
338 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
339 /* 'curr' points to currently running entity on this cfs_rq.
340 * It is set to NULL otherwise (i.e when none are currently running).
341 */
342 struct sched_entity *curr;
ddc97297
PZ
343
344 unsigned long nr_spread_over;
345
62160e3f 346#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
347 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
348
41a2d6cf
IM
349 /*
350 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
351 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
352 * (like users, containers etc.)
353 *
354 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
355 * list is used during load balance.
356 */
41a2d6cf
IM
357 struct list_head leaf_cfs_rq_list;
358 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
359#endif
360};
1da177e4 361
6aa645ea
IM
362/* Real-Time classes' related field in a runqueue: */
363struct rt_rq {
364 struct rt_prio_array active;
63489e45 365 unsigned long rt_nr_running;
6f505b16
PZ
366#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
367 int highest_prio; /* highest queued rt task prio */
368#endif
fa85ae24 369#ifdef CONFIG_SMP
73fe6aae 370 unsigned long rt_nr_migratory;
a22d7fc1 371 int overloaded;
fa85ae24 372#endif
6f505b16 373 int rt_throttled;
fa85ae24 374 u64 rt_time;
6f505b16
PZ
375
376#ifdef CONFIG_FAIR_GROUP_SCHED
377 struct rq *rq;
378 struct list_head leaf_rt_rq_list;
379 struct task_group *tg;
380 struct sched_rt_entity *rt_se;
381#endif
6aa645ea
IM
382};
383
57d885fe
GH
384#ifdef CONFIG_SMP
385
386/*
387 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
388 * variables. Each exclusive cpuset essentially defines an island domain by
389 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
390 * exclusive cpuset is created, we also create and attach a new root-domain
391 * object.
392 *
57d885fe
GH
393 */
394struct root_domain {
395 atomic_t refcount;
396 cpumask_t span;
397 cpumask_t online;
637f5085 398
0eab9146 399 /*
637f5085
GH
400 * The "RT overload" flag: it gets set if a CPU has more than
401 * one runnable RT task.
402 */
403 cpumask_t rto_mask;
0eab9146 404 atomic_t rto_count;
57d885fe
GH
405};
406
dc938520
GH
407/*
408 * By default the system creates a single root-domain with all cpus as
409 * members (mimicking the global state we have today).
410 */
57d885fe
GH
411static struct root_domain def_root_domain;
412
413#endif
414
1da177e4
LT
415/*
416 * This is the main, per-CPU runqueue data structure.
417 *
418 * Locking rule: those places that want to lock multiple runqueues
419 * (such as the load balancing or the thread migration code), lock
420 * acquire operations must be ordered by ascending &runqueue.
421 */
70b97a7f 422struct rq {
d8016491
IM
423 /* runqueue lock: */
424 spinlock_t lock;
1da177e4
LT
425
426 /*
427 * nr_running and cpu_load should be in the same cacheline because
428 * remote CPUs use both these fields when doing load calculation.
429 */
430 unsigned long nr_running;
6aa645ea
IM
431 #define CPU_LOAD_IDX_MAX 5
432 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 433 unsigned char idle_at_tick;
46cb4b7c
SS
434#ifdef CONFIG_NO_HZ
435 unsigned char in_nohz_recently;
436#endif
d8016491
IM
437 /* capture load from *all* tasks on this cpu: */
438 struct load_weight load;
6aa645ea
IM
439 unsigned long nr_load_updates;
440 u64 nr_switches;
441
442 struct cfs_rq cfs;
6f505b16
PZ
443 struct rt_rq rt;
444 u64 rt_period_expire;
445
6aa645ea 446#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
447 /* list of leaf cfs_rq on this cpu: */
448 struct list_head leaf_cfs_rq_list;
6f505b16 449 struct list_head leaf_rt_rq_list;
1da177e4 450#endif
1da177e4
LT
451
452 /*
453 * This is part of a global counter where only the total sum
454 * over all CPUs matters. A task can increase this counter on
455 * one CPU and if it got migrated afterwards it may decrease
456 * it on another CPU. Always updated under the runqueue lock:
457 */
458 unsigned long nr_uninterruptible;
459
36c8b586 460 struct task_struct *curr, *idle;
c9819f45 461 unsigned long next_balance;
1da177e4 462 struct mm_struct *prev_mm;
6aa645ea 463
6aa645ea
IM
464 u64 clock, prev_clock_raw;
465 s64 clock_max_delta;
466
467 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
468 u64 idle_clock;
469 unsigned int clock_deep_idle_events;
529c7726 470 u64 tick_timestamp;
6aa645ea 471
1da177e4
LT
472 atomic_t nr_iowait;
473
474#ifdef CONFIG_SMP
0eab9146 475 struct root_domain *rd;
1da177e4
LT
476 struct sched_domain *sd;
477
478 /* For active balancing */
479 int active_balance;
480 int push_cpu;
d8016491
IM
481 /* cpu of this runqueue: */
482 int cpu;
1da177e4 483
36c8b586 484 struct task_struct *migration_thread;
1da177e4
LT
485 struct list_head migration_queue;
486#endif
487
8f4d37ec
PZ
488#ifdef CONFIG_SCHED_HRTICK
489 unsigned long hrtick_flags;
490 ktime_t hrtick_expire;
491 struct hrtimer hrtick_timer;
492#endif
493
1da177e4
LT
494#ifdef CONFIG_SCHEDSTATS
495 /* latency stats */
496 struct sched_info rq_sched_info;
497
498 /* sys_sched_yield() stats */
480b9434
KC
499 unsigned int yld_exp_empty;
500 unsigned int yld_act_empty;
501 unsigned int yld_both_empty;
502 unsigned int yld_count;
1da177e4
LT
503
504 /* schedule() stats */
480b9434
KC
505 unsigned int sched_switch;
506 unsigned int sched_count;
507 unsigned int sched_goidle;
1da177e4
LT
508
509 /* try_to_wake_up() stats */
480b9434
KC
510 unsigned int ttwu_count;
511 unsigned int ttwu_local;
b8efb561
IM
512
513 /* BKL stats */
480b9434 514 unsigned int bkl_count;
1da177e4 515#endif
fcb99371 516 struct lock_class_key rq_lock_key;
1da177e4
LT
517};
518
f34e3b61 519static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 520
dd41f596
IM
521static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
522{
523 rq->curr->sched_class->check_preempt_curr(rq, p);
524}
525
0a2966b4
CL
526static inline int cpu_of(struct rq *rq)
527{
528#ifdef CONFIG_SMP
529 return rq->cpu;
530#else
531 return 0;
532#endif
533}
534
20d315d4 535/*
b04a0f4c
IM
536 * Update the per-runqueue clock, as finegrained as the platform can give
537 * us, but without assuming monotonicity, etc.:
20d315d4 538 */
b04a0f4c 539static void __update_rq_clock(struct rq *rq)
20d315d4
IM
540{
541 u64 prev_raw = rq->prev_clock_raw;
542 u64 now = sched_clock();
543 s64 delta = now - prev_raw;
544 u64 clock = rq->clock;
545
b04a0f4c
IM
546#ifdef CONFIG_SCHED_DEBUG
547 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
548#endif
20d315d4
IM
549 /*
550 * Protect against sched_clock() occasionally going backwards:
551 */
552 if (unlikely(delta < 0)) {
553 clock++;
554 rq->clock_warps++;
555 } else {
556 /*
557 * Catch too large forward jumps too:
558 */
529c7726
IM
559 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
560 if (clock < rq->tick_timestamp + TICK_NSEC)
561 clock = rq->tick_timestamp + TICK_NSEC;
562 else
563 clock++;
20d315d4
IM
564 rq->clock_overflows++;
565 } else {
566 if (unlikely(delta > rq->clock_max_delta))
567 rq->clock_max_delta = delta;
568 clock += delta;
569 }
570 }
571
572 rq->prev_clock_raw = now;
573 rq->clock = clock;
b04a0f4c 574}
20d315d4 575
b04a0f4c
IM
576static void update_rq_clock(struct rq *rq)
577{
578 if (likely(smp_processor_id() == cpu_of(rq)))
579 __update_rq_clock(rq);
20d315d4
IM
580}
581
674311d5
NP
582/*
583 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 584 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
585 *
586 * The domain tree of any CPU may only be accessed from within
587 * preempt-disabled sections.
588 */
48f24c4d
IM
589#define for_each_domain(cpu, __sd) \
590 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
591
592#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
593#define this_rq() (&__get_cpu_var(runqueues))
594#define task_rq(p) cpu_rq(task_cpu(p))
595#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
596
bf5c91ba
IM
597/*
598 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
599 */
600#ifdef CONFIG_SCHED_DEBUG
601# define const_debug __read_mostly
602#else
603# define const_debug static const
604#endif
605
606/*
607 * Debugging: various feature bits
608 */
609enum {
bbdba7c0 610 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
611 SCHED_FEAT_WAKEUP_PREEMPT = 2,
612 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
613 SCHED_FEAT_TREE_AVG = 8,
614 SCHED_FEAT_APPROX_AVG = 16,
8f4d37ec
PZ
615 SCHED_FEAT_HRTICK = 32,
616 SCHED_FEAT_DOUBLE_TICK = 64,
bf5c91ba
IM
617};
618
619const_debug unsigned int sysctl_sched_features =
8401f775 620 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 621 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
622 SCHED_FEAT_START_DEBIT * 1 |
623 SCHED_FEAT_TREE_AVG * 0 |
8f4d37ec
PZ
624 SCHED_FEAT_APPROX_AVG * 0 |
625 SCHED_FEAT_HRTICK * 1 |
626 SCHED_FEAT_DOUBLE_TICK * 0;
bf5c91ba
IM
627
628#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
629
b82d9fdd
PZ
630/*
631 * Number of tasks to iterate in a single balance run.
632 * Limited because this is done with IRQs disabled.
633 */
634const_debug unsigned int sysctl_sched_nr_migrate = 32;
635
fa85ae24
PZ
636/*
637 * period over which we measure -rt task cpu usage in ms.
638 * default: 1s
639 */
640const_debug unsigned int sysctl_sched_rt_period = 1000;
641
642#define SCHED_RT_FRAC_SHIFT 16
643#define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
644
645/*
646 * ratio of time -rt tasks may consume.
6f505b16 647 * default: 95%
fa85ae24 648 */
6f505b16 649const_debug unsigned int sysctl_sched_rt_ratio = 62259;
fa85ae24 650
e436d800
IM
651/*
652 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
653 * clock constructed from sched_clock():
654 */
655unsigned long long cpu_clock(int cpu)
656{
e436d800
IM
657 unsigned long long now;
658 unsigned long flags;
b04a0f4c 659 struct rq *rq;
e436d800 660
2cd4d0ea 661 local_irq_save(flags);
b04a0f4c 662 rq = cpu_rq(cpu);
8ced5f69
IM
663 /*
664 * Only call sched_clock() if the scheduler has already been
665 * initialized (some code might call cpu_clock() very early):
666 */
667 if (rq->idle)
668 update_rq_clock(rq);
b04a0f4c 669 now = rq->clock;
2cd4d0ea 670 local_irq_restore(flags);
e436d800
IM
671
672 return now;
673}
a58f6f25 674EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 675
1da177e4 676#ifndef prepare_arch_switch
4866cde0
NP
677# define prepare_arch_switch(next) do { } while (0)
678#endif
679#ifndef finish_arch_switch
680# define finish_arch_switch(prev) do { } while (0)
681#endif
682
051a1d1a
DA
683static inline int task_current(struct rq *rq, struct task_struct *p)
684{
685 return rq->curr == p;
686}
687
4866cde0 688#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 689static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 690{
051a1d1a 691 return task_current(rq, p);
4866cde0
NP
692}
693
70b97a7f 694static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
695{
696}
697
70b97a7f 698static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 699{
da04c035
IM
700#ifdef CONFIG_DEBUG_SPINLOCK
701 /* this is a valid case when another task releases the spinlock */
702 rq->lock.owner = current;
703#endif
8a25d5de
IM
704 /*
705 * If we are tracking spinlock dependencies then we have to
706 * fix up the runqueue lock - which gets 'carried over' from
707 * prev into current:
708 */
709 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
710
4866cde0
NP
711 spin_unlock_irq(&rq->lock);
712}
713
714#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 715static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
716{
717#ifdef CONFIG_SMP
718 return p->oncpu;
719#else
051a1d1a 720 return task_current(rq, p);
4866cde0
NP
721#endif
722}
723
70b97a7f 724static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
725{
726#ifdef CONFIG_SMP
727 /*
728 * We can optimise this out completely for !SMP, because the
729 * SMP rebalancing from interrupt is the only thing that cares
730 * here.
731 */
732 next->oncpu = 1;
733#endif
734#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
735 spin_unlock_irq(&rq->lock);
736#else
737 spin_unlock(&rq->lock);
738#endif
739}
740
70b97a7f 741static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
742{
743#ifdef CONFIG_SMP
744 /*
745 * After ->oncpu is cleared, the task can be moved to a different CPU.
746 * We must ensure this doesn't happen until the switch is completely
747 * finished.
748 */
749 smp_wmb();
750 prev->oncpu = 0;
751#endif
752#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
753 local_irq_enable();
1da177e4 754#endif
4866cde0
NP
755}
756#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 757
b29739f9
IM
758/*
759 * __task_rq_lock - lock the runqueue a given task resides on.
760 * Must be called interrupts disabled.
761 */
70b97a7f 762static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
763 __acquires(rq->lock)
764{
3a5c359a
AK
765 for (;;) {
766 struct rq *rq = task_rq(p);
767 spin_lock(&rq->lock);
768 if (likely(rq == task_rq(p)))
769 return rq;
b29739f9 770 spin_unlock(&rq->lock);
b29739f9 771 }
b29739f9
IM
772}
773
1da177e4
LT
774/*
775 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 776 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
777 * explicitly disabling preemption.
778 */
70b97a7f 779static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
780 __acquires(rq->lock)
781{
70b97a7f 782 struct rq *rq;
1da177e4 783
3a5c359a
AK
784 for (;;) {
785 local_irq_save(*flags);
786 rq = task_rq(p);
787 spin_lock(&rq->lock);
788 if (likely(rq == task_rq(p)))
789 return rq;
1da177e4 790 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 791 }
1da177e4
LT
792}
793
a9957449 794static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
795 __releases(rq->lock)
796{
797 spin_unlock(&rq->lock);
798}
799
70b97a7f 800static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
801 __releases(rq->lock)
802{
803 spin_unlock_irqrestore(&rq->lock, *flags);
804}
805
1da177e4 806/*
cc2a73b5 807 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 808 */
a9957449 809static struct rq *this_rq_lock(void)
1da177e4
LT
810 __acquires(rq->lock)
811{
70b97a7f 812 struct rq *rq;
1da177e4
LT
813
814 local_irq_disable();
815 rq = this_rq();
816 spin_lock(&rq->lock);
817
818 return rq;
819}
820
1b9f19c2 821/*
2aa44d05 822 * We are going deep-idle (irqs are disabled):
1b9f19c2 823 */
2aa44d05 824void sched_clock_idle_sleep_event(void)
1b9f19c2 825{
2aa44d05
IM
826 struct rq *rq = cpu_rq(smp_processor_id());
827
828 spin_lock(&rq->lock);
829 __update_rq_clock(rq);
830 spin_unlock(&rq->lock);
831 rq->clock_deep_idle_events++;
832}
833EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
834
835/*
836 * We just idled delta nanoseconds (called with irqs disabled):
837 */
838void sched_clock_idle_wakeup_event(u64 delta_ns)
839{
840 struct rq *rq = cpu_rq(smp_processor_id());
841 u64 now = sched_clock();
1b9f19c2 842
2bacec8c 843 touch_softlockup_watchdog();
2aa44d05
IM
844 rq->idle_clock += delta_ns;
845 /*
846 * Override the previous timestamp and ignore all
847 * sched_clock() deltas that occured while we idled,
848 * and use the PM-provided delta_ns to advance the
849 * rq clock:
850 */
851 spin_lock(&rq->lock);
852 rq->prev_clock_raw = now;
853 rq->clock += delta_ns;
854 spin_unlock(&rq->lock);
1b9f19c2 855}
2aa44d05 856EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 857
8f4d37ec
PZ
858static void __resched_task(struct task_struct *p, int tif_bit);
859
860static inline void resched_task(struct task_struct *p)
861{
862 __resched_task(p, TIF_NEED_RESCHED);
863}
864
865#ifdef CONFIG_SCHED_HRTICK
866/*
867 * Use HR-timers to deliver accurate preemption points.
868 *
869 * Its all a bit involved since we cannot program an hrt while holding the
870 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
871 * reschedule event.
872 *
873 * When we get rescheduled we reprogram the hrtick_timer outside of the
874 * rq->lock.
875 */
876static inline void resched_hrt(struct task_struct *p)
877{
878 __resched_task(p, TIF_HRTICK_RESCHED);
879}
880
881static inline void resched_rq(struct rq *rq)
882{
883 unsigned long flags;
884
885 spin_lock_irqsave(&rq->lock, flags);
886 resched_task(rq->curr);
887 spin_unlock_irqrestore(&rq->lock, flags);
888}
889
890enum {
891 HRTICK_SET, /* re-programm hrtick_timer */
892 HRTICK_RESET, /* not a new slice */
893};
894
895/*
896 * Use hrtick when:
897 * - enabled by features
898 * - hrtimer is actually high res
899 */
900static inline int hrtick_enabled(struct rq *rq)
901{
902 if (!sched_feat(HRTICK))
903 return 0;
904 return hrtimer_is_hres_active(&rq->hrtick_timer);
905}
906
907/*
908 * Called to set the hrtick timer state.
909 *
910 * called with rq->lock held and irqs disabled
911 */
912static void hrtick_start(struct rq *rq, u64 delay, int reset)
913{
914 assert_spin_locked(&rq->lock);
915
916 /*
917 * preempt at: now + delay
918 */
919 rq->hrtick_expire =
920 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
921 /*
922 * indicate we need to program the timer
923 */
924 __set_bit(HRTICK_SET, &rq->hrtick_flags);
925 if (reset)
926 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
927
928 /*
929 * New slices are called from the schedule path and don't need a
930 * forced reschedule.
931 */
932 if (reset)
933 resched_hrt(rq->curr);
934}
935
936static void hrtick_clear(struct rq *rq)
937{
938 if (hrtimer_active(&rq->hrtick_timer))
939 hrtimer_cancel(&rq->hrtick_timer);
940}
941
942/*
943 * Update the timer from the possible pending state.
944 */
945static void hrtick_set(struct rq *rq)
946{
947 ktime_t time;
948 int set, reset;
949 unsigned long flags;
950
951 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
952
953 spin_lock_irqsave(&rq->lock, flags);
954 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
955 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
956 time = rq->hrtick_expire;
957 clear_thread_flag(TIF_HRTICK_RESCHED);
958 spin_unlock_irqrestore(&rq->lock, flags);
959
960 if (set) {
961 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
962 if (reset && !hrtimer_active(&rq->hrtick_timer))
963 resched_rq(rq);
964 } else
965 hrtick_clear(rq);
966}
967
968/*
969 * High-resolution timer tick.
970 * Runs from hardirq context with interrupts disabled.
971 */
972static enum hrtimer_restart hrtick(struct hrtimer *timer)
973{
974 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
975
976 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
977
978 spin_lock(&rq->lock);
979 __update_rq_clock(rq);
980 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
981 spin_unlock(&rq->lock);
982
983 return HRTIMER_NORESTART;
984}
985
986static inline void init_rq_hrtick(struct rq *rq)
987{
988 rq->hrtick_flags = 0;
989 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
990 rq->hrtick_timer.function = hrtick;
991 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
992}
993
994void hrtick_resched(void)
995{
996 struct rq *rq;
997 unsigned long flags;
998
999 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1000 return;
1001
1002 local_irq_save(flags);
1003 rq = cpu_rq(smp_processor_id());
1004 hrtick_set(rq);
1005 local_irq_restore(flags);
1006}
1007#else
1008static inline void hrtick_clear(struct rq *rq)
1009{
1010}
1011
1012static inline void hrtick_set(struct rq *rq)
1013{
1014}
1015
1016static inline void init_rq_hrtick(struct rq *rq)
1017{
1018}
1019
1020void hrtick_resched(void)
1021{
1022}
1023#endif
1024
c24d20db
IM
1025/*
1026 * resched_task - mark a task 'to be rescheduled now'.
1027 *
1028 * On UP this means the setting of the need_resched flag, on SMP it
1029 * might also involve a cross-CPU call to trigger the scheduler on
1030 * the target CPU.
1031 */
1032#ifdef CONFIG_SMP
1033
1034#ifndef tsk_is_polling
1035#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1036#endif
1037
8f4d37ec 1038static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1039{
1040 int cpu;
1041
1042 assert_spin_locked(&task_rq(p)->lock);
1043
8f4d37ec 1044 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1045 return;
1046
8f4d37ec 1047 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1048
1049 cpu = task_cpu(p);
1050 if (cpu == smp_processor_id())
1051 return;
1052
1053 /* NEED_RESCHED must be visible before we test polling */
1054 smp_mb();
1055 if (!tsk_is_polling(p))
1056 smp_send_reschedule(cpu);
1057}
1058
1059static void resched_cpu(int cpu)
1060{
1061 struct rq *rq = cpu_rq(cpu);
1062 unsigned long flags;
1063
1064 if (!spin_trylock_irqsave(&rq->lock, flags))
1065 return;
1066 resched_task(cpu_curr(cpu));
1067 spin_unlock_irqrestore(&rq->lock, flags);
1068}
1069#else
8f4d37ec 1070static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1071{
1072 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1073 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1074}
1075#endif
1076
45bf76df
IM
1077#if BITS_PER_LONG == 32
1078# define WMULT_CONST (~0UL)
1079#else
1080# define WMULT_CONST (1UL << 32)
1081#endif
1082
1083#define WMULT_SHIFT 32
1084
194081eb
IM
1085/*
1086 * Shift right and round:
1087 */
cf2ab469 1088#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1089
cb1c4fc9 1090static unsigned long
45bf76df
IM
1091calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1092 struct load_weight *lw)
1093{
1094 u64 tmp;
1095
1096 if (unlikely(!lw->inv_weight))
194081eb 1097 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
1098
1099 tmp = (u64)delta_exec * weight;
1100 /*
1101 * Check whether we'd overflow the 64-bit multiplication:
1102 */
194081eb 1103 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1104 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1105 WMULT_SHIFT/2);
1106 else
cf2ab469 1107 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1108
ecf691da 1109 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1110}
1111
1112static inline unsigned long
1113calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1114{
1115 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1116}
1117
1091985b 1118static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1119{
1120 lw->weight += inc;
45bf76df
IM
1121}
1122
1091985b 1123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1124{
1125 lw->weight -= dec;
45bf76df
IM
1126}
1127
2dd73a4f
PW
1128/*
1129 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1130 * of tasks with abnormal "nice" values across CPUs the contribution that
1131 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1132 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1133 * scaled version of the new time slice allocation that they receive on time
1134 * slice expiry etc.
1135 */
1136
dd41f596
IM
1137#define WEIGHT_IDLEPRIO 2
1138#define WMULT_IDLEPRIO (1 << 31)
1139
1140/*
1141 * Nice levels are multiplicative, with a gentle 10% change for every
1142 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1143 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1144 * that remained on nice 0.
1145 *
1146 * The "10% effect" is relative and cumulative: from _any_ nice level,
1147 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1148 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1149 * If a task goes up by ~10% and another task goes down by ~10% then
1150 * the relative distance between them is ~25%.)
dd41f596
IM
1151 */
1152static const int prio_to_weight[40] = {
254753dc
IM
1153 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1154 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1155 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1156 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1157 /* 0 */ 1024, 820, 655, 526, 423,
1158 /* 5 */ 335, 272, 215, 172, 137,
1159 /* 10 */ 110, 87, 70, 56, 45,
1160 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1161};
1162
5714d2de
IM
1163/*
1164 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1165 *
1166 * In cases where the weight does not change often, we can use the
1167 * precalculated inverse to speed up arithmetics by turning divisions
1168 * into multiplications:
1169 */
dd41f596 1170static const u32 prio_to_wmult[40] = {
254753dc
IM
1171 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1172 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1173 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1174 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1175 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1176 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1177 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1178 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1179};
2dd73a4f 1180
dd41f596
IM
1181static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1182
1183/*
1184 * runqueue iterator, to support SMP load-balancing between different
1185 * scheduling classes, without having to expose their internal data
1186 * structures to the load-balancing proper:
1187 */
1188struct rq_iterator {
1189 void *arg;
1190 struct task_struct *(*start)(void *);
1191 struct task_struct *(*next)(void *);
1192};
1193
e1d1484f
PW
1194#ifdef CONFIG_SMP
1195static unsigned long
1196balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1197 unsigned long max_load_move, struct sched_domain *sd,
1198 enum cpu_idle_type idle, int *all_pinned,
1199 int *this_best_prio, struct rq_iterator *iterator);
1200
1201static int
1202iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1203 struct sched_domain *sd, enum cpu_idle_type idle,
1204 struct rq_iterator *iterator);
e1d1484f 1205#endif
dd41f596 1206
d842de87
SV
1207#ifdef CONFIG_CGROUP_CPUACCT
1208static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1209#else
1210static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1211#endif
1212
58e2d4ca
SV
1213static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1214{
1215 update_load_add(&rq->load, load);
1216}
1217
1218static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1219{
1220 update_load_sub(&rq->load, load);
1221}
1222
e7693a36
GH
1223#ifdef CONFIG_SMP
1224static unsigned long source_load(int cpu, int type);
1225static unsigned long target_load(int cpu, int type);
1226static unsigned long cpu_avg_load_per_task(int cpu);
1227static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1228#endif /* CONFIG_SMP */
1229
dd41f596 1230#include "sched_stats.h"
dd41f596 1231#include "sched_idletask.c"
5522d5d5
IM
1232#include "sched_fair.c"
1233#include "sched_rt.c"
dd41f596
IM
1234#ifdef CONFIG_SCHED_DEBUG
1235# include "sched_debug.c"
1236#endif
1237
1238#define sched_class_highest (&rt_sched_class)
1239
e5fa2237 1240static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1241{
1242 rq->nr_running++;
9c217245
IM
1243}
1244
db53181e 1245static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1246{
1247 rq->nr_running--;
9c217245
IM
1248}
1249
45bf76df
IM
1250static void set_load_weight(struct task_struct *p)
1251{
1252 if (task_has_rt_policy(p)) {
dd41f596
IM
1253 p->se.load.weight = prio_to_weight[0] * 2;
1254 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1255 return;
1256 }
45bf76df 1257
dd41f596
IM
1258 /*
1259 * SCHED_IDLE tasks get minimal weight:
1260 */
1261 if (p->policy == SCHED_IDLE) {
1262 p->se.load.weight = WEIGHT_IDLEPRIO;
1263 p->se.load.inv_weight = WMULT_IDLEPRIO;
1264 return;
1265 }
71f8bd46 1266
dd41f596
IM
1267 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1268 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1269}
1270
8159f87e 1271static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1272{
dd41f596 1273 sched_info_queued(p);
fd390f6a 1274 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1275 p->se.on_rq = 1;
71f8bd46
IM
1276}
1277
69be72c1 1278static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1279{
f02231e5 1280 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1281 p->se.on_rq = 0;
71f8bd46
IM
1282}
1283
14531189 1284/*
dd41f596 1285 * __normal_prio - return the priority that is based on the static prio
14531189 1286 */
14531189
IM
1287static inline int __normal_prio(struct task_struct *p)
1288{
dd41f596 1289 return p->static_prio;
14531189
IM
1290}
1291
b29739f9
IM
1292/*
1293 * Calculate the expected normal priority: i.e. priority
1294 * without taking RT-inheritance into account. Might be
1295 * boosted by interactivity modifiers. Changes upon fork,
1296 * setprio syscalls, and whenever the interactivity
1297 * estimator recalculates.
1298 */
36c8b586 1299static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1300{
1301 int prio;
1302
e05606d3 1303 if (task_has_rt_policy(p))
b29739f9
IM
1304 prio = MAX_RT_PRIO-1 - p->rt_priority;
1305 else
1306 prio = __normal_prio(p);
1307 return prio;
1308}
1309
1310/*
1311 * Calculate the current priority, i.e. the priority
1312 * taken into account by the scheduler. This value might
1313 * be boosted by RT tasks, or might be boosted by
1314 * interactivity modifiers. Will be RT if the task got
1315 * RT-boosted. If not then it returns p->normal_prio.
1316 */
36c8b586 1317static int effective_prio(struct task_struct *p)
b29739f9
IM
1318{
1319 p->normal_prio = normal_prio(p);
1320 /*
1321 * If we are RT tasks or we were boosted to RT priority,
1322 * keep the priority unchanged. Otherwise, update priority
1323 * to the normal priority:
1324 */
1325 if (!rt_prio(p->prio))
1326 return p->normal_prio;
1327 return p->prio;
1328}
1329
1da177e4 1330/*
dd41f596 1331 * activate_task - move a task to the runqueue.
1da177e4 1332 */
dd41f596 1333static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1334{
dd41f596
IM
1335 if (p->state == TASK_UNINTERRUPTIBLE)
1336 rq->nr_uninterruptible--;
1da177e4 1337
8159f87e 1338 enqueue_task(rq, p, wakeup);
e5fa2237 1339 inc_nr_running(p, rq);
1da177e4
LT
1340}
1341
1da177e4
LT
1342/*
1343 * deactivate_task - remove a task from the runqueue.
1344 */
2e1cb74a 1345static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1346{
dd41f596
IM
1347 if (p->state == TASK_UNINTERRUPTIBLE)
1348 rq->nr_uninterruptible++;
1349
69be72c1 1350 dequeue_task(rq, p, sleep);
db53181e 1351 dec_nr_running(p, rq);
1da177e4
LT
1352}
1353
1da177e4
LT
1354/**
1355 * task_curr - is this task currently executing on a CPU?
1356 * @p: the task in question.
1357 */
36c8b586 1358inline int task_curr(const struct task_struct *p)
1da177e4
LT
1359{
1360 return cpu_curr(task_cpu(p)) == p;
1361}
1362
2dd73a4f
PW
1363/* Used instead of source_load when we know the type == 0 */
1364unsigned long weighted_cpuload(const int cpu)
1365{
495eca49 1366 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1367}
1368
1369static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1370{
6f505b16 1371 set_task_rq(p, cpu);
dd41f596 1372#ifdef CONFIG_SMP
ce96b5ac
DA
1373 /*
1374 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1375 * successfuly executed on another CPU. We must ensure that updates of
1376 * per-task data have been completed by this moment.
1377 */
1378 smp_wmb();
dd41f596 1379 task_thread_info(p)->cpu = cpu;
dd41f596 1380#endif
2dd73a4f
PW
1381}
1382
cb469845
SR
1383static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1384 const struct sched_class *prev_class,
1385 int oldprio, int running)
1386{
1387 if (prev_class != p->sched_class) {
1388 if (prev_class->switched_from)
1389 prev_class->switched_from(rq, p, running);
1390 p->sched_class->switched_to(rq, p, running);
1391 } else
1392 p->sched_class->prio_changed(rq, p, oldprio, running);
1393}
1394
1da177e4 1395#ifdef CONFIG_SMP
c65cc870 1396
cc367732
IM
1397/*
1398 * Is this task likely cache-hot:
1399 */
e7693a36 1400static int
cc367732
IM
1401task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1402{
1403 s64 delta;
1404
1405 if (p->sched_class != &fair_sched_class)
1406 return 0;
1407
6bc1665b
IM
1408 if (sysctl_sched_migration_cost == -1)
1409 return 1;
1410 if (sysctl_sched_migration_cost == 0)
1411 return 0;
1412
cc367732
IM
1413 delta = now - p->se.exec_start;
1414
1415 return delta < (s64)sysctl_sched_migration_cost;
1416}
1417
1418
dd41f596 1419void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1420{
dd41f596
IM
1421 int old_cpu = task_cpu(p);
1422 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1423 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1424 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1425 u64 clock_offset;
dd41f596
IM
1426
1427 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1428
1429#ifdef CONFIG_SCHEDSTATS
1430 if (p->se.wait_start)
1431 p->se.wait_start -= clock_offset;
dd41f596
IM
1432 if (p->se.sleep_start)
1433 p->se.sleep_start -= clock_offset;
1434 if (p->se.block_start)
1435 p->se.block_start -= clock_offset;
cc367732
IM
1436 if (old_cpu != new_cpu) {
1437 schedstat_inc(p, se.nr_migrations);
1438 if (task_hot(p, old_rq->clock, NULL))
1439 schedstat_inc(p, se.nr_forced2_migrations);
1440 }
6cfb0d5d 1441#endif
2830cf8c
SV
1442 p->se.vruntime -= old_cfsrq->min_vruntime -
1443 new_cfsrq->min_vruntime;
dd41f596
IM
1444
1445 __set_task_cpu(p, new_cpu);
c65cc870
IM
1446}
1447
70b97a7f 1448struct migration_req {
1da177e4 1449 struct list_head list;
1da177e4 1450
36c8b586 1451 struct task_struct *task;
1da177e4
LT
1452 int dest_cpu;
1453
1da177e4 1454 struct completion done;
70b97a7f 1455};
1da177e4
LT
1456
1457/*
1458 * The task's runqueue lock must be held.
1459 * Returns true if you have to wait for migration thread.
1460 */
36c8b586 1461static int
70b97a7f 1462migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1463{
70b97a7f 1464 struct rq *rq = task_rq(p);
1da177e4
LT
1465
1466 /*
1467 * If the task is not on a runqueue (and not running), then
1468 * it is sufficient to simply update the task's cpu field.
1469 */
dd41f596 1470 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1471 set_task_cpu(p, dest_cpu);
1472 return 0;
1473 }
1474
1475 init_completion(&req->done);
1da177e4
LT
1476 req->task = p;
1477 req->dest_cpu = dest_cpu;
1478 list_add(&req->list, &rq->migration_queue);
48f24c4d 1479
1da177e4
LT
1480 return 1;
1481}
1482
1483/*
1484 * wait_task_inactive - wait for a thread to unschedule.
1485 *
1486 * The caller must ensure that the task *will* unschedule sometime soon,
1487 * else this function might spin for a *long* time. This function can't
1488 * be called with interrupts off, or it may introduce deadlock with
1489 * smp_call_function() if an IPI is sent by the same process we are
1490 * waiting to become inactive.
1491 */
36c8b586 1492void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1493{
1494 unsigned long flags;
dd41f596 1495 int running, on_rq;
70b97a7f 1496 struct rq *rq;
1da177e4 1497
3a5c359a
AK
1498 for (;;) {
1499 /*
1500 * We do the initial early heuristics without holding
1501 * any task-queue locks at all. We'll only try to get
1502 * the runqueue lock when things look like they will
1503 * work out!
1504 */
1505 rq = task_rq(p);
fa490cfd 1506
3a5c359a
AK
1507 /*
1508 * If the task is actively running on another CPU
1509 * still, just relax and busy-wait without holding
1510 * any locks.
1511 *
1512 * NOTE! Since we don't hold any locks, it's not
1513 * even sure that "rq" stays as the right runqueue!
1514 * But we don't care, since "task_running()" will
1515 * return false if the runqueue has changed and p
1516 * is actually now running somewhere else!
1517 */
1518 while (task_running(rq, p))
1519 cpu_relax();
fa490cfd 1520
3a5c359a
AK
1521 /*
1522 * Ok, time to look more closely! We need the rq
1523 * lock now, to be *sure*. If we're wrong, we'll
1524 * just go back and repeat.
1525 */
1526 rq = task_rq_lock(p, &flags);
1527 running = task_running(rq, p);
1528 on_rq = p->se.on_rq;
1529 task_rq_unlock(rq, &flags);
fa490cfd 1530
3a5c359a
AK
1531 /*
1532 * Was it really running after all now that we
1533 * checked with the proper locks actually held?
1534 *
1535 * Oops. Go back and try again..
1536 */
1537 if (unlikely(running)) {
1538 cpu_relax();
1539 continue;
1540 }
fa490cfd 1541
3a5c359a
AK
1542 /*
1543 * It's not enough that it's not actively running,
1544 * it must be off the runqueue _entirely_, and not
1545 * preempted!
1546 *
1547 * So if it wa still runnable (but just not actively
1548 * running right now), it's preempted, and we should
1549 * yield - it could be a while.
1550 */
1551 if (unlikely(on_rq)) {
1552 schedule_timeout_uninterruptible(1);
1553 continue;
1554 }
fa490cfd 1555
3a5c359a
AK
1556 /*
1557 * Ahh, all good. It wasn't running, and it wasn't
1558 * runnable, which means that it will never become
1559 * running in the future either. We're all done!
1560 */
1561 break;
1562 }
1da177e4
LT
1563}
1564
1565/***
1566 * kick_process - kick a running thread to enter/exit the kernel
1567 * @p: the to-be-kicked thread
1568 *
1569 * Cause a process which is running on another CPU to enter
1570 * kernel-mode, without any delay. (to get signals handled.)
1571 *
1572 * NOTE: this function doesnt have to take the runqueue lock,
1573 * because all it wants to ensure is that the remote task enters
1574 * the kernel. If the IPI races and the task has been migrated
1575 * to another CPU then no harm is done and the purpose has been
1576 * achieved as well.
1577 */
36c8b586 1578void kick_process(struct task_struct *p)
1da177e4
LT
1579{
1580 int cpu;
1581
1582 preempt_disable();
1583 cpu = task_cpu(p);
1584 if ((cpu != smp_processor_id()) && task_curr(p))
1585 smp_send_reschedule(cpu);
1586 preempt_enable();
1587}
1588
1589/*
2dd73a4f
PW
1590 * Return a low guess at the load of a migration-source cpu weighted
1591 * according to the scheduling class and "nice" value.
1da177e4
LT
1592 *
1593 * We want to under-estimate the load of migration sources, to
1594 * balance conservatively.
1595 */
a9957449 1596static unsigned long source_load(int cpu, int type)
1da177e4 1597{
70b97a7f 1598 struct rq *rq = cpu_rq(cpu);
dd41f596 1599 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1600
3b0bd9bc 1601 if (type == 0)
dd41f596 1602 return total;
b910472d 1603
dd41f596 1604 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1605}
1606
1607/*
2dd73a4f
PW
1608 * Return a high guess at the load of a migration-target cpu weighted
1609 * according to the scheduling class and "nice" value.
1da177e4 1610 */
a9957449 1611static unsigned long target_load(int cpu, int type)
1da177e4 1612{
70b97a7f 1613 struct rq *rq = cpu_rq(cpu);
dd41f596 1614 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1615
7897986b 1616 if (type == 0)
dd41f596 1617 return total;
3b0bd9bc 1618
dd41f596 1619 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1620}
1621
1622/*
1623 * Return the average load per task on the cpu's run queue
1624 */
e7693a36 1625static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1626{
70b97a7f 1627 struct rq *rq = cpu_rq(cpu);
dd41f596 1628 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1629 unsigned long n = rq->nr_running;
1630
dd41f596 1631 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1632}
1633
147cbb4b
NP
1634/*
1635 * find_idlest_group finds and returns the least busy CPU group within the
1636 * domain.
1637 */
1638static struct sched_group *
1639find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1640{
1641 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1642 unsigned long min_load = ULONG_MAX, this_load = 0;
1643 int load_idx = sd->forkexec_idx;
1644 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1645
1646 do {
1647 unsigned long load, avg_load;
1648 int local_group;
1649 int i;
1650
da5a5522
BD
1651 /* Skip over this group if it has no CPUs allowed */
1652 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1653 continue;
da5a5522 1654
147cbb4b 1655 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1656
1657 /* Tally up the load of all CPUs in the group */
1658 avg_load = 0;
1659
1660 for_each_cpu_mask(i, group->cpumask) {
1661 /* Bias balancing toward cpus of our domain */
1662 if (local_group)
1663 load = source_load(i, load_idx);
1664 else
1665 load = target_load(i, load_idx);
1666
1667 avg_load += load;
1668 }
1669
1670 /* Adjust by relative CPU power of the group */
5517d86b
ED
1671 avg_load = sg_div_cpu_power(group,
1672 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1673
1674 if (local_group) {
1675 this_load = avg_load;
1676 this = group;
1677 } else if (avg_load < min_load) {
1678 min_load = avg_load;
1679 idlest = group;
1680 }
3a5c359a 1681 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1682
1683 if (!idlest || 100*this_load < imbalance*min_load)
1684 return NULL;
1685 return idlest;
1686}
1687
1688/*
0feaece9 1689 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1690 */
95cdf3b7
IM
1691static int
1692find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1693{
da5a5522 1694 cpumask_t tmp;
147cbb4b
NP
1695 unsigned long load, min_load = ULONG_MAX;
1696 int idlest = -1;
1697 int i;
1698
da5a5522
BD
1699 /* Traverse only the allowed CPUs */
1700 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1701
1702 for_each_cpu_mask(i, tmp) {
2dd73a4f 1703 load = weighted_cpuload(i);
147cbb4b
NP
1704
1705 if (load < min_load || (load == min_load && i == this_cpu)) {
1706 min_load = load;
1707 idlest = i;
1708 }
1709 }
1710
1711 return idlest;
1712}
1713
476d139c
NP
1714/*
1715 * sched_balance_self: balance the current task (running on cpu) in domains
1716 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1717 * SD_BALANCE_EXEC.
1718 *
1719 * Balance, ie. select the least loaded group.
1720 *
1721 * Returns the target CPU number, or the same CPU if no balancing is needed.
1722 *
1723 * preempt must be disabled.
1724 */
1725static int sched_balance_self(int cpu, int flag)
1726{
1727 struct task_struct *t = current;
1728 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1729
c96d145e 1730 for_each_domain(cpu, tmp) {
9761eea8
IM
1731 /*
1732 * If power savings logic is enabled for a domain, stop there.
1733 */
5c45bf27
SS
1734 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1735 break;
476d139c
NP
1736 if (tmp->flags & flag)
1737 sd = tmp;
c96d145e 1738 }
476d139c
NP
1739
1740 while (sd) {
1741 cpumask_t span;
1742 struct sched_group *group;
1a848870
SS
1743 int new_cpu, weight;
1744
1745 if (!(sd->flags & flag)) {
1746 sd = sd->child;
1747 continue;
1748 }
476d139c
NP
1749
1750 span = sd->span;
1751 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1752 if (!group) {
1753 sd = sd->child;
1754 continue;
1755 }
476d139c 1756
da5a5522 1757 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1758 if (new_cpu == -1 || new_cpu == cpu) {
1759 /* Now try balancing at a lower domain level of cpu */
1760 sd = sd->child;
1761 continue;
1762 }
476d139c 1763
1a848870 1764 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1765 cpu = new_cpu;
476d139c
NP
1766 sd = NULL;
1767 weight = cpus_weight(span);
1768 for_each_domain(cpu, tmp) {
1769 if (weight <= cpus_weight(tmp->span))
1770 break;
1771 if (tmp->flags & flag)
1772 sd = tmp;
1773 }
1774 /* while loop will break here if sd == NULL */
1775 }
1776
1777 return cpu;
1778}
1779
1780#endif /* CONFIG_SMP */
1da177e4 1781
1da177e4
LT
1782/***
1783 * try_to_wake_up - wake up a thread
1784 * @p: the to-be-woken-up thread
1785 * @state: the mask of task states that can be woken
1786 * @sync: do a synchronous wakeup?
1787 *
1788 * Put it on the run-queue if it's not already there. The "current"
1789 * thread is always on the run-queue (except when the actual
1790 * re-schedule is in progress), and as such you're allowed to do
1791 * the simpler "current->state = TASK_RUNNING" to mark yourself
1792 * runnable without the overhead of this.
1793 *
1794 * returns failure only if the task is already active.
1795 */
36c8b586 1796static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1797{
cc367732 1798 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1799 unsigned long flags;
1800 long old_state;
70b97a7f 1801 struct rq *rq;
1da177e4
LT
1802
1803 rq = task_rq_lock(p, &flags);
1804 old_state = p->state;
1805 if (!(old_state & state))
1806 goto out;
1807
dd41f596 1808 if (p->se.on_rq)
1da177e4
LT
1809 goto out_running;
1810
1811 cpu = task_cpu(p);
cc367732 1812 orig_cpu = cpu;
1da177e4
LT
1813 this_cpu = smp_processor_id();
1814
1815#ifdef CONFIG_SMP
1816 if (unlikely(task_running(rq, p)))
1817 goto out_activate;
1818
5d2f5a61
DA
1819 cpu = p->sched_class->select_task_rq(p, sync);
1820 if (cpu != orig_cpu) {
1821 set_task_cpu(p, cpu);
1da177e4
LT
1822 task_rq_unlock(rq, &flags);
1823 /* might preempt at this point */
1824 rq = task_rq_lock(p, &flags);
1825 old_state = p->state;
1826 if (!(old_state & state))
1827 goto out;
dd41f596 1828 if (p->se.on_rq)
1da177e4
LT
1829 goto out_running;
1830
1831 this_cpu = smp_processor_id();
1832 cpu = task_cpu(p);
1833 }
1834
e7693a36
GH
1835#ifdef CONFIG_SCHEDSTATS
1836 schedstat_inc(rq, ttwu_count);
1837 if (cpu == this_cpu)
1838 schedstat_inc(rq, ttwu_local);
1839 else {
1840 struct sched_domain *sd;
1841 for_each_domain(this_cpu, sd) {
1842 if (cpu_isset(cpu, sd->span)) {
1843 schedstat_inc(sd, ttwu_wake_remote);
1844 break;
1845 }
1846 }
1847 }
e7693a36
GH
1848#endif
1849
1da177e4
LT
1850out_activate:
1851#endif /* CONFIG_SMP */
cc367732
IM
1852 schedstat_inc(p, se.nr_wakeups);
1853 if (sync)
1854 schedstat_inc(p, se.nr_wakeups_sync);
1855 if (orig_cpu != cpu)
1856 schedstat_inc(p, se.nr_wakeups_migrate);
1857 if (cpu == this_cpu)
1858 schedstat_inc(p, se.nr_wakeups_local);
1859 else
1860 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1861 update_rq_clock(rq);
dd41f596 1862 activate_task(rq, p, 1);
9c63d9c0 1863 check_preempt_curr(rq, p);
1da177e4
LT
1864 success = 1;
1865
1866out_running:
1867 p->state = TASK_RUNNING;
9a897c5a
SR
1868#ifdef CONFIG_SMP
1869 if (p->sched_class->task_wake_up)
1870 p->sched_class->task_wake_up(rq, p);
1871#endif
1da177e4
LT
1872out:
1873 task_rq_unlock(rq, &flags);
1874
1875 return success;
1876}
1877
36c8b586 1878int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1879{
1880 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1881 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1882}
1da177e4
LT
1883EXPORT_SYMBOL(wake_up_process);
1884
36c8b586 1885int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1886{
1887 return try_to_wake_up(p, state, 0);
1888}
1889
1da177e4
LT
1890/*
1891 * Perform scheduler related setup for a newly forked process p.
1892 * p is forked by current.
dd41f596
IM
1893 *
1894 * __sched_fork() is basic setup used by init_idle() too:
1895 */
1896static void __sched_fork(struct task_struct *p)
1897{
dd41f596
IM
1898 p->se.exec_start = 0;
1899 p->se.sum_exec_runtime = 0;
f6cf891c 1900 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1901
1902#ifdef CONFIG_SCHEDSTATS
1903 p->se.wait_start = 0;
dd41f596
IM
1904 p->se.sum_sleep_runtime = 0;
1905 p->se.sleep_start = 0;
dd41f596
IM
1906 p->se.block_start = 0;
1907 p->se.sleep_max = 0;
1908 p->se.block_max = 0;
1909 p->se.exec_max = 0;
eba1ed4b 1910 p->se.slice_max = 0;
dd41f596 1911 p->se.wait_max = 0;
6cfb0d5d 1912#endif
476d139c 1913
fa717060 1914 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 1915 p->se.on_rq = 0;
476d139c 1916
e107be36
AK
1917#ifdef CONFIG_PREEMPT_NOTIFIERS
1918 INIT_HLIST_HEAD(&p->preempt_notifiers);
1919#endif
1920
1da177e4
LT
1921 /*
1922 * We mark the process as running here, but have not actually
1923 * inserted it onto the runqueue yet. This guarantees that
1924 * nobody will actually run it, and a signal or other external
1925 * event cannot wake it up and insert it on the runqueue either.
1926 */
1927 p->state = TASK_RUNNING;
dd41f596
IM
1928}
1929
1930/*
1931 * fork()/clone()-time setup:
1932 */
1933void sched_fork(struct task_struct *p, int clone_flags)
1934{
1935 int cpu = get_cpu();
1936
1937 __sched_fork(p);
1938
1939#ifdef CONFIG_SMP
1940 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1941#endif
02e4bac2 1942 set_task_cpu(p, cpu);
b29739f9
IM
1943
1944 /*
1945 * Make sure we do not leak PI boosting priority to the child:
1946 */
1947 p->prio = current->normal_prio;
2ddbf952
HS
1948 if (!rt_prio(p->prio))
1949 p->sched_class = &fair_sched_class;
b29739f9 1950
52f17b6c 1951#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1952 if (likely(sched_info_on()))
52f17b6c 1953 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1954#endif
d6077cb8 1955#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1956 p->oncpu = 0;
1957#endif
1da177e4 1958#ifdef CONFIG_PREEMPT
4866cde0 1959 /* Want to start with kernel preemption disabled. */
a1261f54 1960 task_thread_info(p)->preempt_count = 1;
1da177e4 1961#endif
476d139c 1962 put_cpu();
1da177e4
LT
1963}
1964
1965/*
1966 * wake_up_new_task - wake up a newly created task for the first time.
1967 *
1968 * This function will do some initial scheduler statistics housekeeping
1969 * that must be done for every newly created context, then puts the task
1970 * on the runqueue and wakes it.
1971 */
36c8b586 1972void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1973{
1974 unsigned long flags;
dd41f596 1975 struct rq *rq;
1da177e4
LT
1976
1977 rq = task_rq_lock(p, &flags);
147cbb4b 1978 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1979 update_rq_clock(rq);
1da177e4
LT
1980
1981 p->prio = effective_prio(p);
1982
b9dca1e0 1983 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1984 activate_task(rq, p, 0);
1da177e4 1985 } else {
1da177e4 1986 /*
dd41f596
IM
1987 * Let the scheduling class do new task startup
1988 * management (if any):
1da177e4 1989 */
ee0827d8 1990 p->sched_class->task_new(rq, p);
e5fa2237 1991 inc_nr_running(p, rq);
1da177e4 1992 }
dd41f596 1993 check_preempt_curr(rq, p);
9a897c5a
SR
1994#ifdef CONFIG_SMP
1995 if (p->sched_class->task_wake_up)
1996 p->sched_class->task_wake_up(rq, p);
1997#endif
dd41f596 1998 task_rq_unlock(rq, &flags);
1da177e4
LT
1999}
2000
e107be36
AK
2001#ifdef CONFIG_PREEMPT_NOTIFIERS
2002
2003/**
421cee29
RD
2004 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2005 * @notifier: notifier struct to register
e107be36
AK
2006 */
2007void preempt_notifier_register(struct preempt_notifier *notifier)
2008{
2009 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2010}
2011EXPORT_SYMBOL_GPL(preempt_notifier_register);
2012
2013/**
2014 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2015 * @notifier: notifier struct to unregister
e107be36
AK
2016 *
2017 * This is safe to call from within a preemption notifier.
2018 */
2019void preempt_notifier_unregister(struct preempt_notifier *notifier)
2020{
2021 hlist_del(&notifier->link);
2022}
2023EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2024
2025static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2026{
2027 struct preempt_notifier *notifier;
2028 struct hlist_node *node;
2029
2030 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2031 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2032}
2033
2034static void
2035fire_sched_out_preempt_notifiers(struct task_struct *curr,
2036 struct task_struct *next)
2037{
2038 struct preempt_notifier *notifier;
2039 struct hlist_node *node;
2040
2041 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2042 notifier->ops->sched_out(notifier, next);
2043}
2044
2045#else
2046
2047static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2048{
2049}
2050
2051static void
2052fire_sched_out_preempt_notifiers(struct task_struct *curr,
2053 struct task_struct *next)
2054{
2055}
2056
2057#endif
2058
4866cde0
NP
2059/**
2060 * prepare_task_switch - prepare to switch tasks
2061 * @rq: the runqueue preparing to switch
421cee29 2062 * @prev: the current task that is being switched out
4866cde0
NP
2063 * @next: the task we are going to switch to.
2064 *
2065 * This is called with the rq lock held and interrupts off. It must
2066 * be paired with a subsequent finish_task_switch after the context
2067 * switch.
2068 *
2069 * prepare_task_switch sets up locking and calls architecture specific
2070 * hooks.
2071 */
e107be36
AK
2072static inline void
2073prepare_task_switch(struct rq *rq, struct task_struct *prev,
2074 struct task_struct *next)
4866cde0 2075{
e107be36 2076 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2077 prepare_lock_switch(rq, next);
2078 prepare_arch_switch(next);
2079}
2080
1da177e4
LT
2081/**
2082 * finish_task_switch - clean up after a task-switch
344babaa 2083 * @rq: runqueue associated with task-switch
1da177e4
LT
2084 * @prev: the thread we just switched away from.
2085 *
4866cde0
NP
2086 * finish_task_switch must be called after the context switch, paired
2087 * with a prepare_task_switch call before the context switch.
2088 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2089 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2090 *
2091 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2092 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2093 * with the lock held can cause deadlocks; see schedule() for
2094 * details.)
2095 */
a9957449 2096static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2097 __releases(rq->lock)
2098{
1da177e4 2099 struct mm_struct *mm = rq->prev_mm;
55a101f8 2100 long prev_state;
1da177e4
LT
2101
2102 rq->prev_mm = NULL;
2103
2104 /*
2105 * A task struct has one reference for the use as "current".
c394cc9f 2106 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2107 * schedule one last time. The schedule call will never return, and
2108 * the scheduled task must drop that reference.
c394cc9f 2109 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2110 * still held, otherwise prev could be scheduled on another cpu, die
2111 * there before we look at prev->state, and then the reference would
2112 * be dropped twice.
2113 * Manfred Spraul <manfred@colorfullife.com>
2114 */
55a101f8 2115 prev_state = prev->state;
4866cde0
NP
2116 finish_arch_switch(prev);
2117 finish_lock_switch(rq, prev);
9a897c5a
SR
2118#ifdef CONFIG_SMP
2119 if (current->sched_class->post_schedule)
2120 current->sched_class->post_schedule(rq);
2121#endif
e8fa1362 2122
e107be36 2123 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2124 if (mm)
2125 mmdrop(mm);
c394cc9f 2126 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2127 /*
2128 * Remove function-return probe instances associated with this
2129 * task and put them back on the free list.
9761eea8 2130 */
c6fd91f0 2131 kprobe_flush_task(prev);
1da177e4 2132 put_task_struct(prev);
c6fd91f0 2133 }
1da177e4
LT
2134}
2135
2136/**
2137 * schedule_tail - first thing a freshly forked thread must call.
2138 * @prev: the thread we just switched away from.
2139 */
36c8b586 2140asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2141 __releases(rq->lock)
2142{
70b97a7f
IM
2143 struct rq *rq = this_rq();
2144
4866cde0
NP
2145 finish_task_switch(rq, prev);
2146#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2147 /* In this case, finish_task_switch does not reenable preemption */
2148 preempt_enable();
2149#endif
1da177e4 2150 if (current->set_child_tid)
b488893a 2151 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2152}
2153
2154/*
2155 * context_switch - switch to the new MM and the new
2156 * thread's register state.
2157 */
dd41f596 2158static inline void
70b97a7f 2159context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2160 struct task_struct *next)
1da177e4 2161{
dd41f596 2162 struct mm_struct *mm, *oldmm;
1da177e4 2163
e107be36 2164 prepare_task_switch(rq, prev, next);
dd41f596
IM
2165 mm = next->mm;
2166 oldmm = prev->active_mm;
9226d125
ZA
2167 /*
2168 * For paravirt, this is coupled with an exit in switch_to to
2169 * combine the page table reload and the switch backend into
2170 * one hypercall.
2171 */
2172 arch_enter_lazy_cpu_mode();
2173
dd41f596 2174 if (unlikely(!mm)) {
1da177e4
LT
2175 next->active_mm = oldmm;
2176 atomic_inc(&oldmm->mm_count);
2177 enter_lazy_tlb(oldmm, next);
2178 } else
2179 switch_mm(oldmm, mm, next);
2180
dd41f596 2181 if (unlikely(!prev->mm)) {
1da177e4 2182 prev->active_mm = NULL;
1da177e4
LT
2183 rq->prev_mm = oldmm;
2184 }
3a5f5e48
IM
2185 /*
2186 * Since the runqueue lock will be released by the next
2187 * task (which is an invalid locking op but in the case
2188 * of the scheduler it's an obvious special-case), so we
2189 * do an early lockdep release here:
2190 */
2191#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2192 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2193#endif
1da177e4
LT
2194
2195 /* Here we just switch the register state and the stack. */
2196 switch_to(prev, next, prev);
2197
dd41f596
IM
2198 barrier();
2199 /*
2200 * this_rq must be evaluated again because prev may have moved
2201 * CPUs since it called schedule(), thus the 'rq' on its stack
2202 * frame will be invalid.
2203 */
2204 finish_task_switch(this_rq(), prev);
1da177e4
LT
2205}
2206
2207/*
2208 * nr_running, nr_uninterruptible and nr_context_switches:
2209 *
2210 * externally visible scheduler statistics: current number of runnable
2211 * threads, current number of uninterruptible-sleeping threads, total
2212 * number of context switches performed since bootup.
2213 */
2214unsigned long nr_running(void)
2215{
2216 unsigned long i, sum = 0;
2217
2218 for_each_online_cpu(i)
2219 sum += cpu_rq(i)->nr_running;
2220
2221 return sum;
2222}
2223
2224unsigned long nr_uninterruptible(void)
2225{
2226 unsigned long i, sum = 0;
2227
0a945022 2228 for_each_possible_cpu(i)
1da177e4
LT
2229 sum += cpu_rq(i)->nr_uninterruptible;
2230
2231 /*
2232 * Since we read the counters lockless, it might be slightly
2233 * inaccurate. Do not allow it to go below zero though:
2234 */
2235 if (unlikely((long)sum < 0))
2236 sum = 0;
2237
2238 return sum;
2239}
2240
2241unsigned long long nr_context_switches(void)
2242{
cc94abfc
SR
2243 int i;
2244 unsigned long long sum = 0;
1da177e4 2245
0a945022 2246 for_each_possible_cpu(i)
1da177e4
LT
2247 sum += cpu_rq(i)->nr_switches;
2248
2249 return sum;
2250}
2251
2252unsigned long nr_iowait(void)
2253{
2254 unsigned long i, sum = 0;
2255
0a945022 2256 for_each_possible_cpu(i)
1da177e4
LT
2257 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2258
2259 return sum;
2260}
2261
db1b1fef
JS
2262unsigned long nr_active(void)
2263{
2264 unsigned long i, running = 0, uninterruptible = 0;
2265
2266 for_each_online_cpu(i) {
2267 running += cpu_rq(i)->nr_running;
2268 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2269 }
2270
2271 if (unlikely((long)uninterruptible < 0))
2272 uninterruptible = 0;
2273
2274 return running + uninterruptible;
2275}
2276
48f24c4d 2277/*
dd41f596
IM
2278 * Update rq->cpu_load[] statistics. This function is usually called every
2279 * scheduler tick (TICK_NSEC).
48f24c4d 2280 */
dd41f596 2281static void update_cpu_load(struct rq *this_rq)
48f24c4d 2282{
495eca49 2283 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2284 int i, scale;
2285
2286 this_rq->nr_load_updates++;
dd41f596
IM
2287
2288 /* Update our load: */
2289 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2290 unsigned long old_load, new_load;
2291
2292 /* scale is effectively 1 << i now, and >> i divides by scale */
2293
2294 old_load = this_rq->cpu_load[i];
2295 new_load = this_load;
a25707f3
IM
2296 /*
2297 * Round up the averaging division if load is increasing. This
2298 * prevents us from getting stuck on 9 if the load is 10, for
2299 * example.
2300 */
2301 if (new_load > old_load)
2302 new_load += scale-1;
dd41f596
IM
2303 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2304 }
48f24c4d
IM
2305}
2306
dd41f596
IM
2307#ifdef CONFIG_SMP
2308
1da177e4
LT
2309/*
2310 * double_rq_lock - safely lock two runqueues
2311 *
2312 * Note this does not disable interrupts like task_rq_lock,
2313 * you need to do so manually before calling.
2314 */
70b97a7f 2315static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2316 __acquires(rq1->lock)
2317 __acquires(rq2->lock)
2318{
054b9108 2319 BUG_ON(!irqs_disabled());
1da177e4
LT
2320 if (rq1 == rq2) {
2321 spin_lock(&rq1->lock);
2322 __acquire(rq2->lock); /* Fake it out ;) */
2323 } else {
c96d145e 2324 if (rq1 < rq2) {
1da177e4
LT
2325 spin_lock(&rq1->lock);
2326 spin_lock(&rq2->lock);
2327 } else {
2328 spin_lock(&rq2->lock);
2329 spin_lock(&rq1->lock);
2330 }
2331 }
6e82a3be
IM
2332 update_rq_clock(rq1);
2333 update_rq_clock(rq2);
1da177e4
LT
2334}
2335
2336/*
2337 * double_rq_unlock - safely unlock two runqueues
2338 *
2339 * Note this does not restore interrupts like task_rq_unlock,
2340 * you need to do so manually after calling.
2341 */
70b97a7f 2342static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2343 __releases(rq1->lock)
2344 __releases(rq2->lock)
2345{
2346 spin_unlock(&rq1->lock);
2347 if (rq1 != rq2)
2348 spin_unlock(&rq2->lock);
2349 else
2350 __release(rq2->lock);
2351}
2352
2353/*
2354 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2355 */
e8fa1362 2356static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2357 __releases(this_rq->lock)
2358 __acquires(busiest->lock)
2359 __acquires(this_rq->lock)
2360{
e8fa1362
SR
2361 int ret = 0;
2362
054b9108
KK
2363 if (unlikely(!irqs_disabled())) {
2364 /* printk() doesn't work good under rq->lock */
2365 spin_unlock(&this_rq->lock);
2366 BUG_ON(1);
2367 }
1da177e4 2368 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2369 if (busiest < this_rq) {
1da177e4
LT
2370 spin_unlock(&this_rq->lock);
2371 spin_lock(&busiest->lock);
2372 spin_lock(&this_rq->lock);
e8fa1362 2373 ret = 1;
1da177e4
LT
2374 } else
2375 spin_lock(&busiest->lock);
2376 }
e8fa1362 2377 return ret;
1da177e4
LT
2378}
2379
1da177e4
LT
2380/*
2381 * If dest_cpu is allowed for this process, migrate the task to it.
2382 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2383 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2384 * the cpu_allowed mask is restored.
2385 */
36c8b586 2386static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2387{
70b97a7f 2388 struct migration_req req;
1da177e4 2389 unsigned long flags;
70b97a7f 2390 struct rq *rq;
1da177e4
LT
2391
2392 rq = task_rq_lock(p, &flags);
2393 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2394 || unlikely(cpu_is_offline(dest_cpu)))
2395 goto out;
2396
2397 /* force the process onto the specified CPU */
2398 if (migrate_task(p, dest_cpu, &req)) {
2399 /* Need to wait for migration thread (might exit: take ref). */
2400 struct task_struct *mt = rq->migration_thread;
36c8b586 2401
1da177e4
LT
2402 get_task_struct(mt);
2403 task_rq_unlock(rq, &flags);
2404 wake_up_process(mt);
2405 put_task_struct(mt);
2406 wait_for_completion(&req.done);
36c8b586 2407
1da177e4
LT
2408 return;
2409 }
2410out:
2411 task_rq_unlock(rq, &flags);
2412}
2413
2414/*
476d139c
NP
2415 * sched_exec - execve() is a valuable balancing opportunity, because at
2416 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2417 */
2418void sched_exec(void)
2419{
1da177e4 2420 int new_cpu, this_cpu = get_cpu();
476d139c 2421 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2422 put_cpu();
476d139c
NP
2423 if (new_cpu != this_cpu)
2424 sched_migrate_task(current, new_cpu);
1da177e4
LT
2425}
2426
2427/*
2428 * pull_task - move a task from a remote runqueue to the local runqueue.
2429 * Both runqueues must be locked.
2430 */
dd41f596
IM
2431static void pull_task(struct rq *src_rq, struct task_struct *p,
2432 struct rq *this_rq, int this_cpu)
1da177e4 2433{
2e1cb74a 2434 deactivate_task(src_rq, p, 0);
1da177e4 2435 set_task_cpu(p, this_cpu);
dd41f596 2436 activate_task(this_rq, p, 0);
1da177e4
LT
2437 /*
2438 * Note that idle threads have a prio of MAX_PRIO, for this test
2439 * to be always true for them.
2440 */
dd41f596 2441 check_preempt_curr(this_rq, p);
1da177e4
LT
2442}
2443
2444/*
2445 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2446 */
858119e1 2447static
70b97a7f 2448int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2449 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2450 int *all_pinned)
1da177e4
LT
2451{
2452 /*
2453 * We do not migrate tasks that are:
2454 * 1) running (obviously), or
2455 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2456 * 3) are cache-hot on their current CPU.
2457 */
cc367732
IM
2458 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2459 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2460 return 0;
cc367732 2461 }
81026794
NP
2462 *all_pinned = 0;
2463
cc367732
IM
2464 if (task_running(rq, p)) {
2465 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2466 return 0;
cc367732 2467 }
1da177e4 2468
da84d961
IM
2469 /*
2470 * Aggressive migration if:
2471 * 1) task is cache cold, or
2472 * 2) too many balance attempts have failed.
2473 */
2474
6bc1665b
IM
2475 if (!task_hot(p, rq->clock, sd) ||
2476 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2477#ifdef CONFIG_SCHEDSTATS
cc367732 2478 if (task_hot(p, rq->clock, sd)) {
da84d961 2479 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2480 schedstat_inc(p, se.nr_forced_migrations);
2481 }
da84d961
IM
2482#endif
2483 return 1;
2484 }
2485
cc367732
IM
2486 if (task_hot(p, rq->clock, sd)) {
2487 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2488 return 0;
cc367732 2489 }
1da177e4
LT
2490 return 1;
2491}
2492
e1d1484f
PW
2493static unsigned long
2494balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2495 unsigned long max_load_move, struct sched_domain *sd,
2496 enum cpu_idle_type idle, int *all_pinned,
2497 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2498{
b82d9fdd 2499 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2500 struct task_struct *p;
2501 long rem_load_move = max_load_move;
1da177e4 2502
e1d1484f 2503 if (max_load_move == 0)
1da177e4
LT
2504 goto out;
2505
81026794
NP
2506 pinned = 1;
2507
1da177e4 2508 /*
dd41f596 2509 * Start the load-balancing iterator:
1da177e4 2510 */
dd41f596
IM
2511 p = iterator->start(iterator->arg);
2512next:
b82d9fdd 2513 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2514 goto out;
50ddd969 2515 /*
b82d9fdd 2516 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2517 * skip a task if it will be the highest priority task (i.e. smallest
2518 * prio value) on its new queue regardless of its load weight
2519 */
dd41f596
IM
2520 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2521 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2522 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2523 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2524 p = iterator->next(iterator->arg);
2525 goto next;
1da177e4
LT
2526 }
2527
dd41f596 2528 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2529 pulled++;
dd41f596 2530 rem_load_move -= p->se.load.weight;
1da177e4 2531
2dd73a4f 2532 /*
b82d9fdd 2533 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2534 */
e1d1484f 2535 if (rem_load_move > 0) {
a4ac01c3
PW
2536 if (p->prio < *this_best_prio)
2537 *this_best_prio = p->prio;
dd41f596
IM
2538 p = iterator->next(iterator->arg);
2539 goto next;
1da177e4
LT
2540 }
2541out:
2542 /*
e1d1484f 2543 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2544 * so we can safely collect pull_task() stats here rather than
2545 * inside pull_task().
2546 */
2547 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2548
2549 if (all_pinned)
2550 *all_pinned = pinned;
e1d1484f
PW
2551
2552 return max_load_move - rem_load_move;
1da177e4
LT
2553}
2554
dd41f596 2555/*
43010659
PW
2556 * move_tasks tries to move up to max_load_move weighted load from busiest to
2557 * this_rq, as part of a balancing operation within domain "sd".
2558 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2559 *
2560 * Called with both runqueues locked.
2561 */
2562static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2563 unsigned long max_load_move,
dd41f596
IM
2564 struct sched_domain *sd, enum cpu_idle_type idle,
2565 int *all_pinned)
2566{
5522d5d5 2567 const struct sched_class *class = sched_class_highest;
43010659 2568 unsigned long total_load_moved = 0;
a4ac01c3 2569 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2570
2571 do {
43010659
PW
2572 total_load_moved +=
2573 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2574 max_load_move - total_load_moved,
a4ac01c3 2575 sd, idle, all_pinned, &this_best_prio);
dd41f596 2576 class = class->next;
43010659 2577 } while (class && max_load_move > total_load_moved);
dd41f596 2578
43010659
PW
2579 return total_load_moved > 0;
2580}
2581
e1d1484f
PW
2582static int
2583iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2584 struct sched_domain *sd, enum cpu_idle_type idle,
2585 struct rq_iterator *iterator)
2586{
2587 struct task_struct *p = iterator->start(iterator->arg);
2588 int pinned = 0;
2589
2590 while (p) {
2591 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2592 pull_task(busiest, p, this_rq, this_cpu);
2593 /*
2594 * Right now, this is only the second place pull_task()
2595 * is called, so we can safely collect pull_task()
2596 * stats here rather than inside pull_task().
2597 */
2598 schedstat_inc(sd, lb_gained[idle]);
2599
2600 return 1;
2601 }
2602 p = iterator->next(iterator->arg);
2603 }
2604
2605 return 0;
2606}
2607
43010659
PW
2608/*
2609 * move_one_task tries to move exactly one task from busiest to this_rq, as
2610 * part of active balancing operations within "domain".
2611 * Returns 1 if successful and 0 otherwise.
2612 *
2613 * Called with both runqueues locked.
2614 */
2615static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2616 struct sched_domain *sd, enum cpu_idle_type idle)
2617{
5522d5d5 2618 const struct sched_class *class;
43010659
PW
2619
2620 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2621 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2622 return 1;
2623
2624 return 0;
dd41f596
IM
2625}
2626
1da177e4
LT
2627/*
2628 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2629 * domain. It calculates and returns the amount of weighted load which
2630 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2631 */
2632static struct sched_group *
2633find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2634 unsigned long *imbalance, enum cpu_idle_type idle,
2635 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2636{
2637 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2638 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2639 unsigned long max_pull;
2dd73a4f
PW
2640 unsigned long busiest_load_per_task, busiest_nr_running;
2641 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2642 int load_idx, group_imb = 0;
5c45bf27
SS
2643#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2644 int power_savings_balance = 1;
2645 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2646 unsigned long min_nr_running = ULONG_MAX;
2647 struct sched_group *group_min = NULL, *group_leader = NULL;
2648#endif
1da177e4
LT
2649
2650 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2651 busiest_load_per_task = busiest_nr_running = 0;
2652 this_load_per_task = this_nr_running = 0;
d15bcfdb 2653 if (idle == CPU_NOT_IDLE)
7897986b 2654 load_idx = sd->busy_idx;
d15bcfdb 2655 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2656 load_idx = sd->newidle_idx;
2657 else
2658 load_idx = sd->idle_idx;
1da177e4
LT
2659
2660 do {
908a7c1b 2661 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2662 int local_group;
2663 int i;
908a7c1b 2664 int __group_imb = 0;
783609c6 2665 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2666 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2667
2668 local_group = cpu_isset(this_cpu, group->cpumask);
2669
783609c6
SS
2670 if (local_group)
2671 balance_cpu = first_cpu(group->cpumask);
2672
1da177e4 2673 /* Tally up the load of all CPUs in the group */
2dd73a4f 2674 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2675 max_cpu_load = 0;
2676 min_cpu_load = ~0UL;
1da177e4
LT
2677
2678 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2679 struct rq *rq;
2680
2681 if (!cpu_isset(i, *cpus))
2682 continue;
2683
2684 rq = cpu_rq(i);
2dd73a4f 2685
9439aab8 2686 if (*sd_idle && rq->nr_running)
5969fe06
NP
2687 *sd_idle = 0;
2688
1da177e4 2689 /* Bias balancing toward cpus of our domain */
783609c6
SS
2690 if (local_group) {
2691 if (idle_cpu(i) && !first_idle_cpu) {
2692 first_idle_cpu = 1;
2693 balance_cpu = i;
2694 }
2695
a2000572 2696 load = target_load(i, load_idx);
908a7c1b 2697 } else {
a2000572 2698 load = source_load(i, load_idx);
908a7c1b
KC
2699 if (load > max_cpu_load)
2700 max_cpu_load = load;
2701 if (min_cpu_load > load)
2702 min_cpu_load = load;
2703 }
1da177e4
LT
2704
2705 avg_load += load;
2dd73a4f 2706 sum_nr_running += rq->nr_running;
dd41f596 2707 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2708 }
2709
783609c6
SS
2710 /*
2711 * First idle cpu or the first cpu(busiest) in this sched group
2712 * is eligible for doing load balancing at this and above
9439aab8
SS
2713 * domains. In the newly idle case, we will allow all the cpu's
2714 * to do the newly idle load balance.
783609c6 2715 */
9439aab8
SS
2716 if (idle != CPU_NEWLY_IDLE && local_group &&
2717 balance_cpu != this_cpu && balance) {
783609c6
SS
2718 *balance = 0;
2719 goto ret;
2720 }
2721
1da177e4 2722 total_load += avg_load;
5517d86b 2723 total_pwr += group->__cpu_power;
1da177e4
LT
2724
2725 /* Adjust by relative CPU power of the group */
5517d86b
ED
2726 avg_load = sg_div_cpu_power(group,
2727 avg_load * SCHED_LOAD_SCALE);
1da177e4 2728
908a7c1b
KC
2729 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2730 __group_imb = 1;
2731
5517d86b 2732 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2733
1da177e4
LT
2734 if (local_group) {
2735 this_load = avg_load;
2736 this = group;
2dd73a4f
PW
2737 this_nr_running = sum_nr_running;
2738 this_load_per_task = sum_weighted_load;
2739 } else if (avg_load > max_load &&
908a7c1b 2740 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2741 max_load = avg_load;
2742 busiest = group;
2dd73a4f
PW
2743 busiest_nr_running = sum_nr_running;
2744 busiest_load_per_task = sum_weighted_load;
908a7c1b 2745 group_imb = __group_imb;
1da177e4 2746 }
5c45bf27
SS
2747
2748#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2749 /*
2750 * Busy processors will not participate in power savings
2751 * balance.
2752 */
dd41f596
IM
2753 if (idle == CPU_NOT_IDLE ||
2754 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2755 goto group_next;
5c45bf27
SS
2756
2757 /*
2758 * If the local group is idle or completely loaded
2759 * no need to do power savings balance at this domain
2760 */
2761 if (local_group && (this_nr_running >= group_capacity ||
2762 !this_nr_running))
2763 power_savings_balance = 0;
2764
dd41f596 2765 /*
5c45bf27
SS
2766 * If a group is already running at full capacity or idle,
2767 * don't include that group in power savings calculations
dd41f596
IM
2768 */
2769 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2770 || !sum_nr_running)
dd41f596 2771 goto group_next;
5c45bf27 2772
dd41f596 2773 /*
5c45bf27 2774 * Calculate the group which has the least non-idle load.
dd41f596
IM
2775 * This is the group from where we need to pick up the load
2776 * for saving power
2777 */
2778 if ((sum_nr_running < min_nr_running) ||
2779 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2780 first_cpu(group->cpumask) <
2781 first_cpu(group_min->cpumask))) {
dd41f596
IM
2782 group_min = group;
2783 min_nr_running = sum_nr_running;
5c45bf27
SS
2784 min_load_per_task = sum_weighted_load /
2785 sum_nr_running;
dd41f596 2786 }
5c45bf27 2787
dd41f596 2788 /*
5c45bf27 2789 * Calculate the group which is almost near its
dd41f596
IM
2790 * capacity but still has some space to pick up some load
2791 * from other group and save more power
2792 */
2793 if (sum_nr_running <= group_capacity - 1) {
2794 if (sum_nr_running > leader_nr_running ||
2795 (sum_nr_running == leader_nr_running &&
2796 first_cpu(group->cpumask) >
2797 first_cpu(group_leader->cpumask))) {
2798 group_leader = group;
2799 leader_nr_running = sum_nr_running;
2800 }
48f24c4d 2801 }
5c45bf27
SS
2802group_next:
2803#endif
1da177e4
LT
2804 group = group->next;
2805 } while (group != sd->groups);
2806
2dd73a4f 2807 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2808 goto out_balanced;
2809
2810 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2811
2812 if (this_load >= avg_load ||
2813 100*max_load <= sd->imbalance_pct*this_load)
2814 goto out_balanced;
2815
2dd73a4f 2816 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2817 if (group_imb)
2818 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2819
1da177e4
LT
2820 /*
2821 * We're trying to get all the cpus to the average_load, so we don't
2822 * want to push ourselves above the average load, nor do we wish to
2823 * reduce the max loaded cpu below the average load, as either of these
2824 * actions would just result in more rebalancing later, and ping-pong
2825 * tasks around. Thus we look for the minimum possible imbalance.
2826 * Negative imbalances (*we* are more loaded than anyone else) will
2827 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2828 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2829 * appear as very large values with unsigned longs.
2830 */
2dd73a4f
PW
2831 if (max_load <= busiest_load_per_task)
2832 goto out_balanced;
2833
2834 /*
2835 * In the presence of smp nice balancing, certain scenarios can have
2836 * max load less than avg load(as we skip the groups at or below
2837 * its cpu_power, while calculating max_load..)
2838 */
2839 if (max_load < avg_load) {
2840 *imbalance = 0;
2841 goto small_imbalance;
2842 }
0c117f1b
SS
2843
2844 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2845 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2846
1da177e4 2847 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2848 *imbalance = min(max_pull * busiest->__cpu_power,
2849 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2850 / SCHED_LOAD_SCALE;
2851
2dd73a4f
PW
2852 /*
2853 * if *imbalance is less than the average load per runnable task
2854 * there is no gaurantee that any tasks will be moved so we'll have
2855 * a think about bumping its value to force at least one task to be
2856 * moved
2857 */
7fd0d2dd 2858 if (*imbalance < busiest_load_per_task) {
48f24c4d 2859 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2860 unsigned int imbn;
2861
2862small_imbalance:
2863 pwr_move = pwr_now = 0;
2864 imbn = 2;
2865 if (this_nr_running) {
2866 this_load_per_task /= this_nr_running;
2867 if (busiest_load_per_task > this_load_per_task)
2868 imbn = 1;
2869 } else
2870 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2871
dd41f596
IM
2872 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2873 busiest_load_per_task * imbn) {
2dd73a4f 2874 *imbalance = busiest_load_per_task;
1da177e4
LT
2875 return busiest;
2876 }
2877
2878 /*
2879 * OK, we don't have enough imbalance to justify moving tasks,
2880 * however we may be able to increase total CPU power used by
2881 * moving them.
2882 */
2883
5517d86b
ED
2884 pwr_now += busiest->__cpu_power *
2885 min(busiest_load_per_task, max_load);
2886 pwr_now += this->__cpu_power *
2887 min(this_load_per_task, this_load);
1da177e4
LT
2888 pwr_now /= SCHED_LOAD_SCALE;
2889
2890 /* Amount of load we'd subtract */
5517d86b
ED
2891 tmp = sg_div_cpu_power(busiest,
2892 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2893 if (max_load > tmp)
5517d86b 2894 pwr_move += busiest->__cpu_power *
2dd73a4f 2895 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2896
2897 /* Amount of load we'd add */
5517d86b 2898 if (max_load * busiest->__cpu_power <
33859f7f 2899 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2900 tmp = sg_div_cpu_power(this,
2901 max_load * busiest->__cpu_power);
1da177e4 2902 else
5517d86b
ED
2903 tmp = sg_div_cpu_power(this,
2904 busiest_load_per_task * SCHED_LOAD_SCALE);
2905 pwr_move += this->__cpu_power *
2906 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2907 pwr_move /= SCHED_LOAD_SCALE;
2908
2909 /* Move if we gain throughput */
7fd0d2dd
SS
2910 if (pwr_move > pwr_now)
2911 *imbalance = busiest_load_per_task;
1da177e4
LT
2912 }
2913
1da177e4
LT
2914 return busiest;
2915
2916out_balanced:
5c45bf27 2917#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2918 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2919 goto ret;
1da177e4 2920
5c45bf27
SS
2921 if (this == group_leader && group_leader != group_min) {
2922 *imbalance = min_load_per_task;
2923 return group_min;
2924 }
5c45bf27 2925#endif
783609c6 2926ret:
1da177e4
LT
2927 *imbalance = 0;
2928 return NULL;
2929}
2930
2931/*
2932 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2933 */
70b97a7f 2934static struct rq *
d15bcfdb 2935find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2936 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2937{
70b97a7f 2938 struct rq *busiest = NULL, *rq;
2dd73a4f 2939 unsigned long max_load = 0;
1da177e4
LT
2940 int i;
2941
2942 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2943 unsigned long wl;
0a2966b4
CL
2944
2945 if (!cpu_isset(i, *cpus))
2946 continue;
2947
48f24c4d 2948 rq = cpu_rq(i);
dd41f596 2949 wl = weighted_cpuload(i);
2dd73a4f 2950
dd41f596 2951 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2952 continue;
1da177e4 2953
dd41f596
IM
2954 if (wl > max_load) {
2955 max_load = wl;
48f24c4d 2956 busiest = rq;
1da177e4
LT
2957 }
2958 }
2959
2960 return busiest;
2961}
2962
77391d71
NP
2963/*
2964 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2965 * so long as it is large enough.
2966 */
2967#define MAX_PINNED_INTERVAL 512
2968
1da177e4
LT
2969/*
2970 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2971 * tasks if there is an imbalance.
1da177e4 2972 */
70b97a7f 2973static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2974 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2975 int *balance)
1da177e4 2976{
43010659 2977 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2978 struct sched_group *group;
1da177e4 2979 unsigned long imbalance;
70b97a7f 2980 struct rq *busiest;
0a2966b4 2981 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2982 unsigned long flags;
5969fe06 2983
89c4710e
SS
2984 /*
2985 * When power savings policy is enabled for the parent domain, idle
2986 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2987 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2988 * portraying it as CPU_NOT_IDLE.
89c4710e 2989 */
d15bcfdb 2990 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2991 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2992 sd_idle = 1;
1da177e4 2993
2d72376b 2994 schedstat_inc(sd, lb_count[idle]);
1da177e4 2995
0a2966b4
CL
2996redo:
2997 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2998 &cpus, balance);
2999
06066714 3000 if (*balance == 0)
783609c6 3001 goto out_balanced;
783609c6 3002
1da177e4
LT
3003 if (!group) {
3004 schedstat_inc(sd, lb_nobusyg[idle]);
3005 goto out_balanced;
3006 }
3007
0a2966b4 3008 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
3009 if (!busiest) {
3010 schedstat_inc(sd, lb_nobusyq[idle]);
3011 goto out_balanced;
3012 }
3013
db935dbd 3014 BUG_ON(busiest == this_rq);
1da177e4
LT
3015
3016 schedstat_add(sd, lb_imbalance[idle], imbalance);
3017
43010659 3018 ld_moved = 0;
1da177e4
LT
3019 if (busiest->nr_running > 1) {
3020 /*
3021 * Attempt to move tasks. If find_busiest_group has found
3022 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3023 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3024 * correctly treated as an imbalance.
3025 */
fe2eea3f 3026 local_irq_save(flags);
e17224bf 3027 double_rq_lock(this_rq, busiest);
43010659 3028 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3029 imbalance, sd, idle, &all_pinned);
e17224bf 3030 double_rq_unlock(this_rq, busiest);
fe2eea3f 3031 local_irq_restore(flags);
81026794 3032
46cb4b7c
SS
3033 /*
3034 * some other cpu did the load balance for us.
3035 */
43010659 3036 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3037 resched_cpu(this_cpu);
3038
81026794 3039 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
3040 if (unlikely(all_pinned)) {
3041 cpu_clear(cpu_of(busiest), cpus);
3042 if (!cpus_empty(cpus))
3043 goto redo;
81026794 3044 goto out_balanced;
0a2966b4 3045 }
1da177e4 3046 }
81026794 3047
43010659 3048 if (!ld_moved) {
1da177e4
LT
3049 schedstat_inc(sd, lb_failed[idle]);
3050 sd->nr_balance_failed++;
3051
3052 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3053
fe2eea3f 3054 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3055
3056 /* don't kick the migration_thread, if the curr
3057 * task on busiest cpu can't be moved to this_cpu
3058 */
3059 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3060 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3061 all_pinned = 1;
3062 goto out_one_pinned;
3063 }
3064
1da177e4
LT
3065 if (!busiest->active_balance) {
3066 busiest->active_balance = 1;
3067 busiest->push_cpu = this_cpu;
81026794 3068 active_balance = 1;
1da177e4 3069 }
fe2eea3f 3070 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3071 if (active_balance)
1da177e4
LT
3072 wake_up_process(busiest->migration_thread);
3073
3074 /*
3075 * We've kicked active balancing, reset the failure
3076 * counter.
3077 */
39507451 3078 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3079 }
81026794 3080 } else
1da177e4
LT
3081 sd->nr_balance_failed = 0;
3082
81026794 3083 if (likely(!active_balance)) {
1da177e4
LT
3084 /* We were unbalanced, so reset the balancing interval */
3085 sd->balance_interval = sd->min_interval;
81026794
NP
3086 } else {
3087 /*
3088 * If we've begun active balancing, start to back off. This
3089 * case may not be covered by the all_pinned logic if there
3090 * is only 1 task on the busy runqueue (because we don't call
3091 * move_tasks).
3092 */
3093 if (sd->balance_interval < sd->max_interval)
3094 sd->balance_interval *= 2;
1da177e4
LT
3095 }
3096
43010659 3097 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3098 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3099 return -1;
43010659 3100 return ld_moved;
1da177e4
LT
3101
3102out_balanced:
1da177e4
LT
3103 schedstat_inc(sd, lb_balanced[idle]);
3104
16cfb1c0 3105 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3106
3107out_one_pinned:
1da177e4 3108 /* tune up the balancing interval */
77391d71
NP
3109 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3110 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3111 sd->balance_interval *= 2;
3112
48f24c4d 3113 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3114 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3115 return -1;
1da177e4
LT
3116 return 0;
3117}
3118
3119/*
3120 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3121 * tasks if there is an imbalance.
3122 *
d15bcfdb 3123 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3124 * this_rq is locked.
3125 */
48f24c4d 3126static int
70b97a7f 3127load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
3128{
3129 struct sched_group *group;
70b97a7f 3130 struct rq *busiest = NULL;
1da177e4 3131 unsigned long imbalance;
43010659 3132 int ld_moved = 0;
5969fe06 3133 int sd_idle = 0;
969bb4e4 3134 int all_pinned = 0;
0a2966b4 3135 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 3136
89c4710e
SS
3137 /*
3138 * When power savings policy is enabled for the parent domain, idle
3139 * sibling can pick up load irrespective of busy siblings. In this case,
3140 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3141 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3142 */
3143 if (sd->flags & SD_SHARE_CPUPOWER &&
3144 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3145 sd_idle = 1;
1da177e4 3146
2d72376b 3147 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3148redo:
d15bcfdb 3149 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 3150 &sd_idle, &cpus, NULL);
1da177e4 3151 if (!group) {
d15bcfdb 3152 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3153 goto out_balanced;
1da177e4
LT
3154 }
3155
d15bcfdb 3156 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 3157 &cpus);
db935dbd 3158 if (!busiest) {
d15bcfdb 3159 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3160 goto out_balanced;
1da177e4
LT
3161 }
3162
db935dbd
NP
3163 BUG_ON(busiest == this_rq);
3164
d15bcfdb 3165 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3166
43010659 3167 ld_moved = 0;
d6d5cfaf
NP
3168 if (busiest->nr_running > 1) {
3169 /* Attempt to move tasks */
3170 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3171 /* this_rq->clock is already updated */
3172 update_rq_clock(busiest);
43010659 3173 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3174 imbalance, sd, CPU_NEWLY_IDLE,
3175 &all_pinned);
d6d5cfaf 3176 spin_unlock(&busiest->lock);
0a2966b4 3177
969bb4e4 3178 if (unlikely(all_pinned)) {
0a2966b4
CL
3179 cpu_clear(cpu_of(busiest), cpus);
3180 if (!cpus_empty(cpus))
3181 goto redo;
3182 }
d6d5cfaf
NP
3183 }
3184
43010659 3185 if (!ld_moved) {
d15bcfdb 3186 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3187 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3188 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3189 return -1;
3190 } else
16cfb1c0 3191 sd->nr_balance_failed = 0;
1da177e4 3192
43010659 3193 return ld_moved;
16cfb1c0
NP
3194
3195out_balanced:
d15bcfdb 3196 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3197 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3198 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3199 return -1;
16cfb1c0 3200 sd->nr_balance_failed = 0;
48f24c4d 3201
16cfb1c0 3202 return 0;
1da177e4
LT
3203}
3204
3205/*
3206 * idle_balance is called by schedule() if this_cpu is about to become
3207 * idle. Attempts to pull tasks from other CPUs.
3208 */
70b97a7f 3209static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3210{
3211 struct sched_domain *sd;
dd41f596
IM
3212 int pulled_task = -1;
3213 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3214
3215 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3216 unsigned long interval;
3217
3218 if (!(sd->flags & SD_LOAD_BALANCE))
3219 continue;
3220
3221 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3222 /* If we've pulled tasks over stop searching: */
1bd77f2d 3223 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3224 this_rq, sd);
3225
3226 interval = msecs_to_jiffies(sd->balance_interval);
3227 if (time_after(next_balance, sd->last_balance + interval))
3228 next_balance = sd->last_balance + interval;
3229 if (pulled_task)
3230 break;
1da177e4 3231 }
dd41f596 3232 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3233 /*
3234 * We are going idle. next_balance may be set based on
3235 * a busy processor. So reset next_balance.
3236 */
3237 this_rq->next_balance = next_balance;
dd41f596 3238 }
1da177e4
LT
3239}
3240
3241/*
3242 * active_load_balance is run by migration threads. It pushes running tasks
3243 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3244 * running on each physical CPU where possible, and avoids physical /
3245 * logical imbalances.
3246 *
3247 * Called with busiest_rq locked.
3248 */
70b97a7f 3249static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3250{
39507451 3251 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3252 struct sched_domain *sd;
3253 struct rq *target_rq;
39507451 3254
48f24c4d 3255 /* Is there any task to move? */
39507451 3256 if (busiest_rq->nr_running <= 1)
39507451
NP
3257 return;
3258
3259 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3260
3261 /*
39507451 3262 * This condition is "impossible", if it occurs
41a2d6cf 3263 * we need to fix it. Originally reported by
39507451 3264 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3265 */
39507451 3266 BUG_ON(busiest_rq == target_rq);
1da177e4 3267
39507451
NP
3268 /* move a task from busiest_rq to target_rq */
3269 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3270 update_rq_clock(busiest_rq);
3271 update_rq_clock(target_rq);
39507451
NP
3272
3273 /* Search for an sd spanning us and the target CPU. */
c96d145e 3274 for_each_domain(target_cpu, sd) {
39507451 3275 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3276 cpu_isset(busiest_cpu, sd->span))
39507451 3277 break;
c96d145e 3278 }
39507451 3279
48f24c4d 3280 if (likely(sd)) {
2d72376b 3281 schedstat_inc(sd, alb_count);
39507451 3282
43010659
PW
3283 if (move_one_task(target_rq, target_cpu, busiest_rq,
3284 sd, CPU_IDLE))
48f24c4d
IM
3285 schedstat_inc(sd, alb_pushed);
3286 else
3287 schedstat_inc(sd, alb_failed);
3288 }
39507451 3289 spin_unlock(&target_rq->lock);
1da177e4
LT
3290}
3291
46cb4b7c
SS
3292#ifdef CONFIG_NO_HZ
3293static struct {
3294 atomic_t load_balancer;
41a2d6cf 3295 cpumask_t cpu_mask;
46cb4b7c
SS
3296} nohz ____cacheline_aligned = {
3297 .load_balancer = ATOMIC_INIT(-1),
3298 .cpu_mask = CPU_MASK_NONE,
3299};
3300
7835b98b 3301/*
46cb4b7c
SS
3302 * This routine will try to nominate the ilb (idle load balancing)
3303 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3304 * load balancing on behalf of all those cpus. If all the cpus in the system
3305 * go into this tickless mode, then there will be no ilb owner (as there is
3306 * no need for one) and all the cpus will sleep till the next wakeup event
3307 * arrives...
3308 *
3309 * For the ilb owner, tick is not stopped. And this tick will be used
3310 * for idle load balancing. ilb owner will still be part of
3311 * nohz.cpu_mask..
7835b98b 3312 *
46cb4b7c
SS
3313 * While stopping the tick, this cpu will become the ilb owner if there
3314 * is no other owner. And will be the owner till that cpu becomes busy
3315 * or if all cpus in the system stop their ticks at which point
3316 * there is no need for ilb owner.
3317 *
3318 * When the ilb owner becomes busy, it nominates another owner, during the
3319 * next busy scheduler_tick()
3320 */
3321int select_nohz_load_balancer(int stop_tick)
3322{
3323 int cpu = smp_processor_id();
3324
3325 if (stop_tick) {
3326 cpu_set(cpu, nohz.cpu_mask);
3327 cpu_rq(cpu)->in_nohz_recently = 1;
3328
3329 /*
3330 * If we are going offline and still the leader, give up!
3331 */
3332 if (cpu_is_offline(cpu) &&
3333 atomic_read(&nohz.load_balancer) == cpu) {
3334 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3335 BUG();
3336 return 0;
3337 }
3338
3339 /* time for ilb owner also to sleep */
3340 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3341 if (atomic_read(&nohz.load_balancer) == cpu)
3342 atomic_set(&nohz.load_balancer, -1);
3343 return 0;
3344 }
3345
3346 if (atomic_read(&nohz.load_balancer) == -1) {
3347 /* make me the ilb owner */
3348 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3349 return 1;
3350 } else if (atomic_read(&nohz.load_balancer) == cpu)
3351 return 1;
3352 } else {
3353 if (!cpu_isset(cpu, nohz.cpu_mask))
3354 return 0;
3355
3356 cpu_clear(cpu, nohz.cpu_mask);
3357
3358 if (atomic_read(&nohz.load_balancer) == cpu)
3359 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3360 BUG();
3361 }
3362 return 0;
3363}
3364#endif
3365
3366static DEFINE_SPINLOCK(balancing);
3367
3368/*
7835b98b
CL
3369 * It checks each scheduling domain to see if it is due to be balanced,
3370 * and initiates a balancing operation if so.
3371 *
3372 * Balancing parameters are set up in arch_init_sched_domains.
3373 */
a9957449 3374static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3375{
46cb4b7c
SS
3376 int balance = 1;
3377 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3378 unsigned long interval;
3379 struct sched_domain *sd;
46cb4b7c 3380 /* Earliest time when we have to do rebalance again */
c9819f45 3381 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3382 int update_next_balance = 0;
1da177e4 3383
46cb4b7c 3384 for_each_domain(cpu, sd) {
1da177e4
LT
3385 if (!(sd->flags & SD_LOAD_BALANCE))
3386 continue;
3387
3388 interval = sd->balance_interval;
d15bcfdb 3389 if (idle != CPU_IDLE)
1da177e4
LT
3390 interval *= sd->busy_factor;
3391
3392 /* scale ms to jiffies */
3393 interval = msecs_to_jiffies(interval);
3394 if (unlikely(!interval))
3395 interval = 1;
dd41f596
IM
3396 if (interval > HZ*NR_CPUS/10)
3397 interval = HZ*NR_CPUS/10;
3398
1da177e4 3399
08c183f3
CL
3400 if (sd->flags & SD_SERIALIZE) {
3401 if (!spin_trylock(&balancing))
3402 goto out;
3403 }
3404
c9819f45 3405 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3406 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3407 /*
3408 * We've pulled tasks over so either we're no
5969fe06
NP
3409 * longer idle, or one of our SMT siblings is
3410 * not idle.
3411 */
d15bcfdb 3412 idle = CPU_NOT_IDLE;
1da177e4 3413 }
1bd77f2d 3414 sd->last_balance = jiffies;
1da177e4 3415 }
08c183f3
CL
3416 if (sd->flags & SD_SERIALIZE)
3417 spin_unlock(&balancing);
3418out:
f549da84 3419 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3420 next_balance = sd->last_balance + interval;
f549da84
SS
3421 update_next_balance = 1;
3422 }
783609c6
SS
3423
3424 /*
3425 * Stop the load balance at this level. There is another
3426 * CPU in our sched group which is doing load balancing more
3427 * actively.
3428 */
3429 if (!balance)
3430 break;
1da177e4 3431 }
f549da84
SS
3432
3433 /*
3434 * next_balance will be updated only when there is a need.
3435 * When the cpu is attached to null domain for ex, it will not be
3436 * updated.
3437 */
3438 if (likely(update_next_balance))
3439 rq->next_balance = next_balance;
46cb4b7c
SS
3440}
3441
3442/*
3443 * run_rebalance_domains is triggered when needed from the scheduler tick.
3444 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3445 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3446 */
3447static void run_rebalance_domains(struct softirq_action *h)
3448{
dd41f596
IM
3449 int this_cpu = smp_processor_id();
3450 struct rq *this_rq = cpu_rq(this_cpu);
3451 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3452 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3453
dd41f596 3454 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3455
3456#ifdef CONFIG_NO_HZ
3457 /*
3458 * If this cpu is the owner for idle load balancing, then do the
3459 * balancing on behalf of the other idle cpus whose ticks are
3460 * stopped.
3461 */
dd41f596
IM
3462 if (this_rq->idle_at_tick &&
3463 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3464 cpumask_t cpus = nohz.cpu_mask;
3465 struct rq *rq;
3466 int balance_cpu;
3467
dd41f596 3468 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3469 for_each_cpu_mask(balance_cpu, cpus) {
3470 /*
3471 * If this cpu gets work to do, stop the load balancing
3472 * work being done for other cpus. Next load
3473 * balancing owner will pick it up.
3474 */
3475 if (need_resched())
3476 break;
3477
de0cf899 3478 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3479
3480 rq = cpu_rq(balance_cpu);
dd41f596
IM
3481 if (time_after(this_rq->next_balance, rq->next_balance))
3482 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3483 }
3484 }
3485#endif
3486}
3487
3488/*
3489 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3490 *
3491 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3492 * idle load balancing owner or decide to stop the periodic load balancing,
3493 * if the whole system is idle.
3494 */
dd41f596 3495static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3496{
46cb4b7c
SS
3497#ifdef CONFIG_NO_HZ
3498 /*
3499 * If we were in the nohz mode recently and busy at the current
3500 * scheduler tick, then check if we need to nominate new idle
3501 * load balancer.
3502 */
3503 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3504 rq->in_nohz_recently = 0;
3505
3506 if (atomic_read(&nohz.load_balancer) == cpu) {
3507 cpu_clear(cpu, nohz.cpu_mask);
3508 atomic_set(&nohz.load_balancer, -1);
3509 }
3510
3511 if (atomic_read(&nohz.load_balancer) == -1) {
3512 /*
3513 * simple selection for now: Nominate the
3514 * first cpu in the nohz list to be the next
3515 * ilb owner.
3516 *
3517 * TBD: Traverse the sched domains and nominate
3518 * the nearest cpu in the nohz.cpu_mask.
3519 */
3520 int ilb = first_cpu(nohz.cpu_mask);
3521
3522 if (ilb != NR_CPUS)
3523 resched_cpu(ilb);
3524 }
3525 }
3526
3527 /*
3528 * If this cpu is idle and doing idle load balancing for all the
3529 * cpus with ticks stopped, is it time for that to stop?
3530 */
3531 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3532 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3533 resched_cpu(cpu);
3534 return;
3535 }
3536
3537 /*
3538 * If this cpu is idle and the idle load balancing is done by
3539 * someone else, then no need raise the SCHED_SOFTIRQ
3540 */
3541 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3542 cpu_isset(cpu, nohz.cpu_mask))
3543 return;
3544#endif
3545 if (time_after_eq(jiffies, rq->next_balance))
3546 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3547}
dd41f596
IM
3548
3549#else /* CONFIG_SMP */
3550
1da177e4
LT
3551/*
3552 * on UP we do not need to balance between CPUs:
3553 */
70b97a7f 3554static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3555{
3556}
dd41f596 3557
1da177e4
LT
3558#endif
3559
1da177e4
LT
3560DEFINE_PER_CPU(struct kernel_stat, kstat);
3561
3562EXPORT_PER_CPU_SYMBOL(kstat);
3563
3564/*
41b86e9c
IM
3565 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3566 * that have not yet been banked in case the task is currently running.
1da177e4 3567 */
41b86e9c 3568unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3569{
1da177e4 3570 unsigned long flags;
41b86e9c
IM
3571 u64 ns, delta_exec;
3572 struct rq *rq;
48f24c4d 3573
41b86e9c
IM
3574 rq = task_rq_lock(p, &flags);
3575 ns = p->se.sum_exec_runtime;
051a1d1a 3576 if (task_current(rq, p)) {
a8e504d2
IM
3577 update_rq_clock(rq);
3578 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3579 if ((s64)delta_exec > 0)
3580 ns += delta_exec;
3581 }
3582 task_rq_unlock(rq, &flags);
48f24c4d 3583
1da177e4
LT
3584 return ns;
3585}
3586
1da177e4
LT
3587/*
3588 * Account user cpu time to a process.
3589 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3590 * @cputime: the cpu time spent in user space since the last update
3591 */
3592void account_user_time(struct task_struct *p, cputime_t cputime)
3593{
3594 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3595 cputime64_t tmp;
3596
3597 p->utime = cputime_add(p->utime, cputime);
3598
3599 /* Add user time to cpustat. */
3600 tmp = cputime_to_cputime64(cputime);
3601 if (TASK_NICE(p) > 0)
3602 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3603 else
3604 cpustat->user = cputime64_add(cpustat->user, tmp);
3605}
3606
94886b84
LV
3607/*
3608 * Account guest cpu time to a process.
3609 * @p: the process that the cpu time gets accounted to
3610 * @cputime: the cpu time spent in virtual machine since the last update
3611 */
f7402e03 3612static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3613{
3614 cputime64_t tmp;
3615 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3616
3617 tmp = cputime_to_cputime64(cputime);
3618
3619 p->utime = cputime_add(p->utime, cputime);
3620 p->gtime = cputime_add(p->gtime, cputime);
3621
3622 cpustat->user = cputime64_add(cpustat->user, tmp);
3623 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3624}
3625
c66f08be
MN
3626/*
3627 * Account scaled user cpu time to a process.
3628 * @p: the process that the cpu time gets accounted to
3629 * @cputime: the cpu time spent in user space since the last update
3630 */
3631void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3632{
3633 p->utimescaled = cputime_add(p->utimescaled, cputime);
3634}
3635
1da177e4
LT
3636/*
3637 * Account system cpu time to a process.
3638 * @p: the process that the cpu time gets accounted to
3639 * @hardirq_offset: the offset to subtract from hardirq_count()
3640 * @cputime: the cpu time spent in kernel space since the last update
3641 */
3642void account_system_time(struct task_struct *p, int hardirq_offset,
3643 cputime_t cputime)
3644{
3645 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3646 struct rq *rq = this_rq();
1da177e4
LT
3647 cputime64_t tmp;
3648
9778385d
CB
3649 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3650 return account_guest_time(p, cputime);
94886b84 3651
1da177e4
LT
3652 p->stime = cputime_add(p->stime, cputime);
3653
3654 /* Add system time to cpustat. */
3655 tmp = cputime_to_cputime64(cputime);
3656 if (hardirq_count() - hardirq_offset)
3657 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3658 else if (softirq_count())
3659 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3660 else if (p != rq->idle)
1da177e4 3661 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3662 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3663 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3664 else
3665 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3666 /* Account for system time used */
3667 acct_update_integrals(p);
1da177e4
LT
3668}
3669
c66f08be
MN
3670/*
3671 * Account scaled system cpu time to a process.
3672 * @p: the process that the cpu time gets accounted to
3673 * @hardirq_offset: the offset to subtract from hardirq_count()
3674 * @cputime: the cpu time spent in kernel space since the last update
3675 */
3676void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3677{
3678 p->stimescaled = cputime_add(p->stimescaled, cputime);
3679}
3680
1da177e4
LT
3681/*
3682 * Account for involuntary wait time.
3683 * @p: the process from which the cpu time has been stolen
3684 * @steal: the cpu time spent in involuntary wait
3685 */
3686void account_steal_time(struct task_struct *p, cputime_t steal)
3687{
3688 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3690 struct rq *rq = this_rq();
1da177e4
LT
3691
3692 if (p == rq->idle) {
3693 p->stime = cputime_add(p->stime, steal);
3694 if (atomic_read(&rq->nr_iowait) > 0)
3695 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3696 else
3697 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3698 } else
1da177e4
LT
3699 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3700}
3701
7835b98b
CL
3702/*
3703 * This function gets called by the timer code, with HZ frequency.
3704 * We call it with interrupts disabled.
3705 *
3706 * It also gets called by the fork code, when changing the parent's
3707 * timeslices.
3708 */
3709void scheduler_tick(void)
3710{
7835b98b
CL
3711 int cpu = smp_processor_id();
3712 struct rq *rq = cpu_rq(cpu);
dd41f596 3713 struct task_struct *curr = rq->curr;
529c7726 3714 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3715
3716 spin_lock(&rq->lock);
546fe3c9 3717 __update_rq_clock(rq);
529c7726
IM
3718 /*
3719 * Let rq->clock advance by at least TICK_NSEC:
3720 */
3721 if (unlikely(rq->clock < next_tick))
3722 rq->clock = next_tick;
3723 rq->tick_timestamp = rq->clock;
f1a438d8 3724 update_cpu_load(rq);
fa85ae24
PZ
3725 curr->sched_class->task_tick(rq, curr, 0);
3726 update_sched_rt_period(rq);
dd41f596 3727 spin_unlock(&rq->lock);
7835b98b 3728
e418e1c2 3729#ifdef CONFIG_SMP
dd41f596
IM
3730 rq->idle_at_tick = idle_cpu(cpu);
3731 trigger_load_balance(rq, cpu);
e418e1c2 3732#endif
1da177e4
LT
3733}
3734
1da177e4
LT
3735#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3736
3737void fastcall add_preempt_count(int val)
3738{
3739 /*
3740 * Underflow?
3741 */
9a11b49a
IM
3742 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3743 return;
1da177e4
LT
3744 preempt_count() += val;
3745 /*
3746 * Spinlock count overflowing soon?
3747 */
33859f7f
MOS
3748 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3749 PREEMPT_MASK - 10);
1da177e4
LT
3750}
3751EXPORT_SYMBOL(add_preempt_count);
3752
3753void fastcall sub_preempt_count(int val)
3754{
3755 /*
3756 * Underflow?
3757 */
9a11b49a
IM
3758 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3759 return;
1da177e4
LT
3760 /*
3761 * Is the spinlock portion underflowing?
3762 */
9a11b49a
IM
3763 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3764 !(preempt_count() & PREEMPT_MASK)))
3765 return;
3766
1da177e4
LT
3767 preempt_count() -= val;
3768}
3769EXPORT_SYMBOL(sub_preempt_count);
3770
3771#endif
3772
3773/*
dd41f596 3774 * Print scheduling while atomic bug:
1da177e4 3775 */
dd41f596 3776static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3777{
838225b4
SS
3778 struct pt_regs *regs = get_irq_regs();
3779
3780 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3781 prev->comm, prev->pid, preempt_count());
3782
dd41f596
IM
3783 debug_show_held_locks(prev);
3784 if (irqs_disabled())
3785 print_irqtrace_events(prev);
838225b4
SS
3786
3787 if (regs)
3788 show_regs(regs);
3789 else
3790 dump_stack();
dd41f596 3791}
1da177e4 3792
dd41f596
IM
3793/*
3794 * Various schedule()-time debugging checks and statistics:
3795 */
3796static inline void schedule_debug(struct task_struct *prev)
3797{
1da177e4 3798 /*
41a2d6cf 3799 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3800 * schedule() atomically, we ignore that path for now.
3801 * Otherwise, whine if we are scheduling when we should not be.
3802 */
dd41f596
IM
3803 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3804 __schedule_bug(prev);
3805
1da177e4
LT
3806 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3807
2d72376b 3808 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3809#ifdef CONFIG_SCHEDSTATS
3810 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3811 schedstat_inc(this_rq(), bkl_count);
3812 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3813 }
3814#endif
dd41f596
IM
3815}
3816
3817/*
3818 * Pick up the highest-prio task:
3819 */
3820static inline struct task_struct *
ff95f3df 3821pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3822{
5522d5d5 3823 const struct sched_class *class;
dd41f596 3824 struct task_struct *p;
1da177e4
LT
3825
3826 /*
dd41f596
IM
3827 * Optimization: we know that if all tasks are in
3828 * the fair class we can call that function directly:
1da177e4 3829 */
dd41f596 3830 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3831 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3832 if (likely(p))
3833 return p;
1da177e4
LT
3834 }
3835
dd41f596
IM
3836 class = sched_class_highest;
3837 for ( ; ; ) {
fb8d4724 3838 p = class->pick_next_task(rq);
dd41f596
IM
3839 if (p)
3840 return p;
3841 /*
3842 * Will never be NULL as the idle class always
3843 * returns a non-NULL p:
3844 */
3845 class = class->next;
3846 }
3847}
1da177e4 3848
dd41f596
IM
3849/*
3850 * schedule() is the main scheduler function.
3851 */
3852asmlinkage void __sched schedule(void)
3853{
3854 struct task_struct *prev, *next;
3855 long *switch_count;
3856 struct rq *rq;
dd41f596
IM
3857 int cpu;
3858
3859need_resched:
3860 preempt_disable();
3861 cpu = smp_processor_id();
3862 rq = cpu_rq(cpu);
3863 rcu_qsctr_inc(cpu);
3864 prev = rq->curr;
3865 switch_count = &prev->nivcsw;
3866
3867 release_kernel_lock(prev);
3868need_resched_nonpreemptible:
3869
3870 schedule_debug(prev);
1da177e4 3871
8f4d37ec
PZ
3872 hrtick_clear(rq);
3873
1e819950
IM
3874 /*
3875 * Do the rq-clock update outside the rq lock:
3876 */
3877 local_irq_disable();
c1b3da3e 3878 __update_rq_clock(rq);
1e819950
IM
3879 spin_lock(&rq->lock);
3880 clear_tsk_need_resched(prev);
1da177e4 3881
1da177e4 3882 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3883 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3884 unlikely(signal_pending(prev)))) {
1da177e4 3885 prev->state = TASK_RUNNING;
dd41f596 3886 } else {
2e1cb74a 3887 deactivate_task(rq, prev, 1);
1da177e4 3888 }
dd41f596 3889 switch_count = &prev->nvcsw;
1da177e4
LT
3890 }
3891
9a897c5a
SR
3892#ifdef CONFIG_SMP
3893 if (prev->sched_class->pre_schedule)
3894 prev->sched_class->pre_schedule(rq, prev);
3895#endif
f65eda4f 3896
dd41f596 3897 if (unlikely(!rq->nr_running))
1da177e4 3898 idle_balance(cpu, rq);
1da177e4 3899
31ee529c 3900 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3901 next = pick_next_task(rq, prev);
1da177e4
LT
3902
3903 sched_info_switch(prev, next);
dd41f596 3904
1da177e4 3905 if (likely(prev != next)) {
1da177e4
LT
3906 rq->nr_switches++;
3907 rq->curr = next;
3908 ++*switch_count;
3909
dd41f596 3910 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3911 /*
3912 * the context switch might have flipped the stack from under
3913 * us, hence refresh the local variables.
3914 */
3915 cpu = smp_processor_id();
3916 rq = cpu_rq(cpu);
1da177e4
LT
3917 } else
3918 spin_unlock_irq(&rq->lock);
3919
8f4d37ec
PZ
3920 hrtick_set(rq);
3921
3922 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 3923 goto need_resched_nonpreemptible;
8f4d37ec 3924
1da177e4
LT
3925 preempt_enable_no_resched();
3926 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3927 goto need_resched;
3928}
1da177e4
LT
3929EXPORT_SYMBOL(schedule);
3930
3931#ifdef CONFIG_PREEMPT
3932/*
2ed6e34f 3933 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3934 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3935 * occur there and call schedule directly.
3936 */
3937asmlinkage void __sched preempt_schedule(void)
3938{
3939 struct thread_info *ti = current_thread_info();
3940#ifdef CONFIG_PREEMPT_BKL
3941 struct task_struct *task = current;
3942 int saved_lock_depth;
3943#endif
3944 /*
3945 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3946 * we do not want to preempt the current task. Just return..
1da177e4 3947 */
beed33a8 3948 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3949 return;
3950
3a5c359a
AK
3951 do {
3952 add_preempt_count(PREEMPT_ACTIVE);
3953
3954 /*
3955 * We keep the big kernel semaphore locked, but we
3956 * clear ->lock_depth so that schedule() doesnt
3957 * auto-release the semaphore:
3958 */
1da177e4 3959#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3960 saved_lock_depth = task->lock_depth;
3961 task->lock_depth = -1;
1da177e4 3962#endif
3a5c359a 3963 schedule();
1da177e4 3964#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3965 task->lock_depth = saved_lock_depth;
1da177e4 3966#endif
3a5c359a 3967 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3968
3a5c359a
AK
3969 /*
3970 * Check again in case we missed a preemption opportunity
3971 * between schedule and now.
3972 */
3973 barrier();
3974 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3975}
1da177e4
LT
3976EXPORT_SYMBOL(preempt_schedule);
3977
3978/*
2ed6e34f 3979 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3980 * off of irq context.
3981 * Note, that this is called and return with irqs disabled. This will
3982 * protect us against recursive calling from irq.
3983 */
3984asmlinkage void __sched preempt_schedule_irq(void)
3985{
3986 struct thread_info *ti = current_thread_info();
3987#ifdef CONFIG_PREEMPT_BKL
3988 struct task_struct *task = current;
3989 int saved_lock_depth;
3990#endif
2ed6e34f 3991 /* Catch callers which need to be fixed */
1da177e4
LT
3992 BUG_ON(ti->preempt_count || !irqs_disabled());
3993
3a5c359a
AK
3994 do {
3995 add_preempt_count(PREEMPT_ACTIVE);
3996
3997 /*
3998 * We keep the big kernel semaphore locked, but we
3999 * clear ->lock_depth so that schedule() doesnt
4000 * auto-release the semaphore:
4001 */
1da177e4 4002#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
4003 saved_lock_depth = task->lock_depth;
4004 task->lock_depth = -1;
1da177e4 4005#endif
3a5c359a
AK
4006 local_irq_enable();
4007 schedule();
4008 local_irq_disable();
1da177e4 4009#ifdef CONFIG_PREEMPT_BKL
3a5c359a 4010 task->lock_depth = saved_lock_depth;
1da177e4 4011#endif
3a5c359a 4012 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4013
3a5c359a
AK
4014 /*
4015 * Check again in case we missed a preemption opportunity
4016 * between schedule and now.
4017 */
4018 barrier();
4019 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4020}
4021
4022#endif /* CONFIG_PREEMPT */
4023
95cdf3b7
IM
4024int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4025 void *key)
1da177e4 4026{
48f24c4d 4027 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4028}
1da177e4
LT
4029EXPORT_SYMBOL(default_wake_function);
4030
4031/*
41a2d6cf
IM
4032 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4033 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4034 * number) then we wake all the non-exclusive tasks and one exclusive task.
4035 *
4036 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4037 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4038 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4039 */
4040static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4041 int nr_exclusive, int sync, void *key)
4042{
2e45874c 4043 wait_queue_t *curr, *next;
1da177e4 4044
2e45874c 4045 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4046 unsigned flags = curr->flags;
4047
1da177e4 4048 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4049 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4050 break;
4051 }
4052}
4053
4054/**
4055 * __wake_up - wake up threads blocked on a waitqueue.
4056 * @q: the waitqueue
4057 * @mode: which threads
4058 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4059 * @key: is directly passed to the wakeup function
1da177e4
LT
4060 */
4061void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4062 int nr_exclusive, void *key)
1da177e4
LT
4063{
4064 unsigned long flags;
4065
4066 spin_lock_irqsave(&q->lock, flags);
4067 __wake_up_common(q, mode, nr_exclusive, 0, key);
4068 spin_unlock_irqrestore(&q->lock, flags);
4069}
1da177e4
LT
4070EXPORT_SYMBOL(__wake_up);
4071
4072/*
4073 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4074 */
4075void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4076{
4077 __wake_up_common(q, mode, 1, 0, NULL);
4078}
4079
4080/**
67be2dd1 4081 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4082 * @q: the waitqueue
4083 * @mode: which threads
4084 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4085 *
4086 * The sync wakeup differs that the waker knows that it will schedule
4087 * away soon, so while the target thread will be woken up, it will not
4088 * be migrated to another CPU - ie. the two threads are 'synchronized'
4089 * with each other. This can prevent needless bouncing between CPUs.
4090 *
4091 * On UP it can prevent extra preemption.
4092 */
95cdf3b7
IM
4093void fastcall
4094__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4095{
4096 unsigned long flags;
4097 int sync = 1;
4098
4099 if (unlikely(!q))
4100 return;
4101
4102 if (unlikely(!nr_exclusive))
4103 sync = 0;
4104
4105 spin_lock_irqsave(&q->lock, flags);
4106 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4107 spin_unlock_irqrestore(&q->lock, flags);
4108}
4109EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4110
b15136e9 4111void complete(struct completion *x)
1da177e4
LT
4112{
4113 unsigned long flags;
4114
4115 spin_lock_irqsave(&x->wait.lock, flags);
4116 x->done++;
4117 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
4118 1, 0, NULL);
4119 spin_unlock_irqrestore(&x->wait.lock, flags);
4120}
4121EXPORT_SYMBOL(complete);
4122
b15136e9 4123void complete_all(struct completion *x)
1da177e4
LT
4124{
4125 unsigned long flags;
4126
4127 spin_lock_irqsave(&x->wait.lock, flags);
4128 x->done += UINT_MAX/2;
4129 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
4130 0, 0, NULL);
4131 spin_unlock_irqrestore(&x->wait.lock, flags);
4132}
4133EXPORT_SYMBOL(complete_all);
4134
8cbbe86d
AK
4135static inline long __sched
4136do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4137{
1da177e4
LT
4138 if (!x->done) {
4139 DECLARE_WAITQUEUE(wait, current);
4140
4141 wait.flags |= WQ_FLAG_EXCLUSIVE;
4142 __add_wait_queue_tail(&x->wait, &wait);
4143 do {
8cbbe86d
AK
4144 if (state == TASK_INTERRUPTIBLE &&
4145 signal_pending(current)) {
4146 __remove_wait_queue(&x->wait, &wait);
4147 return -ERESTARTSYS;
4148 }
4149 __set_current_state(state);
1da177e4
LT
4150 spin_unlock_irq(&x->wait.lock);
4151 timeout = schedule_timeout(timeout);
4152 spin_lock_irq(&x->wait.lock);
4153 if (!timeout) {
4154 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4155 return timeout;
1da177e4
LT
4156 }
4157 } while (!x->done);
4158 __remove_wait_queue(&x->wait, &wait);
4159 }
4160 x->done--;
1da177e4
LT
4161 return timeout;
4162}
1da177e4 4163
8cbbe86d
AK
4164static long __sched
4165wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4166{
1da177e4
LT
4167 might_sleep();
4168
4169 spin_lock_irq(&x->wait.lock);
8cbbe86d 4170 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4171 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4172 return timeout;
4173}
1da177e4 4174
b15136e9 4175void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4176{
4177 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4178}
8cbbe86d 4179EXPORT_SYMBOL(wait_for_completion);
1da177e4 4180
b15136e9 4181unsigned long __sched
8cbbe86d 4182wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4183{
8cbbe86d 4184 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4185}
8cbbe86d 4186EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4187
8cbbe86d 4188int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4189{
51e97990
AK
4190 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4191 if (t == -ERESTARTSYS)
4192 return t;
4193 return 0;
0fec171c 4194}
8cbbe86d 4195EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4196
b15136e9 4197unsigned long __sched
8cbbe86d
AK
4198wait_for_completion_interruptible_timeout(struct completion *x,
4199 unsigned long timeout)
0fec171c 4200{
8cbbe86d 4201 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4202}
8cbbe86d 4203EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4204
8cbbe86d
AK
4205static long __sched
4206sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4207{
0fec171c
IM
4208 unsigned long flags;
4209 wait_queue_t wait;
4210
4211 init_waitqueue_entry(&wait, current);
1da177e4 4212
8cbbe86d 4213 __set_current_state(state);
1da177e4 4214
8cbbe86d
AK
4215 spin_lock_irqsave(&q->lock, flags);
4216 __add_wait_queue(q, &wait);
4217 spin_unlock(&q->lock);
4218 timeout = schedule_timeout(timeout);
4219 spin_lock_irq(&q->lock);
4220 __remove_wait_queue(q, &wait);
4221 spin_unlock_irqrestore(&q->lock, flags);
4222
4223 return timeout;
4224}
4225
4226void __sched interruptible_sleep_on(wait_queue_head_t *q)
4227{
4228 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4229}
1da177e4
LT
4230EXPORT_SYMBOL(interruptible_sleep_on);
4231
0fec171c 4232long __sched
95cdf3b7 4233interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4234{
8cbbe86d 4235 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4236}
1da177e4
LT
4237EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4238
0fec171c 4239void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4240{
8cbbe86d 4241 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4242}
1da177e4
LT
4243EXPORT_SYMBOL(sleep_on);
4244
0fec171c 4245long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4246{
8cbbe86d 4247 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4248}
1da177e4
LT
4249EXPORT_SYMBOL(sleep_on_timeout);
4250
b29739f9
IM
4251#ifdef CONFIG_RT_MUTEXES
4252
4253/*
4254 * rt_mutex_setprio - set the current priority of a task
4255 * @p: task
4256 * @prio: prio value (kernel-internal form)
4257 *
4258 * This function changes the 'effective' priority of a task. It does
4259 * not touch ->normal_prio like __setscheduler().
4260 *
4261 * Used by the rt_mutex code to implement priority inheritance logic.
4262 */
36c8b586 4263void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4264{
4265 unsigned long flags;
83b699ed 4266 int oldprio, on_rq, running;
70b97a7f 4267 struct rq *rq;
cb469845 4268 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4269
4270 BUG_ON(prio < 0 || prio > MAX_PRIO);
4271
4272 rq = task_rq_lock(p, &flags);
a8e504d2 4273 update_rq_clock(rq);
b29739f9 4274
d5f9f942 4275 oldprio = p->prio;
dd41f596 4276 on_rq = p->se.on_rq;
051a1d1a 4277 running = task_current(rq, p);
83b699ed 4278 if (on_rq) {
69be72c1 4279 dequeue_task(rq, p, 0);
83b699ed
SV
4280 if (running)
4281 p->sched_class->put_prev_task(rq, p);
4282 }
dd41f596
IM
4283
4284 if (rt_prio(prio))
4285 p->sched_class = &rt_sched_class;
4286 else
4287 p->sched_class = &fair_sched_class;
4288
b29739f9
IM
4289 p->prio = prio;
4290
dd41f596 4291 if (on_rq) {
83b699ed
SV
4292 if (running)
4293 p->sched_class->set_curr_task(rq);
cb469845 4294
8159f87e 4295 enqueue_task(rq, p, 0);
cb469845
SR
4296
4297 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4298 }
4299 task_rq_unlock(rq, &flags);
4300}
4301
4302#endif
4303
36c8b586 4304void set_user_nice(struct task_struct *p, long nice)
1da177e4 4305{
dd41f596 4306 int old_prio, delta, on_rq;
1da177e4 4307 unsigned long flags;
70b97a7f 4308 struct rq *rq;
1da177e4
LT
4309
4310 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4311 return;
4312 /*
4313 * We have to be careful, if called from sys_setpriority(),
4314 * the task might be in the middle of scheduling on another CPU.
4315 */
4316 rq = task_rq_lock(p, &flags);
a8e504d2 4317 update_rq_clock(rq);
1da177e4
LT
4318 /*
4319 * The RT priorities are set via sched_setscheduler(), but we still
4320 * allow the 'normal' nice value to be set - but as expected
4321 * it wont have any effect on scheduling until the task is
dd41f596 4322 * SCHED_FIFO/SCHED_RR:
1da177e4 4323 */
e05606d3 4324 if (task_has_rt_policy(p)) {
1da177e4
LT
4325 p->static_prio = NICE_TO_PRIO(nice);
4326 goto out_unlock;
4327 }
dd41f596 4328 on_rq = p->se.on_rq;
58e2d4ca 4329 if (on_rq)
69be72c1 4330 dequeue_task(rq, p, 0);
1da177e4 4331
1da177e4 4332 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4333 set_load_weight(p);
b29739f9
IM
4334 old_prio = p->prio;
4335 p->prio = effective_prio(p);
4336 delta = p->prio - old_prio;
1da177e4 4337
dd41f596 4338 if (on_rq) {
8159f87e 4339 enqueue_task(rq, p, 0);
1da177e4 4340 /*
d5f9f942
AM
4341 * If the task increased its priority or is running and
4342 * lowered its priority, then reschedule its CPU:
1da177e4 4343 */
d5f9f942 4344 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4345 resched_task(rq->curr);
4346 }
4347out_unlock:
4348 task_rq_unlock(rq, &flags);
4349}
1da177e4
LT
4350EXPORT_SYMBOL(set_user_nice);
4351
e43379f1
MM
4352/*
4353 * can_nice - check if a task can reduce its nice value
4354 * @p: task
4355 * @nice: nice value
4356 */
36c8b586 4357int can_nice(const struct task_struct *p, const int nice)
e43379f1 4358{
024f4747
MM
4359 /* convert nice value [19,-20] to rlimit style value [1,40] */
4360 int nice_rlim = 20 - nice;
48f24c4d 4361
e43379f1
MM
4362 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4363 capable(CAP_SYS_NICE));
4364}
4365
1da177e4
LT
4366#ifdef __ARCH_WANT_SYS_NICE
4367
4368/*
4369 * sys_nice - change the priority of the current process.
4370 * @increment: priority increment
4371 *
4372 * sys_setpriority is a more generic, but much slower function that
4373 * does similar things.
4374 */
4375asmlinkage long sys_nice(int increment)
4376{
48f24c4d 4377 long nice, retval;
1da177e4
LT
4378
4379 /*
4380 * Setpriority might change our priority at the same moment.
4381 * We don't have to worry. Conceptually one call occurs first
4382 * and we have a single winner.
4383 */
e43379f1
MM
4384 if (increment < -40)
4385 increment = -40;
1da177e4
LT
4386 if (increment > 40)
4387 increment = 40;
4388
4389 nice = PRIO_TO_NICE(current->static_prio) + increment;
4390 if (nice < -20)
4391 nice = -20;
4392 if (nice > 19)
4393 nice = 19;
4394
e43379f1
MM
4395 if (increment < 0 && !can_nice(current, nice))
4396 return -EPERM;
4397
1da177e4
LT
4398 retval = security_task_setnice(current, nice);
4399 if (retval)
4400 return retval;
4401
4402 set_user_nice(current, nice);
4403 return 0;
4404}
4405
4406#endif
4407
4408/**
4409 * task_prio - return the priority value of a given task.
4410 * @p: the task in question.
4411 *
4412 * This is the priority value as seen by users in /proc.
4413 * RT tasks are offset by -200. Normal tasks are centered
4414 * around 0, value goes from -16 to +15.
4415 */
36c8b586 4416int task_prio(const struct task_struct *p)
1da177e4
LT
4417{
4418 return p->prio - MAX_RT_PRIO;
4419}
4420
4421/**
4422 * task_nice - return the nice value of a given task.
4423 * @p: the task in question.
4424 */
36c8b586 4425int task_nice(const struct task_struct *p)
1da177e4
LT
4426{
4427 return TASK_NICE(p);
4428}
1da177e4 4429EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4430
4431/**
4432 * idle_cpu - is a given cpu idle currently?
4433 * @cpu: the processor in question.
4434 */
4435int idle_cpu(int cpu)
4436{
4437 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4438}
4439
1da177e4
LT
4440/**
4441 * idle_task - return the idle task for a given cpu.
4442 * @cpu: the processor in question.
4443 */
36c8b586 4444struct task_struct *idle_task(int cpu)
1da177e4
LT
4445{
4446 return cpu_rq(cpu)->idle;
4447}
4448
4449/**
4450 * find_process_by_pid - find a process with a matching PID value.
4451 * @pid: the pid in question.
4452 */
a9957449 4453static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4454{
228ebcbe 4455 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4456}
4457
4458/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4459static void
4460__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4461{
dd41f596 4462 BUG_ON(p->se.on_rq);
48f24c4d 4463
1da177e4 4464 p->policy = policy;
dd41f596
IM
4465 switch (p->policy) {
4466 case SCHED_NORMAL:
4467 case SCHED_BATCH:
4468 case SCHED_IDLE:
4469 p->sched_class = &fair_sched_class;
4470 break;
4471 case SCHED_FIFO:
4472 case SCHED_RR:
4473 p->sched_class = &rt_sched_class;
4474 break;
4475 }
4476
1da177e4 4477 p->rt_priority = prio;
b29739f9
IM
4478 p->normal_prio = normal_prio(p);
4479 /* we are holding p->pi_lock already */
4480 p->prio = rt_mutex_getprio(p);
2dd73a4f 4481 set_load_weight(p);
1da177e4
LT
4482}
4483
4484/**
72fd4a35 4485 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4486 * @p: the task in question.
4487 * @policy: new policy.
4488 * @param: structure containing the new RT priority.
5fe1d75f 4489 *
72fd4a35 4490 * NOTE that the task may be already dead.
1da177e4 4491 */
95cdf3b7
IM
4492int sched_setscheduler(struct task_struct *p, int policy,
4493 struct sched_param *param)
1da177e4 4494{
83b699ed 4495 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4496 unsigned long flags;
cb469845 4497 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4498 struct rq *rq;
1da177e4 4499
66e5393a
SR
4500 /* may grab non-irq protected spin_locks */
4501 BUG_ON(in_interrupt());
1da177e4
LT
4502recheck:
4503 /* double check policy once rq lock held */
4504 if (policy < 0)
4505 policy = oldpolicy = p->policy;
4506 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4507 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4508 policy != SCHED_IDLE)
b0a9499c 4509 return -EINVAL;
1da177e4
LT
4510 /*
4511 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4512 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4513 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4514 */
4515 if (param->sched_priority < 0 ||
95cdf3b7 4516 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4517 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4518 return -EINVAL;
e05606d3 4519 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4520 return -EINVAL;
4521
37e4ab3f
OC
4522 /*
4523 * Allow unprivileged RT tasks to decrease priority:
4524 */
4525 if (!capable(CAP_SYS_NICE)) {
e05606d3 4526 if (rt_policy(policy)) {
8dc3e909 4527 unsigned long rlim_rtprio;
8dc3e909
ON
4528
4529 if (!lock_task_sighand(p, &flags))
4530 return -ESRCH;
4531 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4532 unlock_task_sighand(p, &flags);
4533
4534 /* can't set/change the rt policy */
4535 if (policy != p->policy && !rlim_rtprio)
4536 return -EPERM;
4537
4538 /* can't increase priority */
4539 if (param->sched_priority > p->rt_priority &&
4540 param->sched_priority > rlim_rtprio)
4541 return -EPERM;
4542 }
dd41f596
IM
4543 /*
4544 * Like positive nice levels, dont allow tasks to
4545 * move out of SCHED_IDLE either:
4546 */
4547 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4548 return -EPERM;
5fe1d75f 4549
37e4ab3f
OC
4550 /* can't change other user's priorities */
4551 if ((current->euid != p->euid) &&
4552 (current->euid != p->uid))
4553 return -EPERM;
4554 }
1da177e4
LT
4555
4556 retval = security_task_setscheduler(p, policy, param);
4557 if (retval)
4558 return retval;
b29739f9
IM
4559 /*
4560 * make sure no PI-waiters arrive (or leave) while we are
4561 * changing the priority of the task:
4562 */
4563 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4564 /*
4565 * To be able to change p->policy safely, the apropriate
4566 * runqueue lock must be held.
4567 */
b29739f9 4568 rq = __task_rq_lock(p);
1da177e4
LT
4569 /* recheck policy now with rq lock held */
4570 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4571 policy = oldpolicy = -1;
b29739f9
IM
4572 __task_rq_unlock(rq);
4573 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4574 goto recheck;
4575 }
2daa3577 4576 update_rq_clock(rq);
dd41f596 4577 on_rq = p->se.on_rq;
051a1d1a 4578 running = task_current(rq, p);
83b699ed 4579 if (on_rq) {
2e1cb74a 4580 deactivate_task(rq, p, 0);
83b699ed
SV
4581 if (running)
4582 p->sched_class->put_prev_task(rq, p);
4583 }
f6b53205 4584
1da177e4 4585 oldprio = p->prio;
dd41f596 4586 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4587
dd41f596 4588 if (on_rq) {
83b699ed
SV
4589 if (running)
4590 p->sched_class->set_curr_task(rq);
cb469845 4591
dd41f596 4592 activate_task(rq, p, 0);
cb469845
SR
4593
4594 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4595 }
b29739f9
IM
4596 __task_rq_unlock(rq);
4597 spin_unlock_irqrestore(&p->pi_lock, flags);
4598
95e02ca9
TG
4599 rt_mutex_adjust_pi(p);
4600
1da177e4
LT
4601 return 0;
4602}
4603EXPORT_SYMBOL_GPL(sched_setscheduler);
4604
95cdf3b7
IM
4605static int
4606do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4607{
1da177e4
LT
4608 struct sched_param lparam;
4609 struct task_struct *p;
36c8b586 4610 int retval;
1da177e4
LT
4611
4612 if (!param || pid < 0)
4613 return -EINVAL;
4614 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4615 return -EFAULT;
5fe1d75f
ON
4616
4617 rcu_read_lock();
4618 retval = -ESRCH;
1da177e4 4619 p = find_process_by_pid(pid);
5fe1d75f
ON
4620 if (p != NULL)
4621 retval = sched_setscheduler(p, policy, &lparam);
4622 rcu_read_unlock();
36c8b586 4623
1da177e4
LT
4624 return retval;
4625}
4626
4627/**
4628 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4629 * @pid: the pid in question.
4630 * @policy: new policy.
4631 * @param: structure containing the new RT priority.
4632 */
41a2d6cf
IM
4633asmlinkage long
4634sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4635{
c21761f1
JB
4636 /* negative values for policy are not valid */
4637 if (policy < 0)
4638 return -EINVAL;
4639
1da177e4
LT
4640 return do_sched_setscheduler(pid, policy, param);
4641}
4642
4643/**
4644 * sys_sched_setparam - set/change the RT priority of a thread
4645 * @pid: the pid in question.
4646 * @param: structure containing the new RT priority.
4647 */
4648asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4649{
4650 return do_sched_setscheduler(pid, -1, param);
4651}
4652
4653/**
4654 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4655 * @pid: the pid in question.
4656 */
4657asmlinkage long sys_sched_getscheduler(pid_t pid)
4658{
36c8b586 4659 struct task_struct *p;
3a5c359a 4660 int retval;
1da177e4
LT
4661
4662 if (pid < 0)
3a5c359a 4663 return -EINVAL;
1da177e4
LT
4664
4665 retval = -ESRCH;
4666 read_lock(&tasklist_lock);
4667 p = find_process_by_pid(pid);
4668 if (p) {
4669 retval = security_task_getscheduler(p);
4670 if (!retval)
4671 retval = p->policy;
4672 }
4673 read_unlock(&tasklist_lock);
1da177e4
LT
4674 return retval;
4675}
4676
4677/**
4678 * sys_sched_getscheduler - get the RT priority of a thread
4679 * @pid: the pid in question.
4680 * @param: structure containing the RT priority.
4681 */
4682asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4683{
4684 struct sched_param lp;
36c8b586 4685 struct task_struct *p;
3a5c359a 4686 int retval;
1da177e4
LT
4687
4688 if (!param || pid < 0)
3a5c359a 4689 return -EINVAL;
1da177e4
LT
4690
4691 read_lock(&tasklist_lock);
4692 p = find_process_by_pid(pid);
4693 retval = -ESRCH;
4694 if (!p)
4695 goto out_unlock;
4696
4697 retval = security_task_getscheduler(p);
4698 if (retval)
4699 goto out_unlock;
4700
4701 lp.sched_priority = p->rt_priority;
4702 read_unlock(&tasklist_lock);
4703
4704 /*
4705 * This one might sleep, we cannot do it with a spinlock held ...
4706 */
4707 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4708
1da177e4
LT
4709 return retval;
4710
4711out_unlock:
4712 read_unlock(&tasklist_lock);
4713 return retval;
4714}
4715
4716long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4717{
1da177e4 4718 cpumask_t cpus_allowed;
36c8b586
IM
4719 struct task_struct *p;
4720 int retval;
1da177e4 4721
95402b38 4722 get_online_cpus();
1da177e4
LT
4723 read_lock(&tasklist_lock);
4724
4725 p = find_process_by_pid(pid);
4726 if (!p) {
4727 read_unlock(&tasklist_lock);
95402b38 4728 put_online_cpus();
1da177e4
LT
4729 return -ESRCH;
4730 }
4731
4732 /*
4733 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4734 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4735 * usage count and then drop tasklist_lock.
4736 */
4737 get_task_struct(p);
4738 read_unlock(&tasklist_lock);
4739
4740 retval = -EPERM;
4741 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4742 !capable(CAP_SYS_NICE))
4743 goto out_unlock;
4744
e7834f8f
DQ
4745 retval = security_task_setscheduler(p, 0, NULL);
4746 if (retval)
4747 goto out_unlock;
4748
1da177e4
LT
4749 cpus_allowed = cpuset_cpus_allowed(p);
4750 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4751 again:
1da177e4
LT
4752 retval = set_cpus_allowed(p, new_mask);
4753
8707d8b8
PM
4754 if (!retval) {
4755 cpus_allowed = cpuset_cpus_allowed(p);
4756 if (!cpus_subset(new_mask, cpus_allowed)) {
4757 /*
4758 * We must have raced with a concurrent cpuset
4759 * update. Just reset the cpus_allowed to the
4760 * cpuset's cpus_allowed
4761 */
4762 new_mask = cpus_allowed;
4763 goto again;
4764 }
4765 }
1da177e4
LT
4766out_unlock:
4767 put_task_struct(p);
95402b38 4768 put_online_cpus();
1da177e4
LT
4769 return retval;
4770}
4771
4772static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4773 cpumask_t *new_mask)
4774{
4775 if (len < sizeof(cpumask_t)) {
4776 memset(new_mask, 0, sizeof(cpumask_t));
4777 } else if (len > sizeof(cpumask_t)) {
4778 len = sizeof(cpumask_t);
4779 }
4780 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4781}
4782
4783/**
4784 * sys_sched_setaffinity - set the cpu affinity of a process
4785 * @pid: pid of the process
4786 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4787 * @user_mask_ptr: user-space pointer to the new cpu mask
4788 */
4789asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4790 unsigned long __user *user_mask_ptr)
4791{
4792 cpumask_t new_mask;
4793 int retval;
4794
4795 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4796 if (retval)
4797 return retval;
4798
4799 return sched_setaffinity(pid, new_mask);
4800}
4801
4802/*
4803 * Represents all cpu's present in the system
4804 * In systems capable of hotplug, this map could dynamically grow
4805 * as new cpu's are detected in the system via any platform specific
4806 * method, such as ACPI for e.g.
4807 */
4808
4cef0c61 4809cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4810EXPORT_SYMBOL(cpu_present_map);
4811
4812#ifndef CONFIG_SMP
4cef0c61 4813cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4814EXPORT_SYMBOL(cpu_online_map);
4815
4cef0c61 4816cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4817EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4818#endif
4819
4820long sched_getaffinity(pid_t pid, cpumask_t *mask)
4821{
36c8b586 4822 struct task_struct *p;
1da177e4 4823 int retval;
1da177e4 4824
95402b38 4825 get_online_cpus();
1da177e4
LT
4826 read_lock(&tasklist_lock);
4827
4828 retval = -ESRCH;
4829 p = find_process_by_pid(pid);
4830 if (!p)
4831 goto out_unlock;
4832
e7834f8f
DQ
4833 retval = security_task_getscheduler(p);
4834 if (retval)
4835 goto out_unlock;
4836
2f7016d9 4837 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4838
4839out_unlock:
4840 read_unlock(&tasklist_lock);
95402b38 4841 put_online_cpus();
1da177e4 4842
9531b62f 4843 return retval;
1da177e4
LT
4844}
4845
4846/**
4847 * sys_sched_getaffinity - get the cpu affinity of a process
4848 * @pid: pid of the process
4849 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4850 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4851 */
4852asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4853 unsigned long __user *user_mask_ptr)
4854{
4855 int ret;
4856 cpumask_t mask;
4857
4858 if (len < sizeof(cpumask_t))
4859 return -EINVAL;
4860
4861 ret = sched_getaffinity(pid, &mask);
4862 if (ret < 0)
4863 return ret;
4864
4865 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4866 return -EFAULT;
4867
4868 return sizeof(cpumask_t);
4869}
4870
4871/**
4872 * sys_sched_yield - yield the current processor to other threads.
4873 *
dd41f596
IM
4874 * This function yields the current CPU to other tasks. If there are no
4875 * other threads running on this CPU then this function will return.
1da177e4
LT
4876 */
4877asmlinkage long sys_sched_yield(void)
4878{
70b97a7f 4879 struct rq *rq = this_rq_lock();
1da177e4 4880
2d72376b 4881 schedstat_inc(rq, yld_count);
4530d7ab 4882 current->sched_class->yield_task(rq);
1da177e4
LT
4883
4884 /*
4885 * Since we are going to call schedule() anyway, there's
4886 * no need to preempt or enable interrupts:
4887 */
4888 __release(rq->lock);
8a25d5de 4889 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4890 _raw_spin_unlock(&rq->lock);
4891 preempt_enable_no_resched();
4892
4893 schedule();
4894
4895 return 0;
4896}
4897
e7b38404 4898static void __cond_resched(void)
1da177e4 4899{
8e0a43d8
IM
4900#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4901 __might_sleep(__FILE__, __LINE__);
4902#endif
5bbcfd90
IM
4903 /*
4904 * The BKS might be reacquired before we have dropped
4905 * PREEMPT_ACTIVE, which could trigger a second
4906 * cond_resched() call.
4907 */
1da177e4
LT
4908 do {
4909 add_preempt_count(PREEMPT_ACTIVE);
4910 schedule();
4911 sub_preempt_count(PREEMPT_ACTIVE);
4912 } while (need_resched());
4913}
4914
02b67cc3
HX
4915#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4916int __sched _cond_resched(void)
1da177e4 4917{
9414232f
IM
4918 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4919 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4920 __cond_resched();
4921 return 1;
4922 }
4923 return 0;
4924}
02b67cc3
HX
4925EXPORT_SYMBOL(_cond_resched);
4926#endif
1da177e4
LT
4927
4928/*
4929 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4930 * call schedule, and on return reacquire the lock.
4931 *
41a2d6cf 4932 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4933 * operations here to prevent schedule() from being called twice (once via
4934 * spin_unlock(), once by hand).
4935 */
95cdf3b7 4936int cond_resched_lock(spinlock_t *lock)
1da177e4 4937{
6df3cecb
JK
4938 int ret = 0;
4939
1da177e4
LT
4940 if (need_lockbreak(lock)) {
4941 spin_unlock(lock);
4942 cpu_relax();
6df3cecb 4943 ret = 1;
1da177e4
LT
4944 spin_lock(lock);
4945 }
9414232f 4946 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4947 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4948 _raw_spin_unlock(lock);
4949 preempt_enable_no_resched();
4950 __cond_resched();
6df3cecb 4951 ret = 1;
1da177e4 4952 spin_lock(lock);
1da177e4 4953 }
6df3cecb 4954 return ret;
1da177e4 4955}
1da177e4
LT
4956EXPORT_SYMBOL(cond_resched_lock);
4957
4958int __sched cond_resched_softirq(void)
4959{
4960 BUG_ON(!in_softirq());
4961
9414232f 4962 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4963 local_bh_enable();
1da177e4
LT
4964 __cond_resched();
4965 local_bh_disable();
4966 return 1;
4967 }
4968 return 0;
4969}
1da177e4
LT
4970EXPORT_SYMBOL(cond_resched_softirq);
4971
1da177e4
LT
4972/**
4973 * yield - yield the current processor to other threads.
4974 *
72fd4a35 4975 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4976 * thread runnable and calls sys_sched_yield().
4977 */
4978void __sched yield(void)
4979{
4980 set_current_state(TASK_RUNNING);
4981 sys_sched_yield();
4982}
1da177e4
LT
4983EXPORT_SYMBOL(yield);
4984
4985/*
41a2d6cf 4986 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4987 * that process accounting knows that this is a task in IO wait state.
4988 *
4989 * But don't do that if it is a deliberate, throttling IO wait (this task
4990 * has set its backing_dev_info: the queue against which it should throttle)
4991 */
4992void __sched io_schedule(void)
4993{
70b97a7f 4994 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4995
0ff92245 4996 delayacct_blkio_start();
1da177e4
LT
4997 atomic_inc(&rq->nr_iowait);
4998 schedule();
4999 atomic_dec(&rq->nr_iowait);
0ff92245 5000 delayacct_blkio_end();
1da177e4 5001}
1da177e4
LT
5002EXPORT_SYMBOL(io_schedule);
5003
5004long __sched io_schedule_timeout(long timeout)
5005{
70b97a7f 5006 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5007 long ret;
5008
0ff92245 5009 delayacct_blkio_start();
1da177e4
LT
5010 atomic_inc(&rq->nr_iowait);
5011 ret = schedule_timeout(timeout);
5012 atomic_dec(&rq->nr_iowait);
0ff92245 5013 delayacct_blkio_end();
1da177e4
LT
5014 return ret;
5015}
5016
5017/**
5018 * sys_sched_get_priority_max - return maximum RT priority.
5019 * @policy: scheduling class.
5020 *
5021 * this syscall returns the maximum rt_priority that can be used
5022 * by a given scheduling class.
5023 */
5024asmlinkage long sys_sched_get_priority_max(int policy)
5025{
5026 int ret = -EINVAL;
5027
5028 switch (policy) {
5029 case SCHED_FIFO:
5030 case SCHED_RR:
5031 ret = MAX_USER_RT_PRIO-1;
5032 break;
5033 case SCHED_NORMAL:
b0a9499c 5034 case SCHED_BATCH:
dd41f596 5035 case SCHED_IDLE:
1da177e4
LT
5036 ret = 0;
5037 break;
5038 }
5039 return ret;
5040}
5041
5042/**
5043 * sys_sched_get_priority_min - return minimum RT priority.
5044 * @policy: scheduling class.
5045 *
5046 * this syscall returns the minimum rt_priority that can be used
5047 * by a given scheduling class.
5048 */
5049asmlinkage long sys_sched_get_priority_min(int policy)
5050{
5051 int ret = -EINVAL;
5052
5053 switch (policy) {
5054 case SCHED_FIFO:
5055 case SCHED_RR:
5056 ret = 1;
5057 break;
5058 case SCHED_NORMAL:
b0a9499c 5059 case SCHED_BATCH:
dd41f596 5060 case SCHED_IDLE:
1da177e4
LT
5061 ret = 0;
5062 }
5063 return ret;
5064}
5065
5066/**
5067 * sys_sched_rr_get_interval - return the default timeslice of a process.
5068 * @pid: pid of the process.
5069 * @interval: userspace pointer to the timeslice value.
5070 *
5071 * this syscall writes the default timeslice value of a given process
5072 * into the user-space timespec buffer. A value of '0' means infinity.
5073 */
5074asmlinkage
5075long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5076{
36c8b586 5077 struct task_struct *p;
a4ec24b4 5078 unsigned int time_slice;
3a5c359a 5079 int retval;
1da177e4 5080 struct timespec t;
1da177e4
LT
5081
5082 if (pid < 0)
3a5c359a 5083 return -EINVAL;
1da177e4
LT
5084
5085 retval = -ESRCH;
5086 read_lock(&tasklist_lock);
5087 p = find_process_by_pid(pid);
5088 if (!p)
5089 goto out_unlock;
5090
5091 retval = security_task_getscheduler(p);
5092 if (retval)
5093 goto out_unlock;
5094
77034937
IM
5095 /*
5096 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5097 * tasks that are on an otherwise idle runqueue:
5098 */
5099 time_slice = 0;
5100 if (p->policy == SCHED_RR) {
a4ec24b4 5101 time_slice = DEF_TIMESLICE;
77034937 5102 } else {
a4ec24b4
DA
5103 struct sched_entity *se = &p->se;
5104 unsigned long flags;
5105 struct rq *rq;
5106
5107 rq = task_rq_lock(p, &flags);
77034937
IM
5108 if (rq->cfs.load.weight)
5109 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5110 task_rq_unlock(rq, &flags);
5111 }
1da177e4 5112 read_unlock(&tasklist_lock);
a4ec24b4 5113 jiffies_to_timespec(time_slice, &t);
1da177e4 5114 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5115 return retval;
3a5c359a 5116
1da177e4
LT
5117out_unlock:
5118 read_unlock(&tasklist_lock);
5119 return retval;
5120}
5121
2ed6e34f 5122static const char stat_nam[] = "RSDTtZX";
36c8b586 5123
82a1fcb9 5124void sched_show_task(struct task_struct *p)
1da177e4 5125{
1da177e4 5126 unsigned long free = 0;
36c8b586 5127 unsigned state;
1da177e4 5128
1da177e4 5129 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5130 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5131 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5132#if BITS_PER_LONG == 32
1da177e4 5133 if (state == TASK_RUNNING)
cc4ea795 5134 printk(KERN_CONT " running ");
1da177e4 5135 else
cc4ea795 5136 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5137#else
5138 if (state == TASK_RUNNING)
cc4ea795 5139 printk(KERN_CONT " running task ");
1da177e4 5140 else
cc4ea795 5141 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5142#endif
5143#ifdef CONFIG_DEBUG_STACK_USAGE
5144 {
10ebffde 5145 unsigned long *n = end_of_stack(p);
1da177e4
LT
5146 while (!*n)
5147 n++;
10ebffde 5148 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5149 }
5150#endif
ba25f9dc 5151 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5152 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
5153
5154 if (state != TASK_RUNNING)
5155 show_stack(p, NULL);
5156}
5157
e59e2ae2 5158void show_state_filter(unsigned long state_filter)
1da177e4 5159{
36c8b586 5160 struct task_struct *g, *p;
1da177e4 5161
4bd77321
IM
5162#if BITS_PER_LONG == 32
5163 printk(KERN_INFO
5164 " task PC stack pid father\n");
1da177e4 5165#else
4bd77321
IM
5166 printk(KERN_INFO
5167 " task PC stack pid father\n");
1da177e4
LT
5168#endif
5169 read_lock(&tasklist_lock);
5170 do_each_thread(g, p) {
5171 /*
5172 * reset the NMI-timeout, listing all files on a slow
5173 * console might take alot of time:
5174 */
5175 touch_nmi_watchdog();
39bc89fd 5176 if (!state_filter || (p->state & state_filter))
82a1fcb9 5177 sched_show_task(p);
1da177e4
LT
5178 } while_each_thread(g, p);
5179
04c9167f
JF
5180 touch_all_softlockup_watchdogs();
5181
dd41f596
IM
5182#ifdef CONFIG_SCHED_DEBUG
5183 sysrq_sched_debug_show();
5184#endif
1da177e4 5185 read_unlock(&tasklist_lock);
e59e2ae2
IM
5186 /*
5187 * Only show locks if all tasks are dumped:
5188 */
5189 if (state_filter == -1)
5190 debug_show_all_locks();
1da177e4
LT
5191}
5192
1df21055
IM
5193void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5194{
dd41f596 5195 idle->sched_class = &idle_sched_class;
1df21055
IM
5196}
5197
f340c0d1
IM
5198/**
5199 * init_idle - set up an idle thread for a given CPU
5200 * @idle: task in question
5201 * @cpu: cpu the idle task belongs to
5202 *
5203 * NOTE: this function does not set the idle thread's NEED_RESCHED
5204 * flag, to make booting more robust.
5205 */
5c1e1767 5206void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5207{
70b97a7f 5208 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5209 unsigned long flags;
5210
dd41f596
IM
5211 __sched_fork(idle);
5212 idle->se.exec_start = sched_clock();
5213
b29739f9 5214 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5215 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5216 __set_task_cpu(idle, cpu);
1da177e4
LT
5217
5218 spin_lock_irqsave(&rq->lock, flags);
5219 rq->curr = rq->idle = idle;
4866cde0
NP
5220#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5221 idle->oncpu = 1;
5222#endif
1da177e4
LT
5223 spin_unlock_irqrestore(&rq->lock, flags);
5224
5225 /* Set the preempt count _outside_ the spinlocks! */
5226#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5227 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5228#else
a1261f54 5229 task_thread_info(idle)->preempt_count = 0;
1da177e4 5230#endif
dd41f596
IM
5231 /*
5232 * The idle tasks have their own, simple scheduling class:
5233 */
5234 idle->sched_class = &idle_sched_class;
1da177e4
LT
5235}
5236
5237/*
5238 * In a system that switches off the HZ timer nohz_cpu_mask
5239 * indicates which cpus entered this state. This is used
5240 * in the rcu update to wait only for active cpus. For system
5241 * which do not switch off the HZ timer nohz_cpu_mask should
5242 * always be CPU_MASK_NONE.
5243 */
5244cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5245
19978ca6
IM
5246/*
5247 * Increase the granularity value when there are more CPUs,
5248 * because with more CPUs the 'effective latency' as visible
5249 * to users decreases. But the relationship is not linear,
5250 * so pick a second-best guess by going with the log2 of the
5251 * number of CPUs.
5252 *
5253 * This idea comes from the SD scheduler of Con Kolivas:
5254 */
5255static inline void sched_init_granularity(void)
5256{
5257 unsigned int factor = 1 + ilog2(num_online_cpus());
5258 const unsigned long limit = 200000000;
5259
5260 sysctl_sched_min_granularity *= factor;
5261 if (sysctl_sched_min_granularity > limit)
5262 sysctl_sched_min_granularity = limit;
5263
5264 sysctl_sched_latency *= factor;
5265 if (sysctl_sched_latency > limit)
5266 sysctl_sched_latency = limit;
5267
5268 sysctl_sched_wakeup_granularity *= factor;
5269 sysctl_sched_batch_wakeup_granularity *= factor;
5270}
5271
1da177e4
LT
5272#ifdef CONFIG_SMP
5273/*
5274 * This is how migration works:
5275 *
70b97a7f 5276 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5277 * runqueue and wake up that CPU's migration thread.
5278 * 2) we down() the locked semaphore => thread blocks.
5279 * 3) migration thread wakes up (implicitly it forces the migrated
5280 * thread off the CPU)
5281 * 4) it gets the migration request and checks whether the migrated
5282 * task is still in the wrong runqueue.
5283 * 5) if it's in the wrong runqueue then the migration thread removes
5284 * it and puts it into the right queue.
5285 * 6) migration thread up()s the semaphore.
5286 * 7) we wake up and the migration is done.
5287 */
5288
5289/*
5290 * Change a given task's CPU affinity. Migrate the thread to a
5291 * proper CPU and schedule it away if the CPU it's executing on
5292 * is removed from the allowed bitmask.
5293 *
5294 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5295 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5296 * call is not atomic; no spinlocks may be held.
5297 */
36c8b586 5298int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5299{
70b97a7f 5300 struct migration_req req;
1da177e4 5301 unsigned long flags;
70b97a7f 5302 struct rq *rq;
48f24c4d 5303 int ret = 0;
1da177e4
LT
5304
5305 rq = task_rq_lock(p, &flags);
5306 if (!cpus_intersects(new_mask, cpu_online_map)) {
5307 ret = -EINVAL;
5308 goto out;
5309 }
5310
73fe6aae
GH
5311 if (p->sched_class->set_cpus_allowed)
5312 p->sched_class->set_cpus_allowed(p, &new_mask);
5313 else {
0eab9146 5314 p->cpus_allowed = new_mask;
6f505b16 5315 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
73fe6aae
GH
5316 }
5317
1da177e4
LT
5318 /* Can the task run on the task's current CPU? If so, we're done */
5319 if (cpu_isset(task_cpu(p), new_mask))
5320 goto out;
5321
5322 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5323 /* Need help from migration thread: drop lock and wait. */
5324 task_rq_unlock(rq, &flags);
5325 wake_up_process(rq->migration_thread);
5326 wait_for_completion(&req.done);
5327 tlb_migrate_finish(p->mm);
5328 return 0;
5329 }
5330out:
5331 task_rq_unlock(rq, &flags);
48f24c4d 5332
1da177e4
LT
5333 return ret;
5334}
1da177e4
LT
5335EXPORT_SYMBOL_GPL(set_cpus_allowed);
5336
5337/*
41a2d6cf 5338 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5339 * this because either it can't run here any more (set_cpus_allowed()
5340 * away from this CPU, or CPU going down), or because we're
5341 * attempting to rebalance this task on exec (sched_exec).
5342 *
5343 * So we race with normal scheduler movements, but that's OK, as long
5344 * as the task is no longer on this CPU.
efc30814
KK
5345 *
5346 * Returns non-zero if task was successfully migrated.
1da177e4 5347 */
efc30814 5348static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5349{
70b97a7f 5350 struct rq *rq_dest, *rq_src;
dd41f596 5351 int ret = 0, on_rq;
1da177e4
LT
5352
5353 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5354 return ret;
1da177e4
LT
5355
5356 rq_src = cpu_rq(src_cpu);
5357 rq_dest = cpu_rq(dest_cpu);
5358
5359 double_rq_lock(rq_src, rq_dest);
5360 /* Already moved. */
5361 if (task_cpu(p) != src_cpu)
5362 goto out;
5363 /* Affinity changed (again). */
5364 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5365 goto out;
5366
dd41f596 5367 on_rq = p->se.on_rq;
6e82a3be 5368 if (on_rq)
2e1cb74a 5369 deactivate_task(rq_src, p, 0);
6e82a3be 5370
1da177e4 5371 set_task_cpu(p, dest_cpu);
dd41f596
IM
5372 if (on_rq) {
5373 activate_task(rq_dest, p, 0);
5374 check_preempt_curr(rq_dest, p);
1da177e4 5375 }
efc30814 5376 ret = 1;
1da177e4
LT
5377out:
5378 double_rq_unlock(rq_src, rq_dest);
efc30814 5379 return ret;
1da177e4
LT
5380}
5381
5382/*
5383 * migration_thread - this is a highprio system thread that performs
5384 * thread migration by bumping thread off CPU then 'pushing' onto
5385 * another runqueue.
5386 */
95cdf3b7 5387static int migration_thread(void *data)
1da177e4 5388{
1da177e4 5389 int cpu = (long)data;
70b97a7f 5390 struct rq *rq;
1da177e4
LT
5391
5392 rq = cpu_rq(cpu);
5393 BUG_ON(rq->migration_thread != current);
5394
5395 set_current_state(TASK_INTERRUPTIBLE);
5396 while (!kthread_should_stop()) {
70b97a7f 5397 struct migration_req *req;
1da177e4 5398 struct list_head *head;
1da177e4 5399
1da177e4
LT
5400 spin_lock_irq(&rq->lock);
5401
5402 if (cpu_is_offline(cpu)) {
5403 spin_unlock_irq(&rq->lock);
5404 goto wait_to_die;
5405 }
5406
5407 if (rq->active_balance) {
5408 active_load_balance(rq, cpu);
5409 rq->active_balance = 0;
5410 }
5411
5412 head = &rq->migration_queue;
5413
5414 if (list_empty(head)) {
5415 spin_unlock_irq(&rq->lock);
5416 schedule();
5417 set_current_state(TASK_INTERRUPTIBLE);
5418 continue;
5419 }
70b97a7f 5420 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5421 list_del_init(head->next);
5422
674311d5
NP
5423 spin_unlock(&rq->lock);
5424 __migrate_task(req->task, cpu, req->dest_cpu);
5425 local_irq_enable();
1da177e4
LT
5426
5427 complete(&req->done);
5428 }
5429 __set_current_state(TASK_RUNNING);
5430 return 0;
5431
5432wait_to_die:
5433 /* Wait for kthread_stop */
5434 set_current_state(TASK_INTERRUPTIBLE);
5435 while (!kthread_should_stop()) {
5436 schedule();
5437 set_current_state(TASK_INTERRUPTIBLE);
5438 }
5439 __set_current_state(TASK_RUNNING);
5440 return 0;
5441}
5442
5443#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5444
5445static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5446{
5447 int ret;
5448
5449 local_irq_disable();
5450 ret = __migrate_task(p, src_cpu, dest_cpu);
5451 local_irq_enable();
5452 return ret;
5453}
5454
054b9108 5455/*
3a4fa0a2 5456 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5457 * NOTE: interrupts should be disabled by the caller
5458 */
48f24c4d 5459static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5460{
efc30814 5461 unsigned long flags;
1da177e4 5462 cpumask_t mask;
70b97a7f
IM
5463 struct rq *rq;
5464 int dest_cpu;
1da177e4 5465
3a5c359a
AK
5466 do {
5467 /* On same node? */
5468 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5469 cpus_and(mask, mask, p->cpus_allowed);
5470 dest_cpu = any_online_cpu(mask);
5471
5472 /* On any allowed CPU? */
5473 if (dest_cpu == NR_CPUS)
5474 dest_cpu = any_online_cpu(p->cpus_allowed);
5475
5476 /* No more Mr. Nice Guy. */
5477 if (dest_cpu == NR_CPUS) {
470fd646
CW
5478 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5479 /*
5480 * Try to stay on the same cpuset, where the
5481 * current cpuset may be a subset of all cpus.
5482 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5483 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5484 * called within calls to cpuset_lock/cpuset_unlock.
5485 */
3a5c359a 5486 rq = task_rq_lock(p, &flags);
470fd646 5487 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5488 dest_cpu = any_online_cpu(p->cpus_allowed);
5489 task_rq_unlock(rq, &flags);
1da177e4 5490
3a5c359a
AK
5491 /*
5492 * Don't tell them about moving exiting tasks or
5493 * kernel threads (both mm NULL), since they never
5494 * leave kernel.
5495 */
41a2d6cf 5496 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5497 printk(KERN_INFO "process %d (%s) no "
5498 "longer affine to cpu%d\n",
41a2d6cf
IM
5499 task_pid_nr(p), p->comm, dead_cpu);
5500 }
3a5c359a 5501 }
f7b4cddc 5502 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5503}
5504
5505/*
5506 * While a dead CPU has no uninterruptible tasks queued at this point,
5507 * it might still have a nonzero ->nr_uninterruptible counter, because
5508 * for performance reasons the counter is not stricly tracking tasks to
5509 * their home CPUs. So we just add the counter to another CPU's counter,
5510 * to keep the global sum constant after CPU-down:
5511 */
70b97a7f 5512static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5513{
70b97a7f 5514 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5515 unsigned long flags;
5516
5517 local_irq_save(flags);
5518 double_rq_lock(rq_src, rq_dest);
5519 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5520 rq_src->nr_uninterruptible = 0;
5521 double_rq_unlock(rq_src, rq_dest);
5522 local_irq_restore(flags);
5523}
5524
5525/* Run through task list and migrate tasks from the dead cpu. */
5526static void migrate_live_tasks(int src_cpu)
5527{
48f24c4d 5528 struct task_struct *p, *t;
1da177e4 5529
f7b4cddc 5530 read_lock(&tasklist_lock);
1da177e4 5531
48f24c4d
IM
5532 do_each_thread(t, p) {
5533 if (p == current)
1da177e4
LT
5534 continue;
5535
48f24c4d
IM
5536 if (task_cpu(p) == src_cpu)
5537 move_task_off_dead_cpu(src_cpu, p);
5538 } while_each_thread(t, p);
1da177e4 5539
f7b4cddc 5540 read_unlock(&tasklist_lock);
1da177e4
LT
5541}
5542
dd41f596
IM
5543/*
5544 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5545 * It does so by boosting its priority to highest possible.
5546 * Used by CPU offline code.
1da177e4
LT
5547 */
5548void sched_idle_next(void)
5549{
48f24c4d 5550 int this_cpu = smp_processor_id();
70b97a7f 5551 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5552 struct task_struct *p = rq->idle;
5553 unsigned long flags;
5554
5555 /* cpu has to be offline */
48f24c4d 5556 BUG_ON(cpu_online(this_cpu));
1da177e4 5557
48f24c4d
IM
5558 /*
5559 * Strictly not necessary since rest of the CPUs are stopped by now
5560 * and interrupts disabled on the current cpu.
1da177e4
LT
5561 */
5562 spin_lock_irqsave(&rq->lock, flags);
5563
dd41f596 5564 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5565
94bc9a7b
DA
5566 update_rq_clock(rq);
5567 activate_task(rq, p, 0);
1da177e4
LT
5568
5569 spin_unlock_irqrestore(&rq->lock, flags);
5570}
5571
48f24c4d
IM
5572/*
5573 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5574 * offline.
5575 */
5576void idle_task_exit(void)
5577{
5578 struct mm_struct *mm = current->active_mm;
5579
5580 BUG_ON(cpu_online(smp_processor_id()));
5581
5582 if (mm != &init_mm)
5583 switch_mm(mm, &init_mm, current);
5584 mmdrop(mm);
5585}
5586
054b9108 5587/* called under rq->lock with disabled interrupts */
36c8b586 5588static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5589{
70b97a7f 5590 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5591
5592 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5593 BUG_ON(!p->exit_state);
1da177e4
LT
5594
5595 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5596 BUG_ON(p->state == TASK_DEAD);
1da177e4 5597
48f24c4d 5598 get_task_struct(p);
1da177e4
LT
5599
5600 /*
5601 * Drop lock around migration; if someone else moves it,
41a2d6cf 5602 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5603 * fine.
5604 */
f7b4cddc 5605 spin_unlock_irq(&rq->lock);
48f24c4d 5606 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5607 spin_lock_irq(&rq->lock);
1da177e4 5608
48f24c4d 5609 put_task_struct(p);
1da177e4
LT
5610}
5611
5612/* release_task() removes task from tasklist, so we won't find dead tasks. */
5613static void migrate_dead_tasks(unsigned int dead_cpu)
5614{
70b97a7f 5615 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5616 struct task_struct *next;
48f24c4d 5617
dd41f596
IM
5618 for ( ; ; ) {
5619 if (!rq->nr_running)
5620 break;
a8e504d2 5621 update_rq_clock(rq);
ff95f3df 5622 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5623 if (!next)
5624 break;
5625 migrate_dead(dead_cpu, next);
e692ab53 5626
1da177e4
LT
5627 }
5628}
5629#endif /* CONFIG_HOTPLUG_CPU */
5630
e692ab53
NP
5631#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5632
5633static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5634 {
5635 .procname = "sched_domain",
c57baf1e 5636 .mode = 0555,
e0361851 5637 },
38605cae 5638 {0, },
e692ab53
NP
5639};
5640
5641static struct ctl_table sd_ctl_root[] = {
e0361851 5642 {
c57baf1e 5643 .ctl_name = CTL_KERN,
e0361851 5644 .procname = "kernel",
c57baf1e 5645 .mode = 0555,
e0361851
AD
5646 .child = sd_ctl_dir,
5647 },
38605cae 5648 {0, },
e692ab53
NP
5649};
5650
5651static struct ctl_table *sd_alloc_ctl_entry(int n)
5652{
5653 struct ctl_table *entry =
5cf9f062 5654 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5655
e692ab53
NP
5656 return entry;
5657}
5658
6382bc90
MM
5659static void sd_free_ctl_entry(struct ctl_table **tablep)
5660{
cd790076 5661 struct ctl_table *entry;
6382bc90 5662
cd790076
MM
5663 /*
5664 * In the intermediate directories, both the child directory and
5665 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5666 * will always be set. In the lowest directory the names are
cd790076
MM
5667 * static strings and all have proc handlers.
5668 */
5669 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5670 if (entry->child)
5671 sd_free_ctl_entry(&entry->child);
cd790076
MM
5672 if (entry->proc_handler == NULL)
5673 kfree(entry->procname);
5674 }
6382bc90
MM
5675
5676 kfree(*tablep);
5677 *tablep = NULL;
5678}
5679
e692ab53 5680static void
e0361851 5681set_table_entry(struct ctl_table *entry,
e692ab53
NP
5682 const char *procname, void *data, int maxlen,
5683 mode_t mode, proc_handler *proc_handler)
5684{
e692ab53
NP
5685 entry->procname = procname;
5686 entry->data = data;
5687 entry->maxlen = maxlen;
5688 entry->mode = mode;
5689 entry->proc_handler = proc_handler;
5690}
5691
5692static struct ctl_table *
5693sd_alloc_ctl_domain_table(struct sched_domain *sd)
5694{
ace8b3d6 5695 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5696
ad1cdc1d
MM
5697 if (table == NULL)
5698 return NULL;
5699
e0361851 5700 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5701 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5702 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5703 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5704 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5705 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5706 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5707 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5708 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5709 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5710 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5711 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5712 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5713 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5714 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5715 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5716 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5717 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5718 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5719 &sd->cache_nice_tries,
5720 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5721 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5722 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5723 /* &table[11] is terminator */
e692ab53
NP
5724
5725 return table;
5726}
5727
9a4e7159 5728static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5729{
5730 struct ctl_table *entry, *table;
5731 struct sched_domain *sd;
5732 int domain_num = 0, i;
5733 char buf[32];
5734
5735 for_each_domain(cpu, sd)
5736 domain_num++;
5737 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5738 if (table == NULL)
5739 return NULL;
e692ab53
NP
5740
5741 i = 0;
5742 for_each_domain(cpu, sd) {
5743 snprintf(buf, 32, "domain%d", i);
e692ab53 5744 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5745 entry->mode = 0555;
e692ab53
NP
5746 entry->child = sd_alloc_ctl_domain_table(sd);
5747 entry++;
5748 i++;
5749 }
5750 return table;
5751}
5752
5753static struct ctl_table_header *sd_sysctl_header;
6382bc90 5754static void register_sched_domain_sysctl(void)
e692ab53
NP
5755{
5756 int i, cpu_num = num_online_cpus();
5757 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5758 char buf[32];
5759
7378547f
MM
5760 WARN_ON(sd_ctl_dir[0].child);
5761 sd_ctl_dir[0].child = entry;
5762
ad1cdc1d
MM
5763 if (entry == NULL)
5764 return;
5765
97b6ea7b 5766 for_each_online_cpu(i) {
e692ab53 5767 snprintf(buf, 32, "cpu%d", i);
e692ab53 5768 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5769 entry->mode = 0555;
e692ab53 5770 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5771 entry++;
e692ab53 5772 }
7378547f
MM
5773
5774 WARN_ON(sd_sysctl_header);
e692ab53
NP
5775 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5776}
6382bc90 5777
7378547f 5778/* may be called multiple times per register */
6382bc90
MM
5779static void unregister_sched_domain_sysctl(void)
5780{
7378547f
MM
5781 if (sd_sysctl_header)
5782 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5783 sd_sysctl_header = NULL;
7378547f
MM
5784 if (sd_ctl_dir[0].child)
5785 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5786}
e692ab53 5787#else
6382bc90
MM
5788static void register_sched_domain_sysctl(void)
5789{
5790}
5791static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5792{
5793}
5794#endif
5795
1da177e4
LT
5796/*
5797 * migration_call - callback that gets triggered when a CPU is added.
5798 * Here we can start up the necessary migration thread for the new CPU.
5799 */
48f24c4d
IM
5800static int __cpuinit
5801migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5802{
1da177e4 5803 struct task_struct *p;
48f24c4d 5804 int cpu = (long)hcpu;
1da177e4 5805 unsigned long flags;
70b97a7f 5806 struct rq *rq;
1da177e4
LT
5807
5808 switch (action) {
5be9361c 5809
1da177e4 5810 case CPU_UP_PREPARE:
8bb78442 5811 case CPU_UP_PREPARE_FROZEN:
dd41f596 5812 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5813 if (IS_ERR(p))
5814 return NOTIFY_BAD;
1da177e4
LT
5815 kthread_bind(p, cpu);
5816 /* Must be high prio: stop_machine expects to yield to it. */
5817 rq = task_rq_lock(p, &flags);
dd41f596 5818 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5819 task_rq_unlock(rq, &flags);
5820 cpu_rq(cpu)->migration_thread = p;
5821 break;
48f24c4d 5822
1da177e4 5823 case CPU_ONLINE:
8bb78442 5824 case CPU_ONLINE_FROZEN:
3a4fa0a2 5825 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5826 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5827
5828 /* Update our root-domain */
5829 rq = cpu_rq(cpu);
5830 spin_lock_irqsave(&rq->lock, flags);
5831 if (rq->rd) {
5832 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5833 cpu_set(cpu, rq->rd->online);
5834 }
5835 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5836 break;
48f24c4d 5837
1da177e4
LT
5838#ifdef CONFIG_HOTPLUG_CPU
5839 case CPU_UP_CANCELED:
8bb78442 5840 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5841 if (!cpu_rq(cpu)->migration_thread)
5842 break;
41a2d6cf 5843 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5844 kthread_bind(cpu_rq(cpu)->migration_thread,
5845 any_online_cpu(cpu_online_map));
1da177e4
LT
5846 kthread_stop(cpu_rq(cpu)->migration_thread);
5847 cpu_rq(cpu)->migration_thread = NULL;
5848 break;
48f24c4d 5849
1da177e4 5850 case CPU_DEAD:
8bb78442 5851 case CPU_DEAD_FROZEN:
470fd646 5852 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5853 migrate_live_tasks(cpu);
5854 rq = cpu_rq(cpu);
5855 kthread_stop(rq->migration_thread);
5856 rq->migration_thread = NULL;
5857 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5858 spin_lock_irq(&rq->lock);
a8e504d2 5859 update_rq_clock(rq);
2e1cb74a 5860 deactivate_task(rq, rq->idle, 0);
1da177e4 5861 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5862 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5863 rq->idle->sched_class = &idle_sched_class;
1da177e4 5864 migrate_dead_tasks(cpu);
d2da272a 5865 spin_unlock_irq(&rq->lock);
470fd646 5866 cpuset_unlock();
1da177e4
LT
5867 migrate_nr_uninterruptible(rq);
5868 BUG_ON(rq->nr_running != 0);
5869
41a2d6cf
IM
5870 /*
5871 * No need to migrate the tasks: it was best-effort if
5872 * they didn't take sched_hotcpu_mutex. Just wake up
5873 * the requestors.
5874 */
1da177e4
LT
5875 spin_lock_irq(&rq->lock);
5876 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5877 struct migration_req *req;
5878
1da177e4 5879 req = list_entry(rq->migration_queue.next,
70b97a7f 5880 struct migration_req, list);
1da177e4
LT
5881 list_del_init(&req->list);
5882 complete(&req->done);
5883 }
5884 spin_unlock_irq(&rq->lock);
5885 break;
57d885fe
GH
5886
5887 case CPU_DOWN_PREPARE:
5888 /* Update our root-domain */
5889 rq = cpu_rq(cpu);
5890 spin_lock_irqsave(&rq->lock, flags);
5891 if (rq->rd) {
5892 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5893 cpu_clear(cpu, rq->rd->online);
5894 }
5895 spin_unlock_irqrestore(&rq->lock, flags);
5896 break;
1da177e4
LT
5897#endif
5898 }
5899 return NOTIFY_OK;
5900}
5901
5902/* Register at highest priority so that task migration (migrate_all_tasks)
5903 * happens before everything else.
5904 */
26c2143b 5905static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5906 .notifier_call = migration_call,
5907 .priority = 10
5908};
5909
e6fe6649 5910void __init migration_init(void)
1da177e4
LT
5911{
5912 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5913 int err;
48f24c4d
IM
5914
5915 /* Start one for the boot CPU: */
07dccf33
AM
5916 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5917 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5918 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5919 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5920}
5921#endif
5922
5923#ifdef CONFIG_SMP
476f3534
CL
5924
5925/* Number of possible processor ids */
5926int nr_cpu_ids __read_mostly = NR_CPUS;
5927EXPORT_SYMBOL(nr_cpu_ids);
5928
3e9830dc 5929#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5930
5931static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5932{
4dcf6aff
IM
5933 struct sched_group *group = sd->groups;
5934 cpumask_t groupmask;
5935 char str[NR_CPUS];
1da177e4 5936
4dcf6aff
IM
5937 cpumask_scnprintf(str, NR_CPUS, sd->span);
5938 cpus_clear(groupmask);
5939
5940 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5941
5942 if (!(sd->flags & SD_LOAD_BALANCE)) {
5943 printk("does not load-balance\n");
5944 if (sd->parent)
5945 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5946 " has parent");
5947 return -1;
41c7ce9a
NP
5948 }
5949
4dcf6aff
IM
5950 printk(KERN_CONT "span %s\n", str);
5951
5952 if (!cpu_isset(cpu, sd->span)) {
5953 printk(KERN_ERR "ERROR: domain->span does not contain "
5954 "CPU%d\n", cpu);
5955 }
5956 if (!cpu_isset(cpu, group->cpumask)) {
5957 printk(KERN_ERR "ERROR: domain->groups does not contain"
5958 " CPU%d\n", cpu);
5959 }
1da177e4 5960
4dcf6aff 5961 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5962 do {
4dcf6aff
IM
5963 if (!group) {
5964 printk("\n");
5965 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5966 break;
5967 }
5968
4dcf6aff
IM
5969 if (!group->__cpu_power) {
5970 printk(KERN_CONT "\n");
5971 printk(KERN_ERR "ERROR: domain->cpu_power not "
5972 "set\n");
5973 break;
5974 }
1da177e4 5975
4dcf6aff
IM
5976 if (!cpus_weight(group->cpumask)) {
5977 printk(KERN_CONT "\n");
5978 printk(KERN_ERR "ERROR: empty group\n");
5979 break;
5980 }
1da177e4 5981
4dcf6aff
IM
5982 if (cpus_intersects(groupmask, group->cpumask)) {
5983 printk(KERN_CONT "\n");
5984 printk(KERN_ERR "ERROR: repeated CPUs\n");
5985 break;
5986 }
1da177e4 5987
4dcf6aff 5988 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5989
4dcf6aff
IM
5990 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5991 printk(KERN_CONT " %s", str);
1da177e4 5992
4dcf6aff
IM
5993 group = group->next;
5994 } while (group != sd->groups);
5995 printk(KERN_CONT "\n");
1da177e4 5996
4dcf6aff
IM
5997 if (!cpus_equal(sd->span, groupmask))
5998 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5999
4dcf6aff
IM
6000 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6001 printk(KERN_ERR "ERROR: parent span is not a superset "
6002 "of domain->span\n");
6003 return 0;
6004}
1da177e4 6005
4dcf6aff
IM
6006static void sched_domain_debug(struct sched_domain *sd, int cpu)
6007{
6008 int level = 0;
1da177e4 6009
4dcf6aff
IM
6010 if (!sd) {
6011 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6012 return;
6013 }
1da177e4 6014
4dcf6aff
IM
6015 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6016
6017 for (;;) {
6018 if (sched_domain_debug_one(sd, cpu, level))
6019 break;
1da177e4
LT
6020 level++;
6021 sd = sd->parent;
33859f7f 6022 if (!sd)
4dcf6aff
IM
6023 break;
6024 }
1da177e4
LT
6025}
6026#else
48f24c4d 6027# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6028#endif
6029
1a20ff27 6030static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6031{
6032 if (cpus_weight(sd->span) == 1)
6033 return 1;
6034
6035 /* Following flags need at least 2 groups */
6036 if (sd->flags & (SD_LOAD_BALANCE |
6037 SD_BALANCE_NEWIDLE |
6038 SD_BALANCE_FORK |
89c4710e
SS
6039 SD_BALANCE_EXEC |
6040 SD_SHARE_CPUPOWER |
6041 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6042 if (sd->groups != sd->groups->next)
6043 return 0;
6044 }
6045
6046 /* Following flags don't use groups */
6047 if (sd->flags & (SD_WAKE_IDLE |
6048 SD_WAKE_AFFINE |
6049 SD_WAKE_BALANCE))
6050 return 0;
6051
6052 return 1;
6053}
6054
48f24c4d
IM
6055static int
6056sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6057{
6058 unsigned long cflags = sd->flags, pflags = parent->flags;
6059
6060 if (sd_degenerate(parent))
6061 return 1;
6062
6063 if (!cpus_equal(sd->span, parent->span))
6064 return 0;
6065
6066 /* Does parent contain flags not in child? */
6067 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6068 if (cflags & SD_WAKE_AFFINE)
6069 pflags &= ~SD_WAKE_BALANCE;
6070 /* Flags needing groups don't count if only 1 group in parent */
6071 if (parent->groups == parent->groups->next) {
6072 pflags &= ~(SD_LOAD_BALANCE |
6073 SD_BALANCE_NEWIDLE |
6074 SD_BALANCE_FORK |
89c4710e
SS
6075 SD_BALANCE_EXEC |
6076 SD_SHARE_CPUPOWER |
6077 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6078 }
6079 if (~cflags & pflags)
6080 return 0;
6081
6082 return 1;
6083}
6084
57d885fe
GH
6085static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6086{
6087 unsigned long flags;
6088 const struct sched_class *class;
6089
6090 spin_lock_irqsave(&rq->lock, flags);
6091
6092 if (rq->rd) {
6093 struct root_domain *old_rd = rq->rd;
6094
0eab9146 6095 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6096 if (class->leave_domain)
6097 class->leave_domain(rq);
0eab9146 6098 }
57d885fe 6099
dc938520
GH
6100 cpu_clear(rq->cpu, old_rd->span);
6101 cpu_clear(rq->cpu, old_rd->online);
6102
57d885fe
GH
6103 if (atomic_dec_and_test(&old_rd->refcount))
6104 kfree(old_rd);
6105 }
6106
6107 atomic_inc(&rd->refcount);
6108 rq->rd = rd;
6109
dc938520
GH
6110 cpu_set(rq->cpu, rd->span);
6111 if (cpu_isset(rq->cpu, cpu_online_map))
6112 cpu_set(rq->cpu, rd->online);
6113
0eab9146 6114 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6115 if (class->join_domain)
6116 class->join_domain(rq);
0eab9146 6117 }
57d885fe
GH
6118
6119 spin_unlock_irqrestore(&rq->lock, flags);
6120}
6121
dc938520 6122static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6123{
6124 memset(rd, 0, sizeof(*rd));
6125
dc938520
GH
6126 cpus_clear(rd->span);
6127 cpus_clear(rd->online);
57d885fe
GH
6128}
6129
6130static void init_defrootdomain(void)
6131{
dc938520 6132 init_rootdomain(&def_root_domain);
57d885fe
GH
6133 atomic_set(&def_root_domain.refcount, 1);
6134}
6135
dc938520 6136static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6137{
6138 struct root_domain *rd;
6139
6140 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6141 if (!rd)
6142 return NULL;
6143
dc938520 6144 init_rootdomain(rd);
57d885fe
GH
6145
6146 return rd;
6147}
6148
1da177e4 6149/*
0eab9146 6150 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6151 * hold the hotplug lock.
6152 */
0eab9146
IM
6153static void
6154cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6155{
70b97a7f 6156 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6157 struct sched_domain *tmp;
6158
6159 /* Remove the sched domains which do not contribute to scheduling. */
6160 for (tmp = sd; tmp; tmp = tmp->parent) {
6161 struct sched_domain *parent = tmp->parent;
6162 if (!parent)
6163 break;
1a848870 6164 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6165 tmp->parent = parent->parent;
1a848870
SS
6166 if (parent->parent)
6167 parent->parent->child = tmp;
6168 }
245af2c7
SS
6169 }
6170
1a848870 6171 if (sd && sd_degenerate(sd)) {
245af2c7 6172 sd = sd->parent;
1a848870
SS
6173 if (sd)
6174 sd->child = NULL;
6175 }
1da177e4
LT
6176
6177 sched_domain_debug(sd, cpu);
6178
57d885fe 6179 rq_attach_root(rq, rd);
674311d5 6180 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6181}
6182
6183/* cpus with isolated domains */
67af63a6 6184static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6185
6186/* Setup the mask of cpus configured for isolated domains */
6187static int __init isolated_cpu_setup(char *str)
6188{
6189 int ints[NR_CPUS], i;
6190
6191 str = get_options(str, ARRAY_SIZE(ints), ints);
6192 cpus_clear(cpu_isolated_map);
6193 for (i = 1; i <= ints[0]; i++)
6194 if (ints[i] < NR_CPUS)
6195 cpu_set(ints[i], cpu_isolated_map);
6196 return 1;
6197}
6198
8927f494 6199__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6200
6201/*
6711cab4
SS
6202 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6203 * to a function which identifies what group(along with sched group) a CPU
6204 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6205 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6206 *
6207 * init_sched_build_groups will build a circular linked list of the groups
6208 * covered by the given span, and will set each group's ->cpumask correctly,
6209 * and ->cpu_power to 0.
6210 */
a616058b 6211static void
6711cab4
SS
6212init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6213 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6214 struct sched_group **sg))
1da177e4
LT
6215{
6216 struct sched_group *first = NULL, *last = NULL;
6217 cpumask_t covered = CPU_MASK_NONE;
6218 int i;
6219
6220 for_each_cpu_mask(i, span) {
6711cab4
SS
6221 struct sched_group *sg;
6222 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
6223 int j;
6224
6225 if (cpu_isset(i, covered))
6226 continue;
6227
6228 sg->cpumask = CPU_MASK_NONE;
5517d86b 6229 sg->__cpu_power = 0;
1da177e4
LT
6230
6231 for_each_cpu_mask(j, span) {
6711cab4 6232 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
6233 continue;
6234
6235 cpu_set(j, covered);
6236 cpu_set(j, sg->cpumask);
6237 }
6238 if (!first)
6239 first = sg;
6240 if (last)
6241 last->next = sg;
6242 last = sg;
6243 }
6244 last->next = first;
6245}
6246
9c1cfda2 6247#define SD_NODES_PER_DOMAIN 16
1da177e4 6248
9c1cfda2 6249#ifdef CONFIG_NUMA
198e2f18 6250
9c1cfda2
JH
6251/**
6252 * find_next_best_node - find the next node to include in a sched_domain
6253 * @node: node whose sched_domain we're building
6254 * @used_nodes: nodes already in the sched_domain
6255 *
41a2d6cf 6256 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6257 * finds the closest node not already in the @used_nodes map.
6258 *
6259 * Should use nodemask_t.
6260 */
6261static int find_next_best_node(int node, unsigned long *used_nodes)
6262{
6263 int i, n, val, min_val, best_node = 0;
6264
6265 min_val = INT_MAX;
6266
6267 for (i = 0; i < MAX_NUMNODES; i++) {
6268 /* Start at @node */
6269 n = (node + i) % MAX_NUMNODES;
6270
6271 if (!nr_cpus_node(n))
6272 continue;
6273
6274 /* Skip already used nodes */
6275 if (test_bit(n, used_nodes))
6276 continue;
6277
6278 /* Simple min distance search */
6279 val = node_distance(node, n);
6280
6281 if (val < min_val) {
6282 min_val = val;
6283 best_node = n;
6284 }
6285 }
6286
6287 set_bit(best_node, used_nodes);
6288 return best_node;
6289}
6290
6291/**
6292 * sched_domain_node_span - get a cpumask for a node's sched_domain
6293 * @node: node whose cpumask we're constructing
6294 * @size: number of nodes to include in this span
6295 *
41a2d6cf 6296 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6297 * should be one that prevents unnecessary balancing, but also spreads tasks
6298 * out optimally.
6299 */
6300static cpumask_t sched_domain_node_span(int node)
6301{
9c1cfda2 6302 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6303 cpumask_t span, nodemask;
6304 int i;
9c1cfda2
JH
6305
6306 cpus_clear(span);
6307 bitmap_zero(used_nodes, MAX_NUMNODES);
6308
6309 nodemask = node_to_cpumask(node);
6310 cpus_or(span, span, nodemask);
6311 set_bit(node, used_nodes);
6312
6313 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6314 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6315
9c1cfda2
JH
6316 nodemask = node_to_cpumask(next_node);
6317 cpus_or(span, span, nodemask);
6318 }
6319
6320 return span;
6321}
6322#endif
6323
5c45bf27 6324int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6325
9c1cfda2 6326/*
48f24c4d 6327 * SMT sched-domains:
9c1cfda2 6328 */
1da177e4
LT
6329#ifdef CONFIG_SCHED_SMT
6330static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6331static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6332
41a2d6cf
IM
6333static int
6334cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6335{
6711cab4
SS
6336 if (sg)
6337 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6338 return cpu;
6339}
6340#endif
6341
48f24c4d
IM
6342/*
6343 * multi-core sched-domains:
6344 */
1e9f28fa
SS
6345#ifdef CONFIG_SCHED_MC
6346static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6347static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6348#endif
6349
6350#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6351static int
6352cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6353{
6711cab4 6354 int group;
d5a7430d 6355 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6356 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6357 group = first_cpu(mask);
6358 if (sg)
6359 *sg = &per_cpu(sched_group_core, group);
6360 return group;
1e9f28fa
SS
6361}
6362#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6363static int
6364cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6365{
6711cab4
SS
6366 if (sg)
6367 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6368 return cpu;
6369}
6370#endif
6371
1da177e4 6372static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6373static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6374
41a2d6cf
IM
6375static int
6376cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6377{
6711cab4 6378 int group;
48f24c4d 6379#ifdef CONFIG_SCHED_MC
1e9f28fa 6380 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6381 cpus_and(mask, mask, *cpu_map);
6711cab4 6382 group = first_cpu(mask);
1e9f28fa 6383#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6384 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6385 cpus_and(mask, mask, *cpu_map);
6711cab4 6386 group = first_cpu(mask);
1da177e4 6387#else
6711cab4 6388 group = cpu;
1da177e4 6389#endif
6711cab4
SS
6390 if (sg)
6391 *sg = &per_cpu(sched_group_phys, group);
6392 return group;
1da177e4
LT
6393}
6394
6395#ifdef CONFIG_NUMA
1da177e4 6396/*
9c1cfda2
JH
6397 * The init_sched_build_groups can't handle what we want to do with node
6398 * groups, so roll our own. Now each node has its own list of groups which
6399 * gets dynamically allocated.
1da177e4 6400 */
9c1cfda2 6401static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6402static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6403
9c1cfda2 6404static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6405static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6406
6711cab4
SS
6407static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6408 struct sched_group **sg)
9c1cfda2 6409{
6711cab4
SS
6410 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6411 int group;
6412
6413 cpus_and(nodemask, nodemask, *cpu_map);
6414 group = first_cpu(nodemask);
6415
6416 if (sg)
6417 *sg = &per_cpu(sched_group_allnodes, group);
6418 return group;
1da177e4 6419}
6711cab4 6420
08069033
SS
6421static void init_numa_sched_groups_power(struct sched_group *group_head)
6422{
6423 struct sched_group *sg = group_head;
6424 int j;
6425
6426 if (!sg)
6427 return;
3a5c359a
AK
6428 do {
6429 for_each_cpu_mask(j, sg->cpumask) {
6430 struct sched_domain *sd;
08069033 6431
3a5c359a
AK
6432 sd = &per_cpu(phys_domains, j);
6433 if (j != first_cpu(sd->groups->cpumask)) {
6434 /*
6435 * Only add "power" once for each
6436 * physical package.
6437 */
6438 continue;
6439 }
08069033 6440
3a5c359a
AK
6441 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6442 }
6443 sg = sg->next;
6444 } while (sg != group_head);
08069033 6445}
1da177e4
LT
6446#endif
6447
a616058b 6448#ifdef CONFIG_NUMA
51888ca2
SV
6449/* Free memory allocated for various sched_group structures */
6450static void free_sched_groups(const cpumask_t *cpu_map)
6451{
a616058b 6452 int cpu, i;
51888ca2
SV
6453
6454 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6455 struct sched_group **sched_group_nodes
6456 = sched_group_nodes_bycpu[cpu];
6457
51888ca2
SV
6458 if (!sched_group_nodes)
6459 continue;
6460
6461 for (i = 0; i < MAX_NUMNODES; i++) {
6462 cpumask_t nodemask = node_to_cpumask(i);
6463 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6464
6465 cpus_and(nodemask, nodemask, *cpu_map);
6466 if (cpus_empty(nodemask))
6467 continue;
6468
6469 if (sg == NULL)
6470 continue;
6471 sg = sg->next;
6472next_sg:
6473 oldsg = sg;
6474 sg = sg->next;
6475 kfree(oldsg);
6476 if (oldsg != sched_group_nodes[i])
6477 goto next_sg;
6478 }
6479 kfree(sched_group_nodes);
6480 sched_group_nodes_bycpu[cpu] = NULL;
6481 }
51888ca2 6482}
a616058b
SS
6483#else
6484static void free_sched_groups(const cpumask_t *cpu_map)
6485{
6486}
6487#endif
51888ca2 6488
89c4710e
SS
6489/*
6490 * Initialize sched groups cpu_power.
6491 *
6492 * cpu_power indicates the capacity of sched group, which is used while
6493 * distributing the load between different sched groups in a sched domain.
6494 * Typically cpu_power for all the groups in a sched domain will be same unless
6495 * there are asymmetries in the topology. If there are asymmetries, group
6496 * having more cpu_power will pickup more load compared to the group having
6497 * less cpu_power.
6498 *
6499 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6500 * the maximum number of tasks a group can handle in the presence of other idle
6501 * or lightly loaded groups in the same sched domain.
6502 */
6503static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6504{
6505 struct sched_domain *child;
6506 struct sched_group *group;
6507
6508 WARN_ON(!sd || !sd->groups);
6509
6510 if (cpu != first_cpu(sd->groups->cpumask))
6511 return;
6512
6513 child = sd->child;
6514
5517d86b
ED
6515 sd->groups->__cpu_power = 0;
6516
89c4710e
SS
6517 /*
6518 * For perf policy, if the groups in child domain share resources
6519 * (for example cores sharing some portions of the cache hierarchy
6520 * or SMT), then set this domain groups cpu_power such that each group
6521 * can handle only one task, when there are other idle groups in the
6522 * same sched domain.
6523 */
6524 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6525 (child->flags &
6526 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6527 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6528 return;
6529 }
6530
89c4710e
SS
6531 /*
6532 * add cpu_power of each child group to this groups cpu_power
6533 */
6534 group = child->groups;
6535 do {
5517d86b 6536 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6537 group = group->next;
6538 } while (group != child->groups);
6539}
6540
1da177e4 6541/*
1a20ff27
DG
6542 * Build sched domains for a given set of cpus and attach the sched domains
6543 * to the individual cpus
1da177e4 6544 */
51888ca2 6545static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6546{
6547 int i;
57d885fe 6548 struct root_domain *rd;
d1b55138
JH
6549#ifdef CONFIG_NUMA
6550 struct sched_group **sched_group_nodes = NULL;
6711cab4 6551 int sd_allnodes = 0;
d1b55138
JH
6552
6553 /*
6554 * Allocate the per-node list of sched groups
6555 */
5cf9f062 6556 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6557 GFP_KERNEL);
d1b55138
JH
6558 if (!sched_group_nodes) {
6559 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6560 return -ENOMEM;
d1b55138
JH
6561 }
6562 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6563#endif
1da177e4 6564
dc938520 6565 rd = alloc_rootdomain();
57d885fe
GH
6566 if (!rd) {
6567 printk(KERN_WARNING "Cannot alloc root domain\n");
6568 return -ENOMEM;
6569 }
6570
1da177e4 6571 /*
1a20ff27 6572 * Set up domains for cpus specified by the cpu_map.
1da177e4 6573 */
1a20ff27 6574 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6575 struct sched_domain *sd = NULL, *p;
6576 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6577
1a20ff27 6578 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6579
6580#ifdef CONFIG_NUMA
dd41f596
IM
6581 if (cpus_weight(*cpu_map) >
6582 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6583 sd = &per_cpu(allnodes_domains, i);
6584 *sd = SD_ALLNODES_INIT;
6585 sd->span = *cpu_map;
6711cab4 6586 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6587 p = sd;
6711cab4 6588 sd_allnodes = 1;
9c1cfda2
JH
6589 } else
6590 p = NULL;
6591
1da177e4 6592 sd = &per_cpu(node_domains, i);
1da177e4 6593 *sd = SD_NODE_INIT;
9c1cfda2
JH
6594 sd->span = sched_domain_node_span(cpu_to_node(i));
6595 sd->parent = p;
1a848870
SS
6596 if (p)
6597 p->child = sd;
9c1cfda2 6598 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6599#endif
6600
6601 p = sd;
6602 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6603 *sd = SD_CPU_INIT;
6604 sd->span = nodemask;
6605 sd->parent = p;
1a848870
SS
6606 if (p)
6607 p->child = sd;
6711cab4 6608 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6609
1e9f28fa
SS
6610#ifdef CONFIG_SCHED_MC
6611 p = sd;
6612 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6613 *sd = SD_MC_INIT;
6614 sd->span = cpu_coregroup_map(i);
6615 cpus_and(sd->span, sd->span, *cpu_map);
6616 sd->parent = p;
1a848870 6617 p->child = sd;
6711cab4 6618 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6619#endif
6620
1da177e4
LT
6621#ifdef CONFIG_SCHED_SMT
6622 p = sd;
6623 sd = &per_cpu(cpu_domains, i);
1da177e4 6624 *sd = SD_SIBLING_INIT;
d5a7430d 6625 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6626 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6627 sd->parent = p;
1a848870 6628 p->child = sd;
6711cab4 6629 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6630#endif
6631 }
6632
6633#ifdef CONFIG_SCHED_SMT
6634 /* Set up CPU (sibling) groups */
9c1cfda2 6635 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6636 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6637 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6638 if (i != first_cpu(this_sibling_map))
6639 continue;
6640
dd41f596
IM
6641 init_sched_build_groups(this_sibling_map, cpu_map,
6642 &cpu_to_cpu_group);
1da177e4
LT
6643 }
6644#endif
6645
1e9f28fa
SS
6646#ifdef CONFIG_SCHED_MC
6647 /* Set up multi-core groups */
6648 for_each_cpu_mask(i, *cpu_map) {
6649 cpumask_t this_core_map = cpu_coregroup_map(i);
6650 cpus_and(this_core_map, this_core_map, *cpu_map);
6651 if (i != first_cpu(this_core_map))
6652 continue;
dd41f596
IM
6653 init_sched_build_groups(this_core_map, cpu_map,
6654 &cpu_to_core_group);
1e9f28fa
SS
6655 }
6656#endif
6657
1da177e4
LT
6658 /* Set up physical groups */
6659 for (i = 0; i < MAX_NUMNODES; i++) {
6660 cpumask_t nodemask = node_to_cpumask(i);
6661
1a20ff27 6662 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6663 if (cpus_empty(nodemask))
6664 continue;
6665
6711cab4 6666 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6667 }
6668
6669#ifdef CONFIG_NUMA
6670 /* Set up node groups */
6711cab4 6671 if (sd_allnodes)
dd41f596
IM
6672 init_sched_build_groups(*cpu_map, cpu_map,
6673 &cpu_to_allnodes_group);
9c1cfda2
JH
6674
6675 for (i = 0; i < MAX_NUMNODES; i++) {
6676 /* Set up node groups */
6677 struct sched_group *sg, *prev;
6678 cpumask_t nodemask = node_to_cpumask(i);
6679 cpumask_t domainspan;
6680 cpumask_t covered = CPU_MASK_NONE;
6681 int j;
6682
6683 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6684 if (cpus_empty(nodemask)) {
6685 sched_group_nodes[i] = NULL;
9c1cfda2 6686 continue;
d1b55138 6687 }
9c1cfda2
JH
6688
6689 domainspan = sched_domain_node_span(i);
6690 cpus_and(domainspan, domainspan, *cpu_map);
6691
15f0b676 6692 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6693 if (!sg) {
6694 printk(KERN_WARNING "Can not alloc domain group for "
6695 "node %d\n", i);
6696 goto error;
6697 }
9c1cfda2
JH
6698 sched_group_nodes[i] = sg;
6699 for_each_cpu_mask(j, nodemask) {
6700 struct sched_domain *sd;
9761eea8 6701
9c1cfda2
JH
6702 sd = &per_cpu(node_domains, j);
6703 sd->groups = sg;
9c1cfda2 6704 }
5517d86b 6705 sg->__cpu_power = 0;
9c1cfda2 6706 sg->cpumask = nodemask;
51888ca2 6707 sg->next = sg;
9c1cfda2
JH
6708 cpus_or(covered, covered, nodemask);
6709 prev = sg;
6710
6711 for (j = 0; j < MAX_NUMNODES; j++) {
6712 cpumask_t tmp, notcovered;
6713 int n = (i + j) % MAX_NUMNODES;
6714
6715 cpus_complement(notcovered, covered);
6716 cpus_and(tmp, notcovered, *cpu_map);
6717 cpus_and(tmp, tmp, domainspan);
6718 if (cpus_empty(tmp))
6719 break;
6720
6721 nodemask = node_to_cpumask(n);
6722 cpus_and(tmp, tmp, nodemask);
6723 if (cpus_empty(tmp))
6724 continue;
6725
15f0b676
SV
6726 sg = kmalloc_node(sizeof(struct sched_group),
6727 GFP_KERNEL, i);
9c1cfda2
JH
6728 if (!sg) {
6729 printk(KERN_WARNING
6730 "Can not alloc domain group for node %d\n", j);
51888ca2 6731 goto error;
9c1cfda2 6732 }
5517d86b 6733 sg->__cpu_power = 0;
9c1cfda2 6734 sg->cpumask = tmp;
51888ca2 6735 sg->next = prev->next;
9c1cfda2
JH
6736 cpus_or(covered, covered, tmp);
6737 prev->next = sg;
6738 prev = sg;
6739 }
9c1cfda2 6740 }
1da177e4
LT
6741#endif
6742
6743 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6744#ifdef CONFIG_SCHED_SMT
1a20ff27 6745 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6746 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6747
89c4710e 6748 init_sched_groups_power(i, sd);
5c45bf27 6749 }
1da177e4 6750#endif
1e9f28fa 6751#ifdef CONFIG_SCHED_MC
5c45bf27 6752 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6753 struct sched_domain *sd = &per_cpu(core_domains, i);
6754
89c4710e 6755 init_sched_groups_power(i, sd);
5c45bf27
SS
6756 }
6757#endif
1e9f28fa 6758
5c45bf27 6759 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6760 struct sched_domain *sd = &per_cpu(phys_domains, i);
6761
89c4710e 6762 init_sched_groups_power(i, sd);
1da177e4
LT
6763 }
6764
9c1cfda2 6765#ifdef CONFIG_NUMA
08069033
SS
6766 for (i = 0; i < MAX_NUMNODES; i++)
6767 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6768
6711cab4
SS
6769 if (sd_allnodes) {
6770 struct sched_group *sg;
f712c0c7 6771
6711cab4 6772 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6773 init_numa_sched_groups_power(sg);
6774 }
9c1cfda2
JH
6775#endif
6776
1da177e4 6777 /* Attach the domains */
1a20ff27 6778 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6779 struct sched_domain *sd;
6780#ifdef CONFIG_SCHED_SMT
6781 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6782#elif defined(CONFIG_SCHED_MC)
6783 sd = &per_cpu(core_domains, i);
1da177e4
LT
6784#else
6785 sd = &per_cpu(phys_domains, i);
6786#endif
57d885fe 6787 cpu_attach_domain(sd, rd, i);
1da177e4 6788 }
51888ca2
SV
6789
6790 return 0;
6791
a616058b 6792#ifdef CONFIG_NUMA
51888ca2
SV
6793error:
6794 free_sched_groups(cpu_map);
6795 return -ENOMEM;
a616058b 6796#endif
1da177e4 6797}
029190c5
PJ
6798
6799static cpumask_t *doms_cur; /* current sched domains */
6800static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6801
6802/*
6803 * Special case: If a kmalloc of a doms_cur partition (array of
6804 * cpumask_t) fails, then fallback to a single sched domain,
6805 * as determined by the single cpumask_t fallback_doms.
6806 */
6807static cpumask_t fallback_doms;
6808
1a20ff27 6809/*
41a2d6cf 6810 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6811 * For now this just excludes isolated cpus, but could be used to
6812 * exclude other special cases in the future.
1a20ff27 6813 */
51888ca2 6814static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6815{
7378547f
MM
6816 int err;
6817
029190c5
PJ
6818 ndoms_cur = 1;
6819 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6820 if (!doms_cur)
6821 doms_cur = &fallback_doms;
6822 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6823 err = build_sched_domains(doms_cur);
6382bc90 6824 register_sched_domain_sysctl();
7378547f
MM
6825
6826 return err;
1a20ff27
DG
6827}
6828
6829static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6830{
51888ca2 6831 free_sched_groups(cpu_map);
9c1cfda2 6832}
1da177e4 6833
1a20ff27
DG
6834/*
6835 * Detach sched domains from a group of cpus specified in cpu_map
6836 * These cpus will now be attached to the NULL domain
6837 */
858119e1 6838static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6839{
6840 int i;
6841
6382bc90
MM
6842 unregister_sched_domain_sysctl();
6843
1a20ff27 6844 for_each_cpu_mask(i, *cpu_map)
57d885fe 6845 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6846 synchronize_sched();
6847 arch_destroy_sched_domains(cpu_map);
6848}
6849
029190c5
PJ
6850/*
6851 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6852 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6853 * doms_new[] to the current sched domain partitioning, doms_cur[].
6854 * It destroys each deleted domain and builds each new domain.
6855 *
6856 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6857 * The masks don't intersect (don't overlap.) We should setup one
6858 * sched domain for each mask. CPUs not in any of the cpumasks will
6859 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6860 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6861 * it as it is.
6862 *
41a2d6cf
IM
6863 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6864 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6865 * failed the kmalloc call, then it can pass in doms_new == NULL,
6866 * and partition_sched_domains() will fallback to the single partition
6867 * 'fallback_doms'.
6868 *
6869 * Call with hotplug lock held
6870 */
6871void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6872{
6873 int i, j;
6874
a1835615
SV
6875 lock_doms_cur();
6876
7378547f
MM
6877 /* always unregister in case we don't destroy any domains */
6878 unregister_sched_domain_sysctl();
6879
029190c5
PJ
6880 if (doms_new == NULL) {
6881 ndoms_new = 1;
6882 doms_new = &fallback_doms;
6883 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6884 }
6885
6886 /* Destroy deleted domains */
6887 for (i = 0; i < ndoms_cur; i++) {
6888 for (j = 0; j < ndoms_new; j++) {
6889 if (cpus_equal(doms_cur[i], doms_new[j]))
6890 goto match1;
6891 }
6892 /* no match - a current sched domain not in new doms_new[] */
6893 detach_destroy_domains(doms_cur + i);
6894match1:
6895 ;
6896 }
6897
6898 /* Build new domains */
6899 for (i = 0; i < ndoms_new; i++) {
6900 for (j = 0; j < ndoms_cur; j++) {
6901 if (cpus_equal(doms_new[i], doms_cur[j]))
6902 goto match2;
6903 }
6904 /* no match - add a new doms_new */
6905 build_sched_domains(doms_new + i);
6906match2:
6907 ;
6908 }
6909
6910 /* Remember the new sched domains */
6911 if (doms_cur != &fallback_doms)
6912 kfree(doms_cur);
6913 doms_cur = doms_new;
6914 ndoms_cur = ndoms_new;
7378547f
MM
6915
6916 register_sched_domain_sysctl();
a1835615
SV
6917
6918 unlock_doms_cur();
029190c5
PJ
6919}
6920
5c45bf27 6921#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6922static int arch_reinit_sched_domains(void)
5c45bf27
SS
6923{
6924 int err;
6925
95402b38 6926 get_online_cpus();
5c45bf27
SS
6927 detach_destroy_domains(&cpu_online_map);
6928 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6929 put_online_cpus();
5c45bf27
SS
6930
6931 return err;
6932}
6933
6934static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6935{
6936 int ret;
6937
6938 if (buf[0] != '0' && buf[0] != '1')
6939 return -EINVAL;
6940
6941 if (smt)
6942 sched_smt_power_savings = (buf[0] == '1');
6943 else
6944 sched_mc_power_savings = (buf[0] == '1');
6945
6946 ret = arch_reinit_sched_domains();
6947
6948 return ret ? ret : count;
6949}
6950
5c45bf27
SS
6951#ifdef CONFIG_SCHED_MC
6952static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6953{
6954 return sprintf(page, "%u\n", sched_mc_power_savings);
6955}
48f24c4d
IM
6956static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6957 const char *buf, size_t count)
5c45bf27
SS
6958{
6959 return sched_power_savings_store(buf, count, 0);
6960}
6707de00
AB
6961static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6962 sched_mc_power_savings_store);
5c45bf27
SS
6963#endif
6964
6965#ifdef CONFIG_SCHED_SMT
6966static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6967{
6968 return sprintf(page, "%u\n", sched_smt_power_savings);
6969}
48f24c4d
IM
6970static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6971 const char *buf, size_t count)
5c45bf27
SS
6972{
6973 return sched_power_savings_store(buf, count, 1);
6974}
6707de00
AB
6975static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6976 sched_smt_power_savings_store);
6977#endif
6978
6979int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6980{
6981 int err = 0;
6982
6983#ifdef CONFIG_SCHED_SMT
6984 if (smt_capable())
6985 err = sysfs_create_file(&cls->kset.kobj,
6986 &attr_sched_smt_power_savings.attr);
6987#endif
6988#ifdef CONFIG_SCHED_MC
6989 if (!err && mc_capable())
6990 err = sysfs_create_file(&cls->kset.kobj,
6991 &attr_sched_mc_power_savings.attr);
6992#endif
6993 return err;
6994}
5c45bf27
SS
6995#endif
6996
1da177e4 6997/*
41a2d6cf 6998 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6999 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7000 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7001 * which will prevent rebalancing while the sched domains are recalculated.
7002 */
7003static int update_sched_domains(struct notifier_block *nfb,
7004 unsigned long action, void *hcpu)
7005{
1da177e4
LT
7006 switch (action) {
7007 case CPU_UP_PREPARE:
8bb78442 7008 case CPU_UP_PREPARE_FROZEN:
1da177e4 7009 case CPU_DOWN_PREPARE:
8bb78442 7010 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7011 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7012 return NOTIFY_OK;
7013
7014 case CPU_UP_CANCELED:
8bb78442 7015 case CPU_UP_CANCELED_FROZEN:
1da177e4 7016 case CPU_DOWN_FAILED:
8bb78442 7017 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7018 case CPU_ONLINE:
8bb78442 7019 case CPU_ONLINE_FROZEN:
1da177e4 7020 case CPU_DEAD:
8bb78442 7021 case CPU_DEAD_FROZEN:
1da177e4
LT
7022 /*
7023 * Fall through and re-initialise the domains.
7024 */
7025 break;
7026 default:
7027 return NOTIFY_DONE;
7028 }
7029
7030 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7031 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7032
7033 return NOTIFY_OK;
7034}
1da177e4
LT
7035
7036void __init sched_init_smp(void)
7037{
5c1e1767
NP
7038 cpumask_t non_isolated_cpus;
7039
95402b38 7040 get_online_cpus();
1a20ff27 7041 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7042 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7043 if (cpus_empty(non_isolated_cpus))
7044 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7045 put_online_cpus();
1da177e4
LT
7046 /* XXX: Theoretical race here - CPU may be hotplugged now */
7047 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7048
7049 /* Move init over to a non-isolated CPU */
7050 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7051 BUG();
19978ca6 7052 sched_init_granularity();
6b2d7700
SV
7053
7054#ifdef CONFIG_FAIR_GROUP_SCHED
7055 if (nr_cpu_ids == 1)
7056 return;
7057
7058 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7059 "group_balance");
7060 if (!IS_ERR(lb_monitor_task)) {
7061 lb_monitor_task->flags |= PF_NOFREEZE;
7062 wake_up_process(lb_monitor_task);
7063 } else {
7064 printk(KERN_ERR "Could not create load balance monitor thread"
7065 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7066 }
7067#endif
1da177e4
LT
7068}
7069#else
7070void __init sched_init_smp(void)
7071{
19978ca6 7072 sched_init_granularity();
1da177e4
LT
7073}
7074#endif /* CONFIG_SMP */
7075
7076int in_sched_functions(unsigned long addr)
7077{
1da177e4
LT
7078 return in_lock_functions(addr) ||
7079 (addr >= (unsigned long)__sched_text_start
7080 && addr < (unsigned long)__sched_text_end);
7081}
7082
a9957449 7083static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7084{
7085 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7086#ifdef CONFIG_FAIR_GROUP_SCHED
7087 cfs_rq->rq = rq;
7088#endif
67e9fb2a 7089 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7090}
7091
fa85ae24
PZ
7092static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7093{
7094 struct rt_prio_array *array;
7095 int i;
7096
7097 array = &rt_rq->active;
7098 for (i = 0; i < MAX_RT_PRIO; i++) {
7099 INIT_LIST_HEAD(array->queue + i);
7100 __clear_bit(i, array->bitmap);
7101 }
7102 /* delimiter for bitsearch: */
7103 __set_bit(MAX_RT_PRIO, array->bitmap);
7104
7105#ifdef CONFIG_SMP
7106 rt_rq->rt_nr_migratory = 0;
7107 rt_rq->highest_prio = MAX_RT_PRIO;
7108 rt_rq->overloaded = 0;
7109#endif
7110
7111 rt_rq->rt_time = 0;
7112 rt_rq->rt_throttled = 0;
6f505b16
PZ
7113
7114#ifdef CONFIG_FAIR_GROUP_SCHED
7115 rt_rq->rq = rq;
7116#endif
fa85ae24
PZ
7117}
7118
6f505b16
PZ
7119#ifdef CONFIG_FAIR_GROUP_SCHED
7120static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7121 struct cfs_rq *cfs_rq, struct sched_entity *se,
7122 int cpu, int add)
7123{
7124 tg->cfs_rq[cpu] = cfs_rq;
7125 init_cfs_rq(cfs_rq, rq);
7126 cfs_rq->tg = tg;
7127 if (add)
7128 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7129
7130 tg->se[cpu] = se;
7131 se->cfs_rq = &rq->cfs;
7132 se->my_q = cfs_rq;
7133 se->load.weight = tg->shares;
7134 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7135 se->parent = NULL;
7136}
7137
7138static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7139 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7140 int cpu, int add)
7141{
7142 tg->rt_rq[cpu] = rt_rq;
7143 init_rt_rq(rt_rq, rq);
7144 rt_rq->tg = tg;
7145 rt_rq->rt_se = rt_se;
7146 if (add)
7147 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7148
7149 tg->rt_se[cpu] = rt_se;
7150 rt_se->rt_rq = &rq->rt;
7151 rt_se->my_q = rt_rq;
7152 rt_se->parent = NULL;
7153 INIT_LIST_HEAD(&rt_se->run_list);
7154}
7155#endif
7156
1da177e4
LT
7157void __init sched_init(void)
7158{
476f3534 7159 int highest_cpu = 0;
dd41f596
IM
7160 int i, j;
7161
57d885fe
GH
7162#ifdef CONFIG_SMP
7163 init_defrootdomain();
7164#endif
7165
6f505b16
PZ
7166#ifdef CONFIG_FAIR_GROUP_SCHED
7167 list_add(&init_task_group.list, &task_groups);
7168#endif
7169
0a945022 7170 for_each_possible_cpu(i) {
70b97a7f 7171 struct rq *rq;
1da177e4
LT
7172
7173 rq = cpu_rq(i);
7174 spin_lock_init(&rq->lock);
fcb99371 7175 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7176 rq->nr_running = 0;
dd41f596
IM
7177 rq->clock = 1;
7178 init_cfs_rq(&rq->cfs, rq);
6f505b16 7179 init_rt_rq(&rq->rt, rq);
dd41f596 7180#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7181 init_task_group.shares = init_task_group_load;
6f505b16
PZ
7182 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7183 init_tg_cfs_entry(rq, &init_task_group,
7184 &per_cpu(init_cfs_rq, i),
7185 &per_cpu(init_sched_entity, i), i, 1);
7186
7187 init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
7188 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7189 init_tg_rt_entry(rq, &init_task_group,
7190 &per_cpu(init_rt_rq, i),
7191 &per_cpu(init_sched_rt_entity, i), i, 1);
dd41f596 7192#endif
fa85ae24 7193 rq->rt_period_expire = 0;
1da177e4 7194
dd41f596
IM
7195 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7196 rq->cpu_load[j] = 0;
1da177e4 7197#ifdef CONFIG_SMP
41c7ce9a 7198 rq->sd = NULL;
57d885fe 7199 rq->rd = NULL;
1da177e4 7200 rq->active_balance = 0;
dd41f596 7201 rq->next_balance = jiffies;
1da177e4 7202 rq->push_cpu = 0;
0a2966b4 7203 rq->cpu = i;
1da177e4
LT
7204 rq->migration_thread = NULL;
7205 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7206 rq_attach_root(rq, &def_root_domain);
1da177e4 7207#endif
8f4d37ec 7208 init_rq_hrtick(rq);
1da177e4 7209 atomic_set(&rq->nr_iowait, 0);
476f3534 7210 highest_cpu = i;
1da177e4
LT
7211 }
7212
2dd73a4f 7213 set_load_weight(&init_task);
b50f60ce 7214
e107be36
AK
7215#ifdef CONFIG_PREEMPT_NOTIFIERS
7216 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7217#endif
7218
c9819f45 7219#ifdef CONFIG_SMP
476f3534 7220 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
7221 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7222#endif
7223
b50f60ce
HC
7224#ifdef CONFIG_RT_MUTEXES
7225 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7226#endif
7227
1da177e4
LT
7228 /*
7229 * The boot idle thread does lazy MMU switching as well:
7230 */
7231 atomic_inc(&init_mm.mm_count);
7232 enter_lazy_tlb(&init_mm, current);
7233
7234 /*
7235 * Make us the idle thread. Technically, schedule() should not be
7236 * called from this thread, however somewhere below it might be,
7237 * but because we are the idle thread, we just pick up running again
7238 * when this runqueue becomes "idle".
7239 */
7240 init_idle(current, smp_processor_id());
dd41f596
IM
7241 /*
7242 * During early bootup we pretend to be a normal task:
7243 */
7244 current->sched_class = &fair_sched_class;
1da177e4
LT
7245}
7246
7247#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7248void __might_sleep(char *file, int line)
7249{
48f24c4d 7250#ifdef in_atomic
1da177e4
LT
7251 static unsigned long prev_jiffy; /* ratelimiting */
7252
7253 if ((in_atomic() || irqs_disabled()) &&
7254 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7255 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7256 return;
7257 prev_jiffy = jiffies;
91368d73 7258 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7259 " context at %s:%d\n", file, line);
7260 printk("in_atomic():%d, irqs_disabled():%d\n",
7261 in_atomic(), irqs_disabled());
a4c410f0 7262 debug_show_held_locks(current);
3117df04
IM
7263 if (irqs_disabled())
7264 print_irqtrace_events(current);
1da177e4
LT
7265 dump_stack();
7266 }
7267#endif
7268}
7269EXPORT_SYMBOL(__might_sleep);
7270#endif
7271
7272#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7273static void normalize_task(struct rq *rq, struct task_struct *p)
7274{
7275 int on_rq;
7276 update_rq_clock(rq);
7277 on_rq = p->se.on_rq;
7278 if (on_rq)
7279 deactivate_task(rq, p, 0);
7280 __setscheduler(rq, p, SCHED_NORMAL, 0);
7281 if (on_rq) {
7282 activate_task(rq, p, 0);
7283 resched_task(rq->curr);
7284 }
7285}
7286
1da177e4
LT
7287void normalize_rt_tasks(void)
7288{
a0f98a1c 7289 struct task_struct *g, *p;
1da177e4 7290 unsigned long flags;
70b97a7f 7291 struct rq *rq;
1da177e4
LT
7292
7293 read_lock_irq(&tasklist_lock);
a0f98a1c 7294 do_each_thread(g, p) {
178be793
IM
7295 /*
7296 * Only normalize user tasks:
7297 */
7298 if (!p->mm)
7299 continue;
7300
6cfb0d5d 7301 p->se.exec_start = 0;
6cfb0d5d 7302#ifdef CONFIG_SCHEDSTATS
dd41f596 7303 p->se.wait_start = 0;
dd41f596 7304 p->se.sleep_start = 0;
dd41f596 7305 p->se.block_start = 0;
6cfb0d5d 7306#endif
dd41f596
IM
7307 task_rq(p)->clock = 0;
7308
7309 if (!rt_task(p)) {
7310 /*
7311 * Renice negative nice level userspace
7312 * tasks back to 0:
7313 */
7314 if (TASK_NICE(p) < 0 && p->mm)
7315 set_user_nice(p, 0);
1da177e4 7316 continue;
dd41f596 7317 }
1da177e4 7318
b29739f9
IM
7319 spin_lock_irqsave(&p->pi_lock, flags);
7320 rq = __task_rq_lock(p);
1da177e4 7321
178be793 7322 normalize_task(rq, p);
3a5e4dc1 7323
b29739f9
IM
7324 __task_rq_unlock(rq);
7325 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7326 } while_each_thread(g, p);
7327
1da177e4
LT
7328 read_unlock_irq(&tasklist_lock);
7329}
7330
7331#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7332
7333#ifdef CONFIG_IA64
7334/*
7335 * These functions are only useful for the IA64 MCA handling.
7336 *
7337 * They can only be called when the whole system has been
7338 * stopped - every CPU needs to be quiescent, and no scheduling
7339 * activity can take place. Using them for anything else would
7340 * be a serious bug, and as a result, they aren't even visible
7341 * under any other configuration.
7342 */
7343
7344/**
7345 * curr_task - return the current task for a given cpu.
7346 * @cpu: the processor in question.
7347 *
7348 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7349 */
36c8b586 7350struct task_struct *curr_task(int cpu)
1df5c10a
LT
7351{
7352 return cpu_curr(cpu);
7353}
7354
7355/**
7356 * set_curr_task - set the current task for a given cpu.
7357 * @cpu: the processor in question.
7358 * @p: the task pointer to set.
7359 *
7360 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7361 * are serviced on a separate stack. It allows the architecture to switch the
7362 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7363 * must be called with all CPU's synchronized, and interrupts disabled, the
7364 * and caller must save the original value of the current task (see
7365 * curr_task() above) and restore that value before reenabling interrupts and
7366 * re-starting the system.
7367 *
7368 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7369 */
36c8b586 7370void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7371{
7372 cpu_curr(cpu) = p;
7373}
7374
7375#endif
29f59db3
SV
7376
7377#ifdef CONFIG_FAIR_GROUP_SCHED
7378
6b2d7700
SV
7379#ifdef CONFIG_SMP
7380/*
7381 * distribute shares of all task groups among their schedulable entities,
fa85ae24 7382 * to reflect load distribution across cpus.
6b2d7700
SV
7383 */
7384static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7385{
7386 struct cfs_rq *cfs_rq;
7387 struct rq *rq = cpu_rq(this_cpu);
7388 cpumask_t sdspan = sd->span;
7389 int balanced = 1;
7390
7391 /* Walk thr' all the task groups that we have */
7392 for_each_leaf_cfs_rq(rq, cfs_rq) {
7393 int i;
7394 unsigned long total_load = 0, total_shares;
7395 struct task_group *tg = cfs_rq->tg;
7396
7397 /* Gather total task load of this group across cpus */
7398 for_each_cpu_mask(i, sdspan)
7399 total_load += tg->cfs_rq[i]->load.weight;
7400
0eab9146 7401 /* Nothing to do if this group has no load */
6b2d7700
SV
7402 if (!total_load)
7403 continue;
7404
7405 /*
7406 * tg->shares represents the number of cpu shares the task group
7407 * is eligible to hold on a single cpu. On N cpus, it is
7408 * eligible to hold (N * tg->shares) number of cpu shares.
7409 */
7410 total_shares = tg->shares * cpus_weight(sdspan);
7411
7412 /*
7413 * redistribute total_shares across cpus as per the task load
7414 * distribution.
7415 */
7416 for_each_cpu_mask(i, sdspan) {
7417 unsigned long local_load, local_shares;
7418
7419 local_load = tg->cfs_rq[i]->load.weight;
7420 local_shares = (local_load * total_shares) / total_load;
7421 if (!local_shares)
7422 local_shares = MIN_GROUP_SHARES;
7423 if (local_shares == tg->se[i]->load.weight)
7424 continue;
7425
7426 spin_lock_irq(&cpu_rq(i)->lock);
7427 set_se_shares(tg->se[i], local_shares);
7428 spin_unlock_irq(&cpu_rq(i)->lock);
7429 balanced = 0;
7430 }
7431 }
7432
7433 return balanced;
7434}
7435
7436/*
7437 * How frequently should we rebalance_shares() across cpus?
7438 *
7439 * The more frequently we rebalance shares, the more accurate is the fairness
7440 * of cpu bandwidth distribution between task groups. However higher frequency
7441 * also implies increased scheduling overhead.
7442 *
7443 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7444 * consecutive calls to rebalance_shares() in the same sched domain.
7445 *
7446 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7447 * consecutive calls to rebalance_shares() in the same sched domain.
7448 *
fa85ae24 7449 * These settings allows for the appropriate trade-off between accuracy of
6b2d7700
SV
7450 * fairness and the associated overhead.
7451 *
7452 */
7453
7454/* default: 8ms, units: milliseconds */
7455const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7456
7457/* default: 128ms, units: milliseconds */
7458const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7459
7460/* kernel thread that runs rebalance_shares() periodically */
7461static int load_balance_monitor(void *unused)
7462{
7463 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7464 struct sched_param schedparm;
7465 int ret;
7466
7467 /*
7468 * We don't want this thread's execution to be limited by the shares
7469 * assigned to default group (init_task_group). Hence make it run
7470 * as a SCHED_RR RT task at the lowest priority.
7471 */
7472 schedparm.sched_priority = 1;
7473 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7474 if (ret)
7475 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7476 " monitor thread (error = %d) \n", ret);
7477
7478 while (!kthread_should_stop()) {
7479 int i, cpu, balanced = 1;
7480
7481 /* Prevent cpus going down or coming up */
86ef5c9a 7482 get_online_cpus();
6b2d7700
SV
7483 /* lockout changes to doms_cur[] array */
7484 lock_doms_cur();
7485 /*
7486 * Enter a rcu read-side critical section to safely walk rq->sd
7487 * chain on various cpus and to walk task group list
7488 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7489 */
7490 rcu_read_lock();
7491
7492 for (i = 0; i < ndoms_cur; i++) {
7493 cpumask_t cpumap = doms_cur[i];
7494 struct sched_domain *sd = NULL, *sd_prev = NULL;
7495
7496 cpu = first_cpu(cpumap);
7497
7498 /* Find the highest domain at which to balance shares */
7499 for_each_domain(cpu, sd) {
7500 if (!(sd->flags & SD_LOAD_BALANCE))
7501 continue;
7502 sd_prev = sd;
7503 }
7504
7505 sd = sd_prev;
7506 /* sd == NULL? No load balance reqd in this domain */
7507 if (!sd)
7508 continue;
7509
7510 balanced &= rebalance_shares(sd, cpu);
7511 }
7512
7513 rcu_read_unlock();
7514
7515 unlock_doms_cur();
86ef5c9a 7516 put_online_cpus();
6b2d7700
SV
7517
7518 if (!balanced)
7519 timeout = sysctl_sched_min_bal_int_shares;
7520 else if (timeout < sysctl_sched_max_bal_int_shares)
7521 timeout *= 2;
7522
7523 msleep_interruptible(timeout);
7524 }
7525
7526 return 0;
7527}
7528#endif /* CONFIG_SMP */
7529
6f505b16
PZ
7530static void free_sched_group(struct task_group *tg)
7531{
7532 int i;
7533
7534 for_each_possible_cpu(i) {
7535 if (tg->cfs_rq)
7536 kfree(tg->cfs_rq[i]);
7537 if (tg->se)
7538 kfree(tg->se[i]);
7539 if (tg->rt_rq)
7540 kfree(tg->rt_rq[i]);
7541 if (tg->rt_se)
7542 kfree(tg->rt_se[i]);
7543 }
7544
7545 kfree(tg->cfs_rq);
7546 kfree(tg->se);
7547 kfree(tg->rt_rq);
7548 kfree(tg->rt_se);
7549 kfree(tg);
7550}
7551
29f59db3 7552/* allocate runqueue etc for a new task group */
4cf86d77 7553struct task_group *sched_create_group(void)
29f59db3 7554{
4cf86d77 7555 struct task_group *tg;
29f59db3
SV
7556 struct cfs_rq *cfs_rq;
7557 struct sched_entity *se;
6f505b16
PZ
7558 struct rt_rq *rt_rq;
7559 struct sched_rt_entity *rt_se;
9b5b7751 7560 struct rq *rq;
29f59db3
SV
7561 int i;
7562
29f59db3
SV
7563 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7564 if (!tg)
7565 return ERR_PTR(-ENOMEM);
7566
9b5b7751 7567 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7568 if (!tg->cfs_rq)
7569 goto err;
9b5b7751 7570 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7571 if (!tg->se)
7572 goto err;
6f505b16
PZ
7573 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7574 if (!tg->rt_rq)
7575 goto err;
7576 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7577 if (!tg->rt_se)
7578 goto err;
7579
7580 tg->shares = NICE_0_LOAD;
7581 tg->rt_ratio = 0; /* XXX */
29f59db3
SV
7582
7583 for_each_possible_cpu(i) {
9b5b7751 7584 rq = cpu_rq(i);
29f59db3 7585
6f505b16
PZ
7586 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7587 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7588 if (!cfs_rq)
7589 goto err;
7590
6f505b16
PZ
7591 se = kmalloc_node(sizeof(struct sched_entity),
7592 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7593 if (!se)
7594 goto err;
7595
6f505b16
PZ
7596 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7597 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7598 if (!rt_rq)
7599 goto err;
29f59db3 7600
6f505b16
PZ
7601 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7602 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7603 if (!rt_se)
7604 goto err;
29f59db3 7605
6f505b16
PZ
7606 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7607 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7608 }
7609
ec2c507f 7610 lock_task_group_list();
9b5b7751
SV
7611 for_each_possible_cpu(i) {
7612 rq = cpu_rq(i);
7613 cfs_rq = tg->cfs_rq[i];
7614 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6f505b16
PZ
7615 rt_rq = tg->rt_rq[i];
7616 list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9b5b7751 7617 }
6f505b16 7618 list_add_rcu(&tg->list, &task_groups);
ec2c507f 7619 unlock_task_group_list();
29f59db3 7620
9b5b7751 7621 return tg;
29f59db3
SV
7622
7623err:
6f505b16 7624 free_sched_group(tg);
29f59db3
SV
7625 return ERR_PTR(-ENOMEM);
7626}
7627
9b5b7751 7628/* rcu callback to free various structures associated with a task group */
6f505b16 7629static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7630{
29f59db3 7631 /* now it should be safe to free those cfs_rqs */
6f505b16 7632 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7633}
7634
9b5b7751 7635/* Destroy runqueue etc associated with a task group */
4cf86d77 7636void sched_destroy_group(struct task_group *tg)
29f59db3 7637{
7bae49d4 7638 struct cfs_rq *cfs_rq = NULL;
6f505b16 7639 struct rt_rq *rt_rq = NULL;
9b5b7751 7640 int i;
29f59db3 7641
ec2c507f 7642 lock_task_group_list();
9b5b7751
SV
7643 for_each_possible_cpu(i) {
7644 cfs_rq = tg->cfs_rq[i];
7645 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6f505b16
PZ
7646 rt_rq = tg->rt_rq[i];
7647 list_del_rcu(&rt_rq->leaf_rt_rq_list);
9b5b7751 7648 }
6f505b16 7649 list_del_rcu(&tg->list);
ec2c507f 7650 unlock_task_group_list();
9b5b7751 7651
7bae49d4 7652 BUG_ON(!cfs_rq);
9b5b7751
SV
7653
7654 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7655 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7656}
7657
9b5b7751 7658/* change task's runqueue when it moves between groups.
3a252015
IM
7659 * The caller of this function should have put the task in its new group
7660 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7661 * reflect its new group.
9b5b7751
SV
7662 */
7663void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7664{
7665 int on_rq, running;
7666 unsigned long flags;
7667 struct rq *rq;
7668
7669 rq = task_rq_lock(tsk, &flags);
7670
29f59db3
SV
7671 update_rq_clock(rq);
7672
051a1d1a 7673 running = task_current(rq, tsk);
29f59db3
SV
7674 on_rq = tsk->se.on_rq;
7675
83b699ed 7676 if (on_rq) {
29f59db3 7677 dequeue_task(rq, tsk, 0);
83b699ed
SV
7678 if (unlikely(running))
7679 tsk->sched_class->put_prev_task(rq, tsk);
7680 }
29f59db3 7681
6f505b16 7682 set_task_rq(tsk, task_cpu(tsk));
29f59db3 7683
83b699ed
SV
7684 if (on_rq) {
7685 if (unlikely(running))
7686 tsk->sched_class->set_curr_task(rq);
7074badb 7687 enqueue_task(rq, tsk, 0);
83b699ed 7688 }
29f59db3 7689
29f59db3
SV
7690 task_rq_unlock(rq, &flags);
7691}
7692
6b2d7700 7693/* rq->lock to be locked by caller */
29f59db3
SV
7694static void set_se_shares(struct sched_entity *se, unsigned long shares)
7695{
7696 struct cfs_rq *cfs_rq = se->cfs_rq;
7697 struct rq *rq = cfs_rq->rq;
7698 int on_rq;
7699
6b2d7700
SV
7700 if (!shares)
7701 shares = MIN_GROUP_SHARES;
29f59db3
SV
7702
7703 on_rq = se->on_rq;
6b2d7700 7704 if (on_rq) {
29f59db3 7705 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7706 dec_cpu_load(rq, se->load.weight);
7707 }
29f59db3
SV
7708
7709 se->load.weight = shares;
7710 se->load.inv_weight = div64_64((1ULL<<32), shares);
7711
6b2d7700 7712 if (on_rq) {
29f59db3 7713 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7714 inc_cpu_load(rq, se->load.weight);
7715 }
29f59db3
SV
7716}
7717
4cf86d77 7718int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7719{
7720 int i;
6b2d7700
SV
7721 struct cfs_rq *cfs_rq;
7722 struct rq *rq;
c61935fd 7723
ec2c507f 7724 lock_task_group_list();
9b5b7751 7725 if (tg->shares == shares)
5cb350ba 7726 goto done;
29f59db3 7727
6b2d7700
SV
7728 if (shares < MIN_GROUP_SHARES)
7729 shares = MIN_GROUP_SHARES;
7730
7731 /*
7732 * Prevent any load balance activity (rebalance_shares,
7733 * load_balance_fair) from referring to this group first,
7734 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7735 */
7736 for_each_possible_cpu(i) {
7737 cfs_rq = tg->cfs_rq[i];
7738 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7739 }
7740
7741 /* wait for any ongoing reference to this group to finish */
7742 synchronize_sched();
7743
7744 /*
7745 * Now we are free to modify the group's share on each cpu
7746 * w/o tripping rebalance_share or load_balance_fair.
7747 */
9b5b7751 7748 tg->shares = shares;
6b2d7700
SV
7749 for_each_possible_cpu(i) {
7750 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7751 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7752 spin_unlock_irq(&cpu_rq(i)->lock);
7753 }
29f59db3 7754
6b2d7700
SV
7755 /*
7756 * Enable load balance activity on this group, by inserting it back on
7757 * each cpu's rq->leaf_cfs_rq_list.
7758 */
7759 for_each_possible_cpu(i) {
7760 rq = cpu_rq(i);
7761 cfs_rq = tg->cfs_rq[i];
7762 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7763 }
5cb350ba 7764done:
ec2c507f 7765 unlock_task_group_list();
9b5b7751 7766 return 0;
29f59db3
SV
7767}
7768
5cb350ba
DG
7769unsigned long sched_group_shares(struct task_group *tg)
7770{
7771 return tg->shares;
7772}
7773
6f505b16
PZ
7774/*
7775 * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
7776 */
7777int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
7778{
7779 struct task_group *tgi;
7780 unsigned long total = 0;
7781
7782 rcu_read_lock();
7783 list_for_each_entry_rcu(tgi, &task_groups, list)
7784 total += tgi->rt_ratio;
7785 rcu_read_unlock();
7786
7787 if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
7788 return -EINVAL;
7789
7790 tg->rt_ratio = rt_ratio;
7791 return 0;
7792}
7793
7794unsigned long sched_group_rt_ratio(struct task_group *tg)
7795{
7796 return tg->rt_ratio;
7797}
7798
3a252015 7799#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7800
7801#ifdef CONFIG_FAIR_CGROUP_SCHED
7802
7803/* return corresponding task_group object of a cgroup */
2b01dfe3 7804static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7805{
2b01dfe3
PM
7806 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7807 struct task_group, css);
68318b8e
SV
7808}
7809
7810static struct cgroup_subsys_state *
2b01dfe3 7811cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7812{
7813 struct task_group *tg;
7814
2b01dfe3 7815 if (!cgrp->parent) {
68318b8e 7816 /* This is early initialization for the top cgroup */
2b01dfe3 7817 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7818 return &init_task_group.css;
7819 }
7820
7821 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7822 if (cgrp->parent->parent)
68318b8e
SV
7823 return ERR_PTR(-EINVAL);
7824
7825 tg = sched_create_group();
7826 if (IS_ERR(tg))
7827 return ERR_PTR(-ENOMEM);
7828
7829 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7830 tg->css.cgroup = cgrp;
68318b8e
SV
7831
7832 return &tg->css;
7833}
7834
41a2d6cf
IM
7835static void
7836cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7837{
2b01dfe3 7838 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7839
7840 sched_destroy_group(tg);
7841}
7842
41a2d6cf
IM
7843static int
7844cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7845 struct task_struct *tsk)
68318b8e
SV
7846{
7847 /* We don't support RT-tasks being in separate groups */
7848 if (tsk->sched_class != &fair_sched_class)
7849 return -EINVAL;
7850
7851 return 0;
7852}
7853
7854static void
2b01dfe3 7855cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7856 struct cgroup *old_cont, struct task_struct *tsk)
7857{
7858 sched_move_task(tsk);
7859}
7860
2b01dfe3
PM
7861static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7862 u64 shareval)
68318b8e 7863{
2b01dfe3 7864 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7865}
7866
2b01dfe3 7867static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7868{
2b01dfe3 7869 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7870
7871 return (u64) tg->shares;
7872}
7873
6f505b16
PZ
7874static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7875 u64 rt_ratio_val)
7876{
7877 return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
7878}
7879
7880static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
7881{
7882 struct task_group *tg = cgroup_tg(cgrp);
7883
7884 return (u64) tg->rt_ratio;
7885}
7886
fe5c7cc2
PM
7887static struct cftype cpu_files[] = {
7888 {
7889 .name = "shares",
7890 .read_uint = cpu_shares_read_uint,
7891 .write_uint = cpu_shares_write_uint,
7892 },
6f505b16
PZ
7893 {
7894 .name = "rt_ratio",
7895 .read_uint = cpu_rt_ratio_read_uint,
7896 .write_uint = cpu_rt_ratio_write_uint,
7897 },
68318b8e
SV
7898};
7899
7900static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7901{
fe5c7cc2 7902 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7903}
7904
7905struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7906 .name = "cpu",
7907 .create = cpu_cgroup_create,
7908 .destroy = cpu_cgroup_destroy,
7909 .can_attach = cpu_cgroup_can_attach,
7910 .attach = cpu_cgroup_attach,
7911 .populate = cpu_cgroup_populate,
7912 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7913 .early_init = 1,
7914};
7915
7916#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7917
7918#ifdef CONFIG_CGROUP_CPUACCT
7919
7920/*
7921 * CPU accounting code for task groups.
7922 *
7923 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7924 * (balbir@in.ibm.com).
7925 */
7926
7927/* track cpu usage of a group of tasks */
7928struct cpuacct {
7929 struct cgroup_subsys_state css;
7930 /* cpuusage holds pointer to a u64-type object on every cpu */
7931 u64 *cpuusage;
7932};
7933
7934struct cgroup_subsys cpuacct_subsys;
7935
7936/* return cpu accounting group corresponding to this container */
7937static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7938{
7939 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7940 struct cpuacct, css);
7941}
7942
7943/* return cpu accounting group to which this task belongs */
7944static inline struct cpuacct *task_ca(struct task_struct *tsk)
7945{
7946 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7947 struct cpuacct, css);
7948}
7949
7950/* create a new cpu accounting group */
7951static struct cgroup_subsys_state *cpuacct_create(
7952 struct cgroup_subsys *ss, struct cgroup *cont)
7953{
7954 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7955
7956 if (!ca)
7957 return ERR_PTR(-ENOMEM);
7958
7959 ca->cpuusage = alloc_percpu(u64);
7960 if (!ca->cpuusage) {
7961 kfree(ca);
7962 return ERR_PTR(-ENOMEM);
7963 }
7964
7965 return &ca->css;
7966}
7967
7968/* destroy an existing cpu accounting group */
41a2d6cf
IM
7969static void
7970cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7971{
7972 struct cpuacct *ca = cgroup_ca(cont);
7973
7974 free_percpu(ca->cpuusage);
7975 kfree(ca);
7976}
7977
7978/* return total cpu usage (in nanoseconds) of a group */
7979static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7980{
7981 struct cpuacct *ca = cgroup_ca(cont);
7982 u64 totalcpuusage = 0;
7983 int i;
7984
7985 for_each_possible_cpu(i) {
7986 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7987
7988 /*
7989 * Take rq->lock to make 64-bit addition safe on 32-bit
7990 * platforms.
7991 */
7992 spin_lock_irq(&cpu_rq(i)->lock);
7993 totalcpuusage += *cpuusage;
7994 spin_unlock_irq(&cpu_rq(i)->lock);
7995 }
7996
7997 return totalcpuusage;
7998}
7999
8000static struct cftype files[] = {
8001 {
8002 .name = "usage",
8003 .read_uint = cpuusage_read,
8004 },
8005};
8006
8007static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8008{
8009 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8010}
8011
8012/*
8013 * charge this task's execution time to its accounting group.
8014 *
8015 * called with rq->lock held.
8016 */
8017static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8018{
8019 struct cpuacct *ca;
8020
8021 if (!cpuacct_subsys.active)
8022 return;
8023
8024 ca = task_ca(tsk);
8025 if (ca) {
8026 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8027
8028 *cpuusage += cputime;
8029 }
8030}
8031
8032struct cgroup_subsys cpuacct_subsys = {
8033 .name = "cpuacct",
8034 .create = cpuacct_create,
8035 .destroy = cpuacct_destroy,
8036 .populate = cpuacct_populate,
8037 .subsys_id = cpuacct_subsys_id,
8038};
8039#endif /* CONFIG_CGROUP_CPUACCT */