]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
alpha: Fix fallout from locking changes
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
c2f21ce2 887 rq->lock.rlock.owner = current;
da04c035 888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db
IM
1275{
1276 assert_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
dd41f596
IM
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
e1d1484f
PW
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
e1d1484f 1417#endif
dd41f596 1418
ef12fefa
BR
1419/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425};
1426
d842de87
SV
1427#ifdef CONFIG_CGROUP_CPUACCT
1428static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1429static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1431#else
1432static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1433static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1435#endif
1436
18d95a28
PZ
1437static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_add(&rq->load, load);
1440}
1441
1442static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_sub(&rq->load, load);
1445}
1446
7940ca36 1447#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1448typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1449
1450/*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
eb755805 1454static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1455{
1456 struct task_group *parent, *child;
eb755805 1457 int ret;
c09595f6
PZ
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461down:
eb755805
PZ
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
c09595f6
PZ
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469up:
1470 continue;
1471 }
eb755805
PZ
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
c09595f6
PZ
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
eb755805 1480out_unlock:
c09595f6 1481 rcu_read_unlock();
eb755805
PZ
1482
1483 return ret;
c09595f6
PZ
1484}
1485
eb755805
PZ
1486static int tg_nop(struct task_group *tg, void *data)
1487{
1488 return 0;
c09595f6 1489}
eb755805
PZ
1490#endif
1491
1492#ifdef CONFIG_SMP
f5f08f39
PZ
1493/* Used instead of source_load when we know the type == 0 */
1494static unsigned long weighted_cpuload(const int cpu)
1495{
1496 return cpu_rq(cpu)->load.weight;
1497}
1498
1499/*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506static unsigned long source_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515}
1516
1517/*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521static unsigned long target_load(int cpu, int type)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530}
1531
ae154be1
PZ
1532static struct sched_group *group_of(int cpu)
1533{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540}
1541
1542static unsigned long power_of(int cpu)
1543{
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550}
1551
eb755805
PZ
1552static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554static unsigned long cpu_avg_load_per_task(int cpu)
1555{
1556 struct rq *rq = cpu_rq(cpu);
af6d596f 1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1558
4cd42620
SR
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1561 else
1562 rq->avg_load_per_task = 0;
eb755805
PZ
1563
1564 return rq->avg_load_per_task;
1565}
1566
1567#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1568
4a6cc4bd 1569static __read_mostly unsigned long *update_shares_data;
34d76c41 1570
c09595f6
PZ
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573/*
1574 * Calculate and set the cpu's group shares.
1575 */
34d76c41
PZ
1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
4a6cc4bd 1579 unsigned long *usd_rq_weight)
18d95a28 1580{
34d76c41 1581 unsigned long shares, rq_weight;
a5004278 1582 int boost = 0;
c09595f6 1583
4a6cc4bd 1584 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
c8cba857 1589
c09595f6 1590 /*
a8af7246
PZ
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
c09595f6 1594 */
ec4e0e2f 1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1597
ffda12a1
PZ
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
c09595f6 1602
ffda12a1 1603 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1606 __set_se_shares(tg->se[cpu], shares);
1607 spin_unlock_irqrestore(&rq->lock, flags);
1608 }
18d95a28 1609}
c09595f6
PZ
1610
1611/*
c8cba857
PZ
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
c09595f6 1615 */
eb755805 1616static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1617{
cd8ad40d 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1619 unsigned long *usd_rq_weight;
eb755805 1620 struct sched_domain *sd = data;
34d76c41 1621 unsigned long flags;
c8cba857 1622 int i;
c09595f6 1623
34d76c41
PZ
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
4a6cc4bd 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1631 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1632 usd_rq_weight[i] = weight;
34d76c41 1633
cd8ad40d 1634 rq_weight += weight;
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
cd8ad40d 1643 sum_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
cd8ad40d
PZ
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
c8cba857
PZ
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
c09595f6 1655
758b2cdc 1656 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1658
1659 local_irq_restore(flags);
eb755805
PZ
1660
1661 return 0;
c09595f6
PZ
1662}
1663
1664/*
c8cba857
PZ
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
c09595f6 1668 */
eb755805 1669static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1670{
c8cba857 1671 unsigned long load;
eb755805 1672 long cpu = (long)data;
c09595f6 1673
c8cba857
PZ
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
c09595f6 1681
c8cba857 1682 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1683
eb755805 1684 return 0;
c09595f6
PZ
1685}
1686
c8cba857 1687static void update_shares(struct sched_domain *sd)
4d8d595d 1688{
e7097159
PZ
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
2398f2c6
PZ
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
eb755805 1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1701 }
4d8d595d
PZ
1702}
1703
3e5459b4
PZ
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
e7097159
PZ
1706 if (root_task_group_empty())
1707 return;
1708
3e5459b4
PZ
1709 spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 spin_lock(&rq->lock);
1712}
1713
eb755805 1714static void update_h_load(long cpu)
c09595f6 1715{
e7097159
PZ
1716 if (root_task_group_empty())
1717 return;
1718
eb755805 1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1720}
1721
c09595f6
PZ
1722#else
1723
c8cba857 1724static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1725{
1726}
1727
3e5459b4
PZ
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
18d95a28
PZ
1732#endif
1733
8f45e2b5
GH
1734#ifdef CONFIG_PREEMPT
1735
b78bb868
PZ
1736static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
70574a99 1738/*
8f45e2b5
GH
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
70574a99 1745 */
8f45e2b5
GH
1746static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750{
1751 spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755}
1756
1757#else
1758/*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769{
1770 int ret = 0;
1771
70574a99
AD
1772 if (unlikely(!spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 spin_unlock(&this_rq->lock);
1775 spin_lock(&busiest->lock);
1776 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1777 ret = 1;
1778 } else
1779 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1780 }
1781 return ret;
1782}
1783
8f45e2b5
GH
1784#endif /* CONFIG_PREEMPT */
1785
1786/*
1787 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1788 */
1789static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1790{
1791 if (unlikely(!irqs_disabled())) {
1792 /* printk() doesn't work good under rq->lock */
1793 spin_unlock(&this_rq->lock);
1794 BUG_ON(1);
1795 }
1796
1797 return _double_lock_balance(this_rq, busiest);
1798}
1799
70574a99
AD
1800static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1801 __releases(busiest->lock)
1802{
1803 spin_unlock(&busiest->lock);
1804 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1805}
18d95a28
PZ
1806#endif
1807
30432094 1808#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1809static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810{
30432094 1811#ifdef CONFIG_SMP
34e83e85
IM
1812 cfs_rq->shares = shares;
1813#endif
1814}
30432094 1815#endif
e7693a36 1816
dce48a84 1817static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1818static void update_sysctl(void);
acb4a848 1819static int get_update_sysctl_factor(void);
dce48a84 1820
cd29fe6f
PZ
1821static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822{
1823 set_task_rq(p, cpu);
1824#ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832#endif
1833}
dce48a84 1834
dd41f596 1835#include "sched_stats.h"
dd41f596 1836#include "sched_idletask.c"
5522d5d5
IM
1837#include "sched_fair.c"
1838#include "sched_rt.c"
dd41f596
IM
1839#ifdef CONFIG_SCHED_DEBUG
1840# include "sched_debug.c"
1841#endif
1842
1843#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1844#define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
dd41f596 1846
c09595f6 1847static void inc_nr_running(struct rq *rq)
9c217245
IM
1848{
1849 rq->nr_running++;
9c217245
IM
1850}
1851
c09595f6 1852static void dec_nr_running(struct rq *rq)
9c217245
IM
1853{
1854 rq->nr_running--;
9c217245
IM
1855}
1856
45bf76df
IM
1857static void set_load_weight(struct task_struct *p)
1858{
1859 if (task_has_rt_policy(p)) {
dd41f596
IM
1860 p->se.load.weight = prio_to_weight[0] * 2;
1861 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1862 return;
1863 }
45bf76df 1864
dd41f596
IM
1865 /*
1866 * SCHED_IDLE tasks get minimal weight:
1867 */
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1872 }
71f8bd46 1873
dd41f596
IM
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1876}
1877
2087a1ad
GH
1878static void update_avg(u64 *avg, u64 sample)
1879{
1880 s64 diff = sample - *avg;
1881 *avg += diff >> 3;
1882}
1883
8159f87e 1884static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1885{
831451ac
PZ
1886 if (wakeup)
1887 p->se.start_runtime = p->se.sum_exec_runtime;
1888
dd41f596 1889 sched_info_queued(p);
fd390f6a 1890 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1891 p->se.on_rq = 1;
71f8bd46
IM
1892}
1893
69be72c1 1894static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1895{
831451ac
PZ
1896 if (sleep) {
1897 if (p->se.last_wakeup) {
1898 update_avg(&p->se.avg_overlap,
1899 p->se.sum_exec_runtime - p->se.last_wakeup);
1900 p->se.last_wakeup = 0;
1901 } else {
1902 update_avg(&p->se.avg_wakeup,
1903 sysctl_sched_wakeup_granularity);
1904 }
2087a1ad
GH
1905 }
1906
46ac22ba 1907 sched_info_dequeued(p);
f02231e5 1908 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1909 p->se.on_rq = 0;
71f8bd46
IM
1910}
1911
14531189 1912/*
dd41f596 1913 * __normal_prio - return the priority that is based on the static prio
14531189 1914 */
14531189
IM
1915static inline int __normal_prio(struct task_struct *p)
1916{
dd41f596 1917 return p->static_prio;
14531189
IM
1918}
1919
b29739f9
IM
1920/*
1921 * Calculate the expected normal priority: i.e. priority
1922 * without taking RT-inheritance into account. Might be
1923 * boosted by interactivity modifiers. Changes upon fork,
1924 * setprio syscalls, and whenever the interactivity
1925 * estimator recalculates.
1926 */
36c8b586 1927static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1928{
1929 int prio;
1930
e05606d3 1931 if (task_has_rt_policy(p))
b29739f9
IM
1932 prio = MAX_RT_PRIO-1 - p->rt_priority;
1933 else
1934 prio = __normal_prio(p);
1935 return prio;
1936}
1937
1938/*
1939 * Calculate the current priority, i.e. the priority
1940 * taken into account by the scheduler. This value might
1941 * be boosted by RT tasks, or might be boosted by
1942 * interactivity modifiers. Will be RT if the task got
1943 * RT-boosted. If not then it returns p->normal_prio.
1944 */
36c8b586 1945static int effective_prio(struct task_struct *p)
b29739f9
IM
1946{
1947 p->normal_prio = normal_prio(p);
1948 /*
1949 * If we are RT tasks or we were boosted to RT priority,
1950 * keep the priority unchanged. Otherwise, update priority
1951 * to the normal priority:
1952 */
1953 if (!rt_prio(p->prio))
1954 return p->normal_prio;
1955 return p->prio;
1956}
1957
1da177e4 1958/*
dd41f596 1959 * activate_task - move a task to the runqueue.
1da177e4 1960 */
dd41f596 1961static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1962{
d9514f6c 1963 if (task_contributes_to_load(p))
dd41f596 1964 rq->nr_uninterruptible--;
1da177e4 1965
8159f87e 1966 enqueue_task(rq, p, wakeup);
c09595f6 1967 inc_nr_running(rq);
1da177e4
LT
1968}
1969
1da177e4
LT
1970/*
1971 * deactivate_task - remove a task from the runqueue.
1972 */
2e1cb74a 1973static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1974{
d9514f6c 1975 if (task_contributes_to_load(p))
dd41f596
IM
1976 rq->nr_uninterruptible++;
1977
69be72c1 1978 dequeue_task(rq, p, sleep);
c09595f6 1979 dec_nr_running(rq);
1da177e4
LT
1980}
1981
1da177e4
LT
1982/**
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1985 */
36c8b586 1986inline int task_curr(const struct task_struct *p)
1da177e4
LT
1987{
1988 return cpu_curr(task_cpu(p)) == p;
1989}
1990
cb469845
SR
1991static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994{
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001}
2002
b84ff7d6
MG
2003/**
2004 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 2005 * @p: thread created by kthread_create().
b84ff7d6
MG
2006 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2007 *
2008 * Description: This function is equivalent to set_cpus_allowed(),
2009 * except that @cpu doesn't need to be online, and the thread must be
2010 * stopped (i.e., just returned from kthread_create()).
2011 *
2012 * Function lives here instead of kthread.c because it messes with
2013 * scheduler internals which require locking.
2014 */
2015void kthread_bind(struct task_struct *p, unsigned int cpu)
2016{
2017 struct rq *rq = cpu_rq(cpu);
2018 unsigned long flags;
2019
2020 /* Must have done schedule() in kthread() before we set_task_cpu */
2021 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2022 WARN_ON(1);
2023 return;
2024 }
2025
2026 spin_lock_irqsave(&rq->lock, flags);
055a0086 2027 update_rq_clock(rq);
b84ff7d6
MG
2028 set_task_cpu(p, cpu);
2029 p->cpus_allowed = cpumask_of_cpu(cpu);
2030 p->rt.nr_cpus_allowed = 1;
2031 p->flags |= PF_THREAD_BOUND;
2032 spin_unlock_irqrestore(&rq->lock, flags);
2033}
2034EXPORT_SYMBOL(kthread_bind);
2035
1da177e4 2036#ifdef CONFIG_SMP
cc367732
IM
2037/*
2038 * Is this task likely cache-hot:
2039 */
e7693a36 2040static int
cc367732
IM
2041task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2042{
2043 s64 delta;
2044
f540a608
IM
2045 /*
2046 * Buddy candidates are cache hot:
2047 */
f685ceac 2048 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2049 (&p->se == cfs_rq_of(&p->se)->next ||
2050 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2051 return 1;
2052
cc367732
IM
2053 if (p->sched_class != &fair_sched_class)
2054 return 0;
2055
6bc1665b
IM
2056 if (sysctl_sched_migration_cost == -1)
2057 return 1;
2058 if (sysctl_sched_migration_cost == 0)
2059 return 0;
2060
cc367732
IM
2061 delta = now - p->se.exec_start;
2062
2063 return delta < (s64)sysctl_sched_migration_cost;
2064}
2065
2066
dd41f596 2067void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2068{
dd41f596 2069 int old_cpu = task_cpu(p);
2830cf8c
SV
2070 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2071 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2072
de1d7286 2073 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2074
cc367732 2075 if (old_cpu != new_cpu) {
6c594c21 2076 p->se.nr_migrations++;
cdd6c482 2077 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2078 1, 1, NULL, 0);
6c594c21 2079 }
2830cf8c
SV
2080 p->se.vruntime -= old_cfsrq->min_vruntime -
2081 new_cfsrq->min_vruntime;
dd41f596
IM
2082
2083 __set_task_cpu(p, new_cpu);
c65cc870
IM
2084}
2085
70b97a7f 2086struct migration_req {
1da177e4 2087 struct list_head list;
1da177e4 2088
36c8b586 2089 struct task_struct *task;
1da177e4
LT
2090 int dest_cpu;
2091
1da177e4 2092 struct completion done;
70b97a7f 2093};
1da177e4
LT
2094
2095/*
2096 * The task's runqueue lock must be held.
2097 * Returns true if you have to wait for migration thread.
2098 */
36c8b586 2099static int
70b97a7f 2100migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2101{
70b97a7f 2102 struct rq *rq = task_rq(p);
1da177e4
LT
2103
2104 /*
2105 * If the task is not on a runqueue (and not running), then
2106 * it is sufficient to simply update the task's cpu field.
2107 */
dd41f596 2108 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2109 update_rq_clock(rq);
1da177e4
LT
2110 set_task_cpu(p, dest_cpu);
2111 return 0;
2112 }
2113
2114 init_completion(&req->done);
1da177e4
LT
2115 req->task = p;
2116 req->dest_cpu = dest_cpu;
2117 list_add(&req->list, &rq->migration_queue);
48f24c4d 2118
1da177e4
LT
2119 return 1;
2120}
2121
a26b89f0
MM
2122/*
2123 * wait_task_context_switch - wait for a thread to complete at least one
2124 * context switch.
2125 *
2126 * @p must not be current.
2127 */
2128void wait_task_context_switch(struct task_struct *p)
2129{
2130 unsigned long nvcsw, nivcsw, flags;
2131 int running;
2132 struct rq *rq;
2133
2134 nvcsw = p->nvcsw;
2135 nivcsw = p->nivcsw;
2136 for (;;) {
2137 /*
2138 * The runqueue is assigned before the actual context
2139 * switch. We need to take the runqueue lock.
2140 *
2141 * We could check initially without the lock but it is
2142 * very likely that we need to take the lock in every
2143 * iteration.
2144 */
2145 rq = task_rq_lock(p, &flags);
2146 running = task_running(rq, p);
2147 task_rq_unlock(rq, &flags);
2148
2149 if (likely(!running))
2150 break;
2151 /*
2152 * The switch count is incremented before the actual
2153 * context switch. We thus wait for two switches to be
2154 * sure at least one completed.
2155 */
2156 if ((p->nvcsw - nvcsw) > 1)
2157 break;
2158 if ((p->nivcsw - nivcsw) > 1)
2159 break;
2160
2161 cpu_relax();
2162 }
2163}
2164
1da177e4
LT
2165/*
2166 * wait_task_inactive - wait for a thread to unschedule.
2167 *
85ba2d86
RM
2168 * If @match_state is nonzero, it's the @p->state value just checked and
2169 * not expected to change. If it changes, i.e. @p might have woken up,
2170 * then return zero. When we succeed in waiting for @p to be off its CPU,
2171 * we return a positive number (its total switch count). If a second call
2172 * a short while later returns the same number, the caller can be sure that
2173 * @p has remained unscheduled the whole time.
2174 *
1da177e4
LT
2175 * The caller must ensure that the task *will* unschedule sometime soon,
2176 * else this function might spin for a *long* time. This function can't
2177 * be called with interrupts off, or it may introduce deadlock with
2178 * smp_call_function() if an IPI is sent by the same process we are
2179 * waiting to become inactive.
2180 */
85ba2d86 2181unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2182{
2183 unsigned long flags;
dd41f596 2184 int running, on_rq;
85ba2d86 2185 unsigned long ncsw;
70b97a7f 2186 struct rq *rq;
1da177e4 2187
3a5c359a
AK
2188 for (;;) {
2189 /*
2190 * We do the initial early heuristics without holding
2191 * any task-queue locks at all. We'll only try to get
2192 * the runqueue lock when things look like they will
2193 * work out!
2194 */
2195 rq = task_rq(p);
fa490cfd 2196
3a5c359a
AK
2197 /*
2198 * If the task is actively running on another CPU
2199 * still, just relax and busy-wait without holding
2200 * any locks.
2201 *
2202 * NOTE! Since we don't hold any locks, it's not
2203 * even sure that "rq" stays as the right runqueue!
2204 * But we don't care, since "task_running()" will
2205 * return false if the runqueue has changed and p
2206 * is actually now running somewhere else!
2207 */
85ba2d86
RM
2208 while (task_running(rq, p)) {
2209 if (match_state && unlikely(p->state != match_state))
2210 return 0;
3a5c359a 2211 cpu_relax();
85ba2d86 2212 }
fa490cfd 2213
3a5c359a
AK
2214 /*
2215 * Ok, time to look more closely! We need the rq
2216 * lock now, to be *sure*. If we're wrong, we'll
2217 * just go back and repeat.
2218 */
2219 rq = task_rq_lock(p, &flags);
0a16b607 2220 trace_sched_wait_task(rq, p);
3a5c359a
AK
2221 running = task_running(rq, p);
2222 on_rq = p->se.on_rq;
85ba2d86 2223 ncsw = 0;
f31e11d8 2224 if (!match_state || p->state == match_state)
93dcf55f 2225 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2226 task_rq_unlock(rq, &flags);
fa490cfd 2227
85ba2d86
RM
2228 /*
2229 * If it changed from the expected state, bail out now.
2230 */
2231 if (unlikely(!ncsw))
2232 break;
2233
3a5c359a
AK
2234 /*
2235 * Was it really running after all now that we
2236 * checked with the proper locks actually held?
2237 *
2238 * Oops. Go back and try again..
2239 */
2240 if (unlikely(running)) {
2241 cpu_relax();
2242 continue;
2243 }
fa490cfd 2244
3a5c359a
AK
2245 /*
2246 * It's not enough that it's not actively running,
2247 * it must be off the runqueue _entirely_, and not
2248 * preempted!
2249 *
80dd99b3 2250 * So if it was still runnable (but just not actively
3a5c359a
AK
2251 * running right now), it's preempted, and we should
2252 * yield - it could be a while.
2253 */
2254 if (unlikely(on_rq)) {
2255 schedule_timeout_uninterruptible(1);
2256 continue;
2257 }
fa490cfd 2258
3a5c359a
AK
2259 /*
2260 * Ahh, all good. It wasn't running, and it wasn't
2261 * runnable, which means that it will never become
2262 * running in the future either. We're all done!
2263 */
2264 break;
2265 }
85ba2d86
RM
2266
2267 return ncsw;
1da177e4
LT
2268}
2269
2270/***
2271 * kick_process - kick a running thread to enter/exit the kernel
2272 * @p: the to-be-kicked thread
2273 *
2274 * Cause a process which is running on another CPU to enter
2275 * kernel-mode, without any delay. (to get signals handled.)
2276 *
2277 * NOTE: this function doesnt have to take the runqueue lock,
2278 * because all it wants to ensure is that the remote task enters
2279 * the kernel. If the IPI races and the task has been migrated
2280 * to another CPU then no harm is done and the purpose has been
2281 * achieved as well.
2282 */
36c8b586 2283void kick_process(struct task_struct *p)
1da177e4
LT
2284{
2285 int cpu;
2286
2287 preempt_disable();
2288 cpu = task_cpu(p);
2289 if ((cpu != smp_processor_id()) && task_curr(p))
2290 smp_send_reschedule(cpu);
2291 preempt_enable();
2292}
b43e3521 2293EXPORT_SYMBOL_GPL(kick_process);
476d139c 2294#endif /* CONFIG_SMP */
1da177e4 2295
0793a61d
TG
2296/**
2297 * task_oncpu_function_call - call a function on the cpu on which a task runs
2298 * @p: the task to evaluate
2299 * @func: the function to be called
2300 * @info: the function call argument
2301 *
2302 * Calls the function @func when the task is currently running. This might
2303 * be on the current CPU, which just calls the function directly
2304 */
2305void task_oncpu_function_call(struct task_struct *p,
2306 void (*func) (void *info), void *info)
2307{
2308 int cpu;
2309
2310 preempt_disable();
2311 cpu = task_cpu(p);
2312 if (task_curr(p))
2313 smp_call_function_single(cpu, func, info, 1);
2314 preempt_enable();
2315}
2316
970b13ba
PZ
2317#ifdef CONFIG_SMP
2318static inline
2319int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2320{
2321 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2322}
2323#endif
2324
1da177e4
LT
2325/***
2326 * try_to_wake_up - wake up a thread
2327 * @p: the to-be-woken-up thread
2328 * @state: the mask of task states that can be woken
2329 * @sync: do a synchronous wakeup?
2330 *
2331 * Put it on the run-queue if it's not already there. The "current"
2332 * thread is always on the run-queue (except when the actual
2333 * re-schedule is in progress), and as such you're allowed to do
2334 * the simpler "current->state = TASK_RUNNING" to mark yourself
2335 * runnable without the overhead of this.
2336 *
2337 * returns failure only if the task is already active.
2338 */
7d478721
PZ
2339static int try_to_wake_up(struct task_struct *p, unsigned int state,
2340 int wake_flags)
1da177e4 2341{
cc367732 2342 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2343 unsigned long flags;
f5dc3753 2344 struct rq *rq, *orig_rq;
1da177e4 2345
b85d0667 2346 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2347 wake_flags &= ~WF_SYNC;
2398f2c6 2348
e9c84311 2349 this_cpu = get_cpu();
2398f2c6 2350
04e2f174 2351 smp_wmb();
f5dc3753 2352 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2353 update_rq_clock(rq);
e9c84311 2354 if (!(p->state & state))
1da177e4
LT
2355 goto out;
2356
dd41f596 2357 if (p->se.on_rq)
1da177e4
LT
2358 goto out_running;
2359
2360 cpu = task_cpu(p);
cc367732 2361 orig_cpu = cpu;
1da177e4
LT
2362
2363#ifdef CONFIG_SMP
2364 if (unlikely(task_running(rq, p)))
2365 goto out_activate;
2366
e9c84311
PZ
2367 /*
2368 * In order to handle concurrent wakeups and release the rq->lock
2369 * we put the task in TASK_WAKING state.
eb24073b
IM
2370 *
2371 * First fix up the nr_uninterruptible count:
e9c84311 2372 */
eb24073b
IM
2373 if (task_contributes_to_load(p))
2374 rq->nr_uninterruptible--;
e9c84311 2375 p->state = TASK_WAKING;
ab19cb23 2376 __task_rq_unlock(rq);
e9c84311 2377
970b13ba 2378 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2379 if (cpu != orig_cpu)
5d2f5a61 2380 set_task_cpu(p, cpu);
ab19cb23
PZ
2381
2382 rq = __task_rq_lock(p);
2383 update_rq_clock(rq);
f5dc3753 2384
e9c84311
PZ
2385 WARN_ON(p->state != TASK_WAKING);
2386 cpu = task_cpu(p);
1da177e4 2387
e7693a36
GH
2388#ifdef CONFIG_SCHEDSTATS
2389 schedstat_inc(rq, ttwu_count);
2390 if (cpu == this_cpu)
2391 schedstat_inc(rq, ttwu_local);
2392 else {
2393 struct sched_domain *sd;
2394 for_each_domain(this_cpu, sd) {
758b2cdc 2395 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2396 schedstat_inc(sd, ttwu_wake_remote);
2397 break;
2398 }
2399 }
2400 }
6d6bc0ad 2401#endif /* CONFIG_SCHEDSTATS */
e7693a36 2402
1da177e4
LT
2403out_activate:
2404#endif /* CONFIG_SMP */
cc367732 2405 schedstat_inc(p, se.nr_wakeups);
7d478721 2406 if (wake_flags & WF_SYNC)
cc367732
IM
2407 schedstat_inc(p, se.nr_wakeups_sync);
2408 if (orig_cpu != cpu)
2409 schedstat_inc(p, se.nr_wakeups_migrate);
2410 if (cpu == this_cpu)
2411 schedstat_inc(p, se.nr_wakeups_local);
2412 else
2413 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2414 activate_task(rq, p, 1);
1da177e4
LT
2415 success = 1;
2416
831451ac
PZ
2417 /*
2418 * Only attribute actual wakeups done by this task.
2419 */
2420 if (!in_interrupt()) {
2421 struct sched_entity *se = &current->se;
2422 u64 sample = se->sum_exec_runtime;
2423
2424 if (se->last_wakeup)
2425 sample -= se->last_wakeup;
2426 else
2427 sample -= se->start_runtime;
2428 update_avg(&se->avg_wakeup, sample);
2429
2430 se->last_wakeup = se->sum_exec_runtime;
2431 }
2432
1da177e4 2433out_running:
468a15bb 2434 trace_sched_wakeup(rq, p, success);
7d478721 2435 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2436
1da177e4 2437 p->state = TASK_RUNNING;
9a897c5a
SR
2438#ifdef CONFIG_SMP
2439 if (p->sched_class->task_wake_up)
2440 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2441
2442 if (unlikely(rq->idle_stamp)) {
2443 u64 delta = rq->clock - rq->idle_stamp;
2444 u64 max = 2*sysctl_sched_migration_cost;
2445
2446 if (delta > max)
2447 rq->avg_idle = max;
2448 else
2449 update_avg(&rq->avg_idle, delta);
2450 rq->idle_stamp = 0;
2451 }
9a897c5a 2452#endif
1da177e4
LT
2453out:
2454 task_rq_unlock(rq, &flags);
e9c84311 2455 put_cpu();
1da177e4
LT
2456
2457 return success;
2458}
2459
50fa610a
DH
2460/**
2461 * wake_up_process - Wake up a specific process
2462 * @p: The process to be woken up.
2463 *
2464 * Attempt to wake up the nominated process and move it to the set of runnable
2465 * processes. Returns 1 if the process was woken up, 0 if it was already
2466 * running.
2467 *
2468 * It may be assumed that this function implies a write memory barrier before
2469 * changing the task state if and only if any tasks are woken up.
2470 */
7ad5b3a5 2471int wake_up_process(struct task_struct *p)
1da177e4 2472{
d9514f6c 2473 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2474}
1da177e4
LT
2475EXPORT_SYMBOL(wake_up_process);
2476
7ad5b3a5 2477int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2478{
2479 return try_to_wake_up(p, state, 0);
2480}
2481
1da177e4
LT
2482/*
2483 * Perform scheduler related setup for a newly forked process p.
2484 * p is forked by current.
dd41f596
IM
2485 *
2486 * __sched_fork() is basic setup used by init_idle() too:
2487 */
2488static void __sched_fork(struct task_struct *p)
2489{
dd41f596
IM
2490 p->se.exec_start = 0;
2491 p->se.sum_exec_runtime = 0;
f6cf891c 2492 p->se.prev_sum_exec_runtime = 0;
6c594c21 2493 p->se.nr_migrations = 0;
4ae7d5ce
IM
2494 p->se.last_wakeup = 0;
2495 p->se.avg_overlap = 0;
831451ac
PZ
2496 p->se.start_runtime = 0;
2497 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2498
2499#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2500 p->se.wait_start = 0;
2501 p->se.wait_max = 0;
2502 p->se.wait_count = 0;
2503 p->se.wait_sum = 0;
2504
2505 p->se.sleep_start = 0;
2506 p->se.sleep_max = 0;
2507 p->se.sum_sleep_runtime = 0;
2508
2509 p->se.block_start = 0;
2510 p->se.block_max = 0;
2511 p->se.exec_max = 0;
2512 p->se.slice_max = 0;
2513
2514 p->se.nr_migrations_cold = 0;
2515 p->se.nr_failed_migrations_affine = 0;
2516 p->se.nr_failed_migrations_running = 0;
2517 p->se.nr_failed_migrations_hot = 0;
2518 p->se.nr_forced_migrations = 0;
7793527b
LDM
2519
2520 p->se.nr_wakeups = 0;
2521 p->se.nr_wakeups_sync = 0;
2522 p->se.nr_wakeups_migrate = 0;
2523 p->se.nr_wakeups_local = 0;
2524 p->se.nr_wakeups_remote = 0;
2525 p->se.nr_wakeups_affine = 0;
2526 p->se.nr_wakeups_affine_attempts = 0;
2527 p->se.nr_wakeups_passive = 0;
2528 p->se.nr_wakeups_idle = 0;
2529
6cfb0d5d 2530#endif
476d139c 2531
fa717060 2532 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2533 p->se.on_rq = 0;
4a55bd5e 2534 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2535
e107be36
AK
2536#ifdef CONFIG_PREEMPT_NOTIFIERS
2537 INIT_HLIST_HEAD(&p->preempt_notifiers);
2538#endif
2539
1da177e4
LT
2540 /*
2541 * We mark the process as running here, but have not actually
2542 * inserted it onto the runqueue yet. This guarantees that
2543 * nobody will actually run it, and a signal or other external
2544 * event cannot wake it up and insert it on the runqueue either.
2545 */
2546 p->state = TASK_RUNNING;
dd41f596
IM
2547}
2548
2549/*
2550 * fork()/clone()-time setup:
2551 */
2552void sched_fork(struct task_struct *p, int clone_flags)
2553{
2554 int cpu = get_cpu();
2555
2556 __sched_fork(p);
2557
b9dc29e7
MG
2558 /*
2559 * Revert to default priority/policy on fork if requested.
2560 */
2561 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2562 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2563 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2564 p->normal_prio = p->static_prio;
2565 }
b9dc29e7 2566
6c697bdf
MG
2567 if (PRIO_TO_NICE(p->static_prio) < 0) {
2568 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2569 p->normal_prio = p->static_prio;
6c697bdf
MG
2570 set_load_weight(p);
2571 }
2572
b9dc29e7
MG
2573 /*
2574 * We don't need the reset flag anymore after the fork. It has
2575 * fulfilled its duty:
2576 */
2577 p->sched_reset_on_fork = 0;
2578 }
ca94c442 2579
f83f9ac2
PW
2580 /*
2581 * Make sure we do not leak PI boosting priority to the child.
2582 */
2583 p->prio = current->normal_prio;
2584
2ddbf952
HS
2585 if (!rt_prio(p->prio))
2586 p->sched_class = &fair_sched_class;
b29739f9 2587
cd29fe6f
PZ
2588 if (p->sched_class->task_fork)
2589 p->sched_class->task_fork(p);
2590
5f3edc1b 2591#ifdef CONFIG_SMP
970b13ba 2592 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2593#endif
2594 set_task_cpu(p, cpu);
2595
52f17b6c 2596#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2597 if (likely(sched_info_on()))
52f17b6c 2598 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2599#endif
d6077cb8 2600#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2601 p->oncpu = 0;
2602#endif
1da177e4 2603#ifdef CONFIG_PREEMPT
4866cde0 2604 /* Want to start with kernel preemption disabled. */
a1261f54 2605 task_thread_info(p)->preempt_count = 1;
1da177e4 2606#endif
917b627d
GH
2607 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2608
476d139c 2609 put_cpu();
1da177e4
LT
2610}
2611
2612/*
2613 * wake_up_new_task - wake up a newly created task for the first time.
2614 *
2615 * This function will do some initial scheduler statistics housekeeping
2616 * that must be done for every newly created context, then puts the task
2617 * on the runqueue and wakes it.
2618 */
7ad5b3a5 2619void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2620{
2621 unsigned long flags;
dd41f596 2622 struct rq *rq;
1da177e4
LT
2623
2624 rq = task_rq_lock(p, &flags);
147cbb4b 2625 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2626 update_rq_clock(rq);
cd29fe6f 2627 activate_task(rq, p, 0);
c71dd42d 2628 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2629 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2630#ifdef CONFIG_SMP
2631 if (p->sched_class->task_wake_up)
2632 p->sched_class->task_wake_up(rq, p);
2633#endif
dd41f596 2634 task_rq_unlock(rq, &flags);
1da177e4
LT
2635}
2636
e107be36
AK
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638
2639/**
80dd99b3 2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2641 * @notifier: notifier struct to register
e107be36
AK
2642 */
2643void preempt_notifier_register(struct preempt_notifier *notifier)
2644{
2645 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646}
2647EXPORT_SYMBOL_GPL(preempt_notifier_register);
2648
2649/**
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2651 * @notifier: notifier struct to unregister
e107be36
AK
2652 *
2653 * This is safe to call from within a preemption notifier.
2654 */
2655void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656{
2657 hlist_del(&notifier->link);
2658}
2659EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660
2661static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662{
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2668}
2669
2670static void
2671fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673{
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2676
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_out(notifier, next);
2679}
2680
6d6bc0ad 2681#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2682
2683static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2684{
2685}
2686
2687static void
2688fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690{
2691}
2692
6d6bc0ad 2693#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2694
4866cde0
NP
2695/**
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
421cee29 2698 * @prev: the current task that is being switched out
4866cde0
NP
2699 * @next: the task we are going to switch to.
2700 *
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2704 *
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2707 */
e107be36
AK
2708static inline void
2709prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710 struct task_struct *next)
4866cde0 2711{
e107be36 2712 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2713 prepare_lock_switch(rq, next);
2714 prepare_arch_switch(next);
2715}
2716
1da177e4
LT
2717/**
2718 * finish_task_switch - clean up after a task-switch
344babaa 2719 * @rq: runqueue associated with task-switch
1da177e4
LT
2720 * @prev: the thread we just switched away from.
2721 *
4866cde0
NP
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2726 *
2727 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2728 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2731 */
a9957449 2732static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2733 __releases(rq->lock)
2734{
1da177e4 2735 struct mm_struct *mm = rq->prev_mm;
55a101f8 2736 long prev_state;
1da177e4
LT
2737
2738 rq->prev_mm = NULL;
2739
2740 /*
2741 * A task struct has one reference for the use as "current".
c394cc9f 2742 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2743 * schedule one last time. The schedule call will never return, and
2744 * the scheduled task must drop that reference.
c394cc9f 2745 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2746 * still held, otherwise prev could be scheduled on another cpu, die
2747 * there before we look at prev->state, and then the reference would
2748 * be dropped twice.
2749 * Manfred Spraul <manfred@colorfullife.com>
2750 */
55a101f8 2751 prev_state = prev->state;
4866cde0 2752 finish_arch_switch(prev);
cdd6c482 2753 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2754 finish_lock_switch(rq, prev);
e8fa1362 2755
e107be36 2756 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2757 if (mm)
2758 mmdrop(mm);
c394cc9f 2759 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
9761eea8 2763 */
c6fd91f0 2764 kprobe_flush_task(prev);
1da177e4 2765 put_task_struct(prev);
c6fd91f0 2766 }
1da177e4
LT
2767}
2768
3f029d3c
GH
2769#ifdef CONFIG_SMP
2770
2771/* assumes rq->lock is held */
2772static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773{
2774 if (prev->sched_class->pre_schedule)
2775 prev->sched_class->pre_schedule(rq, prev);
2776}
2777
2778/* rq->lock is NOT held, but preemption is disabled */
2779static inline void post_schedule(struct rq *rq)
2780{
2781 if (rq->post_schedule) {
2782 unsigned long flags;
2783
2784 spin_lock_irqsave(&rq->lock, flags);
2785 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq);
2787 spin_unlock_irqrestore(&rq->lock, flags);
2788
2789 rq->post_schedule = 0;
2790 }
2791}
2792
2793#else
da19ab51 2794
3f029d3c
GH
2795static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796{
2797}
2798
2799static inline void post_schedule(struct rq *rq)
2800{
1da177e4
LT
2801}
2802
3f029d3c
GH
2803#endif
2804
1da177e4
LT
2805/**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
36c8b586 2809asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2810 __releases(rq->lock)
2811{
70b97a7f
IM
2812 struct rq *rq = this_rq();
2813
4866cde0 2814 finish_task_switch(rq, prev);
da19ab51 2815
3f029d3c
GH
2816 /*
2817 * FIXME: do we need to worry about rq being invalidated by the
2818 * task_switch?
2819 */
2820 post_schedule(rq);
70b97a7f 2821
4866cde0
NP
2822#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2824 preempt_enable();
2825#endif
1da177e4 2826 if (current->set_child_tid)
b488893a 2827 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2828}
2829
2830/*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
dd41f596 2834static inline void
70b97a7f 2835context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2836 struct task_struct *next)
1da177e4 2837{
dd41f596 2838 struct mm_struct *mm, *oldmm;
1da177e4 2839
e107be36 2840 prepare_task_switch(rq, prev, next);
0a16b607 2841 trace_sched_switch(rq, prev, next);
dd41f596
IM
2842 mm = next->mm;
2843 oldmm = prev->active_mm;
9226d125
ZA
2844 /*
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2847 * one hypercall.
2848 */
224101ed 2849 arch_start_context_switch(prev);
9226d125 2850
710390d9 2851 if (likely(!mm)) {
1da177e4
LT
2852 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next);
2855 } else
2856 switch_mm(oldmm, mm, next);
2857
710390d9 2858 if (likely(!prev->mm)) {
1da177e4 2859 prev->active_mm = NULL;
1da177e4
LT
2860 rq->prev_mm = oldmm;
2861 }
3a5f5e48
IM
2862 /*
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2867 */
2868#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2870#endif
1da177e4
LT
2871
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev, next, prev);
2874
dd41f596
IM
2875 barrier();
2876 /*
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2880 */
2881 finish_task_switch(this_rq(), prev);
1da177e4
LT
2882}
2883
2884/*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891unsigned long nr_running(void)
2892{
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
2899}
2900
2901unsigned long nr_uninterruptible(void)
2902{
2903 unsigned long i, sum = 0;
2904
0a945022 2905 for_each_possible_cpu(i)
1da177e4
LT
2906 sum += cpu_rq(i)->nr_uninterruptible;
2907
2908 /*
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
2911 */
2912 if (unlikely((long)sum < 0))
2913 sum = 0;
2914
2915 return sum;
2916}
2917
2918unsigned long long nr_context_switches(void)
2919{
cc94abfc
SR
2920 int i;
2921 unsigned long long sum = 0;
1da177e4 2922
0a945022 2923 for_each_possible_cpu(i)
1da177e4
LT
2924 sum += cpu_rq(i)->nr_switches;
2925
2926 return sum;
2927}
2928
2929unsigned long nr_iowait(void)
2930{
2931 unsigned long i, sum = 0;
2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4
LT
2934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935
2936 return sum;
2937}
2938
69d25870
AV
2939unsigned long nr_iowait_cpu(void)
2940{
2941 struct rq *this = this_rq();
2942 return atomic_read(&this->nr_iowait);
2943}
2944
2945unsigned long this_cpu_load(void)
2946{
2947 struct rq *this = this_rq();
2948 return this->cpu_load[0];
2949}
2950
2951
dce48a84
TG
2952/* Variables and functions for calc_load */
2953static atomic_long_t calc_load_tasks;
2954static unsigned long calc_load_update;
2955unsigned long avenrun[3];
2956EXPORT_SYMBOL(avenrun);
2957
2d02494f
TG
2958/**
2959 * get_avenrun - get the load average array
2960 * @loads: pointer to dest load array
2961 * @offset: offset to add
2962 * @shift: shift count to shift the result left
2963 *
2964 * These values are estimates at best, so no need for locking.
2965 */
2966void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2967{
2968 loads[0] = (avenrun[0] + offset) << shift;
2969 loads[1] = (avenrun[1] + offset) << shift;
2970 loads[2] = (avenrun[2] + offset) << shift;
2971}
2972
dce48a84
TG
2973static unsigned long
2974calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2975{
dce48a84
TG
2976 load *= exp;
2977 load += active * (FIXED_1 - exp);
2978 return load >> FSHIFT;
2979}
db1b1fef 2980
dce48a84
TG
2981/*
2982 * calc_load - update the avenrun load estimates 10 ticks after the
2983 * CPUs have updated calc_load_tasks.
2984 */
2985void calc_global_load(void)
2986{
2987 unsigned long upd = calc_load_update + 10;
2988 long active;
2989
2990 if (time_before(jiffies, upd))
2991 return;
db1b1fef 2992
dce48a84
TG
2993 active = atomic_long_read(&calc_load_tasks);
2994 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2995
dce48a84
TG
2996 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2997 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2998 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2999
3000 calc_load_update += LOAD_FREQ;
3001}
3002
3003/*
3004 * Either called from update_cpu_load() or from a cpu going idle
3005 */
3006static void calc_load_account_active(struct rq *this_rq)
3007{
3008 long nr_active, delta;
3009
3010 nr_active = this_rq->nr_running;
3011 nr_active += (long) this_rq->nr_uninterruptible;
3012
3013 if (nr_active != this_rq->calc_load_active) {
3014 delta = nr_active - this_rq->calc_load_active;
3015 this_rq->calc_load_active = nr_active;
3016 atomic_long_add(delta, &calc_load_tasks);
3017 }
db1b1fef
JS
3018}
3019
48f24c4d 3020/*
dd41f596
IM
3021 * Update rq->cpu_load[] statistics. This function is usually called every
3022 * scheduler tick (TICK_NSEC).
48f24c4d 3023 */
dd41f596 3024static void update_cpu_load(struct rq *this_rq)
48f24c4d 3025{
495eca49 3026 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3027 int i, scale;
3028
3029 this_rq->nr_load_updates++;
dd41f596
IM
3030
3031 /* Update our load: */
3032 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3033 unsigned long old_load, new_load;
3034
3035 /* scale is effectively 1 << i now, and >> i divides by scale */
3036
3037 old_load = this_rq->cpu_load[i];
3038 new_load = this_load;
a25707f3
IM
3039 /*
3040 * Round up the averaging division if load is increasing. This
3041 * prevents us from getting stuck on 9 if the load is 10, for
3042 * example.
3043 */
3044 if (new_load > old_load)
3045 new_load += scale-1;
dd41f596
IM
3046 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3047 }
dce48a84
TG
3048
3049 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3050 this_rq->calc_load_update += LOAD_FREQ;
3051 calc_load_account_active(this_rq);
3052 }
48f24c4d
IM
3053}
3054
dd41f596
IM
3055#ifdef CONFIG_SMP
3056
1da177e4
LT
3057/*
3058 * double_rq_lock - safely lock two runqueues
3059 *
3060 * Note this does not disable interrupts like task_rq_lock,
3061 * you need to do so manually before calling.
3062 */
70b97a7f 3063static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3064 __acquires(rq1->lock)
3065 __acquires(rq2->lock)
3066{
054b9108 3067 BUG_ON(!irqs_disabled());
1da177e4
LT
3068 if (rq1 == rq2) {
3069 spin_lock(&rq1->lock);
3070 __acquire(rq2->lock); /* Fake it out ;) */
3071 } else {
c96d145e 3072 if (rq1 < rq2) {
1da177e4 3073 spin_lock(&rq1->lock);
5e710e37 3074 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3075 } else {
3076 spin_lock(&rq2->lock);
5e710e37 3077 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3078 }
3079 }
6e82a3be
IM
3080 update_rq_clock(rq1);
3081 update_rq_clock(rq2);
1da177e4
LT
3082}
3083
3084/*
3085 * double_rq_unlock - safely unlock two runqueues
3086 *
3087 * Note this does not restore interrupts like task_rq_unlock,
3088 * you need to do so manually after calling.
3089 */
70b97a7f 3090static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3091 __releases(rq1->lock)
3092 __releases(rq2->lock)
3093{
3094 spin_unlock(&rq1->lock);
3095 if (rq1 != rq2)
3096 spin_unlock(&rq2->lock);
3097 else
3098 __release(rq2->lock);
3099}
3100
1da177e4
LT
3101/*
3102 * If dest_cpu is allowed for this process, migrate the task to it.
3103 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3104 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3105 * the cpu_allowed mask is restored.
3106 */
36c8b586 3107static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3108{
70b97a7f 3109 struct migration_req req;
1da177e4 3110 unsigned long flags;
70b97a7f 3111 struct rq *rq;
1da177e4
LT
3112
3113 rq = task_rq_lock(p, &flags);
96f874e2 3114 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3115 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3116 goto out;
3117
3118 /* force the process onto the specified CPU */
3119 if (migrate_task(p, dest_cpu, &req)) {
3120 /* Need to wait for migration thread (might exit: take ref). */
3121 struct task_struct *mt = rq->migration_thread;
36c8b586 3122
1da177e4
LT
3123 get_task_struct(mt);
3124 task_rq_unlock(rq, &flags);
3125 wake_up_process(mt);
3126 put_task_struct(mt);
3127 wait_for_completion(&req.done);
36c8b586 3128
1da177e4
LT
3129 return;
3130 }
3131out:
3132 task_rq_unlock(rq, &flags);
3133}
3134
3135/*
476d139c
NP
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3138 */
3139void sched_exec(void)
3140{
1da177e4 3141 int new_cpu, this_cpu = get_cpu();
970b13ba 3142 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3143 put_cpu();
476d139c
NP
3144 if (new_cpu != this_cpu)
3145 sched_migrate_task(current, new_cpu);
1da177e4
LT
3146}
3147
3148/*
3149 * pull_task - move a task from a remote runqueue to the local runqueue.
3150 * Both runqueues must be locked.
3151 */
dd41f596
IM
3152static void pull_task(struct rq *src_rq, struct task_struct *p,
3153 struct rq *this_rq, int this_cpu)
1da177e4 3154{
2e1cb74a 3155 deactivate_task(src_rq, p, 0);
1da177e4 3156 set_task_cpu(p, this_cpu);
dd41f596 3157 activate_task(this_rq, p, 0);
15afe09b 3158 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3159}
3160
3161/*
3162 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3163 */
858119e1 3164static
70b97a7f 3165int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3166 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3167 int *all_pinned)
1da177e4 3168{
708dc512 3169 int tsk_cache_hot = 0;
1da177e4
LT
3170 /*
3171 * We do not migrate tasks that are:
3172 * 1) running (obviously), or
3173 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3174 * 3) are cache-hot on their current CPU.
3175 */
96f874e2 3176 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3177 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3178 return 0;
cc367732 3179 }
81026794
NP
3180 *all_pinned = 0;
3181
cc367732
IM
3182 if (task_running(rq, p)) {
3183 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3184 return 0;
cc367732 3185 }
1da177e4 3186
da84d961
IM
3187 /*
3188 * Aggressive migration if:
3189 * 1) task is cache cold, or
3190 * 2) too many balance attempts have failed.
3191 */
3192
708dc512
LH
3193 tsk_cache_hot = task_hot(p, rq->clock, sd);
3194 if (!tsk_cache_hot ||
3195 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3196#ifdef CONFIG_SCHEDSTATS
708dc512 3197 if (tsk_cache_hot) {
da84d961 3198 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3199 schedstat_inc(p, se.nr_forced_migrations);
3200 }
da84d961
IM
3201#endif
3202 return 1;
3203 }
3204
708dc512 3205 if (tsk_cache_hot) {
cc367732 3206 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3207 return 0;
cc367732 3208 }
1da177e4
LT
3209 return 1;
3210}
3211
e1d1484f
PW
3212static unsigned long
3213balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3214 unsigned long max_load_move, struct sched_domain *sd,
3215 enum cpu_idle_type idle, int *all_pinned,
3216 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3217{
051c6764 3218 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3219 struct task_struct *p;
3220 long rem_load_move = max_load_move;
1da177e4 3221
e1d1484f 3222 if (max_load_move == 0)
1da177e4
LT
3223 goto out;
3224
81026794
NP
3225 pinned = 1;
3226
1da177e4 3227 /*
dd41f596 3228 * Start the load-balancing iterator:
1da177e4 3229 */
dd41f596
IM
3230 p = iterator->start(iterator->arg);
3231next:
b82d9fdd 3232 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3233 goto out;
051c6764
PZ
3234
3235 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3236 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3237 p = iterator->next(iterator->arg);
3238 goto next;
1da177e4
LT
3239 }
3240
dd41f596 3241 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3242 pulled++;
dd41f596 3243 rem_load_move -= p->se.load.weight;
1da177e4 3244
7e96fa58
GH
3245#ifdef CONFIG_PREEMPT
3246 /*
3247 * NEWIDLE balancing is a source of latency, so preemptible kernels
3248 * will stop after the first task is pulled to minimize the critical
3249 * section.
3250 */
3251 if (idle == CPU_NEWLY_IDLE)
3252 goto out;
3253#endif
3254
2dd73a4f 3255 /*
b82d9fdd 3256 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3257 */
e1d1484f 3258 if (rem_load_move > 0) {
a4ac01c3
PW
3259 if (p->prio < *this_best_prio)
3260 *this_best_prio = p->prio;
dd41f596
IM
3261 p = iterator->next(iterator->arg);
3262 goto next;
1da177e4
LT
3263 }
3264out:
3265 /*
e1d1484f 3266 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3267 * so we can safely collect pull_task() stats here rather than
3268 * inside pull_task().
3269 */
3270 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3271
3272 if (all_pinned)
3273 *all_pinned = pinned;
e1d1484f
PW
3274
3275 return max_load_move - rem_load_move;
1da177e4
LT
3276}
3277
dd41f596 3278/*
43010659
PW
3279 * move_tasks tries to move up to max_load_move weighted load from busiest to
3280 * this_rq, as part of a balancing operation within domain "sd".
3281 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3282 *
3283 * Called with both runqueues locked.
3284 */
3285static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3286 unsigned long max_load_move,
dd41f596
IM
3287 struct sched_domain *sd, enum cpu_idle_type idle,
3288 int *all_pinned)
3289{
5522d5d5 3290 const struct sched_class *class = sched_class_highest;
43010659 3291 unsigned long total_load_moved = 0;
a4ac01c3 3292 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3293
3294 do {
43010659
PW
3295 total_load_moved +=
3296 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3297 max_load_move - total_load_moved,
a4ac01c3 3298 sd, idle, all_pinned, &this_best_prio);
dd41f596 3299 class = class->next;
c4acb2c0 3300
7e96fa58
GH
3301#ifdef CONFIG_PREEMPT
3302 /*
3303 * NEWIDLE balancing is a source of latency, so preemptible
3304 * kernels will stop after the first task is pulled to minimize
3305 * the critical section.
3306 */
c4acb2c0
GH
3307 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3308 break;
7e96fa58 3309#endif
43010659 3310 } while (class && max_load_move > total_load_moved);
dd41f596 3311
43010659
PW
3312 return total_load_moved > 0;
3313}
3314
e1d1484f
PW
3315static int
3316iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3317 struct sched_domain *sd, enum cpu_idle_type idle,
3318 struct rq_iterator *iterator)
3319{
3320 struct task_struct *p = iterator->start(iterator->arg);
3321 int pinned = 0;
3322
3323 while (p) {
3324 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3325 pull_task(busiest, p, this_rq, this_cpu);
3326 /*
3327 * Right now, this is only the second place pull_task()
3328 * is called, so we can safely collect pull_task()
3329 * stats here rather than inside pull_task().
3330 */
3331 schedstat_inc(sd, lb_gained[idle]);
3332
3333 return 1;
3334 }
3335 p = iterator->next(iterator->arg);
3336 }
3337
3338 return 0;
3339}
3340
43010659
PW
3341/*
3342 * move_one_task tries to move exactly one task from busiest to this_rq, as
3343 * part of active balancing operations within "domain".
3344 * Returns 1 if successful and 0 otherwise.
3345 *
3346 * Called with both runqueues locked.
3347 */
3348static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3349 struct sched_domain *sd, enum cpu_idle_type idle)
3350{
5522d5d5 3351 const struct sched_class *class;
43010659 3352
cde7e5ca 3353 for_each_class(class) {
e1d1484f 3354 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3355 return 1;
cde7e5ca 3356 }
43010659
PW
3357
3358 return 0;
dd41f596 3359}
67bb6c03 3360/********** Helpers for find_busiest_group ************************/
1da177e4 3361/*
222d656d
GS
3362 * sd_lb_stats - Structure to store the statistics of a sched_domain
3363 * during load balancing.
1da177e4 3364 */
222d656d
GS
3365struct sd_lb_stats {
3366 struct sched_group *busiest; /* Busiest group in this sd */
3367 struct sched_group *this; /* Local group in this sd */
3368 unsigned long total_load; /* Total load of all groups in sd */
3369 unsigned long total_pwr; /* Total power of all groups in sd */
3370 unsigned long avg_load; /* Average load across all groups in sd */
3371
3372 /** Statistics of this group */
3373 unsigned long this_load;
3374 unsigned long this_load_per_task;
3375 unsigned long this_nr_running;
3376
3377 /* Statistics of the busiest group */
3378 unsigned long max_load;
3379 unsigned long busiest_load_per_task;
3380 unsigned long busiest_nr_running;
3381
3382 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3383#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3384 int power_savings_balance; /* Is powersave balance needed for this sd */
3385 struct sched_group *group_min; /* Least loaded group in sd */
3386 struct sched_group *group_leader; /* Group which relieves group_min */
3387 unsigned long min_load_per_task; /* load_per_task in group_min */
3388 unsigned long leader_nr_running; /* Nr running of group_leader */
3389 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3390#endif
222d656d 3391};
1da177e4 3392
d5ac537e 3393/*
381be78f
GS
3394 * sg_lb_stats - stats of a sched_group required for load_balancing
3395 */
3396struct sg_lb_stats {
3397 unsigned long avg_load; /*Avg load across the CPUs of the group */
3398 unsigned long group_load; /* Total load over the CPUs of the group */
3399 unsigned long sum_nr_running; /* Nr tasks running in the group */
3400 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3401 unsigned long group_capacity;
3402 int group_imb; /* Is there an imbalance in the group ? */
3403};
408ed066 3404
67bb6c03
GS
3405/**
3406 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3407 * @group: The group whose first cpu is to be returned.
3408 */
3409static inline unsigned int group_first_cpu(struct sched_group *group)
3410{
3411 return cpumask_first(sched_group_cpus(group));
3412}
3413
3414/**
3415 * get_sd_load_idx - Obtain the load index for a given sched domain.
3416 * @sd: The sched_domain whose load_idx is to be obtained.
3417 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3418 */
3419static inline int get_sd_load_idx(struct sched_domain *sd,
3420 enum cpu_idle_type idle)
3421{
3422 int load_idx;
3423
3424 switch (idle) {
3425 case CPU_NOT_IDLE:
7897986b 3426 load_idx = sd->busy_idx;
67bb6c03
GS
3427 break;
3428
3429 case CPU_NEWLY_IDLE:
7897986b 3430 load_idx = sd->newidle_idx;
67bb6c03
GS
3431 break;
3432 default:
7897986b 3433 load_idx = sd->idle_idx;
67bb6c03
GS
3434 break;
3435 }
1da177e4 3436
67bb6c03
GS
3437 return load_idx;
3438}
1da177e4 3439
1da177e4 3440
c071df18
GS
3441#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3442/**
3443 * init_sd_power_savings_stats - Initialize power savings statistics for
3444 * the given sched_domain, during load balancing.
3445 *
3446 * @sd: Sched domain whose power-savings statistics are to be initialized.
3447 * @sds: Variable containing the statistics for sd.
3448 * @idle: Idle status of the CPU at which we're performing load-balancing.
3449 */
3450static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3451 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3452{
3453 /*
3454 * Busy processors will not participate in power savings
3455 * balance.
3456 */
3457 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3458 sds->power_savings_balance = 0;
3459 else {
3460 sds->power_savings_balance = 1;
3461 sds->min_nr_running = ULONG_MAX;
3462 sds->leader_nr_running = 0;
3463 }
3464}
783609c6 3465
c071df18
GS
3466/**
3467 * update_sd_power_savings_stats - Update the power saving stats for a
3468 * sched_domain while performing load balancing.
3469 *
3470 * @group: sched_group belonging to the sched_domain under consideration.
3471 * @sds: Variable containing the statistics of the sched_domain
3472 * @local_group: Does group contain the CPU for which we're performing
3473 * load balancing ?
3474 * @sgs: Variable containing the statistics of the group.
3475 */
3476static inline void update_sd_power_savings_stats(struct sched_group *group,
3477 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3478{
408ed066 3479
c071df18
GS
3480 if (!sds->power_savings_balance)
3481 return;
1da177e4 3482
c071df18
GS
3483 /*
3484 * If the local group is idle or completely loaded
3485 * no need to do power savings balance at this domain
3486 */
3487 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3488 !sds->this_nr_running))
3489 sds->power_savings_balance = 0;
2dd73a4f 3490
c071df18
GS
3491 /*
3492 * If a group is already running at full capacity or idle,
3493 * don't include that group in power savings calculations
3494 */
3495 if (!sds->power_savings_balance ||
3496 sgs->sum_nr_running >= sgs->group_capacity ||
3497 !sgs->sum_nr_running)
3498 return;
5969fe06 3499
c071df18
GS
3500 /*
3501 * Calculate the group which has the least non-idle load.
3502 * This is the group from where we need to pick up the load
3503 * for saving power
3504 */
3505 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3506 (sgs->sum_nr_running == sds->min_nr_running &&
3507 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3508 sds->group_min = group;
3509 sds->min_nr_running = sgs->sum_nr_running;
3510 sds->min_load_per_task = sgs->sum_weighted_load /
3511 sgs->sum_nr_running;
3512 }
783609c6 3513
c071df18
GS
3514 /*
3515 * Calculate the group which is almost near its
3516 * capacity but still has some space to pick up some load
3517 * from other group and save more power
3518 */
d899a789 3519 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3520 return;
1da177e4 3521
c071df18
GS
3522 if (sgs->sum_nr_running > sds->leader_nr_running ||
3523 (sgs->sum_nr_running == sds->leader_nr_running &&
3524 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3525 sds->group_leader = group;
3526 sds->leader_nr_running = sgs->sum_nr_running;
3527 }
3528}
408ed066 3529
c071df18 3530/**
d5ac537e 3531 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3532 * @sds: Variable containing the statistics of the sched_domain
3533 * under consideration.
3534 * @this_cpu: Cpu at which we're currently performing load-balancing.
3535 * @imbalance: Variable to store the imbalance.
3536 *
d5ac537e
RD
3537 * Description:
3538 * Check if we have potential to perform some power-savings balance.
3539 * If yes, set the busiest group to be the least loaded group in the
3540 * sched_domain, so that it's CPUs can be put to idle.
3541 *
c071df18
GS
3542 * Returns 1 if there is potential to perform power-savings balance.
3543 * Else returns 0.
3544 */
3545static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3546 int this_cpu, unsigned long *imbalance)
3547{
3548 if (!sds->power_savings_balance)
3549 return 0;
1da177e4 3550
c071df18
GS
3551 if (sds->this != sds->group_leader ||
3552 sds->group_leader == sds->group_min)
3553 return 0;
783609c6 3554
c071df18
GS
3555 *imbalance = sds->min_load_per_task;
3556 sds->busiest = sds->group_min;
1da177e4 3557
c071df18 3558 return 1;
1da177e4 3559
c071df18
GS
3560}
3561#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3562static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3563 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3564{
3565 return;
3566}
408ed066 3567
c071df18
GS
3568static inline void update_sd_power_savings_stats(struct sched_group *group,
3569 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3570{
3571 return;
3572}
3573
3574static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3575 int this_cpu, unsigned long *imbalance)
3576{
3577 return 0;
3578}
3579#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3580
d6a59aa3
PZ
3581
3582unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3583{
3584 return SCHED_LOAD_SCALE;
3585}
3586
3587unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3588{
3589 return default_scale_freq_power(sd, cpu);
3590}
3591
3592unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3593{
3594 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3595 unsigned long smt_gain = sd->smt_gain;
3596
3597 smt_gain /= weight;
3598
3599 return smt_gain;
3600}
3601
d6a59aa3
PZ
3602unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3603{
3604 return default_scale_smt_power(sd, cpu);
3605}
3606
e9e9250b
PZ
3607unsigned long scale_rt_power(int cpu)
3608{
3609 struct rq *rq = cpu_rq(cpu);
3610 u64 total, available;
3611
3612 sched_avg_update(rq);
3613
3614 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3615 available = total - rq->rt_avg;
3616
3617 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3618 total = SCHED_LOAD_SCALE;
3619
3620 total >>= SCHED_LOAD_SHIFT;
3621
3622 return div_u64(available, total);
3623}
3624
ab29230e
PZ
3625static void update_cpu_power(struct sched_domain *sd, int cpu)
3626{
3627 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3628 unsigned long power = SCHED_LOAD_SCALE;
3629 struct sched_group *sdg = sd->groups;
ab29230e 3630
8e6598af
PZ
3631 if (sched_feat(ARCH_POWER))
3632 power *= arch_scale_freq_power(sd, cpu);
3633 else
3634 power *= default_scale_freq_power(sd, cpu);
3635
d6a59aa3 3636 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3637
3638 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3639 if (sched_feat(ARCH_POWER))
3640 power *= arch_scale_smt_power(sd, cpu);
3641 else
3642 power *= default_scale_smt_power(sd, cpu);
3643
ab29230e
PZ
3644 power >>= SCHED_LOAD_SHIFT;
3645 }
3646
e9e9250b
PZ
3647 power *= scale_rt_power(cpu);
3648 power >>= SCHED_LOAD_SHIFT;
3649
3650 if (!power)
3651 power = 1;
ab29230e 3652
18a3885f 3653 sdg->cpu_power = power;
ab29230e
PZ
3654}
3655
3656static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3657{
3658 struct sched_domain *child = sd->child;
3659 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3660 unsigned long power;
cc9fba7d
PZ
3661
3662 if (!child) {
ab29230e 3663 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3664 return;
3665 }
3666
d7ea17a7 3667 power = 0;
cc9fba7d
PZ
3668
3669 group = child->groups;
3670 do {
d7ea17a7 3671 power += group->cpu_power;
cc9fba7d
PZ
3672 group = group->next;
3673 } while (group != child->groups);
d7ea17a7
IM
3674
3675 sdg->cpu_power = power;
cc9fba7d 3676}
c071df18 3677
1f8c553d
GS
3678/**
3679 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3680 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3681 * @group: sched_group whose statistics are to be updated.
3682 * @this_cpu: Cpu for which load balance is currently performed.
3683 * @idle: Idle status of this_cpu
3684 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3685 * @sd_idle: Idle status of the sched_domain containing group.
3686 * @local_group: Does group contain this_cpu.
3687 * @cpus: Set of cpus considered for load balancing.
3688 * @balance: Should we balance.
3689 * @sgs: variable to hold the statistics for this group.
3690 */
cc9fba7d
PZ
3691static inline void update_sg_lb_stats(struct sched_domain *sd,
3692 struct sched_group *group, int this_cpu,
1f8c553d
GS
3693 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3694 int local_group, const struct cpumask *cpus,
3695 int *balance, struct sg_lb_stats *sgs)
3696{
3697 unsigned long load, max_cpu_load, min_cpu_load;
3698 int i;
3699 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3700 unsigned long sum_avg_load_per_task;
3701 unsigned long avg_load_per_task;
3702
cc9fba7d 3703 if (local_group) {
1f8c553d 3704 balance_cpu = group_first_cpu(group);
cc9fba7d 3705 if (balance_cpu == this_cpu)
ab29230e 3706 update_group_power(sd, this_cpu);
cc9fba7d 3707 }
1f8c553d
GS
3708
3709 /* Tally up the load of all CPUs in the group */
3710 sum_avg_load_per_task = avg_load_per_task = 0;
3711 max_cpu_load = 0;
3712 min_cpu_load = ~0UL;
408ed066 3713
1f8c553d
GS
3714 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3715 struct rq *rq = cpu_rq(i);
908a7c1b 3716
1f8c553d
GS
3717 if (*sd_idle && rq->nr_running)
3718 *sd_idle = 0;
5c45bf27 3719
1f8c553d 3720 /* Bias balancing toward cpus of our domain */
1da177e4 3721 if (local_group) {
1f8c553d
GS
3722 if (idle_cpu(i) && !first_idle_cpu) {
3723 first_idle_cpu = 1;
3724 balance_cpu = i;
3725 }
3726
3727 load = target_load(i, load_idx);
3728 } else {
3729 load = source_load(i, load_idx);
3730 if (load > max_cpu_load)
3731 max_cpu_load = load;
3732 if (min_cpu_load > load)
3733 min_cpu_load = load;
1da177e4 3734 }
5c45bf27 3735
1f8c553d
GS
3736 sgs->group_load += load;
3737 sgs->sum_nr_running += rq->nr_running;
3738 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3739
1f8c553d
GS
3740 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3741 }
5c45bf27 3742
1f8c553d
GS
3743 /*
3744 * First idle cpu or the first cpu(busiest) in this sched group
3745 * is eligible for doing load balancing at this and above
3746 * domains. In the newly idle case, we will allow all the cpu's
3747 * to do the newly idle load balance.
3748 */
3749 if (idle != CPU_NEWLY_IDLE && local_group &&
3750 balance_cpu != this_cpu && balance) {
3751 *balance = 0;
3752 return;
3753 }
5c45bf27 3754
1f8c553d 3755 /* Adjust by relative CPU power of the group */
18a3885f 3756 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3757
1f8c553d
GS
3758
3759 /*
3760 * Consider the group unbalanced when the imbalance is larger
3761 * than the average weight of two tasks.
3762 *
3763 * APZ: with cgroup the avg task weight can vary wildly and
3764 * might not be a suitable number - should we keep a
3765 * normalized nr_running number somewhere that negates
3766 * the hierarchy?
3767 */
18a3885f
PZ
3768 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3769 group->cpu_power;
1f8c553d
GS
3770
3771 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3772 sgs->group_imb = 1;
3773
bdb94aa5 3774 sgs->group_capacity =
18a3885f 3775 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3776}
dd41f596 3777
37abe198
GS
3778/**
3779 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3780 * @sd: sched_domain whose statistics are to be updated.
3781 * @this_cpu: Cpu for which load balance is currently performed.
3782 * @idle: Idle status of this_cpu
3783 * @sd_idle: Idle status of the sched_domain containing group.
3784 * @cpus: Set of cpus considered for load balancing.
3785 * @balance: Should we balance.
3786 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3787 */
37abe198
GS
3788static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3789 enum cpu_idle_type idle, int *sd_idle,
3790 const struct cpumask *cpus, int *balance,
3791 struct sd_lb_stats *sds)
1da177e4 3792{
b5d978e0 3793 struct sched_domain *child = sd->child;
222d656d 3794 struct sched_group *group = sd->groups;
37abe198 3795 struct sg_lb_stats sgs;
b5d978e0
PZ
3796 int load_idx, prefer_sibling = 0;
3797
3798 if (child && child->flags & SD_PREFER_SIBLING)
3799 prefer_sibling = 1;
222d656d 3800
c071df18 3801 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3802 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3803
3804 do {
1da177e4 3805 int local_group;
1da177e4 3806
758b2cdc
RR
3807 local_group = cpumask_test_cpu(this_cpu,
3808 sched_group_cpus(group));
381be78f 3809 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3810 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3811 local_group, cpus, balance, &sgs);
1da177e4 3812
37abe198
GS
3813 if (local_group && balance && !(*balance))
3814 return;
783609c6 3815
37abe198 3816 sds->total_load += sgs.group_load;
18a3885f 3817 sds->total_pwr += group->cpu_power;
1da177e4 3818
b5d978e0
PZ
3819 /*
3820 * In case the child domain prefers tasks go to siblings
3821 * first, lower the group capacity to one so that we'll try
3822 * and move all the excess tasks away.
3823 */
3824 if (prefer_sibling)
bdb94aa5 3825 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3826
1da177e4 3827 if (local_group) {
37abe198
GS
3828 sds->this_load = sgs.avg_load;
3829 sds->this = group;
3830 sds->this_nr_running = sgs.sum_nr_running;
3831 sds->this_load_per_task = sgs.sum_weighted_load;
3832 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3833 (sgs.sum_nr_running > sgs.group_capacity ||
3834 sgs.group_imb)) {
37abe198
GS
3835 sds->max_load = sgs.avg_load;
3836 sds->busiest = group;
3837 sds->busiest_nr_running = sgs.sum_nr_running;
3838 sds->busiest_load_per_task = sgs.sum_weighted_load;
3839 sds->group_imb = sgs.group_imb;
48f24c4d 3840 }
5c45bf27 3841
c071df18 3842 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3843 group = group->next;
3844 } while (group != sd->groups);
37abe198 3845}
1da177e4 3846
2e6f44ae
GS
3847/**
3848 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3849 * amongst the groups of a sched_domain, during
3850 * load balancing.
2e6f44ae
GS
3851 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3852 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3853 * @imbalance: Variable to store the imbalance.
3854 */
3855static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3856 int this_cpu, unsigned long *imbalance)
3857{
3858 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3859 unsigned int imbn = 2;
3860
3861 if (sds->this_nr_running) {
3862 sds->this_load_per_task /= sds->this_nr_running;
3863 if (sds->busiest_load_per_task >
3864 sds->this_load_per_task)
3865 imbn = 1;
3866 } else
3867 sds->this_load_per_task =
3868 cpu_avg_load_per_task(this_cpu);
1da177e4 3869
2e6f44ae
GS
3870 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3871 sds->busiest_load_per_task * imbn) {
3872 *imbalance = sds->busiest_load_per_task;
3873 return;
3874 }
908a7c1b 3875
1da177e4 3876 /*
2e6f44ae
GS
3877 * OK, we don't have enough imbalance to justify moving tasks,
3878 * however we may be able to increase total CPU power used by
3879 * moving them.
1da177e4 3880 */
2dd73a4f 3881
18a3885f 3882 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3883 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3884 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3885 min(sds->this_load_per_task, sds->this_load);
3886 pwr_now /= SCHED_LOAD_SCALE;
3887
3888 /* Amount of load we'd subtract */
18a3885f
PZ
3889 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3890 sds->busiest->cpu_power;
2e6f44ae 3891 if (sds->max_load > tmp)
18a3885f 3892 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3893 min(sds->busiest_load_per_task, sds->max_load - tmp);
3894
3895 /* Amount of load we'd add */
18a3885f 3896 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3897 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3898 tmp = (sds->max_load * sds->busiest->cpu_power) /
3899 sds->this->cpu_power;
2e6f44ae 3900 else
18a3885f
PZ
3901 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3902 sds->this->cpu_power;
3903 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3904 min(sds->this_load_per_task, sds->this_load + tmp);
3905 pwr_move /= SCHED_LOAD_SCALE;
3906
3907 /* Move if we gain throughput */
3908 if (pwr_move > pwr_now)
3909 *imbalance = sds->busiest_load_per_task;
3910}
dbc523a3
GS
3911
3912/**
3913 * calculate_imbalance - Calculate the amount of imbalance present within the
3914 * groups of a given sched_domain during load balance.
3915 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3916 * @this_cpu: Cpu for which currently load balance is being performed.
3917 * @imbalance: The variable to store the imbalance.
3918 */
3919static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3920 unsigned long *imbalance)
3921{
3922 unsigned long max_pull;
2dd73a4f
PW
3923 /*
3924 * In the presence of smp nice balancing, certain scenarios can have
3925 * max load less than avg load(as we skip the groups at or below
3926 * its cpu_power, while calculating max_load..)
3927 */
dbc523a3 3928 if (sds->max_load < sds->avg_load) {
2dd73a4f 3929 *imbalance = 0;
dbc523a3 3930 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3931 }
0c117f1b
SS
3932
3933 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3934 max_pull = min(sds->max_load - sds->avg_load,
3935 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3936
1da177e4 3937 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3938 *imbalance = min(max_pull * sds->busiest->cpu_power,
3939 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3940 / SCHED_LOAD_SCALE;
3941
2dd73a4f
PW
3942 /*
3943 * if *imbalance is less than the average load per runnable task
3944 * there is no gaurantee that any tasks will be moved so we'll have
3945 * a think about bumping its value to force at least one task to be
3946 * moved
3947 */
dbc523a3
GS
3948 if (*imbalance < sds->busiest_load_per_task)
3949 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3950
dbc523a3 3951}
37abe198 3952/******* find_busiest_group() helpers end here *********************/
1da177e4 3953
b7bb4c9b
GS
3954/**
3955 * find_busiest_group - Returns the busiest group within the sched_domain
3956 * if there is an imbalance. If there isn't an imbalance, and
3957 * the user has opted for power-savings, it returns a group whose
3958 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3959 * such a group exists.
3960 *
3961 * Also calculates the amount of weighted load which should be moved
3962 * to restore balance.
3963 *
3964 * @sd: The sched_domain whose busiest group is to be returned.
3965 * @this_cpu: The cpu for which load balancing is currently being performed.
3966 * @imbalance: Variable which stores amount of weighted load which should
3967 * be moved to restore balance/put a group to idle.
3968 * @idle: The idle status of this_cpu.
3969 * @sd_idle: The idleness of sd
3970 * @cpus: The set of CPUs under consideration for load-balancing.
3971 * @balance: Pointer to a variable indicating if this_cpu
3972 * is the appropriate cpu to perform load balancing at this_level.
3973 *
3974 * Returns: - the busiest group if imbalance exists.
3975 * - If no imbalance and user has opted for power-savings balance,
3976 * return the least loaded group whose CPUs can be
3977 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3978 */
3979static struct sched_group *
3980find_busiest_group(struct sched_domain *sd, int this_cpu,
3981 unsigned long *imbalance, enum cpu_idle_type idle,
3982 int *sd_idle, const struct cpumask *cpus, int *balance)
3983{
3984 struct sd_lb_stats sds;
1da177e4 3985
37abe198 3986 memset(&sds, 0, sizeof(sds));
1da177e4 3987
37abe198
GS
3988 /*
3989 * Compute the various statistics relavent for load balancing at
3990 * this level.
3991 */
3992 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3993 balance, &sds);
3994
b7bb4c9b
GS
3995 /* Cases where imbalance does not exist from POV of this_cpu */
3996 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3997 * at this level.
3998 * 2) There is no busy sibling group to pull from.
3999 * 3) This group is the busiest group.
4000 * 4) This group is more busy than the avg busieness at this
4001 * sched_domain.
4002 * 5) The imbalance is within the specified limit.
4003 * 6) Any rebalance would lead to ping-pong
4004 */
37abe198
GS
4005 if (balance && !(*balance))
4006 goto ret;
1da177e4 4007
b7bb4c9b
GS
4008 if (!sds.busiest || sds.busiest_nr_running == 0)
4009 goto out_balanced;
1da177e4 4010
b7bb4c9b 4011 if (sds.this_load >= sds.max_load)
1da177e4 4012 goto out_balanced;
1da177e4 4013
222d656d 4014 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4015
b7bb4c9b
GS
4016 if (sds.this_load >= sds.avg_load)
4017 goto out_balanced;
4018
4019 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4020 goto out_balanced;
4021
222d656d
GS
4022 sds.busiest_load_per_task /= sds.busiest_nr_running;
4023 if (sds.group_imb)
4024 sds.busiest_load_per_task =
4025 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4026
1da177e4
LT
4027 /*
4028 * We're trying to get all the cpus to the average_load, so we don't
4029 * want to push ourselves above the average load, nor do we wish to
4030 * reduce the max loaded cpu below the average load, as either of these
4031 * actions would just result in more rebalancing later, and ping-pong
4032 * tasks around. Thus we look for the minimum possible imbalance.
4033 * Negative imbalances (*we* are more loaded than anyone else) will
4034 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4035 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4036 * appear as very large values with unsigned longs.
4037 */
222d656d 4038 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4039 goto out_balanced;
4040
dbc523a3
GS
4041 /* Looks like there is an imbalance. Compute it */
4042 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4043 return sds.busiest;
1da177e4
LT
4044
4045out_balanced:
c071df18
GS
4046 /*
4047 * There is no obvious imbalance. But check if we can do some balancing
4048 * to save power.
4049 */
4050 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4051 return sds.busiest;
783609c6 4052ret:
1da177e4
LT
4053 *imbalance = 0;
4054 return NULL;
4055}
4056
4057/*
4058 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4059 */
70b97a7f 4060static struct rq *
d15bcfdb 4061find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4062 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4063{
70b97a7f 4064 struct rq *busiest = NULL, *rq;
2dd73a4f 4065 unsigned long max_load = 0;
1da177e4
LT
4066 int i;
4067
758b2cdc 4068 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4069 unsigned long power = power_of(i);
4070 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4071 unsigned long wl;
0a2966b4 4072
96f874e2 4073 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4074 continue;
4075
48f24c4d 4076 rq = cpu_rq(i);
bdb94aa5
PZ
4077 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4078 wl /= power;
2dd73a4f 4079
bdb94aa5 4080 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4081 continue;
1da177e4 4082
dd41f596
IM
4083 if (wl > max_load) {
4084 max_load = wl;
48f24c4d 4085 busiest = rq;
1da177e4
LT
4086 }
4087 }
4088
4089 return busiest;
4090}
4091
77391d71
NP
4092/*
4093 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4094 * so long as it is large enough.
4095 */
4096#define MAX_PINNED_INTERVAL 512
4097
df7c8e84
RR
4098/* Working cpumask for load_balance and load_balance_newidle. */
4099static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4100
1da177e4
LT
4101/*
4102 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4103 * tasks if there is an imbalance.
1da177e4 4104 */
70b97a7f 4105static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4106 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4107 int *balance)
1da177e4 4108{
43010659 4109 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4110 struct sched_group *group;
1da177e4 4111 unsigned long imbalance;
70b97a7f 4112 struct rq *busiest;
fe2eea3f 4113 unsigned long flags;
df7c8e84 4114 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4115
6ad4c188 4116 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4117
89c4710e
SS
4118 /*
4119 * When power savings policy is enabled for the parent domain, idle
4120 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4121 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4122 * portraying it as CPU_NOT_IDLE.
89c4710e 4123 */
d15bcfdb 4124 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4125 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4126 sd_idle = 1;
1da177e4 4127
2d72376b 4128 schedstat_inc(sd, lb_count[idle]);
1da177e4 4129
0a2966b4 4130redo:
c8cba857 4131 update_shares(sd);
0a2966b4 4132 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4133 cpus, balance);
783609c6 4134
06066714 4135 if (*balance == 0)
783609c6 4136 goto out_balanced;
783609c6 4137
1da177e4
LT
4138 if (!group) {
4139 schedstat_inc(sd, lb_nobusyg[idle]);
4140 goto out_balanced;
4141 }
4142
7c16ec58 4143 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4144 if (!busiest) {
4145 schedstat_inc(sd, lb_nobusyq[idle]);
4146 goto out_balanced;
4147 }
4148
db935dbd 4149 BUG_ON(busiest == this_rq);
1da177e4
LT
4150
4151 schedstat_add(sd, lb_imbalance[idle], imbalance);
4152
43010659 4153 ld_moved = 0;
1da177e4
LT
4154 if (busiest->nr_running > 1) {
4155 /*
4156 * Attempt to move tasks. If find_busiest_group has found
4157 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4158 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4159 * correctly treated as an imbalance.
4160 */
fe2eea3f 4161 local_irq_save(flags);
e17224bf 4162 double_rq_lock(this_rq, busiest);
43010659 4163 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4164 imbalance, sd, idle, &all_pinned);
e17224bf 4165 double_rq_unlock(this_rq, busiest);
fe2eea3f 4166 local_irq_restore(flags);
81026794 4167
46cb4b7c
SS
4168 /*
4169 * some other cpu did the load balance for us.
4170 */
43010659 4171 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4172 resched_cpu(this_cpu);
4173
81026794 4174 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4175 if (unlikely(all_pinned)) {
96f874e2
RR
4176 cpumask_clear_cpu(cpu_of(busiest), cpus);
4177 if (!cpumask_empty(cpus))
0a2966b4 4178 goto redo;
81026794 4179 goto out_balanced;
0a2966b4 4180 }
1da177e4 4181 }
81026794 4182
43010659 4183 if (!ld_moved) {
1da177e4
LT
4184 schedstat_inc(sd, lb_failed[idle]);
4185 sd->nr_balance_failed++;
4186
4187 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4188
fe2eea3f 4189 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4190
4191 /* don't kick the migration_thread, if the curr
4192 * task on busiest cpu can't be moved to this_cpu
4193 */
96f874e2
RR
4194 if (!cpumask_test_cpu(this_cpu,
4195 &busiest->curr->cpus_allowed)) {
fe2eea3f 4196 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4197 all_pinned = 1;
4198 goto out_one_pinned;
4199 }
4200
1da177e4
LT
4201 if (!busiest->active_balance) {
4202 busiest->active_balance = 1;
4203 busiest->push_cpu = this_cpu;
81026794 4204 active_balance = 1;
1da177e4 4205 }
fe2eea3f 4206 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4207 if (active_balance)
1da177e4
LT
4208 wake_up_process(busiest->migration_thread);
4209
4210 /*
4211 * We've kicked active balancing, reset the failure
4212 * counter.
4213 */
39507451 4214 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4215 }
81026794 4216 } else
1da177e4
LT
4217 sd->nr_balance_failed = 0;
4218
81026794 4219 if (likely(!active_balance)) {
1da177e4
LT
4220 /* We were unbalanced, so reset the balancing interval */
4221 sd->balance_interval = sd->min_interval;
81026794
NP
4222 } else {
4223 /*
4224 * If we've begun active balancing, start to back off. This
4225 * case may not be covered by the all_pinned logic if there
4226 * is only 1 task on the busy runqueue (because we don't call
4227 * move_tasks).
4228 */
4229 if (sd->balance_interval < sd->max_interval)
4230 sd->balance_interval *= 2;
1da177e4
LT
4231 }
4232
43010659 4233 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4234 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4235 ld_moved = -1;
4236
4237 goto out;
1da177e4
LT
4238
4239out_balanced:
1da177e4
LT
4240 schedstat_inc(sd, lb_balanced[idle]);
4241
16cfb1c0 4242 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4243
4244out_one_pinned:
1da177e4 4245 /* tune up the balancing interval */
77391d71
NP
4246 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4247 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4248 sd->balance_interval *= 2;
4249
48f24c4d 4250 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4251 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4252 ld_moved = -1;
4253 else
4254 ld_moved = 0;
4255out:
c8cba857
PZ
4256 if (ld_moved)
4257 update_shares(sd);
c09595f6 4258 return ld_moved;
1da177e4
LT
4259}
4260
4261/*
4262 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4263 * tasks if there is an imbalance.
4264 *
d15bcfdb 4265 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4266 * this_rq is locked.
4267 */
48f24c4d 4268static int
df7c8e84 4269load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4270{
4271 struct sched_group *group;
70b97a7f 4272 struct rq *busiest = NULL;
1da177e4 4273 unsigned long imbalance;
43010659 4274 int ld_moved = 0;
5969fe06 4275 int sd_idle = 0;
969bb4e4 4276 int all_pinned = 0;
df7c8e84 4277 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4278
6ad4c188 4279 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4280
89c4710e
SS
4281 /*
4282 * When power savings policy is enabled for the parent domain, idle
4283 * sibling can pick up load irrespective of busy siblings. In this case,
4284 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4285 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4286 */
4287 if (sd->flags & SD_SHARE_CPUPOWER &&
4288 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4289 sd_idle = 1;
1da177e4 4290
2d72376b 4291 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4292redo:
3e5459b4 4293 update_shares_locked(this_rq, sd);
d15bcfdb 4294 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4295 &sd_idle, cpus, NULL);
1da177e4 4296 if (!group) {
d15bcfdb 4297 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4298 goto out_balanced;
1da177e4
LT
4299 }
4300
7c16ec58 4301 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4302 if (!busiest) {
d15bcfdb 4303 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4304 goto out_balanced;
1da177e4
LT
4305 }
4306
db935dbd
NP
4307 BUG_ON(busiest == this_rq);
4308
d15bcfdb 4309 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4310
43010659 4311 ld_moved = 0;
d6d5cfaf
NP
4312 if (busiest->nr_running > 1) {
4313 /* Attempt to move tasks */
4314 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4315 /* this_rq->clock is already updated */
4316 update_rq_clock(busiest);
43010659 4317 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4318 imbalance, sd, CPU_NEWLY_IDLE,
4319 &all_pinned);
1b12bbc7 4320 double_unlock_balance(this_rq, busiest);
0a2966b4 4321
969bb4e4 4322 if (unlikely(all_pinned)) {
96f874e2
RR
4323 cpumask_clear_cpu(cpu_of(busiest), cpus);
4324 if (!cpumask_empty(cpus))
0a2966b4
CL
4325 goto redo;
4326 }
d6d5cfaf
NP
4327 }
4328
43010659 4329 if (!ld_moved) {
36dffab6 4330 int active_balance = 0;
ad273b32 4331
d15bcfdb 4332 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4333 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4334 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4335 return -1;
ad273b32
VS
4336
4337 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4338 return -1;
4339
4340 if (sd->nr_balance_failed++ < 2)
4341 return -1;
4342
4343 /*
4344 * The only task running in a non-idle cpu can be moved to this
4345 * cpu in an attempt to completely freeup the other CPU
4346 * package. The same method used to move task in load_balance()
4347 * have been extended for load_balance_newidle() to speedup
4348 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4349 *
4350 * The package power saving logic comes from
4351 * find_busiest_group(). If there are no imbalance, then
4352 * f_b_g() will return NULL. However when sched_mc={1,2} then
4353 * f_b_g() will select a group from which a running task may be
4354 * pulled to this cpu in order to make the other package idle.
4355 * If there is no opportunity to make a package idle and if
4356 * there are no imbalance, then f_b_g() will return NULL and no
4357 * action will be taken in load_balance_newidle().
4358 *
4359 * Under normal task pull operation due to imbalance, there
4360 * will be more than one task in the source run queue and
4361 * move_tasks() will succeed. ld_moved will be true and this
4362 * active balance code will not be triggered.
4363 */
4364
4365 /* Lock busiest in correct order while this_rq is held */
4366 double_lock_balance(this_rq, busiest);
4367
4368 /*
4369 * don't kick the migration_thread, if the curr
4370 * task on busiest cpu can't be moved to this_cpu
4371 */
6ca09dfc 4372 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4373 double_unlock_balance(this_rq, busiest);
4374 all_pinned = 1;
4375 return ld_moved;
4376 }
4377
4378 if (!busiest->active_balance) {
4379 busiest->active_balance = 1;
4380 busiest->push_cpu = this_cpu;
4381 active_balance = 1;
4382 }
4383
4384 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4385 /*
4386 * Should not call ttwu while holding a rq->lock
4387 */
4388 spin_unlock(&this_rq->lock);
ad273b32
VS
4389 if (active_balance)
4390 wake_up_process(busiest->migration_thread);
da8d5089 4391 spin_lock(&this_rq->lock);
ad273b32 4392
5969fe06 4393 } else
16cfb1c0 4394 sd->nr_balance_failed = 0;
1da177e4 4395
3e5459b4 4396 update_shares_locked(this_rq, sd);
43010659 4397 return ld_moved;
16cfb1c0
NP
4398
4399out_balanced:
d15bcfdb 4400 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4403 return -1;
16cfb1c0 4404 sd->nr_balance_failed = 0;
48f24c4d 4405
16cfb1c0 4406 return 0;
1da177e4
LT
4407}
4408
4409/*
4410 * idle_balance is called by schedule() if this_cpu is about to become
4411 * idle. Attempts to pull tasks from other CPUs.
4412 */
70b97a7f 4413static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4414{
4415 struct sched_domain *sd;
efbe027e 4416 int pulled_task = 0;
dd41f596 4417 unsigned long next_balance = jiffies + HZ;
1da177e4 4418
1b9508f6
MG
4419 this_rq->idle_stamp = this_rq->clock;
4420
4421 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4422 return;
4423
1da177e4 4424 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4425 unsigned long interval;
4426
4427 if (!(sd->flags & SD_LOAD_BALANCE))
4428 continue;
4429
4430 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4431 /* If we've pulled tasks over stop searching: */
7c16ec58 4432 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4433 sd);
92c4ca5c
CL
4434
4435 interval = msecs_to_jiffies(sd->balance_interval);
4436 if (time_after(next_balance, sd->last_balance + interval))
4437 next_balance = sd->last_balance + interval;
1b9508f6
MG
4438 if (pulled_task) {
4439 this_rq->idle_stamp = 0;
92c4ca5c 4440 break;
1b9508f6 4441 }
1da177e4 4442 }
dd41f596 4443 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4444 /*
4445 * We are going idle. next_balance may be set based on
4446 * a busy processor. So reset next_balance.
4447 */
4448 this_rq->next_balance = next_balance;
dd41f596 4449 }
1da177e4
LT
4450}
4451
4452/*
4453 * active_load_balance is run by migration threads. It pushes running tasks
4454 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4455 * running on each physical CPU where possible, and avoids physical /
4456 * logical imbalances.
4457 *
4458 * Called with busiest_rq locked.
4459 */
70b97a7f 4460static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4461{
39507451 4462 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4463 struct sched_domain *sd;
4464 struct rq *target_rq;
39507451 4465
48f24c4d 4466 /* Is there any task to move? */
39507451 4467 if (busiest_rq->nr_running <= 1)
39507451
NP
4468 return;
4469
4470 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4471
4472 /*
39507451 4473 * This condition is "impossible", if it occurs
41a2d6cf 4474 * we need to fix it. Originally reported by
39507451 4475 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4476 */
39507451 4477 BUG_ON(busiest_rq == target_rq);
1da177e4 4478
39507451
NP
4479 /* move a task from busiest_rq to target_rq */
4480 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4481 update_rq_clock(busiest_rq);
4482 update_rq_clock(target_rq);
39507451
NP
4483
4484 /* Search for an sd spanning us and the target CPU. */
c96d145e 4485 for_each_domain(target_cpu, sd) {
39507451 4486 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4487 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4488 break;
c96d145e 4489 }
39507451 4490
48f24c4d 4491 if (likely(sd)) {
2d72376b 4492 schedstat_inc(sd, alb_count);
39507451 4493
43010659
PW
4494 if (move_one_task(target_rq, target_cpu, busiest_rq,
4495 sd, CPU_IDLE))
48f24c4d
IM
4496 schedstat_inc(sd, alb_pushed);
4497 else
4498 schedstat_inc(sd, alb_failed);
4499 }
1b12bbc7 4500 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4501}
4502
46cb4b7c
SS
4503#ifdef CONFIG_NO_HZ
4504static struct {
4505 atomic_t load_balancer;
7d1e6a9b 4506 cpumask_var_t cpu_mask;
f711f609 4507 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4508} nohz ____cacheline_aligned = {
4509 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4510};
4511
eea08f32
AB
4512int get_nohz_load_balancer(void)
4513{
4514 return atomic_read(&nohz.load_balancer);
4515}
4516
f711f609
GS
4517#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4518/**
4519 * lowest_flag_domain - Return lowest sched_domain containing flag.
4520 * @cpu: The cpu whose lowest level of sched domain is to
4521 * be returned.
4522 * @flag: The flag to check for the lowest sched_domain
4523 * for the given cpu.
4524 *
4525 * Returns the lowest sched_domain of a cpu which contains the given flag.
4526 */
4527static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4528{
4529 struct sched_domain *sd;
4530
4531 for_each_domain(cpu, sd)
4532 if (sd && (sd->flags & flag))
4533 break;
4534
4535 return sd;
4536}
4537
4538/**
4539 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4540 * @cpu: The cpu whose domains we're iterating over.
4541 * @sd: variable holding the value of the power_savings_sd
4542 * for cpu.
4543 * @flag: The flag to filter the sched_domains to be iterated.
4544 *
4545 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4546 * set, starting from the lowest sched_domain to the highest.
4547 */
4548#define for_each_flag_domain(cpu, sd, flag) \
4549 for (sd = lowest_flag_domain(cpu, flag); \
4550 (sd && (sd->flags & flag)); sd = sd->parent)
4551
4552/**
4553 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4554 * @ilb_group: group to be checked for semi-idleness
4555 *
4556 * Returns: 1 if the group is semi-idle. 0 otherwise.
4557 *
4558 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4559 * and atleast one non-idle CPU. This helper function checks if the given
4560 * sched_group is semi-idle or not.
4561 */
4562static inline int is_semi_idle_group(struct sched_group *ilb_group)
4563{
4564 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4565 sched_group_cpus(ilb_group));
4566
4567 /*
4568 * A sched_group is semi-idle when it has atleast one busy cpu
4569 * and atleast one idle cpu.
4570 */
4571 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4572 return 0;
4573
4574 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4575 return 0;
4576
4577 return 1;
4578}
4579/**
4580 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4581 * @cpu: The cpu which is nominating a new idle_load_balancer.
4582 *
4583 * Returns: Returns the id of the idle load balancer if it exists,
4584 * Else, returns >= nr_cpu_ids.
4585 *
4586 * This algorithm picks the idle load balancer such that it belongs to a
4587 * semi-idle powersavings sched_domain. The idea is to try and avoid
4588 * completely idle packages/cores just for the purpose of idle load balancing
4589 * when there are other idle cpu's which are better suited for that job.
4590 */
4591static int find_new_ilb(int cpu)
4592{
4593 struct sched_domain *sd;
4594 struct sched_group *ilb_group;
4595
4596 /*
4597 * Have idle load balancer selection from semi-idle packages only
4598 * when power-aware load balancing is enabled
4599 */
4600 if (!(sched_smt_power_savings || sched_mc_power_savings))
4601 goto out_done;
4602
4603 /*
4604 * Optimize for the case when we have no idle CPUs or only one
4605 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4606 */
4607 if (cpumask_weight(nohz.cpu_mask) < 2)
4608 goto out_done;
4609
4610 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4611 ilb_group = sd->groups;
4612
4613 do {
4614 if (is_semi_idle_group(ilb_group))
4615 return cpumask_first(nohz.ilb_grp_nohz_mask);
4616
4617 ilb_group = ilb_group->next;
4618
4619 } while (ilb_group != sd->groups);
4620 }
4621
4622out_done:
4623 return cpumask_first(nohz.cpu_mask);
4624}
4625#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4626static inline int find_new_ilb(int call_cpu)
4627{
6e29ec57 4628 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4629}
4630#endif
4631
7835b98b 4632/*
46cb4b7c
SS
4633 * This routine will try to nominate the ilb (idle load balancing)
4634 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4635 * load balancing on behalf of all those cpus. If all the cpus in the system
4636 * go into this tickless mode, then there will be no ilb owner (as there is
4637 * no need for one) and all the cpus will sleep till the next wakeup event
4638 * arrives...
4639 *
4640 * For the ilb owner, tick is not stopped. And this tick will be used
4641 * for idle load balancing. ilb owner will still be part of
4642 * nohz.cpu_mask..
7835b98b 4643 *
46cb4b7c
SS
4644 * While stopping the tick, this cpu will become the ilb owner if there
4645 * is no other owner. And will be the owner till that cpu becomes busy
4646 * or if all cpus in the system stop their ticks at which point
4647 * there is no need for ilb owner.
4648 *
4649 * When the ilb owner becomes busy, it nominates another owner, during the
4650 * next busy scheduler_tick()
4651 */
4652int select_nohz_load_balancer(int stop_tick)
4653{
4654 int cpu = smp_processor_id();
4655
4656 if (stop_tick) {
46cb4b7c
SS
4657 cpu_rq(cpu)->in_nohz_recently = 1;
4658
483b4ee6
SS
4659 if (!cpu_active(cpu)) {
4660 if (atomic_read(&nohz.load_balancer) != cpu)
4661 return 0;
4662
4663 /*
4664 * If we are going offline and still the leader,
4665 * give up!
4666 */
46cb4b7c
SS
4667 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4668 BUG();
483b4ee6 4669
46cb4b7c
SS
4670 return 0;
4671 }
4672
483b4ee6
SS
4673 cpumask_set_cpu(cpu, nohz.cpu_mask);
4674
46cb4b7c 4675 /* time for ilb owner also to sleep */
6ad4c188 4676 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4677 if (atomic_read(&nohz.load_balancer) == cpu)
4678 atomic_set(&nohz.load_balancer, -1);
4679 return 0;
4680 }
4681
4682 if (atomic_read(&nohz.load_balancer) == -1) {
4683 /* make me the ilb owner */
4684 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4685 return 1;
e790fb0b
GS
4686 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4687 int new_ilb;
4688
4689 if (!(sched_smt_power_savings ||
4690 sched_mc_power_savings))
4691 return 1;
4692 /*
4693 * Check to see if there is a more power-efficient
4694 * ilb.
4695 */
4696 new_ilb = find_new_ilb(cpu);
4697 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4698 atomic_set(&nohz.load_balancer, -1);
4699 resched_cpu(new_ilb);
4700 return 0;
4701 }
46cb4b7c 4702 return 1;
e790fb0b 4703 }
46cb4b7c 4704 } else {
7d1e6a9b 4705 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4706 return 0;
4707
7d1e6a9b 4708 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4709
4710 if (atomic_read(&nohz.load_balancer) == cpu)
4711 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4712 BUG();
4713 }
4714 return 0;
4715}
4716#endif
4717
4718static DEFINE_SPINLOCK(balancing);
4719
4720/*
7835b98b
CL
4721 * It checks each scheduling domain to see if it is due to be balanced,
4722 * and initiates a balancing operation if so.
4723 *
4724 * Balancing parameters are set up in arch_init_sched_domains.
4725 */
a9957449 4726static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4727{
46cb4b7c
SS
4728 int balance = 1;
4729 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4730 unsigned long interval;
4731 struct sched_domain *sd;
46cb4b7c 4732 /* Earliest time when we have to do rebalance again */
c9819f45 4733 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4734 int update_next_balance = 0;
d07355f5 4735 int need_serialize;
1da177e4 4736
46cb4b7c 4737 for_each_domain(cpu, sd) {
1da177e4
LT
4738 if (!(sd->flags & SD_LOAD_BALANCE))
4739 continue;
4740
4741 interval = sd->balance_interval;
d15bcfdb 4742 if (idle != CPU_IDLE)
1da177e4
LT
4743 interval *= sd->busy_factor;
4744
4745 /* scale ms to jiffies */
4746 interval = msecs_to_jiffies(interval);
4747 if (unlikely(!interval))
4748 interval = 1;
dd41f596
IM
4749 if (interval > HZ*NR_CPUS/10)
4750 interval = HZ*NR_CPUS/10;
4751
d07355f5 4752 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4753
d07355f5 4754 if (need_serialize) {
08c183f3
CL
4755 if (!spin_trylock(&balancing))
4756 goto out;
4757 }
4758
c9819f45 4759 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4760 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4761 /*
4762 * We've pulled tasks over so either we're no
5969fe06
NP
4763 * longer idle, or one of our SMT siblings is
4764 * not idle.
4765 */
d15bcfdb 4766 idle = CPU_NOT_IDLE;
1da177e4 4767 }
1bd77f2d 4768 sd->last_balance = jiffies;
1da177e4 4769 }
d07355f5 4770 if (need_serialize)
08c183f3
CL
4771 spin_unlock(&balancing);
4772out:
f549da84 4773 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4774 next_balance = sd->last_balance + interval;
f549da84
SS
4775 update_next_balance = 1;
4776 }
783609c6
SS
4777
4778 /*
4779 * Stop the load balance at this level. There is another
4780 * CPU in our sched group which is doing load balancing more
4781 * actively.
4782 */
4783 if (!balance)
4784 break;
1da177e4 4785 }
f549da84
SS
4786
4787 /*
4788 * next_balance will be updated only when there is a need.
4789 * When the cpu is attached to null domain for ex, it will not be
4790 * updated.
4791 */
4792 if (likely(update_next_balance))
4793 rq->next_balance = next_balance;
46cb4b7c
SS
4794}
4795
4796/*
4797 * run_rebalance_domains is triggered when needed from the scheduler tick.
4798 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4799 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4800 */
4801static void run_rebalance_domains(struct softirq_action *h)
4802{
dd41f596
IM
4803 int this_cpu = smp_processor_id();
4804 struct rq *this_rq = cpu_rq(this_cpu);
4805 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4806 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4807
dd41f596 4808 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4809
4810#ifdef CONFIG_NO_HZ
4811 /*
4812 * If this cpu is the owner for idle load balancing, then do the
4813 * balancing on behalf of the other idle cpus whose ticks are
4814 * stopped.
4815 */
dd41f596
IM
4816 if (this_rq->idle_at_tick &&
4817 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4818 struct rq *rq;
4819 int balance_cpu;
4820
7d1e6a9b
RR
4821 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4822 if (balance_cpu == this_cpu)
4823 continue;
4824
46cb4b7c
SS
4825 /*
4826 * If this cpu gets work to do, stop the load balancing
4827 * work being done for other cpus. Next load
4828 * balancing owner will pick it up.
4829 */
4830 if (need_resched())
4831 break;
4832
de0cf899 4833 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4834
4835 rq = cpu_rq(balance_cpu);
dd41f596
IM
4836 if (time_after(this_rq->next_balance, rq->next_balance))
4837 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4838 }
4839 }
4840#endif
4841}
4842
8a0be9ef
FW
4843static inline int on_null_domain(int cpu)
4844{
4845 return !rcu_dereference(cpu_rq(cpu)->sd);
4846}
4847
46cb4b7c
SS
4848/*
4849 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4850 *
4851 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4852 * idle load balancing owner or decide to stop the periodic load balancing,
4853 * if the whole system is idle.
4854 */
dd41f596 4855static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4856{
46cb4b7c
SS
4857#ifdef CONFIG_NO_HZ
4858 /*
4859 * If we were in the nohz mode recently and busy at the current
4860 * scheduler tick, then check if we need to nominate new idle
4861 * load balancer.
4862 */
4863 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4864 rq->in_nohz_recently = 0;
4865
4866 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4867 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4868 atomic_set(&nohz.load_balancer, -1);
4869 }
4870
4871 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4872 int ilb = find_new_ilb(cpu);
46cb4b7c 4873
434d53b0 4874 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4875 resched_cpu(ilb);
4876 }
4877 }
4878
4879 /*
4880 * If this cpu is idle and doing idle load balancing for all the
4881 * cpus with ticks stopped, is it time for that to stop?
4882 */
4883 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4884 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4885 resched_cpu(cpu);
4886 return;
4887 }
4888
4889 /*
4890 * If this cpu is idle and the idle load balancing is done by
4891 * someone else, then no need raise the SCHED_SOFTIRQ
4892 */
4893 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4894 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4895 return;
4896#endif
8a0be9ef
FW
4897 /* Don't need to rebalance while attached to NULL domain */
4898 if (time_after_eq(jiffies, rq->next_balance) &&
4899 likely(!on_null_domain(cpu)))
46cb4b7c 4900 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4901}
dd41f596
IM
4902
4903#else /* CONFIG_SMP */
4904
1da177e4
LT
4905/*
4906 * on UP we do not need to balance between CPUs:
4907 */
70b97a7f 4908static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4909{
4910}
dd41f596 4911
1da177e4
LT
4912#endif
4913
1da177e4
LT
4914DEFINE_PER_CPU(struct kernel_stat, kstat);
4915
4916EXPORT_PER_CPU_SYMBOL(kstat);
4917
4918/*
c5f8d995 4919 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4920 * @p in case that task is currently running.
c5f8d995
HS
4921 *
4922 * Called with task_rq_lock() held on @rq.
1da177e4 4923 */
c5f8d995
HS
4924static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4925{
4926 u64 ns = 0;
4927
4928 if (task_current(rq, p)) {
4929 update_rq_clock(rq);
4930 ns = rq->clock - p->se.exec_start;
4931 if ((s64)ns < 0)
4932 ns = 0;
4933 }
4934
4935 return ns;
4936}
4937
bb34d92f 4938unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4939{
1da177e4 4940 unsigned long flags;
41b86e9c 4941 struct rq *rq;
bb34d92f 4942 u64 ns = 0;
48f24c4d 4943
41b86e9c 4944 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4945 ns = do_task_delta_exec(p, rq);
4946 task_rq_unlock(rq, &flags);
1508487e 4947
c5f8d995
HS
4948 return ns;
4949}
f06febc9 4950
c5f8d995
HS
4951/*
4952 * Return accounted runtime for the task.
4953 * In case the task is currently running, return the runtime plus current's
4954 * pending runtime that have not been accounted yet.
4955 */
4956unsigned long long task_sched_runtime(struct task_struct *p)
4957{
4958 unsigned long flags;
4959 struct rq *rq;
4960 u64 ns = 0;
4961
4962 rq = task_rq_lock(p, &flags);
4963 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4964 task_rq_unlock(rq, &flags);
4965
4966 return ns;
4967}
48f24c4d 4968
c5f8d995
HS
4969/*
4970 * Return sum_exec_runtime for the thread group.
4971 * In case the task is currently running, return the sum plus current's
4972 * pending runtime that have not been accounted yet.
4973 *
4974 * Note that the thread group might have other running tasks as well,
4975 * so the return value not includes other pending runtime that other
4976 * running tasks might have.
4977 */
4978unsigned long long thread_group_sched_runtime(struct task_struct *p)
4979{
4980 struct task_cputime totals;
4981 unsigned long flags;
4982 struct rq *rq;
4983 u64 ns;
4984
4985 rq = task_rq_lock(p, &flags);
4986 thread_group_cputime(p, &totals);
4987 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4988 task_rq_unlock(rq, &flags);
48f24c4d 4989
1da177e4
LT
4990 return ns;
4991}
4992
1da177e4
LT
4993/*
4994 * Account user cpu time to a process.
4995 * @p: the process that the cpu time gets accounted to
1da177e4 4996 * @cputime: the cpu time spent in user space since the last update
457533a7 4997 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4998 */
457533a7
MS
4999void account_user_time(struct task_struct *p, cputime_t cputime,
5000 cputime_t cputime_scaled)
1da177e4
LT
5001{
5002 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5003 cputime64_t tmp;
5004
457533a7 5005 /* Add user time to process. */
1da177e4 5006 p->utime = cputime_add(p->utime, cputime);
457533a7 5007 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5008 account_group_user_time(p, cputime);
1da177e4
LT
5009
5010 /* Add user time to cpustat. */
5011 tmp = cputime_to_cputime64(cputime);
5012 if (TASK_NICE(p) > 0)
5013 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5014 else
5015 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5016
5017 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5018 /* Account for user time used */
5019 acct_update_integrals(p);
1da177e4
LT
5020}
5021
94886b84
LV
5022/*
5023 * Account guest cpu time to a process.
5024 * @p: the process that the cpu time gets accounted to
5025 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5026 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5027 */
457533a7
MS
5028static void account_guest_time(struct task_struct *p, cputime_t cputime,
5029 cputime_t cputime_scaled)
94886b84
LV
5030{
5031 cputime64_t tmp;
5032 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5033
5034 tmp = cputime_to_cputime64(cputime);
5035
457533a7 5036 /* Add guest time to process. */
94886b84 5037 p->utime = cputime_add(p->utime, cputime);
457533a7 5038 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5039 account_group_user_time(p, cputime);
94886b84
LV
5040 p->gtime = cputime_add(p->gtime, cputime);
5041
457533a7 5042 /* Add guest time to cpustat. */
ce0e7b28
RO
5043 if (TASK_NICE(p) > 0) {
5044 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5045 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5046 } else {
5047 cpustat->user = cputime64_add(cpustat->user, tmp);
5048 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5049 }
94886b84
LV
5050}
5051
1da177e4
LT
5052/*
5053 * Account system cpu time to a process.
5054 * @p: the process that the cpu time gets accounted to
5055 * @hardirq_offset: the offset to subtract from hardirq_count()
5056 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5057 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5058 */
5059void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5060 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5061{
5062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5063 cputime64_t tmp;
5064
983ed7a6 5065 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5066 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5067 return;
5068 }
94886b84 5069
457533a7 5070 /* Add system time to process. */
1da177e4 5071 p->stime = cputime_add(p->stime, cputime);
457533a7 5072 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5073 account_group_system_time(p, cputime);
1da177e4
LT
5074
5075 /* Add system time to cpustat. */
5076 tmp = cputime_to_cputime64(cputime);
5077 if (hardirq_count() - hardirq_offset)
5078 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5079 else if (softirq_count())
5080 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5081 else
79741dd3
MS
5082 cpustat->system = cputime64_add(cpustat->system, tmp);
5083
ef12fefa
BR
5084 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5085
1da177e4
LT
5086 /* Account for system time used */
5087 acct_update_integrals(p);
1da177e4
LT
5088}
5089
c66f08be 5090/*
1da177e4 5091 * Account for involuntary wait time.
1da177e4 5092 * @steal: the cpu time spent in involuntary wait
c66f08be 5093 */
79741dd3 5094void account_steal_time(cputime_t cputime)
c66f08be 5095{
79741dd3
MS
5096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5097 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5098
5099 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5100}
5101
1da177e4 5102/*
79741dd3
MS
5103 * Account for idle time.
5104 * @cputime: the cpu time spent in idle wait
1da177e4 5105 */
79741dd3 5106void account_idle_time(cputime_t cputime)
1da177e4
LT
5107{
5108 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5109 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5110 struct rq *rq = this_rq();
1da177e4 5111
79741dd3
MS
5112 if (atomic_read(&rq->nr_iowait) > 0)
5113 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5114 else
5115 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5116}
5117
79741dd3
MS
5118#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5119
5120/*
5121 * Account a single tick of cpu time.
5122 * @p: the process that the cpu time gets accounted to
5123 * @user_tick: indicates if the tick is a user or a system tick
5124 */
5125void account_process_tick(struct task_struct *p, int user_tick)
5126{
a42548a1 5127 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5128 struct rq *rq = this_rq();
5129
5130 if (user_tick)
a42548a1 5131 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5132 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5133 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5134 one_jiffy_scaled);
5135 else
a42548a1 5136 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5137}
5138
5139/*
5140 * Account multiple ticks of steal time.
5141 * @p: the process from which the cpu time has been stolen
5142 * @ticks: number of stolen ticks
5143 */
5144void account_steal_ticks(unsigned long ticks)
5145{
5146 account_steal_time(jiffies_to_cputime(ticks));
5147}
5148
5149/*
5150 * Account multiple ticks of idle time.
5151 * @ticks: number of stolen ticks
5152 */
5153void account_idle_ticks(unsigned long ticks)
5154{
5155 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5156}
5157
79741dd3
MS
5158#endif
5159
49048622
BS
5160/*
5161 * Use precise platform statistics if available:
5162 */
5163#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5164void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5165{
d99ca3b9
HS
5166 *ut = p->utime;
5167 *st = p->stime;
49048622
BS
5168}
5169
0cf55e1e 5170void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5171{
0cf55e1e
HS
5172 struct task_cputime cputime;
5173
5174 thread_group_cputime(p, &cputime);
5175
5176 *ut = cputime.utime;
5177 *st = cputime.stime;
49048622
BS
5178}
5179#else
761b1d26
HS
5180
5181#ifndef nsecs_to_cputime
b7b20df9 5182# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5183#endif
5184
d180c5bc 5185void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5186{
d99ca3b9 5187 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5188
5189 /*
5190 * Use CFS's precise accounting:
5191 */
d180c5bc 5192 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5193
5194 if (total) {
d180c5bc
HS
5195 u64 temp;
5196
5197 temp = (u64)(rtime * utime);
49048622 5198 do_div(temp, total);
d180c5bc
HS
5199 utime = (cputime_t)temp;
5200 } else
5201 utime = rtime;
49048622 5202
d180c5bc
HS
5203 /*
5204 * Compare with previous values, to keep monotonicity:
5205 */
761b1d26 5206 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5207 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5208
d99ca3b9
HS
5209 *ut = p->prev_utime;
5210 *st = p->prev_stime;
49048622
BS
5211}
5212
0cf55e1e
HS
5213/*
5214 * Must be called with siglock held.
5215 */
5216void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5217{
0cf55e1e
HS
5218 struct signal_struct *sig = p->signal;
5219 struct task_cputime cputime;
5220 cputime_t rtime, utime, total;
49048622 5221
0cf55e1e 5222 thread_group_cputime(p, &cputime);
49048622 5223
0cf55e1e
HS
5224 total = cputime_add(cputime.utime, cputime.stime);
5225 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5226
0cf55e1e
HS
5227 if (total) {
5228 u64 temp;
49048622 5229
0cf55e1e
HS
5230 temp = (u64)(rtime * cputime.utime);
5231 do_div(temp, total);
5232 utime = (cputime_t)temp;
5233 } else
5234 utime = rtime;
5235
5236 sig->prev_utime = max(sig->prev_utime, utime);
5237 sig->prev_stime = max(sig->prev_stime,
5238 cputime_sub(rtime, sig->prev_utime));
5239
5240 *ut = sig->prev_utime;
5241 *st = sig->prev_stime;
49048622 5242}
49048622 5243#endif
49048622 5244
7835b98b
CL
5245/*
5246 * This function gets called by the timer code, with HZ frequency.
5247 * We call it with interrupts disabled.
5248 *
5249 * It also gets called by the fork code, when changing the parent's
5250 * timeslices.
5251 */
5252void scheduler_tick(void)
5253{
7835b98b
CL
5254 int cpu = smp_processor_id();
5255 struct rq *rq = cpu_rq(cpu);
dd41f596 5256 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5257
5258 sched_clock_tick();
dd41f596
IM
5259
5260 spin_lock(&rq->lock);
3e51f33f 5261 update_rq_clock(rq);
f1a438d8 5262 update_cpu_load(rq);
fa85ae24 5263 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5264 spin_unlock(&rq->lock);
7835b98b 5265
cdd6c482 5266 perf_event_task_tick(curr, cpu);
e220d2dc 5267
e418e1c2 5268#ifdef CONFIG_SMP
dd41f596
IM
5269 rq->idle_at_tick = idle_cpu(cpu);
5270 trigger_load_balance(rq, cpu);
e418e1c2 5271#endif
1da177e4
LT
5272}
5273
132380a0 5274notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5275{
5276 if (in_lock_functions(addr)) {
5277 addr = CALLER_ADDR2;
5278 if (in_lock_functions(addr))
5279 addr = CALLER_ADDR3;
5280 }
5281 return addr;
5282}
1da177e4 5283
7e49fcce
SR
5284#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5285 defined(CONFIG_PREEMPT_TRACER))
5286
43627582 5287void __kprobes add_preempt_count(int val)
1da177e4 5288{
6cd8a4bb 5289#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5290 /*
5291 * Underflow?
5292 */
9a11b49a
IM
5293 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5294 return;
6cd8a4bb 5295#endif
1da177e4 5296 preempt_count() += val;
6cd8a4bb 5297#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5298 /*
5299 * Spinlock count overflowing soon?
5300 */
33859f7f
MOS
5301 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5302 PREEMPT_MASK - 10);
6cd8a4bb
SR
5303#endif
5304 if (preempt_count() == val)
5305 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5306}
5307EXPORT_SYMBOL(add_preempt_count);
5308
43627582 5309void __kprobes sub_preempt_count(int val)
1da177e4 5310{
6cd8a4bb 5311#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5312 /*
5313 * Underflow?
5314 */
01e3eb82 5315 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5316 return;
1da177e4
LT
5317 /*
5318 * Is the spinlock portion underflowing?
5319 */
9a11b49a
IM
5320 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5321 !(preempt_count() & PREEMPT_MASK)))
5322 return;
6cd8a4bb 5323#endif
9a11b49a 5324
6cd8a4bb
SR
5325 if (preempt_count() == val)
5326 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5327 preempt_count() -= val;
5328}
5329EXPORT_SYMBOL(sub_preempt_count);
5330
5331#endif
5332
5333/*
dd41f596 5334 * Print scheduling while atomic bug:
1da177e4 5335 */
dd41f596 5336static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5337{
838225b4
SS
5338 struct pt_regs *regs = get_irq_regs();
5339
5340 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5341 prev->comm, prev->pid, preempt_count());
5342
dd41f596 5343 debug_show_held_locks(prev);
e21f5b15 5344 print_modules();
dd41f596
IM
5345 if (irqs_disabled())
5346 print_irqtrace_events(prev);
838225b4
SS
5347
5348 if (regs)
5349 show_regs(regs);
5350 else
5351 dump_stack();
dd41f596 5352}
1da177e4 5353
dd41f596
IM
5354/*
5355 * Various schedule()-time debugging checks and statistics:
5356 */
5357static inline void schedule_debug(struct task_struct *prev)
5358{
1da177e4 5359 /*
41a2d6cf 5360 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5361 * schedule() atomically, we ignore that path for now.
5362 * Otherwise, whine if we are scheduling when we should not be.
5363 */
3f33a7ce 5364 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5365 __schedule_bug(prev);
5366
1da177e4
LT
5367 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5368
2d72376b 5369 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5370#ifdef CONFIG_SCHEDSTATS
5371 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5372 schedstat_inc(this_rq(), bkl_count);
5373 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5374 }
5375#endif
dd41f596
IM
5376}
5377
6cecd084 5378static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5379{
6cecd084
PZ
5380 if (prev->state == TASK_RUNNING) {
5381 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5382
6cecd084
PZ
5383 runtime -= prev->se.prev_sum_exec_runtime;
5384 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5385
5386 /*
5387 * In order to avoid avg_overlap growing stale when we are
5388 * indeed overlapping and hence not getting put to sleep, grow
5389 * the avg_overlap on preemption.
5390 *
5391 * We use the average preemption runtime because that
5392 * correlates to the amount of cache footprint a task can
5393 * build up.
5394 */
6cecd084 5395 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5396 }
6cecd084 5397 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5398}
5399
dd41f596
IM
5400/*
5401 * Pick up the highest-prio task:
5402 */
5403static inline struct task_struct *
b67802ea 5404pick_next_task(struct rq *rq)
dd41f596 5405{
5522d5d5 5406 const struct sched_class *class;
dd41f596 5407 struct task_struct *p;
1da177e4
LT
5408
5409 /*
dd41f596
IM
5410 * Optimization: we know that if all tasks are in
5411 * the fair class we can call that function directly:
1da177e4 5412 */
dd41f596 5413 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5414 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5415 if (likely(p))
5416 return p;
1da177e4
LT
5417 }
5418
dd41f596
IM
5419 class = sched_class_highest;
5420 for ( ; ; ) {
fb8d4724 5421 p = class->pick_next_task(rq);
dd41f596
IM
5422 if (p)
5423 return p;
5424 /*
5425 * Will never be NULL as the idle class always
5426 * returns a non-NULL p:
5427 */
5428 class = class->next;
5429 }
5430}
1da177e4 5431
dd41f596
IM
5432/*
5433 * schedule() is the main scheduler function.
5434 */
ff743345 5435asmlinkage void __sched schedule(void)
dd41f596
IM
5436{
5437 struct task_struct *prev, *next;
67ca7bde 5438 unsigned long *switch_count;
dd41f596 5439 struct rq *rq;
31656519 5440 int cpu;
dd41f596 5441
ff743345
PZ
5442need_resched:
5443 preempt_disable();
dd41f596
IM
5444 cpu = smp_processor_id();
5445 rq = cpu_rq(cpu);
d6714c22 5446 rcu_sched_qs(cpu);
dd41f596
IM
5447 prev = rq->curr;
5448 switch_count = &prev->nivcsw;
5449
5450 release_kernel_lock(prev);
5451need_resched_nonpreemptible:
5452
5453 schedule_debug(prev);
1da177e4 5454
31656519 5455 if (sched_feat(HRTICK))
f333fdc9 5456 hrtick_clear(rq);
8f4d37ec 5457
8cd162ce 5458 spin_lock_irq(&rq->lock);
3e51f33f 5459 update_rq_clock(rq);
1e819950 5460 clear_tsk_need_resched(prev);
1da177e4 5461
1da177e4 5462 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5463 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5464 prev->state = TASK_RUNNING;
16882c1e 5465 else
2e1cb74a 5466 deactivate_task(rq, prev, 1);
dd41f596 5467 switch_count = &prev->nvcsw;
1da177e4
LT
5468 }
5469
3f029d3c 5470 pre_schedule(rq, prev);
f65eda4f 5471
dd41f596 5472 if (unlikely(!rq->nr_running))
1da177e4 5473 idle_balance(cpu, rq);
1da177e4 5474
df1c99d4 5475 put_prev_task(rq, prev);
b67802ea 5476 next = pick_next_task(rq);
1da177e4 5477
1da177e4 5478 if (likely(prev != next)) {
673a90a1 5479 sched_info_switch(prev, next);
cdd6c482 5480 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5481
1da177e4
LT
5482 rq->nr_switches++;
5483 rq->curr = next;
5484 ++*switch_count;
5485
dd41f596 5486 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5487 /*
5488 * the context switch might have flipped the stack from under
5489 * us, hence refresh the local variables.
5490 */
5491 cpu = smp_processor_id();
5492 rq = cpu_rq(cpu);
1da177e4
LT
5493 } else
5494 spin_unlock_irq(&rq->lock);
5495
3f029d3c 5496 post_schedule(rq);
1da177e4 5497
8f4d37ec 5498 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5499 goto need_resched_nonpreemptible;
8f4d37ec 5500
1da177e4 5501 preempt_enable_no_resched();
ff743345 5502 if (need_resched())
1da177e4
LT
5503 goto need_resched;
5504}
1da177e4
LT
5505EXPORT_SYMBOL(schedule);
5506
c08f7829 5507#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5508/*
5509 * Look out! "owner" is an entirely speculative pointer
5510 * access and not reliable.
5511 */
5512int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5513{
5514 unsigned int cpu;
5515 struct rq *rq;
5516
5517 if (!sched_feat(OWNER_SPIN))
5518 return 0;
5519
5520#ifdef CONFIG_DEBUG_PAGEALLOC
5521 /*
5522 * Need to access the cpu field knowing that
5523 * DEBUG_PAGEALLOC could have unmapped it if
5524 * the mutex owner just released it and exited.
5525 */
5526 if (probe_kernel_address(&owner->cpu, cpu))
5527 goto out;
5528#else
5529 cpu = owner->cpu;
5530#endif
5531
5532 /*
5533 * Even if the access succeeded (likely case),
5534 * the cpu field may no longer be valid.
5535 */
5536 if (cpu >= nr_cpumask_bits)
5537 goto out;
5538
5539 /*
5540 * We need to validate that we can do a
5541 * get_cpu() and that we have the percpu area.
5542 */
5543 if (!cpu_online(cpu))
5544 goto out;
5545
5546 rq = cpu_rq(cpu);
5547
5548 for (;;) {
5549 /*
5550 * Owner changed, break to re-assess state.
5551 */
5552 if (lock->owner != owner)
5553 break;
5554
5555 /*
5556 * Is that owner really running on that cpu?
5557 */
5558 if (task_thread_info(rq->curr) != owner || need_resched())
5559 return 0;
5560
5561 cpu_relax();
5562 }
5563out:
5564 return 1;
5565}
5566#endif
5567
1da177e4
LT
5568#ifdef CONFIG_PREEMPT
5569/*
2ed6e34f 5570 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5571 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5572 * occur there and call schedule directly.
5573 */
5574asmlinkage void __sched preempt_schedule(void)
5575{
5576 struct thread_info *ti = current_thread_info();
6478d880 5577
1da177e4
LT
5578 /*
5579 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5580 * we do not want to preempt the current task. Just return..
1da177e4 5581 */
beed33a8 5582 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5583 return;
5584
3a5c359a
AK
5585 do {
5586 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5587 schedule();
3a5c359a 5588 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5589
3a5c359a
AK
5590 /*
5591 * Check again in case we missed a preemption opportunity
5592 * between schedule and now.
5593 */
5594 barrier();
5ed0cec0 5595 } while (need_resched());
1da177e4 5596}
1da177e4
LT
5597EXPORT_SYMBOL(preempt_schedule);
5598
5599/*
2ed6e34f 5600 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5601 * off of irq context.
5602 * Note, that this is called and return with irqs disabled. This will
5603 * protect us against recursive calling from irq.
5604 */
5605asmlinkage void __sched preempt_schedule_irq(void)
5606{
5607 struct thread_info *ti = current_thread_info();
6478d880 5608
2ed6e34f 5609 /* Catch callers which need to be fixed */
1da177e4
LT
5610 BUG_ON(ti->preempt_count || !irqs_disabled());
5611
3a5c359a
AK
5612 do {
5613 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5614 local_irq_enable();
5615 schedule();
5616 local_irq_disable();
3a5c359a 5617 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5618
3a5c359a
AK
5619 /*
5620 * Check again in case we missed a preemption opportunity
5621 * between schedule and now.
5622 */
5623 barrier();
5ed0cec0 5624 } while (need_resched());
1da177e4
LT
5625}
5626
5627#endif /* CONFIG_PREEMPT */
5628
63859d4f 5629int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5630 void *key)
1da177e4 5631{
63859d4f 5632 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5633}
1da177e4
LT
5634EXPORT_SYMBOL(default_wake_function);
5635
5636/*
41a2d6cf
IM
5637 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5638 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5639 * number) then we wake all the non-exclusive tasks and one exclusive task.
5640 *
5641 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5642 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5643 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5644 */
78ddb08f 5645static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5646 int nr_exclusive, int wake_flags, void *key)
1da177e4 5647{
2e45874c 5648 wait_queue_t *curr, *next;
1da177e4 5649
2e45874c 5650 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5651 unsigned flags = curr->flags;
5652
63859d4f 5653 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5654 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5655 break;
5656 }
5657}
5658
5659/**
5660 * __wake_up - wake up threads blocked on a waitqueue.
5661 * @q: the waitqueue
5662 * @mode: which threads
5663 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5664 * @key: is directly passed to the wakeup function
50fa610a
DH
5665 *
5666 * It may be assumed that this function implies a write memory barrier before
5667 * changing the task state if and only if any tasks are woken up.
1da177e4 5668 */
7ad5b3a5 5669void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5670 int nr_exclusive, void *key)
1da177e4
LT
5671{
5672 unsigned long flags;
5673
5674 spin_lock_irqsave(&q->lock, flags);
5675 __wake_up_common(q, mode, nr_exclusive, 0, key);
5676 spin_unlock_irqrestore(&q->lock, flags);
5677}
1da177e4
LT
5678EXPORT_SYMBOL(__wake_up);
5679
5680/*
5681 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5682 */
7ad5b3a5 5683void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5684{
5685 __wake_up_common(q, mode, 1, 0, NULL);
5686}
5687
4ede816a
DL
5688void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5689{
5690 __wake_up_common(q, mode, 1, 0, key);
5691}
5692
1da177e4 5693/**
4ede816a 5694 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5695 * @q: the waitqueue
5696 * @mode: which threads
5697 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5698 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5699 *
5700 * The sync wakeup differs that the waker knows that it will schedule
5701 * away soon, so while the target thread will be woken up, it will not
5702 * be migrated to another CPU - ie. the two threads are 'synchronized'
5703 * with each other. This can prevent needless bouncing between CPUs.
5704 *
5705 * On UP it can prevent extra preemption.
50fa610a
DH
5706 *
5707 * It may be assumed that this function implies a write memory barrier before
5708 * changing the task state if and only if any tasks are woken up.
1da177e4 5709 */
4ede816a
DL
5710void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5711 int nr_exclusive, void *key)
1da177e4
LT
5712{
5713 unsigned long flags;
7d478721 5714 int wake_flags = WF_SYNC;
1da177e4
LT
5715
5716 if (unlikely(!q))
5717 return;
5718
5719 if (unlikely(!nr_exclusive))
7d478721 5720 wake_flags = 0;
1da177e4
LT
5721
5722 spin_lock_irqsave(&q->lock, flags);
7d478721 5723 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5724 spin_unlock_irqrestore(&q->lock, flags);
5725}
4ede816a
DL
5726EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5727
5728/*
5729 * __wake_up_sync - see __wake_up_sync_key()
5730 */
5731void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5732{
5733 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5734}
1da177e4
LT
5735EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5736
65eb3dc6
KD
5737/**
5738 * complete: - signals a single thread waiting on this completion
5739 * @x: holds the state of this particular completion
5740 *
5741 * This will wake up a single thread waiting on this completion. Threads will be
5742 * awakened in the same order in which they were queued.
5743 *
5744 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5745 *
5746 * It may be assumed that this function implies a write memory barrier before
5747 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5748 */
b15136e9 5749void complete(struct completion *x)
1da177e4
LT
5750{
5751 unsigned long flags;
5752
5753 spin_lock_irqsave(&x->wait.lock, flags);
5754 x->done++;
d9514f6c 5755 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5756 spin_unlock_irqrestore(&x->wait.lock, flags);
5757}
5758EXPORT_SYMBOL(complete);
5759
65eb3dc6
KD
5760/**
5761 * complete_all: - signals all threads waiting on this completion
5762 * @x: holds the state of this particular completion
5763 *
5764 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5765 *
5766 * It may be assumed that this function implies a write memory barrier before
5767 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5768 */
b15136e9 5769void complete_all(struct completion *x)
1da177e4
LT
5770{
5771 unsigned long flags;
5772
5773 spin_lock_irqsave(&x->wait.lock, flags);
5774 x->done += UINT_MAX/2;
d9514f6c 5775 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5776 spin_unlock_irqrestore(&x->wait.lock, flags);
5777}
5778EXPORT_SYMBOL(complete_all);
5779
8cbbe86d
AK
5780static inline long __sched
5781do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5782{
1da177e4
LT
5783 if (!x->done) {
5784 DECLARE_WAITQUEUE(wait, current);
5785
5786 wait.flags |= WQ_FLAG_EXCLUSIVE;
5787 __add_wait_queue_tail(&x->wait, &wait);
5788 do {
94d3d824 5789 if (signal_pending_state(state, current)) {
ea71a546
ON
5790 timeout = -ERESTARTSYS;
5791 break;
8cbbe86d
AK
5792 }
5793 __set_current_state(state);
1da177e4
LT
5794 spin_unlock_irq(&x->wait.lock);
5795 timeout = schedule_timeout(timeout);
5796 spin_lock_irq(&x->wait.lock);
ea71a546 5797 } while (!x->done && timeout);
1da177e4 5798 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5799 if (!x->done)
5800 return timeout;
1da177e4
LT
5801 }
5802 x->done--;
ea71a546 5803 return timeout ?: 1;
1da177e4 5804}
1da177e4 5805
8cbbe86d
AK
5806static long __sched
5807wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5808{
1da177e4
LT
5809 might_sleep();
5810
5811 spin_lock_irq(&x->wait.lock);
8cbbe86d 5812 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5813 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5814 return timeout;
5815}
1da177e4 5816
65eb3dc6
KD
5817/**
5818 * wait_for_completion: - waits for completion of a task
5819 * @x: holds the state of this particular completion
5820 *
5821 * This waits to be signaled for completion of a specific task. It is NOT
5822 * interruptible and there is no timeout.
5823 *
5824 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5825 * and interrupt capability. Also see complete().
5826 */
b15136e9 5827void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5828{
5829 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5830}
8cbbe86d 5831EXPORT_SYMBOL(wait_for_completion);
1da177e4 5832
65eb3dc6
KD
5833/**
5834 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5835 * @x: holds the state of this particular completion
5836 * @timeout: timeout value in jiffies
5837 *
5838 * This waits for either a completion of a specific task to be signaled or for a
5839 * specified timeout to expire. The timeout is in jiffies. It is not
5840 * interruptible.
5841 */
b15136e9 5842unsigned long __sched
8cbbe86d 5843wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5844{
8cbbe86d 5845 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5846}
8cbbe86d 5847EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5848
65eb3dc6
KD
5849/**
5850 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5851 * @x: holds the state of this particular completion
5852 *
5853 * This waits for completion of a specific task to be signaled. It is
5854 * interruptible.
5855 */
8cbbe86d 5856int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5857{
51e97990
AK
5858 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5859 if (t == -ERESTARTSYS)
5860 return t;
5861 return 0;
0fec171c 5862}
8cbbe86d 5863EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5864
65eb3dc6
KD
5865/**
5866 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5867 * @x: holds the state of this particular completion
5868 * @timeout: timeout value in jiffies
5869 *
5870 * This waits for either a completion of a specific task to be signaled or for a
5871 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5872 */
b15136e9 5873unsigned long __sched
8cbbe86d
AK
5874wait_for_completion_interruptible_timeout(struct completion *x,
5875 unsigned long timeout)
0fec171c 5876{
8cbbe86d 5877 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5878}
8cbbe86d 5879EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5880
65eb3dc6
KD
5881/**
5882 * wait_for_completion_killable: - waits for completion of a task (killable)
5883 * @x: holds the state of this particular completion
5884 *
5885 * This waits to be signaled for completion of a specific task. It can be
5886 * interrupted by a kill signal.
5887 */
009e577e
MW
5888int __sched wait_for_completion_killable(struct completion *x)
5889{
5890 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5891 if (t == -ERESTARTSYS)
5892 return t;
5893 return 0;
5894}
5895EXPORT_SYMBOL(wait_for_completion_killable);
5896
be4de352
DC
5897/**
5898 * try_wait_for_completion - try to decrement a completion without blocking
5899 * @x: completion structure
5900 *
5901 * Returns: 0 if a decrement cannot be done without blocking
5902 * 1 if a decrement succeeded.
5903 *
5904 * If a completion is being used as a counting completion,
5905 * attempt to decrement the counter without blocking. This
5906 * enables us to avoid waiting if the resource the completion
5907 * is protecting is not available.
5908 */
5909bool try_wait_for_completion(struct completion *x)
5910{
5911 int ret = 1;
5912
5913 spin_lock_irq(&x->wait.lock);
5914 if (!x->done)
5915 ret = 0;
5916 else
5917 x->done--;
5918 spin_unlock_irq(&x->wait.lock);
5919 return ret;
5920}
5921EXPORT_SYMBOL(try_wait_for_completion);
5922
5923/**
5924 * completion_done - Test to see if a completion has any waiters
5925 * @x: completion structure
5926 *
5927 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5928 * 1 if there are no waiters.
5929 *
5930 */
5931bool completion_done(struct completion *x)
5932{
5933 int ret = 1;
5934
5935 spin_lock_irq(&x->wait.lock);
5936 if (!x->done)
5937 ret = 0;
5938 spin_unlock_irq(&x->wait.lock);
5939 return ret;
5940}
5941EXPORT_SYMBOL(completion_done);
5942
8cbbe86d
AK
5943static long __sched
5944sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5945{
0fec171c
IM
5946 unsigned long flags;
5947 wait_queue_t wait;
5948
5949 init_waitqueue_entry(&wait, current);
1da177e4 5950
8cbbe86d 5951 __set_current_state(state);
1da177e4 5952
8cbbe86d
AK
5953 spin_lock_irqsave(&q->lock, flags);
5954 __add_wait_queue(q, &wait);
5955 spin_unlock(&q->lock);
5956 timeout = schedule_timeout(timeout);
5957 spin_lock_irq(&q->lock);
5958 __remove_wait_queue(q, &wait);
5959 spin_unlock_irqrestore(&q->lock, flags);
5960
5961 return timeout;
5962}
5963
5964void __sched interruptible_sleep_on(wait_queue_head_t *q)
5965{
5966 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5967}
1da177e4
LT
5968EXPORT_SYMBOL(interruptible_sleep_on);
5969
0fec171c 5970long __sched
95cdf3b7 5971interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5972{
8cbbe86d 5973 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5974}
1da177e4
LT
5975EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5976
0fec171c 5977void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5978{
8cbbe86d 5979 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5980}
1da177e4
LT
5981EXPORT_SYMBOL(sleep_on);
5982
0fec171c 5983long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5984{
8cbbe86d 5985 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5986}
1da177e4
LT
5987EXPORT_SYMBOL(sleep_on_timeout);
5988
b29739f9
IM
5989#ifdef CONFIG_RT_MUTEXES
5990
5991/*
5992 * rt_mutex_setprio - set the current priority of a task
5993 * @p: task
5994 * @prio: prio value (kernel-internal form)
5995 *
5996 * This function changes the 'effective' priority of a task. It does
5997 * not touch ->normal_prio like __setscheduler().
5998 *
5999 * Used by the rt_mutex code to implement priority inheritance logic.
6000 */
36c8b586 6001void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6002{
6003 unsigned long flags;
83b699ed 6004 int oldprio, on_rq, running;
70b97a7f 6005 struct rq *rq;
cb469845 6006 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6007
6008 BUG_ON(prio < 0 || prio > MAX_PRIO);
6009
6010 rq = task_rq_lock(p, &flags);
a8e504d2 6011 update_rq_clock(rq);
b29739f9 6012
d5f9f942 6013 oldprio = p->prio;
dd41f596 6014 on_rq = p->se.on_rq;
051a1d1a 6015 running = task_current(rq, p);
0e1f3483 6016 if (on_rq)
69be72c1 6017 dequeue_task(rq, p, 0);
0e1f3483
HS
6018 if (running)
6019 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6020
6021 if (rt_prio(prio))
6022 p->sched_class = &rt_sched_class;
6023 else
6024 p->sched_class = &fair_sched_class;
6025
b29739f9
IM
6026 p->prio = prio;
6027
0e1f3483
HS
6028 if (running)
6029 p->sched_class->set_curr_task(rq);
dd41f596 6030 if (on_rq) {
8159f87e 6031 enqueue_task(rq, p, 0);
cb469845
SR
6032
6033 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6034 }
6035 task_rq_unlock(rq, &flags);
6036}
6037
6038#endif
6039
36c8b586 6040void set_user_nice(struct task_struct *p, long nice)
1da177e4 6041{
dd41f596 6042 int old_prio, delta, on_rq;
1da177e4 6043 unsigned long flags;
70b97a7f 6044 struct rq *rq;
1da177e4
LT
6045
6046 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6047 return;
6048 /*
6049 * We have to be careful, if called from sys_setpriority(),
6050 * the task might be in the middle of scheduling on another CPU.
6051 */
6052 rq = task_rq_lock(p, &flags);
a8e504d2 6053 update_rq_clock(rq);
1da177e4
LT
6054 /*
6055 * The RT priorities are set via sched_setscheduler(), but we still
6056 * allow the 'normal' nice value to be set - but as expected
6057 * it wont have any effect on scheduling until the task is
dd41f596 6058 * SCHED_FIFO/SCHED_RR:
1da177e4 6059 */
e05606d3 6060 if (task_has_rt_policy(p)) {
1da177e4
LT
6061 p->static_prio = NICE_TO_PRIO(nice);
6062 goto out_unlock;
6063 }
dd41f596 6064 on_rq = p->se.on_rq;
c09595f6 6065 if (on_rq)
69be72c1 6066 dequeue_task(rq, p, 0);
1da177e4 6067
1da177e4 6068 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6069 set_load_weight(p);
b29739f9
IM
6070 old_prio = p->prio;
6071 p->prio = effective_prio(p);
6072 delta = p->prio - old_prio;
1da177e4 6073
dd41f596 6074 if (on_rq) {
8159f87e 6075 enqueue_task(rq, p, 0);
1da177e4 6076 /*
d5f9f942
AM
6077 * If the task increased its priority or is running and
6078 * lowered its priority, then reschedule its CPU:
1da177e4 6079 */
d5f9f942 6080 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6081 resched_task(rq->curr);
6082 }
6083out_unlock:
6084 task_rq_unlock(rq, &flags);
6085}
1da177e4
LT
6086EXPORT_SYMBOL(set_user_nice);
6087
e43379f1
MM
6088/*
6089 * can_nice - check if a task can reduce its nice value
6090 * @p: task
6091 * @nice: nice value
6092 */
36c8b586 6093int can_nice(const struct task_struct *p, const int nice)
e43379f1 6094{
024f4747
MM
6095 /* convert nice value [19,-20] to rlimit style value [1,40] */
6096 int nice_rlim = 20 - nice;
48f24c4d 6097
e43379f1
MM
6098 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6099 capable(CAP_SYS_NICE));
6100}
6101
1da177e4
LT
6102#ifdef __ARCH_WANT_SYS_NICE
6103
6104/*
6105 * sys_nice - change the priority of the current process.
6106 * @increment: priority increment
6107 *
6108 * sys_setpriority is a more generic, but much slower function that
6109 * does similar things.
6110 */
5add95d4 6111SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6112{
48f24c4d 6113 long nice, retval;
1da177e4
LT
6114
6115 /*
6116 * Setpriority might change our priority at the same moment.
6117 * We don't have to worry. Conceptually one call occurs first
6118 * and we have a single winner.
6119 */
e43379f1
MM
6120 if (increment < -40)
6121 increment = -40;
1da177e4
LT
6122 if (increment > 40)
6123 increment = 40;
6124
2b8f836f 6125 nice = TASK_NICE(current) + increment;
1da177e4
LT
6126 if (nice < -20)
6127 nice = -20;
6128 if (nice > 19)
6129 nice = 19;
6130
e43379f1
MM
6131 if (increment < 0 && !can_nice(current, nice))
6132 return -EPERM;
6133
1da177e4
LT
6134 retval = security_task_setnice(current, nice);
6135 if (retval)
6136 return retval;
6137
6138 set_user_nice(current, nice);
6139 return 0;
6140}
6141
6142#endif
6143
6144/**
6145 * task_prio - return the priority value of a given task.
6146 * @p: the task in question.
6147 *
6148 * This is the priority value as seen by users in /proc.
6149 * RT tasks are offset by -200. Normal tasks are centered
6150 * around 0, value goes from -16 to +15.
6151 */
36c8b586 6152int task_prio(const struct task_struct *p)
1da177e4
LT
6153{
6154 return p->prio - MAX_RT_PRIO;
6155}
6156
6157/**
6158 * task_nice - return the nice value of a given task.
6159 * @p: the task in question.
6160 */
36c8b586 6161int task_nice(const struct task_struct *p)
1da177e4
LT
6162{
6163 return TASK_NICE(p);
6164}
150d8bed 6165EXPORT_SYMBOL(task_nice);
1da177e4
LT
6166
6167/**
6168 * idle_cpu - is a given cpu idle currently?
6169 * @cpu: the processor in question.
6170 */
6171int idle_cpu(int cpu)
6172{
6173 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6174}
6175
1da177e4
LT
6176/**
6177 * idle_task - return the idle task for a given cpu.
6178 * @cpu: the processor in question.
6179 */
36c8b586 6180struct task_struct *idle_task(int cpu)
1da177e4
LT
6181{
6182 return cpu_rq(cpu)->idle;
6183}
6184
6185/**
6186 * find_process_by_pid - find a process with a matching PID value.
6187 * @pid: the pid in question.
6188 */
a9957449 6189static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6190{
228ebcbe 6191 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6192}
6193
6194/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6195static void
6196__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6197{
dd41f596 6198 BUG_ON(p->se.on_rq);
48f24c4d 6199
1da177e4
LT
6200 p->policy = policy;
6201 p->rt_priority = prio;
b29739f9
IM
6202 p->normal_prio = normal_prio(p);
6203 /* we are holding p->pi_lock already */
6204 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6205 if (rt_prio(p->prio))
6206 p->sched_class = &rt_sched_class;
6207 else
6208 p->sched_class = &fair_sched_class;
2dd73a4f 6209 set_load_weight(p);
1da177e4
LT
6210}
6211
c69e8d9c
DH
6212/*
6213 * check the target process has a UID that matches the current process's
6214 */
6215static bool check_same_owner(struct task_struct *p)
6216{
6217 const struct cred *cred = current_cred(), *pcred;
6218 bool match;
6219
6220 rcu_read_lock();
6221 pcred = __task_cred(p);
6222 match = (cred->euid == pcred->euid ||
6223 cred->euid == pcred->uid);
6224 rcu_read_unlock();
6225 return match;
6226}
6227
961ccddd
RR
6228static int __sched_setscheduler(struct task_struct *p, int policy,
6229 struct sched_param *param, bool user)
1da177e4 6230{
83b699ed 6231 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6232 unsigned long flags;
cb469845 6233 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6234 struct rq *rq;
ca94c442 6235 int reset_on_fork;
1da177e4 6236
66e5393a
SR
6237 /* may grab non-irq protected spin_locks */
6238 BUG_ON(in_interrupt());
1da177e4
LT
6239recheck:
6240 /* double check policy once rq lock held */
ca94c442
LP
6241 if (policy < 0) {
6242 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6243 policy = oldpolicy = p->policy;
ca94c442
LP
6244 } else {
6245 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6246 policy &= ~SCHED_RESET_ON_FORK;
6247
6248 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6249 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6250 policy != SCHED_IDLE)
6251 return -EINVAL;
6252 }
6253
1da177e4
LT
6254 /*
6255 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6256 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6257 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6258 */
6259 if (param->sched_priority < 0 ||
95cdf3b7 6260 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6261 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6262 return -EINVAL;
e05606d3 6263 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6264 return -EINVAL;
6265
37e4ab3f
OC
6266 /*
6267 * Allow unprivileged RT tasks to decrease priority:
6268 */
961ccddd 6269 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6270 if (rt_policy(policy)) {
8dc3e909 6271 unsigned long rlim_rtprio;
8dc3e909
ON
6272
6273 if (!lock_task_sighand(p, &flags))
6274 return -ESRCH;
6275 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6276 unlock_task_sighand(p, &flags);
6277
6278 /* can't set/change the rt policy */
6279 if (policy != p->policy && !rlim_rtprio)
6280 return -EPERM;
6281
6282 /* can't increase priority */
6283 if (param->sched_priority > p->rt_priority &&
6284 param->sched_priority > rlim_rtprio)
6285 return -EPERM;
6286 }
dd41f596
IM
6287 /*
6288 * Like positive nice levels, dont allow tasks to
6289 * move out of SCHED_IDLE either:
6290 */
6291 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6292 return -EPERM;
5fe1d75f 6293
37e4ab3f 6294 /* can't change other user's priorities */
c69e8d9c 6295 if (!check_same_owner(p))
37e4ab3f 6296 return -EPERM;
ca94c442
LP
6297
6298 /* Normal users shall not reset the sched_reset_on_fork flag */
6299 if (p->sched_reset_on_fork && !reset_on_fork)
6300 return -EPERM;
37e4ab3f 6301 }
1da177e4 6302
725aad24 6303 if (user) {
b68aa230 6304#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6305 /*
6306 * Do not allow realtime tasks into groups that have no runtime
6307 * assigned.
6308 */
9a7e0b18
PZ
6309 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6310 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6311 return -EPERM;
b68aa230
PZ
6312#endif
6313
725aad24
JF
6314 retval = security_task_setscheduler(p, policy, param);
6315 if (retval)
6316 return retval;
6317 }
6318
b29739f9
IM
6319 /*
6320 * make sure no PI-waiters arrive (or leave) while we are
6321 * changing the priority of the task:
6322 */
6323 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6324 /*
6325 * To be able to change p->policy safely, the apropriate
6326 * runqueue lock must be held.
6327 */
b29739f9 6328 rq = __task_rq_lock(p);
1da177e4
LT
6329 /* recheck policy now with rq lock held */
6330 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6331 policy = oldpolicy = -1;
b29739f9
IM
6332 __task_rq_unlock(rq);
6333 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6334 goto recheck;
6335 }
2daa3577 6336 update_rq_clock(rq);
dd41f596 6337 on_rq = p->se.on_rq;
051a1d1a 6338 running = task_current(rq, p);
0e1f3483 6339 if (on_rq)
2e1cb74a 6340 deactivate_task(rq, p, 0);
0e1f3483
HS
6341 if (running)
6342 p->sched_class->put_prev_task(rq, p);
f6b53205 6343
ca94c442
LP
6344 p->sched_reset_on_fork = reset_on_fork;
6345
1da177e4 6346 oldprio = p->prio;
dd41f596 6347 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6348
0e1f3483
HS
6349 if (running)
6350 p->sched_class->set_curr_task(rq);
dd41f596
IM
6351 if (on_rq) {
6352 activate_task(rq, p, 0);
cb469845
SR
6353
6354 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6355 }
b29739f9
IM
6356 __task_rq_unlock(rq);
6357 spin_unlock_irqrestore(&p->pi_lock, flags);
6358
95e02ca9
TG
6359 rt_mutex_adjust_pi(p);
6360
1da177e4
LT
6361 return 0;
6362}
961ccddd
RR
6363
6364/**
6365 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6366 * @p: the task in question.
6367 * @policy: new policy.
6368 * @param: structure containing the new RT priority.
6369 *
6370 * NOTE that the task may be already dead.
6371 */
6372int sched_setscheduler(struct task_struct *p, int policy,
6373 struct sched_param *param)
6374{
6375 return __sched_setscheduler(p, policy, param, true);
6376}
1da177e4
LT
6377EXPORT_SYMBOL_GPL(sched_setscheduler);
6378
961ccddd
RR
6379/**
6380 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6381 * @p: the task in question.
6382 * @policy: new policy.
6383 * @param: structure containing the new RT priority.
6384 *
6385 * Just like sched_setscheduler, only don't bother checking if the
6386 * current context has permission. For example, this is needed in
6387 * stop_machine(): we create temporary high priority worker threads,
6388 * but our caller might not have that capability.
6389 */
6390int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6391 struct sched_param *param)
6392{
6393 return __sched_setscheduler(p, policy, param, false);
6394}
6395
95cdf3b7
IM
6396static int
6397do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6398{
1da177e4
LT
6399 struct sched_param lparam;
6400 struct task_struct *p;
36c8b586 6401 int retval;
1da177e4
LT
6402
6403 if (!param || pid < 0)
6404 return -EINVAL;
6405 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6406 return -EFAULT;
5fe1d75f
ON
6407
6408 rcu_read_lock();
6409 retval = -ESRCH;
1da177e4 6410 p = find_process_by_pid(pid);
5fe1d75f
ON
6411 if (p != NULL)
6412 retval = sched_setscheduler(p, policy, &lparam);
6413 rcu_read_unlock();
36c8b586 6414
1da177e4
LT
6415 return retval;
6416}
6417
6418/**
6419 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6420 * @pid: the pid in question.
6421 * @policy: new policy.
6422 * @param: structure containing the new RT priority.
6423 */
5add95d4
HC
6424SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6425 struct sched_param __user *, param)
1da177e4 6426{
c21761f1
JB
6427 /* negative values for policy are not valid */
6428 if (policy < 0)
6429 return -EINVAL;
6430
1da177e4
LT
6431 return do_sched_setscheduler(pid, policy, param);
6432}
6433
6434/**
6435 * sys_sched_setparam - set/change the RT priority of a thread
6436 * @pid: the pid in question.
6437 * @param: structure containing the new RT priority.
6438 */
5add95d4 6439SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6440{
6441 return do_sched_setscheduler(pid, -1, param);
6442}
6443
6444/**
6445 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6446 * @pid: the pid in question.
6447 */
5add95d4 6448SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6449{
36c8b586 6450 struct task_struct *p;
3a5c359a 6451 int retval;
1da177e4
LT
6452
6453 if (pid < 0)
3a5c359a 6454 return -EINVAL;
1da177e4
LT
6455
6456 retval = -ESRCH;
6457 read_lock(&tasklist_lock);
6458 p = find_process_by_pid(pid);
6459 if (p) {
6460 retval = security_task_getscheduler(p);
6461 if (!retval)
ca94c442
LP
6462 retval = p->policy
6463 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6464 }
6465 read_unlock(&tasklist_lock);
1da177e4
LT
6466 return retval;
6467}
6468
6469/**
ca94c442 6470 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6471 * @pid: the pid in question.
6472 * @param: structure containing the RT priority.
6473 */
5add95d4 6474SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6475{
6476 struct sched_param lp;
36c8b586 6477 struct task_struct *p;
3a5c359a 6478 int retval;
1da177e4
LT
6479
6480 if (!param || pid < 0)
3a5c359a 6481 return -EINVAL;
1da177e4
LT
6482
6483 read_lock(&tasklist_lock);
6484 p = find_process_by_pid(pid);
6485 retval = -ESRCH;
6486 if (!p)
6487 goto out_unlock;
6488
6489 retval = security_task_getscheduler(p);
6490 if (retval)
6491 goto out_unlock;
6492
6493 lp.sched_priority = p->rt_priority;
6494 read_unlock(&tasklist_lock);
6495
6496 /*
6497 * This one might sleep, we cannot do it with a spinlock held ...
6498 */
6499 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6500
1da177e4
LT
6501 return retval;
6502
6503out_unlock:
6504 read_unlock(&tasklist_lock);
6505 return retval;
6506}
6507
96f874e2 6508long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6509{
5a16f3d3 6510 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6511 struct task_struct *p;
6512 int retval;
1da177e4 6513
95402b38 6514 get_online_cpus();
1da177e4
LT
6515 read_lock(&tasklist_lock);
6516
6517 p = find_process_by_pid(pid);
6518 if (!p) {
6519 read_unlock(&tasklist_lock);
95402b38 6520 put_online_cpus();
1da177e4
LT
6521 return -ESRCH;
6522 }
6523
6524 /*
6525 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6526 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6527 * usage count and then drop tasklist_lock.
6528 */
6529 get_task_struct(p);
6530 read_unlock(&tasklist_lock);
6531
5a16f3d3
RR
6532 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6533 retval = -ENOMEM;
6534 goto out_put_task;
6535 }
6536 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6537 retval = -ENOMEM;
6538 goto out_free_cpus_allowed;
6539 }
1da177e4 6540 retval = -EPERM;
c69e8d9c 6541 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6542 goto out_unlock;
6543
e7834f8f
DQ
6544 retval = security_task_setscheduler(p, 0, NULL);
6545 if (retval)
6546 goto out_unlock;
6547
5a16f3d3
RR
6548 cpuset_cpus_allowed(p, cpus_allowed);
6549 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6550 again:
5a16f3d3 6551 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6552
8707d8b8 6553 if (!retval) {
5a16f3d3
RR
6554 cpuset_cpus_allowed(p, cpus_allowed);
6555 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6556 /*
6557 * We must have raced with a concurrent cpuset
6558 * update. Just reset the cpus_allowed to the
6559 * cpuset's cpus_allowed
6560 */
5a16f3d3 6561 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6562 goto again;
6563 }
6564 }
1da177e4 6565out_unlock:
5a16f3d3
RR
6566 free_cpumask_var(new_mask);
6567out_free_cpus_allowed:
6568 free_cpumask_var(cpus_allowed);
6569out_put_task:
1da177e4 6570 put_task_struct(p);
95402b38 6571 put_online_cpus();
1da177e4
LT
6572 return retval;
6573}
6574
6575static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6576 struct cpumask *new_mask)
1da177e4 6577{
96f874e2
RR
6578 if (len < cpumask_size())
6579 cpumask_clear(new_mask);
6580 else if (len > cpumask_size())
6581 len = cpumask_size();
6582
1da177e4
LT
6583 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6584}
6585
6586/**
6587 * sys_sched_setaffinity - set the cpu affinity of a process
6588 * @pid: pid of the process
6589 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6590 * @user_mask_ptr: user-space pointer to the new cpu mask
6591 */
5add95d4
HC
6592SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6593 unsigned long __user *, user_mask_ptr)
1da177e4 6594{
5a16f3d3 6595 cpumask_var_t new_mask;
1da177e4
LT
6596 int retval;
6597
5a16f3d3
RR
6598 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6599 return -ENOMEM;
1da177e4 6600
5a16f3d3
RR
6601 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6602 if (retval == 0)
6603 retval = sched_setaffinity(pid, new_mask);
6604 free_cpumask_var(new_mask);
6605 return retval;
1da177e4
LT
6606}
6607
96f874e2 6608long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6609{
36c8b586 6610 struct task_struct *p;
31605683
TG
6611 unsigned long flags;
6612 struct rq *rq;
1da177e4 6613 int retval;
1da177e4 6614
95402b38 6615 get_online_cpus();
1da177e4
LT
6616 read_lock(&tasklist_lock);
6617
6618 retval = -ESRCH;
6619 p = find_process_by_pid(pid);
6620 if (!p)
6621 goto out_unlock;
6622
e7834f8f
DQ
6623 retval = security_task_getscheduler(p);
6624 if (retval)
6625 goto out_unlock;
6626
31605683 6627 rq = task_rq_lock(p, &flags);
96f874e2 6628 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6629 task_rq_unlock(rq, &flags);
1da177e4
LT
6630
6631out_unlock:
6632 read_unlock(&tasklist_lock);
95402b38 6633 put_online_cpus();
1da177e4 6634
9531b62f 6635 return retval;
1da177e4
LT
6636}
6637
6638/**
6639 * sys_sched_getaffinity - get the cpu affinity of a process
6640 * @pid: pid of the process
6641 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6642 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6643 */
5add95d4
HC
6644SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6645 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6646{
6647 int ret;
f17c8607 6648 cpumask_var_t mask;
1da177e4 6649
f17c8607 6650 if (len < cpumask_size())
1da177e4
LT
6651 return -EINVAL;
6652
f17c8607
RR
6653 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6654 return -ENOMEM;
1da177e4 6655
f17c8607
RR
6656 ret = sched_getaffinity(pid, mask);
6657 if (ret == 0) {
6658 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6659 ret = -EFAULT;
6660 else
6661 ret = cpumask_size();
6662 }
6663 free_cpumask_var(mask);
1da177e4 6664
f17c8607 6665 return ret;
1da177e4
LT
6666}
6667
6668/**
6669 * sys_sched_yield - yield the current processor to other threads.
6670 *
dd41f596
IM
6671 * This function yields the current CPU to other tasks. If there are no
6672 * other threads running on this CPU then this function will return.
1da177e4 6673 */
5add95d4 6674SYSCALL_DEFINE0(sched_yield)
1da177e4 6675{
70b97a7f 6676 struct rq *rq = this_rq_lock();
1da177e4 6677
2d72376b 6678 schedstat_inc(rq, yld_count);
4530d7ab 6679 current->sched_class->yield_task(rq);
1da177e4
LT
6680
6681 /*
6682 * Since we are going to call schedule() anyway, there's
6683 * no need to preempt or enable interrupts:
6684 */
6685 __release(rq->lock);
8a25d5de 6686 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6687 _raw_spin_unlock(&rq->lock);
6688 preempt_enable_no_resched();
6689
6690 schedule();
6691
6692 return 0;
6693}
6694
d86ee480
PZ
6695static inline int should_resched(void)
6696{
6697 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6698}
6699
e7b38404 6700static void __cond_resched(void)
1da177e4 6701{
e7aaaa69
FW
6702 add_preempt_count(PREEMPT_ACTIVE);
6703 schedule();
6704 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6705}
6706
02b67cc3 6707int __sched _cond_resched(void)
1da177e4 6708{
d86ee480 6709 if (should_resched()) {
1da177e4
LT
6710 __cond_resched();
6711 return 1;
6712 }
6713 return 0;
6714}
02b67cc3 6715EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6716
6717/*
613afbf8 6718 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6719 * call schedule, and on return reacquire the lock.
6720 *
41a2d6cf 6721 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6722 * operations here to prevent schedule() from being called twice (once via
6723 * spin_unlock(), once by hand).
6724 */
613afbf8 6725int __cond_resched_lock(spinlock_t *lock)
1da177e4 6726{
d86ee480 6727 int resched = should_resched();
6df3cecb
JK
6728 int ret = 0;
6729
f607c668
PZ
6730 lockdep_assert_held(lock);
6731
95c354fe 6732 if (spin_needbreak(lock) || resched) {
1da177e4 6733 spin_unlock(lock);
d86ee480 6734 if (resched)
95c354fe
NP
6735 __cond_resched();
6736 else
6737 cpu_relax();
6df3cecb 6738 ret = 1;
1da177e4 6739 spin_lock(lock);
1da177e4 6740 }
6df3cecb 6741 return ret;
1da177e4 6742}
613afbf8 6743EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6744
613afbf8 6745int __sched __cond_resched_softirq(void)
1da177e4
LT
6746{
6747 BUG_ON(!in_softirq());
6748
d86ee480 6749 if (should_resched()) {
98d82567 6750 local_bh_enable();
1da177e4
LT
6751 __cond_resched();
6752 local_bh_disable();
6753 return 1;
6754 }
6755 return 0;
6756}
613afbf8 6757EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6758
1da177e4
LT
6759/**
6760 * yield - yield the current processor to other threads.
6761 *
72fd4a35 6762 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6763 * thread runnable and calls sys_sched_yield().
6764 */
6765void __sched yield(void)
6766{
6767 set_current_state(TASK_RUNNING);
6768 sys_sched_yield();
6769}
1da177e4
LT
6770EXPORT_SYMBOL(yield);
6771
6772/*
41a2d6cf 6773 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6774 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6775 */
6776void __sched io_schedule(void)
6777{
54d35f29 6778 struct rq *rq = raw_rq();
1da177e4 6779
0ff92245 6780 delayacct_blkio_start();
1da177e4 6781 atomic_inc(&rq->nr_iowait);
8f0dfc34 6782 current->in_iowait = 1;
1da177e4 6783 schedule();
8f0dfc34 6784 current->in_iowait = 0;
1da177e4 6785 atomic_dec(&rq->nr_iowait);
0ff92245 6786 delayacct_blkio_end();
1da177e4 6787}
1da177e4
LT
6788EXPORT_SYMBOL(io_schedule);
6789
6790long __sched io_schedule_timeout(long timeout)
6791{
54d35f29 6792 struct rq *rq = raw_rq();
1da177e4
LT
6793 long ret;
6794
0ff92245 6795 delayacct_blkio_start();
1da177e4 6796 atomic_inc(&rq->nr_iowait);
8f0dfc34 6797 current->in_iowait = 1;
1da177e4 6798 ret = schedule_timeout(timeout);
8f0dfc34 6799 current->in_iowait = 0;
1da177e4 6800 atomic_dec(&rq->nr_iowait);
0ff92245 6801 delayacct_blkio_end();
1da177e4
LT
6802 return ret;
6803}
6804
6805/**
6806 * sys_sched_get_priority_max - return maximum RT priority.
6807 * @policy: scheduling class.
6808 *
6809 * this syscall returns the maximum rt_priority that can be used
6810 * by a given scheduling class.
6811 */
5add95d4 6812SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6813{
6814 int ret = -EINVAL;
6815
6816 switch (policy) {
6817 case SCHED_FIFO:
6818 case SCHED_RR:
6819 ret = MAX_USER_RT_PRIO-1;
6820 break;
6821 case SCHED_NORMAL:
b0a9499c 6822 case SCHED_BATCH:
dd41f596 6823 case SCHED_IDLE:
1da177e4
LT
6824 ret = 0;
6825 break;
6826 }
6827 return ret;
6828}
6829
6830/**
6831 * sys_sched_get_priority_min - return minimum RT priority.
6832 * @policy: scheduling class.
6833 *
6834 * this syscall returns the minimum rt_priority that can be used
6835 * by a given scheduling class.
6836 */
5add95d4 6837SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6838{
6839 int ret = -EINVAL;
6840
6841 switch (policy) {
6842 case SCHED_FIFO:
6843 case SCHED_RR:
6844 ret = 1;
6845 break;
6846 case SCHED_NORMAL:
b0a9499c 6847 case SCHED_BATCH:
dd41f596 6848 case SCHED_IDLE:
1da177e4
LT
6849 ret = 0;
6850 }
6851 return ret;
6852}
6853
6854/**
6855 * sys_sched_rr_get_interval - return the default timeslice of a process.
6856 * @pid: pid of the process.
6857 * @interval: userspace pointer to the timeslice value.
6858 *
6859 * this syscall writes the default timeslice value of a given process
6860 * into the user-space timespec buffer. A value of '0' means infinity.
6861 */
17da2bd9 6862SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6863 struct timespec __user *, interval)
1da177e4 6864{
36c8b586 6865 struct task_struct *p;
a4ec24b4 6866 unsigned int time_slice;
dba091b9
TG
6867 unsigned long flags;
6868 struct rq *rq;
3a5c359a 6869 int retval;
1da177e4 6870 struct timespec t;
1da177e4
LT
6871
6872 if (pid < 0)
3a5c359a 6873 return -EINVAL;
1da177e4
LT
6874
6875 retval = -ESRCH;
6876 read_lock(&tasklist_lock);
6877 p = find_process_by_pid(pid);
6878 if (!p)
6879 goto out_unlock;
6880
6881 retval = security_task_getscheduler(p);
6882 if (retval)
6883 goto out_unlock;
6884
dba091b9
TG
6885 rq = task_rq_lock(p, &flags);
6886 time_slice = p->sched_class->get_rr_interval(rq, p);
6887 task_rq_unlock(rq, &flags);
a4ec24b4 6888
1da177e4 6889 read_unlock(&tasklist_lock);
a4ec24b4 6890 jiffies_to_timespec(time_slice, &t);
1da177e4 6891 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6892 return retval;
3a5c359a 6893
1da177e4
LT
6894out_unlock:
6895 read_unlock(&tasklist_lock);
6896 return retval;
6897}
6898
7c731e0a 6899static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6900
82a1fcb9 6901void sched_show_task(struct task_struct *p)
1da177e4 6902{
1da177e4 6903 unsigned long free = 0;
36c8b586 6904 unsigned state;
1da177e4 6905
1da177e4 6906 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6907 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6908 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6909#if BITS_PER_LONG == 32
1da177e4 6910 if (state == TASK_RUNNING)
cc4ea795 6911 printk(KERN_CONT " running ");
1da177e4 6912 else
cc4ea795 6913 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6914#else
6915 if (state == TASK_RUNNING)
cc4ea795 6916 printk(KERN_CONT " running task ");
1da177e4 6917 else
cc4ea795 6918 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6919#endif
6920#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6921 free = stack_not_used(p);
1da177e4 6922#endif
aa47b7e0
DR
6923 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6924 task_pid_nr(p), task_pid_nr(p->real_parent),
6925 (unsigned long)task_thread_info(p)->flags);
1da177e4 6926
5fb5e6de 6927 show_stack(p, NULL);
1da177e4
LT
6928}
6929
e59e2ae2 6930void show_state_filter(unsigned long state_filter)
1da177e4 6931{
36c8b586 6932 struct task_struct *g, *p;
1da177e4 6933
4bd77321
IM
6934#if BITS_PER_LONG == 32
6935 printk(KERN_INFO
6936 " task PC stack pid father\n");
1da177e4 6937#else
4bd77321
IM
6938 printk(KERN_INFO
6939 " task PC stack pid father\n");
1da177e4
LT
6940#endif
6941 read_lock(&tasklist_lock);
6942 do_each_thread(g, p) {
6943 /*
6944 * reset the NMI-timeout, listing all files on a slow
6945 * console might take alot of time:
6946 */
6947 touch_nmi_watchdog();
39bc89fd 6948 if (!state_filter || (p->state & state_filter))
82a1fcb9 6949 sched_show_task(p);
1da177e4
LT
6950 } while_each_thread(g, p);
6951
04c9167f
JF
6952 touch_all_softlockup_watchdogs();
6953
dd41f596
IM
6954#ifdef CONFIG_SCHED_DEBUG
6955 sysrq_sched_debug_show();
6956#endif
1da177e4 6957 read_unlock(&tasklist_lock);
e59e2ae2
IM
6958 /*
6959 * Only show locks if all tasks are dumped:
6960 */
93335a21 6961 if (!state_filter)
e59e2ae2 6962 debug_show_all_locks();
1da177e4
LT
6963}
6964
1df21055
IM
6965void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6966{
dd41f596 6967 idle->sched_class = &idle_sched_class;
1df21055
IM
6968}
6969
f340c0d1
IM
6970/**
6971 * init_idle - set up an idle thread for a given CPU
6972 * @idle: task in question
6973 * @cpu: cpu the idle task belongs to
6974 *
6975 * NOTE: this function does not set the idle thread's NEED_RESCHED
6976 * flag, to make booting more robust.
6977 */
5c1e1767 6978void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6979{
70b97a7f 6980 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6981 unsigned long flags;
6982
5cbd54ef
IM
6983 spin_lock_irqsave(&rq->lock, flags);
6984
dd41f596
IM
6985 __sched_fork(idle);
6986 idle->se.exec_start = sched_clock();
6987
96f874e2 6988 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6989 __set_task_cpu(idle, cpu);
1da177e4 6990
1da177e4 6991 rq->curr = rq->idle = idle;
4866cde0
NP
6992#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6993 idle->oncpu = 1;
6994#endif
1da177e4
LT
6995 spin_unlock_irqrestore(&rq->lock, flags);
6996
6997 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6998#if defined(CONFIG_PREEMPT)
6999 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7000#else
a1261f54 7001 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7002#endif
dd41f596
IM
7003 /*
7004 * The idle tasks have their own, simple scheduling class:
7005 */
7006 idle->sched_class = &idle_sched_class;
fb52607a 7007 ftrace_graph_init_task(idle);
1da177e4
LT
7008}
7009
7010/*
7011 * In a system that switches off the HZ timer nohz_cpu_mask
7012 * indicates which cpus entered this state. This is used
7013 * in the rcu update to wait only for active cpus. For system
7014 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7015 * always be CPU_BITS_NONE.
1da177e4 7016 */
6a7b3dc3 7017cpumask_var_t nohz_cpu_mask;
1da177e4 7018
19978ca6
IM
7019/*
7020 * Increase the granularity value when there are more CPUs,
7021 * because with more CPUs the 'effective latency' as visible
7022 * to users decreases. But the relationship is not linear,
7023 * so pick a second-best guess by going with the log2 of the
7024 * number of CPUs.
7025 *
7026 * This idea comes from the SD scheduler of Con Kolivas:
7027 */
acb4a848 7028static int get_update_sysctl_factor(void)
19978ca6 7029{
4ca3ef71 7030 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7031 unsigned int factor;
7032
7033 switch (sysctl_sched_tunable_scaling) {
7034 case SCHED_TUNABLESCALING_NONE:
7035 factor = 1;
7036 break;
7037 case SCHED_TUNABLESCALING_LINEAR:
7038 factor = cpus;
7039 break;
7040 case SCHED_TUNABLESCALING_LOG:
7041 default:
7042 factor = 1 + ilog2(cpus);
7043 break;
7044 }
19978ca6 7045
acb4a848
CE
7046 return factor;
7047}
19978ca6 7048
acb4a848
CE
7049static void update_sysctl(void)
7050{
7051 unsigned int factor = get_update_sysctl_factor();
19978ca6 7052
0bcdcf28
CE
7053#define SET_SYSCTL(name) \
7054 (sysctl_##name = (factor) * normalized_sysctl_##name)
7055 SET_SYSCTL(sched_min_granularity);
7056 SET_SYSCTL(sched_latency);
7057 SET_SYSCTL(sched_wakeup_granularity);
7058 SET_SYSCTL(sched_shares_ratelimit);
7059#undef SET_SYSCTL
7060}
55cd5340 7061
0bcdcf28
CE
7062static inline void sched_init_granularity(void)
7063{
7064 update_sysctl();
19978ca6
IM
7065}
7066
1da177e4
LT
7067#ifdef CONFIG_SMP
7068/*
7069 * This is how migration works:
7070 *
70b97a7f 7071 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7072 * runqueue and wake up that CPU's migration thread.
7073 * 2) we down() the locked semaphore => thread blocks.
7074 * 3) migration thread wakes up (implicitly it forces the migrated
7075 * thread off the CPU)
7076 * 4) it gets the migration request and checks whether the migrated
7077 * task is still in the wrong runqueue.
7078 * 5) if it's in the wrong runqueue then the migration thread removes
7079 * it and puts it into the right queue.
7080 * 6) migration thread up()s the semaphore.
7081 * 7) we wake up and the migration is done.
7082 */
7083
7084/*
7085 * Change a given task's CPU affinity. Migrate the thread to a
7086 * proper CPU and schedule it away if the CPU it's executing on
7087 * is removed from the allowed bitmask.
7088 *
7089 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7090 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7091 * call is not atomic; no spinlocks may be held.
7092 */
96f874e2 7093int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7094{
70b97a7f 7095 struct migration_req req;
1da177e4 7096 unsigned long flags;
70b97a7f 7097 struct rq *rq;
48f24c4d 7098 int ret = 0;
1da177e4
LT
7099
7100 rq = task_rq_lock(p, &flags);
6ad4c188 7101 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7102 ret = -EINVAL;
7103 goto out;
7104 }
7105
9985b0ba 7106 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7107 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7108 ret = -EINVAL;
7109 goto out;
7110 }
7111
73fe6aae 7112 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7113 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7114 else {
96f874e2
RR
7115 cpumask_copy(&p->cpus_allowed, new_mask);
7116 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7117 }
7118
1da177e4 7119 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7120 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7121 goto out;
7122
6ad4c188 7123 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7124 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7125 struct task_struct *mt = rq->migration_thread;
7126
7127 get_task_struct(mt);
1da177e4
LT
7128 task_rq_unlock(rq, &flags);
7129 wake_up_process(rq->migration_thread);
693525e3 7130 put_task_struct(mt);
1da177e4
LT
7131 wait_for_completion(&req.done);
7132 tlb_migrate_finish(p->mm);
7133 return 0;
7134 }
7135out:
7136 task_rq_unlock(rq, &flags);
48f24c4d 7137
1da177e4
LT
7138 return ret;
7139}
cd8ba7cd 7140EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7141
7142/*
41a2d6cf 7143 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7144 * this because either it can't run here any more (set_cpus_allowed()
7145 * away from this CPU, or CPU going down), or because we're
7146 * attempting to rebalance this task on exec (sched_exec).
7147 *
7148 * So we race with normal scheduler movements, but that's OK, as long
7149 * as the task is no longer on this CPU.
efc30814
KK
7150 *
7151 * Returns non-zero if task was successfully migrated.
1da177e4 7152 */
efc30814 7153static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7154{
70b97a7f 7155 struct rq *rq_dest, *rq_src;
dd41f596 7156 int ret = 0, on_rq;
1da177e4 7157
e761b772 7158 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7159 return ret;
1da177e4
LT
7160
7161 rq_src = cpu_rq(src_cpu);
7162 rq_dest = cpu_rq(dest_cpu);
7163
7164 double_rq_lock(rq_src, rq_dest);
7165 /* Already moved. */
7166 if (task_cpu(p) != src_cpu)
b1e38734 7167 goto done;
1da177e4 7168 /* Affinity changed (again). */
96f874e2 7169 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7170 goto fail;
1da177e4 7171
dd41f596 7172 on_rq = p->se.on_rq;
6e82a3be 7173 if (on_rq)
2e1cb74a 7174 deactivate_task(rq_src, p, 0);
6e82a3be 7175
1da177e4 7176 set_task_cpu(p, dest_cpu);
dd41f596
IM
7177 if (on_rq) {
7178 activate_task(rq_dest, p, 0);
15afe09b 7179 check_preempt_curr(rq_dest, p, 0);
1da177e4 7180 }
b1e38734 7181done:
efc30814 7182 ret = 1;
b1e38734 7183fail:
1da177e4 7184 double_rq_unlock(rq_src, rq_dest);
efc30814 7185 return ret;
1da177e4
LT
7186}
7187
03b042bf
PM
7188#define RCU_MIGRATION_IDLE 0
7189#define RCU_MIGRATION_NEED_QS 1
7190#define RCU_MIGRATION_GOT_QS 2
7191#define RCU_MIGRATION_MUST_SYNC 3
7192
1da177e4
LT
7193/*
7194 * migration_thread - this is a highprio system thread that performs
7195 * thread migration by bumping thread off CPU then 'pushing' onto
7196 * another runqueue.
7197 */
95cdf3b7 7198static int migration_thread(void *data)
1da177e4 7199{
03b042bf 7200 int badcpu;
1da177e4 7201 int cpu = (long)data;
70b97a7f 7202 struct rq *rq;
1da177e4
LT
7203
7204 rq = cpu_rq(cpu);
7205 BUG_ON(rq->migration_thread != current);
7206
7207 set_current_state(TASK_INTERRUPTIBLE);
7208 while (!kthread_should_stop()) {
70b97a7f 7209 struct migration_req *req;
1da177e4 7210 struct list_head *head;
1da177e4 7211
1da177e4
LT
7212 spin_lock_irq(&rq->lock);
7213
7214 if (cpu_is_offline(cpu)) {
7215 spin_unlock_irq(&rq->lock);
371cbb38 7216 break;
1da177e4
LT
7217 }
7218
7219 if (rq->active_balance) {
7220 active_load_balance(rq, cpu);
7221 rq->active_balance = 0;
7222 }
7223
7224 head = &rq->migration_queue;
7225
7226 if (list_empty(head)) {
7227 spin_unlock_irq(&rq->lock);
7228 schedule();
7229 set_current_state(TASK_INTERRUPTIBLE);
7230 continue;
7231 }
70b97a7f 7232 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7233 list_del_init(head->next);
7234
03b042bf
PM
7235 if (req->task != NULL) {
7236 spin_unlock(&rq->lock);
7237 __migrate_task(req->task, cpu, req->dest_cpu);
7238 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7239 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7240 spin_unlock(&rq->lock);
7241 } else {
7242 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7243 spin_unlock(&rq->lock);
7244 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7245 }
674311d5 7246 local_irq_enable();
1da177e4
LT
7247
7248 complete(&req->done);
7249 }
7250 __set_current_state(TASK_RUNNING);
1da177e4 7251
1da177e4
LT
7252 return 0;
7253}
7254
7255#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7256
7257static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7258{
7259 int ret;
7260
7261 local_irq_disable();
7262 ret = __migrate_task(p, src_cpu, dest_cpu);
7263 local_irq_enable();
7264 return ret;
7265}
7266
054b9108 7267/*
3a4fa0a2 7268 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7269 */
48f24c4d 7270static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7271{
70b97a7f 7272 int dest_cpu;
6ca09dfc 7273 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7274
7275again:
7276 /* Look for allowed, online CPU in same node. */
6ad4c188 7277 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7278 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7279 goto move;
7280
7281 /* Any allowed, online CPU? */
6ad4c188 7282 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7283 if (dest_cpu < nr_cpu_ids)
7284 goto move;
7285
7286 /* No more Mr. Nice Guy. */
7287 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7288 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7289 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7290
e76bd8d9
RR
7291 /*
7292 * Don't tell them about moving exiting tasks or
7293 * kernel threads (both mm NULL), since they never
7294 * leave kernel.
7295 */
7296 if (p->mm && printk_ratelimit()) {
7297 printk(KERN_INFO "process %d (%s) no "
7298 "longer affine to cpu%d\n",
7299 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7300 }
e76bd8d9
RR
7301 }
7302
7303move:
7304 /* It can have affinity changed while we were choosing. */
7305 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7306 goto again;
1da177e4
LT
7307}
7308
7309/*
7310 * While a dead CPU has no uninterruptible tasks queued at this point,
7311 * it might still have a nonzero ->nr_uninterruptible counter, because
7312 * for performance reasons the counter is not stricly tracking tasks to
7313 * their home CPUs. So we just add the counter to another CPU's counter,
7314 * to keep the global sum constant after CPU-down:
7315 */
70b97a7f 7316static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7317{
6ad4c188 7318 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7319 unsigned long flags;
7320
7321 local_irq_save(flags);
7322 double_rq_lock(rq_src, rq_dest);
7323 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7324 rq_src->nr_uninterruptible = 0;
7325 double_rq_unlock(rq_src, rq_dest);
7326 local_irq_restore(flags);
7327}
7328
7329/* Run through task list and migrate tasks from the dead cpu. */
7330static void migrate_live_tasks(int src_cpu)
7331{
48f24c4d 7332 struct task_struct *p, *t;
1da177e4 7333
f7b4cddc 7334 read_lock(&tasklist_lock);
1da177e4 7335
48f24c4d
IM
7336 do_each_thread(t, p) {
7337 if (p == current)
1da177e4
LT
7338 continue;
7339
48f24c4d
IM
7340 if (task_cpu(p) == src_cpu)
7341 move_task_off_dead_cpu(src_cpu, p);
7342 } while_each_thread(t, p);
1da177e4 7343
f7b4cddc 7344 read_unlock(&tasklist_lock);
1da177e4
LT
7345}
7346
dd41f596
IM
7347/*
7348 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7349 * It does so by boosting its priority to highest possible.
7350 * Used by CPU offline code.
1da177e4
LT
7351 */
7352void sched_idle_next(void)
7353{
48f24c4d 7354 int this_cpu = smp_processor_id();
70b97a7f 7355 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7356 struct task_struct *p = rq->idle;
7357 unsigned long flags;
7358
7359 /* cpu has to be offline */
48f24c4d 7360 BUG_ON(cpu_online(this_cpu));
1da177e4 7361
48f24c4d
IM
7362 /*
7363 * Strictly not necessary since rest of the CPUs are stopped by now
7364 * and interrupts disabled on the current cpu.
1da177e4
LT
7365 */
7366 spin_lock_irqsave(&rq->lock, flags);
7367
dd41f596 7368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7369
94bc9a7b
DA
7370 update_rq_clock(rq);
7371 activate_task(rq, p, 0);
1da177e4
LT
7372
7373 spin_unlock_irqrestore(&rq->lock, flags);
7374}
7375
48f24c4d
IM
7376/*
7377 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7378 * offline.
7379 */
7380void idle_task_exit(void)
7381{
7382 struct mm_struct *mm = current->active_mm;
7383
7384 BUG_ON(cpu_online(smp_processor_id()));
7385
7386 if (mm != &init_mm)
7387 switch_mm(mm, &init_mm, current);
7388 mmdrop(mm);
7389}
7390
054b9108 7391/* called under rq->lock with disabled interrupts */
36c8b586 7392static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7393{
70b97a7f 7394 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7395
7396 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7397 BUG_ON(!p->exit_state);
1da177e4
LT
7398
7399 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7400 BUG_ON(p->state == TASK_DEAD);
1da177e4 7401
48f24c4d 7402 get_task_struct(p);
1da177e4
LT
7403
7404 /*
7405 * Drop lock around migration; if someone else moves it,
41a2d6cf 7406 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7407 * fine.
7408 */
f7b4cddc 7409 spin_unlock_irq(&rq->lock);
48f24c4d 7410 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7411 spin_lock_irq(&rq->lock);
1da177e4 7412
48f24c4d 7413 put_task_struct(p);
1da177e4
LT
7414}
7415
7416/* release_task() removes task from tasklist, so we won't find dead tasks. */
7417static void migrate_dead_tasks(unsigned int dead_cpu)
7418{
70b97a7f 7419 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7420 struct task_struct *next;
48f24c4d 7421
dd41f596
IM
7422 for ( ; ; ) {
7423 if (!rq->nr_running)
7424 break;
a8e504d2 7425 update_rq_clock(rq);
b67802ea 7426 next = pick_next_task(rq);
dd41f596
IM
7427 if (!next)
7428 break;
79c53799 7429 next->sched_class->put_prev_task(rq, next);
dd41f596 7430 migrate_dead(dead_cpu, next);
e692ab53 7431
1da177e4
LT
7432 }
7433}
dce48a84
TG
7434
7435/*
7436 * remove the tasks which were accounted by rq from calc_load_tasks.
7437 */
7438static void calc_global_load_remove(struct rq *rq)
7439{
7440 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7441 rq->calc_load_active = 0;
dce48a84 7442}
1da177e4
LT
7443#endif /* CONFIG_HOTPLUG_CPU */
7444
e692ab53
NP
7445#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7446
7447static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7448 {
7449 .procname = "sched_domain",
c57baf1e 7450 .mode = 0555,
e0361851 7451 },
56992309 7452 {}
e692ab53
NP
7453};
7454
7455static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7456 {
7457 .procname = "kernel",
c57baf1e 7458 .mode = 0555,
e0361851
AD
7459 .child = sd_ctl_dir,
7460 },
56992309 7461 {}
e692ab53
NP
7462};
7463
7464static struct ctl_table *sd_alloc_ctl_entry(int n)
7465{
7466 struct ctl_table *entry =
5cf9f062 7467 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7468
e692ab53
NP
7469 return entry;
7470}
7471
6382bc90
MM
7472static void sd_free_ctl_entry(struct ctl_table **tablep)
7473{
cd790076 7474 struct ctl_table *entry;
6382bc90 7475
cd790076
MM
7476 /*
7477 * In the intermediate directories, both the child directory and
7478 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7479 * will always be set. In the lowest directory the names are
cd790076
MM
7480 * static strings and all have proc handlers.
7481 */
7482 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7483 if (entry->child)
7484 sd_free_ctl_entry(&entry->child);
cd790076
MM
7485 if (entry->proc_handler == NULL)
7486 kfree(entry->procname);
7487 }
6382bc90
MM
7488
7489 kfree(*tablep);
7490 *tablep = NULL;
7491}
7492
e692ab53 7493static void
e0361851 7494set_table_entry(struct ctl_table *entry,
e692ab53
NP
7495 const char *procname, void *data, int maxlen,
7496 mode_t mode, proc_handler *proc_handler)
7497{
e692ab53
NP
7498 entry->procname = procname;
7499 entry->data = data;
7500 entry->maxlen = maxlen;
7501 entry->mode = mode;
7502 entry->proc_handler = proc_handler;
7503}
7504
7505static struct ctl_table *
7506sd_alloc_ctl_domain_table(struct sched_domain *sd)
7507{
a5d8c348 7508 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7509
ad1cdc1d
MM
7510 if (table == NULL)
7511 return NULL;
7512
e0361851 7513 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7514 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7515 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7516 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7517 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7518 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7519 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7520 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7521 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7522 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7523 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7524 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7525 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7526 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7527 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7528 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7529 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7530 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7531 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7532 &sd->cache_nice_tries,
7533 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7534 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7535 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7536 set_table_entry(&table[11], "name", sd->name,
7537 CORENAME_MAX_SIZE, 0444, proc_dostring);
7538 /* &table[12] is terminator */
e692ab53
NP
7539
7540 return table;
7541}
7542
9a4e7159 7543static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7544{
7545 struct ctl_table *entry, *table;
7546 struct sched_domain *sd;
7547 int domain_num = 0, i;
7548 char buf[32];
7549
7550 for_each_domain(cpu, sd)
7551 domain_num++;
7552 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7553 if (table == NULL)
7554 return NULL;
e692ab53
NP
7555
7556 i = 0;
7557 for_each_domain(cpu, sd) {
7558 snprintf(buf, 32, "domain%d", i);
e692ab53 7559 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7560 entry->mode = 0555;
e692ab53
NP
7561 entry->child = sd_alloc_ctl_domain_table(sd);
7562 entry++;
7563 i++;
7564 }
7565 return table;
7566}
7567
7568static struct ctl_table_header *sd_sysctl_header;
6382bc90 7569static void register_sched_domain_sysctl(void)
e692ab53 7570{
6ad4c188 7571 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7572 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7573 char buf[32];
7574
7378547f
MM
7575 WARN_ON(sd_ctl_dir[0].child);
7576 sd_ctl_dir[0].child = entry;
7577
ad1cdc1d
MM
7578 if (entry == NULL)
7579 return;
7580
6ad4c188 7581 for_each_possible_cpu(i) {
e692ab53 7582 snprintf(buf, 32, "cpu%d", i);
e692ab53 7583 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7584 entry->mode = 0555;
e692ab53 7585 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7586 entry++;
e692ab53 7587 }
7378547f
MM
7588
7589 WARN_ON(sd_sysctl_header);
e692ab53
NP
7590 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7591}
6382bc90 7592
7378547f 7593/* may be called multiple times per register */
6382bc90
MM
7594static void unregister_sched_domain_sysctl(void)
7595{
7378547f
MM
7596 if (sd_sysctl_header)
7597 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7598 sd_sysctl_header = NULL;
7378547f
MM
7599 if (sd_ctl_dir[0].child)
7600 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7601}
e692ab53 7602#else
6382bc90
MM
7603static void register_sched_domain_sysctl(void)
7604{
7605}
7606static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7607{
7608}
7609#endif
7610
1f11eb6a
GH
7611static void set_rq_online(struct rq *rq)
7612{
7613 if (!rq->online) {
7614 const struct sched_class *class;
7615
c6c4927b 7616 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7617 rq->online = 1;
7618
7619 for_each_class(class) {
7620 if (class->rq_online)
7621 class->rq_online(rq);
7622 }
7623 }
7624}
7625
7626static void set_rq_offline(struct rq *rq)
7627{
7628 if (rq->online) {
7629 const struct sched_class *class;
7630
7631 for_each_class(class) {
7632 if (class->rq_offline)
7633 class->rq_offline(rq);
7634 }
7635
c6c4927b 7636 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7637 rq->online = 0;
7638 }
7639}
7640
1da177e4
LT
7641/*
7642 * migration_call - callback that gets triggered when a CPU is added.
7643 * Here we can start up the necessary migration thread for the new CPU.
7644 */
48f24c4d
IM
7645static int __cpuinit
7646migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7647{
1da177e4 7648 struct task_struct *p;
48f24c4d 7649 int cpu = (long)hcpu;
1da177e4 7650 unsigned long flags;
70b97a7f 7651 struct rq *rq;
1da177e4
LT
7652
7653 switch (action) {
5be9361c 7654
1da177e4 7655 case CPU_UP_PREPARE:
8bb78442 7656 case CPU_UP_PREPARE_FROZEN:
dd41f596 7657 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7658 if (IS_ERR(p))
7659 return NOTIFY_BAD;
1da177e4
LT
7660 kthread_bind(p, cpu);
7661 /* Must be high prio: stop_machine expects to yield to it. */
7662 rq = task_rq_lock(p, &flags);
dd41f596 7663 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7664 task_rq_unlock(rq, &flags);
371cbb38 7665 get_task_struct(p);
1da177e4 7666 cpu_rq(cpu)->migration_thread = p;
a468d389 7667 rq->calc_load_update = calc_load_update;
1da177e4 7668 break;
48f24c4d 7669
1da177e4 7670 case CPU_ONLINE:
8bb78442 7671 case CPU_ONLINE_FROZEN:
3a4fa0a2 7672 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7673 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7674
7675 /* Update our root-domain */
7676 rq = cpu_rq(cpu);
7677 spin_lock_irqsave(&rq->lock, flags);
7678 if (rq->rd) {
c6c4927b 7679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7680
7681 set_rq_online(rq);
1f94ef59
GH
7682 }
7683 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7684 break;
48f24c4d 7685
1da177e4
LT
7686#ifdef CONFIG_HOTPLUG_CPU
7687 case CPU_UP_CANCELED:
8bb78442 7688 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7689 if (!cpu_rq(cpu)->migration_thread)
7690 break;
41a2d6cf 7691 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7692 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7693 cpumask_any(cpu_online_mask));
1da177e4 7694 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7695 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7696 cpu_rq(cpu)->migration_thread = NULL;
7697 break;
48f24c4d 7698
1da177e4 7699 case CPU_DEAD:
8bb78442 7700 case CPU_DEAD_FROZEN:
470fd646 7701 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7702 migrate_live_tasks(cpu);
7703 rq = cpu_rq(cpu);
7704 kthread_stop(rq->migration_thread);
371cbb38 7705 put_task_struct(rq->migration_thread);
1da177e4
LT
7706 rq->migration_thread = NULL;
7707 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7708 spin_lock_irq(&rq->lock);
a8e504d2 7709 update_rq_clock(rq);
2e1cb74a 7710 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7711 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7712 rq->idle->sched_class = &idle_sched_class;
1da177e4 7713 migrate_dead_tasks(cpu);
d2da272a 7714 spin_unlock_irq(&rq->lock);
470fd646 7715 cpuset_unlock();
1da177e4
LT
7716 migrate_nr_uninterruptible(rq);
7717 BUG_ON(rq->nr_running != 0);
dce48a84 7718 calc_global_load_remove(rq);
41a2d6cf
IM
7719 /*
7720 * No need to migrate the tasks: it was best-effort if
7721 * they didn't take sched_hotcpu_mutex. Just wake up
7722 * the requestors.
7723 */
1da177e4
LT
7724 spin_lock_irq(&rq->lock);
7725 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7726 struct migration_req *req;
7727
1da177e4 7728 req = list_entry(rq->migration_queue.next,
70b97a7f 7729 struct migration_req, list);
1da177e4 7730 list_del_init(&req->list);
9a2bd244 7731 spin_unlock_irq(&rq->lock);
1da177e4 7732 complete(&req->done);
9a2bd244 7733 spin_lock_irq(&rq->lock);
1da177e4
LT
7734 }
7735 spin_unlock_irq(&rq->lock);
7736 break;
57d885fe 7737
08f503b0
GH
7738 case CPU_DYING:
7739 case CPU_DYING_FROZEN:
57d885fe
GH
7740 /* Update our root-domain */
7741 rq = cpu_rq(cpu);
7742 spin_lock_irqsave(&rq->lock, flags);
7743 if (rq->rd) {
c6c4927b 7744 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7745 set_rq_offline(rq);
57d885fe
GH
7746 }
7747 spin_unlock_irqrestore(&rq->lock, flags);
7748 break;
1da177e4
LT
7749#endif
7750 }
7751 return NOTIFY_OK;
7752}
7753
f38b0820
PM
7754/*
7755 * Register at high priority so that task migration (migrate_all_tasks)
7756 * happens before everything else. This has to be lower priority than
cdd6c482 7757 * the notifier in the perf_event subsystem, though.
1da177e4 7758 */
26c2143b 7759static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7760 .notifier_call = migration_call,
7761 .priority = 10
7762};
7763
7babe8db 7764static int __init migration_init(void)
1da177e4
LT
7765{
7766 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7767 int err;
48f24c4d
IM
7768
7769 /* Start one for the boot CPU: */
07dccf33
AM
7770 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7771 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7772 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7773 register_cpu_notifier(&migration_notifier);
7babe8db 7774
a004cd42 7775 return 0;
1da177e4 7776}
7babe8db 7777early_initcall(migration_init);
1da177e4
LT
7778#endif
7779
7780#ifdef CONFIG_SMP
476f3534 7781
3e9830dc 7782#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7783
f6630114
MT
7784static __read_mostly int sched_domain_debug_enabled;
7785
7786static int __init sched_domain_debug_setup(char *str)
7787{
7788 sched_domain_debug_enabled = 1;
7789
7790 return 0;
7791}
7792early_param("sched_debug", sched_domain_debug_setup);
7793
7c16ec58 7794static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7795 struct cpumask *groupmask)
1da177e4 7796{
4dcf6aff 7797 struct sched_group *group = sd->groups;
434d53b0 7798 char str[256];
1da177e4 7799
968ea6d8 7800 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7801 cpumask_clear(groupmask);
4dcf6aff
IM
7802
7803 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7804
7805 if (!(sd->flags & SD_LOAD_BALANCE)) {
7806 printk("does not load-balance\n");
7807 if (sd->parent)
7808 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7809 " has parent");
7810 return -1;
41c7ce9a
NP
7811 }
7812
eefd796a 7813 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7814
758b2cdc 7815 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7816 printk(KERN_ERR "ERROR: domain->span does not contain "
7817 "CPU%d\n", cpu);
7818 }
758b2cdc 7819 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7820 printk(KERN_ERR "ERROR: domain->groups does not contain"
7821 " CPU%d\n", cpu);
7822 }
1da177e4 7823
4dcf6aff 7824 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7825 do {
4dcf6aff
IM
7826 if (!group) {
7827 printk("\n");
7828 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7829 break;
7830 }
7831
18a3885f 7832 if (!group->cpu_power) {
4dcf6aff
IM
7833 printk(KERN_CONT "\n");
7834 printk(KERN_ERR "ERROR: domain->cpu_power not "
7835 "set\n");
7836 break;
7837 }
1da177e4 7838
758b2cdc 7839 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7840 printk(KERN_CONT "\n");
7841 printk(KERN_ERR "ERROR: empty group\n");
7842 break;
7843 }
1da177e4 7844
758b2cdc 7845 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7846 printk(KERN_CONT "\n");
7847 printk(KERN_ERR "ERROR: repeated CPUs\n");
7848 break;
7849 }
1da177e4 7850
758b2cdc 7851 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7852
968ea6d8 7853 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7854
7855 printk(KERN_CONT " %s", str);
18a3885f
PZ
7856 if (group->cpu_power != SCHED_LOAD_SCALE) {
7857 printk(KERN_CONT " (cpu_power = %d)",
7858 group->cpu_power);
381512cf 7859 }
1da177e4 7860
4dcf6aff
IM
7861 group = group->next;
7862 } while (group != sd->groups);
7863 printk(KERN_CONT "\n");
1da177e4 7864
758b2cdc 7865 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7866 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7867
758b2cdc
RR
7868 if (sd->parent &&
7869 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7870 printk(KERN_ERR "ERROR: parent span is not a superset "
7871 "of domain->span\n");
7872 return 0;
7873}
1da177e4 7874
4dcf6aff
IM
7875static void sched_domain_debug(struct sched_domain *sd, int cpu)
7876{
d5dd3db1 7877 cpumask_var_t groupmask;
4dcf6aff 7878 int level = 0;
1da177e4 7879
f6630114
MT
7880 if (!sched_domain_debug_enabled)
7881 return;
7882
4dcf6aff
IM
7883 if (!sd) {
7884 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7885 return;
7886 }
1da177e4 7887
4dcf6aff
IM
7888 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7889
d5dd3db1 7890 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7891 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7892 return;
7893 }
7894
4dcf6aff 7895 for (;;) {
7c16ec58 7896 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7897 break;
1da177e4
LT
7898 level++;
7899 sd = sd->parent;
33859f7f 7900 if (!sd)
4dcf6aff
IM
7901 break;
7902 }
d5dd3db1 7903 free_cpumask_var(groupmask);
1da177e4 7904}
6d6bc0ad 7905#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7906# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7907#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7908
1a20ff27 7909static int sd_degenerate(struct sched_domain *sd)
245af2c7 7910{
758b2cdc 7911 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7912 return 1;
7913
7914 /* Following flags need at least 2 groups */
7915 if (sd->flags & (SD_LOAD_BALANCE |
7916 SD_BALANCE_NEWIDLE |
7917 SD_BALANCE_FORK |
89c4710e
SS
7918 SD_BALANCE_EXEC |
7919 SD_SHARE_CPUPOWER |
7920 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7921 if (sd->groups != sd->groups->next)
7922 return 0;
7923 }
7924
7925 /* Following flags don't use groups */
c88d5910 7926 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7927 return 0;
7928
7929 return 1;
7930}
7931
48f24c4d
IM
7932static int
7933sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7934{
7935 unsigned long cflags = sd->flags, pflags = parent->flags;
7936
7937 if (sd_degenerate(parent))
7938 return 1;
7939
758b2cdc 7940 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7941 return 0;
7942
245af2c7
SS
7943 /* Flags needing groups don't count if only 1 group in parent */
7944 if (parent->groups == parent->groups->next) {
7945 pflags &= ~(SD_LOAD_BALANCE |
7946 SD_BALANCE_NEWIDLE |
7947 SD_BALANCE_FORK |
89c4710e
SS
7948 SD_BALANCE_EXEC |
7949 SD_SHARE_CPUPOWER |
7950 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7951 if (nr_node_ids == 1)
7952 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7953 }
7954 if (~cflags & pflags)
7955 return 0;
7956
7957 return 1;
7958}
7959
c6c4927b
RR
7960static void free_rootdomain(struct root_domain *rd)
7961{
047106ad
PZ
7962 synchronize_sched();
7963
68e74568
RR
7964 cpupri_cleanup(&rd->cpupri);
7965
c6c4927b
RR
7966 free_cpumask_var(rd->rto_mask);
7967 free_cpumask_var(rd->online);
7968 free_cpumask_var(rd->span);
7969 kfree(rd);
7970}
7971
57d885fe
GH
7972static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7973{
a0490fa3 7974 struct root_domain *old_rd = NULL;
57d885fe 7975 unsigned long flags;
57d885fe
GH
7976
7977 spin_lock_irqsave(&rq->lock, flags);
7978
7979 if (rq->rd) {
a0490fa3 7980 old_rd = rq->rd;
57d885fe 7981
c6c4927b 7982 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7983 set_rq_offline(rq);
57d885fe 7984
c6c4927b 7985 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7986
a0490fa3
IM
7987 /*
7988 * If we dont want to free the old_rt yet then
7989 * set old_rd to NULL to skip the freeing later
7990 * in this function:
7991 */
7992 if (!atomic_dec_and_test(&old_rd->refcount))
7993 old_rd = NULL;
57d885fe
GH
7994 }
7995
7996 atomic_inc(&rd->refcount);
7997 rq->rd = rd;
7998
c6c4927b 7999 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8000 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8001 set_rq_online(rq);
57d885fe
GH
8002
8003 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8004
8005 if (old_rd)
8006 free_rootdomain(old_rd);
57d885fe
GH
8007}
8008
fd5e1b5d 8009static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8010{
36b7b6d4
PE
8011 gfp_t gfp = GFP_KERNEL;
8012
57d885fe
GH
8013 memset(rd, 0, sizeof(*rd));
8014
36b7b6d4
PE
8015 if (bootmem)
8016 gfp = GFP_NOWAIT;
c6c4927b 8017
36b7b6d4 8018 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8019 goto out;
36b7b6d4 8020 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8021 goto free_span;
36b7b6d4 8022 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8023 goto free_online;
6e0534f2 8024
0fb53029 8025 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8026 goto free_rto_mask;
c6c4927b 8027 return 0;
6e0534f2 8028
68e74568
RR
8029free_rto_mask:
8030 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8031free_online:
8032 free_cpumask_var(rd->online);
8033free_span:
8034 free_cpumask_var(rd->span);
0c910d28 8035out:
c6c4927b 8036 return -ENOMEM;
57d885fe
GH
8037}
8038
8039static void init_defrootdomain(void)
8040{
c6c4927b
RR
8041 init_rootdomain(&def_root_domain, true);
8042
57d885fe
GH
8043 atomic_set(&def_root_domain.refcount, 1);
8044}
8045
dc938520 8046static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8047{
8048 struct root_domain *rd;
8049
8050 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8051 if (!rd)
8052 return NULL;
8053
c6c4927b
RR
8054 if (init_rootdomain(rd, false) != 0) {
8055 kfree(rd);
8056 return NULL;
8057 }
57d885fe
GH
8058
8059 return rd;
8060}
8061
1da177e4 8062/*
0eab9146 8063 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8064 * hold the hotplug lock.
8065 */
0eab9146
IM
8066static void
8067cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8068{
70b97a7f 8069 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8070 struct sched_domain *tmp;
8071
8072 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8073 for (tmp = sd; tmp; ) {
245af2c7
SS
8074 struct sched_domain *parent = tmp->parent;
8075 if (!parent)
8076 break;
f29c9b1c 8077
1a848870 8078 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8079 tmp->parent = parent->parent;
1a848870
SS
8080 if (parent->parent)
8081 parent->parent->child = tmp;
f29c9b1c
LZ
8082 } else
8083 tmp = tmp->parent;
245af2c7
SS
8084 }
8085
1a848870 8086 if (sd && sd_degenerate(sd)) {
245af2c7 8087 sd = sd->parent;
1a848870
SS
8088 if (sd)
8089 sd->child = NULL;
8090 }
1da177e4
LT
8091
8092 sched_domain_debug(sd, cpu);
8093
57d885fe 8094 rq_attach_root(rq, rd);
674311d5 8095 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8096}
8097
8098/* cpus with isolated domains */
dcc30a35 8099static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8100
8101/* Setup the mask of cpus configured for isolated domains */
8102static int __init isolated_cpu_setup(char *str)
8103{
bdddd296 8104 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8105 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8106 return 1;
8107}
8108
8927f494 8109__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8110
8111/*
6711cab4
SS
8112 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8113 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8114 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8115 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8116 *
8117 * init_sched_build_groups will build a circular linked list of the groups
8118 * covered by the given span, and will set each group's ->cpumask correctly,
8119 * and ->cpu_power to 0.
8120 */
a616058b 8121static void
96f874e2
RR
8122init_sched_build_groups(const struct cpumask *span,
8123 const struct cpumask *cpu_map,
8124 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8125 struct sched_group **sg,
96f874e2
RR
8126 struct cpumask *tmpmask),
8127 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8128{
8129 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8130 int i;
8131
96f874e2 8132 cpumask_clear(covered);
7c16ec58 8133
abcd083a 8134 for_each_cpu(i, span) {
6711cab4 8135 struct sched_group *sg;
7c16ec58 8136 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8137 int j;
8138
758b2cdc 8139 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8140 continue;
8141
758b2cdc 8142 cpumask_clear(sched_group_cpus(sg));
18a3885f 8143 sg->cpu_power = 0;
1da177e4 8144
abcd083a 8145 for_each_cpu(j, span) {
7c16ec58 8146 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8147 continue;
8148
96f874e2 8149 cpumask_set_cpu(j, covered);
758b2cdc 8150 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8151 }
8152 if (!first)
8153 first = sg;
8154 if (last)
8155 last->next = sg;
8156 last = sg;
8157 }
8158 last->next = first;
8159}
8160
9c1cfda2 8161#define SD_NODES_PER_DOMAIN 16
1da177e4 8162
9c1cfda2 8163#ifdef CONFIG_NUMA
198e2f18 8164
9c1cfda2
JH
8165/**
8166 * find_next_best_node - find the next node to include in a sched_domain
8167 * @node: node whose sched_domain we're building
8168 * @used_nodes: nodes already in the sched_domain
8169 *
41a2d6cf 8170 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8171 * finds the closest node not already in the @used_nodes map.
8172 *
8173 * Should use nodemask_t.
8174 */
c5f59f08 8175static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8176{
8177 int i, n, val, min_val, best_node = 0;
8178
8179 min_val = INT_MAX;
8180
076ac2af 8181 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8182 /* Start at @node */
076ac2af 8183 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8184
8185 if (!nr_cpus_node(n))
8186 continue;
8187
8188 /* Skip already used nodes */
c5f59f08 8189 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8190 continue;
8191
8192 /* Simple min distance search */
8193 val = node_distance(node, n);
8194
8195 if (val < min_val) {
8196 min_val = val;
8197 best_node = n;
8198 }
8199 }
8200
c5f59f08 8201 node_set(best_node, *used_nodes);
9c1cfda2
JH
8202 return best_node;
8203}
8204
8205/**
8206 * sched_domain_node_span - get a cpumask for a node's sched_domain
8207 * @node: node whose cpumask we're constructing
73486722 8208 * @span: resulting cpumask
9c1cfda2 8209 *
41a2d6cf 8210 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8211 * should be one that prevents unnecessary balancing, but also spreads tasks
8212 * out optimally.
8213 */
96f874e2 8214static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8215{
c5f59f08 8216 nodemask_t used_nodes;
48f24c4d 8217 int i;
9c1cfda2 8218
6ca09dfc 8219 cpumask_clear(span);
c5f59f08 8220 nodes_clear(used_nodes);
9c1cfda2 8221
6ca09dfc 8222 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8223 node_set(node, used_nodes);
9c1cfda2
JH
8224
8225 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8226 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8227
6ca09dfc 8228 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8229 }
9c1cfda2 8230}
6d6bc0ad 8231#endif /* CONFIG_NUMA */
9c1cfda2 8232
5c45bf27 8233int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8234
6c99e9ad
RR
8235/*
8236 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8237 *
8238 * ( See the the comments in include/linux/sched.h:struct sched_group
8239 * and struct sched_domain. )
6c99e9ad
RR
8240 */
8241struct static_sched_group {
8242 struct sched_group sg;
8243 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8244};
8245
8246struct static_sched_domain {
8247 struct sched_domain sd;
8248 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8249};
8250
49a02c51
AH
8251struct s_data {
8252#ifdef CONFIG_NUMA
8253 int sd_allnodes;
8254 cpumask_var_t domainspan;
8255 cpumask_var_t covered;
8256 cpumask_var_t notcovered;
8257#endif
8258 cpumask_var_t nodemask;
8259 cpumask_var_t this_sibling_map;
8260 cpumask_var_t this_core_map;
8261 cpumask_var_t send_covered;
8262 cpumask_var_t tmpmask;
8263 struct sched_group **sched_group_nodes;
8264 struct root_domain *rd;
8265};
8266
2109b99e
AH
8267enum s_alloc {
8268 sa_sched_groups = 0,
8269 sa_rootdomain,
8270 sa_tmpmask,
8271 sa_send_covered,
8272 sa_this_core_map,
8273 sa_this_sibling_map,
8274 sa_nodemask,
8275 sa_sched_group_nodes,
8276#ifdef CONFIG_NUMA
8277 sa_notcovered,
8278 sa_covered,
8279 sa_domainspan,
8280#endif
8281 sa_none,
8282};
8283
9c1cfda2 8284/*
48f24c4d 8285 * SMT sched-domains:
9c1cfda2 8286 */
1da177e4 8287#ifdef CONFIG_SCHED_SMT
6c99e9ad 8288static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8289static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8290
41a2d6cf 8291static int
96f874e2
RR
8292cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8293 struct sched_group **sg, struct cpumask *unused)
1da177e4 8294{
6711cab4 8295 if (sg)
1871e52c 8296 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8297 return cpu;
8298}
6d6bc0ad 8299#endif /* CONFIG_SCHED_SMT */
1da177e4 8300
48f24c4d
IM
8301/*
8302 * multi-core sched-domains:
8303 */
1e9f28fa 8304#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8305static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8306static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8307#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8308
8309#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8310static int
96f874e2
RR
8311cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8312 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8313{
6711cab4 8314 int group;
7c16ec58 8315
c69fc56d 8316 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8317 group = cpumask_first(mask);
6711cab4 8318 if (sg)
6c99e9ad 8319 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8320 return group;
1e9f28fa
SS
8321}
8322#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8323static int
96f874e2
RR
8324cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8325 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8326{
6711cab4 8327 if (sg)
6c99e9ad 8328 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8329 return cpu;
8330}
8331#endif
8332
6c99e9ad
RR
8333static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8334static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8335
41a2d6cf 8336static int
96f874e2
RR
8337cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8338 struct sched_group **sg, struct cpumask *mask)
1da177e4 8339{
6711cab4 8340 int group;
48f24c4d 8341#ifdef CONFIG_SCHED_MC
6ca09dfc 8342 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8343 group = cpumask_first(mask);
1e9f28fa 8344#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8345 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8346 group = cpumask_first(mask);
1da177e4 8347#else
6711cab4 8348 group = cpu;
1da177e4 8349#endif
6711cab4 8350 if (sg)
6c99e9ad 8351 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8352 return group;
1da177e4
LT
8353}
8354
8355#ifdef CONFIG_NUMA
1da177e4 8356/*
9c1cfda2
JH
8357 * The init_sched_build_groups can't handle what we want to do with node
8358 * groups, so roll our own. Now each node has its own list of groups which
8359 * gets dynamically allocated.
1da177e4 8360 */
62ea9ceb 8361static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8362static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8363
62ea9ceb 8364static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8365static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8366
96f874e2
RR
8367static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8368 struct sched_group **sg,
8369 struct cpumask *nodemask)
9c1cfda2 8370{
6711cab4
SS
8371 int group;
8372
6ca09dfc 8373 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8374 group = cpumask_first(nodemask);
6711cab4
SS
8375
8376 if (sg)
6c99e9ad 8377 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8378 return group;
1da177e4 8379}
6711cab4 8380
08069033
SS
8381static void init_numa_sched_groups_power(struct sched_group *group_head)
8382{
8383 struct sched_group *sg = group_head;
8384 int j;
8385
8386 if (!sg)
8387 return;
3a5c359a 8388 do {
758b2cdc 8389 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8390 struct sched_domain *sd;
08069033 8391
6c99e9ad 8392 sd = &per_cpu(phys_domains, j).sd;
13318a71 8393 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8394 /*
8395 * Only add "power" once for each
8396 * physical package.
8397 */
8398 continue;
8399 }
08069033 8400
18a3885f 8401 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8402 }
8403 sg = sg->next;
8404 } while (sg != group_head);
08069033 8405}
0601a88d
AH
8406
8407static int build_numa_sched_groups(struct s_data *d,
8408 const struct cpumask *cpu_map, int num)
8409{
8410 struct sched_domain *sd;
8411 struct sched_group *sg, *prev;
8412 int n, j;
8413
8414 cpumask_clear(d->covered);
8415 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8416 if (cpumask_empty(d->nodemask)) {
8417 d->sched_group_nodes[num] = NULL;
8418 goto out;
8419 }
8420
8421 sched_domain_node_span(num, d->domainspan);
8422 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8423
8424 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8425 GFP_KERNEL, num);
8426 if (!sg) {
8427 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8428 num);
8429 return -ENOMEM;
8430 }
8431 d->sched_group_nodes[num] = sg;
8432
8433 for_each_cpu(j, d->nodemask) {
8434 sd = &per_cpu(node_domains, j).sd;
8435 sd->groups = sg;
8436 }
8437
18a3885f 8438 sg->cpu_power = 0;
0601a88d
AH
8439 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8440 sg->next = sg;
8441 cpumask_or(d->covered, d->covered, d->nodemask);
8442
8443 prev = sg;
8444 for (j = 0; j < nr_node_ids; j++) {
8445 n = (num + j) % nr_node_ids;
8446 cpumask_complement(d->notcovered, d->covered);
8447 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8448 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8449 if (cpumask_empty(d->tmpmask))
8450 break;
8451 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8452 if (cpumask_empty(d->tmpmask))
8453 continue;
8454 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8455 GFP_KERNEL, num);
8456 if (!sg) {
8457 printk(KERN_WARNING
8458 "Can not alloc domain group for node %d\n", j);
8459 return -ENOMEM;
8460 }
18a3885f 8461 sg->cpu_power = 0;
0601a88d
AH
8462 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8463 sg->next = prev->next;
8464 cpumask_or(d->covered, d->covered, d->tmpmask);
8465 prev->next = sg;
8466 prev = sg;
8467 }
8468out:
8469 return 0;
8470}
6d6bc0ad 8471#endif /* CONFIG_NUMA */
1da177e4 8472
a616058b 8473#ifdef CONFIG_NUMA
51888ca2 8474/* Free memory allocated for various sched_group structures */
96f874e2
RR
8475static void free_sched_groups(const struct cpumask *cpu_map,
8476 struct cpumask *nodemask)
51888ca2 8477{
a616058b 8478 int cpu, i;
51888ca2 8479
abcd083a 8480 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8481 struct sched_group **sched_group_nodes
8482 = sched_group_nodes_bycpu[cpu];
8483
51888ca2
SV
8484 if (!sched_group_nodes)
8485 continue;
8486
076ac2af 8487 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8488 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8489
6ca09dfc 8490 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8491 if (cpumask_empty(nodemask))
51888ca2
SV
8492 continue;
8493
8494 if (sg == NULL)
8495 continue;
8496 sg = sg->next;
8497next_sg:
8498 oldsg = sg;
8499 sg = sg->next;
8500 kfree(oldsg);
8501 if (oldsg != sched_group_nodes[i])
8502 goto next_sg;
8503 }
8504 kfree(sched_group_nodes);
8505 sched_group_nodes_bycpu[cpu] = NULL;
8506 }
51888ca2 8507}
6d6bc0ad 8508#else /* !CONFIG_NUMA */
96f874e2
RR
8509static void free_sched_groups(const struct cpumask *cpu_map,
8510 struct cpumask *nodemask)
a616058b
SS
8511{
8512}
6d6bc0ad 8513#endif /* CONFIG_NUMA */
51888ca2 8514
89c4710e
SS
8515/*
8516 * Initialize sched groups cpu_power.
8517 *
8518 * cpu_power indicates the capacity of sched group, which is used while
8519 * distributing the load between different sched groups in a sched domain.
8520 * Typically cpu_power for all the groups in a sched domain will be same unless
8521 * there are asymmetries in the topology. If there are asymmetries, group
8522 * having more cpu_power will pickup more load compared to the group having
8523 * less cpu_power.
89c4710e
SS
8524 */
8525static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8526{
8527 struct sched_domain *child;
8528 struct sched_group *group;
f93e65c1
PZ
8529 long power;
8530 int weight;
89c4710e
SS
8531
8532 WARN_ON(!sd || !sd->groups);
8533
13318a71 8534 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8535 return;
8536
8537 child = sd->child;
8538
18a3885f 8539 sd->groups->cpu_power = 0;
5517d86b 8540
f93e65c1
PZ
8541 if (!child) {
8542 power = SCHED_LOAD_SCALE;
8543 weight = cpumask_weight(sched_domain_span(sd));
8544 /*
8545 * SMT siblings share the power of a single core.
a52bfd73
PZ
8546 * Usually multiple threads get a better yield out of
8547 * that one core than a single thread would have,
8548 * reflect that in sd->smt_gain.
f93e65c1 8549 */
a52bfd73
PZ
8550 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8551 power *= sd->smt_gain;
f93e65c1 8552 power /= weight;
a52bfd73
PZ
8553 power >>= SCHED_LOAD_SHIFT;
8554 }
18a3885f 8555 sd->groups->cpu_power += power;
89c4710e
SS
8556 return;
8557 }
8558
89c4710e 8559 /*
f93e65c1 8560 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8561 */
8562 group = child->groups;
8563 do {
18a3885f 8564 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8565 group = group->next;
8566 } while (group != child->groups);
8567}
8568
7c16ec58
MT
8569/*
8570 * Initializers for schedule domains
8571 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8572 */
8573
a5d8c348
IM
8574#ifdef CONFIG_SCHED_DEBUG
8575# define SD_INIT_NAME(sd, type) sd->name = #type
8576#else
8577# define SD_INIT_NAME(sd, type) do { } while (0)
8578#endif
8579
7c16ec58 8580#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8581
7c16ec58
MT
8582#define SD_INIT_FUNC(type) \
8583static noinline void sd_init_##type(struct sched_domain *sd) \
8584{ \
8585 memset(sd, 0, sizeof(*sd)); \
8586 *sd = SD_##type##_INIT; \
1d3504fc 8587 sd->level = SD_LV_##type; \
a5d8c348 8588 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8589}
8590
8591SD_INIT_FUNC(CPU)
8592#ifdef CONFIG_NUMA
8593 SD_INIT_FUNC(ALLNODES)
8594 SD_INIT_FUNC(NODE)
8595#endif
8596#ifdef CONFIG_SCHED_SMT
8597 SD_INIT_FUNC(SIBLING)
8598#endif
8599#ifdef CONFIG_SCHED_MC
8600 SD_INIT_FUNC(MC)
8601#endif
8602
1d3504fc
HS
8603static int default_relax_domain_level = -1;
8604
8605static int __init setup_relax_domain_level(char *str)
8606{
30e0e178
LZ
8607 unsigned long val;
8608
8609 val = simple_strtoul(str, NULL, 0);
8610 if (val < SD_LV_MAX)
8611 default_relax_domain_level = val;
8612
1d3504fc
HS
8613 return 1;
8614}
8615__setup("relax_domain_level=", setup_relax_domain_level);
8616
8617static void set_domain_attribute(struct sched_domain *sd,
8618 struct sched_domain_attr *attr)
8619{
8620 int request;
8621
8622 if (!attr || attr->relax_domain_level < 0) {
8623 if (default_relax_domain_level < 0)
8624 return;
8625 else
8626 request = default_relax_domain_level;
8627 } else
8628 request = attr->relax_domain_level;
8629 if (request < sd->level) {
8630 /* turn off idle balance on this domain */
c88d5910 8631 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8632 } else {
8633 /* turn on idle balance on this domain */
c88d5910 8634 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8635 }
8636}
8637
2109b99e
AH
8638static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8639 const struct cpumask *cpu_map)
8640{
8641 switch (what) {
8642 case sa_sched_groups:
8643 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8644 d->sched_group_nodes = NULL;
8645 case sa_rootdomain:
8646 free_rootdomain(d->rd); /* fall through */
8647 case sa_tmpmask:
8648 free_cpumask_var(d->tmpmask); /* fall through */
8649 case sa_send_covered:
8650 free_cpumask_var(d->send_covered); /* fall through */
8651 case sa_this_core_map:
8652 free_cpumask_var(d->this_core_map); /* fall through */
8653 case sa_this_sibling_map:
8654 free_cpumask_var(d->this_sibling_map); /* fall through */
8655 case sa_nodemask:
8656 free_cpumask_var(d->nodemask); /* fall through */
8657 case sa_sched_group_nodes:
d1b55138 8658#ifdef CONFIG_NUMA
2109b99e
AH
8659 kfree(d->sched_group_nodes); /* fall through */
8660 case sa_notcovered:
8661 free_cpumask_var(d->notcovered); /* fall through */
8662 case sa_covered:
8663 free_cpumask_var(d->covered); /* fall through */
8664 case sa_domainspan:
8665 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8666#endif
2109b99e
AH
8667 case sa_none:
8668 break;
8669 }
8670}
3404c8d9 8671
2109b99e
AH
8672static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8673 const struct cpumask *cpu_map)
8674{
3404c8d9 8675#ifdef CONFIG_NUMA
2109b99e
AH
8676 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8677 return sa_none;
8678 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8679 return sa_domainspan;
8680 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8681 return sa_covered;
8682 /* Allocate the per-node list of sched groups */
8683 d->sched_group_nodes = kcalloc(nr_node_ids,
8684 sizeof(struct sched_group *), GFP_KERNEL);
8685 if (!d->sched_group_nodes) {
d1b55138 8686 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8687 return sa_notcovered;
d1b55138 8688 }
2109b99e 8689 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8690#endif
2109b99e
AH
8691 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8692 return sa_sched_group_nodes;
8693 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8694 return sa_nodemask;
8695 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8696 return sa_this_sibling_map;
8697 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8698 return sa_this_core_map;
8699 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8700 return sa_send_covered;
8701 d->rd = alloc_rootdomain();
8702 if (!d->rd) {
57d885fe 8703 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8704 return sa_tmpmask;
57d885fe 8705 }
2109b99e
AH
8706 return sa_rootdomain;
8707}
57d885fe 8708
7f4588f3
AH
8709static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8710 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8711{
8712 struct sched_domain *sd = NULL;
7c16ec58 8713#ifdef CONFIG_NUMA
7f4588f3 8714 struct sched_domain *parent;
1da177e4 8715
7f4588f3
AH
8716 d->sd_allnodes = 0;
8717 if (cpumask_weight(cpu_map) >
8718 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8719 sd = &per_cpu(allnodes_domains, i).sd;
8720 SD_INIT(sd, ALLNODES);
1d3504fc 8721 set_domain_attribute(sd, attr);
7f4588f3
AH
8722 cpumask_copy(sched_domain_span(sd), cpu_map);
8723 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8724 d->sd_allnodes = 1;
8725 }
8726 parent = sd;
8727
8728 sd = &per_cpu(node_domains, i).sd;
8729 SD_INIT(sd, NODE);
8730 set_domain_attribute(sd, attr);
8731 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8732 sd->parent = parent;
8733 if (parent)
8734 parent->child = sd;
8735 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8736#endif
7f4588f3
AH
8737 return sd;
8738}
1da177e4 8739
87cce662
AH
8740static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8741 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8742 struct sched_domain *parent, int i)
8743{
8744 struct sched_domain *sd;
8745 sd = &per_cpu(phys_domains, i).sd;
8746 SD_INIT(sd, CPU);
8747 set_domain_attribute(sd, attr);
8748 cpumask_copy(sched_domain_span(sd), d->nodemask);
8749 sd->parent = parent;
8750 if (parent)
8751 parent->child = sd;
8752 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8753 return sd;
8754}
1da177e4 8755
410c4081
AH
8756static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8757 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8758 struct sched_domain *parent, int i)
8759{
8760 struct sched_domain *sd = parent;
1e9f28fa 8761#ifdef CONFIG_SCHED_MC
410c4081
AH
8762 sd = &per_cpu(core_domains, i).sd;
8763 SD_INIT(sd, MC);
8764 set_domain_attribute(sd, attr);
8765 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8766 sd->parent = parent;
8767 parent->child = sd;
8768 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8769#endif
410c4081
AH
8770 return sd;
8771}
1e9f28fa 8772
d8173535
AH
8773static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8774 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8775 struct sched_domain *parent, int i)
8776{
8777 struct sched_domain *sd = parent;
1da177e4 8778#ifdef CONFIG_SCHED_SMT
d8173535
AH
8779 sd = &per_cpu(cpu_domains, i).sd;
8780 SD_INIT(sd, SIBLING);
8781 set_domain_attribute(sd, attr);
8782 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8783 sd->parent = parent;
8784 parent->child = sd;
8785 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8786#endif
d8173535
AH
8787 return sd;
8788}
1da177e4 8789
0e8e85c9
AH
8790static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8791 const struct cpumask *cpu_map, int cpu)
8792{
8793 switch (l) {
1da177e4 8794#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8795 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8796 cpumask_and(d->this_sibling_map, cpu_map,
8797 topology_thread_cpumask(cpu));
8798 if (cpu == cpumask_first(d->this_sibling_map))
8799 init_sched_build_groups(d->this_sibling_map, cpu_map,
8800 &cpu_to_cpu_group,
8801 d->send_covered, d->tmpmask);
8802 break;
1da177e4 8803#endif
1e9f28fa 8804#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8805 case SD_LV_MC: /* set up multi-core groups */
8806 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8807 if (cpu == cpumask_first(d->this_core_map))
8808 init_sched_build_groups(d->this_core_map, cpu_map,
8809 &cpu_to_core_group,
8810 d->send_covered, d->tmpmask);
8811 break;
1e9f28fa 8812#endif
86548096
AH
8813 case SD_LV_CPU: /* set up physical groups */
8814 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8815 if (!cpumask_empty(d->nodemask))
8816 init_sched_build_groups(d->nodemask, cpu_map,
8817 &cpu_to_phys_group,
8818 d->send_covered, d->tmpmask);
8819 break;
1da177e4 8820#ifdef CONFIG_NUMA
de616e36
AH
8821 case SD_LV_ALLNODES:
8822 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8823 d->send_covered, d->tmpmask);
8824 break;
8825#endif
0e8e85c9
AH
8826 default:
8827 break;
7c16ec58 8828 }
0e8e85c9 8829}
9c1cfda2 8830
2109b99e
AH
8831/*
8832 * Build sched domains for a given set of cpus and attach the sched domains
8833 * to the individual cpus
8834 */
8835static int __build_sched_domains(const struct cpumask *cpu_map,
8836 struct sched_domain_attr *attr)
8837{
8838 enum s_alloc alloc_state = sa_none;
8839 struct s_data d;
294b0c96 8840 struct sched_domain *sd;
2109b99e 8841 int i;
7c16ec58 8842#ifdef CONFIG_NUMA
2109b99e 8843 d.sd_allnodes = 0;
7c16ec58 8844#endif
9c1cfda2 8845
2109b99e
AH
8846 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8847 if (alloc_state != sa_rootdomain)
8848 goto error;
8849 alloc_state = sa_sched_groups;
9c1cfda2 8850
1da177e4 8851 /*
1a20ff27 8852 * Set up domains for cpus specified by the cpu_map.
1da177e4 8853 */
abcd083a 8854 for_each_cpu(i, cpu_map) {
49a02c51
AH
8855 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8856 cpu_map);
9761eea8 8857
7f4588f3 8858 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8859 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8860 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8861 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8862 }
9c1cfda2 8863
abcd083a 8864 for_each_cpu(i, cpu_map) {
0e8e85c9 8865 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8866 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8867 }
9c1cfda2 8868
1da177e4 8869 /* Set up physical groups */
86548096
AH
8870 for (i = 0; i < nr_node_ids; i++)
8871 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8872
1da177e4
LT
8873#ifdef CONFIG_NUMA
8874 /* Set up node groups */
de616e36
AH
8875 if (d.sd_allnodes)
8876 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8877
0601a88d
AH
8878 for (i = 0; i < nr_node_ids; i++)
8879 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8880 goto error;
1da177e4
LT
8881#endif
8882
8883 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8884#ifdef CONFIG_SCHED_SMT
abcd083a 8885 for_each_cpu(i, cpu_map) {
294b0c96 8886 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8887 init_sched_groups_power(i, sd);
5c45bf27 8888 }
1da177e4 8889#endif
1e9f28fa 8890#ifdef CONFIG_SCHED_MC
abcd083a 8891 for_each_cpu(i, cpu_map) {
294b0c96 8892 sd = &per_cpu(core_domains, i).sd;
89c4710e 8893 init_sched_groups_power(i, sd);
5c45bf27
SS
8894 }
8895#endif
1e9f28fa 8896
abcd083a 8897 for_each_cpu(i, cpu_map) {
294b0c96 8898 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8899 init_sched_groups_power(i, sd);
1da177e4
LT
8900 }
8901
9c1cfda2 8902#ifdef CONFIG_NUMA
076ac2af 8903 for (i = 0; i < nr_node_ids; i++)
49a02c51 8904 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8905
49a02c51 8906 if (d.sd_allnodes) {
6711cab4 8907 struct sched_group *sg;
f712c0c7 8908
96f874e2 8909 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8910 d.tmpmask);
f712c0c7
SS
8911 init_numa_sched_groups_power(sg);
8912 }
9c1cfda2
JH
8913#endif
8914
1da177e4 8915 /* Attach the domains */
abcd083a 8916 for_each_cpu(i, cpu_map) {
1da177e4 8917#ifdef CONFIG_SCHED_SMT
6c99e9ad 8918 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8919#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8920 sd = &per_cpu(core_domains, i).sd;
1da177e4 8921#else
6c99e9ad 8922 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8923#endif
49a02c51 8924 cpu_attach_domain(sd, d.rd, i);
1da177e4 8925 }
51888ca2 8926
2109b99e
AH
8927 d.sched_group_nodes = NULL; /* don't free this we still need it */
8928 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8929 return 0;
51888ca2 8930
51888ca2 8931error:
2109b99e
AH
8932 __free_domain_allocs(&d, alloc_state, cpu_map);
8933 return -ENOMEM;
1da177e4 8934}
029190c5 8935
96f874e2 8936static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8937{
8938 return __build_sched_domains(cpu_map, NULL);
8939}
8940
acc3f5d7 8941static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8942static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8943static struct sched_domain_attr *dattr_cur;
8944 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8945
8946/*
8947 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8948 * cpumask) fails, then fallback to a single sched domain,
8949 * as determined by the single cpumask fallback_doms.
029190c5 8950 */
4212823f 8951static cpumask_var_t fallback_doms;
029190c5 8952
ee79d1bd
HC
8953/*
8954 * arch_update_cpu_topology lets virtualized architectures update the
8955 * cpu core maps. It is supposed to return 1 if the topology changed
8956 * or 0 if it stayed the same.
8957 */
8958int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8959{
ee79d1bd 8960 return 0;
22e52b07
HC
8961}
8962
acc3f5d7
RR
8963cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8964{
8965 int i;
8966 cpumask_var_t *doms;
8967
8968 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8969 if (!doms)
8970 return NULL;
8971 for (i = 0; i < ndoms; i++) {
8972 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8973 free_sched_domains(doms, i);
8974 return NULL;
8975 }
8976 }
8977 return doms;
8978}
8979
8980void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8981{
8982 unsigned int i;
8983 for (i = 0; i < ndoms; i++)
8984 free_cpumask_var(doms[i]);
8985 kfree(doms);
8986}
8987
1a20ff27 8988/*
41a2d6cf 8989 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8990 * For now this just excludes isolated cpus, but could be used to
8991 * exclude other special cases in the future.
1a20ff27 8992 */
96f874e2 8993static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8994{
7378547f
MM
8995 int err;
8996
22e52b07 8997 arch_update_cpu_topology();
029190c5 8998 ndoms_cur = 1;
acc3f5d7 8999 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9000 if (!doms_cur)
acc3f5d7
RR
9001 doms_cur = &fallback_doms;
9002 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9003 dattr_cur = NULL;
acc3f5d7 9004 err = build_sched_domains(doms_cur[0]);
6382bc90 9005 register_sched_domain_sysctl();
7378547f
MM
9006
9007 return err;
1a20ff27
DG
9008}
9009
96f874e2
RR
9010static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9011 struct cpumask *tmpmask)
1da177e4 9012{
7c16ec58 9013 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9014}
1da177e4 9015
1a20ff27
DG
9016/*
9017 * Detach sched domains from a group of cpus specified in cpu_map
9018 * These cpus will now be attached to the NULL domain
9019 */
96f874e2 9020static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9021{
96f874e2
RR
9022 /* Save because hotplug lock held. */
9023 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9024 int i;
9025
abcd083a 9026 for_each_cpu(i, cpu_map)
57d885fe 9027 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9028 synchronize_sched();
96f874e2 9029 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9030}
9031
1d3504fc
HS
9032/* handle null as "default" */
9033static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9034 struct sched_domain_attr *new, int idx_new)
9035{
9036 struct sched_domain_attr tmp;
9037
9038 /* fast path */
9039 if (!new && !cur)
9040 return 1;
9041
9042 tmp = SD_ATTR_INIT;
9043 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9044 new ? (new + idx_new) : &tmp,
9045 sizeof(struct sched_domain_attr));
9046}
9047
029190c5
PJ
9048/*
9049 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9050 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9051 * doms_new[] to the current sched domain partitioning, doms_cur[].
9052 * It destroys each deleted domain and builds each new domain.
9053 *
acc3f5d7 9054 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9055 * The masks don't intersect (don't overlap.) We should setup one
9056 * sched domain for each mask. CPUs not in any of the cpumasks will
9057 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9058 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9059 * it as it is.
9060 *
acc3f5d7
RR
9061 * The passed in 'doms_new' should be allocated using
9062 * alloc_sched_domains. This routine takes ownership of it and will
9063 * free_sched_domains it when done with it. If the caller failed the
9064 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9065 * and partition_sched_domains() will fallback to the single partition
9066 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9067 *
96f874e2 9068 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9069 * ndoms_new == 0 is a special case for destroying existing domains,
9070 * and it will not create the default domain.
dfb512ec 9071 *
029190c5
PJ
9072 * Call with hotplug lock held
9073 */
acc3f5d7 9074void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9075 struct sched_domain_attr *dattr_new)
029190c5 9076{
dfb512ec 9077 int i, j, n;
d65bd5ec 9078 int new_topology;
029190c5 9079
712555ee 9080 mutex_lock(&sched_domains_mutex);
a1835615 9081
7378547f
MM
9082 /* always unregister in case we don't destroy any domains */
9083 unregister_sched_domain_sysctl();
9084
d65bd5ec
HC
9085 /* Let architecture update cpu core mappings. */
9086 new_topology = arch_update_cpu_topology();
9087
dfb512ec 9088 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9089
9090 /* Destroy deleted domains */
9091 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9092 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9093 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9094 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9095 goto match1;
9096 }
9097 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9098 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9099match1:
9100 ;
9101 }
9102
e761b772
MK
9103 if (doms_new == NULL) {
9104 ndoms_cur = 0;
acc3f5d7 9105 doms_new = &fallback_doms;
6ad4c188 9106 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9107 WARN_ON_ONCE(dattr_new);
e761b772
MK
9108 }
9109
029190c5
PJ
9110 /* Build new domains */
9111 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9112 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9113 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9114 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9115 goto match2;
9116 }
9117 /* no match - add a new doms_new */
acc3f5d7 9118 __build_sched_domains(doms_new[i],
1d3504fc 9119 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9120match2:
9121 ;
9122 }
9123
9124 /* Remember the new sched domains */
acc3f5d7
RR
9125 if (doms_cur != &fallback_doms)
9126 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9127 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9128 doms_cur = doms_new;
1d3504fc 9129 dattr_cur = dattr_new;
029190c5 9130 ndoms_cur = ndoms_new;
7378547f
MM
9131
9132 register_sched_domain_sysctl();
a1835615 9133
712555ee 9134 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9135}
9136
5c45bf27 9137#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9138static void arch_reinit_sched_domains(void)
5c45bf27 9139{
95402b38 9140 get_online_cpus();
dfb512ec
MK
9141
9142 /* Destroy domains first to force the rebuild */
9143 partition_sched_domains(0, NULL, NULL);
9144
e761b772 9145 rebuild_sched_domains();
95402b38 9146 put_online_cpus();
5c45bf27
SS
9147}
9148
9149static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9150{
afb8a9b7 9151 unsigned int level = 0;
5c45bf27 9152
afb8a9b7
GS
9153 if (sscanf(buf, "%u", &level) != 1)
9154 return -EINVAL;
9155
9156 /*
9157 * level is always be positive so don't check for
9158 * level < POWERSAVINGS_BALANCE_NONE which is 0
9159 * What happens on 0 or 1 byte write,
9160 * need to check for count as well?
9161 */
9162
9163 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9164 return -EINVAL;
9165
9166 if (smt)
afb8a9b7 9167 sched_smt_power_savings = level;
5c45bf27 9168 else
afb8a9b7 9169 sched_mc_power_savings = level;
5c45bf27 9170
c70f22d2 9171 arch_reinit_sched_domains();
5c45bf27 9172
c70f22d2 9173 return count;
5c45bf27
SS
9174}
9175
5c45bf27 9176#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9177static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9178 char *page)
5c45bf27
SS
9179{
9180 return sprintf(page, "%u\n", sched_mc_power_savings);
9181}
f718cd4a 9182static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9183 const char *buf, size_t count)
5c45bf27
SS
9184{
9185 return sched_power_savings_store(buf, count, 0);
9186}
f718cd4a
AK
9187static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9188 sched_mc_power_savings_show,
9189 sched_mc_power_savings_store);
5c45bf27
SS
9190#endif
9191
9192#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9193static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9194 char *page)
5c45bf27
SS
9195{
9196 return sprintf(page, "%u\n", sched_smt_power_savings);
9197}
f718cd4a 9198static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9199 const char *buf, size_t count)
5c45bf27
SS
9200{
9201 return sched_power_savings_store(buf, count, 1);
9202}
f718cd4a
AK
9203static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9204 sched_smt_power_savings_show,
6707de00
AB
9205 sched_smt_power_savings_store);
9206#endif
9207
39aac648 9208int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9209{
9210 int err = 0;
9211
9212#ifdef CONFIG_SCHED_SMT
9213 if (smt_capable())
9214 err = sysfs_create_file(&cls->kset.kobj,
9215 &attr_sched_smt_power_savings.attr);
9216#endif
9217#ifdef CONFIG_SCHED_MC
9218 if (!err && mc_capable())
9219 err = sysfs_create_file(&cls->kset.kobj,
9220 &attr_sched_mc_power_savings.attr);
9221#endif
9222 return err;
9223}
6d6bc0ad 9224#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9225
e761b772 9226#ifndef CONFIG_CPUSETS
1da177e4 9227/*
e761b772
MK
9228 * Add online and remove offline CPUs from the scheduler domains.
9229 * When cpusets are enabled they take over this function.
1da177e4
LT
9230 */
9231static int update_sched_domains(struct notifier_block *nfb,
9232 unsigned long action, void *hcpu)
e761b772
MK
9233{
9234 switch (action) {
9235 case CPU_ONLINE:
9236 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9237 case CPU_DOWN_PREPARE:
9238 case CPU_DOWN_PREPARE_FROZEN:
9239 case CPU_DOWN_FAILED:
9240 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9241 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9242 return NOTIFY_OK;
9243
9244 default:
9245 return NOTIFY_DONE;
9246 }
9247}
9248#endif
9249
9250static int update_runtime(struct notifier_block *nfb,
9251 unsigned long action, void *hcpu)
1da177e4 9252{
7def2be1
PZ
9253 int cpu = (int)(long)hcpu;
9254
1da177e4 9255 switch (action) {
1da177e4 9256 case CPU_DOWN_PREPARE:
8bb78442 9257 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9258 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9259 return NOTIFY_OK;
9260
1da177e4 9261 case CPU_DOWN_FAILED:
8bb78442 9262 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9263 case CPU_ONLINE:
8bb78442 9264 case CPU_ONLINE_FROZEN:
7def2be1 9265 enable_runtime(cpu_rq(cpu));
e761b772
MK
9266 return NOTIFY_OK;
9267
1da177e4
LT
9268 default:
9269 return NOTIFY_DONE;
9270 }
1da177e4 9271}
1da177e4
LT
9272
9273void __init sched_init_smp(void)
9274{
dcc30a35
RR
9275 cpumask_var_t non_isolated_cpus;
9276
9277 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9278 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9279
434d53b0
MT
9280#if defined(CONFIG_NUMA)
9281 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9282 GFP_KERNEL);
9283 BUG_ON(sched_group_nodes_bycpu == NULL);
9284#endif
95402b38 9285 get_online_cpus();
712555ee 9286 mutex_lock(&sched_domains_mutex);
6ad4c188 9287 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9288 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9289 if (cpumask_empty(non_isolated_cpus))
9290 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9291 mutex_unlock(&sched_domains_mutex);
95402b38 9292 put_online_cpus();
e761b772
MK
9293
9294#ifndef CONFIG_CPUSETS
1da177e4
LT
9295 /* XXX: Theoretical race here - CPU may be hotplugged now */
9296 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9297#endif
9298
9299 /* RT runtime code needs to handle some hotplug events */
9300 hotcpu_notifier(update_runtime, 0);
9301
b328ca18 9302 init_hrtick();
5c1e1767
NP
9303
9304 /* Move init over to a non-isolated CPU */
dcc30a35 9305 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9306 BUG();
19978ca6 9307 sched_init_granularity();
dcc30a35 9308 free_cpumask_var(non_isolated_cpus);
4212823f 9309
0e3900e6 9310 init_sched_rt_class();
1da177e4
LT
9311}
9312#else
9313void __init sched_init_smp(void)
9314{
19978ca6 9315 sched_init_granularity();
1da177e4
LT
9316}
9317#endif /* CONFIG_SMP */
9318
cd1bb94b
AB
9319const_debug unsigned int sysctl_timer_migration = 1;
9320
1da177e4
LT
9321int in_sched_functions(unsigned long addr)
9322{
1da177e4
LT
9323 return in_lock_functions(addr) ||
9324 (addr >= (unsigned long)__sched_text_start
9325 && addr < (unsigned long)__sched_text_end);
9326}
9327
a9957449 9328static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9329{
9330 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9331 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9332#ifdef CONFIG_FAIR_GROUP_SCHED
9333 cfs_rq->rq = rq;
9334#endif
67e9fb2a 9335 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9336}
9337
fa85ae24
PZ
9338static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9339{
9340 struct rt_prio_array *array;
9341 int i;
9342
9343 array = &rt_rq->active;
9344 for (i = 0; i < MAX_RT_PRIO; i++) {
9345 INIT_LIST_HEAD(array->queue + i);
9346 __clear_bit(i, array->bitmap);
9347 }
9348 /* delimiter for bitsearch: */
9349 __set_bit(MAX_RT_PRIO, array->bitmap);
9350
052f1dc7 9351#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9352 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9353#ifdef CONFIG_SMP
e864c499 9354 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9355#endif
48d5e258 9356#endif
fa85ae24
PZ
9357#ifdef CONFIG_SMP
9358 rt_rq->rt_nr_migratory = 0;
fa85ae24 9359 rt_rq->overloaded = 0;
c20b08e3 9360 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9361#endif
9362
9363 rt_rq->rt_time = 0;
9364 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9365 rt_rq->rt_runtime = 0;
9366 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9367
052f1dc7 9368#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9369 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9370 rt_rq->rq = rq;
9371#endif
fa85ae24
PZ
9372}
9373
6f505b16 9374#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9375static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9376 struct sched_entity *se, int cpu, int add,
9377 struct sched_entity *parent)
6f505b16 9378{
ec7dc8ac 9379 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9380 tg->cfs_rq[cpu] = cfs_rq;
9381 init_cfs_rq(cfs_rq, rq);
9382 cfs_rq->tg = tg;
9383 if (add)
9384 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9385
9386 tg->se[cpu] = se;
354d60c2
DG
9387 /* se could be NULL for init_task_group */
9388 if (!se)
9389 return;
9390
ec7dc8ac
DG
9391 if (!parent)
9392 se->cfs_rq = &rq->cfs;
9393 else
9394 se->cfs_rq = parent->my_q;
9395
6f505b16
PZ
9396 se->my_q = cfs_rq;
9397 se->load.weight = tg->shares;
e05510d0 9398 se->load.inv_weight = 0;
ec7dc8ac 9399 se->parent = parent;
6f505b16 9400}
052f1dc7 9401#endif
6f505b16 9402
052f1dc7 9403#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9404static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9405 struct sched_rt_entity *rt_se, int cpu, int add,
9406 struct sched_rt_entity *parent)
6f505b16 9407{
ec7dc8ac
DG
9408 struct rq *rq = cpu_rq(cpu);
9409
6f505b16
PZ
9410 tg->rt_rq[cpu] = rt_rq;
9411 init_rt_rq(rt_rq, rq);
9412 rt_rq->tg = tg;
9413 rt_rq->rt_se = rt_se;
ac086bc2 9414 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9415 if (add)
9416 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9417
9418 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9419 if (!rt_se)
9420 return;
9421
ec7dc8ac
DG
9422 if (!parent)
9423 rt_se->rt_rq = &rq->rt;
9424 else
9425 rt_se->rt_rq = parent->my_q;
9426
6f505b16 9427 rt_se->my_q = rt_rq;
ec7dc8ac 9428 rt_se->parent = parent;
6f505b16
PZ
9429 INIT_LIST_HEAD(&rt_se->run_list);
9430}
9431#endif
9432
1da177e4
LT
9433void __init sched_init(void)
9434{
dd41f596 9435 int i, j;
434d53b0
MT
9436 unsigned long alloc_size = 0, ptr;
9437
9438#ifdef CONFIG_FAIR_GROUP_SCHED
9439 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9440#endif
9441#ifdef CONFIG_RT_GROUP_SCHED
9442 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9443#endif
9444#ifdef CONFIG_USER_SCHED
9445 alloc_size *= 2;
df7c8e84
RR
9446#endif
9447#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9448 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9449#endif
434d53b0 9450 if (alloc_size) {
36b7b6d4 9451 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9452
9453#ifdef CONFIG_FAIR_GROUP_SCHED
9454 init_task_group.se = (struct sched_entity **)ptr;
9455 ptr += nr_cpu_ids * sizeof(void **);
9456
9457 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9458 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9459
9460#ifdef CONFIG_USER_SCHED
9461 root_task_group.se = (struct sched_entity **)ptr;
9462 ptr += nr_cpu_ids * sizeof(void **);
9463
9464 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9465 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9466#endif /* CONFIG_USER_SCHED */
9467#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9468#ifdef CONFIG_RT_GROUP_SCHED
9469 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9470 ptr += nr_cpu_ids * sizeof(void **);
9471
9472 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9473 ptr += nr_cpu_ids * sizeof(void **);
9474
9475#ifdef CONFIG_USER_SCHED
9476 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9477 ptr += nr_cpu_ids * sizeof(void **);
9478
9479 root_task_group.rt_rq = (struct rt_rq **)ptr;
9480 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9481#endif /* CONFIG_USER_SCHED */
9482#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9483#ifdef CONFIG_CPUMASK_OFFSTACK
9484 for_each_possible_cpu(i) {
9485 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9486 ptr += cpumask_size();
9487 }
9488#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9489 }
dd41f596 9490
57d885fe
GH
9491#ifdef CONFIG_SMP
9492 init_defrootdomain();
9493#endif
9494
d0b27fa7
PZ
9495 init_rt_bandwidth(&def_rt_bandwidth,
9496 global_rt_period(), global_rt_runtime());
9497
9498#ifdef CONFIG_RT_GROUP_SCHED
9499 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9500 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9501#ifdef CONFIG_USER_SCHED
9502 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9503 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9504#endif /* CONFIG_USER_SCHED */
9505#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9506
052f1dc7 9507#ifdef CONFIG_GROUP_SCHED
6f505b16 9508 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9509 INIT_LIST_HEAD(&init_task_group.children);
9510
9511#ifdef CONFIG_USER_SCHED
9512 INIT_LIST_HEAD(&root_task_group.children);
9513 init_task_group.parent = &root_task_group;
9514 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9515#endif /* CONFIG_USER_SCHED */
9516#endif /* CONFIG_GROUP_SCHED */
6f505b16 9517
4a6cc4bd
JK
9518#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9519 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9520 __alignof__(unsigned long));
9521#endif
0a945022 9522 for_each_possible_cpu(i) {
70b97a7f 9523 struct rq *rq;
1da177e4
LT
9524
9525 rq = cpu_rq(i);
9526 spin_lock_init(&rq->lock);
7897986b 9527 rq->nr_running = 0;
dce48a84
TG
9528 rq->calc_load_active = 0;
9529 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9530 init_cfs_rq(&rq->cfs, rq);
6f505b16 9531 init_rt_rq(&rq->rt, rq);
dd41f596 9532#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9533 init_task_group.shares = init_task_group_load;
6f505b16 9534 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9535#ifdef CONFIG_CGROUP_SCHED
9536 /*
9537 * How much cpu bandwidth does init_task_group get?
9538 *
9539 * In case of task-groups formed thr' the cgroup filesystem, it
9540 * gets 100% of the cpu resources in the system. This overall
9541 * system cpu resource is divided among the tasks of
9542 * init_task_group and its child task-groups in a fair manner,
9543 * based on each entity's (task or task-group's) weight
9544 * (se->load.weight).
9545 *
9546 * In other words, if init_task_group has 10 tasks of weight
9547 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9548 * then A0's share of the cpu resource is:
9549 *
0d905bca 9550 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9551 *
9552 * We achieve this by letting init_task_group's tasks sit
9553 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9554 */
ec7dc8ac 9555 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9556#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9557 root_task_group.shares = NICE_0_LOAD;
9558 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9559 /*
9560 * In case of task-groups formed thr' the user id of tasks,
9561 * init_task_group represents tasks belonging to root user.
9562 * Hence it forms a sibling of all subsequent groups formed.
9563 * In this case, init_task_group gets only a fraction of overall
9564 * system cpu resource, based on the weight assigned to root
9565 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9566 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9567 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9568 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9569 */
ec7dc8ac 9570 init_tg_cfs_entry(&init_task_group,
84e9dabf 9571 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9572 &per_cpu(init_sched_entity, i), i, 1,
9573 root_task_group.se[i]);
6f505b16 9574
052f1dc7 9575#endif
354d60c2
DG
9576#endif /* CONFIG_FAIR_GROUP_SCHED */
9577
9578 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9579#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9580 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9581#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9582 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9583#elif defined CONFIG_USER_SCHED
eff766a6 9584 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9585 init_tg_rt_entry(&init_task_group,
1871e52c 9586 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9587 &per_cpu(init_sched_rt_entity, i), i, 1,
9588 root_task_group.rt_se[i]);
354d60c2 9589#endif
dd41f596 9590#endif
1da177e4 9591
dd41f596
IM
9592 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9593 rq->cpu_load[j] = 0;
1da177e4 9594#ifdef CONFIG_SMP
41c7ce9a 9595 rq->sd = NULL;
57d885fe 9596 rq->rd = NULL;
3f029d3c 9597 rq->post_schedule = 0;
1da177e4 9598 rq->active_balance = 0;
dd41f596 9599 rq->next_balance = jiffies;
1da177e4 9600 rq->push_cpu = 0;
0a2966b4 9601 rq->cpu = i;
1f11eb6a 9602 rq->online = 0;
1da177e4 9603 rq->migration_thread = NULL;
eae0c9df
MG
9604 rq->idle_stamp = 0;
9605 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9606 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9607 rq_attach_root(rq, &def_root_domain);
1da177e4 9608#endif
8f4d37ec 9609 init_rq_hrtick(rq);
1da177e4 9610 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9611 }
9612
2dd73a4f 9613 set_load_weight(&init_task);
b50f60ce 9614
e107be36
AK
9615#ifdef CONFIG_PREEMPT_NOTIFIERS
9616 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9617#endif
9618
c9819f45 9619#ifdef CONFIG_SMP
962cf36c 9620 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9621#endif
9622
b50f60ce
HC
9623#ifdef CONFIG_RT_MUTEXES
9624 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9625#endif
9626
1da177e4
LT
9627 /*
9628 * The boot idle thread does lazy MMU switching as well:
9629 */
9630 atomic_inc(&init_mm.mm_count);
9631 enter_lazy_tlb(&init_mm, current);
9632
9633 /*
9634 * Make us the idle thread. Technically, schedule() should not be
9635 * called from this thread, however somewhere below it might be,
9636 * but because we are the idle thread, we just pick up running again
9637 * when this runqueue becomes "idle".
9638 */
9639 init_idle(current, smp_processor_id());
dce48a84
TG
9640
9641 calc_load_update = jiffies + LOAD_FREQ;
9642
dd41f596
IM
9643 /*
9644 * During early bootup we pretend to be a normal task:
9645 */
9646 current->sched_class = &fair_sched_class;
6892b75e 9647
6a7b3dc3 9648 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9649 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9650#ifdef CONFIG_SMP
7d1e6a9b 9651#ifdef CONFIG_NO_HZ
49557e62 9652 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9653 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9654#endif
bdddd296
RR
9655 /* May be allocated at isolcpus cmdline parse time */
9656 if (cpu_isolated_map == NULL)
9657 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9658#endif /* SMP */
6a7b3dc3 9659
cdd6c482 9660 perf_event_init();
0d905bca 9661
6892b75e 9662 scheduler_running = 1;
1da177e4
LT
9663}
9664
9665#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9666static inline int preempt_count_equals(int preempt_offset)
9667{
9668 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9669
9670 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9671}
9672
9673void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9674{
48f24c4d 9675#ifdef in_atomic
1da177e4
LT
9676 static unsigned long prev_jiffy; /* ratelimiting */
9677
e4aafea2
FW
9678 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9679 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9680 return;
9681 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9682 return;
9683 prev_jiffy = jiffies;
9684
9685 printk(KERN_ERR
9686 "BUG: sleeping function called from invalid context at %s:%d\n",
9687 file, line);
9688 printk(KERN_ERR
9689 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9690 in_atomic(), irqs_disabled(),
9691 current->pid, current->comm);
9692
9693 debug_show_held_locks(current);
9694 if (irqs_disabled())
9695 print_irqtrace_events(current);
9696 dump_stack();
1da177e4
LT
9697#endif
9698}
9699EXPORT_SYMBOL(__might_sleep);
9700#endif
9701
9702#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9703static void normalize_task(struct rq *rq, struct task_struct *p)
9704{
9705 int on_rq;
3e51f33f 9706
3a5e4dc1
AK
9707 update_rq_clock(rq);
9708 on_rq = p->se.on_rq;
9709 if (on_rq)
9710 deactivate_task(rq, p, 0);
9711 __setscheduler(rq, p, SCHED_NORMAL, 0);
9712 if (on_rq) {
9713 activate_task(rq, p, 0);
9714 resched_task(rq->curr);
9715 }
9716}
9717
1da177e4
LT
9718void normalize_rt_tasks(void)
9719{
a0f98a1c 9720 struct task_struct *g, *p;
1da177e4 9721 unsigned long flags;
70b97a7f 9722 struct rq *rq;
1da177e4 9723
4cf5d77a 9724 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9725 do_each_thread(g, p) {
178be793
IM
9726 /*
9727 * Only normalize user tasks:
9728 */
9729 if (!p->mm)
9730 continue;
9731
6cfb0d5d 9732 p->se.exec_start = 0;
6cfb0d5d 9733#ifdef CONFIG_SCHEDSTATS
dd41f596 9734 p->se.wait_start = 0;
dd41f596 9735 p->se.sleep_start = 0;
dd41f596 9736 p->se.block_start = 0;
6cfb0d5d 9737#endif
dd41f596
IM
9738
9739 if (!rt_task(p)) {
9740 /*
9741 * Renice negative nice level userspace
9742 * tasks back to 0:
9743 */
9744 if (TASK_NICE(p) < 0 && p->mm)
9745 set_user_nice(p, 0);
1da177e4 9746 continue;
dd41f596 9747 }
1da177e4 9748
4cf5d77a 9749 spin_lock(&p->pi_lock);
b29739f9 9750 rq = __task_rq_lock(p);
1da177e4 9751
178be793 9752 normalize_task(rq, p);
3a5e4dc1 9753
b29739f9 9754 __task_rq_unlock(rq);
4cf5d77a 9755 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9756 } while_each_thread(g, p);
9757
4cf5d77a 9758 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9759}
9760
9761#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9762
9763#ifdef CONFIG_IA64
9764/*
9765 * These functions are only useful for the IA64 MCA handling.
9766 *
9767 * They can only be called when the whole system has been
9768 * stopped - every CPU needs to be quiescent, and no scheduling
9769 * activity can take place. Using them for anything else would
9770 * be a serious bug, and as a result, they aren't even visible
9771 * under any other configuration.
9772 */
9773
9774/**
9775 * curr_task - return the current task for a given cpu.
9776 * @cpu: the processor in question.
9777 *
9778 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9779 */
36c8b586 9780struct task_struct *curr_task(int cpu)
1df5c10a
LT
9781{
9782 return cpu_curr(cpu);
9783}
9784
9785/**
9786 * set_curr_task - set the current task for a given cpu.
9787 * @cpu: the processor in question.
9788 * @p: the task pointer to set.
9789 *
9790 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9791 * are serviced on a separate stack. It allows the architecture to switch the
9792 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9793 * must be called with all CPU's synchronized, and interrupts disabled, the
9794 * and caller must save the original value of the current task (see
9795 * curr_task() above) and restore that value before reenabling interrupts and
9796 * re-starting the system.
9797 *
9798 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9799 */
36c8b586 9800void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9801{
9802 cpu_curr(cpu) = p;
9803}
9804
9805#endif
29f59db3 9806
bccbe08a
PZ
9807#ifdef CONFIG_FAIR_GROUP_SCHED
9808static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9809{
9810 int i;
9811
9812 for_each_possible_cpu(i) {
9813 if (tg->cfs_rq)
9814 kfree(tg->cfs_rq[i]);
9815 if (tg->se)
9816 kfree(tg->se[i]);
6f505b16
PZ
9817 }
9818
9819 kfree(tg->cfs_rq);
9820 kfree(tg->se);
6f505b16
PZ
9821}
9822
ec7dc8ac
DG
9823static
9824int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9825{
29f59db3 9826 struct cfs_rq *cfs_rq;
eab17229 9827 struct sched_entity *se;
9b5b7751 9828 struct rq *rq;
29f59db3
SV
9829 int i;
9830
434d53b0 9831 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9832 if (!tg->cfs_rq)
9833 goto err;
434d53b0 9834 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9835 if (!tg->se)
9836 goto err;
052f1dc7
PZ
9837
9838 tg->shares = NICE_0_LOAD;
29f59db3
SV
9839
9840 for_each_possible_cpu(i) {
9b5b7751 9841 rq = cpu_rq(i);
29f59db3 9842
eab17229
LZ
9843 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9844 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9845 if (!cfs_rq)
9846 goto err;
9847
eab17229
LZ
9848 se = kzalloc_node(sizeof(struct sched_entity),
9849 GFP_KERNEL, cpu_to_node(i));
29f59db3 9850 if (!se)
dfc12eb2 9851 goto err_free_rq;
29f59db3 9852
eab17229 9853 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9854 }
9855
9856 return 1;
9857
dfc12eb2
PC
9858 err_free_rq:
9859 kfree(cfs_rq);
bccbe08a
PZ
9860 err:
9861 return 0;
9862}
9863
9864static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9865{
9866 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9867 &cpu_rq(cpu)->leaf_cfs_rq_list);
9868}
9869
9870static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9871{
9872 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9873}
6d6bc0ad 9874#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9875static inline void free_fair_sched_group(struct task_group *tg)
9876{
9877}
9878
ec7dc8ac
DG
9879static inline
9880int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9881{
9882 return 1;
9883}
9884
9885static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9886{
9887}
9888
9889static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9890{
9891}
6d6bc0ad 9892#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9893
9894#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9895static void free_rt_sched_group(struct task_group *tg)
9896{
9897 int i;
9898
d0b27fa7
PZ
9899 destroy_rt_bandwidth(&tg->rt_bandwidth);
9900
bccbe08a
PZ
9901 for_each_possible_cpu(i) {
9902 if (tg->rt_rq)
9903 kfree(tg->rt_rq[i]);
9904 if (tg->rt_se)
9905 kfree(tg->rt_se[i]);
9906 }
9907
9908 kfree(tg->rt_rq);
9909 kfree(tg->rt_se);
9910}
9911
ec7dc8ac
DG
9912static
9913int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9914{
9915 struct rt_rq *rt_rq;
eab17229 9916 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9917 struct rq *rq;
9918 int i;
9919
434d53b0 9920 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9921 if (!tg->rt_rq)
9922 goto err;
434d53b0 9923 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9924 if (!tg->rt_se)
9925 goto err;
9926
d0b27fa7
PZ
9927 init_rt_bandwidth(&tg->rt_bandwidth,
9928 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9929
9930 for_each_possible_cpu(i) {
9931 rq = cpu_rq(i);
9932
eab17229
LZ
9933 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9934 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9935 if (!rt_rq)
9936 goto err;
29f59db3 9937
eab17229
LZ
9938 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9939 GFP_KERNEL, cpu_to_node(i));
6f505b16 9940 if (!rt_se)
dfc12eb2 9941 goto err_free_rq;
29f59db3 9942
eab17229 9943 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9944 }
9945
bccbe08a
PZ
9946 return 1;
9947
dfc12eb2
PC
9948 err_free_rq:
9949 kfree(rt_rq);
bccbe08a
PZ
9950 err:
9951 return 0;
9952}
9953
9954static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9955{
9956 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9957 &cpu_rq(cpu)->leaf_rt_rq_list);
9958}
9959
9960static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9961{
9962 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9963}
6d6bc0ad 9964#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9965static inline void free_rt_sched_group(struct task_group *tg)
9966{
9967}
9968
ec7dc8ac
DG
9969static inline
9970int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9971{
9972 return 1;
9973}
9974
9975static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9976{
9977}
9978
9979static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9980{
9981}
6d6bc0ad 9982#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9983
d0b27fa7 9984#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9985static void free_sched_group(struct task_group *tg)
9986{
9987 free_fair_sched_group(tg);
9988 free_rt_sched_group(tg);
9989 kfree(tg);
9990}
9991
9992/* allocate runqueue etc for a new task group */
ec7dc8ac 9993struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9994{
9995 struct task_group *tg;
9996 unsigned long flags;
9997 int i;
9998
9999 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10000 if (!tg)
10001 return ERR_PTR(-ENOMEM);
10002
ec7dc8ac 10003 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10004 goto err;
10005
ec7dc8ac 10006 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10007 goto err;
10008
8ed36996 10009 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10010 for_each_possible_cpu(i) {
bccbe08a
PZ
10011 register_fair_sched_group(tg, i);
10012 register_rt_sched_group(tg, i);
9b5b7751 10013 }
6f505b16 10014 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10015
10016 WARN_ON(!parent); /* root should already exist */
10017
10018 tg->parent = parent;
f473aa5e 10019 INIT_LIST_HEAD(&tg->children);
09f2724a 10020 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10021 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10022
9b5b7751 10023 return tg;
29f59db3
SV
10024
10025err:
6f505b16 10026 free_sched_group(tg);
29f59db3
SV
10027 return ERR_PTR(-ENOMEM);
10028}
10029
9b5b7751 10030/* rcu callback to free various structures associated with a task group */
6f505b16 10031static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10032{
29f59db3 10033 /* now it should be safe to free those cfs_rqs */
6f505b16 10034 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10035}
10036
9b5b7751 10037/* Destroy runqueue etc associated with a task group */
4cf86d77 10038void sched_destroy_group(struct task_group *tg)
29f59db3 10039{
8ed36996 10040 unsigned long flags;
9b5b7751 10041 int i;
29f59db3 10042
8ed36996 10043 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10044 for_each_possible_cpu(i) {
bccbe08a
PZ
10045 unregister_fair_sched_group(tg, i);
10046 unregister_rt_sched_group(tg, i);
9b5b7751 10047 }
6f505b16 10048 list_del_rcu(&tg->list);
f473aa5e 10049 list_del_rcu(&tg->siblings);
8ed36996 10050 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10051
9b5b7751 10052 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10053 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10054}
10055
9b5b7751 10056/* change task's runqueue when it moves between groups.
3a252015
IM
10057 * The caller of this function should have put the task in its new group
10058 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10059 * reflect its new group.
9b5b7751
SV
10060 */
10061void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10062{
10063 int on_rq, running;
10064 unsigned long flags;
10065 struct rq *rq;
10066
10067 rq = task_rq_lock(tsk, &flags);
10068
29f59db3
SV
10069 update_rq_clock(rq);
10070
051a1d1a 10071 running = task_current(rq, tsk);
29f59db3
SV
10072 on_rq = tsk->se.on_rq;
10073
0e1f3483 10074 if (on_rq)
29f59db3 10075 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10076 if (unlikely(running))
10077 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10078
6f505b16 10079 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10080
810b3817
PZ
10081#ifdef CONFIG_FAIR_GROUP_SCHED
10082 if (tsk->sched_class->moved_group)
10083 tsk->sched_class->moved_group(tsk);
10084#endif
10085
0e1f3483
HS
10086 if (unlikely(running))
10087 tsk->sched_class->set_curr_task(rq);
10088 if (on_rq)
7074badb 10089 enqueue_task(rq, tsk, 0);
29f59db3 10090
29f59db3
SV
10091 task_rq_unlock(rq, &flags);
10092}
6d6bc0ad 10093#endif /* CONFIG_GROUP_SCHED */
29f59db3 10094
052f1dc7 10095#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10096static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10097{
10098 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10099 int on_rq;
10100
29f59db3 10101 on_rq = se->on_rq;
62fb1851 10102 if (on_rq)
29f59db3
SV
10103 dequeue_entity(cfs_rq, se, 0);
10104
10105 se->load.weight = shares;
e05510d0 10106 se->load.inv_weight = 0;
29f59db3 10107
62fb1851 10108 if (on_rq)
29f59db3 10109 enqueue_entity(cfs_rq, se, 0);
c09595f6 10110}
62fb1851 10111
c09595f6
PZ
10112static void set_se_shares(struct sched_entity *se, unsigned long shares)
10113{
10114 struct cfs_rq *cfs_rq = se->cfs_rq;
10115 struct rq *rq = cfs_rq->rq;
10116 unsigned long flags;
10117
10118 spin_lock_irqsave(&rq->lock, flags);
10119 __set_se_shares(se, shares);
10120 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10121}
10122
8ed36996
PZ
10123static DEFINE_MUTEX(shares_mutex);
10124
4cf86d77 10125int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10126{
10127 int i;
8ed36996 10128 unsigned long flags;
c61935fd 10129
ec7dc8ac
DG
10130 /*
10131 * We can't change the weight of the root cgroup.
10132 */
10133 if (!tg->se[0])
10134 return -EINVAL;
10135
18d95a28
PZ
10136 if (shares < MIN_SHARES)
10137 shares = MIN_SHARES;
cb4ad1ff
MX
10138 else if (shares > MAX_SHARES)
10139 shares = MAX_SHARES;
62fb1851 10140
8ed36996 10141 mutex_lock(&shares_mutex);
9b5b7751 10142 if (tg->shares == shares)
5cb350ba 10143 goto done;
29f59db3 10144
8ed36996 10145 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10146 for_each_possible_cpu(i)
10147 unregister_fair_sched_group(tg, i);
f473aa5e 10148 list_del_rcu(&tg->siblings);
8ed36996 10149 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10150
10151 /* wait for any ongoing reference to this group to finish */
10152 synchronize_sched();
10153
10154 /*
10155 * Now we are free to modify the group's share on each cpu
10156 * w/o tripping rebalance_share or load_balance_fair.
10157 */
9b5b7751 10158 tg->shares = shares;
c09595f6
PZ
10159 for_each_possible_cpu(i) {
10160 /*
10161 * force a rebalance
10162 */
10163 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10164 set_se_shares(tg->se[i], shares);
c09595f6 10165 }
29f59db3 10166
6b2d7700
SV
10167 /*
10168 * Enable load balance activity on this group, by inserting it back on
10169 * each cpu's rq->leaf_cfs_rq_list.
10170 */
8ed36996 10171 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10172 for_each_possible_cpu(i)
10173 register_fair_sched_group(tg, i);
f473aa5e 10174 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10175 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10176done:
8ed36996 10177 mutex_unlock(&shares_mutex);
9b5b7751 10178 return 0;
29f59db3
SV
10179}
10180
5cb350ba
DG
10181unsigned long sched_group_shares(struct task_group *tg)
10182{
10183 return tg->shares;
10184}
052f1dc7 10185#endif
5cb350ba 10186
052f1dc7 10187#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10188/*
9f0c1e56 10189 * Ensure that the real time constraints are schedulable.
6f505b16 10190 */
9f0c1e56
PZ
10191static DEFINE_MUTEX(rt_constraints_mutex);
10192
10193static unsigned long to_ratio(u64 period, u64 runtime)
10194{
10195 if (runtime == RUNTIME_INF)
9a7e0b18 10196 return 1ULL << 20;
9f0c1e56 10197
9a7e0b18 10198 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10199}
10200
9a7e0b18
PZ
10201/* Must be called with tasklist_lock held */
10202static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10203{
9a7e0b18 10204 struct task_struct *g, *p;
b40b2e8e 10205
9a7e0b18
PZ
10206 do_each_thread(g, p) {
10207 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10208 return 1;
10209 } while_each_thread(g, p);
b40b2e8e 10210
9a7e0b18
PZ
10211 return 0;
10212}
b40b2e8e 10213
9a7e0b18
PZ
10214struct rt_schedulable_data {
10215 struct task_group *tg;
10216 u64 rt_period;
10217 u64 rt_runtime;
10218};
b40b2e8e 10219
9a7e0b18
PZ
10220static int tg_schedulable(struct task_group *tg, void *data)
10221{
10222 struct rt_schedulable_data *d = data;
10223 struct task_group *child;
10224 unsigned long total, sum = 0;
10225 u64 period, runtime;
b40b2e8e 10226
9a7e0b18
PZ
10227 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10228 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10229
9a7e0b18
PZ
10230 if (tg == d->tg) {
10231 period = d->rt_period;
10232 runtime = d->rt_runtime;
b40b2e8e 10233 }
b40b2e8e 10234
98a4826b
PZ
10235#ifdef CONFIG_USER_SCHED
10236 if (tg == &root_task_group) {
10237 period = global_rt_period();
10238 runtime = global_rt_runtime();
10239 }
10240#endif
10241
4653f803
PZ
10242 /*
10243 * Cannot have more runtime than the period.
10244 */
10245 if (runtime > period && runtime != RUNTIME_INF)
10246 return -EINVAL;
6f505b16 10247
4653f803
PZ
10248 /*
10249 * Ensure we don't starve existing RT tasks.
10250 */
9a7e0b18
PZ
10251 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10252 return -EBUSY;
6f505b16 10253
9a7e0b18 10254 total = to_ratio(period, runtime);
6f505b16 10255
4653f803
PZ
10256 /*
10257 * Nobody can have more than the global setting allows.
10258 */
10259 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10260 return -EINVAL;
6f505b16 10261
4653f803
PZ
10262 /*
10263 * The sum of our children's runtime should not exceed our own.
10264 */
9a7e0b18
PZ
10265 list_for_each_entry_rcu(child, &tg->children, siblings) {
10266 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10267 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10268
9a7e0b18
PZ
10269 if (child == d->tg) {
10270 period = d->rt_period;
10271 runtime = d->rt_runtime;
10272 }
6f505b16 10273
9a7e0b18 10274 sum += to_ratio(period, runtime);
9f0c1e56 10275 }
6f505b16 10276
9a7e0b18
PZ
10277 if (sum > total)
10278 return -EINVAL;
10279
10280 return 0;
6f505b16
PZ
10281}
10282
9a7e0b18 10283static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10284{
9a7e0b18
PZ
10285 struct rt_schedulable_data data = {
10286 .tg = tg,
10287 .rt_period = period,
10288 .rt_runtime = runtime,
10289 };
10290
10291 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10292}
10293
d0b27fa7
PZ
10294static int tg_set_bandwidth(struct task_group *tg,
10295 u64 rt_period, u64 rt_runtime)
6f505b16 10296{
ac086bc2 10297 int i, err = 0;
9f0c1e56 10298
9f0c1e56 10299 mutex_lock(&rt_constraints_mutex);
521f1a24 10300 read_lock(&tasklist_lock);
9a7e0b18
PZ
10301 err = __rt_schedulable(tg, rt_period, rt_runtime);
10302 if (err)
9f0c1e56 10303 goto unlock;
ac086bc2
PZ
10304
10305 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10306 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10307 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10308
10309 for_each_possible_cpu(i) {
10310 struct rt_rq *rt_rq = tg->rt_rq[i];
10311
10312 spin_lock(&rt_rq->rt_runtime_lock);
10313 rt_rq->rt_runtime = rt_runtime;
10314 spin_unlock(&rt_rq->rt_runtime_lock);
10315 }
10316 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10317 unlock:
521f1a24 10318 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10319 mutex_unlock(&rt_constraints_mutex);
10320
10321 return err;
6f505b16
PZ
10322}
10323
d0b27fa7
PZ
10324int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10325{
10326 u64 rt_runtime, rt_period;
10327
10328 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10329 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10330 if (rt_runtime_us < 0)
10331 rt_runtime = RUNTIME_INF;
10332
10333 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10334}
10335
9f0c1e56
PZ
10336long sched_group_rt_runtime(struct task_group *tg)
10337{
10338 u64 rt_runtime_us;
10339
d0b27fa7 10340 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10341 return -1;
10342
d0b27fa7 10343 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10344 do_div(rt_runtime_us, NSEC_PER_USEC);
10345 return rt_runtime_us;
10346}
d0b27fa7
PZ
10347
10348int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10349{
10350 u64 rt_runtime, rt_period;
10351
10352 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10353 rt_runtime = tg->rt_bandwidth.rt_runtime;
10354
619b0488
R
10355 if (rt_period == 0)
10356 return -EINVAL;
10357
d0b27fa7
PZ
10358 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10359}
10360
10361long sched_group_rt_period(struct task_group *tg)
10362{
10363 u64 rt_period_us;
10364
10365 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10366 do_div(rt_period_us, NSEC_PER_USEC);
10367 return rt_period_us;
10368}
10369
10370static int sched_rt_global_constraints(void)
10371{
4653f803 10372 u64 runtime, period;
d0b27fa7
PZ
10373 int ret = 0;
10374
ec5d4989
HS
10375 if (sysctl_sched_rt_period <= 0)
10376 return -EINVAL;
10377
4653f803
PZ
10378 runtime = global_rt_runtime();
10379 period = global_rt_period();
10380
10381 /*
10382 * Sanity check on the sysctl variables.
10383 */
10384 if (runtime > period && runtime != RUNTIME_INF)
10385 return -EINVAL;
10b612f4 10386
d0b27fa7 10387 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10388 read_lock(&tasklist_lock);
4653f803 10389 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10390 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10391 mutex_unlock(&rt_constraints_mutex);
10392
10393 return ret;
10394}
54e99124
DG
10395
10396int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10397{
10398 /* Don't accept realtime tasks when there is no way for them to run */
10399 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10400 return 0;
10401
10402 return 1;
10403}
10404
6d6bc0ad 10405#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10406static int sched_rt_global_constraints(void)
10407{
ac086bc2
PZ
10408 unsigned long flags;
10409 int i;
10410
ec5d4989
HS
10411 if (sysctl_sched_rt_period <= 0)
10412 return -EINVAL;
10413
60aa605d
PZ
10414 /*
10415 * There's always some RT tasks in the root group
10416 * -- migration, kstopmachine etc..
10417 */
10418 if (sysctl_sched_rt_runtime == 0)
10419 return -EBUSY;
10420
ac086bc2
PZ
10421 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10422 for_each_possible_cpu(i) {
10423 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10424
10425 spin_lock(&rt_rq->rt_runtime_lock);
10426 rt_rq->rt_runtime = global_rt_runtime();
10427 spin_unlock(&rt_rq->rt_runtime_lock);
10428 }
10429 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10430
d0b27fa7
PZ
10431 return 0;
10432}
6d6bc0ad 10433#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10434
10435int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10436 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10437 loff_t *ppos)
10438{
10439 int ret;
10440 int old_period, old_runtime;
10441 static DEFINE_MUTEX(mutex);
10442
10443 mutex_lock(&mutex);
10444 old_period = sysctl_sched_rt_period;
10445 old_runtime = sysctl_sched_rt_runtime;
10446
8d65af78 10447 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10448
10449 if (!ret && write) {
10450 ret = sched_rt_global_constraints();
10451 if (ret) {
10452 sysctl_sched_rt_period = old_period;
10453 sysctl_sched_rt_runtime = old_runtime;
10454 } else {
10455 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10456 def_rt_bandwidth.rt_period =
10457 ns_to_ktime(global_rt_period());
10458 }
10459 }
10460 mutex_unlock(&mutex);
10461
10462 return ret;
10463}
68318b8e 10464
052f1dc7 10465#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10466
10467/* return corresponding task_group object of a cgroup */
2b01dfe3 10468static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10469{
2b01dfe3
PM
10470 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10471 struct task_group, css);
68318b8e
SV
10472}
10473
10474static struct cgroup_subsys_state *
2b01dfe3 10475cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10476{
ec7dc8ac 10477 struct task_group *tg, *parent;
68318b8e 10478
2b01dfe3 10479 if (!cgrp->parent) {
68318b8e 10480 /* This is early initialization for the top cgroup */
68318b8e
SV
10481 return &init_task_group.css;
10482 }
10483
ec7dc8ac
DG
10484 parent = cgroup_tg(cgrp->parent);
10485 tg = sched_create_group(parent);
68318b8e
SV
10486 if (IS_ERR(tg))
10487 return ERR_PTR(-ENOMEM);
10488
68318b8e
SV
10489 return &tg->css;
10490}
10491
41a2d6cf
IM
10492static void
10493cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10494{
2b01dfe3 10495 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10496
10497 sched_destroy_group(tg);
10498}
10499
41a2d6cf 10500static int
be367d09 10501cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10502{
b68aa230 10503#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10504 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10505 return -EINVAL;
10506#else
68318b8e
SV
10507 /* We don't support RT-tasks being in separate groups */
10508 if (tsk->sched_class != &fair_sched_class)
10509 return -EINVAL;
b68aa230 10510#endif
be367d09
BB
10511 return 0;
10512}
68318b8e 10513
be367d09
BB
10514static int
10515cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10516 struct task_struct *tsk, bool threadgroup)
10517{
10518 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10519 if (retval)
10520 return retval;
10521 if (threadgroup) {
10522 struct task_struct *c;
10523 rcu_read_lock();
10524 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10525 retval = cpu_cgroup_can_attach_task(cgrp, c);
10526 if (retval) {
10527 rcu_read_unlock();
10528 return retval;
10529 }
10530 }
10531 rcu_read_unlock();
10532 }
68318b8e
SV
10533 return 0;
10534}
10535
10536static void
2b01dfe3 10537cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10538 struct cgroup *old_cont, struct task_struct *tsk,
10539 bool threadgroup)
68318b8e
SV
10540{
10541 sched_move_task(tsk);
be367d09
BB
10542 if (threadgroup) {
10543 struct task_struct *c;
10544 rcu_read_lock();
10545 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10546 sched_move_task(c);
10547 }
10548 rcu_read_unlock();
10549 }
68318b8e
SV
10550}
10551
052f1dc7 10552#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10553static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10554 u64 shareval)
68318b8e 10555{
2b01dfe3 10556 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10557}
10558
f4c753b7 10559static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10560{
2b01dfe3 10561 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10562
10563 return (u64) tg->shares;
10564}
6d6bc0ad 10565#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10566
052f1dc7 10567#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10568static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10569 s64 val)
6f505b16 10570{
06ecb27c 10571 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10572}
10573
06ecb27c 10574static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10575{
06ecb27c 10576 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10577}
d0b27fa7
PZ
10578
10579static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10580 u64 rt_period_us)
10581{
10582 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10583}
10584
10585static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10586{
10587 return sched_group_rt_period(cgroup_tg(cgrp));
10588}
6d6bc0ad 10589#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10590
fe5c7cc2 10591static struct cftype cpu_files[] = {
052f1dc7 10592#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10593 {
10594 .name = "shares",
f4c753b7
PM
10595 .read_u64 = cpu_shares_read_u64,
10596 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10597 },
052f1dc7
PZ
10598#endif
10599#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10600 {
9f0c1e56 10601 .name = "rt_runtime_us",
06ecb27c
PM
10602 .read_s64 = cpu_rt_runtime_read,
10603 .write_s64 = cpu_rt_runtime_write,
6f505b16 10604 },
d0b27fa7
PZ
10605 {
10606 .name = "rt_period_us",
f4c753b7
PM
10607 .read_u64 = cpu_rt_period_read_uint,
10608 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10609 },
052f1dc7 10610#endif
68318b8e
SV
10611};
10612
10613static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10614{
fe5c7cc2 10615 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10616}
10617
10618struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10619 .name = "cpu",
10620 .create = cpu_cgroup_create,
10621 .destroy = cpu_cgroup_destroy,
10622 .can_attach = cpu_cgroup_can_attach,
10623 .attach = cpu_cgroup_attach,
10624 .populate = cpu_cgroup_populate,
10625 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10626 .early_init = 1,
10627};
10628
052f1dc7 10629#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10630
10631#ifdef CONFIG_CGROUP_CPUACCT
10632
10633/*
10634 * CPU accounting code for task groups.
10635 *
10636 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10637 * (balbir@in.ibm.com).
10638 */
10639
934352f2 10640/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10641struct cpuacct {
10642 struct cgroup_subsys_state css;
10643 /* cpuusage holds pointer to a u64-type object on every cpu */
10644 u64 *cpuusage;
ef12fefa 10645 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10646 struct cpuacct *parent;
d842de87
SV
10647};
10648
10649struct cgroup_subsys cpuacct_subsys;
10650
10651/* return cpu accounting group corresponding to this container */
32cd756a 10652static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10653{
32cd756a 10654 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10655 struct cpuacct, css);
10656}
10657
10658/* return cpu accounting group to which this task belongs */
10659static inline struct cpuacct *task_ca(struct task_struct *tsk)
10660{
10661 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10662 struct cpuacct, css);
10663}
10664
10665/* create a new cpu accounting group */
10666static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10667 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10668{
10669 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10670 int i;
d842de87
SV
10671
10672 if (!ca)
ef12fefa 10673 goto out;
d842de87
SV
10674
10675 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10676 if (!ca->cpuusage)
10677 goto out_free_ca;
10678
10679 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10680 if (percpu_counter_init(&ca->cpustat[i], 0))
10681 goto out_free_counters;
d842de87 10682
934352f2
BR
10683 if (cgrp->parent)
10684 ca->parent = cgroup_ca(cgrp->parent);
10685
d842de87 10686 return &ca->css;
ef12fefa
BR
10687
10688out_free_counters:
10689 while (--i >= 0)
10690 percpu_counter_destroy(&ca->cpustat[i]);
10691 free_percpu(ca->cpuusage);
10692out_free_ca:
10693 kfree(ca);
10694out:
10695 return ERR_PTR(-ENOMEM);
d842de87
SV
10696}
10697
10698/* destroy an existing cpu accounting group */
41a2d6cf 10699static void
32cd756a 10700cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10701{
32cd756a 10702 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10703 int i;
d842de87 10704
ef12fefa
BR
10705 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10706 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10707 free_percpu(ca->cpuusage);
10708 kfree(ca);
10709}
10710
720f5498
KC
10711static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10712{
b36128c8 10713 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10714 u64 data;
10715
10716#ifndef CONFIG_64BIT
10717 /*
10718 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10719 */
10720 spin_lock_irq(&cpu_rq(cpu)->lock);
10721 data = *cpuusage;
10722 spin_unlock_irq(&cpu_rq(cpu)->lock);
10723#else
10724 data = *cpuusage;
10725#endif
10726
10727 return data;
10728}
10729
10730static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10731{
b36128c8 10732 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10733
10734#ifndef CONFIG_64BIT
10735 /*
10736 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10737 */
10738 spin_lock_irq(&cpu_rq(cpu)->lock);
10739 *cpuusage = val;
10740 spin_unlock_irq(&cpu_rq(cpu)->lock);
10741#else
10742 *cpuusage = val;
10743#endif
10744}
10745
d842de87 10746/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10747static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10748{
32cd756a 10749 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10750 u64 totalcpuusage = 0;
10751 int i;
10752
720f5498
KC
10753 for_each_present_cpu(i)
10754 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10755
10756 return totalcpuusage;
10757}
10758
0297b803
DG
10759static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10760 u64 reset)
10761{
10762 struct cpuacct *ca = cgroup_ca(cgrp);
10763 int err = 0;
10764 int i;
10765
10766 if (reset) {
10767 err = -EINVAL;
10768 goto out;
10769 }
10770
720f5498
KC
10771 for_each_present_cpu(i)
10772 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10773
0297b803
DG
10774out:
10775 return err;
10776}
10777
e9515c3c
KC
10778static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10779 struct seq_file *m)
10780{
10781 struct cpuacct *ca = cgroup_ca(cgroup);
10782 u64 percpu;
10783 int i;
10784
10785 for_each_present_cpu(i) {
10786 percpu = cpuacct_cpuusage_read(ca, i);
10787 seq_printf(m, "%llu ", (unsigned long long) percpu);
10788 }
10789 seq_printf(m, "\n");
10790 return 0;
10791}
10792
ef12fefa
BR
10793static const char *cpuacct_stat_desc[] = {
10794 [CPUACCT_STAT_USER] = "user",
10795 [CPUACCT_STAT_SYSTEM] = "system",
10796};
10797
10798static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10799 struct cgroup_map_cb *cb)
10800{
10801 struct cpuacct *ca = cgroup_ca(cgrp);
10802 int i;
10803
10804 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10805 s64 val = percpu_counter_read(&ca->cpustat[i]);
10806 val = cputime64_to_clock_t(val);
10807 cb->fill(cb, cpuacct_stat_desc[i], val);
10808 }
10809 return 0;
10810}
10811
d842de87
SV
10812static struct cftype files[] = {
10813 {
10814 .name = "usage",
f4c753b7
PM
10815 .read_u64 = cpuusage_read,
10816 .write_u64 = cpuusage_write,
d842de87 10817 },
e9515c3c
KC
10818 {
10819 .name = "usage_percpu",
10820 .read_seq_string = cpuacct_percpu_seq_read,
10821 },
ef12fefa
BR
10822 {
10823 .name = "stat",
10824 .read_map = cpuacct_stats_show,
10825 },
d842de87
SV
10826};
10827
32cd756a 10828static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10829{
32cd756a 10830 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10831}
10832
10833/*
10834 * charge this task's execution time to its accounting group.
10835 *
10836 * called with rq->lock held.
10837 */
10838static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10839{
10840 struct cpuacct *ca;
934352f2 10841 int cpu;
d842de87 10842
c40c6f85 10843 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10844 return;
10845
934352f2 10846 cpu = task_cpu(tsk);
a18b83b7
BR
10847
10848 rcu_read_lock();
10849
d842de87 10850 ca = task_ca(tsk);
d842de87 10851
934352f2 10852 for (; ca; ca = ca->parent) {
b36128c8 10853 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10854 *cpuusage += cputime;
10855 }
a18b83b7
BR
10856
10857 rcu_read_unlock();
d842de87
SV
10858}
10859
ef12fefa
BR
10860/*
10861 * Charge the system/user time to the task's accounting group.
10862 */
10863static void cpuacct_update_stats(struct task_struct *tsk,
10864 enum cpuacct_stat_index idx, cputime_t val)
10865{
10866 struct cpuacct *ca;
10867
10868 if (unlikely(!cpuacct_subsys.active))
10869 return;
10870
10871 rcu_read_lock();
10872 ca = task_ca(tsk);
10873
10874 do {
10875 percpu_counter_add(&ca->cpustat[idx], val);
10876 ca = ca->parent;
10877 } while (ca);
10878 rcu_read_unlock();
10879}
10880
d842de87
SV
10881struct cgroup_subsys cpuacct_subsys = {
10882 .name = "cpuacct",
10883 .create = cpuacct_create,
10884 .destroy = cpuacct_destroy,
10885 .populate = cpuacct_populate,
10886 .subsys_id = cpuacct_subsys_id,
10887};
10888#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10889
10890#ifndef CONFIG_SMP
10891
10892int rcu_expedited_torture_stats(char *page)
10893{
10894 return 0;
10895}
10896EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10897
10898void synchronize_sched_expedited(void)
10899{
10900}
10901EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10902
10903#else /* #ifndef CONFIG_SMP */
10904
10905static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10906static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10907
10908#define RCU_EXPEDITED_STATE_POST -2
10909#define RCU_EXPEDITED_STATE_IDLE -1
10910
10911static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10912
10913int rcu_expedited_torture_stats(char *page)
10914{
10915 int cnt = 0;
10916 int cpu;
10917
10918 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10919 for_each_online_cpu(cpu) {
10920 cnt += sprintf(&page[cnt], " %d:%d",
10921 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10922 }
10923 cnt += sprintf(&page[cnt], "\n");
10924 return cnt;
10925}
10926EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10927
10928static long synchronize_sched_expedited_count;
10929
10930/*
10931 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10932 * approach to force grace period to end quickly. This consumes
10933 * significant time on all CPUs, and is thus not recommended for
10934 * any sort of common-case code.
10935 *
10936 * Note that it is illegal to call this function while holding any
10937 * lock that is acquired by a CPU-hotplug notifier. Failing to
10938 * observe this restriction will result in deadlock.
10939 */
10940void synchronize_sched_expedited(void)
10941{
10942 int cpu;
10943 unsigned long flags;
10944 bool need_full_sync = 0;
10945 struct rq *rq;
10946 struct migration_req *req;
10947 long snap;
10948 int trycount = 0;
10949
10950 smp_mb(); /* ensure prior mod happens before capturing snap. */
10951 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10952 get_online_cpus();
10953 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10954 put_online_cpus();
10955 if (trycount++ < 10)
10956 udelay(trycount * num_online_cpus());
10957 else {
10958 synchronize_sched();
10959 return;
10960 }
10961 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10962 smp_mb(); /* ensure test happens before caller kfree */
10963 return;
10964 }
10965 get_online_cpus();
10966 }
10967 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10968 for_each_online_cpu(cpu) {
10969 rq = cpu_rq(cpu);
10970 req = &per_cpu(rcu_migration_req, cpu);
10971 init_completion(&req->done);
10972 req->task = NULL;
10973 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10974 spin_lock_irqsave(&rq->lock, flags);
10975 list_add(&req->list, &rq->migration_queue);
10976 spin_unlock_irqrestore(&rq->lock, flags);
10977 wake_up_process(rq->migration_thread);
10978 }
10979 for_each_online_cpu(cpu) {
10980 rcu_expedited_state = cpu;
10981 req = &per_cpu(rcu_migration_req, cpu);
10982 rq = cpu_rq(cpu);
10983 wait_for_completion(&req->done);
10984 spin_lock_irqsave(&rq->lock, flags);
10985 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10986 need_full_sync = 1;
10987 req->dest_cpu = RCU_MIGRATION_IDLE;
10988 spin_unlock_irqrestore(&rq->lock, flags);
10989 }
10990 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10991 synchronize_sched_expedited_count++;
03b042bf
PM
10992 mutex_unlock(&rcu_sched_expedited_mutex);
10993 put_online_cpus();
10994 if (need_full_sync)
10995 synchronize_sched();
10996}
10997EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10998
10999#endif /* #else #ifndef CONFIG_SMP */