]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Merge branches 'tracing/hw-branch-tracing' and 'tracing/branch-tracer' into tracing...
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
213}
214
c8bfff6d
KH
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
0b148fa0 224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
d0b27fa7
PZ
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
712555ee
HC
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
052f1dc7 256#ifdef CONFIG_GROUP_SCHED
29f59db3 257
68318b8e
SV
258#include <linux/cgroup.h>
259
29f59db3
SV
260struct cfs_rq;
261
6f505b16
PZ
262static LIST_HEAD(task_groups);
263
29f59db3 264/* task group related information */
4cf86d77 265struct task_group {
052f1dc7 266#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
267 struct cgroup_subsys_state css;
268#endif
052f1dc7
PZ
269
270#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
271 /* schedulable entities of this group on each cpu */
272 struct sched_entity **se;
273 /* runqueue "owned" by this group on each cpu */
274 struct cfs_rq **cfs_rq;
275 unsigned long shares;
052f1dc7
PZ
276#endif
277
278#ifdef CONFIG_RT_GROUP_SCHED
279 struct sched_rt_entity **rt_se;
280 struct rt_rq **rt_rq;
281
d0b27fa7 282 struct rt_bandwidth rt_bandwidth;
052f1dc7 283#endif
6b2d7700 284
ae8393e5 285 struct rcu_head rcu;
6f505b16 286 struct list_head list;
f473aa5e
PZ
287
288 struct task_group *parent;
289 struct list_head siblings;
290 struct list_head children;
29f59db3
SV
291};
292
354d60c2 293#ifdef CONFIG_USER_SCHED
eff766a6
PZ
294
295/*
296 * Root task group.
297 * Every UID task group (including init_task_group aka UID-0) will
298 * be a child to this group.
299 */
300struct task_group root_task_group;
301
052f1dc7 302#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
303/* Default task group's sched entity on each cpu */
304static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
305/* Default task group's cfs_rq on each cpu */
306static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 307#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
308
309#ifdef CONFIG_RT_GROUP_SCHED
310static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
311static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 312#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 313#else /* !CONFIG_USER_SCHED */
eff766a6 314#define root_task_group init_task_group
9a7e0b18 315#endif /* CONFIG_USER_SCHED */
6f505b16 316
8ed36996 317/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
318 * a task group's cpu shares.
319 */
8ed36996 320static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 321
052f1dc7 322#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
24e377a8 354 tg = p->user->tg;
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
456 int highest_prio; /* highest queued rt task prio */
457#endif
fa85ae24 458#ifdef CONFIG_SMP
73fe6aae 459 unsigned long rt_nr_migratory;
a22d7fc1 460 int overloaded;
fa85ae24 461#endif
6f505b16 462 int rt_throttled;
fa85ae24 463 u64 rt_time;
ac086bc2 464 u64 rt_runtime;
ea736ed5 465 /* Nests inside the rq lock: */
ac086bc2 466 spinlock_t rt_runtime_lock;
6f505b16 467
052f1dc7 468#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
469 unsigned long rt_nr_boosted;
470
6f505b16
PZ
471 struct rq *rq;
472 struct list_head leaf_rt_rq_list;
473 struct task_group *tg;
474 struct sched_rt_entity *rt_se;
475#endif
6aa645ea
IM
476};
477
57d885fe
GH
478#ifdef CONFIG_SMP
479
480/*
481 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
482 * variables. Each exclusive cpuset essentially defines an island domain by
483 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
484 * exclusive cpuset is created, we also create and attach a new root-domain
485 * object.
486 *
57d885fe
GH
487 */
488struct root_domain {
489 atomic_t refcount;
490 cpumask_t span;
491 cpumask_t online;
637f5085 492
0eab9146 493 /*
637f5085
GH
494 * The "RT overload" flag: it gets set if a CPU has more than
495 * one runnable RT task.
496 */
497 cpumask_t rto_mask;
0eab9146 498 atomic_t rto_count;
6e0534f2
GH
499#ifdef CONFIG_SMP
500 struct cpupri cpupri;
501#endif
57d885fe
GH
502};
503
dc938520
GH
504/*
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
507 */
57d885fe
GH
508static struct root_domain def_root_domain;
509
510#endif
511
1da177e4
LT
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
70b97a7f 519struct rq {
d8016491
IM
520 /* runqueue lock: */
521 spinlock_t lock;
1da177e4
LT
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
527 unsigned long nr_running;
6aa645ea
IM
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 530 unsigned char idle_at_tick;
46cb4b7c 531#ifdef CONFIG_NO_HZ
15934a37 532 unsigned long last_tick_seen;
46cb4b7c
SS
533 unsigned char in_nohz_recently;
534#endif
d8016491
IM
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
6aa645ea
IM
537 unsigned long nr_load_updates;
538 u64 nr_switches;
539
540 struct cfs_rq cfs;
6f505b16 541 struct rt_rq rt;
6f505b16 542
6aa645ea 543#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
546#endif
547#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 548 struct list_head leaf_rt_rq_list;
1da177e4 549#endif
1da177e4
LT
550
551 /*
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
556 */
557 unsigned long nr_uninterruptible;
558
36c8b586 559 struct task_struct *curr, *idle;
c9819f45 560 unsigned long next_balance;
1da177e4 561 struct mm_struct *prev_mm;
6aa645ea 562
3e51f33f 563 u64 clock;
6aa645ea 564
1da177e4
LT
565 atomic_t nr_iowait;
566
567#ifdef CONFIG_SMP
0eab9146 568 struct root_domain *rd;
1da177e4
LT
569 struct sched_domain *sd;
570
571 /* For active balancing */
572 int active_balance;
573 int push_cpu;
d8016491
IM
574 /* cpu of this runqueue: */
575 int cpu;
1f11eb6a 576 int online;
1da177e4 577
a8a51d5e 578 unsigned long avg_load_per_task;
1da177e4 579
36c8b586 580 struct task_struct *migration_thread;
1da177e4
LT
581 struct list_head migration_queue;
582#endif
583
8f4d37ec 584#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
585#ifdef CONFIG_SMP
586 int hrtick_csd_pending;
587 struct call_single_data hrtick_csd;
588#endif
8f4d37ec
PZ
589 struct hrtimer hrtick_timer;
590#endif
591
1da177e4
LT
592#ifdef CONFIG_SCHEDSTATS
593 /* latency stats */
594 struct sched_info rq_sched_info;
595
596 /* sys_sched_yield() stats */
480b9434
KC
597 unsigned int yld_exp_empty;
598 unsigned int yld_act_empty;
599 unsigned int yld_both_empty;
600 unsigned int yld_count;
1da177e4
LT
601
602 /* schedule() stats */
480b9434
KC
603 unsigned int sched_switch;
604 unsigned int sched_count;
605 unsigned int sched_goidle;
1da177e4
LT
606
607 /* try_to_wake_up() stats */
480b9434
KC
608 unsigned int ttwu_count;
609 unsigned int ttwu_local;
b8efb561
IM
610
611 /* BKL stats */
480b9434 612 unsigned int bkl_count;
1da177e4
LT
613#endif
614};
615
f34e3b61 616static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 617
15afe09b 618static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 619{
15afe09b 620 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
621}
622
0a2966b4
CL
623static inline int cpu_of(struct rq *rq)
624{
625#ifdef CONFIG_SMP
626 return rq->cpu;
627#else
628 return 0;
629#endif
630}
631
674311d5
NP
632/*
633 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 634 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
635 *
636 * The domain tree of any CPU may only be accessed from within
637 * preempt-disabled sections.
638 */
48f24c4d
IM
639#define for_each_domain(cpu, __sd) \
640 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
641
642#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
643#define this_rq() (&__get_cpu_var(runqueues))
644#define task_rq(p) cpu_rq(task_cpu(p))
645#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
646
3e51f33f
PZ
647static inline void update_rq_clock(struct rq *rq)
648{
649 rq->clock = sched_clock_cpu(cpu_of(rq));
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
668int runqueue_is_locked(void)
669{
670 int cpu = get_cpu();
671 struct rq *rq = cpu_rq(cpu);
672 int ret;
673
674 ret = spin_is_locked(&rq->lock);
675 put_cpu();
676 return ret;
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
983ed7a6 712static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
713{
714 filp->private_data = inode->i_private;
715 return 0;
716}
717
718static ssize_t
719sched_feat_read(struct file *filp, char __user *ubuf,
720 size_t cnt, loff_t *ppos)
721{
722 char *buf;
723 int r = 0;
724 int len = 0;
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
728 len += strlen(sched_feat_names[i]);
729 len += 4;
730 }
731
732 buf = kmalloc(len + 2, GFP_KERNEL);
733 if (!buf)
734 return -ENOMEM;
735
736 for (i = 0; sched_feat_names[i]; i++) {
737 if (sysctl_sched_features & (1UL << i))
738 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
739 else
c24b7c52 740 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
741 }
742
743 r += sprintf(buf + r, "\n");
744 WARN_ON(r >= len + 2);
745
746 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
747
748 kfree(buf);
749
750 return r;
751}
752
753static ssize_t
754sched_feat_write(struct file *filp, const char __user *ubuf,
755 size_t cnt, loff_t *ppos)
756{
757 char buf[64];
758 char *cmp = buf;
759 int neg = 0;
760 int i;
761
762 if (cnt > 63)
763 cnt = 63;
764
765 if (copy_from_user(&buf, ubuf, cnt))
766 return -EFAULT;
767
768 buf[cnt] = 0;
769
c24b7c52 770 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
771 neg = 1;
772 cmp += 3;
773 }
774
775 for (i = 0; sched_feat_names[i]; i++) {
776 int len = strlen(sched_feat_names[i]);
777
778 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
779 if (neg)
780 sysctl_sched_features &= ~(1UL << i);
781 else
782 sysctl_sched_features |= (1UL << i);
783 break;
784 }
785 }
786
787 if (!sched_feat_names[i])
788 return -EINVAL;
789
790 filp->f_pos += cnt;
791
792 return cnt;
793}
794
795static struct file_operations sched_feat_fops = {
796 .open = sched_feat_open,
797 .read = sched_feat_read,
798 .write = sched_feat_write,
799};
800
801static __init int sched_init_debug(void)
802{
f00b45c1
PZ
803 debugfs_create_file("sched_features", 0644, NULL, NULL,
804 &sched_feat_fops);
805
806 return 0;
807}
808late_initcall(sched_init_debug);
809
810#endif
811
812#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 813
b82d9fdd
PZ
814/*
815 * Number of tasks to iterate in a single balance run.
816 * Limited because this is done with IRQs disabled.
817 */
818const_debug unsigned int sysctl_sched_nr_migrate = 32;
819
2398f2c6
PZ
820/*
821 * ratelimit for updating the group shares.
55cd5340 822 * default: 0.25ms
2398f2c6 823 */
55cd5340 824unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 825
ffda12a1
PZ
826/*
827 * Inject some fuzzyness into changing the per-cpu group shares
828 * this avoids remote rq-locks at the expense of fairness.
829 * default: 4
830 */
831unsigned int sysctl_sched_shares_thresh = 4;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
1128 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1129}
b328ca18 1130
006c75f1 1131static inline void init_hrtick(void)
8f4d37ec 1132{
8f4d37ec 1133}
31656519 1134#endif /* CONFIG_SMP */
8f4d37ec 1135
31656519 1136static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1137{
31656519
PZ
1138#ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
8f4d37ec 1140
31656519
PZ
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144#endif
8f4d37ec 1145
31656519
PZ
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
ccc7dadf 1148 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
31656519 1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1184 return;
1185
31656519 1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
6d6bc0ad 1251#else /* !CONFIG_SMP */
31656519 1252static void resched_task(struct task_struct *p)
c24d20db
IM
1253{
1254 assert_spin_locked(&task_rq(p)->lock);
31656519 1255 set_tsk_need_resched(p);
c24d20db 1256}
6d6bc0ad 1257#endif /* CONFIG_SMP */
c24d20db 1258
45bf76df
IM
1259#if BITS_PER_LONG == 32
1260# define WMULT_CONST (~0UL)
1261#else
1262# define WMULT_CONST (1UL << 32)
1263#endif
1264
1265#define WMULT_SHIFT 32
1266
194081eb
IM
1267/*
1268 * Shift right and round:
1269 */
cf2ab469 1270#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1271
a7be37ac
PZ
1272/*
1273 * delta *= weight / lw
1274 */
cb1c4fc9 1275static unsigned long
45bf76df
IM
1276calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278{
1279 u64 tmp;
1280
7a232e03
LJ
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
45bf76df
IM
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
194081eb 1293 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1295 WMULT_SHIFT/2);
1296 else
cf2ab469 1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1298
ecf691da 1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1300}
1301
1091985b 1302static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1303{
1304 lw->weight += inc;
e89996ae 1305 lw->inv_weight = 0;
45bf76df
IM
1306}
1307
1091985b 1308static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1309{
1310 lw->weight -= dec;
e89996ae 1311 lw->inv_weight = 0;
45bf76df
IM
1312}
1313
2dd73a4f
PW
1314/*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
dd41f596
IM
1323#define WEIGHT_IDLEPRIO 2
1324#define WMULT_IDLEPRIO (1 << 31)
1325
1326/*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
dd41f596
IM
1337 */
1338static const int prio_to_weight[40] = {
254753dc
IM
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1347};
1348
5714d2de
IM
1349/*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
dd41f596 1356static const u32 prio_to_wmult[40] = {
254753dc
IM
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1365};
2dd73a4f 1366
dd41f596
IM
1367static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369/*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378};
1379
e1d1484f
PW
1380#ifdef CONFIG_SMP
1381static unsigned long
1382balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387static int
1388iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
e1d1484f 1391#endif
dd41f596 1392
d842de87
SV
1393#ifdef CONFIG_CGROUP_CPUACCT
1394static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395#else
1396static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397#endif
1398
18d95a28
PZ
1399static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400{
1401 update_load_add(&rq->load, load);
1402}
1403
1404static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405{
1406 update_load_sub(&rq->load, load);
1407}
1408
7940ca36 1409#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1410typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1411
1412/*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
eb755805 1416static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1417{
1418 struct task_group *parent, *child;
eb755805 1419 int ret;
c09595f6
PZ
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423down:
eb755805
PZ
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
c09595f6
PZ
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431up:
1432 continue;
1433 }
eb755805
PZ
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
c09595f6
PZ
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
eb755805 1442out_unlock:
c09595f6 1443 rcu_read_unlock();
eb755805
PZ
1444
1445 return ret;
c09595f6
PZ
1446}
1447
eb755805
PZ
1448static int tg_nop(struct task_group *tg, void *data)
1449{
1450 return 0;
c09595f6 1451}
eb755805
PZ
1452#endif
1453
1454#ifdef CONFIG_SMP
1455static unsigned long source_load(int cpu, int type);
1456static unsigned long target_load(int cpu, int type);
1457static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459static unsigned long cpu_avg_load_per_task(int cpu)
1460{
1461 struct rq *rq = cpu_rq(cpu);
1462
1463 if (rq->nr_running)
1464 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
a2d47777
BS
1465 else
1466 rq->avg_load_per_task = 0;
eb755805
PZ
1467
1468 return rq->avg_load_per_task;
1469}
1470
1471#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1472
c09595f6
PZ
1473static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1474
1475/*
1476 * Calculate and set the cpu's group shares.
1477 */
1478static void
ffda12a1
PZ
1479update_group_shares_cpu(struct task_group *tg, int cpu,
1480 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1481{
c09595f6
PZ
1482 int boost = 0;
1483 unsigned long shares;
1484 unsigned long rq_weight;
1485
c8cba857 1486 if (!tg->se[cpu])
c09595f6
PZ
1487 return;
1488
c8cba857 1489 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1490
1491 /*
1492 * If there are currently no tasks on the cpu pretend there is one of
1493 * average load so that when a new task gets to run here it will not
1494 * get delayed by group starvation.
1495 */
1496 if (!rq_weight) {
1497 boost = 1;
1498 rq_weight = NICE_0_LOAD;
1499 }
1500
c8cba857
PZ
1501 if (unlikely(rq_weight > sd_rq_weight))
1502 rq_weight = sd_rq_weight;
1503
c09595f6
PZ
1504 /*
1505 * \Sum shares * rq_weight
1506 * shares = -----------------------
1507 * \Sum rq_weight
1508 *
1509 */
c8cba857 1510 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
ffda12a1 1511 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1512
ffda12a1
PZ
1513 if (abs(shares - tg->se[cpu]->load.weight) >
1514 sysctl_sched_shares_thresh) {
1515 struct rq *rq = cpu_rq(cpu);
1516 unsigned long flags;
c09595f6 1517
ffda12a1
PZ
1518 spin_lock_irqsave(&rq->lock, flags);
1519 /*
1520 * record the actual number of shares, not the boosted amount.
1521 */
1522 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1523 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6 1524
ffda12a1
PZ
1525 __set_se_shares(tg->se[cpu], shares);
1526 spin_unlock_irqrestore(&rq->lock, flags);
1527 }
18d95a28 1528}
c09595f6
PZ
1529
1530/*
c8cba857
PZ
1531 * Re-compute the task group their per cpu shares over the given domain.
1532 * This needs to be done in a bottom-up fashion because the rq weight of a
1533 * parent group depends on the shares of its child groups.
c09595f6 1534 */
eb755805 1535static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1536{
c8cba857
PZ
1537 unsigned long rq_weight = 0;
1538 unsigned long shares = 0;
eb755805 1539 struct sched_domain *sd = data;
c8cba857 1540 int i;
c09595f6 1541
c8cba857
PZ
1542 for_each_cpu_mask(i, sd->span) {
1543 rq_weight += tg->cfs_rq[i]->load.weight;
1544 shares += tg->cfs_rq[i]->shares;
c09595f6 1545 }
c09595f6 1546
c8cba857
PZ
1547 if ((!shares && rq_weight) || shares > tg->shares)
1548 shares = tg->shares;
1549
1550 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1551 shares = tg->shares;
c09595f6 1552
cd80917e
PZ
1553 if (!rq_weight)
1554 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1555
ffda12a1
PZ
1556 for_each_cpu_mask(i, sd->span)
1557 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1558
1559 return 0;
c09595f6
PZ
1560}
1561
1562/*
c8cba857
PZ
1563 * Compute the cpu's hierarchical load factor for each task group.
1564 * This needs to be done in a top-down fashion because the load of a child
1565 * group is a fraction of its parents load.
c09595f6 1566 */
eb755805 1567static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1568{
c8cba857 1569 unsigned long load;
eb755805 1570 long cpu = (long)data;
c09595f6 1571
c8cba857
PZ
1572 if (!tg->parent) {
1573 load = cpu_rq(cpu)->load.weight;
1574 } else {
1575 load = tg->parent->cfs_rq[cpu]->h_load;
1576 load *= tg->cfs_rq[cpu]->shares;
1577 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1578 }
c09595f6 1579
c8cba857 1580 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1581
eb755805 1582 return 0;
c09595f6
PZ
1583}
1584
c8cba857 1585static void update_shares(struct sched_domain *sd)
4d8d595d 1586{
2398f2c6
PZ
1587 u64 now = cpu_clock(raw_smp_processor_id());
1588 s64 elapsed = now - sd->last_update;
1589
1590 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1591 sd->last_update = now;
eb755805 1592 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1593 }
4d8d595d
PZ
1594}
1595
3e5459b4
PZ
1596static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1597{
1598 spin_unlock(&rq->lock);
1599 update_shares(sd);
1600 spin_lock(&rq->lock);
1601}
1602
eb755805 1603static void update_h_load(long cpu)
c09595f6 1604{
eb755805 1605 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1606}
1607
c09595f6
PZ
1608#else
1609
c8cba857 1610static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1611{
1612}
1613
3e5459b4
PZ
1614static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1615{
1616}
1617
18d95a28
PZ
1618#endif
1619
18d95a28
PZ
1620#endif
1621
30432094 1622#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1623static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1624{
30432094 1625#ifdef CONFIG_SMP
34e83e85
IM
1626 cfs_rq->shares = shares;
1627#endif
1628}
30432094 1629#endif
e7693a36 1630
dd41f596 1631#include "sched_stats.h"
dd41f596 1632#include "sched_idletask.c"
5522d5d5
IM
1633#include "sched_fair.c"
1634#include "sched_rt.c"
dd41f596
IM
1635#ifdef CONFIG_SCHED_DEBUG
1636# include "sched_debug.c"
1637#endif
1638
1639#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1640#define for_each_class(class) \
1641 for (class = sched_class_highest; class; class = class->next)
dd41f596 1642
c09595f6 1643static void inc_nr_running(struct rq *rq)
9c217245
IM
1644{
1645 rq->nr_running++;
9c217245
IM
1646}
1647
c09595f6 1648static void dec_nr_running(struct rq *rq)
9c217245
IM
1649{
1650 rq->nr_running--;
9c217245
IM
1651}
1652
45bf76df
IM
1653static void set_load_weight(struct task_struct *p)
1654{
1655 if (task_has_rt_policy(p)) {
dd41f596
IM
1656 p->se.load.weight = prio_to_weight[0] * 2;
1657 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1658 return;
1659 }
45bf76df 1660
dd41f596
IM
1661 /*
1662 * SCHED_IDLE tasks get minimal weight:
1663 */
1664 if (p->policy == SCHED_IDLE) {
1665 p->se.load.weight = WEIGHT_IDLEPRIO;
1666 p->se.load.inv_weight = WMULT_IDLEPRIO;
1667 return;
1668 }
71f8bd46 1669
dd41f596
IM
1670 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1671 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1672}
1673
2087a1ad
GH
1674static void update_avg(u64 *avg, u64 sample)
1675{
1676 s64 diff = sample - *avg;
1677 *avg += diff >> 3;
1678}
1679
8159f87e 1680static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1681{
dd41f596 1682 sched_info_queued(p);
fd390f6a 1683 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1684 p->se.on_rq = 1;
71f8bd46
IM
1685}
1686
69be72c1 1687static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1688{
2087a1ad
GH
1689 if (sleep && p->se.last_wakeup) {
1690 update_avg(&p->se.avg_overlap,
1691 p->se.sum_exec_runtime - p->se.last_wakeup);
1692 p->se.last_wakeup = 0;
1693 }
1694
46ac22ba 1695 sched_info_dequeued(p);
f02231e5 1696 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1697 p->se.on_rq = 0;
71f8bd46
IM
1698}
1699
14531189 1700/*
dd41f596 1701 * __normal_prio - return the priority that is based on the static prio
14531189 1702 */
14531189
IM
1703static inline int __normal_prio(struct task_struct *p)
1704{
dd41f596 1705 return p->static_prio;
14531189
IM
1706}
1707
b29739f9
IM
1708/*
1709 * Calculate the expected normal priority: i.e. priority
1710 * without taking RT-inheritance into account. Might be
1711 * boosted by interactivity modifiers. Changes upon fork,
1712 * setprio syscalls, and whenever the interactivity
1713 * estimator recalculates.
1714 */
36c8b586 1715static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1716{
1717 int prio;
1718
e05606d3 1719 if (task_has_rt_policy(p))
b29739f9
IM
1720 prio = MAX_RT_PRIO-1 - p->rt_priority;
1721 else
1722 prio = __normal_prio(p);
1723 return prio;
1724}
1725
1726/*
1727 * Calculate the current priority, i.e. the priority
1728 * taken into account by the scheduler. This value might
1729 * be boosted by RT tasks, or might be boosted by
1730 * interactivity modifiers. Will be RT if the task got
1731 * RT-boosted. If not then it returns p->normal_prio.
1732 */
36c8b586 1733static int effective_prio(struct task_struct *p)
b29739f9
IM
1734{
1735 p->normal_prio = normal_prio(p);
1736 /*
1737 * If we are RT tasks or we were boosted to RT priority,
1738 * keep the priority unchanged. Otherwise, update priority
1739 * to the normal priority:
1740 */
1741 if (!rt_prio(p->prio))
1742 return p->normal_prio;
1743 return p->prio;
1744}
1745
1da177e4 1746/*
dd41f596 1747 * activate_task - move a task to the runqueue.
1da177e4 1748 */
dd41f596 1749static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1750{
d9514f6c 1751 if (task_contributes_to_load(p))
dd41f596 1752 rq->nr_uninterruptible--;
1da177e4 1753
8159f87e 1754 enqueue_task(rq, p, wakeup);
c09595f6 1755 inc_nr_running(rq);
1da177e4
LT
1756}
1757
1da177e4
LT
1758/*
1759 * deactivate_task - remove a task from the runqueue.
1760 */
2e1cb74a 1761static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1762{
d9514f6c 1763 if (task_contributes_to_load(p))
dd41f596
IM
1764 rq->nr_uninterruptible++;
1765
69be72c1 1766 dequeue_task(rq, p, sleep);
c09595f6 1767 dec_nr_running(rq);
1da177e4
LT
1768}
1769
1da177e4
LT
1770/**
1771 * task_curr - is this task currently executing on a CPU?
1772 * @p: the task in question.
1773 */
36c8b586 1774inline int task_curr(const struct task_struct *p)
1da177e4
LT
1775{
1776 return cpu_curr(task_cpu(p)) == p;
1777}
1778
dd41f596
IM
1779static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1780{
6f505b16 1781 set_task_rq(p, cpu);
dd41f596 1782#ifdef CONFIG_SMP
ce96b5ac
DA
1783 /*
1784 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1785 * successfuly executed on another CPU. We must ensure that updates of
1786 * per-task data have been completed by this moment.
1787 */
1788 smp_wmb();
dd41f596 1789 task_thread_info(p)->cpu = cpu;
dd41f596 1790#endif
2dd73a4f
PW
1791}
1792
cb469845
SR
1793static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1794 const struct sched_class *prev_class,
1795 int oldprio, int running)
1796{
1797 if (prev_class != p->sched_class) {
1798 if (prev_class->switched_from)
1799 prev_class->switched_from(rq, p, running);
1800 p->sched_class->switched_to(rq, p, running);
1801 } else
1802 p->sched_class->prio_changed(rq, p, oldprio, running);
1803}
1804
1da177e4 1805#ifdef CONFIG_SMP
c65cc870 1806
e958b360
TG
1807/* Used instead of source_load when we know the type == 0 */
1808static unsigned long weighted_cpuload(const int cpu)
1809{
1810 return cpu_rq(cpu)->load.weight;
1811}
1812
cc367732
IM
1813/*
1814 * Is this task likely cache-hot:
1815 */
e7693a36 1816static int
cc367732
IM
1817task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1818{
1819 s64 delta;
1820
f540a608
IM
1821 /*
1822 * Buddy candidates are cache hot:
1823 */
4793241b
PZ
1824 if (sched_feat(CACHE_HOT_BUDDY) &&
1825 (&p->se == cfs_rq_of(&p->se)->next ||
1826 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1827 return 1;
1828
cc367732
IM
1829 if (p->sched_class != &fair_sched_class)
1830 return 0;
1831
6bc1665b
IM
1832 if (sysctl_sched_migration_cost == -1)
1833 return 1;
1834 if (sysctl_sched_migration_cost == 0)
1835 return 0;
1836
cc367732
IM
1837 delta = now - p->se.exec_start;
1838
1839 return delta < (s64)sysctl_sched_migration_cost;
1840}
1841
1842
dd41f596 1843void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1844{
dd41f596
IM
1845 int old_cpu = task_cpu(p);
1846 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1847 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1848 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1849 u64 clock_offset;
dd41f596
IM
1850
1851 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1852
1853#ifdef CONFIG_SCHEDSTATS
1854 if (p->se.wait_start)
1855 p->se.wait_start -= clock_offset;
dd41f596
IM
1856 if (p->se.sleep_start)
1857 p->se.sleep_start -= clock_offset;
1858 if (p->se.block_start)
1859 p->se.block_start -= clock_offset;
cc367732
IM
1860 if (old_cpu != new_cpu) {
1861 schedstat_inc(p, se.nr_migrations);
1862 if (task_hot(p, old_rq->clock, NULL))
1863 schedstat_inc(p, se.nr_forced2_migrations);
1864 }
6cfb0d5d 1865#endif
2830cf8c
SV
1866 p->se.vruntime -= old_cfsrq->min_vruntime -
1867 new_cfsrq->min_vruntime;
dd41f596
IM
1868
1869 __set_task_cpu(p, new_cpu);
c65cc870
IM
1870}
1871
70b97a7f 1872struct migration_req {
1da177e4 1873 struct list_head list;
1da177e4 1874
36c8b586 1875 struct task_struct *task;
1da177e4
LT
1876 int dest_cpu;
1877
1da177e4 1878 struct completion done;
70b97a7f 1879};
1da177e4
LT
1880
1881/*
1882 * The task's runqueue lock must be held.
1883 * Returns true if you have to wait for migration thread.
1884 */
36c8b586 1885static int
70b97a7f 1886migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1887{
70b97a7f 1888 struct rq *rq = task_rq(p);
1da177e4
LT
1889
1890 /*
1891 * If the task is not on a runqueue (and not running), then
1892 * it is sufficient to simply update the task's cpu field.
1893 */
dd41f596 1894 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1895 set_task_cpu(p, dest_cpu);
1896 return 0;
1897 }
1898
1899 init_completion(&req->done);
1da177e4
LT
1900 req->task = p;
1901 req->dest_cpu = dest_cpu;
1902 list_add(&req->list, &rq->migration_queue);
48f24c4d 1903
1da177e4
LT
1904 return 1;
1905}
1906
1907/*
1908 * wait_task_inactive - wait for a thread to unschedule.
1909 *
85ba2d86
RM
1910 * If @match_state is nonzero, it's the @p->state value just checked and
1911 * not expected to change. If it changes, i.e. @p might have woken up,
1912 * then return zero. When we succeed in waiting for @p to be off its CPU,
1913 * we return a positive number (its total switch count). If a second call
1914 * a short while later returns the same number, the caller can be sure that
1915 * @p has remained unscheduled the whole time.
1916 *
1da177e4
LT
1917 * The caller must ensure that the task *will* unschedule sometime soon,
1918 * else this function might spin for a *long* time. This function can't
1919 * be called with interrupts off, or it may introduce deadlock with
1920 * smp_call_function() if an IPI is sent by the same process we are
1921 * waiting to become inactive.
1922 */
85ba2d86 1923unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1924{
1925 unsigned long flags;
dd41f596 1926 int running, on_rq;
85ba2d86 1927 unsigned long ncsw;
70b97a7f 1928 struct rq *rq;
1da177e4 1929
3a5c359a
AK
1930 for (;;) {
1931 /*
1932 * We do the initial early heuristics without holding
1933 * any task-queue locks at all. We'll only try to get
1934 * the runqueue lock when things look like they will
1935 * work out!
1936 */
1937 rq = task_rq(p);
fa490cfd 1938
3a5c359a
AK
1939 /*
1940 * If the task is actively running on another CPU
1941 * still, just relax and busy-wait without holding
1942 * any locks.
1943 *
1944 * NOTE! Since we don't hold any locks, it's not
1945 * even sure that "rq" stays as the right runqueue!
1946 * But we don't care, since "task_running()" will
1947 * return false if the runqueue has changed and p
1948 * is actually now running somewhere else!
1949 */
85ba2d86
RM
1950 while (task_running(rq, p)) {
1951 if (match_state && unlikely(p->state != match_state))
1952 return 0;
3a5c359a 1953 cpu_relax();
85ba2d86 1954 }
fa490cfd 1955
3a5c359a
AK
1956 /*
1957 * Ok, time to look more closely! We need the rq
1958 * lock now, to be *sure*. If we're wrong, we'll
1959 * just go back and repeat.
1960 */
1961 rq = task_rq_lock(p, &flags);
0a16b607 1962 trace_sched_wait_task(rq, p);
3a5c359a
AK
1963 running = task_running(rq, p);
1964 on_rq = p->se.on_rq;
85ba2d86 1965 ncsw = 0;
f31e11d8 1966 if (!match_state || p->state == match_state)
93dcf55f 1967 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1968 task_rq_unlock(rq, &flags);
fa490cfd 1969
85ba2d86
RM
1970 /*
1971 * If it changed from the expected state, bail out now.
1972 */
1973 if (unlikely(!ncsw))
1974 break;
1975
3a5c359a
AK
1976 /*
1977 * Was it really running after all now that we
1978 * checked with the proper locks actually held?
1979 *
1980 * Oops. Go back and try again..
1981 */
1982 if (unlikely(running)) {
1983 cpu_relax();
1984 continue;
1985 }
fa490cfd 1986
3a5c359a
AK
1987 /*
1988 * It's not enough that it's not actively running,
1989 * it must be off the runqueue _entirely_, and not
1990 * preempted!
1991 *
1992 * So if it wa still runnable (but just not actively
1993 * running right now), it's preempted, and we should
1994 * yield - it could be a while.
1995 */
1996 if (unlikely(on_rq)) {
1997 schedule_timeout_uninterruptible(1);
1998 continue;
1999 }
fa490cfd 2000
3a5c359a
AK
2001 /*
2002 * Ahh, all good. It wasn't running, and it wasn't
2003 * runnable, which means that it will never become
2004 * running in the future either. We're all done!
2005 */
2006 break;
2007 }
85ba2d86
RM
2008
2009 return ncsw;
1da177e4
LT
2010}
2011
2012/***
2013 * kick_process - kick a running thread to enter/exit the kernel
2014 * @p: the to-be-kicked thread
2015 *
2016 * Cause a process which is running on another CPU to enter
2017 * kernel-mode, without any delay. (to get signals handled.)
2018 *
2019 * NOTE: this function doesnt have to take the runqueue lock,
2020 * because all it wants to ensure is that the remote task enters
2021 * the kernel. If the IPI races and the task has been migrated
2022 * to another CPU then no harm is done and the purpose has been
2023 * achieved as well.
2024 */
36c8b586 2025void kick_process(struct task_struct *p)
1da177e4
LT
2026{
2027 int cpu;
2028
2029 preempt_disable();
2030 cpu = task_cpu(p);
2031 if ((cpu != smp_processor_id()) && task_curr(p))
2032 smp_send_reschedule(cpu);
2033 preempt_enable();
2034}
2035
2036/*
2dd73a4f
PW
2037 * Return a low guess at the load of a migration-source cpu weighted
2038 * according to the scheduling class and "nice" value.
1da177e4
LT
2039 *
2040 * We want to under-estimate the load of migration sources, to
2041 * balance conservatively.
2042 */
a9957449 2043static unsigned long source_load(int cpu, int type)
1da177e4 2044{
70b97a7f 2045 struct rq *rq = cpu_rq(cpu);
dd41f596 2046 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2047
93b75217 2048 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2049 return total;
b910472d 2050
dd41f596 2051 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2052}
2053
2054/*
2dd73a4f
PW
2055 * Return a high guess at the load of a migration-target cpu weighted
2056 * according to the scheduling class and "nice" value.
1da177e4 2057 */
a9957449 2058static unsigned long target_load(int cpu, int type)
1da177e4 2059{
70b97a7f 2060 struct rq *rq = cpu_rq(cpu);
dd41f596 2061 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2062
93b75217 2063 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2064 return total;
3b0bd9bc 2065
dd41f596 2066 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2067}
2068
147cbb4b
NP
2069/*
2070 * find_idlest_group finds and returns the least busy CPU group within the
2071 * domain.
2072 */
2073static struct sched_group *
2074find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2075{
2076 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2077 unsigned long min_load = ULONG_MAX, this_load = 0;
2078 int load_idx = sd->forkexec_idx;
2079 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2080
2081 do {
2082 unsigned long load, avg_load;
2083 int local_group;
2084 int i;
2085
da5a5522
BD
2086 /* Skip over this group if it has no CPUs allowed */
2087 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2088 continue;
da5a5522 2089
147cbb4b 2090 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2091
2092 /* Tally up the load of all CPUs in the group */
2093 avg_load = 0;
2094
363ab6f1 2095 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2096 /* Bias balancing toward cpus of our domain */
2097 if (local_group)
2098 load = source_load(i, load_idx);
2099 else
2100 load = target_load(i, load_idx);
2101
2102 avg_load += load;
2103 }
2104
2105 /* Adjust by relative CPU power of the group */
5517d86b
ED
2106 avg_load = sg_div_cpu_power(group,
2107 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2108
2109 if (local_group) {
2110 this_load = avg_load;
2111 this = group;
2112 } else if (avg_load < min_load) {
2113 min_load = avg_load;
2114 idlest = group;
2115 }
3a5c359a 2116 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2117
2118 if (!idlest || 100*this_load < imbalance*min_load)
2119 return NULL;
2120 return idlest;
2121}
2122
2123/*
0feaece9 2124 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2125 */
95cdf3b7 2126static int
7c16ec58
MT
2127find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2128 cpumask_t *tmp)
147cbb4b
NP
2129{
2130 unsigned long load, min_load = ULONG_MAX;
2131 int idlest = -1;
2132 int i;
2133
da5a5522 2134 /* Traverse only the allowed CPUs */
7c16ec58 2135 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2136
363ab6f1 2137 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2138 load = weighted_cpuload(i);
147cbb4b
NP
2139
2140 if (load < min_load || (load == min_load && i == this_cpu)) {
2141 min_load = load;
2142 idlest = i;
2143 }
2144 }
2145
2146 return idlest;
2147}
2148
476d139c
NP
2149/*
2150 * sched_balance_self: balance the current task (running on cpu) in domains
2151 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2152 * SD_BALANCE_EXEC.
2153 *
2154 * Balance, ie. select the least loaded group.
2155 *
2156 * Returns the target CPU number, or the same CPU if no balancing is needed.
2157 *
2158 * preempt must be disabled.
2159 */
2160static int sched_balance_self(int cpu, int flag)
2161{
2162 struct task_struct *t = current;
2163 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2164
c96d145e 2165 for_each_domain(cpu, tmp) {
9761eea8
IM
2166 /*
2167 * If power savings logic is enabled for a domain, stop there.
2168 */
5c45bf27
SS
2169 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2170 break;
476d139c
NP
2171 if (tmp->flags & flag)
2172 sd = tmp;
c96d145e 2173 }
476d139c 2174
039a1c41
PZ
2175 if (sd)
2176 update_shares(sd);
2177
476d139c 2178 while (sd) {
7c16ec58 2179 cpumask_t span, tmpmask;
476d139c 2180 struct sched_group *group;
1a848870
SS
2181 int new_cpu, weight;
2182
2183 if (!(sd->flags & flag)) {
2184 sd = sd->child;
2185 continue;
2186 }
476d139c
NP
2187
2188 span = sd->span;
2189 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2190 if (!group) {
2191 sd = sd->child;
2192 continue;
2193 }
476d139c 2194
7c16ec58 2195 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2196 if (new_cpu == -1 || new_cpu == cpu) {
2197 /* Now try balancing at a lower domain level of cpu */
2198 sd = sd->child;
2199 continue;
2200 }
476d139c 2201
1a848870 2202 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2203 cpu = new_cpu;
476d139c
NP
2204 sd = NULL;
2205 weight = cpus_weight(span);
2206 for_each_domain(cpu, tmp) {
2207 if (weight <= cpus_weight(tmp->span))
2208 break;
2209 if (tmp->flags & flag)
2210 sd = tmp;
2211 }
2212 /* while loop will break here if sd == NULL */
2213 }
2214
2215 return cpu;
2216}
2217
2218#endif /* CONFIG_SMP */
1da177e4 2219
1da177e4
LT
2220/***
2221 * try_to_wake_up - wake up a thread
2222 * @p: the to-be-woken-up thread
2223 * @state: the mask of task states that can be woken
2224 * @sync: do a synchronous wakeup?
2225 *
2226 * Put it on the run-queue if it's not already there. The "current"
2227 * thread is always on the run-queue (except when the actual
2228 * re-schedule is in progress), and as such you're allowed to do
2229 * the simpler "current->state = TASK_RUNNING" to mark yourself
2230 * runnable without the overhead of this.
2231 *
2232 * returns failure only if the task is already active.
2233 */
36c8b586 2234static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2235{
cc367732 2236 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2237 unsigned long flags;
2238 long old_state;
70b97a7f 2239 struct rq *rq;
1da177e4 2240
b85d0667
IM
2241 if (!sched_feat(SYNC_WAKEUPS))
2242 sync = 0;
2243
2398f2c6
PZ
2244#ifdef CONFIG_SMP
2245 if (sched_feat(LB_WAKEUP_UPDATE)) {
2246 struct sched_domain *sd;
2247
2248 this_cpu = raw_smp_processor_id();
2249 cpu = task_cpu(p);
2250
2251 for_each_domain(this_cpu, sd) {
2252 if (cpu_isset(cpu, sd->span)) {
2253 update_shares(sd);
2254 break;
2255 }
2256 }
2257 }
2258#endif
2259
04e2f174 2260 smp_wmb();
1da177e4
LT
2261 rq = task_rq_lock(p, &flags);
2262 old_state = p->state;
2263 if (!(old_state & state))
2264 goto out;
2265
dd41f596 2266 if (p->se.on_rq)
1da177e4
LT
2267 goto out_running;
2268
2269 cpu = task_cpu(p);
cc367732 2270 orig_cpu = cpu;
1da177e4
LT
2271 this_cpu = smp_processor_id();
2272
2273#ifdef CONFIG_SMP
2274 if (unlikely(task_running(rq, p)))
2275 goto out_activate;
2276
5d2f5a61
DA
2277 cpu = p->sched_class->select_task_rq(p, sync);
2278 if (cpu != orig_cpu) {
2279 set_task_cpu(p, cpu);
1da177e4
LT
2280 task_rq_unlock(rq, &flags);
2281 /* might preempt at this point */
2282 rq = task_rq_lock(p, &flags);
2283 old_state = p->state;
2284 if (!(old_state & state))
2285 goto out;
dd41f596 2286 if (p->se.on_rq)
1da177e4
LT
2287 goto out_running;
2288
2289 this_cpu = smp_processor_id();
2290 cpu = task_cpu(p);
2291 }
2292
e7693a36
GH
2293#ifdef CONFIG_SCHEDSTATS
2294 schedstat_inc(rq, ttwu_count);
2295 if (cpu == this_cpu)
2296 schedstat_inc(rq, ttwu_local);
2297 else {
2298 struct sched_domain *sd;
2299 for_each_domain(this_cpu, sd) {
2300 if (cpu_isset(cpu, sd->span)) {
2301 schedstat_inc(sd, ttwu_wake_remote);
2302 break;
2303 }
2304 }
2305 }
6d6bc0ad 2306#endif /* CONFIG_SCHEDSTATS */
e7693a36 2307
1da177e4
LT
2308out_activate:
2309#endif /* CONFIG_SMP */
cc367732
IM
2310 schedstat_inc(p, se.nr_wakeups);
2311 if (sync)
2312 schedstat_inc(p, se.nr_wakeups_sync);
2313 if (orig_cpu != cpu)
2314 schedstat_inc(p, se.nr_wakeups_migrate);
2315 if (cpu == this_cpu)
2316 schedstat_inc(p, se.nr_wakeups_local);
2317 else
2318 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2319 update_rq_clock(rq);
dd41f596 2320 activate_task(rq, p, 1);
1da177e4
LT
2321 success = 1;
2322
2323out_running:
0a16b607 2324 trace_sched_wakeup(rq, p);
15afe09b 2325 check_preempt_curr(rq, p, sync);
4ae7d5ce 2326
1da177e4 2327 p->state = TASK_RUNNING;
9a897c5a
SR
2328#ifdef CONFIG_SMP
2329 if (p->sched_class->task_wake_up)
2330 p->sched_class->task_wake_up(rq, p);
2331#endif
1da177e4 2332out:
2087a1ad
GH
2333 current->se.last_wakeup = current->se.sum_exec_runtime;
2334
1da177e4
LT
2335 task_rq_unlock(rq, &flags);
2336
2337 return success;
2338}
2339
7ad5b3a5 2340int wake_up_process(struct task_struct *p)
1da177e4 2341{
d9514f6c 2342 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2343}
1da177e4
LT
2344EXPORT_SYMBOL(wake_up_process);
2345
7ad5b3a5 2346int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2347{
2348 return try_to_wake_up(p, state, 0);
2349}
2350
1da177e4
LT
2351/*
2352 * Perform scheduler related setup for a newly forked process p.
2353 * p is forked by current.
dd41f596
IM
2354 *
2355 * __sched_fork() is basic setup used by init_idle() too:
2356 */
2357static void __sched_fork(struct task_struct *p)
2358{
dd41f596
IM
2359 p->se.exec_start = 0;
2360 p->se.sum_exec_runtime = 0;
f6cf891c 2361 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2362 p->se.last_wakeup = 0;
2363 p->se.avg_overlap = 0;
6cfb0d5d
IM
2364
2365#ifdef CONFIG_SCHEDSTATS
2366 p->se.wait_start = 0;
dd41f596
IM
2367 p->se.sum_sleep_runtime = 0;
2368 p->se.sleep_start = 0;
dd41f596
IM
2369 p->se.block_start = 0;
2370 p->se.sleep_max = 0;
2371 p->se.block_max = 0;
2372 p->se.exec_max = 0;
eba1ed4b 2373 p->se.slice_max = 0;
dd41f596 2374 p->se.wait_max = 0;
6cfb0d5d 2375#endif
476d139c 2376
fa717060 2377 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2378 p->se.on_rq = 0;
4a55bd5e 2379 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2380
e107be36
AK
2381#ifdef CONFIG_PREEMPT_NOTIFIERS
2382 INIT_HLIST_HEAD(&p->preempt_notifiers);
2383#endif
2384
1da177e4
LT
2385 /*
2386 * We mark the process as running here, but have not actually
2387 * inserted it onto the runqueue yet. This guarantees that
2388 * nobody will actually run it, and a signal or other external
2389 * event cannot wake it up and insert it on the runqueue either.
2390 */
2391 p->state = TASK_RUNNING;
dd41f596
IM
2392}
2393
2394/*
2395 * fork()/clone()-time setup:
2396 */
2397void sched_fork(struct task_struct *p, int clone_flags)
2398{
2399 int cpu = get_cpu();
2400
2401 __sched_fork(p);
2402
2403#ifdef CONFIG_SMP
2404 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2405#endif
02e4bac2 2406 set_task_cpu(p, cpu);
b29739f9
IM
2407
2408 /*
2409 * Make sure we do not leak PI boosting priority to the child:
2410 */
2411 p->prio = current->normal_prio;
2ddbf952
HS
2412 if (!rt_prio(p->prio))
2413 p->sched_class = &fair_sched_class;
b29739f9 2414
52f17b6c 2415#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2416 if (likely(sched_info_on()))
52f17b6c 2417 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2418#endif
d6077cb8 2419#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2420 p->oncpu = 0;
2421#endif
1da177e4 2422#ifdef CONFIG_PREEMPT
4866cde0 2423 /* Want to start with kernel preemption disabled. */
a1261f54 2424 task_thread_info(p)->preempt_count = 1;
1da177e4 2425#endif
476d139c 2426 put_cpu();
1da177e4
LT
2427}
2428
2429/*
2430 * wake_up_new_task - wake up a newly created task for the first time.
2431 *
2432 * This function will do some initial scheduler statistics housekeeping
2433 * that must be done for every newly created context, then puts the task
2434 * on the runqueue and wakes it.
2435 */
7ad5b3a5 2436void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2437{
2438 unsigned long flags;
dd41f596 2439 struct rq *rq;
1da177e4
LT
2440
2441 rq = task_rq_lock(p, &flags);
147cbb4b 2442 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2443 update_rq_clock(rq);
1da177e4
LT
2444
2445 p->prio = effective_prio(p);
2446
b9dca1e0 2447 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2448 activate_task(rq, p, 0);
1da177e4 2449 } else {
1da177e4 2450 /*
dd41f596
IM
2451 * Let the scheduling class do new task startup
2452 * management (if any):
1da177e4 2453 */
ee0827d8 2454 p->sched_class->task_new(rq, p);
c09595f6 2455 inc_nr_running(rq);
1da177e4 2456 }
0a16b607 2457 trace_sched_wakeup_new(rq, p);
15afe09b 2458 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2459#ifdef CONFIG_SMP
2460 if (p->sched_class->task_wake_up)
2461 p->sched_class->task_wake_up(rq, p);
2462#endif
dd41f596 2463 task_rq_unlock(rq, &flags);
1da177e4
LT
2464}
2465
e107be36
AK
2466#ifdef CONFIG_PREEMPT_NOTIFIERS
2467
2468/**
421cee29
RD
2469 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2470 * @notifier: notifier struct to register
e107be36
AK
2471 */
2472void preempt_notifier_register(struct preempt_notifier *notifier)
2473{
2474 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2475}
2476EXPORT_SYMBOL_GPL(preempt_notifier_register);
2477
2478/**
2479 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2480 * @notifier: notifier struct to unregister
e107be36
AK
2481 *
2482 * This is safe to call from within a preemption notifier.
2483 */
2484void preempt_notifier_unregister(struct preempt_notifier *notifier)
2485{
2486 hlist_del(&notifier->link);
2487}
2488EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2489
2490static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2491{
2492 struct preempt_notifier *notifier;
2493 struct hlist_node *node;
2494
2495 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2496 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2497}
2498
2499static void
2500fire_sched_out_preempt_notifiers(struct task_struct *curr,
2501 struct task_struct *next)
2502{
2503 struct preempt_notifier *notifier;
2504 struct hlist_node *node;
2505
2506 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2507 notifier->ops->sched_out(notifier, next);
2508}
2509
6d6bc0ad 2510#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2511
2512static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513{
2514}
2515
2516static void
2517fire_sched_out_preempt_notifiers(struct task_struct *curr,
2518 struct task_struct *next)
2519{
2520}
2521
6d6bc0ad 2522#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2523
4866cde0
NP
2524/**
2525 * prepare_task_switch - prepare to switch tasks
2526 * @rq: the runqueue preparing to switch
421cee29 2527 * @prev: the current task that is being switched out
4866cde0
NP
2528 * @next: the task we are going to switch to.
2529 *
2530 * This is called with the rq lock held and interrupts off. It must
2531 * be paired with a subsequent finish_task_switch after the context
2532 * switch.
2533 *
2534 * prepare_task_switch sets up locking and calls architecture specific
2535 * hooks.
2536 */
e107be36
AK
2537static inline void
2538prepare_task_switch(struct rq *rq, struct task_struct *prev,
2539 struct task_struct *next)
4866cde0 2540{
e107be36 2541 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2542 prepare_lock_switch(rq, next);
2543 prepare_arch_switch(next);
2544}
2545
1da177e4
LT
2546/**
2547 * finish_task_switch - clean up after a task-switch
344babaa 2548 * @rq: runqueue associated with task-switch
1da177e4
LT
2549 * @prev: the thread we just switched away from.
2550 *
4866cde0
NP
2551 * finish_task_switch must be called after the context switch, paired
2552 * with a prepare_task_switch call before the context switch.
2553 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2554 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2555 *
2556 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2557 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2558 * with the lock held can cause deadlocks; see schedule() for
2559 * details.)
2560 */
a9957449 2561static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2562 __releases(rq->lock)
2563{
1da177e4 2564 struct mm_struct *mm = rq->prev_mm;
55a101f8 2565 long prev_state;
1da177e4
LT
2566
2567 rq->prev_mm = NULL;
2568
2569 /*
2570 * A task struct has one reference for the use as "current".
c394cc9f 2571 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2572 * schedule one last time. The schedule call will never return, and
2573 * the scheduled task must drop that reference.
c394cc9f 2574 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2575 * still held, otherwise prev could be scheduled on another cpu, die
2576 * there before we look at prev->state, and then the reference would
2577 * be dropped twice.
2578 * Manfred Spraul <manfred@colorfullife.com>
2579 */
55a101f8 2580 prev_state = prev->state;
4866cde0
NP
2581 finish_arch_switch(prev);
2582 finish_lock_switch(rq, prev);
9a897c5a
SR
2583#ifdef CONFIG_SMP
2584 if (current->sched_class->post_schedule)
2585 current->sched_class->post_schedule(rq);
2586#endif
e8fa1362 2587
e107be36 2588 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2589 if (mm)
2590 mmdrop(mm);
c394cc9f 2591 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2592 /*
2593 * Remove function-return probe instances associated with this
2594 * task and put them back on the free list.
9761eea8 2595 */
c6fd91f0 2596 kprobe_flush_task(prev);
1da177e4 2597 put_task_struct(prev);
c6fd91f0 2598 }
1da177e4
LT
2599}
2600
2601/**
2602 * schedule_tail - first thing a freshly forked thread must call.
2603 * @prev: the thread we just switched away from.
2604 */
36c8b586 2605asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2606 __releases(rq->lock)
2607{
70b97a7f
IM
2608 struct rq *rq = this_rq();
2609
4866cde0
NP
2610 finish_task_switch(rq, prev);
2611#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2612 /* In this case, finish_task_switch does not reenable preemption */
2613 preempt_enable();
2614#endif
1da177e4 2615 if (current->set_child_tid)
b488893a 2616 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2617}
2618
2619/*
2620 * context_switch - switch to the new MM and the new
2621 * thread's register state.
2622 */
dd41f596 2623static inline void
70b97a7f 2624context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2625 struct task_struct *next)
1da177e4 2626{
dd41f596 2627 struct mm_struct *mm, *oldmm;
1da177e4 2628
e107be36 2629 prepare_task_switch(rq, prev, next);
0a16b607 2630 trace_sched_switch(rq, prev, next);
dd41f596
IM
2631 mm = next->mm;
2632 oldmm = prev->active_mm;
9226d125
ZA
2633 /*
2634 * For paravirt, this is coupled with an exit in switch_to to
2635 * combine the page table reload and the switch backend into
2636 * one hypercall.
2637 */
2638 arch_enter_lazy_cpu_mode();
2639
dd41f596 2640 if (unlikely(!mm)) {
1da177e4
LT
2641 next->active_mm = oldmm;
2642 atomic_inc(&oldmm->mm_count);
2643 enter_lazy_tlb(oldmm, next);
2644 } else
2645 switch_mm(oldmm, mm, next);
2646
dd41f596 2647 if (unlikely(!prev->mm)) {
1da177e4 2648 prev->active_mm = NULL;
1da177e4
LT
2649 rq->prev_mm = oldmm;
2650 }
3a5f5e48
IM
2651 /*
2652 * Since the runqueue lock will be released by the next
2653 * task (which is an invalid locking op but in the case
2654 * of the scheduler it's an obvious special-case), so we
2655 * do an early lockdep release here:
2656 */
2657#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2658 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2659#endif
1da177e4
LT
2660
2661 /* Here we just switch the register state and the stack. */
2662 switch_to(prev, next, prev);
2663
dd41f596
IM
2664 barrier();
2665 /*
2666 * this_rq must be evaluated again because prev may have moved
2667 * CPUs since it called schedule(), thus the 'rq' on its stack
2668 * frame will be invalid.
2669 */
2670 finish_task_switch(this_rq(), prev);
1da177e4
LT
2671}
2672
2673/*
2674 * nr_running, nr_uninterruptible and nr_context_switches:
2675 *
2676 * externally visible scheduler statistics: current number of runnable
2677 * threads, current number of uninterruptible-sleeping threads, total
2678 * number of context switches performed since bootup.
2679 */
2680unsigned long nr_running(void)
2681{
2682 unsigned long i, sum = 0;
2683
2684 for_each_online_cpu(i)
2685 sum += cpu_rq(i)->nr_running;
2686
2687 return sum;
2688}
2689
2690unsigned long nr_uninterruptible(void)
2691{
2692 unsigned long i, sum = 0;
2693
0a945022 2694 for_each_possible_cpu(i)
1da177e4
LT
2695 sum += cpu_rq(i)->nr_uninterruptible;
2696
2697 /*
2698 * Since we read the counters lockless, it might be slightly
2699 * inaccurate. Do not allow it to go below zero though:
2700 */
2701 if (unlikely((long)sum < 0))
2702 sum = 0;
2703
2704 return sum;
2705}
2706
2707unsigned long long nr_context_switches(void)
2708{
cc94abfc
SR
2709 int i;
2710 unsigned long long sum = 0;
1da177e4 2711
0a945022 2712 for_each_possible_cpu(i)
1da177e4
LT
2713 sum += cpu_rq(i)->nr_switches;
2714
2715 return sum;
2716}
2717
2718unsigned long nr_iowait(void)
2719{
2720 unsigned long i, sum = 0;
2721
0a945022 2722 for_each_possible_cpu(i)
1da177e4
LT
2723 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2724
2725 return sum;
2726}
2727
db1b1fef
JS
2728unsigned long nr_active(void)
2729{
2730 unsigned long i, running = 0, uninterruptible = 0;
2731
2732 for_each_online_cpu(i) {
2733 running += cpu_rq(i)->nr_running;
2734 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2735 }
2736
2737 if (unlikely((long)uninterruptible < 0))
2738 uninterruptible = 0;
2739
2740 return running + uninterruptible;
2741}
2742
48f24c4d 2743/*
dd41f596
IM
2744 * Update rq->cpu_load[] statistics. This function is usually called every
2745 * scheduler tick (TICK_NSEC).
48f24c4d 2746 */
dd41f596 2747static void update_cpu_load(struct rq *this_rq)
48f24c4d 2748{
495eca49 2749 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2750 int i, scale;
2751
2752 this_rq->nr_load_updates++;
dd41f596
IM
2753
2754 /* Update our load: */
2755 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2756 unsigned long old_load, new_load;
2757
2758 /* scale is effectively 1 << i now, and >> i divides by scale */
2759
2760 old_load = this_rq->cpu_load[i];
2761 new_load = this_load;
a25707f3
IM
2762 /*
2763 * Round up the averaging division if load is increasing. This
2764 * prevents us from getting stuck on 9 if the load is 10, for
2765 * example.
2766 */
2767 if (new_load > old_load)
2768 new_load += scale-1;
dd41f596
IM
2769 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2770 }
48f24c4d
IM
2771}
2772
dd41f596
IM
2773#ifdef CONFIG_SMP
2774
1da177e4
LT
2775/*
2776 * double_rq_lock - safely lock two runqueues
2777 *
2778 * Note this does not disable interrupts like task_rq_lock,
2779 * you need to do so manually before calling.
2780 */
70b97a7f 2781static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2782 __acquires(rq1->lock)
2783 __acquires(rq2->lock)
2784{
054b9108 2785 BUG_ON(!irqs_disabled());
1da177e4
LT
2786 if (rq1 == rq2) {
2787 spin_lock(&rq1->lock);
2788 __acquire(rq2->lock); /* Fake it out ;) */
2789 } else {
c96d145e 2790 if (rq1 < rq2) {
1da177e4 2791 spin_lock(&rq1->lock);
5e710e37 2792 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2793 } else {
2794 spin_lock(&rq2->lock);
5e710e37 2795 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2796 }
2797 }
6e82a3be
IM
2798 update_rq_clock(rq1);
2799 update_rq_clock(rq2);
1da177e4
LT
2800}
2801
2802/*
2803 * double_rq_unlock - safely unlock two runqueues
2804 *
2805 * Note this does not restore interrupts like task_rq_unlock,
2806 * you need to do so manually after calling.
2807 */
70b97a7f 2808static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2809 __releases(rq1->lock)
2810 __releases(rq2->lock)
2811{
2812 spin_unlock(&rq1->lock);
2813 if (rq1 != rq2)
2814 spin_unlock(&rq2->lock);
2815 else
2816 __release(rq2->lock);
2817}
2818
2819/*
2820 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2821 */
e8fa1362 2822static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2823 __releases(this_rq->lock)
2824 __acquires(busiest->lock)
2825 __acquires(this_rq->lock)
2826{
e8fa1362
SR
2827 int ret = 0;
2828
054b9108
KK
2829 if (unlikely(!irqs_disabled())) {
2830 /* printk() doesn't work good under rq->lock */
2831 spin_unlock(&this_rq->lock);
2832 BUG_ON(1);
2833 }
1da177e4 2834 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2835 if (busiest < this_rq) {
1da177e4
LT
2836 spin_unlock(&this_rq->lock);
2837 spin_lock(&busiest->lock);
5e710e37 2838 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2839 ret = 1;
1da177e4 2840 } else
5e710e37 2841 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2842 }
e8fa1362 2843 return ret;
1da177e4
LT
2844}
2845
1b12bbc7
PZ
2846static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2847 __releases(busiest->lock)
2848{
2849 spin_unlock(&busiest->lock);
2850 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2851}
2852
1da177e4
LT
2853/*
2854 * If dest_cpu is allowed for this process, migrate the task to it.
2855 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2856 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2857 * the cpu_allowed mask is restored.
2858 */
36c8b586 2859static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2860{
70b97a7f 2861 struct migration_req req;
1da177e4 2862 unsigned long flags;
70b97a7f 2863 struct rq *rq;
1da177e4
LT
2864
2865 rq = task_rq_lock(p, &flags);
2866 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2867 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2868 goto out;
2869
0a16b607 2870 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2871 /* force the process onto the specified CPU */
2872 if (migrate_task(p, dest_cpu, &req)) {
2873 /* Need to wait for migration thread (might exit: take ref). */
2874 struct task_struct *mt = rq->migration_thread;
36c8b586 2875
1da177e4
LT
2876 get_task_struct(mt);
2877 task_rq_unlock(rq, &flags);
2878 wake_up_process(mt);
2879 put_task_struct(mt);
2880 wait_for_completion(&req.done);
36c8b586 2881
1da177e4
LT
2882 return;
2883 }
2884out:
2885 task_rq_unlock(rq, &flags);
2886}
2887
2888/*
476d139c
NP
2889 * sched_exec - execve() is a valuable balancing opportunity, because at
2890 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2891 */
2892void sched_exec(void)
2893{
1da177e4 2894 int new_cpu, this_cpu = get_cpu();
476d139c 2895 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2896 put_cpu();
476d139c
NP
2897 if (new_cpu != this_cpu)
2898 sched_migrate_task(current, new_cpu);
1da177e4
LT
2899}
2900
2901/*
2902 * pull_task - move a task from a remote runqueue to the local runqueue.
2903 * Both runqueues must be locked.
2904 */
dd41f596
IM
2905static void pull_task(struct rq *src_rq, struct task_struct *p,
2906 struct rq *this_rq, int this_cpu)
1da177e4 2907{
2e1cb74a 2908 deactivate_task(src_rq, p, 0);
1da177e4 2909 set_task_cpu(p, this_cpu);
dd41f596 2910 activate_task(this_rq, p, 0);
1da177e4
LT
2911 /*
2912 * Note that idle threads have a prio of MAX_PRIO, for this test
2913 * to be always true for them.
2914 */
15afe09b 2915 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2916}
2917
2918/*
2919 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2920 */
858119e1 2921static
70b97a7f 2922int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2923 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2924 int *all_pinned)
1da177e4
LT
2925{
2926 /*
2927 * We do not migrate tasks that are:
2928 * 1) running (obviously), or
2929 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2930 * 3) are cache-hot on their current CPU.
2931 */
cc367732
IM
2932 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2933 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2934 return 0;
cc367732 2935 }
81026794
NP
2936 *all_pinned = 0;
2937
cc367732
IM
2938 if (task_running(rq, p)) {
2939 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2940 return 0;
cc367732 2941 }
1da177e4 2942
da84d961
IM
2943 /*
2944 * Aggressive migration if:
2945 * 1) task is cache cold, or
2946 * 2) too many balance attempts have failed.
2947 */
2948
6bc1665b
IM
2949 if (!task_hot(p, rq->clock, sd) ||
2950 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2951#ifdef CONFIG_SCHEDSTATS
cc367732 2952 if (task_hot(p, rq->clock, sd)) {
da84d961 2953 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2954 schedstat_inc(p, se.nr_forced_migrations);
2955 }
da84d961
IM
2956#endif
2957 return 1;
2958 }
2959
cc367732
IM
2960 if (task_hot(p, rq->clock, sd)) {
2961 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2962 return 0;
cc367732 2963 }
1da177e4
LT
2964 return 1;
2965}
2966
e1d1484f
PW
2967static unsigned long
2968balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2969 unsigned long max_load_move, struct sched_domain *sd,
2970 enum cpu_idle_type idle, int *all_pinned,
2971 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2972{
051c6764 2973 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2974 struct task_struct *p;
2975 long rem_load_move = max_load_move;
1da177e4 2976
e1d1484f 2977 if (max_load_move == 0)
1da177e4
LT
2978 goto out;
2979
81026794
NP
2980 pinned = 1;
2981
1da177e4 2982 /*
dd41f596 2983 * Start the load-balancing iterator:
1da177e4 2984 */
dd41f596
IM
2985 p = iterator->start(iterator->arg);
2986next:
b82d9fdd 2987 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2988 goto out;
051c6764
PZ
2989
2990 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2991 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2992 p = iterator->next(iterator->arg);
2993 goto next;
1da177e4
LT
2994 }
2995
dd41f596 2996 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2997 pulled++;
dd41f596 2998 rem_load_move -= p->se.load.weight;
1da177e4 2999
2dd73a4f 3000 /*
b82d9fdd 3001 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3002 */
e1d1484f 3003 if (rem_load_move > 0) {
a4ac01c3
PW
3004 if (p->prio < *this_best_prio)
3005 *this_best_prio = p->prio;
dd41f596
IM
3006 p = iterator->next(iterator->arg);
3007 goto next;
1da177e4
LT
3008 }
3009out:
3010 /*
e1d1484f 3011 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3012 * so we can safely collect pull_task() stats here rather than
3013 * inside pull_task().
3014 */
3015 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3016
3017 if (all_pinned)
3018 *all_pinned = pinned;
e1d1484f
PW
3019
3020 return max_load_move - rem_load_move;
1da177e4
LT
3021}
3022
dd41f596 3023/*
43010659
PW
3024 * move_tasks tries to move up to max_load_move weighted load from busiest to
3025 * this_rq, as part of a balancing operation within domain "sd".
3026 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3027 *
3028 * Called with both runqueues locked.
3029 */
3030static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3031 unsigned long max_load_move,
dd41f596
IM
3032 struct sched_domain *sd, enum cpu_idle_type idle,
3033 int *all_pinned)
3034{
5522d5d5 3035 const struct sched_class *class = sched_class_highest;
43010659 3036 unsigned long total_load_moved = 0;
a4ac01c3 3037 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3038
3039 do {
43010659
PW
3040 total_load_moved +=
3041 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3042 max_load_move - total_load_moved,
a4ac01c3 3043 sd, idle, all_pinned, &this_best_prio);
dd41f596 3044 class = class->next;
c4acb2c0
GH
3045
3046 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3047 break;
3048
43010659 3049 } while (class && max_load_move > total_load_moved);
dd41f596 3050
43010659
PW
3051 return total_load_moved > 0;
3052}
3053
e1d1484f
PW
3054static int
3055iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle,
3057 struct rq_iterator *iterator)
3058{
3059 struct task_struct *p = iterator->start(iterator->arg);
3060 int pinned = 0;
3061
3062 while (p) {
3063 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3064 pull_task(busiest, p, this_rq, this_cpu);
3065 /*
3066 * Right now, this is only the second place pull_task()
3067 * is called, so we can safely collect pull_task()
3068 * stats here rather than inside pull_task().
3069 */
3070 schedstat_inc(sd, lb_gained[idle]);
3071
3072 return 1;
3073 }
3074 p = iterator->next(iterator->arg);
3075 }
3076
3077 return 0;
3078}
3079
43010659
PW
3080/*
3081 * move_one_task tries to move exactly one task from busiest to this_rq, as
3082 * part of active balancing operations within "domain".
3083 * Returns 1 if successful and 0 otherwise.
3084 *
3085 * Called with both runqueues locked.
3086 */
3087static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3088 struct sched_domain *sd, enum cpu_idle_type idle)
3089{
5522d5d5 3090 const struct sched_class *class;
43010659
PW
3091
3092 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3093 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3094 return 1;
3095
3096 return 0;
dd41f596
IM
3097}
3098
1da177e4
LT
3099/*
3100 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3101 * domain. It calculates and returns the amount of weighted load which
3102 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3103 */
3104static struct sched_group *
3105find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3106 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3107 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3108{
3109 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3110 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3111 unsigned long max_pull;
2dd73a4f
PW
3112 unsigned long busiest_load_per_task, busiest_nr_running;
3113 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3114 int load_idx, group_imb = 0;
5c45bf27
SS
3115#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3116 int power_savings_balance = 1;
3117 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3118 unsigned long min_nr_running = ULONG_MAX;
3119 struct sched_group *group_min = NULL, *group_leader = NULL;
3120#endif
1da177e4
LT
3121
3122 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3123 busiest_load_per_task = busiest_nr_running = 0;
3124 this_load_per_task = this_nr_running = 0;
408ed066 3125
d15bcfdb 3126 if (idle == CPU_NOT_IDLE)
7897986b 3127 load_idx = sd->busy_idx;
d15bcfdb 3128 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3129 load_idx = sd->newidle_idx;
3130 else
3131 load_idx = sd->idle_idx;
1da177e4
LT
3132
3133 do {
908a7c1b 3134 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3135 int local_group;
3136 int i;
908a7c1b 3137 int __group_imb = 0;
783609c6 3138 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3139 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3140 unsigned long sum_avg_load_per_task;
3141 unsigned long avg_load_per_task;
1da177e4
LT
3142
3143 local_group = cpu_isset(this_cpu, group->cpumask);
3144
783609c6
SS
3145 if (local_group)
3146 balance_cpu = first_cpu(group->cpumask);
3147
1da177e4 3148 /* Tally up the load of all CPUs in the group */
2dd73a4f 3149 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3150 sum_avg_load_per_task = avg_load_per_task = 0;
3151
908a7c1b
KC
3152 max_cpu_load = 0;
3153 min_cpu_load = ~0UL;
1da177e4 3154
363ab6f1 3155 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3156 struct rq *rq;
3157
3158 if (!cpu_isset(i, *cpus))
3159 continue;
3160
3161 rq = cpu_rq(i);
2dd73a4f 3162
9439aab8 3163 if (*sd_idle && rq->nr_running)
5969fe06
NP
3164 *sd_idle = 0;
3165
1da177e4 3166 /* Bias balancing toward cpus of our domain */
783609c6
SS
3167 if (local_group) {
3168 if (idle_cpu(i) && !first_idle_cpu) {
3169 first_idle_cpu = 1;
3170 balance_cpu = i;
3171 }
3172
a2000572 3173 load = target_load(i, load_idx);
908a7c1b 3174 } else {
a2000572 3175 load = source_load(i, load_idx);
908a7c1b
KC
3176 if (load > max_cpu_load)
3177 max_cpu_load = load;
3178 if (min_cpu_load > load)
3179 min_cpu_load = load;
3180 }
1da177e4
LT
3181
3182 avg_load += load;
2dd73a4f 3183 sum_nr_running += rq->nr_running;
dd41f596 3184 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3185
3186 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3187 }
3188
783609c6
SS
3189 /*
3190 * First idle cpu or the first cpu(busiest) in this sched group
3191 * is eligible for doing load balancing at this and above
9439aab8
SS
3192 * domains. In the newly idle case, we will allow all the cpu's
3193 * to do the newly idle load balance.
783609c6 3194 */
9439aab8
SS
3195 if (idle != CPU_NEWLY_IDLE && local_group &&
3196 balance_cpu != this_cpu && balance) {
783609c6
SS
3197 *balance = 0;
3198 goto ret;
3199 }
3200
1da177e4 3201 total_load += avg_load;
5517d86b 3202 total_pwr += group->__cpu_power;
1da177e4
LT
3203
3204 /* Adjust by relative CPU power of the group */
5517d86b
ED
3205 avg_load = sg_div_cpu_power(group,
3206 avg_load * SCHED_LOAD_SCALE);
1da177e4 3207
408ed066
PZ
3208
3209 /*
3210 * Consider the group unbalanced when the imbalance is larger
3211 * than the average weight of two tasks.
3212 *
3213 * APZ: with cgroup the avg task weight can vary wildly and
3214 * might not be a suitable number - should we keep a
3215 * normalized nr_running number somewhere that negates
3216 * the hierarchy?
3217 */
3218 avg_load_per_task = sg_div_cpu_power(group,
3219 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3220
3221 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3222 __group_imb = 1;
3223
5517d86b 3224 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3225
1da177e4
LT
3226 if (local_group) {
3227 this_load = avg_load;
3228 this = group;
2dd73a4f
PW
3229 this_nr_running = sum_nr_running;
3230 this_load_per_task = sum_weighted_load;
3231 } else if (avg_load > max_load &&
908a7c1b 3232 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3233 max_load = avg_load;
3234 busiest = group;
2dd73a4f
PW
3235 busiest_nr_running = sum_nr_running;
3236 busiest_load_per_task = sum_weighted_load;
908a7c1b 3237 group_imb = __group_imb;
1da177e4 3238 }
5c45bf27
SS
3239
3240#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3241 /*
3242 * Busy processors will not participate in power savings
3243 * balance.
3244 */
dd41f596
IM
3245 if (idle == CPU_NOT_IDLE ||
3246 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3247 goto group_next;
5c45bf27
SS
3248
3249 /*
3250 * If the local group is idle or completely loaded
3251 * no need to do power savings balance at this domain
3252 */
3253 if (local_group && (this_nr_running >= group_capacity ||
3254 !this_nr_running))
3255 power_savings_balance = 0;
3256
dd41f596 3257 /*
5c45bf27
SS
3258 * If a group is already running at full capacity or idle,
3259 * don't include that group in power savings calculations
dd41f596
IM
3260 */
3261 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3262 || !sum_nr_running)
dd41f596 3263 goto group_next;
5c45bf27 3264
dd41f596 3265 /*
5c45bf27 3266 * Calculate the group which has the least non-idle load.
dd41f596
IM
3267 * This is the group from where we need to pick up the load
3268 * for saving power
3269 */
3270 if ((sum_nr_running < min_nr_running) ||
3271 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3272 first_cpu(group->cpumask) <
3273 first_cpu(group_min->cpumask))) {
dd41f596
IM
3274 group_min = group;
3275 min_nr_running = sum_nr_running;
5c45bf27
SS
3276 min_load_per_task = sum_weighted_load /
3277 sum_nr_running;
dd41f596 3278 }
5c45bf27 3279
dd41f596 3280 /*
5c45bf27 3281 * Calculate the group which is almost near its
dd41f596
IM
3282 * capacity but still has some space to pick up some load
3283 * from other group and save more power
3284 */
3285 if (sum_nr_running <= group_capacity - 1) {
3286 if (sum_nr_running > leader_nr_running ||
3287 (sum_nr_running == leader_nr_running &&
3288 first_cpu(group->cpumask) >
3289 first_cpu(group_leader->cpumask))) {
3290 group_leader = group;
3291 leader_nr_running = sum_nr_running;
3292 }
48f24c4d 3293 }
5c45bf27
SS
3294group_next:
3295#endif
1da177e4
LT
3296 group = group->next;
3297 } while (group != sd->groups);
3298
2dd73a4f 3299 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3300 goto out_balanced;
3301
3302 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3303
3304 if (this_load >= avg_load ||
3305 100*max_load <= sd->imbalance_pct*this_load)
3306 goto out_balanced;
3307
2dd73a4f 3308 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3309 if (group_imb)
3310 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3311
1da177e4
LT
3312 /*
3313 * We're trying to get all the cpus to the average_load, so we don't
3314 * want to push ourselves above the average load, nor do we wish to
3315 * reduce the max loaded cpu below the average load, as either of these
3316 * actions would just result in more rebalancing later, and ping-pong
3317 * tasks around. Thus we look for the minimum possible imbalance.
3318 * Negative imbalances (*we* are more loaded than anyone else) will
3319 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3320 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3321 * appear as very large values with unsigned longs.
3322 */
2dd73a4f
PW
3323 if (max_load <= busiest_load_per_task)
3324 goto out_balanced;
3325
3326 /*
3327 * In the presence of smp nice balancing, certain scenarios can have
3328 * max load less than avg load(as we skip the groups at or below
3329 * its cpu_power, while calculating max_load..)
3330 */
3331 if (max_load < avg_load) {
3332 *imbalance = 0;
3333 goto small_imbalance;
3334 }
0c117f1b
SS
3335
3336 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3337 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3338
1da177e4 3339 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3340 *imbalance = min(max_pull * busiest->__cpu_power,
3341 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3342 / SCHED_LOAD_SCALE;
3343
2dd73a4f
PW
3344 /*
3345 * if *imbalance is less than the average load per runnable task
3346 * there is no gaurantee that any tasks will be moved so we'll have
3347 * a think about bumping its value to force at least one task to be
3348 * moved
3349 */
7fd0d2dd 3350 if (*imbalance < busiest_load_per_task) {
48f24c4d 3351 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3352 unsigned int imbn;
3353
3354small_imbalance:
3355 pwr_move = pwr_now = 0;
3356 imbn = 2;
3357 if (this_nr_running) {
3358 this_load_per_task /= this_nr_running;
3359 if (busiest_load_per_task > this_load_per_task)
3360 imbn = 1;
3361 } else
408ed066 3362 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3363
01c8c57d 3364 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3365 busiest_load_per_task * imbn) {
2dd73a4f 3366 *imbalance = busiest_load_per_task;
1da177e4
LT
3367 return busiest;
3368 }
3369
3370 /*
3371 * OK, we don't have enough imbalance to justify moving tasks,
3372 * however we may be able to increase total CPU power used by
3373 * moving them.
3374 */
3375
5517d86b
ED
3376 pwr_now += busiest->__cpu_power *
3377 min(busiest_load_per_task, max_load);
3378 pwr_now += this->__cpu_power *
3379 min(this_load_per_task, this_load);
1da177e4
LT
3380 pwr_now /= SCHED_LOAD_SCALE;
3381
3382 /* Amount of load we'd subtract */
5517d86b
ED
3383 tmp = sg_div_cpu_power(busiest,
3384 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3385 if (max_load > tmp)
5517d86b 3386 pwr_move += busiest->__cpu_power *
2dd73a4f 3387 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3388
3389 /* Amount of load we'd add */
5517d86b 3390 if (max_load * busiest->__cpu_power <
33859f7f 3391 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3392 tmp = sg_div_cpu_power(this,
3393 max_load * busiest->__cpu_power);
1da177e4 3394 else
5517d86b
ED
3395 tmp = sg_div_cpu_power(this,
3396 busiest_load_per_task * SCHED_LOAD_SCALE);
3397 pwr_move += this->__cpu_power *
3398 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3399 pwr_move /= SCHED_LOAD_SCALE;
3400
3401 /* Move if we gain throughput */
7fd0d2dd
SS
3402 if (pwr_move > pwr_now)
3403 *imbalance = busiest_load_per_task;
1da177e4
LT
3404 }
3405
1da177e4
LT
3406 return busiest;
3407
3408out_balanced:
5c45bf27 3409#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3410 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3411 goto ret;
1da177e4 3412
5c45bf27
SS
3413 if (this == group_leader && group_leader != group_min) {
3414 *imbalance = min_load_per_task;
3415 return group_min;
3416 }
5c45bf27 3417#endif
783609c6 3418ret:
1da177e4
LT
3419 *imbalance = 0;
3420 return NULL;
3421}
3422
3423/*
3424 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3425 */
70b97a7f 3426static struct rq *
d15bcfdb 3427find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3428 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3429{
70b97a7f 3430 struct rq *busiest = NULL, *rq;
2dd73a4f 3431 unsigned long max_load = 0;
1da177e4
LT
3432 int i;
3433
363ab6f1 3434 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3435 unsigned long wl;
0a2966b4
CL
3436
3437 if (!cpu_isset(i, *cpus))
3438 continue;
3439
48f24c4d 3440 rq = cpu_rq(i);
dd41f596 3441 wl = weighted_cpuload(i);
2dd73a4f 3442
dd41f596 3443 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3444 continue;
1da177e4 3445
dd41f596
IM
3446 if (wl > max_load) {
3447 max_load = wl;
48f24c4d 3448 busiest = rq;
1da177e4
LT
3449 }
3450 }
3451
3452 return busiest;
3453}
3454
77391d71
NP
3455/*
3456 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3457 * so long as it is large enough.
3458 */
3459#define MAX_PINNED_INTERVAL 512
3460
1da177e4
LT
3461/*
3462 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3463 * tasks if there is an imbalance.
1da177e4 3464 */
70b97a7f 3465static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3466 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3467 int *balance, cpumask_t *cpus)
1da177e4 3468{
43010659 3469 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3470 struct sched_group *group;
1da177e4 3471 unsigned long imbalance;
70b97a7f 3472 struct rq *busiest;
fe2eea3f 3473 unsigned long flags;
5969fe06 3474
7c16ec58
MT
3475 cpus_setall(*cpus);
3476
89c4710e
SS
3477 /*
3478 * When power savings policy is enabled for the parent domain, idle
3479 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3480 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3481 * portraying it as CPU_NOT_IDLE.
89c4710e 3482 */
d15bcfdb 3483 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3484 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3485 sd_idle = 1;
1da177e4 3486
2d72376b 3487 schedstat_inc(sd, lb_count[idle]);
1da177e4 3488
0a2966b4 3489redo:
c8cba857 3490 update_shares(sd);
0a2966b4 3491 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3492 cpus, balance);
783609c6 3493
06066714 3494 if (*balance == 0)
783609c6 3495 goto out_balanced;
783609c6 3496
1da177e4
LT
3497 if (!group) {
3498 schedstat_inc(sd, lb_nobusyg[idle]);
3499 goto out_balanced;
3500 }
3501
7c16ec58 3502 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3503 if (!busiest) {
3504 schedstat_inc(sd, lb_nobusyq[idle]);
3505 goto out_balanced;
3506 }
3507
db935dbd 3508 BUG_ON(busiest == this_rq);
1da177e4
LT
3509
3510 schedstat_add(sd, lb_imbalance[idle], imbalance);
3511
43010659 3512 ld_moved = 0;
1da177e4
LT
3513 if (busiest->nr_running > 1) {
3514 /*
3515 * Attempt to move tasks. If find_busiest_group has found
3516 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3517 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3518 * correctly treated as an imbalance.
3519 */
fe2eea3f 3520 local_irq_save(flags);
e17224bf 3521 double_rq_lock(this_rq, busiest);
43010659 3522 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3523 imbalance, sd, idle, &all_pinned);
e17224bf 3524 double_rq_unlock(this_rq, busiest);
fe2eea3f 3525 local_irq_restore(flags);
81026794 3526
46cb4b7c
SS
3527 /*
3528 * some other cpu did the load balance for us.
3529 */
43010659 3530 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3531 resched_cpu(this_cpu);
3532
81026794 3533 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3534 if (unlikely(all_pinned)) {
7c16ec58
MT
3535 cpu_clear(cpu_of(busiest), *cpus);
3536 if (!cpus_empty(*cpus))
0a2966b4 3537 goto redo;
81026794 3538 goto out_balanced;
0a2966b4 3539 }
1da177e4 3540 }
81026794 3541
43010659 3542 if (!ld_moved) {
1da177e4
LT
3543 schedstat_inc(sd, lb_failed[idle]);
3544 sd->nr_balance_failed++;
3545
3546 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3547
fe2eea3f 3548 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3549
3550 /* don't kick the migration_thread, if the curr
3551 * task on busiest cpu can't be moved to this_cpu
3552 */
3553 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3554 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3555 all_pinned = 1;
3556 goto out_one_pinned;
3557 }
3558
1da177e4
LT
3559 if (!busiest->active_balance) {
3560 busiest->active_balance = 1;
3561 busiest->push_cpu = this_cpu;
81026794 3562 active_balance = 1;
1da177e4 3563 }
fe2eea3f 3564 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3565 if (active_balance)
1da177e4
LT
3566 wake_up_process(busiest->migration_thread);
3567
3568 /*
3569 * We've kicked active balancing, reset the failure
3570 * counter.
3571 */
39507451 3572 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3573 }
81026794 3574 } else
1da177e4
LT
3575 sd->nr_balance_failed = 0;
3576
81026794 3577 if (likely(!active_balance)) {
1da177e4
LT
3578 /* We were unbalanced, so reset the balancing interval */
3579 sd->balance_interval = sd->min_interval;
81026794
NP
3580 } else {
3581 /*
3582 * If we've begun active balancing, start to back off. This
3583 * case may not be covered by the all_pinned logic if there
3584 * is only 1 task on the busy runqueue (because we don't call
3585 * move_tasks).
3586 */
3587 if (sd->balance_interval < sd->max_interval)
3588 sd->balance_interval *= 2;
1da177e4
LT
3589 }
3590
43010659 3591 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3592 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3593 ld_moved = -1;
3594
3595 goto out;
1da177e4
LT
3596
3597out_balanced:
1da177e4
LT
3598 schedstat_inc(sd, lb_balanced[idle]);
3599
16cfb1c0 3600 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3601
3602out_one_pinned:
1da177e4 3603 /* tune up the balancing interval */
77391d71
NP
3604 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3605 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3606 sd->balance_interval *= 2;
3607
48f24c4d 3608 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3609 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3610 ld_moved = -1;
3611 else
3612 ld_moved = 0;
3613out:
c8cba857
PZ
3614 if (ld_moved)
3615 update_shares(sd);
c09595f6 3616 return ld_moved;
1da177e4
LT
3617}
3618
3619/*
3620 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3621 * tasks if there is an imbalance.
3622 *
d15bcfdb 3623 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3624 * this_rq is locked.
3625 */
48f24c4d 3626static int
7c16ec58
MT
3627load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3628 cpumask_t *cpus)
1da177e4
LT
3629{
3630 struct sched_group *group;
70b97a7f 3631 struct rq *busiest = NULL;
1da177e4 3632 unsigned long imbalance;
43010659 3633 int ld_moved = 0;
5969fe06 3634 int sd_idle = 0;
969bb4e4 3635 int all_pinned = 0;
7c16ec58
MT
3636
3637 cpus_setall(*cpus);
5969fe06 3638
89c4710e
SS
3639 /*
3640 * When power savings policy is enabled for the parent domain, idle
3641 * sibling can pick up load irrespective of busy siblings. In this case,
3642 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3643 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3644 */
3645 if (sd->flags & SD_SHARE_CPUPOWER &&
3646 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3647 sd_idle = 1;
1da177e4 3648
2d72376b 3649 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3650redo:
3e5459b4 3651 update_shares_locked(this_rq, sd);
d15bcfdb 3652 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3653 &sd_idle, cpus, NULL);
1da177e4 3654 if (!group) {
d15bcfdb 3655 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3656 goto out_balanced;
1da177e4
LT
3657 }
3658
7c16ec58 3659 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3660 if (!busiest) {
d15bcfdb 3661 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3662 goto out_balanced;
1da177e4
LT
3663 }
3664
db935dbd
NP
3665 BUG_ON(busiest == this_rq);
3666
d15bcfdb 3667 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3668
43010659 3669 ld_moved = 0;
d6d5cfaf
NP
3670 if (busiest->nr_running > 1) {
3671 /* Attempt to move tasks */
3672 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3673 /* this_rq->clock is already updated */
3674 update_rq_clock(busiest);
43010659 3675 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3676 imbalance, sd, CPU_NEWLY_IDLE,
3677 &all_pinned);
1b12bbc7 3678 double_unlock_balance(this_rq, busiest);
0a2966b4 3679
969bb4e4 3680 if (unlikely(all_pinned)) {
7c16ec58
MT
3681 cpu_clear(cpu_of(busiest), *cpus);
3682 if (!cpus_empty(*cpus))
0a2966b4
CL
3683 goto redo;
3684 }
d6d5cfaf
NP
3685 }
3686
43010659 3687 if (!ld_moved) {
d15bcfdb 3688 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3689 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3690 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3691 return -1;
3692 } else
16cfb1c0 3693 sd->nr_balance_failed = 0;
1da177e4 3694
3e5459b4 3695 update_shares_locked(this_rq, sd);
43010659 3696 return ld_moved;
16cfb1c0
NP
3697
3698out_balanced:
d15bcfdb 3699 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3700 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3701 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3702 return -1;
16cfb1c0 3703 sd->nr_balance_failed = 0;
48f24c4d 3704
16cfb1c0 3705 return 0;
1da177e4
LT
3706}
3707
3708/*
3709 * idle_balance is called by schedule() if this_cpu is about to become
3710 * idle. Attempts to pull tasks from other CPUs.
3711 */
70b97a7f 3712static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3713{
3714 struct sched_domain *sd;
dd41f596
IM
3715 int pulled_task = -1;
3716 unsigned long next_balance = jiffies + HZ;
7c16ec58 3717 cpumask_t tmpmask;
1da177e4
LT
3718
3719 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3720 unsigned long interval;
3721
3722 if (!(sd->flags & SD_LOAD_BALANCE))
3723 continue;
3724
3725 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3726 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3727 pulled_task = load_balance_newidle(this_cpu, this_rq,
3728 sd, &tmpmask);
92c4ca5c
CL
3729
3730 interval = msecs_to_jiffies(sd->balance_interval);
3731 if (time_after(next_balance, sd->last_balance + interval))
3732 next_balance = sd->last_balance + interval;
3733 if (pulled_task)
3734 break;
1da177e4 3735 }
dd41f596 3736 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3737 /*
3738 * We are going idle. next_balance may be set based on
3739 * a busy processor. So reset next_balance.
3740 */
3741 this_rq->next_balance = next_balance;
dd41f596 3742 }
1da177e4
LT
3743}
3744
3745/*
3746 * active_load_balance is run by migration threads. It pushes running tasks
3747 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3748 * running on each physical CPU where possible, and avoids physical /
3749 * logical imbalances.
3750 *
3751 * Called with busiest_rq locked.
3752 */
70b97a7f 3753static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3754{
39507451 3755 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3756 struct sched_domain *sd;
3757 struct rq *target_rq;
39507451 3758
48f24c4d 3759 /* Is there any task to move? */
39507451 3760 if (busiest_rq->nr_running <= 1)
39507451
NP
3761 return;
3762
3763 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3764
3765 /*
39507451 3766 * This condition is "impossible", if it occurs
41a2d6cf 3767 * we need to fix it. Originally reported by
39507451 3768 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3769 */
39507451 3770 BUG_ON(busiest_rq == target_rq);
1da177e4 3771
39507451
NP
3772 /* move a task from busiest_rq to target_rq */
3773 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3774 update_rq_clock(busiest_rq);
3775 update_rq_clock(target_rq);
39507451
NP
3776
3777 /* Search for an sd spanning us and the target CPU. */
c96d145e 3778 for_each_domain(target_cpu, sd) {
39507451 3779 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3780 cpu_isset(busiest_cpu, sd->span))
39507451 3781 break;
c96d145e 3782 }
39507451 3783
48f24c4d 3784 if (likely(sd)) {
2d72376b 3785 schedstat_inc(sd, alb_count);
39507451 3786
43010659
PW
3787 if (move_one_task(target_rq, target_cpu, busiest_rq,
3788 sd, CPU_IDLE))
48f24c4d
IM
3789 schedstat_inc(sd, alb_pushed);
3790 else
3791 schedstat_inc(sd, alb_failed);
3792 }
1b12bbc7 3793 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3794}
3795
46cb4b7c
SS
3796#ifdef CONFIG_NO_HZ
3797static struct {
3798 atomic_t load_balancer;
41a2d6cf 3799 cpumask_t cpu_mask;
46cb4b7c
SS
3800} nohz ____cacheline_aligned = {
3801 .load_balancer = ATOMIC_INIT(-1),
3802 .cpu_mask = CPU_MASK_NONE,
3803};
3804
7835b98b 3805/*
46cb4b7c
SS
3806 * This routine will try to nominate the ilb (idle load balancing)
3807 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3808 * load balancing on behalf of all those cpus. If all the cpus in the system
3809 * go into this tickless mode, then there will be no ilb owner (as there is
3810 * no need for one) and all the cpus will sleep till the next wakeup event
3811 * arrives...
3812 *
3813 * For the ilb owner, tick is not stopped. And this tick will be used
3814 * for idle load balancing. ilb owner will still be part of
3815 * nohz.cpu_mask..
7835b98b 3816 *
46cb4b7c
SS
3817 * While stopping the tick, this cpu will become the ilb owner if there
3818 * is no other owner. And will be the owner till that cpu becomes busy
3819 * or if all cpus in the system stop their ticks at which point
3820 * there is no need for ilb owner.
3821 *
3822 * When the ilb owner becomes busy, it nominates another owner, during the
3823 * next busy scheduler_tick()
3824 */
3825int select_nohz_load_balancer(int stop_tick)
3826{
3827 int cpu = smp_processor_id();
3828
3829 if (stop_tick) {
3830 cpu_set(cpu, nohz.cpu_mask);
3831 cpu_rq(cpu)->in_nohz_recently = 1;
3832
3833 /*
3834 * If we are going offline and still the leader, give up!
3835 */
e761b772 3836 if (!cpu_active(cpu) &&
46cb4b7c
SS
3837 atomic_read(&nohz.load_balancer) == cpu) {
3838 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3839 BUG();
3840 return 0;
3841 }
3842
3843 /* time for ilb owner also to sleep */
3844 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3845 if (atomic_read(&nohz.load_balancer) == cpu)
3846 atomic_set(&nohz.load_balancer, -1);
3847 return 0;
3848 }
3849
3850 if (atomic_read(&nohz.load_balancer) == -1) {
3851 /* make me the ilb owner */
3852 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3853 return 1;
3854 } else if (atomic_read(&nohz.load_balancer) == cpu)
3855 return 1;
3856 } else {
3857 if (!cpu_isset(cpu, nohz.cpu_mask))
3858 return 0;
3859
3860 cpu_clear(cpu, nohz.cpu_mask);
3861
3862 if (atomic_read(&nohz.load_balancer) == cpu)
3863 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3864 BUG();
3865 }
3866 return 0;
3867}
3868#endif
3869
3870static DEFINE_SPINLOCK(balancing);
3871
3872/*
7835b98b
CL
3873 * It checks each scheduling domain to see if it is due to be balanced,
3874 * and initiates a balancing operation if so.
3875 *
3876 * Balancing parameters are set up in arch_init_sched_domains.
3877 */
a9957449 3878static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3879{
46cb4b7c
SS
3880 int balance = 1;
3881 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3882 unsigned long interval;
3883 struct sched_domain *sd;
46cb4b7c 3884 /* Earliest time when we have to do rebalance again */
c9819f45 3885 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3886 int update_next_balance = 0;
d07355f5 3887 int need_serialize;
7c16ec58 3888 cpumask_t tmp;
1da177e4 3889
46cb4b7c 3890 for_each_domain(cpu, sd) {
1da177e4
LT
3891 if (!(sd->flags & SD_LOAD_BALANCE))
3892 continue;
3893
3894 interval = sd->balance_interval;
d15bcfdb 3895 if (idle != CPU_IDLE)
1da177e4
LT
3896 interval *= sd->busy_factor;
3897
3898 /* scale ms to jiffies */
3899 interval = msecs_to_jiffies(interval);
3900 if (unlikely(!interval))
3901 interval = 1;
dd41f596
IM
3902 if (interval > HZ*NR_CPUS/10)
3903 interval = HZ*NR_CPUS/10;
3904
d07355f5 3905 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3906
d07355f5 3907 if (need_serialize) {
08c183f3
CL
3908 if (!spin_trylock(&balancing))
3909 goto out;
3910 }
3911
c9819f45 3912 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3913 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3914 /*
3915 * We've pulled tasks over so either we're no
5969fe06
NP
3916 * longer idle, or one of our SMT siblings is
3917 * not idle.
3918 */
d15bcfdb 3919 idle = CPU_NOT_IDLE;
1da177e4 3920 }
1bd77f2d 3921 sd->last_balance = jiffies;
1da177e4 3922 }
d07355f5 3923 if (need_serialize)
08c183f3
CL
3924 spin_unlock(&balancing);
3925out:
f549da84 3926 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3927 next_balance = sd->last_balance + interval;
f549da84
SS
3928 update_next_balance = 1;
3929 }
783609c6
SS
3930
3931 /*
3932 * Stop the load balance at this level. There is another
3933 * CPU in our sched group which is doing load balancing more
3934 * actively.
3935 */
3936 if (!balance)
3937 break;
1da177e4 3938 }
f549da84
SS
3939
3940 /*
3941 * next_balance will be updated only when there is a need.
3942 * When the cpu is attached to null domain for ex, it will not be
3943 * updated.
3944 */
3945 if (likely(update_next_balance))
3946 rq->next_balance = next_balance;
46cb4b7c
SS
3947}
3948
3949/*
3950 * run_rebalance_domains is triggered when needed from the scheduler tick.
3951 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3952 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3953 */
3954static void run_rebalance_domains(struct softirq_action *h)
3955{
dd41f596
IM
3956 int this_cpu = smp_processor_id();
3957 struct rq *this_rq = cpu_rq(this_cpu);
3958 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3959 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3960
dd41f596 3961 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3962
3963#ifdef CONFIG_NO_HZ
3964 /*
3965 * If this cpu is the owner for idle load balancing, then do the
3966 * balancing on behalf of the other idle cpus whose ticks are
3967 * stopped.
3968 */
dd41f596
IM
3969 if (this_rq->idle_at_tick &&
3970 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3971 cpumask_t cpus = nohz.cpu_mask;
3972 struct rq *rq;
3973 int balance_cpu;
3974
dd41f596 3975 cpu_clear(this_cpu, cpus);
363ab6f1 3976 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3977 /*
3978 * If this cpu gets work to do, stop the load balancing
3979 * work being done for other cpus. Next load
3980 * balancing owner will pick it up.
3981 */
3982 if (need_resched())
3983 break;
3984
de0cf899 3985 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3986
3987 rq = cpu_rq(balance_cpu);
dd41f596
IM
3988 if (time_after(this_rq->next_balance, rq->next_balance))
3989 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3990 }
3991 }
3992#endif
3993}
3994
3995/*
3996 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3997 *
3998 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3999 * idle load balancing owner or decide to stop the periodic load balancing,
4000 * if the whole system is idle.
4001 */
dd41f596 4002static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4003{
46cb4b7c
SS
4004#ifdef CONFIG_NO_HZ
4005 /*
4006 * If we were in the nohz mode recently and busy at the current
4007 * scheduler tick, then check if we need to nominate new idle
4008 * load balancer.
4009 */
4010 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4011 rq->in_nohz_recently = 0;
4012
4013 if (atomic_read(&nohz.load_balancer) == cpu) {
4014 cpu_clear(cpu, nohz.cpu_mask);
4015 atomic_set(&nohz.load_balancer, -1);
4016 }
4017
4018 if (atomic_read(&nohz.load_balancer) == -1) {
4019 /*
4020 * simple selection for now: Nominate the
4021 * first cpu in the nohz list to be the next
4022 * ilb owner.
4023 *
4024 * TBD: Traverse the sched domains and nominate
4025 * the nearest cpu in the nohz.cpu_mask.
4026 */
4027 int ilb = first_cpu(nohz.cpu_mask);
4028
434d53b0 4029 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4030 resched_cpu(ilb);
4031 }
4032 }
4033
4034 /*
4035 * If this cpu is idle and doing idle load balancing for all the
4036 * cpus with ticks stopped, is it time for that to stop?
4037 */
4038 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4039 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4040 resched_cpu(cpu);
4041 return;
4042 }
4043
4044 /*
4045 * If this cpu is idle and the idle load balancing is done by
4046 * someone else, then no need raise the SCHED_SOFTIRQ
4047 */
4048 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4049 cpu_isset(cpu, nohz.cpu_mask))
4050 return;
4051#endif
4052 if (time_after_eq(jiffies, rq->next_balance))
4053 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4054}
dd41f596
IM
4055
4056#else /* CONFIG_SMP */
4057
1da177e4
LT
4058/*
4059 * on UP we do not need to balance between CPUs:
4060 */
70b97a7f 4061static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4062{
4063}
dd41f596 4064
1da177e4
LT
4065#endif
4066
1da177e4
LT
4067DEFINE_PER_CPU(struct kernel_stat, kstat);
4068
4069EXPORT_PER_CPU_SYMBOL(kstat);
4070
4071/*
f06febc9
FM
4072 * Return any ns on the sched_clock that have not yet been banked in
4073 * @p in case that task is currently running.
1da177e4 4074 */
bb34d92f 4075unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4076{
1da177e4 4077 unsigned long flags;
41b86e9c 4078 struct rq *rq;
bb34d92f 4079 u64 ns = 0;
48f24c4d 4080
41b86e9c 4081 rq = task_rq_lock(p, &flags);
1508487e 4082
051a1d1a 4083 if (task_current(rq, p)) {
f06febc9
FM
4084 u64 delta_exec;
4085
a8e504d2
IM
4086 update_rq_clock(rq);
4087 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4088 if ((s64)delta_exec > 0)
bb34d92f 4089 ns = delta_exec;
41b86e9c 4090 }
48f24c4d 4091
41b86e9c 4092 task_rq_unlock(rq, &flags);
48f24c4d 4093
1da177e4
LT
4094 return ns;
4095}
4096
1da177e4
LT
4097/*
4098 * Account user cpu time to a process.
4099 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4100 * @cputime: the cpu time spent in user space since the last update
4101 */
4102void account_user_time(struct task_struct *p, cputime_t cputime)
4103{
4104 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4105 cputime64_t tmp;
4106
4107 p->utime = cputime_add(p->utime, cputime);
f06febc9 4108 account_group_user_time(p, cputime);
1da177e4
LT
4109
4110 /* Add user time to cpustat. */
4111 tmp = cputime_to_cputime64(cputime);
4112 if (TASK_NICE(p) > 0)
4113 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4114 else
4115 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4116 /* Account for user time used */
4117 acct_update_integrals(p);
1da177e4
LT
4118}
4119
94886b84
LV
4120/*
4121 * Account guest cpu time to a process.
4122 * @p: the process that the cpu time gets accounted to
4123 * @cputime: the cpu time spent in virtual machine since the last update
4124 */
f7402e03 4125static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4126{
4127 cputime64_t tmp;
4128 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4129
4130 tmp = cputime_to_cputime64(cputime);
4131
4132 p->utime = cputime_add(p->utime, cputime);
f06febc9 4133 account_group_user_time(p, cputime);
94886b84
LV
4134 p->gtime = cputime_add(p->gtime, cputime);
4135
4136 cpustat->user = cputime64_add(cpustat->user, tmp);
4137 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4138}
4139
c66f08be
MN
4140/*
4141 * Account scaled user cpu time to a process.
4142 * @p: the process that the cpu time gets accounted to
4143 * @cputime: the cpu time spent in user space since the last update
4144 */
4145void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4146{
4147 p->utimescaled = cputime_add(p->utimescaled, cputime);
4148}
4149
1da177e4
LT
4150/*
4151 * Account system cpu time to a process.
4152 * @p: the process that the cpu time gets accounted to
4153 * @hardirq_offset: the offset to subtract from hardirq_count()
4154 * @cputime: the cpu time spent in kernel space since the last update
4155 */
4156void account_system_time(struct task_struct *p, int hardirq_offset,
4157 cputime_t cputime)
4158{
4159 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4160 struct rq *rq = this_rq();
1da177e4
LT
4161 cputime64_t tmp;
4162
983ed7a6
HH
4163 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4164 account_guest_time(p, cputime);
4165 return;
4166 }
94886b84 4167
1da177e4 4168 p->stime = cputime_add(p->stime, cputime);
f06febc9 4169 account_group_system_time(p, cputime);
1da177e4
LT
4170
4171 /* Add system time to cpustat. */
4172 tmp = cputime_to_cputime64(cputime);
4173 if (hardirq_count() - hardirq_offset)
4174 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4175 else if (softirq_count())
4176 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4177 else if (p != rq->idle)
1da177e4 4178 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4179 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4180 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4181 else
4182 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4183 /* Account for system time used */
4184 acct_update_integrals(p);
1da177e4
LT
4185}
4186
c66f08be
MN
4187/*
4188 * Account scaled system cpu time to a process.
4189 * @p: the process that the cpu time gets accounted to
4190 * @hardirq_offset: the offset to subtract from hardirq_count()
4191 * @cputime: the cpu time spent in kernel space since the last update
4192 */
4193void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4194{
4195 p->stimescaled = cputime_add(p->stimescaled, cputime);
4196}
4197
1da177e4
LT
4198/*
4199 * Account for involuntary wait time.
4200 * @p: the process from which the cpu time has been stolen
4201 * @steal: the cpu time spent in involuntary wait
4202 */
4203void account_steal_time(struct task_struct *p, cputime_t steal)
4204{
4205 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4206 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4207 struct rq *rq = this_rq();
1da177e4
LT
4208
4209 if (p == rq->idle) {
4210 p->stime = cputime_add(p->stime, steal);
f06febc9 4211 account_group_system_time(p, steal);
1da177e4
LT
4212 if (atomic_read(&rq->nr_iowait) > 0)
4213 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4214 else
4215 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4216 } else
1da177e4
LT
4217 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4218}
4219
49048622
BS
4220/*
4221 * Use precise platform statistics if available:
4222 */
4223#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4224cputime_t task_utime(struct task_struct *p)
4225{
4226 return p->utime;
4227}
4228
4229cputime_t task_stime(struct task_struct *p)
4230{
4231 return p->stime;
4232}
4233#else
4234cputime_t task_utime(struct task_struct *p)
4235{
4236 clock_t utime = cputime_to_clock_t(p->utime),
4237 total = utime + cputime_to_clock_t(p->stime);
4238 u64 temp;
4239
4240 /*
4241 * Use CFS's precise accounting:
4242 */
4243 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4244
4245 if (total) {
4246 temp *= utime;
4247 do_div(temp, total);
4248 }
4249 utime = (clock_t)temp;
4250
4251 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4252 return p->prev_utime;
4253}
4254
4255cputime_t task_stime(struct task_struct *p)
4256{
4257 clock_t stime;
4258
4259 /*
4260 * Use CFS's precise accounting. (we subtract utime from
4261 * the total, to make sure the total observed by userspace
4262 * grows monotonically - apps rely on that):
4263 */
4264 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4265 cputime_to_clock_t(task_utime(p));
4266
4267 if (stime >= 0)
4268 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4269
4270 return p->prev_stime;
4271}
4272#endif
4273
4274inline cputime_t task_gtime(struct task_struct *p)
4275{
4276 return p->gtime;
4277}
4278
7835b98b
CL
4279/*
4280 * This function gets called by the timer code, with HZ frequency.
4281 * We call it with interrupts disabled.
4282 *
4283 * It also gets called by the fork code, when changing the parent's
4284 * timeslices.
4285 */
4286void scheduler_tick(void)
4287{
7835b98b
CL
4288 int cpu = smp_processor_id();
4289 struct rq *rq = cpu_rq(cpu);
dd41f596 4290 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4291
4292 sched_clock_tick();
dd41f596
IM
4293
4294 spin_lock(&rq->lock);
3e51f33f 4295 update_rq_clock(rq);
f1a438d8 4296 update_cpu_load(rq);
fa85ae24 4297 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4298 spin_unlock(&rq->lock);
7835b98b 4299
e418e1c2 4300#ifdef CONFIG_SMP
dd41f596
IM
4301 rq->idle_at_tick = idle_cpu(cpu);
4302 trigger_load_balance(rq, cpu);
e418e1c2 4303#endif
1da177e4
LT
4304}
4305
6cd8a4bb
SR
4306#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4307 defined(CONFIG_PREEMPT_TRACER))
4308
4309static inline unsigned long get_parent_ip(unsigned long addr)
4310{
4311 if (in_lock_functions(addr)) {
4312 addr = CALLER_ADDR2;
4313 if (in_lock_functions(addr))
4314 addr = CALLER_ADDR3;
4315 }
4316 return addr;
4317}
1da177e4 4318
43627582 4319void __kprobes add_preempt_count(int val)
1da177e4 4320{
6cd8a4bb 4321#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4322 /*
4323 * Underflow?
4324 */
9a11b49a
IM
4325 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4326 return;
6cd8a4bb 4327#endif
1da177e4 4328 preempt_count() += val;
6cd8a4bb 4329#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4330 /*
4331 * Spinlock count overflowing soon?
4332 */
33859f7f
MOS
4333 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4334 PREEMPT_MASK - 10);
6cd8a4bb
SR
4335#endif
4336 if (preempt_count() == val)
4337 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4338}
4339EXPORT_SYMBOL(add_preempt_count);
4340
43627582 4341void __kprobes sub_preempt_count(int val)
1da177e4 4342{
6cd8a4bb 4343#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4344 /*
4345 * Underflow?
4346 */
9a11b49a
IM
4347 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4348 return;
1da177e4
LT
4349 /*
4350 * Is the spinlock portion underflowing?
4351 */
9a11b49a
IM
4352 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4353 !(preempt_count() & PREEMPT_MASK)))
4354 return;
6cd8a4bb 4355#endif
9a11b49a 4356
6cd8a4bb
SR
4357 if (preempt_count() == val)
4358 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4359 preempt_count() -= val;
4360}
4361EXPORT_SYMBOL(sub_preempt_count);
4362
4363#endif
4364
4365/*
dd41f596 4366 * Print scheduling while atomic bug:
1da177e4 4367 */
dd41f596 4368static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4369{
838225b4
SS
4370 struct pt_regs *regs = get_irq_regs();
4371
4372 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4373 prev->comm, prev->pid, preempt_count());
4374
dd41f596 4375 debug_show_held_locks(prev);
e21f5b15 4376 print_modules();
dd41f596
IM
4377 if (irqs_disabled())
4378 print_irqtrace_events(prev);
838225b4
SS
4379
4380 if (regs)
4381 show_regs(regs);
4382 else
4383 dump_stack();
dd41f596 4384}
1da177e4 4385
dd41f596
IM
4386/*
4387 * Various schedule()-time debugging checks and statistics:
4388 */
4389static inline void schedule_debug(struct task_struct *prev)
4390{
1da177e4 4391 /*
41a2d6cf 4392 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4393 * schedule() atomically, we ignore that path for now.
4394 * Otherwise, whine if we are scheduling when we should not be.
4395 */
3f33a7ce 4396 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4397 __schedule_bug(prev);
4398
1da177e4
LT
4399 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4400
2d72376b 4401 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4402#ifdef CONFIG_SCHEDSTATS
4403 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4404 schedstat_inc(this_rq(), bkl_count);
4405 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4406 }
4407#endif
dd41f596
IM
4408}
4409
4410/*
4411 * Pick up the highest-prio task:
4412 */
4413static inline struct task_struct *
ff95f3df 4414pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4415{
5522d5d5 4416 const struct sched_class *class;
dd41f596 4417 struct task_struct *p;
1da177e4
LT
4418
4419 /*
dd41f596
IM
4420 * Optimization: we know that if all tasks are in
4421 * the fair class we can call that function directly:
1da177e4 4422 */
dd41f596 4423 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4424 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4425 if (likely(p))
4426 return p;
1da177e4
LT
4427 }
4428
dd41f596
IM
4429 class = sched_class_highest;
4430 for ( ; ; ) {
fb8d4724 4431 p = class->pick_next_task(rq);
dd41f596
IM
4432 if (p)
4433 return p;
4434 /*
4435 * Will never be NULL as the idle class always
4436 * returns a non-NULL p:
4437 */
4438 class = class->next;
4439 }
4440}
1da177e4 4441
dd41f596
IM
4442/*
4443 * schedule() is the main scheduler function.
4444 */
4445asmlinkage void __sched schedule(void)
4446{
4447 struct task_struct *prev, *next;
67ca7bde 4448 unsigned long *switch_count;
dd41f596 4449 struct rq *rq;
31656519 4450 int cpu;
dd41f596
IM
4451
4452need_resched:
4453 preempt_disable();
4454 cpu = smp_processor_id();
4455 rq = cpu_rq(cpu);
4456 rcu_qsctr_inc(cpu);
4457 prev = rq->curr;
4458 switch_count = &prev->nivcsw;
4459
4460 release_kernel_lock(prev);
4461need_resched_nonpreemptible:
4462
4463 schedule_debug(prev);
1da177e4 4464
31656519 4465 if (sched_feat(HRTICK))
f333fdc9 4466 hrtick_clear(rq);
8f4d37ec 4467
8cd162ce 4468 spin_lock_irq(&rq->lock);
3e51f33f 4469 update_rq_clock(rq);
1e819950 4470 clear_tsk_need_resched(prev);
1da177e4 4471
1da177e4 4472 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4473 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4474 prev->state = TASK_RUNNING;
16882c1e 4475 else
2e1cb74a 4476 deactivate_task(rq, prev, 1);
dd41f596 4477 switch_count = &prev->nvcsw;
1da177e4
LT
4478 }
4479
9a897c5a
SR
4480#ifdef CONFIG_SMP
4481 if (prev->sched_class->pre_schedule)
4482 prev->sched_class->pre_schedule(rq, prev);
4483#endif
f65eda4f 4484
dd41f596 4485 if (unlikely(!rq->nr_running))
1da177e4 4486 idle_balance(cpu, rq);
1da177e4 4487
31ee529c 4488 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4489 next = pick_next_task(rq, prev);
1da177e4 4490
1da177e4 4491 if (likely(prev != next)) {
673a90a1
DS
4492 sched_info_switch(prev, next);
4493
1da177e4
LT
4494 rq->nr_switches++;
4495 rq->curr = next;
4496 ++*switch_count;
4497
dd41f596 4498 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4499 /*
4500 * the context switch might have flipped the stack from under
4501 * us, hence refresh the local variables.
4502 */
4503 cpu = smp_processor_id();
4504 rq = cpu_rq(cpu);
1da177e4
LT
4505 } else
4506 spin_unlock_irq(&rq->lock);
4507
8f4d37ec 4508 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4509 goto need_resched_nonpreemptible;
8f4d37ec 4510
1da177e4
LT
4511 preempt_enable_no_resched();
4512 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4513 goto need_resched;
4514}
1da177e4
LT
4515EXPORT_SYMBOL(schedule);
4516
4517#ifdef CONFIG_PREEMPT
4518/*
2ed6e34f 4519 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4520 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4521 * occur there and call schedule directly.
4522 */
4523asmlinkage void __sched preempt_schedule(void)
4524{
4525 struct thread_info *ti = current_thread_info();
6478d880 4526
1da177e4
LT
4527 /*
4528 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4529 * we do not want to preempt the current task. Just return..
1da177e4 4530 */
beed33a8 4531 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4532 return;
4533
3a5c359a
AK
4534 do {
4535 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4536 schedule();
3a5c359a 4537 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4538
3a5c359a
AK
4539 /*
4540 * Check again in case we missed a preemption opportunity
4541 * between schedule and now.
4542 */
4543 barrier();
4544 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4545}
1da177e4
LT
4546EXPORT_SYMBOL(preempt_schedule);
4547
4548/*
2ed6e34f 4549 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4550 * off of irq context.
4551 * Note, that this is called and return with irqs disabled. This will
4552 * protect us against recursive calling from irq.
4553 */
4554asmlinkage void __sched preempt_schedule_irq(void)
4555{
4556 struct thread_info *ti = current_thread_info();
6478d880 4557
2ed6e34f 4558 /* Catch callers which need to be fixed */
1da177e4
LT
4559 BUG_ON(ti->preempt_count || !irqs_disabled());
4560
3a5c359a
AK
4561 do {
4562 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4563 local_irq_enable();
4564 schedule();
4565 local_irq_disable();
3a5c359a 4566 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4567
3a5c359a
AK
4568 /*
4569 * Check again in case we missed a preemption opportunity
4570 * between schedule and now.
4571 */
4572 barrier();
4573 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4574}
4575
4576#endif /* CONFIG_PREEMPT */
4577
95cdf3b7
IM
4578int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4579 void *key)
1da177e4 4580{
48f24c4d 4581 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4582}
1da177e4
LT
4583EXPORT_SYMBOL(default_wake_function);
4584
4585/*
41a2d6cf
IM
4586 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4587 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4588 * number) then we wake all the non-exclusive tasks and one exclusive task.
4589 *
4590 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4591 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4592 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4593 */
4594static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4595 int nr_exclusive, int sync, void *key)
4596{
2e45874c 4597 wait_queue_t *curr, *next;
1da177e4 4598
2e45874c 4599 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4600 unsigned flags = curr->flags;
4601
1da177e4 4602 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4603 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4604 break;
4605 }
4606}
4607
4608/**
4609 * __wake_up - wake up threads blocked on a waitqueue.
4610 * @q: the waitqueue
4611 * @mode: which threads
4612 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4613 * @key: is directly passed to the wakeup function
1da177e4 4614 */
7ad5b3a5 4615void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4616 int nr_exclusive, void *key)
1da177e4
LT
4617{
4618 unsigned long flags;
4619
4620 spin_lock_irqsave(&q->lock, flags);
4621 __wake_up_common(q, mode, nr_exclusive, 0, key);
4622 spin_unlock_irqrestore(&q->lock, flags);
4623}
1da177e4
LT
4624EXPORT_SYMBOL(__wake_up);
4625
4626/*
4627 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4628 */
7ad5b3a5 4629void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4630{
4631 __wake_up_common(q, mode, 1, 0, NULL);
4632}
4633
4634/**
67be2dd1 4635 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4636 * @q: the waitqueue
4637 * @mode: which threads
4638 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4639 *
4640 * The sync wakeup differs that the waker knows that it will schedule
4641 * away soon, so while the target thread will be woken up, it will not
4642 * be migrated to another CPU - ie. the two threads are 'synchronized'
4643 * with each other. This can prevent needless bouncing between CPUs.
4644 *
4645 * On UP it can prevent extra preemption.
4646 */
7ad5b3a5 4647void
95cdf3b7 4648__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4649{
4650 unsigned long flags;
4651 int sync = 1;
4652
4653 if (unlikely(!q))
4654 return;
4655
4656 if (unlikely(!nr_exclusive))
4657 sync = 0;
4658
4659 spin_lock_irqsave(&q->lock, flags);
4660 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4661 spin_unlock_irqrestore(&q->lock, flags);
4662}
4663EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4664
65eb3dc6
KD
4665/**
4666 * complete: - signals a single thread waiting on this completion
4667 * @x: holds the state of this particular completion
4668 *
4669 * This will wake up a single thread waiting on this completion. Threads will be
4670 * awakened in the same order in which they were queued.
4671 *
4672 * See also complete_all(), wait_for_completion() and related routines.
4673 */
b15136e9 4674void complete(struct completion *x)
1da177e4
LT
4675{
4676 unsigned long flags;
4677
4678 spin_lock_irqsave(&x->wait.lock, flags);
4679 x->done++;
d9514f6c 4680 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4681 spin_unlock_irqrestore(&x->wait.lock, flags);
4682}
4683EXPORT_SYMBOL(complete);
4684
65eb3dc6
KD
4685/**
4686 * complete_all: - signals all threads waiting on this completion
4687 * @x: holds the state of this particular completion
4688 *
4689 * This will wake up all threads waiting on this particular completion event.
4690 */
b15136e9 4691void complete_all(struct completion *x)
1da177e4
LT
4692{
4693 unsigned long flags;
4694
4695 spin_lock_irqsave(&x->wait.lock, flags);
4696 x->done += UINT_MAX/2;
d9514f6c 4697 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4698 spin_unlock_irqrestore(&x->wait.lock, flags);
4699}
4700EXPORT_SYMBOL(complete_all);
4701
8cbbe86d
AK
4702static inline long __sched
4703do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4704{
1da177e4
LT
4705 if (!x->done) {
4706 DECLARE_WAITQUEUE(wait, current);
4707
4708 wait.flags |= WQ_FLAG_EXCLUSIVE;
4709 __add_wait_queue_tail(&x->wait, &wait);
4710 do {
94d3d824 4711 if (signal_pending_state(state, current)) {
ea71a546
ON
4712 timeout = -ERESTARTSYS;
4713 break;
8cbbe86d
AK
4714 }
4715 __set_current_state(state);
1da177e4
LT
4716 spin_unlock_irq(&x->wait.lock);
4717 timeout = schedule_timeout(timeout);
4718 spin_lock_irq(&x->wait.lock);
ea71a546 4719 } while (!x->done && timeout);
1da177e4 4720 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4721 if (!x->done)
4722 return timeout;
1da177e4
LT
4723 }
4724 x->done--;
ea71a546 4725 return timeout ?: 1;
1da177e4 4726}
1da177e4 4727
8cbbe86d
AK
4728static long __sched
4729wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4730{
1da177e4
LT
4731 might_sleep();
4732
4733 spin_lock_irq(&x->wait.lock);
8cbbe86d 4734 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4735 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4736 return timeout;
4737}
1da177e4 4738
65eb3dc6
KD
4739/**
4740 * wait_for_completion: - waits for completion of a task
4741 * @x: holds the state of this particular completion
4742 *
4743 * This waits to be signaled for completion of a specific task. It is NOT
4744 * interruptible and there is no timeout.
4745 *
4746 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4747 * and interrupt capability. Also see complete().
4748 */
b15136e9 4749void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4750{
4751 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4752}
8cbbe86d 4753EXPORT_SYMBOL(wait_for_completion);
1da177e4 4754
65eb3dc6
KD
4755/**
4756 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4757 * @x: holds the state of this particular completion
4758 * @timeout: timeout value in jiffies
4759 *
4760 * This waits for either a completion of a specific task to be signaled or for a
4761 * specified timeout to expire. The timeout is in jiffies. It is not
4762 * interruptible.
4763 */
b15136e9 4764unsigned long __sched
8cbbe86d 4765wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4766{
8cbbe86d 4767 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4768}
8cbbe86d 4769EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4770
65eb3dc6
KD
4771/**
4772 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4773 * @x: holds the state of this particular completion
4774 *
4775 * This waits for completion of a specific task to be signaled. It is
4776 * interruptible.
4777 */
8cbbe86d 4778int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4779{
51e97990
AK
4780 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4781 if (t == -ERESTARTSYS)
4782 return t;
4783 return 0;
0fec171c 4784}
8cbbe86d 4785EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4786
65eb3dc6
KD
4787/**
4788 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4789 * @x: holds the state of this particular completion
4790 * @timeout: timeout value in jiffies
4791 *
4792 * This waits for either a completion of a specific task to be signaled or for a
4793 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4794 */
b15136e9 4795unsigned long __sched
8cbbe86d
AK
4796wait_for_completion_interruptible_timeout(struct completion *x,
4797 unsigned long timeout)
0fec171c 4798{
8cbbe86d 4799 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4800}
8cbbe86d 4801EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4802
65eb3dc6
KD
4803/**
4804 * wait_for_completion_killable: - waits for completion of a task (killable)
4805 * @x: holds the state of this particular completion
4806 *
4807 * This waits to be signaled for completion of a specific task. It can be
4808 * interrupted by a kill signal.
4809 */
009e577e
MW
4810int __sched wait_for_completion_killable(struct completion *x)
4811{
4812 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4813 if (t == -ERESTARTSYS)
4814 return t;
4815 return 0;
4816}
4817EXPORT_SYMBOL(wait_for_completion_killable);
4818
be4de352
DC
4819/**
4820 * try_wait_for_completion - try to decrement a completion without blocking
4821 * @x: completion structure
4822 *
4823 * Returns: 0 if a decrement cannot be done without blocking
4824 * 1 if a decrement succeeded.
4825 *
4826 * If a completion is being used as a counting completion,
4827 * attempt to decrement the counter without blocking. This
4828 * enables us to avoid waiting if the resource the completion
4829 * is protecting is not available.
4830 */
4831bool try_wait_for_completion(struct completion *x)
4832{
4833 int ret = 1;
4834
4835 spin_lock_irq(&x->wait.lock);
4836 if (!x->done)
4837 ret = 0;
4838 else
4839 x->done--;
4840 spin_unlock_irq(&x->wait.lock);
4841 return ret;
4842}
4843EXPORT_SYMBOL(try_wait_for_completion);
4844
4845/**
4846 * completion_done - Test to see if a completion has any waiters
4847 * @x: completion structure
4848 *
4849 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4850 * 1 if there are no waiters.
4851 *
4852 */
4853bool completion_done(struct completion *x)
4854{
4855 int ret = 1;
4856
4857 spin_lock_irq(&x->wait.lock);
4858 if (!x->done)
4859 ret = 0;
4860 spin_unlock_irq(&x->wait.lock);
4861 return ret;
4862}
4863EXPORT_SYMBOL(completion_done);
4864
8cbbe86d
AK
4865static long __sched
4866sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4867{
0fec171c
IM
4868 unsigned long flags;
4869 wait_queue_t wait;
4870
4871 init_waitqueue_entry(&wait, current);
1da177e4 4872
8cbbe86d 4873 __set_current_state(state);
1da177e4 4874
8cbbe86d
AK
4875 spin_lock_irqsave(&q->lock, flags);
4876 __add_wait_queue(q, &wait);
4877 spin_unlock(&q->lock);
4878 timeout = schedule_timeout(timeout);
4879 spin_lock_irq(&q->lock);
4880 __remove_wait_queue(q, &wait);
4881 spin_unlock_irqrestore(&q->lock, flags);
4882
4883 return timeout;
4884}
4885
4886void __sched interruptible_sleep_on(wait_queue_head_t *q)
4887{
4888 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4889}
1da177e4
LT
4890EXPORT_SYMBOL(interruptible_sleep_on);
4891
0fec171c 4892long __sched
95cdf3b7 4893interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4894{
8cbbe86d 4895 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4896}
1da177e4
LT
4897EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4898
0fec171c 4899void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4900{
8cbbe86d 4901 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4902}
1da177e4
LT
4903EXPORT_SYMBOL(sleep_on);
4904
0fec171c 4905long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4906{
8cbbe86d 4907 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4908}
1da177e4
LT
4909EXPORT_SYMBOL(sleep_on_timeout);
4910
b29739f9
IM
4911#ifdef CONFIG_RT_MUTEXES
4912
4913/*
4914 * rt_mutex_setprio - set the current priority of a task
4915 * @p: task
4916 * @prio: prio value (kernel-internal form)
4917 *
4918 * This function changes the 'effective' priority of a task. It does
4919 * not touch ->normal_prio like __setscheduler().
4920 *
4921 * Used by the rt_mutex code to implement priority inheritance logic.
4922 */
36c8b586 4923void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4924{
4925 unsigned long flags;
83b699ed 4926 int oldprio, on_rq, running;
70b97a7f 4927 struct rq *rq;
cb469845 4928 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4929
4930 BUG_ON(prio < 0 || prio > MAX_PRIO);
4931
4932 rq = task_rq_lock(p, &flags);
a8e504d2 4933 update_rq_clock(rq);
b29739f9 4934
d5f9f942 4935 oldprio = p->prio;
dd41f596 4936 on_rq = p->se.on_rq;
051a1d1a 4937 running = task_current(rq, p);
0e1f3483 4938 if (on_rq)
69be72c1 4939 dequeue_task(rq, p, 0);
0e1f3483
HS
4940 if (running)
4941 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4942
4943 if (rt_prio(prio))
4944 p->sched_class = &rt_sched_class;
4945 else
4946 p->sched_class = &fair_sched_class;
4947
b29739f9
IM
4948 p->prio = prio;
4949
0e1f3483
HS
4950 if (running)
4951 p->sched_class->set_curr_task(rq);
dd41f596 4952 if (on_rq) {
8159f87e 4953 enqueue_task(rq, p, 0);
cb469845
SR
4954
4955 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4956 }
4957 task_rq_unlock(rq, &flags);
4958}
4959
4960#endif
4961
36c8b586 4962void set_user_nice(struct task_struct *p, long nice)
1da177e4 4963{
dd41f596 4964 int old_prio, delta, on_rq;
1da177e4 4965 unsigned long flags;
70b97a7f 4966 struct rq *rq;
1da177e4
LT
4967
4968 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4969 return;
4970 /*
4971 * We have to be careful, if called from sys_setpriority(),
4972 * the task might be in the middle of scheduling on another CPU.
4973 */
4974 rq = task_rq_lock(p, &flags);
a8e504d2 4975 update_rq_clock(rq);
1da177e4
LT
4976 /*
4977 * The RT priorities are set via sched_setscheduler(), but we still
4978 * allow the 'normal' nice value to be set - but as expected
4979 * it wont have any effect on scheduling until the task is
dd41f596 4980 * SCHED_FIFO/SCHED_RR:
1da177e4 4981 */
e05606d3 4982 if (task_has_rt_policy(p)) {
1da177e4
LT
4983 p->static_prio = NICE_TO_PRIO(nice);
4984 goto out_unlock;
4985 }
dd41f596 4986 on_rq = p->se.on_rq;
c09595f6 4987 if (on_rq)
69be72c1 4988 dequeue_task(rq, p, 0);
1da177e4 4989
1da177e4 4990 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4991 set_load_weight(p);
b29739f9
IM
4992 old_prio = p->prio;
4993 p->prio = effective_prio(p);
4994 delta = p->prio - old_prio;
1da177e4 4995
dd41f596 4996 if (on_rq) {
8159f87e 4997 enqueue_task(rq, p, 0);
1da177e4 4998 /*
d5f9f942
AM
4999 * If the task increased its priority or is running and
5000 * lowered its priority, then reschedule its CPU:
1da177e4 5001 */
d5f9f942 5002 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5003 resched_task(rq->curr);
5004 }
5005out_unlock:
5006 task_rq_unlock(rq, &flags);
5007}
1da177e4
LT
5008EXPORT_SYMBOL(set_user_nice);
5009
e43379f1
MM
5010/*
5011 * can_nice - check if a task can reduce its nice value
5012 * @p: task
5013 * @nice: nice value
5014 */
36c8b586 5015int can_nice(const struct task_struct *p, const int nice)
e43379f1 5016{
024f4747
MM
5017 /* convert nice value [19,-20] to rlimit style value [1,40] */
5018 int nice_rlim = 20 - nice;
48f24c4d 5019
e43379f1
MM
5020 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5021 capable(CAP_SYS_NICE));
5022}
5023
1da177e4
LT
5024#ifdef __ARCH_WANT_SYS_NICE
5025
5026/*
5027 * sys_nice - change the priority of the current process.
5028 * @increment: priority increment
5029 *
5030 * sys_setpriority is a more generic, but much slower function that
5031 * does similar things.
5032 */
5033asmlinkage long sys_nice(int increment)
5034{
48f24c4d 5035 long nice, retval;
1da177e4
LT
5036
5037 /*
5038 * Setpriority might change our priority at the same moment.
5039 * We don't have to worry. Conceptually one call occurs first
5040 * and we have a single winner.
5041 */
e43379f1
MM
5042 if (increment < -40)
5043 increment = -40;
1da177e4
LT
5044 if (increment > 40)
5045 increment = 40;
5046
5047 nice = PRIO_TO_NICE(current->static_prio) + increment;
5048 if (nice < -20)
5049 nice = -20;
5050 if (nice > 19)
5051 nice = 19;
5052
e43379f1
MM
5053 if (increment < 0 && !can_nice(current, nice))
5054 return -EPERM;
5055
1da177e4
LT
5056 retval = security_task_setnice(current, nice);
5057 if (retval)
5058 return retval;
5059
5060 set_user_nice(current, nice);
5061 return 0;
5062}
5063
5064#endif
5065
5066/**
5067 * task_prio - return the priority value of a given task.
5068 * @p: the task in question.
5069 *
5070 * This is the priority value as seen by users in /proc.
5071 * RT tasks are offset by -200. Normal tasks are centered
5072 * around 0, value goes from -16 to +15.
5073 */
36c8b586 5074int task_prio(const struct task_struct *p)
1da177e4
LT
5075{
5076 return p->prio - MAX_RT_PRIO;
5077}
5078
5079/**
5080 * task_nice - return the nice value of a given task.
5081 * @p: the task in question.
5082 */
36c8b586 5083int task_nice(const struct task_struct *p)
1da177e4
LT
5084{
5085 return TASK_NICE(p);
5086}
150d8bed 5087EXPORT_SYMBOL(task_nice);
1da177e4
LT
5088
5089/**
5090 * idle_cpu - is a given cpu idle currently?
5091 * @cpu: the processor in question.
5092 */
5093int idle_cpu(int cpu)
5094{
5095 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5096}
5097
1da177e4
LT
5098/**
5099 * idle_task - return the idle task for a given cpu.
5100 * @cpu: the processor in question.
5101 */
36c8b586 5102struct task_struct *idle_task(int cpu)
1da177e4
LT
5103{
5104 return cpu_rq(cpu)->idle;
5105}
5106
5107/**
5108 * find_process_by_pid - find a process with a matching PID value.
5109 * @pid: the pid in question.
5110 */
a9957449 5111static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5112{
228ebcbe 5113 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5114}
5115
5116/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5117static void
5118__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5119{
dd41f596 5120 BUG_ON(p->se.on_rq);
48f24c4d 5121
1da177e4 5122 p->policy = policy;
dd41f596
IM
5123 switch (p->policy) {
5124 case SCHED_NORMAL:
5125 case SCHED_BATCH:
5126 case SCHED_IDLE:
5127 p->sched_class = &fair_sched_class;
5128 break;
5129 case SCHED_FIFO:
5130 case SCHED_RR:
5131 p->sched_class = &rt_sched_class;
5132 break;
5133 }
5134
1da177e4 5135 p->rt_priority = prio;
b29739f9
IM
5136 p->normal_prio = normal_prio(p);
5137 /* we are holding p->pi_lock already */
5138 p->prio = rt_mutex_getprio(p);
2dd73a4f 5139 set_load_weight(p);
1da177e4
LT
5140}
5141
961ccddd
RR
5142static int __sched_setscheduler(struct task_struct *p, int policy,
5143 struct sched_param *param, bool user)
1da177e4 5144{
83b699ed 5145 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5146 unsigned long flags;
cb469845 5147 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5148 struct rq *rq;
1da177e4 5149
66e5393a
SR
5150 /* may grab non-irq protected spin_locks */
5151 BUG_ON(in_interrupt());
1da177e4
LT
5152recheck:
5153 /* double check policy once rq lock held */
5154 if (policy < 0)
5155 policy = oldpolicy = p->policy;
5156 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5157 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5158 policy != SCHED_IDLE)
b0a9499c 5159 return -EINVAL;
1da177e4
LT
5160 /*
5161 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5162 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5163 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5164 */
5165 if (param->sched_priority < 0 ||
95cdf3b7 5166 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5167 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5168 return -EINVAL;
e05606d3 5169 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5170 return -EINVAL;
5171
37e4ab3f
OC
5172 /*
5173 * Allow unprivileged RT tasks to decrease priority:
5174 */
961ccddd 5175 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5176 if (rt_policy(policy)) {
8dc3e909 5177 unsigned long rlim_rtprio;
8dc3e909
ON
5178
5179 if (!lock_task_sighand(p, &flags))
5180 return -ESRCH;
5181 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5182 unlock_task_sighand(p, &flags);
5183
5184 /* can't set/change the rt policy */
5185 if (policy != p->policy && !rlim_rtprio)
5186 return -EPERM;
5187
5188 /* can't increase priority */
5189 if (param->sched_priority > p->rt_priority &&
5190 param->sched_priority > rlim_rtprio)
5191 return -EPERM;
5192 }
dd41f596
IM
5193 /*
5194 * Like positive nice levels, dont allow tasks to
5195 * move out of SCHED_IDLE either:
5196 */
5197 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5198 return -EPERM;
5fe1d75f 5199
37e4ab3f
OC
5200 /* can't change other user's priorities */
5201 if ((current->euid != p->euid) &&
5202 (current->euid != p->uid))
5203 return -EPERM;
5204 }
1da177e4 5205
725aad24 5206 if (user) {
b68aa230 5207#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5208 /*
5209 * Do not allow realtime tasks into groups that have no runtime
5210 * assigned.
5211 */
9a7e0b18
PZ
5212 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5213 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5214 return -EPERM;
b68aa230
PZ
5215#endif
5216
725aad24
JF
5217 retval = security_task_setscheduler(p, policy, param);
5218 if (retval)
5219 return retval;
5220 }
5221
b29739f9
IM
5222 /*
5223 * make sure no PI-waiters arrive (or leave) while we are
5224 * changing the priority of the task:
5225 */
5226 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5227 /*
5228 * To be able to change p->policy safely, the apropriate
5229 * runqueue lock must be held.
5230 */
b29739f9 5231 rq = __task_rq_lock(p);
1da177e4
LT
5232 /* recheck policy now with rq lock held */
5233 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5234 policy = oldpolicy = -1;
b29739f9
IM
5235 __task_rq_unlock(rq);
5236 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5237 goto recheck;
5238 }
2daa3577 5239 update_rq_clock(rq);
dd41f596 5240 on_rq = p->se.on_rq;
051a1d1a 5241 running = task_current(rq, p);
0e1f3483 5242 if (on_rq)
2e1cb74a 5243 deactivate_task(rq, p, 0);
0e1f3483
HS
5244 if (running)
5245 p->sched_class->put_prev_task(rq, p);
f6b53205 5246
1da177e4 5247 oldprio = p->prio;
dd41f596 5248 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5249
0e1f3483
HS
5250 if (running)
5251 p->sched_class->set_curr_task(rq);
dd41f596
IM
5252 if (on_rq) {
5253 activate_task(rq, p, 0);
cb469845
SR
5254
5255 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5256 }
b29739f9
IM
5257 __task_rq_unlock(rq);
5258 spin_unlock_irqrestore(&p->pi_lock, flags);
5259
95e02ca9
TG
5260 rt_mutex_adjust_pi(p);
5261
1da177e4
LT
5262 return 0;
5263}
961ccddd
RR
5264
5265/**
5266 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5267 * @p: the task in question.
5268 * @policy: new policy.
5269 * @param: structure containing the new RT priority.
5270 *
5271 * NOTE that the task may be already dead.
5272 */
5273int sched_setscheduler(struct task_struct *p, int policy,
5274 struct sched_param *param)
5275{
5276 return __sched_setscheduler(p, policy, param, true);
5277}
1da177e4
LT
5278EXPORT_SYMBOL_GPL(sched_setscheduler);
5279
961ccddd
RR
5280/**
5281 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5282 * @p: the task in question.
5283 * @policy: new policy.
5284 * @param: structure containing the new RT priority.
5285 *
5286 * Just like sched_setscheduler, only don't bother checking if the
5287 * current context has permission. For example, this is needed in
5288 * stop_machine(): we create temporary high priority worker threads,
5289 * but our caller might not have that capability.
5290 */
5291int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5292 struct sched_param *param)
5293{
5294 return __sched_setscheduler(p, policy, param, false);
5295}
5296
95cdf3b7
IM
5297static int
5298do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5299{
1da177e4
LT
5300 struct sched_param lparam;
5301 struct task_struct *p;
36c8b586 5302 int retval;
1da177e4
LT
5303
5304 if (!param || pid < 0)
5305 return -EINVAL;
5306 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5307 return -EFAULT;
5fe1d75f
ON
5308
5309 rcu_read_lock();
5310 retval = -ESRCH;
1da177e4 5311 p = find_process_by_pid(pid);
5fe1d75f
ON
5312 if (p != NULL)
5313 retval = sched_setscheduler(p, policy, &lparam);
5314 rcu_read_unlock();
36c8b586 5315
1da177e4
LT
5316 return retval;
5317}
5318
5319/**
5320 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5321 * @pid: the pid in question.
5322 * @policy: new policy.
5323 * @param: structure containing the new RT priority.
5324 */
41a2d6cf
IM
5325asmlinkage long
5326sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5327{
c21761f1
JB
5328 /* negative values for policy are not valid */
5329 if (policy < 0)
5330 return -EINVAL;
5331
1da177e4
LT
5332 return do_sched_setscheduler(pid, policy, param);
5333}
5334
5335/**
5336 * sys_sched_setparam - set/change the RT priority of a thread
5337 * @pid: the pid in question.
5338 * @param: structure containing the new RT priority.
5339 */
5340asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5341{
5342 return do_sched_setscheduler(pid, -1, param);
5343}
5344
5345/**
5346 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5347 * @pid: the pid in question.
5348 */
5349asmlinkage long sys_sched_getscheduler(pid_t pid)
5350{
36c8b586 5351 struct task_struct *p;
3a5c359a 5352 int retval;
1da177e4
LT
5353
5354 if (pid < 0)
3a5c359a 5355 return -EINVAL;
1da177e4
LT
5356
5357 retval = -ESRCH;
5358 read_lock(&tasklist_lock);
5359 p = find_process_by_pid(pid);
5360 if (p) {
5361 retval = security_task_getscheduler(p);
5362 if (!retval)
5363 retval = p->policy;
5364 }
5365 read_unlock(&tasklist_lock);
1da177e4
LT
5366 return retval;
5367}
5368
5369/**
5370 * sys_sched_getscheduler - get the RT priority of a thread
5371 * @pid: the pid in question.
5372 * @param: structure containing the RT priority.
5373 */
5374asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5375{
5376 struct sched_param lp;
36c8b586 5377 struct task_struct *p;
3a5c359a 5378 int retval;
1da177e4
LT
5379
5380 if (!param || pid < 0)
3a5c359a 5381 return -EINVAL;
1da177e4
LT
5382
5383 read_lock(&tasklist_lock);
5384 p = find_process_by_pid(pid);
5385 retval = -ESRCH;
5386 if (!p)
5387 goto out_unlock;
5388
5389 retval = security_task_getscheduler(p);
5390 if (retval)
5391 goto out_unlock;
5392
5393 lp.sched_priority = p->rt_priority;
5394 read_unlock(&tasklist_lock);
5395
5396 /*
5397 * This one might sleep, we cannot do it with a spinlock held ...
5398 */
5399 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5400
1da177e4
LT
5401 return retval;
5402
5403out_unlock:
5404 read_unlock(&tasklist_lock);
5405 return retval;
5406}
5407
b53e921b 5408long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5409{
1da177e4 5410 cpumask_t cpus_allowed;
b53e921b 5411 cpumask_t new_mask = *in_mask;
36c8b586
IM
5412 struct task_struct *p;
5413 int retval;
1da177e4 5414
95402b38 5415 get_online_cpus();
1da177e4
LT
5416 read_lock(&tasklist_lock);
5417
5418 p = find_process_by_pid(pid);
5419 if (!p) {
5420 read_unlock(&tasklist_lock);
95402b38 5421 put_online_cpus();
1da177e4
LT
5422 return -ESRCH;
5423 }
5424
5425 /*
5426 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5427 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5428 * usage count and then drop tasklist_lock.
5429 */
5430 get_task_struct(p);
5431 read_unlock(&tasklist_lock);
5432
5433 retval = -EPERM;
5434 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5435 !capable(CAP_SYS_NICE))
5436 goto out_unlock;
5437
e7834f8f
DQ
5438 retval = security_task_setscheduler(p, 0, NULL);
5439 if (retval)
5440 goto out_unlock;
5441
f9a86fcb 5442 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5443 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5444 again:
7c16ec58 5445 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5446
8707d8b8 5447 if (!retval) {
f9a86fcb 5448 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5449 if (!cpus_subset(new_mask, cpus_allowed)) {
5450 /*
5451 * We must have raced with a concurrent cpuset
5452 * update. Just reset the cpus_allowed to the
5453 * cpuset's cpus_allowed
5454 */
5455 new_mask = cpus_allowed;
5456 goto again;
5457 }
5458 }
1da177e4
LT
5459out_unlock:
5460 put_task_struct(p);
95402b38 5461 put_online_cpus();
1da177e4
LT
5462 return retval;
5463}
5464
5465static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5466 cpumask_t *new_mask)
5467{
5468 if (len < sizeof(cpumask_t)) {
5469 memset(new_mask, 0, sizeof(cpumask_t));
5470 } else if (len > sizeof(cpumask_t)) {
5471 len = sizeof(cpumask_t);
5472 }
5473 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5474}
5475
5476/**
5477 * sys_sched_setaffinity - set the cpu affinity of a process
5478 * @pid: pid of the process
5479 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5480 * @user_mask_ptr: user-space pointer to the new cpu mask
5481 */
5482asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5483 unsigned long __user *user_mask_ptr)
5484{
5485 cpumask_t new_mask;
5486 int retval;
5487
5488 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5489 if (retval)
5490 return retval;
5491
b53e921b 5492 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5493}
5494
1da177e4
LT
5495long sched_getaffinity(pid_t pid, cpumask_t *mask)
5496{
36c8b586 5497 struct task_struct *p;
1da177e4 5498 int retval;
1da177e4 5499
95402b38 5500 get_online_cpus();
1da177e4
LT
5501 read_lock(&tasklist_lock);
5502
5503 retval = -ESRCH;
5504 p = find_process_by_pid(pid);
5505 if (!p)
5506 goto out_unlock;
5507
e7834f8f
DQ
5508 retval = security_task_getscheduler(p);
5509 if (retval)
5510 goto out_unlock;
5511
2f7016d9 5512 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5513
5514out_unlock:
5515 read_unlock(&tasklist_lock);
95402b38 5516 put_online_cpus();
1da177e4 5517
9531b62f 5518 return retval;
1da177e4
LT
5519}
5520
5521/**
5522 * sys_sched_getaffinity - get the cpu affinity of a process
5523 * @pid: pid of the process
5524 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5525 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5526 */
5527asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5528 unsigned long __user *user_mask_ptr)
5529{
5530 int ret;
5531 cpumask_t mask;
5532
5533 if (len < sizeof(cpumask_t))
5534 return -EINVAL;
5535
5536 ret = sched_getaffinity(pid, &mask);
5537 if (ret < 0)
5538 return ret;
5539
5540 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5541 return -EFAULT;
5542
5543 return sizeof(cpumask_t);
5544}
5545
5546/**
5547 * sys_sched_yield - yield the current processor to other threads.
5548 *
dd41f596
IM
5549 * This function yields the current CPU to other tasks. If there are no
5550 * other threads running on this CPU then this function will return.
1da177e4
LT
5551 */
5552asmlinkage long sys_sched_yield(void)
5553{
70b97a7f 5554 struct rq *rq = this_rq_lock();
1da177e4 5555
2d72376b 5556 schedstat_inc(rq, yld_count);
4530d7ab 5557 current->sched_class->yield_task(rq);
1da177e4
LT
5558
5559 /*
5560 * Since we are going to call schedule() anyway, there's
5561 * no need to preempt or enable interrupts:
5562 */
5563 __release(rq->lock);
8a25d5de 5564 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5565 _raw_spin_unlock(&rq->lock);
5566 preempt_enable_no_resched();
5567
5568 schedule();
5569
5570 return 0;
5571}
5572
e7b38404 5573static void __cond_resched(void)
1da177e4 5574{
8e0a43d8
IM
5575#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5576 __might_sleep(__FILE__, __LINE__);
5577#endif
5bbcfd90
IM
5578 /*
5579 * The BKS might be reacquired before we have dropped
5580 * PREEMPT_ACTIVE, which could trigger a second
5581 * cond_resched() call.
5582 */
1da177e4
LT
5583 do {
5584 add_preempt_count(PREEMPT_ACTIVE);
5585 schedule();
5586 sub_preempt_count(PREEMPT_ACTIVE);
5587 } while (need_resched());
5588}
5589
02b67cc3 5590int __sched _cond_resched(void)
1da177e4 5591{
9414232f
IM
5592 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5593 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5594 __cond_resched();
5595 return 1;
5596 }
5597 return 0;
5598}
02b67cc3 5599EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5600
5601/*
5602 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5603 * call schedule, and on return reacquire the lock.
5604 *
41a2d6cf 5605 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5606 * operations here to prevent schedule() from being called twice (once via
5607 * spin_unlock(), once by hand).
5608 */
95cdf3b7 5609int cond_resched_lock(spinlock_t *lock)
1da177e4 5610{
95c354fe 5611 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5612 int ret = 0;
5613
95c354fe 5614 if (spin_needbreak(lock) || resched) {
1da177e4 5615 spin_unlock(lock);
95c354fe
NP
5616 if (resched && need_resched())
5617 __cond_resched();
5618 else
5619 cpu_relax();
6df3cecb 5620 ret = 1;
1da177e4 5621 spin_lock(lock);
1da177e4 5622 }
6df3cecb 5623 return ret;
1da177e4 5624}
1da177e4
LT
5625EXPORT_SYMBOL(cond_resched_lock);
5626
5627int __sched cond_resched_softirq(void)
5628{
5629 BUG_ON(!in_softirq());
5630
9414232f 5631 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5632 local_bh_enable();
1da177e4
LT
5633 __cond_resched();
5634 local_bh_disable();
5635 return 1;
5636 }
5637 return 0;
5638}
1da177e4
LT
5639EXPORT_SYMBOL(cond_resched_softirq);
5640
1da177e4
LT
5641/**
5642 * yield - yield the current processor to other threads.
5643 *
72fd4a35 5644 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5645 * thread runnable and calls sys_sched_yield().
5646 */
5647void __sched yield(void)
5648{
5649 set_current_state(TASK_RUNNING);
5650 sys_sched_yield();
5651}
1da177e4
LT
5652EXPORT_SYMBOL(yield);
5653
5654/*
41a2d6cf 5655 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5656 * that process accounting knows that this is a task in IO wait state.
5657 *
5658 * But don't do that if it is a deliberate, throttling IO wait (this task
5659 * has set its backing_dev_info: the queue against which it should throttle)
5660 */
5661void __sched io_schedule(void)
5662{
70b97a7f 5663 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5664
0ff92245 5665 delayacct_blkio_start();
1da177e4
LT
5666 atomic_inc(&rq->nr_iowait);
5667 schedule();
5668 atomic_dec(&rq->nr_iowait);
0ff92245 5669 delayacct_blkio_end();
1da177e4 5670}
1da177e4
LT
5671EXPORT_SYMBOL(io_schedule);
5672
5673long __sched io_schedule_timeout(long timeout)
5674{
70b97a7f 5675 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5676 long ret;
5677
0ff92245 5678 delayacct_blkio_start();
1da177e4
LT
5679 atomic_inc(&rq->nr_iowait);
5680 ret = schedule_timeout(timeout);
5681 atomic_dec(&rq->nr_iowait);
0ff92245 5682 delayacct_blkio_end();
1da177e4
LT
5683 return ret;
5684}
5685
5686/**
5687 * sys_sched_get_priority_max - return maximum RT priority.
5688 * @policy: scheduling class.
5689 *
5690 * this syscall returns the maximum rt_priority that can be used
5691 * by a given scheduling class.
5692 */
5693asmlinkage long sys_sched_get_priority_max(int policy)
5694{
5695 int ret = -EINVAL;
5696
5697 switch (policy) {
5698 case SCHED_FIFO:
5699 case SCHED_RR:
5700 ret = MAX_USER_RT_PRIO-1;
5701 break;
5702 case SCHED_NORMAL:
b0a9499c 5703 case SCHED_BATCH:
dd41f596 5704 case SCHED_IDLE:
1da177e4
LT
5705 ret = 0;
5706 break;
5707 }
5708 return ret;
5709}
5710
5711/**
5712 * sys_sched_get_priority_min - return minimum RT priority.
5713 * @policy: scheduling class.
5714 *
5715 * this syscall returns the minimum rt_priority that can be used
5716 * by a given scheduling class.
5717 */
5718asmlinkage long sys_sched_get_priority_min(int policy)
5719{
5720 int ret = -EINVAL;
5721
5722 switch (policy) {
5723 case SCHED_FIFO:
5724 case SCHED_RR:
5725 ret = 1;
5726 break;
5727 case SCHED_NORMAL:
b0a9499c 5728 case SCHED_BATCH:
dd41f596 5729 case SCHED_IDLE:
1da177e4
LT
5730 ret = 0;
5731 }
5732 return ret;
5733}
5734
5735/**
5736 * sys_sched_rr_get_interval - return the default timeslice of a process.
5737 * @pid: pid of the process.
5738 * @interval: userspace pointer to the timeslice value.
5739 *
5740 * this syscall writes the default timeslice value of a given process
5741 * into the user-space timespec buffer. A value of '0' means infinity.
5742 */
5743asmlinkage
5744long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5745{
36c8b586 5746 struct task_struct *p;
a4ec24b4 5747 unsigned int time_slice;
3a5c359a 5748 int retval;
1da177e4 5749 struct timespec t;
1da177e4
LT
5750
5751 if (pid < 0)
3a5c359a 5752 return -EINVAL;
1da177e4
LT
5753
5754 retval = -ESRCH;
5755 read_lock(&tasklist_lock);
5756 p = find_process_by_pid(pid);
5757 if (!p)
5758 goto out_unlock;
5759
5760 retval = security_task_getscheduler(p);
5761 if (retval)
5762 goto out_unlock;
5763
77034937
IM
5764 /*
5765 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5766 * tasks that are on an otherwise idle runqueue:
5767 */
5768 time_slice = 0;
5769 if (p->policy == SCHED_RR) {
a4ec24b4 5770 time_slice = DEF_TIMESLICE;
1868f958 5771 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5772 struct sched_entity *se = &p->se;
5773 unsigned long flags;
5774 struct rq *rq;
5775
5776 rq = task_rq_lock(p, &flags);
77034937
IM
5777 if (rq->cfs.load.weight)
5778 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5779 task_rq_unlock(rq, &flags);
5780 }
1da177e4 5781 read_unlock(&tasklist_lock);
a4ec24b4 5782 jiffies_to_timespec(time_slice, &t);
1da177e4 5783 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5784 return retval;
3a5c359a 5785
1da177e4
LT
5786out_unlock:
5787 read_unlock(&tasklist_lock);
5788 return retval;
5789}
5790
7c731e0a 5791static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5792
82a1fcb9 5793void sched_show_task(struct task_struct *p)
1da177e4 5794{
1da177e4 5795 unsigned long free = 0;
36c8b586 5796 unsigned state;
1da177e4 5797
1da177e4 5798 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5799 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5800 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5801#if BITS_PER_LONG == 32
1da177e4 5802 if (state == TASK_RUNNING)
cc4ea795 5803 printk(KERN_CONT " running ");
1da177e4 5804 else
cc4ea795 5805 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5806#else
5807 if (state == TASK_RUNNING)
cc4ea795 5808 printk(KERN_CONT " running task ");
1da177e4 5809 else
cc4ea795 5810 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5811#endif
5812#ifdef CONFIG_DEBUG_STACK_USAGE
5813 {
10ebffde 5814 unsigned long *n = end_of_stack(p);
1da177e4
LT
5815 while (!*n)
5816 n++;
10ebffde 5817 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5818 }
5819#endif
ba25f9dc 5820 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5821 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5822
5fb5e6de 5823 show_stack(p, NULL);
1da177e4
LT
5824}
5825
e59e2ae2 5826void show_state_filter(unsigned long state_filter)
1da177e4 5827{
36c8b586 5828 struct task_struct *g, *p;
1da177e4 5829
4bd77321
IM
5830#if BITS_PER_LONG == 32
5831 printk(KERN_INFO
5832 " task PC stack pid father\n");
1da177e4 5833#else
4bd77321
IM
5834 printk(KERN_INFO
5835 " task PC stack pid father\n");
1da177e4
LT
5836#endif
5837 read_lock(&tasklist_lock);
5838 do_each_thread(g, p) {
5839 /*
5840 * reset the NMI-timeout, listing all files on a slow
5841 * console might take alot of time:
5842 */
5843 touch_nmi_watchdog();
39bc89fd 5844 if (!state_filter || (p->state & state_filter))
82a1fcb9 5845 sched_show_task(p);
1da177e4
LT
5846 } while_each_thread(g, p);
5847
04c9167f
JF
5848 touch_all_softlockup_watchdogs();
5849
dd41f596
IM
5850#ifdef CONFIG_SCHED_DEBUG
5851 sysrq_sched_debug_show();
5852#endif
1da177e4 5853 read_unlock(&tasklist_lock);
e59e2ae2
IM
5854 /*
5855 * Only show locks if all tasks are dumped:
5856 */
5857 if (state_filter == -1)
5858 debug_show_all_locks();
1da177e4
LT
5859}
5860
1df21055
IM
5861void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5862{
dd41f596 5863 idle->sched_class = &idle_sched_class;
1df21055
IM
5864}
5865
f340c0d1
IM
5866/**
5867 * init_idle - set up an idle thread for a given CPU
5868 * @idle: task in question
5869 * @cpu: cpu the idle task belongs to
5870 *
5871 * NOTE: this function does not set the idle thread's NEED_RESCHED
5872 * flag, to make booting more robust.
5873 */
5c1e1767 5874void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5875{
70b97a7f 5876 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5877 unsigned long flags;
5878
5cbd54ef
IM
5879 spin_lock_irqsave(&rq->lock, flags);
5880
dd41f596
IM
5881 __sched_fork(idle);
5882 idle->se.exec_start = sched_clock();
5883
b29739f9 5884 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5885 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5886 __set_task_cpu(idle, cpu);
1da177e4 5887
1da177e4 5888 rq->curr = rq->idle = idle;
4866cde0
NP
5889#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5890 idle->oncpu = 1;
5891#endif
1da177e4
LT
5892 spin_unlock_irqrestore(&rq->lock, flags);
5893
5894 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5895#if defined(CONFIG_PREEMPT)
5896 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5897#else
a1261f54 5898 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5899#endif
dd41f596
IM
5900 /*
5901 * The idle tasks have their own, simple scheduling class:
5902 */
5903 idle->sched_class = &idle_sched_class;
f201ae23 5904 ftrace_retfunc_init_task(idle);
1da177e4
LT
5905}
5906
5907/*
5908 * In a system that switches off the HZ timer nohz_cpu_mask
5909 * indicates which cpus entered this state. This is used
5910 * in the rcu update to wait only for active cpus. For system
5911 * which do not switch off the HZ timer nohz_cpu_mask should
5912 * always be CPU_MASK_NONE.
5913 */
5914cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5915
19978ca6
IM
5916/*
5917 * Increase the granularity value when there are more CPUs,
5918 * because with more CPUs the 'effective latency' as visible
5919 * to users decreases. But the relationship is not linear,
5920 * so pick a second-best guess by going with the log2 of the
5921 * number of CPUs.
5922 *
5923 * This idea comes from the SD scheduler of Con Kolivas:
5924 */
5925static inline void sched_init_granularity(void)
5926{
5927 unsigned int factor = 1 + ilog2(num_online_cpus());
5928 const unsigned long limit = 200000000;
5929
5930 sysctl_sched_min_granularity *= factor;
5931 if (sysctl_sched_min_granularity > limit)
5932 sysctl_sched_min_granularity = limit;
5933
5934 sysctl_sched_latency *= factor;
5935 if (sysctl_sched_latency > limit)
5936 sysctl_sched_latency = limit;
5937
5938 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5939
5940 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5941}
5942
1da177e4
LT
5943#ifdef CONFIG_SMP
5944/*
5945 * This is how migration works:
5946 *
70b97a7f 5947 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5948 * runqueue and wake up that CPU's migration thread.
5949 * 2) we down() the locked semaphore => thread blocks.
5950 * 3) migration thread wakes up (implicitly it forces the migrated
5951 * thread off the CPU)
5952 * 4) it gets the migration request and checks whether the migrated
5953 * task is still in the wrong runqueue.
5954 * 5) if it's in the wrong runqueue then the migration thread removes
5955 * it and puts it into the right queue.
5956 * 6) migration thread up()s the semaphore.
5957 * 7) we wake up and the migration is done.
5958 */
5959
5960/*
5961 * Change a given task's CPU affinity. Migrate the thread to a
5962 * proper CPU and schedule it away if the CPU it's executing on
5963 * is removed from the allowed bitmask.
5964 *
5965 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5966 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5967 * call is not atomic; no spinlocks may be held.
5968 */
cd8ba7cd 5969int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5970{
70b97a7f 5971 struct migration_req req;
1da177e4 5972 unsigned long flags;
70b97a7f 5973 struct rq *rq;
48f24c4d 5974 int ret = 0;
1da177e4
LT
5975
5976 rq = task_rq_lock(p, &flags);
cd8ba7cd 5977 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5978 ret = -EINVAL;
5979 goto out;
5980 }
5981
9985b0ba
DR
5982 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5983 !cpus_equal(p->cpus_allowed, *new_mask))) {
5984 ret = -EINVAL;
5985 goto out;
5986 }
5987
73fe6aae 5988 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5989 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5990 else {
cd8ba7cd
MT
5991 p->cpus_allowed = *new_mask;
5992 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5993 }
5994
1da177e4 5995 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5996 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5997 goto out;
5998
cd8ba7cd 5999 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
6000 /* Need help from migration thread: drop lock and wait. */
6001 task_rq_unlock(rq, &flags);
6002 wake_up_process(rq->migration_thread);
6003 wait_for_completion(&req.done);
6004 tlb_migrate_finish(p->mm);
6005 return 0;
6006 }
6007out:
6008 task_rq_unlock(rq, &flags);
48f24c4d 6009
1da177e4
LT
6010 return ret;
6011}
cd8ba7cd 6012EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6013
6014/*
41a2d6cf 6015 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6016 * this because either it can't run here any more (set_cpus_allowed()
6017 * away from this CPU, or CPU going down), or because we're
6018 * attempting to rebalance this task on exec (sched_exec).
6019 *
6020 * So we race with normal scheduler movements, but that's OK, as long
6021 * as the task is no longer on this CPU.
efc30814
KK
6022 *
6023 * Returns non-zero if task was successfully migrated.
1da177e4 6024 */
efc30814 6025static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6026{
70b97a7f 6027 struct rq *rq_dest, *rq_src;
dd41f596 6028 int ret = 0, on_rq;
1da177e4 6029
e761b772 6030 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6031 return ret;
1da177e4
LT
6032
6033 rq_src = cpu_rq(src_cpu);
6034 rq_dest = cpu_rq(dest_cpu);
6035
6036 double_rq_lock(rq_src, rq_dest);
6037 /* Already moved. */
6038 if (task_cpu(p) != src_cpu)
b1e38734 6039 goto done;
1da177e4
LT
6040 /* Affinity changed (again). */
6041 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6042 goto fail;
1da177e4 6043
dd41f596 6044 on_rq = p->se.on_rq;
6e82a3be 6045 if (on_rq)
2e1cb74a 6046 deactivate_task(rq_src, p, 0);
6e82a3be 6047
1da177e4 6048 set_task_cpu(p, dest_cpu);
dd41f596
IM
6049 if (on_rq) {
6050 activate_task(rq_dest, p, 0);
15afe09b 6051 check_preempt_curr(rq_dest, p, 0);
1da177e4 6052 }
b1e38734 6053done:
efc30814 6054 ret = 1;
b1e38734 6055fail:
1da177e4 6056 double_rq_unlock(rq_src, rq_dest);
efc30814 6057 return ret;
1da177e4
LT
6058}
6059
6060/*
6061 * migration_thread - this is a highprio system thread that performs
6062 * thread migration by bumping thread off CPU then 'pushing' onto
6063 * another runqueue.
6064 */
95cdf3b7 6065static int migration_thread(void *data)
1da177e4 6066{
1da177e4 6067 int cpu = (long)data;
70b97a7f 6068 struct rq *rq;
1da177e4
LT
6069
6070 rq = cpu_rq(cpu);
6071 BUG_ON(rq->migration_thread != current);
6072
6073 set_current_state(TASK_INTERRUPTIBLE);
6074 while (!kthread_should_stop()) {
70b97a7f 6075 struct migration_req *req;
1da177e4 6076 struct list_head *head;
1da177e4 6077
1da177e4
LT
6078 spin_lock_irq(&rq->lock);
6079
6080 if (cpu_is_offline(cpu)) {
6081 spin_unlock_irq(&rq->lock);
6082 goto wait_to_die;
6083 }
6084
6085 if (rq->active_balance) {
6086 active_load_balance(rq, cpu);
6087 rq->active_balance = 0;
6088 }
6089
6090 head = &rq->migration_queue;
6091
6092 if (list_empty(head)) {
6093 spin_unlock_irq(&rq->lock);
6094 schedule();
6095 set_current_state(TASK_INTERRUPTIBLE);
6096 continue;
6097 }
70b97a7f 6098 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6099 list_del_init(head->next);
6100
674311d5
NP
6101 spin_unlock(&rq->lock);
6102 __migrate_task(req->task, cpu, req->dest_cpu);
6103 local_irq_enable();
1da177e4
LT
6104
6105 complete(&req->done);
6106 }
6107 __set_current_state(TASK_RUNNING);
6108 return 0;
6109
6110wait_to_die:
6111 /* Wait for kthread_stop */
6112 set_current_state(TASK_INTERRUPTIBLE);
6113 while (!kthread_should_stop()) {
6114 schedule();
6115 set_current_state(TASK_INTERRUPTIBLE);
6116 }
6117 __set_current_state(TASK_RUNNING);
6118 return 0;
6119}
6120
6121#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6122
6123static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6124{
6125 int ret;
6126
6127 local_irq_disable();
6128 ret = __migrate_task(p, src_cpu, dest_cpu);
6129 local_irq_enable();
6130 return ret;
6131}
6132
054b9108 6133/*
3a4fa0a2 6134 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6135 * NOTE: interrupts should be disabled by the caller
6136 */
48f24c4d 6137static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6138{
efc30814 6139 unsigned long flags;
1da177e4 6140 cpumask_t mask;
70b97a7f
IM
6141 struct rq *rq;
6142 int dest_cpu;
1da177e4 6143
3a5c359a
AK
6144 do {
6145 /* On same node? */
6146 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6147 cpus_and(mask, mask, p->cpus_allowed);
6148 dest_cpu = any_online_cpu(mask);
6149
6150 /* On any allowed CPU? */
434d53b0 6151 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6152 dest_cpu = any_online_cpu(p->cpus_allowed);
6153
6154 /* No more Mr. Nice Guy. */
434d53b0 6155 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6156 cpumask_t cpus_allowed;
6157
6158 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6159 /*
6160 * Try to stay on the same cpuset, where the
6161 * current cpuset may be a subset of all cpus.
6162 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6163 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6164 * called within calls to cpuset_lock/cpuset_unlock.
6165 */
3a5c359a 6166 rq = task_rq_lock(p, &flags);
470fd646 6167 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6168 dest_cpu = any_online_cpu(p->cpus_allowed);
6169 task_rq_unlock(rq, &flags);
1da177e4 6170
3a5c359a
AK
6171 /*
6172 * Don't tell them about moving exiting tasks or
6173 * kernel threads (both mm NULL), since they never
6174 * leave kernel.
6175 */
41a2d6cf 6176 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6177 printk(KERN_INFO "process %d (%s) no "
6178 "longer affine to cpu%d\n",
41a2d6cf
IM
6179 task_pid_nr(p), p->comm, dead_cpu);
6180 }
3a5c359a 6181 }
f7b4cddc 6182 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6183}
6184
6185/*
6186 * While a dead CPU has no uninterruptible tasks queued at this point,
6187 * it might still have a nonzero ->nr_uninterruptible counter, because
6188 * for performance reasons the counter is not stricly tracking tasks to
6189 * their home CPUs. So we just add the counter to another CPU's counter,
6190 * to keep the global sum constant after CPU-down:
6191 */
70b97a7f 6192static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6193{
7c16ec58 6194 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6195 unsigned long flags;
6196
6197 local_irq_save(flags);
6198 double_rq_lock(rq_src, rq_dest);
6199 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6200 rq_src->nr_uninterruptible = 0;
6201 double_rq_unlock(rq_src, rq_dest);
6202 local_irq_restore(flags);
6203}
6204
6205/* Run through task list and migrate tasks from the dead cpu. */
6206static void migrate_live_tasks(int src_cpu)
6207{
48f24c4d 6208 struct task_struct *p, *t;
1da177e4 6209
f7b4cddc 6210 read_lock(&tasklist_lock);
1da177e4 6211
48f24c4d
IM
6212 do_each_thread(t, p) {
6213 if (p == current)
1da177e4
LT
6214 continue;
6215
48f24c4d
IM
6216 if (task_cpu(p) == src_cpu)
6217 move_task_off_dead_cpu(src_cpu, p);
6218 } while_each_thread(t, p);
1da177e4 6219
f7b4cddc 6220 read_unlock(&tasklist_lock);
1da177e4
LT
6221}
6222
dd41f596
IM
6223/*
6224 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6225 * It does so by boosting its priority to highest possible.
6226 * Used by CPU offline code.
1da177e4
LT
6227 */
6228void sched_idle_next(void)
6229{
48f24c4d 6230 int this_cpu = smp_processor_id();
70b97a7f 6231 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6232 struct task_struct *p = rq->idle;
6233 unsigned long flags;
6234
6235 /* cpu has to be offline */
48f24c4d 6236 BUG_ON(cpu_online(this_cpu));
1da177e4 6237
48f24c4d
IM
6238 /*
6239 * Strictly not necessary since rest of the CPUs are stopped by now
6240 * and interrupts disabled on the current cpu.
1da177e4
LT
6241 */
6242 spin_lock_irqsave(&rq->lock, flags);
6243
dd41f596 6244 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6245
94bc9a7b
DA
6246 update_rq_clock(rq);
6247 activate_task(rq, p, 0);
1da177e4
LT
6248
6249 spin_unlock_irqrestore(&rq->lock, flags);
6250}
6251
48f24c4d
IM
6252/*
6253 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6254 * offline.
6255 */
6256void idle_task_exit(void)
6257{
6258 struct mm_struct *mm = current->active_mm;
6259
6260 BUG_ON(cpu_online(smp_processor_id()));
6261
6262 if (mm != &init_mm)
6263 switch_mm(mm, &init_mm, current);
6264 mmdrop(mm);
6265}
6266
054b9108 6267/* called under rq->lock with disabled interrupts */
36c8b586 6268static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6269{
70b97a7f 6270 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6271
6272 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6273 BUG_ON(!p->exit_state);
1da177e4
LT
6274
6275 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6276 BUG_ON(p->state == TASK_DEAD);
1da177e4 6277
48f24c4d 6278 get_task_struct(p);
1da177e4
LT
6279
6280 /*
6281 * Drop lock around migration; if someone else moves it,
41a2d6cf 6282 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6283 * fine.
6284 */
f7b4cddc 6285 spin_unlock_irq(&rq->lock);
48f24c4d 6286 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6287 spin_lock_irq(&rq->lock);
1da177e4 6288
48f24c4d 6289 put_task_struct(p);
1da177e4
LT
6290}
6291
6292/* release_task() removes task from tasklist, so we won't find dead tasks. */
6293static void migrate_dead_tasks(unsigned int dead_cpu)
6294{
70b97a7f 6295 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6296 struct task_struct *next;
48f24c4d 6297
dd41f596
IM
6298 for ( ; ; ) {
6299 if (!rq->nr_running)
6300 break;
a8e504d2 6301 update_rq_clock(rq);
ff95f3df 6302 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6303 if (!next)
6304 break;
79c53799 6305 next->sched_class->put_prev_task(rq, next);
dd41f596 6306 migrate_dead(dead_cpu, next);
e692ab53 6307
1da177e4
LT
6308 }
6309}
6310#endif /* CONFIG_HOTPLUG_CPU */
6311
e692ab53
NP
6312#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6313
6314static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6315 {
6316 .procname = "sched_domain",
c57baf1e 6317 .mode = 0555,
e0361851 6318 },
38605cae 6319 {0, },
e692ab53
NP
6320};
6321
6322static struct ctl_table sd_ctl_root[] = {
e0361851 6323 {
c57baf1e 6324 .ctl_name = CTL_KERN,
e0361851 6325 .procname = "kernel",
c57baf1e 6326 .mode = 0555,
e0361851
AD
6327 .child = sd_ctl_dir,
6328 },
38605cae 6329 {0, },
e692ab53
NP
6330};
6331
6332static struct ctl_table *sd_alloc_ctl_entry(int n)
6333{
6334 struct ctl_table *entry =
5cf9f062 6335 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6336
e692ab53
NP
6337 return entry;
6338}
6339
6382bc90
MM
6340static void sd_free_ctl_entry(struct ctl_table **tablep)
6341{
cd790076 6342 struct ctl_table *entry;
6382bc90 6343
cd790076
MM
6344 /*
6345 * In the intermediate directories, both the child directory and
6346 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6347 * will always be set. In the lowest directory the names are
cd790076
MM
6348 * static strings and all have proc handlers.
6349 */
6350 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6351 if (entry->child)
6352 sd_free_ctl_entry(&entry->child);
cd790076
MM
6353 if (entry->proc_handler == NULL)
6354 kfree(entry->procname);
6355 }
6382bc90
MM
6356
6357 kfree(*tablep);
6358 *tablep = NULL;
6359}
6360
e692ab53 6361static void
e0361851 6362set_table_entry(struct ctl_table *entry,
e692ab53
NP
6363 const char *procname, void *data, int maxlen,
6364 mode_t mode, proc_handler *proc_handler)
6365{
e692ab53
NP
6366 entry->procname = procname;
6367 entry->data = data;
6368 entry->maxlen = maxlen;
6369 entry->mode = mode;
6370 entry->proc_handler = proc_handler;
6371}
6372
6373static struct ctl_table *
6374sd_alloc_ctl_domain_table(struct sched_domain *sd)
6375{
a5d8c348 6376 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6377
ad1cdc1d
MM
6378 if (table == NULL)
6379 return NULL;
6380
e0361851 6381 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6382 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6383 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6384 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6385 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6386 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6387 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6388 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6389 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6390 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6391 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6392 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6393 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6394 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6395 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6396 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6397 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6398 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6399 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6400 &sd->cache_nice_tries,
6401 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6402 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6403 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6404 set_table_entry(&table[11], "name", sd->name,
6405 CORENAME_MAX_SIZE, 0444, proc_dostring);
6406 /* &table[12] is terminator */
e692ab53
NP
6407
6408 return table;
6409}
6410
9a4e7159 6411static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6412{
6413 struct ctl_table *entry, *table;
6414 struct sched_domain *sd;
6415 int domain_num = 0, i;
6416 char buf[32];
6417
6418 for_each_domain(cpu, sd)
6419 domain_num++;
6420 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6421 if (table == NULL)
6422 return NULL;
e692ab53
NP
6423
6424 i = 0;
6425 for_each_domain(cpu, sd) {
6426 snprintf(buf, 32, "domain%d", i);
e692ab53 6427 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6428 entry->mode = 0555;
e692ab53
NP
6429 entry->child = sd_alloc_ctl_domain_table(sd);
6430 entry++;
6431 i++;
6432 }
6433 return table;
6434}
6435
6436static struct ctl_table_header *sd_sysctl_header;
6382bc90 6437static void register_sched_domain_sysctl(void)
e692ab53
NP
6438{
6439 int i, cpu_num = num_online_cpus();
6440 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6441 char buf[32];
6442
7378547f
MM
6443 WARN_ON(sd_ctl_dir[0].child);
6444 sd_ctl_dir[0].child = entry;
6445
ad1cdc1d
MM
6446 if (entry == NULL)
6447 return;
6448
97b6ea7b 6449 for_each_online_cpu(i) {
e692ab53 6450 snprintf(buf, 32, "cpu%d", i);
e692ab53 6451 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6452 entry->mode = 0555;
e692ab53 6453 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6454 entry++;
e692ab53 6455 }
7378547f
MM
6456
6457 WARN_ON(sd_sysctl_header);
e692ab53
NP
6458 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6459}
6382bc90 6460
7378547f 6461/* may be called multiple times per register */
6382bc90
MM
6462static void unregister_sched_domain_sysctl(void)
6463{
7378547f
MM
6464 if (sd_sysctl_header)
6465 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6466 sd_sysctl_header = NULL;
7378547f
MM
6467 if (sd_ctl_dir[0].child)
6468 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6469}
e692ab53 6470#else
6382bc90
MM
6471static void register_sched_domain_sysctl(void)
6472{
6473}
6474static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6475{
6476}
6477#endif
6478
1f11eb6a
GH
6479static void set_rq_online(struct rq *rq)
6480{
6481 if (!rq->online) {
6482 const struct sched_class *class;
6483
6484 cpu_set(rq->cpu, rq->rd->online);
6485 rq->online = 1;
6486
6487 for_each_class(class) {
6488 if (class->rq_online)
6489 class->rq_online(rq);
6490 }
6491 }
6492}
6493
6494static void set_rq_offline(struct rq *rq)
6495{
6496 if (rq->online) {
6497 const struct sched_class *class;
6498
6499 for_each_class(class) {
6500 if (class->rq_offline)
6501 class->rq_offline(rq);
6502 }
6503
6504 cpu_clear(rq->cpu, rq->rd->online);
6505 rq->online = 0;
6506 }
6507}
6508
1da177e4
LT
6509/*
6510 * migration_call - callback that gets triggered when a CPU is added.
6511 * Here we can start up the necessary migration thread for the new CPU.
6512 */
48f24c4d
IM
6513static int __cpuinit
6514migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6515{
1da177e4 6516 struct task_struct *p;
48f24c4d 6517 int cpu = (long)hcpu;
1da177e4 6518 unsigned long flags;
70b97a7f 6519 struct rq *rq;
1da177e4
LT
6520
6521 switch (action) {
5be9361c 6522
1da177e4 6523 case CPU_UP_PREPARE:
8bb78442 6524 case CPU_UP_PREPARE_FROZEN:
dd41f596 6525 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6526 if (IS_ERR(p))
6527 return NOTIFY_BAD;
1da177e4
LT
6528 kthread_bind(p, cpu);
6529 /* Must be high prio: stop_machine expects to yield to it. */
6530 rq = task_rq_lock(p, &flags);
dd41f596 6531 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6532 task_rq_unlock(rq, &flags);
6533 cpu_rq(cpu)->migration_thread = p;
6534 break;
48f24c4d 6535
1da177e4 6536 case CPU_ONLINE:
8bb78442 6537 case CPU_ONLINE_FROZEN:
3a4fa0a2 6538 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6539 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6540
6541 /* Update our root-domain */
6542 rq = cpu_rq(cpu);
6543 spin_lock_irqsave(&rq->lock, flags);
6544 if (rq->rd) {
6545 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6546
6547 set_rq_online(rq);
1f94ef59
GH
6548 }
6549 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6550 break;
48f24c4d 6551
1da177e4
LT
6552#ifdef CONFIG_HOTPLUG_CPU
6553 case CPU_UP_CANCELED:
8bb78442 6554 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6555 if (!cpu_rq(cpu)->migration_thread)
6556 break;
41a2d6cf 6557 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6558 kthread_bind(cpu_rq(cpu)->migration_thread,
6559 any_online_cpu(cpu_online_map));
1da177e4
LT
6560 kthread_stop(cpu_rq(cpu)->migration_thread);
6561 cpu_rq(cpu)->migration_thread = NULL;
6562 break;
48f24c4d 6563
1da177e4 6564 case CPU_DEAD:
8bb78442 6565 case CPU_DEAD_FROZEN:
470fd646 6566 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6567 migrate_live_tasks(cpu);
6568 rq = cpu_rq(cpu);
6569 kthread_stop(rq->migration_thread);
6570 rq->migration_thread = NULL;
6571 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6572 spin_lock_irq(&rq->lock);
a8e504d2 6573 update_rq_clock(rq);
2e1cb74a 6574 deactivate_task(rq, rq->idle, 0);
1da177e4 6575 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6576 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6577 rq->idle->sched_class = &idle_sched_class;
1da177e4 6578 migrate_dead_tasks(cpu);
d2da272a 6579 spin_unlock_irq(&rq->lock);
470fd646 6580 cpuset_unlock();
1da177e4
LT
6581 migrate_nr_uninterruptible(rq);
6582 BUG_ON(rq->nr_running != 0);
6583
41a2d6cf
IM
6584 /*
6585 * No need to migrate the tasks: it was best-effort if
6586 * they didn't take sched_hotcpu_mutex. Just wake up
6587 * the requestors.
6588 */
1da177e4
LT
6589 spin_lock_irq(&rq->lock);
6590 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6591 struct migration_req *req;
6592
1da177e4 6593 req = list_entry(rq->migration_queue.next,
70b97a7f 6594 struct migration_req, list);
1da177e4
LT
6595 list_del_init(&req->list);
6596 complete(&req->done);
6597 }
6598 spin_unlock_irq(&rq->lock);
6599 break;
57d885fe 6600
08f503b0
GH
6601 case CPU_DYING:
6602 case CPU_DYING_FROZEN:
57d885fe
GH
6603 /* Update our root-domain */
6604 rq = cpu_rq(cpu);
6605 spin_lock_irqsave(&rq->lock, flags);
6606 if (rq->rd) {
6607 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6608 set_rq_offline(rq);
57d885fe
GH
6609 }
6610 spin_unlock_irqrestore(&rq->lock, flags);
6611 break;
1da177e4
LT
6612#endif
6613 }
6614 return NOTIFY_OK;
6615}
6616
6617/* Register at highest priority so that task migration (migrate_all_tasks)
6618 * happens before everything else.
6619 */
26c2143b 6620static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6621 .notifier_call = migration_call,
6622 .priority = 10
6623};
6624
7babe8db 6625static int __init migration_init(void)
1da177e4
LT
6626{
6627 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6628 int err;
48f24c4d
IM
6629
6630 /* Start one for the boot CPU: */
07dccf33
AM
6631 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6632 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6633 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6634 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6635
6636 return err;
1da177e4 6637}
7babe8db 6638early_initcall(migration_init);
1da177e4
LT
6639#endif
6640
6641#ifdef CONFIG_SMP
476f3534 6642
3e9830dc 6643#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6644
099f98c8
GS
6645static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6646{
6647 switch (lvl) {
6648 case SD_LV_NONE:
6649 return "NONE";
6650 case SD_LV_SIBLING:
6651 return "SIBLING";
6652 case SD_LV_MC:
6653 return "MC";
6654 case SD_LV_CPU:
6655 return "CPU";
6656 case SD_LV_NODE:
6657 return "NODE";
6658 case SD_LV_ALLNODES:
6659 return "ALLNODES";
6660 case SD_LV_MAX:
6661 return "MAX";
6662
6663 }
6664 return "MAX";
6665}
6666
7c16ec58
MT
6667static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6668 cpumask_t *groupmask)
1da177e4 6669{
4dcf6aff 6670 struct sched_group *group = sd->groups;
434d53b0 6671 char str[256];
1da177e4 6672
434d53b0 6673 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6674 cpus_clear(*groupmask);
4dcf6aff
IM
6675
6676 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6677
6678 if (!(sd->flags & SD_LOAD_BALANCE)) {
6679 printk("does not load-balance\n");
6680 if (sd->parent)
6681 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6682 " has parent");
6683 return -1;
41c7ce9a
NP
6684 }
6685
099f98c8
GS
6686 printk(KERN_CONT "span %s level %s\n",
6687 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6688
6689 if (!cpu_isset(cpu, sd->span)) {
6690 printk(KERN_ERR "ERROR: domain->span does not contain "
6691 "CPU%d\n", cpu);
6692 }
6693 if (!cpu_isset(cpu, group->cpumask)) {
6694 printk(KERN_ERR "ERROR: domain->groups does not contain"
6695 " CPU%d\n", cpu);
6696 }
1da177e4 6697
4dcf6aff 6698 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6699 do {
4dcf6aff
IM
6700 if (!group) {
6701 printk("\n");
6702 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6703 break;
6704 }
6705
4dcf6aff
IM
6706 if (!group->__cpu_power) {
6707 printk(KERN_CONT "\n");
6708 printk(KERN_ERR "ERROR: domain->cpu_power not "
6709 "set\n");
6710 break;
6711 }
1da177e4 6712
4dcf6aff
IM
6713 if (!cpus_weight(group->cpumask)) {
6714 printk(KERN_CONT "\n");
6715 printk(KERN_ERR "ERROR: empty group\n");
6716 break;
6717 }
1da177e4 6718
7c16ec58 6719 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6720 printk(KERN_CONT "\n");
6721 printk(KERN_ERR "ERROR: repeated CPUs\n");
6722 break;
6723 }
1da177e4 6724
7c16ec58 6725 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6726
434d53b0 6727 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6728 printk(KERN_CONT " %s", str);
1da177e4 6729
4dcf6aff
IM
6730 group = group->next;
6731 } while (group != sd->groups);
6732 printk(KERN_CONT "\n");
1da177e4 6733
7c16ec58 6734 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6735 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6736
7c16ec58 6737 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6738 printk(KERN_ERR "ERROR: parent span is not a superset "
6739 "of domain->span\n");
6740 return 0;
6741}
1da177e4 6742
4dcf6aff
IM
6743static void sched_domain_debug(struct sched_domain *sd, int cpu)
6744{
7c16ec58 6745 cpumask_t *groupmask;
4dcf6aff 6746 int level = 0;
1da177e4 6747
4dcf6aff
IM
6748 if (!sd) {
6749 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6750 return;
6751 }
1da177e4 6752
4dcf6aff
IM
6753 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6754
7c16ec58
MT
6755 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6756 if (!groupmask) {
6757 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6758 return;
6759 }
6760
4dcf6aff 6761 for (;;) {
7c16ec58 6762 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6763 break;
1da177e4
LT
6764 level++;
6765 sd = sd->parent;
33859f7f 6766 if (!sd)
4dcf6aff
IM
6767 break;
6768 }
7c16ec58 6769 kfree(groupmask);
1da177e4 6770}
6d6bc0ad 6771#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6772# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6773#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6774
1a20ff27 6775static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6776{
6777 if (cpus_weight(sd->span) == 1)
6778 return 1;
6779
6780 /* Following flags need at least 2 groups */
6781 if (sd->flags & (SD_LOAD_BALANCE |
6782 SD_BALANCE_NEWIDLE |
6783 SD_BALANCE_FORK |
89c4710e
SS
6784 SD_BALANCE_EXEC |
6785 SD_SHARE_CPUPOWER |
6786 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6787 if (sd->groups != sd->groups->next)
6788 return 0;
6789 }
6790
6791 /* Following flags don't use groups */
6792 if (sd->flags & (SD_WAKE_IDLE |
6793 SD_WAKE_AFFINE |
6794 SD_WAKE_BALANCE))
6795 return 0;
6796
6797 return 1;
6798}
6799
48f24c4d
IM
6800static int
6801sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6802{
6803 unsigned long cflags = sd->flags, pflags = parent->flags;
6804
6805 if (sd_degenerate(parent))
6806 return 1;
6807
6808 if (!cpus_equal(sd->span, parent->span))
6809 return 0;
6810
6811 /* Does parent contain flags not in child? */
6812 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6813 if (cflags & SD_WAKE_AFFINE)
6814 pflags &= ~SD_WAKE_BALANCE;
6815 /* Flags needing groups don't count if only 1 group in parent */
6816 if (parent->groups == parent->groups->next) {
6817 pflags &= ~(SD_LOAD_BALANCE |
6818 SD_BALANCE_NEWIDLE |
6819 SD_BALANCE_FORK |
89c4710e
SS
6820 SD_BALANCE_EXEC |
6821 SD_SHARE_CPUPOWER |
6822 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6823 }
6824 if (~cflags & pflags)
6825 return 0;
6826
6827 return 1;
6828}
6829
57d885fe
GH
6830static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6831{
6832 unsigned long flags;
57d885fe
GH
6833
6834 spin_lock_irqsave(&rq->lock, flags);
6835
6836 if (rq->rd) {
6837 struct root_domain *old_rd = rq->rd;
6838
1f11eb6a
GH
6839 if (cpu_isset(rq->cpu, old_rd->online))
6840 set_rq_offline(rq);
57d885fe 6841
dc938520 6842 cpu_clear(rq->cpu, old_rd->span);
dc938520 6843
57d885fe
GH
6844 if (atomic_dec_and_test(&old_rd->refcount))
6845 kfree(old_rd);
6846 }
6847
6848 atomic_inc(&rd->refcount);
6849 rq->rd = rd;
6850
dc938520 6851 cpu_set(rq->cpu, rd->span);
1f94ef59 6852 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6853 set_rq_online(rq);
57d885fe
GH
6854
6855 spin_unlock_irqrestore(&rq->lock, flags);
6856}
6857
dc938520 6858static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6859{
6860 memset(rd, 0, sizeof(*rd));
6861
dc938520
GH
6862 cpus_clear(rd->span);
6863 cpus_clear(rd->online);
6e0534f2
GH
6864
6865 cpupri_init(&rd->cpupri);
57d885fe
GH
6866}
6867
6868static void init_defrootdomain(void)
6869{
dc938520 6870 init_rootdomain(&def_root_domain);
57d885fe
GH
6871 atomic_set(&def_root_domain.refcount, 1);
6872}
6873
dc938520 6874static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6875{
6876 struct root_domain *rd;
6877
6878 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6879 if (!rd)
6880 return NULL;
6881
dc938520 6882 init_rootdomain(rd);
57d885fe
GH
6883
6884 return rd;
6885}
6886
1da177e4 6887/*
0eab9146 6888 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6889 * hold the hotplug lock.
6890 */
0eab9146
IM
6891static void
6892cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6893{
70b97a7f 6894 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6895 struct sched_domain *tmp;
6896
6897 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6898 for (tmp = sd; tmp; ) {
245af2c7
SS
6899 struct sched_domain *parent = tmp->parent;
6900 if (!parent)
6901 break;
f29c9b1c 6902
1a848870 6903 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6904 tmp->parent = parent->parent;
1a848870
SS
6905 if (parent->parent)
6906 parent->parent->child = tmp;
f29c9b1c
LZ
6907 } else
6908 tmp = tmp->parent;
245af2c7
SS
6909 }
6910
1a848870 6911 if (sd && sd_degenerate(sd)) {
245af2c7 6912 sd = sd->parent;
1a848870
SS
6913 if (sd)
6914 sd->child = NULL;
6915 }
1da177e4
LT
6916
6917 sched_domain_debug(sd, cpu);
6918
57d885fe 6919 rq_attach_root(rq, rd);
674311d5 6920 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6921}
6922
6923/* cpus with isolated domains */
67af63a6 6924static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6925
6926/* Setup the mask of cpus configured for isolated domains */
6927static int __init isolated_cpu_setup(char *str)
6928{
13b40c1e
MT
6929 static int __initdata ints[NR_CPUS];
6930 int i;
1da177e4
LT
6931
6932 str = get_options(str, ARRAY_SIZE(ints), ints);
6933 cpus_clear(cpu_isolated_map);
6934 for (i = 1; i <= ints[0]; i++)
6935 if (ints[i] < NR_CPUS)
6936 cpu_set(ints[i], cpu_isolated_map);
6937 return 1;
6938}
6939
8927f494 6940__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6941
6942/*
6711cab4
SS
6943 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6944 * to a function which identifies what group(along with sched group) a CPU
6945 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6946 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6947 *
6948 * init_sched_build_groups will build a circular linked list of the groups
6949 * covered by the given span, and will set each group's ->cpumask correctly,
6950 * and ->cpu_power to 0.
6951 */
a616058b 6952static void
7c16ec58 6953init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6954 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6955 struct sched_group **sg,
6956 cpumask_t *tmpmask),
6957 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6958{
6959 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6960 int i;
6961
7c16ec58
MT
6962 cpus_clear(*covered);
6963
363ab6f1 6964 for_each_cpu_mask_nr(i, *span) {
6711cab4 6965 struct sched_group *sg;
7c16ec58 6966 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6967 int j;
6968
7c16ec58 6969 if (cpu_isset(i, *covered))
1da177e4
LT
6970 continue;
6971
7c16ec58 6972 cpus_clear(sg->cpumask);
5517d86b 6973 sg->__cpu_power = 0;
1da177e4 6974
363ab6f1 6975 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6976 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6977 continue;
6978
7c16ec58 6979 cpu_set(j, *covered);
1da177e4
LT
6980 cpu_set(j, sg->cpumask);
6981 }
6982 if (!first)
6983 first = sg;
6984 if (last)
6985 last->next = sg;
6986 last = sg;
6987 }
6988 last->next = first;
6989}
6990
9c1cfda2 6991#define SD_NODES_PER_DOMAIN 16
1da177e4 6992
9c1cfda2 6993#ifdef CONFIG_NUMA
198e2f18 6994
9c1cfda2
JH
6995/**
6996 * find_next_best_node - find the next node to include in a sched_domain
6997 * @node: node whose sched_domain we're building
6998 * @used_nodes: nodes already in the sched_domain
6999 *
41a2d6cf 7000 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7001 * finds the closest node not already in the @used_nodes map.
7002 *
7003 * Should use nodemask_t.
7004 */
c5f59f08 7005static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7006{
7007 int i, n, val, min_val, best_node = 0;
7008
7009 min_val = INT_MAX;
7010
076ac2af 7011 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7012 /* Start at @node */
076ac2af 7013 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7014
7015 if (!nr_cpus_node(n))
7016 continue;
7017
7018 /* Skip already used nodes */
c5f59f08 7019 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7020 continue;
7021
7022 /* Simple min distance search */
7023 val = node_distance(node, n);
7024
7025 if (val < min_val) {
7026 min_val = val;
7027 best_node = n;
7028 }
7029 }
7030
c5f59f08 7031 node_set(best_node, *used_nodes);
9c1cfda2
JH
7032 return best_node;
7033}
7034
7035/**
7036 * sched_domain_node_span - get a cpumask for a node's sched_domain
7037 * @node: node whose cpumask we're constructing
73486722 7038 * @span: resulting cpumask
9c1cfda2 7039 *
41a2d6cf 7040 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7041 * should be one that prevents unnecessary balancing, but also spreads tasks
7042 * out optimally.
7043 */
4bdbaad3 7044static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7045{
c5f59f08 7046 nodemask_t used_nodes;
c5f59f08 7047 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7048 int i;
9c1cfda2 7049
4bdbaad3 7050 cpus_clear(*span);
c5f59f08 7051 nodes_clear(used_nodes);
9c1cfda2 7052
4bdbaad3 7053 cpus_or(*span, *span, *nodemask);
c5f59f08 7054 node_set(node, used_nodes);
9c1cfda2
JH
7055
7056 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7057 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7058
c5f59f08 7059 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7060 cpus_or(*span, *span, *nodemask);
9c1cfda2 7061 }
9c1cfda2 7062}
6d6bc0ad 7063#endif /* CONFIG_NUMA */
9c1cfda2 7064
5c45bf27 7065int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7066
9c1cfda2 7067/*
48f24c4d 7068 * SMT sched-domains:
9c1cfda2 7069 */
1da177e4
LT
7070#ifdef CONFIG_SCHED_SMT
7071static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7072static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7073
41a2d6cf 7074static int
7c16ec58
MT
7075cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7076 cpumask_t *unused)
1da177e4 7077{
6711cab4
SS
7078 if (sg)
7079 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7080 return cpu;
7081}
6d6bc0ad 7082#endif /* CONFIG_SCHED_SMT */
1da177e4 7083
48f24c4d
IM
7084/*
7085 * multi-core sched-domains:
7086 */
1e9f28fa
SS
7087#ifdef CONFIG_SCHED_MC
7088static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7089static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7090#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7091
7092#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7093static int
7c16ec58
MT
7094cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7095 cpumask_t *mask)
1e9f28fa 7096{
6711cab4 7097 int group;
7c16ec58
MT
7098
7099 *mask = per_cpu(cpu_sibling_map, cpu);
7100 cpus_and(*mask, *mask, *cpu_map);
7101 group = first_cpu(*mask);
6711cab4
SS
7102 if (sg)
7103 *sg = &per_cpu(sched_group_core, group);
7104 return group;
1e9f28fa
SS
7105}
7106#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7107static int
7c16ec58
MT
7108cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7109 cpumask_t *unused)
1e9f28fa 7110{
6711cab4
SS
7111 if (sg)
7112 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7113 return cpu;
7114}
7115#endif
7116
1da177e4 7117static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7118static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7119
41a2d6cf 7120static int
7c16ec58
MT
7121cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7122 cpumask_t *mask)
1da177e4 7123{
6711cab4 7124 int group;
48f24c4d 7125#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7126 *mask = cpu_coregroup_map(cpu);
7127 cpus_and(*mask, *mask, *cpu_map);
7128 group = first_cpu(*mask);
1e9f28fa 7129#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7130 *mask = per_cpu(cpu_sibling_map, cpu);
7131 cpus_and(*mask, *mask, *cpu_map);
7132 group = first_cpu(*mask);
1da177e4 7133#else
6711cab4 7134 group = cpu;
1da177e4 7135#endif
6711cab4
SS
7136 if (sg)
7137 *sg = &per_cpu(sched_group_phys, group);
7138 return group;
1da177e4
LT
7139}
7140
7141#ifdef CONFIG_NUMA
1da177e4 7142/*
9c1cfda2
JH
7143 * The init_sched_build_groups can't handle what we want to do with node
7144 * groups, so roll our own. Now each node has its own list of groups which
7145 * gets dynamically allocated.
1da177e4 7146 */
9c1cfda2 7147static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7148static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7149
9c1cfda2 7150static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7151static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7152
6711cab4 7153static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7154 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7155{
6711cab4
SS
7156 int group;
7157
7c16ec58
MT
7158 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7159 cpus_and(*nodemask, *nodemask, *cpu_map);
7160 group = first_cpu(*nodemask);
6711cab4
SS
7161
7162 if (sg)
7163 *sg = &per_cpu(sched_group_allnodes, group);
7164 return group;
1da177e4 7165}
6711cab4 7166
08069033
SS
7167static void init_numa_sched_groups_power(struct sched_group *group_head)
7168{
7169 struct sched_group *sg = group_head;
7170 int j;
7171
7172 if (!sg)
7173 return;
3a5c359a 7174 do {
363ab6f1 7175 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7176 struct sched_domain *sd;
08069033 7177
3a5c359a
AK
7178 sd = &per_cpu(phys_domains, j);
7179 if (j != first_cpu(sd->groups->cpumask)) {
7180 /*
7181 * Only add "power" once for each
7182 * physical package.
7183 */
7184 continue;
7185 }
08069033 7186
3a5c359a
AK
7187 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7188 }
7189 sg = sg->next;
7190 } while (sg != group_head);
08069033 7191}
6d6bc0ad 7192#endif /* CONFIG_NUMA */
1da177e4 7193
a616058b 7194#ifdef CONFIG_NUMA
51888ca2 7195/* Free memory allocated for various sched_group structures */
7c16ec58 7196static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7197{
a616058b 7198 int cpu, i;
51888ca2 7199
363ab6f1 7200 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7201 struct sched_group **sched_group_nodes
7202 = sched_group_nodes_bycpu[cpu];
7203
51888ca2
SV
7204 if (!sched_group_nodes)
7205 continue;
7206
076ac2af 7207 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7208 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7209
7c16ec58
MT
7210 *nodemask = node_to_cpumask(i);
7211 cpus_and(*nodemask, *nodemask, *cpu_map);
7212 if (cpus_empty(*nodemask))
51888ca2
SV
7213 continue;
7214
7215 if (sg == NULL)
7216 continue;
7217 sg = sg->next;
7218next_sg:
7219 oldsg = sg;
7220 sg = sg->next;
7221 kfree(oldsg);
7222 if (oldsg != sched_group_nodes[i])
7223 goto next_sg;
7224 }
7225 kfree(sched_group_nodes);
7226 sched_group_nodes_bycpu[cpu] = NULL;
7227 }
51888ca2 7228}
6d6bc0ad 7229#else /* !CONFIG_NUMA */
7c16ec58 7230static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7231{
7232}
6d6bc0ad 7233#endif /* CONFIG_NUMA */
51888ca2 7234
89c4710e
SS
7235/*
7236 * Initialize sched groups cpu_power.
7237 *
7238 * cpu_power indicates the capacity of sched group, which is used while
7239 * distributing the load between different sched groups in a sched domain.
7240 * Typically cpu_power for all the groups in a sched domain will be same unless
7241 * there are asymmetries in the topology. If there are asymmetries, group
7242 * having more cpu_power will pickup more load compared to the group having
7243 * less cpu_power.
7244 *
7245 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7246 * the maximum number of tasks a group can handle in the presence of other idle
7247 * or lightly loaded groups in the same sched domain.
7248 */
7249static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7250{
7251 struct sched_domain *child;
7252 struct sched_group *group;
7253
7254 WARN_ON(!sd || !sd->groups);
7255
7256 if (cpu != first_cpu(sd->groups->cpumask))
7257 return;
7258
7259 child = sd->child;
7260
5517d86b
ED
7261 sd->groups->__cpu_power = 0;
7262
89c4710e
SS
7263 /*
7264 * For perf policy, if the groups in child domain share resources
7265 * (for example cores sharing some portions of the cache hierarchy
7266 * or SMT), then set this domain groups cpu_power such that each group
7267 * can handle only one task, when there are other idle groups in the
7268 * same sched domain.
7269 */
7270 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7271 (child->flags &
7272 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7273 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7274 return;
7275 }
7276
89c4710e
SS
7277 /*
7278 * add cpu_power of each child group to this groups cpu_power
7279 */
7280 group = child->groups;
7281 do {
5517d86b 7282 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7283 group = group->next;
7284 } while (group != child->groups);
7285}
7286
7c16ec58
MT
7287/*
7288 * Initializers for schedule domains
7289 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7290 */
7291
a5d8c348
IM
7292#ifdef CONFIG_SCHED_DEBUG
7293# define SD_INIT_NAME(sd, type) sd->name = #type
7294#else
7295# define SD_INIT_NAME(sd, type) do { } while (0)
7296#endif
7297
7c16ec58 7298#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7299
7c16ec58
MT
7300#define SD_INIT_FUNC(type) \
7301static noinline void sd_init_##type(struct sched_domain *sd) \
7302{ \
7303 memset(sd, 0, sizeof(*sd)); \
7304 *sd = SD_##type##_INIT; \
1d3504fc 7305 sd->level = SD_LV_##type; \
a5d8c348 7306 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7307}
7308
7309SD_INIT_FUNC(CPU)
7310#ifdef CONFIG_NUMA
7311 SD_INIT_FUNC(ALLNODES)
7312 SD_INIT_FUNC(NODE)
7313#endif
7314#ifdef CONFIG_SCHED_SMT
7315 SD_INIT_FUNC(SIBLING)
7316#endif
7317#ifdef CONFIG_SCHED_MC
7318 SD_INIT_FUNC(MC)
7319#endif
7320
7321/*
7322 * To minimize stack usage kmalloc room for cpumasks and share the
7323 * space as the usage in build_sched_domains() dictates. Used only
7324 * if the amount of space is significant.
7325 */
7326struct allmasks {
7327 cpumask_t tmpmask; /* make this one first */
7328 union {
7329 cpumask_t nodemask;
7330 cpumask_t this_sibling_map;
7331 cpumask_t this_core_map;
7332 };
7333 cpumask_t send_covered;
7334
7335#ifdef CONFIG_NUMA
7336 cpumask_t domainspan;
7337 cpumask_t covered;
7338 cpumask_t notcovered;
7339#endif
7340};
7341
7342#if NR_CPUS > 128
7343#define SCHED_CPUMASK_ALLOC 1
7344#define SCHED_CPUMASK_FREE(v) kfree(v)
7345#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7346#else
7347#define SCHED_CPUMASK_ALLOC 0
7348#define SCHED_CPUMASK_FREE(v)
7349#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7350#endif
7351
7352#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7353 ((unsigned long)(a) + offsetof(struct allmasks, v))
7354
1d3504fc
HS
7355static int default_relax_domain_level = -1;
7356
7357static int __init setup_relax_domain_level(char *str)
7358{
30e0e178
LZ
7359 unsigned long val;
7360
7361 val = simple_strtoul(str, NULL, 0);
7362 if (val < SD_LV_MAX)
7363 default_relax_domain_level = val;
7364
1d3504fc
HS
7365 return 1;
7366}
7367__setup("relax_domain_level=", setup_relax_domain_level);
7368
7369static void set_domain_attribute(struct sched_domain *sd,
7370 struct sched_domain_attr *attr)
7371{
7372 int request;
7373
7374 if (!attr || attr->relax_domain_level < 0) {
7375 if (default_relax_domain_level < 0)
7376 return;
7377 else
7378 request = default_relax_domain_level;
7379 } else
7380 request = attr->relax_domain_level;
7381 if (request < sd->level) {
7382 /* turn off idle balance on this domain */
7383 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7384 } else {
7385 /* turn on idle balance on this domain */
7386 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7387 }
7388}
7389
1da177e4 7390/*
1a20ff27
DG
7391 * Build sched domains for a given set of cpus and attach the sched domains
7392 * to the individual cpus
1da177e4 7393 */
1d3504fc
HS
7394static int __build_sched_domains(const cpumask_t *cpu_map,
7395 struct sched_domain_attr *attr)
1da177e4
LT
7396{
7397 int i;
57d885fe 7398 struct root_domain *rd;
7c16ec58
MT
7399 SCHED_CPUMASK_DECLARE(allmasks);
7400 cpumask_t *tmpmask;
d1b55138
JH
7401#ifdef CONFIG_NUMA
7402 struct sched_group **sched_group_nodes = NULL;
6711cab4 7403 int sd_allnodes = 0;
d1b55138
JH
7404
7405 /*
7406 * Allocate the per-node list of sched groups
7407 */
076ac2af 7408 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7409 GFP_KERNEL);
d1b55138
JH
7410 if (!sched_group_nodes) {
7411 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7412 return -ENOMEM;
d1b55138 7413 }
d1b55138 7414#endif
1da177e4 7415
dc938520 7416 rd = alloc_rootdomain();
57d885fe
GH
7417 if (!rd) {
7418 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7419#ifdef CONFIG_NUMA
7420 kfree(sched_group_nodes);
7421#endif
57d885fe
GH
7422 return -ENOMEM;
7423 }
7424
7c16ec58
MT
7425#if SCHED_CPUMASK_ALLOC
7426 /* get space for all scratch cpumask variables */
7427 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7428 if (!allmasks) {
7429 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7430 kfree(rd);
7431#ifdef CONFIG_NUMA
7432 kfree(sched_group_nodes);
7433#endif
7434 return -ENOMEM;
7435 }
7436#endif
7437 tmpmask = (cpumask_t *)allmasks;
7438
7439
7440#ifdef CONFIG_NUMA
7441 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7442#endif
7443
1da177e4 7444 /*
1a20ff27 7445 * Set up domains for cpus specified by the cpu_map.
1da177e4 7446 */
363ab6f1 7447 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7448 struct sched_domain *sd = NULL, *p;
7c16ec58 7449 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7450
7c16ec58
MT
7451 *nodemask = node_to_cpumask(cpu_to_node(i));
7452 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7453
7454#ifdef CONFIG_NUMA
dd41f596 7455 if (cpus_weight(*cpu_map) >
7c16ec58 7456 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7457 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7458 SD_INIT(sd, ALLNODES);
1d3504fc 7459 set_domain_attribute(sd, attr);
9c1cfda2 7460 sd->span = *cpu_map;
7c16ec58 7461 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7462 p = sd;
6711cab4 7463 sd_allnodes = 1;
9c1cfda2
JH
7464 } else
7465 p = NULL;
7466
1da177e4 7467 sd = &per_cpu(node_domains, i);
7c16ec58 7468 SD_INIT(sd, NODE);
1d3504fc 7469 set_domain_attribute(sd, attr);
4bdbaad3 7470 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7471 sd->parent = p;
1a848870
SS
7472 if (p)
7473 p->child = sd;
9c1cfda2 7474 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7475#endif
7476
7477 p = sd;
7478 sd = &per_cpu(phys_domains, i);
7c16ec58 7479 SD_INIT(sd, CPU);
1d3504fc 7480 set_domain_attribute(sd, attr);
7c16ec58 7481 sd->span = *nodemask;
1da177e4 7482 sd->parent = p;
1a848870
SS
7483 if (p)
7484 p->child = sd;
7c16ec58 7485 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7486
1e9f28fa
SS
7487#ifdef CONFIG_SCHED_MC
7488 p = sd;
7489 sd = &per_cpu(core_domains, i);
7c16ec58 7490 SD_INIT(sd, MC);
1d3504fc 7491 set_domain_attribute(sd, attr);
1e9f28fa
SS
7492 sd->span = cpu_coregroup_map(i);
7493 cpus_and(sd->span, sd->span, *cpu_map);
7494 sd->parent = p;
1a848870 7495 p->child = sd;
7c16ec58 7496 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7497#endif
7498
1da177e4
LT
7499#ifdef CONFIG_SCHED_SMT
7500 p = sd;
7501 sd = &per_cpu(cpu_domains, i);
7c16ec58 7502 SD_INIT(sd, SIBLING);
1d3504fc 7503 set_domain_attribute(sd, attr);
d5a7430d 7504 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7505 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7506 sd->parent = p;
1a848870 7507 p->child = sd;
7c16ec58 7508 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7509#endif
7510 }
7511
7512#ifdef CONFIG_SCHED_SMT
7513 /* Set up CPU (sibling) groups */
363ab6f1 7514 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7515 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7516 SCHED_CPUMASK_VAR(send_covered, allmasks);
7517
7518 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7519 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7520 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7521 continue;
7522
dd41f596 7523 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7524 &cpu_to_cpu_group,
7525 send_covered, tmpmask);
1da177e4
LT
7526 }
7527#endif
7528
1e9f28fa
SS
7529#ifdef CONFIG_SCHED_MC
7530 /* Set up multi-core groups */
363ab6f1 7531 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7532 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7533 SCHED_CPUMASK_VAR(send_covered, allmasks);
7534
7535 *this_core_map = cpu_coregroup_map(i);
7536 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7537 if (i != first_cpu(*this_core_map))
1e9f28fa 7538 continue;
7c16ec58 7539
dd41f596 7540 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7541 &cpu_to_core_group,
7542 send_covered, tmpmask);
1e9f28fa
SS
7543 }
7544#endif
7545
1da177e4 7546 /* Set up physical groups */
076ac2af 7547 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7548 SCHED_CPUMASK_VAR(nodemask, allmasks);
7549 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7550
7c16ec58
MT
7551 *nodemask = node_to_cpumask(i);
7552 cpus_and(*nodemask, *nodemask, *cpu_map);
7553 if (cpus_empty(*nodemask))
1da177e4
LT
7554 continue;
7555
7c16ec58
MT
7556 init_sched_build_groups(nodemask, cpu_map,
7557 &cpu_to_phys_group,
7558 send_covered, tmpmask);
1da177e4
LT
7559 }
7560
7561#ifdef CONFIG_NUMA
7562 /* Set up node groups */
7c16ec58
MT
7563 if (sd_allnodes) {
7564 SCHED_CPUMASK_VAR(send_covered, allmasks);
7565
7566 init_sched_build_groups(cpu_map, cpu_map,
7567 &cpu_to_allnodes_group,
7568 send_covered, tmpmask);
7569 }
9c1cfda2 7570
076ac2af 7571 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7572 /* Set up node groups */
7573 struct sched_group *sg, *prev;
7c16ec58
MT
7574 SCHED_CPUMASK_VAR(nodemask, allmasks);
7575 SCHED_CPUMASK_VAR(domainspan, allmasks);
7576 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7577 int j;
7578
7c16ec58
MT
7579 *nodemask = node_to_cpumask(i);
7580 cpus_clear(*covered);
7581
7582 cpus_and(*nodemask, *nodemask, *cpu_map);
7583 if (cpus_empty(*nodemask)) {
d1b55138 7584 sched_group_nodes[i] = NULL;
9c1cfda2 7585 continue;
d1b55138 7586 }
9c1cfda2 7587
4bdbaad3 7588 sched_domain_node_span(i, domainspan);
7c16ec58 7589 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7590
15f0b676 7591 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7592 if (!sg) {
7593 printk(KERN_WARNING "Can not alloc domain group for "
7594 "node %d\n", i);
7595 goto error;
7596 }
9c1cfda2 7597 sched_group_nodes[i] = sg;
363ab6f1 7598 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7599 struct sched_domain *sd;
9761eea8 7600
9c1cfda2
JH
7601 sd = &per_cpu(node_domains, j);
7602 sd->groups = sg;
9c1cfda2 7603 }
5517d86b 7604 sg->__cpu_power = 0;
7c16ec58 7605 sg->cpumask = *nodemask;
51888ca2 7606 sg->next = sg;
7c16ec58 7607 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7608 prev = sg;
7609
076ac2af 7610 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7611 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7612 int n = (i + j) % nr_node_ids;
c5f59f08 7613 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7614
7c16ec58
MT
7615 cpus_complement(*notcovered, *covered);
7616 cpus_and(*tmpmask, *notcovered, *cpu_map);
7617 cpus_and(*tmpmask, *tmpmask, *domainspan);
7618 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7619 break;
7620
7c16ec58
MT
7621 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7622 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7623 continue;
7624
15f0b676
SV
7625 sg = kmalloc_node(sizeof(struct sched_group),
7626 GFP_KERNEL, i);
9c1cfda2
JH
7627 if (!sg) {
7628 printk(KERN_WARNING
7629 "Can not alloc domain group for node %d\n", j);
51888ca2 7630 goto error;
9c1cfda2 7631 }
5517d86b 7632 sg->__cpu_power = 0;
7c16ec58 7633 sg->cpumask = *tmpmask;
51888ca2 7634 sg->next = prev->next;
7c16ec58 7635 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7636 prev->next = sg;
7637 prev = sg;
7638 }
9c1cfda2 7639 }
1da177e4
LT
7640#endif
7641
7642 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7643#ifdef CONFIG_SCHED_SMT
363ab6f1 7644 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7645 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7646
89c4710e 7647 init_sched_groups_power(i, sd);
5c45bf27 7648 }
1da177e4 7649#endif
1e9f28fa 7650#ifdef CONFIG_SCHED_MC
363ab6f1 7651 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7652 struct sched_domain *sd = &per_cpu(core_domains, i);
7653
89c4710e 7654 init_sched_groups_power(i, sd);
5c45bf27
SS
7655 }
7656#endif
1e9f28fa 7657
363ab6f1 7658 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7659 struct sched_domain *sd = &per_cpu(phys_domains, i);
7660
89c4710e 7661 init_sched_groups_power(i, sd);
1da177e4
LT
7662 }
7663
9c1cfda2 7664#ifdef CONFIG_NUMA
076ac2af 7665 for (i = 0; i < nr_node_ids; i++)
08069033 7666 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7667
6711cab4
SS
7668 if (sd_allnodes) {
7669 struct sched_group *sg;
f712c0c7 7670
7c16ec58
MT
7671 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7672 tmpmask);
f712c0c7
SS
7673 init_numa_sched_groups_power(sg);
7674 }
9c1cfda2
JH
7675#endif
7676
1da177e4 7677 /* Attach the domains */
363ab6f1 7678 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7679 struct sched_domain *sd;
7680#ifdef CONFIG_SCHED_SMT
7681 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7682#elif defined(CONFIG_SCHED_MC)
7683 sd = &per_cpu(core_domains, i);
1da177e4
LT
7684#else
7685 sd = &per_cpu(phys_domains, i);
7686#endif
57d885fe 7687 cpu_attach_domain(sd, rd, i);
1da177e4 7688 }
51888ca2 7689
7c16ec58 7690 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7691 return 0;
7692
a616058b 7693#ifdef CONFIG_NUMA
51888ca2 7694error:
7c16ec58
MT
7695 free_sched_groups(cpu_map, tmpmask);
7696 SCHED_CPUMASK_FREE((void *)allmasks);
ca3273f9 7697 kfree(rd);
51888ca2 7698 return -ENOMEM;
a616058b 7699#endif
1da177e4 7700}
029190c5 7701
1d3504fc
HS
7702static int build_sched_domains(const cpumask_t *cpu_map)
7703{
7704 return __build_sched_domains(cpu_map, NULL);
7705}
7706
029190c5
PJ
7707static cpumask_t *doms_cur; /* current sched domains */
7708static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7709static struct sched_domain_attr *dattr_cur;
7710 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7711
7712/*
7713 * Special case: If a kmalloc of a doms_cur partition (array of
7714 * cpumask_t) fails, then fallback to a single sched domain,
7715 * as determined by the single cpumask_t fallback_doms.
7716 */
7717static cpumask_t fallback_doms;
7718
22e52b07
HC
7719void __attribute__((weak)) arch_update_cpu_topology(void)
7720{
7721}
7722
1a20ff27 7723/*
41a2d6cf 7724 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7725 * For now this just excludes isolated cpus, but could be used to
7726 * exclude other special cases in the future.
1a20ff27 7727 */
51888ca2 7728static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7729{
7378547f
MM
7730 int err;
7731
22e52b07 7732 arch_update_cpu_topology();
029190c5
PJ
7733 ndoms_cur = 1;
7734 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7735 if (!doms_cur)
7736 doms_cur = &fallback_doms;
7737 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7738 dattr_cur = NULL;
7378547f 7739 err = build_sched_domains(doms_cur);
6382bc90 7740 register_sched_domain_sysctl();
7378547f
MM
7741
7742 return err;
1a20ff27
DG
7743}
7744
7c16ec58
MT
7745static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7746 cpumask_t *tmpmask)
1da177e4 7747{
7c16ec58 7748 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7749}
1da177e4 7750
1a20ff27
DG
7751/*
7752 * Detach sched domains from a group of cpus specified in cpu_map
7753 * These cpus will now be attached to the NULL domain
7754 */
858119e1 7755static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7756{
7c16ec58 7757 cpumask_t tmpmask;
1a20ff27
DG
7758 int i;
7759
6382bc90
MM
7760 unregister_sched_domain_sysctl();
7761
363ab6f1 7762 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7763 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7764 synchronize_sched();
7c16ec58 7765 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7766}
7767
1d3504fc
HS
7768/* handle null as "default" */
7769static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7770 struct sched_domain_attr *new, int idx_new)
7771{
7772 struct sched_domain_attr tmp;
7773
7774 /* fast path */
7775 if (!new && !cur)
7776 return 1;
7777
7778 tmp = SD_ATTR_INIT;
7779 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7780 new ? (new + idx_new) : &tmp,
7781 sizeof(struct sched_domain_attr));
7782}
7783
029190c5
PJ
7784/*
7785 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7786 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7787 * doms_new[] to the current sched domain partitioning, doms_cur[].
7788 * It destroys each deleted domain and builds each new domain.
7789 *
7790 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7791 * The masks don't intersect (don't overlap.) We should setup one
7792 * sched domain for each mask. CPUs not in any of the cpumasks will
7793 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7794 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7795 * it as it is.
7796 *
41a2d6cf
IM
7797 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7798 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7799 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7800 * ndoms_new == 1, and partition_sched_domains() will fallback to
7801 * the single partition 'fallback_doms', it also forces the domains
7802 * to be rebuilt.
029190c5 7803 *
700018e0
LZ
7804 * If doms_new == NULL it will be replaced with cpu_online_map.
7805 * ndoms_new == 0 is a special case for destroying existing domains,
7806 * and it will not create the default domain.
dfb512ec 7807 *
029190c5
PJ
7808 * Call with hotplug lock held
7809 */
1d3504fc
HS
7810void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7811 struct sched_domain_attr *dattr_new)
029190c5 7812{
dfb512ec 7813 int i, j, n;
029190c5 7814
712555ee 7815 mutex_lock(&sched_domains_mutex);
a1835615 7816
7378547f
MM
7817 /* always unregister in case we don't destroy any domains */
7818 unregister_sched_domain_sysctl();
7819
dfb512ec 7820 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7821
7822 /* Destroy deleted domains */
7823 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7824 for (j = 0; j < n; j++) {
1d3504fc
HS
7825 if (cpus_equal(doms_cur[i], doms_new[j])
7826 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7827 goto match1;
7828 }
7829 /* no match - a current sched domain not in new doms_new[] */
7830 detach_destroy_domains(doms_cur + i);
7831match1:
7832 ;
7833 }
7834
e761b772
MK
7835 if (doms_new == NULL) {
7836 ndoms_cur = 0;
e761b772
MK
7837 doms_new = &fallback_doms;
7838 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7839 dattr_new = NULL;
7840 }
7841
029190c5
PJ
7842 /* Build new domains */
7843 for (i = 0; i < ndoms_new; i++) {
7844 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7845 if (cpus_equal(doms_new[i], doms_cur[j])
7846 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7847 goto match2;
7848 }
7849 /* no match - add a new doms_new */
1d3504fc
HS
7850 __build_sched_domains(doms_new + i,
7851 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7852match2:
7853 ;
7854 }
7855
7856 /* Remember the new sched domains */
7857 if (doms_cur != &fallback_doms)
7858 kfree(doms_cur);
1d3504fc 7859 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7860 doms_cur = doms_new;
1d3504fc 7861 dattr_cur = dattr_new;
029190c5 7862 ndoms_cur = ndoms_new;
7378547f
MM
7863
7864 register_sched_domain_sysctl();
a1835615 7865
712555ee 7866 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7867}
7868
5c45bf27 7869#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7870int arch_reinit_sched_domains(void)
5c45bf27 7871{
95402b38 7872 get_online_cpus();
dfb512ec
MK
7873
7874 /* Destroy domains first to force the rebuild */
7875 partition_sched_domains(0, NULL, NULL);
7876
e761b772 7877 rebuild_sched_domains();
95402b38 7878 put_online_cpus();
dfb512ec 7879
e761b772 7880 return 0;
5c45bf27
SS
7881}
7882
7883static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7884{
7885 int ret;
7886
7887 if (buf[0] != '0' && buf[0] != '1')
7888 return -EINVAL;
7889
7890 if (smt)
7891 sched_smt_power_savings = (buf[0] == '1');
7892 else
7893 sched_mc_power_savings = (buf[0] == '1');
7894
7895 ret = arch_reinit_sched_domains();
7896
7897 return ret ? ret : count;
7898}
7899
5c45bf27 7900#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7901static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7902 char *page)
5c45bf27
SS
7903{
7904 return sprintf(page, "%u\n", sched_mc_power_savings);
7905}
f718cd4a 7906static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7907 const char *buf, size_t count)
5c45bf27
SS
7908{
7909 return sched_power_savings_store(buf, count, 0);
7910}
f718cd4a
AK
7911static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7912 sched_mc_power_savings_show,
7913 sched_mc_power_savings_store);
5c45bf27
SS
7914#endif
7915
7916#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7917static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7918 char *page)
5c45bf27
SS
7919{
7920 return sprintf(page, "%u\n", sched_smt_power_savings);
7921}
f718cd4a 7922static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7923 const char *buf, size_t count)
5c45bf27
SS
7924{
7925 return sched_power_savings_store(buf, count, 1);
7926}
f718cd4a
AK
7927static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7928 sched_smt_power_savings_show,
6707de00
AB
7929 sched_smt_power_savings_store);
7930#endif
7931
7932int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7933{
7934 int err = 0;
7935
7936#ifdef CONFIG_SCHED_SMT
7937 if (smt_capable())
7938 err = sysfs_create_file(&cls->kset.kobj,
7939 &attr_sched_smt_power_savings.attr);
7940#endif
7941#ifdef CONFIG_SCHED_MC
7942 if (!err && mc_capable())
7943 err = sysfs_create_file(&cls->kset.kobj,
7944 &attr_sched_mc_power_savings.attr);
7945#endif
7946 return err;
7947}
6d6bc0ad 7948#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7949
e761b772 7950#ifndef CONFIG_CPUSETS
1da177e4 7951/*
e761b772
MK
7952 * Add online and remove offline CPUs from the scheduler domains.
7953 * When cpusets are enabled they take over this function.
1da177e4
LT
7954 */
7955static int update_sched_domains(struct notifier_block *nfb,
7956 unsigned long action, void *hcpu)
e761b772
MK
7957{
7958 switch (action) {
7959 case CPU_ONLINE:
7960 case CPU_ONLINE_FROZEN:
7961 case CPU_DEAD:
7962 case CPU_DEAD_FROZEN:
dfb512ec 7963 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7964 return NOTIFY_OK;
7965
7966 default:
7967 return NOTIFY_DONE;
7968 }
7969}
7970#endif
7971
7972static int update_runtime(struct notifier_block *nfb,
7973 unsigned long action, void *hcpu)
1da177e4 7974{
7def2be1
PZ
7975 int cpu = (int)(long)hcpu;
7976
1da177e4 7977 switch (action) {
1da177e4 7978 case CPU_DOWN_PREPARE:
8bb78442 7979 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7980 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7981 return NOTIFY_OK;
7982
1da177e4 7983 case CPU_DOWN_FAILED:
8bb78442 7984 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7985 case CPU_ONLINE:
8bb78442 7986 case CPU_ONLINE_FROZEN:
7def2be1 7987 enable_runtime(cpu_rq(cpu));
e761b772
MK
7988 return NOTIFY_OK;
7989
1da177e4
LT
7990 default:
7991 return NOTIFY_DONE;
7992 }
1da177e4 7993}
1da177e4
LT
7994
7995void __init sched_init_smp(void)
7996{
5c1e1767
NP
7997 cpumask_t non_isolated_cpus;
7998
434d53b0
MT
7999#if defined(CONFIG_NUMA)
8000 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8001 GFP_KERNEL);
8002 BUG_ON(sched_group_nodes_bycpu == NULL);
8003#endif
95402b38 8004 get_online_cpus();
712555ee 8005 mutex_lock(&sched_domains_mutex);
1a20ff27 8006 arch_init_sched_domains(&cpu_online_map);
e5e5673f 8007 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
8008 if (cpus_empty(non_isolated_cpus))
8009 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 8010 mutex_unlock(&sched_domains_mutex);
95402b38 8011 put_online_cpus();
e761b772
MK
8012
8013#ifndef CONFIG_CPUSETS
1da177e4
LT
8014 /* XXX: Theoretical race here - CPU may be hotplugged now */
8015 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8016#endif
8017
8018 /* RT runtime code needs to handle some hotplug events */
8019 hotcpu_notifier(update_runtime, 0);
8020
b328ca18 8021 init_hrtick();
5c1e1767
NP
8022
8023 /* Move init over to a non-isolated CPU */
7c16ec58 8024 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8025 BUG();
19978ca6 8026 sched_init_granularity();
1da177e4
LT
8027}
8028#else
8029void __init sched_init_smp(void)
8030{
19978ca6 8031 sched_init_granularity();
1da177e4
LT
8032}
8033#endif /* CONFIG_SMP */
8034
8035int in_sched_functions(unsigned long addr)
8036{
1da177e4
LT
8037 return in_lock_functions(addr) ||
8038 (addr >= (unsigned long)__sched_text_start
8039 && addr < (unsigned long)__sched_text_end);
8040}
8041
a9957449 8042static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8043{
8044 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8045 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8046#ifdef CONFIG_FAIR_GROUP_SCHED
8047 cfs_rq->rq = rq;
8048#endif
67e9fb2a 8049 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8050}
8051
fa85ae24
PZ
8052static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8053{
8054 struct rt_prio_array *array;
8055 int i;
8056
8057 array = &rt_rq->active;
8058 for (i = 0; i < MAX_RT_PRIO; i++) {
8059 INIT_LIST_HEAD(array->queue + i);
8060 __clear_bit(i, array->bitmap);
8061 }
8062 /* delimiter for bitsearch: */
8063 __set_bit(MAX_RT_PRIO, array->bitmap);
8064
052f1dc7 8065#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8066 rt_rq->highest_prio = MAX_RT_PRIO;
8067#endif
fa85ae24
PZ
8068#ifdef CONFIG_SMP
8069 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8070 rt_rq->overloaded = 0;
8071#endif
8072
8073 rt_rq->rt_time = 0;
8074 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8075 rt_rq->rt_runtime = 0;
8076 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8077
052f1dc7 8078#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8079 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8080 rt_rq->rq = rq;
8081#endif
fa85ae24
PZ
8082}
8083
6f505b16 8084#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8085static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8086 struct sched_entity *se, int cpu, int add,
8087 struct sched_entity *parent)
6f505b16 8088{
ec7dc8ac 8089 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8090 tg->cfs_rq[cpu] = cfs_rq;
8091 init_cfs_rq(cfs_rq, rq);
8092 cfs_rq->tg = tg;
8093 if (add)
8094 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8095
8096 tg->se[cpu] = se;
354d60c2
DG
8097 /* se could be NULL for init_task_group */
8098 if (!se)
8099 return;
8100
ec7dc8ac
DG
8101 if (!parent)
8102 se->cfs_rq = &rq->cfs;
8103 else
8104 se->cfs_rq = parent->my_q;
8105
6f505b16
PZ
8106 se->my_q = cfs_rq;
8107 se->load.weight = tg->shares;
e05510d0 8108 se->load.inv_weight = 0;
ec7dc8ac 8109 se->parent = parent;
6f505b16 8110}
052f1dc7 8111#endif
6f505b16 8112
052f1dc7 8113#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8114static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8115 struct sched_rt_entity *rt_se, int cpu, int add,
8116 struct sched_rt_entity *parent)
6f505b16 8117{
ec7dc8ac
DG
8118 struct rq *rq = cpu_rq(cpu);
8119
6f505b16
PZ
8120 tg->rt_rq[cpu] = rt_rq;
8121 init_rt_rq(rt_rq, rq);
8122 rt_rq->tg = tg;
8123 rt_rq->rt_se = rt_se;
ac086bc2 8124 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8125 if (add)
8126 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8127
8128 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8129 if (!rt_se)
8130 return;
8131
ec7dc8ac
DG
8132 if (!parent)
8133 rt_se->rt_rq = &rq->rt;
8134 else
8135 rt_se->rt_rq = parent->my_q;
8136
6f505b16 8137 rt_se->my_q = rt_rq;
ec7dc8ac 8138 rt_se->parent = parent;
6f505b16
PZ
8139 INIT_LIST_HEAD(&rt_se->run_list);
8140}
8141#endif
8142
1da177e4
LT
8143void __init sched_init(void)
8144{
dd41f596 8145 int i, j;
434d53b0
MT
8146 unsigned long alloc_size = 0, ptr;
8147
8148#ifdef CONFIG_FAIR_GROUP_SCHED
8149 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8150#endif
8151#ifdef CONFIG_RT_GROUP_SCHED
8152 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8153#endif
8154#ifdef CONFIG_USER_SCHED
8155 alloc_size *= 2;
434d53b0
MT
8156#endif
8157 /*
8158 * As sched_init() is called before page_alloc is setup,
8159 * we use alloc_bootmem().
8160 */
8161 if (alloc_size) {
5a9d3225 8162 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8163
8164#ifdef CONFIG_FAIR_GROUP_SCHED
8165 init_task_group.se = (struct sched_entity **)ptr;
8166 ptr += nr_cpu_ids * sizeof(void **);
8167
8168 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8170
8171#ifdef CONFIG_USER_SCHED
8172 root_task_group.se = (struct sched_entity **)ptr;
8173 ptr += nr_cpu_ids * sizeof(void **);
8174
8175 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8176 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8177#endif /* CONFIG_USER_SCHED */
8178#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8179#ifdef CONFIG_RT_GROUP_SCHED
8180 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8181 ptr += nr_cpu_ids * sizeof(void **);
8182
8183 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8184 ptr += nr_cpu_ids * sizeof(void **);
8185
8186#ifdef CONFIG_USER_SCHED
8187 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8188 ptr += nr_cpu_ids * sizeof(void **);
8189
8190 root_task_group.rt_rq = (struct rt_rq **)ptr;
8191 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8192#endif /* CONFIG_USER_SCHED */
8193#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8194 }
dd41f596 8195
57d885fe
GH
8196#ifdef CONFIG_SMP
8197 init_defrootdomain();
8198#endif
8199
d0b27fa7
PZ
8200 init_rt_bandwidth(&def_rt_bandwidth,
8201 global_rt_period(), global_rt_runtime());
8202
8203#ifdef CONFIG_RT_GROUP_SCHED
8204 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8205 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8206#ifdef CONFIG_USER_SCHED
8207 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8208 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8209#endif /* CONFIG_USER_SCHED */
8210#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8211
052f1dc7 8212#ifdef CONFIG_GROUP_SCHED
6f505b16 8213 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8214 INIT_LIST_HEAD(&init_task_group.children);
8215
8216#ifdef CONFIG_USER_SCHED
8217 INIT_LIST_HEAD(&root_task_group.children);
8218 init_task_group.parent = &root_task_group;
8219 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8220#endif /* CONFIG_USER_SCHED */
8221#endif /* CONFIG_GROUP_SCHED */
6f505b16 8222
0a945022 8223 for_each_possible_cpu(i) {
70b97a7f 8224 struct rq *rq;
1da177e4
LT
8225
8226 rq = cpu_rq(i);
8227 spin_lock_init(&rq->lock);
7897986b 8228 rq->nr_running = 0;
dd41f596 8229 init_cfs_rq(&rq->cfs, rq);
6f505b16 8230 init_rt_rq(&rq->rt, rq);
dd41f596 8231#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8232 init_task_group.shares = init_task_group_load;
6f505b16 8233 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8234#ifdef CONFIG_CGROUP_SCHED
8235 /*
8236 * How much cpu bandwidth does init_task_group get?
8237 *
8238 * In case of task-groups formed thr' the cgroup filesystem, it
8239 * gets 100% of the cpu resources in the system. This overall
8240 * system cpu resource is divided among the tasks of
8241 * init_task_group and its child task-groups in a fair manner,
8242 * based on each entity's (task or task-group's) weight
8243 * (se->load.weight).
8244 *
8245 * In other words, if init_task_group has 10 tasks of weight
8246 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8247 * then A0's share of the cpu resource is:
8248 *
8249 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8250 *
8251 * We achieve this by letting init_task_group's tasks sit
8252 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8253 */
ec7dc8ac 8254 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8255#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8256 root_task_group.shares = NICE_0_LOAD;
8257 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8258 /*
8259 * In case of task-groups formed thr' the user id of tasks,
8260 * init_task_group represents tasks belonging to root user.
8261 * Hence it forms a sibling of all subsequent groups formed.
8262 * In this case, init_task_group gets only a fraction of overall
8263 * system cpu resource, based on the weight assigned to root
8264 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8265 * by letting tasks of init_task_group sit in a separate cfs_rq
8266 * (init_cfs_rq) and having one entity represent this group of
8267 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8268 */
ec7dc8ac 8269 init_tg_cfs_entry(&init_task_group,
6f505b16 8270 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8271 &per_cpu(init_sched_entity, i), i, 1,
8272 root_task_group.se[i]);
6f505b16 8273
052f1dc7 8274#endif
354d60c2
DG
8275#endif /* CONFIG_FAIR_GROUP_SCHED */
8276
8277 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8278#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8279 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8280#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8281 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8282#elif defined CONFIG_USER_SCHED
eff766a6 8283 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8284 init_tg_rt_entry(&init_task_group,
6f505b16 8285 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8286 &per_cpu(init_sched_rt_entity, i), i, 1,
8287 root_task_group.rt_se[i]);
354d60c2 8288#endif
dd41f596 8289#endif
1da177e4 8290
dd41f596
IM
8291 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8292 rq->cpu_load[j] = 0;
1da177e4 8293#ifdef CONFIG_SMP
41c7ce9a 8294 rq->sd = NULL;
57d885fe 8295 rq->rd = NULL;
1da177e4 8296 rq->active_balance = 0;
dd41f596 8297 rq->next_balance = jiffies;
1da177e4 8298 rq->push_cpu = 0;
0a2966b4 8299 rq->cpu = i;
1f11eb6a 8300 rq->online = 0;
1da177e4
LT
8301 rq->migration_thread = NULL;
8302 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8303 rq_attach_root(rq, &def_root_domain);
1da177e4 8304#endif
8f4d37ec 8305 init_rq_hrtick(rq);
1da177e4 8306 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8307 }
8308
2dd73a4f 8309 set_load_weight(&init_task);
b50f60ce 8310
e107be36
AK
8311#ifdef CONFIG_PREEMPT_NOTIFIERS
8312 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8313#endif
8314
c9819f45 8315#ifdef CONFIG_SMP
962cf36c 8316 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8317#endif
8318
b50f60ce
HC
8319#ifdef CONFIG_RT_MUTEXES
8320 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8321#endif
8322
1da177e4
LT
8323 /*
8324 * The boot idle thread does lazy MMU switching as well:
8325 */
8326 atomic_inc(&init_mm.mm_count);
8327 enter_lazy_tlb(&init_mm, current);
8328
8329 /*
8330 * Make us the idle thread. Technically, schedule() should not be
8331 * called from this thread, however somewhere below it might be,
8332 * but because we are the idle thread, we just pick up running again
8333 * when this runqueue becomes "idle".
8334 */
8335 init_idle(current, smp_processor_id());
dd41f596
IM
8336 /*
8337 * During early bootup we pretend to be a normal task:
8338 */
8339 current->sched_class = &fair_sched_class;
6892b75e
IM
8340
8341 scheduler_running = 1;
1da177e4
LT
8342}
8343
8344#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8345void __might_sleep(char *file, int line)
8346{
48f24c4d 8347#ifdef in_atomic
1da177e4
LT
8348 static unsigned long prev_jiffy; /* ratelimiting */
8349
aef745fc
IM
8350 if ((!in_atomic() && !irqs_disabled()) ||
8351 system_state != SYSTEM_RUNNING || oops_in_progress)
8352 return;
8353 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8354 return;
8355 prev_jiffy = jiffies;
8356
8357 printk(KERN_ERR
8358 "BUG: sleeping function called from invalid context at %s:%d\n",
8359 file, line);
8360 printk(KERN_ERR
8361 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8362 in_atomic(), irqs_disabled(),
8363 current->pid, current->comm);
8364
8365 debug_show_held_locks(current);
8366 if (irqs_disabled())
8367 print_irqtrace_events(current);
8368 dump_stack();
1da177e4
LT
8369#endif
8370}
8371EXPORT_SYMBOL(__might_sleep);
8372#endif
8373
8374#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8375static void normalize_task(struct rq *rq, struct task_struct *p)
8376{
8377 int on_rq;
3e51f33f 8378
3a5e4dc1
AK
8379 update_rq_clock(rq);
8380 on_rq = p->se.on_rq;
8381 if (on_rq)
8382 deactivate_task(rq, p, 0);
8383 __setscheduler(rq, p, SCHED_NORMAL, 0);
8384 if (on_rq) {
8385 activate_task(rq, p, 0);
8386 resched_task(rq->curr);
8387 }
8388}
8389
1da177e4
LT
8390void normalize_rt_tasks(void)
8391{
a0f98a1c 8392 struct task_struct *g, *p;
1da177e4 8393 unsigned long flags;
70b97a7f 8394 struct rq *rq;
1da177e4 8395
4cf5d77a 8396 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8397 do_each_thread(g, p) {
178be793
IM
8398 /*
8399 * Only normalize user tasks:
8400 */
8401 if (!p->mm)
8402 continue;
8403
6cfb0d5d 8404 p->se.exec_start = 0;
6cfb0d5d 8405#ifdef CONFIG_SCHEDSTATS
dd41f596 8406 p->se.wait_start = 0;
dd41f596 8407 p->se.sleep_start = 0;
dd41f596 8408 p->se.block_start = 0;
6cfb0d5d 8409#endif
dd41f596
IM
8410
8411 if (!rt_task(p)) {
8412 /*
8413 * Renice negative nice level userspace
8414 * tasks back to 0:
8415 */
8416 if (TASK_NICE(p) < 0 && p->mm)
8417 set_user_nice(p, 0);
1da177e4 8418 continue;
dd41f596 8419 }
1da177e4 8420
4cf5d77a 8421 spin_lock(&p->pi_lock);
b29739f9 8422 rq = __task_rq_lock(p);
1da177e4 8423
178be793 8424 normalize_task(rq, p);
3a5e4dc1 8425
b29739f9 8426 __task_rq_unlock(rq);
4cf5d77a 8427 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8428 } while_each_thread(g, p);
8429
4cf5d77a 8430 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8431}
8432
8433#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8434
8435#ifdef CONFIG_IA64
8436/*
8437 * These functions are only useful for the IA64 MCA handling.
8438 *
8439 * They can only be called when the whole system has been
8440 * stopped - every CPU needs to be quiescent, and no scheduling
8441 * activity can take place. Using them for anything else would
8442 * be a serious bug, and as a result, they aren't even visible
8443 * under any other configuration.
8444 */
8445
8446/**
8447 * curr_task - return the current task for a given cpu.
8448 * @cpu: the processor in question.
8449 *
8450 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8451 */
36c8b586 8452struct task_struct *curr_task(int cpu)
1df5c10a
LT
8453{
8454 return cpu_curr(cpu);
8455}
8456
8457/**
8458 * set_curr_task - set the current task for a given cpu.
8459 * @cpu: the processor in question.
8460 * @p: the task pointer to set.
8461 *
8462 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8463 * are serviced on a separate stack. It allows the architecture to switch the
8464 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8465 * must be called with all CPU's synchronized, and interrupts disabled, the
8466 * and caller must save the original value of the current task (see
8467 * curr_task() above) and restore that value before reenabling interrupts and
8468 * re-starting the system.
8469 *
8470 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8471 */
36c8b586 8472void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8473{
8474 cpu_curr(cpu) = p;
8475}
8476
8477#endif
29f59db3 8478
bccbe08a
PZ
8479#ifdef CONFIG_FAIR_GROUP_SCHED
8480static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8481{
8482 int i;
8483
8484 for_each_possible_cpu(i) {
8485 if (tg->cfs_rq)
8486 kfree(tg->cfs_rq[i]);
8487 if (tg->se)
8488 kfree(tg->se[i]);
6f505b16
PZ
8489 }
8490
8491 kfree(tg->cfs_rq);
8492 kfree(tg->se);
6f505b16
PZ
8493}
8494
ec7dc8ac
DG
8495static
8496int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8497{
29f59db3 8498 struct cfs_rq *cfs_rq;
ec7dc8ac 8499 struct sched_entity *se, *parent_se;
9b5b7751 8500 struct rq *rq;
29f59db3
SV
8501 int i;
8502
434d53b0 8503 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8504 if (!tg->cfs_rq)
8505 goto err;
434d53b0 8506 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8507 if (!tg->se)
8508 goto err;
052f1dc7
PZ
8509
8510 tg->shares = NICE_0_LOAD;
29f59db3
SV
8511
8512 for_each_possible_cpu(i) {
9b5b7751 8513 rq = cpu_rq(i);
29f59db3 8514
6f505b16
PZ
8515 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8516 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8517 if (!cfs_rq)
8518 goto err;
8519
6f505b16
PZ
8520 se = kmalloc_node(sizeof(struct sched_entity),
8521 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8522 if (!se)
8523 goto err;
8524
ec7dc8ac
DG
8525 parent_se = parent ? parent->se[i] : NULL;
8526 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8527 }
8528
8529 return 1;
8530
8531 err:
8532 return 0;
8533}
8534
8535static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8536{
8537 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8538 &cpu_rq(cpu)->leaf_cfs_rq_list);
8539}
8540
8541static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8542{
8543 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8544}
6d6bc0ad 8545#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8546static inline void free_fair_sched_group(struct task_group *tg)
8547{
8548}
8549
ec7dc8ac
DG
8550static inline
8551int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8552{
8553 return 1;
8554}
8555
8556static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8557{
8558}
8559
8560static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8561{
8562}
6d6bc0ad 8563#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8564
8565#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8566static void free_rt_sched_group(struct task_group *tg)
8567{
8568 int i;
8569
d0b27fa7
PZ
8570 destroy_rt_bandwidth(&tg->rt_bandwidth);
8571
bccbe08a
PZ
8572 for_each_possible_cpu(i) {
8573 if (tg->rt_rq)
8574 kfree(tg->rt_rq[i]);
8575 if (tg->rt_se)
8576 kfree(tg->rt_se[i]);
8577 }
8578
8579 kfree(tg->rt_rq);
8580 kfree(tg->rt_se);
8581}
8582
ec7dc8ac
DG
8583static
8584int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8585{
8586 struct rt_rq *rt_rq;
ec7dc8ac 8587 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8588 struct rq *rq;
8589 int i;
8590
434d53b0 8591 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8592 if (!tg->rt_rq)
8593 goto err;
434d53b0 8594 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8595 if (!tg->rt_se)
8596 goto err;
8597
d0b27fa7
PZ
8598 init_rt_bandwidth(&tg->rt_bandwidth,
8599 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8600
8601 for_each_possible_cpu(i) {
8602 rq = cpu_rq(i);
8603
6f505b16
PZ
8604 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8605 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8606 if (!rt_rq)
8607 goto err;
29f59db3 8608
6f505b16
PZ
8609 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8610 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8611 if (!rt_se)
8612 goto err;
29f59db3 8613
ec7dc8ac
DG
8614 parent_se = parent ? parent->rt_se[i] : NULL;
8615 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8616 }
8617
bccbe08a
PZ
8618 return 1;
8619
8620 err:
8621 return 0;
8622}
8623
8624static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8625{
8626 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8627 &cpu_rq(cpu)->leaf_rt_rq_list);
8628}
8629
8630static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8631{
8632 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8633}
6d6bc0ad 8634#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8635static inline void free_rt_sched_group(struct task_group *tg)
8636{
8637}
8638
ec7dc8ac
DG
8639static inline
8640int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8641{
8642 return 1;
8643}
8644
8645static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8646{
8647}
8648
8649static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8650{
8651}
6d6bc0ad 8652#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8653
d0b27fa7 8654#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8655static void free_sched_group(struct task_group *tg)
8656{
8657 free_fair_sched_group(tg);
8658 free_rt_sched_group(tg);
8659 kfree(tg);
8660}
8661
8662/* allocate runqueue etc for a new task group */
ec7dc8ac 8663struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8664{
8665 struct task_group *tg;
8666 unsigned long flags;
8667 int i;
8668
8669 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8670 if (!tg)
8671 return ERR_PTR(-ENOMEM);
8672
ec7dc8ac 8673 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8674 goto err;
8675
ec7dc8ac 8676 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8677 goto err;
8678
8ed36996 8679 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8680 for_each_possible_cpu(i) {
bccbe08a
PZ
8681 register_fair_sched_group(tg, i);
8682 register_rt_sched_group(tg, i);
9b5b7751 8683 }
6f505b16 8684 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8685
8686 WARN_ON(!parent); /* root should already exist */
8687
8688 tg->parent = parent;
f473aa5e 8689 INIT_LIST_HEAD(&tg->children);
09f2724a 8690 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8691 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8692
9b5b7751 8693 return tg;
29f59db3
SV
8694
8695err:
6f505b16 8696 free_sched_group(tg);
29f59db3
SV
8697 return ERR_PTR(-ENOMEM);
8698}
8699
9b5b7751 8700/* rcu callback to free various structures associated with a task group */
6f505b16 8701static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8702{
29f59db3 8703 /* now it should be safe to free those cfs_rqs */
6f505b16 8704 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8705}
8706
9b5b7751 8707/* Destroy runqueue etc associated with a task group */
4cf86d77 8708void sched_destroy_group(struct task_group *tg)
29f59db3 8709{
8ed36996 8710 unsigned long flags;
9b5b7751 8711 int i;
29f59db3 8712
8ed36996 8713 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8714 for_each_possible_cpu(i) {
bccbe08a
PZ
8715 unregister_fair_sched_group(tg, i);
8716 unregister_rt_sched_group(tg, i);
9b5b7751 8717 }
6f505b16 8718 list_del_rcu(&tg->list);
f473aa5e 8719 list_del_rcu(&tg->siblings);
8ed36996 8720 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8721
9b5b7751 8722 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8723 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8724}
8725
9b5b7751 8726/* change task's runqueue when it moves between groups.
3a252015
IM
8727 * The caller of this function should have put the task in its new group
8728 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8729 * reflect its new group.
9b5b7751
SV
8730 */
8731void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8732{
8733 int on_rq, running;
8734 unsigned long flags;
8735 struct rq *rq;
8736
8737 rq = task_rq_lock(tsk, &flags);
8738
29f59db3
SV
8739 update_rq_clock(rq);
8740
051a1d1a 8741 running = task_current(rq, tsk);
29f59db3
SV
8742 on_rq = tsk->se.on_rq;
8743
0e1f3483 8744 if (on_rq)
29f59db3 8745 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8746 if (unlikely(running))
8747 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8748
6f505b16 8749 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8750
810b3817
PZ
8751#ifdef CONFIG_FAIR_GROUP_SCHED
8752 if (tsk->sched_class->moved_group)
8753 tsk->sched_class->moved_group(tsk);
8754#endif
8755
0e1f3483
HS
8756 if (unlikely(running))
8757 tsk->sched_class->set_curr_task(rq);
8758 if (on_rq)
7074badb 8759 enqueue_task(rq, tsk, 0);
29f59db3 8760
29f59db3
SV
8761 task_rq_unlock(rq, &flags);
8762}
6d6bc0ad 8763#endif /* CONFIG_GROUP_SCHED */
29f59db3 8764
052f1dc7 8765#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8766static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8767{
8768 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8769 int on_rq;
8770
29f59db3 8771 on_rq = se->on_rq;
62fb1851 8772 if (on_rq)
29f59db3
SV
8773 dequeue_entity(cfs_rq, se, 0);
8774
8775 se->load.weight = shares;
e05510d0 8776 se->load.inv_weight = 0;
29f59db3 8777
62fb1851 8778 if (on_rq)
29f59db3 8779 enqueue_entity(cfs_rq, se, 0);
c09595f6 8780}
62fb1851 8781
c09595f6
PZ
8782static void set_se_shares(struct sched_entity *se, unsigned long shares)
8783{
8784 struct cfs_rq *cfs_rq = se->cfs_rq;
8785 struct rq *rq = cfs_rq->rq;
8786 unsigned long flags;
8787
8788 spin_lock_irqsave(&rq->lock, flags);
8789 __set_se_shares(se, shares);
8790 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8791}
8792
8ed36996
PZ
8793static DEFINE_MUTEX(shares_mutex);
8794
4cf86d77 8795int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8796{
8797 int i;
8ed36996 8798 unsigned long flags;
c61935fd 8799
ec7dc8ac
DG
8800 /*
8801 * We can't change the weight of the root cgroup.
8802 */
8803 if (!tg->se[0])
8804 return -EINVAL;
8805
18d95a28
PZ
8806 if (shares < MIN_SHARES)
8807 shares = MIN_SHARES;
cb4ad1ff
MX
8808 else if (shares > MAX_SHARES)
8809 shares = MAX_SHARES;
62fb1851 8810
8ed36996 8811 mutex_lock(&shares_mutex);
9b5b7751 8812 if (tg->shares == shares)
5cb350ba 8813 goto done;
29f59db3 8814
8ed36996 8815 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8816 for_each_possible_cpu(i)
8817 unregister_fair_sched_group(tg, i);
f473aa5e 8818 list_del_rcu(&tg->siblings);
8ed36996 8819 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8820
8821 /* wait for any ongoing reference to this group to finish */
8822 synchronize_sched();
8823
8824 /*
8825 * Now we are free to modify the group's share on each cpu
8826 * w/o tripping rebalance_share or load_balance_fair.
8827 */
9b5b7751 8828 tg->shares = shares;
c09595f6
PZ
8829 for_each_possible_cpu(i) {
8830 /*
8831 * force a rebalance
8832 */
8833 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8834 set_se_shares(tg->se[i], shares);
c09595f6 8835 }
29f59db3 8836
6b2d7700
SV
8837 /*
8838 * Enable load balance activity on this group, by inserting it back on
8839 * each cpu's rq->leaf_cfs_rq_list.
8840 */
8ed36996 8841 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8842 for_each_possible_cpu(i)
8843 register_fair_sched_group(tg, i);
f473aa5e 8844 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8845 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8846done:
8ed36996 8847 mutex_unlock(&shares_mutex);
9b5b7751 8848 return 0;
29f59db3
SV
8849}
8850
5cb350ba
DG
8851unsigned long sched_group_shares(struct task_group *tg)
8852{
8853 return tg->shares;
8854}
052f1dc7 8855#endif
5cb350ba 8856
052f1dc7 8857#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8858/*
9f0c1e56 8859 * Ensure that the real time constraints are schedulable.
6f505b16 8860 */
9f0c1e56
PZ
8861static DEFINE_MUTEX(rt_constraints_mutex);
8862
8863static unsigned long to_ratio(u64 period, u64 runtime)
8864{
8865 if (runtime == RUNTIME_INF)
9a7e0b18 8866 return 1ULL << 20;
9f0c1e56 8867
9a7e0b18 8868 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8869}
8870
9a7e0b18
PZ
8871/* Must be called with tasklist_lock held */
8872static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8873{
9a7e0b18 8874 struct task_struct *g, *p;
b40b2e8e 8875
9a7e0b18
PZ
8876 do_each_thread(g, p) {
8877 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8878 return 1;
8879 } while_each_thread(g, p);
b40b2e8e 8880
9a7e0b18
PZ
8881 return 0;
8882}
b40b2e8e 8883
9a7e0b18
PZ
8884struct rt_schedulable_data {
8885 struct task_group *tg;
8886 u64 rt_period;
8887 u64 rt_runtime;
8888};
b40b2e8e 8889
9a7e0b18
PZ
8890static int tg_schedulable(struct task_group *tg, void *data)
8891{
8892 struct rt_schedulable_data *d = data;
8893 struct task_group *child;
8894 unsigned long total, sum = 0;
8895 u64 period, runtime;
b40b2e8e 8896
9a7e0b18
PZ
8897 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8898 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8899
9a7e0b18
PZ
8900 if (tg == d->tg) {
8901 period = d->rt_period;
8902 runtime = d->rt_runtime;
b40b2e8e 8903 }
b40b2e8e 8904
4653f803
PZ
8905 /*
8906 * Cannot have more runtime than the period.
8907 */
8908 if (runtime > period && runtime != RUNTIME_INF)
8909 return -EINVAL;
6f505b16 8910
4653f803
PZ
8911 /*
8912 * Ensure we don't starve existing RT tasks.
8913 */
9a7e0b18
PZ
8914 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8915 return -EBUSY;
6f505b16 8916
9a7e0b18 8917 total = to_ratio(period, runtime);
6f505b16 8918
4653f803
PZ
8919 /*
8920 * Nobody can have more than the global setting allows.
8921 */
8922 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8923 return -EINVAL;
6f505b16 8924
4653f803
PZ
8925 /*
8926 * The sum of our children's runtime should not exceed our own.
8927 */
9a7e0b18
PZ
8928 list_for_each_entry_rcu(child, &tg->children, siblings) {
8929 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8930 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8931
9a7e0b18
PZ
8932 if (child == d->tg) {
8933 period = d->rt_period;
8934 runtime = d->rt_runtime;
8935 }
6f505b16 8936
9a7e0b18 8937 sum += to_ratio(period, runtime);
9f0c1e56 8938 }
6f505b16 8939
9a7e0b18
PZ
8940 if (sum > total)
8941 return -EINVAL;
8942
8943 return 0;
6f505b16
PZ
8944}
8945
9a7e0b18 8946static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8947{
9a7e0b18
PZ
8948 struct rt_schedulable_data data = {
8949 .tg = tg,
8950 .rt_period = period,
8951 .rt_runtime = runtime,
8952 };
8953
8954 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8955}
8956
d0b27fa7
PZ
8957static int tg_set_bandwidth(struct task_group *tg,
8958 u64 rt_period, u64 rt_runtime)
6f505b16 8959{
ac086bc2 8960 int i, err = 0;
9f0c1e56 8961
9f0c1e56 8962 mutex_lock(&rt_constraints_mutex);
521f1a24 8963 read_lock(&tasklist_lock);
9a7e0b18
PZ
8964 err = __rt_schedulable(tg, rt_period, rt_runtime);
8965 if (err)
9f0c1e56 8966 goto unlock;
ac086bc2
PZ
8967
8968 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8969 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8970 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8971
8972 for_each_possible_cpu(i) {
8973 struct rt_rq *rt_rq = tg->rt_rq[i];
8974
8975 spin_lock(&rt_rq->rt_runtime_lock);
8976 rt_rq->rt_runtime = rt_runtime;
8977 spin_unlock(&rt_rq->rt_runtime_lock);
8978 }
8979 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8980 unlock:
521f1a24 8981 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8982 mutex_unlock(&rt_constraints_mutex);
8983
8984 return err;
6f505b16
PZ
8985}
8986
d0b27fa7
PZ
8987int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8988{
8989 u64 rt_runtime, rt_period;
8990
8991 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8992 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8993 if (rt_runtime_us < 0)
8994 rt_runtime = RUNTIME_INF;
8995
8996 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8997}
8998
9f0c1e56
PZ
8999long sched_group_rt_runtime(struct task_group *tg)
9000{
9001 u64 rt_runtime_us;
9002
d0b27fa7 9003 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9004 return -1;
9005
d0b27fa7 9006 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9007 do_div(rt_runtime_us, NSEC_PER_USEC);
9008 return rt_runtime_us;
9009}
d0b27fa7
PZ
9010
9011int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9012{
9013 u64 rt_runtime, rt_period;
9014
9015 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9016 rt_runtime = tg->rt_bandwidth.rt_runtime;
9017
619b0488
R
9018 if (rt_period == 0)
9019 return -EINVAL;
9020
d0b27fa7
PZ
9021 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9022}
9023
9024long sched_group_rt_period(struct task_group *tg)
9025{
9026 u64 rt_period_us;
9027
9028 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9029 do_div(rt_period_us, NSEC_PER_USEC);
9030 return rt_period_us;
9031}
9032
9033static int sched_rt_global_constraints(void)
9034{
4653f803 9035 u64 runtime, period;
d0b27fa7
PZ
9036 int ret = 0;
9037
ec5d4989
HS
9038 if (sysctl_sched_rt_period <= 0)
9039 return -EINVAL;
9040
4653f803
PZ
9041 runtime = global_rt_runtime();
9042 period = global_rt_period();
9043
9044 /*
9045 * Sanity check on the sysctl variables.
9046 */
9047 if (runtime > period && runtime != RUNTIME_INF)
9048 return -EINVAL;
10b612f4 9049
d0b27fa7 9050 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9051 read_lock(&tasklist_lock);
4653f803 9052 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9053 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9054 mutex_unlock(&rt_constraints_mutex);
9055
9056 return ret;
9057}
6d6bc0ad 9058#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9059static int sched_rt_global_constraints(void)
9060{
ac086bc2
PZ
9061 unsigned long flags;
9062 int i;
9063
ec5d4989
HS
9064 if (sysctl_sched_rt_period <= 0)
9065 return -EINVAL;
9066
ac086bc2
PZ
9067 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9068 for_each_possible_cpu(i) {
9069 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9070
9071 spin_lock(&rt_rq->rt_runtime_lock);
9072 rt_rq->rt_runtime = global_rt_runtime();
9073 spin_unlock(&rt_rq->rt_runtime_lock);
9074 }
9075 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9076
d0b27fa7
PZ
9077 return 0;
9078}
6d6bc0ad 9079#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9080
9081int sched_rt_handler(struct ctl_table *table, int write,
9082 struct file *filp, void __user *buffer, size_t *lenp,
9083 loff_t *ppos)
9084{
9085 int ret;
9086 int old_period, old_runtime;
9087 static DEFINE_MUTEX(mutex);
9088
9089 mutex_lock(&mutex);
9090 old_period = sysctl_sched_rt_period;
9091 old_runtime = sysctl_sched_rt_runtime;
9092
9093 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9094
9095 if (!ret && write) {
9096 ret = sched_rt_global_constraints();
9097 if (ret) {
9098 sysctl_sched_rt_period = old_period;
9099 sysctl_sched_rt_runtime = old_runtime;
9100 } else {
9101 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9102 def_rt_bandwidth.rt_period =
9103 ns_to_ktime(global_rt_period());
9104 }
9105 }
9106 mutex_unlock(&mutex);
9107
9108 return ret;
9109}
68318b8e 9110
052f1dc7 9111#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9112
9113/* return corresponding task_group object of a cgroup */
2b01dfe3 9114static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9115{
2b01dfe3
PM
9116 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9117 struct task_group, css);
68318b8e
SV
9118}
9119
9120static struct cgroup_subsys_state *
2b01dfe3 9121cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9122{
ec7dc8ac 9123 struct task_group *tg, *parent;
68318b8e 9124
2b01dfe3 9125 if (!cgrp->parent) {
68318b8e 9126 /* This is early initialization for the top cgroup */
68318b8e
SV
9127 return &init_task_group.css;
9128 }
9129
ec7dc8ac
DG
9130 parent = cgroup_tg(cgrp->parent);
9131 tg = sched_create_group(parent);
68318b8e
SV
9132 if (IS_ERR(tg))
9133 return ERR_PTR(-ENOMEM);
9134
68318b8e
SV
9135 return &tg->css;
9136}
9137
41a2d6cf
IM
9138static void
9139cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9140{
2b01dfe3 9141 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9142
9143 sched_destroy_group(tg);
9144}
9145
41a2d6cf
IM
9146static int
9147cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9148 struct task_struct *tsk)
68318b8e 9149{
b68aa230
PZ
9150#ifdef CONFIG_RT_GROUP_SCHED
9151 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9152 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9153 return -EINVAL;
9154#else
68318b8e
SV
9155 /* We don't support RT-tasks being in separate groups */
9156 if (tsk->sched_class != &fair_sched_class)
9157 return -EINVAL;
b68aa230 9158#endif
68318b8e
SV
9159
9160 return 0;
9161}
9162
9163static void
2b01dfe3 9164cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9165 struct cgroup *old_cont, struct task_struct *tsk)
9166{
9167 sched_move_task(tsk);
9168}
9169
052f1dc7 9170#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9171static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9172 u64 shareval)
68318b8e 9173{
2b01dfe3 9174 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9175}
9176
f4c753b7 9177static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9178{
2b01dfe3 9179 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9180
9181 return (u64) tg->shares;
9182}
6d6bc0ad 9183#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9184
052f1dc7 9185#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9186static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9187 s64 val)
6f505b16 9188{
06ecb27c 9189 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9190}
9191
06ecb27c 9192static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9193{
06ecb27c 9194 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9195}
d0b27fa7
PZ
9196
9197static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9198 u64 rt_period_us)
9199{
9200 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9201}
9202
9203static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9204{
9205 return sched_group_rt_period(cgroup_tg(cgrp));
9206}
6d6bc0ad 9207#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9208
fe5c7cc2 9209static struct cftype cpu_files[] = {
052f1dc7 9210#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9211 {
9212 .name = "shares",
f4c753b7
PM
9213 .read_u64 = cpu_shares_read_u64,
9214 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9215 },
052f1dc7
PZ
9216#endif
9217#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9218 {
9f0c1e56 9219 .name = "rt_runtime_us",
06ecb27c
PM
9220 .read_s64 = cpu_rt_runtime_read,
9221 .write_s64 = cpu_rt_runtime_write,
6f505b16 9222 },
d0b27fa7
PZ
9223 {
9224 .name = "rt_period_us",
f4c753b7
PM
9225 .read_u64 = cpu_rt_period_read_uint,
9226 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9227 },
052f1dc7 9228#endif
68318b8e
SV
9229};
9230
9231static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9232{
fe5c7cc2 9233 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9234}
9235
9236struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9237 .name = "cpu",
9238 .create = cpu_cgroup_create,
9239 .destroy = cpu_cgroup_destroy,
9240 .can_attach = cpu_cgroup_can_attach,
9241 .attach = cpu_cgroup_attach,
9242 .populate = cpu_cgroup_populate,
9243 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9244 .early_init = 1,
9245};
9246
052f1dc7 9247#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9248
9249#ifdef CONFIG_CGROUP_CPUACCT
9250
9251/*
9252 * CPU accounting code for task groups.
9253 *
9254 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9255 * (balbir@in.ibm.com).
9256 */
9257
9258/* track cpu usage of a group of tasks */
9259struct cpuacct {
9260 struct cgroup_subsys_state css;
9261 /* cpuusage holds pointer to a u64-type object on every cpu */
9262 u64 *cpuusage;
9263};
9264
9265struct cgroup_subsys cpuacct_subsys;
9266
9267/* return cpu accounting group corresponding to this container */
32cd756a 9268static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9269{
32cd756a 9270 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9271 struct cpuacct, css);
9272}
9273
9274/* return cpu accounting group to which this task belongs */
9275static inline struct cpuacct *task_ca(struct task_struct *tsk)
9276{
9277 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9278 struct cpuacct, css);
9279}
9280
9281/* create a new cpu accounting group */
9282static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9283 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9284{
9285 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9286
9287 if (!ca)
9288 return ERR_PTR(-ENOMEM);
9289
9290 ca->cpuusage = alloc_percpu(u64);
9291 if (!ca->cpuusage) {
9292 kfree(ca);
9293 return ERR_PTR(-ENOMEM);
9294 }
9295
9296 return &ca->css;
9297}
9298
9299/* destroy an existing cpu accounting group */
41a2d6cf 9300static void
32cd756a 9301cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9302{
32cd756a 9303 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9304
9305 free_percpu(ca->cpuusage);
9306 kfree(ca);
9307}
9308
9309/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9310static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9311{
32cd756a 9312 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9313 u64 totalcpuusage = 0;
9314 int i;
9315
9316 for_each_possible_cpu(i) {
9317 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9318
9319 /*
9320 * Take rq->lock to make 64-bit addition safe on 32-bit
9321 * platforms.
9322 */
9323 spin_lock_irq(&cpu_rq(i)->lock);
9324 totalcpuusage += *cpuusage;
9325 spin_unlock_irq(&cpu_rq(i)->lock);
9326 }
9327
9328 return totalcpuusage;
9329}
9330
0297b803
DG
9331static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9332 u64 reset)
9333{
9334 struct cpuacct *ca = cgroup_ca(cgrp);
9335 int err = 0;
9336 int i;
9337
9338 if (reset) {
9339 err = -EINVAL;
9340 goto out;
9341 }
9342
9343 for_each_possible_cpu(i) {
9344 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9345
9346 spin_lock_irq(&cpu_rq(i)->lock);
9347 *cpuusage = 0;
9348 spin_unlock_irq(&cpu_rq(i)->lock);
9349 }
9350out:
9351 return err;
9352}
9353
d842de87
SV
9354static struct cftype files[] = {
9355 {
9356 .name = "usage",
f4c753b7
PM
9357 .read_u64 = cpuusage_read,
9358 .write_u64 = cpuusage_write,
d842de87
SV
9359 },
9360};
9361
32cd756a 9362static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9363{
32cd756a 9364 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9365}
9366
9367/*
9368 * charge this task's execution time to its accounting group.
9369 *
9370 * called with rq->lock held.
9371 */
9372static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9373{
9374 struct cpuacct *ca;
9375
9376 if (!cpuacct_subsys.active)
9377 return;
9378
9379 ca = task_ca(tsk);
9380 if (ca) {
9381 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9382
9383 *cpuusage += cputime;
9384 }
9385}
9386
9387struct cgroup_subsys cpuacct_subsys = {
9388 .name = "cpuacct",
9389 .create = cpuacct_create,
9390 .destroy = cpuacct_destroy,
9391 .populate = cpuacct_populate,
9392 .subsys_id = cpuacct_subsys_id,
9393};
9394#endif /* CONFIG_CGROUP_CPUACCT */