]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: add in_atomic_preempt_off()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
5517d86b 55#include <linux/reciprocal_div.h>
1da177e4 56
5517d86b 57#include <asm/tlb.h>
1da177e4
LT
58#include <asm/unistd.h>
59
b035b6de
AD
60/*
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
1da177e4
LT
70/*
71 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
94/*
95 * These are the 'tuning knobs' of the scheduler:
96 *
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
100 */
101#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102#define DEF_TIMESLICE (100 * HZ / 1000)
103#define ON_RUNQUEUE_WEIGHT 30
104#define CHILD_PENALTY 95
105#define PARENT_PENALTY 100
106#define EXIT_WEIGHT 3
107#define PRIO_BONUS_RATIO 25
108#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109#define INTERACTIVE_DELTA 2
110#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111#define STARVATION_LIMIT (MAX_SLEEP_AVG)
112#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
113
114/*
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
119 *
120 * This part scales the interactivity limit depending on niceness.
121 *
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
124 *
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 *
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
134 *
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
140 */
141
142#define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
145
146#define GRANULARITY (10 * HZ / 1000 ? : 1)
147
148#ifdef CONFIG_SMP
149#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152#else
153#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155#endif
156
157#define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
159
160#define DELTA(p) \
013d3868
MA
161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
1da177e4
LT
163
164#define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
166
167#define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170
171#define TASK_PREEMPTS_CURR(p, rq) \
d5f9f942 172 ((p)->prio < (rq)->curr->prio)
1da177e4 173
1da177e4 174#define SCALE_PRIO(x, prio) \
2dd73a4f 175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 176
2dd73a4f 177static unsigned int static_prio_timeslice(int static_prio)
1da177e4 178{
2dd73a4f
PW
179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 181 else
2dd73a4f 182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 183}
2dd73a4f 184
5517d86b
ED
185#ifdef CONFIG_SMP
186/*
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
189 */
190static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
191{
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
193}
194
195/*
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
198 */
199static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
200{
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
203}
204#endif
205
91fcdd4e
BP
206/*
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
209 *
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
213 */
214
36c8b586 215static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
216{
217 return static_prio_timeslice(p->static_prio);
218}
219
1da177e4
LT
220/*
221 * These are the runqueue data structures:
222 */
223
1da177e4
LT
224struct prio_array {
225 unsigned int nr_active;
d444886e 226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
227 struct list_head queue[MAX_PRIO];
228};
229
230/*
231 * This is the main, per-CPU runqueue data structure.
232 *
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
236 */
70b97a7f 237struct rq {
1da177e4
LT
238 spinlock_t lock;
239
240 /*
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
243 */
244 unsigned long nr_running;
2dd73a4f 245 unsigned long raw_weighted_load;
1da177e4 246#ifdef CONFIG_SMP
7897986b 247 unsigned long cpu_load[3];
bdecea3a 248 unsigned char idle_at_tick;
46cb4b7c
SS
249#ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251#endif
1da177e4
LT
252#endif
253 unsigned long long nr_switches;
254
255 /*
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
260 */
261 unsigned long nr_uninterruptible;
262
263 unsigned long expired_timestamp;
b18ec803
MG
264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
36c8b586 266 struct task_struct *curr, *idle;
c9819f45 267 unsigned long next_balance;
1da177e4 268 struct mm_struct *prev_mm;
70b97a7f 269 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
270 int best_expired_prio;
271 atomic_t nr_iowait;
272
273#ifdef CONFIG_SMP
274 struct sched_domain *sd;
275
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
0a2966b4 279 int cpu; /* cpu of this runqueue */
1da177e4 280
36c8b586 281 struct task_struct *migration_thread;
1da177e4
LT
282 struct list_head migration_queue;
283#endif
284
285#ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
288
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
294
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
299
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303#endif
fcb99371 304 struct lock_class_key rq_lock_key;
1da177e4
LT
305};
306
c3396620 307static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
5be9361c 308static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 309
0a2966b4
CL
310static inline int cpu_of(struct rq *rq)
311{
312#ifdef CONFIG_SMP
313 return rq->cpu;
314#else
315 return 0;
316#endif
317}
318
674311d5
NP
319/*
320 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 321 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
322 *
323 * The domain tree of any CPU may only be accessed from within
324 * preempt-disabled sections.
325 */
48f24c4d
IM
326#define for_each_domain(cpu, __sd) \
327 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
328
329#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
330#define this_rq() (&__get_cpu_var(runqueues))
331#define task_rq(p) cpu_rq(task_cpu(p))
332#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
333
1da177e4 334#ifndef prepare_arch_switch
4866cde0
NP
335# define prepare_arch_switch(next) do { } while (0)
336#endif
337#ifndef finish_arch_switch
338# define finish_arch_switch(prev) do { } while (0)
339#endif
340
341#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 342static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
343{
344 return rq->curr == p;
345}
346
70b97a7f 347static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
348{
349}
350
70b97a7f 351static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 352{
da04c035
IM
353#ifdef CONFIG_DEBUG_SPINLOCK
354 /* this is a valid case when another task releases the spinlock */
355 rq->lock.owner = current;
356#endif
8a25d5de
IM
357 /*
358 * If we are tracking spinlock dependencies then we have to
359 * fix up the runqueue lock - which gets 'carried over' from
360 * prev into current:
361 */
362 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
363
4866cde0
NP
364 spin_unlock_irq(&rq->lock);
365}
366
367#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 368static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
369{
370#ifdef CONFIG_SMP
371 return p->oncpu;
372#else
373 return rq->curr == p;
374#endif
375}
376
70b97a7f 377static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
378{
379#ifdef CONFIG_SMP
380 /*
381 * We can optimise this out completely for !SMP, because the
382 * SMP rebalancing from interrupt is the only thing that cares
383 * here.
384 */
385 next->oncpu = 1;
386#endif
387#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
388 spin_unlock_irq(&rq->lock);
389#else
390 spin_unlock(&rq->lock);
391#endif
392}
393
70b97a7f 394static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
395{
396#ifdef CONFIG_SMP
397 /*
398 * After ->oncpu is cleared, the task can be moved to a different CPU.
399 * We must ensure this doesn't happen until the switch is completely
400 * finished.
401 */
402 smp_wmb();
403 prev->oncpu = 0;
404#endif
405#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
406 local_irq_enable();
1da177e4 407#endif
4866cde0
NP
408}
409#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 410
b29739f9
IM
411/*
412 * __task_rq_lock - lock the runqueue a given task resides on.
413 * Must be called interrupts disabled.
414 */
70b97a7f 415static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
416 __acquires(rq->lock)
417{
70b97a7f 418 struct rq *rq;
b29739f9
IM
419
420repeat_lock_task:
421 rq = task_rq(p);
422 spin_lock(&rq->lock);
423 if (unlikely(rq != task_rq(p))) {
424 spin_unlock(&rq->lock);
425 goto repeat_lock_task;
426 }
427 return rq;
428}
429
1da177e4
LT
430/*
431 * task_rq_lock - lock the runqueue a given task resides on and disable
432 * interrupts. Note the ordering: we can safely lookup the task_rq without
433 * explicitly disabling preemption.
434 */
70b97a7f 435static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
436 __acquires(rq->lock)
437{
70b97a7f 438 struct rq *rq;
1da177e4
LT
439
440repeat_lock_task:
441 local_irq_save(*flags);
442 rq = task_rq(p);
443 spin_lock(&rq->lock);
444 if (unlikely(rq != task_rq(p))) {
445 spin_unlock_irqrestore(&rq->lock, *flags);
446 goto repeat_lock_task;
447 }
448 return rq;
449}
450
70b97a7f 451static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
452 __releases(rq->lock)
453{
454 spin_unlock(&rq->lock);
455}
456
70b97a7f 457static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
458 __releases(rq->lock)
459{
460 spin_unlock_irqrestore(&rq->lock, *flags);
461}
462
463#ifdef CONFIG_SCHEDSTATS
464/*
465 * bump this up when changing the output format or the meaning of an existing
466 * format, so that tools can adapt (or abort)
467 */
06066714 468#define SCHEDSTAT_VERSION 14
1da177e4
LT
469
470static int show_schedstat(struct seq_file *seq, void *v)
471{
472 int cpu;
473
474 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
475 seq_printf(seq, "timestamp %lu\n", jiffies);
476 for_each_online_cpu(cpu) {
70b97a7f 477 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
478#ifdef CONFIG_SMP
479 struct sched_domain *sd;
480 int dcnt = 0;
481#endif
482
483 /* runqueue-specific stats */
484 seq_printf(seq,
485 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
486 cpu, rq->yld_both_empty,
487 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
488 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
489 rq->ttwu_cnt, rq->ttwu_local,
490 rq->rq_sched_info.cpu_time,
491 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
492
493 seq_printf(seq, "\n");
494
495#ifdef CONFIG_SMP
496 /* domain-specific stats */
674311d5 497 preempt_disable();
1da177e4 498 for_each_domain(cpu, sd) {
d15bcfdb 499 enum cpu_idle_type itype;
1da177e4
LT
500 char mask_str[NR_CPUS];
501
502 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
503 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
d15bcfdb 504 for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
1da177e4 505 itype++) {
33859f7f
MOS
506 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
507 "%lu",
1da177e4
LT
508 sd->lb_cnt[itype],
509 sd->lb_balanced[itype],
510 sd->lb_failed[itype],
511 sd->lb_imbalance[itype],
512 sd->lb_gained[itype],
513 sd->lb_hot_gained[itype],
514 sd->lb_nobusyq[itype],
06066714 515 sd->lb_nobusyg[itype]);
1da177e4 516 }
33859f7f
MOS
517 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
518 " %lu %lu %lu\n",
1da177e4 519 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
520 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
521 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
33859f7f
MOS
522 sd->ttwu_wake_remote, sd->ttwu_move_affine,
523 sd->ttwu_move_balance);
1da177e4 524 }
674311d5 525 preempt_enable();
1da177e4
LT
526#endif
527 }
528 return 0;
529}
530
531static int schedstat_open(struct inode *inode, struct file *file)
532{
533 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
534 char *buf = kmalloc(size, GFP_KERNEL);
535 struct seq_file *m;
536 int res;
537
538 if (!buf)
539 return -ENOMEM;
540 res = single_open(file, show_schedstat, NULL);
541 if (!res) {
542 m = file->private_data;
543 m->buf = buf;
544 m->size = size;
545 } else
546 kfree(buf);
547 return res;
548}
549
15ad7cdc 550const struct file_operations proc_schedstat_operations = {
1da177e4
LT
551 .open = schedstat_open,
552 .read = seq_read,
553 .llseek = seq_lseek,
554 .release = single_release,
555};
556
52f17b6c
CS
557/*
558 * Expects runqueue lock to be held for atomicity of update
559 */
560static inline void
561rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
562{
563 if (rq) {
564 rq->rq_sched_info.run_delay += delta_jiffies;
565 rq->rq_sched_info.pcnt++;
566 }
567}
568
569/*
570 * Expects runqueue lock to be held for atomicity of update
571 */
572static inline void
573rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
574{
575 if (rq)
576 rq->rq_sched_info.cpu_time += delta_jiffies;
577}
1da177e4
LT
578# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
579# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
580#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
581static inline void
582rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
583{}
584static inline void
585rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
586{}
1da177e4
LT
587# define schedstat_inc(rq, field) do { } while (0)
588# define schedstat_add(rq, field, amt) do { } while (0)
589#endif
590
591/*
cc2a73b5 592 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 593 */
70b97a7f 594static inline struct rq *this_rq_lock(void)
1da177e4
LT
595 __acquires(rq->lock)
596{
70b97a7f 597 struct rq *rq;
1da177e4
LT
598
599 local_irq_disable();
600 rq = this_rq();
601 spin_lock(&rq->lock);
602
603 return rq;
604}
605
52f17b6c 606#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
607/*
608 * Called when a process is dequeued from the active array and given
609 * the cpu. We should note that with the exception of interactive
610 * tasks, the expired queue will become the active queue after the active
611 * queue is empty, without explicitly dequeuing and requeuing tasks in the
612 * expired queue. (Interactive tasks may be requeued directly to the
613 * active queue, thus delaying tasks in the expired queue from running;
614 * see scheduler_tick()).
615 *
616 * This function is only called from sched_info_arrive(), rather than
617 * dequeue_task(). Even though a task may be queued and dequeued multiple
618 * times as it is shuffled about, we're really interested in knowing how
619 * long it was from the *first* time it was queued to the time that it
620 * finally hit a cpu.
621 */
36c8b586 622static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
623{
624 t->sched_info.last_queued = 0;
625}
626
627/*
628 * Called when a task finally hits the cpu. We can now calculate how
629 * long it was waiting to run. We also note when it began so that we
630 * can keep stats on how long its timeslice is.
631 */
36c8b586 632static void sched_info_arrive(struct task_struct *t)
1da177e4 633{
52f17b6c 634 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
635
636 if (t->sched_info.last_queued)
52f17b6c 637 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 638 sched_info_dequeued(t);
52f17b6c 639 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
640 t->sched_info.last_arrival = now;
641 t->sched_info.pcnt++;
642
52f17b6c 643 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
644}
645
646/*
647 * Called when a process is queued into either the active or expired
648 * array. The time is noted and later used to determine how long we
649 * had to wait for us to reach the cpu. Since the expired queue will
650 * become the active queue after active queue is empty, without dequeuing
651 * and requeuing any tasks, we are interested in queuing to either. It
652 * is unusual but not impossible for tasks to be dequeued and immediately
653 * requeued in the same or another array: this can happen in sched_yield(),
654 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
655 * to runqueue.
656 *
657 * This function is only called from enqueue_task(), but also only updates
658 * the timestamp if it is already not set. It's assumed that
659 * sched_info_dequeued() will clear that stamp when appropriate.
660 */
36c8b586 661static inline void sched_info_queued(struct task_struct *t)
1da177e4 662{
52f17b6c
CS
663 if (unlikely(sched_info_on()))
664 if (!t->sched_info.last_queued)
665 t->sched_info.last_queued = jiffies;
1da177e4
LT
666}
667
668/*
669 * Called when a process ceases being the active-running process, either
670 * voluntarily or involuntarily. Now we can calculate how long we ran.
671 */
36c8b586 672static inline void sched_info_depart(struct task_struct *t)
1da177e4 673{
52f17b6c 674 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 675
52f17b6c
CS
676 t->sched_info.cpu_time += delta_jiffies;
677 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
678}
679
680/*
681 * Called when tasks are switched involuntarily due, typically, to expiring
682 * their time slice. (This may also be called when switching to or from
683 * the idle task.) We are only called when prev != next.
684 */
36c8b586 685static inline void
52f17b6c 686__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 687{
70b97a7f 688 struct rq *rq = task_rq(prev);
1da177e4
LT
689
690 /*
691 * prev now departs the cpu. It's not interesting to record
692 * stats about how efficient we were at scheduling the idle
693 * process, however.
694 */
695 if (prev != rq->idle)
696 sched_info_depart(prev);
697
698 if (next != rq->idle)
699 sched_info_arrive(next);
700}
52f17b6c
CS
701static inline void
702sched_info_switch(struct task_struct *prev, struct task_struct *next)
703{
704 if (unlikely(sched_info_on()))
705 __sched_info_switch(prev, next);
706}
1da177e4
LT
707#else
708#define sched_info_queued(t) do { } while (0)
709#define sched_info_switch(t, next) do { } while (0)
52f17b6c 710#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
711
712/*
713 * Adding/removing a task to/from a priority array:
714 */
70b97a7f 715static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
716{
717 array->nr_active--;
718 list_del(&p->run_list);
719 if (list_empty(array->queue + p->prio))
720 __clear_bit(p->prio, array->bitmap);
721}
722
70b97a7f 723static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
724{
725 sched_info_queued(p);
726 list_add_tail(&p->run_list, array->queue + p->prio);
727 __set_bit(p->prio, array->bitmap);
728 array->nr_active++;
729 p->array = array;
730}
731
732/*
733 * Put task to the end of the run list without the overhead of dequeue
734 * followed by enqueue.
735 */
70b97a7f 736static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
737{
738 list_move_tail(&p->run_list, array->queue + p->prio);
739}
740
70b97a7f
IM
741static inline void
742enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
743{
744 list_add(&p->run_list, array->queue + p->prio);
745 __set_bit(p->prio, array->bitmap);
746 array->nr_active++;
747 p->array = array;
748}
749
750/*
b29739f9 751 * __normal_prio - return the priority that is based on the static
1da177e4
LT
752 * priority but is modified by bonuses/penalties.
753 *
754 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
755 * into the -5 ... 0 ... +5 bonus/penalty range.
756 *
757 * We use 25% of the full 0...39 priority range so that:
758 *
759 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
760 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
761 *
762 * Both properties are important to certain workloads.
763 */
b29739f9 764
36c8b586 765static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
766{
767 int bonus, prio;
768
1da177e4
LT
769 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
770
771 prio = p->static_prio - bonus;
772 if (prio < MAX_RT_PRIO)
773 prio = MAX_RT_PRIO;
774 if (prio > MAX_PRIO-1)
775 prio = MAX_PRIO-1;
776 return prio;
777}
778
2dd73a4f
PW
779/*
780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
781 * of tasks with abnormal "nice" values across CPUs the contribution that
782 * each task makes to its run queue's load is weighted according to its
783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
784 * scaled version of the new time slice allocation that they receive on time
785 * slice expiry etc.
786 */
787
788/*
789 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
790 * If static_prio_timeslice() is ever changed to break this assumption then
791 * this code will need modification
792 */
793#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
794#define LOAD_WEIGHT(lp) \
795 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
796#define PRIO_TO_LOAD_WEIGHT(prio) \
797 LOAD_WEIGHT(static_prio_timeslice(prio))
798#define RTPRIO_TO_LOAD_WEIGHT(rp) \
799 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
800
36c8b586 801static void set_load_weight(struct task_struct *p)
2dd73a4f 802{
b29739f9 803 if (has_rt_policy(p)) {
2dd73a4f
PW
804#ifdef CONFIG_SMP
805 if (p == task_rq(p)->migration_thread)
806 /*
807 * The migration thread does the actual balancing.
808 * Giving its load any weight will skew balancing
809 * adversely.
810 */
811 p->load_weight = 0;
812 else
813#endif
814 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
815 } else
816 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
817}
818
36c8b586 819static inline void
70b97a7f 820inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
821{
822 rq->raw_weighted_load += p->load_weight;
823}
824
36c8b586 825static inline void
70b97a7f 826dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
827{
828 rq->raw_weighted_load -= p->load_weight;
829}
830
70b97a7f 831static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
832{
833 rq->nr_running++;
834 inc_raw_weighted_load(rq, p);
835}
836
70b97a7f 837static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
838{
839 rq->nr_running--;
840 dec_raw_weighted_load(rq, p);
841}
842
b29739f9
IM
843/*
844 * Calculate the expected normal priority: i.e. priority
845 * without taking RT-inheritance into account. Might be
846 * boosted by interactivity modifiers. Changes upon fork,
847 * setprio syscalls, and whenever the interactivity
848 * estimator recalculates.
849 */
36c8b586 850static inline int normal_prio(struct task_struct *p)
b29739f9
IM
851{
852 int prio;
853
854 if (has_rt_policy(p))
855 prio = MAX_RT_PRIO-1 - p->rt_priority;
856 else
857 prio = __normal_prio(p);
858 return prio;
859}
860
861/*
862 * Calculate the current priority, i.e. the priority
863 * taken into account by the scheduler. This value might
864 * be boosted by RT tasks, or might be boosted by
865 * interactivity modifiers. Will be RT if the task got
866 * RT-boosted. If not then it returns p->normal_prio.
867 */
36c8b586 868static int effective_prio(struct task_struct *p)
b29739f9
IM
869{
870 p->normal_prio = normal_prio(p);
871 /*
872 * If we are RT tasks or we were boosted to RT priority,
873 * keep the priority unchanged. Otherwise, update priority
874 * to the normal priority:
875 */
876 if (!rt_prio(p->prio))
877 return p->normal_prio;
878 return p->prio;
879}
880
1da177e4
LT
881/*
882 * __activate_task - move a task to the runqueue.
883 */
70b97a7f 884static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 885{
70b97a7f 886 struct prio_array *target = rq->active;
d425b274 887
f1adad78 888 if (batch_task(p))
d425b274
CK
889 target = rq->expired;
890 enqueue_task(p, target);
2dd73a4f 891 inc_nr_running(p, rq);
1da177e4
LT
892}
893
894/*
895 * __activate_idle_task - move idle task to the _front_ of runqueue.
896 */
70b97a7f 897static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
898{
899 enqueue_task_head(p, rq->active);
2dd73a4f 900 inc_nr_running(p, rq);
1da177e4
LT
901}
902
b29739f9
IM
903/*
904 * Recalculate p->normal_prio and p->prio after having slept,
905 * updating the sleep-average too:
906 */
36c8b586 907static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
908{
909 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 910 unsigned long sleep_time = now - p->timestamp;
1da177e4 911
d425b274 912 if (batch_task(p))
b0a9499c 913 sleep_time = 0;
1da177e4
LT
914
915 if (likely(sleep_time > 0)) {
916 /*
72d2854d
CK
917 * This ceiling is set to the lowest priority that would allow
918 * a task to be reinserted into the active array on timeslice
919 * completion.
1da177e4 920 */
72d2854d 921 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 922
72d2854d
CK
923 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
924 /*
925 * Prevents user tasks from achieving best priority
926 * with one single large enough sleep.
927 */
928 p->sleep_avg = ceiling;
929 /*
930 * Using INTERACTIVE_SLEEP() as a ceiling places a
931 * nice(0) task 1ms sleep away from promotion, and
932 * gives it 700ms to round-robin with no chance of
933 * being demoted. This is more than generous, so
934 * mark this sleep as non-interactive to prevent the
935 * on-runqueue bonus logic from intervening should
936 * this task not receive cpu immediately.
937 */
938 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 939 } else {
1da177e4
LT
940 /*
941 * Tasks waking from uninterruptible sleep are
942 * limited in their sleep_avg rise as they
943 * are likely to be waiting on I/O
944 */
3dee386e 945 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 946 if (p->sleep_avg >= ceiling)
1da177e4
LT
947 sleep_time = 0;
948 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
949 ceiling) {
950 p->sleep_avg = ceiling;
951 sleep_time = 0;
1da177e4
LT
952 }
953 }
954
955 /*
956 * This code gives a bonus to interactive tasks.
957 *
958 * The boost works by updating the 'average sleep time'
959 * value here, based on ->timestamp. The more time a
960 * task spends sleeping, the higher the average gets -
961 * and the higher the priority boost gets as well.
962 */
963 p->sleep_avg += sleep_time;
964
1da177e4 965 }
72d2854d
CK
966 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
967 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
968 }
969
a3464a10 970 return effective_prio(p);
1da177e4
LT
971}
972
973/*
974 * activate_task - move a task to the runqueue and do priority recalculation
975 *
976 * Update all the scheduling statistics stuff. (sleep average
977 * calculation, priority modifiers, etc.)
978 */
70b97a7f 979static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
980{
981 unsigned long long now;
982
62ab616d
KC
983 if (rt_task(p))
984 goto out;
985
1da177e4
LT
986 now = sched_clock();
987#ifdef CONFIG_SMP
988 if (!local) {
989 /* Compensate for drifting sched_clock */
70b97a7f 990 struct rq *this_rq = this_rq();
b18ec803
MG
991 now = (now - this_rq->most_recent_timestamp)
992 + rq->most_recent_timestamp;
1da177e4
LT
993 }
994#endif
995
ece8a684
IM
996 /*
997 * Sleep time is in units of nanosecs, so shift by 20 to get a
998 * milliseconds-range estimation of the amount of time that the task
999 * spent sleeping:
1000 */
1001 if (unlikely(prof_on == SLEEP_PROFILING)) {
1002 if (p->state == TASK_UNINTERRUPTIBLE)
1003 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1004 (now - p->timestamp) >> 20);
1005 }
1006
62ab616d 1007 p->prio = recalc_task_prio(p, now);
1da177e4
LT
1008
1009 /*
1010 * This checks to make sure it's not an uninterruptible task
1011 * that is now waking up.
1012 */
3dee386e 1013 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
1014 /*
1015 * Tasks which were woken up by interrupts (ie. hw events)
1016 * are most likely of interactive nature. So we give them
1017 * the credit of extending their sleep time to the period
1018 * of time they spend on the runqueue, waiting for execution
1019 * on a CPU, first time around:
1020 */
1021 if (in_interrupt())
3dee386e 1022 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
1023 else {
1024 /*
1025 * Normal first-time wakeups get a credit too for
1026 * on-runqueue time, but it will be weighted down:
1027 */
3dee386e 1028 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
1029 }
1030 }
1031 p->timestamp = now;
62ab616d 1032out:
1da177e4
LT
1033 __activate_task(p, rq);
1034}
1035
1036/*
1037 * deactivate_task - remove a task from the runqueue.
1038 */
70b97a7f 1039static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 1040{
2dd73a4f 1041 dec_nr_running(p, rq);
1da177e4
LT
1042 dequeue_task(p, p->array);
1043 p->array = NULL;
1044}
1045
1046/*
1047 * resched_task - mark a task 'to be rescheduled now'.
1048 *
1049 * On UP this means the setting of the need_resched flag, on SMP it
1050 * might also involve a cross-CPU call to trigger the scheduler on
1051 * the target CPU.
1052 */
1053#ifdef CONFIG_SMP
495ab9c0
AK
1054
1055#ifndef tsk_is_polling
1056#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1057#endif
1058
36c8b586 1059static void resched_task(struct task_struct *p)
1da177e4 1060{
64c7c8f8 1061 int cpu;
1da177e4
LT
1062
1063 assert_spin_locked(&task_rq(p)->lock);
1064
64c7c8f8
NP
1065 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1066 return;
1067
1068 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1069
64c7c8f8
NP
1070 cpu = task_cpu(p);
1071 if (cpu == smp_processor_id())
1072 return;
1073
495ab9c0 1074 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1075 smp_mb();
495ab9c0 1076 if (!tsk_is_polling(p))
64c7c8f8 1077 smp_send_reschedule(cpu);
1da177e4 1078}
46cb4b7c
SS
1079
1080static void resched_cpu(int cpu)
1081{
1082 struct rq *rq = cpu_rq(cpu);
1083 unsigned long flags;
1084
1085 if (!spin_trylock_irqsave(&rq->lock, flags))
1086 return;
1087 resched_task(cpu_curr(cpu));
1088 spin_unlock_irqrestore(&rq->lock, flags);
1089}
1da177e4 1090#else
36c8b586 1091static inline void resched_task(struct task_struct *p)
1da177e4 1092{
64c7c8f8 1093 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1094 set_tsk_need_resched(p);
1095}
1096#endif
1097
1098/**
1099 * task_curr - is this task currently executing on a CPU?
1100 * @p: the task in question.
1101 */
36c8b586 1102inline int task_curr(const struct task_struct *p)
1da177e4
LT
1103{
1104 return cpu_curr(task_cpu(p)) == p;
1105}
1106
2dd73a4f
PW
1107/* Used instead of source_load when we know the type == 0 */
1108unsigned long weighted_cpuload(const int cpu)
1109{
1110 return cpu_rq(cpu)->raw_weighted_load;
1111}
1112
1da177e4 1113#ifdef CONFIG_SMP
c65cc870
IM
1114
1115void set_task_cpu(struct task_struct *p, unsigned int cpu)
1116{
1117 task_thread_info(p)->cpu = cpu;
1118}
1119
70b97a7f 1120struct migration_req {
1da177e4 1121 struct list_head list;
1da177e4 1122
36c8b586 1123 struct task_struct *task;
1da177e4
LT
1124 int dest_cpu;
1125
1da177e4 1126 struct completion done;
70b97a7f 1127};
1da177e4
LT
1128
1129/*
1130 * The task's runqueue lock must be held.
1131 * Returns true if you have to wait for migration thread.
1132 */
36c8b586 1133static int
70b97a7f 1134migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1135{
70b97a7f 1136 struct rq *rq = task_rq(p);
1da177e4
LT
1137
1138 /*
1139 * If the task is not on a runqueue (and not running), then
1140 * it is sufficient to simply update the task's cpu field.
1141 */
1142 if (!p->array && !task_running(rq, p)) {
1143 set_task_cpu(p, dest_cpu);
1144 return 0;
1145 }
1146
1147 init_completion(&req->done);
1da177e4
LT
1148 req->task = p;
1149 req->dest_cpu = dest_cpu;
1150 list_add(&req->list, &rq->migration_queue);
48f24c4d 1151
1da177e4
LT
1152 return 1;
1153}
1154
1155/*
1156 * wait_task_inactive - wait for a thread to unschedule.
1157 *
1158 * The caller must ensure that the task *will* unschedule sometime soon,
1159 * else this function might spin for a *long* time. This function can't
1160 * be called with interrupts off, or it may introduce deadlock with
1161 * smp_call_function() if an IPI is sent by the same process we are
1162 * waiting to become inactive.
1163 */
36c8b586 1164void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1165{
1166 unsigned long flags;
70b97a7f 1167 struct rq *rq;
fa490cfd
LT
1168 struct prio_array *array;
1169 int running;
1da177e4
LT
1170
1171repeat:
fa490cfd
LT
1172 /*
1173 * We do the initial early heuristics without holding
1174 * any task-queue locks at all. We'll only try to get
1175 * the runqueue lock when things look like they will
1176 * work out!
1177 */
1178 rq = task_rq(p);
1179
1180 /*
1181 * If the task is actively running on another CPU
1182 * still, just relax and busy-wait without holding
1183 * any locks.
1184 *
1185 * NOTE! Since we don't hold any locks, it's not
1186 * even sure that "rq" stays as the right runqueue!
1187 * But we don't care, since "task_running()" will
1188 * return false if the runqueue has changed and p
1189 * is actually now running somewhere else!
1190 */
1191 while (task_running(rq, p))
1192 cpu_relax();
1193
1194 /*
1195 * Ok, time to look more closely! We need the rq
1196 * lock now, to be *sure*. If we're wrong, we'll
1197 * just go back and repeat.
1198 */
1da177e4 1199 rq = task_rq_lock(p, &flags);
fa490cfd
LT
1200 running = task_running(rq, p);
1201 array = p->array;
1202 task_rq_unlock(rq, &flags);
1203
1204 /*
1205 * Was it really running after all now that we
1206 * checked with the proper locks actually held?
1207 *
1208 * Oops. Go back and try again..
1209 */
1210 if (unlikely(running)) {
1da177e4 1211 cpu_relax();
1da177e4
LT
1212 goto repeat;
1213 }
fa490cfd
LT
1214
1215 /*
1216 * It's not enough that it's not actively running,
1217 * it must be off the runqueue _entirely_, and not
1218 * preempted!
1219 *
1220 * So if it wa still runnable (but just not actively
1221 * running right now), it's preempted, and we should
1222 * yield - it could be a while.
1223 */
1224 if (unlikely(array)) {
1225 yield();
1226 goto repeat;
1227 }
1228
1229 /*
1230 * Ahh, all good. It wasn't running, and it wasn't
1231 * runnable, which means that it will never become
1232 * running in the future either. We're all done!
1233 */
1da177e4
LT
1234}
1235
1236/***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
1243 * NOTE: this function doesnt have to take the runqueue lock,
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
36c8b586 1249void kick_process(struct task_struct *p)
1da177e4
LT
1250{
1251 int cpu;
1252
1253 preempt_disable();
1254 cpu = task_cpu(p);
1255 if ((cpu != smp_processor_id()) && task_curr(p))
1256 smp_send_reschedule(cpu);
1257 preempt_enable();
1258}
1259
1260/*
2dd73a4f
PW
1261 * Return a low guess at the load of a migration-source cpu weighted
1262 * according to the scheduling class and "nice" value.
1da177e4
LT
1263 *
1264 * We want to under-estimate the load of migration sources, to
1265 * balance conservatively.
1266 */
a2000572 1267static inline unsigned long source_load(int cpu, int type)
1da177e4 1268{
70b97a7f 1269 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1270
3b0bd9bc 1271 if (type == 0)
2dd73a4f 1272 return rq->raw_weighted_load;
b910472d 1273
2dd73a4f 1274 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1275}
1276
1277/*
2dd73a4f
PW
1278 * Return a high guess at the load of a migration-target cpu weighted
1279 * according to the scheduling class and "nice" value.
1da177e4 1280 */
a2000572 1281static inline unsigned long target_load(int cpu, int type)
1da177e4 1282{
70b97a7f 1283 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1284
7897986b 1285 if (type == 0)
2dd73a4f 1286 return rq->raw_weighted_load;
3b0bd9bc 1287
2dd73a4f
PW
1288 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1289}
1290
1291/*
1292 * Return the average load per task on the cpu's run queue
1293 */
1294static inline unsigned long cpu_avg_load_per_task(int cpu)
1295{
70b97a7f 1296 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1297 unsigned long n = rq->nr_running;
1298
48f24c4d 1299 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1300}
1301
147cbb4b
NP
1302/*
1303 * find_idlest_group finds and returns the least busy CPU group within the
1304 * domain.
1305 */
1306static struct sched_group *
1307find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1308{
1309 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1310 unsigned long min_load = ULONG_MAX, this_load = 0;
1311 int load_idx = sd->forkexec_idx;
1312 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1313
1314 do {
1315 unsigned long load, avg_load;
1316 int local_group;
1317 int i;
1318
da5a5522
BD
1319 /* Skip over this group if it has no CPUs allowed */
1320 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1321 goto nextgroup;
1322
147cbb4b 1323 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1324
1325 /* Tally up the load of all CPUs in the group */
1326 avg_load = 0;
1327
1328 for_each_cpu_mask(i, group->cpumask) {
1329 /* Bias balancing toward cpus of our domain */
1330 if (local_group)
1331 load = source_load(i, load_idx);
1332 else
1333 load = target_load(i, load_idx);
1334
1335 avg_load += load;
1336 }
1337
1338 /* Adjust by relative CPU power of the group */
5517d86b
ED
1339 avg_load = sg_div_cpu_power(group,
1340 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1341
1342 if (local_group) {
1343 this_load = avg_load;
1344 this = group;
1345 } else if (avg_load < min_load) {
1346 min_load = avg_load;
1347 idlest = group;
1348 }
da5a5522 1349nextgroup:
147cbb4b
NP
1350 group = group->next;
1351 } while (group != sd->groups);
1352
1353 if (!idlest || 100*this_load < imbalance*min_load)
1354 return NULL;
1355 return idlest;
1356}
1357
1358/*
0feaece9 1359 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1360 */
95cdf3b7
IM
1361static int
1362find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1363{
da5a5522 1364 cpumask_t tmp;
147cbb4b
NP
1365 unsigned long load, min_load = ULONG_MAX;
1366 int idlest = -1;
1367 int i;
1368
da5a5522
BD
1369 /* Traverse only the allowed CPUs */
1370 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1371
1372 for_each_cpu_mask(i, tmp) {
2dd73a4f 1373 load = weighted_cpuload(i);
147cbb4b
NP
1374
1375 if (load < min_load || (load == min_load && i == this_cpu)) {
1376 min_load = load;
1377 idlest = i;
1378 }
1379 }
1380
1381 return idlest;
1382}
1383
476d139c
NP
1384/*
1385 * sched_balance_self: balance the current task (running on cpu) in domains
1386 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1387 * SD_BALANCE_EXEC.
1388 *
1389 * Balance, ie. select the least loaded group.
1390 *
1391 * Returns the target CPU number, or the same CPU if no balancing is needed.
1392 *
1393 * preempt must be disabled.
1394 */
1395static int sched_balance_self(int cpu, int flag)
1396{
1397 struct task_struct *t = current;
1398 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1399
c96d145e 1400 for_each_domain(cpu, tmp) {
5c45bf27
SS
1401 /*
1402 * If power savings logic is enabled for a domain, stop there.
1403 */
1404 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1405 break;
476d139c
NP
1406 if (tmp->flags & flag)
1407 sd = tmp;
c96d145e 1408 }
476d139c
NP
1409
1410 while (sd) {
1411 cpumask_t span;
1412 struct sched_group *group;
1a848870
SS
1413 int new_cpu, weight;
1414
1415 if (!(sd->flags & flag)) {
1416 sd = sd->child;
1417 continue;
1418 }
476d139c
NP
1419
1420 span = sd->span;
1421 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1422 if (!group) {
1423 sd = sd->child;
1424 continue;
1425 }
476d139c 1426
da5a5522 1427 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1428 if (new_cpu == -1 || new_cpu == cpu) {
1429 /* Now try balancing at a lower domain level of cpu */
1430 sd = sd->child;
1431 continue;
1432 }
476d139c 1433
1a848870 1434 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1435 cpu = new_cpu;
476d139c
NP
1436 sd = NULL;
1437 weight = cpus_weight(span);
1438 for_each_domain(cpu, tmp) {
1439 if (weight <= cpus_weight(tmp->span))
1440 break;
1441 if (tmp->flags & flag)
1442 sd = tmp;
1443 }
1444 /* while loop will break here if sd == NULL */
1445 }
1446
1447 return cpu;
1448}
1449
1450#endif /* CONFIG_SMP */
1da177e4
LT
1451
1452/*
1453 * wake_idle() will wake a task on an idle cpu if task->cpu is
1454 * not idle and an idle cpu is available. The span of cpus to
1455 * search starts with cpus closest then further out as needed,
1456 * so we always favor a closer, idle cpu.
1457 *
1458 * Returns the CPU we should wake onto.
1459 */
1460#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1461static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1462{
1463 cpumask_t tmp;
1464 struct sched_domain *sd;
1465 int i;
1466
4953198b
SS
1467 /*
1468 * If it is idle, then it is the best cpu to run this task.
1469 *
1470 * This cpu is also the best, if it has more than one task already.
1471 * Siblings must be also busy(in most cases) as they didn't already
1472 * pickup the extra load from this cpu and hence we need not check
1473 * sibling runqueue info. This will avoid the checks and cache miss
1474 * penalities associated with that.
1475 */
1476 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1477 return cpu;
1478
1479 for_each_domain(cpu, sd) {
1480 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1481 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1482 for_each_cpu_mask(i, tmp) {
1483 if (idle_cpu(i))
1484 return i;
1485 }
1486 }
e0f364f4
NP
1487 else
1488 break;
1da177e4
LT
1489 }
1490 return cpu;
1491}
1492#else
36c8b586 1493static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1494{
1495 return cpu;
1496}
1497#endif
1498
1499/***
1500 * try_to_wake_up - wake up a thread
1501 * @p: the to-be-woken-up thread
1502 * @state: the mask of task states that can be woken
1503 * @sync: do a synchronous wakeup?
1504 *
1505 * Put it on the run-queue if it's not already there. The "current"
1506 * thread is always on the run-queue (except when the actual
1507 * re-schedule is in progress), and as such you're allowed to do
1508 * the simpler "current->state = TASK_RUNNING" to mark yourself
1509 * runnable without the overhead of this.
1510 *
1511 * returns failure only if the task is already active.
1512 */
36c8b586 1513static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1514{
1515 int cpu, this_cpu, success = 0;
1516 unsigned long flags;
1517 long old_state;
70b97a7f 1518 struct rq *rq;
1da177e4 1519#ifdef CONFIG_SMP
7897986b 1520 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1521 unsigned long load, this_load;
1da177e4
LT
1522 int new_cpu;
1523#endif
1524
1525 rq = task_rq_lock(p, &flags);
1526 old_state = p->state;
1527 if (!(old_state & state))
1528 goto out;
1529
1530 if (p->array)
1531 goto out_running;
1532
1533 cpu = task_cpu(p);
1534 this_cpu = smp_processor_id();
1535
1536#ifdef CONFIG_SMP
1537 if (unlikely(task_running(rq, p)))
1538 goto out_activate;
1539
7897986b
NP
1540 new_cpu = cpu;
1541
1da177e4
LT
1542 schedstat_inc(rq, ttwu_cnt);
1543 if (cpu == this_cpu) {
1544 schedstat_inc(rq, ttwu_local);
7897986b
NP
1545 goto out_set_cpu;
1546 }
1547
1548 for_each_domain(this_cpu, sd) {
1549 if (cpu_isset(cpu, sd->span)) {
1550 schedstat_inc(sd, ttwu_wake_remote);
1551 this_sd = sd;
1552 break;
1da177e4
LT
1553 }
1554 }
1da177e4 1555
7897986b 1556 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1557 goto out_set_cpu;
1558
1da177e4 1559 /*
7897986b 1560 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1561 */
7897986b
NP
1562 if (this_sd) {
1563 int idx = this_sd->wake_idx;
1564 unsigned int imbalance;
1da177e4 1565
a3f21bce
NP
1566 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1567
7897986b
NP
1568 load = source_load(cpu, idx);
1569 this_load = target_load(this_cpu, idx);
1da177e4 1570
7897986b
NP
1571 new_cpu = this_cpu; /* Wake to this CPU if we can */
1572
a3f21bce
NP
1573 if (this_sd->flags & SD_WAKE_AFFINE) {
1574 unsigned long tl = this_load;
33859f7f
MOS
1575 unsigned long tl_per_task;
1576
1577 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1578
1da177e4 1579 /*
a3f21bce
NP
1580 * If sync wakeup then subtract the (maximum possible)
1581 * effect of the currently running task from the load
1582 * of the current CPU:
1da177e4 1583 */
a3f21bce 1584 if (sync)
2dd73a4f 1585 tl -= current->load_weight;
a3f21bce
NP
1586
1587 if ((tl <= load &&
2dd73a4f
PW
1588 tl + target_load(cpu, idx) <= tl_per_task) ||
1589 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1590 /*
1591 * This domain has SD_WAKE_AFFINE and
1592 * p is cache cold in this domain, and
1593 * there is no bad imbalance.
1594 */
1595 schedstat_inc(this_sd, ttwu_move_affine);
1596 goto out_set_cpu;
1597 }
1598 }
1599
1600 /*
1601 * Start passive balancing when half the imbalance_pct
1602 * limit is reached.
1603 */
1604 if (this_sd->flags & SD_WAKE_BALANCE) {
1605 if (imbalance*this_load <= 100*load) {
1606 schedstat_inc(this_sd, ttwu_move_balance);
1607 goto out_set_cpu;
1608 }
1da177e4
LT
1609 }
1610 }
1611
1612 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1613out_set_cpu:
1614 new_cpu = wake_idle(new_cpu, p);
1615 if (new_cpu != cpu) {
1616 set_task_cpu(p, new_cpu);
1617 task_rq_unlock(rq, &flags);
1618 /* might preempt at this point */
1619 rq = task_rq_lock(p, &flags);
1620 old_state = p->state;
1621 if (!(old_state & state))
1622 goto out;
1623 if (p->array)
1624 goto out_running;
1625
1626 this_cpu = smp_processor_id();
1627 cpu = task_cpu(p);
1628 }
1629
1630out_activate:
1631#endif /* CONFIG_SMP */
1632 if (old_state == TASK_UNINTERRUPTIBLE) {
1633 rq->nr_uninterruptible--;
1634 /*
1635 * Tasks on involuntary sleep don't earn
1636 * sleep_avg beyond just interactive state.
1637 */
3dee386e 1638 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1639 } else
1da177e4 1640
d79fc0fc
IM
1641 /*
1642 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1643 * woken up with their sleep average not weighted in an
1644 * interactive way.
d79fc0fc 1645 */
e7c38cb4
CK
1646 if (old_state & TASK_NONINTERACTIVE)
1647 p->sleep_type = SLEEP_NONINTERACTIVE;
1648
1649
1650 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1651 /*
1652 * Sync wakeups (i.e. those types of wakeups where the waker
1653 * has indicated that it will leave the CPU in short order)
1654 * don't trigger a preemption, if the woken up task will run on
1655 * this cpu. (in this case the 'I will reschedule' promise of
1656 * the waker guarantees that the freshly woken up task is going
1657 * to be considered on this CPU.)
1658 */
1da177e4
LT
1659 if (!sync || cpu != this_cpu) {
1660 if (TASK_PREEMPTS_CURR(p, rq))
1661 resched_task(rq->curr);
1662 }
1663 success = 1;
1664
1665out_running:
1666 p->state = TASK_RUNNING;
1667out:
1668 task_rq_unlock(rq, &flags);
1669
1670 return success;
1671}
1672
36c8b586 1673int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1674{
1675 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1676 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1677}
1da177e4
LT
1678EXPORT_SYMBOL(wake_up_process);
1679
36c8b586 1680int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1681{
1682 return try_to_wake_up(p, state, 0);
1683}
1684
bc947631 1685static void task_running_tick(struct rq *rq, struct task_struct *p);
1da177e4
LT
1686/*
1687 * Perform scheduler related setup for a newly forked process p.
1688 * p is forked by current.
1689 */
36c8b586 1690void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1691{
476d139c
NP
1692 int cpu = get_cpu();
1693
1694#ifdef CONFIG_SMP
1695 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1696#endif
1697 set_task_cpu(p, cpu);
1698
1da177e4
LT
1699 /*
1700 * We mark the process as running here, but have not actually
1701 * inserted it onto the runqueue yet. This guarantees that
1702 * nobody will actually run it, and a signal or other external
1703 * event cannot wake it up and insert it on the runqueue either.
1704 */
1705 p->state = TASK_RUNNING;
b29739f9
IM
1706
1707 /*
1708 * Make sure we do not leak PI boosting priority to the child:
1709 */
1710 p->prio = current->normal_prio;
1711
1da177e4
LT
1712 INIT_LIST_HEAD(&p->run_list);
1713 p->array = NULL;
52f17b6c
CS
1714#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1715 if (unlikely(sched_info_on()))
1716 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1717#endif
d6077cb8 1718#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1719 p->oncpu = 0;
1720#endif
1da177e4 1721#ifdef CONFIG_PREEMPT
4866cde0 1722 /* Want to start with kernel preemption disabled. */
a1261f54 1723 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1724#endif
1725 /*
1726 * Share the timeslice between parent and child, thus the
1727 * total amount of pending timeslices in the system doesn't change,
1728 * resulting in more scheduling fairness.
1729 */
1730 local_irq_disable();
1731 p->time_slice = (current->time_slice + 1) >> 1;
1732 /*
1733 * The remainder of the first timeslice might be recovered by
1734 * the parent if the child exits early enough.
1735 */
1736 p->first_time_slice = 1;
1737 current->time_slice >>= 1;
1738 p->timestamp = sched_clock();
1739 if (unlikely(!current->time_slice)) {
1740 /*
1741 * This case is rare, it happens when the parent has only
1742 * a single jiffy left from its timeslice. Taking the
1743 * runqueue lock is not a problem.
1744 */
1745 current->time_slice = 1;
bc947631 1746 task_running_tick(cpu_rq(cpu), current);
476d139c
NP
1747 }
1748 local_irq_enable();
1749 put_cpu();
1da177e4
LT
1750}
1751
1752/*
1753 * wake_up_new_task - wake up a newly created task for the first time.
1754 *
1755 * This function will do some initial scheduler statistics housekeeping
1756 * that must be done for every newly created context, then puts the task
1757 * on the runqueue and wakes it.
1758 */
36c8b586 1759void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1760{
70b97a7f 1761 struct rq *rq, *this_rq;
1da177e4
LT
1762 unsigned long flags;
1763 int this_cpu, cpu;
1da177e4
LT
1764
1765 rq = task_rq_lock(p, &flags);
147cbb4b 1766 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1767 this_cpu = smp_processor_id();
147cbb4b 1768 cpu = task_cpu(p);
1da177e4 1769
1da177e4
LT
1770 /*
1771 * We decrease the sleep average of forking parents
1772 * and children as well, to keep max-interactive tasks
1773 * from forking tasks that are max-interactive. The parent
1774 * (current) is done further down, under its lock.
1775 */
1776 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1777 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1778
1779 p->prio = effective_prio(p);
1780
1781 if (likely(cpu == this_cpu)) {
1782 if (!(clone_flags & CLONE_VM)) {
1783 /*
1784 * The VM isn't cloned, so we're in a good position to
1785 * do child-runs-first in anticipation of an exec. This
1786 * usually avoids a lot of COW overhead.
1787 */
1788 if (unlikely(!current->array))
1789 __activate_task(p, rq);
1790 else {
1791 p->prio = current->prio;
b29739f9 1792 p->normal_prio = current->normal_prio;
1da177e4
LT
1793 list_add_tail(&p->run_list, &current->run_list);
1794 p->array = current->array;
1795 p->array->nr_active++;
2dd73a4f 1796 inc_nr_running(p, rq);
1da177e4
LT
1797 }
1798 set_need_resched();
1799 } else
1800 /* Run child last */
1801 __activate_task(p, rq);
1802 /*
1803 * We skip the following code due to cpu == this_cpu
1804 *
1805 * task_rq_unlock(rq, &flags);
1806 * this_rq = task_rq_lock(current, &flags);
1807 */
1808 this_rq = rq;
1809 } else {
1810 this_rq = cpu_rq(this_cpu);
1811
1812 /*
1813 * Not the local CPU - must adjust timestamp. This should
1814 * get optimised away in the !CONFIG_SMP case.
1815 */
b18ec803
MG
1816 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1817 + rq->most_recent_timestamp;
1da177e4
LT
1818 __activate_task(p, rq);
1819 if (TASK_PREEMPTS_CURR(p, rq))
1820 resched_task(rq->curr);
1821
1822 /*
1823 * Parent and child are on different CPUs, now get the
1824 * parent runqueue to update the parent's ->sleep_avg:
1825 */
1826 task_rq_unlock(rq, &flags);
1827 this_rq = task_rq_lock(current, &flags);
1828 }
1829 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1830 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1831 task_rq_unlock(this_rq, &flags);
1832}
1833
4866cde0
NP
1834/**
1835 * prepare_task_switch - prepare to switch tasks
1836 * @rq: the runqueue preparing to switch
1837 * @next: the task we are going to switch to.
1838 *
1839 * This is called with the rq lock held and interrupts off. It must
1840 * be paired with a subsequent finish_task_switch after the context
1841 * switch.
1842 *
1843 * prepare_task_switch sets up locking and calls architecture specific
1844 * hooks.
1845 */
70b97a7f 1846static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1847{
1848 prepare_lock_switch(rq, next);
1849 prepare_arch_switch(next);
1850}
1851
1da177e4
LT
1852/**
1853 * finish_task_switch - clean up after a task-switch
344babaa 1854 * @rq: runqueue associated with task-switch
1da177e4
LT
1855 * @prev: the thread we just switched away from.
1856 *
4866cde0
NP
1857 * finish_task_switch must be called after the context switch, paired
1858 * with a prepare_task_switch call before the context switch.
1859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1861 *
1862 * Note that we may have delayed dropping an mm in context_switch(). If
1863 * so, we finish that here outside of the runqueue lock. (Doing it
1864 * with the lock held can cause deadlocks; see schedule() for
1865 * details.)
1866 */
70b97a7f 1867static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1868 __releases(rq->lock)
1869{
1da177e4 1870 struct mm_struct *mm = rq->prev_mm;
55a101f8 1871 long prev_state;
1da177e4
LT
1872
1873 rq->prev_mm = NULL;
1874
1875 /*
1876 * A task struct has one reference for the use as "current".
c394cc9f 1877 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1878 * schedule one last time. The schedule call will never return, and
1879 * the scheduled task must drop that reference.
c394cc9f 1880 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1881 * still held, otherwise prev could be scheduled on another cpu, die
1882 * there before we look at prev->state, and then the reference would
1883 * be dropped twice.
1884 * Manfred Spraul <manfred@colorfullife.com>
1885 */
55a101f8 1886 prev_state = prev->state;
4866cde0
NP
1887 finish_arch_switch(prev);
1888 finish_lock_switch(rq, prev);
1da177e4
LT
1889 if (mm)
1890 mmdrop(mm);
c394cc9f 1891 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1892 /*
1893 * Remove function-return probe instances associated with this
1894 * task and put them back on the free list.
1895 */
1896 kprobe_flush_task(prev);
1da177e4 1897 put_task_struct(prev);
c6fd91f0 1898 }
1da177e4
LT
1899}
1900
1901/**
1902 * schedule_tail - first thing a freshly forked thread must call.
1903 * @prev: the thread we just switched away from.
1904 */
36c8b586 1905asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1906 __releases(rq->lock)
1907{
70b97a7f
IM
1908 struct rq *rq = this_rq();
1909
4866cde0
NP
1910 finish_task_switch(rq, prev);
1911#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1912 /* In this case, finish_task_switch does not reenable preemption */
1913 preempt_enable();
1914#endif
1da177e4
LT
1915 if (current->set_child_tid)
1916 put_user(current->pid, current->set_child_tid);
1917}
1918
1919/*
1920 * context_switch - switch to the new MM and the new
1921 * thread's register state.
1922 */
36c8b586 1923static inline struct task_struct *
70b97a7f 1924context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1925 struct task_struct *next)
1da177e4
LT
1926{
1927 struct mm_struct *mm = next->mm;
1928 struct mm_struct *oldmm = prev->active_mm;
1929
9226d125
ZA
1930 /*
1931 * For paravirt, this is coupled with an exit in switch_to to
1932 * combine the page table reload and the switch backend into
1933 * one hypercall.
1934 */
1935 arch_enter_lazy_cpu_mode();
1936
beed33a8 1937 if (!mm) {
1da177e4
LT
1938 next->active_mm = oldmm;
1939 atomic_inc(&oldmm->mm_count);
1940 enter_lazy_tlb(oldmm, next);
1941 } else
1942 switch_mm(oldmm, mm, next);
1943
beed33a8 1944 if (!prev->mm) {
1da177e4
LT
1945 prev->active_mm = NULL;
1946 WARN_ON(rq->prev_mm);
1947 rq->prev_mm = oldmm;
1948 }
3a5f5e48
IM
1949 /*
1950 * Since the runqueue lock will be released by the next
1951 * task (which is an invalid locking op but in the case
1952 * of the scheduler it's an obvious special-case), so we
1953 * do an early lockdep release here:
1954 */
1955#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1956 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1957#endif
1da177e4
LT
1958
1959 /* Here we just switch the register state and the stack. */
1960 switch_to(prev, next, prev);
1961
1962 return prev;
1963}
1964
1965/*
1966 * nr_running, nr_uninterruptible and nr_context_switches:
1967 *
1968 * externally visible scheduler statistics: current number of runnable
1969 * threads, current number of uninterruptible-sleeping threads, total
1970 * number of context switches performed since bootup.
1971 */
1972unsigned long nr_running(void)
1973{
1974 unsigned long i, sum = 0;
1975
1976 for_each_online_cpu(i)
1977 sum += cpu_rq(i)->nr_running;
1978
1979 return sum;
1980}
1981
1982unsigned long nr_uninterruptible(void)
1983{
1984 unsigned long i, sum = 0;
1985
0a945022 1986 for_each_possible_cpu(i)
1da177e4
LT
1987 sum += cpu_rq(i)->nr_uninterruptible;
1988
1989 /*
1990 * Since we read the counters lockless, it might be slightly
1991 * inaccurate. Do not allow it to go below zero though:
1992 */
1993 if (unlikely((long)sum < 0))
1994 sum = 0;
1995
1996 return sum;
1997}
1998
1999unsigned long long nr_context_switches(void)
2000{
cc94abfc
SR
2001 int i;
2002 unsigned long long sum = 0;
1da177e4 2003
0a945022 2004 for_each_possible_cpu(i)
1da177e4
LT
2005 sum += cpu_rq(i)->nr_switches;
2006
2007 return sum;
2008}
2009
2010unsigned long nr_iowait(void)
2011{
2012 unsigned long i, sum = 0;
2013
0a945022 2014 for_each_possible_cpu(i)
1da177e4
LT
2015 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2016
2017 return sum;
2018}
2019
db1b1fef
JS
2020unsigned long nr_active(void)
2021{
2022 unsigned long i, running = 0, uninterruptible = 0;
2023
2024 for_each_online_cpu(i) {
2025 running += cpu_rq(i)->nr_running;
2026 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2027 }
2028
2029 if (unlikely((long)uninterruptible < 0))
2030 uninterruptible = 0;
2031
2032 return running + uninterruptible;
2033}
2034
1da177e4
LT
2035#ifdef CONFIG_SMP
2036
48f24c4d
IM
2037/*
2038 * Is this task likely cache-hot:
2039 */
2040static inline int
2041task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2042{
2043 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2044}
2045
1da177e4
LT
2046/*
2047 * double_rq_lock - safely lock two runqueues
2048 *
2049 * Note this does not disable interrupts like task_rq_lock,
2050 * you need to do so manually before calling.
2051 */
70b97a7f 2052static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2053 __acquires(rq1->lock)
2054 __acquires(rq2->lock)
2055{
054b9108 2056 BUG_ON(!irqs_disabled());
1da177e4
LT
2057 if (rq1 == rq2) {
2058 spin_lock(&rq1->lock);
2059 __acquire(rq2->lock); /* Fake it out ;) */
2060 } else {
c96d145e 2061 if (rq1 < rq2) {
1da177e4
LT
2062 spin_lock(&rq1->lock);
2063 spin_lock(&rq2->lock);
2064 } else {
2065 spin_lock(&rq2->lock);
2066 spin_lock(&rq1->lock);
2067 }
2068 }
2069}
2070
2071/*
2072 * double_rq_unlock - safely unlock two runqueues
2073 *
2074 * Note this does not restore interrupts like task_rq_unlock,
2075 * you need to do so manually after calling.
2076 */
70b97a7f 2077static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2078 __releases(rq1->lock)
2079 __releases(rq2->lock)
2080{
2081 spin_unlock(&rq1->lock);
2082 if (rq1 != rq2)
2083 spin_unlock(&rq2->lock);
2084 else
2085 __release(rq2->lock);
2086}
2087
2088/*
2089 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2090 */
70b97a7f 2091static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2092 __releases(this_rq->lock)
2093 __acquires(busiest->lock)
2094 __acquires(this_rq->lock)
2095{
054b9108
KK
2096 if (unlikely(!irqs_disabled())) {
2097 /* printk() doesn't work good under rq->lock */
2098 spin_unlock(&this_rq->lock);
2099 BUG_ON(1);
2100 }
1da177e4 2101 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2102 if (busiest < this_rq) {
1da177e4
LT
2103 spin_unlock(&this_rq->lock);
2104 spin_lock(&busiest->lock);
2105 spin_lock(&this_rq->lock);
2106 } else
2107 spin_lock(&busiest->lock);
2108 }
2109}
2110
1da177e4
LT
2111/*
2112 * If dest_cpu is allowed for this process, migrate the task to it.
2113 * This is accomplished by forcing the cpu_allowed mask to only
2114 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2115 * the cpu_allowed mask is restored.
2116 */
36c8b586 2117static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2118{
70b97a7f 2119 struct migration_req req;
1da177e4 2120 unsigned long flags;
70b97a7f 2121 struct rq *rq;
1da177e4
LT
2122
2123 rq = task_rq_lock(p, &flags);
2124 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2125 || unlikely(cpu_is_offline(dest_cpu)))
2126 goto out;
2127
2128 /* force the process onto the specified CPU */
2129 if (migrate_task(p, dest_cpu, &req)) {
2130 /* Need to wait for migration thread (might exit: take ref). */
2131 struct task_struct *mt = rq->migration_thread;
36c8b586 2132
1da177e4
LT
2133 get_task_struct(mt);
2134 task_rq_unlock(rq, &flags);
2135 wake_up_process(mt);
2136 put_task_struct(mt);
2137 wait_for_completion(&req.done);
36c8b586 2138
1da177e4
LT
2139 return;
2140 }
2141out:
2142 task_rq_unlock(rq, &flags);
2143}
2144
2145/*
476d139c
NP
2146 * sched_exec - execve() is a valuable balancing opportunity, because at
2147 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2148 */
2149void sched_exec(void)
2150{
1da177e4 2151 int new_cpu, this_cpu = get_cpu();
476d139c 2152 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2153 put_cpu();
476d139c
NP
2154 if (new_cpu != this_cpu)
2155 sched_migrate_task(current, new_cpu);
1da177e4
LT
2156}
2157
2158/*
2159 * pull_task - move a task from a remote runqueue to the local runqueue.
2160 * Both runqueues must be locked.
2161 */
70b97a7f
IM
2162static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2163 struct task_struct *p, struct rq *this_rq,
2164 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2165{
2166 dequeue_task(p, src_array);
2dd73a4f 2167 dec_nr_running(p, src_rq);
1da177e4 2168 set_task_cpu(p, this_cpu);
2dd73a4f 2169 inc_nr_running(p, this_rq);
1da177e4 2170 enqueue_task(p, this_array);
b18ec803
MG
2171 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2172 + this_rq->most_recent_timestamp;
1da177e4
LT
2173 /*
2174 * Note that idle threads have a prio of MAX_PRIO, for this test
2175 * to be always true for them.
2176 */
2177 if (TASK_PREEMPTS_CURR(p, this_rq))
2178 resched_task(this_rq->curr);
2179}
2180
2181/*
2182 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2183 */
858119e1 2184static
70b97a7f 2185int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2186 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2187 int *all_pinned)
1da177e4
LT
2188{
2189 /*
2190 * We do not migrate tasks that are:
2191 * 1) running (obviously), or
2192 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2193 * 3) are cache-hot on their current CPU.
2194 */
1da177e4
LT
2195 if (!cpu_isset(this_cpu, p->cpus_allowed))
2196 return 0;
81026794
NP
2197 *all_pinned = 0;
2198
2199 if (task_running(rq, p))
2200 return 0;
1da177e4
LT
2201
2202 /*
2203 * Aggressive migration if:
cafb20c1 2204 * 1) task is cache cold, or
1da177e4
LT
2205 * 2) too many balance attempts have failed.
2206 */
2207
b18ec803
MG
2208 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2209#ifdef CONFIG_SCHEDSTATS
2210 if (task_hot(p, rq->most_recent_timestamp, sd))
2211 schedstat_inc(sd, lb_hot_gained[idle]);
2212#endif
1da177e4 2213 return 1;
b18ec803 2214 }
1da177e4 2215
b18ec803 2216 if (task_hot(p, rq->most_recent_timestamp, sd))
81026794 2217 return 0;
1da177e4
LT
2218 return 1;
2219}
2220
615052dc 2221#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2222
1da177e4 2223/*
2dd73a4f
PW
2224 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2225 * load from busiest to this_rq, as part of a balancing operation within
2226 * "domain". Returns the number of tasks moved.
1da177e4
LT
2227 *
2228 * Called with both runqueues locked.
2229 */
70b97a7f 2230static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2231 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2232 struct sched_domain *sd, enum cpu_idle_type idle,
2dd73a4f 2233 int *all_pinned)
1da177e4 2234{
48f24c4d
IM
2235 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2236 best_prio_seen, skip_for_load;
70b97a7f 2237 struct prio_array *array, *dst_array;
1da177e4 2238 struct list_head *head, *curr;
36c8b586 2239 struct task_struct *tmp;
2dd73a4f 2240 long rem_load_move;
1da177e4 2241
2dd73a4f 2242 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2243 goto out;
2244
2dd73a4f 2245 rem_load_move = max_load_move;
81026794 2246 pinned = 1;
615052dc 2247 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2248 best_prio = rq_best_prio(busiest);
615052dc
PW
2249 /*
2250 * Enable handling of the case where there is more than one task
2251 * with the best priority. If the current running task is one
48f24c4d 2252 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2253 * and therefore it's safe to override the skip (based on load) of
2254 * any task we find with that prio.
2255 */
48f24c4d 2256 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2257
1da177e4
LT
2258 /*
2259 * We first consider expired tasks. Those will likely not be
2260 * executed in the near future, and they are most likely to
2261 * be cache-cold, thus switching CPUs has the least effect
2262 * on them.
2263 */
2264 if (busiest->expired->nr_active) {
2265 array = busiest->expired;
2266 dst_array = this_rq->expired;
2267 } else {
2268 array = busiest->active;
2269 dst_array = this_rq->active;
2270 }
2271
2272new_array:
2273 /* Start searching at priority 0: */
2274 idx = 0;
2275skip_bitmap:
2276 if (!idx)
2277 idx = sched_find_first_bit(array->bitmap);
2278 else
2279 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2280 if (idx >= MAX_PRIO) {
2281 if (array == busiest->expired && busiest->active->nr_active) {
2282 array = busiest->active;
2283 dst_array = this_rq->active;
2284 goto new_array;
2285 }
2286 goto out;
2287 }
2288
2289 head = array->queue + idx;
2290 curr = head->prev;
2291skip_queue:
36c8b586 2292 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2293
2294 curr = curr->prev;
2295
50ddd969
PW
2296 /*
2297 * To help distribute high priority tasks accross CPUs we don't
2298 * skip a task if it will be the highest priority task (i.e. smallest
2299 * prio value) on its new queue regardless of its load weight
2300 */
615052dc
PW
2301 skip_for_load = tmp->load_weight > rem_load_move;
2302 if (skip_for_load && idx < this_best_prio)
48f24c4d 2303 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2304 if (skip_for_load ||
2dd73a4f 2305 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2306
2307 best_prio_seen |= idx == best_prio;
1da177e4
LT
2308 if (curr != head)
2309 goto skip_queue;
2310 idx++;
2311 goto skip_bitmap;
2312 }
2313
1da177e4
LT
2314 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2315 pulled++;
2dd73a4f 2316 rem_load_move -= tmp->load_weight;
1da177e4 2317
2dd73a4f
PW
2318 /*
2319 * We only want to steal up to the prescribed number of tasks
2320 * and the prescribed amount of weighted load.
2321 */
2322 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2323 if (idx < this_best_prio)
2324 this_best_prio = idx;
1da177e4
LT
2325 if (curr != head)
2326 goto skip_queue;
2327 idx++;
2328 goto skip_bitmap;
2329 }
2330out:
2331 /*
2332 * Right now, this is the only place pull_task() is called,
2333 * so we can safely collect pull_task() stats here rather than
2334 * inside pull_task().
2335 */
2336 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2337
2338 if (all_pinned)
2339 *all_pinned = pinned;
1da177e4
LT
2340 return pulled;
2341}
2342
2343/*
2344 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2345 * domain. It calculates and returns the amount of weighted load which
2346 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2347 */
2348static struct sched_group *
2349find_busiest_group(struct sched_domain *sd, int this_cpu,
d15bcfdb 2350 unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
783609c6 2351 cpumask_t *cpus, int *balance)
1da177e4
LT
2352{
2353 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2354 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2355 unsigned long max_pull;
2dd73a4f
PW
2356 unsigned long busiest_load_per_task, busiest_nr_running;
2357 unsigned long this_load_per_task, this_nr_running;
7897986b 2358 int load_idx;
5c45bf27
SS
2359#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2360 int power_savings_balance = 1;
2361 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2362 unsigned long min_nr_running = ULONG_MAX;
2363 struct sched_group *group_min = NULL, *group_leader = NULL;
2364#endif
1da177e4
LT
2365
2366 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2367 busiest_load_per_task = busiest_nr_running = 0;
2368 this_load_per_task = this_nr_running = 0;
d15bcfdb 2369 if (idle == CPU_NOT_IDLE)
7897986b 2370 load_idx = sd->busy_idx;
d15bcfdb 2371 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2372 load_idx = sd->newidle_idx;
2373 else
2374 load_idx = sd->idle_idx;
1da177e4
LT
2375
2376 do {
5c45bf27 2377 unsigned long load, group_capacity;
1da177e4
LT
2378 int local_group;
2379 int i;
783609c6 2380 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2381 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2382
2383 local_group = cpu_isset(this_cpu, group->cpumask);
2384
783609c6
SS
2385 if (local_group)
2386 balance_cpu = first_cpu(group->cpumask);
2387
1da177e4 2388 /* Tally up the load of all CPUs in the group */
2dd73a4f 2389 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2390
2391 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2392 struct rq *rq;
2393
2394 if (!cpu_isset(i, *cpus))
2395 continue;
2396
2397 rq = cpu_rq(i);
2dd73a4f 2398
5969fe06
NP
2399 if (*sd_idle && !idle_cpu(i))
2400 *sd_idle = 0;
2401
1da177e4 2402 /* Bias balancing toward cpus of our domain */
783609c6
SS
2403 if (local_group) {
2404 if (idle_cpu(i) && !first_idle_cpu) {
2405 first_idle_cpu = 1;
2406 balance_cpu = i;
2407 }
2408
a2000572 2409 load = target_load(i, load_idx);
783609c6 2410 } else
a2000572 2411 load = source_load(i, load_idx);
1da177e4
LT
2412
2413 avg_load += load;
2dd73a4f
PW
2414 sum_nr_running += rq->nr_running;
2415 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2416 }
2417
783609c6
SS
2418 /*
2419 * First idle cpu or the first cpu(busiest) in this sched group
2420 * is eligible for doing load balancing at this and above
2421 * domains.
2422 */
2423 if (local_group && balance_cpu != this_cpu && balance) {
2424 *balance = 0;
2425 goto ret;
2426 }
2427
1da177e4 2428 total_load += avg_load;
5517d86b 2429 total_pwr += group->__cpu_power;
1da177e4
LT
2430
2431 /* Adjust by relative CPU power of the group */
5517d86b
ED
2432 avg_load = sg_div_cpu_power(group,
2433 avg_load * SCHED_LOAD_SCALE);
1da177e4 2434
5517d86b 2435 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2436
1da177e4
LT
2437 if (local_group) {
2438 this_load = avg_load;
2439 this = group;
2dd73a4f
PW
2440 this_nr_running = sum_nr_running;
2441 this_load_per_task = sum_weighted_load;
2442 } else if (avg_load > max_load &&
5c45bf27 2443 sum_nr_running > group_capacity) {
1da177e4
LT
2444 max_load = avg_load;
2445 busiest = group;
2dd73a4f
PW
2446 busiest_nr_running = sum_nr_running;
2447 busiest_load_per_task = sum_weighted_load;
1da177e4 2448 }
5c45bf27
SS
2449
2450#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2451 /*
2452 * Busy processors will not participate in power savings
2453 * balance.
2454 */
d15bcfdb 2455 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27
SS
2456 goto group_next;
2457
2458 /*
2459 * If the local group is idle or completely loaded
2460 * no need to do power savings balance at this domain
2461 */
2462 if (local_group && (this_nr_running >= group_capacity ||
2463 !this_nr_running))
2464 power_savings_balance = 0;
2465
2466 /*
2467 * If a group is already running at full capacity or idle,
2468 * don't include that group in power savings calculations
2469 */
2470 if (!power_savings_balance || sum_nr_running >= group_capacity
2471 || !sum_nr_running)
2472 goto group_next;
2473
2474 /*
2475 * Calculate the group which has the least non-idle load.
2476 * This is the group from where we need to pick up the load
2477 * for saving power
2478 */
2479 if ((sum_nr_running < min_nr_running) ||
2480 (sum_nr_running == min_nr_running &&
2481 first_cpu(group->cpumask) <
2482 first_cpu(group_min->cpumask))) {
2483 group_min = group;
2484 min_nr_running = sum_nr_running;
2485 min_load_per_task = sum_weighted_load /
2486 sum_nr_running;
2487 }
2488
2489 /*
2490 * Calculate the group which is almost near its
2491 * capacity but still has some space to pick up some load
2492 * from other group and save more power
2493 */
48f24c4d 2494 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2495 if (sum_nr_running > leader_nr_running ||
2496 (sum_nr_running == leader_nr_running &&
2497 first_cpu(group->cpumask) >
2498 first_cpu(group_leader->cpumask))) {
2499 group_leader = group;
2500 leader_nr_running = sum_nr_running;
2501 }
48f24c4d 2502 }
5c45bf27
SS
2503group_next:
2504#endif
1da177e4
LT
2505 group = group->next;
2506 } while (group != sd->groups);
2507
2dd73a4f 2508 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2509 goto out_balanced;
2510
2511 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2512
2513 if (this_load >= avg_load ||
2514 100*max_load <= sd->imbalance_pct*this_load)
2515 goto out_balanced;
2516
2dd73a4f 2517 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2518 /*
2519 * We're trying to get all the cpus to the average_load, so we don't
2520 * want to push ourselves above the average load, nor do we wish to
2521 * reduce the max loaded cpu below the average load, as either of these
2522 * actions would just result in more rebalancing later, and ping-pong
2523 * tasks around. Thus we look for the minimum possible imbalance.
2524 * Negative imbalances (*we* are more loaded than anyone else) will
2525 * be counted as no imbalance for these purposes -- we can't fix that
2526 * by pulling tasks to us. Be careful of negative numbers as they'll
2527 * appear as very large values with unsigned longs.
2528 */
2dd73a4f
PW
2529 if (max_load <= busiest_load_per_task)
2530 goto out_balanced;
2531
2532 /*
2533 * In the presence of smp nice balancing, certain scenarios can have
2534 * max load less than avg load(as we skip the groups at or below
2535 * its cpu_power, while calculating max_load..)
2536 */
2537 if (max_load < avg_load) {
2538 *imbalance = 0;
2539 goto small_imbalance;
2540 }
0c117f1b
SS
2541
2542 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2543 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2544
1da177e4 2545 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2546 *imbalance = min(max_pull * busiest->__cpu_power,
2547 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2548 / SCHED_LOAD_SCALE;
2549
2dd73a4f
PW
2550 /*
2551 * if *imbalance is less than the average load per runnable task
2552 * there is no gaurantee that any tasks will be moved so we'll have
2553 * a think about bumping its value to force at least one task to be
2554 * moved
2555 */
2556 if (*imbalance < busiest_load_per_task) {
48f24c4d 2557 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2558 unsigned int imbn;
2559
2560small_imbalance:
2561 pwr_move = pwr_now = 0;
2562 imbn = 2;
2563 if (this_nr_running) {
2564 this_load_per_task /= this_nr_running;
2565 if (busiest_load_per_task > this_load_per_task)
2566 imbn = 1;
2567 } else
2568 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2569
2dd73a4f
PW
2570 if (max_load - this_load >= busiest_load_per_task * imbn) {
2571 *imbalance = busiest_load_per_task;
1da177e4
LT
2572 return busiest;
2573 }
2574
2575 /*
2576 * OK, we don't have enough imbalance to justify moving tasks,
2577 * however we may be able to increase total CPU power used by
2578 * moving them.
2579 */
2580
5517d86b
ED
2581 pwr_now += busiest->__cpu_power *
2582 min(busiest_load_per_task, max_load);
2583 pwr_now += this->__cpu_power *
2584 min(this_load_per_task, this_load);
1da177e4
LT
2585 pwr_now /= SCHED_LOAD_SCALE;
2586
2587 /* Amount of load we'd subtract */
5517d86b
ED
2588 tmp = sg_div_cpu_power(busiest,
2589 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2590 if (max_load > tmp)
5517d86b 2591 pwr_move += busiest->__cpu_power *
2dd73a4f 2592 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2593
2594 /* Amount of load we'd add */
5517d86b 2595 if (max_load * busiest->__cpu_power <
33859f7f 2596 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2597 tmp = sg_div_cpu_power(this,
2598 max_load * busiest->__cpu_power);
1da177e4 2599 else
5517d86b
ED
2600 tmp = sg_div_cpu_power(this,
2601 busiest_load_per_task * SCHED_LOAD_SCALE);
2602 pwr_move += this->__cpu_power *
2603 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2604 pwr_move /= SCHED_LOAD_SCALE;
2605
2606 /* Move if we gain throughput */
2607 if (pwr_move <= pwr_now)
2608 goto out_balanced;
2609
2dd73a4f 2610 *imbalance = busiest_load_per_task;
1da177e4
LT
2611 }
2612
1da177e4
LT
2613 return busiest;
2614
2615out_balanced:
5c45bf27 2616#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2617 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2618 goto ret;
1da177e4 2619
5c45bf27
SS
2620 if (this == group_leader && group_leader != group_min) {
2621 *imbalance = min_load_per_task;
2622 return group_min;
2623 }
5c45bf27 2624#endif
783609c6 2625ret:
1da177e4
LT
2626 *imbalance = 0;
2627 return NULL;
2628}
2629
2630/*
2631 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2632 */
70b97a7f 2633static struct rq *
d15bcfdb 2634find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2635 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2636{
70b97a7f 2637 struct rq *busiest = NULL, *rq;
2dd73a4f 2638 unsigned long max_load = 0;
1da177e4
LT
2639 int i;
2640
2641 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2642
2643 if (!cpu_isset(i, *cpus))
2644 continue;
2645
48f24c4d 2646 rq = cpu_rq(i);
2dd73a4f 2647
48f24c4d 2648 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2649 continue;
1da177e4 2650
48f24c4d
IM
2651 if (rq->raw_weighted_load > max_load) {
2652 max_load = rq->raw_weighted_load;
2653 busiest = rq;
1da177e4
LT
2654 }
2655 }
2656
2657 return busiest;
2658}
2659
77391d71
NP
2660/*
2661 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2662 * so long as it is large enough.
2663 */
2664#define MAX_PINNED_INTERVAL 512
2665
48f24c4d
IM
2666static inline unsigned long minus_1_or_zero(unsigned long n)
2667{
2668 return n > 0 ? n - 1 : 0;
2669}
2670
1da177e4
LT
2671/*
2672 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2673 * tasks if there is an imbalance.
1da177e4 2674 */
70b97a7f 2675static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2676 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2677 int *balance)
1da177e4 2678{
48f24c4d 2679 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2680 struct sched_group *group;
1da177e4 2681 unsigned long imbalance;
70b97a7f 2682 struct rq *busiest;
0a2966b4 2683 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2684 unsigned long flags;
5969fe06 2685
89c4710e
SS
2686 /*
2687 * When power savings policy is enabled for the parent domain, idle
2688 * sibling can pick up load irrespective of busy siblings. In this case,
2689 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2690 * portraying it as CPU_NOT_IDLE.
89c4710e 2691 */
d15bcfdb 2692 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2694 sd_idle = 1;
1da177e4 2695
1da177e4
LT
2696 schedstat_inc(sd, lb_cnt[idle]);
2697
0a2966b4
CL
2698redo:
2699 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2700 &cpus, balance);
2701
06066714 2702 if (*balance == 0)
783609c6 2703 goto out_balanced;
783609c6 2704
1da177e4
LT
2705 if (!group) {
2706 schedstat_inc(sd, lb_nobusyg[idle]);
2707 goto out_balanced;
2708 }
2709
0a2966b4 2710 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2711 if (!busiest) {
2712 schedstat_inc(sd, lb_nobusyq[idle]);
2713 goto out_balanced;
2714 }
2715
db935dbd 2716 BUG_ON(busiest == this_rq);
1da177e4
LT
2717
2718 schedstat_add(sd, lb_imbalance[idle], imbalance);
2719
2720 nr_moved = 0;
2721 if (busiest->nr_running > 1) {
2722 /*
2723 * Attempt to move tasks. If find_busiest_group has found
2724 * an imbalance but busiest->nr_running <= 1, the group is
2725 * still unbalanced. nr_moved simply stays zero, so it is
2726 * correctly treated as an imbalance.
2727 */
fe2eea3f 2728 local_irq_save(flags);
e17224bf 2729 double_rq_lock(this_rq, busiest);
1da177e4 2730 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2731 minus_1_or_zero(busiest->nr_running),
2732 imbalance, sd, idle, &all_pinned);
e17224bf 2733 double_rq_unlock(this_rq, busiest);
fe2eea3f 2734 local_irq_restore(flags);
81026794 2735
46cb4b7c
SS
2736 /*
2737 * some other cpu did the load balance for us.
2738 */
2739 if (nr_moved && this_cpu != smp_processor_id())
2740 resched_cpu(this_cpu);
2741
81026794 2742 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2743 if (unlikely(all_pinned)) {
2744 cpu_clear(cpu_of(busiest), cpus);
2745 if (!cpus_empty(cpus))
2746 goto redo;
81026794 2747 goto out_balanced;
0a2966b4 2748 }
1da177e4 2749 }
81026794 2750
1da177e4
LT
2751 if (!nr_moved) {
2752 schedstat_inc(sd, lb_failed[idle]);
2753 sd->nr_balance_failed++;
2754
2755 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2756
fe2eea3f 2757 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2758
2759 /* don't kick the migration_thread, if the curr
2760 * task on busiest cpu can't be moved to this_cpu
2761 */
2762 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2763 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2764 all_pinned = 1;
2765 goto out_one_pinned;
2766 }
2767
1da177e4
LT
2768 if (!busiest->active_balance) {
2769 busiest->active_balance = 1;
2770 busiest->push_cpu = this_cpu;
81026794 2771 active_balance = 1;
1da177e4 2772 }
fe2eea3f 2773 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2774 if (active_balance)
1da177e4
LT
2775 wake_up_process(busiest->migration_thread);
2776
2777 /*
2778 * We've kicked active balancing, reset the failure
2779 * counter.
2780 */
39507451 2781 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2782 }
81026794 2783 } else
1da177e4
LT
2784 sd->nr_balance_failed = 0;
2785
81026794 2786 if (likely(!active_balance)) {
1da177e4
LT
2787 /* We were unbalanced, so reset the balancing interval */
2788 sd->balance_interval = sd->min_interval;
81026794
NP
2789 } else {
2790 /*
2791 * If we've begun active balancing, start to back off. This
2792 * case may not be covered by the all_pinned logic if there
2793 * is only 1 task on the busy runqueue (because we don't call
2794 * move_tasks).
2795 */
2796 if (sd->balance_interval < sd->max_interval)
2797 sd->balance_interval *= 2;
1da177e4
LT
2798 }
2799
5c45bf27 2800 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2801 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2802 return -1;
1da177e4
LT
2803 return nr_moved;
2804
2805out_balanced:
1da177e4
LT
2806 schedstat_inc(sd, lb_balanced[idle]);
2807
16cfb1c0 2808 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2809
2810out_one_pinned:
1da177e4 2811 /* tune up the balancing interval */
77391d71
NP
2812 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2813 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2814 sd->balance_interval *= 2;
2815
48f24c4d 2816 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2817 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2818 return -1;
1da177e4
LT
2819 return 0;
2820}
2821
2822/*
2823 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2824 * tasks if there is an imbalance.
2825 *
d15bcfdb 2826 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2827 * this_rq is locked.
2828 */
48f24c4d 2829static int
70b97a7f 2830load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2831{
2832 struct sched_group *group;
70b97a7f 2833 struct rq *busiest = NULL;
1da177e4
LT
2834 unsigned long imbalance;
2835 int nr_moved = 0;
5969fe06 2836 int sd_idle = 0;
0a2966b4 2837 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2838
89c4710e
SS
2839 /*
2840 * When power savings policy is enabled for the parent domain, idle
2841 * sibling can pick up load irrespective of busy siblings. In this case,
2842 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2843 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2844 */
2845 if (sd->flags & SD_SHARE_CPUPOWER &&
2846 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2847 sd_idle = 1;
1da177e4 2848
d15bcfdb 2849 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2850redo:
d15bcfdb 2851 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2852 &sd_idle, &cpus, NULL);
1da177e4 2853 if (!group) {
d15bcfdb 2854 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2855 goto out_balanced;
1da177e4
LT
2856 }
2857
d15bcfdb 2858 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2859 &cpus);
db935dbd 2860 if (!busiest) {
d15bcfdb 2861 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2862 goto out_balanced;
1da177e4
LT
2863 }
2864
db935dbd
NP
2865 BUG_ON(busiest == this_rq);
2866
d15bcfdb 2867 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2868
2869 nr_moved = 0;
2870 if (busiest->nr_running > 1) {
2871 /* Attempt to move tasks */
2872 double_lock_balance(this_rq, busiest);
2873 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2874 minus_1_or_zero(busiest->nr_running),
d15bcfdb 2875 imbalance, sd, CPU_NEWLY_IDLE, NULL);
d6d5cfaf 2876 spin_unlock(&busiest->lock);
0a2966b4
CL
2877
2878 if (!nr_moved) {
2879 cpu_clear(cpu_of(busiest), cpus);
2880 if (!cpus_empty(cpus))
2881 goto redo;
2882 }
d6d5cfaf
NP
2883 }
2884
5969fe06 2885 if (!nr_moved) {
d15bcfdb 2886 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2887 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2888 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2889 return -1;
2890 } else
16cfb1c0 2891 sd->nr_balance_failed = 0;
1da177e4 2892
1da177e4 2893 return nr_moved;
16cfb1c0
NP
2894
2895out_balanced:
d15bcfdb 2896 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2897 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2898 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2899 return -1;
16cfb1c0 2900 sd->nr_balance_failed = 0;
48f24c4d 2901
16cfb1c0 2902 return 0;
1da177e4
LT
2903}
2904
2905/*
2906 * idle_balance is called by schedule() if this_cpu is about to become
2907 * idle. Attempts to pull tasks from other CPUs.
2908 */
70b97a7f 2909static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2910{
2911 struct sched_domain *sd;
1bd77f2d
CL
2912 int pulled_task = 0;
2913 unsigned long next_balance = jiffies + 60 * HZ;
1da177e4
LT
2914
2915 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2916 unsigned long interval;
2917
2918 if (!(sd->flags & SD_LOAD_BALANCE))
2919 continue;
2920
2921 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2922 /* If we've pulled tasks over stop searching: */
1bd77f2d 2923 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2924 this_rq, sd);
2925
2926 interval = msecs_to_jiffies(sd->balance_interval);
2927 if (time_after(next_balance, sd->last_balance + interval))
2928 next_balance = sd->last_balance + interval;
2929 if (pulled_task)
2930 break;
1da177e4 2931 }
1bd77f2d
CL
2932 if (!pulled_task)
2933 /*
2934 * We are going idle. next_balance may be set based on
2935 * a busy processor. So reset next_balance.
2936 */
2937 this_rq->next_balance = next_balance;
1da177e4
LT
2938}
2939
2940/*
2941 * active_load_balance is run by migration threads. It pushes running tasks
2942 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2943 * running on each physical CPU where possible, and avoids physical /
2944 * logical imbalances.
2945 *
2946 * Called with busiest_rq locked.
2947 */
70b97a7f 2948static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2949{
39507451 2950 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2951 struct sched_domain *sd;
2952 struct rq *target_rq;
39507451 2953
48f24c4d 2954 /* Is there any task to move? */
39507451 2955 if (busiest_rq->nr_running <= 1)
39507451
NP
2956 return;
2957
2958 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2959
2960 /*
39507451
NP
2961 * This condition is "impossible", if it occurs
2962 * we need to fix it. Originally reported by
2963 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2964 */
39507451 2965 BUG_ON(busiest_rq == target_rq);
1da177e4 2966
39507451
NP
2967 /* move a task from busiest_rq to target_rq */
2968 double_lock_balance(busiest_rq, target_rq);
2969
2970 /* Search for an sd spanning us and the target CPU. */
c96d145e 2971 for_each_domain(target_cpu, sd) {
39507451 2972 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2973 cpu_isset(busiest_cpu, sd->span))
39507451 2974 break;
c96d145e 2975 }
39507451 2976
48f24c4d
IM
2977 if (likely(sd)) {
2978 schedstat_inc(sd, alb_cnt);
39507451 2979
48f24c4d 2980 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
d15bcfdb 2981 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
48f24c4d
IM
2982 NULL))
2983 schedstat_inc(sd, alb_pushed);
2984 else
2985 schedstat_inc(sd, alb_failed);
2986 }
39507451 2987 spin_unlock(&target_rq->lock);
1da177e4
LT
2988}
2989
7835b98b 2990static void update_load(struct rq *this_rq)
1da177e4 2991{
7835b98b 2992 unsigned long this_load;
ff91691b 2993 unsigned int i, scale;
1da177e4 2994
2dd73a4f 2995 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2996
2997 /* Update our load: */
ff91691b 2998 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
48f24c4d
IM
2999 unsigned long old_load, new_load;
3000
ff91691b
NP
3001 /* scale is effectively 1 << i now, and >> i divides by scale */
3002
7897986b 3003 old_load = this_rq->cpu_load[i];
48f24c4d 3004 new_load = this_load;
7897986b
NP
3005 /*
3006 * Round up the averaging division if load is increasing. This
3007 * prevents us from getting stuck on 9 if the load is 10, for
3008 * example.
3009 */
3010 if (new_load > old_load)
3011 new_load += scale-1;
ff91691b 3012 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
7897986b 3013 }
7835b98b
CL
3014}
3015
46cb4b7c
SS
3016#ifdef CONFIG_NO_HZ
3017static struct {
3018 atomic_t load_balancer;
3019 cpumask_t cpu_mask;
3020} nohz ____cacheline_aligned = {
3021 .load_balancer = ATOMIC_INIT(-1),
3022 .cpu_mask = CPU_MASK_NONE,
3023};
3024
7835b98b 3025/*
46cb4b7c
SS
3026 * This routine will try to nominate the ilb (idle load balancing)
3027 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3028 * load balancing on behalf of all those cpus. If all the cpus in the system
3029 * go into this tickless mode, then there will be no ilb owner (as there is
3030 * no need for one) and all the cpus will sleep till the next wakeup event
3031 * arrives...
3032 *
3033 * For the ilb owner, tick is not stopped. And this tick will be used
3034 * for idle load balancing. ilb owner will still be part of
3035 * nohz.cpu_mask..
7835b98b 3036 *
46cb4b7c
SS
3037 * While stopping the tick, this cpu will become the ilb owner if there
3038 * is no other owner. And will be the owner till that cpu becomes busy
3039 * or if all cpus in the system stop their ticks at which point
3040 * there is no need for ilb owner.
3041 *
3042 * When the ilb owner becomes busy, it nominates another owner, during the
3043 * next busy scheduler_tick()
3044 */
3045int select_nohz_load_balancer(int stop_tick)
3046{
3047 int cpu = smp_processor_id();
3048
3049 if (stop_tick) {
3050 cpu_set(cpu, nohz.cpu_mask);
3051 cpu_rq(cpu)->in_nohz_recently = 1;
3052
3053 /*
3054 * If we are going offline and still the leader, give up!
3055 */
3056 if (cpu_is_offline(cpu) &&
3057 atomic_read(&nohz.load_balancer) == cpu) {
3058 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3059 BUG();
3060 return 0;
3061 }
3062
3063 /* time for ilb owner also to sleep */
3064 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3065 if (atomic_read(&nohz.load_balancer) == cpu)
3066 atomic_set(&nohz.load_balancer, -1);
3067 return 0;
3068 }
3069
3070 if (atomic_read(&nohz.load_balancer) == -1) {
3071 /* make me the ilb owner */
3072 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3073 return 1;
3074 } else if (atomic_read(&nohz.load_balancer) == cpu)
3075 return 1;
3076 } else {
3077 if (!cpu_isset(cpu, nohz.cpu_mask))
3078 return 0;
3079
3080 cpu_clear(cpu, nohz.cpu_mask);
3081
3082 if (atomic_read(&nohz.load_balancer) == cpu)
3083 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3084 BUG();
3085 }
3086 return 0;
3087}
3088#endif
3089
3090static DEFINE_SPINLOCK(balancing);
3091
3092/*
7835b98b
CL
3093 * It checks each scheduling domain to see if it is due to be balanced,
3094 * and initiates a balancing operation if so.
3095 *
3096 * Balancing parameters are set up in arch_init_sched_domains.
3097 */
d15bcfdb 3098static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3099{
46cb4b7c
SS
3100 int balance = 1;
3101 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3102 unsigned long interval;
3103 struct sched_domain *sd;
46cb4b7c 3104 /* Earliest time when we have to do rebalance again */
c9819f45 3105 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3106
46cb4b7c 3107 for_each_domain(cpu, sd) {
1da177e4
LT
3108 if (!(sd->flags & SD_LOAD_BALANCE))
3109 continue;
3110
3111 interval = sd->balance_interval;
d15bcfdb 3112 if (idle != CPU_IDLE)
1da177e4
LT
3113 interval *= sd->busy_factor;
3114
3115 /* scale ms to jiffies */
3116 interval = msecs_to_jiffies(interval);
3117 if (unlikely(!interval))
3118 interval = 1;
3119
08c183f3
CL
3120 if (sd->flags & SD_SERIALIZE) {
3121 if (!spin_trylock(&balancing))
3122 goto out;
3123 }
3124
c9819f45 3125 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3126 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3127 /*
3128 * We've pulled tasks over so either we're no
5969fe06
NP
3129 * longer idle, or one of our SMT siblings is
3130 * not idle.
3131 */
d15bcfdb 3132 idle = CPU_NOT_IDLE;
1da177e4 3133 }
1bd77f2d 3134 sd->last_balance = jiffies;
1da177e4 3135 }
08c183f3
CL
3136 if (sd->flags & SD_SERIALIZE)
3137 spin_unlock(&balancing);
3138out:
c9819f45
CL
3139 if (time_after(next_balance, sd->last_balance + interval))
3140 next_balance = sd->last_balance + interval;
783609c6
SS
3141
3142 /*
3143 * Stop the load balance at this level. There is another
3144 * CPU in our sched group which is doing load balancing more
3145 * actively.
3146 */
3147 if (!balance)
3148 break;
1da177e4 3149 }
46cb4b7c
SS
3150 rq->next_balance = next_balance;
3151}
3152
3153/*
3154 * run_rebalance_domains is triggered when needed from the scheduler tick.
3155 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3156 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3157 */
3158static void run_rebalance_domains(struct softirq_action *h)
3159{
3160 int local_cpu = smp_processor_id();
3161 struct rq *local_rq = cpu_rq(local_cpu);
d15bcfdb 3162 enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c
SS
3163
3164 rebalance_domains(local_cpu, idle);
3165
3166#ifdef CONFIG_NO_HZ
3167 /*
3168 * If this cpu is the owner for idle load balancing, then do the
3169 * balancing on behalf of the other idle cpus whose ticks are
3170 * stopped.
3171 */
3172 if (local_rq->idle_at_tick &&
3173 atomic_read(&nohz.load_balancer) == local_cpu) {
3174 cpumask_t cpus = nohz.cpu_mask;
3175 struct rq *rq;
3176 int balance_cpu;
3177
3178 cpu_clear(local_cpu, cpus);
3179 for_each_cpu_mask(balance_cpu, cpus) {
3180 /*
3181 * If this cpu gets work to do, stop the load balancing
3182 * work being done for other cpus. Next load
3183 * balancing owner will pick it up.
3184 */
3185 if (need_resched())
3186 break;
3187
d15bcfdb 3188 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3189
3190 rq = cpu_rq(balance_cpu);
3191 if (time_after(local_rq->next_balance, rq->next_balance))
3192 local_rq->next_balance = rq->next_balance;
3193 }
3194 }
3195#endif
3196}
3197
3198/*
3199 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3200 *
3201 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3202 * idle load balancing owner or decide to stop the periodic load balancing,
3203 * if the whole system is idle.
3204 */
3205static inline void trigger_load_balance(int cpu)
3206{
3207 struct rq *rq = cpu_rq(cpu);
3208#ifdef CONFIG_NO_HZ
3209 /*
3210 * If we were in the nohz mode recently and busy at the current
3211 * scheduler tick, then check if we need to nominate new idle
3212 * load balancer.
3213 */
3214 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3215 rq->in_nohz_recently = 0;
3216
3217 if (atomic_read(&nohz.load_balancer) == cpu) {
3218 cpu_clear(cpu, nohz.cpu_mask);
3219 atomic_set(&nohz.load_balancer, -1);
3220 }
3221
3222 if (atomic_read(&nohz.load_balancer) == -1) {
3223 /*
3224 * simple selection for now: Nominate the
3225 * first cpu in the nohz list to be the next
3226 * ilb owner.
3227 *
3228 * TBD: Traverse the sched domains and nominate
3229 * the nearest cpu in the nohz.cpu_mask.
3230 */
3231 int ilb = first_cpu(nohz.cpu_mask);
3232
3233 if (ilb != NR_CPUS)
3234 resched_cpu(ilb);
3235 }
3236 }
3237
3238 /*
3239 * If this cpu is idle and doing idle load balancing for all the
3240 * cpus with ticks stopped, is it time for that to stop?
3241 */
3242 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3243 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3244 resched_cpu(cpu);
3245 return;
3246 }
3247
3248 /*
3249 * If this cpu is idle and the idle load balancing is done by
3250 * someone else, then no need raise the SCHED_SOFTIRQ
3251 */
3252 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3253 cpu_isset(cpu, nohz.cpu_mask))
3254 return;
3255#endif
3256 if (time_after_eq(jiffies, rq->next_balance))
3257 raise_softirq(SCHED_SOFTIRQ);
1da177e4
LT
3258}
3259#else
3260/*
3261 * on UP we do not need to balance between CPUs:
3262 */
70b97a7f 3263static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3264{
3265}
3266#endif
3267
1da177e4
LT
3268DEFINE_PER_CPU(struct kernel_stat, kstat);
3269
3270EXPORT_PER_CPU_SYMBOL(kstat);
3271
3272/*
3273 * This is called on clock ticks and on context switches.
3274 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3275 */
48f24c4d 3276static inline void
70b97a7f 3277update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 3278{
b18ec803
MG
3279 p->sched_time += now - p->last_ran;
3280 p->last_ran = rq->most_recent_timestamp = now;
1da177e4
LT
3281}
3282
3283/*
3284 * Return current->sched_time plus any more ns on the sched_clock
3285 * that have not yet been banked.
3286 */
36c8b586 3287unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
3288{
3289 unsigned long long ns;
3290 unsigned long flags;
48f24c4d 3291
1da177e4 3292 local_irq_save(flags);
b18ec803 3293 ns = p->sched_time + sched_clock() - p->last_ran;
1da177e4 3294 local_irq_restore(flags);
48f24c4d 3295
1da177e4
LT
3296 return ns;
3297}
3298
f1adad78
LT
3299/*
3300 * We place interactive tasks back into the active array, if possible.
3301 *
3302 * To guarantee that this does not starve expired tasks we ignore the
3303 * interactivity of a task if the first expired task had to wait more
3304 * than a 'reasonable' amount of time. This deadline timeout is
3305 * load-dependent, as the frequency of array switched decreases with
3306 * increasing number of running tasks. We also ignore the interactivity
3307 * if a better static_prio task has expired:
3308 */
70b97a7f 3309static inline int expired_starving(struct rq *rq)
48f24c4d
IM
3310{
3311 if (rq->curr->static_prio > rq->best_expired_prio)
3312 return 1;
3313 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3314 return 0;
3315 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3316 return 1;
3317 return 0;
3318}
f1adad78 3319
1da177e4
LT
3320/*
3321 * Account user cpu time to a process.
3322 * @p: the process that the cpu time gets accounted to
3323 * @hardirq_offset: the offset to subtract from hardirq_count()
3324 * @cputime: the cpu time spent in user space since the last update
3325 */
3326void account_user_time(struct task_struct *p, cputime_t cputime)
3327{
3328 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3329 cputime64_t tmp;
3330
3331 p->utime = cputime_add(p->utime, cputime);
3332
3333 /* Add user time to cpustat. */
3334 tmp = cputime_to_cputime64(cputime);
3335 if (TASK_NICE(p) > 0)
3336 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3337 else
3338 cpustat->user = cputime64_add(cpustat->user, tmp);
3339}
3340
3341/*
3342 * Account system cpu time to a process.
3343 * @p: the process that the cpu time gets accounted to
3344 * @hardirq_offset: the offset to subtract from hardirq_count()
3345 * @cputime: the cpu time spent in kernel space since the last update
3346 */
3347void account_system_time(struct task_struct *p, int hardirq_offset,
3348 cputime_t cputime)
3349{
3350 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3351 struct rq *rq = this_rq();
1da177e4
LT
3352 cputime64_t tmp;
3353
3354 p->stime = cputime_add(p->stime, cputime);
3355
3356 /* Add system time to cpustat. */
3357 tmp = cputime_to_cputime64(cputime);
3358 if (hardirq_count() - hardirq_offset)
3359 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3360 else if (softirq_count())
3361 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3362 else if (p != rq->idle)
3363 cpustat->system = cputime64_add(cpustat->system, tmp);
3364 else if (atomic_read(&rq->nr_iowait) > 0)
3365 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3366 else
3367 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3368 /* Account for system time used */
3369 acct_update_integrals(p);
1da177e4
LT
3370}
3371
3372/*
3373 * Account for involuntary wait time.
3374 * @p: the process from which the cpu time has been stolen
3375 * @steal: the cpu time spent in involuntary wait
3376 */
3377void account_steal_time(struct task_struct *p, cputime_t steal)
3378{
3379 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3380 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3381 struct rq *rq = this_rq();
1da177e4
LT
3382
3383 if (p == rq->idle) {
3384 p->stime = cputime_add(p->stime, steal);
3385 if (atomic_read(&rq->nr_iowait) > 0)
3386 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3387 else
3388 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3389 } else
3390 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3391}
3392
7835b98b 3393static void task_running_tick(struct rq *rq, struct task_struct *p)
1da177e4 3394{
1da177e4 3395 if (p->array != rq->active) {
7835b98b 3396 /* Task has expired but was not scheduled yet */
1da177e4 3397 set_tsk_need_resched(p);
7835b98b 3398 return;
1da177e4
LT
3399 }
3400 spin_lock(&rq->lock);
3401 /*
3402 * The task was running during this tick - update the
3403 * time slice counter. Note: we do not update a thread's
3404 * priority until it either goes to sleep or uses up its
3405 * timeslice. This makes it possible for interactive tasks
3406 * to use up their timeslices at their highest priority levels.
3407 */
3408 if (rt_task(p)) {
3409 /*
3410 * RR tasks need a special form of timeslice management.
3411 * FIFO tasks have no timeslices.
3412 */
3413 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3414 p->time_slice = task_timeslice(p);
3415 p->first_time_slice = 0;
3416 set_tsk_need_resched(p);
3417
3418 /* put it at the end of the queue: */
3419 requeue_task(p, rq->active);
3420 }
3421 goto out_unlock;
3422 }
3423 if (!--p->time_slice) {
3424 dequeue_task(p, rq->active);
3425 set_tsk_need_resched(p);
3426 p->prio = effective_prio(p);
3427 p->time_slice = task_timeslice(p);
3428 p->first_time_slice = 0;
3429
3430 if (!rq->expired_timestamp)
3431 rq->expired_timestamp = jiffies;
48f24c4d 3432 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3433 enqueue_task(p, rq->expired);
3434 if (p->static_prio < rq->best_expired_prio)
3435 rq->best_expired_prio = p->static_prio;
3436 } else
3437 enqueue_task(p, rq->active);
3438 } else {
3439 /*
3440 * Prevent a too long timeslice allowing a task to monopolize
3441 * the CPU. We do this by splitting up the timeslice into
3442 * smaller pieces.
3443 *
3444 * Note: this does not mean the task's timeslices expire or
3445 * get lost in any way, they just might be preempted by
3446 * another task of equal priority. (one with higher
3447 * priority would have preempted this task already.) We
3448 * requeue this task to the end of the list on this priority
3449 * level, which is in essence a round-robin of tasks with
3450 * equal priority.
3451 *
3452 * This only applies to tasks in the interactive
3453 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3454 */
3455 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3456 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3457 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3458 (p->array == rq->active)) {
3459
3460 requeue_task(p, rq->active);
3461 set_tsk_need_resched(p);
3462 }
3463 }
3464out_unlock:
3465 spin_unlock(&rq->lock);
7835b98b
CL
3466}
3467
3468/*
3469 * This function gets called by the timer code, with HZ frequency.
3470 * We call it with interrupts disabled.
3471 *
3472 * It also gets called by the fork code, when changing the parent's
3473 * timeslices.
3474 */
3475void scheduler_tick(void)
3476{
3477 unsigned long long now = sched_clock();
3478 struct task_struct *p = current;
3479 int cpu = smp_processor_id();
bdecea3a 3480 int idle_at_tick = idle_cpu(cpu);
7835b98b 3481 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3482
3483 update_cpu_clock(p, rq, now);
3484
bdecea3a 3485 if (!idle_at_tick)
7835b98b 3486 task_running_tick(rq, p);
e418e1c2 3487#ifdef CONFIG_SMP
7835b98b 3488 update_load(rq);
bdecea3a 3489 rq->idle_at_tick = idle_at_tick;
46cb4b7c 3490 trigger_load_balance(cpu);
e418e1c2 3491#endif
1da177e4
LT
3492}
3493
1da177e4
LT
3494#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3495
3496void fastcall add_preempt_count(int val)
3497{
3498 /*
3499 * Underflow?
3500 */
9a11b49a
IM
3501 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3502 return;
1da177e4
LT
3503 preempt_count() += val;
3504 /*
3505 * Spinlock count overflowing soon?
3506 */
33859f7f
MOS
3507 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3508 PREEMPT_MASK - 10);
1da177e4
LT
3509}
3510EXPORT_SYMBOL(add_preempt_count);
3511
3512void fastcall sub_preempt_count(int val)
3513{
3514 /*
3515 * Underflow?
3516 */
9a11b49a
IM
3517 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3518 return;
1da177e4
LT
3519 /*
3520 * Is the spinlock portion underflowing?
3521 */
9a11b49a
IM
3522 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3523 !(preempt_count() & PREEMPT_MASK)))
3524 return;
3525
1da177e4
LT
3526 preempt_count() -= val;
3527}
3528EXPORT_SYMBOL(sub_preempt_count);
3529
3530#endif
3531
3dee386e
CK
3532static inline int interactive_sleep(enum sleep_type sleep_type)
3533{
3534 return (sleep_type == SLEEP_INTERACTIVE ||
3535 sleep_type == SLEEP_INTERRUPTED);
3536}
3537
1da177e4
LT
3538/*
3539 * schedule() is the main scheduler function.
3540 */
3541asmlinkage void __sched schedule(void)
3542{
36c8b586 3543 struct task_struct *prev, *next;
70b97a7f 3544 struct prio_array *array;
1da177e4
LT
3545 struct list_head *queue;
3546 unsigned long long now;
3547 unsigned long run_time;
a3464a10 3548 int cpu, idx, new_prio;
48f24c4d 3549 long *switch_count;
70b97a7f 3550 struct rq *rq;
1da177e4
LT
3551
3552 /*
3553 * Test if we are atomic. Since do_exit() needs to call into
3554 * schedule() atomically, we ignore that path for now.
3555 * Otherwise, whine if we are scheduling when we should not be.
3556 */
77e4bfbc
AM
3557 if (unlikely(in_atomic() && !current->exit_state)) {
3558 printk(KERN_ERR "BUG: scheduling while atomic: "
3559 "%s/0x%08x/%d\n",
3560 current->comm, preempt_count(), current->pid);
a4c410f0 3561 debug_show_held_locks(current);
3117df04
IM
3562 if (irqs_disabled())
3563 print_irqtrace_events(current);
77e4bfbc 3564 dump_stack();
1da177e4
LT
3565 }
3566 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3567
3568need_resched:
3569 preempt_disable();
3570 prev = current;
3571 release_kernel_lock(prev);
3572need_resched_nonpreemptible:
3573 rq = this_rq();
3574
3575 /*
3576 * The idle thread is not allowed to schedule!
3577 * Remove this check after it has been exercised a bit.
3578 */
3579 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3580 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3581 dump_stack();
3582 }
3583
3584 schedstat_inc(rq, sched_cnt);
3585 now = sched_clock();
238628ed 3586 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3587 run_time = now - prev->timestamp;
238628ed 3588 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3589 run_time = 0;
3590 } else
3591 run_time = NS_MAX_SLEEP_AVG;
3592
3593 /*
3594 * Tasks charged proportionately less run_time at high sleep_avg to
3595 * delay them losing their interactive status
3596 */
3597 run_time /= (CURRENT_BONUS(prev) ? : 1);
3598
3599 spin_lock_irq(&rq->lock);
3600
1da177e4
LT
3601 switch_count = &prev->nivcsw;
3602 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3603 switch_count = &prev->nvcsw;
3604 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3605 unlikely(signal_pending(prev))))
3606 prev->state = TASK_RUNNING;
3607 else {
3608 if (prev->state == TASK_UNINTERRUPTIBLE)
3609 rq->nr_uninterruptible++;
3610 deactivate_task(prev, rq);
3611 }
3612 }
3613
3614 cpu = smp_processor_id();
3615 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3616 idle_balance(cpu, rq);
3617 if (!rq->nr_running) {
3618 next = rq->idle;
3619 rq->expired_timestamp = 0;
1da177e4
LT
3620 goto switch_tasks;
3621 }
1da177e4
LT
3622 }
3623
3624 array = rq->active;
3625 if (unlikely(!array->nr_active)) {
3626 /*
3627 * Switch the active and expired arrays.
3628 */
3629 schedstat_inc(rq, sched_switch);
3630 rq->active = rq->expired;
3631 rq->expired = array;
3632 array = rq->active;
3633 rq->expired_timestamp = 0;
3634 rq->best_expired_prio = MAX_PRIO;
3635 }
3636
3637 idx = sched_find_first_bit(array->bitmap);
3638 queue = array->queue + idx;
36c8b586 3639 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3640
3dee386e 3641 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3642 unsigned long long delta = now - next->timestamp;
238628ed 3643 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3644 delta = 0;
3645
3dee386e 3646 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3647 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3648
3649 array = next->array;
a3464a10
CS
3650 new_prio = recalc_task_prio(next, next->timestamp + delta);
3651
3652 if (unlikely(next->prio != new_prio)) {
3653 dequeue_task(next, array);
3654 next->prio = new_prio;
3655 enqueue_task(next, array);
7c4bb1f9 3656 }
1da177e4 3657 }
3dee386e 3658 next->sleep_type = SLEEP_NORMAL;
1da177e4
LT
3659switch_tasks:
3660 if (next == rq->idle)
3661 schedstat_inc(rq, sched_goidle);
3662 prefetch(next);
383f2835 3663 prefetch_stack(next);
1da177e4
LT
3664 clear_tsk_need_resched(prev);
3665 rcu_qsctr_inc(task_cpu(prev));
3666
3667 update_cpu_clock(prev, rq, now);
3668
3669 prev->sleep_avg -= run_time;
3670 if ((long)prev->sleep_avg <= 0)
3671 prev->sleep_avg = 0;
3672 prev->timestamp = prev->last_ran = now;
3673
3674 sched_info_switch(prev, next);
3675 if (likely(prev != next)) {
c1e16aa2 3676 next->timestamp = next->last_ran = now;
1da177e4
LT
3677 rq->nr_switches++;
3678 rq->curr = next;
3679 ++*switch_count;
3680
4866cde0 3681 prepare_task_switch(rq, next);
1da177e4
LT
3682 prev = context_switch(rq, prev, next);
3683 barrier();
4866cde0
NP
3684 /*
3685 * this_rq must be evaluated again because prev may have moved
3686 * CPUs since it called schedule(), thus the 'rq' on its stack
3687 * frame will be invalid.
3688 */
3689 finish_task_switch(this_rq(), prev);
1da177e4
LT
3690 } else
3691 spin_unlock_irq(&rq->lock);
3692
3693 prev = current;
3694 if (unlikely(reacquire_kernel_lock(prev) < 0))
3695 goto need_resched_nonpreemptible;
3696 preempt_enable_no_resched();
3697 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3698 goto need_resched;
3699}
1da177e4
LT
3700EXPORT_SYMBOL(schedule);
3701
3702#ifdef CONFIG_PREEMPT
3703/*
2ed6e34f 3704 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3705 * off of preempt_enable. Kernel preemptions off return from interrupt
3706 * occur there and call schedule directly.
3707 */
3708asmlinkage void __sched preempt_schedule(void)
3709{
3710 struct thread_info *ti = current_thread_info();
3711#ifdef CONFIG_PREEMPT_BKL
3712 struct task_struct *task = current;
3713 int saved_lock_depth;
3714#endif
3715 /*
3716 * If there is a non-zero preempt_count or interrupts are disabled,
3717 * we do not want to preempt the current task. Just return..
3718 */
beed33a8 3719 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3720 return;
3721
3722need_resched:
3723 add_preempt_count(PREEMPT_ACTIVE);
3724 /*
3725 * We keep the big kernel semaphore locked, but we
3726 * clear ->lock_depth so that schedule() doesnt
3727 * auto-release the semaphore:
3728 */
3729#ifdef CONFIG_PREEMPT_BKL
3730 saved_lock_depth = task->lock_depth;
3731 task->lock_depth = -1;
3732#endif
3733 schedule();
3734#ifdef CONFIG_PREEMPT_BKL
3735 task->lock_depth = saved_lock_depth;
3736#endif
3737 sub_preempt_count(PREEMPT_ACTIVE);
3738
3739 /* we could miss a preemption opportunity between schedule and now */
3740 barrier();
3741 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3742 goto need_resched;
3743}
1da177e4
LT
3744EXPORT_SYMBOL(preempt_schedule);
3745
3746/*
2ed6e34f 3747 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3748 * off of irq context.
3749 * Note, that this is called and return with irqs disabled. This will
3750 * protect us against recursive calling from irq.
3751 */
3752asmlinkage void __sched preempt_schedule_irq(void)
3753{
3754 struct thread_info *ti = current_thread_info();
3755#ifdef CONFIG_PREEMPT_BKL
3756 struct task_struct *task = current;
3757 int saved_lock_depth;
3758#endif
2ed6e34f 3759 /* Catch callers which need to be fixed */
1da177e4
LT
3760 BUG_ON(ti->preempt_count || !irqs_disabled());
3761
3762need_resched:
3763 add_preempt_count(PREEMPT_ACTIVE);
3764 /*
3765 * We keep the big kernel semaphore locked, but we
3766 * clear ->lock_depth so that schedule() doesnt
3767 * auto-release the semaphore:
3768 */
3769#ifdef CONFIG_PREEMPT_BKL
3770 saved_lock_depth = task->lock_depth;
3771 task->lock_depth = -1;
3772#endif
3773 local_irq_enable();
3774 schedule();
3775 local_irq_disable();
3776#ifdef CONFIG_PREEMPT_BKL
3777 task->lock_depth = saved_lock_depth;
3778#endif
3779 sub_preempt_count(PREEMPT_ACTIVE);
3780
3781 /* we could miss a preemption opportunity between schedule and now */
3782 barrier();
3783 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3784 goto need_resched;
3785}
3786
3787#endif /* CONFIG_PREEMPT */
3788
95cdf3b7
IM
3789int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3790 void *key)
1da177e4 3791{
48f24c4d 3792 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3793}
1da177e4
LT
3794EXPORT_SYMBOL(default_wake_function);
3795
3796/*
3797 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3798 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3799 * number) then we wake all the non-exclusive tasks and one exclusive task.
3800 *
3801 * There are circumstances in which we can try to wake a task which has already
3802 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3803 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3804 */
3805static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3806 int nr_exclusive, int sync, void *key)
3807{
3808 struct list_head *tmp, *next;
3809
3810 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3811 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3812 unsigned flags = curr->flags;
3813
1da177e4 3814 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3815 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3816 break;
3817 }
3818}
3819
3820/**
3821 * __wake_up - wake up threads blocked on a waitqueue.
3822 * @q: the waitqueue
3823 * @mode: which threads
3824 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3825 * @key: is directly passed to the wakeup function
1da177e4
LT
3826 */
3827void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3828 int nr_exclusive, void *key)
1da177e4
LT
3829{
3830 unsigned long flags;
3831
3832 spin_lock_irqsave(&q->lock, flags);
3833 __wake_up_common(q, mode, nr_exclusive, 0, key);
3834 spin_unlock_irqrestore(&q->lock, flags);
3835}
1da177e4
LT
3836EXPORT_SYMBOL(__wake_up);
3837
3838/*
3839 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3840 */
3841void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3842{
3843 __wake_up_common(q, mode, 1, 0, NULL);
3844}
3845
3846/**
67be2dd1 3847 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3848 * @q: the waitqueue
3849 * @mode: which threads
3850 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3851 *
3852 * The sync wakeup differs that the waker knows that it will schedule
3853 * away soon, so while the target thread will be woken up, it will not
3854 * be migrated to another CPU - ie. the two threads are 'synchronized'
3855 * with each other. This can prevent needless bouncing between CPUs.
3856 *
3857 * On UP it can prevent extra preemption.
3858 */
95cdf3b7
IM
3859void fastcall
3860__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3861{
3862 unsigned long flags;
3863 int sync = 1;
3864
3865 if (unlikely(!q))
3866 return;
3867
3868 if (unlikely(!nr_exclusive))
3869 sync = 0;
3870
3871 spin_lock_irqsave(&q->lock, flags);
3872 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3873 spin_unlock_irqrestore(&q->lock, flags);
3874}
3875EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3876
3877void fastcall complete(struct completion *x)
3878{
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&x->wait.lock, flags);
3882 x->done++;
3883 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3884 1, 0, NULL);
3885 spin_unlock_irqrestore(&x->wait.lock, flags);
3886}
3887EXPORT_SYMBOL(complete);
3888
3889void fastcall complete_all(struct completion *x)
3890{
3891 unsigned long flags;
3892
3893 spin_lock_irqsave(&x->wait.lock, flags);
3894 x->done += UINT_MAX/2;
3895 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3896 0, 0, NULL);
3897 spin_unlock_irqrestore(&x->wait.lock, flags);
3898}
3899EXPORT_SYMBOL(complete_all);
3900
3901void fastcall __sched wait_for_completion(struct completion *x)
3902{
3903 might_sleep();
48f24c4d 3904
1da177e4
LT
3905 spin_lock_irq(&x->wait.lock);
3906 if (!x->done) {
3907 DECLARE_WAITQUEUE(wait, current);
3908
3909 wait.flags |= WQ_FLAG_EXCLUSIVE;
3910 __add_wait_queue_tail(&x->wait, &wait);
3911 do {
3912 __set_current_state(TASK_UNINTERRUPTIBLE);
3913 spin_unlock_irq(&x->wait.lock);
3914 schedule();
3915 spin_lock_irq(&x->wait.lock);
3916 } while (!x->done);
3917 __remove_wait_queue(&x->wait, &wait);
3918 }
3919 x->done--;
3920 spin_unlock_irq(&x->wait.lock);
3921}
3922EXPORT_SYMBOL(wait_for_completion);
3923
3924unsigned long fastcall __sched
3925wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3926{
3927 might_sleep();
3928
3929 spin_lock_irq(&x->wait.lock);
3930 if (!x->done) {
3931 DECLARE_WAITQUEUE(wait, current);
3932
3933 wait.flags |= WQ_FLAG_EXCLUSIVE;
3934 __add_wait_queue_tail(&x->wait, &wait);
3935 do {
3936 __set_current_state(TASK_UNINTERRUPTIBLE);
3937 spin_unlock_irq(&x->wait.lock);
3938 timeout = schedule_timeout(timeout);
3939 spin_lock_irq(&x->wait.lock);
3940 if (!timeout) {
3941 __remove_wait_queue(&x->wait, &wait);
3942 goto out;
3943 }
3944 } while (!x->done);
3945 __remove_wait_queue(&x->wait, &wait);
3946 }
3947 x->done--;
3948out:
3949 spin_unlock_irq(&x->wait.lock);
3950 return timeout;
3951}
3952EXPORT_SYMBOL(wait_for_completion_timeout);
3953
3954int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3955{
3956 int ret = 0;
3957
3958 might_sleep();
3959
3960 spin_lock_irq(&x->wait.lock);
3961 if (!x->done) {
3962 DECLARE_WAITQUEUE(wait, current);
3963
3964 wait.flags |= WQ_FLAG_EXCLUSIVE;
3965 __add_wait_queue_tail(&x->wait, &wait);
3966 do {
3967 if (signal_pending(current)) {
3968 ret = -ERESTARTSYS;
3969 __remove_wait_queue(&x->wait, &wait);
3970 goto out;
3971 }
3972 __set_current_state(TASK_INTERRUPTIBLE);
3973 spin_unlock_irq(&x->wait.lock);
3974 schedule();
3975 spin_lock_irq(&x->wait.lock);
3976 } while (!x->done);
3977 __remove_wait_queue(&x->wait, &wait);
3978 }
3979 x->done--;
3980out:
3981 spin_unlock_irq(&x->wait.lock);
3982
3983 return ret;
3984}
3985EXPORT_SYMBOL(wait_for_completion_interruptible);
3986
3987unsigned long fastcall __sched
3988wait_for_completion_interruptible_timeout(struct completion *x,
3989 unsigned long timeout)
3990{
3991 might_sleep();
3992
3993 spin_lock_irq(&x->wait.lock);
3994 if (!x->done) {
3995 DECLARE_WAITQUEUE(wait, current);
3996
3997 wait.flags |= WQ_FLAG_EXCLUSIVE;
3998 __add_wait_queue_tail(&x->wait, &wait);
3999 do {
4000 if (signal_pending(current)) {
4001 timeout = -ERESTARTSYS;
4002 __remove_wait_queue(&x->wait, &wait);
4003 goto out;
4004 }
4005 __set_current_state(TASK_INTERRUPTIBLE);
4006 spin_unlock_irq(&x->wait.lock);
4007 timeout = schedule_timeout(timeout);
4008 spin_lock_irq(&x->wait.lock);
4009 if (!timeout) {
4010 __remove_wait_queue(&x->wait, &wait);
4011 goto out;
4012 }
4013 } while (!x->done);
4014 __remove_wait_queue(&x->wait, &wait);
4015 }
4016 x->done--;
4017out:
4018 spin_unlock_irq(&x->wait.lock);
4019 return timeout;
4020}
4021EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4022
4023
4024#define SLEEP_ON_VAR \
4025 unsigned long flags; \
4026 wait_queue_t wait; \
4027 init_waitqueue_entry(&wait, current);
4028
4029#define SLEEP_ON_HEAD \
4030 spin_lock_irqsave(&q->lock,flags); \
4031 __add_wait_queue(q, &wait); \
4032 spin_unlock(&q->lock);
4033
4034#define SLEEP_ON_TAIL \
4035 spin_lock_irq(&q->lock); \
4036 __remove_wait_queue(q, &wait); \
4037 spin_unlock_irqrestore(&q->lock, flags);
4038
4039void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4040{
4041 SLEEP_ON_VAR
4042
4043 current->state = TASK_INTERRUPTIBLE;
4044
4045 SLEEP_ON_HEAD
4046 schedule();
4047 SLEEP_ON_TAIL
4048}
1da177e4
LT
4049EXPORT_SYMBOL(interruptible_sleep_on);
4050
95cdf3b7
IM
4051long fastcall __sched
4052interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
4053{
4054 SLEEP_ON_VAR
4055
4056 current->state = TASK_INTERRUPTIBLE;
4057
4058 SLEEP_ON_HEAD
4059 timeout = schedule_timeout(timeout);
4060 SLEEP_ON_TAIL
4061
4062 return timeout;
4063}
1da177e4
LT
4064EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4065
4066void fastcall __sched sleep_on(wait_queue_head_t *q)
4067{
4068 SLEEP_ON_VAR
4069
4070 current->state = TASK_UNINTERRUPTIBLE;
4071
4072 SLEEP_ON_HEAD
4073 schedule();
4074 SLEEP_ON_TAIL
4075}
1da177e4
LT
4076EXPORT_SYMBOL(sleep_on);
4077
4078long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4079{
4080 SLEEP_ON_VAR
4081
4082 current->state = TASK_UNINTERRUPTIBLE;
4083
4084 SLEEP_ON_HEAD
4085 timeout = schedule_timeout(timeout);
4086 SLEEP_ON_TAIL
4087
4088 return timeout;
4089}
4090
4091EXPORT_SYMBOL(sleep_on_timeout);
4092
b29739f9
IM
4093#ifdef CONFIG_RT_MUTEXES
4094
4095/*
4096 * rt_mutex_setprio - set the current priority of a task
4097 * @p: task
4098 * @prio: prio value (kernel-internal form)
4099 *
4100 * This function changes the 'effective' priority of a task. It does
4101 * not touch ->normal_prio like __setscheduler().
4102 *
4103 * Used by the rt_mutex code to implement priority inheritance logic.
4104 */
36c8b586 4105void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4106{
70b97a7f 4107 struct prio_array *array;
b29739f9 4108 unsigned long flags;
70b97a7f 4109 struct rq *rq;
d5f9f942 4110 int oldprio;
b29739f9
IM
4111
4112 BUG_ON(prio < 0 || prio > MAX_PRIO);
4113
4114 rq = task_rq_lock(p, &flags);
4115
d5f9f942 4116 oldprio = p->prio;
b29739f9
IM
4117 array = p->array;
4118 if (array)
4119 dequeue_task(p, array);
4120 p->prio = prio;
4121
4122 if (array) {
4123 /*
4124 * If changing to an RT priority then queue it
4125 * in the active array!
4126 */
4127 if (rt_task(p))
4128 array = rq->active;
4129 enqueue_task(p, array);
4130 /*
4131 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4132 * our priority decreased, or if we are not currently running on
4133 * this runqueue and our priority is higher than the current's
b29739f9 4134 */
d5f9f942
AM
4135 if (task_running(rq, p)) {
4136 if (p->prio > oldprio)
4137 resched_task(rq->curr);
4138 } else if (TASK_PREEMPTS_CURR(p, rq))
b29739f9
IM
4139 resched_task(rq->curr);
4140 }
4141 task_rq_unlock(rq, &flags);
4142}
4143
4144#endif
4145
36c8b586 4146void set_user_nice(struct task_struct *p, long nice)
1da177e4 4147{
70b97a7f 4148 struct prio_array *array;
48f24c4d 4149 int old_prio, delta;
1da177e4 4150 unsigned long flags;
70b97a7f 4151 struct rq *rq;
1da177e4
LT
4152
4153 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4154 return;
4155 /*
4156 * We have to be careful, if called from sys_setpriority(),
4157 * the task might be in the middle of scheduling on another CPU.
4158 */
4159 rq = task_rq_lock(p, &flags);
4160 /*
4161 * The RT priorities are set via sched_setscheduler(), but we still
4162 * allow the 'normal' nice value to be set - but as expected
4163 * it wont have any effect on scheduling until the task is
b0a9499c 4164 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 4165 */
b29739f9 4166 if (has_rt_policy(p)) {
1da177e4
LT
4167 p->static_prio = NICE_TO_PRIO(nice);
4168 goto out_unlock;
4169 }
4170 array = p->array;
2dd73a4f 4171 if (array) {
1da177e4 4172 dequeue_task(p, array);
2dd73a4f
PW
4173 dec_raw_weighted_load(rq, p);
4174 }
1da177e4 4175
1da177e4 4176 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4177 set_load_weight(p);
b29739f9
IM
4178 old_prio = p->prio;
4179 p->prio = effective_prio(p);
4180 delta = p->prio - old_prio;
1da177e4
LT
4181
4182 if (array) {
4183 enqueue_task(p, array);
2dd73a4f 4184 inc_raw_weighted_load(rq, p);
1da177e4 4185 /*
d5f9f942
AM
4186 * If the task increased its priority or is running and
4187 * lowered its priority, then reschedule its CPU:
1da177e4 4188 */
d5f9f942 4189 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4190 resched_task(rq->curr);
4191 }
4192out_unlock:
4193 task_rq_unlock(rq, &flags);
4194}
1da177e4
LT
4195EXPORT_SYMBOL(set_user_nice);
4196
e43379f1
MM
4197/*
4198 * can_nice - check if a task can reduce its nice value
4199 * @p: task
4200 * @nice: nice value
4201 */
36c8b586 4202int can_nice(const struct task_struct *p, const int nice)
e43379f1 4203{
024f4747
MM
4204 /* convert nice value [19,-20] to rlimit style value [1,40] */
4205 int nice_rlim = 20 - nice;
48f24c4d 4206
e43379f1
MM
4207 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4208 capable(CAP_SYS_NICE));
4209}
4210
1da177e4
LT
4211#ifdef __ARCH_WANT_SYS_NICE
4212
4213/*
4214 * sys_nice - change the priority of the current process.
4215 * @increment: priority increment
4216 *
4217 * sys_setpriority is a more generic, but much slower function that
4218 * does similar things.
4219 */
4220asmlinkage long sys_nice(int increment)
4221{
48f24c4d 4222 long nice, retval;
1da177e4
LT
4223
4224 /*
4225 * Setpriority might change our priority at the same moment.
4226 * We don't have to worry. Conceptually one call occurs first
4227 * and we have a single winner.
4228 */
e43379f1
MM
4229 if (increment < -40)
4230 increment = -40;
1da177e4
LT
4231 if (increment > 40)
4232 increment = 40;
4233
4234 nice = PRIO_TO_NICE(current->static_prio) + increment;
4235 if (nice < -20)
4236 nice = -20;
4237 if (nice > 19)
4238 nice = 19;
4239
e43379f1
MM
4240 if (increment < 0 && !can_nice(current, nice))
4241 return -EPERM;
4242
1da177e4
LT
4243 retval = security_task_setnice(current, nice);
4244 if (retval)
4245 return retval;
4246
4247 set_user_nice(current, nice);
4248 return 0;
4249}
4250
4251#endif
4252
4253/**
4254 * task_prio - return the priority value of a given task.
4255 * @p: the task in question.
4256 *
4257 * This is the priority value as seen by users in /proc.
4258 * RT tasks are offset by -200. Normal tasks are centered
4259 * around 0, value goes from -16 to +15.
4260 */
36c8b586 4261int task_prio(const struct task_struct *p)
1da177e4
LT
4262{
4263 return p->prio - MAX_RT_PRIO;
4264}
4265
4266/**
4267 * task_nice - return the nice value of a given task.
4268 * @p: the task in question.
4269 */
36c8b586 4270int task_nice(const struct task_struct *p)
1da177e4
LT
4271{
4272 return TASK_NICE(p);
4273}
1da177e4 4274EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4275
4276/**
4277 * idle_cpu - is a given cpu idle currently?
4278 * @cpu: the processor in question.
4279 */
4280int idle_cpu(int cpu)
4281{
4282 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4283}
4284
1da177e4
LT
4285/**
4286 * idle_task - return the idle task for a given cpu.
4287 * @cpu: the processor in question.
4288 */
36c8b586 4289struct task_struct *idle_task(int cpu)
1da177e4
LT
4290{
4291 return cpu_rq(cpu)->idle;
4292}
4293
4294/**
4295 * find_process_by_pid - find a process with a matching PID value.
4296 * @pid: the pid in question.
4297 */
36c8b586 4298static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4299{
4300 return pid ? find_task_by_pid(pid) : current;
4301}
4302
4303/* Actually do priority change: must hold rq lock. */
4304static void __setscheduler(struct task_struct *p, int policy, int prio)
4305{
4306 BUG_ON(p->array);
48f24c4d 4307
1da177e4
LT
4308 p->policy = policy;
4309 p->rt_priority = prio;
b29739f9
IM
4310 p->normal_prio = normal_prio(p);
4311 /* we are holding p->pi_lock already */
4312 p->prio = rt_mutex_getprio(p);
4313 /*
4314 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4315 */
4316 if (policy == SCHED_BATCH)
4317 p->sleep_avg = 0;
2dd73a4f 4318 set_load_weight(p);
1da177e4
LT
4319}
4320
4321/**
72fd4a35 4322 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4323 * @p: the task in question.
4324 * @policy: new policy.
4325 * @param: structure containing the new RT priority.
5fe1d75f 4326 *
72fd4a35 4327 * NOTE that the task may be already dead.
1da177e4 4328 */
95cdf3b7
IM
4329int sched_setscheduler(struct task_struct *p, int policy,
4330 struct sched_param *param)
1da177e4 4331{
48f24c4d 4332 int retval, oldprio, oldpolicy = -1;
70b97a7f 4333 struct prio_array *array;
1da177e4 4334 unsigned long flags;
70b97a7f 4335 struct rq *rq;
1da177e4 4336
66e5393a
SR
4337 /* may grab non-irq protected spin_locks */
4338 BUG_ON(in_interrupt());
1da177e4
LT
4339recheck:
4340 /* double check policy once rq lock held */
4341 if (policy < 0)
4342 policy = oldpolicy = p->policy;
4343 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4344 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4345 return -EINVAL;
1da177e4
LT
4346 /*
4347 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4348 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4349 * SCHED_BATCH is 0.
1da177e4
LT
4350 */
4351 if (param->sched_priority < 0 ||
95cdf3b7 4352 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4353 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4354 return -EINVAL;
57a6f51c 4355 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4356 return -EINVAL;
4357
37e4ab3f
OC
4358 /*
4359 * Allow unprivileged RT tasks to decrease priority:
4360 */
4361 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4362 if (is_rt_policy(policy)) {
4363 unsigned long rlim_rtprio;
4364 unsigned long flags;
4365
4366 if (!lock_task_sighand(p, &flags))
4367 return -ESRCH;
4368 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4369 unlock_task_sighand(p, &flags);
4370
4371 /* can't set/change the rt policy */
4372 if (policy != p->policy && !rlim_rtprio)
4373 return -EPERM;
4374
4375 /* can't increase priority */
4376 if (param->sched_priority > p->rt_priority &&
4377 param->sched_priority > rlim_rtprio)
4378 return -EPERM;
4379 }
5fe1d75f 4380
37e4ab3f
OC
4381 /* can't change other user's priorities */
4382 if ((current->euid != p->euid) &&
4383 (current->euid != p->uid))
4384 return -EPERM;
4385 }
1da177e4
LT
4386
4387 retval = security_task_setscheduler(p, policy, param);
4388 if (retval)
4389 return retval;
b29739f9
IM
4390 /*
4391 * make sure no PI-waiters arrive (or leave) while we are
4392 * changing the priority of the task:
4393 */
4394 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4395 /*
4396 * To be able to change p->policy safely, the apropriate
4397 * runqueue lock must be held.
4398 */
b29739f9 4399 rq = __task_rq_lock(p);
1da177e4
LT
4400 /* recheck policy now with rq lock held */
4401 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4402 policy = oldpolicy = -1;
b29739f9
IM
4403 __task_rq_unlock(rq);
4404 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4405 goto recheck;
4406 }
4407 array = p->array;
4408 if (array)
4409 deactivate_task(p, rq);
4410 oldprio = p->prio;
4411 __setscheduler(p, policy, param->sched_priority);
4412 if (array) {
4413 __activate_task(p, rq);
4414 /*
4415 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4416 * our priority decreased, or if we are not currently running on
4417 * this runqueue and our priority is higher than the current's
1da177e4 4418 */
d5f9f942
AM
4419 if (task_running(rq, p)) {
4420 if (p->prio > oldprio)
4421 resched_task(rq->curr);
4422 } else if (TASK_PREEMPTS_CURR(p, rq))
1da177e4
LT
4423 resched_task(rq->curr);
4424 }
b29739f9
IM
4425 __task_rq_unlock(rq);
4426 spin_unlock_irqrestore(&p->pi_lock, flags);
4427
95e02ca9
TG
4428 rt_mutex_adjust_pi(p);
4429
1da177e4
LT
4430 return 0;
4431}
4432EXPORT_SYMBOL_GPL(sched_setscheduler);
4433
95cdf3b7
IM
4434static int
4435do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4436{
1da177e4
LT
4437 struct sched_param lparam;
4438 struct task_struct *p;
36c8b586 4439 int retval;
1da177e4
LT
4440
4441 if (!param || pid < 0)
4442 return -EINVAL;
4443 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4444 return -EFAULT;
5fe1d75f
ON
4445
4446 rcu_read_lock();
4447 retval = -ESRCH;
1da177e4 4448 p = find_process_by_pid(pid);
5fe1d75f
ON
4449 if (p != NULL)
4450 retval = sched_setscheduler(p, policy, &lparam);
4451 rcu_read_unlock();
36c8b586 4452
1da177e4
LT
4453 return retval;
4454}
4455
4456/**
4457 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4458 * @pid: the pid in question.
4459 * @policy: new policy.
4460 * @param: structure containing the new RT priority.
4461 */
4462asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4463 struct sched_param __user *param)
4464{
c21761f1
JB
4465 /* negative values for policy are not valid */
4466 if (policy < 0)
4467 return -EINVAL;
4468
1da177e4
LT
4469 return do_sched_setscheduler(pid, policy, param);
4470}
4471
4472/**
4473 * sys_sched_setparam - set/change the RT priority of a thread
4474 * @pid: the pid in question.
4475 * @param: structure containing the new RT priority.
4476 */
4477asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4478{
4479 return do_sched_setscheduler(pid, -1, param);
4480}
4481
4482/**
4483 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4484 * @pid: the pid in question.
4485 */
4486asmlinkage long sys_sched_getscheduler(pid_t pid)
4487{
36c8b586 4488 struct task_struct *p;
1da177e4 4489 int retval = -EINVAL;
1da177e4
LT
4490
4491 if (pid < 0)
4492 goto out_nounlock;
4493
4494 retval = -ESRCH;
4495 read_lock(&tasklist_lock);
4496 p = find_process_by_pid(pid);
4497 if (p) {
4498 retval = security_task_getscheduler(p);
4499 if (!retval)
4500 retval = p->policy;
4501 }
4502 read_unlock(&tasklist_lock);
4503
4504out_nounlock:
4505 return retval;
4506}
4507
4508/**
4509 * sys_sched_getscheduler - get the RT priority of a thread
4510 * @pid: the pid in question.
4511 * @param: structure containing the RT priority.
4512 */
4513asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4514{
4515 struct sched_param lp;
36c8b586 4516 struct task_struct *p;
1da177e4 4517 int retval = -EINVAL;
1da177e4
LT
4518
4519 if (!param || pid < 0)
4520 goto out_nounlock;
4521
4522 read_lock(&tasklist_lock);
4523 p = find_process_by_pid(pid);
4524 retval = -ESRCH;
4525 if (!p)
4526 goto out_unlock;
4527
4528 retval = security_task_getscheduler(p);
4529 if (retval)
4530 goto out_unlock;
4531
4532 lp.sched_priority = p->rt_priority;
4533 read_unlock(&tasklist_lock);
4534
4535 /*
4536 * This one might sleep, we cannot do it with a spinlock held ...
4537 */
4538 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4539
4540out_nounlock:
4541 return retval;
4542
4543out_unlock:
4544 read_unlock(&tasklist_lock);
4545 return retval;
4546}
4547
4548long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4549{
1da177e4 4550 cpumask_t cpus_allowed;
36c8b586
IM
4551 struct task_struct *p;
4552 int retval;
1da177e4 4553
5be9361c 4554 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4555 read_lock(&tasklist_lock);
4556
4557 p = find_process_by_pid(pid);
4558 if (!p) {
4559 read_unlock(&tasklist_lock);
5be9361c 4560 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4561 return -ESRCH;
4562 }
4563
4564 /*
4565 * It is not safe to call set_cpus_allowed with the
4566 * tasklist_lock held. We will bump the task_struct's
4567 * usage count and then drop tasklist_lock.
4568 */
4569 get_task_struct(p);
4570 read_unlock(&tasklist_lock);
4571
4572 retval = -EPERM;
4573 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4574 !capable(CAP_SYS_NICE))
4575 goto out_unlock;
4576
e7834f8f
DQ
4577 retval = security_task_setscheduler(p, 0, NULL);
4578 if (retval)
4579 goto out_unlock;
4580
1da177e4
LT
4581 cpus_allowed = cpuset_cpus_allowed(p);
4582 cpus_and(new_mask, new_mask, cpus_allowed);
4583 retval = set_cpus_allowed(p, new_mask);
4584
4585out_unlock:
4586 put_task_struct(p);
5be9361c 4587 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4588 return retval;
4589}
4590
4591static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4592 cpumask_t *new_mask)
4593{
4594 if (len < sizeof(cpumask_t)) {
4595 memset(new_mask, 0, sizeof(cpumask_t));
4596 } else if (len > sizeof(cpumask_t)) {
4597 len = sizeof(cpumask_t);
4598 }
4599 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4600}
4601
4602/**
4603 * sys_sched_setaffinity - set the cpu affinity of a process
4604 * @pid: pid of the process
4605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4606 * @user_mask_ptr: user-space pointer to the new cpu mask
4607 */
4608asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4609 unsigned long __user *user_mask_ptr)
4610{
4611 cpumask_t new_mask;
4612 int retval;
4613
4614 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4615 if (retval)
4616 return retval;
4617
4618 return sched_setaffinity(pid, new_mask);
4619}
4620
4621/*
4622 * Represents all cpu's present in the system
4623 * In systems capable of hotplug, this map could dynamically grow
4624 * as new cpu's are detected in the system via any platform specific
4625 * method, such as ACPI for e.g.
4626 */
4627
4cef0c61 4628cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4629EXPORT_SYMBOL(cpu_present_map);
4630
4631#ifndef CONFIG_SMP
4cef0c61 4632cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4633EXPORT_SYMBOL(cpu_online_map);
4634
4cef0c61 4635cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4636EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4637#endif
4638
4639long sched_getaffinity(pid_t pid, cpumask_t *mask)
4640{
36c8b586 4641 struct task_struct *p;
1da177e4 4642 int retval;
1da177e4 4643
5be9361c 4644 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4645 read_lock(&tasklist_lock);
4646
4647 retval = -ESRCH;
4648 p = find_process_by_pid(pid);
4649 if (!p)
4650 goto out_unlock;
4651
e7834f8f
DQ
4652 retval = security_task_getscheduler(p);
4653 if (retval)
4654 goto out_unlock;
4655
2f7016d9 4656 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4657
4658out_unlock:
4659 read_unlock(&tasklist_lock);
5be9361c 4660 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4661 if (retval)
4662 return retval;
4663
4664 return 0;
4665}
4666
4667/**
4668 * sys_sched_getaffinity - get the cpu affinity of a process
4669 * @pid: pid of the process
4670 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4671 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4672 */
4673asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4674 unsigned long __user *user_mask_ptr)
4675{
4676 int ret;
4677 cpumask_t mask;
4678
4679 if (len < sizeof(cpumask_t))
4680 return -EINVAL;
4681
4682 ret = sched_getaffinity(pid, &mask);
4683 if (ret < 0)
4684 return ret;
4685
4686 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4687 return -EFAULT;
4688
4689 return sizeof(cpumask_t);
4690}
4691
4692/**
4693 * sys_sched_yield - yield the current processor to other threads.
4694 *
72fd4a35 4695 * This function yields the current CPU by moving the calling thread
1da177e4
LT
4696 * to the expired array. If there are no other threads running on this
4697 * CPU then this function will return.
4698 */
4699asmlinkage long sys_sched_yield(void)
4700{
70b97a7f
IM
4701 struct rq *rq = this_rq_lock();
4702 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4703
4704 schedstat_inc(rq, yld_cnt);
4705 /*
4706 * We implement yielding by moving the task into the expired
4707 * queue.
4708 *
4709 * (special rule: RT tasks will just roundrobin in the active
4710 * array.)
4711 */
4712 if (rt_task(current))
4713 target = rq->active;
4714
5927ad78 4715 if (array->nr_active == 1) {
1da177e4
LT
4716 schedstat_inc(rq, yld_act_empty);
4717 if (!rq->expired->nr_active)
4718 schedstat_inc(rq, yld_both_empty);
4719 } else if (!rq->expired->nr_active)
4720 schedstat_inc(rq, yld_exp_empty);
4721
4722 if (array != target) {
4723 dequeue_task(current, array);
4724 enqueue_task(current, target);
4725 } else
4726 /*
4727 * requeue_task is cheaper so perform that if possible.
4728 */
4729 requeue_task(current, array);
4730
4731 /*
4732 * Since we are going to call schedule() anyway, there's
4733 * no need to preempt or enable interrupts:
4734 */
4735 __release(rq->lock);
8a25d5de 4736 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4737 _raw_spin_unlock(&rq->lock);
4738 preempt_enable_no_resched();
4739
4740 schedule();
4741
4742 return 0;
4743}
4744
e7b38404 4745static void __cond_resched(void)
1da177e4 4746{
8e0a43d8
IM
4747#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4748 __might_sleep(__FILE__, __LINE__);
4749#endif
5bbcfd90
IM
4750 /*
4751 * The BKS might be reacquired before we have dropped
4752 * PREEMPT_ACTIVE, which could trigger a second
4753 * cond_resched() call.
4754 */
1da177e4
LT
4755 do {
4756 add_preempt_count(PREEMPT_ACTIVE);
4757 schedule();
4758 sub_preempt_count(PREEMPT_ACTIVE);
4759 } while (need_resched());
4760}
4761
4762int __sched cond_resched(void)
4763{
9414232f
IM
4764 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4765 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4766 __cond_resched();
4767 return 1;
4768 }
4769 return 0;
4770}
1da177e4
LT
4771EXPORT_SYMBOL(cond_resched);
4772
4773/*
4774 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4775 * call schedule, and on return reacquire the lock.
4776 *
4777 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4778 * operations here to prevent schedule() from being called twice (once via
4779 * spin_unlock(), once by hand).
4780 */
95cdf3b7 4781int cond_resched_lock(spinlock_t *lock)
1da177e4 4782{
6df3cecb
JK
4783 int ret = 0;
4784
1da177e4
LT
4785 if (need_lockbreak(lock)) {
4786 spin_unlock(lock);
4787 cpu_relax();
6df3cecb 4788 ret = 1;
1da177e4
LT
4789 spin_lock(lock);
4790 }
9414232f 4791 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4792 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4793 _raw_spin_unlock(lock);
4794 preempt_enable_no_resched();
4795 __cond_resched();
6df3cecb 4796 ret = 1;
1da177e4 4797 spin_lock(lock);
1da177e4 4798 }
6df3cecb 4799 return ret;
1da177e4 4800}
1da177e4
LT
4801EXPORT_SYMBOL(cond_resched_lock);
4802
4803int __sched cond_resched_softirq(void)
4804{
4805 BUG_ON(!in_softirq());
4806
9414232f 4807 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4808 local_bh_enable();
1da177e4
LT
4809 __cond_resched();
4810 local_bh_disable();
4811 return 1;
4812 }
4813 return 0;
4814}
1da177e4
LT
4815EXPORT_SYMBOL(cond_resched_softirq);
4816
1da177e4
LT
4817/**
4818 * yield - yield the current processor to other threads.
4819 *
72fd4a35 4820 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4821 * thread runnable and calls sys_sched_yield().
4822 */
4823void __sched yield(void)
4824{
4825 set_current_state(TASK_RUNNING);
4826 sys_sched_yield();
4827}
1da177e4
LT
4828EXPORT_SYMBOL(yield);
4829
4830/*
4831 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4832 * that process accounting knows that this is a task in IO wait state.
4833 *
4834 * But don't do that if it is a deliberate, throttling IO wait (this task
4835 * has set its backing_dev_info: the queue against which it should throttle)
4836 */
4837void __sched io_schedule(void)
4838{
70b97a7f 4839 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4840
0ff92245 4841 delayacct_blkio_start();
1da177e4
LT
4842 atomic_inc(&rq->nr_iowait);
4843 schedule();
4844 atomic_dec(&rq->nr_iowait);
0ff92245 4845 delayacct_blkio_end();
1da177e4 4846}
1da177e4
LT
4847EXPORT_SYMBOL(io_schedule);
4848
4849long __sched io_schedule_timeout(long timeout)
4850{
70b97a7f 4851 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4852 long ret;
4853
0ff92245 4854 delayacct_blkio_start();
1da177e4
LT
4855 atomic_inc(&rq->nr_iowait);
4856 ret = schedule_timeout(timeout);
4857 atomic_dec(&rq->nr_iowait);
0ff92245 4858 delayacct_blkio_end();
1da177e4
LT
4859 return ret;
4860}
4861
4862/**
4863 * sys_sched_get_priority_max - return maximum RT priority.
4864 * @policy: scheduling class.
4865 *
4866 * this syscall returns the maximum rt_priority that can be used
4867 * by a given scheduling class.
4868 */
4869asmlinkage long sys_sched_get_priority_max(int policy)
4870{
4871 int ret = -EINVAL;
4872
4873 switch (policy) {
4874 case SCHED_FIFO:
4875 case SCHED_RR:
4876 ret = MAX_USER_RT_PRIO-1;
4877 break;
4878 case SCHED_NORMAL:
b0a9499c 4879 case SCHED_BATCH:
1da177e4
LT
4880 ret = 0;
4881 break;
4882 }
4883 return ret;
4884}
4885
4886/**
4887 * sys_sched_get_priority_min - return minimum RT priority.
4888 * @policy: scheduling class.
4889 *
4890 * this syscall returns the minimum rt_priority that can be used
4891 * by a given scheduling class.
4892 */
4893asmlinkage long sys_sched_get_priority_min(int policy)
4894{
4895 int ret = -EINVAL;
4896
4897 switch (policy) {
4898 case SCHED_FIFO:
4899 case SCHED_RR:
4900 ret = 1;
4901 break;
4902 case SCHED_NORMAL:
b0a9499c 4903 case SCHED_BATCH:
1da177e4
LT
4904 ret = 0;
4905 }
4906 return ret;
4907}
4908
4909/**
4910 * sys_sched_rr_get_interval - return the default timeslice of a process.
4911 * @pid: pid of the process.
4912 * @interval: userspace pointer to the timeslice value.
4913 *
4914 * this syscall writes the default timeslice value of a given process
4915 * into the user-space timespec buffer. A value of '0' means infinity.
4916 */
4917asmlinkage
4918long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4919{
36c8b586 4920 struct task_struct *p;
1da177e4
LT
4921 int retval = -EINVAL;
4922 struct timespec t;
1da177e4
LT
4923
4924 if (pid < 0)
4925 goto out_nounlock;
4926
4927 retval = -ESRCH;
4928 read_lock(&tasklist_lock);
4929 p = find_process_by_pid(pid);
4930 if (!p)
4931 goto out_unlock;
4932
4933 retval = security_task_getscheduler(p);
4934 if (retval)
4935 goto out_unlock;
4936
b78709cf 4937 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4938 0 : task_timeslice(p), &t);
4939 read_unlock(&tasklist_lock);
4940 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4941out_nounlock:
4942 return retval;
4943out_unlock:
4944 read_unlock(&tasklist_lock);
4945 return retval;
4946}
4947
2ed6e34f 4948static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4949
4950static void show_task(struct task_struct *p)
1da177e4 4951{
1da177e4 4952 unsigned long free = 0;
36c8b586 4953 unsigned state;
1da177e4 4954
1da177e4 4955 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4956 printk("%-13.13s %c", p->comm,
4957 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4958#if (BITS_PER_LONG == 32)
4959 if (state == TASK_RUNNING)
4960 printk(" running ");
4961 else
4962 printk(" %08lX ", thread_saved_pc(p));
4963#else
4964 if (state == TASK_RUNNING)
4965 printk(" running task ");
4966 else
4967 printk(" %016lx ", thread_saved_pc(p));
4968#endif
4969#ifdef CONFIG_DEBUG_STACK_USAGE
4970 {
10ebffde 4971 unsigned long *n = end_of_stack(p);
1da177e4
LT
4972 while (!*n)
4973 n++;
10ebffde 4974 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4975 }
4976#endif
35f6f753 4977 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
1da177e4
LT
4978 if (!p->mm)
4979 printk(" (L-TLB)\n");
4980 else
4981 printk(" (NOTLB)\n");
4982
4983 if (state != TASK_RUNNING)
4984 show_stack(p, NULL);
4985}
4986
e59e2ae2 4987void show_state_filter(unsigned long state_filter)
1da177e4 4988{
36c8b586 4989 struct task_struct *g, *p;
1da177e4
LT
4990
4991#if (BITS_PER_LONG == 32)
4992 printk("\n"
301827ac
CC
4993 " free sibling\n");
4994 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4995#else
4996 printk("\n"
301827ac
CC
4997 " free sibling\n");
4998 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4999#endif
5000 read_lock(&tasklist_lock);
5001 do_each_thread(g, p) {
5002 /*
5003 * reset the NMI-timeout, listing all files on a slow
5004 * console might take alot of time:
5005 */
5006 touch_nmi_watchdog();
39bc89fd 5007 if (!state_filter || (p->state & state_filter))
e59e2ae2 5008 show_task(p);
1da177e4
LT
5009 } while_each_thread(g, p);
5010
04c9167f
JF
5011 touch_all_softlockup_watchdogs();
5012
1da177e4 5013 read_unlock(&tasklist_lock);
e59e2ae2
IM
5014 /*
5015 * Only show locks if all tasks are dumped:
5016 */
5017 if (state_filter == -1)
5018 debug_show_all_locks();
1da177e4
LT
5019}
5020
f340c0d1
IM
5021/**
5022 * init_idle - set up an idle thread for a given CPU
5023 * @idle: task in question
5024 * @cpu: cpu the idle task belongs to
5025 *
5026 * NOTE: this function does not set the idle thread's NEED_RESCHED
5027 * flag, to make booting more robust.
5028 */
5c1e1767 5029void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5030{
70b97a7f 5031 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5032 unsigned long flags;
5033
81c29a85 5034 idle->timestamp = sched_clock();
1da177e4
LT
5035 idle->sleep_avg = 0;
5036 idle->array = NULL;
b29739f9 5037 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
5038 idle->state = TASK_RUNNING;
5039 idle->cpus_allowed = cpumask_of_cpu(cpu);
5040 set_task_cpu(idle, cpu);
5041
5042 spin_lock_irqsave(&rq->lock, flags);
5043 rq->curr = rq->idle = idle;
4866cde0
NP
5044#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5045 idle->oncpu = 1;
5046#endif
1da177e4
LT
5047 spin_unlock_irqrestore(&rq->lock, flags);
5048
5049 /* Set the preempt count _outside_ the spinlocks! */
5050#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5051 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5052#else
a1261f54 5053 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
5054#endif
5055}
5056
5057/*
5058 * In a system that switches off the HZ timer nohz_cpu_mask
5059 * indicates which cpus entered this state. This is used
5060 * in the rcu update to wait only for active cpus. For system
5061 * which do not switch off the HZ timer nohz_cpu_mask should
5062 * always be CPU_MASK_NONE.
5063 */
5064cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5065
5066#ifdef CONFIG_SMP
5067/*
5068 * This is how migration works:
5069 *
70b97a7f 5070 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5071 * runqueue and wake up that CPU's migration thread.
5072 * 2) we down() the locked semaphore => thread blocks.
5073 * 3) migration thread wakes up (implicitly it forces the migrated
5074 * thread off the CPU)
5075 * 4) it gets the migration request and checks whether the migrated
5076 * task is still in the wrong runqueue.
5077 * 5) if it's in the wrong runqueue then the migration thread removes
5078 * it and puts it into the right queue.
5079 * 6) migration thread up()s the semaphore.
5080 * 7) we wake up and the migration is done.
5081 */
5082
5083/*
5084 * Change a given task's CPU affinity. Migrate the thread to a
5085 * proper CPU and schedule it away if the CPU it's executing on
5086 * is removed from the allowed bitmask.
5087 *
5088 * NOTE: the caller must have a valid reference to the task, the
5089 * task must not exit() & deallocate itself prematurely. The
5090 * call is not atomic; no spinlocks may be held.
5091 */
36c8b586 5092int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5093{
70b97a7f 5094 struct migration_req req;
1da177e4 5095 unsigned long flags;
70b97a7f 5096 struct rq *rq;
48f24c4d 5097 int ret = 0;
1da177e4
LT
5098
5099 rq = task_rq_lock(p, &flags);
5100 if (!cpus_intersects(new_mask, cpu_online_map)) {
5101 ret = -EINVAL;
5102 goto out;
5103 }
5104
5105 p->cpus_allowed = new_mask;
5106 /* Can the task run on the task's current CPU? If so, we're done */
5107 if (cpu_isset(task_cpu(p), new_mask))
5108 goto out;
5109
5110 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5111 /* Need help from migration thread: drop lock and wait. */
5112 task_rq_unlock(rq, &flags);
5113 wake_up_process(rq->migration_thread);
5114 wait_for_completion(&req.done);
5115 tlb_migrate_finish(p->mm);
5116 return 0;
5117 }
5118out:
5119 task_rq_unlock(rq, &flags);
48f24c4d 5120
1da177e4
LT
5121 return ret;
5122}
1da177e4
LT
5123EXPORT_SYMBOL_GPL(set_cpus_allowed);
5124
5125/*
5126 * Move (not current) task off this cpu, onto dest cpu. We're doing
5127 * this because either it can't run here any more (set_cpus_allowed()
5128 * away from this CPU, or CPU going down), or because we're
5129 * attempting to rebalance this task on exec (sched_exec).
5130 *
5131 * So we race with normal scheduler movements, but that's OK, as long
5132 * as the task is no longer on this CPU.
efc30814
KK
5133 *
5134 * Returns non-zero if task was successfully migrated.
1da177e4 5135 */
efc30814 5136static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5137{
70b97a7f 5138 struct rq *rq_dest, *rq_src;
efc30814 5139 int ret = 0;
1da177e4
LT
5140
5141 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5142 return ret;
1da177e4
LT
5143
5144 rq_src = cpu_rq(src_cpu);
5145 rq_dest = cpu_rq(dest_cpu);
5146
5147 double_rq_lock(rq_src, rq_dest);
5148 /* Already moved. */
5149 if (task_cpu(p) != src_cpu)
5150 goto out;
5151 /* Affinity changed (again). */
5152 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5153 goto out;
5154
5155 set_task_cpu(p, dest_cpu);
5156 if (p->array) {
5157 /*
5158 * Sync timestamp with rq_dest's before activating.
5159 * The same thing could be achieved by doing this step
5160 * afterwards, and pretending it was a local activate.
5161 * This way is cleaner and logically correct.
5162 */
b18ec803
MG
5163 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5164 + rq_dest->most_recent_timestamp;
1da177e4 5165 deactivate_task(p, rq_src);
0a565f79 5166 __activate_task(p, rq_dest);
1da177e4
LT
5167 if (TASK_PREEMPTS_CURR(p, rq_dest))
5168 resched_task(rq_dest->curr);
5169 }
efc30814 5170 ret = 1;
1da177e4
LT
5171out:
5172 double_rq_unlock(rq_src, rq_dest);
efc30814 5173 return ret;
1da177e4
LT
5174}
5175
5176/*
5177 * migration_thread - this is a highprio system thread that performs
5178 * thread migration by bumping thread off CPU then 'pushing' onto
5179 * another runqueue.
5180 */
95cdf3b7 5181static int migration_thread(void *data)
1da177e4 5182{
1da177e4 5183 int cpu = (long)data;
70b97a7f 5184 struct rq *rq;
1da177e4
LT
5185
5186 rq = cpu_rq(cpu);
5187 BUG_ON(rq->migration_thread != current);
5188
5189 set_current_state(TASK_INTERRUPTIBLE);
5190 while (!kthread_should_stop()) {
70b97a7f 5191 struct migration_req *req;
1da177e4 5192 struct list_head *head;
1da177e4 5193
3e1d1d28 5194 try_to_freeze();
1da177e4
LT
5195
5196 spin_lock_irq(&rq->lock);
5197
5198 if (cpu_is_offline(cpu)) {
5199 spin_unlock_irq(&rq->lock);
5200 goto wait_to_die;
5201 }
5202
5203 if (rq->active_balance) {
5204 active_load_balance(rq, cpu);
5205 rq->active_balance = 0;
5206 }
5207
5208 head = &rq->migration_queue;
5209
5210 if (list_empty(head)) {
5211 spin_unlock_irq(&rq->lock);
5212 schedule();
5213 set_current_state(TASK_INTERRUPTIBLE);
5214 continue;
5215 }
70b97a7f 5216 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5217 list_del_init(head->next);
5218
674311d5
NP
5219 spin_unlock(&rq->lock);
5220 __migrate_task(req->task, cpu, req->dest_cpu);
5221 local_irq_enable();
1da177e4
LT
5222
5223 complete(&req->done);
5224 }
5225 __set_current_state(TASK_RUNNING);
5226 return 0;
5227
5228wait_to_die:
5229 /* Wait for kthread_stop */
5230 set_current_state(TASK_INTERRUPTIBLE);
5231 while (!kthread_should_stop()) {
5232 schedule();
5233 set_current_state(TASK_INTERRUPTIBLE);
5234 }
5235 __set_current_state(TASK_RUNNING);
5236 return 0;
5237}
5238
5239#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5240/*
5241 * Figure out where task on dead CPU should go, use force if neccessary.
5242 * NOTE: interrupts should be disabled by the caller
5243 */
48f24c4d 5244static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5245{
efc30814 5246 unsigned long flags;
1da177e4 5247 cpumask_t mask;
70b97a7f
IM
5248 struct rq *rq;
5249 int dest_cpu;
1da177e4 5250
efc30814 5251restart:
1da177e4
LT
5252 /* On same node? */
5253 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5254 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5255 dest_cpu = any_online_cpu(mask);
5256
5257 /* On any allowed CPU? */
5258 if (dest_cpu == NR_CPUS)
48f24c4d 5259 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5260
5261 /* No more Mr. Nice Guy. */
5262 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5263 rq = task_rq_lock(p, &flags);
5264 cpus_setall(p->cpus_allowed);
5265 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5266 task_rq_unlock(rq, &flags);
1da177e4
LT
5267
5268 /*
5269 * Don't tell them about moving exiting tasks or
5270 * kernel threads (both mm NULL), since they never
5271 * leave kernel.
5272 */
48f24c4d 5273 if (p->mm && printk_ratelimit())
1da177e4
LT
5274 printk(KERN_INFO "process %d (%s) no "
5275 "longer affine to cpu%d\n",
48f24c4d 5276 p->pid, p->comm, dead_cpu);
1da177e4 5277 }
48f24c4d 5278 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5279 goto restart;
1da177e4
LT
5280}
5281
5282/*
5283 * While a dead CPU has no uninterruptible tasks queued at this point,
5284 * it might still have a nonzero ->nr_uninterruptible counter, because
5285 * for performance reasons the counter is not stricly tracking tasks to
5286 * their home CPUs. So we just add the counter to another CPU's counter,
5287 * to keep the global sum constant after CPU-down:
5288 */
70b97a7f 5289static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5290{
70b97a7f 5291 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5292 unsigned long flags;
5293
5294 local_irq_save(flags);
5295 double_rq_lock(rq_src, rq_dest);
5296 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5297 rq_src->nr_uninterruptible = 0;
5298 double_rq_unlock(rq_src, rq_dest);
5299 local_irq_restore(flags);
5300}
5301
5302/* Run through task list and migrate tasks from the dead cpu. */
5303static void migrate_live_tasks(int src_cpu)
5304{
48f24c4d 5305 struct task_struct *p, *t;
1da177e4
LT
5306
5307 write_lock_irq(&tasklist_lock);
5308
48f24c4d
IM
5309 do_each_thread(t, p) {
5310 if (p == current)
1da177e4
LT
5311 continue;
5312
48f24c4d
IM
5313 if (task_cpu(p) == src_cpu)
5314 move_task_off_dead_cpu(src_cpu, p);
5315 } while_each_thread(t, p);
1da177e4
LT
5316
5317 write_unlock_irq(&tasklist_lock);
5318}
5319
5320/* Schedules idle task to be the next runnable task on current CPU.
5321 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5322 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5323 */
5324void sched_idle_next(void)
5325{
48f24c4d 5326 int this_cpu = smp_processor_id();
70b97a7f 5327 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5328 struct task_struct *p = rq->idle;
5329 unsigned long flags;
5330
5331 /* cpu has to be offline */
48f24c4d 5332 BUG_ON(cpu_online(this_cpu));
1da177e4 5333
48f24c4d
IM
5334 /*
5335 * Strictly not necessary since rest of the CPUs are stopped by now
5336 * and interrupts disabled on the current cpu.
1da177e4
LT
5337 */
5338 spin_lock_irqsave(&rq->lock, flags);
5339
5340 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5341
5342 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5343 __activate_idle_task(p, rq);
5344
5345 spin_unlock_irqrestore(&rq->lock, flags);
5346}
5347
48f24c4d
IM
5348/*
5349 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5350 * offline.
5351 */
5352void idle_task_exit(void)
5353{
5354 struct mm_struct *mm = current->active_mm;
5355
5356 BUG_ON(cpu_online(smp_processor_id()));
5357
5358 if (mm != &init_mm)
5359 switch_mm(mm, &init_mm, current);
5360 mmdrop(mm);
5361}
5362
054b9108 5363/* called under rq->lock with disabled interrupts */
36c8b586 5364static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5365{
70b97a7f 5366 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5367
5368 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5369 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5370
5371 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5372 BUG_ON(p->state == TASK_DEAD);
1da177e4 5373
48f24c4d 5374 get_task_struct(p);
1da177e4
LT
5375
5376 /*
5377 * Drop lock around migration; if someone else moves it,
5378 * that's OK. No task can be added to this CPU, so iteration is
5379 * fine.
054b9108 5380 * NOTE: interrupts should be left disabled --dev@
1da177e4 5381 */
054b9108 5382 spin_unlock(&rq->lock);
48f24c4d 5383 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5384 spin_lock(&rq->lock);
1da177e4 5385
48f24c4d 5386 put_task_struct(p);
1da177e4
LT
5387}
5388
5389/* release_task() removes task from tasklist, so we won't find dead tasks. */
5390static void migrate_dead_tasks(unsigned int dead_cpu)
5391{
70b97a7f 5392 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5393 unsigned int arr, i;
1da177e4
LT
5394
5395 for (arr = 0; arr < 2; arr++) {
5396 for (i = 0; i < MAX_PRIO; i++) {
5397 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5398
1da177e4 5399 while (!list_empty(list))
36c8b586
IM
5400 migrate_dead(dead_cpu, list_entry(list->next,
5401 struct task_struct, run_list));
1da177e4
LT
5402 }
5403 }
5404}
5405#endif /* CONFIG_HOTPLUG_CPU */
5406
5407/*
5408 * migration_call - callback that gets triggered when a CPU is added.
5409 * Here we can start up the necessary migration thread for the new CPU.
5410 */
48f24c4d
IM
5411static int __cpuinit
5412migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5413{
1da177e4 5414 struct task_struct *p;
48f24c4d 5415 int cpu = (long)hcpu;
1da177e4 5416 unsigned long flags;
70b97a7f 5417 struct rq *rq;
1da177e4
LT
5418
5419 switch (action) {
5be9361c
GS
5420 case CPU_LOCK_ACQUIRE:
5421 mutex_lock(&sched_hotcpu_mutex);
5422 break;
5423
1da177e4 5424 case CPU_UP_PREPARE:
8bb78442 5425 case CPU_UP_PREPARE_FROZEN:
1da177e4
LT
5426 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5427 if (IS_ERR(p))
5428 return NOTIFY_BAD;
5429 p->flags |= PF_NOFREEZE;
5430 kthread_bind(p, cpu);
5431 /* Must be high prio: stop_machine expects to yield to it. */
5432 rq = task_rq_lock(p, &flags);
5433 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5434 task_rq_unlock(rq, &flags);
5435 cpu_rq(cpu)->migration_thread = p;
5436 break;
48f24c4d 5437
1da177e4 5438 case CPU_ONLINE:
8bb78442 5439 case CPU_ONLINE_FROZEN:
1da177e4
LT
5440 /* Strictly unneccessary, as first user will wake it. */
5441 wake_up_process(cpu_rq(cpu)->migration_thread);
5442 break;
48f24c4d 5443
1da177e4
LT
5444#ifdef CONFIG_HOTPLUG_CPU
5445 case CPU_UP_CANCELED:
8bb78442 5446 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5447 if (!cpu_rq(cpu)->migration_thread)
5448 break;
1da177e4 5449 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5450 kthread_bind(cpu_rq(cpu)->migration_thread,
5451 any_online_cpu(cpu_online_map));
1da177e4
LT
5452 kthread_stop(cpu_rq(cpu)->migration_thread);
5453 cpu_rq(cpu)->migration_thread = NULL;
5454 break;
48f24c4d 5455
1da177e4 5456 case CPU_DEAD:
8bb78442 5457 case CPU_DEAD_FROZEN:
1da177e4
LT
5458 migrate_live_tasks(cpu);
5459 rq = cpu_rq(cpu);
5460 kthread_stop(rq->migration_thread);
5461 rq->migration_thread = NULL;
5462 /* Idle task back to normal (off runqueue, low prio) */
5463 rq = task_rq_lock(rq->idle, &flags);
5464 deactivate_task(rq->idle, rq);
5465 rq->idle->static_prio = MAX_PRIO;
5466 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5467 migrate_dead_tasks(cpu);
5468 task_rq_unlock(rq, &flags);
5469 migrate_nr_uninterruptible(rq);
5470 BUG_ON(rq->nr_running != 0);
5471
5472 /* No need to migrate the tasks: it was best-effort if
5be9361c 5473 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5474 * the requestors. */
5475 spin_lock_irq(&rq->lock);
5476 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5477 struct migration_req *req;
5478
1da177e4 5479 req = list_entry(rq->migration_queue.next,
70b97a7f 5480 struct migration_req, list);
1da177e4
LT
5481 list_del_init(&req->list);
5482 complete(&req->done);
5483 }
5484 spin_unlock_irq(&rq->lock);
5485 break;
5486#endif
5be9361c
GS
5487 case CPU_LOCK_RELEASE:
5488 mutex_unlock(&sched_hotcpu_mutex);
5489 break;
1da177e4
LT
5490 }
5491 return NOTIFY_OK;
5492}
5493
5494/* Register at highest priority so that task migration (migrate_all_tasks)
5495 * happens before everything else.
5496 */
26c2143b 5497static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5498 .notifier_call = migration_call,
5499 .priority = 10
5500};
5501
5502int __init migration_init(void)
5503{
5504 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5505 int err;
48f24c4d
IM
5506
5507 /* Start one for the boot CPU: */
07dccf33
AM
5508 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5509 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5510 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5511 register_cpu_notifier(&migration_notifier);
48f24c4d 5512
1da177e4
LT
5513 return 0;
5514}
5515#endif
5516
5517#ifdef CONFIG_SMP
476f3534
CL
5518
5519/* Number of possible processor ids */
5520int nr_cpu_ids __read_mostly = NR_CPUS;
5521EXPORT_SYMBOL(nr_cpu_ids);
5522
1a20ff27 5523#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5524#ifdef SCHED_DOMAIN_DEBUG
5525static void sched_domain_debug(struct sched_domain *sd, int cpu)
5526{
5527 int level = 0;
5528
41c7ce9a
NP
5529 if (!sd) {
5530 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5531 return;
5532 }
5533
1da177e4
LT
5534 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5535
5536 do {
5537 int i;
5538 char str[NR_CPUS];
5539 struct sched_group *group = sd->groups;
5540 cpumask_t groupmask;
5541
5542 cpumask_scnprintf(str, NR_CPUS, sd->span);
5543 cpus_clear(groupmask);
5544
5545 printk(KERN_DEBUG);
5546 for (i = 0; i < level + 1; i++)
5547 printk(" ");
5548 printk("domain %d: ", level);
5549
5550 if (!(sd->flags & SD_LOAD_BALANCE)) {
5551 printk("does not load-balance\n");
5552 if (sd->parent)
33859f7f
MOS
5553 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5554 " has parent");
1da177e4
LT
5555 break;
5556 }
5557
5558 printk("span %s\n", str);
5559
5560 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5561 printk(KERN_ERR "ERROR: domain->span does not contain "
5562 "CPU%d\n", cpu);
1da177e4 5563 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5564 printk(KERN_ERR "ERROR: domain->groups does not contain"
5565 " CPU%d\n", cpu);
1da177e4
LT
5566
5567 printk(KERN_DEBUG);
5568 for (i = 0; i < level + 2; i++)
5569 printk(" ");
5570 printk("groups:");
5571 do {
5572 if (!group) {
5573 printk("\n");
5574 printk(KERN_ERR "ERROR: group is NULL\n");
5575 break;
5576 }
5577
5517d86b 5578 if (!group->__cpu_power) {
1da177e4 5579 printk("\n");
33859f7f
MOS
5580 printk(KERN_ERR "ERROR: domain->cpu_power not "
5581 "set\n");
1da177e4
LT
5582 }
5583
5584 if (!cpus_weight(group->cpumask)) {
5585 printk("\n");
5586 printk(KERN_ERR "ERROR: empty group\n");
5587 }
5588
5589 if (cpus_intersects(groupmask, group->cpumask)) {
5590 printk("\n");
5591 printk(KERN_ERR "ERROR: repeated CPUs\n");
5592 }
5593
5594 cpus_or(groupmask, groupmask, group->cpumask);
5595
5596 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5597 printk(" %s", str);
5598
5599 group = group->next;
5600 } while (group != sd->groups);
5601 printk("\n");
5602
5603 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5604 printk(KERN_ERR "ERROR: groups don't span "
5605 "domain->span\n");
1da177e4
LT
5606
5607 level++;
5608 sd = sd->parent;
33859f7f
MOS
5609 if (!sd)
5610 continue;
1da177e4 5611
33859f7f
MOS
5612 if (!cpus_subset(groupmask, sd->span))
5613 printk(KERN_ERR "ERROR: parent span is not a superset "
5614 "of domain->span\n");
1da177e4
LT
5615
5616 } while (sd);
5617}
5618#else
48f24c4d 5619# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5620#endif
5621
1a20ff27 5622static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5623{
5624 if (cpus_weight(sd->span) == 1)
5625 return 1;
5626
5627 /* Following flags need at least 2 groups */
5628 if (sd->flags & (SD_LOAD_BALANCE |
5629 SD_BALANCE_NEWIDLE |
5630 SD_BALANCE_FORK |
89c4710e
SS
5631 SD_BALANCE_EXEC |
5632 SD_SHARE_CPUPOWER |
5633 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5634 if (sd->groups != sd->groups->next)
5635 return 0;
5636 }
5637
5638 /* Following flags don't use groups */
5639 if (sd->flags & (SD_WAKE_IDLE |
5640 SD_WAKE_AFFINE |
5641 SD_WAKE_BALANCE))
5642 return 0;
5643
5644 return 1;
5645}
5646
48f24c4d
IM
5647static int
5648sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5649{
5650 unsigned long cflags = sd->flags, pflags = parent->flags;
5651
5652 if (sd_degenerate(parent))
5653 return 1;
5654
5655 if (!cpus_equal(sd->span, parent->span))
5656 return 0;
5657
5658 /* Does parent contain flags not in child? */
5659 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5660 if (cflags & SD_WAKE_AFFINE)
5661 pflags &= ~SD_WAKE_BALANCE;
5662 /* Flags needing groups don't count if only 1 group in parent */
5663 if (parent->groups == parent->groups->next) {
5664 pflags &= ~(SD_LOAD_BALANCE |
5665 SD_BALANCE_NEWIDLE |
5666 SD_BALANCE_FORK |
89c4710e
SS
5667 SD_BALANCE_EXEC |
5668 SD_SHARE_CPUPOWER |
5669 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5670 }
5671 if (~cflags & pflags)
5672 return 0;
5673
5674 return 1;
5675}
5676
1da177e4
LT
5677/*
5678 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5679 * hold the hotplug lock.
5680 */
9c1cfda2 5681static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5682{
70b97a7f 5683 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5684 struct sched_domain *tmp;
5685
5686 /* Remove the sched domains which do not contribute to scheduling. */
5687 for (tmp = sd; tmp; tmp = tmp->parent) {
5688 struct sched_domain *parent = tmp->parent;
5689 if (!parent)
5690 break;
1a848870 5691 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5692 tmp->parent = parent->parent;
1a848870
SS
5693 if (parent->parent)
5694 parent->parent->child = tmp;
5695 }
245af2c7
SS
5696 }
5697
1a848870 5698 if (sd && sd_degenerate(sd)) {
245af2c7 5699 sd = sd->parent;
1a848870
SS
5700 if (sd)
5701 sd->child = NULL;
5702 }
1da177e4
LT
5703
5704 sched_domain_debug(sd, cpu);
5705
674311d5 5706 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5707}
5708
5709/* cpus with isolated domains */
67af63a6 5710static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5711
5712/* Setup the mask of cpus configured for isolated domains */
5713static int __init isolated_cpu_setup(char *str)
5714{
5715 int ints[NR_CPUS], i;
5716
5717 str = get_options(str, ARRAY_SIZE(ints), ints);
5718 cpus_clear(cpu_isolated_map);
5719 for (i = 1; i <= ints[0]; i++)
5720 if (ints[i] < NR_CPUS)
5721 cpu_set(ints[i], cpu_isolated_map);
5722 return 1;
5723}
5724
5725__setup ("isolcpus=", isolated_cpu_setup);
5726
5727/*
6711cab4
SS
5728 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5729 * to a function which identifies what group(along with sched group) a CPU
5730 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5731 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5732 *
5733 * init_sched_build_groups will build a circular linked list of the groups
5734 * covered by the given span, and will set each group's ->cpumask correctly,
5735 * and ->cpu_power to 0.
5736 */
a616058b 5737static void
6711cab4
SS
5738init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5739 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5740 struct sched_group **sg))
1da177e4
LT
5741{
5742 struct sched_group *first = NULL, *last = NULL;
5743 cpumask_t covered = CPU_MASK_NONE;
5744 int i;
5745
5746 for_each_cpu_mask(i, span) {
6711cab4
SS
5747 struct sched_group *sg;
5748 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5749 int j;
5750
5751 if (cpu_isset(i, covered))
5752 continue;
5753
5754 sg->cpumask = CPU_MASK_NONE;
5517d86b 5755 sg->__cpu_power = 0;
1da177e4
LT
5756
5757 for_each_cpu_mask(j, span) {
6711cab4 5758 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5759 continue;
5760
5761 cpu_set(j, covered);
5762 cpu_set(j, sg->cpumask);
5763 }
5764 if (!first)
5765 first = sg;
5766 if (last)
5767 last->next = sg;
5768 last = sg;
5769 }
5770 last->next = first;
5771}
5772
9c1cfda2 5773#define SD_NODES_PER_DOMAIN 16
1da177e4 5774
9c1cfda2 5775#ifdef CONFIG_NUMA
198e2f18 5776
9c1cfda2
JH
5777/**
5778 * find_next_best_node - find the next node to include in a sched_domain
5779 * @node: node whose sched_domain we're building
5780 * @used_nodes: nodes already in the sched_domain
5781 *
5782 * Find the next node to include in a given scheduling domain. Simply
5783 * finds the closest node not already in the @used_nodes map.
5784 *
5785 * Should use nodemask_t.
5786 */
5787static int find_next_best_node(int node, unsigned long *used_nodes)
5788{
5789 int i, n, val, min_val, best_node = 0;
5790
5791 min_val = INT_MAX;
5792
5793 for (i = 0; i < MAX_NUMNODES; i++) {
5794 /* Start at @node */
5795 n = (node + i) % MAX_NUMNODES;
5796
5797 if (!nr_cpus_node(n))
5798 continue;
5799
5800 /* Skip already used nodes */
5801 if (test_bit(n, used_nodes))
5802 continue;
5803
5804 /* Simple min distance search */
5805 val = node_distance(node, n);
5806
5807 if (val < min_val) {
5808 min_val = val;
5809 best_node = n;
5810 }
5811 }
5812
5813 set_bit(best_node, used_nodes);
5814 return best_node;
5815}
5816
5817/**
5818 * sched_domain_node_span - get a cpumask for a node's sched_domain
5819 * @node: node whose cpumask we're constructing
5820 * @size: number of nodes to include in this span
5821 *
5822 * Given a node, construct a good cpumask for its sched_domain to span. It
5823 * should be one that prevents unnecessary balancing, but also spreads tasks
5824 * out optimally.
5825 */
5826static cpumask_t sched_domain_node_span(int node)
5827{
9c1cfda2 5828 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5829 cpumask_t span, nodemask;
5830 int i;
9c1cfda2
JH
5831
5832 cpus_clear(span);
5833 bitmap_zero(used_nodes, MAX_NUMNODES);
5834
5835 nodemask = node_to_cpumask(node);
5836 cpus_or(span, span, nodemask);
5837 set_bit(node, used_nodes);
5838
5839 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5840 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5841
9c1cfda2
JH
5842 nodemask = node_to_cpumask(next_node);
5843 cpus_or(span, span, nodemask);
5844 }
5845
5846 return span;
5847}
5848#endif
5849
5c45bf27 5850int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5851
9c1cfda2 5852/*
48f24c4d 5853 * SMT sched-domains:
9c1cfda2 5854 */
1da177e4
LT
5855#ifdef CONFIG_SCHED_SMT
5856static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5857static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5858
6711cab4
SS
5859static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
1da177e4 5861{
6711cab4
SS
5862 if (sg)
5863 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5864 return cpu;
5865}
5866#endif
5867
48f24c4d
IM
5868/*
5869 * multi-core sched-domains:
5870 */
1e9f28fa
SS
5871#ifdef CONFIG_SCHED_MC
5872static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5873static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5874#endif
5875
5876#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5877static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5878 struct sched_group **sg)
1e9f28fa 5879{
6711cab4 5880 int group;
a616058b
SS
5881 cpumask_t mask = cpu_sibling_map[cpu];
5882 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5883 group = first_cpu(mask);
5884 if (sg)
5885 *sg = &per_cpu(sched_group_core, group);
5886 return group;
1e9f28fa
SS
5887}
5888#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5889static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5890 struct sched_group **sg)
1e9f28fa 5891{
6711cab4
SS
5892 if (sg)
5893 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5894 return cpu;
5895}
5896#endif
5897
1da177e4 5898static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5899static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5900
6711cab4
SS
5901static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5902 struct sched_group **sg)
1da177e4 5903{
6711cab4 5904 int group;
48f24c4d 5905#ifdef CONFIG_SCHED_MC
1e9f28fa 5906 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5907 cpus_and(mask, mask, *cpu_map);
6711cab4 5908 group = first_cpu(mask);
1e9f28fa 5909#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5910 cpumask_t mask = cpu_sibling_map[cpu];
5911 cpus_and(mask, mask, *cpu_map);
6711cab4 5912 group = first_cpu(mask);
1da177e4 5913#else
6711cab4 5914 group = cpu;
1da177e4 5915#endif
6711cab4
SS
5916 if (sg)
5917 *sg = &per_cpu(sched_group_phys, group);
5918 return group;
1da177e4
LT
5919}
5920
5921#ifdef CONFIG_NUMA
1da177e4 5922/*
9c1cfda2
JH
5923 * The init_sched_build_groups can't handle what we want to do with node
5924 * groups, so roll our own. Now each node has its own list of groups which
5925 * gets dynamically allocated.
1da177e4 5926 */
9c1cfda2 5927static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5928static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5929
9c1cfda2 5930static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5931static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5932
6711cab4
SS
5933static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5934 struct sched_group **sg)
9c1cfda2 5935{
6711cab4
SS
5936 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5937 int group;
5938
5939 cpus_and(nodemask, nodemask, *cpu_map);
5940 group = first_cpu(nodemask);
5941
5942 if (sg)
5943 *sg = &per_cpu(sched_group_allnodes, group);
5944 return group;
1da177e4 5945}
6711cab4 5946
08069033
SS
5947static void init_numa_sched_groups_power(struct sched_group *group_head)
5948{
5949 struct sched_group *sg = group_head;
5950 int j;
5951
5952 if (!sg)
5953 return;
5954next_sg:
5955 for_each_cpu_mask(j, sg->cpumask) {
5956 struct sched_domain *sd;
5957
5958 sd = &per_cpu(phys_domains, j);
5959 if (j != first_cpu(sd->groups->cpumask)) {
5960 /*
5961 * Only add "power" once for each
5962 * physical package.
5963 */
5964 continue;
5965 }
5966
5517d86b 5967 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5968 }
5969 sg = sg->next;
5970 if (sg != group_head)
5971 goto next_sg;
5972}
1da177e4
LT
5973#endif
5974
a616058b 5975#ifdef CONFIG_NUMA
51888ca2
SV
5976/* Free memory allocated for various sched_group structures */
5977static void free_sched_groups(const cpumask_t *cpu_map)
5978{
a616058b 5979 int cpu, i;
51888ca2
SV
5980
5981 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5982 struct sched_group **sched_group_nodes
5983 = sched_group_nodes_bycpu[cpu];
5984
51888ca2
SV
5985 if (!sched_group_nodes)
5986 continue;
5987
5988 for (i = 0; i < MAX_NUMNODES; i++) {
5989 cpumask_t nodemask = node_to_cpumask(i);
5990 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5991
5992 cpus_and(nodemask, nodemask, *cpu_map);
5993 if (cpus_empty(nodemask))
5994 continue;
5995
5996 if (sg == NULL)
5997 continue;
5998 sg = sg->next;
5999next_sg:
6000 oldsg = sg;
6001 sg = sg->next;
6002 kfree(oldsg);
6003 if (oldsg != sched_group_nodes[i])
6004 goto next_sg;
6005 }
6006 kfree(sched_group_nodes);
6007 sched_group_nodes_bycpu[cpu] = NULL;
6008 }
51888ca2 6009}
a616058b
SS
6010#else
6011static void free_sched_groups(const cpumask_t *cpu_map)
6012{
6013}
6014#endif
51888ca2 6015
89c4710e
SS
6016/*
6017 * Initialize sched groups cpu_power.
6018 *
6019 * cpu_power indicates the capacity of sched group, which is used while
6020 * distributing the load between different sched groups in a sched domain.
6021 * Typically cpu_power for all the groups in a sched domain will be same unless
6022 * there are asymmetries in the topology. If there are asymmetries, group
6023 * having more cpu_power will pickup more load compared to the group having
6024 * less cpu_power.
6025 *
6026 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6027 * the maximum number of tasks a group can handle in the presence of other idle
6028 * or lightly loaded groups in the same sched domain.
6029 */
6030static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6031{
6032 struct sched_domain *child;
6033 struct sched_group *group;
6034
6035 WARN_ON(!sd || !sd->groups);
6036
6037 if (cpu != first_cpu(sd->groups->cpumask))
6038 return;
6039
6040 child = sd->child;
6041
5517d86b
ED
6042 sd->groups->__cpu_power = 0;
6043
89c4710e
SS
6044 /*
6045 * For perf policy, if the groups in child domain share resources
6046 * (for example cores sharing some portions of the cache hierarchy
6047 * or SMT), then set this domain groups cpu_power such that each group
6048 * can handle only one task, when there are other idle groups in the
6049 * same sched domain.
6050 */
6051 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6052 (child->flags &
6053 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6054 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6055 return;
6056 }
6057
89c4710e
SS
6058 /*
6059 * add cpu_power of each child group to this groups cpu_power
6060 */
6061 group = child->groups;
6062 do {
5517d86b 6063 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6064 group = group->next;
6065 } while (group != child->groups);
6066}
6067
1da177e4 6068/*
1a20ff27
DG
6069 * Build sched domains for a given set of cpus and attach the sched domains
6070 * to the individual cpus
1da177e4 6071 */
51888ca2 6072static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6073{
6074 int i;
89c4710e 6075 struct sched_domain *sd;
d1b55138
JH
6076#ifdef CONFIG_NUMA
6077 struct sched_group **sched_group_nodes = NULL;
6711cab4 6078 int sd_allnodes = 0;
d1b55138
JH
6079
6080 /*
6081 * Allocate the per-node list of sched groups
6082 */
51888ca2 6083 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6084 GFP_KERNEL);
d1b55138
JH
6085 if (!sched_group_nodes) {
6086 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6087 return -ENOMEM;
d1b55138
JH
6088 }
6089 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6090#endif
1da177e4
LT
6091
6092 /*
1a20ff27 6093 * Set up domains for cpus specified by the cpu_map.
1da177e4 6094 */
1a20ff27 6095 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6096 struct sched_domain *sd = NULL, *p;
6097 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6098
1a20ff27 6099 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6100
6101#ifdef CONFIG_NUMA
d1b55138 6102 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6103 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6104 sd = &per_cpu(allnodes_domains, i);
6105 *sd = SD_ALLNODES_INIT;
6106 sd->span = *cpu_map;
6711cab4 6107 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6108 p = sd;
6711cab4 6109 sd_allnodes = 1;
9c1cfda2
JH
6110 } else
6111 p = NULL;
6112
1da177e4 6113 sd = &per_cpu(node_domains, i);
1da177e4 6114 *sd = SD_NODE_INIT;
9c1cfda2
JH
6115 sd->span = sched_domain_node_span(cpu_to_node(i));
6116 sd->parent = p;
1a848870
SS
6117 if (p)
6118 p->child = sd;
9c1cfda2 6119 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6120#endif
6121
6122 p = sd;
6123 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6124 *sd = SD_CPU_INIT;
6125 sd->span = nodemask;
6126 sd->parent = p;
1a848870
SS
6127 if (p)
6128 p->child = sd;
6711cab4 6129 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6130
1e9f28fa
SS
6131#ifdef CONFIG_SCHED_MC
6132 p = sd;
6133 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6134 *sd = SD_MC_INIT;
6135 sd->span = cpu_coregroup_map(i);
6136 cpus_and(sd->span, sd->span, *cpu_map);
6137 sd->parent = p;
1a848870 6138 p->child = sd;
6711cab4 6139 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6140#endif
6141
1da177e4
LT
6142#ifdef CONFIG_SCHED_SMT
6143 p = sd;
6144 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6145 *sd = SD_SIBLING_INIT;
6146 sd->span = cpu_sibling_map[i];
1a20ff27 6147 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6148 sd->parent = p;
1a848870 6149 p->child = sd;
6711cab4 6150 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6151#endif
6152 }
6153
6154#ifdef CONFIG_SCHED_SMT
6155 /* Set up CPU (sibling) groups */
9c1cfda2 6156 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6157 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6158 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6159 if (i != first_cpu(this_sibling_map))
6160 continue;
6161
6711cab4 6162 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6163 }
6164#endif
6165
1e9f28fa
SS
6166#ifdef CONFIG_SCHED_MC
6167 /* Set up multi-core groups */
6168 for_each_cpu_mask(i, *cpu_map) {
6169 cpumask_t this_core_map = cpu_coregroup_map(i);
6170 cpus_and(this_core_map, this_core_map, *cpu_map);
6171 if (i != first_cpu(this_core_map))
6172 continue;
6711cab4 6173 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6174 }
6175#endif
6176
6177
1da177e4
LT
6178 /* Set up physical groups */
6179 for (i = 0; i < MAX_NUMNODES; i++) {
6180 cpumask_t nodemask = node_to_cpumask(i);
6181
1a20ff27 6182 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6183 if (cpus_empty(nodemask))
6184 continue;
6185
6711cab4 6186 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6187 }
6188
6189#ifdef CONFIG_NUMA
6190 /* Set up node groups */
6711cab4
SS
6191 if (sd_allnodes)
6192 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6193
6194 for (i = 0; i < MAX_NUMNODES; i++) {
6195 /* Set up node groups */
6196 struct sched_group *sg, *prev;
6197 cpumask_t nodemask = node_to_cpumask(i);
6198 cpumask_t domainspan;
6199 cpumask_t covered = CPU_MASK_NONE;
6200 int j;
6201
6202 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6203 if (cpus_empty(nodemask)) {
6204 sched_group_nodes[i] = NULL;
9c1cfda2 6205 continue;
d1b55138 6206 }
9c1cfda2
JH
6207
6208 domainspan = sched_domain_node_span(i);
6209 cpus_and(domainspan, domainspan, *cpu_map);
6210
15f0b676 6211 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6212 if (!sg) {
6213 printk(KERN_WARNING "Can not alloc domain group for "
6214 "node %d\n", i);
6215 goto error;
6216 }
9c1cfda2
JH
6217 sched_group_nodes[i] = sg;
6218 for_each_cpu_mask(j, nodemask) {
6219 struct sched_domain *sd;
6220 sd = &per_cpu(node_domains, j);
6221 sd->groups = sg;
9c1cfda2 6222 }
5517d86b 6223 sg->__cpu_power = 0;
9c1cfda2 6224 sg->cpumask = nodemask;
51888ca2 6225 sg->next = sg;
9c1cfda2
JH
6226 cpus_or(covered, covered, nodemask);
6227 prev = sg;
6228
6229 for (j = 0; j < MAX_NUMNODES; j++) {
6230 cpumask_t tmp, notcovered;
6231 int n = (i + j) % MAX_NUMNODES;
6232
6233 cpus_complement(notcovered, covered);
6234 cpus_and(tmp, notcovered, *cpu_map);
6235 cpus_and(tmp, tmp, domainspan);
6236 if (cpus_empty(tmp))
6237 break;
6238
6239 nodemask = node_to_cpumask(n);
6240 cpus_and(tmp, tmp, nodemask);
6241 if (cpus_empty(tmp))
6242 continue;
6243
15f0b676
SV
6244 sg = kmalloc_node(sizeof(struct sched_group),
6245 GFP_KERNEL, i);
9c1cfda2
JH
6246 if (!sg) {
6247 printk(KERN_WARNING
6248 "Can not alloc domain group for node %d\n", j);
51888ca2 6249 goto error;
9c1cfda2 6250 }
5517d86b 6251 sg->__cpu_power = 0;
9c1cfda2 6252 sg->cpumask = tmp;
51888ca2 6253 sg->next = prev->next;
9c1cfda2
JH
6254 cpus_or(covered, covered, tmp);
6255 prev->next = sg;
6256 prev = sg;
6257 }
9c1cfda2 6258 }
1da177e4
LT
6259#endif
6260
6261 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6262#ifdef CONFIG_SCHED_SMT
1a20ff27 6263 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6264 sd = &per_cpu(cpu_domains, i);
89c4710e 6265 init_sched_groups_power(i, sd);
5c45bf27 6266 }
1da177e4 6267#endif
1e9f28fa 6268#ifdef CONFIG_SCHED_MC
5c45bf27 6269 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6270 sd = &per_cpu(core_domains, i);
89c4710e 6271 init_sched_groups_power(i, sd);
5c45bf27
SS
6272 }
6273#endif
1e9f28fa 6274
5c45bf27 6275 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6276 sd = &per_cpu(phys_domains, i);
89c4710e 6277 init_sched_groups_power(i, sd);
1da177e4
LT
6278 }
6279
9c1cfda2 6280#ifdef CONFIG_NUMA
08069033
SS
6281 for (i = 0; i < MAX_NUMNODES; i++)
6282 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6283
6711cab4
SS
6284 if (sd_allnodes) {
6285 struct sched_group *sg;
f712c0c7 6286
6711cab4 6287 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6288 init_numa_sched_groups_power(sg);
6289 }
9c1cfda2
JH
6290#endif
6291
1da177e4 6292 /* Attach the domains */
1a20ff27 6293 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6294 struct sched_domain *sd;
6295#ifdef CONFIG_SCHED_SMT
6296 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6297#elif defined(CONFIG_SCHED_MC)
6298 sd = &per_cpu(core_domains, i);
1da177e4
LT
6299#else
6300 sd = &per_cpu(phys_domains, i);
6301#endif
6302 cpu_attach_domain(sd, i);
6303 }
51888ca2
SV
6304
6305 return 0;
6306
a616058b 6307#ifdef CONFIG_NUMA
51888ca2
SV
6308error:
6309 free_sched_groups(cpu_map);
6310 return -ENOMEM;
a616058b 6311#endif
1da177e4 6312}
1a20ff27
DG
6313/*
6314 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6315 */
51888ca2 6316static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6317{
6318 cpumask_t cpu_default_map;
51888ca2 6319 int err;
1da177e4 6320
1a20ff27
DG
6321 /*
6322 * Setup mask for cpus without special case scheduling requirements.
6323 * For now this just excludes isolated cpus, but could be used to
6324 * exclude other special cases in the future.
6325 */
6326 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6327
51888ca2
SV
6328 err = build_sched_domains(&cpu_default_map);
6329
6330 return err;
1a20ff27
DG
6331}
6332
6333static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6334{
51888ca2 6335 free_sched_groups(cpu_map);
9c1cfda2 6336}
1da177e4 6337
1a20ff27
DG
6338/*
6339 * Detach sched domains from a group of cpus specified in cpu_map
6340 * These cpus will now be attached to the NULL domain
6341 */
858119e1 6342static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6343{
6344 int i;
6345
6346 for_each_cpu_mask(i, *cpu_map)
6347 cpu_attach_domain(NULL, i);
6348 synchronize_sched();
6349 arch_destroy_sched_domains(cpu_map);
6350}
6351
6352/*
6353 * Partition sched domains as specified by the cpumasks below.
6354 * This attaches all cpus from the cpumasks to the NULL domain,
6355 * waits for a RCU quiescent period, recalculates sched
6356 * domain information and then attaches them back to the
6357 * correct sched domains
6358 * Call with hotplug lock held
6359 */
51888ca2 6360int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6361{
6362 cpumask_t change_map;
51888ca2 6363 int err = 0;
1a20ff27
DG
6364
6365 cpus_and(*partition1, *partition1, cpu_online_map);
6366 cpus_and(*partition2, *partition2, cpu_online_map);
6367 cpus_or(change_map, *partition1, *partition2);
6368
6369 /* Detach sched domains from all of the affected cpus */
6370 detach_destroy_domains(&change_map);
6371 if (!cpus_empty(*partition1))
51888ca2
SV
6372 err = build_sched_domains(partition1);
6373 if (!err && !cpus_empty(*partition2))
6374 err = build_sched_domains(partition2);
6375
6376 return err;
1a20ff27
DG
6377}
6378
5c45bf27
SS
6379#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6380int arch_reinit_sched_domains(void)
6381{
6382 int err;
6383
5be9361c 6384 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6385 detach_destroy_domains(&cpu_online_map);
6386 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6387 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6388
6389 return err;
6390}
6391
6392static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6393{
6394 int ret;
6395
6396 if (buf[0] != '0' && buf[0] != '1')
6397 return -EINVAL;
6398
6399 if (smt)
6400 sched_smt_power_savings = (buf[0] == '1');
6401 else
6402 sched_mc_power_savings = (buf[0] == '1');
6403
6404 ret = arch_reinit_sched_domains();
6405
6406 return ret ? ret : count;
6407}
6408
6409int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6410{
6411 int err = 0;
48f24c4d 6412
5c45bf27
SS
6413#ifdef CONFIG_SCHED_SMT
6414 if (smt_capable())
6415 err = sysfs_create_file(&cls->kset.kobj,
6416 &attr_sched_smt_power_savings.attr);
6417#endif
6418#ifdef CONFIG_SCHED_MC
6419 if (!err && mc_capable())
6420 err = sysfs_create_file(&cls->kset.kobj,
6421 &attr_sched_mc_power_savings.attr);
6422#endif
6423 return err;
6424}
6425#endif
6426
6427#ifdef CONFIG_SCHED_MC
6428static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6429{
6430 return sprintf(page, "%u\n", sched_mc_power_savings);
6431}
48f24c4d
IM
6432static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6433 const char *buf, size_t count)
5c45bf27
SS
6434{
6435 return sched_power_savings_store(buf, count, 0);
6436}
6437SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6438 sched_mc_power_savings_store);
6439#endif
6440
6441#ifdef CONFIG_SCHED_SMT
6442static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6443{
6444 return sprintf(page, "%u\n", sched_smt_power_savings);
6445}
48f24c4d
IM
6446static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6447 const char *buf, size_t count)
5c45bf27
SS
6448{
6449 return sched_power_savings_store(buf, count, 1);
6450}
6451SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6452 sched_smt_power_savings_store);
6453#endif
6454
1da177e4
LT
6455/*
6456 * Force a reinitialization of the sched domains hierarchy. The domains
6457 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6458 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6459 * which will prevent rebalancing while the sched domains are recalculated.
6460 */
6461static int update_sched_domains(struct notifier_block *nfb,
6462 unsigned long action, void *hcpu)
6463{
1da177e4
LT
6464 switch (action) {
6465 case CPU_UP_PREPARE:
8bb78442 6466 case CPU_UP_PREPARE_FROZEN:
1da177e4 6467 case CPU_DOWN_PREPARE:
8bb78442 6468 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6469 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6470 return NOTIFY_OK;
6471
6472 case CPU_UP_CANCELED:
8bb78442 6473 case CPU_UP_CANCELED_FROZEN:
1da177e4 6474 case CPU_DOWN_FAILED:
8bb78442 6475 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6476 case CPU_ONLINE:
8bb78442 6477 case CPU_ONLINE_FROZEN:
1da177e4 6478 case CPU_DEAD:
8bb78442 6479 case CPU_DEAD_FROZEN:
1da177e4
LT
6480 /*
6481 * Fall through and re-initialise the domains.
6482 */
6483 break;
6484 default:
6485 return NOTIFY_DONE;
6486 }
6487
6488 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6489 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6490
6491 return NOTIFY_OK;
6492}
1da177e4
LT
6493
6494void __init sched_init_smp(void)
6495{
5c1e1767
NP
6496 cpumask_t non_isolated_cpus;
6497
5be9361c 6498 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6499 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6500 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6501 if (cpus_empty(non_isolated_cpus))
6502 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6503 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6504 /* XXX: Theoretical race here - CPU may be hotplugged now */
6505 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6506
6507 /* Move init over to a non-isolated CPU */
6508 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6509 BUG();
1da177e4
LT
6510}
6511#else
6512void __init sched_init_smp(void)
6513{
6514}
6515#endif /* CONFIG_SMP */
6516
6517int in_sched_functions(unsigned long addr)
6518{
6519 /* Linker adds these: start and end of __sched functions */
6520 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6521
1da177e4
LT
6522 return in_lock_functions(addr) ||
6523 (addr >= (unsigned long)__sched_text_start
6524 && addr < (unsigned long)__sched_text_end);
6525}
6526
6527void __init sched_init(void)
6528{
1da177e4 6529 int i, j, k;
476f3534 6530 int highest_cpu = 0;
1da177e4 6531
0a945022 6532 for_each_possible_cpu(i) {
70b97a7f
IM
6533 struct prio_array *array;
6534 struct rq *rq;
1da177e4
LT
6535
6536 rq = cpu_rq(i);
6537 spin_lock_init(&rq->lock);
fcb99371 6538 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6539 rq->nr_running = 0;
1da177e4
LT
6540 rq->active = rq->arrays;
6541 rq->expired = rq->arrays + 1;
6542 rq->best_expired_prio = MAX_PRIO;
6543
6544#ifdef CONFIG_SMP
41c7ce9a 6545 rq->sd = NULL;
7897986b
NP
6546 for (j = 1; j < 3; j++)
6547 rq->cpu_load[j] = 0;
1da177e4
LT
6548 rq->active_balance = 0;
6549 rq->push_cpu = 0;
0a2966b4 6550 rq->cpu = i;
1da177e4
LT
6551 rq->migration_thread = NULL;
6552 INIT_LIST_HEAD(&rq->migration_queue);
6553#endif
6554 atomic_set(&rq->nr_iowait, 0);
6555
6556 for (j = 0; j < 2; j++) {
6557 array = rq->arrays + j;
6558 for (k = 0; k < MAX_PRIO; k++) {
6559 INIT_LIST_HEAD(array->queue + k);
6560 __clear_bit(k, array->bitmap);
6561 }
6562 // delimiter for bitsearch
6563 __set_bit(MAX_PRIO, array->bitmap);
6564 }
476f3534 6565 highest_cpu = i;
1da177e4
LT
6566 }
6567
2dd73a4f 6568 set_load_weight(&init_task);
b50f60ce 6569
c9819f45 6570#ifdef CONFIG_SMP
476f3534 6571 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6572 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6573#endif
6574
b50f60ce
HC
6575#ifdef CONFIG_RT_MUTEXES
6576 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6577#endif
6578
1da177e4
LT
6579 /*
6580 * The boot idle thread does lazy MMU switching as well:
6581 */
6582 atomic_inc(&init_mm.mm_count);
6583 enter_lazy_tlb(&init_mm, current);
6584
6585 /*
6586 * Make us the idle thread. Technically, schedule() should not be
6587 * called from this thread, however somewhere below it might be,
6588 * but because we are the idle thread, we just pick up running again
6589 * when this runqueue becomes "idle".
6590 */
6591 init_idle(current, smp_processor_id());
6592}
6593
6594#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6595void __might_sleep(char *file, int line)
6596{
48f24c4d 6597#ifdef in_atomic
1da177e4
LT
6598 static unsigned long prev_jiffy; /* ratelimiting */
6599
6600 if ((in_atomic() || irqs_disabled()) &&
6601 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6602 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6603 return;
6604 prev_jiffy = jiffies;
91368d73 6605 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6606 " context at %s:%d\n", file, line);
6607 printk("in_atomic():%d, irqs_disabled():%d\n",
6608 in_atomic(), irqs_disabled());
a4c410f0 6609 debug_show_held_locks(current);
3117df04
IM
6610 if (irqs_disabled())
6611 print_irqtrace_events(current);
1da177e4
LT
6612 dump_stack();
6613 }
6614#endif
6615}
6616EXPORT_SYMBOL(__might_sleep);
6617#endif
6618
6619#ifdef CONFIG_MAGIC_SYSRQ
6620void normalize_rt_tasks(void)
6621{
70b97a7f 6622 struct prio_array *array;
a0f98a1c 6623 struct task_struct *g, *p;
1da177e4 6624 unsigned long flags;
70b97a7f 6625 struct rq *rq;
1da177e4
LT
6626
6627 read_lock_irq(&tasklist_lock);
a0f98a1c
IM
6628
6629 do_each_thread(g, p) {
1da177e4
LT
6630 if (!rt_task(p))
6631 continue;
6632
b29739f9
IM
6633 spin_lock_irqsave(&p->pi_lock, flags);
6634 rq = __task_rq_lock(p);
1da177e4
LT
6635
6636 array = p->array;
6637 if (array)
6638 deactivate_task(p, task_rq(p));
6639 __setscheduler(p, SCHED_NORMAL, 0);
6640 if (array) {
6641 __activate_task(p, task_rq(p));
6642 resched_task(rq->curr);
6643 }
6644
b29739f9
IM
6645 __task_rq_unlock(rq);
6646 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6647 } while_each_thread(g, p);
6648
1da177e4
LT
6649 read_unlock_irq(&tasklist_lock);
6650}
6651
6652#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6653
6654#ifdef CONFIG_IA64
6655/*
6656 * These functions are only useful for the IA64 MCA handling.
6657 *
6658 * They can only be called when the whole system has been
6659 * stopped - every CPU needs to be quiescent, and no scheduling
6660 * activity can take place. Using them for anything else would
6661 * be a serious bug, and as a result, they aren't even visible
6662 * under any other configuration.
6663 */
6664
6665/**
6666 * curr_task - return the current task for a given cpu.
6667 * @cpu: the processor in question.
6668 *
6669 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6670 */
36c8b586 6671struct task_struct *curr_task(int cpu)
1df5c10a
LT
6672{
6673 return cpu_curr(cpu);
6674}
6675
6676/**
6677 * set_curr_task - set the current task for a given cpu.
6678 * @cpu: the processor in question.
6679 * @p: the task pointer to set.
6680 *
6681 * Description: This function must only be used when non-maskable interrupts
6682 * are serviced on a separate stack. It allows the architecture to switch the
6683 * notion of the current task on a cpu in a non-blocking manner. This function
6684 * must be called with all CPU's synchronized, and interrupts disabled, the
6685 * and caller must save the original value of the current task (see
6686 * curr_task() above) and restore that value before reenabling interrupts and
6687 * re-starting the system.
6688 *
6689 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6690 */
36c8b586 6691void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6692{
6693 cpu_curr(cpu) = p;
6694}
6695
6696#endif