]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Clean up check_preempt_wakeup()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 817
ffda12a1
PZ
818/*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823unsigned int sysctl_sched_shares_thresh = 4;
824
e9e9250b
PZ
825/*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
6e275637 1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
7f1e2ca9 1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1129 HRTIMER_MODE_REL_PINNED, 0);
31656519 1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
5ed0cec0 1183 if (test_tsk_need_resched(p))
c24d20db
IM
1184 return;
1185
5ed0cec0 1186 set_tsk_need_resched(p);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
5ed0cec0 1242 set_tsk_need_resched(rq->idle);
06d8308c
TG
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
e9e9250b
PZ
1251static u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db
IM
1274{
1275 assert_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
6d6bc0ad 1282#endif /* CONFIG_SMP */
c24d20db 1283
45bf76df
IM
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST (~0UL)
1286#else
1287# define WMULT_CONST (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT 32
1291
194081eb
IM
1292/*
1293 * Shift right and round:
1294 */
cf2ab469 1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1296
a7be37ac
PZ
1297/*
1298 * delta *= weight / lw
1299 */
cb1c4fc9 1300static unsigned long
45bf76df
IM
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303{
1304 u64 tmp;
1305
7a232e03
LJ
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
45bf76df
IM
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
194081eb 1318 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1320 WMULT_SHIFT/2);
1321 else
cf2ab469 1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1323
ecf691da 1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1325}
1326
1091985b 1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1328{
1329 lw->weight += inc;
e89996ae 1330 lw->inv_weight = 0;
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1334{
1335 lw->weight -= dec;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
2dd73a4f
PW
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
cce7ade8
PZ
1348#define WEIGHT_IDLEPRIO 3
1349#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
dd41f596
IM
1362 */
1363static const int prio_to_weight[40] = {
254753dc
IM
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1372};
1373
5714d2de
IM
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
dd41f596 1381static const u32 prio_to_wmult[40] = {
254753dc
IM
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1390};
2dd73a4f 1391
dd41f596
IM
1392static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394/*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403};
1404
e1d1484f
PW
1405#ifdef CONFIG_SMP
1406static unsigned long
1407balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412static int
1413iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
e1d1484f 1416#endif
dd41f596 1417
ef12fefa
BR
1418/* Time spent by the tasks of the cpu accounting group executing in ... */
1419enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424};
1425
d842de87
SV
1426#ifdef CONFIG_CGROUP_CPUACCT
1427static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1428static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1432static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1434#endif
1435
18d95a28
PZ
1436static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437{
1438 update_load_add(&rq->load, load);
1439}
1440
1441static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_sub(&rq->load, load);
1444}
1445
7940ca36 1446#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1447typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1448
1449/*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
eb755805 1453static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
eb755805 1456 int ret;
c09595f6
PZ
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460down:
eb755805
PZ
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468up:
1469 continue;
1470 }
eb755805
PZ
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
eb755805 1479out_unlock:
c09595f6 1480 rcu_read_unlock();
eb755805
PZ
1481
1482 return ret;
c09595f6
PZ
1483}
1484
eb755805
PZ
1485static int tg_nop(struct task_group *tg, void *data)
1486{
1487 return 0;
c09595f6 1488}
eb755805
PZ
1489#endif
1490
1491#ifdef CONFIG_SMP
f5f08f39
PZ
1492/* Used instead of source_load when we know the type == 0 */
1493static unsigned long weighted_cpuload(const int cpu)
1494{
1495 return cpu_rq(cpu)->load.weight;
1496}
1497
1498/*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505static unsigned long source_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514}
1515
1516/*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520static unsigned long target_load(int cpu, int type)
1521{
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529}
1530
ae154be1
PZ
1531static struct sched_group *group_of(int cpu)
1532{
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539}
1540
1541static unsigned long power_of(int cpu)
1542{
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549}
1550
eb755805
PZ
1551static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553static unsigned long cpu_avg_load_per_task(int cpu)
1554{
1555 struct rq *rq = cpu_rq(cpu);
af6d596f 1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1557
4cd42620
SR
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1560 else
1561 rq->avg_load_per_task = 0;
eb755805
PZ
1562
1563 return rq->avg_load_per_task;
1564}
1565
1566#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1567
4a6cc4bd 1568static __read_mostly unsigned long *update_shares_data;
34d76c41 1569
c09595f6
PZ
1570static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572/*
1573 * Calculate and set the cpu's group shares.
1574 */
34d76c41
PZ
1575static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
4a6cc4bd 1578 unsigned long *usd_rq_weight)
18d95a28 1579{
34d76c41 1580 unsigned long shares, rq_weight;
a5004278 1581 int boost = 0;
c09595f6 1582
4a6cc4bd 1583 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
c8cba857 1588
c09595f6 1589 /*
a8af7246
PZ
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
c09595f6 1593 */
ec4e0e2f 1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1596
ffda12a1
PZ
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
c09595f6 1601
ffda12a1 1602 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
18d95a28 1608}
c09595f6
PZ
1609
1610/*
c8cba857
PZ
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
c09595f6 1614 */
eb755805 1615static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1616{
34d76c41 1617 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1618 unsigned long *usd_rq_weight;
eb755805 1619 struct sched_domain *sd = data;
34d76c41 1620 unsigned long flags;
c8cba857 1621 int i;
c09595f6 1622
34d76c41
PZ
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
4a6cc4bd 1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1630 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1631 usd_rq_weight[i] = weight;
34d76c41 1632
ec4e0e2f
KC
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
ec4e0e2f
KC
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
ec4e0e2f 1641 rq_weight += weight;
c8cba857 1642 shares += tg->cfs_rq[i]->shares;
c09595f6 1643 }
c09595f6 1644
c8cba857
PZ
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
c09595f6 1650
758b2cdc 1651 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1653
1654 local_irq_restore(flags);
eb755805
PZ
1655
1656 return 0;
c09595f6
PZ
1657}
1658
1659/*
c8cba857
PZ
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
c09595f6 1663 */
eb755805 1664static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1665{
c8cba857 1666 unsigned long load;
eb755805 1667 long cpu = (long)data;
c09595f6 1668
c8cba857
PZ
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
c09595f6 1676
c8cba857 1677 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1678
eb755805 1679 return 0;
c09595f6
PZ
1680}
1681
c8cba857 1682static void update_shares(struct sched_domain *sd)
4d8d595d 1683{
e7097159
PZ
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
2398f2c6
PZ
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
eb755805 1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1696 }
4d8d595d
PZ
1697}
1698
3e5459b4
PZ
1699static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700{
e7097159
PZ
1701 if (root_task_group_empty())
1702 return;
1703
3e5459b4
PZ
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707}
1708
eb755805 1709static void update_h_load(long cpu)
c09595f6 1710{
e7097159
PZ
1711 if (root_task_group_empty())
1712 return;
1713
eb755805 1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1715}
1716
c09595f6
PZ
1717#else
1718
c8cba857 1719static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1720{
1721}
1722
3e5459b4
PZ
1723static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724{
1725}
1726
18d95a28
PZ
1727#endif
1728
8f45e2b5
GH
1729#ifdef CONFIG_PREEMPT
1730
b78bb868
PZ
1731static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
70574a99 1733/*
8f45e2b5
GH
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
70574a99 1740 */
8f45e2b5
GH
1741static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745{
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750}
1751
1752#else
1753/*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764{
1765 int ret = 0;
1766
70574a99
AD
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777}
1778
8f45e2b5
GH
1779#endif /* CONFIG_PREEMPT */
1780
1781/*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793}
1794
70574a99
AD
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797{
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800}
18d95a28
PZ
1801#endif
1802
30432094 1803#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1804static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805{
30432094 1806#ifdef CONFIG_SMP
34e83e85
IM
1807 cfs_rq->shares = shares;
1808#endif
1809}
30432094 1810#endif
e7693a36 1811
dce48a84
TG
1812static void calc_load_account_active(struct rq *this_rq);
1813
cd29fe6f
PZ
1814static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1815{
1816 set_task_rq(p, cpu);
1817#ifdef CONFIG_SMP
1818 /*
1819 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1820 * successfuly executed on another CPU. We must ensure that updates of
1821 * per-task data have been completed by this moment.
1822 */
1823 smp_wmb();
1824 task_thread_info(p)->cpu = cpu;
1825#endif
1826}
1827
dd41f596 1828#include "sched_stats.h"
dd41f596 1829#include "sched_idletask.c"
5522d5d5
IM
1830#include "sched_fair.c"
1831#include "sched_rt.c"
dd41f596
IM
1832#ifdef CONFIG_SCHED_DEBUG
1833# include "sched_debug.c"
1834#endif
1835
1836#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1837#define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
dd41f596 1839
c09595f6 1840static void inc_nr_running(struct rq *rq)
9c217245
IM
1841{
1842 rq->nr_running++;
9c217245
IM
1843}
1844
c09595f6 1845static void dec_nr_running(struct rq *rq)
9c217245
IM
1846{
1847 rq->nr_running--;
9c217245
IM
1848}
1849
45bf76df
IM
1850static void set_load_weight(struct task_struct *p)
1851{
1852 if (task_has_rt_policy(p)) {
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1856 }
45bf76df 1857
dd41f596
IM
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
71f8bd46 1866
dd41f596
IM
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1869}
1870
2087a1ad
GH
1871static void update_avg(u64 *avg, u64 sample)
1872{
1873 s64 diff = sample - *avg;
1874 *avg += diff >> 3;
1875}
1876
8159f87e 1877static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1878{
831451ac
PZ
1879 if (wakeup)
1880 p->se.start_runtime = p->se.sum_exec_runtime;
1881
dd41f596 1882 sched_info_queued(p);
fd390f6a 1883 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1884 p->se.on_rq = 1;
71f8bd46
IM
1885}
1886
69be72c1 1887static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1888{
831451ac
PZ
1889 if (sleep) {
1890 if (p->se.last_wakeup) {
1891 update_avg(&p->se.avg_overlap,
1892 p->se.sum_exec_runtime - p->se.last_wakeup);
1893 p->se.last_wakeup = 0;
1894 } else {
1895 update_avg(&p->se.avg_wakeup,
1896 sysctl_sched_wakeup_granularity);
1897 }
2087a1ad
GH
1898 }
1899
46ac22ba 1900 sched_info_dequeued(p);
f02231e5 1901 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1902 p->se.on_rq = 0;
71f8bd46
IM
1903}
1904
14531189 1905/*
dd41f596 1906 * __normal_prio - return the priority that is based on the static prio
14531189 1907 */
14531189
IM
1908static inline int __normal_prio(struct task_struct *p)
1909{
dd41f596 1910 return p->static_prio;
14531189
IM
1911}
1912
b29739f9
IM
1913/*
1914 * Calculate the expected normal priority: i.e. priority
1915 * without taking RT-inheritance into account. Might be
1916 * boosted by interactivity modifiers. Changes upon fork,
1917 * setprio syscalls, and whenever the interactivity
1918 * estimator recalculates.
1919 */
36c8b586 1920static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1921{
1922 int prio;
1923
e05606d3 1924 if (task_has_rt_policy(p))
b29739f9
IM
1925 prio = MAX_RT_PRIO-1 - p->rt_priority;
1926 else
1927 prio = __normal_prio(p);
1928 return prio;
1929}
1930
1931/*
1932 * Calculate the current priority, i.e. the priority
1933 * taken into account by the scheduler. This value might
1934 * be boosted by RT tasks, or might be boosted by
1935 * interactivity modifiers. Will be RT if the task got
1936 * RT-boosted. If not then it returns p->normal_prio.
1937 */
36c8b586 1938static int effective_prio(struct task_struct *p)
b29739f9
IM
1939{
1940 p->normal_prio = normal_prio(p);
1941 /*
1942 * If we are RT tasks or we were boosted to RT priority,
1943 * keep the priority unchanged. Otherwise, update priority
1944 * to the normal priority:
1945 */
1946 if (!rt_prio(p->prio))
1947 return p->normal_prio;
1948 return p->prio;
1949}
1950
1da177e4 1951/*
dd41f596 1952 * activate_task - move a task to the runqueue.
1da177e4 1953 */
dd41f596 1954static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1955{
d9514f6c 1956 if (task_contributes_to_load(p))
dd41f596 1957 rq->nr_uninterruptible--;
1da177e4 1958
8159f87e 1959 enqueue_task(rq, p, wakeup);
c09595f6 1960 inc_nr_running(rq);
1da177e4
LT
1961}
1962
1da177e4
LT
1963/*
1964 * deactivate_task - remove a task from the runqueue.
1965 */
2e1cb74a 1966static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1967{
d9514f6c 1968 if (task_contributes_to_load(p))
dd41f596
IM
1969 rq->nr_uninterruptible++;
1970
69be72c1 1971 dequeue_task(rq, p, sleep);
c09595f6 1972 dec_nr_running(rq);
1da177e4
LT
1973}
1974
1da177e4
LT
1975/**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
36c8b586 1979inline int task_curr(const struct task_struct *p)
1da177e4
LT
1980{
1981 return cpu_curr(task_cpu(p)) == p;
1982}
1983
cb469845
SR
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987{
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994}
1995
b84ff7d6
MG
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 1998 * @p: thread created by kthread_create().
b84ff7d6
MG
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
055a0086 2020 update_rq_clock(rq);
b84ff7d6
MG
2021 set_task_cpu(p, cpu);
2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2023 p->rt.nr_cpus_allowed = 1;
2024 p->flags |= PF_THREAD_BOUND;
2025 spin_unlock_irqrestore(&rq->lock, flags);
2026}
2027EXPORT_SYMBOL(kthread_bind);
2028
1da177e4 2029#ifdef CONFIG_SMP
cc367732
IM
2030/*
2031 * Is this task likely cache-hot:
2032 */
e7693a36 2033static int
cc367732
IM
2034task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2035{
2036 s64 delta;
2037
f540a608
IM
2038 /*
2039 * Buddy candidates are cache hot:
2040 */
f685ceac 2041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2042 (&p->se == cfs_rq_of(&p->se)->next ||
2043 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2044 return 1;
2045
cc367732
IM
2046 if (p->sched_class != &fair_sched_class)
2047 return 0;
2048
6bc1665b
IM
2049 if (sysctl_sched_migration_cost == -1)
2050 return 1;
2051 if (sysctl_sched_migration_cost == 0)
2052 return 0;
2053
cc367732
IM
2054 delta = now - p->se.exec_start;
2055
2056 return delta < (s64)sysctl_sched_migration_cost;
2057}
2058
2059
dd41f596 2060void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2061{
dd41f596 2062 int old_cpu = task_cpu(p);
5afcdab7 2063 struct rq *old_rq = cpu_rq(old_cpu);
2830cf8c
SV
2064 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2065 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2066
de1d7286 2067 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2068
cc367732 2069 if (old_cpu != new_cpu) {
6c594c21
IM
2070 p->se.nr_migrations++;
2071#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2072 if (task_hot(p, old_rq->clock, NULL))
2073 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2074#endif
cdd6c482 2075 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2076 1, 1, NULL, 0);
6c594c21 2077 }
2830cf8c
SV
2078 p->se.vruntime -= old_cfsrq->min_vruntime -
2079 new_cfsrq->min_vruntime;
dd41f596
IM
2080
2081 __set_task_cpu(p, new_cpu);
c65cc870
IM
2082}
2083
70b97a7f 2084struct migration_req {
1da177e4 2085 struct list_head list;
1da177e4 2086
36c8b586 2087 struct task_struct *task;
1da177e4
LT
2088 int dest_cpu;
2089
1da177e4 2090 struct completion done;
70b97a7f 2091};
1da177e4
LT
2092
2093/*
2094 * The task's runqueue lock must be held.
2095 * Returns true if you have to wait for migration thread.
2096 */
36c8b586 2097static int
70b97a7f 2098migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2099{
70b97a7f 2100 struct rq *rq = task_rq(p);
1da177e4
LT
2101
2102 /*
2103 * If the task is not on a runqueue (and not running), then
2104 * it is sufficient to simply update the task's cpu field.
2105 */
dd41f596 2106 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2107 update_rq_clock(rq);
1da177e4
LT
2108 set_task_cpu(p, dest_cpu);
2109 return 0;
2110 }
2111
2112 init_completion(&req->done);
1da177e4
LT
2113 req->task = p;
2114 req->dest_cpu = dest_cpu;
2115 list_add(&req->list, &rq->migration_queue);
48f24c4d 2116
1da177e4
LT
2117 return 1;
2118}
2119
a26b89f0
MM
2120/*
2121 * wait_task_context_switch - wait for a thread to complete at least one
2122 * context switch.
2123 *
2124 * @p must not be current.
2125 */
2126void wait_task_context_switch(struct task_struct *p)
2127{
2128 unsigned long nvcsw, nivcsw, flags;
2129 int running;
2130 struct rq *rq;
2131
2132 nvcsw = p->nvcsw;
2133 nivcsw = p->nivcsw;
2134 for (;;) {
2135 /*
2136 * The runqueue is assigned before the actual context
2137 * switch. We need to take the runqueue lock.
2138 *
2139 * We could check initially without the lock but it is
2140 * very likely that we need to take the lock in every
2141 * iteration.
2142 */
2143 rq = task_rq_lock(p, &flags);
2144 running = task_running(rq, p);
2145 task_rq_unlock(rq, &flags);
2146
2147 if (likely(!running))
2148 break;
2149 /*
2150 * The switch count is incremented before the actual
2151 * context switch. We thus wait for two switches to be
2152 * sure at least one completed.
2153 */
2154 if ((p->nvcsw - nvcsw) > 1)
2155 break;
2156 if ((p->nivcsw - nivcsw) > 1)
2157 break;
2158
2159 cpu_relax();
2160 }
2161}
2162
1da177e4
LT
2163/*
2164 * wait_task_inactive - wait for a thread to unschedule.
2165 *
85ba2d86
RM
2166 * If @match_state is nonzero, it's the @p->state value just checked and
2167 * not expected to change. If it changes, i.e. @p might have woken up,
2168 * then return zero. When we succeed in waiting for @p to be off its CPU,
2169 * we return a positive number (its total switch count). If a second call
2170 * a short while later returns the same number, the caller can be sure that
2171 * @p has remained unscheduled the whole time.
2172 *
1da177e4
LT
2173 * The caller must ensure that the task *will* unschedule sometime soon,
2174 * else this function might spin for a *long* time. This function can't
2175 * be called with interrupts off, or it may introduce deadlock with
2176 * smp_call_function() if an IPI is sent by the same process we are
2177 * waiting to become inactive.
2178 */
85ba2d86 2179unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2180{
2181 unsigned long flags;
dd41f596 2182 int running, on_rq;
85ba2d86 2183 unsigned long ncsw;
70b97a7f 2184 struct rq *rq;
1da177e4 2185
3a5c359a
AK
2186 for (;;) {
2187 /*
2188 * We do the initial early heuristics without holding
2189 * any task-queue locks at all. We'll only try to get
2190 * the runqueue lock when things look like they will
2191 * work out!
2192 */
2193 rq = task_rq(p);
fa490cfd 2194
3a5c359a
AK
2195 /*
2196 * If the task is actively running on another CPU
2197 * still, just relax and busy-wait without holding
2198 * any locks.
2199 *
2200 * NOTE! Since we don't hold any locks, it's not
2201 * even sure that "rq" stays as the right runqueue!
2202 * But we don't care, since "task_running()" will
2203 * return false if the runqueue has changed and p
2204 * is actually now running somewhere else!
2205 */
85ba2d86
RM
2206 while (task_running(rq, p)) {
2207 if (match_state && unlikely(p->state != match_state))
2208 return 0;
3a5c359a 2209 cpu_relax();
85ba2d86 2210 }
fa490cfd 2211
3a5c359a
AK
2212 /*
2213 * Ok, time to look more closely! We need the rq
2214 * lock now, to be *sure*. If we're wrong, we'll
2215 * just go back and repeat.
2216 */
2217 rq = task_rq_lock(p, &flags);
0a16b607 2218 trace_sched_wait_task(rq, p);
3a5c359a
AK
2219 running = task_running(rq, p);
2220 on_rq = p->se.on_rq;
85ba2d86 2221 ncsw = 0;
f31e11d8 2222 if (!match_state || p->state == match_state)
93dcf55f 2223 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2224 task_rq_unlock(rq, &flags);
fa490cfd 2225
85ba2d86
RM
2226 /*
2227 * If it changed from the expected state, bail out now.
2228 */
2229 if (unlikely(!ncsw))
2230 break;
2231
3a5c359a
AK
2232 /*
2233 * Was it really running after all now that we
2234 * checked with the proper locks actually held?
2235 *
2236 * Oops. Go back and try again..
2237 */
2238 if (unlikely(running)) {
2239 cpu_relax();
2240 continue;
2241 }
fa490cfd 2242
3a5c359a
AK
2243 /*
2244 * It's not enough that it's not actively running,
2245 * it must be off the runqueue _entirely_, and not
2246 * preempted!
2247 *
80dd99b3 2248 * So if it was still runnable (but just not actively
3a5c359a
AK
2249 * running right now), it's preempted, and we should
2250 * yield - it could be a while.
2251 */
2252 if (unlikely(on_rq)) {
2253 schedule_timeout_uninterruptible(1);
2254 continue;
2255 }
fa490cfd 2256
3a5c359a
AK
2257 /*
2258 * Ahh, all good. It wasn't running, and it wasn't
2259 * runnable, which means that it will never become
2260 * running in the future either. We're all done!
2261 */
2262 break;
2263 }
85ba2d86
RM
2264
2265 return ncsw;
1da177e4
LT
2266}
2267
2268/***
2269 * kick_process - kick a running thread to enter/exit the kernel
2270 * @p: the to-be-kicked thread
2271 *
2272 * Cause a process which is running on another CPU to enter
2273 * kernel-mode, without any delay. (to get signals handled.)
2274 *
2275 * NOTE: this function doesnt have to take the runqueue lock,
2276 * because all it wants to ensure is that the remote task enters
2277 * the kernel. If the IPI races and the task has been migrated
2278 * to another CPU then no harm is done and the purpose has been
2279 * achieved as well.
2280 */
36c8b586 2281void kick_process(struct task_struct *p)
1da177e4
LT
2282{
2283 int cpu;
2284
2285 preempt_disable();
2286 cpu = task_cpu(p);
2287 if ((cpu != smp_processor_id()) && task_curr(p))
2288 smp_send_reschedule(cpu);
2289 preempt_enable();
2290}
b43e3521 2291EXPORT_SYMBOL_GPL(kick_process);
476d139c 2292#endif /* CONFIG_SMP */
1da177e4 2293
0793a61d
TG
2294/**
2295 * task_oncpu_function_call - call a function on the cpu on which a task runs
2296 * @p: the task to evaluate
2297 * @func: the function to be called
2298 * @info: the function call argument
2299 *
2300 * Calls the function @func when the task is currently running. This might
2301 * be on the current CPU, which just calls the function directly
2302 */
2303void task_oncpu_function_call(struct task_struct *p,
2304 void (*func) (void *info), void *info)
2305{
2306 int cpu;
2307
2308 preempt_disable();
2309 cpu = task_cpu(p);
2310 if (task_curr(p))
2311 smp_call_function_single(cpu, func, info, 1);
2312 preempt_enable();
2313}
2314
970b13ba
PZ
2315#ifdef CONFIG_SMP
2316static inline
2317int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2318{
2319 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2320}
2321#endif
2322
1da177e4
LT
2323/***
2324 * try_to_wake_up - wake up a thread
2325 * @p: the to-be-woken-up thread
2326 * @state: the mask of task states that can be woken
2327 * @sync: do a synchronous wakeup?
2328 *
2329 * Put it on the run-queue if it's not already there. The "current"
2330 * thread is always on the run-queue (except when the actual
2331 * re-schedule is in progress), and as such you're allowed to do
2332 * the simpler "current->state = TASK_RUNNING" to mark yourself
2333 * runnable without the overhead of this.
2334 *
2335 * returns failure only if the task is already active.
2336 */
7d478721
PZ
2337static int try_to_wake_up(struct task_struct *p, unsigned int state,
2338 int wake_flags)
1da177e4 2339{
cc367732 2340 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2341 unsigned long flags;
f5dc3753 2342 struct rq *rq, *orig_rq;
1da177e4 2343
b85d0667 2344 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2345 wake_flags &= ~WF_SYNC;
2398f2c6 2346
e9c84311 2347 this_cpu = get_cpu();
2398f2c6 2348
04e2f174 2349 smp_wmb();
f5dc3753 2350 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2351 update_rq_clock(rq);
e9c84311 2352 if (!(p->state & state))
1da177e4
LT
2353 goto out;
2354
dd41f596 2355 if (p->se.on_rq)
1da177e4
LT
2356 goto out_running;
2357
2358 cpu = task_cpu(p);
cc367732 2359 orig_cpu = cpu;
1da177e4
LT
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
e9c84311
PZ
2365 /*
2366 * In order to handle concurrent wakeups and release the rq->lock
2367 * we put the task in TASK_WAKING state.
eb24073b
IM
2368 *
2369 * First fix up the nr_uninterruptible count:
e9c84311 2370 */
eb24073b
IM
2371 if (task_contributes_to_load(p))
2372 rq->nr_uninterruptible--;
e9c84311 2373 p->state = TASK_WAKING;
ab19cb23 2374 __task_rq_unlock(rq);
e9c84311 2375
970b13ba 2376 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2377 if (cpu != orig_cpu)
5d2f5a61 2378 set_task_cpu(p, cpu);
ab19cb23
PZ
2379
2380 rq = __task_rq_lock(p);
2381 update_rq_clock(rq);
f5dc3753 2382
e9c84311
PZ
2383 WARN_ON(p->state != TASK_WAKING);
2384 cpu = task_cpu(p);
1da177e4 2385
e7693a36
GH
2386#ifdef CONFIG_SCHEDSTATS
2387 schedstat_inc(rq, ttwu_count);
2388 if (cpu == this_cpu)
2389 schedstat_inc(rq, ttwu_local);
2390 else {
2391 struct sched_domain *sd;
2392 for_each_domain(this_cpu, sd) {
758b2cdc 2393 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2394 schedstat_inc(sd, ttwu_wake_remote);
2395 break;
2396 }
2397 }
2398 }
6d6bc0ad 2399#endif /* CONFIG_SCHEDSTATS */
e7693a36 2400
1da177e4
LT
2401out_activate:
2402#endif /* CONFIG_SMP */
cc367732 2403 schedstat_inc(p, se.nr_wakeups);
7d478721 2404 if (wake_flags & WF_SYNC)
cc367732
IM
2405 schedstat_inc(p, se.nr_wakeups_sync);
2406 if (orig_cpu != cpu)
2407 schedstat_inc(p, se.nr_wakeups_migrate);
2408 if (cpu == this_cpu)
2409 schedstat_inc(p, se.nr_wakeups_local);
2410 else
2411 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2412 activate_task(rq, p, 1);
1da177e4
LT
2413 success = 1;
2414
831451ac
PZ
2415 /*
2416 * Only attribute actual wakeups done by this task.
2417 */
2418 if (!in_interrupt()) {
2419 struct sched_entity *se = &current->se;
2420 u64 sample = se->sum_exec_runtime;
2421
2422 if (se->last_wakeup)
2423 sample -= se->last_wakeup;
2424 else
2425 sample -= se->start_runtime;
2426 update_avg(&se->avg_wakeup, sample);
2427
2428 se->last_wakeup = se->sum_exec_runtime;
2429 }
2430
1da177e4 2431out_running:
468a15bb 2432 trace_sched_wakeup(rq, p, success);
7d478721 2433 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2434
1da177e4 2435 p->state = TASK_RUNNING;
9a897c5a
SR
2436#ifdef CONFIG_SMP
2437 if (p->sched_class->task_wake_up)
2438 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2439
2440 if (unlikely(rq->idle_stamp)) {
2441 u64 delta = rq->clock - rq->idle_stamp;
2442 u64 max = 2*sysctl_sched_migration_cost;
2443
2444 if (delta > max)
2445 rq->avg_idle = max;
2446 else
2447 update_avg(&rq->avg_idle, delta);
2448 rq->idle_stamp = 0;
2449 }
9a897c5a 2450#endif
1da177e4
LT
2451out:
2452 task_rq_unlock(rq, &flags);
e9c84311 2453 put_cpu();
1da177e4
LT
2454
2455 return success;
2456}
2457
50fa610a
DH
2458/**
2459 * wake_up_process - Wake up a specific process
2460 * @p: The process to be woken up.
2461 *
2462 * Attempt to wake up the nominated process and move it to the set of runnable
2463 * processes. Returns 1 if the process was woken up, 0 if it was already
2464 * running.
2465 *
2466 * It may be assumed that this function implies a write memory barrier before
2467 * changing the task state if and only if any tasks are woken up.
2468 */
7ad5b3a5 2469int wake_up_process(struct task_struct *p)
1da177e4 2470{
d9514f6c 2471 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2472}
1da177e4
LT
2473EXPORT_SYMBOL(wake_up_process);
2474
7ad5b3a5 2475int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2476{
2477 return try_to_wake_up(p, state, 0);
2478}
2479
1da177e4
LT
2480/*
2481 * Perform scheduler related setup for a newly forked process p.
2482 * p is forked by current.
dd41f596
IM
2483 *
2484 * __sched_fork() is basic setup used by init_idle() too:
2485 */
2486static void __sched_fork(struct task_struct *p)
2487{
dd41f596
IM
2488 p->se.exec_start = 0;
2489 p->se.sum_exec_runtime = 0;
f6cf891c 2490 p->se.prev_sum_exec_runtime = 0;
6c594c21 2491 p->se.nr_migrations = 0;
4ae7d5ce
IM
2492 p->se.last_wakeup = 0;
2493 p->se.avg_overlap = 0;
831451ac
PZ
2494 p->se.start_runtime = 0;
2495 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2496 p->se.avg_running = 0;
6cfb0d5d
IM
2497
2498#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2499 p->se.wait_start = 0;
2500 p->se.wait_max = 0;
2501 p->se.wait_count = 0;
2502 p->se.wait_sum = 0;
2503
2504 p->se.sleep_start = 0;
2505 p->se.sleep_max = 0;
2506 p->se.sum_sleep_runtime = 0;
2507
2508 p->se.block_start = 0;
2509 p->se.block_max = 0;
2510 p->se.exec_max = 0;
2511 p->se.slice_max = 0;
2512
2513 p->se.nr_migrations_cold = 0;
2514 p->se.nr_failed_migrations_affine = 0;
2515 p->se.nr_failed_migrations_running = 0;
2516 p->se.nr_failed_migrations_hot = 0;
2517 p->se.nr_forced_migrations = 0;
2518 p->se.nr_forced2_migrations = 0;
2519
2520 p->se.nr_wakeups = 0;
2521 p->se.nr_wakeups_sync = 0;
2522 p->se.nr_wakeups_migrate = 0;
2523 p->se.nr_wakeups_local = 0;
2524 p->se.nr_wakeups_remote = 0;
2525 p->se.nr_wakeups_affine = 0;
2526 p->se.nr_wakeups_affine_attempts = 0;
2527 p->se.nr_wakeups_passive = 0;
2528 p->se.nr_wakeups_idle = 0;
2529
6cfb0d5d 2530#endif
476d139c 2531
fa717060 2532 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2533 p->se.on_rq = 0;
4a55bd5e 2534 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2535
e107be36
AK
2536#ifdef CONFIG_PREEMPT_NOTIFIERS
2537 INIT_HLIST_HEAD(&p->preempt_notifiers);
2538#endif
2539
1da177e4
LT
2540 /*
2541 * We mark the process as running here, but have not actually
2542 * inserted it onto the runqueue yet. This guarantees that
2543 * nobody will actually run it, and a signal or other external
2544 * event cannot wake it up and insert it on the runqueue either.
2545 */
2546 p->state = TASK_RUNNING;
dd41f596
IM
2547}
2548
2549/*
2550 * fork()/clone()-time setup:
2551 */
2552void sched_fork(struct task_struct *p, int clone_flags)
2553{
2554 int cpu = get_cpu();
2555
2556 __sched_fork(p);
2557
b9dc29e7
MG
2558 /*
2559 * Revert to default priority/policy on fork if requested.
2560 */
2561 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2562 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2563 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2564 p->normal_prio = p->static_prio;
2565 }
b9dc29e7 2566
6c697bdf
MG
2567 if (PRIO_TO_NICE(p->static_prio) < 0) {
2568 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2569 p->normal_prio = p->static_prio;
6c697bdf
MG
2570 set_load_weight(p);
2571 }
2572
b9dc29e7
MG
2573 /*
2574 * We don't need the reset flag anymore after the fork. It has
2575 * fulfilled its duty:
2576 */
2577 p->sched_reset_on_fork = 0;
2578 }
ca94c442 2579
f83f9ac2
PW
2580 /*
2581 * Make sure we do not leak PI boosting priority to the child.
2582 */
2583 p->prio = current->normal_prio;
2584
2ddbf952
HS
2585 if (!rt_prio(p->prio))
2586 p->sched_class = &fair_sched_class;
b29739f9 2587
cd29fe6f
PZ
2588 if (p->sched_class->task_fork)
2589 p->sched_class->task_fork(p);
2590
5f3edc1b 2591#ifdef CONFIG_SMP
970b13ba 2592 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2593#endif
2594 set_task_cpu(p, cpu);
2595
52f17b6c 2596#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2597 if (likely(sched_info_on()))
52f17b6c 2598 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2599#endif
d6077cb8 2600#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2601 p->oncpu = 0;
2602#endif
1da177e4 2603#ifdef CONFIG_PREEMPT
4866cde0 2604 /* Want to start with kernel preemption disabled. */
a1261f54 2605 task_thread_info(p)->preempt_count = 1;
1da177e4 2606#endif
917b627d
GH
2607 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2608
476d139c 2609 put_cpu();
1da177e4
LT
2610}
2611
2612/*
2613 * wake_up_new_task - wake up a newly created task for the first time.
2614 *
2615 * This function will do some initial scheduler statistics housekeeping
2616 * that must be done for every newly created context, then puts the task
2617 * on the runqueue and wakes it.
2618 */
7ad5b3a5 2619void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2620{
2621 unsigned long flags;
dd41f596 2622 struct rq *rq;
1da177e4
LT
2623
2624 rq = task_rq_lock(p, &flags);
147cbb4b 2625 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2626 update_rq_clock(rq);
cd29fe6f 2627 activate_task(rq, p, 0);
c71dd42d 2628 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2629 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2630#ifdef CONFIG_SMP
2631 if (p->sched_class->task_wake_up)
2632 p->sched_class->task_wake_up(rq, p);
2633#endif
dd41f596 2634 task_rq_unlock(rq, &flags);
1da177e4
LT
2635}
2636
e107be36
AK
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638
2639/**
80dd99b3 2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2641 * @notifier: notifier struct to register
e107be36
AK
2642 */
2643void preempt_notifier_register(struct preempt_notifier *notifier)
2644{
2645 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646}
2647EXPORT_SYMBOL_GPL(preempt_notifier_register);
2648
2649/**
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2651 * @notifier: notifier struct to unregister
e107be36
AK
2652 *
2653 * This is safe to call from within a preemption notifier.
2654 */
2655void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656{
2657 hlist_del(&notifier->link);
2658}
2659EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660
2661static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662{
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2668}
2669
2670static void
2671fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673{
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2676
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_out(notifier, next);
2679}
2680
6d6bc0ad 2681#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2682
2683static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2684{
2685}
2686
2687static void
2688fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690{
2691}
2692
6d6bc0ad 2693#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2694
4866cde0
NP
2695/**
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
421cee29 2698 * @prev: the current task that is being switched out
4866cde0
NP
2699 * @next: the task we are going to switch to.
2700 *
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2704 *
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2707 */
e107be36
AK
2708static inline void
2709prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710 struct task_struct *next)
4866cde0 2711{
e107be36 2712 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2713 prepare_lock_switch(rq, next);
2714 prepare_arch_switch(next);
2715}
2716
1da177e4
LT
2717/**
2718 * finish_task_switch - clean up after a task-switch
344babaa 2719 * @rq: runqueue associated with task-switch
1da177e4
LT
2720 * @prev: the thread we just switched away from.
2721 *
4866cde0
NP
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2726 *
2727 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2728 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2731 */
a9957449 2732static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2733 __releases(rq->lock)
2734{
1da177e4 2735 struct mm_struct *mm = rq->prev_mm;
55a101f8 2736 long prev_state;
1da177e4
LT
2737
2738 rq->prev_mm = NULL;
2739
2740 /*
2741 * A task struct has one reference for the use as "current".
c394cc9f 2742 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2743 * schedule one last time. The schedule call will never return, and
2744 * the scheduled task must drop that reference.
c394cc9f 2745 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2746 * still held, otherwise prev could be scheduled on another cpu, die
2747 * there before we look at prev->state, and then the reference would
2748 * be dropped twice.
2749 * Manfred Spraul <manfred@colorfullife.com>
2750 */
55a101f8 2751 prev_state = prev->state;
4866cde0 2752 finish_arch_switch(prev);
cdd6c482 2753 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2754 finish_lock_switch(rq, prev);
e8fa1362 2755
e107be36 2756 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2757 if (mm)
2758 mmdrop(mm);
c394cc9f 2759 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
9761eea8 2763 */
c6fd91f0 2764 kprobe_flush_task(prev);
1da177e4 2765 put_task_struct(prev);
c6fd91f0 2766 }
1da177e4
LT
2767}
2768
3f029d3c
GH
2769#ifdef CONFIG_SMP
2770
2771/* assumes rq->lock is held */
2772static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773{
2774 if (prev->sched_class->pre_schedule)
2775 prev->sched_class->pre_schedule(rq, prev);
2776}
2777
2778/* rq->lock is NOT held, but preemption is disabled */
2779static inline void post_schedule(struct rq *rq)
2780{
2781 if (rq->post_schedule) {
2782 unsigned long flags;
2783
2784 spin_lock_irqsave(&rq->lock, flags);
2785 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq);
2787 spin_unlock_irqrestore(&rq->lock, flags);
2788
2789 rq->post_schedule = 0;
2790 }
2791}
2792
2793#else
da19ab51 2794
3f029d3c
GH
2795static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796{
2797}
2798
2799static inline void post_schedule(struct rq *rq)
2800{
1da177e4
LT
2801}
2802
3f029d3c
GH
2803#endif
2804
1da177e4
LT
2805/**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
36c8b586 2809asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2810 __releases(rq->lock)
2811{
70b97a7f
IM
2812 struct rq *rq = this_rq();
2813
4866cde0 2814 finish_task_switch(rq, prev);
da19ab51 2815
3f029d3c
GH
2816 /*
2817 * FIXME: do we need to worry about rq being invalidated by the
2818 * task_switch?
2819 */
2820 post_schedule(rq);
70b97a7f 2821
4866cde0
NP
2822#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2824 preempt_enable();
2825#endif
1da177e4 2826 if (current->set_child_tid)
b488893a 2827 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2828}
2829
2830/*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
dd41f596 2834static inline void
70b97a7f 2835context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2836 struct task_struct *next)
1da177e4 2837{
dd41f596 2838 struct mm_struct *mm, *oldmm;
1da177e4 2839
e107be36 2840 prepare_task_switch(rq, prev, next);
0a16b607 2841 trace_sched_switch(rq, prev, next);
dd41f596
IM
2842 mm = next->mm;
2843 oldmm = prev->active_mm;
9226d125
ZA
2844 /*
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2847 * one hypercall.
2848 */
224101ed 2849 arch_start_context_switch(prev);
9226d125 2850
710390d9 2851 if (likely(!mm)) {
1da177e4
LT
2852 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next);
2855 } else
2856 switch_mm(oldmm, mm, next);
2857
710390d9 2858 if (likely(!prev->mm)) {
1da177e4 2859 prev->active_mm = NULL;
1da177e4
LT
2860 rq->prev_mm = oldmm;
2861 }
3a5f5e48
IM
2862 /*
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2867 */
2868#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2870#endif
1da177e4
LT
2871
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev, next, prev);
2874
dd41f596
IM
2875 barrier();
2876 /*
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2880 */
2881 finish_task_switch(this_rq(), prev);
1da177e4
LT
2882}
2883
2884/*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891unsigned long nr_running(void)
2892{
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
2899}
2900
2901unsigned long nr_uninterruptible(void)
2902{
2903 unsigned long i, sum = 0;
2904
0a945022 2905 for_each_possible_cpu(i)
1da177e4
LT
2906 sum += cpu_rq(i)->nr_uninterruptible;
2907
2908 /*
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
2911 */
2912 if (unlikely((long)sum < 0))
2913 sum = 0;
2914
2915 return sum;
2916}
2917
2918unsigned long long nr_context_switches(void)
2919{
cc94abfc
SR
2920 int i;
2921 unsigned long long sum = 0;
1da177e4 2922
0a945022 2923 for_each_possible_cpu(i)
1da177e4
LT
2924 sum += cpu_rq(i)->nr_switches;
2925
2926 return sum;
2927}
2928
2929unsigned long nr_iowait(void)
2930{
2931 unsigned long i, sum = 0;
2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4
LT
2934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935
2936 return sum;
2937}
2938
69d25870
AV
2939unsigned long nr_iowait_cpu(void)
2940{
2941 struct rq *this = this_rq();
2942 return atomic_read(&this->nr_iowait);
2943}
2944
2945unsigned long this_cpu_load(void)
2946{
2947 struct rq *this = this_rq();
2948 return this->cpu_load[0];
2949}
2950
2951
dce48a84
TG
2952/* Variables and functions for calc_load */
2953static atomic_long_t calc_load_tasks;
2954static unsigned long calc_load_update;
2955unsigned long avenrun[3];
2956EXPORT_SYMBOL(avenrun);
2957
2d02494f
TG
2958/**
2959 * get_avenrun - get the load average array
2960 * @loads: pointer to dest load array
2961 * @offset: offset to add
2962 * @shift: shift count to shift the result left
2963 *
2964 * These values are estimates at best, so no need for locking.
2965 */
2966void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2967{
2968 loads[0] = (avenrun[0] + offset) << shift;
2969 loads[1] = (avenrun[1] + offset) << shift;
2970 loads[2] = (avenrun[2] + offset) << shift;
2971}
2972
dce48a84
TG
2973static unsigned long
2974calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2975{
dce48a84
TG
2976 load *= exp;
2977 load += active * (FIXED_1 - exp);
2978 return load >> FSHIFT;
2979}
db1b1fef 2980
dce48a84
TG
2981/*
2982 * calc_load - update the avenrun load estimates 10 ticks after the
2983 * CPUs have updated calc_load_tasks.
2984 */
2985void calc_global_load(void)
2986{
2987 unsigned long upd = calc_load_update + 10;
2988 long active;
2989
2990 if (time_before(jiffies, upd))
2991 return;
db1b1fef 2992
dce48a84
TG
2993 active = atomic_long_read(&calc_load_tasks);
2994 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2995
dce48a84
TG
2996 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2997 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2998 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2999
3000 calc_load_update += LOAD_FREQ;
3001}
3002
3003/*
3004 * Either called from update_cpu_load() or from a cpu going idle
3005 */
3006static void calc_load_account_active(struct rq *this_rq)
3007{
3008 long nr_active, delta;
3009
3010 nr_active = this_rq->nr_running;
3011 nr_active += (long) this_rq->nr_uninterruptible;
3012
3013 if (nr_active != this_rq->calc_load_active) {
3014 delta = nr_active - this_rq->calc_load_active;
3015 this_rq->calc_load_active = nr_active;
3016 atomic_long_add(delta, &calc_load_tasks);
3017 }
db1b1fef
JS
3018}
3019
48f24c4d 3020/*
dd41f596
IM
3021 * Update rq->cpu_load[] statistics. This function is usually called every
3022 * scheduler tick (TICK_NSEC).
48f24c4d 3023 */
dd41f596 3024static void update_cpu_load(struct rq *this_rq)
48f24c4d 3025{
495eca49 3026 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3027 int i, scale;
3028
3029 this_rq->nr_load_updates++;
dd41f596
IM
3030
3031 /* Update our load: */
3032 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3033 unsigned long old_load, new_load;
3034
3035 /* scale is effectively 1 << i now, and >> i divides by scale */
3036
3037 old_load = this_rq->cpu_load[i];
3038 new_load = this_load;
a25707f3
IM
3039 /*
3040 * Round up the averaging division if load is increasing. This
3041 * prevents us from getting stuck on 9 if the load is 10, for
3042 * example.
3043 */
3044 if (new_load > old_load)
3045 new_load += scale-1;
dd41f596
IM
3046 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3047 }
dce48a84
TG
3048
3049 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3050 this_rq->calc_load_update += LOAD_FREQ;
3051 calc_load_account_active(this_rq);
3052 }
48f24c4d
IM
3053}
3054
dd41f596
IM
3055#ifdef CONFIG_SMP
3056
1da177e4
LT
3057/*
3058 * double_rq_lock - safely lock two runqueues
3059 *
3060 * Note this does not disable interrupts like task_rq_lock,
3061 * you need to do so manually before calling.
3062 */
70b97a7f 3063static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3064 __acquires(rq1->lock)
3065 __acquires(rq2->lock)
3066{
054b9108 3067 BUG_ON(!irqs_disabled());
1da177e4
LT
3068 if (rq1 == rq2) {
3069 spin_lock(&rq1->lock);
3070 __acquire(rq2->lock); /* Fake it out ;) */
3071 } else {
c96d145e 3072 if (rq1 < rq2) {
1da177e4 3073 spin_lock(&rq1->lock);
5e710e37 3074 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3075 } else {
3076 spin_lock(&rq2->lock);
5e710e37 3077 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3078 }
3079 }
6e82a3be
IM
3080 update_rq_clock(rq1);
3081 update_rq_clock(rq2);
1da177e4
LT
3082}
3083
3084/*
3085 * double_rq_unlock - safely unlock two runqueues
3086 *
3087 * Note this does not restore interrupts like task_rq_unlock,
3088 * you need to do so manually after calling.
3089 */
70b97a7f 3090static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3091 __releases(rq1->lock)
3092 __releases(rq2->lock)
3093{
3094 spin_unlock(&rq1->lock);
3095 if (rq1 != rq2)
3096 spin_unlock(&rq2->lock);
3097 else
3098 __release(rq2->lock);
3099}
3100
1da177e4
LT
3101/*
3102 * If dest_cpu is allowed for this process, migrate the task to it.
3103 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3104 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3105 * the cpu_allowed mask is restored.
3106 */
36c8b586 3107static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3108{
70b97a7f 3109 struct migration_req req;
1da177e4 3110 unsigned long flags;
70b97a7f 3111 struct rq *rq;
1da177e4
LT
3112
3113 rq = task_rq_lock(p, &flags);
96f874e2 3114 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3115 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3116 goto out;
3117
3118 /* force the process onto the specified CPU */
3119 if (migrate_task(p, dest_cpu, &req)) {
3120 /* Need to wait for migration thread (might exit: take ref). */
3121 struct task_struct *mt = rq->migration_thread;
36c8b586 3122
1da177e4
LT
3123 get_task_struct(mt);
3124 task_rq_unlock(rq, &flags);
3125 wake_up_process(mt);
3126 put_task_struct(mt);
3127 wait_for_completion(&req.done);
36c8b586 3128
1da177e4
LT
3129 return;
3130 }
3131out:
3132 task_rq_unlock(rq, &flags);
3133}
3134
3135/*
476d139c
NP
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3138 */
3139void sched_exec(void)
3140{
1da177e4 3141 int new_cpu, this_cpu = get_cpu();
970b13ba 3142 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3143 put_cpu();
476d139c
NP
3144 if (new_cpu != this_cpu)
3145 sched_migrate_task(current, new_cpu);
1da177e4
LT
3146}
3147
3148/*
3149 * pull_task - move a task from a remote runqueue to the local runqueue.
3150 * Both runqueues must be locked.
3151 */
dd41f596
IM
3152static void pull_task(struct rq *src_rq, struct task_struct *p,
3153 struct rq *this_rq, int this_cpu)
1da177e4 3154{
2e1cb74a 3155 deactivate_task(src_rq, p, 0);
1da177e4 3156 set_task_cpu(p, this_cpu);
dd41f596 3157 activate_task(this_rq, p, 0);
1da177e4
LT
3158 /*
3159 * Note that idle threads have a prio of MAX_PRIO, for this test
3160 * to be always true for them.
3161 */
15afe09b 3162 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3163}
3164
3165/*
3166 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3167 */
858119e1 3168static
70b97a7f 3169int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3170 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3171 int *all_pinned)
1da177e4 3172{
708dc512 3173 int tsk_cache_hot = 0;
1da177e4
LT
3174 /*
3175 * We do not migrate tasks that are:
3176 * 1) running (obviously), or
3177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3178 * 3) are cache-hot on their current CPU.
3179 */
96f874e2 3180 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3181 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3182 return 0;
cc367732 3183 }
81026794
NP
3184 *all_pinned = 0;
3185
cc367732
IM
3186 if (task_running(rq, p)) {
3187 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3188 return 0;
cc367732 3189 }
1da177e4 3190
da84d961
IM
3191 /*
3192 * Aggressive migration if:
3193 * 1) task is cache cold, or
3194 * 2) too many balance attempts have failed.
3195 */
3196
708dc512
LH
3197 tsk_cache_hot = task_hot(p, rq->clock, sd);
3198 if (!tsk_cache_hot ||
3199 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3200#ifdef CONFIG_SCHEDSTATS
708dc512 3201 if (tsk_cache_hot) {
da84d961 3202 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3203 schedstat_inc(p, se.nr_forced_migrations);
3204 }
da84d961
IM
3205#endif
3206 return 1;
3207 }
3208
708dc512 3209 if (tsk_cache_hot) {
cc367732 3210 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3211 return 0;
cc367732 3212 }
1da177e4
LT
3213 return 1;
3214}
3215
e1d1484f
PW
3216static unsigned long
3217balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3218 unsigned long max_load_move, struct sched_domain *sd,
3219 enum cpu_idle_type idle, int *all_pinned,
3220 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3221{
051c6764 3222 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3223 struct task_struct *p;
3224 long rem_load_move = max_load_move;
1da177e4 3225
e1d1484f 3226 if (max_load_move == 0)
1da177e4
LT
3227 goto out;
3228
81026794
NP
3229 pinned = 1;
3230
1da177e4 3231 /*
dd41f596 3232 * Start the load-balancing iterator:
1da177e4 3233 */
dd41f596
IM
3234 p = iterator->start(iterator->arg);
3235next:
b82d9fdd 3236 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3237 goto out;
051c6764
PZ
3238
3239 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3240 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3241 p = iterator->next(iterator->arg);
3242 goto next;
1da177e4
LT
3243 }
3244
dd41f596 3245 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3246 pulled++;
dd41f596 3247 rem_load_move -= p->se.load.weight;
1da177e4 3248
7e96fa58
GH
3249#ifdef CONFIG_PREEMPT
3250 /*
3251 * NEWIDLE balancing is a source of latency, so preemptible kernels
3252 * will stop after the first task is pulled to minimize the critical
3253 * section.
3254 */
3255 if (idle == CPU_NEWLY_IDLE)
3256 goto out;
3257#endif
3258
2dd73a4f 3259 /*
b82d9fdd 3260 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3261 */
e1d1484f 3262 if (rem_load_move > 0) {
a4ac01c3
PW
3263 if (p->prio < *this_best_prio)
3264 *this_best_prio = p->prio;
dd41f596
IM
3265 p = iterator->next(iterator->arg);
3266 goto next;
1da177e4
LT
3267 }
3268out:
3269 /*
e1d1484f 3270 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3271 * so we can safely collect pull_task() stats here rather than
3272 * inside pull_task().
3273 */
3274 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3275
3276 if (all_pinned)
3277 *all_pinned = pinned;
e1d1484f
PW
3278
3279 return max_load_move - rem_load_move;
1da177e4
LT
3280}
3281
dd41f596 3282/*
43010659
PW
3283 * move_tasks tries to move up to max_load_move weighted load from busiest to
3284 * this_rq, as part of a balancing operation within domain "sd".
3285 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3286 *
3287 * Called with both runqueues locked.
3288 */
3289static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3290 unsigned long max_load_move,
dd41f596
IM
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 int *all_pinned)
3293{
5522d5d5 3294 const struct sched_class *class = sched_class_highest;
43010659 3295 unsigned long total_load_moved = 0;
a4ac01c3 3296 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3297
3298 do {
43010659
PW
3299 total_load_moved +=
3300 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3301 max_load_move - total_load_moved,
a4ac01c3 3302 sd, idle, all_pinned, &this_best_prio);
dd41f596 3303 class = class->next;
c4acb2c0 3304
7e96fa58
GH
3305#ifdef CONFIG_PREEMPT
3306 /*
3307 * NEWIDLE balancing is a source of latency, so preemptible
3308 * kernels will stop after the first task is pulled to minimize
3309 * the critical section.
3310 */
c4acb2c0
GH
3311 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3312 break;
7e96fa58 3313#endif
43010659 3314 } while (class && max_load_move > total_load_moved);
dd41f596 3315
43010659
PW
3316 return total_load_moved > 0;
3317}
3318
e1d1484f
PW
3319static int
3320iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3321 struct sched_domain *sd, enum cpu_idle_type idle,
3322 struct rq_iterator *iterator)
3323{
3324 struct task_struct *p = iterator->start(iterator->arg);
3325 int pinned = 0;
3326
3327 while (p) {
3328 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3329 pull_task(busiest, p, this_rq, this_cpu);
3330 /*
3331 * Right now, this is only the second place pull_task()
3332 * is called, so we can safely collect pull_task()
3333 * stats here rather than inside pull_task().
3334 */
3335 schedstat_inc(sd, lb_gained[idle]);
3336
3337 return 1;
3338 }
3339 p = iterator->next(iterator->arg);
3340 }
3341
3342 return 0;
3343}
3344
43010659
PW
3345/*
3346 * move_one_task tries to move exactly one task from busiest to this_rq, as
3347 * part of active balancing operations within "domain".
3348 * Returns 1 if successful and 0 otherwise.
3349 *
3350 * Called with both runqueues locked.
3351 */
3352static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3353 struct sched_domain *sd, enum cpu_idle_type idle)
3354{
5522d5d5 3355 const struct sched_class *class;
43010659 3356
cde7e5ca 3357 for_each_class(class) {
e1d1484f 3358 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3359 return 1;
cde7e5ca 3360 }
43010659
PW
3361
3362 return 0;
dd41f596 3363}
67bb6c03 3364/********** Helpers for find_busiest_group ************************/
1da177e4 3365/*
222d656d
GS
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing.
1da177e4 3368 */
222d656d
GS
3369struct sd_lb_stats {
3370 struct sched_group *busiest; /* Busiest group in this sd */
3371 struct sched_group *this; /* Local group in this sd */
3372 unsigned long total_load; /* Total load of all groups in sd */
3373 unsigned long total_pwr; /* Total power of all groups in sd */
3374 unsigned long avg_load; /* Average load across all groups in sd */
3375
3376 /** Statistics of this group */
3377 unsigned long this_load;
3378 unsigned long this_load_per_task;
3379 unsigned long this_nr_running;
3380
3381 /* Statistics of the busiest group */
3382 unsigned long max_load;
3383 unsigned long busiest_load_per_task;
3384 unsigned long busiest_nr_running;
3385
3386 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3387#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3388 int power_savings_balance; /* Is powersave balance needed for this sd */
3389 struct sched_group *group_min; /* Least loaded group in sd */
3390 struct sched_group *group_leader; /* Group which relieves group_min */
3391 unsigned long min_load_per_task; /* load_per_task in group_min */
3392 unsigned long leader_nr_running; /* Nr running of group_leader */
3393 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3394#endif
222d656d 3395};
1da177e4 3396
d5ac537e 3397/*
381be78f
GS
3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3399 */
3400struct sg_lb_stats {
3401 unsigned long avg_load; /*Avg load across the CPUs of the group */
3402 unsigned long group_load; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3405 unsigned long group_capacity;
3406 int group_imb; /* Is there an imbalance in the group ? */
3407};
408ed066 3408
67bb6c03
GS
3409/**
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned.
3412 */
3413static inline unsigned int group_first_cpu(struct sched_group *group)
3414{
3415 return cpumask_first(sched_group_cpus(group));
3416}
3417
3418/**
3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3422 */
3423static inline int get_sd_load_idx(struct sched_domain *sd,
3424 enum cpu_idle_type idle)
3425{
3426 int load_idx;
3427
3428 switch (idle) {
3429 case CPU_NOT_IDLE:
7897986b 3430 load_idx = sd->busy_idx;
67bb6c03
GS
3431 break;
3432
3433 case CPU_NEWLY_IDLE:
7897986b 3434 load_idx = sd->newidle_idx;
67bb6c03
GS
3435 break;
3436 default:
7897986b 3437 load_idx = sd->idle_idx;
67bb6c03
GS
3438 break;
3439 }
1da177e4 3440
67bb6c03
GS
3441 return load_idx;
3442}
1da177e4 3443
1da177e4 3444
c071df18
GS
3445#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3446/**
3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing.
3449 *
3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3453 */
3454static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3455 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3456{
3457 /*
3458 * Busy processors will not participate in power savings
3459 * balance.
3460 */
3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3462 sds->power_savings_balance = 0;
3463 else {
3464 sds->power_savings_balance = 1;
3465 sds->min_nr_running = ULONG_MAX;
3466 sds->leader_nr_running = 0;
3467 }
3468}
783609c6 3469
c071df18
GS
3470/**
3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing.
3473 *
3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing
3477 * load balancing ?
3478 * @sgs: Variable containing the statistics of the group.
3479 */
3480static inline void update_sd_power_savings_stats(struct sched_group *group,
3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3482{
408ed066 3483
c071df18
GS
3484 if (!sds->power_savings_balance)
3485 return;
1da177e4 3486
c071df18
GS
3487 /*
3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain
3490 */
3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3492 !sds->this_nr_running))
3493 sds->power_savings_balance = 0;
2dd73a4f 3494
c071df18
GS
3495 /*
3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations
3498 */
3499 if (!sds->power_savings_balance ||
3500 sgs->sum_nr_running >= sgs->group_capacity ||
3501 !sgs->sum_nr_running)
3502 return;
5969fe06 3503
c071df18
GS
3504 /*
3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load
3507 * for saving power
3508 */
3509 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3510 (sgs->sum_nr_running == sds->min_nr_running &&
3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3512 sds->group_min = group;
3513 sds->min_nr_running = sgs->sum_nr_running;
3514 sds->min_load_per_task = sgs->sum_weighted_load /
3515 sgs->sum_nr_running;
3516 }
783609c6 3517
c071df18
GS
3518 /*
3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power
3522 */
d899a789 3523 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3524 return;
1da177e4 3525
c071df18
GS
3526 if (sgs->sum_nr_running > sds->leader_nr_running ||
3527 (sgs->sum_nr_running == sds->leader_nr_running &&
3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3529 sds->group_leader = group;
3530 sds->leader_nr_running = sgs->sum_nr_running;
3531 }
3532}
408ed066 3533
c071df18 3534/**
d5ac537e 3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance.
3540 *
d5ac537e
RD
3541 * Description:
3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle.
3545 *
c071df18
GS
3546 * Returns 1 if there is potential to perform power-savings balance.
3547 * Else returns 0.
3548 */
3549static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3550 int this_cpu, unsigned long *imbalance)
3551{
3552 if (!sds->power_savings_balance)
3553 return 0;
1da177e4 3554
c071df18
GS
3555 if (sds->this != sds->group_leader ||
3556 sds->group_leader == sds->group_min)
3557 return 0;
783609c6 3558
c071df18
GS
3559 *imbalance = sds->min_load_per_task;
3560 sds->busiest = sds->group_min;
1da177e4 3561
c071df18 3562 return 1;
1da177e4 3563
c071df18
GS
3564}
3565#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3566static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3567 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3568{
3569 return;
3570}
408ed066 3571
c071df18
GS
3572static inline void update_sd_power_savings_stats(struct sched_group *group,
3573 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3574{
3575 return;
3576}
3577
3578static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3579 int this_cpu, unsigned long *imbalance)
3580{
3581 return 0;
3582}
3583#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3584
d6a59aa3
PZ
3585
3586unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3587{
3588 return SCHED_LOAD_SCALE;
3589}
3590
3591unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3592{
3593 return default_scale_freq_power(sd, cpu);
3594}
3595
3596unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3597{
3598 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3599 unsigned long smt_gain = sd->smt_gain;
3600
3601 smt_gain /= weight;
3602
3603 return smt_gain;
3604}
3605
d6a59aa3
PZ
3606unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3607{
3608 return default_scale_smt_power(sd, cpu);
3609}
3610
e9e9250b
PZ
3611unsigned long scale_rt_power(int cpu)
3612{
3613 struct rq *rq = cpu_rq(cpu);
3614 u64 total, available;
3615
3616 sched_avg_update(rq);
3617
3618 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3619 available = total - rq->rt_avg;
3620
3621 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3622 total = SCHED_LOAD_SCALE;
3623
3624 total >>= SCHED_LOAD_SHIFT;
3625
3626 return div_u64(available, total);
3627}
3628
ab29230e
PZ
3629static void update_cpu_power(struct sched_domain *sd, int cpu)
3630{
3631 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3632 unsigned long power = SCHED_LOAD_SCALE;
3633 struct sched_group *sdg = sd->groups;
ab29230e 3634
8e6598af
PZ
3635 if (sched_feat(ARCH_POWER))
3636 power *= arch_scale_freq_power(sd, cpu);
3637 else
3638 power *= default_scale_freq_power(sd, cpu);
3639
d6a59aa3 3640 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3641
3642 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3643 if (sched_feat(ARCH_POWER))
3644 power *= arch_scale_smt_power(sd, cpu);
3645 else
3646 power *= default_scale_smt_power(sd, cpu);
3647
ab29230e
PZ
3648 power >>= SCHED_LOAD_SHIFT;
3649 }
3650
e9e9250b
PZ
3651 power *= scale_rt_power(cpu);
3652 power >>= SCHED_LOAD_SHIFT;
3653
3654 if (!power)
3655 power = 1;
ab29230e 3656
18a3885f 3657 sdg->cpu_power = power;
ab29230e
PZ
3658}
3659
3660static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3661{
3662 struct sched_domain *child = sd->child;
3663 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3664 unsigned long power;
cc9fba7d
PZ
3665
3666 if (!child) {
ab29230e 3667 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3668 return;
3669 }
3670
d7ea17a7 3671 power = 0;
cc9fba7d
PZ
3672
3673 group = child->groups;
3674 do {
d7ea17a7 3675 power += group->cpu_power;
cc9fba7d
PZ
3676 group = group->next;
3677 } while (group != child->groups);
d7ea17a7
IM
3678
3679 sdg->cpu_power = power;
cc9fba7d 3680}
c071df18 3681
1f8c553d
GS
3682/**
3683 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3684 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3685 * @group: sched_group whose statistics are to be updated.
3686 * @this_cpu: Cpu for which load balance is currently performed.
3687 * @idle: Idle status of this_cpu
3688 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3689 * @sd_idle: Idle status of the sched_domain containing group.
3690 * @local_group: Does group contain this_cpu.
3691 * @cpus: Set of cpus considered for load balancing.
3692 * @balance: Should we balance.
3693 * @sgs: variable to hold the statistics for this group.
3694 */
cc9fba7d
PZ
3695static inline void update_sg_lb_stats(struct sched_domain *sd,
3696 struct sched_group *group, int this_cpu,
1f8c553d
GS
3697 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3698 int local_group, const struct cpumask *cpus,
3699 int *balance, struct sg_lb_stats *sgs)
3700{
3701 unsigned long load, max_cpu_load, min_cpu_load;
3702 int i;
3703 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3704 unsigned long sum_avg_load_per_task;
3705 unsigned long avg_load_per_task;
3706
cc9fba7d 3707 if (local_group) {
1f8c553d 3708 balance_cpu = group_first_cpu(group);
cc9fba7d 3709 if (balance_cpu == this_cpu)
ab29230e 3710 update_group_power(sd, this_cpu);
cc9fba7d 3711 }
1f8c553d
GS
3712
3713 /* Tally up the load of all CPUs in the group */
3714 sum_avg_load_per_task = avg_load_per_task = 0;
3715 max_cpu_load = 0;
3716 min_cpu_load = ~0UL;
408ed066 3717
1f8c553d
GS
3718 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3719 struct rq *rq = cpu_rq(i);
908a7c1b 3720
1f8c553d
GS
3721 if (*sd_idle && rq->nr_running)
3722 *sd_idle = 0;
5c45bf27 3723
1f8c553d 3724 /* Bias balancing toward cpus of our domain */
1da177e4 3725 if (local_group) {
1f8c553d
GS
3726 if (idle_cpu(i) && !first_idle_cpu) {
3727 first_idle_cpu = 1;
3728 balance_cpu = i;
3729 }
3730
3731 load = target_load(i, load_idx);
3732 } else {
3733 load = source_load(i, load_idx);
3734 if (load > max_cpu_load)
3735 max_cpu_load = load;
3736 if (min_cpu_load > load)
3737 min_cpu_load = load;
1da177e4 3738 }
5c45bf27 3739
1f8c553d
GS
3740 sgs->group_load += load;
3741 sgs->sum_nr_running += rq->nr_running;
3742 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3743
1f8c553d
GS
3744 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3745 }
5c45bf27 3746
1f8c553d
GS
3747 /*
3748 * First idle cpu or the first cpu(busiest) in this sched group
3749 * is eligible for doing load balancing at this and above
3750 * domains. In the newly idle case, we will allow all the cpu's
3751 * to do the newly idle load balance.
3752 */
3753 if (idle != CPU_NEWLY_IDLE && local_group &&
3754 balance_cpu != this_cpu && balance) {
3755 *balance = 0;
3756 return;
3757 }
5c45bf27 3758
1f8c553d 3759 /* Adjust by relative CPU power of the group */
18a3885f 3760 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3761
1f8c553d
GS
3762
3763 /*
3764 * Consider the group unbalanced when the imbalance is larger
3765 * than the average weight of two tasks.
3766 *
3767 * APZ: with cgroup the avg task weight can vary wildly and
3768 * might not be a suitable number - should we keep a
3769 * normalized nr_running number somewhere that negates
3770 * the hierarchy?
3771 */
18a3885f
PZ
3772 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3773 group->cpu_power;
1f8c553d
GS
3774
3775 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3776 sgs->group_imb = 1;
3777
bdb94aa5 3778 sgs->group_capacity =
18a3885f 3779 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3780}
dd41f596 3781
37abe198
GS
3782/**
3783 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3784 * @sd: sched_domain whose statistics are to be updated.
3785 * @this_cpu: Cpu for which load balance is currently performed.
3786 * @idle: Idle status of this_cpu
3787 * @sd_idle: Idle status of the sched_domain containing group.
3788 * @cpus: Set of cpus considered for load balancing.
3789 * @balance: Should we balance.
3790 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3791 */
37abe198
GS
3792static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3793 enum cpu_idle_type idle, int *sd_idle,
3794 const struct cpumask *cpus, int *balance,
3795 struct sd_lb_stats *sds)
1da177e4 3796{
b5d978e0 3797 struct sched_domain *child = sd->child;
222d656d 3798 struct sched_group *group = sd->groups;
37abe198 3799 struct sg_lb_stats sgs;
b5d978e0
PZ
3800 int load_idx, prefer_sibling = 0;
3801
3802 if (child && child->flags & SD_PREFER_SIBLING)
3803 prefer_sibling = 1;
222d656d 3804
c071df18 3805 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3806 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3807
3808 do {
1da177e4 3809 int local_group;
1da177e4 3810
758b2cdc
RR
3811 local_group = cpumask_test_cpu(this_cpu,
3812 sched_group_cpus(group));
381be78f 3813 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3814 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3815 local_group, cpus, balance, &sgs);
1da177e4 3816
37abe198
GS
3817 if (local_group && balance && !(*balance))
3818 return;
783609c6 3819
37abe198 3820 sds->total_load += sgs.group_load;
18a3885f 3821 sds->total_pwr += group->cpu_power;
1da177e4 3822
b5d978e0
PZ
3823 /*
3824 * In case the child domain prefers tasks go to siblings
3825 * first, lower the group capacity to one so that we'll try
3826 * and move all the excess tasks away.
3827 */
3828 if (prefer_sibling)
bdb94aa5 3829 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3830
1da177e4 3831 if (local_group) {
37abe198
GS
3832 sds->this_load = sgs.avg_load;
3833 sds->this = group;
3834 sds->this_nr_running = sgs.sum_nr_running;
3835 sds->this_load_per_task = sgs.sum_weighted_load;
3836 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3837 (sgs.sum_nr_running > sgs.group_capacity ||
3838 sgs.group_imb)) {
37abe198
GS
3839 sds->max_load = sgs.avg_load;
3840 sds->busiest = group;
3841 sds->busiest_nr_running = sgs.sum_nr_running;
3842 sds->busiest_load_per_task = sgs.sum_weighted_load;
3843 sds->group_imb = sgs.group_imb;
48f24c4d 3844 }
5c45bf27 3845
c071df18 3846 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3847 group = group->next;
3848 } while (group != sd->groups);
37abe198 3849}
1da177e4 3850
2e6f44ae
GS
3851/**
3852 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3853 * amongst the groups of a sched_domain, during
3854 * load balancing.
2e6f44ae
GS
3855 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3856 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3857 * @imbalance: Variable to store the imbalance.
3858 */
3859static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3860 int this_cpu, unsigned long *imbalance)
3861{
3862 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3863 unsigned int imbn = 2;
3864
3865 if (sds->this_nr_running) {
3866 sds->this_load_per_task /= sds->this_nr_running;
3867 if (sds->busiest_load_per_task >
3868 sds->this_load_per_task)
3869 imbn = 1;
3870 } else
3871 sds->this_load_per_task =
3872 cpu_avg_load_per_task(this_cpu);
1da177e4 3873
2e6f44ae
GS
3874 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3875 sds->busiest_load_per_task * imbn) {
3876 *imbalance = sds->busiest_load_per_task;
3877 return;
3878 }
908a7c1b 3879
1da177e4 3880 /*
2e6f44ae
GS
3881 * OK, we don't have enough imbalance to justify moving tasks,
3882 * however we may be able to increase total CPU power used by
3883 * moving them.
1da177e4 3884 */
2dd73a4f 3885
18a3885f 3886 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3887 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3888 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3889 min(sds->this_load_per_task, sds->this_load);
3890 pwr_now /= SCHED_LOAD_SCALE;
3891
3892 /* Amount of load we'd subtract */
18a3885f
PZ
3893 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3894 sds->busiest->cpu_power;
2e6f44ae 3895 if (sds->max_load > tmp)
18a3885f 3896 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3897 min(sds->busiest_load_per_task, sds->max_load - tmp);
3898
3899 /* Amount of load we'd add */
18a3885f 3900 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3901 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3902 tmp = (sds->max_load * sds->busiest->cpu_power) /
3903 sds->this->cpu_power;
2e6f44ae 3904 else
18a3885f
PZ
3905 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3906 sds->this->cpu_power;
3907 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3908 min(sds->this_load_per_task, sds->this_load + tmp);
3909 pwr_move /= SCHED_LOAD_SCALE;
3910
3911 /* Move if we gain throughput */
3912 if (pwr_move > pwr_now)
3913 *imbalance = sds->busiest_load_per_task;
3914}
dbc523a3
GS
3915
3916/**
3917 * calculate_imbalance - Calculate the amount of imbalance present within the
3918 * groups of a given sched_domain during load balance.
3919 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3920 * @this_cpu: Cpu for which currently load balance is being performed.
3921 * @imbalance: The variable to store the imbalance.
3922 */
3923static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3924 unsigned long *imbalance)
3925{
3926 unsigned long max_pull;
2dd73a4f
PW
3927 /*
3928 * In the presence of smp nice balancing, certain scenarios can have
3929 * max load less than avg load(as we skip the groups at or below
3930 * its cpu_power, while calculating max_load..)
3931 */
dbc523a3 3932 if (sds->max_load < sds->avg_load) {
2dd73a4f 3933 *imbalance = 0;
dbc523a3 3934 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3935 }
0c117f1b
SS
3936
3937 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3938 max_pull = min(sds->max_load - sds->avg_load,
3939 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3940
1da177e4 3941 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3942 *imbalance = min(max_pull * sds->busiest->cpu_power,
3943 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3944 / SCHED_LOAD_SCALE;
3945
2dd73a4f
PW
3946 /*
3947 * if *imbalance is less than the average load per runnable task
3948 * there is no gaurantee that any tasks will be moved so we'll have
3949 * a think about bumping its value to force at least one task to be
3950 * moved
3951 */
dbc523a3
GS
3952 if (*imbalance < sds->busiest_load_per_task)
3953 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3954
dbc523a3 3955}
37abe198 3956/******* find_busiest_group() helpers end here *********************/
1da177e4 3957
b7bb4c9b
GS
3958/**
3959 * find_busiest_group - Returns the busiest group within the sched_domain
3960 * if there is an imbalance. If there isn't an imbalance, and
3961 * the user has opted for power-savings, it returns a group whose
3962 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3963 * such a group exists.
3964 *
3965 * Also calculates the amount of weighted load which should be moved
3966 * to restore balance.
3967 *
3968 * @sd: The sched_domain whose busiest group is to be returned.
3969 * @this_cpu: The cpu for which load balancing is currently being performed.
3970 * @imbalance: Variable which stores amount of weighted load which should
3971 * be moved to restore balance/put a group to idle.
3972 * @idle: The idle status of this_cpu.
3973 * @sd_idle: The idleness of sd
3974 * @cpus: The set of CPUs under consideration for load-balancing.
3975 * @balance: Pointer to a variable indicating if this_cpu
3976 * is the appropriate cpu to perform load balancing at this_level.
3977 *
3978 * Returns: - the busiest group if imbalance exists.
3979 * - If no imbalance and user has opted for power-savings balance,
3980 * return the least loaded group whose CPUs can be
3981 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3982 */
3983static struct sched_group *
3984find_busiest_group(struct sched_domain *sd, int this_cpu,
3985 unsigned long *imbalance, enum cpu_idle_type idle,
3986 int *sd_idle, const struct cpumask *cpus, int *balance)
3987{
3988 struct sd_lb_stats sds;
1da177e4 3989
37abe198 3990 memset(&sds, 0, sizeof(sds));
1da177e4 3991
37abe198
GS
3992 /*
3993 * Compute the various statistics relavent for load balancing at
3994 * this level.
3995 */
3996 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3997 balance, &sds);
3998
b7bb4c9b
GS
3999 /* Cases where imbalance does not exist from POV of this_cpu */
4000 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4001 * at this level.
4002 * 2) There is no busy sibling group to pull from.
4003 * 3) This group is the busiest group.
4004 * 4) This group is more busy than the avg busieness at this
4005 * sched_domain.
4006 * 5) The imbalance is within the specified limit.
4007 * 6) Any rebalance would lead to ping-pong
4008 */
37abe198
GS
4009 if (balance && !(*balance))
4010 goto ret;
1da177e4 4011
b7bb4c9b
GS
4012 if (!sds.busiest || sds.busiest_nr_running == 0)
4013 goto out_balanced;
1da177e4 4014
b7bb4c9b 4015 if (sds.this_load >= sds.max_load)
1da177e4 4016 goto out_balanced;
1da177e4 4017
222d656d 4018 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4019
b7bb4c9b
GS
4020 if (sds.this_load >= sds.avg_load)
4021 goto out_balanced;
4022
4023 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4024 goto out_balanced;
4025
222d656d
GS
4026 sds.busiest_load_per_task /= sds.busiest_nr_running;
4027 if (sds.group_imb)
4028 sds.busiest_load_per_task =
4029 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4030
1da177e4
LT
4031 /*
4032 * We're trying to get all the cpus to the average_load, so we don't
4033 * want to push ourselves above the average load, nor do we wish to
4034 * reduce the max loaded cpu below the average load, as either of these
4035 * actions would just result in more rebalancing later, and ping-pong
4036 * tasks around. Thus we look for the minimum possible imbalance.
4037 * Negative imbalances (*we* are more loaded than anyone else) will
4038 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4039 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4040 * appear as very large values with unsigned longs.
4041 */
222d656d 4042 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4043 goto out_balanced;
4044
dbc523a3
GS
4045 /* Looks like there is an imbalance. Compute it */
4046 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4047 return sds.busiest;
1da177e4
LT
4048
4049out_balanced:
c071df18
GS
4050 /*
4051 * There is no obvious imbalance. But check if we can do some balancing
4052 * to save power.
4053 */
4054 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4055 return sds.busiest;
783609c6 4056ret:
1da177e4
LT
4057 *imbalance = 0;
4058 return NULL;
4059}
4060
4061/*
4062 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4063 */
70b97a7f 4064static struct rq *
d15bcfdb 4065find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4066 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4067{
70b97a7f 4068 struct rq *busiest = NULL, *rq;
2dd73a4f 4069 unsigned long max_load = 0;
1da177e4
LT
4070 int i;
4071
758b2cdc 4072 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4073 unsigned long power = power_of(i);
4074 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4075 unsigned long wl;
0a2966b4 4076
96f874e2 4077 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4078 continue;
4079
48f24c4d 4080 rq = cpu_rq(i);
bdb94aa5
PZ
4081 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4082 wl /= power;
2dd73a4f 4083
bdb94aa5 4084 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4085 continue;
1da177e4 4086
dd41f596
IM
4087 if (wl > max_load) {
4088 max_load = wl;
48f24c4d 4089 busiest = rq;
1da177e4
LT
4090 }
4091 }
4092
4093 return busiest;
4094}
4095
77391d71
NP
4096/*
4097 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4098 * so long as it is large enough.
4099 */
4100#define MAX_PINNED_INTERVAL 512
4101
df7c8e84
RR
4102/* Working cpumask for load_balance and load_balance_newidle. */
4103static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4104
1da177e4
LT
4105/*
4106 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4107 * tasks if there is an imbalance.
1da177e4 4108 */
70b97a7f 4109static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4110 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4111 int *balance)
1da177e4 4112{
43010659 4113 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4114 struct sched_group *group;
1da177e4 4115 unsigned long imbalance;
70b97a7f 4116 struct rq *busiest;
fe2eea3f 4117 unsigned long flags;
df7c8e84 4118 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4119
6ad4c188 4120 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4121
89c4710e
SS
4122 /*
4123 * When power savings policy is enabled for the parent domain, idle
4124 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4125 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4126 * portraying it as CPU_NOT_IDLE.
89c4710e 4127 */
d15bcfdb 4128 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4130 sd_idle = 1;
1da177e4 4131
2d72376b 4132 schedstat_inc(sd, lb_count[idle]);
1da177e4 4133
0a2966b4 4134redo:
c8cba857 4135 update_shares(sd);
0a2966b4 4136 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4137 cpus, balance);
783609c6 4138
06066714 4139 if (*balance == 0)
783609c6 4140 goto out_balanced;
783609c6 4141
1da177e4
LT
4142 if (!group) {
4143 schedstat_inc(sd, lb_nobusyg[idle]);
4144 goto out_balanced;
4145 }
4146
7c16ec58 4147 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4148 if (!busiest) {
4149 schedstat_inc(sd, lb_nobusyq[idle]);
4150 goto out_balanced;
4151 }
4152
db935dbd 4153 BUG_ON(busiest == this_rq);
1da177e4
LT
4154
4155 schedstat_add(sd, lb_imbalance[idle], imbalance);
4156
43010659 4157 ld_moved = 0;
1da177e4
LT
4158 if (busiest->nr_running > 1) {
4159 /*
4160 * Attempt to move tasks. If find_busiest_group has found
4161 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4162 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4163 * correctly treated as an imbalance.
4164 */
fe2eea3f 4165 local_irq_save(flags);
e17224bf 4166 double_rq_lock(this_rq, busiest);
43010659 4167 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4168 imbalance, sd, idle, &all_pinned);
e17224bf 4169 double_rq_unlock(this_rq, busiest);
fe2eea3f 4170 local_irq_restore(flags);
81026794 4171
46cb4b7c
SS
4172 /*
4173 * some other cpu did the load balance for us.
4174 */
43010659 4175 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4176 resched_cpu(this_cpu);
4177
81026794 4178 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4179 if (unlikely(all_pinned)) {
96f874e2
RR
4180 cpumask_clear_cpu(cpu_of(busiest), cpus);
4181 if (!cpumask_empty(cpus))
0a2966b4 4182 goto redo;
81026794 4183 goto out_balanced;
0a2966b4 4184 }
1da177e4 4185 }
81026794 4186
43010659 4187 if (!ld_moved) {
1da177e4
LT
4188 schedstat_inc(sd, lb_failed[idle]);
4189 sd->nr_balance_failed++;
4190
4191 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4192
fe2eea3f 4193 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4194
4195 /* don't kick the migration_thread, if the curr
4196 * task on busiest cpu can't be moved to this_cpu
4197 */
96f874e2
RR
4198 if (!cpumask_test_cpu(this_cpu,
4199 &busiest->curr->cpus_allowed)) {
fe2eea3f 4200 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4201 all_pinned = 1;
4202 goto out_one_pinned;
4203 }
4204
1da177e4
LT
4205 if (!busiest->active_balance) {
4206 busiest->active_balance = 1;
4207 busiest->push_cpu = this_cpu;
81026794 4208 active_balance = 1;
1da177e4 4209 }
fe2eea3f 4210 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4211 if (active_balance)
1da177e4
LT
4212 wake_up_process(busiest->migration_thread);
4213
4214 /*
4215 * We've kicked active balancing, reset the failure
4216 * counter.
4217 */
39507451 4218 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4219 }
81026794 4220 } else
1da177e4
LT
4221 sd->nr_balance_failed = 0;
4222
81026794 4223 if (likely(!active_balance)) {
1da177e4
LT
4224 /* We were unbalanced, so reset the balancing interval */
4225 sd->balance_interval = sd->min_interval;
81026794
NP
4226 } else {
4227 /*
4228 * If we've begun active balancing, start to back off. This
4229 * case may not be covered by the all_pinned logic if there
4230 * is only 1 task on the busy runqueue (because we don't call
4231 * move_tasks).
4232 */
4233 if (sd->balance_interval < sd->max_interval)
4234 sd->balance_interval *= 2;
1da177e4
LT
4235 }
4236
43010659 4237 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4238 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4239 ld_moved = -1;
4240
4241 goto out;
1da177e4
LT
4242
4243out_balanced:
1da177e4
LT
4244 schedstat_inc(sd, lb_balanced[idle]);
4245
16cfb1c0 4246 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4247
4248out_one_pinned:
1da177e4 4249 /* tune up the balancing interval */
77391d71
NP
4250 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4251 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4252 sd->balance_interval *= 2;
4253
48f24c4d 4254 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4256 ld_moved = -1;
4257 else
4258 ld_moved = 0;
4259out:
c8cba857
PZ
4260 if (ld_moved)
4261 update_shares(sd);
c09595f6 4262 return ld_moved;
1da177e4
LT
4263}
4264
4265/*
4266 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4267 * tasks if there is an imbalance.
4268 *
d15bcfdb 4269 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4270 * this_rq is locked.
4271 */
48f24c4d 4272static int
df7c8e84 4273load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4274{
4275 struct sched_group *group;
70b97a7f 4276 struct rq *busiest = NULL;
1da177e4 4277 unsigned long imbalance;
43010659 4278 int ld_moved = 0;
5969fe06 4279 int sd_idle = 0;
969bb4e4 4280 int all_pinned = 0;
df7c8e84 4281 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4282
6ad4c188 4283 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4284
89c4710e
SS
4285 /*
4286 * When power savings policy is enabled for the parent domain, idle
4287 * sibling can pick up load irrespective of busy siblings. In this case,
4288 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4289 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4290 */
4291 if (sd->flags & SD_SHARE_CPUPOWER &&
4292 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4293 sd_idle = 1;
1da177e4 4294
2d72376b 4295 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4296redo:
3e5459b4 4297 update_shares_locked(this_rq, sd);
d15bcfdb 4298 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4299 &sd_idle, cpus, NULL);
1da177e4 4300 if (!group) {
d15bcfdb 4301 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4302 goto out_balanced;
1da177e4
LT
4303 }
4304
7c16ec58 4305 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4306 if (!busiest) {
d15bcfdb 4307 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4308 goto out_balanced;
1da177e4
LT
4309 }
4310
db935dbd
NP
4311 BUG_ON(busiest == this_rq);
4312
d15bcfdb 4313 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4314
43010659 4315 ld_moved = 0;
d6d5cfaf
NP
4316 if (busiest->nr_running > 1) {
4317 /* Attempt to move tasks */
4318 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4319 /* this_rq->clock is already updated */
4320 update_rq_clock(busiest);
43010659 4321 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4322 imbalance, sd, CPU_NEWLY_IDLE,
4323 &all_pinned);
1b12bbc7 4324 double_unlock_balance(this_rq, busiest);
0a2966b4 4325
969bb4e4 4326 if (unlikely(all_pinned)) {
96f874e2
RR
4327 cpumask_clear_cpu(cpu_of(busiest), cpus);
4328 if (!cpumask_empty(cpus))
0a2966b4
CL
4329 goto redo;
4330 }
d6d5cfaf
NP
4331 }
4332
43010659 4333 if (!ld_moved) {
36dffab6 4334 int active_balance = 0;
ad273b32 4335
d15bcfdb 4336 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4337 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4338 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4339 return -1;
ad273b32
VS
4340
4341 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4342 return -1;
4343
4344 if (sd->nr_balance_failed++ < 2)
4345 return -1;
4346
4347 /*
4348 * The only task running in a non-idle cpu can be moved to this
4349 * cpu in an attempt to completely freeup the other CPU
4350 * package. The same method used to move task in load_balance()
4351 * have been extended for load_balance_newidle() to speedup
4352 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4353 *
4354 * The package power saving logic comes from
4355 * find_busiest_group(). If there are no imbalance, then
4356 * f_b_g() will return NULL. However when sched_mc={1,2} then
4357 * f_b_g() will select a group from which a running task may be
4358 * pulled to this cpu in order to make the other package idle.
4359 * If there is no opportunity to make a package idle and if
4360 * there are no imbalance, then f_b_g() will return NULL and no
4361 * action will be taken in load_balance_newidle().
4362 *
4363 * Under normal task pull operation due to imbalance, there
4364 * will be more than one task in the source run queue and
4365 * move_tasks() will succeed. ld_moved will be true and this
4366 * active balance code will not be triggered.
4367 */
4368
4369 /* Lock busiest in correct order while this_rq is held */
4370 double_lock_balance(this_rq, busiest);
4371
4372 /*
4373 * don't kick the migration_thread, if the curr
4374 * task on busiest cpu can't be moved to this_cpu
4375 */
6ca09dfc 4376 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4377 double_unlock_balance(this_rq, busiest);
4378 all_pinned = 1;
4379 return ld_moved;
4380 }
4381
4382 if (!busiest->active_balance) {
4383 busiest->active_balance = 1;
4384 busiest->push_cpu = this_cpu;
4385 active_balance = 1;
4386 }
4387
4388 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4389 /*
4390 * Should not call ttwu while holding a rq->lock
4391 */
4392 spin_unlock(&this_rq->lock);
ad273b32
VS
4393 if (active_balance)
4394 wake_up_process(busiest->migration_thread);
da8d5089 4395 spin_lock(&this_rq->lock);
ad273b32 4396
5969fe06 4397 } else
16cfb1c0 4398 sd->nr_balance_failed = 0;
1da177e4 4399
3e5459b4 4400 update_shares_locked(this_rq, sd);
43010659 4401 return ld_moved;
16cfb1c0
NP
4402
4403out_balanced:
d15bcfdb 4404 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4405 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4406 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4407 return -1;
16cfb1c0 4408 sd->nr_balance_failed = 0;
48f24c4d 4409
16cfb1c0 4410 return 0;
1da177e4
LT
4411}
4412
4413/*
4414 * idle_balance is called by schedule() if this_cpu is about to become
4415 * idle. Attempts to pull tasks from other CPUs.
4416 */
70b97a7f 4417static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4418{
4419 struct sched_domain *sd;
efbe027e 4420 int pulled_task = 0;
dd41f596 4421 unsigned long next_balance = jiffies + HZ;
1da177e4 4422
1b9508f6
MG
4423 this_rq->idle_stamp = this_rq->clock;
4424
4425 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4426 return;
4427
1da177e4 4428 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4429 unsigned long interval;
4430
4431 if (!(sd->flags & SD_LOAD_BALANCE))
4432 continue;
4433
4434 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4435 /* If we've pulled tasks over stop searching: */
7c16ec58 4436 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4437 sd);
92c4ca5c
CL
4438
4439 interval = msecs_to_jiffies(sd->balance_interval);
4440 if (time_after(next_balance, sd->last_balance + interval))
4441 next_balance = sd->last_balance + interval;
1b9508f6
MG
4442 if (pulled_task) {
4443 this_rq->idle_stamp = 0;
92c4ca5c 4444 break;
1b9508f6 4445 }
1da177e4 4446 }
dd41f596 4447 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4448 /*
4449 * We are going idle. next_balance may be set based on
4450 * a busy processor. So reset next_balance.
4451 */
4452 this_rq->next_balance = next_balance;
dd41f596 4453 }
1da177e4
LT
4454}
4455
4456/*
4457 * active_load_balance is run by migration threads. It pushes running tasks
4458 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4459 * running on each physical CPU where possible, and avoids physical /
4460 * logical imbalances.
4461 *
4462 * Called with busiest_rq locked.
4463 */
70b97a7f 4464static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4465{
39507451 4466 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4467 struct sched_domain *sd;
4468 struct rq *target_rq;
39507451 4469
48f24c4d 4470 /* Is there any task to move? */
39507451 4471 if (busiest_rq->nr_running <= 1)
39507451
NP
4472 return;
4473
4474 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4475
4476 /*
39507451 4477 * This condition is "impossible", if it occurs
41a2d6cf 4478 * we need to fix it. Originally reported by
39507451 4479 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4480 */
39507451 4481 BUG_ON(busiest_rq == target_rq);
1da177e4 4482
39507451
NP
4483 /* move a task from busiest_rq to target_rq */
4484 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4485 update_rq_clock(busiest_rq);
4486 update_rq_clock(target_rq);
39507451
NP
4487
4488 /* Search for an sd spanning us and the target CPU. */
c96d145e 4489 for_each_domain(target_cpu, sd) {
39507451 4490 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4491 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4492 break;
c96d145e 4493 }
39507451 4494
48f24c4d 4495 if (likely(sd)) {
2d72376b 4496 schedstat_inc(sd, alb_count);
39507451 4497
43010659
PW
4498 if (move_one_task(target_rq, target_cpu, busiest_rq,
4499 sd, CPU_IDLE))
48f24c4d
IM
4500 schedstat_inc(sd, alb_pushed);
4501 else
4502 schedstat_inc(sd, alb_failed);
4503 }
1b12bbc7 4504 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4505}
4506
46cb4b7c
SS
4507#ifdef CONFIG_NO_HZ
4508static struct {
4509 atomic_t load_balancer;
7d1e6a9b 4510 cpumask_var_t cpu_mask;
f711f609 4511 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4512} nohz ____cacheline_aligned = {
4513 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4514};
4515
eea08f32
AB
4516int get_nohz_load_balancer(void)
4517{
4518 return atomic_read(&nohz.load_balancer);
4519}
4520
f711f609
GS
4521#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4522/**
4523 * lowest_flag_domain - Return lowest sched_domain containing flag.
4524 * @cpu: The cpu whose lowest level of sched domain is to
4525 * be returned.
4526 * @flag: The flag to check for the lowest sched_domain
4527 * for the given cpu.
4528 *
4529 * Returns the lowest sched_domain of a cpu which contains the given flag.
4530 */
4531static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4532{
4533 struct sched_domain *sd;
4534
4535 for_each_domain(cpu, sd)
4536 if (sd && (sd->flags & flag))
4537 break;
4538
4539 return sd;
4540}
4541
4542/**
4543 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4544 * @cpu: The cpu whose domains we're iterating over.
4545 * @sd: variable holding the value of the power_savings_sd
4546 * for cpu.
4547 * @flag: The flag to filter the sched_domains to be iterated.
4548 *
4549 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4550 * set, starting from the lowest sched_domain to the highest.
4551 */
4552#define for_each_flag_domain(cpu, sd, flag) \
4553 for (sd = lowest_flag_domain(cpu, flag); \
4554 (sd && (sd->flags & flag)); sd = sd->parent)
4555
4556/**
4557 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4558 * @ilb_group: group to be checked for semi-idleness
4559 *
4560 * Returns: 1 if the group is semi-idle. 0 otherwise.
4561 *
4562 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4563 * and atleast one non-idle CPU. This helper function checks if the given
4564 * sched_group is semi-idle or not.
4565 */
4566static inline int is_semi_idle_group(struct sched_group *ilb_group)
4567{
4568 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4569 sched_group_cpus(ilb_group));
4570
4571 /*
4572 * A sched_group is semi-idle when it has atleast one busy cpu
4573 * and atleast one idle cpu.
4574 */
4575 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4576 return 0;
4577
4578 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4579 return 0;
4580
4581 return 1;
4582}
4583/**
4584 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4585 * @cpu: The cpu which is nominating a new idle_load_balancer.
4586 *
4587 * Returns: Returns the id of the idle load balancer if it exists,
4588 * Else, returns >= nr_cpu_ids.
4589 *
4590 * This algorithm picks the idle load balancer such that it belongs to a
4591 * semi-idle powersavings sched_domain. The idea is to try and avoid
4592 * completely idle packages/cores just for the purpose of idle load balancing
4593 * when there are other idle cpu's which are better suited for that job.
4594 */
4595static int find_new_ilb(int cpu)
4596{
4597 struct sched_domain *sd;
4598 struct sched_group *ilb_group;
4599
4600 /*
4601 * Have idle load balancer selection from semi-idle packages only
4602 * when power-aware load balancing is enabled
4603 */
4604 if (!(sched_smt_power_savings || sched_mc_power_savings))
4605 goto out_done;
4606
4607 /*
4608 * Optimize for the case when we have no idle CPUs or only one
4609 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4610 */
4611 if (cpumask_weight(nohz.cpu_mask) < 2)
4612 goto out_done;
4613
4614 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4615 ilb_group = sd->groups;
4616
4617 do {
4618 if (is_semi_idle_group(ilb_group))
4619 return cpumask_first(nohz.ilb_grp_nohz_mask);
4620
4621 ilb_group = ilb_group->next;
4622
4623 } while (ilb_group != sd->groups);
4624 }
4625
4626out_done:
4627 return cpumask_first(nohz.cpu_mask);
4628}
4629#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4630static inline int find_new_ilb(int call_cpu)
4631{
6e29ec57 4632 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4633}
4634#endif
4635
7835b98b 4636/*
46cb4b7c
SS
4637 * This routine will try to nominate the ilb (idle load balancing)
4638 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4639 * load balancing on behalf of all those cpus. If all the cpus in the system
4640 * go into this tickless mode, then there will be no ilb owner (as there is
4641 * no need for one) and all the cpus will sleep till the next wakeup event
4642 * arrives...
4643 *
4644 * For the ilb owner, tick is not stopped. And this tick will be used
4645 * for idle load balancing. ilb owner will still be part of
4646 * nohz.cpu_mask..
7835b98b 4647 *
46cb4b7c
SS
4648 * While stopping the tick, this cpu will become the ilb owner if there
4649 * is no other owner. And will be the owner till that cpu becomes busy
4650 * or if all cpus in the system stop their ticks at which point
4651 * there is no need for ilb owner.
4652 *
4653 * When the ilb owner becomes busy, it nominates another owner, during the
4654 * next busy scheduler_tick()
4655 */
4656int select_nohz_load_balancer(int stop_tick)
4657{
4658 int cpu = smp_processor_id();
4659
4660 if (stop_tick) {
46cb4b7c
SS
4661 cpu_rq(cpu)->in_nohz_recently = 1;
4662
483b4ee6
SS
4663 if (!cpu_active(cpu)) {
4664 if (atomic_read(&nohz.load_balancer) != cpu)
4665 return 0;
4666
4667 /*
4668 * If we are going offline and still the leader,
4669 * give up!
4670 */
46cb4b7c
SS
4671 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4672 BUG();
483b4ee6 4673
46cb4b7c
SS
4674 return 0;
4675 }
4676
483b4ee6
SS
4677 cpumask_set_cpu(cpu, nohz.cpu_mask);
4678
46cb4b7c 4679 /* time for ilb owner also to sleep */
6ad4c188 4680 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4681 if (atomic_read(&nohz.load_balancer) == cpu)
4682 atomic_set(&nohz.load_balancer, -1);
4683 return 0;
4684 }
4685
4686 if (atomic_read(&nohz.load_balancer) == -1) {
4687 /* make me the ilb owner */
4688 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4689 return 1;
e790fb0b
GS
4690 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4691 int new_ilb;
4692
4693 if (!(sched_smt_power_savings ||
4694 sched_mc_power_savings))
4695 return 1;
4696 /*
4697 * Check to see if there is a more power-efficient
4698 * ilb.
4699 */
4700 new_ilb = find_new_ilb(cpu);
4701 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4702 atomic_set(&nohz.load_balancer, -1);
4703 resched_cpu(new_ilb);
4704 return 0;
4705 }
46cb4b7c 4706 return 1;
e790fb0b 4707 }
46cb4b7c 4708 } else {
7d1e6a9b 4709 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4710 return 0;
4711
7d1e6a9b 4712 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4713
4714 if (atomic_read(&nohz.load_balancer) == cpu)
4715 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4716 BUG();
4717 }
4718 return 0;
4719}
4720#endif
4721
4722static DEFINE_SPINLOCK(balancing);
4723
4724/*
7835b98b
CL
4725 * It checks each scheduling domain to see if it is due to be balanced,
4726 * and initiates a balancing operation if so.
4727 *
4728 * Balancing parameters are set up in arch_init_sched_domains.
4729 */
a9957449 4730static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4731{
46cb4b7c
SS
4732 int balance = 1;
4733 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4734 unsigned long interval;
4735 struct sched_domain *sd;
46cb4b7c 4736 /* Earliest time when we have to do rebalance again */
c9819f45 4737 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4738 int update_next_balance = 0;
d07355f5 4739 int need_serialize;
1da177e4 4740
46cb4b7c 4741 for_each_domain(cpu, sd) {
1da177e4
LT
4742 if (!(sd->flags & SD_LOAD_BALANCE))
4743 continue;
4744
4745 interval = sd->balance_interval;
d15bcfdb 4746 if (idle != CPU_IDLE)
1da177e4
LT
4747 interval *= sd->busy_factor;
4748
4749 /* scale ms to jiffies */
4750 interval = msecs_to_jiffies(interval);
4751 if (unlikely(!interval))
4752 interval = 1;
dd41f596
IM
4753 if (interval > HZ*NR_CPUS/10)
4754 interval = HZ*NR_CPUS/10;
4755
d07355f5 4756 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4757
d07355f5 4758 if (need_serialize) {
08c183f3
CL
4759 if (!spin_trylock(&balancing))
4760 goto out;
4761 }
4762
c9819f45 4763 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4764 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4765 /*
4766 * We've pulled tasks over so either we're no
5969fe06
NP
4767 * longer idle, or one of our SMT siblings is
4768 * not idle.
4769 */
d15bcfdb 4770 idle = CPU_NOT_IDLE;
1da177e4 4771 }
1bd77f2d 4772 sd->last_balance = jiffies;
1da177e4 4773 }
d07355f5 4774 if (need_serialize)
08c183f3
CL
4775 spin_unlock(&balancing);
4776out:
f549da84 4777 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4778 next_balance = sd->last_balance + interval;
f549da84
SS
4779 update_next_balance = 1;
4780 }
783609c6
SS
4781
4782 /*
4783 * Stop the load balance at this level. There is another
4784 * CPU in our sched group which is doing load balancing more
4785 * actively.
4786 */
4787 if (!balance)
4788 break;
1da177e4 4789 }
f549da84
SS
4790
4791 /*
4792 * next_balance will be updated only when there is a need.
4793 * When the cpu is attached to null domain for ex, it will not be
4794 * updated.
4795 */
4796 if (likely(update_next_balance))
4797 rq->next_balance = next_balance;
46cb4b7c
SS
4798}
4799
4800/*
4801 * run_rebalance_domains is triggered when needed from the scheduler tick.
4802 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4803 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4804 */
4805static void run_rebalance_domains(struct softirq_action *h)
4806{
dd41f596
IM
4807 int this_cpu = smp_processor_id();
4808 struct rq *this_rq = cpu_rq(this_cpu);
4809 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4810 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4811
dd41f596 4812 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4813
4814#ifdef CONFIG_NO_HZ
4815 /*
4816 * If this cpu is the owner for idle load balancing, then do the
4817 * balancing on behalf of the other idle cpus whose ticks are
4818 * stopped.
4819 */
dd41f596
IM
4820 if (this_rq->idle_at_tick &&
4821 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4822 struct rq *rq;
4823 int balance_cpu;
4824
7d1e6a9b
RR
4825 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4826 if (balance_cpu == this_cpu)
4827 continue;
4828
46cb4b7c
SS
4829 /*
4830 * If this cpu gets work to do, stop the load balancing
4831 * work being done for other cpus. Next load
4832 * balancing owner will pick it up.
4833 */
4834 if (need_resched())
4835 break;
4836
de0cf899 4837 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4838
4839 rq = cpu_rq(balance_cpu);
dd41f596
IM
4840 if (time_after(this_rq->next_balance, rq->next_balance))
4841 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4842 }
4843 }
4844#endif
4845}
4846
8a0be9ef
FW
4847static inline int on_null_domain(int cpu)
4848{
4849 return !rcu_dereference(cpu_rq(cpu)->sd);
4850}
4851
46cb4b7c
SS
4852/*
4853 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4854 *
4855 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4856 * idle load balancing owner or decide to stop the periodic load balancing,
4857 * if the whole system is idle.
4858 */
dd41f596 4859static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4860{
46cb4b7c
SS
4861#ifdef CONFIG_NO_HZ
4862 /*
4863 * If we were in the nohz mode recently and busy at the current
4864 * scheduler tick, then check if we need to nominate new idle
4865 * load balancer.
4866 */
4867 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4868 rq->in_nohz_recently = 0;
4869
4870 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4871 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4872 atomic_set(&nohz.load_balancer, -1);
4873 }
4874
4875 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4876 int ilb = find_new_ilb(cpu);
46cb4b7c 4877
434d53b0 4878 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4879 resched_cpu(ilb);
4880 }
4881 }
4882
4883 /*
4884 * If this cpu is idle and doing idle load balancing for all the
4885 * cpus with ticks stopped, is it time for that to stop?
4886 */
4887 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4888 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4889 resched_cpu(cpu);
4890 return;
4891 }
4892
4893 /*
4894 * If this cpu is idle and the idle load balancing is done by
4895 * someone else, then no need raise the SCHED_SOFTIRQ
4896 */
4897 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4898 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4899 return;
4900#endif
8a0be9ef
FW
4901 /* Don't need to rebalance while attached to NULL domain */
4902 if (time_after_eq(jiffies, rq->next_balance) &&
4903 likely(!on_null_domain(cpu)))
46cb4b7c 4904 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4905}
dd41f596
IM
4906
4907#else /* CONFIG_SMP */
4908
1da177e4
LT
4909/*
4910 * on UP we do not need to balance between CPUs:
4911 */
70b97a7f 4912static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4913{
4914}
dd41f596 4915
1da177e4
LT
4916#endif
4917
1da177e4
LT
4918DEFINE_PER_CPU(struct kernel_stat, kstat);
4919
4920EXPORT_PER_CPU_SYMBOL(kstat);
4921
4922/*
c5f8d995 4923 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4924 * @p in case that task is currently running.
c5f8d995
HS
4925 *
4926 * Called with task_rq_lock() held on @rq.
1da177e4 4927 */
c5f8d995
HS
4928static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4929{
4930 u64 ns = 0;
4931
4932 if (task_current(rq, p)) {
4933 update_rq_clock(rq);
4934 ns = rq->clock - p->se.exec_start;
4935 if ((s64)ns < 0)
4936 ns = 0;
4937 }
4938
4939 return ns;
4940}
4941
bb34d92f 4942unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4943{
1da177e4 4944 unsigned long flags;
41b86e9c 4945 struct rq *rq;
bb34d92f 4946 u64 ns = 0;
48f24c4d 4947
41b86e9c 4948 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4949 ns = do_task_delta_exec(p, rq);
4950 task_rq_unlock(rq, &flags);
1508487e 4951
c5f8d995
HS
4952 return ns;
4953}
f06febc9 4954
c5f8d995
HS
4955/*
4956 * Return accounted runtime for the task.
4957 * In case the task is currently running, return the runtime plus current's
4958 * pending runtime that have not been accounted yet.
4959 */
4960unsigned long long task_sched_runtime(struct task_struct *p)
4961{
4962 unsigned long flags;
4963 struct rq *rq;
4964 u64 ns = 0;
4965
4966 rq = task_rq_lock(p, &flags);
4967 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4968 task_rq_unlock(rq, &flags);
4969
4970 return ns;
4971}
48f24c4d 4972
c5f8d995
HS
4973/*
4974 * Return sum_exec_runtime for the thread group.
4975 * In case the task is currently running, return the sum plus current's
4976 * pending runtime that have not been accounted yet.
4977 *
4978 * Note that the thread group might have other running tasks as well,
4979 * so the return value not includes other pending runtime that other
4980 * running tasks might have.
4981 */
4982unsigned long long thread_group_sched_runtime(struct task_struct *p)
4983{
4984 struct task_cputime totals;
4985 unsigned long flags;
4986 struct rq *rq;
4987 u64 ns;
4988
4989 rq = task_rq_lock(p, &flags);
4990 thread_group_cputime(p, &totals);
4991 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4992 task_rq_unlock(rq, &flags);
48f24c4d 4993
1da177e4
LT
4994 return ns;
4995}
4996
1da177e4
LT
4997/*
4998 * Account user cpu time to a process.
4999 * @p: the process that the cpu time gets accounted to
1da177e4 5000 * @cputime: the cpu time spent in user space since the last update
457533a7 5001 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5002 */
457533a7
MS
5003void account_user_time(struct task_struct *p, cputime_t cputime,
5004 cputime_t cputime_scaled)
1da177e4
LT
5005{
5006 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5007 cputime64_t tmp;
5008
457533a7 5009 /* Add user time to process. */
1da177e4 5010 p->utime = cputime_add(p->utime, cputime);
457533a7 5011 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5012 account_group_user_time(p, cputime);
1da177e4
LT
5013
5014 /* Add user time to cpustat. */
5015 tmp = cputime_to_cputime64(cputime);
5016 if (TASK_NICE(p) > 0)
5017 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5018 else
5019 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5020
5021 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5022 /* Account for user time used */
5023 acct_update_integrals(p);
1da177e4
LT
5024}
5025
94886b84
LV
5026/*
5027 * Account guest cpu time to a process.
5028 * @p: the process that the cpu time gets accounted to
5029 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5030 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5031 */
457533a7
MS
5032static void account_guest_time(struct task_struct *p, cputime_t cputime,
5033 cputime_t cputime_scaled)
94886b84
LV
5034{
5035 cputime64_t tmp;
5036 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5037
5038 tmp = cputime_to_cputime64(cputime);
5039
457533a7 5040 /* Add guest time to process. */
94886b84 5041 p->utime = cputime_add(p->utime, cputime);
457533a7 5042 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5043 account_group_user_time(p, cputime);
94886b84
LV
5044 p->gtime = cputime_add(p->gtime, cputime);
5045
457533a7 5046 /* Add guest time to cpustat. */
ce0e7b28
RO
5047 if (TASK_NICE(p) > 0) {
5048 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5049 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5050 } else {
5051 cpustat->user = cputime64_add(cpustat->user, tmp);
5052 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5053 }
94886b84
LV
5054}
5055
1da177e4
LT
5056/*
5057 * Account system cpu time to a process.
5058 * @p: the process that the cpu time gets accounted to
5059 * @hardirq_offset: the offset to subtract from hardirq_count()
5060 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5061 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5062 */
5063void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5064 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5065{
5066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5067 cputime64_t tmp;
5068
983ed7a6 5069 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5070 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5071 return;
5072 }
94886b84 5073
457533a7 5074 /* Add system time to process. */
1da177e4 5075 p->stime = cputime_add(p->stime, cputime);
457533a7 5076 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5077 account_group_system_time(p, cputime);
1da177e4
LT
5078
5079 /* Add system time to cpustat. */
5080 tmp = cputime_to_cputime64(cputime);
5081 if (hardirq_count() - hardirq_offset)
5082 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5083 else if (softirq_count())
5084 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5085 else
79741dd3
MS
5086 cpustat->system = cputime64_add(cpustat->system, tmp);
5087
ef12fefa
BR
5088 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5089
1da177e4
LT
5090 /* Account for system time used */
5091 acct_update_integrals(p);
1da177e4
LT
5092}
5093
c66f08be 5094/*
1da177e4 5095 * Account for involuntary wait time.
1da177e4 5096 * @steal: the cpu time spent in involuntary wait
c66f08be 5097 */
79741dd3 5098void account_steal_time(cputime_t cputime)
c66f08be 5099{
79741dd3
MS
5100 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5101 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5102
5103 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5104}
5105
1da177e4 5106/*
79741dd3
MS
5107 * Account for idle time.
5108 * @cputime: the cpu time spent in idle wait
1da177e4 5109 */
79741dd3 5110void account_idle_time(cputime_t cputime)
1da177e4
LT
5111{
5112 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5113 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5114 struct rq *rq = this_rq();
1da177e4 5115
79741dd3
MS
5116 if (atomic_read(&rq->nr_iowait) > 0)
5117 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5118 else
5119 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5120}
5121
79741dd3
MS
5122#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5123
5124/*
5125 * Account a single tick of cpu time.
5126 * @p: the process that the cpu time gets accounted to
5127 * @user_tick: indicates if the tick is a user or a system tick
5128 */
5129void account_process_tick(struct task_struct *p, int user_tick)
5130{
a42548a1 5131 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5132 struct rq *rq = this_rq();
5133
5134 if (user_tick)
a42548a1 5135 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5136 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5137 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5138 one_jiffy_scaled);
5139 else
a42548a1 5140 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5141}
5142
5143/*
5144 * Account multiple ticks of steal time.
5145 * @p: the process from which the cpu time has been stolen
5146 * @ticks: number of stolen ticks
5147 */
5148void account_steal_ticks(unsigned long ticks)
5149{
5150 account_steal_time(jiffies_to_cputime(ticks));
5151}
5152
5153/*
5154 * Account multiple ticks of idle time.
5155 * @ticks: number of stolen ticks
5156 */
5157void account_idle_ticks(unsigned long ticks)
5158{
5159 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5160}
5161
79741dd3
MS
5162#endif
5163
49048622
BS
5164/*
5165 * Use precise platform statistics if available:
5166 */
5167#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5168void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5169{
d99ca3b9
HS
5170 *ut = p->utime;
5171 *st = p->stime;
49048622
BS
5172}
5173
0cf55e1e 5174void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5175{
0cf55e1e
HS
5176 struct task_cputime cputime;
5177
5178 thread_group_cputime(p, &cputime);
5179
5180 *ut = cputime.utime;
5181 *st = cputime.stime;
49048622
BS
5182}
5183#else
761b1d26
HS
5184
5185#ifndef nsecs_to_cputime
b7b20df9 5186# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5187#endif
5188
d180c5bc 5189void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5190{
d99ca3b9 5191 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5192
5193 /*
5194 * Use CFS's precise accounting:
5195 */
d180c5bc 5196 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5197
5198 if (total) {
d180c5bc
HS
5199 u64 temp;
5200
5201 temp = (u64)(rtime * utime);
49048622 5202 do_div(temp, total);
d180c5bc
HS
5203 utime = (cputime_t)temp;
5204 } else
5205 utime = rtime;
49048622 5206
d180c5bc
HS
5207 /*
5208 * Compare with previous values, to keep monotonicity:
5209 */
761b1d26 5210 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5211 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5212
d99ca3b9
HS
5213 *ut = p->prev_utime;
5214 *st = p->prev_stime;
49048622
BS
5215}
5216
0cf55e1e
HS
5217/*
5218 * Must be called with siglock held.
5219 */
5220void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5221{
0cf55e1e
HS
5222 struct signal_struct *sig = p->signal;
5223 struct task_cputime cputime;
5224 cputime_t rtime, utime, total;
49048622 5225
0cf55e1e 5226 thread_group_cputime(p, &cputime);
49048622 5227
0cf55e1e
HS
5228 total = cputime_add(cputime.utime, cputime.stime);
5229 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5230
0cf55e1e
HS
5231 if (total) {
5232 u64 temp;
49048622 5233
0cf55e1e
HS
5234 temp = (u64)(rtime * cputime.utime);
5235 do_div(temp, total);
5236 utime = (cputime_t)temp;
5237 } else
5238 utime = rtime;
5239
5240 sig->prev_utime = max(sig->prev_utime, utime);
5241 sig->prev_stime = max(sig->prev_stime,
5242 cputime_sub(rtime, sig->prev_utime));
5243
5244 *ut = sig->prev_utime;
5245 *st = sig->prev_stime;
49048622 5246}
49048622 5247#endif
49048622 5248
7835b98b
CL
5249/*
5250 * This function gets called by the timer code, with HZ frequency.
5251 * We call it with interrupts disabled.
5252 *
5253 * It also gets called by the fork code, when changing the parent's
5254 * timeslices.
5255 */
5256void scheduler_tick(void)
5257{
7835b98b
CL
5258 int cpu = smp_processor_id();
5259 struct rq *rq = cpu_rq(cpu);
dd41f596 5260 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5261
5262 sched_clock_tick();
dd41f596
IM
5263
5264 spin_lock(&rq->lock);
3e51f33f 5265 update_rq_clock(rq);
f1a438d8 5266 update_cpu_load(rq);
fa85ae24 5267 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5268 spin_unlock(&rq->lock);
7835b98b 5269
cdd6c482 5270 perf_event_task_tick(curr, cpu);
e220d2dc 5271
e418e1c2 5272#ifdef CONFIG_SMP
dd41f596
IM
5273 rq->idle_at_tick = idle_cpu(cpu);
5274 trigger_load_balance(rq, cpu);
e418e1c2 5275#endif
1da177e4
LT
5276}
5277
132380a0 5278notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5279{
5280 if (in_lock_functions(addr)) {
5281 addr = CALLER_ADDR2;
5282 if (in_lock_functions(addr))
5283 addr = CALLER_ADDR3;
5284 }
5285 return addr;
5286}
1da177e4 5287
7e49fcce
SR
5288#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5289 defined(CONFIG_PREEMPT_TRACER))
5290
43627582 5291void __kprobes add_preempt_count(int val)
1da177e4 5292{
6cd8a4bb 5293#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5294 /*
5295 * Underflow?
5296 */
9a11b49a
IM
5297 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5298 return;
6cd8a4bb 5299#endif
1da177e4 5300 preempt_count() += val;
6cd8a4bb 5301#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5302 /*
5303 * Spinlock count overflowing soon?
5304 */
33859f7f
MOS
5305 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5306 PREEMPT_MASK - 10);
6cd8a4bb
SR
5307#endif
5308 if (preempt_count() == val)
5309 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5310}
5311EXPORT_SYMBOL(add_preempt_count);
5312
43627582 5313void __kprobes sub_preempt_count(int val)
1da177e4 5314{
6cd8a4bb 5315#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5316 /*
5317 * Underflow?
5318 */
01e3eb82 5319 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5320 return;
1da177e4
LT
5321 /*
5322 * Is the spinlock portion underflowing?
5323 */
9a11b49a
IM
5324 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5325 !(preempt_count() & PREEMPT_MASK)))
5326 return;
6cd8a4bb 5327#endif
9a11b49a 5328
6cd8a4bb
SR
5329 if (preempt_count() == val)
5330 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5331 preempt_count() -= val;
5332}
5333EXPORT_SYMBOL(sub_preempt_count);
5334
5335#endif
5336
5337/*
dd41f596 5338 * Print scheduling while atomic bug:
1da177e4 5339 */
dd41f596 5340static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5341{
838225b4
SS
5342 struct pt_regs *regs = get_irq_regs();
5343
5344 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5345 prev->comm, prev->pid, preempt_count());
5346
dd41f596 5347 debug_show_held_locks(prev);
e21f5b15 5348 print_modules();
dd41f596
IM
5349 if (irqs_disabled())
5350 print_irqtrace_events(prev);
838225b4
SS
5351
5352 if (regs)
5353 show_regs(regs);
5354 else
5355 dump_stack();
dd41f596 5356}
1da177e4 5357
dd41f596
IM
5358/*
5359 * Various schedule()-time debugging checks and statistics:
5360 */
5361static inline void schedule_debug(struct task_struct *prev)
5362{
1da177e4 5363 /*
41a2d6cf 5364 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5365 * schedule() atomically, we ignore that path for now.
5366 * Otherwise, whine if we are scheduling when we should not be.
5367 */
3f33a7ce 5368 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5369 __schedule_bug(prev);
5370
1da177e4
LT
5371 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5372
2d72376b 5373 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5374#ifdef CONFIG_SCHEDSTATS
5375 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5376 schedstat_inc(this_rq(), bkl_count);
5377 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5378 }
5379#endif
dd41f596
IM
5380}
5381
ad4b78bb 5382static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5383{
ad4b78bb 5384 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5385
ad4b78bb 5386 update_avg(&p->se.avg_running, runtime);
df1c99d4 5387
ad4b78bb 5388 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5389 /*
5390 * In order to avoid avg_overlap growing stale when we are
5391 * indeed overlapping and hence not getting put to sleep, grow
5392 * the avg_overlap on preemption.
5393 *
5394 * We use the average preemption runtime because that
5395 * correlates to the amount of cache footprint a task can
5396 * build up.
5397 */
ad4b78bb
PZ
5398 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5399 update_avg(&p->se.avg_overlap, runtime);
5400 } else {
5401 update_avg(&p->se.avg_running, 0);
df1c99d4 5402 }
ad4b78bb 5403 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5404}
5405
dd41f596
IM
5406/*
5407 * Pick up the highest-prio task:
5408 */
5409static inline struct task_struct *
b67802ea 5410pick_next_task(struct rq *rq)
dd41f596 5411{
5522d5d5 5412 const struct sched_class *class;
dd41f596 5413 struct task_struct *p;
1da177e4
LT
5414
5415 /*
dd41f596
IM
5416 * Optimization: we know that if all tasks are in
5417 * the fair class we can call that function directly:
1da177e4 5418 */
dd41f596 5419 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5420 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5421 if (likely(p))
5422 return p;
1da177e4
LT
5423 }
5424
dd41f596
IM
5425 class = sched_class_highest;
5426 for ( ; ; ) {
fb8d4724 5427 p = class->pick_next_task(rq);
dd41f596
IM
5428 if (p)
5429 return p;
5430 /*
5431 * Will never be NULL as the idle class always
5432 * returns a non-NULL p:
5433 */
5434 class = class->next;
5435 }
5436}
1da177e4 5437
dd41f596
IM
5438/*
5439 * schedule() is the main scheduler function.
5440 */
ff743345 5441asmlinkage void __sched schedule(void)
dd41f596
IM
5442{
5443 struct task_struct *prev, *next;
67ca7bde 5444 unsigned long *switch_count;
dd41f596 5445 struct rq *rq;
31656519 5446 int cpu;
dd41f596 5447
ff743345
PZ
5448need_resched:
5449 preempt_disable();
dd41f596
IM
5450 cpu = smp_processor_id();
5451 rq = cpu_rq(cpu);
d6714c22 5452 rcu_sched_qs(cpu);
dd41f596
IM
5453 prev = rq->curr;
5454 switch_count = &prev->nivcsw;
5455
5456 release_kernel_lock(prev);
5457need_resched_nonpreemptible:
5458
5459 schedule_debug(prev);
1da177e4 5460
31656519 5461 if (sched_feat(HRTICK))
f333fdc9 5462 hrtick_clear(rq);
8f4d37ec 5463
8cd162ce 5464 spin_lock_irq(&rq->lock);
3e51f33f 5465 update_rq_clock(rq);
1e819950 5466 clear_tsk_need_resched(prev);
1da177e4 5467
1da177e4 5468 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5469 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5470 prev->state = TASK_RUNNING;
16882c1e 5471 else
2e1cb74a 5472 deactivate_task(rq, prev, 1);
dd41f596 5473 switch_count = &prev->nvcsw;
1da177e4
LT
5474 }
5475
3f029d3c 5476 pre_schedule(rq, prev);
f65eda4f 5477
dd41f596 5478 if (unlikely(!rq->nr_running))
1da177e4 5479 idle_balance(cpu, rq);
1da177e4 5480
df1c99d4 5481 put_prev_task(rq, prev);
b67802ea 5482 next = pick_next_task(rq);
1da177e4 5483
1da177e4 5484 if (likely(prev != next)) {
673a90a1 5485 sched_info_switch(prev, next);
cdd6c482 5486 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5487
1da177e4
LT
5488 rq->nr_switches++;
5489 rq->curr = next;
5490 ++*switch_count;
5491
dd41f596 5492 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5493 /*
5494 * the context switch might have flipped the stack from under
5495 * us, hence refresh the local variables.
5496 */
5497 cpu = smp_processor_id();
5498 rq = cpu_rq(cpu);
1da177e4
LT
5499 } else
5500 spin_unlock_irq(&rq->lock);
5501
3f029d3c 5502 post_schedule(rq);
1da177e4 5503
8f4d37ec 5504 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5505 goto need_resched_nonpreemptible;
8f4d37ec 5506
1da177e4 5507 preempt_enable_no_resched();
ff743345 5508 if (need_resched())
1da177e4
LT
5509 goto need_resched;
5510}
1da177e4
LT
5511EXPORT_SYMBOL(schedule);
5512
c08f7829 5513#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5514/*
5515 * Look out! "owner" is an entirely speculative pointer
5516 * access and not reliable.
5517 */
5518int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5519{
5520 unsigned int cpu;
5521 struct rq *rq;
5522
5523 if (!sched_feat(OWNER_SPIN))
5524 return 0;
5525
5526#ifdef CONFIG_DEBUG_PAGEALLOC
5527 /*
5528 * Need to access the cpu field knowing that
5529 * DEBUG_PAGEALLOC could have unmapped it if
5530 * the mutex owner just released it and exited.
5531 */
5532 if (probe_kernel_address(&owner->cpu, cpu))
5533 goto out;
5534#else
5535 cpu = owner->cpu;
5536#endif
5537
5538 /*
5539 * Even if the access succeeded (likely case),
5540 * the cpu field may no longer be valid.
5541 */
5542 if (cpu >= nr_cpumask_bits)
5543 goto out;
5544
5545 /*
5546 * We need to validate that we can do a
5547 * get_cpu() and that we have the percpu area.
5548 */
5549 if (!cpu_online(cpu))
5550 goto out;
5551
5552 rq = cpu_rq(cpu);
5553
5554 for (;;) {
5555 /*
5556 * Owner changed, break to re-assess state.
5557 */
5558 if (lock->owner != owner)
5559 break;
5560
5561 /*
5562 * Is that owner really running on that cpu?
5563 */
5564 if (task_thread_info(rq->curr) != owner || need_resched())
5565 return 0;
5566
5567 cpu_relax();
5568 }
5569out:
5570 return 1;
5571}
5572#endif
5573
1da177e4
LT
5574#ifdef CONFIG_PREEMPT
5575/*
2ed6e34f 5576 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5577 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5578 * occur there and call schedule directly.
5579 */
5580asmlinkage void __sched preempt_schedule(void)
5581{
5582 struct thread_info *ti = current_thread_info();
6478d880 5583
1da177e4
LT
5584 /*
5585 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5586 * we do not want to preempt the current task. Just return..
1da177e4 5587 */
beed33a8 5588 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5589 return;
5590
3a5c359a
AK
5591 do {
5592 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5593 schedule();
3a5c359a 5594 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5595
3a5c359a
AK
5596 /*
5597 * Check again in case we missed a preemption opportunity
5598 * between schedule and now.
5599 */
5600 barrier();
5ed0cec0 5601 } while (need_resched());
1da177e4 5602}
1da177e4
LT
5603EXPORT_SYMBOL(preempt_schedule);
5604
5605/*
2ed6e34f 5606 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5607 * off of irq context.
5608 * Note, that this is called and return with irqs disabled. This will
5609 * protect us against recursive calling from irq.
5610 */
5611asmlinkage void __sched preempt_schedule_irq(void)
5612{
5613 struct thread_info *ti = current_thread_info();
6478d880 5614
2ed6e34f 5615 /* Catch callers which need to be fixed */
1da177e4
LT
5616 BUG_ON(ti->preempt_count || !irqs_disabled());
5617
3a5c359a
AK
5618 do {
5619 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5620 local_irq_enable();
5621 schedule();
5622 local_irq_disable();
3a5c359a 5623 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5624
3a5c359a
AK
5625 /*
5626 * Check again in case we missed a preemption opportunity
5627 * between schedule and now.
5628 */
5629 barrier();
5ed0cec0 5630 } while (need_resched());
1da177e4
LT
5631}
5632
5633#endif /* CONFIG_PREEMPT */
5634
63859d4f 5635int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5636 void *key)
1da177e4 5637{
63859d4f 5638 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5639}
1da177e4
LT
5640EXPORT_SYMBOL(default_wake_function);
5641
5642/*
41a2d6cf
IM
5643 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5644 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5645 * number) then we wake all the non-exclusive tasks and one exclusive task.
5646 *
5647 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5648 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5649 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5650 */
78ddb08f 5651static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5652 int nr_exclusive, int wake_flags, void *key)
1da177e4 5653{
2e45874c 5654 wait_queue_t *curr, *next;
1da177e4 5655
2e45874c 5656 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5657 unsigned flags = curr->flags;
5658
63859d4f 5659 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5660 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5661 break;
5662 }
5663}
5664
5665/**
5666 * __wake_up - wake up threads blocked on a waitqueue.
5667 * @q: the waitqueue
5668 * @mode: which threads
5669 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5670 * @key: is directly passed to the wakeup function
50fa610a
DH
5671 *
5672 * It may be assumed that this function implies a write memory barrier before
5673 * changing the task state if and only if any tasks are woken up.
1da177e4 5674 */
7ad5b3a5 5675void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5676 int nr_exclusive, void *key)
1da177e4
LT
5677{
5678 unsigned long flags;
5679
5680 spin_lock_irqsave(&q->lock, flags);
5681 __wake_up_common(q, mode, nr_exclusive, 0, key);
5682 spin_unlock_irqrestore(&q->lock, flags);
5683}
1da177e4
LT
5684EXPORT_SYMBOL(__wake_up);
5685
5686/*
5687 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5688 */
7ad5b3a5 5689void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5690{
5691 __wake_up_common(q, mode, 1, 0, NULL);
5692}
5693
4ede816a
DL
5694void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5695{
5696 __wake_up_common(q, mode, 1, 0, key);
5697}
5698
1da177e4 5699/**
4ede816a 5700 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5701 * @q: the waitqueue
5702 * @mode: which threads
5703 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5704 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5705 *
5706 * The sync wakeup differs that the waker knows that it will schedule
5707 * away soon, so while the target thread will be woken up, it will not
5708 * be migrated to another CPU - ie. the two threads are 'synchronized'
5709 * with each other. This can prevent needless bouncing between CPUs.
5710 *
5711 * On UP it can prevent extra preemption.
50fa610a
DH
5712 *
5713 * It may be assumed that this function implies a write memory barrier before
5714 * changing the task state if and only if any tasks are woken up.
1da177e4 5715 */
4ede816a
DL
5716void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5717 int nr_exclusive, void *key)
1da177e4
LT
5718{
5719 unsigned long flags;
7d478721 5720 int wake_flags = WF_SYNC;
1da177e4
LT
5721
5722 if (unlikely(!q))
5723 return;
5724
5725 if (unlikely(!nr_exclusive))
7d478721 5726 wake_flags = 0;
1da177e4
LT
5727
5728 spin_lock_irqsave(&q->lock, flags);
7d478721 5729 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5730 spin_unlock_irqrestore(&q->lock, flags);
5731}
4ede816a
DL
5732EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5733
5734/*
5735 * __wake_up_sync - see __wake_up_sync_key()
5736 */
5737void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5738{
5739 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5740}
1da177e4
LT
5741EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5742
65eb3dc6
KD
5743/**
5744 * complete: - signals a single thread waiting on this completion
5745 * @x: holds the state of this particular completion
5746 *
5747 * This will wake up a single thread waiting on this completion. Threads will be
5748 * awakened in the same order in which they were queued.
5749 *
5750 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5751 *
5752 * It may be assumed that this function implies a write memory barrier before
5753 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5754 */
b15136e9 5755void complete(struct completion *x)
1da177e4
LT
5756{
5757 unsigned long flags;
5758
5759 spin_lock_irqsave(&x->wait.lock, flags);
5760 x->done++;
d9514f6c 5761 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5762 spin_unlock_irqrestore(&x->wait.lock, flags);
5763}
5764EXPORT_SYMBOL(complete);
5765
65eb3dc6
KD
5766/**
5767 * complete_all: - signals all threads waiting on this completion
5768 * @x: holds the state of this particular completion
5769 *
5770 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5771 *
5772 * It may be assumed that this function implies a write memory barrier before
5773 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5774 */
b15136e9 5775void complete_all(struct completion *x)
1da177e4
LT
5776{
5777 unsigned long flags;
5778
5779 spin_lock_irqsave(&x->wait.lock, flags);
5780 x->done += UINT_MAX/2;
d9514f6c 5781 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5782 spin_unlock_irqrestore(&x->wait.lock, flags);
5783}
5784EXPORT_SYMBOL(complete_all);
5785
8cbbe86d
AK
5786static inline long __sched
5787do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5788{
1da177e4
LT
5789 if (!x->done) {
5790 DECLARE_WAITQUEUE(wait, current);
5791
5792 wait.flags |= WQ_FLAG_EXCLUSIVE;
5793 __add_wait_queue_tail(&x->wait, &wait);
5794 do {
94d3d824 5795 if (signal_pending_state(state, current)) {
ea71a546
ON
5796 timeout = -ERESTARTSYS;
5797 break;
8cbbe86d
AK
5798 }
5799 __set_current_state(state);
1da177e4
LT
5800 spin_unlock_irq(&x->wait.lock);
5801 timeout = schedule_timeout(timeout);
5802 spin_lock_irq(&x->wait.lock);
ea71a546 5803 } while (!x->done && timeout);
1da177e4 5804 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5805 if (!x->done)
5806 return timeout;
1da177e4
LT
5807 }
5808 x->done--;
ea71a546 5809 return timeout ?: 1;
1da177e4 5810}
1da177e4 5811
8cbbe86d
AK
5812static long __sched
5813wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5814{
1da177e4
LT
5815 might_sleep();
5816
5817 spin_lock_irq(&x->wait.lock);
8cbbe86d 5818 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5819 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5820 return timeout;
5821}
1da177e4 5822
65eb3dc6
KD
5823/**
5824 * wait_for_completion: - waits for completion of a task
5825 * @x: holds the state of this particular completion
5826 *
5827 * This waits to be signaled for completion of a specific task. It is NOT
5828 * interruptible and there is no timeout.
5829 *
5830 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5831 * and interrupt capability. Also see complete().
5832 */
b15136e9 5833void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5834{
5835 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5836}
8cbbe86d 5837EXPORT_SYMBOL(wait_for_completion);
1da177e4 5838
65eb3dc6
KD
5839/**
5840 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5841 * @x: holds the state of this particular completion
5842 * @timeout: timeout value in jiffies
5843 *
5844 * This waits for either a completion of a specific task to be signaled or for a
5845 * specified timeout to expire. The timeout is in jiffies. It is not
5846 * interruptible.
5847 */
b15136e9 5848unsigned long __sched
8cbbe86d 5849wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5850{
8cbbe86d 5851 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5852}
8cbbe86d 5853EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5854
65eb3dc6
KD
5855/**
5856 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5857 * @x: holds the state of this particular completion
5858 *
5859 * This waits for completion of a specific task to be signaled. It is
5860 * interruptible.
5861 */
8cbbe86d 5862int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5863{
51e97990
AK
5864 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5865 if (t == -ERESTARTSYS)
5866 return t;
5867 return 0;
0fec171c 5868}
8cbbe86d 5869EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5870
65eb3dc6
KD
5871/**
5872 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5873 * @x: holds the state of this particular completion
5874 * @timeout: timeout value in jiffies
5875 *
5876 * This waits for either a completion of a specific task to be signaled or for a
5877 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5878 */
b15136e9 5879unsigned long __sched
8cbbe86d
AK
5880wait_for_completion_interruptible_timeout(struct completion *x,
5881 unsigned long timeout)
0fec171c 5882{
8cbbe86d 5883 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5884}
8cbbe86d 5885EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5886
65eb3dc6
KD
5887/**
5888 * wait_for_completion_killable: - waits for completion of a task (killable)
5889 * @x: holds the state of this particular completion
5890 *
5891 * This waits to be signaled for completion of a specific task. It can be
5892 * interrupted by a kill signal.
5893 */
009e577e
MW
5894int __sched wait_for_completion_killable(struct completion *x)
5895{
5896 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5897 if (t == -ERESTARTSYS)
5898 return t;
5899 return 0;
5900}
5901EXPORT_SYMBOL(wait_for_completion_killable);
5902
be4de352
DC
5903/**
5904 * try_wait_for_completion - try to decrement a completion without blocking
5905 * @x: completion structure
5906 *
5907 * Returns: 0 if a decrement cannot be done without blocking
5908 * 1 if a decrement succeeded.
5909 *
5910 * If a completion is being used as a counting completion,
5911 * attempt to decrement the counter without blocking. This
5912 * enables us to avoid waiting if the resource the completion
5913 * is protecting is not available.
5914 */
5915bool try_wait_for_completion(struct completion *x)
5916{
5917 int ret = 1;
5918
5919 spin_lock_irq(&x->wait.lock);
5920 if (!x->done)
5921 ret = 0;
5922 else
5923 x->done--;
5924 spin_unlock_irq(&x->wait.lock);
5925 return ret;
5926}
5927EXPORT_SYMBOL(try_wait_for_completion);
5928
5929/**
5930 * completion_done - Test to see if a completion has any waiters
5931 * @x: completion structure
5932 *
5933 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5934 * 1 if there are no waiters.
5935 *
5936 */
5937bool completion_done(struct completion *x)
5938{
5939 int ret = 1;
5940
5941 spin_lock_irq(&x->wait.lock);
5942 if (!x->done)
5943 ret = 0;
5944 spin_unlock_irq(&x->wait.lock);
5945 return ret;
5946}
5947EXPORT_SYMBOL(completion_done);
5948
8cbbe86d
AK
5949static long __sched
5950sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5951{
0fec171c
IM
5952 unsigned long flags;
5953 wait_queue_t wait;
5954
5955 init_waitqueue_entry(&wait, current);
1da177e4 5956
8cbbe86d 5957 __set_current_state(state);
1da177e4 5958
8cbbe86d
AK
5959 spin_lock_irqsave(&q->lock, flags);
5960 __add_wait_queue(q, &wait);
5961 spin_unlock(&q->lock);
5962 timeout = schedule_timeout(timeout);
5963 spin_lock_irq(&q->lock);
5964 __remove_wait_queue(q, &wait);
5965 spin_unlock_irqrestore(&q->lock, flags);
5966
5967 return timeout;
5968}
5969
5970void __sched interruptible_sleep_on(wait_queue_head_t *q)
5971{
5972 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5973}
1da177e4
LT
5974EXPORT_SYMBOL(interruptible_sleep_on);
5975
0fec171c 5976long __sched
95cdf3b7 5977interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5978{
8cbbe86d 5979 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5980}
1da177e4
LT
5981EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5982
0fec171c 5983void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5984{
8cbbe86d 5985 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5986}
1da177e4
LT
5987EXPORT_SYMBOL(sleep_on);
5988
0fec171c 5989long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5990{
8cbbe86d 5991 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5992}
1da177e4
LT
5993EXPORT_SYMBOL(sleep_on_timeout);
5994
b29739f9
IM
5995#ifdef CONFIG_RT_MUTEXES
5996
5997/*
5998 * rt_mutex_setprio - set the current priority of a task
5999 * @p: task
6000 * @prio: prio value (kernel-internal form)
6001 *
6002 * This function changes the 'effective' priority of a task. It does
6003 * not touch ->normal_prio like __setscheduler().
6004 *
6005 * Used by the rt_mutex code to implement priority inheritance logic.
6006 */
36c8b586 6007void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6008{
6009 unsigned long flags;
83b699ed 6010 int oldprio, on_rq, running;
70b97a7f 6011 struct rq *rq;
cb469845 6012 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6013
6014 BUG_ON(prio < 0 || prio > MAX_PRIO);
6015
6016 rq = task_rq_lock(p, &flags);
a8e504d2 6017 update_rq_clock(rq);
b29739f9 6018
d5f9f942 6019 oldprio = p->prio;
dd41f596 6020 on_rq = p->se.on_rq;
051a1d1a 6021 running = task_current(rq, p);
0e1f3483 6022 if (on_rq)
69be72c1 6023 dequeue_task(rq, p, 0);
0e1f3483
HS
6024 if (running)
6025 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6026
6027 if (rt_prio(prio))
6028 p->sched_class = &rt_sched_class;
6029 else
6030 p->sched_class = &fair_sched_class;
6031
b29739f9
IM
6032 p->prio = prio;
6033
0e1f3483
HS
6034 if (running)
6035 p->sched_class->set_curr_task(rq);
dd41f596 6036 if (on_rq) {
8159f87e 6037 enqueue_task(rq, p, 0);
cb469845
SR
6038
6039 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6040 }
6041 task_rq_unlock(rq, &flags);
6042}
6043
6044#endif
6045
36c8b586 6046void set_user_nice(struct task_struct *p, long nice)
1da177e4 6047{
dd41f596 6048 int old_prio, delta, on_rq;
1da177e4 6049 unsigned long flags;
70b97a7f 6050 struct rq *rq;
1da177e4
LT
6051
6052 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6053 return;
6054 /*
6055 * We have to be careful, if called from sys_setpriority(),
6056 * the task might be in the middle of scheduling on another CPU.
6057 */
6058 rq = task_rq_lock(p, &flags);
a8e504d2 6059 update_rq_clock(rq);
1da177e4
LT
6060 /*
6061 * The RT priorities are set via sched_setscheduler(), but we still
6062 * allow the 'normal' nice value to be set - but as expected
6063 * it wont have any effect on scheduling until the task is
dd41f596 6064 * SCHED_FIFO/SCHED_RR:
1da177e4 6065 */
e05606d3 6066 if (task_has_rt_policy(p)) {
1da177e4
LT
6067 p->static_prio = NICE_TO_PRIO(nice);
6068 goto out_unlock;
6069 }
dd41f596 6070 on_rq = p->se.on_rq;
c09595f6 6071 if (on_rq)
69be72c1 6072 dequeue_task(rq, p, 0);
1da177e4 6073
1da177e4 6074 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6075 set_load_weight(p);
b29739f9
IM
6076 old_prio = p->prio;
6077 p->prio = effective_prio(p);
6078 delta = p->prio - old_prio;
1da177e4 6079
dd41f596 6080 if (on_rq) {
8159f87e 6081 enqueue_task(rq, p, 0);
1da177e4 6082 /*
d5f9f942
AM
6083 * If the task increased its priority or is running and
6084 * lowered its priority, then reschedule its CPU:
1da177e4 6085 */
d5f9f942 6086 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6087 resched_task(rq->curr);
6088 }
6089out_unlock:
6090 task_rq_unlock(rq, &flags);
6091}
1da177e4
LT
6092EXPORT_SYMBOL(set_user_nice);
6093
e43379f1
MM
6094/*
6095 * can_nice - check if a task can reduce its nice value
6096 * @p: task
6097 * @nice: nice value
6098 */
36c8b586 6099int can_nice(const struct task_struct *p, const int nice)
e43379f1 6100{
024f4747
MM
6101 /* convert nice value [19,-20] to rlimit style value [1,40] */
6102 int nice_rlim = 20 - nice;
48f24c4d 6103
e43379f1
MM
6104 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6105 capable(CAP_SYS_NICE));
6106}
6107
1da177e4
LT
6108#ifdef __ARCH_WANT_SYS_NICE
6109
6110/*
6111 * sys_nice - change the priority of the current process.
6112 * @increment: priority increment
6113 *
6114 * sys_setpriority is a more generic, but much slower function that
6115 * does similar things.
6116 */
5add95d4 6117SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6118{
48f24c4d 6119 long nice, retval;
1da177e4
LT
6120
6121 /*
6122 * Setpriority might change our priority at the same moment.
6123 * We don't have to worry. Conceptually one call occurs first
6124 * and we have a single winner.
6125 */
e43379f1
MM
6126 if (increment < -40)
6127 increment = -40;
1da177e4
LT
6128 if (increment > 40)
6129 increment = 40;
6130
2b8f836f 6131 nice = TASK_NICE(current) + increment;
1da177e4
LT
6132 if (nice < -20)
6133 nice = -20;
6134 if (nice > 19)
6135 nice = 19;
6136
e43379f1
MM
6137 if (increment < 0 && !can_nice(current, nice))
6138 return -EPERM;
6139
1da177e4
LT
6140 retval = security_task_setnice(current, nice);
6141 if (retval)
6142 return retval;
6143
6144 set_user_nice(current, nice);
6145 return 0;
6146}
6147
6148#endif
6149
6150/**
6151 * task_prio - return the priority value of a given task.
6152 * @p: the task in question.
6153 *
6154 * This is the priority value as seen by users in /proc.
6155 * RT tasks are offset by -200. Normal tasks are centered
6156 * around 0, value goes from -16 to +15.
6157 */
36c8b586 6158int task_prio(const struct task_struct *p)
1da177e4
LT
6159{
6160 return p->prio - MAX_RT_PRIO;
6161}
6162
6163/**
6164 * task_nice - return the nice value of a given task.
6165 * @p: the task in question.
6166 */
36c8b586 6167int task_nice(const struct task_struct *p)
1da177e4
LT
6168{
6169 return TASK_NICE(p);
6170}
150d8bed 6171EXPORT_SYMBOL(task_nice);
1da177e4
LT
6172
6173/**
6174 * idle_cpu - is a given cpu idle currently?
6175 * @cpu: the processor in question.
6176 */
6177int idle_cpu(int cpu)
6178{
6179 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6180}
6181
1da177e4
LT
6182/**
6183 * idle_task - return the idle task for a given cpu.
6184 * @cpu: the processor in question.
6185 */
36c8b586 6186struct task_struct *idle_task(int cpu)
1da177e4
LT
6187{
6188 return cpu_rq(cpu)->idle;
6189}
6190
6191/**
6192 * find_process_by_pid - find a process with a matching PID value.
6193 * @pid: the pid in question.
6194 */
a9957449 6195static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6196{
228ebcbe 6197 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6198}
6199
6200/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6201static void
6202__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6203{
dd41f596 6204 BUG_ON(p->se.on_rq);
48f24c4d 6205
1da177e4
LT
6206 p->policy = policy;
6207 p->rt_priority = prio;
b29739f9
IM
6208 p->normal_prio = normal_prio(p);
6209 /* we are holding p->pi_lock already */
6210 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6211 if (rt_prio(p->prio))
6212 p->sched_class = &rt_sched_class;
6213 else
6214 p->sched_class = &fair_sched_class;
2dd73a4f 6215 set_load_weight(p);
1da177e4
LT
6216}
6217
c69e8d9c
DH
6218/*
6219 * check the target process has a UID that matches the current process's
6220 */
6221static bool check_same_owner(struct task_struct *p)
6222{
6223 const struct cred *cred = current_cred(), *pcred;
6224 bool match;
6225
6226 rcu_read_lock();
6227 pcred = __task_cred(p);
6228 match = (cred->euid == pcred->euid ||
6229 cred->euid == pcred->uid);
6230 rcu_read_unlock();
6231 return match;
6232}
6233
961ccddd
RR
6234static int __sched_setscheduler(struct task_struct *p, int policy,
6235 struct sched_param *param, bool user)
1da177e4 6236{
83b699ed 6237 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6238 unsigned long flags;
cb469845 6239 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6240 struct rq *rq;
ca94c442 6241 int reset_on_fork;
1da177e4 6242
66e5393a
SR
6243 /* may grab non-irq protected spin_locks */
6244 BUG_ON(in_interrupt());
1da177e4
LT
6245recheck:
6246 /* double check policy once rq lock held */
ca94c442
LP
6247 if (policy < 0) {
6248 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6249 policy = oldpolicy = p->policy;
ca94c442
LP
6250 } else {
6251 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6252 policy &= ~SCHED_RESET_ON_FORK;
6253
6254 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6255 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6256 policy != SCHED_IDLE)
6257 return -EINVAL;
6258 }
6259
1da177e4
LT
6260 /*
6261 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6262 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6263 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6264 */
6265 if (param->sched_priority < 0 ||
95cdf3b7 6266 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6267 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6268 return -EINVAL;
e05606d3 6269 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6270 return -EINVAL;
6271
37e4ab3f
OC
6272 /*
6273 * Allow unprivileged RT tasks to decrease priority:
6274 */
961ccddd 6275 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6276 if (rt_policy(policy)) {
8dc3e909 6277 unsigned long rlim_rtprio;
8dc3e909
ON
6278
6279 if (!lock_task_sighand(p, &flags))
6280 return -ESRCH;
6281 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6282 unlock_task_sighand(p, &flags);
6283
6284 /* can't set/change the rt policy */
6285 if (policy != p->policy && !rlim_rtprio)
6286 return -EPERM;
6287
6288 /* can't increase priority */
6289 if (param->sched_priority > p->rt_priority &&
6290 param->sched_priority > rlim_rtprio)
6291 return -EPERM;
6292 }
dd41f596
IM
6293 /*
6294 * Like positive nice levels, dont allow tasks to
6295 * move out of SCHED_IDLE either:
6296 */
6297 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6298 return -EPERM;
5fe1d75f 6299
37e4ab3f 6300 /* can't change other user's priorities */
c69e8d9c 6301 if (!check_same_owner(p))
37e4ab3f 6302 return -EPERM;
ca94c442
LP
6303
6304 /* Normal users shall not reset the sched_reset_on_fork flag */
6305 if (p->sched_reset_on_fork && !reset_on_fork)
6306 return -EPERM;
37e4ab3f 6307 }
1da177e4 6308
725aad24 6309 if (user) {
b68aa230 6310#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6311 /*
6312 * Do not allow realtime tasks into groups that have no runtime
6313 * assigned.
6314 */
9a7e0b18
PZ
6315 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6316 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6317 return -EPERM;
b68aa230
PZ
6318#endif
6319
725aad24
JF
6320 retval = security_task_setscheduler(p, policy, param);
6321 if (retval)
6322 return retval;
6323 }
6324
b29739f9
IM
6325 /*
6326 * make sure no PI-waiters arrive (or leave) while we are
6327 * changing the priority of the task:
6328 */
6329 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6330 /*
6331 * To be able to change p->policy safely, the apropriate
6332 * runqueue lock must be held.
6333 */
b29739f9 6334 rq = __task_rq_lock(p);
1da177e4
LT
6335 /* recheck policy now with rq lock held */
6336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6337 policy = oldpolicy = -1;
b29739f9
IM
6338 __task_rq_unlock(rq);
6339 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6340 goto recheck;
6341 }
2daa3577 6342 update_rq_clock(rq);
dd41f596 6343 on_rq = p->se.on_rq;
051a1d1a 6344 running = task_current(rq, p);
0e1f3483 6345 if (on_rq)
2e1cb74a 6346 deactivate_task(rq, p, 0);
0e1f3483
HS
6347 if (running)
6348 p->sched_class->put_prev_task(rq, p);
f6b53205 6349
ca94c442
LP
6350 p->sched_reset_on_fork = reset_on_fork;
6351
1da177e4 6352 oldprio = p->prio;
dd41f596 6353 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6354
0e1f3483
HS
6355 if (running)
6356 p->sched_class->set_curr_task(rq);
dd41f596
IM
6357 if (on_rq) {
6358 activate_task(rq, p, 0);
cb469845
SR
6359
6360 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6361 }
b29739f9
IM
6362 __task_rq_unlock(rq);
6363 spin_unlock_irqrestore(&p->pi_lock, flags);
6364
95e02ca9
TG
6365 rt_mutex_adjust_pi(p);
6366
1da177e4
LT
6367 return 0;
6368}
961ccddd
RR
6369
6370/**
6371 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6372 * @p: the task in question.
6373 * @policy: new policy.
6374 * @param: structure containing the new RT priority.
6375 *
6376 * NOTE that the task may be already dead.
6377 */
6378int sched_setscheduler(struct task_struct *p, int policy,
6379 struct sched_param *param)
6380{
6381 return __sched_setscheduler(p, policy, param, true);
6382}
1da177e4
LT
6383EXPORT_SYMBOL_GPL(sched_setscheduler);
6384
961ccddd
RR
6385/**
6386 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6387 * @p: the task in question.
6388 * @policy: new policy.
6389 * @param: structure containing the new RT priority.
6390 *
6391 * Just like sched_setscheduler, only don't bother checking if the
6392 * current context has permission. For example, this is needed in
6393 * stop_machine(): we create temporary high priority worker threads,
6394 * but our caller might not have that capability.
6395 */
6396int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6397 struct sched_param *param)
6398{
6399 return __sched_setscheduler(p, policy, param, false);
6400}
6401
95cdf3b7
IM
6402static int
6403do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6404{
1da177e4
LT
6405 struct sched_param lparam;
6406 struct task_struct *p;
36c8b586 6407 int retval;
1da177e4
LT
6408
6409 if (!param || pid < 0)
6410 return -EINVAL;
6411 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6412 return -EFAULT;
5fe1d75f
ON
6413
6414 rcu_read_lock();
6415 retval = -ESRCH;
1da177e4 6416 p = find_process_by_pid(pid);
5fe1d75f
ON
6417 if (p != NULL)
6418 retval = sched_setscheduler(p, policy, &lparam);
6419 rcu_read_unlock();
36c8b586 6420
1da177e4
LT
6421 return retval;
6422}
6423
6424/**
6425 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6426 * @pid: the pid in question.
6427 * @policy: new policy.
6428 * @param: structure containing the new RT priority.
6429 */
5add95d4
HC
6430SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6431 struct sched_param __user *, param)
1da177e4 6432{
c21761f1
JB
6433 /* negative values for policy are not valid */
6434 if (policy < 0)
6435 return -EINVAL;
6436
1da177e4
LT
6437 return do_sched_setscheduler(pid, policy, param);
6438}
6439
6440/**
6441 * sys_sched_setparam - set/change the RT priority of a thread
6442 * @pid: the pid in question.
6443 * @param: structure containing the new RT priority.
6444 */
5add95d4 6445SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6446{
6447 return do_sched_setscheduler(pid, -1, param);
6448}
6449
6450/**
6451 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6452 * @pid: the pid in question.
6453 */
5add95d4 6454SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6455{
36c8b586 6456 struct task_struct *p;
3a5c359a 6457 int retval;
1da177e4
LT
6458
6459 if (pid < 0)
3a5c359a 6460 return -EINVAL;
1da177e4
LT
6461
6462 retval = -ESRCH;
6463 read_lock(&tasklist_lock);
6464 p = find_process_by_pid(pid);
6465 if (p) {
6466 retval = security_task_getscheduler(p);
6467 if (!retval)
ca94c442
LP
6468 retval = p->policy
6469 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6470 }
6471 read_unlock(&tasklist_lock);
1da177e4
LT
6472 return retval;
6473}
6474
6475/**
ca94c442 6476 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6477 * @pid: the pid in question.
6478 * @param: structure containing the RT priority.
6479 */
5add95d4 6480SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6481{
6482 struct sched_param lp;
36c8b586 6483 struct task_struct *p;
3a5c359a 6484 int retval;
1da177e4
LT
6485
6486 if (!param || pid < 0)
3a5c359a 6487 return -EINVAL;
1da177e4
LT
6488
6489 read_lock(&tasklist_lock);
6490 p = find_process_by_pid(pid);
6491 retval = -ESRCH;
6492 if (!p)
6493 goto out_unlock;
6494
6495 retval = security_task_getscheduler(p);
6496 if (retval)
6497 goto out_unlock;
6498
6499 lp.sched_priority = p->rt_priority;
6500 read_unlock(&tasklist_lock);
6501
6502 /*
6503 * This one might sleep, we cannot do it with a spinlock held ...
6504 */
6505 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6506
1da177e4
LT
6507 return retval;
6508
6509out_unlock:
6510 read_unlock(&tasklist_lock);
6511 return retval;
6512}
6513
96f874e2 6514long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6515{
5a16f3d3 6516 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6517 struct task_struct *p;
6518 int retval;
1da177e4 6519
95402b38 6520 get_online_cpus();
1da177e4
LT
6521 read_lock(&tasklist_lock);
6522
6523 p = find_process_by_pid(pid);
6524 if (!p) {
6525 read_unlock(&tasklist_lock);
95402b38 6526 put_online_cpus();
1da177e4
LT
6527 return -ESRCH;
6528 }
6529
6530 /*
6531 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6532 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6533 * usage count and then drop tasklist_lock.
6534 */
6535 get_task_struct(p);
6536 read_unlock(&tasklist_lock);
6537
5a16f3d3
RR
6538 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6539 retval = -ENOMEM;
6540 goto out_put_task;
6541 }
6542 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6543 retval = -ENOMEM;
6544 goto out_free_cpus_allowed;
6545 }
1da177e4 6546 retval = -EPERM;
c69e8d9c 6547 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6548 goto out_unlock;
6549
e7834f8f
DQ
6550 retval = security_task_setscheduler(p, 0, NULL);
6551 if (retval)
6552 goto out_unlock;
6553
5a16f3d3
RR
6554 cpuset_cpus_allowed(p, cpus_allowed);
6555 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6556 again:
5a16f3d3 6557 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6558
8707d8b8 6559 if (!retval) {
5a16f3d3
RR
6560 cpuset_cpus_allowed(p, cpus_allowed);
6561 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6562 /*
6563 * We must have raced with a concurrent cpuset
6564 * update. Just reset the cpus_allowed to the
6565 * cpuset's cpus_allowed
6566 */
5a16f3d3 6567 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6568 goto again;
6569 }
6570 }
1da177e4 6571out_unlock:
5a16f3d3
RR
6572 free_cpumask_var(new_mask);
6573out_free_cpus_allowed:
6574 free_cpumask_var(cpus_allowed);
6575out_put_task:
1da177e4 6576 put_task_struct(p);
95402b38 6577 put_online_cpus();
1da177e4
LT
6578 return retval;
6579}
6580
6581static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6582 struct cpumask *new_mask)
1da177e4 6583{
96f874e2
RR
6584 if (len < cpumask_size())
6585 cpumask_clear(new_mask);
6586 else if (len > cpumask_size())
6587 len = cpumask_size();
6588
1da177e4
LT
6589 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6590}
6591
6592/**
6593 * sys_sched_setaffinity - set the cpu affinity of a process
6594 * @pid: pid of the process
6595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6596 * @user_mask_ptr: user-space pointer to the new cpu mask
6597 */
5add95d4
HC
6598SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6599 unsigned long __user *, user_mask_ptr)
1da177e4 6600{
5a16f3d3 6601 cpumask_var_t new_mask;
1da177e4
LT
6602 int retval;
6603
5a16f3d3
RR
6604 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6605 return -ENOMEM;
1da177e4 6606
5a16f3d3
RR
6607 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6608 if (retval == 0)
6609 retval = sched_setaffinity(pid, new_mask);
6610 free_cpumask_var(new_mask);
6611 return retval;
1da177e4
LT
6612}
6613
96f874e2 6614long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6615{
36c8b586 6616 struct task_struct *p;
31605683
TG
6617 unsigned long flags;
6618 struct rq *rq;
1da177e4 6619 int retval;
1da177e4 6620
95402b38 6621 get_online_cpus();
1da177e4
LT
6622 read_lock(&tasklist_lock);
6623
6624 retval = -ESRCH;
6625 p = find_process_by_pid(pid);
6626 if (!p)
6627 goto out_unlock;
6628
e7834f8f
DQ
6629 retval = security_task_getscheduler(p);
6630 if (retval)
6631 goto out_unlock;
6632
31605683 6633 rq = task_rq_lock(p, &flags);
96f874e2 6634 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6635 task_rq_unlock(rq, &flags);
1da177e4
LT
6636
6637out_unlock:
6638 read_unlock(&tasklist_lock);
95402b38 6639 put_online_cpus();
1da177e4 6640
9531b62f 6641 return retval;
1da177e4
LT
6642}
6643
6644/**
6645 * sys_sched_getaffinity - get the cpu affinity of a process
6646 * @pid: pid of the process
6647 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6648 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6649 */
5add95d4
HC
6650SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6651 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6652{
6653 int ret;
f17c8607 6654 cpumask_var_t mask;
1da177e4 6655
f17c8607 6656 if (len < cpumask_size())
1da177e4
LT
6657 return -EINVAL;
6658
f17c8607
RR
6659 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6660 return -ENOMEM;
1da177e4 6661
f17c8607
RR
6662 ret = sched_getaffinity(pid, mask);
6663 if (ret == 0) {
6664 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6665 ret = -EFAULT;
6666 else
6667 ret = cpumask_size();
6668 }
6669 free_cpumask_var(mask);
1da177e4 6670
f17c8607 6671 return ret;
1da177e4
LT
6672}
6673
6674/**
6675 * sys_sched_yield - yield the current processor to other threads.
6676 *
dd41f596
IM
6677 * This function yields the current CPU to other tasks. If there are no
6678 * other threads running on this CPU then this function will return.
1da177e4 6679 */
5add95d4 6680SYSCALL_DEFINE0(sched_yield)
1da177e4 6681{
70b97a7f 6682 struct rq *rq = this_rq_lock();
1da177e4 6683
2d72376b 6684 schedstat_inc(rq, yld_count);
4530d7ab 6685 current->sched_class->yield_task(rq);
1da177e4
LT
6686
6687 /*
6688 * Since we are going to call schedule() anyway, there's
6689 * no need to preempt or enable interrupts:
6690 */
6691 __release(rq->lock);
8a25d5de 6692 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6693 _raw_spin_unlock(&rq->lock);
6694 preempt_enable_no_resched();
6695
6696 schedule();
6697
6698 return 0;
6699}
6700
d86ee480
PZ
6701static inline int should_resched(void)
6702{
6703 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6704}
6705
e7b38404 6706static void __cond_resched(void)
1da177e4 6707{
e7aaaa69
FW
6708 add_preempt_count(PREEMPT_ACTIVE);
6709 schedule();
6710 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6711}
6712
02b67cc3 6713int __sched _cond_resched(void)
1da177e4 6714{
d86ee480 6715 if (should_resched()) {
1da177e4
LT
6716 __cond_resched();
6717 return 1;
6718 }
6719 return 0;
6720}
02b67cc3 6721EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6722
6723/*
613afbf8 6724 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6725 * call schedule, and on return reacquire the lock.
6726 *
41a2d6cf 6727 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6728 * operations here to prevent schedule() from being called twice (once via
6729 * spin_unlock(), once by hand).
6730 */
613afbf8 6731int __cond_resched_lock(spinlock_t *lock)
1da177e4 6732{
d86ee480 6733 int resched = should_resched();
6df3cecb
JK
6734 int ret = 0;
6735
f607c668
PZ
6736 lockdep_assert_held(lock);
6737
95c354fe 6738 if (spin_needbreak(lock) || resched) {
1da177e4 6739 spin_unlock(lock);
d86ee480 6740 if (resched)
95c354fe
NP
6741 __cond_resched();
6742 else
6743 cpu_relax();
6df3cecb 6744 ret = 1;
1da177e4 6745 spin_lock(lock);
1da177e4 6746 }
6df3cecb 6747 return ret;
1da177e4 6748}
613afbf8 6749EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6750
613afbf8 6751int __sched __cond_resched_softirq(void)
1da177e4
LT
6752{
6753 BUG_ON(!in_softirq());
6754
d86ee480 6755 if (should_resched()) {
98d82567 6756 local_bh_enable();
1da177e4
LT
6757 __cond_resched();
6758 local_bh_disable();
6759 return 1;
6760 }
6761 return 0;
6762}
613afbf8 6763EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6764
1da177e4
LT
6765/**
6766 * yield - yield the current processor to other threads.
6767 *
72fd4a35 6768 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6769 * thread runnable and calls sys_sched_yield().
6770 */
6771void __sched yield(void)
6772{
6773 set_current_state(TASK_RUNNING);
6774 sys_sched_yield();
6775}
1da177e4
LT
6776EXPORT_SYMBOL(yield);
6777
6778/*
41a2d6cf 6779 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6780 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6781 */
6782void __sched io_schedule(void)
6783{
54d35f29 6784 struct rq *rq = raw_rq();
1da177e4 6785
0ff92245 6786 delayacct_blkio_start();
1da177e4 6787 atomic_inc(&rq->nr_iowait);
8f0dfc34 6788 current->in_iowait = 1;
1da177e4 6789 schedule();
8f0dfc34 6790 current->in_iowait = 0;
1da177e4 6791 atomic_dec(&rq->nr_iowait);
0ff92245 6792 delayacct_blkio_end();
1da177e4 6793}
1da177e4
LT
6794EXPORT_SYMBOL(io_schedule);
6795
6796long __sched io_schedule_timeout(long timeout)
6797{
54d35f29 6798 struct rq *rq = raw_rq();
1da177e4
LT
6799 long ret;
6800
0ff92245 6801 delayacct_blkio_start();
1da177e4 6802 atomic_inc(&rq->nr_iowait);
8f0dfc34 6803 current->in_iowait = 1;
1da177e4 6804 ret = schedule_timeout(timeout);
8f0dfc34 6805 current->in_iowait = 0;
1da177e4 6806 atomic_dec(&rq->nr_iowait);
0ff92245 6807 delayacct_blkio_end();
1da177e4
LT
6808 return ret;
6809}
6810
6811/**
6812 * sys_sched_get_priority_max - return maximum RT priority.
6813 * @policy: scheduling class.
6814 *
6815 * this syscall returns the maximum rt_priority that can be used
6816 * by a given scheduling class.
6817 */
5add95d4 6818SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6819{
6820 int ret = -EINVAL;
6821
6822 switch (policy) {
6823 case SCHED_FIFO:
6824 case SCHED_RR:
6825 ret = MAX_USER_RT_PRIO-1;
6826 break;
6827 case SCHED_NORMAL:
b0a9499c 6828 case SCHED_BATCH:
dd41f596 6829 case SCHED_IDLE:
1da177e4
LT
6830 ret = 0;
6831 break;
6832 }
6833 return ret;
6834}
6835
6836/**
6837 * sys_sched_get_priority_min - return minimum RT priority.
6838 * @policy: scheduling class.
6839 *
6840 * this syscall returns the minimum rt_priority that can be used
6841 * by a given scheduling class.
6842 */
5add95d4 6843SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6844{
6845 int ret = -EINVAL;
6846
6847 switch (policy) {
6848 case SCHED_FIFO:
6849 case SCHED_RR:
6850 ret = 1;
6851 break;
6852 case SCHED_NORMAL:
b0a9499c 6853 case SCHED_BATCH:
dd41f596 6854 case SCHED_IDLE:
1da177e4
LT
6855 ret = 0;
6856 }
6857 return ret;
6858}
6859
6860/**
6861 * sys_sched_rr_get_interval - return the default timeslice of a process.
6862 * @pid: pid of the process.
6863 * @interval: userspace pointer to the timeslice value.
6864 *
6865 * this syscall writes the default timeslice value of a given process
6866 * into the user-space timespec buffer. A value of '0' means infinity.
6867 */
17da2bd9 6868SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6869 struct timespec __user *, interval)
1da177e4 6870{
36c8b586 6871 struct task_struct *p;
a4ec24b4 6872 unsigned int time_slice;
dba091b9
TG
6873 unsigned long flags;
6874 struct rq *rq;
3a5c359a 6875 int retval;
1da177e4 6876 struct timespec t;
1da177e4
LT
6877
6878 if (pid < 0)
3a5c359a 6879 return -EINVAL;
1da177e4
LT
6880
6881 retval = -ESRCH;
6882 read_lock(&tasklist_lock);
6883 p = find_process_by_pid(pid);
6884 if (!p)
6885 goto out_unlock;
6886
6887 retval = security_task_getscheduler(p);
6888 if (retval)
6889 goto out_unlock;
6890
dba091b9
TG
6891 rq = task_rq_lock(p, &flags);
6892 time_slice = p->sched_class->get_rr_interval(rq, p);
6893 task_rq_unlock(rq, &flags);
a4ec24b4 6894
1da177e4 6895 read_unlock(&tasklist_lock);
a4ec24b4 6896 jiffies_to_timespec(time_slice, &t);
1da177e4 6897 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6898 return retval;
3a5c359a 6899
1da177e4
LT
6900out_unlock:
6901 read_unlock(&tasklist_lock);
6902 return retval;
6903}
6904
7c731e0a 6905static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6906
82a1fcb9 6907void sched_show_task(struct task_struct *p)
1da177e4 6908{
1da177e4 6909 unsigned long free = 0;
36c8b586 6910 unsigned state;
1da177e4 6911
1da177e4 6912 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6913 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6914 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6915#if BITS_PER_LONG == 32
1da177e4 6916 if (state == TASK_RUNNING)
cc4ea795 6917 printk(KERN_CONT " running ");
1da177e4 6918 else
cc4ea795 6919 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6920#else
6921 if (state == TASK_RUNNING)
cc4ea795 6922 printk(KERN_CONT " running task ");
1da177e4 6923 else
cc4ea795 6924 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6925#endif
6926#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6927 free = stack_not_used(p);
1da177e4 6928#endif
aa47b7e0
DR
6929 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6930 task_pid_nr(p), task_pid_nr(p->real_parent),
6931 (unsigned long)task_thread_info(p)->flags);
1da177e4 6932
5fb5e6de 6933 show_stack(p, NULL);
1da177e4
LT
6934}
6935
e59e2ae2 6936void show_state_filter(unsigned long state_filter)
1da177e4 6937{
36c8b586 6938 struct task_struct *g, *p;
1da177e4 6939
4bd77321
IM
6940#if BITS_PER_LONG == 32
6941 printk(KERN_INFO
6942 " task PC stack pid father\n");
1da177e4 6943#else
4bd77321
IM
6944 printk(KERN_INFO
6945 " task PC stack pid father\n");
1da177e4
LT
6946#endif
6947 read_lock(&tasklist_lock);
6948 do_each_thread(g, p) {
6949 /*
6950 * reset the NMI-timeout, listing all files on a slow
6951 * console might take alot of time:
6952 */
6953 touch_nmi_watchdog();
39bc89fd 6954 if (!state_filter || (p->state & state_filter))
82a1fcb9 6955 sched_show_task(p);
1da177e4
LT
6956 } while_each_thread(g, p);
6957
04c9167f
JF
6958 touch_all_softlockup_watchdogs();
6959
dd41f596
IM
6960#ifdef CONFIG_SCHED_DEBUG
6961 sysrq_sched_debug_show();
6962#endif
1da177e4 6963 read_unlock(&tasklist_lock);
e59e2ae2
IM
6964 /*
6965 * Only show locks if all tasks are dumped:
6966 */
93335a21 6967 if (!state_filter)
e59e2ae2 6968 debug_show_all_locks();
1da177e4
LT
6969}
6970
1df21055
IM
6971void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6972{
dd41f596 6973 idle->sched_class = &idle_sched_class;
1df21055
IM
6974}
6975
f340c0d1
IM
6976/**
6977 * init_idle - set up an idle thread for a given CPU
6978 * @idle: task in question
6979 * @cpu: cpu the idle task belongs to
6980 *
6981 * NOTE: this function does not set the idle thread's NEED_RESCHED
6982 * flag, to make booting more robust.
6983 */
5c1e1767 6984void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6985{
70b97a7f 6986 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6987 unsigned long flags;
6988
5cbd54ef
IM
6989 spin_lock_irqsave(&rq->lock, flags);
6990
dd41f596
IM
6991 __sched_fork(idle);
6992 idle->se.exec_start = sched_clock();
6993
b29739f9 6994 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6995 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6996 __set_task_cpu(idle, cpu);
1da177e4 6997
1da177e4 6998 rq->curr = rq->idle = idle;
4866cde0
NP
6999#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7000 idle->oncpu = 1;
7001#endif
1da177e4
LT
7002 spin_unlock_irqrestore(&rq->lock, flags);
7003
7004 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7005#if defined(CONFIG_PREEMPT)
7006 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7007#else
a1261f54 7008 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7009#endif
dd41f596
IM
7010 /*
7011 * The idle tasks have their own, simple scheduling class:
7012 */
7013 idle->sched_class = &idle_sched_class;
fb52607a 7014 ftrace_graph_init_task(idle);
1da177e4
LT
7015}
7016
7017/*
7018 * In a system that switches off the HZ timer nohz_cpu_mask
7019 * indicates which cpus entered this state. This is used
7020 * in the rcu update to wait only for active cpus. For system
7021 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7022 * always be CPU_BITS_NONE.
1da177e4 7023 */
6a7b3dc3 7024cpumask_var_t nohz_cpu_mask;
1da177e4 7025
19978ca6
IM
7026/*
7027 * Increase the granularity value when there are more CPUs,
7028 * because with more CPUs the 'effective latency' as visible
7029 * to users decreases. But the relationship is not linear,
7030 * so pick a second-best guess by going with the log2 of the
7031 * number of CPUs.
7032 *
7033 * This idea comes from the SD scheduler of Con Kolivas:
7034 */
7035static inline void sched_init_granularity(void)
7036{
7037 unsigned int factor = 1 + ilog2(num_online_cpus());
7038 const unsigned long limit = 200000000;
7039
7040 sysctl_sched_min_granularity *= factor;
7041 if (sysctl_sched_min_granularity > limit)
7042 sysctl_sched_min_granularity = limit;
7043
7044 sysctl_sched_latency *= factor;
7045 if (sysctl_sched_latency > limit)
7046 sysctl_sched_latency = limit;
7047
7048 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7049
7050 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7051}
7052
1da177e4
LT
7053#ifdef CONFIG_SMP
7054/*
7055 * This is how migration works:
7056 *
70b97a7f 7057 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7058 * runqueue and wake up that CPU's migration thread.
7059 * 2) we down() the locked semaphore => thread blocks.
7060 * 3) migration thread wakes up (implicitly it forces the migrated
7061 * thread off the CPU)
7062 * 4) it gets the migration request and checks whether the migrated
7063 * task is still in the wrong runqueue.
7064 * 5) if it's in the wrong runqueue then the migration thread removes
7065 * it and puts it into the right queue.
7066 * 6) migration thread up()s the semaphore.
7067 * 7) we wake up and the migration is done.
7068 */
7069
7070/*
7071 * Change a given task's CPU affinity. Migrate the thread to a
7072 * proper CPU and schedule it away if the CPU it's executing on
7073 * is removed from the allowed bitmask.
7074 *
7075 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7076 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7077 * call is not atomic; no spinlocks may be held.
7078 */
96f874e2 7079int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7080{
70b97a7f 7081 struct migration_req req;
1da177e4 7082 unsigned long flags;
70b97a7f 7083 struct rq *rq;
48f24c4d 7084 int ret = 0;
1da177e4
LT
7085
7086 rq = task_rq_lock(p, &flags);
6ad4c188 7087 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7088 ret = -EINVAL;
7089 goto out;
7090 }
7091
9985b0ba 7092 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7093 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7094 ret = -EINVAL;
7095 goto out;
7096 }
7097
73fe6aae 7098 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7099 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7100 else {
96f874e2
RR
7101 cpumask_copy(&p->cpus_allowed, new_mask);
7102 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7103 }
7104
1da177e4 7105 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7106 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7107 goto out;
7108
6ad4c188 7109 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7110 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7111 struct task_struct *mt = rq->migration_thread;
7112
7113 get_task_struct(mt);
1da177e4
LT
7114 task_rq_unlock(rq, &flags);
7115 wake_up_process(rq->migration_thread);
693525e3 7116 put_task_struct(mt);
1da177e4
LT
7117 wait_for_completion(&req.done);
7118 tlb_migrate_finish(p->mm);
7119 return 0;
7120 }
7121out:
7122 task_rq_unlock(rq, &flags);
48f24c4d 7123
1da177e4
LT
7124 return ret;
7125}
cd8ba7cd 7126EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7127
7128/*
41a2d6cf 7129 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7130 * this because either it can't run here any more (set_cpus_allowed()
7131 * away from this CPU, or CPU going down), or because we're
7132 * attempting to rebalance this task on exec (sched_exec).
7133 *
7134 * So we race with normal scheduler movements, but that's OK, as long
7135 * as the task is no longer on this CPU.
efc30814
KK
7136 *
7137 * Returns non-zero if task was successfully migrated.
1da177e4 7138 */
efc30814 7139static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7140{
70b97a7f 7141 struct rq *rq_dest, *rq_src;
dd41f596 7142 int ret = 0, on_rq;
1da177e4 7143
e761b772 7144 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7145 return ret;
1da177e4
LT
7146
7147 rq_src = cpu_rq(src_cpu);
7148 rq_dest = cpu_rq(dest_cpu);
7149
7150 double_rq_lock(rq_src, rq_dest);
7151 /* Already moved. */
7152 if (task_cpu(p) != src_cpu)
b1e38734 7153 goto done;
1da177e4 7154 /* Affinity changed (again). */
96f874e2 7155 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7156 goto fail;
1da177e4 7157
dd41f596 7158 on_rq = p->se.on_rq;
6e82a3be 7159 if (on_rq)
2e1cb74a 7160 deactivate_task(rq_src, p, 0);
6e82a3be 7161
1da177e4 7162 set_task_cpu(p, dest_cpu);
dd41f596
IM
7163 if (on_rq) {
7164 activate_task(rq_dest, p, 0);
15afe09b 7165 check_preempt_curr(rq_dest, p, 0);
1da177e4 7166 }
b1e38734 7167done:
efc30814 7168 ret = 1;
b1e38734 7169fail:
1da177e4 7170 double_rq_unlock(rq_src, rq_dest);
efc30814 7171 return ret;
1da177e4
LT
7172}
7173
03b042bf
PM
7174#define RCU_MIGRATION_IDLE 0
7175#define RCU_MIGRATION_NEED_QS 1
7176#define RCU_MIGRATION_GOT_QS 2
7177#define RCU_MIGRATION_MUST_SYNC 3
7178
1da177e4
LT
7179/*
7180 * migration_thread - this is a highprio system thread that performs
7181 * thread migration by bumping thread off CPU then 'pushing' onto
7182 * another runqueue.
7183 */
95cdf3b7 7184static int migration_thread(void *data)
1da177e4 7185{
03b042bf 7186 int badcpu;
1da177e4 7187 int cpu = (long)data;
70b97a7f 7188 struct rq *rq;
1da177e4
LT
7189
7190 rq = cpu_rq(cpu);
7191 BUG_ON(rq->migration_thread != current);
7192
7193 set_current_state(TASK_INTERRUPTIBLE);
7194 while (!kthread_should_stop()) {
70b97a7f 7195 struct migration_req *req;
1da177e4 7196 struct list_head *head;
1da177e4 7197
1da177e4
LT
7198 spin_lock_irq(&rq->lock);
7199
7200 if (cpu_is_offline(cpu)) {
7201 spin_unlock_irq(&rq->lock);
371cbb38 7202 break;
1da177e4
LT
7203 }
7204
7205 if (rq->active_balance) {
7206 active_load_balance(rq, cpu);
7207 rq->active_balance = 0;
7208 }
7209
7210 head = &rq->migration_queue;
7211
7212 if (list_empty(head)) {
7213 spin_unlock_irq(&rq->lock);
7214 schedule();
7215 set_current_state(TASK_INTERRUPTIBLE);
7216 continue;
7217 }
70b97a7f 7218 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7219 list_del_init(head->next);
7220
03b042bf
PM
7221 if (req->task != NULL) {
7222 spin_unlock(&rq->lock);
7223 __migrate_task(req->task, cpu, req->dest_cpu);
7224 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7225 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7226 spin_unlock(&rq->lock);
7227 } else {
7228 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7229 spin_unlock(&rq->lock);
7230 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7231 }
674311d5 7232 local_irq_enable();
1da177e4
LT
7233
7234 complete(&req->done);
7235 }
7236 __set_current_state(TASK_RUNNING);
1da177e4 7237
1da177e4
LT
7238 return 0;
7239}
7240
7241#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7242
7243static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7244{
7245 int ret;
7246
7247 local_irq_disable();
7248 ret = __migrate_task(p, src_cpu, dest_cpu);
7249 local_irq_enable();
7250 return ret;
7251}
7252
054b9108 7253/*
3a4fa0a2 7254 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7255 */
48f24c4d 7256static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7257{
70b97a7f 7258 int dest_cpu;
6ca09dfc 7259 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7260
7261again:
7262 /* Look for allowed, online CPU in same node. */
6ad4c188 7263 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7264 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7265 goto move;
7266
7267 /* Any allowed, online CPU? */
6ad4c188 7268 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7269 if (dest_cpu < nr_cpu_ids)
7270 goto move;
7271
7272 /* No more Mr. Nice Guy. */
7273 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7274 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7275 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7276
e76bd8d9
RR
7277 /*
7278 * Don't tell them about moving exiting tasks or
7279 * kernel threads (both mm NULL), since they never
7280 * leave kernel.
7281 */
7282 if (p->mm && printk_ratelimit()) {
7283 printk(KERN_INFO "process %d (%s) no "
7284 "longer affine to cpu%d\n",
7285 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7286 }
e76bd8d9
RR
7287 }
7288
7289move:
7290 /* It can have affinity changed while we were choosing. */
7291 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7292 goto again;
1da177e4
LT
7293}
7294
7295/*
7296 * While a dead CPU has no uninterruptible tasks queued at this point,
7297 * it might still have a nonzero ->nr_uninterruptible counter, because
7298 * for performance reasons the counter is not stricly tracking tasks to
7299 * their home CPUs. So we just add the counter to another CPU's counter,
7300 * to keep the global sum constant after CPU-down:
7301 */
70b97a7f 7302static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7303{
6ad4c188 7304 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7305 unsigned long flags;
7306
7307 local_irq_save(flags);
7308 double_rq_lock(rq_src, rq_dest);
7309 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7310 rq_src->nr_uninterruptible = 0;
7311 double_rq_unlock(rq_src, rq_dest);
7312 local_irq_restore(flags);
7313}
7314
7315/* Run through task list and migrate tasks from the dead cpu. */
7316static void migrate_live_tasks(int src_cpu)
7317{
48f24c4d 7318 struct task_struct *p, *t;
1da177e4 7319
f7b4cddc 7320 read_lock(&tasklist_lock);
1da177e4 7321
48f24c4d
IM
7322 do_each_thread(t, p) {
7323 if (p == current)
1da177e4
LT
7324 continue;
7325
48f24c4d
IM
7326 if (task_cpu(p) == src_cpu)
7327 move_task_off_dead_cpu(src_cpu, p);
7328 } while_each_thread(t, p);
1da177e4 7329
f7b4cddc 7330 read_unlock(&tasklist_lock);
1da177e4
LT
7331}
7332
dd41f596
IM
7333/*
7334 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7335 * It does so by boosting its priority to highest possible.
7336 * Used by CPU offline code.
1da177e4
LT
7337 */
7338void sched_idle_next(void)
7339{
48f24c4d 7340 int this_cpu = smp_processor_id();
70b97a7f 7341 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7342 struct task_struct *p = rq->idle;
7343 unsigned long flags;
7344
7345 /* cpu has to be offline */
48f24c4d 7346 BUG_ON(cpu_online(this_cpu));
1da177e4 7347
48f24c4d
IM
7348 /*
7349 * Strictly not necessary since rest of the CPUs are stopped by now
7350 * and interrupts disabled on the current cpu.
1da177e4
LT
7351 */
7352 spin_lock_irqsave(&rq->lock, flags);
7353
dd41f596 7354 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7355
94bc9a7b
DA
7356 update_rq_clock(rq);
7357 activate_task(rq, p, 0);
1da177e4
LT
7358
7359 spin_unlock_irqrestore(&rq->lock, flags);
7360}
7361
48f24c4d
IM
7362/*
7363 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7364 * offline.
7365 */
7366void idle_task_exit(void)
7367{
7368 struct mm_struct *mm = current->active_mm;
7369
7370 BUG_ON(cpu_online(smp_processor_id()));
7371
7372 if (mm != &init_mm)
7373 switch_mm(mm, &init_mm, current);
7374 mmdrop(mm);
7375}
7376
054b9108 7377/* called under rq->lock with disabled interrupts */
36c8b586 7378static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7379{
70b97a7f 7380 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7381
7382 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7383 BUG_ON(!p->exit_state);
1da177e4
LT
7384
7385 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7386 BUG_ON(p->state == TASK_DEAD);
1da177e4 7387
48f24c4d 7388 get_task_struct(p);
1da177e4
LT
7389
7390 /*
7391 * Drop lock around migration; if someone else moves it,
41a2d6cf 7392 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7393 * fine.
7394 */
f7b4cddc 7395 spin_unlock_irq(&rq->lock);
48f24c4d 7396 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7397 spin_lock_irq(&rq->lock);
1da177e4 7398
48f24c4d 7399 put_task_struct(p);
1da177e4
LT
7400}
7401
7402/* release_task() removes task from tasklist, so we won't find dead tasks. */
7403static void migrate_dead_tasks(unsigned int dead_cpu)
7404{
70b97a7f 7405 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7406 struct task_struct *next;
48f24c4d 7407
dd41f596
IM
7408 for ( ; ; ) {
7409 if (!rq->nr_running)
7410 break;
a8e504d2 7411 update_rq_clock(rq);
b67802ea 7412 next = pick_next_task(rq);
dd41f596
IM
7413 if (!next)
7414 break;
79c53799 7415 next->sched_class->put_prev_task(rq, next);
dd41f596 7416 migrate_dead(dead_cpu, next);
e692ab53 7417
1da177e4
LT
7418 }
7419}
dce48a84
TG
7420
7421/*
7422 * remove the tasks which were accounted by rq from calc_load_tasks.
7423 */
7424static void calc_global_load_remove(struct rq *rq)
7425{
7426 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7427 rq->calc_load_active = 0;
dce48a84 7428}
1da177e4
LT
7429#endif /* CONFIG_HOTPLUG_CPU */
7430
e692ab53
NP
7431#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7432
7433static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7434 {
7435 .procname = "sched_domain",
c57baf1e 7436 .mode = 0555,
e0361851 7437 },
38605cae 7438 {0, },
e692ab53
NP
7439};
7440
7441static struct ctl_table sd_ctl_root[] = {
e0361851 7442 {
c57baf1e 7443 .ctl_name = CTL_KERN,
e0361851 7444 .procname = "kernel",
c57baf1e 7445 .mode = 0555,
e0361851
AD
7446 .child = sd_ctl_dir,
7447 },
38605cae 7448 {0, },
e692ab53
NP
7449};
7450
7451static struct ctl_table *sd_alloc_ctl_entry(int n)
7452{
7453 struct ctl_table *entry =
5cf9f062 7454 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7455
e692ab53
NP
7456 return entry;
7457}
7458
6382bc90
MM
7459static void sd_free_ctl_entry(struct ctl_table **tablep)
7460{
cd790076 7461 struct ctl_table *entry;
6382bc90 7462
cd790076
MM
7463 /*
7464 * In the intermediate directories, both the child directory and
7465 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7466 * will always be set. In the lowest directory the names are
cd790076
MM
7467 * static strings and all have proc handlers.
7468 */
7469 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7470 if (entry->child)
7471 sd_free_ctl_entry(&entry->child);
cd790076
MM
7472 if (entry->proc_handler == NULL)
7473 kfree(entry->procname);
7474 }
6382bc90
MM
7475
7476 kfree(*tablep);
7477 *tablep = NULL;
7478}
7479
e692ab53 7480static void
e0361851 7481set_table_entry(struct ctl_table *entry,
e692ab53
NP
7482 const char *procname, void *data, int maxlen,
7483 mode_t mode, proc_handler *proc_handler)
7484{
e692ab53
NP
7485 entry->procname = procname;
7486 entry->data = data;
7487 entry->maxlen = maxlen;
7488 entry->mode = mode;
7489 entry->proc_handler = proc_handler;
7490}
7491
7492static struct ctl_table *
7493sd_alloc_ctl_domain_table(struct sched_domain *sd)
7494{
a5d8c348 7495 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7496
ad1cdc1d
MM
7497 if (table == NULL)
7498 return NULL;
7499
e0361851 7500 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7501 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7502 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7503 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7504 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7505 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7506 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7508 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7509 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7510 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7511 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7512 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7513 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7514 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7515 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7516 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7517 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7518 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7519 &sd->cache_nice_tries,
7520 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7521 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7522 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7523 set_table_entry(&table[11], "name", sd->name,
7524 CORENAME_MAX_SIZE, 0444, proc_dostring);
7525 /* &table[12] is terminator */
e692ab53
NP
7526
7527 return table;
7528}
7529
9a4e7159 7530static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7531{
7532 struct ctl_table *entry, *table;
7533 struct sched_domain *sd;
7534 int domain_num = 0, i;
7535 char buf[32];
7536
7537 for_each_domain(cpu, sd)
7538 domain_num++;
7539 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7540 if (table == NULL)
7541 return NULL;
e692ab53
NP
7542
7543 i = 0;
7544 for_each_domain(cpu, sd) {
7545 snprintf(buf, 32, "domain%d", i);
e692ab53 7546 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7547 entry->mode = 0555;
e692ab53
NP
7548 entry->child = sd_alloc_ctl_domain_table(sd);
7549 entry++;
7550 i++;
7551 }
7552 return table;
7553}
7554
7555static struct ctl_table_header *sd_sysctl_header;
6382bc90 7556static void register_sched_domain_sysctl(void)
e692ab53 7557{
6ad4c188 7558 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7559 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7560 char buf[32];
7561
7378547f
MM
7562 WARN_ON(sd_ctl_dir[0].child);
7563 sd_ctl_dir[0].child = entry;
7564
ad1cdc1d
MM
7565 if (entry == NULL)
7566 return;
7567
6ad4c188 7568 for_each_possible_cpu(i) {
e692ab53 7569 snprintf(buf, 32, "cpu%d", i);
e692ab53 7570 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7571 entry->mode = 0555;
e692ab53 7572 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7573 entry++;
e692ab53 7574 }
7378547f
MM
7575
7576 WARN_ON(sd_sysctl_header);
e692ab53
NP
7577 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7578}
6382bc90 7579
7378547f 7580/* may be called multiple times per register */
6382bc90
MM
7581static void unregister_sched_domain_sysctl(void)
7582{
7378547f
MM
7583 if (sd_sysctl_header)
7584 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7585 sd_sysctl_header = NULL;
7378547f
MM
7586 if (sd_ctl_dir[0].child)
7587 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7588}
e692ab53 7589#else
6382bc90
MM
7590static void register_sched_domain_sysctl(void)
7591{
7592}
7593static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7594{
7595}
7596#endif
7597
1f11eb6a
GH
7598static void set_rq_online(struct rq *rq)
7599{
7600 if (!rq->online) {
7601 const struct sched_class *class;
7602
c6c4927b 7603 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7604 rq->online = 1;
7605
7606 for_each_class(class) {
7607 if (class->rq_online)
7608 class->rq_online(rq);
7609 }
7610 }
7611}
7612
7613static void set_rq_offline(struct rq *rq)
7614{
7615 if (rq->online) {
7616 const struct sched_class *class;
7617
7618 for_each_class(class) {
7619 if (class->rq_offline)
7620 class->rq_offline(rq);
7621 }
7622
c6c4927b 7623 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7624 rq->online = 0;
7625 }
7626}
7627
1da177e4
LT
7628/*
7629 * migration_call - callback that gets triggered when a CPU is added.
7630 * Here we can start up the necessary migration thread for the new CPU.
7631 */
48f24c4d
IM
7632static int __cpuinit
7633migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7634{
1da177e4 7635 struct task_struct *p;
48f24c4d 7636 int cpu = (long)hcpu;
1da177e4 7637 unsigned long flags;
70b97a7f 7638 struct rq *rq;
1da177e4
LT
7639
7640 switch (action) {
5be9361c 7641
1da177e4 7642 case CPU_UP_PREPARE:
8bb78442 7643 case CPU_UP_PREPARE_FROZEN:
dd41f596 7644 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7645 if (IS_ERR(p))
7646 return NOTIFY_BAD;
1da177e4
LT
7647 kthread_bind(p, cpu);
7648 /* Must be high prio: stop_machine expects to yield to it. */
7649 rq = task_rq_lock(p, &flags);
dd41f596 7650 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7651 task_rq_unlock(rq, &flags);
371cbb38 7652 get_task_struct(p);
1da177e4 7653 cpu_rq(cpu)->migration_thread = p;
a468d389 7654 rq->calc_load_update = calc_load_update;
1da177e4 7655 break;
48f24c4d 7656
1da177e4 7657 case CPU_ONLINE:
8bb78442 7658 case CPU_ONLINE_FROZEN:
3a4fa0a2 7659 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7660 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7661
7662 /* Update our root-domain */
7663 rq = cpu_rq(cpu);
7664 spin_lock_irqsave(&rq->lock, flags);
7665 if (rq->rd) {
c6c4927b 7666 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7667
7668 set_rq_online(rq);
1f94ef59
GH
7669 }
7670 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7671 break;
48f24c4d 7672
1da177e4
LT
7673#ifdef CONFIG_HOTPLUG_CPU
7674 case CPU_UP_CANCELED:
8bb78442 7675 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7676 if (!cpu_rq(cpu)->migration_thread)
7677 break;
41a2d6cf 7678 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7679 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7680 cpumask_any(cpu_online_mask));
1da177e4 7681 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7682 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7683 cpu_rq(cpu)->migration_thread = NULL;
7684 break;
48f24c4d 7685
1da177e4 7686 case CPU_DEAD:
8bb78442 7687 case CPU_DEAD_FROZEN:
470fd646 7688 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7689 migrate_live_tasks(cpu);
7690 rq = cpu_rq(cpu);
7691 kthread_stop(rq->migration_thread);
371cbb38 7692 put_task_struct(rq->migration_thread);
1da177e4
LT
7693 rq->migration_thread = NULL;
7694 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7695 spin_lock_irq(&rq->lock);
a8e504d2 7696 update_rq_clock(rq);
2e1cb74a 7697 deactivate_task(rq, rq->idle, 0);
1da177e4 7698 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7699 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7700 rq->idle->sched_class = &idle_sched_class;
1da177e4 7701 migrate_dead_tasks(cpu);
d2da272a 7702 spin_unlock_irq(&rq->lock);
470fd646 7703 cpuset_unlock();
1da177e4
LT
7704 migrate_nr_uninterruptible(rq);
7705 BUG_ON(rq->nr_running != 0);
dce48a84 7706 calc_global_load_remove(rq);
41a2d6cf
IM
7707 /*
7708 * No need to migrate the tasks: it was best-effort if
7709 * they didn't take sched_hotcpu_mutex. Just wake up
7710 * the requestors.
7711 */
1da177e4
LT
7712 spin_lock_irq(&rq->lock);
7713 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7714 struct migration_req *req;
7715
1da177e4 7716 req = list_entry(rq->migration_queue.next,
70b97a7f 7717 struct migration_req, list);
1da177e4 7718 list_del_init(&req->list);
9a2bd244 7719 spin_unlock_irq(&rq->lock);
1da177e4 7720 complete(&req->done);
9a2bd244 7721 spin_lock_irq(&rq->lock);
1da177e4
LT
7722 }
7723 spin_unlock_irq(&rq->lock);
7724 break;
57d885fe 7725
08f503b0
GH
7726 case CPU_DYING:
7727 case CPU_DYING_FROZEN:
57d885fe
GH
7728 /* Update our root-domain */
7729 rq = cpu_rq(cpu);
7730 spin_lock_irqsave(&rq->lock, flags);
7731 if (rq->rd) {
c6c4927b 7732 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7733 set_rq_offline(rq);
57d885fe
GH
7734 }
7735 spin_unlock_irqrestore(&rq->lock, flags);
7736 break;
1da177e4
LT
7737#endif
7738 }
7739 return NOTIFY_OK;
7740}
7741
f38b0820
PM
7742/*
7743 * Register at high priority so that task migration (migrate_all_tasks)
7744 * happens before everything else. This has to be lower priority than
cdd6c482 7745 * the notifier in the perf_event subsystem, though.
1da177e4 7746 */
26c2143b 7747static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7748 .notifier_call = migration_call,
7749 .priority = 10
7750};
7751
7babe8db 7752static int __init migration_init(void)
1da177e4
LT
7753{
7754 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7755 int err;
48f24c4d
IM
7756
7757 /* Start one for the boot CPU: */
07dccf33
AM
7758 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7759 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7760 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7761 register_cpu_notifier(&migration_notifier);
7babe8db 7762
a004cd42 7763 return 0;
1da177e4 7764}
7babe8db 7765early_initcall(migration_init);
1da177e4
LT
7766#endif
7767
7768#ifdef CONFIG_SMP
476f3534 7769
3e9830dc 7770#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7771
f6630114
MT
7772static __read_mostly int sched_domain_debug_enabled;
7773
7774static int __init sched_domain_debug_setup(char *str)
7775{
7776 sched_domain_debug_enabled = 1;
7777
7778 return 0;
7779}
7780early_param("sched_debug", sched_domain_debug_setup);
7781
7c16ec58 7782static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7783 struct cpumask *groupmask)
1da177e4 7784{
4dcf6aff 7785 struct sched_group *group = sd->groups;
434d53b0 7786 char str[256];
1da177e4 7787
968ea6d8 7788 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7789 cpumask_clear(groupmask);
4dcf6aff
IM
7790
7791 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7792
7793 if (!(sd->flags & SD_LOAD_BALANCE)) {
7794 printk("does not load-balance\n");
7795 if (sd->parent)
7796 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7797 " has parent");
7798 return -1;
41c7ce9a
NP
7799 }
7800
eefd796a 7801 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7802
758b2cdc 7803 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7804 printk(KERN_ERR "ERROR: domain->span does not contain "
7805 "CPU%d\n", cpu);
7806 }
758b2cdc 7807 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7808 printk(KERN_ERR "ERROR: domain->groups does not contain"
7809 " CPU%d\n", cpu);
7810 }
1da177e4 7811
4dcf6aff 7812 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7813 do {
4dcf6aff
IM
7814 if (!group) {
7815 printk("\n");
7816 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7817 break;
7818 }
7819
18a3885f 7820 if (!group->cpu_power) {
4dcf6aff
IM
7821 printk(KERN_CONT "\n");
7822 printk(KERN_ERR "ERROR: domain->cpu_power not "
7823 "set\n");
7824 break;
7825 }
1da177e4 7826
758b2cdc 7827 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7828 printk(KERN_CONT "\n");
7829 printk(KERN_ERR "ERROR: empty group\n");
7830 break;
7831 }
1da177e4 7832
758b2cdc 7833 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7834 printk(KERN_CONT "\n");
7835 printk(KERN_ERR "ERROR: repeated CPUs\n");
7836 break;
7837 }
1da177e4 7838
758b2cdc 7839 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7840
968ea6d8 7841 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7842
7843 printk(KERN_CONT " %s", str);
18a3885f
PZ
7844 if (group->cpu_power != SCHED_LOAD_SCALE) {
7845 printk(KERN_CONT " (cpu_power = %d)",
7846 group->cpu_power);
381512cf 7847 }
1da177e4 7848
4dcf6aff
IM
7849 group = group->next;
7850 } while (group != sd->groups);
7851 printk(KERN_CONT "\n");
1da177e4 7852
758b2cdc 7853 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7854 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7855
758b2cdc
RR
7856 if (sd->parent &&
7857 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7858 printk(KERN_ERR "ERROR: parent span is not a superset "
7859 "of domain->span\n");
7860 return 0;
7861}
1da177e4 7862
4dcf6aff
IM
7863static void sched_domain_debug(struct sched_domain *sd, int cpu)
7864{
d5dd3db1 7865 cpumask_var_t groupmask;
4dcf6aff 7866 int level = 0;
1da177e4 7867
f6630114
MT
7868 if (!sched_domain_debug_enabled)
7869 return;
7870
4dcf6aff
IM
7871 if (!sd) {
7872 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7873 return;
7874 }
1da177e4 7875
4dcf6aff
IM
7876 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7877
d5dd3db1 7878 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7879 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7880 return;
7881 }
7882
4dcf6aff 7883 for (;;) {
7c16ec58 7884 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7885 break;
1da177e4
LT
7886 level++;
7887 sd = sd->parent;
33859f7f 7888 if (!sd)
4dcf6aff
IM
7889 break;
7890 }
d5dd3db1 7891 free_cpumask_var(groupmask);
1da177e4 7892}
6d6bc0ad 7893#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7894# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7895#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7896
1a20ff27 7897static int sd_degenerate(struct sched_domain *sd)
245af2c7 7898{
758b2cdc 7899 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7900 return 1;
7901
7902 /* Following flags need at least 2 groups */
7903 if (sd->flags & (SD_LOAD_BALANCE |
7904 SD_BALANCE_NEWIDLE |
7905 SD_BALANCE_FORK |
89c4710e
SS
7906 SD_BALANCE_EXEC |
7907 SD_SHARE_CPUPOWER |
7908 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7909 if (sd->groups != sd->groups->next)
7910 return 0;
7911 }
7912
7913 /* Following flags don't use groups */
c88d5910 7914 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7915 return 0;
7916
7917 return 1;
7918}
7919
48f24c4d
IM
7920static int
7921sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7922{
7923 unsigned long cflags = sd->flags, pflags = parent->flags;
7924
7925 if (sd_degenerate(parent))
7926 return 1;
7927
758b2cdc 7928 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7929 return 0;
7930
245af2c7
SS
7931 /* Flags needing groups don't count if only 1 group in parent */
7932 if (parent->groups == parent->groups->next) {
7933 pflags &= ~(SD_LOAD_BALANCE |
7934 SD_BALANCE_NEWIDLE |
7935 SD_BALANCE_FORK |
89c4710e
SS
7936 SD_BALANCE_EXEC |
7937 SD_SHARE_CPUPOWER |
7938 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7939 if (nr_node_ids == 1)
7940 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7941 }
7942 if (~cflags & pflags)
7943 return 0;
7944
7945 return 1;
7946}
7947
c6c4927b
RR
7948static void free_rootdomain(struct root_domain *rd)
7949{
047106ad
PZ
7950 synchronize_sched();
7951
68e74568
RR
7952 cpupri_cleanup(&rd->cpupri);
7953
c6c4927b
RR
7954 free_cpumask_var(rd->rto_mask);
7955 free_cpumask_var(rd->online);
7956 free_cpumask_var(rd->span);
7957 kfree(rd);
7958}
7959
57d885fe
GH
7960static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7961{
a0490fa3 7962 struct root_domain *old_rd = NULL;
57d885fe 7963 unsigned long flags;
57d885fe
GH
7964
7965 spin_lock_irqsave(&rq->lock, flags);
7966
7967 if (rq->rd) {
a0490fa3 7968 old_rd = rq->rd;
57d885fe 7969
c6c4927b 7970 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7971 set_rq_offline(rq);
57d885fe 7972
c6c4927b 7973 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7974
a0490fa3
IM
7975 /*
7976 * If we dont want to free the old_rt yet then
7977 * set old_rd to NULL to skip the freeing later
7978 * in this function:
7979 */
7980 if (!atomic_dec_and_test(&old_rd->refcount))
7981 old_rd = NULL;
57d885fe
GH
7982 }
7983
7984 atomic_inc(&rd->refcount);
7985 rq->rd = rd;
7986
c6c4927b 7987 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7988 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7989 set_rq_online(rq);
57d885fe
GH
7990
7991 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7992
7993 if (old_rd)
7994 free_rootdomain(old_rd);
57d885fe
GH
7995}
7996
fd5e1b5d 7997static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7998{
36b7b6d4
PE
7999 gfp_t gfp = GFP_KERNEL;
8000
57d885fe
GH
8001 memset(rd, 0, sizeof(*rd));
8002
36b7b6d4
PE
8003 if (bootmem)
8004 gfp = GFP_NOWAIT;
c6c4927b 8005
36b7b6d4 8006 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8007 goto out;
36b7b6d4 8008 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8009 goto free_span;
36b7b6d4 8010 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8011 goto free_online;
6e0534f2 8012
0fb53029 8013 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8014 goto free_rto_mask;
c6c4927b 8015 return 0;
6e0534f2 8016
68e74568
RR
8017free_rto_mask:
8018 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8019free_online:
8020 free_cpumask_var(rd->online);
8021free_span:
8022 free_cpumask_var(rd->span);
0c910d28 8023out:
c6c4927b 8024 return -ENOMEM;
57d885fe
GH
8025}
8026
8027static void init_defrootdomain(void)
8028{
c6c4927b
RR
8029 init_rootdomain(&def_root_domain, true);
8030
57d885fe
GH
8031 atomic_set(&def_root_domain.refcount, 1);
8032}
8033
dc938520 8034static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8035{
8036 struct root_domain *rd;
8037
8038 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8039 if (!rd)
8040 return NULL;
8041
c6c4927b
RR
8042 if (init_rootdomain(rd, false) != 0) {
8043 kfree(rd);
8044 return NULL;
8045 }
57d885fe
GH
8046
8047 return rd;
8048}
8049
1da177e4 8050/*
0eab9146 8051 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8052 * hold the hotplug lock.
8053 */
0eab9146
IM
8054static void
8055cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8056{
70b97a7f 8057 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8058 struct sched_domain *tmp;
8059
8060 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8061 for (tmp = sd; tmp; ) {
245af2c7
SS
8062 struct sched_domain *parent = tmp->parent;
8063 if (!parent)
8064 break;
f29c9b1c 8065
1a848870 8066 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8067 tmp->parent = parent->parent;
1a848870
SS
8068 if (parent->parent)
8069 parent->parent->child = tmp;
f29c9b1c
LZ
8070 } else
8071 tmp = tmp->parent;
245af2c7
SS
8072 }
8073
1a848870 8074 if (sd && sd_degenerate(sd)) {
245af2c7 8075 sd = sd->parent;
1a848870
SS
8076 if (sd)
8077 sd->child = NULL;
8078 }
1da177e4
LT
8079
8080 sched_domain_debug(sd, cpu);
8081
57d885fe 8082 rq_attach_root(rq, rd);
674311d5 8083 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8084}
8085
8086/* cpus with isolated domains */
dcc30a35 8087static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8088
8089/* Setup the mask of cpus configured for isolated domains */
8090static int __init isolated_cpu_setup(char *str)
8091{
bdddd296 8092 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8093 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8094 return 1;
8095}
8096
8927f494 8097__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8098
8099/*
6711cab4
SS
8100 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8101 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8102 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8103 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8104 *
8105 * init_sched_build_groups will build a circular linked list of the groups
8106 * covered by the given span, and will set each group's ->cpumask correctly,
8107 * and ->cpu_power to 0.
8108 */
a616058b 8109static void
96f874e2
RR
8110init_sched_build_groups(const struct cpumask *span,
8111 const struct cpumask *cpu_map,
8112 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8113 struct sched_group **sg,
96f874e2
RR
8114 struct cpumask *tmpmask),
8115 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8116{
8117 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8118 int i;
8119
96f874e2 8120 cpumask_clear(covered);
7c16ec58 8121
abcd083a 8122 for_each_cpu(i, span) {
6711cab4 8123 struct sched_group *sg;
7c16ec58 8124 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8125 int j;
8126
758b2cdc 8127 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8128 continue;
8129
758b2cdc 8130 cpumask_clear(sched_group_cpus(sg));
18a3885f 8131 sg->cpu_power = 0;
1da177e4 8132
abcd083a 8133 for_each_cpu(j, span) {
7c16ec58 8134 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8135 continue;
8136
96f874e2 8137 cpumask_set_cpu(j, covered);
758b2cdc 8138 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8139 }
8140 if (!first)
8141 first = sg;
8142 if (last)
8143 last->next = sg;
8144 last = sg;
8145 }
8146 last->next = first;
8147}
8148
9c1cfda2 8149#define SD_NODES_PER_DOMAIN 16
1da177e4 8150
9c1cfda2 8151#ifdef CONFIG_NUMA
198e2f18 8152
9c1cfda2
JH
8153/**
8154 * find_next_best_node - find the next node to include in a sched_domain
8155 * @node: node whose sched_domain we're building
8156 * @used_nodes: nodes already in the sched_domain
8157 *
41a2d6cf 8158 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8159 * finds the closest node not already in the @used_nodes map.
8160 *
8161 * Should use nodemask_t.
8162 */
c5f59f08 8163static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8164{
8165 int i, n, val, min_val, best_node = 0;
8166
8167 min_val = INT_MAX;
8168
076ac2af 8169 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8170 /* Start at @node */
076ac2af 8171 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8172
8173 if (!nr_cpus_node(n))
8174 continue;
8175
8176 /* Skip already used nodes */
c5f59f08 8177 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8178 continue;
8179
8180 /* Simple min distance search */
8181 val = node_distance(node, n);
8182
8183 if (val < min_val) {
8184 min_val = val;
8185 best_node = n;
8186 }
8187 }
8188
c5f59f08 8189 node_set(best_node, *used_nodes);
9c1cfda2
JH
8190 return best_node;
8191}
8192
8193/**
8194 * sched_domain_node_span - get a cpumask for a node's sched_domain
8195 * @node: node whose cpumask we're constructing
73486722 8196 * @span: resulting cpumask
9c1cfda2 8197 *
41a2d6cf 8198 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8199 * should be one that prevents unnecessary balancing, but also spreads tasks
8200 * out optimally.
8201 */
96f874e2 8202static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8203{
c5f59f08 8204 nodemask_t used_nodes;
48f24c4d 8205 int i;
9c1cfda2 8206
6ca09dfc 8207 cpumask_clear(span);
c5f59f08 8208 nodes_clear(used_nodes);
9c1cfda2 8209
6ca09dfc 8210 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8211 node_set(node, used_nodes);
9c1cfda2
JH
8212
8213 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8214 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8215
6ca09dfc 8216 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8217 }
9c1cfda2 8218}
6d6bc0ad 8219#endif /* CONFIG_NUMA */
9c1cfda2 8220
5c45bf27 8221int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8222
6c99e9ad
RR
8223/*
8224 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8225 *
8226 * ( See the the comments in include/linux/sched.h:struct sched_group
8227 * and struct sched_domain. )
6c99e9ad
RR
8228 */
8229struct static_sched_group {
8230 struct sched_group sg;
8231 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8232};
8233
8234struct static_sched_domain {
8235 struct sched_domain sd;
8236 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8237};
8238
49a02c51
AH
8239struct s_data {
8240#ifdef CONFIG_NUMA
8241 int sd_allnodes;
8242 cpumask_var_t domainspan;
8243 cpumask_var_t covered;
8244 cpumask_var_t notcovered;
8245#endif
8246 cpumask_var_t nodemask;
8247 cpumask_var_t this_sibling_map;
8248 cpumask_var_t this_core_map;
8249 cpumask_var_t send_covered;
8250 cpumask_var_t tmpmask;
8251 struct sched_group **sched_group_nodes;
8252 struct root_domain *rd;
8253};
8254
2109b99e
AH
8255enum s_alloc {
8256 sa_sched_groups = 0,
8257 sa_rootdomain,
8258 sa_tmpmask,
8259 sa_send_covered,
8260 sa_this_core_map,
8261 sa_this_sibling_map,
8262 sa_nodemask,
8263 sa_sched_group_nodes,
8264#ifdef CONFIG_NUMA
8265 sa_notcovered,
8266 sa_covered,
8267 sa_domainspan,
8268#endif
8269 sa_none,
8270};
8271
9c1cfda2 8272/*
48f24c4d 8273 * SMT sched-domains:
9c1cfda2 8274 */
1da177e4 8275#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8276static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8277static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8278
41a2d6cf 8279static int
96f874e2
RR
8280cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8281 struct sched_group **sg, struct cpumask *unused)
1da177e4 8282{
6711cab4 8283 if (sg)
6c99e9ad 8284 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8285 return cpu;
8286}
6d6bc0ad 8287#endif /* CONFIG_SCHED_SMT */
1da177e4 8288
48f24c4d
IM
8289/*
8290 * multi-core sched-domains:
8291 */
1e9f28fa 8292#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8293static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8294static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8295#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8296
8297#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8298static int
96f874e2
RR
8299cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8300 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8301{
6711cab4 8302 int group;
7c16ec58 8303
c69fc56d 8304 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8305 group = cpumask_first(mask);
6711cab4 8306 if (sg)
6c99e9ad 8307 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8308 return group;
1e9f28fa
SS
8309}
8310#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8311static int
96f874e2
RR
8312cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8313 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8314{
6711cab4 8315 if (sg)
6c99e9ad 8316 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8317 return cpu;
8318}
8319#endif
8320
6c99e9ad
RR
8321static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8322static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8323
41a2d6cf 8324static int
96f874e2
RR
8325cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8326 struct sched_group **sg, struct cpumask *mask)
1da177e4 8327{
6711cab4 8328 int group;
48f24c4d 8329#ifdef CONFIG_SCHED_MC
6ca09dfc 8330 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8331 group = cpumask_first(mask);
1e9f28fa 8332#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8333 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8334 group = cpumask_first(mask);
1da177e4 8335#else
6711cab4 8336 group = cpu;
1da177e4 8337#endif
6711cab4 8338 if (sg)
6c99e9ad 8339 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8340 return group;
1da177e4
LT
8341}
8342
8343#ifdef CONFIG_NUMA
1da177e4 8344/*
9c1cfda2
JH
8345 * The init_sched_build_groups can't handle what we want to do with node
8346 * groups, so roll our own. Now each node has its own list of groups which
8347 * gets dynamically allocated.
1da177e4 8348 */
62ea9ceb 8349static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8350static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8351
62ea9ceb 8352static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8353static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8354
96f874e2
RR
8355static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8356 struct sched_group **sg,
8357 struct cpumask *nodemask)
9c1cfda2 8358{
6711cab4
SS
8359 int group;
8360
6ca09dfc 8361 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8362 group = cpumask_first(nodemask);
6711cab4
SS
8363
8364 if (sg)
6c99e9ad 8365 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8366 return group;
1da177e4 8367}
6711cab4 8368
08069033
SS
8369static void init_numa_sched_groups_power(struct sched_group *group_head)
8370{
8371 struct sched_group *sg = group_head;
8372 int j;
8373
8374 if (!sg)
8375 return;
3a5c359a 8376 do {
758b2cdc 8377 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8378 struct sched_domain *sd;
08069033 8379
6c99e9ad 8380 sd = &per_cpu(phys_domains, j).sd;
13318a71 8381 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8382 /*
8383 * Only add "power" once for each
8384 * physical package.
8385 */
8386 continue;
8387 }
08069033 8388
18a3885f 8389 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8390 }
8391 sg = sg->next;
8392 } while (sg != group_head);
08069033 8393}
0601a88d
AH
8394
8395static int build_numa_sched_groups(struct s_data *d,
8396 const struct cpumask *cpu_map, int num)
8397{
8398 struct sched_domain *sd;
8399 struct sched_group *sg, *prev;
8400 int n, j;
8401
8402 cpumask_clear(d->covered);
8403 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8404 if (cpumask_empty(d->nodemask)) {
8405 d->sched_group_nodes[num] = NULL;
8406 goto out;
8407 }
8408
8409 sched_domain_node_span(num, d->domainspan);
8410 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8411
8412 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8413 GFP_KERNEL, num);
8414 if (!sg) {
8415 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8416 num);
8417 return -ENOMEM;
8418 }
8419 d->sched_group_nodes[num] = sg;
8420
8421 for_each_cpu(j, d->nodemask) {
8422 sd = &per_cpu(node_domains, j).sd;
8423 sd->groups = sg;
8424 }
8425
18a3885f 8426 sg->cpu_power = 0;
0601a88d
AH
8427 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8428 sg->next = sg;
8429 cpumask_or(d->covered, d->covered, d->nodemask);
8430
8431 prev = sg;
8432 for (j = 0; j < nr_node_ids; j++) {
8433 n = (num + j) % nr_node_ids;
8434 cpumask_complement(d->notcovered, d->covered);
8435 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8436 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8437 if (cpumask_empty(d->tmpmask))
8438 break;
8439 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8440 if (cpumask_empty(d->tmpmask))
8441 continue;
8442 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8443 GFP_KERNEL, num);
8444 if (!sg) {
8445 printk(KERN_WARNING
8446 "Can not alloc domain group for node %d\n", j);
8447 return -ENOMEM;
8448 }
18a3885f 8449 sg->cpu_power = 0;
0601a88d
AH
8450 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8451 sg->next = prev->next;
8452 cpumask_or(d->covered, d->covered, d->tmpmask);
8453 prev->next = sg;
8454 prev = sg;
8455 }
8456out:
8457 return 0;
8458}
6d6bc0ad 8459#endif /* CONFIG_NUMA */
1da177e4 8460
a616058b 8461#ifdef CONFIG_NUMA
51888ca2 8462/* Free memory allocated for various sched_group structures */
96f874e2
RR
8463static void free_sched_groups(const struct cpumask *cpu_map,
8464 struct cpumask *nodemask)
51888ca2 8465{
a616058b 8466 int cpu, i;
51888ca2 8467
abcd083a 8468 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8469 struct sched_group **sched_group_nodes
8470 = sched_group_nodes_bycpu[cpu];
8471
51888ca2
SV
8472 if (!sched_group_nodes)
8473 continue;
8474
076ac2af 8475 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8476 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8477
6ca09dfc 8478 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8479 if (cpumask_empty(nodemask))
51888ca2
SV
8480 continue;
8481
8482 if (sg == NULL)
8483 continue;
8484 sg = sg->next;
8485next_sg:
8486 oldsg = sg;
8487 sg = sg->next;
8488 kfree(oldsg);
8489 if (oldsg != sched_group_nodes[i])
8490 goto next_sg;
8491 }
8492 kfree(sched_group_nodes);
8493 sched_group_nodes_bycpu[cpu] = NULL;
8494 }
51888ca2 8495}
6d6bc0ad 8496#else /* !CONFIG_NUMA */
96f874e2
RR
8497static void free_sched_groups(const struct cpumask *cpu_map,
8498 struct cpumask *nodemask)
a616058b
SS
8499{
8500}
6d6bc0ad 8501#endif /* CONFIG_NUMA */
51888ca2 8502
89c4710e
SS
8503/*
8504 * Initialize sched groups cpu_power.
8505 *
8506 * cpu_power indicates the capacity of sched group, which is used while
8507 * distributing the load between different sched groups in a sched domain.
8508 * Typically cpu_power for all the groups in a sched domain will be same unless
8509 * there are asymmetries in the topology. If there are asymmetries, group
8510 * having more cpu_power will pickup more load compared to the group having
8511 * less cpu_power.
89c4710e
SS
8512 */
8513static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8514{
8515 struct sched_domain *child;
8516 struct sched_group *group;
f93e65c1
PZ
8517 long power;
8518 int weight;
89c4710e
SS
8519
8520 WARN_ON(!sd || !sd->groups);
8521
13318a71 8522 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8523 return;
8524
8525 child = sd->child;
8526
18a3885f 8527 sd->groups->cpu_power = 0;
5517d86b 8528
f93e65c1
PZ
8529 if (!child) {
8530 power = SCHED_LOAD_SCALE;
8531 weight = cpumask_weight(sched_domain_span(sd));
8532 /*
8533 * SMT siblings share the power of a single core.
a52bfd73
PZ
8534 * Usually multiple threads get a better yield out of
8535 * that one core than a single thread would have,
8536 * reflect that in sd->smt_gain.
f93e65c1 8537 */
a52bfd73
PZ
8538 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8539 power *= sd->smt_gain;
f93e65c1 8540 power /= weight;
a52bfd73
PZ
8541 power >>= SCHED_LOAD_SHIFT;
8542 }
18a3885f 8543 sd->groups->cpu_power += power;
89c4710e
SS
8544 return;
8545 }
8546
89c4710e 8547 /*
f93e65c1 8548 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8549 */
8550 group = child->groups;
8551 do {
18a3885f 8552 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8553 group = group->next;
8554 } while (group != child->groups);
8555}
8556
7c16ec58
MT
8557/*
8558 * Initializers for schedule domains
8559 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8560 */
8561
a5d8c348
IM
8562#ifdef CONFIG_SCHED_DEBUG
8563# define SD_INIT_NAME(sd, type) sd->name = #type
8564#else
8565# define SD_INIT_NAME(sd, type) do { } while (0)
8566#endif
8567
7c16ec58 8568#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8569
7c16ec58
MT
8570#define SD_INIT_FUNC(type) \
8571static noinline void sd_init_##type(struct sched_domain *sd) \
8572{ \
8573 memset(sd, 0, sizeof(*sd)); \
8574 *sd = SD_##type##_INIT; \
1d3504fc 8575 sd->level = SD_LV_##type; \
a5d8c348 8576 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8577}
8578
8579SD_INIT_FUNC(CPU)
8580#ifdef CONFIG_NUMA
8581 SD_INIT_FUNC(ALLNODES)
8582 SD_INIT_FUNC(NODE)
8583#endif
8584#ifdef CONFIG_SCHED_SMT
8585 SD_INIT_FUNC(SIBLING)
8586#endif
8587#ifdef CONFIG_SCHED_MC
8588 SD_INIT_FUNC(MC)
8589#endif
8590
1d3504fc
HS
8591static int default_relax_domain_level = -1;
8592
8593static int __init setup_relax_domain_level(char *str)
8594{
30e0e178
LZ
8595 unsigned long val;
8596
8597 val = simple_strtoul(str, NULL, 0);
8598 if (val < SD_LV_MAX)
8599 default_relax_domain_level = val;
8600
1d3504fc
HS
8601 return 1;
8602}
8603__setup("relax_domain_level=", setup_relax_domain_level);
8604
8605static void set_domain_attribute(struct sched_domain *sd,
8606 struct sched_domain_attr *attr)
8607{
8608 int request;
8609
8610 if (!attr || attr->relax_domain_level < 0) {
8611 if (default_relax_domain_level < 0)
8612 return;
8613 else
8614 request = default_relax_domain_level;
8615 } else
8616 request = attr->relax_domain_level;
8617 if (request < sd->level) {
8618 /* turn off idle balance on this domain */
c88d5910 8619 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8620 } else {
8621 /* turn on idle balance on this domain */
c88d5910 8622 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8623 }
8624}
8625
2109b99e
AH
8626static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8627 const struct cpumask *cpu_map)
8628{
8629 switch (what) {
8630 case sa_sched_groups:
8631 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8632 d->sched_group_nodes = NULL;
8633 case sa_rootdomain:
8634 free_rootdomain(d->rd); /* fall through */
8635 case sa_tmpmask:
8636 free_cpumask_var(d->tmpmask); /* fall through */
8637 case sa_send_covered:
8638 free_cpumask_var(d->send_covered); /* fall through */
8639 case sa_this_core_map:
8640 free_cpumask_var(d->this_core_map); /* fall through */
8641 case sa_this_sibling_map:
8642 free_cpumask_var(d->this_sibling_map); /* fall through */
8643 case sa_nodemask:
8644 free_cpumask_var(d->nodemask); /* fall through */
8645 case sa_sched_group_nodes:
d1b55138 8646#ifdef CONFIG_NUMA
2109b99e
AH
8647 kfree(d->sched_group_nodes); /* fall through */
8648 case sa_notcovered:
8649 free_cpumask_var(d->notcovered); /* fall through */
8650 case sa_covered:
8651 free_cpumask_var(d->covered); /* fall through */
8652 case sa_domainspan:
8653 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8654#endif
2109b99e
AH
8655 case sa_none:
8656 break;
8657 }
8658}
3404c8d9 8659
2109b99e
AH
8660static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8661 const struct cpumask *cpu_map)
8662{
3404c8d9 8663#ifdef CONFIG_NUMA
2109b99e
AH
8664 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8665 return sa_none;
8666 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8667 return sa_domainspan;
8668 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8669 return sa_covered;
8670 /* Allocate the per-node list of sched groups */
8671 d->sched_group_nodes = kcalloc(nr_node_ids,
8672 sizeof(struct sched_group *), GFP_KERNEL);
8673 if (!d->sched_group_nodes) {
d1b55138 8674 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8675 return sa_notcovered;
d1b55138 8676 }
2109b99e 8677 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8678#endif
2109b99e
AH
8679 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8680 return sa_sched_group_nodes;
8681 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8682 return sa_nodemask;
8683 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8684 return sa_this_sibling_map;
8685 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8686 return sa_this_core_map;
8687 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8688 return sa_send_covered;
8689 d->rd = alloc_rootdomain();
8690 if (!d->rd) {
57d885fe 8691 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8692 return sa_tmpmask;
57d885fe 8693 }
2109b99e
AH
8694 return sa_rootdomain;
8695}
57d885fe 8696
7f4588f3
AH
8697static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8698 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8699{
8700 struct sched_domain *sd = NULL;
7c16ec58 8701#ifdef CONFIG_NUMA
7f4588f3 8702 struct sched_domain *parent;
1da177e4 8703
7f4588f3
AH
8704 d->sd_allnodes = 0;
8705 if (cpumask_weight(cpu_map) >
8706 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8707 sd = &per_cpu(allnodes_domains, i).sd;
8708 SD_INIT(sd, ALLNODES);
1d3504fc 8709 set_domain_attribute(sd, attr);
7f4588f3
AH
8710 cpumask_copy(sched_domain_span(sd), cpu_map);
8711 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8712 d->sd_allnodes = 1;
8713 }
8714 parent = sd;
8715
8716 sd = &per_cpu(node_domains, i).sd;
8717 SD_INIT(sd, NODE);
8718 set_domain_attribute(sd, attr);
8719 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8720 sd->parent = parent;
8721 if (parent)
8722 parent->child = sd;
8723 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8724#endif
7f4588f3
AH
8725 return sd;
8726}
1da177e4 8727
87cce662
AH
8728static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8729 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8730 struct sched_domain *parent, int i)
8731{
8732 struct sched_domain *sd;
8733 sd = &per_cpu(phys_domains, i).sd;
8734 SD_INIT(sd, CPU);
8735 set_domain_attribute(sd, attr);
8736 cpumask_copy(sched_domain_span(sd), d->nodemask);
8737 sd->parent = parent;
8738 if (parent)
8739 parent->child = sd;
8740 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8741 return sd;
8742}
1da177e4 8743
410c4081
AH
8744static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8745 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8746 struct sched_domain *parent, int i)
8747{
8748 struct sched_domain *sd = parent;
1e9f28fa 8749#ifdef CONFIG_SCHED_MC
410c4081
AH
8750 sd = &per_cpu(core_domains, i).sd;
8751 SD_INIT(sd, MC);
8752 set_domain_attribute(sd, attr);
8753 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8754 sd->parent = parent;
8755 parent->child = sd;
8756 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8757#endif
410c4081
AH
8758 return sd;
8759}
1e9f28fa 8760
d8173535
AH
8761static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8762 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8763 struct sched_domain *parent, int i)
8764{
8765 struct sched_domain *sd = parent;
1da177e4 8766#ifdef CONFIG_SCHED_SMT
d8173535
AH
8767 sd = &per_cpu(cpu_domains, i).sd;
8768 SD_INIT(sd, SIBLING);
8769 set_domain_attribute(sd, attr);
8770 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8771 sd->parent = parent;
8772 parent->child = sd;
8773 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8774#endif
d8173535
AH
8775 return sd;
8776}
1da177e4 8777
0e8e85c9
AH
8778static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8779 const struct cpumask *cpu_map, int cpu)
8780{
8781 switch (l) {
1da177e4 8782#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8783 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8784 cpumask_and(d->this_sibling_map, cpu_map,
8785 topology_thread_cpumask(cpu));
8786 if (cpu == cpumask_first(d->this_sibling_map))
8787 init_sched_build_groups(d->this_sibling_map, cpu_map,
8788 &cpu_to_cpu_group,
8789 d->send_covered, d->tmpmask);
8790 break;
1da177e4 8791#endif
1e9f28fa 8792#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8793 case SD_LV_MC: /* set up multi-core groups */
8794 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8795 if (cpu == cpumask_first(d->this_core_map))
8796 init_sched_build_groups(d->this_core_map, cpu_map,
8797 &cpu_to_core_group,
8798 d->send_covered, d->tmpmask);
8799 break;
1e9f28fa 8800#endif
86548096
AH
8801 case SD_LV_CPU: /* set up physical groups */
8802 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8803 if (!cpumask_empty(d->nodemask))
8804 init_sched_build_groups(d->nodemask, cpu_map,
8805 &cpu_to_phys_group,
8806 d->send_covered, d->tmpmask);
8807 break;
1da177e4 8808#ifdef CONFIG_NUMA
de616e36
AH
8809 case SD_LV_ALLNODES:
8810 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8811 d->send_covered, d->tmpmask);
8812 break;
8813#endif
0e8e85c9
AH
8814 default:
8815 break;
7c16ec58 8816 }
0e8e85c9 8817}
9c1cfda2 8818
2109b99e
AH
8819/*
8820 * Build sched domains for a given set of cpus and attach the sched domains
8821 * to the individual cpus
8822 */
8823static int __build_sched_domains(const struct cpumask *cpu_map,
8824 struct sched_domain_attr *attr)
8825{
8826 enum s_alloc alloc_state = sa_none;
8827 struct s_data d;
294b0c96 8828 struct sched_domain *sd;
2109b99e 8829 int i;
7c16ec58 8830#ifdef CONFIG_NUMA
2109b99e 8831 d.sd_allnodes = 0;
7c16ec58 8832#endif
9c1cfda2 8833
2109b99e
AH
8834 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8835 if (alloc_state != sa_rootdomain)
8836 goto error;
8837 alloc_state = sa_sched_groups;
9c1cfda2 8838
1da177e4 8839 /*
1a20ff27 8840 * Set up domains for cpus specified by the cpu_map.
1da177e4 8841 */
abcd083a 8842 for_each_cpu(i, cpu_map) {
49a02c51
AH
8843 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8844 cpu_map);
9761eea8 8845
7f4588f3 8846 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8847 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8848 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8849 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8850 }
9c1cfda2 8851
abcd083a 8852 for_each_cpu(i, cpu_map) {
0e8e85c9 8853 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8854 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8855 }
9c1cfda2 8856
1da177e4 8857 /* Set up physical groups */
86548096
AH
8858 for (i = 0; i < nr_node_ids; i++)
8859 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8860
1da177e4
LT
8861#ifdef CONFIG_NUMA
8862 /* Set up node groups */
de616e36
AH
8863 if (d.sd_allnodes)
8864 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8865
0601a88d
AH
8866 for (i = 0; i < nr_node_ids; i++)
8867 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8868 goto error;
1da177e4
LT
8869#endif
8870
8871 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8872#ifdef CONFIG_SCHED_SMT
abcd083a 8873 for_each_cpu(i, cpu_map) {
294b0c96 8874 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8875 init_sched_groups_power(i, sd);
5c45bf27 8876 }
1da177e4 8877#endif
1e9f28fa 8878#ifdef CONFIG_SCHED_MC
abcd083a 8879 for_each_cpu(i, cpu_map) {
294b0c96 8880 sd = &per_cpu(core_domains, i).sd;
89c4710e 8881 init_sched_groups_power(i, sd);
5c45bf27
SS
8882 }
8883#endif
1e9f28fa 8884
abcd083a 8885 for_each_cpu(i, cpu_map) {
294b0c96 8886 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8887 init_sched_groups_power(i, sd);
1da177e4
LT
8888 }
8889
9c1cfda2 8890#ifdef CONFIG_NUMA
076ac2af 8891 for (i = 0; i < nr_node_ids; i++)
49a02c51 8892 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8893
49a02c51 8894 if (d.sd_allnodes) {
6711cab4 8895 struct sched_group *sg;
f712c0c7 8896
96f874e2 8897 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8898 d.tmpmask);
f712c0c7
SS
8899 init_numa_sched_groups_power(sg);
8900 }
9c1cfda2
JH
8901#endif
8902
1da177e4 8903 /* Attach the domains */
abcd083a 8904 for_each_cpu(i, cpu_map) {
1da177e4 8905#ifdef CONFIG_SCHED_SMT
6c99e9ad 8906 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8907#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8908 sd = &per_cpu(core_domains, i).sd;
1da177e4 8909#else
6c99e9ad 8910 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8911#endif
49a02c51 8912 cpu_attach_domain(sd, d.rd, i);
1da177e4 8913 }
51888ca2 8914
2109b99e
AH
8915 d.sched_group_nodes = NULL; /* don't free this we still need it */
8916 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8917 return 0;
51888ca2 8918
51888ca2 8919error:
2109b99e
AH
8920 __free_domain_allocs(&d, alloc_state, cpu_map);
8921 return -ENOMEM;
1da177e4 8922}
029190c5 8923
96f874e2 8924static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8925{
8926 return __build_sched_domains(cpu_map, NULL);
8927}
8928
acc3f5d7 8929static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8930static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8931static struct sched_domain_attr *dattr_cur;
8932 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8933
8934/*
8935 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8936 * cpumask) fails, then fallback to a single sched domain,
8937 * as determined by the single cpumask fallback_doms.
029190c5 8938 */
4212823f 8939static cpumask_var_t fallback_doms;
029190c5 8940
ee79d1bd
HC
8941/*
8942 * arch_update_cpu_topology lets virtualized architectures update the
8943 * cpu core maps. It is supposed to return 1 if the topology changed
8944 * or 0 if it stayed the same.
8945 */
8946int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8947{
ee79d1bd 8948 return 0;
22e52b07
HC
8949}
8950
acc3f5d7
RR
8951cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8952{
8953 int i;
8954 cpumask_var_t *doms;
8955
8956 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8957 if (!doms)
8958 return NULL;
8959 for (i = 0; i < ndoms; i++) {
8960 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8961 free_sched_domains(doms, i);
8962 return NULL;
8963 }
8964 }
8965 return doms;
8966}
8967
8968void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8969{
8970 unsigned int i;
8971 for (i = 0; i < ndoms; i++)
8972 free_cpumask_var(doms[i]);
8973 kfree(doms);
8974}
8975
1a20ff27 8976/*
41a2d6cf 8977 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8978 * For now this just excludes isolated cpus, but could be used to
8979 * exclude other special cases in the future.
1a20ff27 8980 */
96f874e2 8981static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8982{
7378547f
MM
8983 int err;
8984
22e52b07 8985 arch_update_cpu_topology();
029190c5 8986 ndoms_cur = 1;
acc3f5d7 8987 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 8988 if (!doms_cur)
acc3f5d7
RR
8989 doms_cur = &fallback_doms;
8990 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 8991 dattr_cur = NULL;
acc3f5d7 8992 err = build_sched_domains(doms_cur[0]);
6382bc90 8993 register_sched_domain_sysctl();
7378547f
MM
8994
8995 return err;
1a20ff27
DG
8996}
8997
96f874e2
RR
8998static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8999 struct cpumask *tmpmask)
1da177e4 9000{
7c16ec58 9001 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9002}
1da177e4 9003
1a20ff27
DG
9004/*
9005 * Detach sched domains from a group of cpus specified in cpu_map
9006 * These cpus will now be attached to the NULL domain
9007 */
96f874e2 9008static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9009{
96f874e2
RR
9010 /* Save because hotplug lock held. */
9011 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9012 int i;
9013
abcd083a 9014 for_each_cpu(i, cpu_map)
57d885fe 9015 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9016 synchronize_sched();
96f874e2 9017 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9018}
9019
1d3504fc
HS
9020/* handle null as "default" */
9021static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9022 struct sched_domain_attr *new, int idx_new)
9023{
9024 struct sched_domain_attr tmp;
9025
9026 /* fast path */
9027 if (!new && !cur)
9028 return 1;
9029
9030 tmp = SD_ATTR_INIT;
9031 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9032 new ? (new + idx_new) : &tmp,
9033 sizeof(struct sched_domain_attr));
9034}
9035
029190c5
PJ
9036/*
9037 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9038 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9039 * doms_new[] to the current sched domain partitioning, doms_cur[].
9040 * It destroys each deleted domain and builds each new domain.
9041 *
acc3f5d7 9042 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9043 * The masks don't intersect (don't overlap.) We should setup one
9044 * sched domain for each mask. CPUs not in any of the cpumasks will
9045 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9046 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9047 * it as it is.
9048 *
acc3f5d7
RR
9049 * The passed in 'doms_new' should be allocated using
9050 * alloc_sched_domains. This routine takes ownership of it and will
9051 * free_sched_domains it when done with it. If the caller failed the
9052 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9053 * and partition_sched_domains() will fallback to the single partition
9054 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9055 *
96f874e2 9056 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9057 * ndoms_new == 0 is a special case for destroying existing domains,
9058 * and it will not create the default domain.
dfb512ec 9059 *
029190c5
PJ
9060 * Call with hotplug lock held
9061 */
acc3f5d7 9062void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9063 struct sched_domain_attr *dattr_new)
029190c5 9064{
dfb512ec 9065 int i, j, n;
d65bd5ec 9066 int new_topology;
029190c5 9067
712555ee 9068 mutex_lock(&sched_domains_mutex);
a1835615 9069
7378547f
MM
9070 /* always unregister in case we don't destroy any domains */
9071 unregister_sched_domain_sysctl();
9072
d65bd5ec
HC
9073 /* Let architecture update cpu core mappings. */
9074 new_topology = arch_update_cpu_topology();
9075
dfb512ec 9076 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9077
9078 /* Destroy deleted domains */
9079 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9080 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9081 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9082 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9083 goto match1;
9084 }
9085 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9086 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9087match1:
9088 ;
9089 }
9090
e761b772
MK
9091 if (doms_new == NULL) {
9092 ndoms_cur = 0;
acc3f5d7 9093 doms_new = &fallback_doms;
6ad4c188 9094 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9095 WARN_ON_ONCE(dattr_new);
e761b772
MK
9096 }
9097
029190c5
PJ
9098 /* Build new domains */
9099 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9100 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9101 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9102 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9103 goto match2;
9104 }
9105 /* no match - add a new doms_new */
acc3f5d7 9106 __build_sched_domains(doms_new[i],
1d3504fc 9107 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9108match2:
9109 ;
9110 }
9111
9112 /* Remember the new sched domains */
acc3f5d7
RR
9113 if (doms_cur != &fallback_doms)
9114 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9115 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9116 doms_cur = doms_new;
1d3504fc 9117 dattr_cur = dattr_new;
029190c5 9118 ndoms_cur = ndoms_new;
7378547f
MM
9119
9120 register_sched_domain_sysctl();
a1835615 9121
712555ee 9122 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9123}
9124
5c45bf27 9125#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9126static void arch_reinit_sched_domains(void)
5c45bf27 9127{
95402b38 9128 get_online_cpus();
dfb512ec
MK
9129
9130 /* Destroy domains first to force the rebuild */
9131 partition_sched_domains(0, NULL, NULL);
9132
e761b772 9133 rebuild_sched_domains();
95402b38 9134 put_online_cpus();
5c45bf27
SS
9135}
9136
9137static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9138{
afb8a9b7 9139 unsigned int level = 0;
5c45bf27 9140
afb8a9b7
GS
9141 if (sscanf(buf, "%u", &level) != 1)
9142 return -EINVAL;
9143
9144 /*
9145 * level is always be positive so don't check for
9146 * level < POWERSAVINGS_BALANCE_NONE which is 0
9147 * What happens on 0 or 1 byte write,
9148 * need to check for count as well?
9149 */
9150
9151 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9152 return -EINVAL;
9153
9154 if (smt)
afb8a9b7 9155 sched_smt_power_savings = level;
5c45bf27 9156 else
afb8a9b7 9157 sched_mc_power_savings = level;
5c45bf27 9158
c70f22d2 9159 arch_reinit_sched_domains();
5c45bf27 9160
c70f22d2 9161 return count;
5c45bf27
SS
9162}
9163
5c45bf27 9164#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9165static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9166 char *page)
5c45bf27
SS
9167{
9168 return sprintf(page, "%u\n", sched_mc_power_savings);
9169}
f718cd4a 9170static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9171 const char *buf, size_t count)
5c45bf27
SS
9172{
9173 return sched_power_savings_store(buf, count, 0);
9174}
f718cd4a
AK
9175static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9176 sched_mc_power_savings_show,
9177 sched_mc_power_savings_store);
5c45bf27
SS
9178#endif
9179
9180#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9181static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9182 char *page)
5c45bf27
SS
9183{
9184 return sprintf(page, "%u\n", sched_smt_power_savings);
9185}
f718cd4a 9186static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9187 const char *buf, size_t count)
5c45bf27
SS
9188{
9189 return sched_power_savings_store(buf, count, 1);
9190}
f718cd4a
AK
9191static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9192 sched_smt_power_savings_show,
6707de00
AB
9193 sched_smt_power_savings_store);
9194#endif
9195
39aac648 9196int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9197{
9198 int err = 0;
9199
9200#ifdef CONFIG_SCHED_SMT
9201 if (smt_capable())
9202 err = sysfs_create_file(&cls->kset.kobj,
9203 &attr_sched_smt_power_savings.attr);
9204#endif
9205#ifdef CONFIG_SCHED_MC
9206 if (!err && mc_capable())
9207 err = sysfs_create_file(&cls->kset.kobj,
9208 &attr_sched_mc_power_savings.attr);
9209#endif
9210 return err;
9211}
6d6bc0ad 9212#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9213
e761b772 9214#ifndef CONFIG_CPUSETS
1da177e4 9215/*
e761b772
MK
9216 * Add online and remove offline CPUs from the scheduler domains.
9217 * When cpusets are enabled they take over this function.
1da177e4
LT
9218 */
9219static int update_sched_domains(struct notifier_block *nfb,
9220 unsigned long action, void *hcpu)
e761b772
MK
9221{
9222 switch (action) {
9223 case CPU_ONLINE:
9224 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9225 case CPU_DOWN_PREPARE:
9226 case CPU_DOWN_PREPARE_FROZEN:
9227 case CPU_DOWN_FAILED:
9228 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9229 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9230 return NOTIFY_OK;
9231
9232 default:
9233 return NOTIFY_DONE;
9234 }
9235}
9236#endif
9237
9238static int update_runtime(struct notifier_block *nfb,
9239 unsigned long action, void *hcpu)
1da177e4 9240{
7def2be1
PZ
9241 int cpu = (int)(long)hcpu;
9242
1da177e4 9243 switch (action) {
1da177e4 9244 case CPU_DOWN_PREPARE:
8bb78442 9245 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9246 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9247 return NOTIFY_OK;
9248
1da177e4 9249 case CPU_DOWN_FAILED:
8bb78442 9250 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9251 case CPU_ONLINE:
8bb78442 9252 case CPU_ONLINE_FROZEN:
7def2be1 9253 enable_runtime(cpu_rq(cpu));
e761b772
MK
9254 return NOTIFY_OK;
9255
1da177e4
LT
9256 default:
9257 return NOTIFY_DONE;
9258 }
1da177e4 9259}
1da177e4
LT
9260
9261void __init sched_init_smp(void)
9262{
dcc30a35
RR
9263 cpumask_var_t non_isolated_cpus;
9264
9265 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9266 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9267
434d53b0
MT
9268#if defined(CONFIG_NUMA)
9269 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9270 GFP_KERNEL);
9271 BUG_ON(sched_group_nodes_bycpu == NULL);
9272#endif
95402b38 9273 get_online_cpus();
712555ee 9274 mutex_lock(&sched_domains_mutex);
6ad4c188 9275 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9276 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9277 if (cpumask_empty(non_isolated_cpus))
9278 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9279 mutex_unlock(&sched_domains_mutex);
95402b38 9280 put_online_cpus();
e761b772
MK
9281
9282#ifndef CONFIG_CPUSETS
1da177e4
LT
9283 /* XXX: Theoretical race here - CPU may be hotplugged now */
9284 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9285#endif
9286
9287 /* RT runtime code needs to handle some hotplug events */
9288 hotcpu_notifier(update_runtime, 0);
9289
b328ca18 9290 init_hrtick();
5c1e1767
NP
9291
9292 /* Move init over to a non-isolated CPU */
dcc30a35 9293 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9294 BUG();
19978ca6 9295 sched_init_granularity();
dcc30a35 9296 free_cpumask_var(non_isolated_cpus);
4212823f 9297
0e3900e6 9298 init_sched_rt_class();
1da177e4
LT
9299}
9300#else
9301void __init sched_init_smp(void)
9302{
19978ca6 9303 sched_init_granularity();
1da177e4
LT
9304}
9305#endif /* CONFIG_SMP */
9306
cd1bb94b
AB
9307const_debug unsigned int sysctl_timer_migration = 1;
9308
1da177e4
LT
9309int in_sched_functions(unsigned long addr)
9310{
1da177e4
LT
9311 return in_lock_functions(addr) ||
9312 (addr >= (unsigned long)__sched_text_start
9313 && addr < (unsigned long)__sched_text_end);
9314}
9315
a9957449 9316static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9317{
9318 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9319 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9320#ifdef CONFIG_FAIR_GROUP_SCHED
9321 cfs_rq->rq = rq;
9322#endif
67e9fb2a 9323 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9324}
9325
fa85ae24
PZ
9326static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9327{
9328 struct rt_prio_array *array;
9329 int i;
9330
9331 array = &rt_rq->active;
9332 for (i = 0; i < MAX_RT_PRIO; i++) {
9333 INIT_LIST_HEAD(array->queue + i);
9334 __clear_bit(i, array->bitmap);
9335 }
9336 /* delimiter for bitsearch: */
9337 __set_bit(MAX_RT_PRIO, array->bitmap);
9338
052f1dc7 9339#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9340 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9341#ifdef CONFIG_SMP
e864c499 9342 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9343#endif
48d5e258 9344#endif
fa85ae24
PZ
9345#ifdef CONFIG_SMP
9346 rt_rq->rt_nr_migratory = 0;
fa85ae24 9347 rt_rq->overloaded = 0;
c20b08e3 9348 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9349#endif
9350
9351 rt_rq->rt_time = 0;
9352 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9353 rt_rq->rt_runtime = 0;
9354 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9355
052f1dc7 9356#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9357 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9358 rt_rq->rq = rq;
9359#endif
fa85ae24
PZ
9360}
9361
6f505b16 9362#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9363static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9364 struct sched_entity *se, int cpu, int add,
9365 struct sched_entity *parent)
6f505b16 9366{
ec7dc8ac 9367 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9368 tg->cfs_rq[cpu] = cfs_rq;
9369 init_cfs_rq(cfs_rq, rq);
9370 cfs_rq->tg = tg;
9371 if (add)
9372 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9373
9374 tg->se[cpu] = se;
354d60c2
DG
9375 /* se could be NULL for init_task_group */
9376 if (!se)
9377 return;
9378
ec7dc8ac
DG
9379 if (!parent)
9380 se->cfs_rq = &rq->cfs;
9381 else
9382 se->cfs_rq = parent->my_q;
9383
6f505b16
PZ
9384 se->my_q = cfs_rq;
9385 se->load.weight = tg->shares;
e05510d0 9386 se->load.inv_weight = 0;
ec7dc8ac 9387 se->parent = parent;
6f505b16 9388}
052f1dc7 9389#endif
6f505b16 9390
052f1dc7 9391#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9392static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9393 struct sched_rt_entity *rt_se, int cpu, int add,
9394 struct sched_rt_entity *parent)
6f505b16 9395{
ec7dc8ac
DG
9396 struct rq *rq = cpu_rq(cpu);
9397
6f505b16
PZ
9398 tg->rt_rq[cpu] = rt_rq;
9399 init_rt_rq(rt_rq, rq);
9400 rt_rq->tg = tg;
9401 rt_rq->rt_se = rt_se;
ac086bc2 9402 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9403 if (add)
9404 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9405
9406 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9407 if (!rt_se)
9408 return;
9409
ec7dc8ac
DG
9410 if (!parent)
9411 rt_se->rt_rq = &rq->rt;
9412 else
9413 rt_se->rt_rq = parent->my_q;
9414
6f505b16 9415 rt_se->my_q = rt_rq;
ec7dc8ac 9416 rt_se->parent = parent;
6f505b16
PZ
9417 INIT_LIST_HEAD(&rt_se->run_list);
9418}
9419#endif
9420
1da177e4
LT
9421void __init sched_init(void)
9422{
dd41f596 9423 int i, j;
434d53b0
MT
9424 unsigned long alloc_size = 0, ptr;
9425
9426#ifdef CONFIG_FAIR_GROUP_SCHED
9427 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9428#endif
9429#ifdef CONFIG_RT_GROUP_SCHED
9430 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9431#endif
9432#ifdef CONFIG_USER_SCHED
9433 alloc_size *= 2;
df7c8e84
RR
9434#endif
9435#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9436 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9437#endif
434d53b0 9438 if (alloc_size) {
36b7b6d4 9439 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9440
9441#ifdef CONFIG_FAIR_GROUP_SCHED
9442 init_task_group.se = (struct sched_entity **)ptr;
9443 ptr += nr_cpu_ids * sizeof(void **);
9444
9445 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9446 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9447
9448#ifdef CONFIG_USER_SCHED
9449 root_task_group.se = (struct sched_entity **)ptr;
9450 ptr += nr_cpu_ids * sizeof(void **);
9451
9452 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9453 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9454#endif /* CONFIG_USER_SCHED */
9455#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9456#ifdef CONFIG_RT_GROUP_SCHED
9457 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9458 ptr += nr_cpu_ids * sizeof(void **);
9459
9460 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9461 ptr += nr_cpu_ids * sizeof(void **);
9462
9463#ifdef CONFIG_USER_SCHED
9464 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9465 ptr += nr_cpu_ids * sizeof(void **);
9466
9467 root_task_group.rt_rq = (struct rt_rq **)ptr;
9468 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9469#endif /* CONFIG_USER_SCHED */
9470#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9471#ifdef CONFIG_CPUMASK_OFFSTACK
9472 for_each_possible_cpu(i) {
9473 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9474 ptr += cpumask_size();
9475 }
9476#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9477 }
dd41f596 9478
57d885fe
GH
9479#ifdef CONFIG_SMP
9480 init_defrootdomain();
9481#endif
9482
d0b27fa7
PZ
9483 init_rt_bandwidth(&def_rt_bandwidth,
9484 global_rt_period(), global_rt_runtime());
9485
9486#ifdef CONFIG_RT_GROUP_SCHED
9487 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9488 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9489#ifdef CONFIG_USER_SCHED
9490 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9491 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9492#endif /* CONFIG_USER_SCHED */
9493#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9494
052f1dc7 9495#ifdef CONFIG_GROUP_SCHED
6f505b16 9496 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9497 INIT_LIST_HEAD(&init_task_group.children);
9498
9499#ifdef CONFIG_USER_SCHED
9500 INIT_LIST_HEAD(&root_task_group.children);
9501 init_task_group.parent = &root_task_group;
9502 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9503#endif /* CONFIG_USER_SCHED */
9504#endif /* CONFIG_GROUP_SCHED */
6f505b16 9505
4a6cc4bd
JK
9506#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9507 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9508 __alignof__(unsigned long));
9509#endif
0a945022 9510 for_each_possible_cpu(i) {
70b97a7f 9511 struct rq *rq;
1da177e4
LT
9512
9513 rq = cpu_rq(i);
9514 spin_lock_init(&rq->lock);
7897986b 9515 rq->nr_running = 0;
dce48a84
TG
9516 rq->calc_load_active = 0;
9517 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9518 init_cfs_rq(&rq->cfs, rq);
6f505b16 9519 init_rt_rq(&rq->rt, rq);
dd41f596 9520#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9521 init_task_group.shares = init_task_group_load;
6f505b16 9522 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9523#ifdef CONFIG_CGROUP_SCHED
9524 /*
9525 * How much cpu bandwidth does init_task_group get?
9526 *
9527 * In case of task-groups formed thr' the cgroup filesystem, it
9528 * gets 100% of the cpu resources in the system. This overall
9529 * system cpu resource is divided among the tasks of
9530 * init_task_group and its child task-groups in a fair manner,
9531 * based on each entity's (task or task-group's) weight
9532 * (se->load.weight).
9533 *
9534 * In other words, if init_task_group has 10 tasks of weight
9535 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9536 * then A0's share of the cpu resource is:
9537 *
0d905bca 9538 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9539 *
9540 * We achieve this by letting init_task_group's tasks sit
9541 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9542 */
ec7dc8ac 9543 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9544#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9545 root_task_group.shares = NICE_0_LOAD;
9546 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9547 /*
9548 * In case of task-groups formed thr' the user id of tasks,
9549 * init_task_group represents tasks belonging to root user.
9550 * Hence it forms a sibling of all subsequent groups formed.
9551 * In this case, init_task_group gets only a fraction of overall
9552 * system cpu resource, based on the weight assigned to root
9553 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9554 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9555 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9556 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9557 */
ec7dc8ac 9558 init_tg_cfs_entry(&init_task_group,
84e9dabf 9559 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9560 &per_cpu(init_sched_entity, i), i, 1,
9561 root_task_group.se[i]);
6f505b16 9562
052f1dc7 9563#endif
354d60c2
DG
9564#endif /* CONFIG_FAIR_GROUP_SCHED */
9565
9566 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9567#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9568 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9569#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9570 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9571#elif defined CONFIG_USER_SCHED
eff766a6 9572 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9573 init_tg_rt_entry(&init_task_group,
6f505b16 9574 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9575 &per_cpu(init_sched_rt_entity, i), i, 1,
9576 root_task_group.rt_se[i]);
354d60c2 9577#endif
dd41f596 9578#endif
1da177e4 9579
dd41f596
IM
9580 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9581 rq->cpu_load[j] = 0;
1da177e4 9582#ifdef CONFIG_SMP
41c7ce9a 9583 rq->sd = NULL;
57d885fe 9584 rq->rd = NULL;
3f029d3c 9585 rq->post_schedule = 0;
1da177e4 9586 rq->active_balance = 0;
dd41f596 9587 rq->next_balance = jiffies;
1da177e4 9588 rq->push_cpu = 0;
0a2966b4 9589 rq->cpu = i;
1f11eb6a 9590 rq->online = 0;
1da177e4 9591 rq->migration_thread = NULL;
eae0c9df
MG
9592 rq->idle_stamp = 0;
9593 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9594 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9595 rq_attach_root(rq, &def_root_domain);
1da177e4 9596#endif
8f4d37ec 9597 init_rq_hrtick(rq);
1da177e4 9598 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9599 }
9600
2dd73a4f 9601 set_load_weight(&init_task);
b50f60ce 9602
e107be36
AK
9603#ifdef CONFIG_PREEMPT_NOTIFIERS
9604 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9605#endif
9606
c9819f45 9607#ifdef CONFIG_SMP
962cf36c 9608 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9609#endif
9610
b50f60ce
HC
9611#ifdef CONFIG_RT_MUTEXES
9612 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9613#endif
9614
1da177e4
LT
9615 /*
9616 * The boot idle thread does lazy MMU switching as well:
9617 */
9618 atomic_inc(&init_mm.mm_count);
9619 enter_lazy_tlb(&init_mm, current);
9620
9621 /*
9622 * Make us the idle thread. Technically, schedule() should not be
9623 * called from this thread, however somewhere below it might be,
9624 * but because we are the idle thread, we just pick up running again
9625 * when this runqueue becomes "idle".
9626 */
9627 init_idle(current, smp_processor_id());
dce48a84
TG
9628
9629 calc_load_update = jiffies + LOAD_FREQ;
9630
dd41f596
IM
9631 /*
9632 * During early bootup we pretend to be a normal task:
9633 */
9634 current->sched_class = &fair_sched_class;
6892b75e 9635
6a7b3dc3 9636 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9637 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9638#ifdef CONFIG_SMP
7d1e6a9b 9639#ifdef CONFIG_NO_HZ
49557e62 9640 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9641 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9642#endif
bdddd296
RR
9643 /* May be allocated at isolcpus cmdline parse time */
9644 if (cpu_isolated_map == NULL)
9645 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9646#endif /* SMP */
6a7b3dc3 9647
cdd6c482 9648 perf_event_init();
0d905bca 9649
6892b75e 9650 scheduler_running = 1;
1da177e4
LT
9651}
9652
9653#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9654static inline int preempt_count_equals(int preempt_offset)
9655{
9656 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9657
9658 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9659}
9660
9661void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9662{
48f24c4d 9663#ifdef in_atomic
1da177e4
LT
9664 static unsigned long prev_jiffy; /* ratelimiting */
9665
e4aafea2
FW
9666 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9667 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9668 return;
9669 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9670 return;
9671 prev_jiffy = jiffies;
9672
9673 printk(KERN_ERR
9674 "BUG: sleeping function called from invalid context at %s:%d\n",
9675 file, line);
9676 printk(KERN_ERR
9677 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9678 in_atomic(), irqs_disabled(),
9679 current->pid, current->comm);
9680
9681 debug_show_held_locks(current);
9682 if (irqs_disabled())
9683 print_irqtrace_events(current);
9684 dump_stack();
1da177e4
LT
9685#endif
9686}
9687EXPORT_SYMBOL(__might_sleep);
9688#endif
9689
9690#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9691static void normalize_task(struct rq *rq, struct task_struct *p)
9692{
9693 int on_rq;
3e51f33f 9694
3a5e4dc1
AK
9695 update_rq_clock(rq);
9696 on_rq = p->se.on_rq;
9697 if (on_rq)
9698 deactivate_task(rq, p, 0);
9699 __setscheduler(rq, p, SCHED_NORMAL, 0);
9700 if (on_rq) {
9701 activate_task(rq, p, 0);
9702 resched_task(rq->curr);
9703 }
9704}
9705
1da177e4
LT
9706void normalize_rt_tasks(void)
9707{
a0f98a1c 9708 struct task_struct *g, *p;
1da177e4 9709 unsigned long flags;
70b97a7f 9710 struct rq *rq;
1da177e4 9711
4cf5d77a 9712 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9713 do_each_thread(g, p) {
178be793
IM
9714 /*
9715 * Only normalize user tasks:
9716 */
9717 if (!p->mm)
9718 continue;
9719
6cfb0d5d 9720 p->se.exec_start = 0;
6cfb0d5d 9721#ifdef CONFIG_SCHEDSTATS
dd41f596 9722 p->se.wait_start = 0;
dd41f596 9723 p->se.sleep_start = 0;
dd41f596 9724 p->se.block_start = 0;
6cfb0d5d 9725#endif
dd41f596
IM
9726
9727 if (!rt_task(p)) {
9728 /*
9729 * Renice negative nice level userspace
9730 * tasks back to 0:
9731 */
9732 if (TASK_NICE(p) < 0 && p->mm)
9733 set_user_nice(p, 0);
1da177e4 9734 continue;
dd41f596 9735 }
1da177e4 9736
4cf5d77a 9737 spin_lock(&p->pi_lock);
b29739f9 9738 rq = __task_rq_lock(p);
1da177e4 9739
178be793 9740 normalize_task(rq, p);
3a5e4dc1 9741
b29739f9 9742 __task_rq_unlock(rq);
4cf5d77a 9743 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9744 } while_each_thread(g, p);
9745
4cf5d77a 9746 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9747}
9748
9749#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9750
9751#ifdef CONFIG_IA64
9752/*
9753 * These functions are only useful for the IA64 MCA handling.
9754 *
9755 * They can only be called when the whole system has been
9756 * stopped - every CPU needs to be quiescent, and no scheduling
9757 * activity can take place. Using them for anything else would
9758 * be a serious bug, and as a result, they aren't even visible
9759 * under any other configuration.
9760 */
9761
9762/**
9763 * curr_task - return the current task for a given cpu.
9764 * @cpu: the processor in question.
9765 *
9766 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9767 */
36c8b586 9768struct task_struct *curr_task(int cpu)
1df5c10a
LT
9769{
9770 return cpu_curr(cpu);
9771}
9772
9773/**
9774 * set_curr_task - set the current task for a given cpu.
9775 * @cpu: the processor in question.
9776 * @p: the task pointer to set.
9777 *
9778 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9779 * are serviced on a separate stack. It allows the architecture to switch the
9780 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9781 * must be called with all CPU's synchronized, and interrupts disabled, the
9782 * and caller must save the original value of the current task (see
9783 * curr_task() above) and restore that value before reenabling interrupts and
9784 * re-starting the system.
9785 *
9786 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9787 */
36c8b586 9788void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9789{
9790 cpu_curr(cpu) = p;
9791}
9792
9793#endif
29f59db3 9794
bccbe08a
PZ
9795#ifdef CONFIG_FAIR_GROUP_SCHED
9796static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9797{
9798 int i;
9799
9800 for_each_possible_cpu(i) {
9801 if (tg->cfs_rq)
9802 kfree(tg->cfs_rq[i]);
9803 if (tg->se)
9804 kfree(tg->se[i]);
6f505b16
PZ
9805 }
9806
9807 kfree(tg->cfs_rq);
9808 kfree(tg->se);
6f505b16
PZ
9809}
9810
ec7dc8ac
DG
9811static
9812int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9813{
29f59db3 9814 struct cfs_rq *cfs_rq;
eab17229 9815 struct sched_entity *se;
9b5b7751 9816 struct rq *rq;
29f59db3
SV
9817 int i;
9818
434d53b0 9819 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9820 if (!tg->cfs_rq)
9821 goto err;
434d53b0 9822 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9823 if (!tg->se)
9824 goto err;
052f1dc7
PZ
9825
9826 tg->shares = NICE_0_LOAD;
29f59db3
SV
9827
9828 for_each_possible_cpu(i) {
9b5b7751 9829 rq = cpu_rq(i);
29f59db3 9830
eab17229
LZ
9831 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9832 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9833 if (!cfs_rq)
9834 goto err;
9835
eab17229
LZ
9836 se = kzalloc_node(sizeof(struct sched_entity),
9837 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9838 if (!se)
9839 goto err;
9840
eab17229 9841 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9842 }
9843
9844 return 1;
9845
9846 err:
9847 return 0;
9848}
9849
9850static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9851{
9852 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9853 &cpu_rq(cpu)->leaf_cfs_rq_list);
9854}
9855
9856static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9857{
9858 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9859}
6d6bc0ad 9860#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9861static inline void free_fair_sched_group(struct task_group *tg)
9862{
9863}
9864
ec7dc8ac
DG
9865static inline
9866int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9867{
9868 return 1;
9869}
9870
9871static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9872{
9873}
9874
9875static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9876{
9877}
6d6bc0ad 9878#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9879
9880#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9881static void free_rt_sched_group(struct task_group *tg)
9882{
9883 int i;
9884
d0b27fa7
PZ
9885 destroy_rt_bandwidth(&tg->rt_bandwidth);
9886
bccbe08a
PZ
9887 for_each_possible_cpu(i) {
9888 if (tg->rt_rq)
9889 kfree(tg->rt_rq[i]);
9890 if (tg->rt_se)
9891 kfree(tg->rt_se[i]);
9892 }
9893
9894 kfree(tg->rt_rq);
9895 kfree(tg->rt_se);
9896}
9897
ec7dc8ac
DG
9898static
9899int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9900{
9901 struct rt_rq *rt_rq;
eab17229 9902 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9903 struct rq *rq;
9904 int i;
9905
434d53b0 9906 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9907 if (!tg->rt_rq)
9908 goto err;
434d53b0 9909 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9910 if (!tg->rt_se)
9911 goto err;
9912
d0b27fa7
PZ
9913 init_rt_bandwidth(&tg->rt_bandwidth,
9914 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9915
9916 for_each_possible_cpu(i) {
9917 rq = cpu_rq(i);
9918
eab17229
LZ
9919 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9920 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9921 if (!rt_rq)
9922 goto err;
29f59db3 9923
eab17229
LZ
9924 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9925 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9926 if (!rt_se)
9927 goto err;
29f59db3 9928
eab17229 9929 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9930 }
9931
bccbe08a
PZ
9932 return 1;
9933
9934 err:
9935 return 0;
9936}
9937
9938static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9939{
9940 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9941 &cpu_rq(cpu)->leaf_rt_rq_list);
9942}
9943
9944static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9945{
9946 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9947}
6d6bc0ad 9948#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9949static inline void free_rt_sched_group(struct task_group *tg)
9950{
9951}
9952
ec7dc8ac
DG
9953static inline
9954int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9955{
9956 return 1;
9957}
9958
9959static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9960{
9961}
9962
9963static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9964{
9965}
6d6bc0ad 9966#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9967
d0b27fa7 9968#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9969static void free_sched_group(struct task_group *tg)
9970{
9971 free_fair_sched_group(tg);
9972 free_rt_sched_group(tg);
9973 kfree(tg);
9974}
9975
9976/* allocate runqueue etc for a new task group */
ec7dc8ac 9977struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9978{
9979 struct task_group *tg;
9980 unsigned long flags;
9981 int i;
9982
9983 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9984 if (!tg)
9985 return ERR_PTR(-ENOMEM);
9986
ec7dc8ac 9987 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9988 goto err;
9989
ec7dc8ac 9990 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9991 goto err;
9992
8ed36996 9993 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9994 for_each_possible_cpu(i) {
bccbe08a
PZ
9995 register_fair_sched_group(tg, i);
9996 register_rt_sched_group(tg, i);
9b5b7751 9997 }
6f505b16 9998 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9999
10000 WARN_ON(!parent); /* root should already exist */
10001
10002 tg->parent = parent;
f473aa5e 10003 INIT_LIST_HEAD(&tg->children);
09f2724a 10004 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10005 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10006
9b5b7751 10007 return tg;
29f59db3
SV
10008
10009err:
6f505b16 10010 free_sched_group(tg);
29f59db3
SV
10011 return ERR_PTR(-ENOMEM);
10012}
10013
9b5b7751 10014/* rcu callback to free various structures associated with a task group */
6f505b16 10015static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10016{
29f59db3 10017 /* now it should be safe to free those cfs_rqs */
6f505b16 10018 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10019}
10020
9b5b7751 10021/* Destroy runqueue etc associated with a task group */
4cf86d77 10022void sched_destroy_group(struct task_group *tg)
29f59db3 10023{
8ed36996 10024 unsigned long flags;
9b5b7751 10025 int i;
29f59db3 10026
8ed36996 10027 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10028 for_each_possible_cpu(i) {
bccbe08a
PZ
10029 unregister_fair_sched_group(tg, i);
10030 unregister_rt_sched_group(tg, i);
9b5b7751 10031 }
6f505b16 10032 list_del_rcu(&tg->list);
f473aa5e 10033 list_del_rcu(&tg->siblings);
8ed36996 10034 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10035
9b5b7751 10036 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10037 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10038}
10039
9b5b7751 10040/* change task's runqueue when it moves between groups.
3a252015
IM
10041 * The caller of this function should have put the task in its new group
10042 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10043 * reflect its new group.
9b5b7751
SV
10044 */
10045void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10046{
10047 int on_rq, running;
10048 unsigned long flags;
10049 struct rq *rq;
10050
10051 rq = task_rq_lock(tsk, &flags);
10052
29f59db3
SV
10053 update_rq_clock(rq);
10054
051a1d1a 10055 running = task_current(rq, tsk);
29f59db3
SV
10056 on_rq = tsk->se.on_rq;
10057
0e1f3483 10058 if (on_rq)
29f59db3 10059 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10060 if (unlikely(running))
10061 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10062
6f505b16 10063 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10064
810b3817
PZ
10065#ifdef CONFIG_FAIR_GROUP_SCHED
10066 if (tsk->sched_class->moved_group)
10067 tsk->sched_class->moved_group(tsk);
10068#endif
10069
0e1f3483
HS
10070 if (unlikely(running))
10071 tsk->sched_class->set_curr_task(rq);
10072 if (on_rq)
7074badb 10073 enqueue_task(rq, tsk, 0);
29f59db3 10074
29f59db3
SV
10075 task_rq_unlock(rq, &flags);
10076}
6d6bc0ad 10077#endif /* CONFIG_GROUP_SCHED */
29f59db3 10078
052f1dc7 10079#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10080static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10081{
10082 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10083 int on_rq;
10084
29f59db3 10085 on_rq = se->on_rq;
62fb1851 10086 if (on_rq)
29f59db3
SV
10087 dequeue_entity(cfs_rq, se, 0);
10088
10089 se->load.weight = shares;
e05510d0 10090 se->load.inv_weight = 0;
29f59db3 10091
62fb1851 10092 if (on_rq)
29f59db3 10093 enqueue_entity(cfs_rq, se, 0);
c09595f6 10094}
62fb1851 10095
c09595f6
PZ
10096static void set_se_shares(struct sched_entity *se, unsigned long shares)
10097{
10098 struct cfs_rq *cfs_rq = se->cfs_rq;
10099 struct rq *rq = cfs_rq->rq;
10100 unsigned long flags;
10101
10102 spin_lock_irqsave(&rq->lock, flags);
10103 __set_se_shares(se, shares);
10104 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10105}
10106
8ed36996
PZ
10107static DEFINE_MUTEX(shares_mutex);
10108
4cf86d77 10109int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10110{
10111 int i;
8ed36996 10112 unsigned long flags;
c61935fd 10113
ec7dc8ac
DG
10114 /*
10115 * We can't change the weight of the root cgroup.
10116 */
10117 if (!tg->se[0])
10118 return -EINVAL;
10119
18d95a28
PZ
10120 if (shares < MIN_SHARES)
10121 shares = MIN_SHARES;
cb4ad1ff
MX
10122 else if (shares > MAX_SHARES)
10123 shares = MAX_SHARES;
62fb1851 10124
8ed36996 10125 mutex_lock(&shares_mutex);
9b5b7751 10126 if (tg->shares == shares)
5cb350ba 10127 goto done;
29f59db3 10128
8ed36996 10129 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10130 for_each_possible_cpu(i)
10131 unregister_fair_sched_group(tg, i);
f473aa5e 10132 list_del_rcu(&tg->siblings);
8ed36996 10133 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10134
10135 /* wait for any ongoing reference to this group to finish */
10136 synchronize_sched();
10137
10138 /*
10139 * Now we are free to modify the group's share on each cpu
10140 * w/o tripping rebalance_share or load_balance_fair.
10141 */
9b5b7751 10142 tg->shares = shares;
c09595f6
PZ
10143 for_each_possible_cpu(i) {
10144 /*
10145 * force a rebalance
10146 */
10147 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10148 set_se_shares(tg->se[i], shares);
c09595f6 10149 }
29f59db3 10150
6b2d7700
SV
10151 /*
10152 * Enable load balance activity on this group, by inserting it back on
10153 * each cpu's rq->leaf_cfs_rq_list.
10154 */
8ed36996 10155 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10156 for_each_possible_cpu(i)
10157 register_fair_sched_group(tg, i);
f473aa5e 10158 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10159 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10160done:
8ed36996 10161 mutex_unlock(&shares_mutex);
9b5b7751 10162 return 0;
29f59db3
SV
10163}
10164
5cb350ba
DG
10165unsigned long sched_group_shares(struct task_group *tg)
10166{
10167 return tg->shares;
10168}
052f1dc7 10169#endif
5cb350ba 10170
052f1dc7 10171#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10172/*
9f0c1e56 10173 * Ensure that the real time constraints are schedulable.
6f505b16 10174 */
9f0c1e56
PZ
10175static DEFINE_MUTEX(rt_constraints_mutex);
10176
10177static unsigned long to_ratio(u64 period, u64 runtime)
10178{
10179 if (runtime == RUNTIME_INF)
9a7e0b18 10180 return 1ULL << 20;
9f0c1e56 10181
9a7e0b18 10182 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10183}
10184
9a7e0b18
PZ
10185/* Must be called with tasklist_lock held */
10186static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10187{
9a7e0b18 10188 struct task_struct *g, *p;
b40b2e8e 10189
9a7e0b18
PZ
10190 do_each_thread(g, p) {
10191 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10192 return 1;
10193 } while_each_thread(g, p);
b40b2e8e 10194
9a7e0b18
PZ
10195 return 0;
10196}
b40b2e8e 10197
9a7e0b18
PZ
10198struct rt_schedulable_data {
10199 struct task_group *tg;
10200 u64 rt_period;
10201 u64 rt_runtime;
10202};
b40b2e8e 10203
9a7e0b18
PZ
10204static int tg_schedulable(struct task_group *tg, void *data)
10205{
10206 struct rt_schedulable_data *d = data;
10207 struct task_group *child;
10208 unsigned long total, sum = 0;
10209 u64 period, runtime;
b40b2e8e 10210
9a7e0b18
PZ
10211 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10212 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10213
9a7e0b18
PZ
10214 if (tg == d->tg) {
10215 period = d->rt_period;
10216 runtime = d->rt_runtime;
b40b2e8e 10217 }
b40b2e8e 10218
98a4826b
PZ
10219#ifdef CONFIG_USER_SCHED
10220 if (tg == &root_task_group) {
10221 period = global_rt_period();
10222 runtime = global_rt_runtime();
10223 }
10224#endif
10225
4653f803
PZ
10226 /*
10227 * Cannot have more runtime than the period.
10228 */
10229 if (runtime > period && runtime != RUNTIME_INF)
10230 return -EINVAL;
6f505b16 10231
4653f803
PZ
10232 /*
10233 * Ensure we don't starve existing RT tasks.
10234 */
9a7e0b18
PZ
10235 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10236 return -EBUSY;
6f505b16 10237
9a7e0b18 10238 total = to_ratio(period, runtime);
6f505b16 10239
4653f803
PZ
10240 /*
10241 * Nobody can have more than the global setting allows.
10242 */
10243 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10244 return -EINVAL;
6f505b16 10245
4653f803
PZ
10246 /*
10247 * The sum of our children's runtime should not exceed our own.
10248 */
9a7e0b18
PZ
10249 list_for_each_entry_rcu(child, &tg->children, siblings) {
10250 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10251 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10252
9a7e0b18
PZ
10253 if (child == d->tg) {
10254 period = d->rt_period;
10255 runtime = d->rt_runtime;
10256 }
6f505b16 10257
9a7e0b18 10258 sum += to_ratio(period, runtime);
9f0c1e56 10259 }
6f505b16 10260
9a7e0b18
PZ
10261 if (sum > total)
10262 return -EINVAL;
10263
10264 return 0;
6f505b16
PZ
10265}
10266
9a7e0b18 10267static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10268{
9a7e0b18
PZ
10269 struct rt_schedulable_data data = {
10270 .tg = tg,
10271 .rt_period = period,
10272 .rt_runtime = runtime,
10273 };
10274
10275 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10276}
10277
d0b27fa7
PZ
10278static int tg_set_bandwidth(struct task_group *tg,
10279 u64 rt_period, u64 rt_runtime)
6f505b16 10280{
ac086bc2 10281 int i, err = 0;
9f0c1e56 10282
9f0c1e56 10283 mutex_lock(&rt_constraints_mutex);
521f1a24 10284 read_lock(&tasklist_lock);
9a7e0b18
PZ
10285 err = __rt_schedulable(tg, rt_period, rt_runtime);
10286 if (err)
9f0c1e56 10287 goto unlock;
ac086bc2
PZ
10288
10289 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10290 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10291 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10292
10293 for_each_possible_cpu(i) {
10294 struct rt_rq *rt_rq = tg->rt_rq[i];
10295
10296 spin_lock(&rt_rq->rt_runtime_lock);
10297 rt_rq->rt_runtime = rt_runtime;
10298 spin_unlock(&rt_rq->rt_runtime_lock);
10299 }
10300 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10301 unlock:
521f1a24 10302 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10303 mutex_unlock(&rt_constraints_mutex);
10304
10305 return err;
6f505b16
PZ
10306}
10307
d0b27fa7
PZ
10308int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10309{
10310 u64 rt_runtime, rt_period;
10311
10312 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10313 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10314 if (rt_runtime_us < 0)
10315 rt_runtime = RUNTIME_INF;
10316
10317 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10318}
10319
9f0c1e56
PZ
10320long sched_group_rt_runtime(struct task_group *tg)
10321{
10322 u64 rt_runtime_us;
10323
d0b27fa7 10324 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10325 return -1;
10326
d0b27fa7 10327 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10328 do_div(rt_runtime_us, NSEC_PER_USEC);
10329 return rt_runtime_us;
10330}
d0b27fa7
PZ
10331
10332int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10333{
10334 u64 rt_runtime, rt_period;
10335
10336 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10337 rt_runtime = tg->rt_bandwidth.rt_runtime;
10338
619b0488
R
10339 if (rt_period == 0)
10340 return -EINVAL;
10341
d0b27fa7
PZ
10342 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10343}
10344
10345long sched_group_rt_period(struct task_group *tg)
10346{
10347 u64 rt_period_us;
10348
10349 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10350 do_div(rt_period_us, NSEC_PER_USEC);
10351 return rt_period_us;
10352}
10353
10354static int sched_rt_global_constraints(void)
10355{
4653f803 10356 u64 runtime, period;
d0b27fa7
PZ
10357 int ret = 0;
10358
ec5d4989
HS
10359 if (sysctl_sched_rt_period <= 0)
10360 return -EINVAL;
10361
4653f803
PZ
10362 runtime = global_rt_runtime();
10363 period = global_rt_period();
10364
10365 /*
10366 * Sanity check on the sysctl variables.
10367 */
10368 if (runtime > period && runtime != RUNTIME_INF)
10369 return -EINVAL;
10b612f4 10370
d0b27fa7 10371 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10372 read_lock(&tasklist_lock);
4653f803 10373 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10374 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10375 mutex_unlock(&rt_constraints_mutex);
10376
10377 return ret;
10378}
54e99124
DG
10379
10380int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10381{
10382 /* Don't accept realtime tasks when there is no way for them to run */
10383 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10384 return 0;
10385
10386 return 1;
10387}
10388
6d6bc0ad 10389#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10390static int sched_rt_global_constraints(void)
10391{
ac086bc2
PZ
10392 unsigned long flags;
10393 int i;
10394
ec5d4989
HS
10395 if (sysctl_sched_rt_period <= 0)
10396 return -EINVAL;
10397
60aa605d
PZ
10398 /*
10399 * There's always some RT tasks in the root group
10400 * -- migration, kstopmachine etc..
10401 */
10402 if (sysctl_sched_rt_runtime == 0)
10403 return -EBUSY;
10404
ac086bc2
PZ
10405 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10406 for_each_possible_cpu(i) {
10407 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10408
10409 spin_lock(&rt_rq->rt_runtime_lock);
10410 rt_rq->rt_runtime = global_rt_runtime();
10411 spin_unlock(&rt_rq->rt_runtime_lock);
10412 }
10413 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10414
d0b27fa7
PZ
10415 return 0;
10416}
6d6bc0ad 10417#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10418
10419int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10420 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10421 loff_t *ppos)
10422{
10423 int ret;
10424 int old_period, old_runtime;
10425 static DEFINE_MUTEX(mutex);
10426
10427 mutex_lock(&mutex);
10428 old_period = sysctl_sched_rt_period;
10429 old_runtime = sysctl_sched_rt_runtime;
10430
8d65af78 10431 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10432
10433 if (!ret && write) {
10434 ret = sched_rt_global_constraints();
10435 if (ret) {
10436 sysctl_sched_rt_period = old_period;
10437 sysctl_sched_rt_runtime = old_runtime;
10438 } else {
10439 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10440 def_rt_bandwidth.rt_period =
10441 ns_to_ktime(global_rt_period());
10442 }
10443 }
10444 mutex_unlock(&mutex);
10445
10446 return ret;
10447}
68318b8e 10448
052f1dc7 10449#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10450
10451/* return corresponding task_group object of a cgroup */
2b01dfe3 10452static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10453{
2b01dfe3
PM
10454 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10455 struct task_group, css);
68318b8e
SV
10456}
10457
10458static struct cgroup_subsys_state *
2b01dfe3 10459cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10460{
ec7dc8ac 10461 struct task_group *tg, *parent;
68318b8e 10462
2b01dfe3 10463 if (!cgrp->parent) {
68318b8e 10464 /* This is early initialization for the top cgroup */
68318b8e
SV
10465 return &init_task_group.css;
10466 }
10467
ec7dc8ac
DG
10468 parent = cgroup_tg(cgrp->parent);
10469 tg = sched_create_group(parent);
68318b8e
SV
10470 if (IS_ERR(tg))
10471 return ERR_PTR(-ENOMEM);
10472
68318b8e
SV
10473 return &tg->css;
10474}
10475
41a2d6cf
IM
10476static void
10477cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10478{
2b01dfe3 10479 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10480
10481 sched_destroy_group(tg);
10482}
10483
41a2d6cf 10484static int
be367d09 10485cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10486{
b68aa230 10487#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10488 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10489 return -EINVAL;
10490#else
68318b8e
SV
10491 /* We don't support RT-tasks being in separate groups */
10492 if (tsk->sched_class != &fair_sched_class)
10493 return -EINVAL;
b68aa230 10494#endif
be367d09
BB
10495 return 0;
10496}
68318b8e 10497
be367d09
BB
10498static int
10499cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10500 struct task_struct *tsk, bool threadgroup)
10501{
10502 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10503 if (retval)
10504 return retval;
10505 if (threadgroup) {
10506 struct task_struct *c;
10507 rcu_read_lock();
10508 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10509 retval = cpu_cgroup_can_attach_task(cgrp, c);
10510 if (retval) {
10511 rcu_read_unlock();
10512 return retval;
10513 }
10514 }
10515 rcu_read_unlock();
10516 }
68318b8e
SV
10517 return 0;
10518}
10519
10520static void
2b01dfe3 10521cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10522 struct cgroup *old_cont, struct task_struct *tsk,
10523 bool threadgroup)
68318b8e
SV
10524{
10525 sched_move_task(tsk);
be367d09
BB
10526 if (threadgroup) {
10527 struct task_struct *c;
10528 rcu_read_lock();
10529 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10530 sched_move_task(c);
10531 }
10532 rcu_read_unlock();
10533 }
68318b8e
SV
10534}
10535
052f1dc7 10536#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10537static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10538 u64 shareval)
68318b8e 10539{
2b01dfe3 10540 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10541}
10542
f4c753b7 10543static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10544{
2b01dfe3 10545 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10546
10547 return (u64) tg->shares;
10548}
6d6bc0ad 10549#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10550
052f1dc7 10551#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10552static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10553 s64 val)
6f505b16 10554{
06ecb27c 10555 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10556}
10557
06ecb27c 10558static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10559{
06ecb27c 10560 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10561}
d0b27fa7
PZ
10562
10563static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10564 u64 rt_period_us)
10565{
10566 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10567}
10568
10569static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10570{
10571 return sched_group_rt_period(cgroup_tg(cgrp));
10572}
6d6bc0ad 10573#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10574
fe5c7cc2 10575static struct cftype cpu_files[] = {
052f1dc7 10576#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10577 {
10578 .name = "shares",
f4c753b7
PM
10579 .read_u64 = cpu_shares_read_u64,
10580 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10581 },
052f1dc7
PZ
10582#endif
10583#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10584 {
9f0c1e56 10585 .name = "rt_runtime_us",
06ecb27c
PM
10586 .read_s64 = cpu_rt_runtime_read,
10587 .write_s64 = cpu_rt_runtime_write,
6f505b16 10588 },
d0b27fa7
PZ
10589 {
10590 .name = "rt_period_us",
f4c753b7
PM
10591 .read_u64 = cpu_rt_period_read_uint,
10592 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10593 },
052f1dc7 10594#endif
68318b8e
SV
10595};
10596
10597static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10598{
fe5c7cc2 10599 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10600}
10601
10602struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10603 .name = "cpu",
10604 .create = cpu_cgroup_create,
10605 .destroy = cpu_cgroup_destroy,
10606 .can_attach = cpu_cgroup_can_attach,
10607 .attach = cpu_cgroup_attach,
10608 .populate = cpu_cgroup_populate,
10609 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10610 .early_init = 1,
10611};
10612
052f1dc7 10613#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10614
10615#ifdef CONFIG_CGROUP_CPUACCT
10616
10617/*
10618 * CPU accounting code for task groups.
10619 *
10620 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10621 * (balbir@in.ibm.com).
10622 */
10623
934352f2 10624/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10625struct cpuacct {
10626 struct cgroup_subsys_state css;
10627 /* cpuusage holds pointer to a u64-type object on every cpu */
10628 u64 *cpuusage;
ef12fefa 10629 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10630 struct cpuacct *parent;
d842de87
SV
10631};
10632
10633struct cgroup_subsys cpuacct_subsys;
10634
10635/* return cpu accounting group corresponding to this container */
32cd756a 10636static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10637{
32cd756a 10638 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10639 struct cpuacct, css);
10640}
10641
10642/* return cpu accounting group to which this task belongs */
10643static inline struct cpuacct *task_ca(struct task_struct *tsk)
10644{
10645 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10646 struct cpuacct, css);
10647}
10648
10649/* create a new cpu accounting group */
10650static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10651 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10652{
10653 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10654 int i;
d842de87
SV
10655
10656 if (!ca)
ef12fefa 10657 goto out;
d842de87
SV
10658
10659 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10660 if (!ca->cpuusage)
10661 goto out_free_ca;
10662
10663 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10664 if (percpu_counter_init(&ca->cpustat[i], 0))
10665 goto out_free_counters;
d842de87 10666
934352f2
BR
10667 if (cgrp->parent)
10668 ca->parent = cgroup_ca(cgrp->parent);
10669
d842de87 10670 return &ca->css;
ef12fefa
BR
10671
10672out_free_counters:
10673 while (--i >= 0)
10674 percpu_counter_destroy(&ca->cpustat[i]);
10675 free_percpu(ca->cpuusage);
10676out_free_ca:
10677 kfree(ca);
10678out:
10679 return ERR_PTR(-ENOMEM);
d842de87
SV
10680}
10681
10682/* destroy an existing cpu accounting group */
41a2d6cf 10683static void
32cd756a 10684cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10685{
32cd756a 10686 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10687 int i;
d842de87 10688
ef12fefa
BR
10689 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10690 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10691 free_percpu(ca->cpuusage);
10692 kfree(ca);
10693}
10694
720f5498
KC
10695static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10696{
b36128c8 10697 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10698 u64 data;
10699
10700#ifndef CONFIG_64BIT
10701 /*
10702 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10703 */
10704 spin_lock_irq(&cpu_rq(cpu)->lock);
10705 data = *cpuusage;
10706 spin_unlock_irq(&cpu_rq(cpu)->lock);
10707#else
10708 data = *cpuusage;
10709#endif
10710
10711 return data;
10712}
10713
10714static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10715{
b36128c8 10716 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10717
10718#ifndef CONFIG_64BIT
10719 /*
10720 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10721 */
10722 spin_lock_irq(&cpu_rq(cpu)->lock);
10723 *cpuusage = val;
10724 spin_unlock_irq(&cpu_rq(cpu)->lock);
10725#else
10726 *cpuusage = val;
10727#endif
10728}
10729
d842de87 10730/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10731static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10732{
32cd756a 10733 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10734 u64 totalcpuusage = 0;
10735 int i;
10736
720f5498
KC
10737 for_each_present_cpu(i)
10738 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10739
10740 return totalcpuusage;
10741}
10742
0297b803
DG
10743static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10744 u64 reset)
10745{
10746 struct cpuacct *ca = cgroup_ca(cgrp);
10747 int err = 0;
10748 int i;
10749
10750 if (reset) {
10751 err = -EINVAL;
10752 goto out;
10753 }
10754
720f5498
KC
10755 for_each_present_cpu(i)
10756 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10757
0297b803
DG
10758out:
10759 return err;
10760}
10761
e9515c3c
KC
10762static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10763 struct seq_file *m)
10764{
10765 struct cpuacct *ca = cgroup_ca(cgroup);
10766 u64 percpu;
10767 int i;
10768
10769 for_each_present_cpu(i) {
10770 percpu = cpuacct_cpuusage_read(ca, i);
10771 seq_printf(m, "%llu ", (unsigned long long) percpu);
10772 }
10773 seq_printf(m, "\n");
10774 return 0;
10775}
10776
ef12fefa
BR
10777static const char *cpuacct_stat_desc[] = {
10778 [CPUACCT_STAT_USER] = "user",
10779 [CPUACCT_STAT_SYSTEM] = "system",
10780};
10781
10782static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10783 struct cgroup_map_cb *cb)
10784{
10785 struct cpuacct *ca = cgroup_ca(cgrp);
10786 int i;
10787
10788 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10789 s64 val = percpu_counter_read(&ca->cpustat[i]);
10790 val = cputime64_to_clock_t(val);
10791 cb->fill(cb, cpuacct_stat_desc[i], val);
10792 }
10793 return 0;
10794}
10795
d842de87
SV
10796static struct cftype files[] = {
10797 {
10798 .name = "usage",
f4c753b7
PM
10799 .read_u64 = cpuusage_read,
10800 .write_u64 = cpuusage_write,
d842de87 10801 },
e9515c3c
KC
10802 {
10803 .name = "usage_percpu",
10804 .read_seq_string = cpuacct_percpu_seq_read,
10805 },
ef12fefa
BR
10806 {
10807 .name = "stat",
10808 .read_map = cpuacct_stats_show,
10809 },
d842de87
SV
10810};
10811
32cd756a 10812static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10813{
32cd756a 10814 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10815}
10816
10817/*
10818 * charge this task's execution time to its accounting group.
10819 *
10820 * called with rq->lock held.
10821 */
10822static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10823{
10824 struct cpuacct *ca;
934352f2 10825 int cpu;
d842de87 10826
c40c6f85 10827 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10828 return;
10829
934352f2 10830 cpu = task_cpu(tsk);
a18b83b7
BR
10831
10832 rcu_read_lock();
10833
d842de87 10834 ca = task_ca(tsk);
d842de87 10835
934352f2 10836 for (; ca; ca = ca->parent) {
b36128c8 10837 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10838 *cpuusage += cputime;
10839 }
a18b83b7
BR
10840
10841 rcu_read_unlock();
d842de87
SV
10842}
10843
ef12fefa
BR
10844/*
10845 * Charge the system/user time to the task's accounting group.
10846 */
10847static void cpuacct_update_stats(struct task_struct *tsk,
10848 enum cpuacct_stat_index idx, cputime_t val)
10849{
10850 struct cpuacct *ca;
10851
10852 if (unlikely(!cpuacct_subsys.active))
10853 return;
10854
10855 rcu_read_lock();
10856 ca = task_ca(tsk);
10857
10858 do {
10859 percpu_counter_add(&ca->cpustat[idx], val);
10860 ca = ca->parent;
10861 } while (ca);
10862 rcu_read_unlock();
10863}
10864
d842de87
SV
10865struct cgroup_subsys cpuacct_subsys = {
10866 .name = "cpuacct",
10867 .create = cpuacct_create,
10868 .destroy = cpuacct_destroy,
10869 .populate = cpuacct_populate,
10870 .subsys_id = cpuacct_subsys_id,
10871};
10872#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10873
10874#ifndef CONFIG_SMP
10875
10876int rcu_expedited_torture_stats(char *page)
10877{
10878 return 0;
10879}
10880EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10881
10882void synchronize_sched_expedited(void)
10883{
10884}
10885EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10886
10887#else /* #ifndef CONFIG_SMP */
10888
10889static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10890static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10891
10892#define RCU_EXPEDITED_STATE_POST -2
10893#define RCU_EXPEDITED_STATE_IDLE -1
10894
10895static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10896
10897int rcu_expedited_torture_stats(char *page)
10898{
10899 int cnt = 0;
10900 int cpu;
10901
10902 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10903 for_each_online_cpu(cpu) {
10904 cnt += sprintf(&page[cnt], " %d:%d",
10905 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10906 }
10907 cnt += sprintf(&page[cnt], "\n");
10908 return cnt;
10909}
10910EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10911
10912static long synchronize_sched_expedited_count;
10913
10914/*
10915 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10916 * approach to force grace period to end quickly. This consumes
10917 * significant time on all CPUs, and is thus not recommended for
10918 * any sort of common-case code.
10919 *
10920 * Note that it is illegal to call this function while holding any
10921 * lock that is acquired by a CPU-hotplug notifier. Failing to
10922 * observe this restriction will result in deadlock.
10923 */
10924void synchronize_sched_expedited(void)
10925{
10926 int cpu;
10927 unsigned long flags;
10928 bool need_full_sync = 0;
10929 struct rq *rq;
10930 struct migration_req *req;
10931 long snap;
10932 int trycount = 0;
10933
10934 smp_mb(); /* ensure prior mod happens before capturing snap. */
10935 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10936 get_online_cpus();
10937 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10938 put_online_cpus();
10939 if (trycount++ < 10)
10940 udelay(trycount * num_online_cpus());
10941 else {
10942 synchronize_sched();
10943 return;
10944 }
10945 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10946 smp_mb(); /* ensure test happens before caller kfree */
10947 return;
10948 }
10949 get_online_cpus();
10950 }
10951 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10952 for_each_online_cpu(cpu) {
10953 rq = cpu_rq(cpu);
10954 req = &per_cpu(rcu_migration_req, cpu);
10955 init_completion(&req->done);
10956 req->task = NULL;
10957 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10958 spin_lock_irqsave(&rq->lock, flags);
10959 list_add(&req->list, &rq->migration_queue);
10960 spin_unlock_irqrestore(&rq->lock, flags);
10961 wake_up_process(rq->migration_thread);
10962 }
10963 for_each_online_cpu(cpu) {
10964 rcu_expedited_state = cpu;
10965 req = &per_cpu(rcu_migration_req, cpu);
10966 rq = cpu_rq(cpu);
10967 wait_for_completion(&req->done);
10968 spin_lock_irqsave(&rq->lock, flags);
10969 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10970 need_full_sync = 1;
10971 req->dest_cpu = RCU_MIGRATION_IDLE;
10972 spin_unlock_irqrestore(&rq->lock, flags);
10973 }
10974 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10975 synchronize_sched_expedited_count++;
03b042bf
PM
10976 mutex_unlock(&rcu_sched_expedited_mutex);
10977 put_online_cpus();
10978 if (need_full_sync)
10979 synchronize_sched();
10980}
10981EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10982
10983#endif /* #else #ifndef CONFIG_SMP */