]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Fix sched_exec() balancing
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
0986b11b 475 raw_spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491 529 /* runqueue lock: */
05fa785c 530 raw_spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
05fa785c 898 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 922 raw_spin_unlock_irq(&rq->lock);
4866cde0 923#else
05fa785c 924 raw_spin_unlock(&rq->lock);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
3a5c359a
AK
955 if (likely(rq == task_rq(p)))
956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
05fa785c 974 raw_spin_lock(&rq->lock);
3a5c359a
AK
975 if (likely(rq == task_rq(p)))
976 return rq;
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 986 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
05fa785c 992 raw_spin_unlock(&rq->lock);
b29739f9
IM
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
05fa785c 998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
05fa785c 1011 raw_spin_lock(&rq->lock);
1da177e4
LT
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
05fa785c 1058 raw_spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec 1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1061 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
05fa785c 1074 raw_spin_lock(&rq->lock);
31656519
PZ
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
05fa785c 1077 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
05fa785c 1184 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
05fa785c 1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1207 return;
1208 resched_task(cpu_curr(cpu));
05fa785c 1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
05fa785c 1605 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1608 __set_se_shares(tg->se[cpu], shares);
05fa785c 1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
05fa785c 1711 raw_spin_unlock(&rq->lock);
3e5459b4 1712 update_shares(sd);
05fa785c 1713 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
05fa785c 1753 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
05fa785c 1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1775 if (busiest < this_rq) {
05fa785c
TG
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
70574a99
AD
1780 ret = 1;
1781 } else
05fa785c
TG
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
70574a99
AD
1784 }
1785 return ret;
1786}
1787
8f45e2b5
GH
1788#endif /* CONFIG_PREEMPT */
1789
1790/*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794{
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
05fa785c 1797 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802}
1803
70574a99
AD
1804static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806{
05fa785c 1807 raw_spin_unlock(&busiest->lock);
70574a99
AD
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809}
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
dd41f596 1839#include "sched_stats.h"
dd41f596 1840#include "sched_idletask.c"
5522d5d5
IM
1841#include "sched_fair.c"
1842#include "sched_rt.c"
dd41f596
IM
1843#ifdef CONFIG_SCHED_DEBUG
1844# include "sched_debug.c"
1845#endif
1846
1847#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
8159f87e 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1889{
831451ac
PZ
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
dd41f596 1893 sched_info_queued(p);
fd390f6a 1894 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1895 p->se.on_rq = 1;
71f8bd46
IM
1896}
1897
69be72c1 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1899{
831451ac
PZ
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
2087a1ad
GH
1909 }
1910
46ac22ba 1911 sched_info_dequeued(p);
f02231e5 1912 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1913 p->se.on_rq = 0;
71f8bd46
IM
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4 1962/*
dd41f596 1963 * activate_task - move a task to the runqueue.
1da177e4 1964 */
dd41f596 1965static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1966{
d9514f6c 1967 if (task_contributes_to_load(p))
dd41f596 1968 rq->nr_uninterruptible--;
1da177e4 1969
8159f87e 1970 enqueue_task(rq, p, wakeup);
c09595f6 1971 inc_nr_running(rq);
1da177e4
LT
1972}
1973
1da177e4
LT
1974/*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
2e1cb74a 1977static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1978{
d9514f6c 1979 if (task_contributes_to_load(p))
dd41f596
IM
1980 rq->nr_uninterruptible++;
1981
69be72c1 1982 dequeue_task(rq, p, sleep);
c09595f6 1983 dec_nr_running(rq);
1da177e4
LT
1984}
1985
1da177e4
LT
1986/**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
36c8b586 1990inline int task_curr(const struct task_struct *p)
1da177e4
LT
1991{
1992 return cpu_curr(task_cpu(p)) == p;
1993}
1994
cb469845
SR
1995static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998{
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005}
2006
b84ff7d6
MG
2007/**
2008 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 2009 * @p: thread created by kthread_create().
b84ff7d6
MG
2010 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2011 *
2012 * Description: This function is equivalent to set_cpus_allowed(),
2013 * except that @cpu doesn't need to be online, and the thread must be
2014 * stopped (i.e., just returned from kthread_create()).
2015 *
2016 * Function lives here instead of kthread.c because it messes with
2017 * scheduler internals which require locking.
2018 */
2019void kthread_bind(struct task_struct *p, unsigned int cpu)
2020{
b84ff7d6
MG
2021 /* Must have done schedule() in kthread() before we set_task_cpu */
2022 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2023 WARN_ON(1);
2024 return;
2025 }
2026
b84ff7d6
MG
2027 p->cpus_allowed = cpumask_of_cpu(cpu);
2028 p->rt.nr_cpus_allowed = 1;
2029 p->flags |= PF_THREAD_BOUND;
b84ff7d6
MG
2030}
2031EXPORT_SYMBOL(kthread_bind);
2032
1da177e4 2033#ifdef CONFIG_SMP
cc367732
IM
2034/*
2035 * Is this task likely cache-hot:
2036 */
e7693a36 2037static int
cc367732
IM
2038task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2039{
2040 s64 delta;
2041
e6c8fba7
PZ
2042 if (p->sched_class != &fair_sched_class)
2043 return 0;
2044
f540a608
IM
2045 /*
2046 * Buddy candidates are cache hot:
2047 */
f685ceac 2048 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2049 (&p->se == cfs_rq_of(&p->se)->next ||
2050 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2051 return 1;
2052
6bc1665b
IM
2053 if (sysctl_sched_migration_cost == -1)
2054 return 1;
2055 if (sysctl_sched_migration_cost == 0)
2056 return 0;
2057
cc367732
IM
2058 delta = now - p->se.exec_start;
2059
2060 return delta < (s64)sysctl_sched_migration_cost;
2061}
2062
2063
dd41f596 2064void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2065{
dd41f596 2066 int old_cpu = task_cpu(p);
2830cf8c
SV
2067 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2068 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2069
e2912009
PZ
2070#ifdef CONFIG_SCHED_DEBUG
2071 /*
2072 * We should never call set_task_cpu() on a blocked task,
2073 * ttwu() will sort out the placement.
2074 */
2075 WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
2076#endif
2077
de1d7286 2078 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2079
cc367732 2080 if (old_cpu != new_cpu) {
6c594c21 2081 p->se.nr_migrations++;
cdd6c482 2082 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2083 1, 1, NULL, 0);
6c594c21 2084 }
2830cf8c
SV
2085 p->se.vruntime -= old_cfsrq->min_vruntime -
2086 new_cfsrq->min_vruntime;
dd41f596
IM
2087
2088 __set_task_cpu(p, new_cpu);
c65cc870
IM
2089}
2090
70b97a7f 2091struct migration_req {
1da177e4 2092 struct list_head list;
1da177e4 2093
36c8b586 2094 struct task_struct *task;
1da177e4
LT
2095 int dest_cpu;
2096
1da177e4 2097 struct completion done;
70b97a7f 2098};
1da177e4
LT
2099
2100/*
2101 * The task's runqueue lock must be held.
2102 * Returns true if you have to wait for migration thread.
2103 */
36c8b586 2104static int
70b97a7f 2105migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2106{
70b97a7f 2107 struct rq *rq = task_rq(p);
1da177e4
LT
2108
2109 /*
2110 * If the task is not on a runqueue (and not running), then
e2912009 2111 * the next wake-up will properly place the task.
1da177e4 2112 */
e2912009 2113 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2114 return 0;
1da177e4
LT
2115
2116 init_completion(&req->done);
1da177e4
LT
2117 req->task = p;
2118 req->dest_cpu = dest_cpu;
2119 list_add(&req->list, &rq->migration_queue);
48f24c4d 2120
1da177e4
LT
2121 return 1;
2122}
2123
a26b89f0
MM
2124/*
2125 * wait_task_context_switch - wait for a thread to complete at least one
2126 * context switch.
2127 *
2128 * @p must not be current.
2129 */
2130void wait_task_context_switch(struct task_struct *p)
2131{
2132 unsigned long nvcsw, nivcsw, flags;
2133 int running;
2134 struct rq *rq;
2135
2136 nvcsw = p->nvcsw;
2137 nivcsw = p->nivcsw;
2138 for (;;) {
2139 /*
2140 * The runqueue is assigned before the actual context
2141 * switch. We need to take the runqueue lock.
2142 *
2143 * We could check initially without the lock but it is
2144 * very likely that we need to take the lock in every
2145 * iteration.
2146 */
2147 rq = task_rq_lock(p, &flags);
2148 running = task_running(rq, p);
2149 task_rq_unlock(rq, &flags);
2150
2151 if (likely(!running))
2152 break;
2153 /*
2154 * The switch count is incremented before the actual
2155 * context switch. We thus wait for two switches to be
2156 * sure at least one completed.
2157 */
2158 if ((p->nvcsw - nvcsw) > 1)
2159 break;
2160 if ((p->nivcsw - nivcsw) > 1)
2161 break;
2162
2163 cpu_relax();
2164 }
2165}
2166
1da177e4
LT
2167/*
2168 * wait_task_inactive - wait for a thread to unschedule.
2169 *
85ba2d86
RM
2170 * If @match_state is nonzero, it's the @p->state value just checked and
2171 * not expected to change. If it changes, i.e. @p might have woken up,
2172 * then return zero. When we succeed in waiting for @p to be off its CPU,
2173 * we return a positive number (its total switch count). If a second call
2174 * a short while later returns the same number, the caller can be sure that
2175 * @p has remained unscheduled the whole time.
2176 *
1da177e4
LT
2177 * The caller must ensure that the task *will* unschedule sometime soon,
2178 * else this function might spin for a *long* time. This function can't
2179 * be called with interrupts off, or it may introduce deadlock with
2180 * smp_call_function() if an IPI is sent by the same process we are
2181 * waiting to become inactive.
2182 */
85ba2d86 2183unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2184{
2185 unsigned long flags;
dd41f596 2186 int running, on_rq;
85ba2d86 2187 unsigned long ncsw;
70b97a7f 2188 struct rq *rq;
1da177e4 2189
3a5c359a
AK
2190 for (;;) {
2191 /*
2192 * We do the initial early heuristics without holding
2193 * any task-queue locks at all. We'll only try to get
2194 * the runqueue lock when things look like they will
2195 * work out!
2196 */
2197 rq = task_rq(p);
fa490cfd 2198
3a5c359a
AK
2199 /*
2200 * If the task is actively running on another CPU
2201 * still, just relax and busy-wait without holding
2202 * any locks.
2203 *
2204 * NOTE! Since we don't hold any locks, it's not
2205 * even sure that "rq" stays as the right runqueue!
2206 * But we don't care, since "task_running()" will
2207 * return false if the runqueue has changed and p
2208 * is actually now running somewhere else!
2209 */
85ba2d86
RM
2210 while (task_running(rq, p)) {
2211 if (match_state && unlikely(p->state != match_state))
2212 return 0;
3a5c359a 2213 cpu_relax();
85ba2d86 2214 }
fa490cfd 2215
3a5c359a
AK
2216 /*
2217 * Ok, time to look more closely! We need the rq
2218 * lock now, to be *sure*. If we're wrong, we'll
2219 * just go back and repeat.
2220 */
2221 rq = task_rq_lock(p, &flags);
0a16b607 2222 trace_sched_wait_task(rq, p);
3a5c359a
AK
2223 running = task_running(rq, p);
2224 on_rq = p->se.on_rq;
85ba2d86 2225 ncsw = 0;
f31e11d8 2226 if (!match_state || p->state == match_state)
93dcf55f 2227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2228 task_rq_unlock(rq, &flags);
fa490cfd 2229
85ba2d86
RM
2230 /*
2231 * If it changed from the expected state, bail out now.
2232 */
2233 if (unlikely(!ncsw))
2234 break;
2235
3a5c359a
AK
2236 /*
2237 * Was it really running after all now that we
2238 * checked with the proper locks actually held?
2239 *
2240 * Oops. Go back and try again..
2241 */
2242 if (unlikely(running)) {
2243 cpu_relax();
2244 continue;
2245 }
fa490cfd 2246
3a5c359a
AK
2247 /*
2248 * It's not enough that it's not actively running,
2249 * it must be off the runqueue _entirely_, and not
2250 * preempted!
2251 *
80dd99b3 2252 * So if it was still runnable (but just not actively
3a5c359a
AK
2253 * running right now), it's preempted, and we should
2254 * yield - it could be a while.
2255 */
2256 if (unlikely(on_rq)) {
2257 schedule_timeout_uninterruptible(1);
2258 continue;
2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ahh, all good. It wasn't running, and it wasn't
2263 * runnable, which means that it will never become
2264 * running in the future either. We're all done!
2265 */
2266 break;
2267 }
85ba2d86
RM
2268
2269 return ncsw;
1da177e4
LT
2270}
2271
2272/***
2273 * kick_process - kick a running thread to enter/exit the kernel
2274 * @p: the to-be-kicked thread
2275 *
2276 * Cause a process which is running on another CPU to enter
2277 * kernel-mode, without any delay. (to get signals handled.)
2278 *
2279 * NOTE: this function doesnt have to take the runqueue lock,
2280 * because all it wants to ensure is that the remote task enters
2281 * the kernel. If the IPI races and the task has been migrated
2282 * to another CPU then no harm is done and the purpose has been
2283 * achieved as well.
2284 */
36c8b586 2285void kick_process(struct task_struct *p)
1da177e4
LT
2286{
2287 int cpu;
2288
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if ((cpu != smp_processor_id()) && task_curr(p))
2292 smp_send_reschedule(cpu);
2293 preempt_enable();
2294}
b43e3521 2295EXPORT_SYMBOL_GPL(kick_process);
476d139c 2296#endif /* CONFIG_SMP */
1da177e4 2297
0793a61d
TG
2298/**
2299 * task_oncpu_function_call - call a function on the cpu on which a task runs
2300 * @p: the task to evaluate
2301 * @func: the function to be called
2302 * @info: the function call argument
2303 *
2304 * Calls the function @func when the task is currently running. This might
2305 * be on the current CPU, which just calls the function directly
2306 */
2307void task_oncpu_function_call(struct task_struct *p,
2308 void (*func) (void *info), void *info)
2309{
2310 int cpu;
2311
2312 preempt_disable();
2313 cpu = task_cpu(p);
2314 if (task_curr(p))
2315 smp_call_function_single(cpu, func, info, 1);
2316 preempt_enable();
2317}
2318
970b13ba 2319#ifdef CONFIG_SMP
e2912009
PZ
2320/*
2321 * Called from:
2322 *
2323 * - fork, @p is stable because it isn't on the tasklist yet
2324 *
38022906 2325 * - exec, @p is unstable, retry loop
e2912009
PZ
2326 *
2327 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2328 * we should be good.
2329 */
970b13ba
PZ
2330static inline
2331int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2332{
e2912009
PZ
2333 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2334
2335 /*
2336 * In order not to call set_task_cpu() on a blocking task we need
2337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2338 * cpu.
2339 *
2340 * Since this is common to all placement strategies, this lives here.
2341 *
2342 * [ this allows ->select_task() to simply return task_cpu(p) and
2343 * not worry about this generic constraint ]
2344 */
2345 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2346 !cpu_active(cpu))) {
2347
2348 cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2349 /*
2350 * XXX: race against hot-plug modifying cpu_active_mask
2351 */
2352 BUG_ON(cpu >= nr_cpu_ids);
2353 }
2354
2355 return cpu;
970b13ba
PZ
2356}
2357#endif
2358
1da177e4
LT
2359/***
2360 * try_to_wake_up - wake up a thread
2361 * @p: the to-be-woken-up thread
2362 * @state: the mask of task states that can be woken
2363 * @sync: do a synchronous wakeup?
2364 *
2365 * Put it on the run-queue if it's not already there. The "current"
2366 * thread is always on the run-queue (except when the actual
2367 * re-schedule is in progress), and as such you're allowed to do
2368 * the simpler "current->state = TASK_RUNNING" to mark yourself
2369 * runnable without the overhead of this.
2370 *
2371 * returns failure only if the task is already active.
2372 */
7d478721
PZ
2373static int try_to_wake_up(struct task_struct *p, unsigned int state,
2374 int wake_flags)
1da177e4 2375{
cc367732 2376 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2377 unsigned long flags;
f5dc3753 2378 struct rq *rq, *orig_rq;
1da177e4 2379
b85d0667 2380 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2381 wake_flags &= ~WF_SYNC;
2398f2c6 2382
e9c84311 2383 this_cpu = get_cpu();
2398f2c6 2384
04e2f174 2385 smp_wmb();
f5dc3753 2386 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2387 update_rq_clock(rq);
e9c84311 2388 if (!(p->state & state))
1da177e4
LT
2389 goto out;
2390
dd41f596 2391 if (p->se.on_rq)
1da177e4
LT
2392 goto out_running;
2393
2394 cpu = task_cpu(p);
cc367732 2395 orig_cpu = cpu;
1da177e4
LT
2396
2397#ifdef CONFIG_SMP
2398 if (unlikely(task_running(rq, p)))
2399 goto out_activate;
2400
e9c84311
PZ
2401 /*
2402 * In order to handle concurrent wakeups and release the rq->lock
2403 * we put the task in TASK_WAKING state.
eb24073b
IM
2404 *
2405 * First fix up the nr_uninterruptible count:
e9c84311 2406 */
eb24073b
IM
2407 if (task_contributes_to_load(p))
2408 rq->nr_uninterruptible--;
e9c84311 2409 p->state = TASK_WAKING;
ab19cb23 2410 __task_rq_unlock(rq);
e9c84311 2411
970b13ba 2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2413 if (cpu != orig_cpu)
5d2f5a61 2414 set_task_cpu(p, cpu);
ab19cb23
PZ
2415
2416 rq = __task_rq_lock(p);
2417 update_rq_clock(rq);
f5dc3753 2418
e9c84311
PZ
2419 WARN_ON(p->state != TASK_WAKING);
2420 cpu = task_cpu(p);
1da177e4 2421
e7693a36
GH
2422#ifdef CONFIG_SCHEDSTATS
2423 schedstat_inc(rq, ttwu_count);
2424 if (cpu == this_cpu)
2425 schedstat_inc(rq, ttwu_local);
2426 else {
2427 struct sched_domain *sd;
2428 for_each_domain(this_cpu, sd) {
758b2cdc 2429 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2430 schedstat_inc(sd, ttwu_wake_remote);
2431 break;
2432 }
2433 }
2434 }
6d6bc0ad 2435#endif /* CONFIG_SCHEDSTATS */
e7693a36 2436
1da177e4
LT
2437out_activate:
2438#endif /* CONFIG_SMP */
cc367732 2439 schedstat_inc(p, se.nr_wakeups);
7d478721 2440 if (wake_flags & WF_SYNC)
cc367732
IM
2441 schedstat_inc(p, se.nr_wakeups_sync);
2442 if (orig_cpu != cpu)
2443 schedstat_inc(p, se.nr_wakeups_migrate);
2444 if (cpu == this_cpu)
2445 schedstat_inc(p, se.nr_wakeups_local);
2446 else
2447 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2448 activate_task(rq, p, 1);
1da177e4
LT
2449 success = 1;
2450
831451ac
PZ
2451 /*
2452 * Only attribute actual wakeups done by this task.
2453 */
2454 if (!in_interrupt()) {
2455 struct sched_entity *se = &current->se;
2456 u64 sample = se->sum_exec_runtime;
2457
2458 if (se->last_wakeup)
2459 sample -= se->last_wakeup;
2460 else
2461 sample -= se->start_runtime;
2462 update_avg(&se->avg_wakeup, sample);
2463
2464 se->last_wakeup = se->sum_exec_runtime;
2465 }
2466
1da177e4 2467out_running:
468a15bb 2468 trace_sched_wakeup(rq, p, success);
7d478721 2469 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2470
1da177e4 2471 p->state = TASK_RUNNING;
9a897c5a
SR
2472#ifdef CONFIG_SMP
2473 if (p->sched_class->task_wake_up)
2474 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2475
2476 if (unlikely(rq->idle_stamp)) {
2477 u64 delta = rq->clock - rq->idle_stamp;
2478 u64 max = 2*sysctl_sched_migration_cost;
2479
2480 if (delta > max)
2481 rq->avg_idle = max;
2482 else
2483 update_avg(&rq->avg_idle, delta);
2484 rq->idle_stamp = 0;
2485 }
9a897c5a 2486#endif
1da177e4
LT
2487out:
2488 task_rq_unlock(rq, &flags);
e9c84311 2489 put_cpu();
1da177e4
LT
2490
2491 return success;
2492}
2493
50fa610a
DH
2494/**
2495 * wake_up_process - Wake up a specific process
2496 * @p: The process to be woken up.
2497 *
2498 * Attempt to wake up the nominated process and move it to the set of runnable
2499 * processes. Returns 1 if the process was woken up, 0 if it was already
2500 * running.
2501 *
2502 * It may be assumed that this function implies a write memory barrier before
2503 * changing the task state if and only if any tasks are woken up.
2504 */
7ad5b3a5 2505int wake_up_process(struct task_struct *p)
1da177e4 2506{
d9514f6c 2507 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2508}
1da177e4
LT
2509EXPORT_SYMBOL(wake_up_process);
2510
7ad5b3a5 2511int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2512{
2513 return try_to_wake_up(p, state, 0);
2514}
2515
1da177e4
LT
2516/*
2517 * Perform scheduler related setup for a newly forked process p.
2518 * p is forked by current.
dd41f596
IM
2519 *
2520 * __sched_fork() is basic setup used by init_idle() too:
2521 */
2522static void __sched_fork(struct task_struct *p)
2523{
dd41f596
IM
2524 p->se.exec_start = 0;
2525 p->se.sum_exec_runtime = 0;
f6cf891c 2526 p->se.prev_sum_exec_runtime = 0;
6c594c21 2527 p->se.nr_migrations = 0;
4ae7d5ce
IM
2528 p->se.last_wakeup = 0;
2529 p->se.avg_overlap = 0;
831451ac
PZ
2530 p->se.start_runtime = 0;
2531 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2532
2533#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2534 p->se.wait_start = 0;
2535 p->se.wait_max = 0;
2536 p->se.wait_count = 0;
2537 p->se.wait_sum = 0;
2538
2539 p->se.sleep_start = 0;
2540 p->se.sleep_max = 0;
2541 p->se.sum_sleep_runtime = 0;
2542
2543 p->se.block_start = 0;
2544 p->se.block_max = 0;
2545 p->se.exec_max = 0;
2546 p->se.slice_max = 0;
2547
2548 p->se.nr_migrations_cold = 0;
2549 p->se.nr_failed_migrations_affine = 0;
2550 p->se.nr_failed_migrations_running = 0;
2551 p->se.nr_failed_migrations_hot = 0;
2552 p->se.nr_forced_migrations = 0;
7793527b
LDM
2553
2554 p->se.nr_wakeups = 0;
2555 p->se.nr_wakeups_sync = 0;
2556 p->se.nr_wakeups_migrate = 0;
2557 p->se.nr_wakeups_local = 0;
2558 p->se.nr_wakeups_remote = 0;
2559 p->se.nr_wakeups_affine = 0;
2560 p->se.nr_wakeups_affine_attempts = 0;
2561 p->se.nr_wakeups_passive = 0;
2562 p->se.nr_wakeups_idle = 0;
2563
6cfb0d5d 2564#endif
476d139c 2565
fa717060 2566 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2567 p->se.on_rq = 0;
4a55bd5e 2568 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2569
e107be36
AK
2570#ifdef CONFIG_PREEMPT_NOTIFIERS
2571 INIT_HLIST_HEAD(&p->preempt_notifiers);
2572#endif
dd41f596
IM
2573}
2574
2575/*
2576 * fork()/clone()-time setup:
2577 */
2578void sched_fork(struct task_struct *p, int clone_flags)
2579{
2580 int cpu = get_cpu();
2581
2582 __sched_fork(p);
06b83b5f
PZ
2583 /*
2584 * We mark the process as waking here. This guarantees that
2585 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either.
2587 */
2588 p->state = TASK_WAKING;
dd41f596 2589
b9dc29e7
MG
2590 /*
2591 * Revert to default priority/policy on fork if requested.
2592 */
2593 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2594 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2595 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2596 p->normal_prio = p->static_prio;
2597 }
b9dc29e7 2598
6c697bdf
MG
2599 if (PRIO_TO_NICE(p->static_prio) < 0) {
2600 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2601 p->normal_prio = p->static_prio;
6c697bdf
MG
2602 set_load_weight(p);
2603 }
2604
b9dc29e7
MG
2605 /*
2606 * We don't need the reset flag anymore after the fork. It has
2607 * fulfilled its duty:
2608 */
2609 p->sched_reset_on_fork = 0;
2610 }
ca94c442 2611
f83f9ac2
PW
2612 /*
2613 * Make sure we do not leak PI boosting priority to the child.
2614 */
2615 p->prio = current->normal_prio;
2616
2ddbf952
HS
2617 if (!rt_prio(p->prio))
2618 p->sched_class = &fair_sched_class;
b29739f9 2619
cd29fe6f
PZ
2620 if (p->sched_class->task_fork)
2621 p->sched_class->task_fork(p);
2622
5f3edc1b 2623#ifdef CONFIG_SMP
970b13ba 2624 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2625#endif
2626 set_task_cpu(p, cpu);
2627
52f17b6c 2628#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2629 if (likely(sched_info_on()))
52f17b6c 2630 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2631#endif
d6077cb8 2632#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2633 p->oncpu = 0;
2634#endif
1da177e4 2635#ifdef CONFIG_PREEMPT
4866cde0 2636 /* Want to start with kernel preemption disabled. */
a1261f54 2637 task_thread_info(p)->preempt_count = 1;
1da177e4 2638#endif
917b627d
GH
2639 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2640
476d139c 2641 put_cpu();
1da177e4
LT
2642}
2643
2644/*
2645 * wake_up_new_task - wake up a newly created task for the first time.
2646 *
2647 * This function will do some initial scheduler statistics housekeeping
2648 * that must be done for every newly created context, then puts the task
2649 * on the runqueue and wakes it.
2650 */
7ad5b3a5 2651void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2652{
2653 unsigned long flags;
dd41f596 2654 struct rq *rq;
1da177e4
LT
2655
2656 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2657 BUG_ON(p->state != TASK_WAKING);
2658 p->state = TASK_RUNNING;
a8e504d2 2659 update_rq_clock(rq);
cd29fe6f 2660 activate_task(rq, p, 0);
c71dd42d 2661 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2662 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2663#ifdef CONFIG_SMP
2664 if (p->sched_class->task_wake_up)
2665 p->sched_class->task_wake_up(rq, p);
2666#endif
dd41f596 2667 task_rq_unlock(rq, &flags);
1da177e4
LT
2668}
2669
e107be36
AK
2670#ifdef CONFIG_PREEMPT_NOTIFIERS
2671
2672/**
80dd99b3 2673 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2674 * @notifier: notifier struct to register
e107be36
AK
2675 */
2676void preempt_notifier_register(struct preempt_notifier *notifier)
2677{
2678 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2679}
2680EXPORT_SYMBOL_GPL(preempt_notifier_register);
2681
2682/**
2683 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2684 * @notifier: notifier struct to unregister
e107be36
AK
2685 *
2686 * This is safe to call from within a preemption notifier.
2687 */
2688void preempt_notifier_unregister(struct preempt_notifier *notifier)
2689{
2690 hlist_del(&notifier->link);
2691}
2692EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2693
2694static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2695{
2696 struct preempt_notifier *notifier;
2697 struct hlist_node *node;
2698
2699 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2700 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2701}
2702
2703static void
2704fire_sched_out_preempt_notifiers(struct task_struct *curr,
2705 struct task_struct *next)
2706{
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_out(notifier, next);
2712}
2713
6d6bc0ad 2714#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2715
2716static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2717{
2718}
2719
2720static void
2721fire_sched_out_preempt_notifiers(struct task_struct *curr,
2722 struct task_struct *next)
2723{
2724}
2725
6d6bc0ad 2726#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2727
4866cde0
NP
2728/**
2729 * prepare_task_switch - prepare to switch tasks
2730 * @rq: the runqueue preparing to switch
421cee29 2731 * @prev: the current task that is being switched out
4866cde0
NP
2732 * @next: the task we are going to switch to.
2733 *
2734 * This is called with the rq lock held and interrupts off. It must
2735 * be paired with a subsequent finish_task_switch after the context
2736 * switch.
2737 *
2738 * prepare_task_switch sets up locking and calls architecture specific
2739 * hooks.
2740 */
e107be36
AK
2741static inline void
2742prepare_task_switch(struct rq *rq, struct task_struct *prev,
2743 struct task_struct *next)
4866cde0 2744{
e107be36 2745 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2746 prepare_lock_switch(rq, next);
2747 prepare_arch_switch(next);
2748}
2749
1da177e4
LT
2750/**
2751 * finish_task_switch - clean up after a task-switch
344babaa 2752 * @rq: runqueue associated with task-switch
1da177e4
LT
2753 * @prev: the thread we just switched away from.
2754 *
4866cde0
NP
2755 * finish_task_switch must be called after the context switch, paired
2756 * with a prepare_task_switch call before the context switch.
2757 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2758 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2759 *
2760 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2761 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2762 * with the lock held can cause deadlocks; see schedule() for
2763 * details.)
2764 */
a9957449 2765static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2766 __releases(rq->lock)
2767{
1da177e4 2768 struct mm_struct *mm = rq->prev_mm;
55a101f8 2769 long prev_state;
1da177e4
LT
2770
2771 rq->prev_mm = NULL;
2772
2773 /*
2774 * A task struct has one reference for the use as "current".
c394cc9f 2775 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2776 * schedule one last time. The schedule call will never return, and
2777 * the scheduled task must drop that reference.
c394cc9f 2778 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2779 * still held, otherwise prev could be scheduled on another cpu, die
2780 * there before we look at prev->state, and then the reference would
2781 * be dropped twice.
2782 * Manfred Spraul <manfred@colorfullife.com>
2783 */
55a101f8 2784 prev_state = prev->state;
4866cde0 2785 finish_arch_switch(prev);
cdd6c482 2786 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2787 finish_lock_switch(rq, prev);
e8fa1362 2788
e107be36 2789 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2790 if (mm)
2791 mmdrop(mm);
c394cc9f 2792 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2793 /*
2794 * Remove function-return probe instances associated with this
2795 * task and put them back on the free list.
9761eea8 2796 */
c6fd91f0 2797 kprobe_flush_task(prev);
1da177e4 2798 put_task_struct(prev);
c6fd91f0 2799 }
1da177e4
LT
2800}
2801
3f029d3c
GH
2802#ifdef CONFIG_SMP
2803
2804/* assumes rq->lock is held */
2805static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2806{
2807 if (prev->sched_class->pre_schedule)
2808 prev->sched_class->pre_schedule(rq, prev);
2809}
2810
2811/* rq->lock is NOT held, but preemption is disabled */
2812static inline void post_schedule(struct rq *rq)
2813{
2814 if (rq->post_schedule) {
2815 unsigned long flags;
2816
05fa785c 2817 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2818 if (rq->curr->sched_class->post_schedule)
2819 rq->curr->sched_class->post_schedule(rq);
05fa785c 2820 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2821
2822 rq->post_schedule = 0;
2823 }
2824}
2825
2826#else
da19ab51 2827
3f029d3c
GH
2828static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2829{
2830}
2831
2832static inline void post_schedule(struct rq *rq)
2833{
1da177e4
LT
2834}
2835
3f029d3c
GH
2836#endif
2837
1da177e4
LT
2838/**
2839 * schedule_tail - first thing a freshly forked thread must call.
2840 * @prev: the thread we just switched away from.
2841 */
36c8b586 2842asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2843 __releases(rq->lock)
2844{
70b97a7f
IM
2845 struct rq *rq = this_rq();
2846
4866cde0 2847 finish_task_switch(rq, prev);
da19ab51 2848
3f029d3c
GH
2849 /*
2850 * FIXME: do we need to worry about rq being invalidated by the
2851 * task_switch?
2852 */
2853 post_schedule(rq);
70b97a7f 2854
4866cde0
NP
2855#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2856 /* In this case, finish_task_switch does not reenable preemption */
2857 preempt_enable();
2858#endif
1da177e4 2859 if (current->set_child_tid)
b488893a 2860 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2861}
2862
2863/*
2864 * context_switch - switch to the new MM and the new
2865 * thread's register state.
2866 */
dd41f596 2867static inline void
70b97a7f 2868context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2869 struct task_struct *next)
1da177e4 2870{
dd41f596 2871 struct mm_struct *mm, *oldmm;
1da177e4 2872
e107be36 2873 prepare_task_switch(rq, prev, next);
0a16b607 2874 trace_sched_switch(rq, prev, next);
dd41f596
IM
2875 mm = next->mm;
2876 oldmm = prev->active_mm;
9226d125
ZA
2877 /*
2878 * For paravirt, this is coupled with an exit in switch_to to
2879 * combine the page table reload and the switch backend into
2880 * one hypercall.
2881 */
224101ed 2882 arch_start_context_switch(prev);
9226d125 2883
710390d9 2884 if (likely(!mm)) {
1da177e4
LT
2885 next->active_mm = oldmm;
2886 atomic_inc(&oldmm->mm_count);
2887 enter_lazy_tlb(oldmm, next);
2888 } else
2889 switch_mm(oldmm, mm, next);
2890
710390d9 2891 if (likely(!prev->mm)) {
1da177e4 2892 prev->active_mm = NULL;
1da177e4
LT
2893 rq->prev_mm = oldmm;
2894 }
3a5f5e48
IM
2895 /*
2896 * Since the runqueue lock will be released by the next
2897 * task (which is an invalid locking op but in the case
2898 * of the scheduler it's an obvious special-case), so we
2899 * do an early lockdep release here:
2900 */
2901#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2902 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2903#endif
1da177e4
LT
2904
2905 /* Here we just switch the register state and the stack. */
2906 switch_to(prev, next, prev);
2907
dd41f596
IM
2908 barrier();
2909 /*
2910 * this_rq must be evaluated again because prev may have moved
2911 * CPUs since it called schedule(), thus the 'rq' on its stack
2912 * frame will be invalid.
2913 */
2914 finish_task_switch(this_rq(), prev);
1da177e4
LT
2915}
2916
2917/*
2918 * nr_running, nr_uninterruptible and nr_context_switches:
2919 *
2920 * externally visible scheduler statistics: current number of runnable
2921 * threads, current number of uninterruptible-sleeping threads, total
2922 * number of context switches performed since bootup.
2923 */
2924unsigned long nr_running(void)
2925{
2926 unsigned long i, sum = 0;
2927
2928 for_each_online_cpu(i)
2929 sum += cpu_rq(i)->nr_running;
2930
2931 return sum;
2932}
2933
2934unsigned long nr_uninterruptible(void)
2935{
2936 unsigned long i, sum = 0;
2937
0a945022 2938 for_each_possible_cpu(i)
1da177e4
LT
2939 sum += cpu_rq(i)->nr_uninterruptible;
2940
2941 /*
2942 * Since we read the counters lockless, it might be slightly
2943 * inaccurate. Do not allow it to go below zero though:
2944 */
2945 if (unlikely((long)sum < 0))
2946 sum = 0;
2947
2948 return sum;
2949}
2950
2951unsigned long long nr_context_switches(void)
2952{
cc94abfc
SR
2953 int i;
2954 unsigned long long sum = 0;
1da177e4 2955
0a945022 2956 for_each_possible_cpu(i)
1da177e4
LT
2957 sum += cpu_rq(i)->nr_switches;
2958
2959 return sum;
2960}
2961
2962unsigned long nr_iowait(void)
2963{
2964 unsigned long i, sum = 0;
2965
0a945022 2966 for_each_possible_cpu(i)
1da177e4
LT
2967 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2968
2969 return sum;
2970}
2971
69d25870
AV
2972unsigned long nr_iowait_cpu(void)
2973{
2974 struct rq *this = this_rq();
2975 return atomic_read(&this->nr_iowait);
2976}
2977
2978unsigned long this_cpu_load(void)
2979{
2980 struct rq *this = this_rq();
2981 return this->cpu_load[0];
2982}
2983
2984
dce48a84
TG
2985/* Variables and functions for calc_load */
2986static atomic_long_t calc_load_tasks;
2987static unsigned long calc_load_update;
2988unsigned long avenrun[3];
2989EXPORT_SYMBOL(avenrun);
2990
2d02494f
TG
2991/**
2992 * get_avenrun - get the load average array
2993 * @loads: pointer to dest load array
2994 * @offset: offset to add
2995 * @shift: shift count to shift the result left
2996 *
2997 * These values are estimates at best, so no need for locking.
2998 */
2999void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3000{
3001 loads[0] = (avenrun[0] + offset) << shift;
3002 loads[1] = (avenrun[1] + offset) << shift;
3003 loads[2] = (avenrun[2] + offset) << shift;
3004}
3005
dce48a84
TG
3006static unsigned long
3007calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3008{
dce48a84
TG
3009 load *= exp;
3010 load += active * (FIXED_1 - exp);
3011 return load >> FSHIFT;
3012}
db1b1fef 3013
dce48a84
TG
3014/*
3015 * calc_load - update the avenrun load estimates 10 ticks after the
3016 * CPUs have updated calc_load_tasks.
3017 */
3018void calc_global_load(void)
3019{
3020 unsigned long upd = calc_load_update + 10;
3021 long active;
3022
3023 if (time_before(jiffies, upd))
3024 return;
db1b1fef 3025
dce48a84
TG
3026 active = atomic_long_read(&calc_load_tasks);
3027 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3028
dce48a84
TG
3029 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3030 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3031 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3032
3033 calc_load_update += LOAD_FREQ;
3034}
3035
3036/*
3037 * Either called from update_cpu_load() or from a cpu going idle
3038 */
3039static void calc_load_account_active(struct rq *this_rq)
3040{
3041 long nr_active, delta;
3042
3043 nr_active = this_rq->nr_running;
3044 nr_active += (long) this_rq->nr_uninterruptible;
3045
3046 if (nr_active != this_rq->calc_load_active) {
3047 delta = nr_active - this_rq->calc_load_active;
3048 this_rq->calc_load_active = nr_active;
3049 atomic_long_add(delta, &calc_load_tasks);
3050 }
db1b1fef
JS
3051}
3052
48f24c4d 3053/*
dd41f596
IM
3054 * Update rq->cpu_load[] statistics. This function is usually called every
3055 * scheduler tick (TICK_NSEC).
48f24c4d 3056 */
dd41f596 3057static void update_cpu_load(struct rq *this_rq)
48f24c4d 3058{
495eca49 3059 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3060 int i, scale;
3061
3062 this_rq->nr_load_updates++;
dd41f596
IM
3063
3064 /* Update our load: */
3065 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3066 unsigned long old_load, new_load;
3067
3068 /* scale is effectively 1 << i now, and >> i divides by scale */
3069
3070 old_load = this_rq->cpu_load[i];
3071 new_load = this_load;
a25707f3
IM
3072 /*
3073 * Round up the averaging division if load is increasing. This
3074 * prevents us from getting stuck on 9 if the load is 10, for
3075 * example.
3076 */
3077 if (new_load > old_load)
3078 new_load += scale-1;
dd41f596
IM
3079 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3080 }
dce48a84
TG
3081
3082 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3083 this_rq->calc_load_update += LOAD_FREQ;
3084 calc_load_account_active(this_rq);
3085 }
48f24c4d
IM
3086}
3087
dd41f596
IM
3088#ifdef CONFIG_SMP
3089
1da177e4
LT
3090/*
3091 * double_rq_lock - safely lock two runqueues
3092 *
3093 * Note this does not disable interrupts like task_rq_lock,
3094 * you need to do so manually before calling.
3095 */
70b97a7f 3096static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3097 __acquires(rq1->lock)
3098 __acquires(rq2->lock)
3099{
054b9108 3100 BUG_ON(!irqs_disabled());
1da177e4 3101 if (rq1 == rq2) {
05fa785c 3102 raw_spin_lock(&rq1->lock);
1da177e4
LT
3103 __acquire(rq2->lock); /* Fake it out ;) */
3104 } else {
c96d145e 3105 if (rq1 < rq2) {
05fa785c
TG
3106 raw_spin_lock(&rq1->lock);
3107 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3108 } else {
05fa785c
TG
3109 raw_spin_lock(&rq2->lock);
3110 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3111 }
3112 }
6e82a3be
IM
3113 update_rq_clock(rq1);
3114 update_rq_clock(rq2);
1da177e4
LT
3115}
3116
3117/*
3118 * double_rq_unlock - safely unlock two runqueues
3119 *
3120 * Note this does not restore interrupts like task_rq_unlock,
3121 * you need to do so manually after calling.
3122 */
70b97a7f 3123static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3124 __releases(rq1->lock)
3125 __releases(rq2->lock)
3126{
05fa785c 3127 raw_spin_unlock(&rq1->lock);
1da177e4 3128 if (rq1 != rq2)
05fa785c 3129 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3130 else
3131 __release(rq2->lock);
3132}
3133
1da177e4 3134/*
38022906
PZ
3135 * sched_exec - execve() is a valuable balancing opportunity, because at
3136 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3137 */
38022906 3138void sched_exec(void)
1da177e4 3139{
38022906 3140 struct task_struct *p = current;
70b97a7f 3141 struct migration_req req;
38022906 3142 int dest_cpu, this_cpu;
1da177e4 3143 unsigned long flags;
70b97a7f 3144 struct rq *rq;
1da177e4 3145
38022906
PZ
3146again:
3147 this_cpu = get_cpu();
3148 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3149 if (dest_cpu == this_cpu) {
3150 put_cpu();
3151 return;
3152 }
3153
1da177e4 3154 rq = task_rq_lock(p, &flags);
38022906
PZ
3155 put_cpu();
3156
3157 /*
3158 * select_task_rq() can race against ->cpus_allowed
3159 */
96f874e2 3160 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3161 || unlikely(!cpu_active(dest_cpu))) {
3162 task_rq_unlock(rq, &flags);
3163 goto again;
3164 }
1da177e4
LT
3165
3166 /* force the process onto the specified CPU */
3167 if (migrate_task(p, dest_cpu, &req)) {
3168 /* Need to wait for migration thread (might exit: take ref). */
3169 struct task_struct *mt = rq->migration_thread;
36c8b586 3170
1da177e4
LT
3171 get_task_struct(mt);
3172 task_rq_unlock(rq, &flags);
3173 wake_up_process(mt);
3174 put_task_struct(mt);
3175 wait_for_completion(&req.done);
36c8b586 3176
1da177e4
LT
3177 return;
3178 }
1da177e4
LT
3179 task_rq_unlock(rq, &flags);
3180}
3181
1da177e4
LT
3182/*
3183 * pull_task - move a task from a remote runqueue to the local runqueue.
3184 * Both runqueues must be locked.
3185 */
dd41f596
IM
3186static void pull_task(struct rq *src_rq, struct task_struct *p,
3187 struct rq *this_rq, int this_cpu)
1da177e4 3188{
2e1cb74a 3189 deactivate_task(src_rq, p, 0);
1da177e4 3190 set_task_cpu(p, this_cpu);
dd41f596 3191 activate_task(this_rq, p, 0);
15afe09b 3192 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3193}
3194
3195/*
3196 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3197 */
858119e1 3198static
70b97a7f 3199int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3200 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3201 int *all_pinned)
1da177e4 3202{
708dc512 3203 int tsk_cache_hot = 0;
1da177e4
LT
3204 /*
3205 * We do not migrate tasks that are:
3206 * 1) running (obviously), or
3207 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3208 * 3) are cache-hot on their current CPU.
3209 */
96f874e2 3210 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3211 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3212 return 0;
cc367732 3213 }
81026794
NP
3214 *all_pinned = 0;
3215
cc367732
IM
3216 if (task_running(rq, p)) {
3217 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3218 return 0;
cc367732 3219 }
1da177e4 3220
da84d961
IM
3221 /*
3222 * Aggressive migration if:
3223 * 1) task is cache cold, or
3224 * 2) too many balance attempts have failed.
3225 */
3226
708dc512
LH
3227 tsk_cache_hot = task_hot(p, rq->clock, sd);
3228 if (!tsk_cache_hot ||
3229 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3230#ifdef CONFIG_SCHEDSTATS
708dc512 3231 if (tsk_cache_hot) {
da84d961 3232 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3233 schedstat_inc(p, se.nr_forced_migrations);
3234 }
da84d961
IM
3235#endif
3236 return 1;
3237 }
3238
708dc512 3239 if (tsk_cache_hot) {
cc367732 3240 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3241 return 0;
cc367732 3242 }
1da177e4
LT
3243 return 1;
3244}
3245
e1d1484f
PW
3246static unsigned long
3247balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3248 unsigned long max_load_move, struct sched_domain *sd,
3249 enum cpu_idle_type idle, int *all_pinned,
3250 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3251{
051c6764 3252 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3253 struct task_struct *p;
3254 long rem_load_move = max_load_move;
1da177e4 3255
e1d1484f 3256 if (max_load_move == 0)
1da177e4
LT
3257 goto out;
3258
81026794
NP
3259 pinned = 1;
3260
1da177e4 3261 /*
dd41f596 3262 * Start the load-balancing iterator:
1da177e4 3263 */
dd41f596
IM
3264 p = iterator->start(iterator->arg);
3265next:
b82d9fdd 3266 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3267 goto out;
051c6764
PZ
3268
3269 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3270 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3271 p = iterator->next(iterator->arg);
3272 goto next;
1da177e4
LT
3273 }
3274
dd41f596 3275 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3276 pulled++;
dd41f596 3277 rem_load_move -= p->se.load.weight;
1da177e4 3278
7e96fa58
GH
3279#ifdef CONFIG_PREEMPT
3280 /*
3281 * NEWIDLE balancing is a source of latency, so preemptible kernels
3282 * will stop after the first task is pulled to minimize the critical
3283 * section.
3284 */
3285 if (idle == CPU_NEWLY_IDLE)
3286 goto out;
3287#endif
3288
2dd73a4f 3289 /*
b82d9fdd 3290 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3291 */
e1d1484f 3292 if (rem_load_move > 0) {
a4ac01c3
PW
3293 if (p->prio < *this_best_prio)
3294 *this_best_prio = p->prio;
dd41f596
IM
3295 p = iterator->next(iterator->arg);
3296 goto next;
1da177e4
LT
3297 }
3298out:
3299 /*
e1d1484f 3300 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3301 * so we can safely collect pull_task() stats here rather than
3302 * inside pull_task().
3303 */
3304 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3305
3306 if (all_pinned)
3307 *all_pinned = pinned;
e1d1484f
PW
3308
3309 return max_load_move - rem_load_move;
1da177e4
LT
3310}
3311
dd41f596 3312/*
43010659
PW
3313 * move_tasks tries to move up to max_load_move weighted load from busiest to
3314 * this_rq, as part of a balancing operation within domain "sd".
3315 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3316 *
3317 * Called with both runqueues locked.
3318 */
3319static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3320 unsigned long max_load_move,
dd41f596
IM
3321 struct sched_domain *sd, enum cpu_idle_type idle,
3322 int *all_pinned)
3323{
5522d5d5 3324 const struct sched_class *class = sched_class_highest;
43010659 3325 unsigned long total_load_moved = 0;
a4ac01c3 3326 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3327
3328 do {
43010659
PW
3329 total_load_moved +=
3330 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3331 max_load_move - total_load_moved,
a4ac01c3 3332 sd, idle, all_pinned, &this_best_prio);
dd41f596 3333 class = class->next;
c4acb2c0 3334
7e96fa58
GH
3335#ifdef CONFIG_PREEMPT
3336 /*
3337 * NEWIDLE balancing is a source of latency, so preemptible
3338 * kernels will stop after the first task is pulled to minimize
3339 * the critical section.
3340 */
c4acb2c0
GH
3341 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3342 break;
7e96fa58 3343#endif
43010659 3344 } while (class && max_load_move > total_load_moved);
dd41f596 3345
43010659
PW
3346 return total_load_moved > 0;
3347}
3348
e1d1484f
PW
3349static int
3350iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3351 struct sched_domain *sd, enum cpu_idle_type idle,
3352 struct rq_iterator *iterator)
3353{
3354 struct task_struct *p = iterator->start(iterator->arg);
3355 int pinned = 0;
3356
3357 while (p) {
3358 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3359 pull_task(busiest, p, this_rq, this_cpu);
3360 /*
3361 * Right now, this is only the second place pull_task()
3362 * is called, so we can safely collect pull_task()
3363 * stats here rather than inside pull_task().
3364 */
3365 schedstat_inc(sd, lb_gained[idle]);
3366
3367 return 1;
3368 }
3369 p = iterator->next(iterator->arg);
3370 }
3371
3372 return 0;
3373}
3374
43010659
PW
3375/*
3376 * move_one_task tries to move exactly one task from busiest to this_rq, as
3377 * part of active balancing operations within "domain".
3378 * Returns 1 if successful and 0 otherwise.
3379 *
3380 * Called with both runqueues locked.
3381 */
3382static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3383 struct sched_domain *sd, enum cpu_idle_type idle)
3384{
5522d5d5 3385 const struct sched_class *class;
43010659 3386
cde7e5ca 3387 for_each_class(class) {
e1d1484f 3388 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3389 return 1;
cde7e5ca 3390 }
43010659
PW
3391
3392 return 0;
dd41f596 3393}
67bb6c03 3394/********** Helpers for find_busiest_group ************************/
1da177e4 3395/*
222d656d
GS
3396 * sd_lb_stats - Structure to store the statistics of a sched_domain
3397 * during load balancing.
1da177e4 3398 */
222d656d
GS
3399struct sd_lb_stats {
3400 struct sched_group *busiest; /* Busiest group in this sd */
3401 struct sched_group *this; /* Local group in this sd */
3402 unsigned long total_load; /* Total load of all groups in sd */
3403 unsigned long total_pwr; /* Total power of all groups in sd */
3404 unsigned long avg_load; /* Average load across all groups in sd */
3405
3406 /** Statistics of this group */
3407 unsigned long this_load;
3408 unsigned long this_load_per_task;
3409 unsigned long this_nr_running;
3410
3411 /* Statistics of the busiest group */
3412 unsigned long max_load;
3413 unsigned long busiest_load_per_task;
3414 unsigned long busiest_nr_running;
3415
3416 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3417#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3418 int power_savings_balance; /* Is powersave balance needed for this sd */
3419 struct sched_group *group_min; /* Least loaded group in sd */
3420 struct sched_group *group_leader; /* Group which relieves group_min */
3421 unsigned long min_load_per_task; /* load_per_task in group_min */
3422 unsigned long leader_nr_running; /* Nr running of group_leader */
3423 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3424#endif
222d656d 3425};
1da177e4 3426
d5ac537e 3427/*
381be78f
GS
3428 * sg_lb_stats - stats of a sched_group required for load_balancing
3429 */
3430struct sg_lb_stats {
3431 unsigned long avg_load; /*Avg load across the CPUs of the group */
3432 unsigned long group_load; /* Total load over the CPUs of the group */
3433 unsigned long sum_nr_running; /* Nr tasks running in the group */
3434 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3435 unsigned long group_capacity;
3436 int group_imb; /* Is there an imbalance in the group ? */
3437};
408ed066 3438
67bb6c03
GS
3439/**
3440 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3441 * @group: The group whose first cpu is to be returned.
3442 */
3443static inline unsigned int group_first_cpu(struct sched_group *group)
3444{
3445 return cpumask_first(sched_group_cpus(group));
3446}
3447
3448/**
3449 * get_sd_load_idx - Obtain the load index for a given sched domain.
3450 * @sd: The sched_domain whose load_idx is to be obtained.
3451 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3452 */
3453static inline int get_sd_load_idx(struct sched_domain *sd,
3454 enum cpu_idle_type idle)
3455{
3456 int load_idx;
3457
3458 switch (idle) {
3459 case CPU_NOT_IDLE:
7897986b 3460 load_idx = sd->busy_idx;
67bb6c03
GS
3461 break;
3462
3463 case CPU_NEWLY_IDLE:
7897986b 3464 load_idx = sd->newidle_idx;
67bb6c03
GS
3465 break;
3466 default:
7897986b 3467 load_idx = sd->idle_idx;
67bb6c03
GS
3468 break;
3469 }
1da177e4 3470
67bb6c03
GS
3471 return load_idx;
3472}
1da177e4 3473
1da177e4 3474
c071df18
GS
3475#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3476/**
3477 * init_sd_power_savings_stats - Initialize power savings statistics for
3478 * the given sched_domain, during load balancing.
3479 *
3480 * @sd: Sched domain whose power-savings statistics are to be initialized.
3481 * @sds: Variable containing the statistics for sd.
3482 * @idle: Idle status of the CPU at which we're performing load-balancing.
3483 */
3484static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3485 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3486{
3487 /*
3488 * Busy processors will not participate in power savings
3489 * balance.
3490 */
3491 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3492 sds->power_savings_balance = 0;
3493 else {
3494 sds->power_savings_balance = 1;
3495 sds->min_nr_running = ULONG_MAX;
3496 sds->leader_nr_running = 0;
3497 }
3498}
783609c6 3499
c071df18
GS
3500/**
3501 * update_sd_power_savings_stats - Update the power saving stats for a
3502 * sched_domain while performing load balancing.
3503 *
3504 * @group: sched_group belonging to the sched_domain under consideration.
3505 * @sds: Variable containing the statistics of the sched_domain
3506 * @local_group: Does group contain the CPU for which we're performing
3507 * load balancing ?
3508 * @sgs: Variable containing the statistics of the group.
3509 */
3510static inline void update_sd_power_savings_stats(struct sched_group *group,
3511 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3512{
408ed066 3513
c071df18
GS
3514 if (!sds->power_savings_balance)
3515 return;
1da177e4 3516
c071df18
GS
3517 /*
3518 * If the local group is idle or completely loaded
3519 * no need to do power savings balance at this domain
3520 */
3521 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3522 !sds->this_nr_running))
3523 sds->power_savings_balance = 0;
2dd73a4f 3524
c071df18
GS
3525 /*
3526 * If a group is already running at full capacity or idle,
3527 * don't include that group in power savings calculations
3528 */
3529 if (!sds->power_savings_balance ||
3530 sgs->sum_nr_running >= sgs->group_capacity ||
3531 !sgs->sum_nr_running)
3532 return;
5969fe06 3533
c071df18
GS
3534 /*
3535 * Calculate the group which has the least non-idle load.
3536 * This is the group from where we need to pick up the load
3537 * for saving power
3538 */
3539 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3540 (sgs->sum_nr_running == sds->min_nr_running &&
3541 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3542 sds->group_min = group;
3543 sds->min_nr_running = sgs->sum_nr_running;
3544 sds->min_load_per_task = sgs->sum_weighted_load /
3545 sgs->sum_nr_running;
3546 }
783609c6 3547
c071df18
GS
3548 /*
3549 * Calculate the group which is almost near its
3550 * capacity but still has some space to pick up some load
3551 * from other group and save more power
3552 */
d899a789 3553 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3554 return;
1da177e4 3555
c071df18
GS
3556 if (sgs->sum_nr_running > sds->leader_nr_running ||
3557 (sgs->sum_nr_running == sds->leader_nr_running &&
3558 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3559 sds->group_leader = group;
3560 sds->leader_nr_running = sgs->sum_nr_running;
3561 }
3562}
408ed066 3563
c071df18 3564/**
d5ac537e 3565 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3566 * @sds: Variable containing the statistics of the sched_domain
3567 * under consideration.
3568 * @this_cpu: Cpu at which we're currently performing load-balancing.
3569 * @imbalance: Variable to store the imbalance.
3570 *
d5ac537e
RD
3571 * Description:
3572 * Check if we have potential to perform some power-savings balance.
3573 * If yes, set the busiest group to be the least loaded group in the
3574 * sched_domain, so that it's CPUs can be put to idle.
3575 *
c071df18
GS
3576 * Returns 1 if there is potential to perform power-savings balance.
3577 * Else returns 0.
3578 */
3579static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3580 int this_cpu, unsigned long *imbalance)
3581{
3582 if (!sds->power_savings_balance)
3583 return 0;
1da177e4 3584
c071df18
GS
3585 if (sds->this != sds->group_leader ||
3586 sds->group_leader == sds->group_min)
3587 return 0;
783609c6 3588
c071df18
GS
3589 *imbalance = sds->min_load_per_task;
3590 sds->busiest = sds->group_min;
1da177e4 3591
c071df18 3592 return 1;
1da177e4 3593
c071df18
GS
3594}
3595#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3596static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3597 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3598{
3599 return;
3600}
408ed066 3601
c071df18
GS
3602static inline void update_sd_power_savings_stats(struct sched_group *group,
3603 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3604{
3605 return;
3606}
3607
3608static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3609 int this_cpu, unsigned long *imbalance)
3610{
3611 return 0;
3612}
3613#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3614
d6a59aa3
PZ
3615
3616unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3617{
3618 return SCHED_LOAD_SCALE;
3619}
3620
3621unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3622{
3623 return default_scale_freq_power(sd, cpu);
3624}
3625
3626unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3627{
3628 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3629 unsigned long smt_gain = sd->smt_gain;
3630
3631 smt_gain /= weight;
3632
3633 return smt_gain;
3634}
3635
d6a59aa3
PZ
3636unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3637{
3638 return default_scale_smt_power(sd, cpu);
3639}
3640
e9e9250b
PZ
3641unsigned long scale_rt_power(int cpu)
3642{
3643 struct rq *rq = cpu_rq(cpu);
3644 u64 total, available;
3645
3646 sched_avg_update(rq);
3647
3648 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3649 available = total - rq->rt_avg;
3650
3651 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3652 total = SCHED_LOAD_SCALE;
3653
3654 total >>= SCHED_LOAD_SHIFT;
3655
3656 return div_u64(available, total);
3657}
3658
ab29230e
PZ
3659static void update_cpu_power(struct sched_domain *sd, int cpu)
3660{
3661 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3662 unsigned long power = SCHED_LOAD_SCALE;
3663 struct sched_group *sdg = sd->groups;
ab29230e 3664
8e6598af
PZ
3665 if (sched_feat(ARCH_POWER))
3666 power *= arch_scale_freq_power(sd, cpu);
3667 else
3668 power *= default_scale_freq_power(sd, cpu);
3669
d6a59aa3 3670 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3671
3672 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3673 if (sched_feat(ARCH_POWER))
3674 power *= arch_scale_smt_power(sd, cpu);
3675 else
3676 power *= default_scale_smt_power(sd, cpu);
3677
ab29230e
PZ
3678 power >>= SCHED_LOAD_SHIFT;
3679 }
3680
e9e9250b
PZ
3681 power *= scale_rt_power(cpu);
3682 power >>= SCHED_LOAD_SHIFT;
3683
3684 if (!power)
3685 power = 1;
ab29230e 3686
18a3885f 3687 sdg->cpu_power = power;
ab29230e
PZ
3688}
3689
3690static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3691{
3692 struct sched_domain *child = sd->child;
3693 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3694 unsigned long power;
cc9fba7d
PZ
3695
3696 if (!child) {
ab29230e 3697 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3698 return;
3699 }
3700
d7ea17a7 3701 power = 0;
cc9fba7d
PZ
3702
3703 group = child->groups;
3704 do {
d7ea17a7 3705 power += group->cpu_power;
cc9fba7d
PZ
3706 group = group->next;
3707 } while (group != child->groups);
d7ea17a7
IM
3708
3709 sdg->cpu_power = power;
cc9fba7d 3710}
c071df18 3711
1f8c553d
GS
3712/**
3713 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3714 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3715 * @group: sched_group whose statistics are to be updated.
3716 * @this_cpu: Cpu for which load balance is currently performed.
3717 * @idle: Idle status of this_cpu
3718 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3719 * @sd_idle: Idle status of the sched_domain containing group.
3720 * @local_group: Does group contain this_cpu.
3721 * @cpus: Set of cpus considered for load balancing.
3722 * @balance: Should we balance.
3723 * @sgs: variable to hold the statistics for this group.
3724 */
cc9fba7d
PZ
3725static inline void update_sg_lb_stats(struct sched_domain *sd,
3726 struct sched_group *group, int this_cpu,
1f8c553d
GS
3727 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3728 int local_group, const struct cpumask *cpus,
3729 int *balance, struct sg_lb_stats *sgs)
3730{
3731 unsigned long load, max_cpu_load, min_cpu_load;
3732 int i;
3733 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3734 unsigned long sum_avg_load_per_task;
3735 unsigned long avg_load_per_task;
3736
cc9fba7d 3737 if (local_group) {
1f8c553d 3738 balance_cpu = group_first_cpu(group);
cc9fba7d 3739 if (balance_cpu == this_cpu)
ab29230e 3740 update_group_power(sd, this_cpu);
cc9fba7d 3741 }
1f8c553d
GS
3742
3743 /* Tally up the load of all CPUs in the group */
3744 sum_avg_load_per_task = avg_load_per_task = 0;
3745 max_cpu_load = 0;
3746 min_cpu_load = ~0UL;
408ed066 3747
1f8c553d
GS
3748 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3749 struct rq *rq = cpu_rq(i);
908a7c1b 3750
1f8c553d
GS
3751 if (*sd_idle && rq->nr_running)
3752 *sd_idle = 0;
5c45bf27 3753
1f8c553d 3754 /* Bias balancing toward cpus of our domain */
1da177e4 3755 if (local_group) {
1f8c553d
GS
3756 if (idle_cpu(i) && !first_idle_cpu) {
3757 first_idle_cpu = 1;
3758 balance_cpu = i;
3759 }
3760
3761 load = target_load(i, load_idx);
3762 } else {
3763 load = source_load(i, load_idx);
3764 if (load > max_cpu_load)
3765 max_cpu_load = load;
3766 if (min_cpu_load > load)
3767 min_cpu_load = load;
1da177e4 3768 }
5c45bf27 3769
1f8c553d
GS
3770 sgs->group_load += load;
3771 sgs->sum_nr_running += rq->nr_running;
3772 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3773
1f8c553d
GS
3774 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3775 }
5c45bf27 3776
1f8c553d
GS
3777 /*
3778 * First idle cpu or the first cpu(busiest) in this sched group
3779 * is eligible for doing load balancing at this and above
3780 * domains. In the newly idle case, we will allow all the cpu's
3781 * to do the newly idle load balance.
3782 */
3783 if (idle != CPU_NEWLY_IDLE && local_group &&
3784 balance_cpu != this_cpu && balance) {
3785 *balance = 0;
3786 return;
3787 }
5c45bf27 3788
1f8c553d 3789 /* Adjust by relative CPU power of the group */
18a3885f 3790 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3791
1f8c553d
GS
3792
3793 /*
3794 * Consider the group unbalanced when the imbalance is larger
3795 * than the average weight of two tasks.
3796 *
3797 * APZ: with cgroup the avg task weight can vary wildly and
3798 * might not be a suitable number - should we keep a
3799 * normalized nr_running number somewhere that negates
3800 * the hierarchy?
3801 */
18a3885f
PZ
3802 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3803 group->cpu_power;
1f8c553d
GS
3804
3805 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3806 sgs->group_imb = 1;
3807
bdb94aa5 3808 sgs->group_capacity =
18a3885f 3809 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3810}
dd41f596 3811
37abe198
GS
3812/**
3813 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3814 * @sd: sched_domain whose statistics are to be updated.
3815 * @this_cpu: Cpu for which load balance is currently performed.
3816 * @idle: Idle status of this_cpu
3817 * @sd_idle: Idle status of the sched_domain containing group.
3818 * @cpus: Set of cpus considered for load balancing.
3819 * @balance: Should we balance.
3820 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3821 */
37abe198
GS
3822static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3823 enum cpu_idle_type idle, int *sd_idle,
3824 const struct cpumask *cpus, int *balance,
3825 struct sd_lb_stats *sds)
1da177e4 3826{
b5d978e0 3827 struct sched_domain *child = sd->child;
222d656d 3828 struct sched_group *group = sd->groups;
37abe198 3829 struct sg_lb_stats sgs;
b5d978e0
PZ
3830 int load_idx, prefer_sibling = 0;
3831
3832 if (child && child->flags & SD_PREFER_SIBLING)
3833 prefer_sibling = 1;
222d656d 3834
c071df18 3835 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3836 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3837
3838 do {
1da177e4 3839 int local_group;
1da177e4 3840
758b2cdc
RR
3841 local_group = cpumask_test_cpu(this_cpu,
3842 sched_group_cpus(group));
381be78f 3843 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3844 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3845 local_group, cpus, balance, &sgs);
1da177e4 3846
37abe198
GS
3847 if (local_group && balance && !(*balance))
3848 return;
783609c6 3849
37abe198 3850 sds->total_load += sgs.group_load;
18a3885f 3851 sds->total_pwr += group->cpu_power;
1da177e4 3852
b5d978e0
PZ
3853 /*
3854 * In case the child domain prefers tasks go to siblings
3855 * first, lower the group capacity to one so that we'll try
3856 * and move all the excess tasks away.
3857 */
3858 if (prefer_sibling)
bdb94aa5 3859 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3860
1da177e4 3861 if (local_group) {
37abe198
GS
3862 sds->this_load = sgs.avg_load;
3863 sds->this = group;
3864 sds->this_nr_running = sgs.sum_nr_running;
3865 sds->this_load_per_task = sgs.sum_weighted_load;
3866 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3867 (sgs.sum_nr_running > sgs.group_capacity ||
3868 sgs.group_imb)) {
37abe198
GS
3869 sds->max_load = sgs.avg_load;
3870 sds->busiest = group;
3871 sds->busiest_nr_running = sgs.sum_nr_running;
3872 sds->busiest_load_per_task = sgs.sum_weighted_load;
3873 sds->group_imb = sgs.group_imb;
48f24c4d 3874 }
5c45bf27 3875
c071df18 3876 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3877 group = group->next;
3878 } while (group != sd->groups);
37abe198 3879}
1da177e4 3880
2e6f44ae
GS
3881/**
3882 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3883 * amongst the groups of a sched_domain, during
3884 * load balancing.
2e6f44ae
GS
3885 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3886 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3887 * @imbalance: Variable to store the imbalance.
3888 */
3889static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3890 int this_cpu, unsigned long *imbalance)
3891{
3892 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3893 unsigned int imbn = 2;
3894
3895 if (sds->this_nr_running) {
3896 sds->this_load_per_task /= sds->this_nr_running;
3897 if (sds->busiest_load_per_task >
3898 sds->this_load_per_task)
3899 imbn = 1;
3900 } else
3901 sds->this_load_per_task =
3902 cpu_avg_load_per_task(this_cpu);
1da177e4 3903
2e6f44ae
GS
3904 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3905 sds->busiest_load_per_task * imbn) {
3906 *imbalance = sds->busiest_load_per_task;
3907 return;
3908 }
908a7c1b 3909
1da177e4 3910 /*
2e6f44ae
GS
3911 * OK, we don't have enough imbalance to justify moving tasks,
3912 * however we may be able to increase total CPU power used by
3913 * moving them.
1da177e4 3914 */
2dd73a4f 3915
18a3885f 3916 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3917 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3918 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3919 min(sds->this_load_per_task, sds->this_load);
3920 pwr_now /= SCHED_LOAD_SCALE;
3921
3922 /* Amount of load we'd subtract */
18a3885f
PZ
3923 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3924 sds->busiest->cpu_power;
2e6f44ae 3925 if (sds->max_load > tmp)
18a3885f 3926 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3927 min(sds->busiest_load_per_task, sds->max_load - tmp);
3928
3929 /* Amount of load we'd add */
18a3885f 3930 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3931 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3932 tmp = (sds->max_load * sds->busiest->cpu_power) /
3933 sds->this->cpu_power;
2e6f44ae 3934 else
18a3885f
PZ
3935 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3936 sds->this->cpu_power;
3937 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3938 min(sds->this_load_per_task, sds->this_load + tmp);
3939 pwr_move /= SCHED_LOAD_SCALE;
3940
3941 /* Move if we gain throughput */
3942 if (pwr_move > pwr_now)
3943 *imbalance = sds->busiest_load_per_task;
3944}
dbc523a3
GS
3945
3946/**
3947 * calculate_imbalance - Calculate the amount of imbalance present within the
3948 * groups of a given sched_domain during load balance.
3949 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3950 * @this_cpu: Cpu for which currently load balance is being performed.
3951 * @imbalance: The variable to store the imbalance.
3952 */
3953static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3954 unsigned long *imbalance)
3955{
3956 unsigned long max_pull;
2dd73a4f
PW
3957 /*
3958 * In the presence of smp nice balancing, certain scenarios can have
3959 * max load less than avg load(as we skip the groups at or below
3960 * its cpu_power, while calculating max_load..)
3961 */
dbc523a3 3962 if (sds->max_load < sds->avg_load) {
2dd73a4f 3963 *imbalance = 0;
dbc523a3 3964 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3965 }
0c117f1b
SS
3966
3967 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3968 max_pull = min(sds->max_load - sds->avg_load,
3969 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3970
1da177e4 3971 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3972 *imbalance = min(max_pull * sds->busiest->cpu_power,
3973 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3974 / SCHED_LOAD_SCALE;
3975
2dd73a4f
PW
3976 /*
3977 * if *imbalance is less than the average load per runnable task
3978 * there is no gaurantee that any tasks will be moved so we'll have
3979 * a think about bumping its value to force at least one task to be
3980 * moved
3981 */
dbc523a3
GS
3982 if (*imbalance < sds->busiest_load_per_task)
3983 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3984
dbc523a3 3985}
37abe198 3986/******* find_busiest_group() helpers end here *********************/
1da177e4 3987
b7bb4c9b
GS
3988/**
3989 * find_busiest_group - Returns the busiest group within the sched_domain
3990 * if there is an imbalance. If there isn't an imbalance, and
3991 * the user has opted for power-savings, it returns a group whose
3992 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3993 * such a group exists.
3994 *
3995 * Also calculates the amount of weighted load which should be moved
3996 * to restore balance.
3997 *
3998 * @sd: The sched_domain whose busiest group is to be returned.
3999 * @this_cpu: The cpu for which load balancing is currently being performed.
4000 * @imbalance: Variable which stores amount of weighted load which should
4001 * be moved to restore balance/put a group to idle.
4002 * @idle: The idle status of this_cpu.
4003 * @sd_idle: The idleness of sd
4004 * @cpus: The set of CPUs under consideration for load-balancing.
4005 * @balance: Pointer to a variable indicating if this_cpu
4006 * is the appropriate cpu to perform load balancing at this_level.
4007 *
4008 * Returns: - the busiest group if imbalance exists.
4009 * - If no imbalance and user has opted for power-savings balance,
4010 * return the least loaded group whose CPUs can be
4011 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4012 */
4013static struct sched_group *
4014find_busiest_group(struct sched_domain *sd, int this_cpu,
4015 unsigned long *imbalance, enum cpu_idle_type idle,
4016 int *sd_idle, const struct cpumask *cpus, int *balance)
4017{
4018 struct sd_lb_stats sds;
1da177e4 4019
37abe198 4020 memset(&sds, 0, sizeof(sds));
1da177e4 4021
37abe198
GS
4022 /*
4023 * Compute the various statistics relavent for load balancing at
4024 * this level.
4025 */
4026 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4027 balance, &sds);
4028
b7bb4c9b
GS
4029 /* Cases where imbalance does not exist from POV of this_cpu */
4030 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4031 * at this level.
4032 * 2) There is no busy sibling group to pull from.
4033 * 3) This group is the busiest group.
4034 * 4) This group is more busy than the avg busieness at this
4035 * sched_domain.
4036 * 5) The imbalance is within the specified limit.
4037 * 6) Any rebalance would lead to ping-pong
4038 */
37abe198
GS
4039 if (balance && !(*balance))
4040 goto ret;
1da177e4 4041
b7bb4c9b
GS
4042 if (!sds.busiest || sds.busiest_nr_running == 0)
4043 goto out_balanced;
1da177e4 4044
b7bb4c9b 4045 if (sds.this_load >= sds.max_load)
1da177e4 4046 goto out_balanced;
1da177e4 4047
222d656d 4048 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4049
b7bb4c9b
GS
4050 if (sds.this_load >= sds.avg_load)
4051 goto out_balanced;
4052
4053 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4054 goto out_balanced;
4055
222d656d
GS
4056 sds.busiest_load_per_task /= sds.busiest_nr_running;
4057 if (sds.group_imb)
4058 sds.busiest_load_per_task =
4059 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4060
1da177e4
LT
4061 /*
4062 * We're trying to get all the cpus to the average_load, so we don't
4063 * want to push ourselves above the average load, nor do we wish to
4064 * reduce the max loaded cpu below the average load, as either of these
4065 * actions would just result in more rebalancing later, and ping-pong
4066 * tasks around. Thus we look for the minimum possible imbalance.
4067 * Negative imbalances (*we* are more loaded than anyone else) will
4068 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4069 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4070 * appear as very large values with unsigned longs.
4071 */
222d656d 4072 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4073 goto out_balanced;
4074
dbc523a3
GS
4075 /* Looks like there is an imbalance. Compute it */
4076 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4077 return sds.busiest;
1da177e4
LT
4078
4079out_balanced:
c071df18
GS
4080 /*
4081 * There is no obvious imbalance. But check if we can do some balancing
4082 * to save power.
4083 */
4084 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4085 return sds.busiest;
783609c6 4086ret:
1da177e4
LT
4087 *imbalance = 0;
4088 return NULL;
4089}
4090
4091/*
4092 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4093 */
70b97a7f 4094static struct rq *
d15bcfdb 4095find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4096 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4097{
70b97a7f 4098 struct rq *busiest = NULL, *rq;
2dd73a4f 4099 unsigned long max_load = 0;
1da177e4
LT
4100 int i;
4101
758b2cdc 4102 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4103 unsigned long power = power_of(i);
4104 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4105 unsigned long wl;
0a2966b4 4106
96f874e2 4107 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4108 continue;
4109
48f24c4d 4110 rq = cpu_rq(i);
bdb94aa5
PZ
4111 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4112 wl /= power;
2dd73a4f 4113
bdb94aa5 4114 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4115 continue;
1da177e4 4116
dd41f596
IM
4117 if (wl > max_load) {
4118 max_load = wl;
48f24c4d 4119 busiest = rq;
1da177e4
LT
4120 }
4121 }
4122
4123 return busiest;
4124}
4125
77391d71
NP
4126/*
4127 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4128 * so long as it is large enough.
4129 */
4130#define MAX_PINNED_INTERVAL 512
4131
df7c8e84
RR
4132/* Working cpumask for load_balance and load_balance_newidle. */
4133static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4134
1da177e4
LT
4135/*
4136 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4137 * tasks if there is an imbalance.
1da177e4 4138 */
70b97a7f 4139static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4140 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4141 int *balance)
1da177e4 4142{
43010659 4143 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4144 struct sched_group *group;
1da177e4 4145 unsigned long imbalance;
70b97a7f 4146 struct rq *busiest;
fe2eea3f 4147 unsigned long flags;
df7c8e84 4148 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4149
6ad4c188 4150 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4151
89c4710e
SS
4152 /*
4153 * When power savings policy is enabled for the parent domain, idle
4154 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4155 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4156 * portraying it as CPU_NOT_IDLE.
89c4710e 4157 */
d15bcfdb 4158 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4159 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4160 sd_idle = 1;
1da177e4 4161
2d72376b 4162 schedstat_inc(sd, lb_count[idle]);
1da177e4 4163
0a2966b4 4164redo:
c8cba857 4165 update_shares(sd);
0a2966b4 4166 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4167 cpus, balance);
783609c6 4168
06066714 4169 if (*balance == 0)
783609c6 4170 goto out_balanced;
783609c6 4171
1da177e4
LT
4172 if (!group) {
4173 schedstat_inc(sd, lb_nobusyg[idle]);
4174 goto out_balanced;
4175 }
4176
7c16ec58 4177 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4178 if (!busiest) {
4179 schedstat_inc(sd, lb_nobusyq[idle]);
4180 goto out_balanced;
4181 }
4182
db935dbd 4183 BUG_ON(busiest == this_rq);
1da177e4
LT
4184
4185 schedstat_add(sd, lb_imbalance[idle], imbalance);
4186
43010659 4187 ld_moved = 0;
1da177e4
LT
4188 if (busiest->nr_running > 1) {
4189 /*
4190 * Attempt to move tasks. If find_busiest_group has found
4191 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4192 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4193 * correctly treated as an imbalance.
4194 */
fe2eea3f 4195 local_irq_save(flags);
e17224bf 4196 double_rq_lock(this_rq, busiest);
43010659 4197 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4198 imbalance, sd, idle, &all_pinned);
e17224bf 4199 double_rq_unlock(this_rq, busiest);
fe2eea3f 4200 local_irq_restore(flags);
81026794 4201
46cb4b7c
SS
4202 /*
4203 * some other cpu did the load balance for us.
4204 */
43010659 4205 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4206 resched_cpu(this_cpu);
4207
81026794 4208 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4209 if (unlikely(all_pinned)) {
96f874e2
RR
4210 cpumask_clear_cpu(cpu_of(busiest), cpus);
4211 if (!cpumask_empty(cpus))
0a2966b4 4212 goto redo;
81026794 4213 goto out_balanced;
0a2966b4 4214 }
1da177e4 4215 }
81026794 4216
43010659 4217 if (!ld_moved) {
1da177e4
LT
4218 schedstat_inc(sd, lb_failed[idle]);
4219 sd->nr_balance_failed++;
4220
4221 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4222
05fa785c 4223 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4224
4225 /* don't kick the migration_thread, if the curr
4226 * task on busiest cpu can't be moved to this_cpu
4227 */
96f874e2
RR
4228 if (!cpumask_test_cpu(this_cpu,
4229 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4230 raw_spin_unlock_irqrestore(&busiest->lock,
4231 flags);
fa3b6ddc
SS
4232 all_pinned = 1;
4233 goto out_one_pinned;
4234 }
4235
1da177e4
LT
4236 if (!busiest->active_balance) {
4237 busiest->active_balance = 1;
4238 busiest->push_cpu = this_cpu;
81026794 4239 active_balance = 1;
1da177e4 4240 }
05fa785c 4241 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4242 if (active_balance)
1da177e4
LT
4243 wake_up_process(busiest->migration_thread);
4244
4245 /*
4246 * We've kicked active balancing, reset the failure
4247 * counter.
4248 */
39507451 4249 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4250 }
81026794 4251 } else
1da177e4
LT
4252 sd->nr_balance_failed = 0;
4253
81026794 4254 if (likely(!active_balance)) {
1da177e4
LT
4255 /* We were unbalanced, so reset the balancing interval */
4256 sd->balance_interval = sd->min_interval;
81026794
NP
4257 } else {
4258 /*
4259 * If we've begun active balancing, start to back off. This
4260 * case may not be covered by the all_pinned logic if there
4261 * is only 1 task on the busy runqueue (because we don't call
4262 * move_tasks).
4263 */
4264 if (sd->balance_interval < sd->max_interval)
4265 sd->balance_interval *= 2;
1da177e4
LT
4266 }
4267
43010659 4268 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4269 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4270 ld_moved = -1;
4271
4272 goto out;
1da177e4
LT
4273
4274out_balanced:
1da177e4
LT
4275 schedstat_inc(sd, lb_balanced[idle]);
4276
16cfb1c0 4277 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4278
4279out_one_pinned:
1da177e4 4280 /* tune up the balancing interval */
77391d71
NP
4281 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4282 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4283 sd->balance_interval *= 2;
4284
48f24c4d 4285 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4286 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4287 ld_moved = -1;
4288 else
4289 ld_moved = 0;
4290out:
c8cba857
PZ
4291 if (ld_moved)
4292 update_shares(sd);
c09595f6 4293 return ld_moved;
1da177e4
LT
4294}
4295
4296/*
4297 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4298 * tasks if there is an imbalance.
4299 *
d15bcfdb 4300 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4301 * this_rq is locked.
4302 */
48f24c4d 4303static int
df7c8e84 4304load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4305{
4306 struct sched_group *group;
70b97a7f 4307 struct rq *busiest = NULL;
1da177e4 4308 unsigned long imbalance;
43010659 4309 int ld_moved = 0;
5969fe06 4310 int sd_idle = 0;
969bb4e4 4311 int all_pinned = 0;
df7c8e84 4312 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4313
6ad4c188 4314 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4315
89c4710e
SS
4316 /*
4317 * When power savings policy is enabled for the parent domain, idle
4318 * sibling can pick up load irrespective of busy siblings. In this case,
4319 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4320 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4321 */
4322 if (sd->flags & SD_SHARE_CPUPOWER &&
4323 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4324 sd_idle = 1;
1da177e4 4325
2d72376b 4326 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4327redo:
3e5459b4 4328 update_shares_locked(this_rq, sd);
d15bcfdb 4329 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4330 &sd_idle, cpus, NULL);
1da177e4 4331 if (!group) {
d15bcfdb 4332 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4333 goto out_balanced;
1da177e4
LT
4334 }
4335
7c16ec58 4336 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4337 if (!busiest) {
d15bcfdb 4338 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4339 goto out_balanced;
1da177e4
LT
4340 }
4341
db935dbd
NP
4342 BUG_ON(busiest == this_rq);
4343
d15bcfdb 4344 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4345
43010659 4346 ld_moved = 0;
d6d5cfaf
NP
4347 if (busiest->nr_running > 1) {
4348 /* Attempt to move tasks */
4349 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4350 /* this_rq->clock is already updated */
4351 update_rq_clock(busiest);
43010659 4352 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4353 imbalance, sd, CPU_NEWLY_IDLE,
4354 &all_pinned);
1b12bbc7 4355 double_unlock_balance(this_rq, busiest);
0a2966b4 4356
969bb4e4 4357 if (unlikely(all_pinned)) {
96f874e2
RR
4358 cpumask_clear_cpu(cpu_of(busiest), cpus);
4359 if (!cpumask_empty(cpus))
0a2966b4
CL
4360 goto redo;
4361 }
d6d5cfaf
NP
4362 }
4363
43010659 4364 if (!ld_moved) {
36dffab6 4365 int active_balance = 0;
ad273b32 4366
d15bcfdb 4367 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4368 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4369 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4370 return -1;
ad273b32
VS
4371
4372 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4373 return -1;
4374
4375 if (sd->nr_balance_failed++ < 2)
4376 return -1;
4377
4378 /*
4379 * The only task running in a non-idle cpu can be moved to this
4380 * cpu in an attempt to completely freeup the other CPU
4381 * package. The same method used to move task in load_balance()
4382 * have been extended for load_balance_newidle() to speedup
4383 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4384 *
4385 * The package power saving logic comes from
4386 * find_busiest_group(). If there are no imbalance, then
4387 * f_b_g() will return NULL. However when sched_mc={1,2} then
4388 * f_b_g() will select a group from which a running task may be
4389 * pulled to this cpu in order to make the other package idle.
4390 * If there is no opportunity to make a package idle and if
4391 * there are no imbalance, then f_b_g() will return NULL and no
4392 * action will be taken in load_balance_newidle().
4393 *
4394 * Under normal task pull operation due to imbalance, there
4395 * will be more than one task in the source run queue and
4396 * move_tasks() will succeed. ld_moved will be true and this
4397 * active balance code will not be triggered.
4398 */
4399
4400 /* Lock busiest in correct order while this_rq is held */
4401 double_lock_balance(this_rq, busiest);
4402
4403 /*
4404 * don't kick the migration_thread, if the curr
4405 * task on busiest cpu can't be moved to this_cpu
4406 */
6ca09dfc 4407 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4408 double_unlock_balance(this_rq, busiest);
4409 all_pinned = 1;
4410 return ld_moved;
4411 }
4412
4413 if (!busiest->active_balance) {
4414 busiest->active_balance = 1;
4415 busiest->push_cpu = this_cpu;
4416 active_balance = 1;
4417 }
4418
4419 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4420 /*
4421 * Should not call ttwu while holding a rq->lock
4422 */
05fa785c 4423 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4424 if (active_balance)
4425 wake_up_process(busiest->migration_thread);
05fa785c 4426 raw_spin_lock(&this_rq->lock);
ad273b32 4427
5969fe06 4428 } else
16cfb1c0 4429 sd->nr_balance_failed = 0;
1da177e4 4430
3e5459b4 4431 update_shares_locked(this_rq, sd);
43010659 4432 return ld_moved;
16cfb1c0
NP
4433
4434out_balanced:
d15bcfdb 4435 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4436 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4437 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4438 return -1;
16cfb1c0 4439 sd->nr_balance_failed = 0;
48f24c4d 4440
16cfb1c0 4441 return 0;
1da177e4
LT
4442}
4443
4444/*
4445 * idle_balance is called by schedule() if this_cpu is about to become
4446 * idle. Attempts to pull tasks from other CPUs.
4447 */
70b97a7f 4448static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4449{
4450 struct sched_domain *sd;
efbe027e 4451 int pulled_task = 0;
dd41f596 4452 unsigned long next_balance = jiffies + HZ;
1da177e4 4453
1b9508f6
MG
4454 this_rq->idle_stamp = this_rq->clock;
4455
4456 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4457 return;
4458
1da177e4 4459 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4460 unsigned long interval;
4461
4462 if (!(sd->flags & SD_LOAD_BALANCE))
4463 continue;
4464
4465 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4466 /* If we've pulled tasks over stop searching: */
7c16ec58 4467 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4468 sd);
92c4ca5c
CL
4469
4470 interval = msecs_to_jiffies(sd->balance_interval);
4471 if (time_after(next_balance, sd->last_balance + interval))
4472 next_balance = sd->last_balance + interval;
1b9508f6
MG
4473 if (pulled_task) {
4474 this_rq->idle_stamp = 0;
92c4ca5c 4475 break;
1b9508f6 4476 }
1da177e4 4477 }
dd41f596 4478 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4479 /*
4480 * We are going idle. next_balance may be set based on
4481 * a busy processor. So reset next_balance.
4482 */
4483 this_rq->next_balance = next_balance;
dd41f596 4484 }
1da177e4
LT
4485}
4486
4487/*
4488 * active_load_balance is run by migration threads. It pushes running tasks
4489 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4490 * running on each physical CPU where possible, and avoids physical /
4491 * logical imbalances.
4492 *
4493 * Called with busiest_rq locked.
4494 */
70b97a7f 4495static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4496{
39507451 4497 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4498 struct sched_domain *sd;
4499 struct rq *target_rq;
39507451 4500
48f24c4d 4501 /* Is there any task to move? */
39507451 4502 if (busiest_rq->nr_running <= 1)
39507451
NP
4503 return;
4504
4505 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4506
4507 /*
39507451 4508 * This condition is "impossible", if it occurs
41a2d6cf 4509 * we need to fix it. Originally reported by
39507451 4510 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4511 */
39507451 4512 BUG_ON(busiest_rq == target_rq);
1da177e4 4513
39507451
NP
4514 /* move a task from busiest_rq to target_rq */
4515 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4516 update_rq_clock(busiest_rq);
4517 update_rq_clock(target_rq);
39507451
NP
4518
4519 /* Search for an sd spanning us and the target CPU. */
c96d145e 4520 for_each_domain(target_cpu, sd) {
39507451 4521 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4522 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4523 break;
c96d145e 4524 }
39507451 4525
48f24c4d 4526 if (likely(sd)) {
2d72376b 4527 schedstat_inc(sd, alb_count);
39507451 4528
43010659
PW
4529 if (move_one_task(target_rq, target_cpu, busiest_rq,
4530 sd, CPU_IDLE))
48f24c4d
IM
4531 schedstat_inc(sd, alb_pushed);
4532 else
4533 schedstat_inc(sd, alb_failed);
4534 }
1b12bbc7 4535 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4536}
4537
46cb4b7c
SS
4538#ifdef CONFIG_NO_HZ
4539static struct {
4540 atomic_t load_balancer;
7d1e6a9b 4541 cpumask_var_t cpu_mask;
f711f609 4542 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4543} nohz ____cacheline_aligned = {
4544 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4545};
4546
eea08f32
AB
4547int get_nohz_load_balancer(void)
4548{
4549 return atomic_read(&nohz.load_balancer);
4550}
4551
f711f609
GS
4552#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4553/**
4554 * lowest_flag_domain - Return lowest sched_domain containing flag.
4555 * @cpu: The cpu whose lowest level of sched domain is to
4556 * be returned.
4557 * @flag: The flag to check for the lowest sched_domain
4558 * for the given cpu.
4559 *
4560 * Returns the lowest sched_domain of a cpu which contains the given flag.
4561 */
4562static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4563{
4564 struct sched_domain *sd;
4565
4566 for_each_domain(cpu, sd)
4567 if (sd && (sd->flags & flag))
4568 break;
4569
4570 return sd;
4571}
4572
4573/**
4574 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4575 * @cpu: The cpu whose domains we're iterating over.
4576 * @sd: variable holding the value of the power_savings_sd
4577 * for cpu.
4578 * @flag: The flag to filter the sched_domains to be iterated.
4579 *
4580 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4581 * set, starting from the lowest sched_domain to the highest.
4582 */
4583#define for_each_flag_domain(cpu, sd, flag) \
4584 for (sd = lowest_flag_domain(cpu, flag); \
4585 (sd && (sd->flags & flag)); sd = sd->parent)
4586
4587/**
4588 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4589 * @ilb_group: group to be checked for semi-idleness
4590 *
4591 * Returns: 1 if the group is semi-idle. 0 otherwise.
4592 *
4593 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4594 * and atleast one non-idle CPU. This helper function checks if the given
4595 * sched_group is semi-idle or not.
4596 */
4597static inline int is_semi_idle_group(struct sched_group *ilb_group)
4598{
4599 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4600 sched_group_cpus(ilb_group));
4601
4602 /*
4603 * A sched_group is semi-idle when it has atleast one busy cpu
4604 * and atleast one idle cpu.
4605 */
4606 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4607 return 0;
4608
4609 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4610 return 0;
4611
4612 return 1;
4613}
4614/**
4615 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4616 * @cpu: The cpu which is nominating a new idle_load_balancer.
4617 *
4618 * Returns: Returns the id of the idle load balancer if it exists,
4619 * Else, returns >= nr_cpu_ids.
4620 *
4621 * This algorithm picks the idle load balancer such that it belongs to a
4622 * semi-idle powersavings sched_domain. The idea is to try and avoid
4623 * completely idle packages/cores just for the purpose of idle load balancing
4624 * when there are other idle cpu's which are better suited for that job.
4625 */
4626static int find_new_ilb(int cpu)
4627{
4628 struct sched_domain *sd;
4629 struct sched_group *ilb_group;
4630
4631 /*
4632 * Have idle load balancer selection from semi-idle packages only
4633 * when power-aware load balancing is enabled
4634 */
4635 if (!(sched_smt_power_savings || sched_mc_power_savings))
4636 goto out_done;
4637
4638 /*
4639 * Optimize for the case when we have no idle CPUs or only one
4640 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4641 */
4642 if (cpumask_weight(nohz.cpu_mask) < 2)
4643 goto out_done;
4644
4645 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4646 ilb_group = sd->groups;
4647
4648 do {
4649 if (is_semi_idle_group(ilb_group))
4650 return cpumask_first(nohz.ilb_grp_nohz_mask);
4651
4652 ilb_group = ilb_group->next;
4653
4654 } while (ilb_group != sd->groups);
4655 }
4656
4657out_done:
4658 return cpumask_first(nohz.cpu_mask);
4659}
4660#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4661static inline int find_new_ilb(int call_cpu)
4662{
6e29ec57 4663 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4664}
4665#endif
4666
7835b98b 4667/*
46cb4b7c
SS
4668 * This routine will try to nominate the ilb (idle load balancing)
4669 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4670 * load balancing on behalf of all those cpus. If all the cpus in the system
4671 * go into this tickless mode, then there will be no ilb owner (as there is
4672 * no need for one) and all the cpus will sleep till the next wakeup event
4673 * arrives...
4674 *
4675 * For the ilb owner, tick is not stopped. And this tick will be used
4676 * for idle load balancing. ilb owner will still be part of
4677 * nohz.cpu_mask..
7835b98b 4678 *
46cb4b7c
SS
4679 * While stopping the tick, this cpu will become the ilb owner if there
4680 * is no other owner. And will be the owner till that cpu becomes busy
4681 * or if all cpus in the system stop their ticks at which point
4682 * there is no need for ilb owner.
4683 *
4684 * When the ilb owner becomes busy, it nominates another owner, during the
4685 * next busy scheduler_tick()
4686 */
4687int select_nohz_load_balancer(int stop_tick)
4688{
4689 int cpu = smp_processor_id();
4690
4691 if (stop_tick) {
46cb4b7c
SS
4692 cpu_rq(cpu)->in_nohz_recently = 1;
4693
483b4ee6
SS
4694 if (!cpu_active(cpu)) {
4695 if (atomic_read(&nohz.load_balancer) != cpu)
4696 return 0;
4697
4698 /*
4699 * If we are going offline and still the leader,
4700 * give up!
4701 */
46cb4b7c
SS
4702 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4703 BUG();
483b4ee6 4704
46cb4b7c
SS
4705 return 0;
4706 }
4707
483b4ee6
SS
4708 cpumask_set_cpu(cpu, nohz.cpu_mask);
4709
46cb4b7c 4710 /* time for ilb owner also to sleep */
6ad4c188 4711 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4712 if (atomic_read(&nohz.load_balancer) == cpu)
4713 atomic_set(&nohz.load_balancer, -1);
4714 return 0;
4715 }
4716
4717 if (atomic_read(&nohz.load_balancer) == -1) {
4718 /* make me the ilb owner */
4719 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4720 return 1;
e790fb0b
GS
4721 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4722 int new_ilb;
4723
4724 if (!(sched_smt_power_savings ||
4725 sched_mc_power_savings))
4726 return 1;
4727 /*
4728 * Check to see if there is a more power-efficient
4729 * ilb.
4730 */
4731 new_ilb = find_new_ilb(cpu);
4732 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4733 atomic_set(&nohz.load_balancer, -1);
4734 resched_cpu(new_ilb);
4735 return 0;
4736 }
46cb4b7c 4737 return 1;
e790fb0b 4738 }
46cb4b7c 4739 } else {
7d1e6a9b 4740 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4741 return 0;
4742
7d1e6a9b 4743 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4744
4745 if (atomic_read(&nohz.load_balancer) == cpu)
4746 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4747 BUG();
4748 }
4749 return 0;
4750}
4751#endif
4752
4753static DEFINE_SPINLOCK(balancing);
4754
4755/*
7835b98b
CL
4756 * It checks each scheduling domain to see if it is due to be balanced,
4757 * and initiates a balancing operation if so.
4758 *
4759 * Balancing parameters are set up in arch_init_sched_domains.
4760 */
a9957449 4761static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4762{
46cb4b7c
SS
4763 int balance = 1;
4764 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4765 unsigned long interval;
4766 struct sched_domain *sd;
46cb4b7c 4767 /* Earliest time when we have to do rebalance again */
c9819f45 4768 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4769 int update_next_balance = 0;
d07355f5 4770 int need_serialize;
1da177e4 4771
46cb4b7c 4772 for_each_domain(cpu, sd) {
1da177e4
LT
4773 if (!(sd->flags & SD_LOAD_BALANCE))
4774 continue;
4775
4776 interval = sd->balance_interval;
d15bcfdb 4777 if (idle != CPU_IDLE)
1da177e4
LT
4778 interval *= sd->busy_factor;
4779
4780 /* scale ms to jiffies */
4781 interval = msecs_to_jiffies(interval);
4782 if (unlikely(!interval))
4783 interval = 1;
dd41f596
IM
4784 if (interval > HZ*NR_CPUS/10)
4785 interval = HZ*NR_CPUS/10;
4786
d07355f5 4787 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4788
d07355f5 4789 if (need_serialize) {
08c183f3
CL
4790 if (!spin_trylock(&balancing))
4791 goto out;
4792 }
4793
c9819f45 4794 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4795 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4796 /*
4797 * We've pulled tasks over so either we're no
5969fe06
NP
4798 * longer idle, or one of our SMT siblings is
4799 * not idle.
4800 */
d15bcfdb 4801 idle = CPU_NOT_IDLE;
1da177e4 4802 }
1bd77f2d 4803 sd->last_balance = jiffies;
1da177e4 4804 }
d07355f5 4805 if (need_serialize)
08c183f3
CL
4806 spin_unlock(&balancing);
4807out:
f549da84 4808 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4809 next_balance = sd->last_balance + interval;
f549da84
SS
4810 update_next_balance = 1;
4811 }
783609c6
SS
4812
4813 /*
4814 * Stop the load balance at this level. There is another
4815 * CPU in our sched group which is doing load balancing more
4816 * actively.
4817 */
4818 if (!balance)
4819 break;
1da177e4 4820 }
f549da84
SS
4821
4822 /*
4823 * next_balance will be updated only when there is a need.
4824 * When the cpu is attached to null domain for ex, it will not be
4825 * updated.
4826 */
4827 if (likely(update_next_balance))
4828 rq->next_balance = next_balance;
46cb4b7c
SS
4829}
4830
4831/*
4832 * run_rebalance_domains is triggered when needed from the scheduler tick.
4833 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4834 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4835 */
4836static void run_rebalance_domains(struct softirq_action *h)
4837{
dd41f596
IM
4838 int this_cpu = smp_processor_id();
4839 struct rq *this_rq = cpu_rq(this_cpu);
4840 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4841 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4842
dd41f596 4843 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4844
4845#ifdef CONFIG_NO_HZ
4846 /*
4847 * If this cpu is the owner for idle load balancing, then do the
4848 * balancing on behalf of the other idle cpus whose ticks are
4849 * stopped.
4850 */
dd41f596
IM
4851 if (this_rq->idle_at_tick &&
4852 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4853 struct rq *rq;
4854 int balance_cpu;
4855
7d1e6a9b
RR
4856 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4857 if (balance_cpu == this_cpu)
4858 continue;
4859
46cb4b7c
SS
4860 /*
4861 * If this cpu gets work to do, stop the load balancing
4862 * work being done for other cpus. Next load
4863 * balancing owner will pick it up.
4864 */
4865 if (need_resched())
4866 break;
4867
de0cf899 4868 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4869
4870 rq = cpu_rq(balance_cpu);
dd41f596
IM
4871 if (time_after(this_rq->next_balance, rq->next_balance))
4872 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4873 }
4874 }
4875#endif
4876}
4877
8a0be9ef
FW
4878static inline int on_null_domain(int cpu)
4879{
4880 return !rcu_dereference(cpu_rq(cpu)->sd);
4881}
4882
46cb4b7c
SS
4883/*
4884 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4885 *
4886 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4887 * idle load balancing owner or decide to stop the periodic load balancing,
4888 * if the whole system is idle.
4889 */
dd41f596 4890static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4891{
46cb4b7c
SS
4892#ifdef CONFIG_NO_HZ
4893 /*
4894 * If we were in the nohz mode recently and busy at the current
4895 * scheduler tick, then check if we need to nominate new idle
4896 * load balancer.
4897 */
4898 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4899 rq->in_nohz_recently = 0;
4900
4901 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4902 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4903 atomic_set(&nohz.load_balancer, -1);
4904 }
4905
4906 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4907 int ilb = find_new_ilb(cpu);
46cb4b7c 4908
434d53b0 4909 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4910 resched_cpu(ilb);
4911 }
4912 }
4913
4914 /*
4915 * If this cpu is idle and doing idle load balancing for all the
4916 * cpus with ticks stopped, is it time for that to stop?
4917 */
4918 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4919 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4920 resched_cpu(cpu);
4921 return;
4922 }
4923
4924 /*
4925 * If this cpu is idle and the idle load balancing is done by
4926 * someone else, then no need raise the SCHED_SOFTIRQ
4927 */
4928 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4929 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4930 return;
4931#endif
8a0be9ef
FW
4932 /* Don't need to rebalance while attached to NULL domain */
4933 if (time_after_eq(jiffies, rq->next_balance) &&
4934 likely(!on_null_domain(cpu)))
46cb4b7c 4935 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4936}
dd41f596
IM
4937
4938#else /* CONFIG_SMP */
4939
1da177e4
LT
4940/*
4941 * on UP we do not need to balance between CPUs:
4942 */
70b97a7f 4943static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4944{
4945}
dd41f596 4946
1da177e4
LT
4947#endif
4948
1da177e4
LT
4949DEFINE_PER_CPU(struct kernel_stat, kstat);
4950
4951EXPORT_PER_CPU_SYMBOL(kstat);
4952
4953/*
c5f8d995 4954 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4955 * @p in case that task is currently running.
c5f8d995
HS
4956 *
4957 * Called with task_rq_lock() held on @rq.
1da177e4 4958 */
c5f8d995
HS
4959static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4960{
4961 u64 ns = 0;
4962
4963 if (task_current(rq, p)) {
4964 update_rq_clock(rq);
4965 ns = rq->clock - p->se.exec_start;
4966 if ((s64)ns < 0)
4967 ns = 0;
4968 }
4969
4970 return ns;
4971}
4972
bb34d92f 4973unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4974{
1da177e4 4975 unsigned long flags;
41b86e9c 4976 struct rq *rq;
bb34d92f 4977 u64 ns = 0;
48f24c4d 4978
41b86e9c 4979 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4980 ns = do_task_delta_exec(p, rq);
4981 task_rq_unlock(rq, &flags);
1508487e 4982
c5f8d995
HS
4983 return ns;
4984}
f06febc9 4985
c5f8d995
HS
4986/*
4987 * Return accounted runtime for the task.
4988 * In case the task is currently running, return the runtime plus current's
4989 * pending runtime that have not been accounted yet.
4990 */
4991unsigned long long task_sched_runtime(struct task_struct *p)
4992{
4993 unsigned long flags;
4994 struct rq *rq;
4995 u64 ns = 0;
4996
4997 rq = task_rq_lock(p, &flags);
4998 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4999 task_rq_unlock(rq, &flags);
5000
5001 return ns;
5002}
48f24c4d 5003
c5f8d995
HS
5004/*
5005 * Return sum_exec_runtime for the thread group.
5006 * In case the task is currently running, return the sum plus current's
5007 * pending runtime that have not been accounted yet.
5008 *
5009 * Note that the thread group might have other running tasks as well,
5010 * so the return value not includes other pending runtime that other
5011 * running tasks might have.
5012 */
5013unsigned long long thread_group_sched_runtime(struct task_struct *p)
5014{
5015 struct task_cputime totals;
5016 unsigned long flags;
5017 struct rq *rq;
5018 u64 ns;
5019
5020 rq = task_rq_lock(p, &flags);
5021 thread_group_cputime(p, &totals);
5022 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5023 task_rq_unlock(rq, &flags);
48f24c4d 5024
1da177e4
LT
5025 return ns;
5026}
5027
1da177e4
LT
5028/*
5029 * Account user cpu time to a process.
5030 * @p: the process that the cpu time gets accounted to
1da177e4 5031 * @cputime: the cpu time spent in user space since the last update
457533a7 5032 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5033 */
457533a7
MS
5034void account_user_time(struct task_struct *p, cputime_t cputime,
5035 cputime_t cputime_scaled)
1da177e4
LT
5036{
5037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5038 cputime64_t tmp;
5039
457533a7 5040 /* Add user time to process. */
1da177e4 5041 p->utime = cputime_add(p->utime, cputime);
457533a7 5042 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5043 account_group_user_time(p, cputime);
1da177e4
LT
5044
5045 /* Add user time to cpustat. */
5046 tmp = cputime_to_cputime64(cputime);
5047 if (TASK_NICE(p) > 0)
5048 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5049 else
5050 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5051
5052 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5053 /* Account for user time used */
5054 acct_update_integrals(p);
1da177e4
LT
5055}
5056
94886b84
LV
5057/*
5058 * Account guest cpu time to a process.
5059 * @p: the process that the cpu time gets accounted to
5060 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5061 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5062 */
457533a7
MS
5063static void account_guest_time(struct task_struct *p, cputime_t cputime,
5064 cputime_t cputime_scaled)
94886b84
LV
5065{
5066 cputime64_t tmp;
5067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5068
5069 tmp = cputime_to_cputime64(cputime);
5070
457533a7 5071 /* Add guest time to process. */
94886b84 5072 p->utime = cputime_add(p->utime, cputime);
457533a7 5073 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5074 account_group_user_time(p, cputime);
94886b84
LV
5075 p->gtime = cputime_add(p->gtime, cputime);
5076
457533a7 5077 /* Add guest time to cpustat. */
ce0e7b28
RO
5078 if (TASK_NICE(p) > 0) {
5079 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5080 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5081 } else {
5082 cpustat->user = cputime64_add(cpustat->user, tmp);
5083 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5084 }
94886b84
LV
5085}
5086
1da177e4
LT
5087/*
5088 * Account system cpu time to a process.
5089 * @p: the process that the cpu time gets accounted to
5090 * @hardirq_offset: the offset to subtract from hardirq_count()
5091 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5092 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5093 */
5094void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5095 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5096{
5097 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5098 cputime64_t tmp;
5099
983ed7a6 5100 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5101 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5102 return;
5103 }
94886b84 5104
457533a7 5105 /* Add system time to process. */
1da177e4 5106 p->stime = cputime_add(p->stime, cputime);
457533a7 5107 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5108 account_group_system_time(p, cputime);
1da177e4
LT
5109
5110 /* Add system time to cpustat. */
5111 tmp = cputime_to_cputime64(cputime);
5112 if (hardirq_count() - hardirq_offset)
5113 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5114 else if (softirq_count())
5115 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5116 else
79741dd3
MS
5117 cpustat->system = cputime64_add(cpustat->system, tmp);
5118
ef12fefa
BR
5119 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5120
1da177e4
LT
5121 /* Account for system time used */
5122 acct_update_integrals(p);
1da177e4
LT
5123}
5124
c66f08be 5125/*
1da177e4 5126 * Account for involuntary wait time.
1da177e4 5127 * @steal: the cpu time spent in involuntary wait
c66f08be 5128 */
79741dd3 5129void account_steal_time(cputime_t cputime)
c66f08be 5130{
79741dd3
MS
5131 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5132 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5133
5134 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5135}
5136
1da177e4 5137/*
79741dd3
MS
5138 * Account for idle time.
5139 * @cputime: the cpu time spent in idle wait
1da177e4 5140 */
79741dd3 5141void account_idle_time(cputime_t cputime)
1da177e4
LT
5142{
5143 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5144 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5145 struct rq *rq = this_rq();
1da177e4 5146
79741dd3
MS
5147 if (atomic_read(&rq->nr_iowait) > 0)
5148 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5149 else
5150 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5151}
5152
79741dd3
MS
5153#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5154
5155/*
5156 * Account a single tick of cpu time.
5157 * @p: the process that the cpu time gets accounted to
5158 * @user_tick: indicates if the tick is a user or a system tick
5159 */
5160void account_process_tick(struct task_struct *p, int user_tick)
5161{
a42548a1 5162 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5163 struct rq *rq = this_rq();
5164
5165 if (user_tick)
a42548a1 5166 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5167 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5168 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5169 one_jiffy_scaled);
5170 else
a42548a1 5171 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5172}
5173
5174/*
5175 * Account multiple ticks of steal time.
5176 * @p: the process from which the cpu time has been stolen
5177 * @ticks: number of stolen ticks
5178 */
5179void account_steal_ticks(unsigned long ticks)
5180{
5181 account_steal_time(jiffies_to_cputime(ticks));
5182}
5183
5184/*
5185 * Account multiple ticks of idle time.
5186 * @ticks: number of stolen ticks
5187 */
5188void account_idle_ticks(unsigned long ticks)
5189{
5190 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5191}
5192
79741dd3
MS
5193#endif
5194
49048622
BS
5195/*
5196 * Use precise platform statistics if available:
5197 */
5198#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5199void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5200{
d99ca3b9
HS
5201 *ut = p->utime;
5202 *st = p->stime;
49048622
BS
5203}
5204
0cf55e1e 5205void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5206{
0cf55e1e
HS
5207 struct task_cputime cputime;
5208
5209 thread_group_cputime(p, &cputime);
5210
5211 *ut = cputime.utime;
5212 *st = cputime.stime;
49048622
BS
5213}
5214#else
761b1d26
HS
5215
5216#ifndef nsecs_to_cputime
b7b20df9 5217# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5218#endif
5219
d180c5bc 5220void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5221{
d99ca3b9 5222 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5223
5224 /*
5225 * Use CFS's precise accounting:
5226 */
d180c5bc 5227 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5228
5229 if (total) {
d180c5bc
HS
5230 u64 temp;
5231
5232 temp = (u64)(rtime * utime);
49048622 5233 do_div(temp, total);
d180c5bc
HS
5234 utime = (cputime_t)temp;
5235 } else
5236 utime = rtime;
49048622 5237
d180c5bc
HS
5238 /*
5239 * Compare with previous values, to keep monotonicity:
5240 */
761b1d26 5241 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5242 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5243
d99ca3b9
HS
5244 *ut = p->prev_utime;
5245 *st = p->prev_stime;
49048622
BS
5246}
5247
0cf55e1e
HS
5248/*
5249 * Must be called with siglock held.
5250 */
5251void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5252{
0cf55e1e
HS
5253 struct signal_struct *sig = p->signal;
5254 struct task_cputime cputime;
5255 cputime_t rtime, utime, total;
49048622 5256
0cf55e1e 5257 thread_group_cputime(p, &cputime);
49048622 5258
0cf55e1e
HS
5259 total = cputime_add(cputime.utime, cputime.stime);
5260 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5261
0cf55e1e
HS
5262 if (total) {
5263 u64 temp;
49048622 5264
0cf55e1e
HS
5265 temp = (u64)(rtime * cputime.utime);
5266 do_div(temp, total);
5267 utime = (cputime_t)temp;
5268 } else
5269 utime = rtime;
5270
5271 sig->prev_utime = max(sig->prev_utime, utime);
5272 sig->prev_stime = max(sig->prev_stime,
5273 cputime_sub(rtime, sig->prev_utime));
5274
5275 *ut = sig->prev_utime;
5276 *st = sig->prev_stime;
49048622 5277}
49048622 5278#endif
49048622 5279
7835b98b
CL
5280/*
5281 * This function gets called by the timer code, with HZ frequency.
5282 * We call it with interrupts disabled.
5283 *
5284 * It also gets called by the fork code, when changing the parent's
5285 * timeslices.
5286 */
5287void scheduler_tick(void)
5288{
7835b98b
CL
5289 int cpu = smp_processor_id();
5290 struct rq *rq = cpu_rq(cpu);
dd41f596 5291 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5292
5293 sched_clock_tick();
dd41f596 5294
05fa785c 5295 raw_spin_lock(&rq->lock);
3e51f33f 5296 update_rq_clock(rq);
f1a438d8 5297 update_cpu_load(rq);
fa85ae24 5298 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5299 raw_spin_unlock(&rq->lock);
7835b98b 5300
cdd6c482 5301 perf_event_task_tick(curr, cpu);
e220d2dc 5302
e418e1c2 5303#ifdef CONFIG_SMP
dd41f596
IM
5304 rq->idle_at_tick = idle_cpu(cpu);
5305 trigger_load_balance(rq, cpu);
e418e1c2 5306#endif
1da177e4
LT
5307}
5308
132380a0 5309notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5310{
5311 if (in_lock_functions(addr)) {
5312 addr = CALLER_ADDR2;
5313 if (in_lock_functions(addr))
5314 addr = CALLER_ADDR3;
5315 }
5316 return addr;
5317}
1da177e4 5318
7e49fcce
SR
5319#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5320 defined(CONFIG_PREEMPT_TRACER))
5321
43627582 5322void __kprobes add_preempt_count(int val)
1da177e4 5323{
6cd8a4bb 5324#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5325 /*
5326 * Underflow?
5327 */
9a11b49a
IM
5328 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5329 return;
6cd8a4bb 5330#endif
1da177e4 5331 preempt_count() += val;
6cd8a4bb 5332#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5333 /*
5334 * Spinlock count overflowing soon?
5335 */
33859f7f
MOS
5336 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5337 PREEMPT_MASK - 10);
6cd8a4bb
SR
5338#endif
5339 if (preempt_count() == val)
5340 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5341}
5342EXPORT_SYMBOL(add_preempt_count);
5343
43627582 5344void __kprobes sub_preempt_count(int val)
1da177e4 5345{
6cd8a4bb 5346#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5347 /*
5348 * Underflow?
5349 */
01e3eb82 5350 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5351 return;
1da177e4
LT
5352 /*
5353 * Is the spinlock portion underflowing?
5354 */
9a11b49a
IM
5355 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5356 !(preempt_count() & PREEMPT_MASK)))
5357 return;
6cd8a4bb 5358#endif
9a11b49a 5359
6cd8a4bb
SR
5360 if (preempt_count() == val)
5361 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5362 preempt_count() -= val;
5363}
5364EXPORT_SYMBOL(sub_preempt_count);
5365
5366#endif
5367
5368/*
dd41f596 5369 * Print scheduling while atomic bug:
1da177e4 5370 */
dd41f596 5371static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5372{
838225b4
SS
5373 struct pt_regs *regs = get_irq_regs();
5374
663997d4
JP
5375 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5376 prev->comm, prev->pid, preempt_count());
838225b4 5377
dd41f596 5378 debug_show_held_locks(prev);
e21f5b15 5379 print_modules();
dd41f596
IM
5380 if (irqs_disabled())
5381 print_irqtrace_events(prev);
838225b4
SS
5382
5383 if (regs)
5384 show_regs(regs);
5385 else
5386 dump_stack();
dd41f596 5387}
1da177e4 5388
dd41f596
IM
5389/*
5390 * Various schedule()-time debugging checks and statistics:
5391 */
5392static inline void schedule_debug(struct task_struct *prev)
5393{
1da177e4 5394 /*
41a2d6cf 5395 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5396 * schedule() atomically, we ignore that path for now.
5397 * Otherwise, whine if we are scheduling when we should not be.
5398 */
3f33a7ce 5399 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5400 __schedule_bug(prev);
5401
1da177e4
LT
5402 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5403
2d72376b 5404 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5405#ifdef CONFIG_SCHEDSTATS
5406 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5407 schedstat_inc(this_rq(), bkl_count);
5408 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5409 }
5410#endif
dd41f596
IM
5411}
5412
6cecd084 5413static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5414{
6cecd084
PZ
5415 if (prev->state == TASK_RUNNING) {
5416 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5417
6cecd084
PZ
5418 runtime -= prev->se.prev_sum_exec_runtime;
5419 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5420
5421 /*
5422 * In order to avoid avg_overlap growing stale when we are
5423 * indeed overlapping and hence not getting put to sleep, grow
5424 * the avg_overlap on preemption.
5425 *
5426 * We use the average preemption runtime because that
5427 * correlates to the amount of cache footprint a task can
5428 * build up.
5429 */
6cecd084 5430 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5431 }
6cecd084 5432 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5433}
5434
dd41f596
IM
5435/*
5436 * Pick up the highest-prio task:
5437 */
5438static inline struct task_struct *
b67802ea 5439pick_next_task(struct rq *rq)
dd41f596 5440{
5522d5d5 5441 const struct sched_class *class;
dd41f596 5442 struct task_struct *p;
1da177e4
LT
5443
5444 /*
dd41f596
IM
5445 * Optimization: we know that if all tasks are in
5446 * the fair class we can call that function directly:
1da177e4 5447 */
dd41f596 5448 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5449 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5450 if (likely(p))
5451 return p;
1da177e4
LT
5452 }
5453
dd41f596
IM
5454 class = sched_class_highest;
5455 for ( ; ; ) {
fb8d4724 5456 p = class->pick_next_task(rq);
dd41f596
IM
5457 if (p)
5458 return p;
5459 /*
5460 * Will never be NULL as the idle class always
5461 * returns a non-NULL p:
5462 */
5463 class = class->next;
5464 }
5465}
1da177e4 5466
dd41f596
IM
5467/*
5468 * schedule() is the main scheduler function.
5469 */
ff743345 5470asmlinkage void __sched schedule(void)
dd41f596
IM
5471{
5472 struct task_struct *prev, *next;
67ca7bde 5473 unsigned long *switch_count;
dd41f596 5474 struct rq *rq;
31656519 5475 int cpu;
dd41f596 5476
ff743345
PZ
5477need_resched:
5478 preempt_disable();
dd41f596
IM
5479 cpu = smp_processor_id();
5480 rq = cpu_rq(cpu);
d6714c22 5481 rcu_sched_qs(cpu);
dd41f596
IM
5482 prev = rq->curr;
5483 switch_count = &prev->nivcsw;
5484
5485 release_kernel_lock(prev);
5486need_resched_nonpreemptible:
5487
5488 schedule_debug(prev);
1da177e4 5489
31656519 5490 if (sched_feat(HRTICK))
f333fdc9 5491 hrtick_clear(rq);
8f4d37ec 5492
05fa785c 5493 raw_spin_lock_irq(&rq->lock);
3e51f33f 5494 update_rq_clock(rq);
1e819950 5495 clear_tsk_need_resched(prev);
1da177e4 5496
1da177e4 5497 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5498 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5499 prev->state = TASK_RUNNING;
16882c1e 5500 else
2e1cb74a 5501 deactivate_task(rq, prev, 1);
dd41f596 5502 switch_count = &prev->nvcsw;
1da177e4
LT
5503 }
5504
3f029d3c 5505 pre_schedule(rq, prev);
f65eda4f 5506
dd41f596 5507 if (unlikely(!rq->nr_running))
1da177e4 5508 idle_balance(cpu, rq);
1da177e4 5509
df1c99d4 5510 put_prev_task(rq, prev);
b67802ea 5511 next = pick_next_task(rq);
1da177e4 5512
1da177e4 5513 if (likely(prev != next)) {
673a90a1 5514 sched_info_switch(prev, next);
cdd6c482 5515 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5516
1da177e4
LT
5517 rq->nr_switches++;
5518 rq->curr = next;
5519 ++*switch_count;
5520
dd41f596 5521 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5522 /*
5523 * the context switch might have flipped the stack from under
5524 * us, hence refresh the local variables.
5525 */
5526 cpu = smp_processor_id();
5527 rq = cpu_rq(cpu);
1da177e4 5528 } else
05fa785c 5529 raw_spin_unlock_irq(&rq->lock);
1da177e4 5530
3f029d3c 5531 post_schedule(rq);
1da177e4 5532
8f4d37ec 5533 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5534 goto need_resched_nonpreemptible;
8f4d37ec 5535
1da177e4 5536 preempt_enable_no_resched();
ff743345 5537 if (need_resched())
1da177e4
LT
5538 goto need_resched;
5539}
1da177e4
LT
5540EXPORT_SYMBOL(schedule);
5541
c08f7829 5542#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5543/*
5544 * Look out! "owner" is an entirely speculative pointer
5545 * access and not reliable.
5546 */
5547int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5548{
5549 unsigned int cpu;
5550 struct rq *rq;
5551
5552 if (!sched_feat(OWNER_SPIN))
5553 return 0;
5554
5555#ifdef CONFIG_DEBUG_PAGEALLOC
5556 /*
5557 * Need to access the cpu field knowing that
5558 * DEBUG_PAGEALLOC could have unmapped it if
5559 * the mutex owner just released it and exited.
5560 */
5561 if (probe_kernel_address(&owner->cpu, cpu))
5562 goto out;
5563#else
5564 cpu = owner->cpu;
5565#endif
5566
5567 /*
5568 * Even if the access succeeded (likely case),
5569 * the cpu field may no longer be valid.
5570 */
5571 if (cpu >= nr_cpumask_bits)
5572 goto out;
5573
5574 /*
5575 * We need to validate that we can do a
5576 * get_cpu() and that we have the percpu area.
5577 */
5578 if (!cpu_online(cpu))
5579 goto out;
5580
5581 rq = cpu_rq(cpu);
5582
5583 for (;;) {
5584 /*
5585 * Owner changed, break to re-assess state.
5586 */
5587 if (lock->owner != owner)
5588 break;
5589
5590 /*
5591 * Is that owner really running on that cpu?
5592 */
5593 if (task_thread_info(rq->curr) != owner || need_resched())
5594 return 0;
5595
5596 cpu_relax();
5597 }
5598out:
5599 return 1;
5600}
5601#endif
5602
1da177e4
LT
5603#ifdef CONFIG_PREEMPT
5604/*
2ed6e34f 5605 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5606 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5607 * occur there and call schedule directly.
5608 */
5609asmlinkage void __sched preempt_schedule(void)
5610{
5611 struct thread_info *ti = current_thread_info();
6478d880 5612
1da177e4
LT
5613 /*
5614 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5615 * we do not want to preempt the current task. Just return..
1da177e4 5616 */
beed33a8 5617 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5618 return;
5619
3a5c359a
AK
5620 do {
5621 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5622 schedule();
3a5c359a 5623 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5624
3a5c359a
AK
5625 /*
5626 * Check again in case we missed a preemption opportunity
5627 * between schedule and now.
5628 */
5629 barrier();
5ed0cec0 5630 } while (need_resched());
1da177e4 5631}
1da177e4
LT
5632EXPORT_SYMBOL(preempt_schedule);
5633
5634/*
2ed6e34f 5635 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5636 * off of irq context.
5637 * Note, that this is called and return with irqs disabled. This will
5638 * protect us against recursive calling from irq.
5639 */
5640asmlinkage void __sched preempt_schedule_irq(void)
5641{
5642 struct thread_info *ti = current_thread_info();
6478d880 5643
2ed6e34f 5644 /* Catch callers which need to be fixed */
1da177e4
LT
5645 BUG_ON(ti->preempt_count || !irqs_disabled());
5646
3a5c359a
AK
5647 do {
5648 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5649 local_irq_enable();
5650 schedule();
5651 local_irq_disable();
3a5c359a 5652 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5653
3a5c359a
AK
5654 /*
5655 * Check again in case we missed a preemption opportunity
5656 * between schedule and now.
5657 */
5658 barrier();
5ed0cec0 5659 } while (need_resched());
1da177e4
LT
5660}
5661
5662#endif /* CONFIG_PREEMPT */
5663
63859d4f 5664int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5665 void *key)
1da177e4 5666{
63859d4f 5667 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5668}
1da177e4
LT
5669EXPORT_SYMBOL(default_wake_function);
5670
5671/*
41a2d6cf
IM
5672 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5673 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5674 * number) then we wake all the non-exclusive tasks and one exclusive task.
5675 *
5676 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5677 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5678 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5679 */
78ddb08f 5680static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5681 int nr_exclusive, int wake_flags, void *key)
1da177e4 5682{
2e45874c 5683 wait_queue_t *curr, *next;
1da177e4 5684
2e45874c 5685 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5686 unsigned flags = curr->flags;
5687
63859d4f 5688 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5689 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5690 break;
5691 }
5692}
5693
5694/**
5695 * __wake_up - wake up threads blocked on a waitqueue.
5696 * @q: the waitqueue
5697 * @mode: which threads
5698 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5699 * @key: is directly passed to the wakeup function
50fa610a
DH
5700 *
5701 * It may be assumed that this function implies a write memory barrier before
5702 * changing the task state if and only if any tasks are woken up.
1da177e4 5703 */
7ad5b3a5 5704void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5705 int nr_exclusive, void *key)
1da177e4
LT
5706{
5707 unsigned long flags;
5708
5709 spin_lock_irqsave(&q->lock, flags);
5710 __wake_up_common(q, mode, nr_exclusive, 0, key);
5711 spin_unlock_irqrestore(&q->lock, flags);
5712}
1da177e4
LT
5713EXPORT_SYMBOL(__wake_up);
5714
5715/*
5716 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5717 */
7ad5b3a5 5718void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5719{
5720 __wake_up_common(q, mode, 1, 0, NULL);
5721}
5722
4ede816a
DL
5723void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5724{
5725 __wake_up_common(q, mode, 1, 0, key);
5726}
5727
1da177e4 5728/**
4ede816a 5729 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5730 * @q: the waitqueue
5731 * @mode: which threads
5732 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5733 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5734 *
5735 * The sync wakeup differs that the waker knows that it will schedule
5736 * away soon, so while the target thread will be woken up, it will not
5737 * be migrated to another CPU - ie. the two threads are 'synchronized'
5738 * with each other. This can prevent needless bouncing between CPUs.
5739 *
5740 * On UP it can prevent extra preemption.
50fa610a
DH
5741 *
5742 * It may be assumed that this function implies a write memory barrier before
5743 * changing the task state if and only if any tasks are woken up.
1da177e4 5744 */
4ede816a
DL
5745void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5746 int nr_exclusive, void *key)
1da177e4
LT
5747{
5748 unsigned long flags;
7d478721 5749 int wake_flags = WF_SYNC;
1da177e4
LT
5750
5751 if (unlikely(!q))
5752 return;
5753
5754 if (unlikely(!nr_exclusive))
7d478721 5755 wake_flags = 0;
1da177e4
LT
5756
5757 spin_lock_irqsave(&q->lock, flags);
7d478721 5758 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5759 spin_unlock_irqrestore(&q->lock, flags);
5760}
4ede816a
DL
5761EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5762
5763/*
5764 * __wake_up_sync - see __wake_up_sync_key()
5765 */
5766void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5767{
5768 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5769}
1da177e4
LT
5770EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5771
65eb3dc6
KD
5772/**
5773 * complete: - signals a single thread waiting on this completion
5774 * @x: holds the state of this particular completion
5775 *
5776 * This will wake up a single thread waiting on this completion. Threads will be
5777 * awakened in the same order in which they were queued.
5778 *
5779 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5780 *
5781 * It may be assumed that this function implies a write memory barrier before
5782 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5783 */
b15136e9 5784void complete(struct completion *x)
1da177e4
LT
5785{
5786 unsigned long flags;
5787
5788 spin_lock_irqsave(&x->wait.lock, flags);
5789 x->done++;
d9514f6c 5790 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5791 spin_unlock_irqrestore(&x->wait.lock, flags);
5792}
5793EXPORT_SYMBOL(complete);
5794
65eb3dc6
KD
5795/**
5796 * complete_all: - signals all threads waiting on this completion
5797 * @x: holds the state of this particular completion
5798 *
5799 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5800 *
5801 * It may be assumed that this function implies a write memory barrier before
5802 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5803 */
b15136e9 5804void complete_all(struct completion *x)
1da177e4
LT
5805{
5806 unsigned long flags;
5807
5808 spin_lock_irqsave(&x->wait.lock, flags);
5809 x->done += UINT_MAX/2;
d9514f6c 5810 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5811 spin_unlock_irqrestore(&x->wait.lock, flags);
5812}
5813EXPORT_SYMBOL(complete_all);
5814
8cbbe86d
AK
5815static inline long __sched
5816do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5817{
1da177e4
LT
5818 if (!x->done) {
5819 DECLARE_WAITQUEUE(wait, current);
5820
5821 wait.flags |= WQ_FLAG_EXCLUSIVE;
5822 __add_wait_queue_tail(&x->wait, &wait);
5823 do {
94d3d824 5824 if (signal_pending_state(state, current)) {
ea71a546
ON
5825 timeout = -ERESTARTSYS;
5826 break;
8cbbe86d
AK
5827 }
5828 __set_current_state(state);
1da177e4
LT
5829 spin_unlock_irq(&x->wait.lock);
5830 timeout = schedule_timeout(timeout);
5831 spin_lock_irq(&x->wait.lock);
ea71a546 5832 } while (!x->done && timeout);
1da177e4 5833 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5834 if (!x->done)
5835 return timeout;
1da177e4
LT
5836 }
5837 x->done--;
ea71a546 5838 return timeout ?: 1;
1da177e4 5839}
1da177e4 5840
8cbbe86d
AK
5841static long __sched
5842wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5843{
1da177e4
LT
5844 might_sleep();
5845
5846 spin_lock_irq(&x->wait.lock);
8cbbe86d 5847 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5848 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5849 return timeout;
5850}
1da177e4 5851
65eb3dc6
KD
5852/**
5853 * wait_for_completion: - waits for completion of a task
5854 * @x: holds the state of this particular completion
5855 *
5856 * This waits to be signaled for completion of a specific task. It is NOT
5857 * interruptible and there is no timeout.
5858 *
5859 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5860 * and interrupt capability. Also see complete().
5861 */
b15136e9 5862void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5863{
5864 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5865}
8cbbe86d 5866EXPORT_SYMBOL(wait_for_completion);
1da177e4 5867
65eb3dc6
KD
5868/**
5869 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5870 * @x: holds the state of this particular completion
5871 * @timeout: timeout value in jiffies
5872 *
5873 * This waits for either a completion of a specific task to be signaled or for a
5874 * specified timeout to expire. The timeout is in jiffies. It is not
5875 * interruptible.
5876 */
b15136e9 5877unsigned long __sched
8cbbe86d 5878wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5879{
8cbbe86d 5880 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5881}
8cbbe86d 5882EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5883
65eb3dc6
KD
5884/**
5885 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5886 * @x: holds the state of this particular completion
5887 *
5888 * This waits for completion of a specific task to be signaled. It is
5889 * interruptible.
5890 */
8cbbe86d 5891int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5892{
51e97990
AK
5893 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5894 if (t == -ERESTARTSYS)
5895 return t;
5896 return 0;
0fec171c 5897}
8cbbe86d 5898EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5899
65eb3dc6
KD
5900/**
5901 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5902 * @x: holds the state of this particular completion
5903 * @timeout: timeout value in jiffies
5904 *
5905 * This waits for either a completion of a specific task to be signaled or for a
5906 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5907 */
b15136e9 5908unsigned long __sched
8cbbe86d
AK
5909wait_for_completion_interruptible_timeout(struct completion *x,
5910 unsigned long timeout)
0fec171c 5911{
8cbbe86d 5912 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5913}
8cbbe86d 5914EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5915
65eb3dc6
KD
5916/**
5917 * wait_for_completion_killable: - waits for completion of a task (killable)
5918 * @x: holds the state of this particular completion
5919 *
5920 * This waits to be signaled for completion of a specific task. It can be
5921 * interrupted by a kill signal.
5922 */
009e577e
MW
5923int __sched wait_for_completion_killable(struct completion *x)
5924{
5925 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5926 if (t == -ERESTARTSYS)
5927 return t;
5928 return 0;
5929}
5930EXPORT_SYMBOL(wait_for_completion_killable);
5931
be4de352
DC
5932/**
5933 * try_wait_for_completion - try to decrement a completion without blocking
5934 * @x: completion structure
5935 *
5936 * Returns: 0 if a decrement cannot be done without blocking
5937 * 1 if a decrement succeeded.
5938 *
5939 * If a completion is being used as a counting completion,
5940 * attempt to decrement the counter without blocking. This
5941 * enables us to avoid waiting if the resource the completion
5942 * is protecting is not available.
5943 */
5944bool try_wait_for_completion(struct completion *x)
5945{
7539a3b3 5946 unsigned long flags;
be4de352
DC
5947 int ret = 1;
5948
7539a3b3 5949 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5950 if (!x->done)
5951 ret = 0;
5952 else
5953 x->done--;
7539a3b3 5954 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5955 return ret;
5956}
5957EXPORT_SYMBOL(try_wait_for_completion);
5958
5959/**
5960 * completion_done - Test to see if a completion has any waiters
5961 * @x: completion structure
5962 *
5963 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5964 * 1 if there are no waiters.
5965 *
5966 */
5967bool completion_done(struct completion *x)
5968{
7539a3b3 5969 unsigned long flags;
be4de352
DC
5970 int ret = 1;
5971
7539a3b3 5972 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5973 if (!x->done)
5974 ret = 0;
7539a3b3 5975 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5976 return ret;
5977}
5978EXPORT_SYMBOL(completion_done);
5979
8cbbe86d
AK
5980static long __sched
5981sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5982{
0fec171c
IM
5983 unsigned long flags;
5984 wait_queue_t wait;
5985
5986 init_waitqueue_entry(&wait, current);
1da177e4 5987
8cbbe86d 5988 __set_current_state(state);
1da177e4 5989
8cbbe86d
AK
5990 spin_lock_irqsave(&q->lock, flags);
5991 __add_wait_queue(q, &wait);
5992 spin_unlock(&q->lock);
5993 timeout = schedule_timeout(timeout);
5994 spin_lock_irq(&q->lock);
5995 __remove_wait_queue(q, &wait);
5996 spin_unlock_irqrestore(&q->lock, flags);
5997
5998 return timeout;
5999}
6000
6001void __sched interruptible_sleep_on(wait_queue_head_t *q)
6002{
6003 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6004}
1da177e4
LT
6005EXPORT_SYMBOL(interruptible_sleep_on);
6006
0fec171c 6007long __sched
95cdf3b7 6008interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6009{
8cbbe86d 6010 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6011}
1da177e4
LT
6012EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6013
0fec171c 6014void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6015{
8cbbe86d 6016 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6017}
1da177e4
LT
6018EXPORT_SYMBOL(sleep_on);
6019
0fec171c 6020long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6021{
8cbbe86d 6022 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6023}
1da177e4
LT
6024EXPORT_SYMBOL(sleep_on_timeout);
6025
b29739f9
IM
6026#ifdef CONFIG_RT_MUTEXES
6027
6028/*
6029 * rt_mutex_setprio - set the current priority of a task
6030 * @p: task
6031 * @prio: prio value (kernel-internal form)
6032 *
6033 * This function changes the 'effective' priority of a task. It does
6034 * not touch ->normal_prio like __setscheduler().
6035 *
6036 * Used by the rt_mutex code to implement priority inheritance logic.
6037 */
36c8b586 6038void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6039{
6040 unsigned long flags;
83b699ed 6041 int oldprio, on_rq, running;
70b97a7f 6042 struct rq *rq;
cb469845 6043 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6044
6045 BUG_ON(prio < 0 || prio > MAX_PRIO);
6046
6047 rq = task_rq_lock(p, &flags);
a8e504d2 6048 update_rq_clock(rq);
b29739f9 6049
d5f9f942 6050 oldprio = p->prio;
dd41f596 6051 on_rq = p->se.on_rq;
051a1d1a 6052 running = task_current(rq, p);
0e1f3483 6053 if (on_rq)
69be72c1 6054 dequeue_task(rq, p, 0);
0e1f3483
HS
6055 if (running)
6056 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6057
6058 if (rt_prio(prio))
6059 p->sched_class = &rt_sched_class;
6060 else
6061 p->sched_class = &fair_sched_class;
6062
b29739f9
IM
6063 p->prio = prio;
6064
0e1f3483
HS
6065 if (running)
6066 p->sched_class->set_curr_task(rq);
dd41f596 6067 if (on_rq) {
8159f87e 6068 enqueue_task(rq, p, 0);
cb469845
SR
6069
6070 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6071 }
6072 task_rq_unlock(rq, &flags);
6073}
6074
6075#endif
6076
36c8b586 6077void set_user_nice(struct task_struct *p, long nice)
1da177e4 6078{
dd41f596 6079 int old_prio, delta, on_rq;
1da177e4 6080 unsigned long flags;
70b97a7f 6081 struct rq *rq;
1da177e4
LT
6082
6083 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6084 return;
6085 /*
6086 * We have to be careful, if called from sys_setpriority(),
6087 * the task might be in the middle of scheduling on another CPU.
6088 */
6089 rq = task_rq_lock(p, &flags);
a8e504d2 6090 update_rq_clock(rq);
1da177e4
LT
6091 /*
6092 * The RT priorities are set via sched_setscheduler(), but we still
6093 * allow the 'normal' nice value to be set - but as expected
6094 * it wont have any effect on scheduling until the task is
dd41f596 6095 * SCHED_FIFO/SCHED_RR:
1da177e4 6096 */
e05606d3 6097 if (task_has_rt_policy(p)) {
1da177e4
LT
6098 p->static_prio = NICE_TO_PRIO(nice);
6099 goto out_unlock;
6100 }
dd41f596 6101 on_rq = p->se.on_rq;
c09595f6 6102 if (on_rq)
69be72c1 6103 dequeue_task(rq, p, 0);
1da177e4 6104
1da177e4 6105 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6106 set_load_weight(p);
b29739f9
IM
6107 old_prio = p->prio;
6108 p->prio = effective_prio(p);
6109 delta = p->prio - old_prio;
1da177e4 6110
dd41f596 6111 if (on_rq) {
8159f87e 6112 enqueue_task(rq, p, 0);
1da177e4 6113 /*
d5f9f942
AM
6114 * If the task increased its priority or is running and
6115 * lowered its priority, then reschedule its CPU:
1da177e4 6116 */
d5f9f942 6117 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6118 resched_task(rq->curr);
6119 }
6120out_unlock:
6121 task_rq_unlock(rq, &flags);
6122}
1da177e4
LT
6123EXPORT_SYMBOL(set_user_nice);
6124
e43379f1
MM
6125/*
6126 * can_nice - check if a task can reduce its nice value
6127 * @p: task
6128 * @nice: nice value
6129 */
36c8b586 6130int can_nice(const struct task_struct *p, const int nice)
e43379f1 6131{
024f4747
MM
6132 /* convert nice value [19,-20] to rlimit style value [1,40] */
6133 int nice_rlim = 20 - nice;
48f24c4d 6134
e43379f1
MM
6135 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6136 capable(CAP_SYS_NICE));
6137}
6138
1da177e4
LT
6139#ifdef __ARCH_WANT_SYS_NICE
6140
6141/*
6142 * sys_nice - change the priority of the current process.
6143 * @increment: priority increment
6144 *
6145 * sys_setpriority is a more generic, but much slower function that
6146 * does similar things.
6147 */
5add95d4 6148SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6149{
48f24c4d 6150 long nice, retval;
1da177e4
LT
6151
6152 /*
6153 * Setpriority might change our priority at the same moment.
6154 * We don't have to worry. Conceptually one call occurs first
6155 * and we have a single winner.
6156 */
e43379f1
MM
6157 if (increment < -40)
6158 increment = -40;
1da177e4
LT
6159 if (increment > 40)
6160 increment = 40;
6161
2b8f836f 6162 nice = TASK_NICE(current) + increment;
1da177e4
LT
6163 if (nice < -20)
6164 nice = -20;
6165 if (nice > 19)
6166 nice = 19;
6167
e43379f1
MM
6168 if (increment < 0 && !can_nice(current, nice))
6169 return -EPERM;
6170
1da177e4
LT
6171 retval = security_task_setnice(current, nice);
6172 if (retval)
6173 return retval;
6174
6175 set_user_nice(current, nice);
6176 return 0;
6177}
6178
6179#endif
6180
6181/**
6182 * task_prio - return the priority value of a given task.
6183 * @p: the task in question.
6184 *
6185 * This is the priority value as seen by users in /proc.
6186 * RT tasks are offset by -200. Normal tasks are centered
6187 * around 0, value goes from -16 to +15.
6188 */
36c8b586 6189int task_prio(const struct task_struct *p)
1da177e4
LT
6190{
6191 return p->prio - MAX_RT_PRIO;
6192}
6193
6194/**
6195 * task_nice - return the nice value of a given task.
6196 * @p: the task in question.
6197 */
36c8b586 6198int task_nice(const struct task_struct *p)
1da177e4
LT
6199{
6200 return TASK_NICE(p);
6201}
150d8bed 6202EXPORT_SYMBOL(task_nice);
1da177e4
LT
6203
6204/**
6205 * idle_cpu - is a given cpu idle currently?
6206 * @cpu: the processor in question.
6207 */
6208int idle_cpu(int cpu)
6209{
6210 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6211}
6212
1da177e4
LT
6213/**
6214 * idle_task - return the idle task for a given cpu.
6215 * @cpu: the processor in question.
6216 */
36c8b586 6217struct task_struct *idle_task(int cpu)
1da177e4
LT
6218{
6219 return cpu_rq(cpu)->idle;
6220}
6221
6222/**
6223 * find_process_by_pid - find a process with a matching PID value.
6224 * @pid: the pid in question.
6225 */
a9957449 6226static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6227{
228ebcbe 6228 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6229}
6230
6231/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6232static void
6233__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6234{
dd41f596 6235 BUG_ON(p->se.on_rq);
48f24c4d 6236
1da177e4
LT
6237 p->policy = policy;
6238 p->rt_priority = prio;
b29739f9
IM
6239 p->normal_prio = normal_prio(p);
6240 /* we are holding p->pi_lock already */
6241 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6242 if (rt_prio(p->prio))
6243 p->sched_class = &rt_sched_class;
6244 else
6245 p->sched_class = &fair_sched_class;
2dd73a4f 6246 set_load_weight(p);
1da177e4
LT
6247}
6248
c69e8d9c
DH
6249/*
6250 * check the target process has a UID that matches the current process's
6251 */
6252static bool check_same_owner(struct task_struct *p)
6253{
6254 const struct cred *cred = current_cred(), *pcred;
6255 bool match;
6256
6257 rcu_read_lock();
6258 pcred = __task_cred(p);
6259 match = (cred->euid == pcred->euid ||
6260 cred->euid == pcred->uid);
6261 rcu_read_unlock();
6262 return match;
6263}
6264
961ccddd
RR
6265static int __sched_setscheduler(struct task_struct *p, int policy,
6266 struct sched_param *param, bool user)
1da177e4 6267{
83b699ed 6268 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6269 unsigned long flags;
cb469845 6270 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6271 struct rq *rq;
ca94c442 6272 int reset_on_fork;
1da177e4 6273
66e5393a
SR
6274 /* may grab non-irq protected spin_locks */
6275 BUG_ON(in_interrupt());
1da177e4
LT
6276recheck:
6277 /* double check policy once rq lock held */
ca94c442
LP
6278 if (policy < 0) {
6279 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6280 policy = oldpolicy = p->policy;
ca94c442
LP
6281 } else {
6282 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6283 policy &= ~SCHED_RESET_ON_FORK;
6284
6285 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6286 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6287 policy != SCHED_IDLE)
6288 return -EINVAL;
6289 }
6290
1da177e4
LT
6291 /*
6292 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6293 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6294 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6295 */
6296 if (param->sched_priority < 0 ||
95cdf3b7 6297 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6298 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6299 return -EINVAL;
e05606d3 6300 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6301 return -EINVAL;
6302
37e4ab3f
OC
6303 /*
6304 * Allow unprivileged RT tasks to decrease priority:
6305 */
961ccddd 6306 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6307 if (rt_policy(policy)) {
8dc3e909 6308 unsigned long rlim_rtprio;
8dc3e909
ON
6309
6310 if (!lock_task_sighand(p, &flags))
6311 return -ESRCH;
6312 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6313 unlock_task_sighand(p, &flags);
6314
6315 /* can't set/change the rt policy */
6316 if (policy != p->policy && !rlim_rtprio)
6317 return -EPERM;
6318
6319 /* can't increase priority */
6320 if (param->sched_priority > p->rt_priority &&
6321 param->sched_priority > rlim_rtprio)
6322 return -EPERM;
6323 }
dd41f596
IM
6324 /*
6325 * Like positive nice levels, dont allow tasks to
6326 * move out of SCHED_IDLE either:
6327 */
6328 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6329 return -EPERM;
5fe1d75f 6330
37e4ab3f 6331 /* can't change other user's priorities */
c69e8d9c 6332 if (!check_same_owner(p))
37e4ab3f 6333 return -EPERM;
ca94c442
LP
6334
6335 /* Normal users shall not reset the sched_reset_on_fork flag */
6336 if (p->sched_reset_on_fork && !reset_on_fork)
6337 return -EPERM;
37e4ab3f 6338 }
1da177e4 6339
725aad24 6340 if (user) {
b68aa230 6341#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6342 /*
6343 * Do not allow realtime tasks into groups that have no runtime
6344 * assigned.
6345 */
9a7e0b18
PZ
6346 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6347 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6348 return -EPERM;
b68aa230
PZ
6349#endif
6350
725aad24
JF
6351 retval = security_task_setscheduler(p, policy, param);
6352 if (retval)
6353 return retval;
6354 }
6355
b29739f9
IM
6356 /*
6357 * make sure no PI-waiters arrive (or leave) while we are
6358 * changing the priority of the task:
6359 */
1d615482 6360 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6361 /*
6362 * To be able to change p->policy safely, the apropriate
6363 * runqueue lock must be held.
6364 */
b29739f9 6365 rq = __task_rq_lock(p);
1da177e4
LT
6366 /* recheck policy now with rq lock held */
6367 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6368 policy = oldpolicy = -1;
b29739f9 6369 __task_rq_unlock(rq);
1d615482 6370 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6371 goto recheck;
6372 }
2daa3577 6373 update_rq_clock(rq);
dd41f596 6374 on_rq = p->se.on_rq;
051a1d1a 6375 running = task_current(rq, p);
0e1f3483 6376 if (on_rq)
2e1cb74a 6377 deactivate_task(rq, p, 0);
0e1f3483
HS
6378 if (running)
6379 p->sched_class->put_prev_task(rq, p);
f6b53205 6380
ca94c442
LP
6381 p->sched_reset_on_fork = reset_on_fork;
6382
1da177e4 6383 oldprio = p->prio;
dd41f596 6384 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6385
0e1f3483
HS
6386 if (running)
6387 p->sched_class->set_curr_task(rq);
dd41f596
IM
6388 if (on_rq) {
6389 activate_task(rq, p, 0);
cb469845
SR
6390
6391 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6392 }
b29739f9 6393 __task_rq_unlock(rq);
1d615482 6394 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6395
95e02ca9
TG
6396 rt_mutex_adjust_pi(p);
6397
1da177e4
LT
6398 return 0;
6399}
961ccddd
RR
6400
6401/**
6402 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6403 * @p: the task in question.
6404 * @policy: new policy.
6405 * @param: structure containing the new RT priority.
6406 *
6407 * NOTE that the task may be already dead.
6408 */
6409int sched_setscheduler(struct task_struct *p, int policy,
6410 struct sched_param *param)
6411{
6412 return __sched_setscheduler(p, policy, param, true);
6413}
1da177e4
LT
6414EXPORT_SYMBOL_GPL(sched_setscheduler);
6415
961ccddd
RR
6416/**
6417 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6418 * @p: the task in question.
6419 * @policy: new policy.
6420 * @param: structure containing the new RT priority.
6421 *
6422 * Just like sched_setscheduler, only don't bother checking if the
6423 * current context has permission. For example, this is needed in
6424 * stop_machine(): we create temporary high priority worker threads,
6425 * but our caller might not have that capability.
6426 */
6427int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6428 struct sched_param *param)
6429{
6430 return __sched_setscheduler(p, policy, param, false);
6431}
6432
95cdf3b7
IM
6433static int
6434do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6435{
1da177e4
LT
6436 struct sched_param lparam;
6437 struct task_struct *p;
36c8b586 6438 int retval;
1da177e4
LT
6439
6440 if (!param || pid < 0)
6441 return -EINVAL;
6442 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6443 return -EFAULT;
5fe1d75f
ON
6444
6445 rcu_read_lock();
6446 retval = -ESRCH;
1da177e4 6447 p = find_process_by_pid(pid);
5fe1d75f
ON
6448 if (p != NULL)
6449 retval = sched_setscheduler(p, policy, &lparam);
6450 rcu_read_unlock();
36c8b586 6451
1da177e4
LT
6452 return retval;
6453}
6454
6455/**
6456 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6457 * @pid: the pid in question.
6458 * @policy: new policy.
6459 * @param: structure containing the new RT priority.
6460 */
5add95d4
HC
6461SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6462 struct sched_param __user *, param)
1da177e4 6463{
c21761f1
JB
6464 /* negative values for policy are not valid */
6465 if (policy < 0)
6466 return -EINVAL;
6467
1da177e4
LT
6468 return do_sched_setscheduler(pid, policy, param);
6469}
6470
6471/**
6472 * sys_sched_setparam - set/change the RT priority of a thread
6473 * @pid: the pid in question.
6474 * @param: structure containing the new RT priority.
6475 */
5add95d4 6476SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6477{
6478 return do_sched_setscheduler(pid, -1, param);
6479}
6480
6481/**
6482 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6483 * @pid: the pid in question.
6484 */
5add95d4 6485SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6486{
36c8b586 6487 struct task_struct *p;
3a5c359a 6488 int retval;
1da177e4
LT
6489
6490 if (pid < 0)
3a5c359a 6491 return -EINVAL;
1da177e4
LT
6492
6493 retval = -ESRCH;
5fe85be0 6494 rcu_read_lock();
1da177e4
LT
6495 p = find_process_by_pid(pid);
6496 if (p) {
6497 retval = security_task_getscheduler(p);
6498 if (!retval)
ca94c442
LP
6499 retval = p->policy
6500 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6501 }
5fe85be0 6502 rcu_read_unlock();
1da177e4
LT
6503 return retval;
6504}
6505
6506/**
ca94c442 6507 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6508 * @pid: the pid in question.
6509 * @param: structure containing the RT priority.
6510 */
5add95d4 6511SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6512{
6513 struct sched_param lp;
36c8b586 6514 struct task_struct *p;
3a5c359a 6515 int retval;
1da177e4
LT
6516
6517 if (!param || pid < 0)
3a5c359a 6518 return -EINVAL;
1da177e4 6519
5fe85be0 6520 rcu_read_lock();
1da177e4
LT
6521 p = find_process_by_pid(pid);
6522 retval = -ESRCH;
6523 if (!p)
6524 goto out_unlock;
6525
6526 retval = security_task_getscheduler(p);
6527 if (retval)
6528 goto out_unlock;
6529
6530 lp.sched_priority = p->rt_priority;
5fe85be0 6531 rcu_read_unlock();
1da177e4
LT
6532
6533 /*
6534 * This one might sleep, we cannot do it with a spinlock held ...
6535 */
6536 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6537
1da177e4
LT
6538 return retval;
6539
6540out_unlock:
5fe85be0 6541 rcu_read_unlock();
1da177e4
LT
6542 return retval;
6543}
6544
96f874e2 6545long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6546{
5a16f3d3 6547 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6548 struct task_struct *p;
6549 int retval;
1da177e4 6550
95402b38 6551 get_online_cpus();
23f5d142 6552 rcu_read_lock();
1da177e4
LT
6553
6554 p = find_process_by_pid(pid);
6555 if (!p) {
23f5d142 6556 rcu_read_unlock();
95402b38 6557 put_online_cpus();
1da177e4
LT
6558 return -ESRCH;
6559 }
6560
23f5d142 6561 /* Prevent p going away */
1da177e4 6562 get_task_struct(p);
23f5d142 6563 rcu_read_unlock();
1da177e4 6564
5a16f3d3
RR
6565 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6566 retval = -ENOMEM;
6567 goto out_put_task;
6568 }
6569 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6570 retval = -ENOMEM;
6571 goto out_free_cpus_allowed;
6572 }
1da177e4 6573 retval = -EPERM;
c69e8d9c 6574 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6575 goto out_unlock;
6576
e7834f8f
DQ
6577 retval = security_task_setscheduler(p, 0, NULL);
6578 if (retval)
6579 goto out_unlock;
6580
5a16f3d3
RR
6581 cpuset_cpus_allowed(p, cpus_allowed);
6582 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6583 again:
5a16f3d3 6584 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6585
8707d8b8 6586 if (!retval) {
5a16f3d3
RR
6587 cpuset_cpus_allowed(p, cpus_allowed);
6588 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6589 /*
6590 * We must have raced with a concurrent cpuset
6591 * update. Just reset the cpus_allowed to the
6592 * cpuset's cpus_allowed
6593 */
5a16f3d3 6594 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6595 goto again;
6596 }
6597 }
1da177e4 6598out_unlock:
5a16f3d3
RR
6599 free_cpumask_var(new_mask);
6600out_free_cpus_allowed:
6601 free_cpumask_var(cpus_allowed);
6602out_put_task:
1da177e4 6603 put_task_struct(p);
95402b38 6604 put_online_cpus();
1da177e4
LT
6605 return retval;
6606}
6607
6608static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6609 struct cpumask *new_mask)
1da177e4 6610{
96f874e2
RR
6611 if (len < cpumask_size())
6612 cpumask_clear(new_mask);
6613 else if (len > cpumask_size())
6614 len = cpumask_size();
6615
1da177e4
LT
6616 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6617}
6618
6619/**
6620 * sys_sched_setaffinity - set the cpu affinity of a process
6621 * @pid: pid of the process
6622 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6623 * @user_mask_ptr: user-space pointer to the new cpu mask
6624 */
5add95d4
HC
6625SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6626 unsigned long __user *, user_mask_ptr)
1da177e4 6627{
5a16f3d3 6628 cpumask_var_t new_mask;
1da177e4
LT
6629 int retval;
6630
5a16f3d3
RR
6631 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6632 return -ENOMEM;
1da177e4 6633
5a16f3d3
RR
6634 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6635 if (retval == 0)
6636 retval = sched_setaffinity(pid, new_mask);
6637 free_cpumask_var(new_mask);
6638 return retval;
1da177e4
LT
6639}
6640
96f874e2 6641long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6642{
36c8b586 6643 struct task_struct *p;
31605683
TG
6644 unsigned long flags;
6645 struct rq *rq;
1da177e4 6646 int retval;
1da177e4 6647
95402b38 6648 get_online_cpus();
23f5d142 6649 rcu_read_lock();
1da177e4
LT
6650
6651 retval = -ESRCH;
6652 p = find_process_by_pid(pid);
6653 if (!p)
6654 goto out_unlock;
6655
e7834f8f
DQ
6656 retval = security_task_getscheduler(p);
6657 if (retval)
6658 goto out_unlock;
6659
31605683 6660 rq = task_rq_lock(p, &flags);
96f874e2 6661 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6662 task_rq_unlock(rq, &flags);
1da177e4
LT
6663
6664out_unlock:
23f5d142 6665 rcu_read_unlock();
95402b38 6666 put_online_cpus();
1da177e4 6667
9531b62f 6668 return retval;
1da177e4
LT
6669}
6670
6671/**
6672 * sys_sched_getaffinity - get the cpu affinity of a process
6673 * @pid: pid of the process
6674 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6675 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6676 */
5add95d4
HC
6677SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6678 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6679{
6680 int ret;
f17c8607 6681 cpumask_var_t mask;
1da177e4 6682
f17c8607 6683 if (len < cpumask_size())
1da177e4
LT
6684 return -EINVAL;
6685
f17c8607
RR
6686 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6687 return -ENOMEM;
1da177e4 6688
f17c8607
RR
6689 ret = sched_getaffinity(pid, mask);
6690 if (ret == 0) {
6691 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6692 ret = -EFAULT;
6693 else
6694 ret = cpumask_size();
6695 }
6696 free_cpumask_var(mask);
1da177e4 6697
f17c8607 6698 return ret;
1da177e4
LT
6699}
6700
6701/**
6702 * sys_sched_yield - yield the current processor to other threads.
6703 *
dd41f596
IM
6704 * This function yields the current CPU to other tasks. If there are no
6705 * other threads running on this CPU then this function will return.
1da177e4 6706 */
5add95d4 6707SYSCALL_DEFINE0(sched_yield)
1da177e4 6708{
70b97a7f 6709 struct rq *rq = this_rq_lock();
1da177e4 6710
2d72376b 6711 schedstat_inc(rq, yld_count);
4530d7ab 6712 current->sched_class->yield_task(rq);
1da177e4
LT
6713
6714 /*
6715 * Since we are going to call schedule() anyway, there's
6716 * no need to preempt or enable interrupts:
6717 */
6718 __release(rq->lock);
8a25d5de 6719 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6720 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6721 preempt_enable_no_resched();
6722
6723 schedule();
6724
6725 return 0;
6726}
6727
d86ee480
PZ
6728static inline int should_resched(void)
6729{
6730 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6731}
6732
e7b38404 6733static void __cond_resched(void)
1da177e4 6734{
e7aaaa69
FW
6735 add_preempt_count(PREEMPT_ACTIVE);
6736 schedule();
6737 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6738}
6739
02b67cc3 6740int __sched _cond_resched(void)
1da177e4 6741{
d86ee480 6742 if (should_resched()) {
1da177e4
LT
6743 __cond_resched();
6744 return 1;
6745 }
6746 return 0;
6747}
02b67cc3 6748EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6749
6750/*
613afbf8 6751 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6752 * call schedule, and on return reacquire the lock.
6753 *
41a2d6cf 6754 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6755 * operations here to prevent schedule() from being called twice (once via
6756 * spin_unlock(), once by hand).
6757 */
613afbf8 6758int __cond_resched_lock(spinlock_t *lock)
1da177e4 6759{
d86ee480 6760 int resched = should_resched();
6df3cecb
JK
6761 int ret = 0;
6762
f607c668
PZ
6763 lockdep_assert_held(lock);
6764
95c354fe 6765 if (spin_needbreak(lock) || resched) {
1da177e4 6766 spin_unlock(lock);
d86ee480 6767 if (resched)
95c354fe
NP
6768 __cond_resched();
6769 else
6770 cpu_relax();
6df3cecb 6771 ret = 1;
1da177e4 6772 spin_lock(lock);
1da177e4 6773 }
6df3cecb 6774 return ret;
1da177e4 6775}
613afbf8 6776EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6777
613afbf8 6778int __sched __cond_resched_softirq(void)
1da177e4
LT
6779{
6780 BUG_ON(!in_softirq());
6781
d86ee480 6782 if (should_resched()) {
98d82567 6783 local_bh_enable();
1da177e4
LT
6784 __cond_resched();
6785 local_bh_disable();
6786 return 1;
6787 }
6788 return 0;
6789}
613afbf8 6790EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6791
1da177e4
LT
6792/**
6793 * yield - yield the current processor to other threads.
6794 *
72fd4a35 6795 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6796 * thread runnable and calls sys_sched_yield().
6797 */
6798void __sched yield(void)
6799{
6800 set_current_state(TASK_RUNNING);
6801 sys_sched_yield();
6802}
1da177e4
LT
6803EXPORT_SYMBOL(yield);
6804
6805/*
41a2d6cf 6806 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6807 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6808 */
6809void __sched io_schedule(void)
6810{
54d35f29 6811 struct rq *rq = raw_rq();
1da177e4 6812
0ff92245 6813 delayacct_blkio_start();
1da177e4 6814 atomic_inc(&rq->nr_iowait);
8f0dfc34 6815 current->in_iowait = 1;
1da177e4 6816 schedule();
8f0dfc34 6817 current->in_iowait = 0;
1da177e4 6818 atomic_dec(&rq->nr_iowait);
0ff92245 6819 delayacct_blkio_end();
1da177e4 6820}
1da177e4
LT
6821EXPORT_SYMBOL(io_schedule);
6822
6823long __sched io_schedule_timeout(long timeout)
6824{
54d35f29 6825 struct rq *rq = raw_rq();
1da177e4
LT
6826 long ret;
6827
0ff92245 6828 delayacct_blkio_start();
1da177e4 6829 atomic_inc(&rq->nr_iowait);
8f0dfc34 6830 current->in_iowait = 1;
1da177e4 6831 ret = schedule_timeout(timeout);
8f0dfc34 6832 current->in_iowait = 0;
1da177e4 6833 atomic_dec(&rq->nr_iowait);
0ff92245 6834 delayacct_blkio_end();
1da177e4
LT
6835 return ret;
6836}
6837
6838/**
6839 * sys_sched_get_priority_max - return maximum RT priority.
6840 * @policy: scheduling class.
6841 *
6842 * this syscall returns the maximum rt_priority that can be used
6843 * by a given scheduling class.
6844 */
5add95d4 6845SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6846{
6847 int ret = -EINVAL;
6848
6849 switch (policy) {
6850 case SCHED_FIFO:
6851 case SCHED_RR:
6852 ret = MAX_USER_RT_PRIO-1;
6853 break;
6854 case SCHED_NORMAL:
b0a9499c 6855 case SCHED_BATCH:
dd41f596 6856 case SCHED_IDLE:
1da177e4
LT
6857 ret = 0;
6858 break;
6859 }
6860 return ret;
6861}
6862
6863/**
6864 * sys_sched_get_priority_min - return minimum RT priority.
6865 * @policy: scheduling class.
6866 *
6867 * this syscall returns the minimum rt_priority that can be used
6868 * by a given scheduling class.
6869 */
5add95d4 6870SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6871{
6872 int ret = -EINVAL;
6873
6874 switch (policy) {
6875 case SCHED_FIFO:
6876 case SCHED_RR:
6877 ret = 1;
6878 break;
6879 case SCHED_NORMAL:
b0a9499c 6880 case SCHED_BATCH:
dd41f596 6881 case SCHED_IDLE:
1da177e4
LT
6882 ret = 0;
6883 }
6884 return ret;
6885}
6886
6887/**
6888 * sys_sched_rr_get_interval - return the default timeslice of a process.
6889 * @pid: pid of the process.
6890 * @interval: userspace pointer to the timeslice value.
6891 *
6892 * this syscall writes the default timeslice value of a given process
6893 * into the user-space timespec buffer. A value of '0' means infinity.
6894 */
17da2bd9 6895SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6896 struct timespec __user *, interval)
1da177e4 6897{
36c8b586 6898 struct task_struct *p;
a4ec24b4 6899 unsigned int time_slice;
dba091b9
TG
6900 unsigned long flags;
6901 struct rq *rq;
3a5c359a 6902 int retval;
1da177e4 6903 struct timespec t;
1da177e4
LT
6904
6905 if (pid < 0)
3a5c359a 6906 return -EINVAL;
1da177e4
LT
6907
6908 retval = -ESRCH;
1a551ae7 6909 rcu_read_lock();
1da177e4
LT
6910 p = find_process_by_pid(pid);
6911 if (!p)
6912 goto out_unlock;
6913
6914 retval = security_task_getscheduler(p);
6915 if (retval)
6916 goto out_unlock;
6917
dba091b9
TG
6918 rq = task_rq_lock(p, &flags);
6919 time_slice = p->sched_class->get_rr_interval(rq, p);
6920 task_rq_unlock(rq, &flags);
a4ec24b4 6921
1a551ae7 6922 rcu_read_unlock();
a4ec24b4 6923 jiffies_to_timespec(time_slice, &t);
1da177e4 6924 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6925 return retval;
3a5c359a 6926
1da177e4 6927out_unlock:
1a551ae7 6928 rcu_read_unlock();
1da177e4
LT
6929 return retval;
6930}
6931
7c731e0a 6932static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6933
82a1fcb9 6934void sched_show_task(struct task_struct *p)
1da177e4 6935{
1da177e4 6936 unsigned long free = 0;
36c8b586 6937 unsigned state;
1da177e4 6938
1da177e4 6939 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6940 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6941 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6942#if BITS_PER_LONG == 32
1da177e4 6943 if (state == TASK_RUNNING)
663997d4 6944 pr_cont(" running ");
1da177e4 6945 else
663997d4 6946 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6947#else
6948 if (state == TASK_RUNNING)
663997d4 6949 pr_cont(" running task ");
1da177e4 6950 else
663997d4 6951 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6952#endif
6953#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6954 free = stack_not_used(p);
1da177e4 6955#endif
663997d4 6956 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6957 task_pid_nr(p), task_pid_nr(p->real_parent),
6958 (unsigned long)task_thread_info(p)->flags);
1da177e4 6959
5fb5e6de 6960 show_stack(p, NULL);
1da177e4
LT
6961}
6962
e59e2ae2 6963void show_state_filter(unsigned long state_filter)
1da177e4 6964{
36c8b586 6965 struct task_struct *g, *p;
1da177e4 6966
4bd77321 6967#if BITS_PER_LONG == 32
663997d4 6968 pr_info(" task PC stack pid father\n");
1da177e4 6969#else
663997d4 6970 pr_info(" task PC stack pid father\n");
1da177e4
LT
6971#endif
6972 read_lock(&tasklist_lock);
6973 do_each_thread(g, p) {
6974 /*
6975 * reset the NMI-timeout, listing all files on a slow
6976 * console might take alot of time:
6977 */
6978 touch_nmi_watchdog();
39bc89fd 6979 if (!state_filter || (p->state & state_filter))
82a1fcb9 6980 sched_show_task(p);
1da177e4
LT
6981 } while_each_thread(g, p);
6982
04c9167f
JF
6983 touch_all_softlockup_watchdogs();
6984
dd41f596
IM
6985#ifdef CONFIG_SCHED_DEBUG
6986 sysrq_sched_debug_show();
6987#endif
1da177e4 6988 read_unlock(&tasklist_lock);
e59e2ae2
IM
6989 /*
6990 * Only show locks if all tasks are dumped:
6991 */
93335a21 6992 if (!state_filter)
e59e2ae2 6993 debug_show_all_locks();
1da177e4
LT
6994}
6995
1df21055
IM
6996void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6997{
dd41f596 6998 idle->sched_class = &idle_sched_class;
1df21055
IM
6999}
7000
f340c0d1
IM
7001/**
7002 * init_idle - set up an idle thread for a given CPU
7003 * @idle: task in question
7004 * @cpu: cpu the idle task belongs to
7005 *
7006 * NOTE: this function does not set the idle thread's NEED_RESCHED
7007 * flag, to make booting more robust.
7008 */
5c1e1767 7009void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7010{
70b97a7f 7011 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7012 unsigned long flags;
7013
05fa785c 7014 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7015
dd41f596 7016 __sched_fork(idle);
06b83b5f 7017 idle->state = TASK_RUNNING;
dd41f596
IM
7018 idle->se.exec_start = sched_clock();
7019
96f874e2 7020 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7021 __set_task_cpu(idle, cpu);
1da177e4 7022
1da177e4 7023 rq->curr = rq->idle = idle;
4866cde0
NP
7024#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7025 idle->oncpu = 1;
7026#endif
05fa785c 7027 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7028
7029 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7030#if defined(CONFIG_PREEMPT)
7031 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7032#else
a1261f54 7033 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7034#endif
dd41f596
IM
7035 /*
7036 * The idle tasks have their own, simple scheduling class:
7037 */
7038 idle->sched_class = &idle_sched_class;
fb52607a 7039 ftrace_graph_init_task(idle);
1da177e4
LT
7040}
7041
7042/*
7043 * In a system that switches off the HZ timer nohz_cpu_mask
7044 * indicates which cpus entered this state. This is used
7045 * in the rcu update to wait only for active cpus. For system
7046 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7047 * always be CPU_BITS_NONE.
1da177e4 7048 */
6a7b3dc3 7049cpumask_var_t nohz_cpu_mask;
1da177e4 7050
19978ca6
IM
7051/*
7052 * Increase the granularity value when there are more CPUs,
7053 * because with more CPUs the 'effective latency' as visible
7054 * to users decreases. But the relationship is not linear,
7055 * so pick a second-best guess by going with the log2 of the
7056 * number of CPUs.
7057 *
7058 * This idea comes from the SD scheduler of Con Kolivas:
7059 */
acb4a848 7060static int get_update_sysctl_factor(void)
19978ca6 7061{
4ca3ef71 7062 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7063 unsigned int factor;
7064
7065 switch (sysctl_sched_tunable_scaling) {
7066 case SCHED_TUNABLESCALING_NONE:
7067 factor = 1;
7068 break;
7069 case SCHED_TUNABLESCALING_LINEAR:
7070 factor = cpus;
7071 break;
7072 case SCHED_TUNABLESCALING_LOG:
7073 default:
7074 factor = 1 + ilog2(cpus);
7075 break;
7076 }
19978ca6 7077
acb4a848
CE
7078 return factor;
7079}
19978ca6 7080
acb4a848
CE
7081static void update_sysctl(void)
7082{
7083 unsigned int factor = get_update_sysctl_factor();
19978ca6 7084
0bcdcf28
CE
7085#define SET_SYSCTL(name) \
7086 (sysctl_##name = (factor) * normalized_sysctl_##name)
7087 SET_SYSCTL(sched_min_granularity);
7088 SET_SYSCTL(sched_latency);
7089 SET_SYSCTL(sched_wakeup_granularity);
7090 SET_SYSCTL(sched_shares_ratelimit);
7091#undef SET_SYSCTL
7092}
55cd5340 7093
0bcdcf28
CE
7094static inline void sched_init_granularity(void)
7095{
7096 update_sysctl();
19978ca6
IM
7097}
7098
1da177e4
LT
7099#ifdef CONFIG_SMP
7100/*
7101 * This is how migration works:
7102 *
70b97a7f 7103 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7104 * runqueue and wake up that CPU's migration thread.
7105 * 2) we down() the locked semaphore => thread blocks.
7106 * 3) migration thread wakes up (implicitly it forces the migrated
7107 * thread off the CPU)
7108 * 4) it gets the migration request and checks whether the migrated
7109 * task is still in the wrong runqueue.
7110 * 5) if it's in the wrong runqueue then the migration thread removes
7111 * it and puts it into the right queue.
7112 * 6) migration thread up()s the semaphore.
7113 * 7) we wake up and the migration is done.
7114 */
7115
7116/*
7117 * Change a given task's CPU affinity. Migrate the thread to a
7118 * proper CPU and schedule it away if the CPU it's executing on
7119 * is removed from the allowed bitmask.
7120 *
7121 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7122 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7123 * call is not atomic; no spinlocks may be held.
7124 */
96f874e2 7125int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7126{
70b97a7f 7127 struct migration_req req;
1da177e4 7128 unsigned long flags;
70b97a7f 7129 struct rq *rq;
48f24c4d 7130 int ret = 0;
1da177e4 7131
e2912009
PZ
7132 /*
7133 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7134 * the ->cpus_allowed mask from under waking tasks, which would be
7135 * possible when we change rq->lock in ttwu(), so synchronize against
7136 * TASK_WAKING to avoid that.
7137 */
7138again:
7139 while (p->state == TASK_WAKING)
7140 cpu_relax();
7141
1da177e4 7142 rq = task_rq_lock(p, &flags);
e2912009
PZ
7143
7144 if (p->state == TASK_WAKING) {
7145 task_rq_unlock(rq, &flags);
7146 goto again;
7147 }
7148
6ad4c188 7149 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7150 ret = -EINVAL;
7151 goto out;
7152 }
7153
9985b0ba 7154 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7155 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7156 ret = -EINVAL;
7157 goto out;
7158 }
7159
73fe6aae 7160 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7161 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7162 else {
96f874e2
RR
7163 cpumask_copy(&p->cpus_allowed, new_mask);
7164 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7165 }
7166
1da177e4 7167 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7168 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7169 goto out;
7170
6ad4c188 7171 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7172 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7173 struct task_struct *mt = rq->migration_thread;
7174
7175 get_task_struct(mt);
1da177e4
LT
7176 task_rq_unlock(rq, &flags);
7177 wake_up_process(rq->migration_thread);
693525e3 7178 put_task_struct(mt);
1da177e4
LT
7179 wait_for_completion(&req.done);
7180 tlb_migrate_finish(p->mm);
7181 return 0;
7182 }
7183out:
7184 task_rq_unlock(rq, &flags);
48f24c4d 7185
1da177e4
LT
7186 return ret;
7187}
cd8ba7cd 7188EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7189
7190/*
41a2d6cf 7191 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7192 * this because either it can't run here any more (set_cpus_allowed()
7193 * away from this CPU, or CPU going down), or because we're
7194 * attempting to rebalance this task on exec (sched_exec).
7195 *
7196 * So we race with normal scheduler movements, but that's OK, as long
7197 * as the task is no longer on this CPU.
efc30814
KK
7198 *
7199 * Returns non-zero if task was successfully migrated.
1da177e4 7200 */
efc30814 7201static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7202{
70b97a7f 7203 struct rq *rq_dest, *rq_src;
e2912009 7204 int ret = 0;
1da177e4 7205
e761b772 7206 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7207 return ret;
1da177e4
LT
7208
7209 rq_src = cpu_rq(src_cpu);
7210 rq_dest = cpu_rq(dest_cpu);
7211
7212 double_rq_lock(rq_src, rq_dest);
7213 /* Already moved. */
7214 if (task_cpu(p) != src_cpu)
b1e38734 7215 goto done;
1da177e4 7216 /* Affinity changed (again). */
96f874e2 7217 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7218 goto fail;
1da177e4 7219
e2912009
PZ
7220 /*
7221 * If we're not on a rq, the next wake-up will ensure we're
7222 * placed properly.
7223 */
7224 if (p->se.on_rq) {
2e1cb74a 7225 deactivate_task(rq_src, p, 0);
e2912009 7226 set_task_cpu(p, dest_cpu);
dd41f596 7227 activate_task(rq_dest, p, 0);
15afe09b 7228 check_preempt_curr(rq_dest, p, 0);
1da177e4 7229 }
b1e38734 7230done:
efc30814 7231 ret = 1;
b1e38734 7232fail:
1da177e4 7233 double_rq_unlock(rq_src, rq_dest);
efc30814 7234 return ret;
1da177e4
LT
7235}
7236
03b042bf
PM
7237#define RCU_MIGRATION_IDLE 0
7238#define RCU_MIGRATION_NEED_QS 1
7239#define RCU_MIGRATION_GOT_QS 2
7240#define RCU_MIGRATION_MUST_SYNC 3
7241
1da177e4
LT
7242/*
7243 * migration_thread - this is a highprio system thread that performs
7244 * thread migration by bumping thread off CPU then 'pushing' onto
7245 * another runqueue.
7246 */
95cdf3b7 7247static int migration_thread(void *data)
1da177e4 7248{
03b042bf 7249 int badcpu;
1da177e4 7250 int cpu = (long)data;
70b97a7f 7251 struct rq *rq;
1da177e4
LT
7252
7253 rq = cpu_rq(cpu);
7254 BUG_ON(rq->migration_thread != current);
7255
7256 set_current_state(TASK_INTERRUPTIBLE);
7257 while (!kthread_should_stop()) {
70b97a7f 7258 struct migration_req *req;
1da177e4 7259 struct list_head *head;
1da177e4 7260
05fa785c 7261 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7262
7263 if (cpu_is_offline(cpu)) {
05fa785c 7264 raw_spin_unlock_irq(&rq->lock);
371cbb38 7265 break;
1da177e4
LT
7266 }
7267
7268 if (rq->active_balance) {
7269 active_load_balance(rq, cpu);
7270 rq->active_balance = 0;
7271 }
7272
7273 head = &rq->migration_queue;
7274
7275 if (list_empty(head)) {
05fa785c 7276 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7277 schedule();
7278 set_current_state(TASK_INTERRUPTIBLE);
7279 continue;
7280 }
70b97a7f 7281 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7282 list_del_init(head->next);
7283
03b042bf 7284 if (req->task != NULL) {
05fa785c 7285 raw_spin_unlock(&rq->lock);
03b042bf
PM
7286 __migrate_task(req->task, cpu, req->dest_cpu);
7287 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7288 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7289 raw_spin_unlock(&rq->lock);
03b042bf
PM
7290 } else {
7291 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7292 raw_spin_unlock(&rq->lock);
03b042bf
PM
7293 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7294 }
674311d5 7295 local_irq_enable();
1da177e4
LT
7296
7297 complete(&req->done);
7298 }
7299 __set_current_state(TASK_RUNNING);
1da177e4 7300
1da177e4
LT
7301 return 0;
7302}
7303
7304#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7305
7306static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7307{
7308 int ret;
7309
7310 local_irq_disable();
7311 ret = __migrate_task(p, src_cpu, dest_cpu);
7312 local_irq_enable();
7313 return ret;
7314}
7315
054b9108 7316/*
3a4fa0a2 7317 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7318 */
48f24c4d 7319static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7320{
70b97a7f 7321 int dest_cpu;
6ca09dfc 7322 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7323
7324again:
7325 /* Look for allowed, online CPU in same node. */
6ad4c188 7326 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7327 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7328 goto move;
7329
7330 /* Any allowed, online CPU? */
6ad4c188 7331 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7332 if (dest_cpu < nr_cpu_ids)
7333 goto move;
7334
7335 /* No more Mr. Nice Guy. */
7336 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7337 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7338 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7339
e76bd8d9
RR
7340 /*
7341 * Don't tell them about moving exiting tasks or
7342 * kernel threads (both mm NULL), since they never
7343 * leave kernel.
7344 */
7345 if (p->mm && printk_ratelimit()) {
663997d4
JP
7346 pr_info("process %d (%s) no longer affine to cpu%d\n",
7347 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7348 }
e76bd8d9
RR
7349 }
7350
7351move:
7352 /* It can have affinity changed while we were choosing. */
7353 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7354 goto again;
1da177e4
LT
7355}
7356
7357/*
7358 * While a dead CPU has no uninterruptible tasks queued at this point,
7359 * it might still have a nonzero ->nr_uninterruptible counter, because
7360 * for performance reasons the counter is not stricly tracking tasks to
7361 * their home CPUs. So we just add the counter to another CPU's counter,
7362 * to keep the global sum constant after CPU-down:
7363 */
70b97a7f 7364static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7365{
6ad4c188 7366 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7367 unsigned long flags;
7368
7369 local_irq_save(flags);
7370 double_rq_lock(rq_src, rq_dest);
7371 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7372 rq_src->nr_uninterruptible = 0;
7373 double_rq_unlock(rq_src, rq_dest);
7374 local_irq_restore(flags);
7375}
7376
7377/* Run through task list and migrate tasks from the dead cpu. */
7378static void migrate_live_tasks(int src_cpu)
7379{
48f24c4d 7380 struct task_struct *p, *t;
1da177e4 7381
f7b4cddc 7382 read_lock(&tasklist_lock);
1da177e4 7383
48f24c4d
IM
7384 do_each_thread(t, p) {
7385 if (p == current)
1da177e4
LT
7386 continue;
7387
48f24c4d
IM
7388 if (task_cpu(p) == src_cpu)
7389 move_task_off_dead_cpu(src_cpu, p);
7390 } while_each_thread(t, p);
1da177e4 7391
f7b4cddc 7392 read_unlock(&tasklist_lock);
1da177e4
LT
7393}
7394
dd41f596
IM
7395/*
7396 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7397 * It does so by boosting its priority to highest possible.
7398 * Used by CPU offline code.
1da177e4
LT
7399 */
7400void sched_idle_next(void)
7401{
48f24c4d 7402 int this_cpu = smp_processor_id();
70b97a7f 7403 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7404 struct task_struct *p = rq->idle;
7405 unsigned long flags;
7406
7407 /* cpu has to be offline */
48f24c4d 7408 BUG_ON(cpu_online(this_cpu));
1da177e4 7409
48f24c4d
IM
7410 /*
7411 * Strictly not necessary since rest of the CPUs are stopped by now
7412 * and interrupts disabled on the current cpu.
1da177e4 7413 */
05fa785c 7414 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7415
dd41f596 7416 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7417
94bc9a7b
DA
7418 update_rq_clock(rq);
7419 activate_task(rq, p, 0);
1da177e4 7420
05fa785c 7421 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7422}
7423
48f24c4d
IM
7424/*
7425 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7426 * offline.
7427 */
7428void idle_task_exit(void)
7429{
7430 struct mm_struct *mm = current->active_mm;
7431
7432 BUG_ON(cpu_online(smp_processor_id()));
7433
7434 if (mm != &init_mm)
7435 switch_mm(mm, &init_mm, current);
7436 mmdrop(mm);
7437}
7438
054b9108 7439/* called under rq->lock with disabled interrupts */
36c8b586 7440static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7441{
70b97a7f 7442 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7443
7444 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7445 BUG_ON(!p->exit_state);
1da177e4
LT
7446
7447 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7448 BUG_ON(p->state == TASK_DEAD);
1da177e4 7449
48f24c4d 7450 get_task_struct(p);
1da177e4
LT
7451
7452 /*
7453 * Drop lock around migration; if someone else moves it,
41a2d6cf 7454 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7455 * fine.
7456 */
05fa785c 7457 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7458 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7459 raw_spin_lock_irq(&rq->lock);
1da177e4 7460
48f24c4d 7461 put_task_struct(p);
1da177e4
LT
7462}
7463
7464/* release_task() removes task from tasklist, so we won't find dead tasks. */
7465static void migrate_dead_tasks(unsigned int dead_cpu)
7466{
70b97a7f 7467 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7468 struct task_struct *next;
48f24c4d 7469
dd41f596
IM
7470 for ( ; ; ) {
7471 if (!rq->nr_running)
7472 break;
a8e504d2 7473 update_rq_clock(rq);
b67802ea 7474 next = pick_next_task(rq);
dd41f596
IM
7475 if (!next)
7476 break;
79c53799 7477 next->sched_class->put_prev_task(rq, next);
dd41f596 7478 migrate_dead(dead_cpu, next);
e692ab53 7479
1da177e4
LT
7480 }
7481}
dce48a84
TG
7482
7483/*
7484 * remove the tasks which were accounted by rq from calc_load_tasks.
7485 */
7486static void calc_global_load_remove(struct rq *rq)
7487{
7488 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7489 rq->calc_load_active = 0;
dce48a84 7490}
1da177e4
LT
7491#endif /* CONFIG_HOTPLUG_CPU */
7492
e692ab53
NP
7493#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7494
7495static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7496 {
7497 .procname = "sched_domain",
c57baf1e 7498 .mode = 0555,
e0361851 7499 },
56992309 7500 {}
e692ab53
NP
7501};
7502
7503static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7504 {
7505 .procname = "kernel",
c57baf1e 7506 .mode = 0555,
e0361851
AD
7507 .child = sd_ctl_dir,
7508 },
56992309 7509 {}
e692ab53
NP
7510};
7511
7512static struct ctl_table *sd_alloc_ctl_entry(int n)
7513{
7514 struct ctl_table *entry =
5cf9f062 7515 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7516
e692ab53
NP
7517 return entry;
7518}
7519
6382bc90
MM
7520static void sd_free_ctl_entry(struct ctl_table **tablep)
7521{
cd790076 7522 struct ctl_table *entry;
6382bc90 7523
cd790076
MM
7524 /*
7525 * In the intermediate directories, both the child directory and
7526 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7527 * will always be set. In the lowest directory the names are
cd790076
MM
7528 * static strings and all have proc handlers.
7529 */
7530 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7531 if (entry->child)
7532 sd_free_ctl_entry(&entry->child);
cd790076
MM
7533 if (entry->proc_handler == NULL)
7534 kfree(entry->procname);
7535 }
6382bc90
MM
7536
7537 kfree(*tablep);
7538 *tablep = NULL;
7539}
7540
e692ab53 7541static void
e0361851 7542set_table_entry(struct ctl_table *entry,
e692ab53
NP
7543 const char *procname, void *data, int maxlen,
7544 mode_t mode, proc_handler *proc_handler)
7545{
e692ab53
NP
7546 entry->procname = procname;
7547 entry->data = data;
7548 entry->maxlen = maxlen;
7549 entry->mode = mode;
7550 entry->proc_handler = proc_handler;
7551}
7552
7553static struct ctl_table *
7554sd_alloc_ctl_domain_table(struct sched_domain *sd)
7555{
a5d8c348 7556 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7557
ad1cdc1d
MM
7558 if (table == NULL)
7559 return NULL;
7560
e0361851 7561 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7562 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7563 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7564 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7565 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7566 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7567 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7568 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7569 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7570 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7571 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7572 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7573 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7574 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7575 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7576 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7577 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7578 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7579 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7580 &sd->cache_nice_tries,
7581 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7582 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7583 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7584 set_table_entry(&table[11], "name", sd->name,
7585 CORENAME_MAX_SIZE, 0444, proc_dostring);
7586 /* &table[12] is terminator */
e692ab53
NP
7587
7588 return table;
7589}
7590
9a4e7159 7591static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7592{
7593 struct ctl_table *entry, *table;
7594 struct sched_domain *sd;
7595 int domain_num = 0, i;
7596 char buf[32];
7597
7598 for_each_domain(cpu, sd)
7599 domain_num++;
7600 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7601 if (table == NULL)
7602 return NULL;
e692ab53
NP
7603
7604 i = 0;
7605 for_each_domain(cpu, sd) {
7606 snprintf(buf, 32, "domain%d", i);
e692ab53 7607 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7608 entry->mode = 0555;
e692ab53
NP
7609 entry->child = sd_alloc_ctl_domain_table(sd);
7610 entry++;
7611 i++;
7612 }
7613 return table;
7614}
7615
7616static struct ctl_table_header *sd_sysctl_header;
6382bc90 7617static void register_sched_domain_sysctl(void)
e692ab53 7618{
6ad4c188 7619 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7620 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7621 char buf[32];
7622
7378547f
MM
7623 WARN_ON(sd_ctl_dir[0].child);
7624 sd_ctl_dir[0].child = entry;
7625
ad1cdc1d
MM
7626 if (entry == NULL)
7627 return;
7628
6ad4c188 7629 for_each_possible_cpu(i) {
e692ab53 7630 snprintf(buf, 32, "cpu%d", i);
e692ab53 7631 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7632 entry->mode = 0555;
e692ab53 7633 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7634 entry++;
e692ab53 7635 }
7378547f
MM
7636
7637 WARN_ON(sd_sysctl_header);
e692ab53
NP
7638 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7639}
6382bc90 7640
7378547f 7641/* may be called multiple times per register */
6382bc90
MM
7642static void unregister_sched_domain_sysctl(void)
7643{
7378547f
MM
7644 if (sd_sysctl_header)
7645 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7646 sd_sysctl_header = NULL;
7378547f
MM
7647 if (sd_ctl_dir[0].child)
7648 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7649}
e692ab53 7650#else
6382bc90
MM
7651static void register_sched_domain_sysctl(void)
7652{
7653}
7654static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7655{
7656}
7657#endif
7658
1f11eb6a
GH
7659static void set_rq_online(struct rq *rq)
7660{
7661 if (!rq->online) {
7662 const struct sched_class *class;
7663
c6c4927b 7664 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7665 rq->online = 1;
7666
7667 for_each_class(class) {
7668 if (class->rq_online)
7669 class->rq_online(rq);
7670 }
7671 }
7672}
7673
7674static void set_rq_offline(struct rq *rq)
7675{
7676 if (rq->online) {
7677 const struct sched_class *class;
7678
7679 for_each_class(class) {
7680 if (class->rq_offline)
7681 class->rq_offline(rq);
7682 }
7683
c6c4927b 7684 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7685 rq->online = 0;
7686 }
7687}
7688
1da177e4
LT
7689/*
7690 * migration_call - callback that gets triggered when a CPU is added.
7691 * Here we can start up the necessary migration thread for the new CPU.
7692 */
48f24c4d
IM
7693static int __cpuinit
7694migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7695{
1da177e4 7696 struct task_struct *p;
48f24c4d 7697 int cpu = (long)hcpu;
1da177e4 7698 unsigned long flags;
70b97a7f 7699 struct rq *rq;
1da177e4
LT
7700
7701 switch (action) {
5be9361c 7702
1da177e4 7703 case CPU_UP_PREPARE:
8bb78442 7704 case CPU_UP_PREPARE_FROZEN:
dd41f596 7705 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7706 if (IS_ERR(p))
7707 return NOTIFY_BAD;
1da177e4
LT
7708 kthread_bind(p, cpu);
7709 /* Must be high prio: stop_machine expects to yield to it. */
7710 rq = task_rq_lock(p, &flags);
dd41f596 7711 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7712 task_rq_unlock(rq, &flags);
371cbb38 7713 get_task_struct(p);
1da177e4 7714 cpu_rq(cpu)->migration_thread = p;
a468d389 7715 rq->calc_load_update = calc_load_update;
1da177e4 7716 break;
48f24c4d 7717
1da177e4 7718 case CPU_ONLINE:
8bb78442 7719 case CPU_ONLINE_FROZEN:
3a4fa0a2 7720 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7721 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7722
7723 /* Update our root-domain */
7724 rq = cpu_rq(cpu);
05fa785c 7725 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7726 if (rq->rd) {
c6c4927b 7727 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7728
7729 set_rq_online(rq);
1f94ef59 7730 }
05fa785c 7731 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7732 break;
48f24c4d 7733
1da177e4
LT
7734#ifdef CONFIG_HOTPLUG_CPU
7735 case CPU_UP_CANCELED:
8bb78442 7736 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7737 if (!cpu_rq(cpu)->migration_thread)
7738 break;
41a2d6cf 7739 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7740 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7741 cpumask_any(cpu_online_mask));
1da177e4 7742 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7743 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7744 cpu_rq(cpu)->migration_thread = NULL;
7745 break;
48f24c4d 7746
1da177e4 7747 case CPU_DEAD:
8bb78442 7748 case CPU_DEAD_FROZEN:
470fd646 7749 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7750 migrate_live_tasks(cpu);
7751 rq = cpu_rq(cpu);
7752 kthread_stop(rq->migration_thread);
371cbb38 7753 put_task_struct(rq->migration_thread);
1da177e4
LT
7754 rq->migration_thread = NULL;
7755 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7756 raw_spin_lock_irq(&rq->lock);
a8e504d2 7757 update_rq_clock(rq);
2e1cb74a 7758 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7759 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7760 rq->idle->sched_class = &idle_sched_class;
1da177e4 7761 migrate_dead_tasks(cpu);
05fa785c 7762 raw_spin_unlock_irq(&rq->lock);
470fd646 7763 cpuset_unlock();
1da177e4
LT
7764 migrate_nr_uninterruptible(rq);
7765 BUG_ON(rq->nr_running != 0);
dce48a84 7766 calc_global_load_remove(rq);
41a2d6cf
IM
7767 /*
7768 * No need to migrate the tasks: it was best-effort if
7769 * they didn't take sched_hotcpu_mutex. Just wake up
7770 * the requestors.
7771 */
05fa785c 7772 raw_spin_lock_irq(&rq->lock);
1da177e4 7773 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7774 struct migration_req *req;
7775
1da177e4 7776 req = list_entry(rq->migration_queue.next,
70b97a7f 7777 struct migration_req, list);
1da177e4 7778 list_del_init(&req->list);
05fa785c 7779 raw_spin_unlock_irq(&rq->lock);
1da177e4 7780 complete(&req->done);
05fa785c 7781 raw_spin_lock_irq(&rq->lock);
1da177e4 7782 }
05fa785c 7783 raw_spin_unlock_irq(&rq->lock);
1da177e4 7784 break;
57d885fe 7785
08f503b0
GH
7786 case CPU_DYING:
7787 case CPU_DYING_FROZEN:
57d885fe
GH
7788 /* Update our root-domain */
7789 rq = cpu_rq(cpu);
05fa785c 7790 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7791 if (rq->rd) {
c6c4927b 7792 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7793 set_rq_offline(rq);
57d885fe 7794 }
05fa785c 7795 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7796 break;
1da177e4
LT
7797#endif
7798 }
7799 return NOTIFY_OK;
7800}
7801
f38b0820
PM
7802/*
7803 * Register at high priority so that task migration (migrate_all_tasks)
7804 * happens before everything else. This has to be lower priority than
cdd6c482 7805 * the notifier in the perf_event subsystem, though.
1da177e4 7806 */
26c2143b 7807static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7808 .notifier_call = migration_call,
7809 .priority = 10
7810};
7811
7babe8db 7812static int __init migration_init(void)
1da177e4
LT
7813{
7814 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7815 int err;
48f24c4d
IM
7816
7817 /* Start one for the boot CPU: */
07dccf33
AM
7818 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7819 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7820 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7821 register_cpu_notifier(&migration_notifier);
7babe8db 7822
a004cd42 7823 return 0;
1da177e4 7824}
7babe8db 7825early_initcall(migration_init);
1da177e4
LT
7826#endif
7827
7828#ifdef CONFIG_SMP
476f3534 7829
3e9830dc 7830#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7831
f6630114
MT
7832static __read_mostly int sched_domain_debug_enabled;
7833
7834static int __init sched_domain_debug_setup(char *str)
7835{
7836 sched_domain_debug_enabled = 1;
7837
7838 return 0;
7839}
7840early_param("sched_debug", sched_domain_debug_setup);
7841
7c16ec58 7842static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7843 struct cpumask *groupmask)
1da177e4 7844{
4dcf6aff 7845 struct sched_group *group = sd->groups;
434d53b0 7846 char str[256];
1da177e4 7847
968ea6d8 7848 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7849 cpumask_clear(groupmask);
4dcf6aff
IM
7850
7851 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7852
7853 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7854 pr_cont("does not load-balance\n");
4dcf6aff 7855 if (sd->parent)
663997d4 7856 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7857 return -1;
41c7ce9a
NP
7858 }
7859
663997d4 7860 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7861
758b2cdc 7862 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7863 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7864 }
758b2cdc 7865 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7866 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7867 }
1da177e4 7868
4dcf6aff 7869 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7870 do {
4dcf6aff 7871 if (!group) {
663997d4
JP
7872 pr_cont("\n");
7873 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7874 break;
7875 }
7876
18a3885f 7877 if (!group->cpu_power) {
663997d4
JP
7878 pr_cont("\n");
7879 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7880 break;
7881 }
1da177e4 7882
758b2cdc 7883 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7884 pr_cont("\n");
7885 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7886 break;
7887 }
1da177e4 7888
758b2cdc 7889 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7890 pr_cont("\n");
7891 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7892 break;
7893 }
1da177e4 7894
758b2cdc 7895 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7896
968ea6d8 7897 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7898
663997d4 7899 pr_cont(" %s", str);
18a3885f 7900 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7901 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7902 }
1da177e4 7903
4dcf6aff
IM
7904 group = group->next;
7905 } while (group != sd->groups);
663997d4 7906 pr_cont("\n");
1da177e4 7907
758b2cdc 7908 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7909 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7910
758b2cdc
RR
7911 if (sd->parent &&
7912 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7913 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7914 return 0;
7915}
1da177e4 7916
4dcf6aff
IM
7917static void sched_domain_debug(struct sched_domain *sd, int cpu)
7918{
d5dd3db1 7919 cpumask_var_t groupmask;
4dcf6aff 7920 int level = 0;
1da177e4 7921
f6630114
MT
7922 if (!sched_domain_debug_enabled)
7923 return;
7924
4dcf6aff
IM
7925 if (!sd) {
7926 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7927 return;
7928 }
1da177e4 7929
4dcf6aff
IM
7930 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7931
d5dd3db1 7932 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7933 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7934 return;
7935 }
7936
4dcf6aff 7937 for (;;) {
7c16ec58 7938 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7939 break;
1da177e4
LT
7940 level++;
7941 sd = sd->parent;
33859f7f 7942 if (!sd)
4dcf6aff
IM
7943 break;
7944 }
d5dd3db1 7945 free_cpumask_var(groupmask);
1da177e4 7946}
6d6bc0ad 7947#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7948# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7949#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7950
1a20ff27 7951static int sd_degenerate(struct sched_domain *sd)
245af2c7 7952{
758b2cdc 7953 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7954 return 1;
7955
7956 /* Following flags need at least 2 groups */
7957 if (sd->flags & (SD_LOAD_BALANCE |
7958 SD_BALANCE_NEWIDLE |
7959 SD_BALANCE_FORK |
89c4710e
SS
7960 SD_BALANCE_EXEC |
7961 SD_SHARE_CPUPOWER |
7962 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7963 if (sd->groups != sd->groups->next)
7964 return 0;
7965 }
7966
7967 /* Following flags don't use groups */
c88d5910 7968 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7969 return 0;
7970
7971 return 1;
7972}
7973
48f24c4d
IM
7974static int
7975sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7976{
7977 unsigned long cflags = sd->flags, pflags = parent->flags;
7978
7979 if (sd_degenerate(parent))
7980 return 1;
7981
758b2cdc 7982 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7983 return 0;
7984
245af2c7
SS
7985 /* Flags needing groups don't count if only 1 group in parent */
7986 if (parent->groups == parent->groups->next) {
7987 pflags &= ~(SD_LOAD_BALANCE |
7988 SD_BALANCE_NEWIDLE |
7989 SD_BALANCE_FORK |
89c4710e
SS
7990 SD_BALANCE_EXEC |
7991 SD_SHARE_CPUPOWER |
7992 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7993 if (nr_node_ids == 1)
7994 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7995 }
7996 if (~cflags & pflags)
7997 return 0;
7998
7999 return 1;
8000}
8001
c6c4927b
RR
8002static void free_rootdomain(struct root_domain *rd)
8003{
047106ad
PZ
8004 synchronize_sched();
8005
68e74568
RR
8006 cpupri_cleanup(&rd->cpupri);
8007
c6c4927b
RR
8008 free_cpumask_var(rd->rto_mask);
8009 free_cpumask_var(rd->online);
8010 free_cpumask_var(rd->span);
8011 kfree(rd);
8012}
8013
57d885fe
GH
8014static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8015{
a0490fa3 8016 struct root_domain *old_rd = NULL;
57d885fe 8017 unsigned long flags;
57d885fe 8018
05fa785c 8019 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8020
8021 if (rq->rd) {
a0490fa3 8022 old_rd = rq->rd;
57d885fe 8023
c6c4927b 8024 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8025 set_rq_offline(rq);
57d885fe 8026
c6c4927b 8027 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8028
a0490fa3
IM
8029 /*
8030 * If we dont want to free the old_rt yet then
8031 * set old_rd to NULL to skip the freeing later
8032 * in this function:
8033 */
8034 if (!atomic_dec_and_test(&old_rd->refcount))
8035 old_rd = NULL;
57d885fe
GH
8036 }
8037
8038 atomic_inc(&rd->refcount);
8039 rq->rd = rd;
8040
c6c4927b 8041 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8042 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8043 set_rq_online(rq);
57d885fe 8044
05fa785c 8045 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8046
8047 if (old_rd)
8048 free_rootdomain(old_rd);
57d885fe
GH
8049}
8050
fd5e1b5d 8051static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8052{
36b7b6d4
PE
8053 gfp_t gfp = GFP_KERNEL;
8054
57d885fe
GH
8055 memset(rd, 0, sizeof(*rd));
8056
36b7b6d4
PE
8057 if (bootmem)
8058 gfp = GFP_NOWAIT;
c6c4927b 8059
36b7b6d4 8060 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8061 goto out;
36b7b6d4 8062 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8063 goto free_span;
36b7b6d4 8064 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8065 goto free_online;
6e0534f2 8066
0fb53029 8067 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8068 goto free_rto_mask;
c6c4927b 8069 return 0;
6e0534f2 8070
68e74568
RR
8071free_rto_mask:
8072 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8073free_online:
8074 free_cpumask_var(rd->online);
8075free_span:
8076 free_cpumask_var(rd->span);
0c910d28 8077out:
c6c4927b 8078 return -ENOMEM;
57d885fe
GH
8079}
8080
8081static void init_defrootdomain(void)
8082{
c6c4927b
RR
8083 init_rootdomain(&def_root_domain, true);
8084
57d885fe
GH
8085 atomic_set(&def_root_domain.refcount, 1);
8086}
8087
dc938520 8088static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8089{
8090 struct root_domain *rd;
8091
8092 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8093 if (!rd)
8094 return NULL;
8095
c6c4927b
RR
8096 if (init_rootdomain(rd, false) != 0) {
8097 kfree(rd);
8098 return NULL;
8099 }
57d885fe
GH
8100
8101 return rd;
8102}
8103
1da177e4 8104/*
0eab9146 8105 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8106 * hold the hotplug lock.
8107 */
0eab9146
IM
8108static void
8109cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8110{
70b97a7f 8111 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8112 struct sched_domain *tmp;
8113
8114 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8115 for (tmp = sd; tmp; ) {
245af2c7
SS
8116 struct sched_domain *parent = tmp->parent;
8117 if (!parent)
8118 break;
f29c9b1c 8119
1a848870 8120 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8121 tmp->parent = parent->parent;
1a848870
SS
8122 if (parent->parent)
8123 parent->parent->child = tmp;
f29c9b1c
LZ
8124 } else
8125 tmp = tmp->parent;
245af2c7
SS
8126 }
8127
1a848870 8128 if (sd && sd_degenerate(sd)) {
245af2c7 8129 sd = sd->parent;
1a848870
SS
8130 if (sd)
8131 sd->child = NULL;
8132 }
1da177e4
LT
8133
8134 sched_domain_debug(sd, cpu);
8135
57d885fe 8136 rq_attach_root(rq, rd);
674311d5 8137 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8138}
8139
8140/* cpus with isolated domains */
dcc30a35 8141static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8142
8143/* Setup the mask of cpus configured for isolated domains */
8144static int __init isolated_cpu_setup(char *str)
8145{
bdddd296 8146 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8147 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8148 return 1;
8149}
8150
8927f494 8151__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8152
8153/*
6711cab4
SS
8154 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8155 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8156 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8157 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8158 *
8159 * init_sched_build_groups will build a circular linked list of the groups
8160 * covered by the given span, and will set each group's ->cpumask correctly,
8161 * and ->cpu_power to 0.
8162 */
a616058b 8163static void
96f874e2
RR
8164init_sched_build_groups(const struct cpumask *span,
8165 const struct cpumask *cpu_map,
8166 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8167 struct sched_group **sg,
96f874e2
RR
8168 struct cpumask *tmpmask),
8169 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8170{
8171 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8172 int i;
8173
96f874e2 8174 cpumask_clear(covered);
7c16ec58 8175
abcd083a 8176 for_each_cpu(i, span) {
6711cab4 8177 struct sched_group *sg;
7c16ec58 8178 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8179 int j;
8180
758b2cdc 8181 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8182 continue;
8183
758b2cdc 8184 cpumask_clear(sched_group_cpus(sg));
18a3885f 8185 sg->cpu_power = 0;
1da177e4 8186
abcd083a 8187 for_each_cpu(j, span) {
7c16ec58 8188 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8189 continue;
8190
96f874e2 8191 cpumask_set_cpu(j, covered);
758b2cdc 8192 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8193 }
8194 if (!first)
8195 first = sg;
8196 if (last)
8197 last->next = sg;
8198 last = sg;
8199 }
8200 last->next = first;
8201}
8202
9c1cfda2 8203#define SD_NODES_PER_DOMAIN 16
1da177e4 8204
9c1cfda2 8205#ifdef CONFIG_NUMA
198e2f18 8206
9c1cfda2
JH
8207/**
8208 * find_next_best_node - find the next node to include in a sched_domain
8209 * @node: node whose sched_domain we're building
8210 * @used_nodes: nodes already in the sched_domain
8211 *
41a2d6cf 8212 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8213 * finds the closest node not already in the @used_nodes map.
8214 *
8215 * Should use nodemask_t.
8216 */
c5f59f08 8217static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8218{
8219 int i, n, val, min_val, best_node = 0;
8220
8221 min_val = INT_MAX;
8222
076ac2af 8223 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8224 /* Start at @node */
076ac2af 8225 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8226
8227 if (!nr_cpus_node(n))
8228 continue;
8229
8230 /* Skip already used nodes */
c5f59f08 8231 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8232 continue;
8233
8234 /* Simple min distance search */
8235 val = node_distance(node, n);
8236
8237 if (val < min_val) {
8238 min_val = val;
8239 best_node = n;
8240 }
8241 }
8242
c5f59f08 8243 node_set(best_node, *used_nodes);
9c1cfda2
JH
8244 return best_node;
8245}
8246
8247/**
8248 * sched_domain_node_span - get a cpumask for a node's sched_domain
8249 * @node: node whose cpumask we're constructing
73486722 8250 * @span: resulting cpumask
9c1cfda2 8251 *
41a2d6cf 8252 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8253 * should be one that prevents unnecessary balancing, but also spreads tasks
8254 * out optimally.
8255 */
96f874e2 8256static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8257{
c5f59f08 8258 nodemask_t used_nodes;
48f24c4d 8259 int i;
9c1cfda2 8260
6ca09dfc 8261 cpumask_clear(span);
c5f59f08 8262 nodes_clear(used_nodes);
9c1cfda2 8263
6ca09dfc 8264 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8265 node_set(node, used_nodes);
9c1cfda2
JH
8266
8267 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8268 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8269
6ca09dfc 8270 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8271 }
9c1cfda2 8272}
6d6bc0ad 8273#endif /* CONFIG_NUMA */
9c1cfda2 8274
5c45bf27 8275int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8276
6c99e9ad
RR
8277/*
8278 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8279 *
8280 * ( See the the comments in include/linux/sched.h:struct sched_group
8281 * and struct sched_domain. )
6c99e9ad
RR
8282 */
8283struct static_sched_group {
8284 struct sched_group sg;
8285 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8286};
8287
8288struct static_sched_domain {
8289 struct sched_domain sd;
8290 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8291};
8292
49a02c51
AH
8293struct s_data {
8294#ifdef CONFIG_NUMA
8295 int sd_allnodes;
8296 cpumask_var_t domainspan;
8297 cpumask_var_t covered;
8298 cpumask_var_t notcovered;
8299#endif
8300 cpumask_var_t nodemask;
8301 cpumask_var_t this_sibling_map;
8302 cpumask_var_t this_core_map;
8303 cpumask_var_t send_covered;
8304 cpumask_var_t tmpmask;
8305 struct sched_group **sched_group_nodes;
8306 struct root_domain *rd;
8307};
8308
2109b99e
AH
8309enum s_alloc {
8310 sa_sched_groups = 0,
8311 sa_rootdomain,
8312 sa_tmpmask,
8313 sa_send_covered,
8314 sa_this_core_map,
8315 sa_this_sibling_map,
8316 sa_nodemask,
8317 sa_sched_group_nodes,
8318#ifdef CONFIG_NUMA
8319 sa_notcovered,
8320 sa_covered,
8321 sa_domainspan,
8322#endif
8323 sa_none,
8324};
8325
9c1cfda2 8326/*
48f24c4d 8327 * SMT sched-domains:
9c1cfda2 8328 */
1da177e4 8329#ifdef CONFIG_SCHED_SMT
6c99e9ad 8330static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8331static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8332
41a2d6cf 8333static int
96f874e2
RR
8334cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8335 struct sched_group **sg, struct cpumask *unused)
1da177e4 8336{
6711cab4 8337 if (sg)
1871e52c 8338 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8339 return cpu;
8340}
6d6bc0ad 8341#endif /* CONFIG_SCHED_SMT */
1da177e4 8342
48f24c4d
IM
8343/*
8344 * multi-core sched-domains:
8345 */
1e9f28fa 8346#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8347static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8348static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8349#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8350
8351#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8352static int
96f874e2
RR
8353cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8354 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8355{
6711cab4 8356 int group;
7c16ec58 8357
c69fc56d 8358 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8359 group = cpumask_first(mask);
6711cab4 8360 if (sg)
6c99e9ad 8361 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8362 return group;
1e9f28fa
SS
8363}
8364#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8365static int
96f874e2
RR
8366cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8367 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8368{
6711cab4 8369 if (sg)
6c99e9ad 8370 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8371 return cpu;
8372}
8373#endif
8374
6c99e9ad
RR
8375static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8376static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8377
41a2d6cf 8378static int
96f874e2
RR
8379cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8380 struct sched_group **sg, struct cpumask *mask)
1da177e4 8381{
6711cab4 8382 int group;
48f24c4d 8383#ifdef CONFIG_SCHED_MC
6ca09dfc 8384 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8385 group = cpumask_first(mask);
1e9f28fa 8386#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8387 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8388 group = cpumask_first(mask);
1da177e4 8389#else
6711cab4 8390 group = cpu;
1da177e4 8391#endif
6711cab4 8392 if (sg)
6c99e9ad 8393 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8394 return group;
1da177e4
LT
8395}
8396
8397#ifdef CONFIG_NUMA
1da177e4 8398/*
9c1cfda2
JH
8399 * The init_sched_build_groups can't handle what we want to do with node
8400 * groups, so roll our own. Now each node has its own list of groups which
8401 * gets dynamically allocated.
1da177e4 8402 */
62ea9ceb 8403static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8404static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8405
62ea9ceb 8406static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8407static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8408
96f874e2
RR
8409static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8410 struct sched_group **sg,
8411 struct cpumask *nodemask)
9c1cfda2 8412{
6711cab4
SS
8413 int group;
8414
6ca09dfc 8415 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8416 group = cpumask_first(nodemask);
6711cab4
SS
8417
8418 if (sg)
6c99e9ad 8419 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8420 return group;
1da177e4 8421}
6711cab4 8422
08069033
SS
8423static void init_numa_sched_groups_power(struct sched_group *group_head)
8424{
8425 struct sched_group *sg = group_head;
8426 int j;
8427
8428 if (!sg)
8429 return;
3a5c359a 8430 do {
758b2cdc 8431 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8432 struct sched_domain *sd;
08069033 8433
6c99e9ad 8434 sd = &per_cpu(phys_domains, j).sd;
13318a71 8435 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8436 /*
8437 * Only add "power" once for each
8438 * physical package.
8439 */
8440 continue;
8441 }
08069033 8442
18a3885f 8443 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8444 }
8445 sg = sg->next;
8446 } while (sg != group_head);
08069033 8447}
0601a88d
AH
8448
8449static int build_numa_sched_groups(struct s_data *d,
8450 const struct cpumask *cpu_map, int num)
8451{
8452 struct sched_domain *sd;
8453 struct sched_group *sg, *prev;
8454 int n, j;
8455
8456 cpumask_clear(d->covered);
8457 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8458 if (cpumask_empty(d->nodemask)) {
8459 d->sched_group_nodes[num] = NULL;
8460 goto out;
8461 }
8462
8463 sched_domain_node_span(num, d->domainspan);
8464 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8465
8466 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8467 GFP_KERNEL, num);
8468 if (!sg) {
663997d4 8469 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8470 return -ENOMEM;
8471 }
8472 d->sched_group_nodes[num] = sg;
8473
8474 for_each_cpu(j, d->nodemask) {
8475 sd = &per_cpu(node_domains, j).sd;
8476 sd->groups = sg;
8477 }
8478
18a3885f 8479 sg->cpu_power = 0;
0601a88d
AH
8480 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8481 sg->next = sg;
8482 cpumask_or(d->covered, d->covered, d->nodemask);
8483
8484 prev = sg;
8485 for (j = 0; j < nr_node_ids; j++) {
8486 n = (num + j) % nr_node_ids;
8487 cpumask_complement(d->notcovered, d->covered);
8488 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8489 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8490 if (cpumask_empty(d->tmpmask))
8491 break;
8492 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8493 if (cpumask_empty(d->tmpmask))
8494 continue;
8495 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8496 GFP_KERNEL, num);
8497 if (!sg) {
663997d4
JP
8498 pr_warning("Can not alloc domain group for node %d\n",
8499 j);
0601a88d
AH
8500 return -ENOMEM;
8501 }
18a3885f 8502 sg->cpu_power = 0;
0601a88d
AH
8503 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8504 sg->next = prev->next;
8505 cpumask_or(d->covered, d->covered, d->tmpmask);
8506 prev->next = sg;
8507 prev = sg;
8508 }
8509out:
8510 return 0;
8511}
6d6bc0ad 8512#endif /* CONFIG_NUMA */
1da177e4 8513
a616058b 8514#ifdef CONFIG_NUMA
51888ca2 8515/* Free memory allocated for various sched_group structures */
96f874e2
RR
8516static void free_sched_groups(const struct cpumask *cpu_map,
8517 struct cpumask *nodemask)
51888ca2 8518{
a616058b 8519 int cpu, i;
51888ca2 8520
abcd083a 8521 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8522 struct sched_group **sched_group_nodes
8523 = sched_group_nodes_bycpu[cpu];
8524
51888ca2
SV
8525 if (!sched_group_nodes)
8526 continue;
8527
076ac2af 8528 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8529 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8530
6ca09dfc 8531 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8532 if (cpumask_empty(nodemask))
51888ca2
SV
8533 continue;
8534
8535 if (sg == NULL)
8536 continue;
8537 sg = sg->next;
8538next_sg:
8539 oldsg = sg;
8540 sg = sg->next;
8541 kfree(oldsg);
8542 if (oldsg != sched_group_nodes[i])
8543 goto next_sg;
8544 }
8545 kfree(sched_group_nodes);
8546 sched_group_nodes_bycpu[cpu] = NULL;
8547 }
51888ca2 8548}
6d6bc0ad 8549#else /* !CONFIG_NUMA */
96f874e2
RR
8550static void free_sched_groups(const struct cpumask *cpu_map,
8551 struct cpumask *nodemask)
a616058b
SS
8552{
8553}
6d6bc0ad 8554#endif /* CONFIG_NUMA */
51888ca2 8555
89c4710e
SS
8556/*
8557 * Initialize sched groups cpu_power.
8558 *
8559 * cpu_power indicates the capacity of sched group, which is used while
8560 * distributing the load between different sched groups in a sched domain.
8561 * Typically cpu_power for all the groups in a sched domain will be same unless
8562 * there are asymmetries in the topology. If there are asymmetries, group
8563 * having more cpu_power will pickup more load compared to the group having
8564 * less cpu_power.
89c4710e
SS
8565 */
8566static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8567{
8568 struct sched_domain *child;
8569 struct sched_group *group;
f93e65c1
PZ
8570 long power;
8571 int weight;
89c4710e
SS
8572
8573 WARN_ON(!sd || !sd->groups);
8574
13318a71 8575 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8576 return;
8577
8578 child = sd->child;
8579
18a3885f 8580 sd->groups->cpu_power = 0;
5517d86b 8581
f93e65c1
PZ
8582 if (!child) {
8583 power = SCHED_LOAD_SCALE;
8584 weight = cpumask_weight(sched_domain_span(sd));
8585 /*
8586 * SMT siblings share the power of a single core.
a52bfd73
PZ
8587 * Usually multiple threads get a better yield out of
8588 * that one core than a single thread would have,
8589 * reflect that in sd->smt_gain.
f93e65c1 8590 */
a52bfd73
PZ
8591 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8592 power *= sd->smt_gain;
f93e65c1 8593 power /= weight;
a52bfd73
PZ
8594 power >>= SCHED_LOAD_SHIFT;
8595 }
18a3885f 8596 sd->groups->cpu_power += power;
89c4710e
SS
8597 return;
8598 }
8599
89c4710e 8600 /*
f93e65c1 8601 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8602 */
8603 group = child->groups;
8604 do {
18a3885f 8605 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8606 group = group->next;
8607 } while (group != child->groups);
8608}
8609
7c16ec58
MT
8610/*
8611 * Initializers for schedule domains
8612 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8613 */
8614
a5d8c348
IM
8615#ifdef CONFIG_SCHED_DEBUG
8616# define SD_INIT_NAME(sd, type) sd->name = #type
8617#else
8618# define SD_INIT_NAME(sd, type) do { } while (0)
8619#endif
8620
7c16ec58 8621#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8622
7c16ec58
MT
8623#define SD_INIT_FUNC(type) \
8624static noinline void sd_init_##type(struct sched_domain *sd) \
8625{ \
8626 memset(sd, 0, sizeof(*sd)); \
8627 *sd = SD_##type##_INIT; \
1d3504fc 8628 sd->level = SD_LV_##type; \
a5d8c348 8629 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8630}
8631
8632SD_INIT_FUNC(CPU)
8633#ifdef CONFIG_NUMA
8634 SD_INIT_FUNC(ALLNODES)
8635 SD_INIT_FUNC(NODE)
8636#endif
8637#ifdef CONFIG_SCHED_SMT
8638 SD_INIT_FUNC(SIBLING)
8639#endif
8640#ifdef CONFIG_SCHED_MC
8641 SD_INIT_FUNC(MC)
8642#endif
8643
1d3504fc
HS
8644static int default_relax_domain_level = -1;
8645
8646static int __init setup_relax_domain_level(char *str)
8647{
30e0e178
LZ
8648 unsigned long val;
8649
8650 val = simple_strtoul(str, NULL, 0);
8651 if (val < SD_LV_MAX)
8652 default_relax_domain_level = val;
8653
1d3504fc
HS
8654 return 1;
8655}
8656__setup("relax_domain_level=", setup_relax_domain_level);
8657
8658static void set_domain_attribute(struct sched_domain *sd,
8659 struct sched_domain_attr *attr)
8660{
8661 int request;
8662
8663 if (!attr || attr->relax_domain_level < 0) {
8664 if (default_relax_domain_level < 0)
8665 return;
8666 else
8667 request = default_relax_domain_level;
8668 } else
8669 request = attr->relax_domain_level;
8670 if (request < sd->level) {
8671 /* turn off idle balance on this domain */
c88d5910 8672 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8673 } else {
8674 /* turn on idle balance on this domain */
c88d5910 8675 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8676 }
8677}
8678
2109b99e
AH
8679static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8680 const struct cpumask *cpu_map)
8681{
8682 switch (what) {
8683 case sa_sched_groups:
8684 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8685 d->sched_group_nodes = NULL;
8686 case sa_rootdomain:
8687 free_rootdomain(d->rd); /* fall through */
8688 case sa_tmpmask:
8689 free_cpumask_var(d->tmpmask); /* fall through */
8690 case sa_send_covered:
8691 free_cpumask_var(d->send_covered); /* fall through */
8692 case sa_this_core_map:
8693 free_cpumask_var(d->this_core_map); /* fall through */
8694 case sa_this_sibling_map:
8695 free_cpumask_var(d->this_sibling_map); /* fall through */
8696 case sa_nodemask:
8697 free_cpumask_var(d->nodemask); /* fall through */
8698 case sa_sched_group_nodes:
d1b55138 8699#ifdef CONFIG_NUMA
2109b99e
AH
8700 kfree(d->sched_group_nodes); /* fall through */
8701 case sa_notcovered:
8702 free_cpumask_var(d->notcovered); /* fall through */
8703 case sa_covered:
8704 free_cpumask_var(d->covered); /* fall through */
8705 case sa_domainspan:
8706 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8707#endif
2109b99e
AH
8708 case sa_none:
8709 break;
8710 }
8711}
3404c8d9 8712
2109b99e
AH
8713static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8714 const struct cpumask *cpu_map)
8715{
3404c8d9 8716#ifdef CONFIG_NUMA
2109b99e
AH
8717 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8718 return sa_none;
8719 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8720 return sa_domainspan;
8721 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8722 return sa_covered;
8723 /* Allocate the per-node list of sched groups */
8724 d->sched_group_nodes = kcalloc(nr_node_ids,
8725 sizeof(struct sched_group *), GFP_KERNEL);
8726 if (!d->sched_group_nodes) {
663997d4 8727 pr_warning("Can not alloc sched group node list\n");
2109b99e 8728 return sa_notcovered;
d1b55138 8729 }
2109b99e 8730 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8731#endif
2109b99e
AH
8732 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8733 return sa_sched_group_nodes;
8734 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8735 return sa_nodemask;
8736 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8737 return sa_this_sibling_map;
8738 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8739 return sa_this_core_map;
8740 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8741 return sa_send_covered;
8742 d->rd = alloc_rootdomain();
8743 if (!d->rd) {
663997d4 8744 pr_warning("Cannot alloc root domain\n");
2109b99e 8745 return sa_tmpmask;
57d885fe 8746 }
2109b99e
AH
8747 return sa_rootdomain;
8748}
57d885fe 8749
7f4588f3
AH
8750static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8751 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8752{
8753 struct sched_domain *sd = NULL;
7c16ec58 8754#ifdef CONFIG_NUMA
7f4588f3 8755 struct sched_domain *parent;
1da177e4 8756
7f4588f3
AH
8757 d->sd_allnodes = 0;
8758 if (cpumask_weight(cpu_map) >
8759 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8760 sd = &per_cpu(allnodes_domains, i).sd;
8761 SD_INIT(sd, ALLNODES);
1d3504fc 8762 set_domain_attribute(sd, attr);
7f4588f3
AH
8763 cpumask_copy(sched_domain_span(sd), cpu_map);
8764 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8765 d->sd_allnodes = 1;
8766 }
8767 parent = sd;
8768
8769 sd = &per_cpu(node_domains, i).sd;
8770 SD_INIT(sd, NODE);
8771 set_domain_attribute(sd, attr);
8772 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8773 sd->parent = parent;
8774 if (parent)
8775 parent->child = sd;
8776 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8777#endif
7f4588f3
AH
8778 return sd;
8779}
1da177e4 8780
87cce662
AH
8781static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8782 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8783 struct sched_domain *parent, int i)
8784{
8785 struct sched_domain *sd;
8786 sd = &per_cpu(phys_domains, i).sd;
8787 SD_INIT(sd, CPU);
8788 set_domain_attribute(sd, attr);
8789 cpumask_copy(sched_domain_span(sd), d->nodemask);
8790 sd->parent = parent;
8791 if (parent)
8792 parent->child = sd;
8793 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8794 return sd;
8795}
1da177e4 8796
410c4081
AH
8797static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8798 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8799 struct sched_domain *parent, int i)
8800{
8801 struct sched_domain *sd = parent;
1e9f28fa 8802#ifdef CONFIG_SCHED_MC
410c4081
AH
8803 sd = &per_cpu(core_domains, i).sd;
8804 SD_INIT(sd, MC);
8805 set_domain_attribute(sd, attr);
8806 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8807 sd->parent = parent;
8808 parent->child = sd;
8809 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8810#endif
410c4081
AH
8811 return sd;
8812}
1e9f28fa 8813
d8173535
AH
8814static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8815 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8816 struct sched_domain *parent, int i)
8817{
8818 struct sched_domain *sd = parent;
1da177e4 8819#ifdef CONFIG_SCHED_SMT
d8173535
AH
8820 sd = &per_cpu(cpu_domains, i).sd;
8821 SD_INIT(sd, SIBLING);
8822 set_domain_attribute(sd, attr);
8823 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8824 sd->parent = parent;
8825 parent->child = sd;
8826 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8827#endif
d8173535
AH
8828 return sd;
8829}
1da177e4 8830
0e8e85c9
AH
8831static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8832 const struct cpumask *cpu_map, int cpu)
8833{
8834 switch (l) {
1da177e4 8835#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8836 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8837 cpumask_and(d->this_sibling_map, cpu_map,
8838 topology_thread_cpumask(cpu));
8839 if (cpu == cpumask_first(d->this_sibling_map))
8840 init_sched_build_groups(d->this_sibling_map, cpu_map,
8841 &cpu_to_cpu_group,
8842 d->send_covered, d->tmpmask);
8843 break;
1da177e4 8844#endif
1e9f28fa 8845#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8846 case SD_LV_MC: /* set up multi-core groups */
8847 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8848 if (cpu == cpumask_first(d->this_core_map))
8849 init_sched_build_groups(d->this_core_map, cpu_map,
8850 &cpu_to_core_group,
8851 d->send_covered, d->tmpmask);
8852 break;
1e9f28fa 8853#endif
86548096
AH
8854 case SD_LV_CPU: /* set up physical groups */
8855 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8856 if (!cpumask_empty(d->nodemask))
8857 init_sched_build_groups(d->nodemask, cpu_map,
8858 &cpu_to_phys_group,
8859 d->send_covered, d->tmpmask);
8860 break;
1da177e4 8861#ifdef CONFIG_NUMA
de616e36
AH
8862 case SD_LV_ALLNODES:
8863 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8864 d->send_covered, d->tmpmask);
8865 break;
8866#endif
0e8e85c9
AH
8867 default:
8868 break;
7c16ec58 8869 }
0e8e85c9 8870}
9c1cfda2 8871
2109b99e
AH
8872/*
8873 * Build sched domains for a given set of cpus and attach the sched domains
8874 * to the individual cpus
8875 */
8876static int __build_sched_domains(const struct cpumask *cpu_map,
8877 struct sched_domain_attr *attr)
8878{
8879 enum s_alloc alloc_state = sa_none;
8880 struct s_data d;
294b0c96 8881 struct sched_domain *sd;
2109b99e 8882 int i;
7c16ec58 8883#ifdef CONFIG_NUMA
2109b99e 8884 d.sd_allnodes = 0;
7c16ec58 8885#endif
9c1cfda2 8886
2109b99e
AH
8887 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8888 if (alloc_state != sa_rootdomain)
8889 goto error;
8890 alloc_state = sa_sched_groups;
9c1cfda2 8891
1da177e4 8892 /*
1a20ff27 8893 * Set up domains for cpus specified by the cpu_map.
1da177e4 8894 */
abcd083a 8895 for_each_cpu(i, cpu_map) {
49a02c51
AH
8896 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8897 cpu_map);
9761eea8 8898
7f4588f3 8899 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8900 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8901 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8902 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8903 }
9c1cfda2 8904
abcd083a 8905 for_each_cpu(i, cpu_map) {
0e8e85c9 8906 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8907 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8908 }
9c1cfda2 8909
1da177e4 8910 /* Set up physical groups */
86548096
AH
8911 for (i = 0; i < nr_node_ids; i++)
8912 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8913
1da177e4
LT
8914#ifdef CONFIG_NUMA
8915 /* Set up node groups */
de616e36
AH
8916 if (d.sd_allnodes)
8917 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8918
0601a88d
AH
8919 for (i = 0; i < nr_node_ids; i++)
8920 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8921 goto error;
1da177e4
LT
8922#endif
8923
8924 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8925#ifdef CONFIG_SCHED_SMT
abcd083a 8926 for_each_cpu(i, cpu_map) {
294b0c96 8927 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8928 init_sched_groups_power(i, sd);
5c45bf27 8929 }
1da177e4 8930#endif
1e9f28fa 8931#ifdef CONFIG_SCHED_MC
abcd083a 8932 for_each_cpu(i, cpu_map) {
294b0c96 8933 sd = &per_cpu(core_domains, i).sd;
89c4710e 8934 init_sched_groups_power(i, sd);
5c45bf27
SS
8935 }
8936#endif
1e9f28fa 8937
abcd083a 8938 for_each_cpu(i, cpu_map) {
294b0c96 8939 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8940 init_sched_groups_power(i, sd);
1da177e4
LT
8941 }
8942
9c1cfda2 8943#ifdef CONFIG_NUMA
076ac2af 8944 for (i = 0; i < nr_node_ids; i++)
49a02c51 8945 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8946
49a02c51 8947 if (d.sd_allnodes) {
6711cab4 8948 struct sched_group *sg;
f712c0c7 8949
96f874e2 8950 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8951 d.tmpmask);
f712c0c7
SS
8952 init_numa_sched_groups_power(sg);
8953 }
9c1cfda2
JH
8954#endif
8955
1da177e4 8956 /* Attach the domains */
abcd083a 8957 for_each_cpu(i, cpu_map) {
1da177e4 8958#ifdef CONFIG_SCHED_SMT
6c99e9ad 8959 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8960#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8961 sd = &per_cpu(core_domains, i).sd;
1da177e4 8962#else
6c99e9ad 8963 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8964#endif
49a02c51 8965 cpu_attach_domain(sd, d.rd, i);
1da177e4 8966 }
51888ca2 8967
2109b99e
AH
8968 d.sched_group_nodes = NULL; /* don't free this we still need it */
8969 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8970 return 0;
51888ca2 8971
51888ca2 8972error:
2109b99e
AH
8973 __free_domain_allocs(&d, alloc_state, cpu_map);
8974 return -ENOMEM;
1da177e4 8975}
029190c5 8976
96f874e2 8977static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8978{
8979 return __build_sched_domains(cpu_map, NULL);
8980}
8981
acc3f5d7 8982static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8983static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8984static struct sched_domain_attr *dattr_cur;
8985 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8986
8987/*
8988 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8989 * cpumask) fails, then fallback to a single sched domain,
8990 * as determined by the single cpumask fallback_doms.
029190c5 8991 */
4212823f 8992static cpumask_var_t fallback_doms;
029190c5 8993
ee79d1bd
HC
8994/*
8995 * arch_update_cpu_topology lets virtualized architectures update the
8996 * cpu core maps. It is supposed to return 1 if the topology changed
8997 * or 0 if it stayed the same.
8998 */
8999int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 9000{
ee79d1bd 9001 return 0;
22e52b07
HC
9002}
9003
acc3f5d7
RR
9004cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9005{
9006 int i;
9007 cpumask_var_t *doms;
9008
9009 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9010 if (!doms)
9011 return NULL;
9012 for (i = 0; i < ndoms; i++) {
9013 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9014 free_sched_domains(doms, i);
9015 return NULL;
9016 }
9017 }
9018 return doms;
9019}
9020
9021void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9022{
9023 unsigned int i;
9024 for (i = 0; i < ndoms; i++)
9025 free_cpumask_var(doms[i]);
9026 kfree(doms);
9027}
9028
1a20ff27 9029/*
41a2d6cf 9030 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9031 * For now this just excludes isolated cpus, but could be used to
9032 * exclude other special cases in the future.
1a20ff27 9033 */
96f874e2 9034static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9035{
7378547f
MM
9036 int err;
9037
22e52b07 9038 arch_update_cpu_topology();
029190c5 9039 ndoms_cur = 1;
acc3f5d7 9040 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9041 if (!doms_cur)
acc3f5d7
RR
9042 doms_cur = &fallback_doms;
9043 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9044 dattr_cur = NULL;
acc3f5d7 9045 err = build_sched_domains(doms_cur[0]);
6382bc90 9046 register_sched_domain_sysctl();
7378547f
MM
9047
9048 return err;
1a20ff27
DG
9049}
9050
96f874e2
RR
9051static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9052 struct cpumask *tmpmask)
1da177e4 9053{
7c16ec58 9054 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9055}
1da177e4 9056
1a20ff27
DG
9057/*
9058 * Detach sched domains from a group of cpus specified in cpu_map
9059 * These cpus will now be attached to the NULL domain
9060 */
96f874e2 9061static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9062{
96f874e2
RR
9063 /* Save because hotplug lock held. */
9064 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9065 int i;
9066
abcd083a 9067 for_each_cpu(i, cpu_map)
57d885fe 9068 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9069 synchronize_sched();
96f874e2 9070 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9071}
9072
1d3504fc
HS
9073/* handle null as "default" */
9074static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9075 struct sched_domain_attr *new, int idx_new)
9076{
9077 struct sched_domain_attr tmp;
9078
9079 /* fast path */
9080 if (!new && !cur)
9081 return 1;
9082
9083 tmp = SD_ATTR_INIT;
9084 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9085 new ? (new + idx_new) : &tmp,
9086 sizeof(struct sched_domain_attr));
9087}
9088
029190c5
PJ
9089/*
9090 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9091 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9092 * doms_new[] to the current sched domain partitioning, doms_cur[].
9093 * It destroys each deleted domain and builds each new domain.
9094 *
acc3f5d7 9095 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9096 * The masks don't intersect (don't overlap.) We should setup one
9097 * sched domain for each mask. CPUs not in any of the cpumasks will
9098 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9099 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9100 * it as it is.
9101 *
acc3f5d7
RR
9102 * The passed in 'doms_new' should be allocated using
9103 * alloc_sched_domains. This routine takes ownership of it and will
9104 * free_sched_domains it when done with it. If the caller failed the
9105 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9106 * and partition_sched_domains() will fallback to the single partition
9107 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9108 *
96f874e2 9109 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9110 * ndoms_new == 0 is a special case for destroying existing domains,
9111 * and it will not create the default domain.
dfb512ec 9112 *
029190c5
PJ
9113 * Call with hotplug lock held
9114 */
acc3f5d7 9115void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9116 struct sched_domain_attr *dattr_new)
029190c5 9117{
dfb512ec 9118 int i, j, n;
d65bd5ec 9119 int new_topology;
029190c5 9120
712555ee 9121 mutex_lock(&sched_domains_mutex);
a1835615 9122
7378547f
MM
9123 /* always unregister in case we don't destroy any domains */
9124 unregister_sched_domain_sysctl();
9125
d65bd5ec
HC
9126 /* Let architecture update cpu core mappings. */
9127 new_topology = arch_update_cpu_topology();
9128
dfb512ec 9129 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9130
9131 /* Destroy deleted domains */
9132 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9133 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9134 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9135 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9136 goto match1;
9137 }
9138 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9139 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9140match1:
9141 ;
9142 }
9143
e761b772
MK
9144 if (doms_new == NULL) {
9145 ndoms_cur = 0;
acc3f5d7 9146 doms_new = &fallback_doms;
6ad4c188 9147 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9148 WARN_ON_ONCE(dattr_new);
e761b772
MK
9149 }
9150
029190c5
PJ
9151 /* Build new domains */
9152 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9153 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9154 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9155 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9156 goto match2;
9157 }
9158 /* no match - add a new doms_new */
acc3f5d7 9159 __build_sched_domains(doms_new[i],
1d3504fc 9160 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9161match2:
9162 ;
9163 }
9164
9165 /* Remember the new sched domains */
acc3f5d7
RR
9166 if (doms_cur != &fallback_doms)
9167 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9168 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9169 doms_cur = doms_new;
1d3504fc 9170 dattr_cur = dattr_new;
029190c5 9171 ndoms_cur = ndoms_new;
7378547f
MM
9172
9173 register_sched_domain_sysctl();
a1835615 9174
712555ee 9175 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9176}
9177
5c45bf27 9178#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9179static void arch_reinit_sched_domains(void)
5c45bf27 9180{
95402b38 9181 get_online_cpus();
dfb512ec
MK
9182
9183 /* Destroy domains first to force the rebuild */
9184 partition_sched_domains(0, NULL, NULL);
9185
e761b772 9186 rebuild_sched_domains();
95402b38 9187 put_online_cpus();
5c45bf27
SS
9188}
9189
9190static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9191{
afb8a9b7 9192 unsigned int level = 0;
5c45bf27 9193
afb8a9b7
GS
9194 if (sscanf(buf, "%u", &level) != 1)
9195 return -EINVAL;
9196
9197 /*
9198 * level is always be positive so don't check for
9199 * level < POWERSAVINGS_BALANCE_NONE which is 0
9200 * What happens on 0 or 1 byte write,
9201 * need to check for count as well?
9202 */
9203
9204 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9205 return -EINVAL;
9206
9207 if (smt)
afb8a9b7 9208 sched_smt_power_savings = level;
5c45bf27 9209 else
afb8a9b7 9210 sched_mc_power_savings = level;
5c45bf27 9211
c70f22d2 9212 arch_reinit_sched_domains();
5c45bf27 9213
c70f22d2 9214 return count;
5c45bf27
SS
9215}
9216
5c45bf27 9217#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9218static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9219 char *page)
5c45bf27
SS
9220{
9221 return sprintf(page, "%u\n", sched_mc_power_savings);
9222}
f718cd4a 9223static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9224 const char *buf, size_t count)
5c45bf27
SS
9225{
9226 return sched_power_savings_store(buf, count, 0);
9227}
f718cd4a
AK
9228static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9229 sched_mc_power_savings_show,
9230 sched_mc_power_savings_store);
5c45bf27
SS
9231#endif
9232
9233#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9234static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9235 char *page)
5c45bf27
SS
9236{
9237 return sprintf(page, "%u\n", sched_smt_power_savings);
9238}
f718cd4a 9239static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9240 const char *buf, size_t count)
5c45bf27
SS
9241{
9242 return sched_power_savings_store(buf, count, 1);
9243}
f718cd4a
AK
9244static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9245 sched_smt_power_savings_show,
6707de00
AB
9246 sched_smt_power_savings_store);
9247#endif
9248
39aac648 9249int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9250{
9251 int err = 0;
9252
9253#ifdef CONFIG_SCHED_SMT
9254 if (smt_capable())
9255 err = sysfs_create_file(&cls->kset.kobj,
9256 &attr_sched_smt_power_savings.attr);
9257#endif
9258#ifdef CONFIG_SCHED_MC
9259 if (!err && mc_capable())
9260 err = sysfs_create_file(&cls->kset.kobj,
9261 &attr_sched_mc_power_savings.attr);
9262#endif
9263 return err;
9264}
6d6bc0ad 9265#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9266
e761b772 9267#ifndef CONFIG_CPUSETS
1da177e4 9268/*
e761b772
MK
9269 * Add online and remove offline CPUs from the scheduler domains.
9270 * When cpusets are enabled they take over this function.
1da177e4
LT
9271 */
9272static int update_sched_domains(struct notifier_block *nfb,
9273 unsigned long action, void *hcpu)
e761b772
MK
9274{
9275 switch (action) {
9276 case CPU_ONLINE:
9277 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9278 case CPU_DOWN_PREPARE:
9279 case CPU_DOWN_PREPARE_FROZEN:
9280 case CPU_DOWN_FAILED:
9281 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9282 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9283 return NOTIFY_OK;
9284
9285 default:
9286 return NOTIFY_DONE;
9287 }
9288}
9289#endif
9290
9291static int update_runtime(struct notifier_block *nfb,
9292 unsigned long action, void *hcpu)
1da177e4 9293{
7def2be1
PZ
9294 int cpu = (int)(long)hcpu;
9295
1da177e4 9296 switch (action) {
1da177e4 9297 case CPU_DOWN_PREPARE:
8bb78442 9298 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9299 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9300 return NOTIFY_OK;
9301
1da177e4 9302 case CPU_DOWN_FAILED:
8bb78442 9303 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9304 case CPU_ONLINE:
8bb78442 9305 case CPU_ONLINE_FROZEN:
7def2be1 9306 enable_runtime(cpu_rq(cpu));
e761b772
MK
9307 return NOTIFY_OK;
9308
1da177e4
LT
9309 default:
9310 return NOTIFY_DONE;
9311 }
1da177e4 9312}
1da177e4
LT
9313
9314void __init sched_init_smp(void)
9315{
dcc30a35
RR
9316 cpumask_var_t non_isolated_cpus;
9317
9318 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9319 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9320
434d53b0
MT
9321#if defined(CONFIG_NUMA)
9322 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9323 GFP_KERNEL);
9324 BUG_ON(sched_group_nodes_bycpu == NULL);
9325#endif
95402b38 9326 get_online_cpus();
712555ee 9327 mutex_lock(&sched_domains_mutex);
6ad4c188 9328 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9329 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9330 if (cpumask_empty(non_isolated_cpus))
9331 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9332 mutex_unlock(&sched_domains_mutex);
95402b38 9333 put_online_cpus();
e761b772
MK
9334
9335#ifndef CONFIG_CPUSETS
1da177e4
LT
9336 /* XXX: Theoretical race here - CPU may be hotplugged now */
9337 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9338#endif
9339
9340 /* RT runtime code needs to handle some hotplug events */
9341 hotcpu_notifier(update_runtime, 0);
9342
b328ca18 9343 init_hrtick();
5c1e1767
NP
9344
9345 /* Move init over to a non-isolated CPU */
dcc30a35 9346 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9347 BUG();
19978ca6 9348 sched_init_granularity();
dcc30a35 9349 free_cpumask_var(non_isolated_cpus);
4212823f 9350
0e3900e6 9351 init_sched_rt_class();
1da177e4
LT
9352}
9353#else
9354void __init sched_init_smp(void)
9355{
19978ca6 9356 sched_init_granularity();
1da177e4
LT
9357}
9358#endif /* CONFIG_SMP */
9359
cd1bb94b
AB
9360const_debug unsigned int sysctl_timer_migration = 1;
9361
1da177e4
LT
9362int in_sched_functions(unsigned long addr)
9363{
1da177e4
LT
9364 return in_lock_functions(addr) ||
9365 (addr >= (unsigned long)__sched_text_start
9366 && addr < (unsigned long)__sched_text_end);
9367}
9368
a9957449 9369static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9370{
9371 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9372 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9373#ifdef CONFIG_FAIR_GROUP_SCHED
9374 cfs_rq->rq = rq;
9375#endif
67e9fb2a 9376 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9377}
9378
fa85ae24
PZ
9379static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9380{
9381 struct rt_prio_array *array;
9382 int i;
9383
9384 array = &rt_rq->active;
9385 for (i = 0; i < MAX_RT_PRIO; i++) {
9386 INIT_LIST_HEAD(array->queue + i);
9387 __clear_bit(i, array->bitmap);
9388 }
9389 /* delimiter for bitsearch: */
9390 __set_bit(MAX_RT_PRIO, array->bitmap);
9391
052f1dc7 9392#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9393 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9394#ifdef CONFIG_SMP
e864c499 9395 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9396#endif
48d5e258 9397#endif
fa85ae24
PZ
9398#ifdef CONFIG_SMP
9399 rt_rq->rt_nr_migratory = 0;
fa85ae24 9400 rt_rq->overloaded = 0;
05fa785c 9401 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9402#endif
9403
9404 rt_rq->rt_time = 0;
9405 rt_rq->rt_throttled = 0;
ac086bc2 9406 rt_rq->rt_runtime = 0;
0986b11b 9407 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9408
052f1dc7 9409#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9410 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9411 rt_rq->rq = rq;
9412#endif
fa85ae24
PZ
9413}
9414
6f505b16 9415#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9416static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9417 struct sched_entity *se, int cpu, int add,
9418 struct sched_entity *parent)
6f505b16 9419{
ec7dc8ac 9420 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9421 tg->cfs_rq[cpu] = cfs_rq;
9422 init_cfs_rq(cfs_rq, rq);
9423 cfs_rq->tg = tg;
9424 if (add)
9425 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9426
9427 tg->se[cpu] = se;
354d60c2
DG
9428 /* se could be NULL for init_task_group */
9429 if (!se)
9430 return;
9431
ec7dc8ac
DG
9432 if (!parent)
9433 se->cfs_rq = &rq->cfs;
9434 else
9435 se->cfs_rq = parent->my_q;
9436
6f505b16
PZ
9437 se->my_q = cfs_rq;
9438 se->load.weight = tg->shares;
e05510d0 9439 se->load.inv_weight = 0;
ec7dc8ac 9440 se->parent = parent;
6f505b16 9441}
052f1dc7 9442#endif
6f505b16 9443
052f1dc7 9444#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9445static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9446 struct sched_rt_entity *rt_se, int cpu, int add,
9447 struct sched_rt_entity *parent)
6f505b16 9448{
ec7dc8ac
DG
9449 struct rq *rq = cpu_rq(cpu);
9450
6f505b16
PZ
9451 tg->rt_rq[cpu] = rt_rq;
9452 init_rt_rq(rt_rq, rq);
9453 rt_rq->tg = tg;
9454 rt_rq->rt_se = rt_se;
ac086bc2 9455 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9456 if (add)
9457 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9458
9459 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9460 if (!rt_se)
9461 return;
9462
ec7dc8ac
DG
9463 if (!parent)
9464 rt_se->rt_rq = &rq->rt;
9465 else
9466 rt_se->rt_rq = parent->my_q;
9467
6f505b16 9468 rt_se->my_q = rt_rq;
ec7dc8ac 9469 rt_se->parent = parent;
6f505b16
PZ
9470 INIT_LIST_HEAD(&rt_se->run_list);
9471}
9472#endif
9473
1da177e4
LT
9474void __init sched_init(void)
9475{
dd41f596 9476 int i, j;
434d53b0
MT
9477 unsigned long alloc_size = 0, ptr;
9478
9479#ifdef CONFIG_FAIR_GROUP_SCHED
9480 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9481#endif
9482#ifdef CONFIG_RT_GROUP_SCHED
9483 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9484#endif
9485#ifdef CONFIG_USER_SCHED
9486 alloc_size *= 2;
df7c8e84
RR
9487#endif
9488#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9489 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9490#endif
434d53b0 9491 if (alloc_size) {
36b7b6d4 9492 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9493
9494#ifdef CONFIG_FAIR_GROUP_SCHED
9495 init_task_group.se = (struct sched_entity **)ptr;
9496 ptr += nr_cpu_ids * sizeof(void **);
9497
9498 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9499 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9500
9501#ifdef CONFIG_USER_SCHED
9502 root_task_group.se = (struct sched_entity **)ptr;
9503 ptr += nr_cpu_ids * sizeof(void **);
9504
9505 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9506 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9507#endif /* CONFIG_USER_SCHED */
9508#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9509#ifdef CONFIG_RT_GROUP_SCHED
9510 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9511 ptr += nr_cpu_ids * sizeof(void **);
9512
9513 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9514 ptr += nr_cpu_ids * sizeof(void **);
9515
9516#ifdef CONFIG_USER_SCHED
9517 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9518 ptr += nr_cpu_ids * sizeof(void **);
9519
9520 root_task_group.rt_rq = (struct rt_rq **)ptr;
9521 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9522#endif /* CONFIG_USER_SCHED */
9523#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9524#ifdef CONFIG_CPUMASK_OFFSTACK
9525 for_each_possible_cpu(i) {
9526 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9527 ptr += cpumask_size();
9528 }
9529#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9530 }
dd41f596 9531
57d885fe
GH
9532#ifdef CONFIG_SMP
9533 init_defrootdomain();
9534#endif
9535
d0b27fa7
PZ
9536 init_rt_bandwidth(&def_rt_bandwidth,
9537 global_rt_period(), global_rt_runtime());
9538
9539#ifdef CONFIG_RT_GROUP_SCHED
9540 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9541 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9542#ifdef CONFIG_USER_SCHED
9543 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9544 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9545#endif /* CONFIG_USER_SCHED */
9546#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9547
052f1dc7 9548#ifdef CONFIG_GROUP_SCHED
6f505b16 9549 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9550 INIT_LIST_HEAD(&init_task_group.children);
9551
9552#ifdef CONFIG_USER_SCHED
9553 INIT_LIST_HEAD(&root_task_group.children);
9554 init_task_group.parent = &root_task_group;
9555 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9556#endif /* CONFIG_USER_SCHED */
9557#endif /* CONFIG_GROUP_SCHED */
6f505b16 9558
4a6cc4bd
JK
9559#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9560 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9561 __alignof__(unsigned long));
9562#endif
0a945022 9563 for_each_possible_cpu(i) {
70b97a7f 9564 struct rq *rq;
1da177e4
LT
9565
9566 rq = cpu_rq(i);
05fa785c 9567 raw_spin_lock_init(&rq->lock);
7897986b 9568 rq->nr_running = 0;
dce48a84
TG
9569 rq->calc_load_active = 0;
9570 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9571 init_cfs_rq(&rq->cfs, rq);
6f505b16 9572 init_rt_rq(&rq->rt, rq);
dd41f596 9573#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9574 init_task_group.shares = init_task_group_load;
6f505b16 9575 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9576#ifdef CONFIG_CGROUP_SCHED
9577 /*
9578 * How much cpu bandwidth does init_task_group get?
9579 *
9580 * In case of task-groups formed thr' the cgroup filesystem, it
9581 * gets 100% of the cpu resources in the system. This overall
9582 * system cpu resource is divided among the tasks of
9583 * init_task_group and its child task-groups in a fair manner,
9584 * based on each entity's (task or task-group's) weight
9585 * (se->load.weight).
9586 *
9587 * In other words, if init_task_group has 10 tasks of weight
9588 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9589 * then A0's share of the cpu resource is:
9590 *
0d905bca 9591 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9592 *
9593 * We achieve this by letting init_task_group's tasks sit
9594 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9595 */
ec7dc8ac 9596 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9597#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9598 root_task_group.shares = NICE_0_LOAD;
9599 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9600 /*
9601 * In case of task-groups formed thr' the user id of tasks,
9602 * init_task_group represents tasks belonging to root user.
9603 * Hence it forms a sibling of all subsequent groups formed.
9604 * In this case, init_task_group gets only a fraction of overall
9605 * system cpu resource, based on the weight assigned to root
9606 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9607 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9608 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9609 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9610 */
ec7dc8ac 9611 init_tg_cfs_entry(&init_task_group,
84e9dabf 9612 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9613 &per_cpu(init_sched_entity, i), i, 1,
9614 root_task_group.se[i]);
6f505b16 9615
052f1dc7 9616#endif
354d60c2
DG
9617#endif /* CONFIG_FAIR_GROUP_SCHED */
9618
9619 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9620#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9621 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9622#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9623 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9624#elif defined CONFIG_USER_SCHED
eff766a6 9625 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9626 init_tg_rt_entry(&init_task_group,
1871e52c 9627 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9628 &per_cpu(init_sched_rt_entity, i), i, 1,
9629 root_task_group.rt_se[i]);
354d60c2 9630#endif
dd41f596 9631#endif
1da177e4 9632
dd41f596
IM
9633 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9634 rq->cpu_load[j] = 0;
1da177e4 9635#ifdef CONFIG_SMP
41c7ce9a 9636 rq->sd = NULL;
57d885fe 9637 rq->rd = NULL;
3f029d3c 9638 rq->post_schedule = 0;
1da177e4 9639 rq->active_balance = 0;
dd41f596 9640 rq->next_balance = jiffies;
1da177e4 9641 rq->push_cpu = 0;
0a2966b4 9642 rq->cpu = i;
1f11eb6a 9643 rq->online = 0;
1da177e4 9644 rq->migration_thread = NULL;
eae0c9df
MG
9645 rq->idle_stamp = 0;
9646 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9647 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9648 rq_attach_root(rq, &def_root_domain);
1da177e4 9649#endif
8f4d37ec 9650 init_rq_hrtick(rq);
1da177e4 9651 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9652 }
9653
2dd73a4f 9654 set_load_weight(&init_task);
b50f60ce 9655
e107be36
AK
9656#ifdef CONFIG_PREEMPT_NOTIFIERS
9657 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9658#endif
9659
c9819f45 9660#ifdef CONFIG_SMP
962cf36c 9661 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9662#endif
9663
b50f60ce 9664#ifdef CONFIG_RT_MUTEXES
1d615482 9665 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9666#endif
9667
1da177e4
LT
9668 /*
9669 * The boot idle thread does lazy MMU switching as well:
9670 */
9671 atomic_inc(&init_mm.mm_count);
9672 enter_lazy_tlb(&init_mm, current);
9673
9674 /*
9675 * Make us the idle thread. Technically, schedule() should not be
9676 * called from this thread, however somewhere below it might be,
9677 * but because we are the idle thread, we just pick up running again
9678 * when this runqueue becomes "idle".
9679 */
9680 init_idle(current, smp_processor_id());
dce48a84
TG
9681
9682 calc_load_update = jiffies + LOAD_FREQ;
9683
dd41f596
IM
9684 /*
9685 * During early bootup we pretend to be a normal task:
9686 */
9687 current->sched_class = &fair_sched_class;
6892b75e 9688
6a7b3dc3 9689 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9690 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9691#ifdef CONFIG_SMP
7d1e6a9b 9692#ifdef CONFIG_NO_HZ
49557e62 9693 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9694 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9695#endif
bdddd296
RR
9696 /* May be allocated at isolcpus cmdline parse time */
9697 if (cpu_isolated_map == NULL)
9698 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9699#endif /* SMP */
6a7b3dc3 9700
cdd6c482 9701 perf_event_init();
0d905bca 9702
6892b75e 9703 scheduler_running = 1;
1da177e4
LT
9704}
9705
9706#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9707static inline int preempt_count_equals(int preempt_offset)
9708{
9709 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9710
9711 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9712}
9713
9714void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9715{
48f24c4d 9716#ifdef in_atomic
1da177e4
LT
9717 static unsigned long prev_jiffy; /* ratelimiting */
9718
e4aafea2
FW
9719 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9720 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9721 return;
9722 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9723 return;
9724 prev_jiffy = jiffies;
9725
663997d4
JP
9726 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9727 file, line);
9728 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9729 in_atomic(), irqs_disabled(),
9730 current->pid, current->comm);
aef745fc
IM
9731
9732 debug_show_held_locks(current);
9733 if (irqs_disabled())
9734 print_irqtrace_events(current);
9735 dump_stack();
1da177e4
LT
9736#endif
9737}
9738EXPORT_SYMBOL(__might_sleep);
9739#endif
9740
9741#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9742static void normalize_task(struct rq *rq, struct task_struct *p)
9743{
9744 int on_rq;
3e51f33f 9745
3a5e4dc1
AK
9746 update_rq_clock(rq);
9747 on_rq = p->se.on_rq;
9748 if (on_rq)
9749 deactivate_task(rq, p, 0);
9750 __setscheduler(rq, p, SCHED_NORMAL, 0);
9751 if (on_rq) {
9752 activate_task(rq, p, 0);
9753 resched_task(rq->curr);
9754 }
9755}
9756
1da177e4
LT
9757void normalize_rt_tasks(void)
9758{
a0f98a1c 9759 struct task_struct *g, *p;
1da177e4 9760 unsigned long flags;
70b97a7f 9761 struct rq *rq;
1da177e4 9762
4cf5d77a 9763 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9764 do_each_thread(g, p) {
178be793
IM
9765 /*
9766 * Only normalize user tasks:
9767 */
9768 if (!p->mm)
9769 continue;
9770
6cfb0d5d 9771 p->se.exec_start = 0;
6cfb0d5d 9772#ifdef CONFIG_SCHEDSTATS
dd41f596 9773 p->se.wait_start = 0;
dd41f596 9774 p->se.sleep_start = 0;
dd41f596 9775 p->se.block_start = 0;
6cfb0d5d 9776#endif
dd41f596
IM
9777
9778 if (!rt_task(p)) {
9779 /*
9780 * Renice negative nice level userspace
9781 * tasks back to 0:
9782 */
9783 if (TASK_NICE(p) < 0 && p->mm)
9784 set_user_nice(p, 0);
1da177e4 9785 continue;
dd41f596 9786 }
1da177e4 9787
1d615482 9788 raw_spin_lock(&p->pi_lock);
b29739f9 9789 rq = __task_rq_lock(p);
1da177e4 9790
178be793 9791 normalize_task(rq, p);
3a5e4dc1 9792
b29739f9 9793 __task_rq_unlock(rq);
1d615482 9794 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9795 } while_each_thread(g, p);
9796
4cf5d77a 9797 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9798}
9799
9800#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9801
9802#ifdef CONFIG_IA64
9803/*
9804 * These functions are only useful for the IA64 MCA handling.
9805 *
9806 * They can only be called when the whole system has been
9807 * stopped - every CPU needs to be quiescent, and no scheduling
9808 * activity can take place. Using them for anything else would
9809 * be a serious bug, and as a result, they aren't even visible
9810 * under any other configuration.
9811 */
9812
9813/**
9814 * curr_task - return the current task for a given cpu.
9815 * @cpu: the processor in question.
9816 *
9817 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9818 */
36c8b586 9819struct task_struct *curr_task(int cpu)
1df5c10a
LT
9820{
9821 return cpu_curr(cpu);
9822}
9823
9824/**
9825 * set_curr_task - set the current task for a given cpu.
9826 * @cpu: the processor in question.
9827 * @p: the task pointer to set.
9828 *
9829 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9830 * are serviced on a separate stack. It allows the architecture to switch the
9831 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9832 * must be called with all CPU's synchronized, and interrupts disabled, the
9833 * and caller must save the original value of the current task (see
9834 * curr_task() above) and restore that value before reenabling interrupts and
9835 * re-starting the system.
9836 *
9837 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9838 */
36c8b586 9839void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9840{
9841 cpu_curr(cpu) = p;
9842}
9843
9844#endif
29f59db3 9845
bccbe08a
PZ
9846#ifdef CONFIG_FAIR_GROUP_SCHED
9847static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9848{
9849 int i;
9850
9851 for_each_possible_cpu(i) {
9852 if (tg->cfs_rq)
9853 kfree(tg->cfs_rq[i]);
9854 if (tg->se)
9855 kfree(tg->se[i]);
6f505b16
PZ
9856 }
9857
9858 kfree(tg->cfs_rq);
9859 kfree(tg->se);
6f505b16
PZ
9860}
9861
ec7dc8ac
DG
9862static
9863int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9864{
29f59db3 9865 struct cfs_rq *cfs_rq;
eab17229 9866 struct sched_entity *se;
9b5b7751 9867 struct rq *rq;
29f59db3
SV
9868 int i;
9869
434d53b0 9870 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9871 if (!tg->cfs_rq)
9872 goto err;
434d53b0 9873 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9874 if (!tg->se)
9875 goto err;
052f1dc7
PZ
9876
9877 tg->shares = NICE_0_LOAD;
29f59db3
SV
9878
9879 for_each_possible_cpu(i) {
9b5b7751 9880 rq = cpu_rq(i);
29f59db3 9881
eab17229
LZ
9882 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9883 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9884 if (!cfs_rq)
9885 goto err;
9886
eab17229
LZ
9887 se = kzalloc_node(sizeof(struct sched_entity),
9888 GFP_KERNEL, cpu_to_node(i));
29f59db3 9889 if (!se)
dfc12eb2 9890 goto err_free_rq;
29f59db3 9891
eab17229 9892 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9893 }
9894
9895 return 1;
9896
dfc12eb2
PC
9897 err_free_rq:
9898 kfree(cfs_rq);
bccbe08a
PZ
9899 err:
9900 return 0;
9901}
9902
9903static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9904{
9905 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9906 &cpu_rq(cpu)->leaf_cfs_rq_list);
9907}
9908
9909static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9910{
9911 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9912}
6d6bc0ad 9913#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9914static inline void free_fair_sched_group(struct task_group *tg)
9915{
9916}
9917
ec7dc8ac
DG
9918static inline
9919int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9920{
9921 return 1;
9922}
9923
9924static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9925{
9926}
9927
9928static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9929{
9930}
6d6bc0ad 9931#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9932
9933#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9934static void free_rt_sched_group(struct task_group *tg)
9935{
9936 int i;
9937
d0b27fa7
PZ
9938 destroy_rt_bandwidth(&tg->rt_bandwidth);
9939
bccbe08a
PZ
9940 for_each_possible_cpu(i) {
9941 if (tg->rt_rq)
9942 kfree(tg->rt_rq[i]);
9943 if (tg->rt_se)
9944 kfree(tg->rt_se[i]);
9945 }
9946
9947 kfree(tg->rt_rq);
9948 kfree(tg->rt_se);
9949}
9950
ec7dc8ac
DG
9951static
9952int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9953{
9954 struct rt_rq *rt_rq;
eab17229 9955 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9956 struct rq *rq;
9957 int i;
9958
434d53b0 9959 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9960 if (!tg->rt_rq)
9961 goto err;
434d53b0 9962 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9963 if (!tg->rt_se)
9964 goto err;
9965
d0b27fa7
PZ
9966 init_rt_bandwidth(&tg->rt_bandwidth,
9967 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9968
9969 for_each_possible_cpu(i) {
9970 rq = cpu_rq(i);
9971
eab17229
LZ
9972 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9973 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9974 if (!rt_rq)
9975 goto err;
29f59db3 9976
eab17229
LZ
9977 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9978 GFP_KERNEL, cpu_to_node(i));
6f505b16 9979 if (!rt_se)
dfc12eb2 9980 goto err_free_rq;
29f59db3 9981
eab17229 9982 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9983 }
9984
bccbe08a
PZ
9985 return 1;
9986
dfc12eb2
PC
9987 err_free_rq:
9988 kfree(rt_rq);
bccbe08a
PZ
9989 err:
9990 return 0;
9991}
9992
9993static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9994{
9995 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9996 &cpu_rq(cpu)->leaf_rt_rq_list);
9997}
9998
9999static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10000{
10001 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10002}
6d6bc0ad 10003#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
10004static inline void free_rt_sched_group(struct task_group *tg)
10005{
10006}
10007
ec7dc8ac
DG
10008static inline
10009int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
10010{
10011 return 1;
10012}
10013
10014static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10015{
10016}
10017
10018static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10019{
10020}
6d6bc0ad 10021#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10022
d0b27fa7 10023#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10024static void free_sched_group(struct task_group *tg)
10025{
10026 free_fair_sched_group(tg);
10027 free_rt_sched_group(tg);
10028 kfree(tg);
10029}
10030
10031/* allocate runqueue etc for a new task group */
ec7dc8ac 10032struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10033{
10034 struct task_group *tg;
10035 unsigned long flags;
10036 int i;
10037
10038 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10039 if (!tg)
10040 return ERR_PTR(-ENOMEM);
10041
ec7dc8ac 10042 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10043 goto err;
10044
ec7dc8ac 10045 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10046 goto err;
10047
8ed36996 10048 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10049 for_each_possible_cpu(i) {
bccbe08a
PZ
10050 register_fair_sched_group(tg, i);
10051 register_rt_sched_group(tg, i);
9b5b7751 10052 }
6f505b16 10053 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10054
10055 WARN_ON(!parent); /* root should already exist */
10056
10057 tg->parent = parent;
f473aa5e 10058 INIT_LIST_HEAD(&tg->children);
09f2724a 10059 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10060 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10061
9b5b7751 10062 return tg;
29f59db3
SV
10063
10064err:
6f505b16 10065 free_sched_group(tg);
29f59db3
SV
10066 return ERR_PTR(-ENOMEM);
10067}
10068
9b5b7751 10069/* rcu callback to free various structures associated with a task group */
6f505b16 10070static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10071{
29f59db3 10072 /* now it should be safe to free those cfs_rqs */
6f505b16 10073 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10074}
10075
9b5b7751 10076/* Destroy runqueue etc associated with a task group */
4cf86d77 10077void sched_destroy_group(struct task_group *tg)
29f59db3 10078{
8ed36996 10079 unsigned long flags;
9b5b7751 10080 int i;
29f59db3 10081
8ed36996 10082 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10083 for_each_possible_cpu(i) {
bccbe08a
PZ
10084 unregister_fair_sched_group(tg, i);
10085 unregister_rt_sched_group(tg, i);
9b5b7751 10086 }
6f505b16 10087 list_del_rcu(&tg->list);
f473aa5e 10088 list_del_rcu(&tg->siblings);
8ed36996 10089 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10090
9b5b7751 10091 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10092 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10093}
10094
9b5b7751 10095/* change task's runqueue when it moves between groups.
3a252015
IM
10096 * The caller of this function should have put the task in its new group
10097 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10098 * reflect its new group.
9b5b7751
SV
10099 */
10100void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10101{
10102 int on_rq, running;
10103 unsigned long flags;
10104 struct rq *rq;
10105
10106 rq = task_rq_lock(tsk, &flags);
10107
29f59db3
SV
10108 update_rq_clock(rq);
10109
051a1d1a 10110 running = task_current(rq, tsk);
29f59db3
SV
10111 on_rq = tsk->se.on_rq;
10112
0e1f3483 10113 if (on_rq)
29f59db3 10114 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10115 if (unlikely(running))
10116 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10117
6f505b16 10118 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10119
810b3817
PZ
10120#ifdef CONFIG_FAIR_GROUP_SCHED
10121 if (tsk->sched_class->moved_group)
10122 tsk->sched_class->moved_group(tsk);
10123#endif
10124
0e1f3483
HS
10125 if (unlikely(running))
10126 tsk->sched_class->set_curr_task(rq);
10127 if (on_rq)
7074badb 10128 enqueue_task(rq, tsk, 0);
29f59db3 10129
29f59db3
SV
10130 task_rq_unlock(rq, &flags);
10131}
6d6bc0ad 10132#endif /* CONFIG_GROUP_SCHED */
29f59db3 10133
052f1dc7 10134#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10135static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10136{
10137 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10138 int on_rq;
10139
29f59db3 10140 on_rq = se->on_rq;
62fb1851 10141 if (on_rq)
29f59db3
SV
10142 dequeue_entity(cfs_rq, se, 0);
10143
10144 se->load.weight = shares;
e05510d0 10145 se->load.inv_weight = 0;
29f59db3 10146
62fb1851 10147 if (on_rq)
29f59db3 10148 enqueue_entity(cfs_rq, se, 0);
c09595f6 10149}
62fb1851 10150
c09595f6
PZ
10151static void set_se_shares(struct sched_entity *se, unsigned long shares)
10152{
10153 struct cfs_rq *cfs_rq = se->cfs_rq;
10154 struct rq *rq = cfs_rq->rq;
10155 unsigned long flags;
10156
05fa785c 10157 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10158 __set_se_shares(se, shares);
05fa785c 10159 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10160}
10161
8ed36996
PZ
10162static DEFINE_MUTEX(shares_mutex);
10163
4cf86d77 10164int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10165{
10166 int i;
8ed36996 10167 unsigned long flags;
c61935fd 10168
ec7dc8ac
DG
10169 /*
10170 * We can't change the weight of the root cgroup.
10171 */
10172 if (!tg->se[0])
10173 return -EINVAL;
10174
18d95a28
PZ
10175 if (shares < MIN_SHARES)
10176 shares = MIN_SHARES;
cb4ad1ff
MX
10177 else if (shares > MAX_SHARES)
10178 shares = MAX_SHARES;
62fb1851 10179
8ed36996 10180 mutex_lock(&shares_mutex);
9b5b7751 10181 if (tg->shares == shares)
5cb350ba 10182 goto done;
29f59db3 10183
8ed36996 10184 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10185 for_each_possible_cpu(i)
10186 unregister_fair_sched_group(tg, i);
f473aa5e 10187 list_del_rcu(&tg->siblings);
8ed36996 10188 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10189
10190 /* wait for any ongoing reference to this group to finish */
10191 synchronize_sched();
10192
10193 /*
10194 * Now we are free to modify the group's share on each cpu
10195 * w/o tripping rebalance_share or load_balance_fair.
10196 */
9b5b7751 10197 tg->shares = shares;
c09595f6
PZ
10198 for_each_possible_cpu(i) {
10199 /*
10200 * force a rebalance
10201 */
10202 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10203 set_se_shares(tg->se[i], shares);
c09595f6 10204 }
29f59db3 10205
6b2d7700
SV
10206 /*
10207 * Enable load balance activity on this group, by inserting it back on
10208 * each cpu's rq->leaf_cfs_rq_list.
10209 */
8ed36996 10210 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10211 for_each_possible_cpu(i)
10212 register_fair_sched_group(tg, i);
f473aa5e 10213 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10214 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10215done:
8ed36996 10216 mutex_unlock(&shares_mutex);
9b5b7751 10217 return 0;
29f59db3
SV
10218}
10219
5cb350ba
DG
10220unsigned long sched_group_shares(struct task_group *tg)
10221{
10222 return tg->shares;
10223}
052f1dc7 10224#endif
5cb350ba 10225
052f1dc7 10226#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10227/*
9f0c1e56 10228 * Ensure that the real time constraints are schedulable.
6f505b16 10229 */
9f0c1e56
PZ
10230static DEFINE_MUTEX(rt_constraints_mutex);
10231
10232static unsigned long to_ratio(u64 period, u64 runtime)
10233{
10234 if (runtime == RUNTIME_INF)
9a7e0b18 10235 return 1ULL << 20;
9f0c1e56 10236
9a7e0b18 10237 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10238}
10239
9a7e0b18
PZ
10240/* Must be called with tasklist_lock held */
10241static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10242{
9a7e0b18 10243 struct task_struct *g, *p;
b40b2e8e 10244
9a7e0b18
PZ
10245 do_each_thread(g, p) {
10246 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10247 return 1;
10248 } while_each_thread(g, p);
b40b2e8e 10249
9a7e0b18
PZ
10250 return 0;
10251}
b40b2e8e 10252
9a7e0b18
PZ
10253struct rt_schedulable_data {
10254 struct task_group *tg;
10255 u64 rt_period;
10256 u64 rt_runtime;
10257};
b40b2e8e 10258
9a7e0b18
PZ
10259static int tg_schedulable(struct task_group *tg, void *data)
10260{
10261 struct rt_schedulable_data *d = data;
10262 struct task_group *child;
10263 unsigned long total, sum = 0;
10264 u64 period, runtime;
b40b2e8e 10265
9a7e0b18
PZ
10266 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10267 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10268
9a7e0b18
PZ
10269 if (tg == d->tg) {
10270 period = d->rt_period;
10271 runtime = d->rt_runtime;
b40b2e8e 10272 }
b40b2e8e 10273
98a4826b
PZ
10274#ifdef CONFIG_USER_SCHED
10275 if (tg == &root_task_group) {
10276 period = global_rt_period();
10277 runtime = global_rt_runtime();
10278 }
10279#endif
10280
4653f803
PZ
10281 /*
10282 * Cannot have more runtime than the period.
10283 */
10284 if (runtime > period && runtime != RUNTIME_INF)
10285 return -EINVAL;
6f505b16 10286
4653f803
PZ
10287 /*
10288 * Ensure we don't starve existing RT tasks.
10289 */
9a7e0b18
PZ
10290 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10291 return -EBUSY;
6f505b16 10292
9a7e0b18 10293 total = to_ratio(period, runtime);
6f505b16 10294
4653f803
PZ
10295 /*
10296 * Nobody can have more than the global setting allows.
10297 */
10298 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10299 return -EINVAL;
6f505b16 10300
4653f803
PZ
10301 /*
10302 * The sum of our children's runtime should not exceed our own.
10303 */
9a7e0b18
PZ
10304 list_for_each_entry_rcu(child, &tg->children, siblings) {
10305 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10306 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10307
9a7e0b18
PZ
10308 if (child == d->tg) {
10309 period = d->rt_period;
10310 runtime = d->rt_runtime;
10311 }
6f505b16 10312
9a7e0b18 10313 sum += to_ratio(period, runtime);
9f0c1e56 10314 }
6f505b16 10315
9a7e0b18
PZ
10316 if (sum > total)
10317 return -EINVAL;
10318
10319 return 0;
6f505b16
PZ
10320}
10321
9a7e0b18 10322static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10323{
9a7e0b18
PZ
10324 struct rt_schedulable_data data = {
10325 .tg = tg,
10326 .rt_period = period,
10327 .rt_runtime = runtime,
10328 };
10329
10330 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10331}
10332
d0b27fa7
PZ
10333static int tg_set_bandwidth(struct task_group *tg,
10334 u64 rt_period, u64 rt_runtime)
6f505b16 10335{
ac086bc2 10336 int i, err = 0;
9f0c1e56 10337
9f0c1e56 10338 mutex_lock(&rt_constraints_mutex);
521f1a24 10339 read_lock(&tasklist_lock);
9a7e0b18
PZ
10340 err = __rt_schedulable(tg, rt_period, rt_runtime);
10341 if (err)
9f0c1e56 10342 goto unlock;
ac086bc2 10343
0986b11b 10344 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10345 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10346 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10347
10348 for_each_possible_cpu(i) {
10349 struct rt_rq *rt_rq = tg->rt_rq[i];
10350
0986b11b 10351 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10352 rt_rq->rt_runtime = rt_runtime;
0986b11b 10353 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10354 }
0986b11b 10355 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10356 unlock:
521f1a24 10357 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10358 mutex_unlock(&rt_constraints_mutex);
10359
10360 return err;
6f505b16
PZ
10361}
10362
d0b27fa7
PZ
10363int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10364{
10365 u64 rt_runtime, rt_period;
10366
10367 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10368 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10369 if (rt_runtime_us < 0)
10370 rt_runtime = RUNTIME_INF;
10371
10372 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10373}
10374
9f0c1e56
PZ
10375long sched_group_rt_runtime(struct task_group *tg)
10376{
10377 u64 rt_runtime_us;
10378
d0b27fa7 10379 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10380 return -1;
10381
d0b27fa7 10382 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10383 do_div(rt_runtime_us, NSEC_PER_USEC);
10384 return rt_runtime_us;
10385}
d0b27fa7
PZ
10386
10387int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10388{
10389 u64 rt_runtime, rt_period;
10390
10391 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10392 rt_runtime = tg->rt_bandwidth.rt_runtime;
10393
619b0488
R
10394 if (rt_period == 0)
10395 return -EINVAL;
10396
d0b27fa7
PZ
10397 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10398}
10399
10400long sched_group_rt_period(struct task_group *tg)
10401{
10402 u64 rt_period_us;
10403
10404 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10405 do_div(rt_period_us, NSEC_PER_USEC);
10406 return rt_period_us;
10407}
10408
10409static int sched_rt_global_constraints(void)
10410{
4653f803 10411 u64 runtime, period;
d0b27fa7
PZ
10412 int ret = 0;
10413
ec5d4989
HS
10414 if (sysctl_sched_rt_period <= 0)
10415 return -EINVAL;
10416
4653f803
PZ
10417 runtime = global_rt_runtime();
10418 period = global_rt_period();
10419
10420 /*
10421 * Sanity check on the sysctl variables.
10422 */
10423 if (runtime > period && runtime != RUNTIME_INF)
10424 return -EINVAL;
10b612f4 10425
d0b27fa7 10426 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10427 read_lock(&tasklist_lock);
4653f803 10428 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10429 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10430 mutex_unlock(&rt_constraints_mutex);
10431
10432 return ret;
10433}
54e99124
DG
10434
10435int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10436{
10437 /* Don't accept realtime tasks when there is no way for them to run */
10438 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10439 return 0;
10440
10441 return 1;
10442}
10443
6d6bc0ad 10444#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10445static int sched_rt_global_constraints(void)
10446{
ac086bc2
PZ
10447 unsigned long flags;
10448 int i;
10449
ec5d4989
HS
10450 if (sysctl_sched_rt_period <= 0)
10451 return -EINVAL;
10452
60aa605d
PZ
10453 /*
10454 * There's always some RT tasks in the root group
10455 * -- migration, kstopmachine etc..
10456 */
10457 if (sysctl_sched_rt_runtime == 0)
10458 return -EBUSY;
10459
0986b11b 10460 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10461 for_each_possible_cpu(i) {
10462 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10463
0986b11b 10464 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10465 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10466 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10467 }
0986b11b 10468 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10469
d0b27fa7
PZ
10470 return 0;
10471}
6d6bc0ad 10472#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10473
10474int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10475 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10476 loff_t *ppos)
10477{
10478 int ret;
10479 int old_period, old_runtime;
10480 static DEFINE_MUTEX(mutex);
10481
10482 mutex_lock(&mutex);
10483 old_period = sysctl_sched_rt_period;
10484 old_runtime = sysctl_sched_rt_runtime;
10485
8d65af78 10486 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10487
10488 if (!ret && write) {
10489 ret = sched_rt_global_constraints();
10490 if (ret) {
10491 sysctl_sched_rt_period = old_period;
10492 sysctl_sched_rt_runtime = old_runtime;
10493 } else {
10494 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10495 def_rt_bandwidth.rt_period =
10496 ns_to_ktime(global_rt_period());
10497 }
10498 }
10499 mutex_unlock(&mutex);
10500
10501 return ret;
10502}
68318b8e 10503
052f1dc7 10504#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10505
10506/* return corresponding task_group object of a cgroup */
2b01dfe3 10507static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10508{
2b01dfe3
PM
10509 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10510 struct task_group, css);
68318b8e
SV
10511}
10512
10513static struct cgroup_subsys_state *
2b01dfe3 10514cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10515{
ec7dc8ac 10516 struct task_group *tg, *parent;
68318b8e 10517
2b01dfe3 10518 if (!cgrp->parent) {
68318b8e 10519 /* This is early initialization for the top cgroup */
68318b8e
SV
10520 return &init_task_group.css;
10521 }
10522
ec7dc8ac
DG
10523 parent = cgroup_tg(cgrp->parent);
10524 tg = sched_create_group(parent);
68318b8e
SV
10525 if (IS_ERR(tg))
10526 return ERR_PTR(-ENOMEM);
10527
68318b8e
SV
10528 return &tg->css;
10529}
10530
41a2d6cf
IM
10531static void
10532cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10533{
2b01dfe3 10534 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10535
10536 sched_destroy_group(tg);
10537}
10538
41a2d6cf 10539static int
be367d09 10540cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10541{
b68aa230 10542#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10543 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10544 return -EINVAL;
10545#else
68318b8e
SV
10546 /* We don't support RT-tasks being in separate groups */
10547 if (tsk->sched_class != &fair_sched_class)
10548 return -EINVAL;
b68aa230 10549#endif
be367d09
BB
10550 return 0;
10551}
68318b8e 10552
be367d09
BB
10553static int
10554cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10555 struct task_struct *tsk, bool threadgroup)
10556{
10557 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10558 if (retval)
10559 return retval;
10560 if (threadgroup) {
10561 struct task_struct *c;
10562 rcu_read_lock();
10563 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10564 retval = cpu_cgroup_can_attach_task(cgrp, c);
10565 if (retval) {
10566 rcu_read_unlock();
10567 return retval;
10568 }
10569 }
10570 rcu_read_unlock();
10571 }
68318b8e
SV
10572 return 0;
10573}
10574
10575static void
2b01dfe3 10576cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10577 struct cgroup *old_cont, struct task_struct *tsk,
10578 bool threadgroup)
68318b8e
SV
10579{
10580 sched_move_task(tsk);
be367d09
BB
10581 if (threadgroup) {
10582 struct task_struct *c;
10583 rcu_read_lock();
10584 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10585 sched_move_task(c);
10586 }
10587 rcu_read_unlock();
10588 }
68318b8e
SV
10589}
10590
052f1dc7 10591#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10592static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10593 u64 shareval)
68318b8e 10594{
2b01dfe3 10595 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10596}
10597
f4c753b7 10598static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10599{
2b01dfe3 10600 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10601
10602 return (u64) tg->shares;
10603}
6d6bc0ad 10604#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10605
052f1dc7 10606#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10607static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10608 s64 val)
6f505b16 10609{
06ecb27c 10610 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10611}
10612
06ecb27c 10613static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10614{
06ecb27c 10615 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10616}
d0b27fa7
PZ
10617
10618static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10619 u64 rt_period_us)
10620{
10621 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10622}
10623
10624static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10625{
10626 return sched_group_rt_period(cgroup_tg(cgrp));
10627}
6d6bc0ad 10628#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10629
fe5c7cc2 10630static struct cftype cpu_files[] = {
052f1dc7 10631#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10632 {
10633 .name = "shares",
f4c753b7
PM
10634 .read_u64 = cpu_shares_read_u64,
10635 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10636 },
052f1dc7
PZ
10637#endif
10638#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10639 {
9f0c1e56 10640 .name = "rt_runtime_us",
06ecb27c
PM
10641 .read_s64 = cpu_rt_runtime_read,
10642 .write_s64 = cpu_rt_runtime_write,
6f505b16 10643 },
d0b27fa7
PZ
10644 {
10645 .name = "rt_period_us",
f4c753b7
PM
10646 .read_u64 = cpu_rt_period_read_uint,
10647 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10648 },
052f1dc7 10649#endif
68318b8e
SV
10650};
10651
10652static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10653{
fe5c7cc2 10654 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10655}
10656
10657struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10658 .name = "cpu",
10659 .create = cpu_cgroup_create,
10660 .destroy = cpu_cgroup_destroy,
10661 .can_attach = cpu_cgroup_can_attach,
10662 .attach = cpu_cgroup_attach,
10663 .populate = cpu_cgroup_populate,
10664 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10665 .early_init = 1,
10666};
10667
052f1dc7 10668#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10669
10670#ifdef CONFIG_CGROUP_CPUACCT
10671
10672/*
10673 * CPU accounting code for task groups.
10674 *
10675 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10676 * (balbir@in.ibm.com).
10677 */
10678
934352f2 10679/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10680struct cpuacct {
10681 struct cgroup_subsys_state css;
10682 /* cpuusage holds pointer to a u64-type object on every cpu */
10683 u64 *cpuusage;
ef12fefa 10684 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10685 struct cpuacct *parent;
d842de87
SV
10686};
10687
10688struct cgroup_subsys cpuacct_subsys;
10689
10690/* return cpu accounting group corresponding to this container */
32cd756a 10691static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10692{
32cd756a 10693 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10694 struct cpuacct, css);
10695}
10696
10697/* return cpu accounting group to which this task belongs */
10698static inline struct cpuacct *task_ca(struct task_struct *tsk)
10699{
10700 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10701 struct cpuacct, css);
10702}
10703
10704/* create a new cpu accounting group */
10705static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10706 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10707{
10708 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10709 int i;
d842de87
SV
10710
10711 if (!ca)
ef12fefa 10712 goto out;
d842de87
SV
10713
10714 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10715 if (!ca->cpuusage)
10716 goto out_free_ca;
10717
10718 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10719 if (percpu_counter_init(&ca->cpustat[i], 0))
10720 goto out_free_counters;
d842de87 10721
934352f2
BR
10722 if (cgrp->parent)
10723 ca->parent = cgroup_ca(cgrp->parent);
10724
d842de87 10725 return &ca->css;
ef12fefa
BR
10726
10727out_free_counters:
10728 while (--i >= 0)
10729 percpu_counter_destroy(&ca->cpustat[i]);
10730 free_percpu(ca->cpuusage);
10731out_free_ca:
10732 kfree(ca);
10733out:
10734 return ERR_PTR(-ENOMEM);
d842de87
SV
10735}
10736
10737/* destroy an existing cpu accounting group */
41a2d6cf 10738static void
32cd756a 10739cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10740{
32cd756a 10741 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10742 int i;
d842de87 10743
ef12fefa
BR
10744 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10745 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10746 free_percpu(ca->cpuusage);
10747 kfree(ca);
10748}
10749
720f5498
KC
10750static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10751{
b36128c8 10752 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10753 u64 data;
10754
10755#ifndef CONFIG_64BIT
10756 /*
10757 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10758 */
05fa785c 10759 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10760 data = *cpuusage;
05fa785c 10761 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10762#else
10763 data = *cpuusage;
10764#endif
10765
10766 return data;
10767}
10768
10769static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10770{
b36128c8 10771 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10772
10773#ifndef CONFIG_64BIT
10774 /*
10775 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10776 */
05fa785c 10777 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10778 *cpuusage = val;
05fa785c 10779 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10780#else
10781 *cpuusage = val;
10782#endif
10783}
10784
d842de87 10785/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10786static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10787{
32cd756a 10788 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10789 u64 totalcpuusage = 0;
10790 int i;
10791
720f5498
KC
10792 for_each_present_cpu(i)
10793 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10794
10795 return totalcpuusage;
10796}
10797
0297b803
DG
10798static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10799 u64 reset)
10800{
10801 struct cpuacct *ca = cgroup_ca(cgrp);
10802 int err = 0;
10803 int i;
10804
10805 if (reset) {
10806 err = -EINVAL;
10807 goto out;
10808 }
10809
720f5498
KC
10810 for_each_present_cpu(i)
10811 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10812
0297b803
DG
10813out:
10814 return err;
10815}
10816
e9515c3c
KC
10817static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10818 struct seq_file *m)
10819{
10820 struct cpuacct *ca = cgroup_ca(cgroup);
10821 u64 percpu;
10822 int i;
10823
10824 for_each_present_cpu(i) {
10825 percpu = cpuacct_cpuusage_read(ca, i);
10826 seq_printf(m, "%llu ", (unsigned long long) percpu);
10827 }
10828 seq_printf(m, "\n");
10829 return 0;
10830}
10831
ef12fefa
BR
10832static const char *cpuacct_stat_desc[] = {
10833 [CPUACCT_STAT_USER] = "user",
10834 [CPUACCT_STAT_SYSTEM] = "system",
10835};
10836
10837static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10838 struct cgroup_map_cb *cb)
10839{
10840 struct cpuacct *ca = cgroup_ca(cgrp);
10841 int i;
10842
10843 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10844 s64 val = percpu_counter_read(&ca->cpustat[i]);
10845 val = cputime64_to_clock_t(val);
10846 cb->fill(cb, cpuacct_stat_desc[i], val);
10847 }
10848 return 0;
10849}
10850
d842de87
SV
10851static struct cftype files[] = {
10852 {
10853 .name = "usage",
f4c753b7
PM
10854 .read_u64 = cpuusage_read,
10855 .write_u64 = cpuusage_write,
d842de87 10856 },
e9515c3c
KC
10857 {
10858 .name = "usage_percpu",
10859 .read_seq_string = cpuacct_percpu_seq_read,
10860 },
ef12fefa
BR
10861 {
10862 .name = "stat",
10863 .read_map = cpuacct_stats_show,
10864 },
d842de87
SV
10865};
10866
32cd756a 10867static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10868{
32cd756a 10869 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10870}
10871
10872/*
10873 * charge this task's execution time to its accounting group.
10874 *
10875 * called with rq->lock held.
10876 */
10877static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10878{
10879 struct cpuacct *ca;
934352f2 10880 int cpu;
d842de87 10881
c40c6f85 10882 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10883 return;
10884
934352f2 10885 cpu = task_cpu(tsk);
a18b83b7
BR
10886
10887 rcu_read_lock();
10888
d842de87 10889 ca = task_ca(tsk);
d842de87 10890
934352f2 10891 for (; ca; ca = ca->parent) {
b36128c8 10892 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10893 *cpuusage += cputime;
10894 }
a18b83b7
BR
10895
10896 rcu_read_unlock();
d842de87
SV
10897}
10898
ef12fefa
BR
10899/*
10900 * Charge the system/user time to the task's accounting group.
10901 */
10902static void cpuacct_update_stats(struct task_struct *tsk,
10903 enum cpuacct_stat_index idx, cputime_t val)
10904{
10905 struct cpuacct *ca;
10906
10907 if (unlikely(!cpuacct_subsys.active))
10908 return;
10909
10910 rcu_read_lock();
10911 ca = task_ca(tsk);
10912
10913 do {
10914 percpu_counter_add(&ca->cpustat[idx], val);
10915 ca = ca->parent;
10916 } while (ca);
10917 rcu_read_unlock();
10918}
10919
d842de87
SV
10920struct cgroup_subsys cpuacct_subsys = {
10921 .name = "cpuacct",
10922 .create = cpuacct_create,
10923 .destroy = cpuacct_destroy,
10924 .populate = cpuacct_populate,
10925 .subsys_id = cpuacct_subsys_id,
10926};
10927#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10928
10929#ifndef CONFIG_SMP
10930
10931int rcu_expedited_torture_stats(char *page)
10932{
10933 return 0;
10934}
10935EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10936
10937void synchronize_sched_expedited(void)
10938{
10939}
10940EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10941
10942#else /* #ifndef CONFIG_SMP */
10943
10944static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10945static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10946
10947#define RCU_EXPEDITED_STATE_POST -2
10948#define RCU_EXPEDITED_STATE_IDLE -1
10949
10950static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10951
10952int rcu_expedited_torture_stats(char *page)
10953{
10954 int cnt = 0;
10955 int cpu;
10956
10957 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10958 for_each_online_cpu(cpu) {
10959 cnt += sprintf(&page[cnt], " %d:%d",
10960 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10961 }
10962 cnt += sprintf(&page[cnt], "\n");
10963 return cnt;
10964}
10965EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10966
10967static long synchronize_sched_expedited_count;
10968
10969/*
10970 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10971 * approach to force grace period to end quickly. This consumes
10972 * significant time on all CPUs, and is thus not recommended for
10973 * any sort of common-case code.
10974 *
10975 * Note that it is illegal to call this function while holding any
10976 * lock that is acquired by a CPU-hotplug notifier. Failing to
10977 * observe this restriction will result in deadlock.
10978 */
10979void synchronize_sched_expedited(void)
10980{
10981 int cpu;
10982 unsigned long flags;
10983 bool need_full_sync = 0;
10984 struct rq *rq;
10985 struct migration_req *req;
10986 long snap;
10987 int trycount = 0;
10988
10989 smp_mb(); /* ensure prior mod happens before capturing snap. */
10990 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10991 get_online_cpus();
10992 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10993 put_online_cpus();
10994 if (trycount++ < 10)
10995 udelay(trycount * num_online_cpus());
10996 else {
10997 synchronize_sched();
10998 return;
10999 }
11000 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11001 smp_mb(); /* ensure test happens before caller kfree */
11002 return;
11003 }
11004 get_online_cpus();
11005 }
11006 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11007 for_each_online_cpu(cpu) {
11008 rq = cpu_rq(cpu);
11009 req = &per_cpu(rcu_migration_req, cpu);
11010 init_completion(&req->done);
11011 req->task = NULL;
11012 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 11013 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 11014 list_add(&req->list, &rq->migration_queue);
05fa785c 11015 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11016 wake_up_process(rq->migration_thread);
11017 }
11018 for_each_online_cpu(cpu) {
11019 rcu_expedited_state = cpu;
11020 req = &per_cpu(rcu_migration_req, cpu);
11021 rq = cpu_rq(cpu);
11022 wait_for_completion(&req->done);
05fa785c 11023 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11024 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11025 need_full_sync = 1;
11026 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11027 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11028 }
11029 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11030 synchronize_sched_expedited_count++;
03b042bf
PM
11031 mutex_unlock(&rcu_sched_expedited_mutex);
11032 put_online_cpus();
11033 if (need_full_sync)
11034 synchronize_sched();
11035}
11036EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11037
11038#endif /* #else #ifndef CONFIG_SMP */