]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Don't export sched_mc_power_savings on multi-socket single core system
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
7f1e2ca9
PZ
234 unsigned long delta;
235 ktime_t soft, hard;
236
d0b27fa7
PZ
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
239
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
242
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
248 }
249 spin_unlock(&rt_b->rt_runtime_lock);
250}
251
252#ifdef CONFIG_RT_GROUP_SCHED
253static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
254{
255 hrtimer_cancel(&rt_b->rt_period_timer);
256}
257#endif
258
712555ee
HC
259/*
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
262 */
263static DEFINE_MUTEX(sched_domains_mutex);
264
052f1dc7 265#ifdef CONFIG_GROUP_SCHED
29f59db3 266
68318b8e
SV
267#include <linux/cgroup.h>
268
29f59db3
SV
269struct cfs_rq;
270
6f505b16
PZ
271static LIST_HEAD(task_groups);
272
29f59db3 273/* task group related information */
4cf86d77 274struct task_group {
052f1dc7 275#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
276 struct cgroup_subsys_state css;
277#endif
052f1dc7 278
6c415b92
AB
279#ifdef CONFIG_USER_SCHED
280 uid_t uid;
281#endif
282
052f1dc7 283#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
052f1dc7
PZ
289#endif
290
291#ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
294
d0b27fa7 295 struct rt_bandwidth rt_bandwidth;
052f1dc7 296#endif
6b2d7700 297
ae8393e5 298 struct rcu_head rcu;
6f505b16 299 struct list_head list;
f473aa5e
PZ
300
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
29f59db3
SV
304};
305
354d60c2 306#ifdef CONFIG_USER_SCHED
eff766a6 307
6c415b92
AB
308/* Helper function to pass uid information to create_sched_user() */
309void set_tg_uid(struct user_struct *user)
310{
311 user->tg->uid = user->uid;
312}
313
eff766a6
PZ
314/*
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
318 */
319struct task_group root_task_group;
320
052f1dc7 321#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
322/* Default task group's sched entity on each cpu */
323static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324/* Default task group's cfs_rq on each cpu */
325static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 326#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
327
328#ifdef CONFIG_RT_GROUP_SCHED
329static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 331#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 332#else /* !CONFIG_USER_SCHED */
eff766a6 333#define root_task_group init_task_group
9a7e0b18 334#endif /* CONFIG_USER_SCHED */
6f505b16 335
8ed36996 336/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
337 * a task group's cpu shares.
338 */
8ed36996 339static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 340
57310a98
PZ
341#ifdef CONFIG_SMP
342static int root_task_group_empty(void)
343{
344 return list_empty(&root_task_group.children);
345}
346#endif
347
052f1dc7 348#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
349#ifdef CONFIG_USER_SCHED
350# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 351#else /* !CONFIG_USER_SCHED */
052f1dc7 352# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 353#endif /* CONFIG_USER_SCHED */
052f1dc7 354
cb4ad1ff 355/*
2e084786
LJ
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
cb4ad1ff
MX
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
362 */
18d95a28 363#define MIN_SHARES 2
2e084786 364#define MAX_SHARES (1UL << 18)
18d95a28 365
052f1dc7
PZ
366static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367#endif
368
29f59db3 369/* Default task group.
3a252015 370 * Every task in system belong to this group at bootup.
29f59db3 371 */
434d53b0 372struct task_group init_task_group;
29f59db3
SV
373
374/* return group to which a task belongs */
4cf86d77 375static inline struct task_group *task_group(struct task_struct *p)
29f59db3 376{
4cf86d77 377 struct task_group *tg;
9b5b7751 378
052f1dc7 379#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
052f1dc7 383#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
24e377a8 386#else
41a2d6cf 387 tg = &init_task_group;
24e377a8 388#endif
9b5b7751 389 return tg;
29f59db3
SV
390}
391
392/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 393static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 394{
052f1dc7 395#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
052f1dc7 398#endif
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 403#endif
29f59db3
SV
404}
405
406#else
407
57310a98
PZ
408#ifdef CONFIG_SMP
409static int root_task_group_empty(void)
410{
411 return 1;
412}
413#endif
414
6f505b16 415static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
416static inline struct task_group *task_group(struct task_struct *p)
417{
418 return NULL;
419}
29f59db3 420
052f1dc7 421#endif /* CONFIG_GROUP_SCHED */
29f59db3 422
6aa645ea
IM
423/* CFS-related fields in a runqueue */
424struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
427
6aa645ea 428 u64 exec_clock;
e9acbff6 429 u64 min_vruntime;
6aa645ea
IM
430
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
4a55bd5e
PZ
433
434 struct list_head tasks;
435 struct list_head *balance_iterator;
436
437 /*
438 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
439 * It is set to NULL otherwise (i.e when none are currently running).
440 */
4793241b 441 struct sched_entity *curr, *next, *last;
ddc97297 442
5ac5c4d6 443 unsigned int nr_spread_over;
ddc97297 444
62160e3f 445#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
41a2d6cf
IM
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
41a2d6cf
IM
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
458
459#ifdef CONFIG_SMP
c09595f6 460 /*
c8cba857 461 * the part of load.weight contributed by tasks
c09595f6 462 */
c8cba857 463 unsigned long task_weight;
c09595f6 464
c8cba857
PZ
465 /*
466 * h_load = weight * f(tg)
467 *
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
470 */
471 unsigned long h_load;
c09595f6 472
c8cba857
PZ
473 /*
474 * this cpu's part of tg->shares
475 */
476 unsigned long shares;
f1d239f7
PZ
477
478 /*
479 * load.weight at the time we set shares
480 */
481 unsigned long rq_weight;
c09595f6 482#endif
6aa645ea
IM
483#endif
484};
1da177e4 485
6aa645ea
IM
486/* Real-Time classes' related field in a runqueue: */
487struct rt_rq {
488 struct rt_prio_array active;
63489e45 489 unsigned long rt_nr_running;
052f1dc7 490#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
491 struct {
492 int curr; /* highest queued rt task prio */
398a153b 493#ifdef CONFIG_SMP
e864c499 494 int next; /* next highest */
398a153b 495#endif
e864c499 496 } highest_prio;
6f505b16 497#endif
fa85ae24 498#ifdef CONFIG_SMP
73fe6aae 499 unsigned long rt_nr_migratory;
a22d7fc1 500 int overloaded;
917b627d 501 struct plist_head pushable_tasks;
fa85ae24 502#endif
6f505b16 503 int rt_throttled;
fa85ae24 504 u64 rt_time;
ac086bc2 505 u64 rt_runtime;
ea736ed5 506 /* Nests inside the rq lock: */
ac086bc2 507 spinlock_t rt_runtime_lock;
6f505b16 508
052f1dc7 509#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
510 unsigned long rt_nr_boosted;
511
6f505b16
PZ
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516#endif
6aa645ea
IM
517};
518
57d885fe
GH
519#ifdef CONFIG_SMP
520
521/*
522 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
527 *
57d885fe
GH
528 */
529struct root_domain {
530 atomic_t refcount;
c6c4927b
RR
531 cpumask_var_t span;
532 cpumask_var_t online;
637f5085 533
0eab9146 534 /*
637f5085
GH
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
c6c4927b 538 cpumask_var_t rto_mask;
0eab9146 539 atomic_t rto_count;
6e0534f2
GH
540#ifdef CONFIG_SMP
541 struct cpupri cpupri;
542#endif
7a09b1a2
VS
543#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
544 /*
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
548 */
549 unsigned int sched_mc_preferred_wakeup_cpu;
550#endif
57d885fe
GH
551};
552
dc938520
GH
553/*
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
556 */
57d885fe
GH
557static struct root_domain def_root_domain;
558
559#endif
560
1da177e4
LT
561/*
562 * This is the main, per-CPU runqueue data structure.
563 *
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
567 */
70b97a7f 568struct rq {
d8016491
IM
569 /* runqueue lock: */
570 spinlock_t lock;
1da177e4
LT
571
572 /*
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
575 */
576 unsigned long nr_running;
6aa645ea
IM
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 579#ifdef CONFIG_NO_HZ
15934a37 580 unsigned long last_tick_seen;
46cb4b7c
SS
581 unsigned char in_nohz_recently;
582#endif
d8016491
IM
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
6aa645ea
IM
585 unsigned long nr_load_updates;
586 u64 nr_switches;
587
588 struct cfs_rq cfs;
6f505b16 589 struct rt_rq rt;
6f505b16 590
6aa645ea 591#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
594#endif
595#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 596 struct list_head leaf_rt_rq_list;
1da177e4 597#endif
1da177e4
LT
598
599 /*
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
604 */
605 unsigned long nr_uninterruptible;
606
36c8b586 607 struct task_struct *curr, *idle;
c9819f45 608 unsigned long next_balance;
1da177e4 609 struct mm_struct *prev_mm;
6aa645ea 610
3e51f33f 611 u64 clock;
6aa645ea 612
1da177e4
LT
613 atomic_t nr_iowait;
614
615#ifdef CONFIG_SMP
0eab9146 616 struct root_domain *rd;
1da177e4
LT
617 struct sched_domain *sd;
618
a0a522ce 619 unsigned char idle_at_tick;
1da177e4
LT
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
d8016491
IM
623 /* cpu of this runqueue: */
624 int cpu;
1f11eb6a 625 int online;
1da177e4 626
a8a51d5e 627 unsigned long avg_load_per_task;
1da177e4 628
36c8b586 629 struct task_struct *migration_thread;
1da177e4
LT
630 struct list_head migration_queue;
631#endif
632
8f4d37ec 633#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
634#ifdef CONFIG_SMP
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
637#endif
8f4d37ec
PZ
638 struct hrtimer hrtick_timer;
639#endif
640
1da177e4
LT
641#ifdef CONFIG_SCHEDSTATS
642 /* latency stats */
643 struct sched_info rq_sched_info;
9c2c4802
KC
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
646
647 /* sys_sched_yield() stats */
480b9434 648 unsigned int yld_count;
1da177e4
LT
649
650 /* schedule() stats */
480b9434
KC
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
1da177e4
LT
654
655 /* try_to_wake_up() stats */
480b9434
KC
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
b8efb561
IM
658
659 /* BKL stats */
480b9434 660 unsigned int bkl_count;
1da177e4
LT
661#endif
662};
663
f34e3b61 664static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 665
15afe09b 666static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 667{
15afe09b 668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
669}
670
0a2966b4
CL
671static inline int cpu_of(struct rq *rq)
672{
673#ifdef CONFIG_SMP
674 return rq->cpu;
675#else
676 return 0;
677#endif
678}
679
674311d5
NP
680/*
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 682 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
683 *
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
686 */
48f24c4d
IM
687#define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
689
690#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691#define this_rq() (&__get_cpu_var(runqueues))
692#define task_rq(p) cpu_rq(task_cpu(p))
693#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
694
3e51f33f
PZ
695static inline void update_rq_clock(struct rq *rq)
696{
697 rq->clock = sched_clock_cpu(cpu_of(rq));
698}
699
bf5c91ba
IM
700/*
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
702 */
703#ifdef CONFIG_SCHED_DEBUG
704# define const_debug __read_mostly
705#else
706# define const_debug static const
707#endif
708
017730c1
IM
709/**
710 * runqueue_is_locked
711 *
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
715 */
716int runqueue_is_locked(void)
717{
718 int cpu = get_cpu();
719 struct rq *rq = cpu_rq(cpu);
720 int ret;
721
722 ret = spin_is_locked(&rq->lock);
723 put_cpu();
724 return ret;
725}
726
bf5c91ba
IM
727/*
728 * Debugging: various feature bits
729 */
f00b45c1
PZ
730
731#define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
733
bf5c91ba 734enum {
f00b45c1 735#include "sched_features.h"
bf5c91ba
IM
736};
737
f00b45c1
PZ
738#undef SCHED_FEAT
739
740#define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
742
bf5c91ba 743const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
744#include "sched_features.h"
745 0;
746
747#undef SCHED_FEAT
748
749#ifdef CONFIG_SCHED_DEBUG
750#define SCHED_FEAT(name, enabled) \
751 #name ,
752
983ed7a6 753static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
754#include "sched_features.h"
755 NULL
756};
757
758#undef SCHED_FEAT
759
34f3a814 760static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 761{
f00b45c1
PZ
762 int i;
763
764 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
765 if (!(sysctl_sched_features & (1UL << i)))
766 seq_puts(m, "NO_");
767 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 768 }
34f3a814 769 seq_puts(m, "\n");
f00b45c1 770
34f3a814 771 return 0;
f00b45c1
PZ
772}
773
774static ssize_t
775sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
777{
778 char buf[64];
779 char *cmp = buf;
780 int neg = 0;
781 int i;
782
783 if (cnt > 63)
784 cnt = 63;
785
786 if (copy_from_user(&buf, ubuf, cnt))
787 return -EFAULT;
788
789 buf[cnt] = 0;
790
c24b7c52 791 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
792 neg = 1;
793 cmp += 3;
794 }
795
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
798
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
800 if (neg)
801 sysctl_sched_features &= ~(1UL << i);
802 else
803 sysctl_sched_features |= (1UL << i);
804 break;
805 }
806 }
807
808 if (!sched_feat_names[i])
809 return -EINVAL;
810
811 filp->f_pos += cnt;
812
813 return cnt;
814}
815
34f3a814
LZ
816static int sched_feat_open(struct inode *inode, struct file *filp)
817{
818 return single_open(filp, sched_feat_show, NULL);
819}
820
f00b45c1 821static struct file_operations sched_feat_fops = {
34f3a814
LZ
822 .open = sched_feat_open,
823 .write = sched_feat_write,
824 .read = seq_read,
825 .llseek = seq_lseek,
826 .release = single_release,
f00b45c1
PZ
827};
828
829static __init int sched_init_debug(void)
830{
f00b45c1
PZ
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
832 &sched_feat_fops);
833
834 return 0;
835}
836late_initcall(sched_init_debug);
837
838#endif
839
840#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 841
b82d9fdd
PZ
842/*
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
845 */
846const_debug unsigned int sysctl_sched_nr_migrate = 32;
847
2398f2c6
PZ
848/*
849 * ratelimit for updating the group shares.
55cd5340 850 * default: 0.25ms
2398f2c6 851 */
55cd5340 852unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 853
ffda12a1
PZ
854/*
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
857 * default: 4
858 */
859unsigned int sysctl_sched_shares_thresh = 4;
860
fa85ae24 861/*
9f0c1e56 862 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
863 * default: 1s
864 */
9f0c1e56 865unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 866
6892b75e
IM
867static __read_mostly int scheduler_running;
868
9f0c1e56
PZ
869/*
870 * part of the period that we allow rt tasks to run in us.
871 * default: 0.95s
872 */
873int sysctl_sched_rt_runtime = 950000;
fa85ae24 874
d0b27fa7
PZ
875static inline u64 global_rt_period(void)
876{
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
878}
879
880static inline u64 global_rt_runtime(void)
881{
e26873bb 882 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
883 return RUNTIME_INF;
884
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
886}
fa85ae24 887
1da177e4 888#ifndef prepare_arch_switch
4866cde0
NP
889# define prepare_arch_switch(next) do { } while (0)
890#endif
891#ifndef finish_arch_switch
892# define finish_arch_switch(prev) do { } while (0)
893#endif
894
051a1d1a
DA
895static inline int task_current(struct rq *rq, struct task_struct *p)
896{
897 return rq->curr == p;
898}
899
4866cde0 900#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 901static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 902{
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908}
909
70b97a7f 910static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 911{
da04c035
IM
912#ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915#endif
8a25d5de
IM
916 /*
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
920 */
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
922
4866cde0
NP
923 spin_unlock_irq(&rq->lock);
924}
925
926#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 927static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
928{
929#ifdef CONFIG_SMP
930 return p->oncpu;
931#else
051a1d1a 932 return task_current(rq, p);
4866cde0
NP
933#endif
934}
935
70b97a7f 936static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
937{
938#ifdef CONFIG_SMP
939 /*
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
943 */
944 next->oncpu = 1;
945#endif
946#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948#else
949 spin_unlock(&rq->lock);
950#endif
951}
952
70b97a7f 953static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
954{
955#ifdef CONFIG_SMP
956 /*
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
960 */
961 smp_wmb();
962 prev->oncpu = 0;
963#endif
964#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
1da177e4 966#endif
4866cde0
NP
967}
968#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 969
b29739f9
IM
970/*
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
973 */
70b97a7f 974static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
975 __acquires(rq->lock)
976{
3a5c359a
AK
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
b29739f9 982 spin_unlock(&rq->lock);
b29739f9 983 }
b29739f9
IM
984}
985
1da177e4
LT
986/*
987 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 988 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
989 * explicitly disabling preemption.
990 */
70b97a7f 991static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
992 __acquires(rq->lock)
993{
70b97a7f 994 struct rq *rq;
1da177e4 995
3a5c359a
AK
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1da177e4 1002 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1003 }
1da177e4
LT
1004}
1005
ad474cac
ON
1006void task_rq_unlock_wait(struct task_struct *p)
1007{
1008 struct rq *rq = task_rq(p);
1009
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1012}
1013
a9957449 1014static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1015 __releases(rq->lock)
1016{
1017 spin_unlock(&rq->lock);
1018}
1019
70b97a7f 1020static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1021 __releases(rq->lock)
1022{
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1024}
1025
1da177e4 1026/*
cc2a73b5 1027 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1028 */
a9957449 1029static struct rq *this_rq_lock(void)
1da177e4
LT
1030 __acquires(rq->lock)
1031{
70b97a7f 1032 struct rq *rq;
1da177e4
LT
1033
1034 local_irq_disable();
1035 rq = this_rq();
1036 spin_lock(&rq->lock);
1037
1038 return rq;
1039}
1040
8f4d37ec
PZ
1041#ifdef CONFIG_SCHED_HRTICK
1042/*
1043 * Use HR-timers to deliver accurate preemption points.
1044 *
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1047 * reschedule event.
1048 *
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1050 * rq->lock.
1051 */
8f4d37ec
PZ
1052
1053/*
1054 * Use hrtick when:
1055 * - enabled by features
1056 * - hrtimer is actually high res
1057 */
1058static inline int hrtick_enabled(struct rq *rq)
1059{
1060 if (!sched_feat(HRTICK))
1061 return 0;
ba42059f 1062 if (!cpu_active(cpu_of(rq)))
b328ca18 1063 return 0;
8f4d37ec
PZ
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1065}
1066
8f4d37ec
PZ
1067static void hrtick_clear(struct rq *rq)
1068{
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1071}
1072
8f4d37ec
PZ
1073/*
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1076 */
1077static enum hrtimer_restart hrtick(struct hrtimer *timer)
1078{
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1080
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1082
1083 spin_lock(&rq->lock);
3e51f33f 1084 update_rq_clock(rq);
8f4d37ec
PZ
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1087
1088 return HRTIMER_NORESTART;
1089}
1090
95e904c7 1091#ifdef CONFIG_SMP
31656519
PZ
1092/*
1093 * called from hardirq (IPI) context
1094 */
1095static void __hrtick_start(void *arg)
b328ca18 1096{
31656519 1097 struct rq *rq = arg;
b328ca18 1098
31656519
PZ
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
b328ca18
PZ
1103}
1104
31656519
PZ
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1111{
31656519
PZ
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1114
cc584b21 1115 hrtimer_set_expires(timer, time);
31656519
PZ
1116
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
6e275637 1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1121 rq->hrtick_csd_pending = 1;
1122 }
b328ca18
PZ
1123}
1124
1125static int
1126hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1127{
1128 int cpu = (int)(long)hcpu;
1129
1130 switch (action) {
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1135 case CPU_DEAD:
1136 case CPU_DEAD_FROZEN:
31656519 1137 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1138 return NOTIFY_OK;
1139 }
1140
1141 return NOTIFY_DONE;
1142}
1143
fa748203 1144static __init void init_hrtick(void)
b328ca18
PZ
1145{
1146 hotcpu_notifier(hotplug_hrtick, 0);
1147}
31656519
PZ
1148#else
1149/*
1150 * Called to set the hrtick timer state.
1151 *
1152 * called with rq->lock held and irqs disabled
1153 */
1154static void hrtick_start(struct rq *rq, u64 delay)
1155{
7f1e2ca9
PZ
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
31656519 1158}
b328ca18 1159
006c75f1 1160static inline void init_hrtick(void)
8f4d37ec 1161{
8f4d37ec 1162}
31656519 1163#endif /* CONFIG_SMP */
8f4d37ec 1164
31656519 1165static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1166{
31656519
PZ
1167#ifdef CONFIG_SMP
1168 rq->hrtick_csd_pending = 0;
8f4d37ec 1169
31656519
PZ
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1173#endif
8f4d37ec 1174
31656519
PZ
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
8f4d37ec 1177}
006c75f1 1178#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1179static inline void hrtick_clear(struct rq *rq)
1180{
1181}
1182
8f4d37ec
PZ
1183static inline void init_rq_hrtick(struct rq *rq)
1184{
1185}
1186
b328ca18
PZ
1187static inline void init_hrtick(void)
1188{
1189}
006c75f1 1190#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1191
c24d20db
IM
1192/*
1193 * resched_task - mark a task 'to be rescheduled now'.
1194 *
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1197 * the target CPU.
1198 */
1199#ifdef CONFIG_SMP
1200
1201#ifndef tsk_is_polling
1202#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1203#endif
1204
31656519 1205static void resched_task(struct task_struct *p)
c24d20db
IM
1206{
1207 int cpu;
1208
1209 assert_spin_locked(&task_rq(p)->lock);
1210
5ed0cec0 1211 if (test_tsk_need_resched(p))
c24d20db
IM
1212 return;
1213
5ed0cec0 1214 set_tsk_need_resched(p);
c24d20db
IM
1215
1216 cpu = task_cpu(p);
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /* NEED_RESCHED must be visible before we test polling */
1221 smp_mb();
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1224}
1225
1226static void resched_cpu(int cpu)
1227{
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1230
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1232 return;
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1235}
06d8308c
TG
1236
1237#ifdef CONFIG_NO_HZ
1238/*
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1247 */
1248void wake_up_idle_cpu(int cpu)
1249{
1250 struct rq *rq = cpu_rq(cpu);
1251
1252 if (cpu == smp_processor_id())
1253 return;
1254
1255 /*
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1261 */
1262 if (rq->curr != rq->idle)
1263 return;
1264
1265 /*
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1269 */
5ed0cec0 1270 set_tsk_need_resched(rq->idle);
06d8308c
TG
1271
1272 /* NEED_RESCHED must be visible before we test polling */
1273 smp_mb();
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1276}
6d6bc0ad 1277#endif /* CONFIG_NO_HZ */
06d8308c 1278
6d6bc0ad 1279#else /* !CONFIG_SMP */
31656519 1280static void resched_task(struct task_struct *p)
c24d20db
IM
1281{
1282 assert_spin_locked(&task_rq(p)->lock);
31656519 1283 set_tsk_need_resched(p);
c24d20db 1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
1495static unsigned long source_load(int cpu, int type);
1496static unsigned long target_load(int cpu, int type);
1497static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1498
1499static unsigned long cpu_avg_load_per_task(int cpu)
1500{
1501 struct rq *rq = cpu_rq(cpu);
af6d596f 1502 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1503
4cd42620
SR
1504 if (nr_running)
1505 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1506 else
1507 rq->avg_load_per_task = 0;
eb755805
PZ
1508
1509 return rq->avg_load_per_task;
1510}
1511
1512#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1513
c09595f6
PZ
1514static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1515
1516/*
1517 * Calculate and set the cpu's group shares.
1518 */
1519static void
ffda12a1
PZ
1520update_group_shares_cpu(struct task_group *tg, int cpu,
1521 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1522{
c09595f6
PZ
1523 unsigned long shares;
1524 unsigned long rq_weight;
1525
c8cba857 1526 if (!tg->se[cpu])
c09595f6
PZ
1527 return;
1528
ec4e0e2f 1529 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1530
c09595f6
PZ
1531 /*
1532 * \Sum shares * rq_weight
1533 * shares = -----------------------
1534 * \Sum rq_weight
1535 *
1536 */
ec4e0e2f 1537 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1538 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1539
ffda12a1
PZ
1540 if (abs(shares - tg->se[cpu]->load.weight) >
1541 sysctl_sched_shares_thresh) {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long flags;
c09595f6 1544
ffda12a1 1545 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1546 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1547
ffda12a1
PZ
1548 __set_se_shares(tg->se[cpu], shares);
1549 spin_unlock_irqrestore(&rq->lock, flags);
1550 }
18d95a28 1551}
c09595f6
PZ
1552
1553/*
c8cba857
PZ
1554 * Re-compute the task group their per cpu shares over the given domain.
1555 * This needs to be done in a bottom-up fashion because the rq weight of a
1556 * parent group depends on the shares of its child groups.
c09595f6 1557 */
eb755805 1558static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1559{
ec4e0e2f 1560 unsigned long weight, rq_weight = 0;
c8cba857 1561 unsigned long shares = 0;
eb755805 1562 struct sched_domain *sd = data;
c8cba857 1563 int i;
c09595f6 1564
758b2cdc 1565 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1566 /*
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1570 */
1571 weight = tg->cfs_rq[i]->load.weight;
1572 if (!weight)
1573 weight = NICE_0_LOAD;
1574
1575 tg->cfs_rq[i]->rq_weight = weight;
1576 rq_weight += weight;
c8cba857 1577 shares += tg->cfs_rq[i]->shares;
c09595f6 1578 }
c09595f6 1579
c8cba857
PZ
1580 if ((!shares && rq_weight) || shares > tg->shares)
1581 shares = tg->shares;
1582
1583 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1584 shares = tg->shares;
c09595f6 1585
758b2cdc 1586 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1587 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1588
1589 return 0;
c09595f6
PZ
1590}
1591
1592/*
c8cba857
PZ
1593 * Compute the cpu's hierarchical load factor for each task group.
1594 * This needs to be done in a top-down fashion because the load of a child
1595 * group is a fraction of its parents load.
c09595f6 1596 */
eb755805 1597static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1598{
c8cba857 1599 unsigned long load;
eb755805 1600 long cpu = (long)data;
c09595f6 1601
c8cba857
PZ
1602 if (!tg->parent) {
1603 load = cpu_rq(cpu)->load.weight;
1604 } else {
1605 load = tg->parent->cfs_rq[cpu]->h_load;
1606 load *= tg->cfs_rq[cpu]->shares;
1607 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1608 }
c09595f6 1609
c8cba857 1610 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1611
eb755805 1612 return 0;
c09595f6
PZ
1613}
1614
c8cba857 1615static void update_shares(struct sched_domain *sd)
4d8d595d 1616{
2398f2c6
PZ
1617 u64 now = cpu_clock(raw_smp_processor_id());
1618 s64 elapsed = now - sd->last_update;
1619
1620 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1621 sd->last_update = now;
eb755805 1622 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1623 }
4d8d595d
PZ
1624}
1625
3e5459b4
PZ
1626static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1627{
1628 spin_unlock(&rq->lock);
1629 update_shares(sd);
1630 spin_lock(&rq->lock);
1631}
1632
eb755805 1633static void update_h_load(long cpu)
c09595f6 1634{
eb755805 1635 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1636}
1637
c09595f6
PZ
1638#else
1639
c8cba857 1640static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1641{
1642}
1643
3e5459b4
PZ
1644static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1645{
1646}
1647
18d95a28
PZ
1648#endif
1649
8f45e2b5
GH
1650#ifdef CONFIG_PREEMPT
1651
70574a99 1652/*
8f45e2b5
GH
1653 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1654 * way at the expense of forcing extra atomic operations in all
1655 * invocations. This assures that the double_lock is acquired using the
1656 * same underlying policy as the spinlock_t on this architecture, which
1657 * reduces latency compared to the unfair variant below. However, it
1658 * also adds more overhead and therefore may reduce throughput.
70574a99 1659 */
8f45e2b5
GH
1660static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(this_rq->lock)
1662 __acquires(busiest->lock)
1663 __acquires(this_rq->lock)
1664{
1665 spin_unlock(&this_rq->lock);
1666 double_rq_lock(this_rq, busiest);
1667
1668 return 1;
1669}
1670
1671#else
1672/*
1673 * Unfair double_lock_balance: Optimizes throughput at the expense of
1674 * latency by eliminating extra atomic operations when the locks are
1675 * already in proper order on entry. This favors lower cpu-ids and will
1676 * grant the double lock to lower cpus over higher ids under contention,
1677 * regardless of entry order into the function.
1678 */
1679static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1683{
1684 int ret = 0;
1685
70574a99
AD
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1691 ret = 1;
1692 } else
1693 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1694 }
1695 return ret;
1696}
1697
8f45e2b5
GH
1698#endif /* CONFIG_PREEMPT */
1699
1700/*
1701 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1702 */
1703static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704{
1705 if (unlikely(!irqs_disabled())) {
1706 /* printk() doesn't work good under rq->lock */
1707 spin_unlock(&this_rq->lock);
1708 BUG_ON(1);
1709 }
1710
1711 return _double_lock_balance(this_rq, busiest);
1712}
1713
70574a99
AD
1714static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1715 __releases(busiest->lock)
1716{
1717 spin_unlock(&busiest->lock);
1718 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1719}
18d95a28
PZ
1720#endif
1721
30432094 1722#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1723static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1724{
30432094 1725#ifdef CONFIG_SMP
34e83e85
IM
1726 cfs_rq->shares = shares;
1727#endif
1728}
30432094 1729#endif
e7693a36 1730
dd41f596 1731#include "sched_stats.h"
dd41f596 1732#include "sched_idletask.c"
5522d5d5
IM
1733#include "sched_fair.c"
1734#include "sched_rt.c"
dd41f596
IM
1735#ifdef CONFIG_SCHED_DEBUG
1736# include "sched_debug.c"
1737#endif
1738
1739#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1740#define for_each_class(class) \
1741 for (class = sched_class_highest; class; class = class->next)
dd41f596 1742
c09595f6 1743static void inc_nr_running(struct rq *rq)
9c217245
IM
1744{
1745 rq->nr_running++;
9c217245
IM
1746}
1747
c09595f6 1748static void dec_nr_running(struct rq *rq)
9c217245
IM
1749{
1750 rq->nr_running--;
9c217245
IM
1751}
1752
45bf76df
IM
1753static void set_load_weight(struct task_struct *p)
1754{
1755 if (task_has_rt_policy(p)) {
dd41f596
IM
1756 p->se.load.weight = prio_to_weight[0] * 2;
1757 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1758 return;
1759 }
45bf76df 1760
dd41f596
IM
1761 /*
1762 * SCHED_IDLE tasks get minimal weight:
1763 */
1764 if (p->policy == SCHED_IDLE) {
1765 p->se.load.weight = WEIGHT_IDLEPRIO;
1766 p->se.load.inv_weight = WMULT_IDLEPRIO;
1767 return;
1768 }
71f8bd46 1769
dd41f596
IM
1770 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1771 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1772}
1773
2087a1ad
GH
1774static void update_avg(u64 *avg, u64 sample)
1775{
1776 s64 diff = sample - *avg;
1777 *avg += diff >> 3;
1778}
1779
8159f87e 1780static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1781{
831451ac
PZ
1782 if (wakeup)
1783 p->se.start_runtime = p->se.sum_exec_runtime;
1784
dd41f596 1785 sched_info_queued(p);
fd390f6a 1786 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1787 p->se.on_rq = 1;
71f8bd46
IM
1788}
1789
69be72c1 1790static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1791{
831451ac
PZ
1792 if (sleep) {
1793 if (p->se.last_wakeup) {
1794 update_avg(&p->se.avg_overlap,
1795 p->se.sum_exec_runtime - p->se.last_wakeup);
1796 p->se.last_wakeup = 0;
1797 } else {
1798 update_avg(&p->se.avg_wakeup,
1799 sysctl_sched_wakeup_granularity);
1800 }
2087a1ad
GH
1801 }
1802
46ac22ba 1803 sched_info_dequeued(p);
f02231e5 1804 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1805 p->se.on_rq = 0;
71f8bd46
IM
1806}
1807
14531189 1808/*
dd41f596 1809 * __normal_prio - return the priority that is based on the static prio
14531189 1810 */
14531189
IM
1811static inline int __normal_prio(struct task_struct *p)
1812{
dd41f596 1813 return p->static_prio;
14531189
IM
1814}
1815
b29739f9
IM
1816/*
1817 * Calculate the expected normal priority: i.e. priority
1818 * without taking RT-inheritance into account. Might be
1819 * boosted by interactivity modifiers. Changes upon fork,
1820 * setprio syscalls, and whenever the interactivity
1821 * estimator recalculates.
1822 */
36c8b586 1823static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1824{
1825 int prio;
1826
e05606d3 1827 if (task_has_rt_policy(p))
b29739f9
IM
1828 prio = MAX_RT_PRIO-1 - p->rt_priority;
1829 else
1830 prio = __normal_prio(p);
1831 return prio;
1832}
1833
1834/*
1835 * Calculate the current priority, i.e. the priority
1836 * taken into account by the scheduler. This value might
1837 * be boosted by RT tasks, or might be boosted by
1838 * interactivity modifiers. Will be RT if the task got
1839 * RT-boosted. If not then it returns p->normal_prio.
1840 */
36c8b586 1841static int effective_prio(struct task_struct *p)
b29739f9
IM
1842{
1843 p->normal_prio = normal_prio(p);
1844 /*
1845 * If we are RT tasks or we were boosted to RT priority,
1846 * keep the priority unchanged. Otherwise, update priority
1847 * to the normal priority:
1848 */
1849 if (!rt_prio(p->prio))
1850 return p->normal_prio;
1851 return p->prio;
1852}
1853
1da177e4 1854/*
dd41f596 1855 * activate_task - move a task to the runqueue.
1da177e4 1856 */
dd41f596 1857static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1858{
d9514f6c 1859 if (task_contributes_to_load(p))
dd41f596 1860 rq->nr_uninterruptible--;
1da177e4 1861
8159f87e 1862 enqueue_task(rq, p, wakeup);
c09595f6 1863 inc_nr_running(rq);
1da177e4
LT
1864}
1865
1da177e4
LT
1866/*
1867 * deactivate_task - remove a task from the runqueue.
1868 */
2e1cb74a 1869static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1870{
d9514f6c 1871 if (task_contributes_to_load(p))
dd41f596
IM
1872 rq->nr_uninterruptible++;
1873
69be72c1 1874 dequeue_task(rq, p, sleep);
c09595f6 1875 dec_nr_running(rq);
1da177e4
LT
1876}
1877
1da177e4
LT
1878/**
1879 * task_curr - is this task currently executing on a CPU?
1880 * @p: the task in question.
1881 */
36c8b586 1882inline int task_curr(const struct task_struct *p)
1da177e4
LT
1883{
1884 return cpu_curr(task_cpu(p)) == p;
1885}
1886
dd41f596
IM
1887static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1888{
6f505b16 1889 set_task_rq(p, cpu);
dd41f596 1890#ifdef CONFIG_SMP
ce96b5ac
DA
1891 /*
1892 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1893 * successfuly executed on another CPU. We must ensure that updates of
1894 * per-task data have been completed by this moment.
1895 */
1896 smp_wmb();
dd41f596 1897 task_thread_info(p)->cpu = cpu;
dd41f596 1898#endif
2dd73a4f
PW
1899}
1900
cb469845
SR
1901static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1902 const struct sched_class *prev_class,
1903 int oldprio, int running)
1904{
1905 if (prev_class != p->sched_class) {
1906 if (prev_class->switched_from)
1907 prev_class->switched_from(rq, p, running);
1908 p->sched_class->switched_to(rq, p, running);
1909 } else
1910 p->sched_class->prio_changed(rq, p, oldprio, running);
1911}
1912
1da177e4 1913#ifdef CONFIG_SMP
c65cc870 1914
e958b360
TG
1915/* Used instead of source_load when we know the type == 0 */
1916static unsigned long weighted_cpuload(const int cpu)
1917{
1918 return cpu_rq(cpu)->load.weight;
1919}
1920
cc367732
IM
1921/*
1922 * Is this task likely cache-hot:
1923 */
e7693a36 1924static int
cc367732
IM
1925task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1926{
1927 s64 delta;
1928
f540a608
IM
1929 /*
1930 * Buddy candidates are cache hot:
1931 */
4793241b
PZ
1932 if (sched_feat(CACHE_HOT_BUDDY) &&
1933 (&p->se == cfs_rq_of(&p->se)->next ||
1934 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1935 return 1;
1936
cc367732
IM
1937 if (p->sched_class != &fair_sched_class)
1938 return 0;
1939
6bc1665b
IM
1940 if (sysctl_sched_migration_cost == -1)
1941 return 1;
1942 if (sysctl_sched_migration_cost == 0)
1943 return 0;
1944
cc367732
IM
1945 delta = now - p->se.exec_start;
1946
1947 return delta < (s64)sysctl_sched_migration_cost;
1948}
1949
1950
dd41f596 1951void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1952{
dd41f596
IM
1953 int old_cpu = task_cpu(p);
1954 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1955 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1956 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1957 u64 clock_offset;
dd41f596
IM
1958
1959 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1960
cbc34ed1
PZ
1961 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1962
6cfb0d5d
IM
1963#ifdef CONFIG_SCHEDSTATS
1964 if (p->se.wait_start)
1965 p->se.wait_start -= clock_offset;
dd41f596
IM
1966 if (p->se.sleep_start)
1967 p->se.sleep_start -= clock_offset;
1968 if (p->se.block_start)
1969 p->se.block_start -= clock_offset;
cc367732
IM
1970 if (old_cpu != new_cpu) {
1971 schedstat_inc(p, se.nr_migrations);
1972 if (task_hot(p, old_rq->clock, NULL))
1973 schedstat_inc(p, se.nr_forced2_migrations);
1974 }
6cfb0d5d 1975#endif
2830cf8c
SV
1976 p->se.vruntime -= old_cfsrq->min_vruntime -
1977 new_cfsrq->min_vruntime;
dd41f596
IM
1978
1979 __set_task_cpu(p, new_cpu);
c65cc870
IM
1980}
1981
70b97a7f 1982struct migration_req {
1da177e4 1983 struct list_head list;
1da177e4 1984
36c8b586 1985 struct task_struct *task;
1da177e4
LT
1986 int dest_cpu;
1987
1da177e4 1988 struct completion done;
70b97a7f 1989};
1da177e4
LT
1990
1991/*
1992 * The task's runqueue lock must be held.
1993 * Returns true if you have to wait for migration thread.
1994 */
36c8b586 1995static int
70b97a7f 1996migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1997{
70b97a7f 1998 struct rq *rq = task_rq(p);
1da177e4
LT
1999
2000 /*
2001 * If the task is not on a runqueue (and not running), then
2002 * it is sufficient to simply update the task's cpu field.
2003 */
dd41f596 2004 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2005 set_task_cpu(p, dest_cpu);
2006 return 0;
2007 }
2008
2009 init_completion(&req->done);
1da177e4
LT
2010 req->task = p;
2011 req->dest_cpu = dest_cpu;
2012 list_add(&req->list, &rq->migration_queue);
48f24c4d 2013
1da177e4
LT
2014 return 1;
2015}
2016
2017/*
2018 * wait_task_inactive - wait for a thread to unschedule.
2019 *
85ba2d86
RM
2020 * If @match_state is nonzero, it's the @p->state value just checked and
2021 * not expected to change. If it changes, i.e. @p might have woken up,
2022 * then return zero. When we succeed in waiting for @p to be off its CPU,
2023 * we return a positive number (its total switch count). If a second call
2024 * a short while later returns the same number, the caller can be sure that
2025 * @p has remained unscheduled the whole time.
2026 *
1da177e4
LT
2027 * The caller must ensure that the task *will* unschedule sometime soon,
2028 * else this function might spin for a *long* time. This function can't
2029 * be called with interrupts off, or it may introduce deadlock with
2030 * smp_call_function() if an IPI is sent by the same process we are
2031 * waiting to become inactive.
2032 */
85ba2d86 2033unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2034{
2035 unsigned long flags;
dd41f596 2036 int running, on_rq;
85ba2d86 2037 unsigned long ncsw;
70b97a7f 2038 struct rq *rq;
1da177e4 2039
3a5c359a
AK
2040 for (;;) {
2041 /*
2042 * We do the initial early heuristics without holding
2043 * any task-queue locks at all. We'll only try to get
2044 * the runqueue lock when things look like they will
2045 * work out!
2046 */
2047 rq = task_rq(p);
fa490cfd 2048
3a5c359a
AK
2049 /*
2050 * If the task is actively running on another CPU
2051 * still, just relax and busy-wait without holding
2052 * any locks.
2053 *
2054 * NOTE! Since we don't hold any locks, it's not
2055 * even sure that "rq" stays as the right runqueue!
2056 * But we don't care, since "task_running()" will
2057 * return false if the runqueue has changed and p
2058 * is actually now running somewhere else!
2059 */
85ba2d86
RM
2060 while (task_running(rq, p)) {
2061 if (match_state && unlikely(p->state != match_state))
2062 return 0;
3a5c359a 2063 cpu_relax();
85ba2d86 2064 }
fa490cfd 2065
3a5c359a
AK
2066 /*
2067 * Ok, time to look more closely! We need the rq
2068 * lock now, to be *sure*. If we're wrong, we'll
2069 * just go back and repeat.
2070 */
2071 rq = task_rq_lock(p, &flags);
0a16b607 2072 trace_sched_wait_task(rq, p);
3a5c359a
AK
2073 running = task_running(rq, p);
2074 on_rq = p->se.on_rq;
85ba2d86 2075 ncsw = 0;
f31e11d8 2076 if (!match_state || p->state == match_state)
93dcf55f 2077 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2078 task_rq_unlock(rq, &flags);
fa490cfd 2079
85ba2d86
RM
2080 /*
2081 * If it changed from the expected state, bail out now.
2082 */
2083 if (unlikely(!ncsw))
2084 break;
2085
3a5c359a
AK
2086 /*
2087 * Was it really running after all now that we
2088 * checked with the proper locks actually held?
2089 *
2090 * Oops. Go back and try again..
2091 */
2092 if (unlikely(running)) {
2093 cpu_relax();
2094 continue;
2095 }
fa490cfd 2096
3a5c359a
AK
2097 /*
2098 * It's not enough that it's not actively running,
2099 * it must be off the runqueue _entirely_, and not
2100 * preempted!
2101 *
80dd99b3 2102 * So if it was still runnable (but just not actively
3a5c359a
AK
2103 * running right now), it's preempted, and we should
2104 * yield - it could be a while.
2105 */
2106 if (unlikely(on_rq)) {
2107 schedule_timeout_uninterruptible(1);
2108 continue;
2109 }
fa490cfd 2110
3a5c359a
AK
2111 /*
2112 * Ahh, all good. It wasn't running, and it wasn't
2113 * runnable, which means that it will never become
2114 * running in the future either. We're all done!
2115 */
2116 break;
2117 }
85ba2d86
RM
2118
2119 return ncsw;
1da177e4
LT
2120}
2121
2122/***
2123 * kick_process - kick a running thread to enter/exit the kernel
2124 * @p: the to-be-kicked thread
2125 *
2126 * Cause a process which is running on another CPU to enter
2127 * kernel-mode, without any delay. (to get signals handled.)
2128 *
2129 * NOTE: this function doesnt have to take the runqueue lock,
2130 * because all it wants to ensure is that the remote task enters
2131 * the kernel. If the IPI races and the task has been migrated
2132 * to another CPU then no harm is done and the purpose has been
2133 * achieved as well.
2134 */
36c8b586 2135void kick_process(struct task_struct *p)
1da177e4
LT
2136{
2137 int cpu;
2138
2139 preempt_disable();
2140 cpu = task_cpu(p);
2141 if ((cpu != smp_processor_id()) && task_curr(p))
2142 smp_send_reschedule(cpu);
2143 preempt_enable();
2144}
2145
2146/*
2dd73a4f
PW
2147 * Return a low guess at the load of a migration-source cpu weighted
2148 * according to the scheduling class and "nice" value.
1da177e4
LT
2149 *
2150 * We want to under-estimate the load of migration sources, to
2151 * balance conservatively.
2152 */
a9957449 2153static unsigned long source_load(int cpu, int type)
1da177e4 2154{
70b97a7f 2155 struct rq *rq = cpu_rq(cpu);
dd41f596 2156 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2157
93b75217 2158 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2159 return total;
b910472d 2160
dd41f596 2161 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2162}
2163
2164/*
2dd73a4f
PW
2165 * Return a high guess at the load of a migration-target cpu weighted
2166 * according to the scheduling class and "nice" value.
1da177e4 2167 */
a9957449 2168static unsigned long target_load(int cpu, int type)
1da177e4 2169{
70b97a7f 2170 struct rq *rq = cpu_rq(cpu);
dd41f596 2171 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2172
93b75217 2173 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2174 return total;
3b0bd9bc 2175
dd41f596 2176 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2177}
2178
147cbb4b
NP
2179/*
2180 * find_idlest_group finds and returns the least busy CPU group within the
2181 * domain.
2182 */
2183static struct sched_group *
2184find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2185{
2186 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2187 unsigned long min_load = ULONG_MAX, this_load = 0;
2188 int load_idx = sd->forkexec_idx;
2189 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2190
2191 do {
2192 unsigned long load, avg_load;
2193 int local_group;
2194 int i;
2195
da5a5522 2196 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2197 if (!cpumask_intersects(sched_group_cpus(group),
2198 &p->cpus_allowed))
3a5c359a 2199 continue;
da5a5522 2200
758b2cdc
RR
2201 local_group = cpumask_test_cpu(this_cpu,
2202 sched_group_cpus(group));
147cbb4b
NP
2203
2204 /* Tally up the load of all CPUs in the group */
2205 avg_load = 0;
2206
758b2cdc 2207 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2208 /* Bias balancing toward cpus of our domain */
2209 if (local_group)
2210 load = source_load(i, load_idx);
2211 else
2212 load = target_load(i, load_idx);
2213
2214 avg_load += load;
2215 }
2216
2217 /* Adjust by relative CPU power of the group */
5517d86b
ED
2218 avg_load = sg_div_cpu_power(group,
2219 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2220
2221 if (local_group) {
2222 this_load = avg_load;
2223 this = group;
2224 } else if (avg_load < min_load) {
2225 min_load = avg_load;
2226 idlest = group;
2227 }
3a5c359a 2228 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2229
2230 if (!idlest || 100*this_load < imbalance*min_load)
2231 return NULL;
2232 return idlest;
2233}
2234
2235/*
0feaece9 2236 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2237 */
95cdf3b7 2238static int
758b2cdc 2239find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2240{
2241 unsigned long load, min_load = ULONG_MAX;
2242 int idlest = -1;
2243 int i;
2244
da5a5522 2245 /* Traverse only the allowed CPUs */
758b2cdc 2246 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2247 load = weighted_cpuload(i);
147cbb4b
NP
2248
2249 if (load < min_load || (load == min_load && i == this_cpu)) {
2250 min_load = load;
2251 idlest = i;
2252 }
2253 }
2254
2255 return idlest;
2256}
2257
476d139c
NP
2258/*
2259 * sched_balance_self: balance the current task (running on cpu) in domains
2260 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2261 * SD_BALANCE_EXEC.
2262 *
2263 * Balance, ie. select the least loaded group.
2264 *
2265 * Returns the target CPU number, or the same CPU if no balancing is needed.
2266 *
2267 * preempt must be disabled.
2268 */
2269static int sched_balance_self(int cpu, int flag)
2270{
2271 struct task_struct *t = current;
2272 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2273
c96d145e 2274 for_each_domain(cpu, tmp) {
9761eea8
IM
2275 /*
2276 * If power savings logic is enabled for a domain, stop there.
2277 */
5c45bf27
SS
2278 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2279 break;
476d139c
NP
2280 if (tmp->flags & flag)
2281 sd = tmp;
c96d145e 2282 }
476d139c 2283
039a1c41
PZ
2284 if (sd)
2285 update_shares(sd);
2286
476d139c 2287 while (sd) {
476d139c 2288 struct sched_group *group;
1a848870
SS
2289 int new_cpu, weight;
2290
2291 if (!(sd->flags & flag)) {
2292 sd = sd->child;
2293 continue;
2294 }
476d139c 2295
476d139c 2296 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2297 if (!group) {
2298 sd = sd->child;
2299 continue;
2300 }
476d139c 2301
758b2cdc 2302 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2303 if (new_cpu == -1 || new_cpu == cpu) {
2304 /* Now try balancing at a lower domain level of cpu */
2305 sd = sd->child;
2306 continue;
2307 }
476d139c 2308
1a848870 2309 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2310 cpu = new_cpu;
758b2cdc 2311 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2312 sd = NULL;
476d139c 2313 for_each_domain(cpu, tmp) {
758b2cdc 2314 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2315 break;
2316 if (tmp->flags & flag)
2317 sd = tmp;
2318 }
2319 /* while loop will break here if sd == NULL */
2320 }
2321
2322 return cpu;
2323}
2324
2325#endif /* CONFIG_SMP */
1da177e4 2326
1da177e4
LT
2327/***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2332 *
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2338 *
2339 * returns failure only if the task is already active.
2340 */
36c8b586 2341static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2342{
cc367732 2343 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2344 unsigned long flags;
2345 long old_state;
70b97a7f 2346 struct rq *rq;
1da177e4 2347
b85d0667
IM
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 sync = 0;
2350
2398f2c6 2351#ifdef CONFIG_SMP
57310a98 2352 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2353 struct sched_domain *sd;
2354
2355 this_cpu = raw_smp_processor_id();
2356 cpu = task_cpu(p);
2357
2358 for_each_domain(this_cpu, sd) {
758b2cdc 2359 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2360 update_shares(sd);
2361 break;
2362 }
2363 }
2364 }
2365#endif
2366
04e2f174 2367 smp_wmb();
1da177e4 2368 rq = task_rq_lock(p, &flags);
03e89e45 2369 update_rq_clock(rq);
1da177e4
LT
2370 old_state = p->state;
2371 if (!(old_state & state))
2372 goto out;
2373
dd41f596 2374 if (p->se.on_rq)
1da177e4
LT
2375 goto out_running;
2376
2377 cpu = task_cpu(p);
cc367732 2378 orig_cpu = cpu;
1da177e4
LT
2379 this_cpu = smp_processor_id();
2380
2381#ifdef CONFIG_SMP
2382 if (unlikely(task_running(rq, p)))
2383 goto out_activate;
2384
5d2f5a61
DA
2385 cpu = p->sched_class->select_task_rq(p, sync);
2386 if (cpu != orig_cpu) {
2387 set_task_cpu(p, cpu);
1da177e4
LT
2388 task_rq_unlock(rq, &flags);
2389 /* might preempt at this point */
2390 rq = task_rq_lock(p, &flags);
2391 old_state = p->state;
2392 if (!(old_state & state))
2393 goto out;
dd41f596 2394 if (p->se.on_rq)
1da177e4
LT
2395 goto out_running;
2396
2397 this_cpu = smp_processor_id();
2398 cpu = task_cpu(p);
2399 }
2400
e7693a36
GH
2401#ifdef CONFIG_SCHEDSTATS
2402 schedstat_inc(rq, ttwu_count);
2403 if (cpu == this_cpu)
2404 schedstat_inc(rq, ttwu_local);
2405 else {
2406 struct sched_domain *sd;
2407 for_each_domain(this_cpu, sd) {
758b2cdc 2408 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2409 schedstat_inc(sd, ttwu_wake_remote);
2410 break;
2411 }
2412 }
2413 }
6d6bc0ad 2414#endif /* CONFIG_SCHEDSTATS */
e7693a36 2415
1da177e4
LT
2416out_activate:
2417#endif /* CONFIG_SMP */
cc367732
IM
2418 schedstat_inc(p, se.nr_wakeups);
2419 if (sync)
2420 schedstat_inc(p, se.nr_wakeups_sync);
2421 if (orig_cpu != cpu)
2422 schedstat_inc(p, se.nr_wakeups_migrate);
2423 if (cpu == this_cpu)
2424 schedstat_inc(p, se.nr_wakeups_local);
2425 else
2426 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2427 activate_task(rq, p, 1);
1da177e4
LT
2428 success = 1;
2429
831451ac
PZ
2430 /*
2431 * Only attribute actual wakeups done by this task.
2432 */
2433 if (!in_interrupt()) {
2434 struct sched_entity *se = &current->se;
2435 u64 sample = se->sum_exec_runtime;
2436
2437 if (se->last_wakeup)
2438 sample -= se->last_wakeup;
2439 else
2440 sample -= se->start_runtime;
2441 update_avg(&se->avg_wakeup, sample);
2442
2443 se->last_wakeup = se->sum_exec_runtime;
2444 }
2445
1da177e4 2446out_running:
468a15bb 2447 trace_sched_wakeup(rq, p, success);
15afe09b 2448 check_preempt_curr(rq, p, sync);
4ae7d5ce 2449
1da177e4 2450 p->state = TASK_RUNNING;
9a897c5a
SR
2451#ifdef CONFIG_SMP
2452 if (p->sched_class->task_wake_up)
2453 p->sched_class->task_wake_up(rq, p);
2454#endif
1da177e4
LT
2455out:
2456 task_rq_unlock(rq, &flags);
2457
2458 return success;
2459}
2460
7ad5b3a5 2461int wake_up_process(struct task_struct *p)
1da177e4 2462{
d9514f6c 2463 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2464}
1da177e4
LT
2465EXPORT_SYMBOL(wake_up_process);
2466
7ad5b3a5 2467int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2468{
2469 return try_to_wake_up(p, state, 0);
2470}
2471
1da177e4
LT
2472/*
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
dd41f596
IM
2475 *
2476 * __sched_fork() is basic setup used by init_idle() too:
2477 */
2478static void __sched_fork(struct task_struct *p)
2479{
dd41f596
IM
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
f6cf891c 2482 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2483 p->se.last_wakeup = 0;
2484 p->se.avg_overlap = 0;
831451ac
PZ
2485 p->se.start_runtime = 0;
2486 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2487
2488#ifdef CONFIG_SCHEDSTATS
2489 p->se.wait_start = 0;
dd41f596
IM
2490 p->se.sum_sleep_runtime = 0;
2491 p->se.sleep_start = 0;
dd41f596
IM
2492 p->se.block_start = 0;
2493 p->se.sleep_max = 0;
2494 p->se.block_max = 0;
2495 p->se.exec_max = 0;
eba1ed4b 2496 p->se.slice_max = 0;
dd41f596 2497 p->se.wait_max = 0;
6cfb0d5d 2498#endif
476d139c 2499
fa717060 2500 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2501 p->se.on_rq = 0;
4a55bd5e 2502 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2503
e107be36
AK
2504#ifdef CONFIG_PREEMPT_NOTIFIERS
2505 INIT_HLIST_HEAD(&p->preempt_notifiers);
2506#endif
2507
1da177e4
LT
2508 /*
2509 * We mark the process as running here, but have not actually
2510 * inserted it onto the runqueue yet. This guarantees that
2511 * nobody will actually run it, and a signal or other external
2512 * event cannot wake it up and insert it on the runqueue either.
2513 */
2514 p->state = TASK_RUNNING;
dd41f596
IM
2515}
2516
2517/*
2518 * fork()/clone()-time setup:
2519 */
2520void sched_fork(struct task_struct *p, int clone_flags)
2521{
2522 int cpu = get_cpu();
2523
2524 __sched_fork(p);
2525
2526#ifdef CONFIG_SMP
2527 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2528#endif
02e4bac2 2529 set_task_cpu(p, cpu);
b29739f9
IM
2530
2531 /*
2532 * Make sure we do not leak PI boosting priority to the child:
2533 */
2534 p->prio = current->normal_prio;
2ddbf952
HS
2535 if (!rt_prio(p->prio))
2536 p->sched_class = &fair_sched_class;
b29739f9 2537
52f17b6c 2538#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2539 if (likely(sched_info_on()))
52f17b6c 2540 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2541#endif
d6077cb8 2542#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2543 p->oncpu = 0;
2544#endif
1da177e4 2545#ifdef CONFIG_PREEMPT
4866cde0 2546 /* Want to start with kernel preemption disabled. */
a1261f54 2547 task_thread_info(p)->preempt_count = 1;
1da177e4 2548#endif
917b627d
GH
2549 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2550
476d139c 2551 put_cpu();
1da177e4
LT
2552}
2553
2554/*
2555 * wake_up_new_task - wake up a newly created task for the first time.
2556 *
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2560 */
7ad5b3a5 2561void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2562{
2563 unsigned long flags;
dd41f596 2564 struct rq *rq;
1da177e4
LT
2565
2566 rq = task_rq_lock(p, &flags);
147cbb4b 2567 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2568 update_rq_clock(rq);
1da177e4
LT
2569
2570 p->prio = effective_prio(p);
2571
b9dca1e0 2572 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2573 activate_task(rq, p, 0);
1da177e4 2574 } else {
1da177e4 2575 /*
dd41f596
IM
2576 * Let the scheduling class do new task startup
2577 * management (if any):
1da177e4 2578 */
ee0827d8 2579 p->sched_class->task_new(rq, p);
c09595f6 2580 inc_nr_running(rq);
1da177e4 2581 }
c71dd42d 2582 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2583 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2584#ifdef CONFIG_SMP
2585 if (p->sched_class->task_wake_up)
2586 p->sched_class->task_wake_up(rq, p);
2587#endif
dd41f596 2588 task_rq_unlock(rq, &flags);
1da177e4
LT
2589}
2590
e107be36
AK
2591#ifdef CONFIG_PREEMPT_NOTIFIERS
2592
2593/**
80dd99b3 2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2595 * @notifier: notifier struct to register
e107be36
AK
2596 */
2597void preempt_notifier_register(struct preempt_notifier *notifier)
2598{
2599 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2600}
2601EXPORT_SYMBOL_GPL(preempt_notifier_register);
2602
2603/**
2604 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2605 * @notifier: notifier struct to unregister
e107be36
AK
2606 *
2607 * This is safe to call from within a preemption notifier.
2608 */
2609void preempt_notifier_unregister(struct preempt_notifier *notifier)
2610{
2611 hlist_del(&notifier->link);
2612}
2613EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2614
2615static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2616{
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2619
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2622}
2623
2624static void
2625fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627{
2628 struct preempt_notifier *notifier;
2629 struct hlist_node *node;
2630
2631 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2632 notifier->ops->sched_out(notifier, next);
2633}
2634
6d6bc0ad 2635#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2636
2637static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638{
2639}
2640
2641static void
2642fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644{
2645}
2646
6d6bc0ad 2647#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2648
4866cde0
NP
2649/**
2650 * prepare_task_switch - prepare to switch tasks
2651 * @rq: the runqueue preparing to switch
421cee29 2652 * @prev: the current task that is being switched out
4866cde0
NP
2653 * @next: the task we are going to switch to.
2654 *
2655 * This is called with the rq lock held and interrupts off. It must
2656 * be paired with a subsequent finish_task_switch after the context
2657 * switch.
2658 *
2659 * prepare_task_switch sets up locking and calls architecture specific
2660 * hooks.
2661 */
e107be36
AK
2662static inline void
2663prepare_task_switch(struct rq *rq, struct task_struct *prev,
2664 struct task_struct *next)
4866cde0 2665{
e107be36 2666 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2669}
2670
1da177e4
LT
2671/**
2672 * finish_task_switch - clean up after a task-switch
344babaa 2673 * @rq: runqueue associated with task-switch
1da177e4
LT
2674 * @prev: the thread we just switched away from.
2675 *
4866cde0
NP
2676 * finish_task_switch must be called after the context switch, paired
2677 * with a prepare_task_switch call before the context switch.
2678 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2680 *
2681 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2682 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2683 * with the lock held can cause deadlocks; see schedule() for
2684 * details.)
2685 */
a9957449 2686static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2687 __releases(rq->lock)
2688{
1da177e4 2689 struct mm_struct *mm = rq->prev_mm;
55a101f8 2690 long prev_state;
967fc046
GH
2691#ifdef CONFIG_SMP
2692 int post_schedule = 0;
2693
2694 if (current->sched_class->needs_post_schedule)
2695 post_schedule = current->sched_class->needs_post_schedule(rq);
2696#endif
1da177e4
LT
2697
2698 rq->prev_mm = NULL;
2699
2700 /*
2701 * A task struct has one reference for the use as "current".
c394cc9f 2702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2703 * schedule one last time. The schedule call will never return, and
2704 * the scheduled task must drop that reference.
c394cc9f 2705 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2706 * still held, otherwise prev could be scheduled on another cpu, die
2707 * there before we look at prev->state, and then the reference would
2708 * be dropped twice.
2709 * Manfred Spraul <manfred@colorfullife.com>
2710 */
55a101f8 2711 prev_state = prev->state;
4866cde0
NP
2712 finish_arch_switch(prev);
2713 finish_lock_switch(rq, prev);
9a897c5a 2714#ifdef CONFIG_SMP
967fc046 2715 if (post_schedule)
9a897c5a
SR
2716 current->sched_class->post_schedule(rq);
2717#endif
e8fa1362 2718
e107be36 2719 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2720 if (mm)
2721 mmdrop(mm);
c394cc9f 2722 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2723 /*
2724 * Remove function-return probe instances associated with this
2725 * task and put them back on the free list.
9761eea8 2726 */
c6fd91f0 2727 kprobe_flush_task(prev);
1da177e4 2728 put_task_struct(prev);
c6fd91f0 2729 }
1da177e4
LT
2730}
2731
2732/**
2733 * schedule_tail - first thing a freshly forked thread must call.
2734 * @prev: the thread we just switched away from.
2735 */
36c8b586 2736asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2737 __releases(rq->lock)
2738{
70b97a7f
IM
2739 struct rq *rq = this_rq();
2740
4866cde0
NP
2741 finish_task_switch(rq, prev);
2742#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2743 /* In this case, finish_task_switch does not reenable preemption */
2744 preempt_enable();
2745#endif
1da177e4 2746 if (current->set_child_tid)
b488893a 2747 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2748}
2749
2750/*
2751 * context_switch - switch to the new MM and the new
2752 * thread's register state.
2753 */
dd41f596 2754static inline void
70b97a7f 2755context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2756 struct task_struct *next)
1da177e4 2757{
dd41f596 2758 struct mm_struct *mm, *oldmm;
1da177e4 2759
e107be36 2760 prepare_task_switch(rq, prev, next);
0a16b607 2761 trace_sched_switch(rq, prev, next);
dd41f596
IM
2762 mm = next->mm;
2763 oldmm = prev->active_mm;
9226d125
ZA
2764 /*
2765 * For paravirt, this is coupled with an exit in switch_to to
2766 * combine the page table reload and the switch backend into
2767 * one hypercall.
2768 */
2769 arch_enter_lazy_cpu_mode();
2770
dd41f596 2771 if (unlikely(!mm)) {
1da177e4
LT
2772 next->active_mm = oldmm;
2773 atomic_inc(&oldmm->mm_count);
2774 enter_lazy_tlb(oldmm, next);
2775 } else
2776 switch_mm(oldmm, mm, next);
2777
dd41f596 2778 if (unlikely(!prev->mm)) {
1da177e4 2779 prev->active_mm = NULL;
1da177e4
LT
2780 rq->prev_mm = oldmm;
2781 }
3a5f5e48
IM
2782 /*
2783 * Since the runqueue lock will be released by the next
2784 * task (which is an invalid locking op but in the case
2785 * of the scheduler it's an obvious special-case), so we
2786 * do an early lockdep release here:
2787 */
2788#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2790#endif
1da177e4
LT
2791
2792 /* Here we just switch the register state and the stack. */
2793 switch_to(prev, next, prev);
2794
dd41f596
IM
2795 barrier();
2796 /*
2797 * this_rq must be evaluated again because prev may have moved
2798 * CPUs since it called schedule(), thus the 'rq' on its stack
2799 * frame will be invalid.
2800 */
2801 finish_task_switch(this_rq(), prev);
1da177e4
LT
2802}
2803
2804/*
2805 * nr_running, nr_uninterruptible and nr_context_switches:
2806 *
2807 * externally visible scheduler statistics: current number of runnable
2808 * threads, current number of uninterruptible-sleeping threads, total
2809 * number of context switches performed since bootup.
2810 */
2811unsigned long nr_running(void)
2812{
2813 unsigned long i, sum = 0;
2814
2815 for_each_online_cpu(i)
2816 sum += cpu_rq(i)->nr_running;
2817
2818 return sum;
2819}
2820
2821unsigned long nr_uninterruptible(void)
2822{
2823 unsigned long i, sum = 0;
2824
0a945022 2825 for_each_possible_cpu(i)
1da177e4
LT
2826 sum += cpu_rq(i)->nr_uninterruptible;
2827
2828 /*
2829 * Since we read the counters lockless, it might be slightly
2830 * inaccurate. Do not allow it to go below zero though:
2831 */
2832 if (unlikely((long)sum < 0))
2833 sum = 0;
2834
2835 return sum;
2836}
2837
2838unsigned long long nr_context_switches(void)
2839{
cc94abfc
SR
2840 int i;
2841 unsigned long long sum = 0;
1da177e4 2842
0a945022 2843 for_each_possible_cpu(i)
1da177e4
LT
2844 sum += cpu_rq(i)->nr_switches;
2845
2846 return sum;
2847}
2848
2849unsigned long nr_iowait(void)
2850{
2851 unsigned long i, sum = 0;
2852
0a945022 2853 for_each_possible_cpu(i)
1da177e4
LT
2854 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2855
2856 return sum;
2857}
2858
db1b1fef
JS
2859unsigned long nr_active(void)
2860{
2861 unsigned long i, running = 0, uninterruptible = 0;
2862
2863 for_each_online_cpu(i) {
2864 running += cpu_rq(i)->nr_running;
2865 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2866 }
2867
2868 if (unlikely((long)uninterruptible < 0))
2869 uninterruptible = 0;
2870
2871 return running + uninterruptible;
2872}
2873
48f24c4d 2874/*
dd41f596
IM
2875 * Update rq->cpu_load[] statistics. This function is usually called every
2876 * scheduler tick (TICK_NSEC).
48f24c4d 2877 */
dd41f596 2878static void update_cpu_load(struct rq *this_rq)
48f24c4d 2879{
495eca49 2880 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2881 int i, scale;
2882
2883 this_rq->nr_load_updates++;
dd41f596
IM
2884
2885 /* Update our load: */
2886 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2887 unsigned long old_load, new_load;
2888
2889 /* scale is effectively 1 << i now, and >> i divides by scale */
2890
2891 old_load = this_rq->cpu_load[i];
2892 new_load = this_load;
a25707f3
IM
2893 /*
2894 * Round up the averaging division if load is increasing. This
2895 * prevents us from getting stuck on 9 if the load is 10, for
2896 * example.
2897 */
2898 if (new_load > old_load)
2899 new_load += scale-1;
dd41f596
IM
2900 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2901 }
48f24c4d
IM
2902}
2903
dd41f596
IM
2904#ifdef CONFIG_SMP
2905
1da177e4
LT
2906/*
2907 * double_rq_lock - safely lock two runqueues
2908 *
2909 * Note this does not disable interrupts like task_rq_lock,
2910 * you need to do so manually before calling.
2911 */
70b97a7f 2912static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2913 __acquires(rq1->lock)
2914 __acquires(rq2->lock)
2915{
054b9108 2916 BUG_ON(!irqs_disabled());
1da177e4
LT
2917 if (rq1 == rq2) {
2918 spin_lock(&rq1->lock);
2919 __acquire(rq2->lock); /* Fake it out ;) */
2920 } else {
c96d145e 2921 if (rq1 < rq2) {
1da177e4 2922 spin_lock(&rq1->lock);
5e710e37 2923 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2924 } else {
2925 spin_lock(&rq2->lock);
5e710e37 2926 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2927 }
2928 }
6e82a3be
IM
2929 update_rq_clock(rq1);
2930 update_rq_clock(rq2);
1da177e4
LT
2931}
2932
2933/*
2934 * double_rq_unlock - safely unlock two runqueues
2935 *
2936 * Note this does not restore interrupts like task_rq_unlock,
2937 * you need to do so manually after calling.
2938 */
70b97a7f 2939static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2940 __releases(rq1->lock)
2941 __releases(rq2->lock)
2942{
2943 spin_unlock(&rq1->lock);
2944 if (rq1 != rq2)
2945 spin_unlock(&rq2->lock);
2946 else
2947 __release(rq2->lock);
2948}
2949
1da177e4
LT
2950/*
2951 * If dest_cpu is allowed for this process, migrate the task to it.
2952 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2953 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2954 * the cpu_allowed mask is restored.
2955 */
36c8b586 2956static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2957{
70b97a7f 2958 struct migration_req req;
1da177e4 2959 unsigned long flags;
70b97a7f 2960 struct rq *rq;
1da177e4
LT
2961
2962 rq = task_rq_lock(p, &flags);
96f874e2 2963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2964 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2965 goto out;
2966
2967 /* force the process onto the specified CPU */
2968 if (migrate_task(p, dest_cpu, &req)) {
2969 /* Need to wait for migration thread (might exit: take ref). */
2970 struct task_struct *mt = rq->migration_thread;
36c8b586 2971
1da177e4
LT
2972 get_task_struct(mt);
2973 task_rq_unlock(rq, &flags);
2974 wake_up_process(mt);
2975 put_task_struct(mt);
2976 wait_for_completion(&req.done);
36c8b586 2977
1da177e4
LT
2978 return;
2979 }
2980out:
2981 task_rq_unlock(rq, &flags);
2982}
2983
2984/*
476d139c
NP
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2987 */
2988void sched_exec(void)
2989{
1da177e4 2990 int new_cpu, this_cpu = get_cpu();
476d139c 2991 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2992 put_cpu();
476d139c
NP
2993 if (new_cpu != this_cpu)
2994 sched_migrate_task(current, new_cpu);
1da177e4
LT
2995}
2996
2997/*
2998 * pull_task - move a task from a remote runqueue to the local runqueue.
2999 * Both runqueues must be locked.
3000 */
dd41f596
IM
3001static void pull_task(struct rq *src_rq, struct task_struct *p,
3002 struct rq *this_rq, int this_cpu)
1da177e4 3003{
2e1cb74a 3004 deactivate_task(src_rq, p, 0);
1da177e4 3005 set_task_cpu(p, this_cpu);
dd41f596 3006 activate_task(this_rq, p, 0);
1da177e4
LT
3007 /*
3008 * Note that idle threads have a prio of MAX_PRIO, for this test
3009 * to be always true for them.
3010 */
15afe09b 3011 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3012}
3013
3014/*
3015 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3016 */
858119e1 3017static
70b97a7f 3018int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3019 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3020 int *all_pinned)
1da177e4 3021{
708dc512 3022 int tsk_cache_hot = 0;
1da177e4
LT
3023 /*
3024 * We do not migrate tasks that are:
3025 * 1) running (obviously), or
3026 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3027 * 3) are cache-hot on their current CPU.
3028 */
96f874e2 3029 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3030 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3031 return 0;
cc367732 3032 }
81026794
NP
3033 *all_pinned = 0;
3034
cc367732
IM
3035 if (task_running(rq, p)) {
3036 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3037 return 0;
cc367732 3038 }
1da177e4 3039
da84d961
IM
3040 /*
3041 * Aggressive migration if:
3042 * 1) task is cache cold, or
3043 * 2) too many balance attempts have failed.
3044 */
3045
708dc512
LH
3046 tsk_cache_hot = task_hot(p, rq->clock, sd);
3047 if (!tsk_cache_hot ||
3048 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3049#ifdef CONFIG_SCHEDSTATS
708dc512 3050 if (tsk_cache_hot) {
da84d961 3051 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3052 schedstat_inc(p, se.nr_forced_migrations);
3053 }
da84d961
IM
3054#endif
3055 return 1;
3056 }
3057
708dc512 3058 if (tsk_cache_hot) {
cc367732 3059 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3060 return 0;
cc367732 3061 }
1da177e4
LT
3062 return 1;
3063}
3064
e1d1484f
PW
3065static unsigned long
3066balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3067 unsigned long max_load_move, struct sched_domain *sd,
3068 enum cpu_idle_type idle, int *all_pinned,
3069 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3070{
051c6764 3071 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3072 struct task_struct *p;
3073 long rem_load_move = max_load_move;
1da177e4 3074
e1d1484f 3075 if (max_load_move == 0)
1da177e4
LT
3076 goto out;
3077
81026794
NP
3078 pinned = 1;
3079
1da177e4 3080 /*
dd41f596 3081 * Start the load-balancing iterator:
1da177e4 3082 */
dd41f596
IM
3083 p = iterator->start(iterator->arg);
3084next:
b82d9fdd 3085 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3086 goto out;
051c6764
PZ
3087
3088 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3089 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3090 p = iterator->next(iterator->arg);
3091 goto next;
1da177e4
LT
3092 }
3093
dd41f596 3094 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3095 pulled++;
dd41f596 3096 rem_load_move -= p->se.load.weight;
1da177e4 3097
7e96fa58
GH
3098#ifdef CONFIG_PREEMPT
3099 /*
3100 * NEWIDLE balancing is a source of latency, so preemptible kernels
3101 * will stop after the first task is pulled to minimize the critical
3102 * section.
3103 */
3104 if (idle == CPU_NEWLY_IDLE)
3105 goto out;
3106#endif
3107
2dd73a4f 3108 /*
b82d9fdd 3109 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3110 */
e1d1484f 3111 if (rem_load_move > 0) {
a4ac01c3
PW
3112 if (p->prio < *this_best_prio)
3113 *this_best_prio = p->prio;
dd41f596
IM
3114 p = iterator->next(iterator->arg);
3115 goto next;
1da177e4
LT
3116 }
3117out:
3118 /*
e1d1484f 3119 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3120 * so we can safely collect pull_task() stats here rather than
3121 * inside pull_task().
3122 */
3123 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3124
3125 if (all_pinned)
3126 *all_pinned = pinned;
e1d1484f
PW
3127
3128 return max_load_move - rem_load_move;
1da177e4
LT
3129}
3130
dd41f596 3131/*
43010659
PW
3132 * move_tasks tries to move up to max_load_move weighted load from busiest to
3133 * this_rq, as part of a balancing operation within domain "sd".
3134 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3135 *
3136 * Called with both runqueues locked.
3137 */
3138static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3139 unsigned long max_load_move,
dd41f596
IM
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3142{
5522d5d5 3143 const struct sched_class *class = sched_class_highest;
43010659 3144 unsigned long total_load_moved = 0;
a4ac01c3 3145 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3146
3147 do {
43010659
PW
3148 total_load_moved +=
3149 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3150 max_load_move - total_load_moved,
a4ac01c3 3151 sd, idle, all_pinned, &this_best_prio);
dd41f596 3152 class = class->next;
c4acb2c0 3153
7e96fa58
GH
3154#ifdef CONFIG_PREEMPT
3155 /*
3156 * NEWIDLE balancing is a source of latency, so preemptible
3157 * kernels will stop after the first task is pulled to minimize
3158 * the critical section.
3159 */
c4acb2c0
GH
3160 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3161 break;
7e96fa58 3162#endif
43010659 3163 } while (class && max_load_move > total_load_moved);
dd41f596 3164
43010659
PW
3165 return total_load_moved > 0;
3166}
3167
e1d1484f
PW
3168static int
3169iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3170 struct sched_domain *sd, enum cpu_idle_type idle,
3171 struct rq_iterator *iterator)
3172{
3173 struct task_struct *p = iterator->start(iterator->arg);
3174 int pinned = 0;
3175
3176 while (p) {
3177 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3178 pull_task(busiest, p, this_rq, this_cpu);
3179 /*
3180 * Right now, this is only the second place pull_task()
3181 * is called, so we can safely collect pull_task()
3182 * stats here rather than inside pull_task().
3183 */
3184 schedstat_inc(sd, lb_gained[idle]);
3185
3186 return 1;
3187 }
3188 p = iterator->next(iterator->arg);
3189 }
3190
3191 return 0;
3192}
3193
43010659
PW
3194/*
3195 * move_one_task tries to move exactly one task from busiest to this_rq, as
3196 * part of active balancing operations within "domain".
3197 * Returns 1 if successful and 0 otherwise.
3198 *
3199 * Called with both runqueues locked.
3200 */
3201static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3202 struct sched_domain *sd, enum cpu_idle_type idle)
3203{
5522d5d5 3204 const struct sched_class *class;
43010659
PW
3205
3206 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3207 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3208 return 1;
3209
3210 return 0;
dd41f596 3211}
67bb6c03 3212/********** Helpers for find_busiest_group ************************/
1da177e4 3213/*
222d656d
GS
3214 * sd_lb_stats - Structure to store the statistics of a sched_domain
3215 * during load balancing.
1da177e4 3216 */
222d656d
GS
3217struct sd_lb_stats {
3218 struct sched_group *busiest; /* Busiest group in this sd */
3219 struct sched_group *this; /* Local group in this sd */
3220 unsigned long total_load; /* Total load of all groups in sd */
3221 unsigned long total_pwr; /* Total power of all groups in sd */
3222 unsigned long avg_load; /* Average load across all groups in sd */
3223
3224 /** Statistics of this group */
3225 unsigned long this_load;
3226 unsigned long this_load_per_task;
3227 unsigned long this_nr_running;
3228
3229 /* Statistics of the busiest group */
3230 unsigned long max_load;
3231 unsigned long busiest_load_per_task;
3232 unsigned long busiest_nr_running;
3233
3234 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3235#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3236 int power_savings_balance; /* Is powersave balance needed for this sd */
3237 struct sched_group *group_min; /* Least loaded group in sd */
3238 struct sched_group *group_leader; /* Group which relieves group_min */
3239 unsigned long min_load_per_task; /* load_per_task in group_min */
3240 unsigned long leader_nr_running; /* Nr running of group_leader */
3241 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3242#endif
222d656d 3243};
1da177e4 3244
d5ac537e 3245/*
381be78f
GS
3246 * sg_lb_stats - stats of a sched_group required for load_balancing
3247 */
3248struct sg_lb_stats {
3249 unsigned long avg_load; /*Avg load across the CPUs of the group */
3250 unsigned long group_load; /* Total load over the CPUs of the group */
3251 unsigned long sum_nr_running; /* Nr tasks running in the group */
3252 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3253 unsigned long group_capacity;
3254 int group_imb; /* Is there an imbalance in the group ? */
3255};
408ed066 3256
67bb6c03
GS
3257/**
3258 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3259 * @group: The group whose first cpu is to be returned.
3260 */
3261static inline unsigned int group_first_cpu(struct sched_group *group)
3262{
3263 return cpumask_first(sched_group_cpus(group));
3264}
3265
3266/**
3267 * get_sd_load_idx - Obtain the load index for a given sched domain.
3268 * @sd: The sched_domain whose load_idx is to be obtained.
3269 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3270 */
3271static inline int get_sd_load_idx(struct sched_domain *sd,
3272 enum cpu_idle_type idle)
3273{
3274 int load_idx;
3275
3276 switch (idle) {
3277 case CPU_NOT_IDLE:
7897986b 3278 load_idx = sd->busy_idx;
67bb6c03
GS
3279 break;
3280
3281 case CPU_NEWLY_IDLE:
7897986b 3282 load_idx = sd->newidle_idx;
67bb6c03
GS
3283 break;
3284 default:
7897986b 3285 load_idx = sd->idle_idx;
67bb6c03
GS
3286 break;
3287 }
1da177e4 3288
67bb6c03
GS
3289 return load_idx;
3290}
1da177e4 3291
1da177e4 3292
c071df18
GS
3293#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3294/**
3295 * init_sd_power_savings_stats - Initialize power savings statistics for
3296 * the given sched_domain, during load balancing.
3297 *
3298 * @sd: Sched domain whose power-savings statistics are to be initialized.
3299 * @sds: Variable containing the statistics for sd.
3300 * @idle: Idle status of the CPU at which we're performing load-balancing.
3301 */
3302static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3303 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3304{
3305 /*
3306 * Busy processors will not participate in power savings
3307 * balance.
3308 */
3309 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3310 sds->power_savings_balance = 0;
3311 else {
3312 sds->power_savings_balance = 1;
3313 sds->min_nr_running = ULONG_MAX;
3314 sds->leader_nr_running = 0;
3315 }
3316}
783609c6 3317
c071df18
GS
3318/**
3319 * update_sd_power_savings_stats - Update the power saving stats for a
3320 * sched_domain while performing load balancing.
3321 *
3322 * @group: sched_group belonging to the sched_domain under consideration.
3323 * @sds: Variable containing the statistics of the sched_domain
3324 * @local_group: Does group contain the CPU for which we're performing
3325 * load balancing ?
3326 * @sgs: Variable containing the statistics of the group.
3327 */
3328static inline void update_sd_power_savings_stats(struct sched_group *group,
3329 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3330{
408ed066 3331
c071df18
GS
3332 if (!sds->power_savings_balance)
3333 return;
1da177e4 3334
c071df18
GS
3335 /*
3336 * If the local group is idle or completely loaded
3337 * no need to do power savings balance at this domain
3338 */
3339 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3340 !sds->this_nr_running))
3341 sds->power_savings_balance = 0;
2dd73a4f 3342
c071df18
GS
3343 /*
3344 * If a group is already running at full capacity or idle,
3345 * don't include that group in power savings calculations
3346 */
3347 if (!sds->power_savings_balance ||
3348 sgs->sum_nr_running >= sgs->group_capacity ||
3349 !sgs->sum_nr_running)
3350 return;
5969fe06 3351
c071df18
GS
3352 /*
3353 * Calculate the group which has the least non-idle load.
3354 * This is the group from where we need to pick up the load
3355 * for saving power
3356 */
3357 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3358 (sgs->sum_nr_running == sds->min_nr_running &&
3359 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3360 sds->group_min = group;
3361 sds->min_nr_running = sgs->sum_nr_running;
3362 sds->min_load_per_task = sgs->sum_weighted_load /
3363 sgs->sum_nr_running;
3364 }
783609c6 3365
c071df18
GS
3366 /*
3367 * Calculate the group which is almost near its
3368 * capacity but still has some space to pick up some load
3369 * from other group and save more power
3370 */
3371 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3372 return;
1da177e4 3373
c071df18
GS
3374 if (sgs->sum_nr_running > sds->leader_nr_running ||
3375 (sgs->sum_nr_running == sds->leader_nr_running &&
3376 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3377 sds->group_leader = group;
3378 sds->leader_nr_running = sgs->sum_nr_running;
3379 }
3380}
408ed066 3381
c071df18 3382/**
d5ac537e 3383 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3384 * @sds: Variable containing the statistics of the sched_domain
3385 * under consideration.
3386 * @this_cpu: Cpu at which we're currently performing load-balancing.
3387 * @imbalance: Variable to store the imbalance.
3388 *
d5ac537e
RD
3389 * Description:
3390 * Check if we have potential to perform some power-savings balance.
3391 * If yes, set the busiest group to be the least loaded group in the
3392 * sched_domain, so that it's CPUs can be put to idle.
3393 *
c071df18
GS
3394 * Returns 1 if there is potential to perform power-savings balance.
3395 * Else returns 0.
3396 */
3397static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3398 int this_cpu, unsigned long *imbalance)
3399{
3400 if (!sds->power_savings_balance)
3401 return 0;
1da177e4 3402
c071df18
GS
3403 if (sds->this != sds->group_leader ||
3404 sds->group_leader == sds->group_min)
3405 return 0;
783609c6 3406
c071df18
GS
3407 *imbalance = sds->min_load_per_task;
3408 sds->busiest = sds->group_min;
1da177e4 3409
c071df18
GS
3410 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3411 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3412 group_first_cpu(sds->group_leader);
3413 }
3414
3415 return 1;
1da177e4 3416
c071df18
GS
3417}
3418#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3419static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3420 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3421{
3422 return;
3423}
408ed066 3424
c071df18
GS
3425static inline void update_sd_power_savings_stats(struct sched_group *group,
3426 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3427{
3428 return;
3429}
3430
3431static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3432 int this_cpu, unsigned long *imbalance)
3433{
3434 return 0;
3435}
3436#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3437
3438
1f8c553d
GS
3439/**
3440 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3441 * @group: sched_group whose statistics are to be updated.
3442 * @this_cpu: Cpu for which load balance is currently performed.
3443 * @idle: Idle status of this_cpu
3444 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3445 * @sd_idle: Idle status of the sched_domain containing group.
3446 * @local_group: Does group contain this_cpu.
3447 * @cpus: Set of cpus considered for load balancing.
3448 * @balance: Should we balance.
3449 * @sgs: variable to hold the statistics for this group.
3450 */
3451static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3452 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3453 int local_group, const struct cpumask *cpus,
3454 int *balance, struct sg_lb_stats *sgs)
3455{
3456 unsigned long load, max_cpu_load, min_cpu_load;
3457 int i;
3458 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3459 unsigned long sum_avg_load_per_task;
3460 unsigned long avg_load_per_task;
3461
3462 if (local_group)
3463 balance_cpu = group_first_cpu(group);
3464
3465 /* Tally up the load of all CPUs in the group */
3466 sum_avg_load_per_task = avg_load_per_task = 0;
3467 max_cpu_load = 0;
3468 min_cpu_load = ~0UL;
408ed066 3469
1f8c553d
GS
3470 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3471 struct rq *rq = cpu_rq(i);
908a7c1b 3472
1f8c553d
GS
3473 if (*sd_idle && rq->nr_running)
3474 *sd_idle = 0;
5c45bf27 3475
1f8c553d 3476 /* Bias balancing toward cpus of our domain */
1da177e4 3477 if (local_group) {
1f8c553d
GS
3478 if (idle_cpu(i) && !first_idle_cpu) {
3479 first_idle_cpu = 1;
3480 balance_cpu = i;
3481 }
3482
3483 load = target_load(i, load_idx);
3484 } else {
3485 load = source_load(i, load_idx);
3486 if (load > max_cpu_load)
3487 max_cpu_load = load;
3488 if (min_cpu_load > load)
3489 min_cpu_load = load;
1da177e4 3490 }
5c45bf27 3491
1f8c553d
GS
3492 sgs->group_load += load;
3493 sgs->sum_nr_running += rq->nr_running;
3494 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3495
1f8c553d
GS
3496 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3497 }
5c45bf27 3498
1f8c553d
GS
3499 /*
3500 * First idle cpu or the first cpu(busiest) in this sched group
3501 * is eligible for doing load balancing at this and above
3502 * domains. In the newly idle case, we will allow all the cpu's
3503 * to do the newly idle load balance.
3504 */
3505 if (idle != CPU_NEWLY_IDLE && local_group &&
3506 balance_cpu != this_cpu && balance) {
3507 *balance = 0;
3508 return;
3509 }
5c45bf27 3510
1f8c553d
GS
3511 /* Adjust by relative CPU power of the group */
3512 sgs->avg_load = sg_div_cpu_power(group,
3513 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3514
1f8c553d
GS
3515
3516 /*
3517 * Consider the group unbalanced when the imbalance is larger
3518 * than the average weight of two tasks.
3519 *
3520 * APZ: with cgroup the avg task weight can vary wildly and
3521 * might not be a suitable number - should we keep a
3522 * normalized nr_running number somewhere that negates
3523 * the hierarchy?
3524 */
3525 avg_load_per_task = sg_div_cpu_power(group,
3526 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3527
3528 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3529 sgs->group_imb = 1;
3530
3531 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3532
3533}
dd41f596 3534
37abe198
GS
3535/**
3536 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3537 * @sd: sched_domain whose statistics are to be updated.
3538 * @this_cpu: Cpu for which load balance is currently performed.
3539 * @idle: Idle status of this_cpu
3540 * @sd_idle: Idle status of the sched_domain containing group.
3541 * @cpus: Set of cpus considered for load balancing.
3542 * @balance: Should we balance.
3543 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3544 */
37abe198
GS
3545static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3546 enum cpu_idle_type idle, int *sd_idle,
3547 const struct cpumask *cpus, int *balance,
3548 struct sd_lb_stats *sds)
1da177e4 3549{
222d656d 3550 struct sched_group *group = sd->groups;
37abe198 3551 struct sg_lb_stats sgs;
222d656d
GS
3552 int load_idx;
3553
c071df18 3554 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3555 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3556
3557 do {
1da177e4 3558 int local_group;
1da177e4 3559
758b2cdc
RR
3560 local_group = cpumask_test_cpu(this_cpu,
3561 sched_group_cpus(group));
381be78f 3562 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3563 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3564 local_group, cpus, balance, &sgs);
1da177e4 3565
37abe198
GS
3566 if (local_group && balance && !(*balance))
3567 return;
783609c6 3568
37abe198
GS
3569 sds->total_load += sgs.group_load;
3570 sds->total_pwr += group->__cpu_power;
1da177e4 3571
1da177e4 3572 if (local_group) {
37abe198
GS
3573 sds->this_load = sgs.avg_load;
3574 sds->this = group;
3575 sds->this_nr_running = sgs.sum_nr_running;
3576 sds->this_load_per_task = sgs.sum_weighted_load;
3577 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3578 (sgs.sum_nr_running > sgs.group_capacity ||
3579 sgs.group_imb)) {
37abe198
GS
3580 sds->max_load = sgs.avg_load;
3581 sds->busiest = group;
3582 sds->busiest_nr_running = sgs.sum_nr_running;
3583 sds->busiest_load_per_task = sgs.sum_weighted_load;
3584 sds->group_imb = sgs.group_imb;
48f24c4d 3585 }
5c45bf27 3586
c071df18 3587 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3588 group = group->next;
3589 } while (group != sd->groups);
3590
37abe198 3591}
1da177e4 3592
2e6f44ae
GS
3593/**
3594 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3595 * amongst the groups of a sched_domain, during
3596 * load balancing.
2e6f44ae
GS
3597 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3598 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3599 * @imbalance: Variable to store the imbalance.
3600 */
3601static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3602 int this_cpu, unsigned long *imbalance)
3603{
3604 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3605 unsigned int imbn = 2;
3606
3607 if (sds->this_nr_running) {
3608 sds->this_load_per_task /= sds->this_nr_running;
3609 if (sds->busiest_load_per_task >
3610 sds->this_load_per_task)
3611 imbn = 1;
3612 } else
3613 sds->this_load_per_task =
3614 cpu_avg_load_per_task(this_cpu);
1da177e4 3615
2e6f44ae
GS
3616 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3617 sds->busiest_load_per_task * imbn) {
3618 *imbalance = sds->busiest_load_per_task;
3619 return;
3620 }
908a7c1b 3621
1da177e4 3622 /*
2e6f44ae
GS
3623 * OK, we don't have enough imbalance to justify moving tasks,
3624 * however we may be able to increase total CPU power used by
3625 * moving them.
1da177e4 3626 */
2dd73a4f 3627
2e6f44ae
GS
3628 pwr_now += sds->busiest->__cpu_power *
3629 min(sds->busiest_load_per_task, sds->max_load);
3630 pwr_now += sds->this->__cpu_power *
3631 min(sds->this_load_per_task, sds->this_load);
3632 pwr_now /= SCHED_LOAD_SCALE;
3633
3634 /* Amount of load we'd subtract */
3635 tmp = sg_div_cpu_power(sds->busiest,
3636 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3637 if (sds->max_load > tmp)
3638 pwr_move += sds->busiest->__cpu_power *
3639 min(sds->busiest_load_per_task, sds->max_load - tmp);
3640
3641 /* Amount of load we'd add */
3642 if (sds->max_load * sds->busiest->__cpu_power <
3643 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3644 tmp = sg_div_cpu_power(sds->this,
3645 sds->max_load * sds->busiest->__cpu_power);
3646 else
3647 tmp = sg_div_cpu_power(sds->this,
3648 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3649 pwr_move += sds->this->__cpu_power *
3650 min(sds->this_load_per_task, sds->this_load + tmp);
3651 pwr_move /= SCHED_LOAD_SCALE;
3652
3653 /* Move if we gain throughput */
3654 if (pwr_move > pwr_now)
3655 *imbalance = sds->busiest_load_per_task;
3656}
dbc523a3
GS
3657
3658/**
3659 * calculate_imbalance - Calculate the amount of imbalance present within the
3660 * groups of a given sched_domain during load balance.
3661 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3662 * @this_cpu: Cpu for which currently load balance is being performed.
3663 * @imbalance: The variable to store the imbalance.
3664 */
3665static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3666 unsigned long *imbalance)
3667{
3668 unsigned long max_pull;
2dd73a4f
PW
3669 /*
3670 * In the presence of smp nice balancing, certain scenarios can have
3671 * max load less than avg load(as we skip the groups at or below
3672 * its cpu_power, while calculating max_load..)
3673 */
dbc523a3 3674 if (sds->max_load < sds->avg_load) {
2dd73a4f 3675 *imbalance = 0;
dbc523a3 3676 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3677 }
0c117f1b
SS
3678
3679 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3680 max_pull = min(sds->max_load - sds->avg_load,
3681 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3682
1da177e4 3683 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3684 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3685 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3686 / SCHED_LOAD_SCALE;
3687
2dd73a4f
PW
3688 /*
3689 * if *imbalance is less than the average load per runnable task
3690 * there is no gaurantee that any tasks will be moved so we'll have
3691 * a think about bumping its value to force at least one task to be
3692 * moved
3693 */
dbc523a3
GS
3694 if (*imbalance < sds->busiest_load_per_task)
3695 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3696
dbc523a3 3697}
37abe198 3698/******* find_busiest_group() helpers end here *********************/
1da177e4 3699
b7bb4c9b
GS
3700/**
3701 * find_busiest_group - Returns the busiest group within the sched_domain
3702 * if there is an imbalance. If there isn't an imbalance, and
3703 * the user has opted for power-savings, it returns a group whose
3704 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3705 * such a group exists.
3706 *
3707 * Also calculates the amount of weighted load which should be moved
3708 * to restore balance.
3709 *
3710 * @sd: The sched_domain whose busiest group is to be returned.
3711 * @this_cpu: The cpu for which load balancing is currently being performed.
3712 * @imbalance: Variable which stores amount of weighted load which should
3713 * be moved to restore balance/put a group to idle.
3714 * @idle: The idle status of this_cpu.
3715 * @sd_idle: The idleness of sd
3716 * @cpus: The set of CPUs under consideration for load-balancing.
3717 * @balance: Pointer to a variable indicating if this_cpu
3718 * is the appropriate cpu to perform load balancing at this_level.
3719 *
3720 * Returns: - the busiest group if imbalance exists.
3721 * - If no imbalance and user has opted for power-savings balance,
3722 * return the least loaded group whose CPUs can be
3723 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3724 */
3725static struct sched_group *
3726find_busiest_group(struct sched_domain *sd, int this_cpu,
3727 unsigned long *imbalance, enum cpu_idle_type idle,
3728 int *sd_idle, const struct cpumask *cpus, int *balance)
3729{
3730 struct sd_lb_stats sds;
1da177e4 3731
37abe198 3732 memset(&sds, 0, sizeof(sds));
1da177e4 3733
37abe198
GS
3734 /*
3735 * Compute the various statistics relavent for load balancing at
3736 * this level.
3737 */
3738 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3739 balance, &sds);
3740
b7bb4c9b
GS
3741 /* Cases where imbalance does not exist from POV of this_cpu */
3742 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3743 * at this level.
3744 * 2) There is no busy sibling group to pull from.
3745 * 3) This group is the busiest group.
3746 * 4) This group is more busy than the avg busieness at this
3747 * sched_domain.
3748 * 5) The imbalance is within the specified limit.
3749 * 6) Any rebalance would lead to ping-pong
3750 */
37abe198
GS
3751 if (balance && !(*balance))
3752 goto ret;
1da177e4 3753
b7bb4c9b
GS
3754 if (!sds.busiest || sds.busiest_nr_running == 0)
3755 goto out_balanced;
1da177e4 3756
b7bb4c9b 3757 if (sds.this_load >= sds.max_load)
1da177e4 3758 goto out_balanced;
1da177e4 3759
222d656d 3760 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3761
b7bb4c9b
GS
3762 if (sds.this_load >= sds.avg_load)
3763 goto out_balanced;
3764
3765 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3766 goto out_balanced;
3767
222d656d
GS
3768 sds.busiest_load_per_task /= sds.busiest_nr_running;
3769 if (sds.group_imb)
3770 sds.busiest_load_per_task =
3771 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3772
1da177e4
LT
3773 /*
3774 * We're trying to get all the cpus to the average_load, so we don't
3775 * want to push ourselves above the average load, nor do we wish to
3776 * reduce the max loaded cpu below the average load, as either of these
3777 * actions would just result in more rebalancing later, and ping-pong
3778 * tasks around. Thus we look for the minimum possible imbalance.
3779 * Negative imbalances (*we* are more loaded than anyone else) will
3780 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3781 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3782 * appear as very large values with unsigned longs.
3783 */
222d656d 3784 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3785 goto out_balanced;
3786
dbc523a3
GS
3787 /* Looks like there is an imbalance. Compute it */
3788 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3789 return sds.busiest;
1da177e4
LT
3790
3791out_balanced:
c071df18
GS
3792 /*
3793 * There is no obvious imbalance. But check if we can do some balancing
3794 * to save power.
3795 */
3796 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3797 return sds.busiest;
783609c6 3798ret:
1da177e4
LT
3799 *imbalance = 0;
3800 return NULL;
3801}
3802
3803/*
3804 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3805 */
70b97a7f 3806static struct rq *
d15bcfdb 3807find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3808 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3809{
70b97a7f 3810 struct rq *busiest = NULL, *rq;
2dd73a4f 3811 unsigned long max_load = 0;
1da177e4
LT
3812 int i;
3813
758b2cdc 3814 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3815 unsigned long wl;
0a2966b4 3816
96f874e2 3817 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3818 continue;
3819
48f24c4d 3820 rq = cpu_rq(i);
dd41f596 3821 wl = weighted_cpuload(i);
2dd73a4f 3822
dd41f596 3823 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3824 continue;
1da177e4 3825
dd41f596
IM
3826 if (wl > max_load) {
3827 max_load = wl;
48f24c4d 3828 busiest = rq;
1da177e4
LT
3829 }
3830 }
3831
3832 return busiest;
3833}
3834
77391d71
NP
3835/*
3836 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3837 * so long as it is large enough.
3838 */
3839#define MAX_PINNED_INTERVAL 512
3840
df7c8e84
RR
3841/* Working cpumask for load_balance and load_balance_newidle. */
3842static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3843
1da177e4
LT
3844/*
3845 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3846 * tasks if there is an imbalance.
1da177e4 3847 */
70b97a7f 3848static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3849 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3850 int *balance)
1da177e4 3851{
43010659 3852 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3853 struct sched_group *group;
1da177e4 3854 unsigned long imbalance;
70b97a7f 3855 struct rq *busiest;
fe2eea3f 3856 unsigned long flags;
df7c8e84 3857 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3858
96f874e2 3859 cpumask_setall(cpus);
7c16ec58 3860
89c4710e
SS
3861 /*
3862 * When power savings policy is enabled for the parent domain, idle
3863 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3864 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3865 * portraying it as CPU_NOT_IDLE.
89c4710e 3866 */
d15bcfdb 3867 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3868 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3869 sd_idle = 1;
1da177e4 3870
2d72376b 3871 schedstat_inc(sd, lb_count[idle]);
1da177e4 3872
0a2966b4 3873redo:
c8cba857 3874 update_shares(sd);
0a2966b4 3875 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3876 cpus, balance);
783609c6 3877
06066714 3878 if (*balance == 0)
783609c6 3879 goto out_balanced;
783609c6 3880
1da177e4
LT
3881 if (!group) {
3882 schedstat_inc(sd, lb_nobusyg[idle]);
3883 goto out_balanced;
3884 }
3885
7c16ec58 3886 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3887 if (!busiest) {
3888 schedstat_inc(sd, lb_nobusyq[idle]);
3889 goto out_balanced;
3890 }
3891
db935dbd 3892 BUG_ON(busiest == this_rq);
1da177e4
LT
3893
3894 schedstat_add(sd, lb_imbalance[idle], imbalance);
3895
43010659 3896 ld_moved = 0;
1da177e4
LT
3897 if (busiest->nr_running > 1) {
3898 /*
3899 * Attempt to move tasks. If find_busiest_group has found
3900 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3901 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3902 * correctly treated as an imbalance.
3903 */
fe2eea3f 3904 local_irq_save(flags);
e17224bf 3905 double_rq_lock(this_rq, busiest);
43010659 3906 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3907 imbalance, sd, idle, &all_pinned);
e17224bf 3908 double_rq_unlock(this_rq, busiest);
fe2eea3f 3909 local_irq_restore(flags);
81026794 3910
46cb4b7c
SS
3911 /*
3912 * some other cpu did the load balance for us.
3913 */
43010659 3914 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3915 resched_cpu(this_cpu);
3916
81026794 3917 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3918 if (unlikely(all_pinned)) {
96f874e2
RR
3919 cpumask_clear_cpu(cpu_of(busiest), cpus);
3920 if (!cpumask_empty(cpus))
0a2966b4 3921 goto redo;
81026794 3922 goto out_balanced;
0a2966b4 3923 }
1da177e4 3924 }
81026794 3925
43010659 3926 if (!ld_moved) {
1da177e4
LT
3927 schedstat_inc(sd, lb_failed[idle]);
3928 sd->nr_balance_failed++;
3929
3930 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3931
fe2eea3f 3932 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3933
3934 /* don't kick the migration_thread, if the curr
3935 * task on busiest cpu can't be moved to this_cpu
3936 */
96f874e2
RR
3937 if (!cpumask_test_cpu(this_cpu,
3938 &busiest->curr->cpus_allowed)) {
fe2eea3f 3939 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3940 all_pinned = 1;
3941 goto out_one_pinned;
3942 }
3943
1da177e4
LT
3944 if (!busiest->active_balance) {
3945 busiest->active_balance = 1;
3946 busiest->push_cpu = this_cpu;
81026794 3947 active_balance = 1;
1da177e4 3948 }
fe2eea3f 3949 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3950 if (active_balance)
1da177e4
LT
3951 wake_up_process(busiest->migration_thread);
3952
3953 /*
3954 * We've kicked active balancing, reset the failure
3955 * counter.
3956 */
39507451 3957 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3958 }
81026794 3959 } else
1da177e4
LT
3960 sd->nr_balance_failed = 0;
3961
81026794 3962 if (likely(!active_balance)) {
1da177e4
LT
3963 /* We were unbalanced, so reset the balancing interval */
3964 sd->balance_interval = sd->min_interval;
81026794
NP
3965 } else {
3966 /*
3967 * If we've begun active balancing, start to back off. This
3968 * case may not be covered by the all_pinned logic if there
3969 * is only 1 task on the busy runqueue (because we don't call
3970 * move_tasks).
3971 */
3972 if (sd->balance_interval < sd->max_interval)
3973 sd->balance_interval *= 2;
1da177e4
LT
3974 }
3975
43010659 3976 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3977 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3978 ld_moved = -1;
3979
3980 goto out;
1da177e4
LT
3981
3982out_balanced:
1da177e4
LT
3983 schedstat_inc(sd, lb_balanced[idle]);
3984
16cfb1c0 3985 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3986
3987out_one_pinned:
1da177e4 3988 /* tune up the balancing interval */
77391d71
NP
3989 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3990 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3991 sd->balance_interval *= 2;
3992
48f24c4d 3993 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3994 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3995 ld_moved = -1;
3996 else
3997 ld_moved = 0;
3998out:
c8cba857
PZ
3999 if (ld_moved)
4000 update_shares(sd);
c09595f6 4001 return ld_moved;
1da177e4
LT
4002}
4003
4004/*
4005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4006 * tasks if there is an imbalance.
4007 *
d15bcfdb 4008 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4009 * this_rq is locked.
4010 */
48f24c4d 4011static int
df7c8e84 4012load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4013{
4014 struct sched_group *group;
70b97a7f 4015 struct rq *busiest = NULL;
1da177e4 4016 unsigned long imbalance;
43010659 4017 int ld_moved = 0;
5969fe06 4018 int sd_idle = 0;
969bb4e4 4019 int all_pinned = 0;
df7c8e84 4020 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4021
96f874e2 4022 cpumask_setall(cpus);
5969fe06 4023
89c4710e
SS
4024 /*
4025 * When power savings policy is enabled for the parent domain, idle
4026 * sibling can pick up load irrespective of busy siblings. In this case,
4027 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4028 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4029 */
4030 if (sd->flags & SD_SHARE_CPUPOWER &&
4031 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4032 sd_idle = 1;
1da177e4 4033
2d72376b 4034 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4035redo:
3e5459b4 4036 update_shares_locked(this_rq, sd);
d15bcfdb 4037 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4038 &sd_idle, cpus, NULL);
1da177e4 4039 if (!group) {
d15bcfdb 4040 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4041 goto out_balanced;
1da177e4
LT
4042 }
4043
7c16ec58 4044 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4045 if (!busiest) {
d15bcfdb 4046 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4047 goto out_balanced;
1da177e4
LT
4048 }
4049
db935dbd
NP
4050 BUG_ON(busiest == this_rq);
4051
d15bcfdb 4052 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4053
43010659 4054 ld_moved = 0;
d6d5cfaf
NP
4055 if (busiest->nr_running > 1) {
4056 /* Attempt to move tasks */
4057 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4058 /* this_rq->clock is already updated */
4059 update_rq_clock(busiest);
43010659 4060 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4061 imbalance, sd, CPU_NEWLY_IDLE,
4062 &all_pinned);
1b12bbc7 4063 double_unlock_balance(this_rq, busiest);
0a2966b4 4064
969bb4e4 4065 if (unlikely(all_pinned)) {
96f874e2
RR
4066 cpumask_clear_cpu(cpu_of(busiest), cpus);
4067 if (!cpumask_empty(cpus))
0a2966b4
CL
4068 goto redo;
4069 }
d6d5cfaf
NP
4070 }
4071
43010659 4072 if (!ld_moved) {
36dffab6 4073 int active_balance = 0;
ad273b32 4074
d15bcfdb 4075 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4076 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4077 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4078 return -1;
ad273b32
VS
4079
4080 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4081 return -1;
4082
4083 if (sd->nr_balance_failed++ < 2)
4084 return -1;
4085
4086 /*
4087 * The only task running in a non-idle cpu can be moved to this
4088 * cpu in an attempt to completely freeup the other CPU
4089 * package. The same method used to move task in load_balance()
4090 * have been extended for load_balance_newidle() to speedup
4091 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4092 *
4093 * The package power saving logic comes from
4094 * find_busiest_group(). If there are no imbalance, then
4095 * f_b_g() will return NULL. However when sched_mc={1,2} then
4096 * f_b_g() will select a group from which a running task may be
4097 * pulled to this cpu in order to make the other package idle.
4098 * If there is no opportunity to make a package idle and if
4099 * there are no imbalance, then f_b_g() will return NULL and no
4100 * action will be taken in load_balance_newidle().
4101 *
4102 * Under normal task pull operation due to imbalance, there
4103 * will be more than one task in the source run queue and
4104 * move_tasks() will succeed. ld_moved will be true and this
4105 * active balance code will not be triggered.
4106 */
4107
4108 /* Lock busiest in correct order while this_rq is held */
4109 double_lock_balance(this_rq, busiest);
4110
4111 /*
4112 * don't kick the migration_thread, if the curr
4113 * task on busiest cpu can't be moved to this_cpu
4114 */
6ca09dfc 4115 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4116 double_unlock_balance(this_rq, busiest);
4117 all_pinned = 1;
4118 return ld_moved;
4119 }
4120
4121 if (!busiest->active_balance) {
4122 busiest->active_balance = 1;
4123 busiest->push_cpu = this_cpu;
4124 active_balance = 1;
4125 }
4126
4127 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4128 /*
4129 * Should not call ttwu while holding a rq->lock
4130 */
4131 spin_unlock(&this_rq->lock);
ad273b32
VS
4132 if (active_balance)
4133 wake_up_process(busiest->migration_thread);
da8d5089 4134 spin_lock(&this_rq->lock);
ad273b32 4135
5969fe06 4136 } else
16cfb1c0 4137 sd->nr_balance_failed = 0;
1da177e4 4138
3e5459b4 4139 update_shares_locked(this_rq, sd);
43010659 4140 return ld_moved;
16cfb1c0
NP
4141
4142out_balanced:
d15bcfdb 4143 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4144 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4146 return -1;
16cfb1c0 4147 sd->nr_balance_failed = 0;
48f24c4d 4148
16cfb1c0 4149 return 0;
1da177e4
LT
4150}
4151
4152/*
4153 * idle_balance is called by schedule() if this_cpu is about to become
4154 * idle. Attempts to pull tasks from other CPUs.
4155 */
70b97a7f 4156static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4157{
4158 struct sched_domain *sd;
efbe027e 4159 int pulled_task = 0;
dd41f596 4160 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4161
4162 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4163 unsigned long interval;
4164
4165 if (!(sd->flags & SD_LOAD_BALANCE))
4166 continue;
4167
4168 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4169 /* If we've pulled tasks over stop searching: */
7c16ec58 4170 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4171 sd);
92c4ca5c
CL
4172
4173 interval = msecs_to_jiffies(sd->balance_interval);
4174 if (time_after(next_balance, sd->last_balance + interval))
4175 next_balance = sd->last_balance + interval;
4176 if (pulled_task)
4177 break;
1da177e4 4178 }
dd41f596 4179 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4180 /*
4181 * We are going idle. next_balance may be set based on
4182 * a busy processor. So reset next_balance.
4183 */
4184 this_rq->next_balance = next_balance;
dd41f596 4185 }
1da177e4
LT
4186}
4187
4188/*
4189 * active_load_balance is run by migration threads. It pushes running tasks
4190 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4191 * running on each physical CPU where possible, and avoids physical /
4192 * logical imbalances.
4193 *
4194 * Called with busiest_rq locked.
4195 */
70b97a7f 4196static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4197{
39507451 4198 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4199 struct sched_domain *sd;
4200 struct rq *target_rq;
39507451 4201
48f24c4d 4202 /* Is there any task to move? */
39507451 4203 if (busiest_rq->nr_running <= 1)
39507451
NP
4204 return;
4205
4206 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4207
4208 /*
39507451 4209 * This condition is "impossible", if it occurs
41a2d6cf 4210 * we need to fix it. Originally reported by
39507451 4211 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4212 */
39507451 4213 BUG_ON(busiest_rq == target_rq);
1da177e4 4214
39507451
NP
4215 /* move a task from busiest_rq to target_rq */
4216 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4217 update_rq_clock(busiest_rq);
4218 update_rq_clock(target_rq);
39507451
NP
4219
4220 /* Search for an sd spanning us and the target CPU. */
c96d145e 4221 for_each_domain(target_cpu, sd) {
39507451 4222 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4223 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4224 break;
c96d145e 4225 }
39507451 4226
48f24c4d 4227 if (likely(sd)) {
2d72376b 4228 schedstat_inc(sd, alb_count);
39507451 4229
43010659
PW
4230 if (move_one_task(target_rq, target_cpu, busiest_rq,
4231 sd, CPU_IDLE))
48f24c4d
IM
4232 schedstat_inc(sd, alb_pushed);
4233 else
4234 schedstat_inc(sd, alb_failed);
4235 }
1b12bbc7 4236 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4237}
4238
46cb4b7c
SS
4239#ifdef CONFIG_NO_HZ
4240static struct {
4241 atomic_t load_balancer;
7d1e6a9b 4242 cpumask_var_t cpu_mask;
f711f609 4243 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4244} nohz ____cacheline_aligned = {
4245 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4246};
4247
f711f609
GS
4248#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4249/**
4250 * lowest_flag_domain - Return lowest sched_domain containing flag.
4251 * @cpu: The cpu whose lowest level of sched domain is to
4252 * be returned.
4253 * @flag: The flag to check for the lowest sched_domain
4254 * for the given cpu.
4255 *
4256 * Returns the lowest sched_domain of a cpu which contains the given flag.
4257 */
4258static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4259{
4260 struct sched_domain *sd;
4261
4262 for_each_domain(cpu, sd)
4263 if (sd && (sd->flags & flag))
4264 break;
4265
4266 return sd;
4267}
4268
4269/**
4270 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4271 * @cpu: The cpu whose domains we're iterating over.
4272 * @sd: variable holding the value of the power_savings_sd
4273 * for cpu.
4274 * @flag: The flag to filter the sched_domains to be iterated.
4275 *
4276 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4277 * set, starting from the lowest sched_domain to the highest.
4278 */
4279#define for_each_flag_domain(cpu, sd, flag) \
4280 for (sd = lowest_flag_domain(cpu, flag); \
4281 (sd && (sd->flags & flag)); sd = sd->parent)
4282
4283/**
4284 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4285 * @ilb_group: group to be checked for semi-idleness
4286 *
4287 * Returns: 1 if the group is semi-idle. 0 otherwise.
4288 *
4289 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4290 * and atleast one non-idle CPU. This helper function checks if the given
4291 * sched_group is semi-idle or not.
4292 */
4293static inline int is_semi_idle_group(struct sched_group *ilb_group)
4294{
4295 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4296 sched_group_cpus(ilb_group));
4297
4298 /*
4299 * A sched_group is semi-idle when it has atleast one busy cpu
4300 * and atleast one idle cpu.
4301 */
4302 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4303 return 0;
4304
4305 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4306 return 0;
4307
4308 return 1;
4309}
4310/**
4311 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4312 * @cpu: The cpu which is nominating a new idle_load_balancer.
4313 *
4314 * Returns: Returns the id of the idle load balancer if it exists,
4315 * Else, returns >= nr_cpu_ids.
4316 *
4317 * This algorithm picks the idle load balancer such that it belongs to a
4318 * semi-idle powersavings sched_domain. The idea is to try and avoid
4319 * completely idle packages/cores just for the purpose of idle load balancing
4320 * when there are other idle cpu's which are better suited for that job.
4321 */
4322static int find_new_ilb(int cpu)
4323{
4324 struct sched_domain *sd;
4325 struct sched_group *ilb_group;
4326
4327 /*
4328 * Have idle load balancer selection from semi-idle packages only
4329 * when power-aware load balancing is enabled
4330 */
4331 if (!(sched_smt_power_savings || sched_mc_power_savings))
4332 goto out_done;
4333
4334 /*
4335 * Optimize for the case when we have no idle CPUs or only one
4336 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4337 */
4338 if (cpumask_weight(nohz.cpu_mask) < 2)
4339 goto out_done;
4340
4341 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4342 ilb_group = sd->groups;
4343
4344 do {
4345 if (is_semi_idle_group(ilb_group))
4346 return cpumask_first(nohz.ilb_grp_nohz_mask);
4347
4348 ilb_group = ilb_group->next;
4349
4350 } while (ilb_group != sd->groups);
4351 }
4352
4353out_done:
4354 return cpumask_first(nohz.cpu_mask);
4355}
4356#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4357static inline int find_new_ilb(int call_cpu)
4358{
6e29ec57 4359 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4360}
4361#endif
4362
7835b98b 4363/*
46cb4b7c
SS
4364 * This routine will try to nominate the ilb (idle load balancing)
4365 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4366 * load balancing on behalf of all those cpus. If all the cpus in the system
4367 * go into this tickless mode, then there will be no ilb owner (as there is
4368 * no need for one) and all the cpus will sleep till the next wakeup event
4369 * arrives...
4370 *
4371 * For the ilb owner, tick is not stopped. And this tick will be used
4372 * for idle load balancing. ilb owner will still be part of
4373 * nohz.cpu_mask..
7835b98b 4374 *
46cb4b7c
SS
4375 * While stopping the tick, this cpu will become the ilb owner if there
4376 * is no other owner. And will be the owner till that cpu becomes busy
4377 * or if all cpus in the system stop their ticks at which point
4378 * there is no need for ilb owner.
4379 *
4380 * When the ilb owner becomes busy, it nominates another owner, during the
4381 * next busy scheduler_tick()
4382 */
4383int select_nohz_load_balancer(int stop_tick)
4384{
4385 int cpu = smp_processor_id();
4386
4387 if (stop_tick) {
46cb4b7c
SS
4388 cpu_rq(cpu)->in_nohz_recently = 1;
4389
483b4ee6
SS
4390 if (!cpu_active(cpu)) {
4391 if (atomic_read(&nohz.load_balancer) != cpu)
4392 return 0;
4393
4394 /*
4395 * If we are going offline and still the leader,
4396 * give up!
4397 */
46cb4b7c
SS
4398 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4399 BUG();
483b4ee6 4400
46cb4b7c
SS
4401 return 0;
4402 }
4403
483b4ee6
SS
4404 cpumask_set_cpu(cpu, nohz.cpu_mask);
4405
46cb4b7c 4406 /* time for ilb owner also to sleep */
7d1e6a9b 4407 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4408 if (atomic_read(&nohz.load_balancer) == cpu)
4409 atomic_set(&nohz.load_balancer, -1);
4410 return 0;
4411 }
4412
4413 if (atomic_read(&nohz.load_balancer) == -1) {
4414 /* make me the ilb owner */
4415 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4416 return 1;
e790fb0b
GS
4417 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4418 int new_ilb;
4419
4420 if (!(sched_smt_power_savings ||
4421 sched_mc_power_savings))
4422 return 1;
4423 /*
4424 * Check to see if there is a more power-efficient
4425 * ilb.
4426 */
4427 new_ilb = find_new_ilb(cpu);
4428 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4429 atomic_set(&nohz.load_balancer, -1);
4430 resched_cpu(new_ilb);
4431 return 0;
4432 }
46cb4b7c 4433 return 1;
e790fb0b 4434 }
46cb4b7c 4435 } else {
7d1e6a9b 4436 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4437 return 0;
4438
7d1e6a9b 4439 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4440
4441 if (atomic_read(&nohz.load_balancer) == cpu)
4442 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4443 BUG();
4444 }
4445 return 0;
4446}
4447#endif
4448
4449static DEFINE_SPINLOCK(balancing);
4450
4451/*
7835b98b
CL
4452 * It checks each scheduling domain to see if it is due to be balanced,
4453 * and initiates a balancing operation if so.
4454 *
4455 * Balancing parameters are set up in arch_init_sched_domains.
4456 */
a9957449 4457static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4458{
46cb4b7c
SS
4459 int balance = 1;
4460 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4461 unsigned long interval;
4462 struct sched_domain *sd;
46cb4b7c 4463 /* Earliest time when we have to do rebalance again */
c9819f45 4464 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4465 int update_next_balance = 0;
d07355f5 4466 int need_serialize;
1da177e4 4467
46cb4b7c 4468 for_each_domain(cpu, sd) {
1da177e4
LT
4469 if (!(sd->flags & SD_LOAD_BALANCE))
4470 continue;
4471
4472 interval = sd->balance_interval;
d15bcfdb 4473 if (idle != CPU_IDLE)
1da177e4
LT
4474 interval *= sd->busy_factor;
4475
4476 /* scale ms to jiffies */
4477 interval = msecs_to_jiffies(interval);
4478 if (unlikely(!interval))
4479 interval = 1;
dd41f596
IM
4480 if (interval > HZ*NR_CPUS/10)
4481 interval = HZ*NR_CPUS/10;
4482
d07355f5 4483 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4484
d07355f5 4485 if (need_serialize) {
08c183f3
CL
4486 if (!spin_trylock(&balancing))
4487 goto out;
4488 }
4489
c9819f45 4490 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4491 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4492 /*
4493 * We've pulled tasks over so either we're no
5969fe06
NP
4494 * longer idle, or one of our SMT siblings is
4495 * not idle.
4496 */
d15bcfdb 4497 idle = CPU_NOT_IDLE;
1da177e4 4498 }
1bd77f2d 4499 sd->last_balance = jiffies;
1da177e4 4500 }
d07355f5 4501 if (need_serialize)
08c183f3
CL
4502 spin_unlock(&balancing);
4503out:
f549da84 4504 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4505 next_balance = sd->last_balance + interval;
f549da84
SS
4506 update_next_balance = 1;
4507 }
783609c6
SS
4508
4509 /*
4510 * Stop the load balance at this level. There is another
4511 * CPU in our sched group which is doing load balancing more
4512 * actively.
4513 */
4514 if (!balance)
4515 break;
1da177e4 4516 }
f549da84
SS
4517
4518 /*
4519 * next_balance will be updated only when there is a need.
4520 * When the cpu is attached to null domain for ex, it will not be
4521 * updated.
4522 */
4523 if (likely(update_next_balance))
4524 rq->next_balance = next_balance;
46cb4b7c
SS
4525}
4526
4527/*
4528 * run_rebalance_domains is triggered when needed from the scheduler tick.
4529 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4530 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4531 */
4532static void run_rebalance_domains(struct softirq_action *h)
4533{
dd41f596
IM
4534 int this_cpu = smp_processor_id();
4535 struct rq *this_rq = cpu_rq(this_cpu);
4536 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4537 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4538
dd41f596 4539 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4540
4541#ifdef CONFIG_NO_HZ
4542 /*
4543 * If this cpu is the owner for idle load balancing, then do the
4544 * balancing on behalf of the other idle cpus whose ticks are
4545 * stopped.
4546 */
dd41f596
IM
4547 if (this_rq->idle_at_tick &&
4548 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4549 struct rq *rq;
4550 int balance_cpu;
4551
7d1e6a9b
RR
4552 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4553 if (balance_cpu == this_cpu)
4554 continue;
4555
46cb4b7c
SS
4556 /*
4557 * If this cpu gets work to do, stop the load balancing
4558 * work being done for other cpus. Next load
4559 * balancing owner will pick it up.
4560 */
4561 if (need_resched())
4562 break;
4563
de0cf899 4564 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4565
4566 rq = cpu_rq(balance_cpu);
dd41f596
IM
4567 if (time_after(this_rq->next_balance, rq->next_balance))
4568 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4569 }
4570 }
4571#endif
4572}
4573
8a0be9ef
FW
4574static inline int on_null_domain(int cpu)
4575{
4576 return !rcu_dereference(cpu_rq(cpu)->sd);
4577}
4578
46cb4b7c
SS
4579/*
4580 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4581 *
4582 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4583 * idle load balancing owner or decide to stop the periodic load balancing,
4584 * if the whole system is idle.
4585 */
dd41f596 4586static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4587{
46cb4b7c
SS
4588#ifdef CONFIG_NO_HZ
4589 /*
4590 * If we were in the nohz mode recently and busy at the current
4591 * scheduler tick, then check if we need to nominate new idle
4592 * load balancer.
4593 */
4594 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4595 rq->in_nohz_recently = 0;
4596
4597 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4598 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4599 atomic_set(&nohz.load_balancer, -1);
4600 }
4601
4602 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4603 int ilb = find_new_ilb(cpu);
46cb4b7c 4604
434d53b0 4605 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4606 resched_cpu(ilb);
4607 }
4608 }
4609
4610 /*
4611 * If this cpu is idle and doing idle load balancing for all the
4612 * cpus with ticks stopped, is it time for that to stop?
4613 */
4614 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4615 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4616 resched_cpu(cpu);
4617 return;
4618 }
4619
4620 /*
4621 * If this cpu is idle and the idle load balancing is done by
4622 * someone else, then no need raise the SCHED_SOFTIRQ
4623 */
4624 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4625 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4626 return;
4627#endif
8a0be9ef
FW
4628 /* Don't need to rebalance while attached to NULL domain */
4629 if (time_after_eq(jiffies, rq->next_balance) &&
4630 likely(!on_null_domain(cpu)))
46cb4b7c 4631 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4632}
dd41f596
IM
4633
4634#else /* CONFIG_SMP */
4635
1da177e4
LT
4636/*
4637 * on UP we do not need to balance between CPUs:
4638 */
70b97a7f 4639static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4640{
4641}
dd41f596 4642
1da177e4
LT
4643#endif
4644
1da177e4
LT
4645DEFINE_PER_CPU(struct kernel_stat, kstat);
4646
4647EXPORT_PER_CPU_SYMBOL(kstat);
4648
4649/*
c5f8d995 4650 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4651 * @p in case that task is currently running.
c5f8d995
HS
4652 *
4653 * Called with task_rq_lock() held on @rq.
1da177e4 4654 */
c5f8d995
HS
4655static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4656{
4657 u64 ns = 0;
4658
4659 if (task_current(rq, p)) {
4660 update_rq_clock(rq);
4661 ns = rq->clock - p->se.exec_start;
4662 if ((s64)ns < 0)
4663 ns = 0;
4664 }
4665
4666 return ns;
4667}
4668
bb34d92f 4669unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4670{
1da177e4 4671 unsigned long flags;
41b86e9c 4672 struct rq *rq;
bb34d92f 4673 u64 ns = 0;
48f24c4d 4674
41b86e9c 4675 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4676 ns = do_task_delta_exec(p, rq);
4677 task_rq_unlock(rq, &flags);
1508487e 4678
c5f8d995
HS
4679 return ns;
4680}
f06febc9 4681
c5f8d995
HS
4682/*
4683 * Return accounted runtime for the task.
4684 * In case the task is currently running, return the runtime plus current's
4685 * pending runtime that have not been accounted yet.
4686 */
4687unsigned long long task_sched_runtime(struct task_struct *p)
4688{
4689 unsigned long flags;
4690 struct rq *rq;
4691 u64 ns = 0;
4692
4693 rq = task_rq_lock(p, &flags);
4694 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4695 task_rq_unlock(rq, &flags);
4696
4697 return ns;
4698}
48f24c4d 4699
c5f8d995
HS
4700/*
4701 * Return sum_exec_runtime for the thread group.
4702 * In case the task is currently running, return the sum plus current's
4703 * pending runtime that have not been accounted yet.
4704 *
4705 * Note that the thread group might have other running tasks as well,
4706 * so the return value not includes other pending runtime that other
4707 * running tasks might have.
4708 */
4709unsigned long long thread_group_sched_runtime(struct task_struct *p)
4710{
4711 struct task_cputime totals;
4712 unsigned long flags;
4713 struct rq *rq;
4714 u64 ns;
4715
4716 rq = task_rq_lock(p, &flags);
4717 thread_group_cputime(p, &totals);
4718 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4719 task_rq_unlock(rq, &flags);
48f24c4d 4720
1da177e4
LT
4721 return ns;
4722}
4723
1da177e4
LT
4724/*
4725 * Account user cpu time to a process.
4726 * @p: the process that the cpu time gets accounted to
1da177e4 4727 * @cputime: the cpu time spent in user space since the last update
457533a7 4728 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4729 */
457533a7
MS
4730void account_user_time(struct task_struct *p, cputime_t cputime,
4731 cputime_t cputime_scaled)
1da177e4
LT
4732{
4733 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4734 cputime64_t tmp;
4735
457533a7 4736 /* Add user time to process. */
1da177e4 4737 p->utime = cputime_add(p->utime, cputime);
457533a7 4738 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4739 account_group_user_time(p, cputime);
1da177e4
LT
4740
4741 /* Add user time to cpustat. */
4742 tmp = cputime_to_cputime64(cputime);
4743 if (TASK_NICE(p) > 0)
4744 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4745 else
4746 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4747
4748 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4749 /* Account for user time used */
4750 acct_update_integrals(p);
1da177e4
LT
4751}
4752
94886b84
LV
4753/*
4754 * Account guest cpu time to a process.
4755 * @p: the process that the cpu time gets accounted to
4756 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4757 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4758 */
457533a7
MS
4759static void account_guest_time(struct task_struct *p, cputime_t cputime,
4760 cputime_t cputime_scaled)
94886b84
LV
4761{
4762 cputime64_t tmp;
4763 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4764
4765 tmp = cputime_to_cputime64(cputime);
4766
457533a7 4767 /* Add guest time to process. */
94886b84 4768 p->utime = cputime_add(p->utime, cputime);
457533a7 4769 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4770 account_group_user_time(p, cputime);
94886b84
LV
4771 p->gtime = cputime_add(p->gtime, cputime);
4772
457533a7 4773 /* Add guest time to cpustat. */
94886b84
LV
4774 cpustat->user = cputime64_add(cpustat->user, tmp);
4775 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4776}
4777
1da177e4
LT
4778/*
4779 * Account system cpu time to a process.
4780 * @p: the process that the cpu time gets accounted to
4781 * @hardirq_offset: the offset to subtract from hardirq_count()
4782 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4783 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4784 */
4785void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4786 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4787{
4788 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4789 cputime64_t tmp;
4790
983ed7a6 4791 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4792 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4793 return;
4794 }
94886b84 4795
457533a7 4796 /* Add system time to process. */
1da177e4 4797 p->stime = cputime_add(p->stime, cputime);
457533a7 4798 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4799 account_group_system_time(p, cputime);
1da177e4
LT
4800
4801 /* Add system time to cpustat. */
4802 tmp = cputime_to_cputime64(cputime);
4803 if (hardirq_count() - hardirq_offset)
4804 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4805 else if (softirq_count())
4806 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4807 else
79741dd3
MS
4808 cpustat->system = cputime64_add(cpustat->system, tmp);
4809
ef12fefa
BR
4810 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4811
1da177e4
LT
4812 /* Account for system time used */
4813 acct_update_integrals(p);
1da177e4
LT
4814}
4815
c66f08be 4816/*
1da177e4 4817 * Account for involuntary wait time.
1da177e4 4818 * @steal: the cpu time spent in involuntary wait
c66f08be 4819 */
79741dd3 4820void account_steal_time(cputime_t cputime)
c66f08be 4821{
79741dd3
MS
4822 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4823 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4824
4825 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4826}
4827
1da177e4 4828/*
79741dd3
MS
4829 * Account for idle time.
4830 * @cputime: the cpu time spent in idle wait
1da177e4 4831 */
79741dd3 4832void account_idle_time(cputime_t cputime)
1da177e4
LT
4833{
4834 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4835 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4836 struct rq *rq = this_rq();
1da177e4 4837
79741dd3
MS
4838 if (atomic_read(&rq->nr_iowait) > 0)
4839 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4840 else
4841 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4842}
4843
79741dd3
MS
4844#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4845
4846/*
4847 * Account a single tick of cpu time.
4848 * @p: the process that the cpu time gets accounted to
4849 * @user_tick: indicates if the tick is a user or a system tick
4850 */
4851void account_process_tick(struct task_struct *p, int user_tick)
4852{
4853 cputime_t one_jiffy = jiffies_to_cputime(1);
4854 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4855 struct rq *rq = this_rq();
4856
4857 if (user_tick)
4858 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 4859 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
4860 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4861 one_jiffy_scaled);
4862 else
4863 account_idle_time(one_jiffy);
4864}
4865
4866/*
4867 * Account multiple ticks of steal time.
4868 * @p: the process from which the cpu time has been stolen
4869 * @ticks: number of stolen ticks
4870 */
4871void account_steal_ticks(unsigned long ticks)
4872{
4873 account_steal_time(jiffies_to_cputime(ticks));
4874}
4875
4876/*
4877 * Account multiple ticks of idle time.
4878 * @ticks: number of stolen ticks
4879 */
4880void account_idle_ticks(unsigned long ticks)
4881{
4882 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4883}
4884
79741dd3
MS
4885#endif
4886
49048622
BS
4887/*
4888 * Use precise platform statistics if available:
4889 */
4890#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4891cputime_t task_utime(struct task_struct *p)
4892{
4893 return p->utime;
4894}
4895
4896cputime_t task_stime(struct task_struct *p)
4897{
4898 return p->stime;
4899}
4900#else
4901cputime_t task_utime(struct task_struct *p)
4902{
4903 clock_t utime = cputime_to_clock_t(p->utime),
4904 total = utime + cputime_to_clock_t(p->stime);
4905 u64 temp;
4906
4907 /*
4908 * Use CFS's precise accounting:
4909 */
4910 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4911
4912 if (total) {
4913 temp *= utime;
4914 do_div(temp, total);
4915 }
4916 utime = (clock_t)temp;
4917
4918 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4919 return p->prev_utime;
4920}
4921
4922cputime_t task_stime(struct task_struct *p)
4923{
4924 clock_t stime;
4925
4926 /*
4927 * Use CFS's precise accounting. (we subtract utime from
4928 * the total, to make sure the total observed by userspace
4929 * grows monotonically - apps rely on that):
4930 */
4931 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4932 cputime_to_clock_t(task_utime(p));
4933
4934 if (stime >= 0)
4935 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4936
4937 return p->prev_stime;
4938}
4939#endif
4940
4941inline cputime_t task_gtime(struct task_struct *p)
4942{
4943 return p->gtime;
4944}
4945
7835b98b
CL
4946/*
4947 * This function gets called by the timer code, with HZ frequency.
4948 * We call it with interrupts disabled.
4949 *
4950 * It also gets called by the fork code, when changing the parent's
4951 * timeslices.
4952 */
4953void scheduler_tick(void)
4954{
7835b98b
CL
4955 int cpu = smp_processor_id();
4956 struct rq *rq = cpu_rq(cpu);
dd41f596 4957 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4958
4959 sched_clock_tick();
dd41f596
IM
4960
4961 spin_lock(&rq->lock);
3e51f33f 4962 update_rq_clock(rq);
f1a438d8 4963 update_cpu_load(rq);
fa85ae24 4964 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4965 spin_unlock(&rq->lock);
7835b98b 4966
e418e1c2 4967#ifdef CONFIG_SMP
dd41f596
IM
4968 rq->idle_at_tick = idle_cpu(cpu);
4969 trigger_load_balance(rq, cpu);
e418e1c2 4970#endif
1da177e4
LT
4971}
4972
132380a0 4973notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4974{
4975 if (in_lock_functions(addr)) {
4976 addr = CALLER_ADDR2;
4977 if (in_lock_functions(addr))
4978 addr = CALLER_ADDR3;
4979 }
4980 return addr;
4981}
1da177e4 4982
7e49fcce
SR
4983#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4984 defined(CONFIG_PREEMPT_TRACER))
4985
43627582 4986void __kprobes add_preempt_count(int val)
1da177e4 4987{
6cd8a4bb 4988#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4989 /*
4990 * Underflow?
4991 */
9a11b49a
IM
4992 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4993 return;
6cd8a4bb 4994#endif
1da177e4 4995 preempt_count() += val;
6cd8a4bb 4996#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4997 /*
4998 * Spinlock count overflowing soon?
4999 */
33859f7f
MOS
5000 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5001 PREEMPT_MASK - 10);
6cd8a4bb
SR
5002#endif
5003 if (preempt_count() == val)
5004 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5005}
5006EXPORT_SYMBOL(add_preempt_count);
5007
43627582 5008void __kprobes sub_preempt_count(int val)
1da177e4 5009{
6cd8a4bb 5010#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5011 /*
5012 * Underflow?
5013 */
01e3eb82 5014 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5015 return;
1da177e4
LT
5016 /*
5017 * Is the spinlock portion underflowing?
5018 */
9a11b49a
IM
5019 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5020 !(preempt_count() & PREEMPT_MASK)))
5021 return;
6cd8a4bb 5022#endif
9a11b49a 5023
6cd8a4bb
SR
5024 if (preempt_count() == val)
5025 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5026 preempt_count() -= val;
5027}
5028EXPORT_SYMBOL(sub_preempt_count);
5029
5030#endif
5031
5032/*
dd41f596 5033 * Print scheduling while atomic bug:
1da177e4 5034 */
dd41f596 5035static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5036{
838225b4
SS
5037 struct pt_regs *regs = get_irq_regs();
5038
5039 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5040 prev->comm, prev->pid, preempt_count());
5041
dd41f596 5042 debug_show_held_locks(prev);
e21f5b15 5043 print_modules();
dd41f596
IM
5044 if (irqs_disabled())
5045 print_irqtrace_events(prev);
838225b4
SS
5046
5047 if (regs)
5048 show_regs(regs);
5049 else
5050 dump_stack();
dd41f596 5051}
1da177e4 5052
dd41f596
IM
5053/*
5054 * Various schedule()-time debugging checks and statistics:
5055 */
5056static inline void schedule_debug(struct task_struct *prev)
5057{
1da177e4 5058 /*
41a2d6cf 5059 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5060 * schedule() atomically, we ignore that path for now.
5061 * Otherwise, whine if we are scheduling when we should not be.
5062 */
3f33a7ce 5063 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5064 __schedule_bug(prev);
5065
1da177e4
LT
5066 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5067
2d72376b 5068 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5069#ifdef CONFIG_SCHEDSTATS
5070 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5071 schedstat_inc(this_rq(), bkl_count);
5072 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5073 }
5074#endif
dd41f596
IM
5075}
5076
df1c99d4
MG
5077static void put_prev_task(struct rq *rq, struct task_struct *prev)
5078{
5079 if (prev->state == TASK_RUNNING) {
5080 u64 runtime = prev->se.sum_exec_runtime;
5081
5082 runtime -= prev->se.prev_sum_exec_runtime;
5083 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5084
5085 /*
5086 * In order to avoid avg_overlap growing stale when we are
5087 * indeed overlapping and hence not getting put to sleep, grow
5088 * the avg_overlap on preemption.
5089 *
5090 * We use the average preemption runtime because that
5091 * correlates to the amount of cache footprint a task can
5092 * build up.
5093 */
5094 update_avg(&prev->se.avg_overlap, runtime);
5095 }
5096 prev->sched_class->put_prev_task(rq, prev);
5097}
5098
dd41f596
IM
5099/*
5100 * Pick up the highest-prio task:
5101 */
5102static inline struct task_struct *
b67802ea 5103pick_next_task(struct rq *rq)
dd41f596 5104{
5522d5d5 5105 const struct sched_class *class;
dd41f596 5106 struct task_struct *p;
1da177e4
LT
5107
5108 /*
dd41f596
IM
5109 * Optimization: we know that if all tasks are in
5110 * the fair class we can call that function directly:
1da177e4 5111 */
dd41f596 5112 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5113 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5114 if (likely(p))
5115 return p;
1da177e4
LT
5116 }
5117
dd41f596
IM
5118 class = sched_class_highest;
5119 for ( ; ; ) {
fb8d4724 5120 p = class->pick_next_task(rq);
dd41f596
IM
5121 if (p)
5122 return p;
5123 /*
5124 * Will never be NULL as the idle class always
5125 * returns a non-NULL p:
5126 */
5127 class = class->next;
5128 }
5129}
1da177e4 5130
dd41f596
IM
5131/*
5132 * schedule() is the main scheduler function.
5133 */
ff743345 5134asmlinkage void __sched schedule(void)
dd41f596
IM
5135{
5136 struct task_struct *prev, *next;
67ca7bde 5137 unsigned long *switch_count;
dd41f596 5138 struct rq *rq;
31656519 5139 int cpu;
dd41f596 5140
ff743345
PZ
5141need_resched:
5142 preempt_disable();
dd41f596
IM
5143 cpu = smp_processor_id();
5144 rq = cpu_rq(cpu);
5145 rcu_qsctr_inc(cpu);
5146 prev = rq->curr;
5147 switch_count = &prev->nivcsw;
5148
5149 release_kernel_lock(prev);
5150need_resched_nonpreemptible:
5151
5152 schedule_debug(prev);
1da177e4 5153
31656519 5154 if (sched_feat(HRTICK))
f333fdc9 5155 hrtick_clear(rq);
8f4d37ec 5156
8cd162ce 5157 spin_lock_irq(&rq->lock);
3e51f33f 5158 update_rq_clock(rq);
1e819950 5159 clear_tsk_need_resched(prev);
1da177e4 5160
1da177e4 5161 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5162 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5163 prev->state = TASK_RUNNING;
16882c1e 5164 else
2e1cb74a 5165 deactivate_task(rq, prev, 1);
dd41f596 5166 switch_count = &prev->nvcsw;
1da177e4
LT
5167 }
5168
9a897c5a
SR
5169#ifdef CONFIG_SMP
5170 if (prev->sched_class->pre_schedule)
5171 prev->sched_class->pre_schedule(rq, prev);
5172#endif
f65eda4f 5173
dd41f596 5174 if (unlikely(!rq->nr_running))
1da177e4 5175 idle_balance(cpu, rq);
1da177e4 5176
df1c99d4 5177 put_prev_task(rq, prev);
b67802ea 5178 next = pick_next_task(rq);
1da177e4 5179
1da177e4 5180 if (likely(prev != next)) {
673a90a1
DS
5181 sched_info_switch(prev, next);
5182
1da177e4
LT
5183 rq->nr_switches++;
5184 rq->curr = next;
5185 ++*switch_count;
5186
dd41f596 5187 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5188 /*
5189 * the context switch might have flipped the stack from under
5190 * us, hence refresh the local variables.
5191 */
5192 cpu = smp_processor_id();
5193 rq = cpu_rq(cpu);
1da177e4
LT
5194 } else
5195 spin_unlock_irq(&rq->lock);
5196
8f4d37ec 5197 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5198 goto need_resched_nonpreemptible;
8f4d37ec 5199
1da177e4 5200 preempt_enable_no_resched();
ff743345 5201 if (need_resched())
1da177e4
LT
5202 goto need_resched;
5203}
1da177e4
LT
5204EXPORT_SYMBOL(schedule);
5205
0d66bf6d
PZ
5206#ifdef CONFIG_SMP
5207/*
5208 * Look out! "owner" is an entirely speculative pointer
5209 * access and not reliable.
5210 */
5211int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5212{
5213 unsigned int cpu;
5214 struct rq *rq;
5215
5216 if (!sched_feat(OWNER_SPIN))
5217 return 0;
5218
5219#ifdef CONFIG_DEBUG_PAGEALLOC
5220 /*
5221 * Need to access the cpu field knowing that
5222 * DEBUG_PAGEALLOC could have unmapped it if
5223 * the mutex owner just released it and exited.
5224 */
5225 if (probe_kernel_address(&owner->cpu, cpu))
5226 goto out;
5227#else
5228 cpu = owner->cpu;
5229#endif
5230
5231 /*
5232 * Even if the access succeeded (likely case),
5233 * the cpu field may no longer be valid.
5234 */
5235 if (cpu >= nr_cpumask_bits)
5236 goto out;
5237
5238 /*
5239 * We need to validate that we can do a
5240 * get_cpu() and that we have the percpu area.
5241 */
5242 if (!cpu_online(cpu))
5243 goto out;
5244
5245 rq = cpu_rq(cpu);
5246
5247 for (;;) {
5248 /*
5249 * Owner changed, break to re-assess state.
5250 */
5251 if (lock->owner != owner)
5252 break;
5253
5254 /*
5255 * Is that owner really running on that cpu?
5256 */
5257 if (task_thread_info(rq->curr) != owner || need_resched())
5258 return 0;
5259
5260 cpu_relax();
5261 }
5262out:
5263 return 1;
5264}
5265#endif
5266
1da177e4
LT
5267#ifdef CONFIG_PREEMPT
5268/*
2ed6e34f 5269 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5270 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5271 * occur there and call schedule directly.
5272 */
5273asmlinkage void __sched preempt_schedule(void)
5274{
5275 struct thread_info *ti = current_thread_info();
6478d880 5276
1da177e4
LT
5277 /*
5278 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5279 * we do not want to preempt the current task. Just return..
1da177e4 5280 */
beed33a8 5281 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5282 return;
5283
3a5c359a
AK
5284 do {
5285 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5286 schedule();
3a5c359a 5287 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5288
3a5c359a
AK
5289 /*
5290 * Check again in case we missed a preemption opportunity
5291 * between schedule and now.
5292 */
5293 barrier();
5ed0cec0 5294 } while (need_resched());
1da177e4 5295}
1da177e4
LT
5296EXPORT_SYMBOL(preempt_schedule);
5297
5298/*
2ed6e34f 5299 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5300 * off of irq context.
5301 * Note, that this is called and return with irqs disabled. This will
5302 * protect us against recursive calling from irq.
5303 */
5304asmlinkage void __sched preempt_schedule_irq(void)
5305{
5306 struct thread_info *ti = current_thread_info();
6478d880 5307
2ed6e34f 5308 /* Catch callers which need to be fixed */
1da177e4
LT
5309 BUG_ON(ti->preempt_count || !irqs_disabled());
5310
3a5c359a
AK
5311 do {
5312 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5313 local_irq_enable();
5314 schedule();
5315 local_irq_disable();
3a5c359a 5316 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5317
3a5c359a
AK
5318 /*
5319 * Check again in case we missed a preemption opportunity
5320 * between schedule and now.
5321 */
5322 barrier();
5ed0cec0 5323 } while (need_resched());
1da177e4
LT
5324}
5325
5326#endif /* CONFIG_PREEMPT */
5327
95cdf3b7
IM
5328int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5329 void *key)
1da177e4 5330{
48f24c4d 5331 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5332}
1da177e4
LT
5333EXPORT_SYMBOL(default_wake_function);
5334
5335/*
41a2d6cf
IM
5336 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5337 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5338 * number) then we wake all the non-exclusive tasks and one exclusive task.
5339 *
5340 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5341 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5342 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5343 */
78ddb08f 5344static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5345 int nr_exclusive, int sync, void *key)
1da177e4 5346{
2e45874c 5347 wait_queue_t *curr, *next;
1da177e4 5348
2e45874c 5349 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5350 unsigned flags = curr->flags;
5351
1da177e4 5352 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5353 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5354 break;
5355 }
5356}
5357
5358/**
5359 * __wake_up - wake up threads blocked on a waitqueue.
5360 * @q: the waitqueue
5361 * @mode: which threads
5362 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5363 * @key: is directly passed to the wakeup function
1da177e4 5364 */
7ad5b3a5 5365void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5366 int nr_exclusive, void *key)
1da177e4
LT
5367{
5368 unsigned long flags;
5369
5370 spin_lock_irqsave(&q->lock, flags);
5371 __wake_up_common(q, mode, nr_exclusive, 0, key);
5372 spin_unlock_irqrestore(&q->lock, flags);
5373}
1da177e4
LT
5374EXPORT_SYMBOL(__wake_up);
5375
5376/*
5377 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5378 */
7ad5b3a5 5379void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5380{
5381 __wake_up_common(q, mode, 1, 0, NULL);
5382}
5383
4ede816a
DL
5384void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5385{
5386 __wake_up_common(q, mode, 1, 0, key);
5387}
5388
1da177e4 5389/**
4ede816a 5390 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5391 * @q: the waitqueue
5392 * @mode: which threads
5393 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5394 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5395 *
5396 * The sync wakeup differs that the waker knows that it will schedule
5397 * away soon, so while the target thread will be woken up, it will not
5398 * be migrated to another CPU - ie. the two threads are 'synchronized'
5399 * with each other. This can prevent needless bouncing between CPUs.
5400 *
5401 * On UP it can prevent extra preemption.
5402 */
4ede816a
DL
5403void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5404 int nr_exclusive, void *key)
1da177e4
LT
5405{
5406 unsigned long flags;
5407 int sync = 1;
5408
5409 if (unlikely(!q))
5410 return;
5411
5412 if (unlikely(!nr_exclusive))
5413 sync = 0;
5414
5415 spin_lock_irqsave(&q->lock, flags);
4ede816a 5416 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5417 spin_unlock_irqrestore(&q->lock, flags);
5418}
4ede816a
DL
5419EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5420
5421/*
5422 * __wake_up_sync - see __wake_up_sync_key()
5423 */
5424void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5425{
5426 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5427}
1da177e4
LT
5428EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5429
65eb3dc6
KD
5430/**
5431 * complete: - signals a single thread waiting on this completion
5432 * @x: holds the state of this particular completion
5433 *
5434 * This will wake up a single thread waiting on this completion. Threads will be
5435 * awakened in the same order in which they were queued.
5436 *
5437 * See also complete_all(), wait_for_completion() and related routines.
5438 */
b15136e9 5439void complete(struct completion *x)
1da177e4
LT
5440{
5441 unsigned long flags;
5442
5443 spin_lock_irqsave(&x->wait.lock, flags);
5444 x->done++;
d9514f6c 5445 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5446 spin_unlock_irqrestore(&x->wait.lock, flags);
5447}
5448EXPORT_SYMBOL(complete);
5449
65eb3dc6
KD
5450/**
5451 * complete_all: - signals all threads waiting on this completion
5452 * @x: holds the state of this particular completion
5453 *
5454 * This will wake up all threads waiting on this particular completion event.
5455 */
b15136e9 5456void complete_all(struct completion *x)
1da177e4
LT
5457{
5458 unsigned long flags;
5459
5460 spin_lock_irqsave(&x->wait.lock, flags);
5461 x->done += UINT_MAX/2;
d9514f6c 5462 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5463 spin_unlock_irqrestore(&x->wait.lock, flags);
5464}
5465EXPORT_SYMBOL(complete_all);
5466
8cbbe86d
AK
5467static inline long __sched
5468do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5469{
1da177e4
LT
5470 if (!x->done) {
5471 DECLARE_WAITQUEUE(wait, current);
5472
5473 wait.flags |= WQ_FLAG_EXCLUSIVE;
5474 __add_wait_queue_tail(&x->wait, &wait);
5475 do {
94d3d824 5476 if (signal_pending_state(state, current)) {
ea71a546
ON
5477 timeout = -ERESTARTSYS;
5478 break;
8cbbe86d
AK
5479 }
5480 __set_current_state(state);
1da177e4
LT
5481 spin_unlock_irq(&x->wait.lock);
5482 timeout = schedule_timeout(timeout);
5483 spin_lock_irq(&x->wait.lock);
ea71a546 5484 } while (!x->done && timeout);
1da177e4 5485 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5486 if (!x->done)
5487 return timeout;
1da177e4
LT
5488 }
5489 x->done--;
ea71a546 5490 return timeout ?: 1;
1da177e4 5491}
1da177e4 5492
8cbbe86d
AK
5493static long __sched
5494wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5495{
1da177e4
LT
5496 might_sleep();
5497
5498 spin_lock_irq(&x->wait.lock);
8cbbe86d 5499 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5500 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5501 return timeout;
5502}
1da177e4 5503
65eb3dc6
KD
5504/**
5505 * wait_for_completion: - waits for completion of a task
5506 * @x: holds the state of this particular completion
5507 *
5508 * This waits to be signaled for completion of a specific task. It is NOT
5509 * interruptible and there is no timeout.
5510 *
5511 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5512 * and interrupt capability. Also see complete().
5513 */
b15136e9 5514void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5515{
5516 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5517}
8cbbe86d 5518EXPORT_SYMBOL(wait_for_completion);
1da177e4 5519
65eb3dc6
KD
5520/**
5521 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5522 * @x: holds the state of this particular completion
5523 * @timeout: timeout value in jiffies
5524 *
5525 * This waits for either a completion of a specific task to be signaled or for a
5526 * specified timeout to expire. The timeout is in jiffies. It is not
5527 * interruptible.
5528 */
b15136e9 5529unsigned long __sched
8cbbe86d 5530wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5531{
8cbbe86d 5532 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5533}
8cbbe86d 5534EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5535
65eb3dc6
KD
5536/**
5537 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5538 * @x: holds the state of this particular completion
5539 *
5540 * This waits for completion of a specific task to be signaled. It is
5541 * interruptible.
5542 */
8cbbe86d 5543int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5544{
51e97990
AK
5545 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5546 if (t == -ERESTARTSYS)
5547 return t;
5548 return 0;
0fec171c 5549}
8cbbe86d 5550EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5551
65eb3dc6
KD
5552/**
5553 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5554 * @x: holds the state of this particular completion
5555 * @timeout: timeout value in jiffies
5556 *
5557 * This waits for either a completion of a specific task to be signaled or for a
5558 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5559 */
b15136e9 5560unsigned long __sched
8cbbe86d
AK
5561wait_for_completion_interruptible_timeout(struct completion *x,
5562 unsigned long timeout)
0fec171c 5563{
8cbbe86d 5564 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5565}
8cbbe86d 5566EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5567
65eb3dc6
KD
5568/**
5569 * wait_for_completion_killable: - waits for completion of a task (killable)
5570 * @x: holds the state of this particular completion
5571 *
5572 * This waits to be signaled for completion of a specific task. It can be
5573 * interrupted by a kill signal.
5574 */
009e577e
MW
5575int __sched wait_for_completion_killable(struct completion *x)
5576{
5577 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5578 if (t == -ERESTARTSYS)
5579 return t;
5580 return 0;
5581}
5582EXPORT_SYMBOL(wait_for_completion_killable);
5583
be4de352
DC
5584/**
5585 * try_wait_for_completion - try to decrement a completion without blocking
5586 * @x: completion structure
5587 *
5588 * Returns: 0 if a decrement cannot be done without blocking
5589 * 1 if a decrement succeeded.
5590 *
5591 * If a completion is being used as a counting completion,
5592 * attempt to decrement the counter without blocking. This
5593 * enables us to avoid waiting if the resource the completion
5594 * is protecting is not available.
5595 */
5596bool try_wait_for_completion(struct completion *x)
5597{
5598 int ret = 1;
5599
5600 spin_lock_irq(&x->wait.lock);
5601 if (!x->done)
5602 ret = 0;
5603 else
5604 x->done--;
5605 spin_unlock_irq(&x->wait.lock);
5606 return ret;
5607}
5608EXPORT_SYMBOL(try_wait_for_completion);
5609
5610/**
5611 * completion_done - Test to see if a completion has any waiters
5612 * @x: completion structure
5613 *
5614 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5615 * 1 if there are no waiters.
5616 *
5617 */
5618bool completion_done(struct completion *x)
5619{
5620 int ret = 1;
5621
5622 spin_lock_irq(&x->wait.lock);
5623 if (!x->done)
5624 ret = 0;
5625 spin_unlock_irq(&x->wait.lock);
5626 return ret;
5627}
5628EXPORT_SYMBOL(completion_done);
5629
8cbbe86d
AK
5630static long __sched
5631sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5632{
0fec171c
IM
5633 unsigned long flags;
5634 wait_queue_t wait;
5635
5636 init_waitqueue_entry(&wait, current);
1da177e4 5637
8cbbe86d 5638 __set_current_state(state);
1da177e4 5639
8cbbe86d
AK
5640 spin_lock_irqsave(&q->lock, flags);
5641 __add_wait_queue(q, &wait);
5642 spin_unlock(&q->lock);
5643 timeout = schedule_timeout(timeout);
5644 spin_lock_irq(&q->lock);
5645 __remove_wait_queue(q, &wait);
5646 spin_unlock_irqrestore(&q->lock, flags);
5647
5648 return timeout;
5649}
5650
5651void __sched interruptible_sleep_on(wait_queue_head_t *q)
5652{
5653 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5654}
1da177e4
LT
5655EXPORT_SYMBOL(interruptible_sleep_on);
5656
0fec171c 5657long __sched
95cdf3b7 5658interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5659{
8cbbe86d 5660 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5661}
1da177e4
LT
5662EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5663
0fec171c 5664void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5665{
8cbbe86d 5666 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5667}
1da177e4
LT
5668EXPORT_SYMBOL(sleep_on);
5669
0fec171c 5670long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5671{
8cbbe86d 5672 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5673}
1da177e4
LT
5674EXPORT_SYMBOL(sleep_on_timeout);
5675
b29739f9
IM
5676#ifdef CONFIG_RT_MUTEXES
5677
5678/*
5679 * rt_mutex_setprio - set the current priority of a task
5680 * @p: task
5681 * @prio: prio value (kernel-internal form)
5682 *
5683 * This function changes the 'effective' priority of a task. It does
5684 * not touch ->normal_prio like __setscheduler().
5685 *
5686 * Used by the rt_mutex code to implement priority inheritance logic.
5687 */
36c8b586 5688void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5689{
5690 unsigned long flags;
83b699ed 5691 int oldprio, on_rq, running;
70b97a7f 5692 struct rq *rq;
cb469845 5693 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5694
5695 BUG_ON(prio < 0 || prio > MAX_PRIO);
5696
5697 rq = task_rq_lock(p, &flags);
a8e504d2 5698 update_rq_clock(rq);
b29739f9 5699
d5f9f942 5700 oldprio = p->prio;
dd41f596 5701 on_rq = p->se.on_rq;
051a1d1a 5702 running = task_current(rq, p);
0e1f3483 5703 if (on_rq)
69be72c1 5704 dequeue_task(rq, p, 0);
0e1f3483
HS
5705 if (running)
5706 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5707
5708 if (rt_prio(prio))
5709 p->sched_class = &rt_sched_class;
5710 else
5711 p->sched_class = &fair_sched_class;
5712
b29739f9
IM
5713 p->prio = prio;
5714
0e1f3483
HS
5715 if (running)
5716 p->sched_class->set_curr_task(rq);
dd41f596 5717 if (on_rq) {
8159f87e 5718 enqueue_task(rq, p, 0);
cb469845
SR
5719
5720 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5721 }
5722 task_rq_unlock(rq, &flags);
5723}
5724
5725#endif
5726
36c8b586 5727void set_user_nice(struct task_struct *p, long nice)
1da177e4 5728{
dd41f596 5729 int old_prio, delta, on_rq;
1da177e4 5730 unsigned long flags;
70b97a7f 5731 struct rq *rq;
1da177e4
LT
5732
5733 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5734 return;
5735 /*
5736 * We have to be careful, if called from sys_setpriority(),
5737 * the task might be in the middle of scheduling on another CPU.
5738 */
5739 rq = task_rq_lock(p, &flags);
a8e504d2 5740 update_rq_clock(rq);
1da177e4
LT
5741 /*
5742 * The RT priorities are set via sched_setscheduler(), but we still
5743 * allow the 'normal' nice value to be set - but as expected
5744 * it wont have any effect on scheduling until the task is
dd41f596 5745 * SCHED_FIFO/SCHED_RR:
1da177e4 5746 */
e05606d3 5747 if (task_has_rt_policy(p)) {
1da177e4
LT
5748 p->static_prio = NICE_TO_PRIO(nice);
5749 goto out_unlock;
5750 }
dd41f596 5751 on_rq = p->se.on_rq;
c09595f6 5752 if (on_rq)
69be72c1 5753 dequeue_task(rq, p, 0);
1da177e4 5754
1da177e4 5755 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5756 set_load_weight(p);
b29739f9
IM
5757 old_prio = p->prio;
5758 p->prio = effective_prio(p);
5759 delta = p->prio - old_prio;
1da177e4 5760
dd41f596 5761 if (on_rq) {
8159f87e 5762 enqueue_task(rq, p, 0);
1da177e4 5763 /*
d5f9f942
AM
5764 * If the task increased its priority or is running and
5765 * lowered its priority, then reschedule its CPU:
1da177e4 5766 */
d5f9f942 5767 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5768 resched_task(rq->curr);
5769 }
5770out_unlock:
5771 task_rq_unlock(rq, &flags);
5772}
1da177e4
LT
5773EXPORT_SYMBOL(set_user_nice);
5774
e43379f1
MM
5775/*
5776 * can_nice - check if a task can reduce its nice value
5777 * @p: task
5778 * @nice: nice value
5779 */
36c8b586 5780int can_nice(const struct task_struct *p, const int nice)
e43379f1 5781{
024f4747
MM
5782 /* convert nice value [19,-20] to rlimit style value [1,40] */
5783 int nice_rlim = 20 - nice;
48f24c4d 5784
e43379f1
MM
5785 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5786 capable(CAP_SYS_NICE));
5787}
5788
1da177e4
LT
5789#ifdef __ARCH_WANT_SYS_NICE
5790
5791/*
5792 * sys_nice - change the priority of the current process.
5793 * @increment: priority increment
5794 *
5795 * sys_setpriority is a more generic, but much slower function that
5796 * does similar things.
5797 */
5add95d4 5798SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5799{
48f24c4d 5800 long nice, retval;
1da177e4
LT
5801
5802 /*
5803 * Setpriority might change our priority at the same moment.
5804 * We don't have to worry. Conceptually one call occurs first
5805 * and we have a single winner.
5806 */
e43379f1
MM
5807 if (increment < -40)
5808 increment = -40;
1da177e4
LT
5809 if (increment > 40)
5810 increment = 40;
5811
2b8f836f 5812 nice = TASK_NICE(current) + increment;
1da177e4
LT
5813 if (nice < -20)
5814 nice = -20;
5815 if (nice > 19)
5816 nice = 19;
5817
e43379f1
MM
5818 if (increment < 0 && !can_nice(current, nice))
5819 return -EPERM;
5820
1da177e4
LT
5821 retval = security_task_setnice(current, nice);
5822 if (retval)
5823 return retval;
5824
5825 set_user_nice(current, nice);
5826 return 0;
5827}
5828
5829#endif
5830
5831/**
5832 * task_prio - return the priority value of a given task.
5833 * @p: the task in question.
5834 *
5835 * This is the priority value as seen by users in /proc.
5836 * RT tasks are offset by -200. Normal tasks are centered
5837 * around 0, value goes from -16 to +15.
5838 */
36c8b586 5839int task_prio(const struct task_struct *p)
1da177e4
LT
5840{
5841 return p->prio - MAX_RT_PRIO;
5842}
5843
5844/**
5845 * task_nice - return the nice value of a given task.
5846 * @p: the task in question.
5847 */
36c8b586 5848int task_nice(const struct task_struct *p)
1da177e4
LT
5849{
5850 return TASK_NICE(p);
5851}
150d8bed 5852EXPORT_SYMBOL(task_nice);
1da177e4
LT
5853
5854/**
5855 * idle_cpu - is a given cpu idle currently?
5856 * @cpu: the processor in question.
5857 */
5858int idle_cpu(int cpu)
5859{
5860 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5861}
5862
1da177e4
LT
5863/**
5864 * idle_task - return the idle task for a given cpu.
5865 * @cpu: the processor in question.
5866 */
36c8b586 5867struct task_struct *idle_task(int cpu)
1da177e4
LT
5868{
5869 return cpu_rq(cpu)->idle;
5870}
5871
5872/**
5873 * find_process_by_pid - find a process with a matching PID value.
5874 * @pid: the pid in question.
5875 */
a9957449 5876static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5877{
228ebcbe 5878 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5879}
5880
5881/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5882static void
5883__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5884{
dd41f596 5885 BUG_ON(p->se.on_rq);
48f24c4d 5886
1da177e4 5887 p->policy = policy;
dd41f596
IM
5888 switch (p->policy) {
5889 case SCHED_NORMAL:
5890 case SCHED_BATCH:
5891 case SCHED_IDLE:
5892 p->sched_class = &fair_sched_class;
5893 break;
5894 case SCHED_FIFO:
5895 case SCHED_RR:
5896 p->sched_class = &rt_sched_class;
5897 break;
5898 }
5899
1da177e4 5900 p->rt_priority = prio;
b29739f9
IM
5901 p->normal_prio = normal_prio(p);
5902 /* we are holding p->pi_lock already */
5903 p->prio = rt_mutex_getprio(p);
2dd73a4f 5904 set_load_weight(p);
1da177e4
LT
5905}
5906
c69e8d9c
DH
5907/*
5908 * check the target process has a UID that matches the current process's
5909 */
5910static bool check_same_owner(struct task_struct *p)
5911{
5912 const struct cred *cred = current_cred(), *pcred;
5913 bool match;
5914
5915 rcu_read_lock();
5916 pcred = __task_cred(p);
5917 match = (cred->euid == pcred->euid ||
5918 cred->euid == pcred->uid);
5919 rcu_read_unlock();
5920 return match;
5921}
5922
961ccddd
RR
5923static int __sched_setscheduler(struct task_struct *p, int policy,
5924 struct sched_param *param, bool user)
1da177e4 5925{
83b699ed 5926 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5927 unsigned long flags;
cb469845 5928 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5929 struct rq *rq;
1da177e4 5930
66e5393a
SR
5931 /* may grab non-irq protected spin_locks */
5932 BUG_ON(in_interrupt());
1da177e4
LT
5933recheck:
5934 /* double check policy once rq lock held */
5935 if (policy < 0)
5936 policy = oldpolicy = p->policy;
5937 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5938 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5939 policy != SCHED_IDLE)
b0a9499c 5940 return -EINVAL;
1da177e4
LT
5941 /*
5942 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5943 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5944 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5945 */
5946 if (param->sched_priority < 0 ||
95cdf3b7 5947 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5948 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5949 return -EINVAL;
e05606d3 5950 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5951 return -EINVAL;
5952
37e4ab3f
OC
5953 /*
5954 * Allow unprivileged RT tasks to decrease priority:
5955 */
961ccddd 5956 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5957 if (rt_policy(policy)) {
8dc3e909 5958 unsigned long rlim_rtprio;
8dc3e909
ON
5959
5960 if (!lock_task_sighand(p, &flags))
5961 return -ESRCH;
5962 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5963 unlock_task_sighand(p, &flags);
5964
5965 /* can't set/change the rt policy */
5966 if (policy != p->policy && !rlim_rtprio)
5967 return -EPERM;
5968
5969 /* can't increase priority */
5970 if (param->sched_priority > p->rt_priority &&
5971 param->sched_priority > rlim_rtprio)
5972 return -EPERM;
5973 }
dd41f596
IM
5974 /*
5975 * Like positive nice levels, dont allow tasks to
5976 * move out of SCHED_IDLE either:
5977 */
5978 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5979 return -EPERM;
5fe1d75f 5980
37e4ab3f 5981 /* can't change other user's priorities */
c69e8d9c 5982 if (!check_same_owner(p))
37e4ab3f
OC
5983 return -EPERM;
5984 }
1da177e4 5985
725aad24 5986 if (user) {
b68aa230 5987#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5988 /*
5989 * Do not allow realtime tasks into groups that have no runtime
5990 * assigned.
5991 */
9a7e0b18
PZ
5992 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5993 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5994 return -EPERM;
b68aa230
PZ
5995#endif
5996
725aad24
JF
5997 retval = security_task_setscheduler(p, policy, param);
5998 if (retval)
5999 return retval;
6000 }
6001
b29739f9
IM
6002 /*
6003 * make sure no PI-waiters arrive (or leave) while we are
6004 * changing the priority of the task:
6005 */
6006 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6007 /*
6008 * To be able to change p->policy safely, the apropriate
6009 * runqueue lock must be held.
6010 */
b29739f9 6011 rq = __task_rq_lock(p);
1da177e4
LT
6012 /* recheck policy now with rq lock held */
6013 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6014 policy = oldpolicy = -1;
b29739f9
IM
6015 __task_rq_unlock(rq);
6016 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6017 goto recheck;
6018 }
2daa3577 6019 update_rq_clock(rq);
dd41f596 6020 on_rq = p->se.on_rq;
051a1d1a 6021 running = task_current(rq, p);
0e1f3483 6022 if (on_rq)
2e1cb74a 6023 deactivate_task(rq, p, 0);
0e1f3483
HS
6024 if (running)
6025 p->sched_class->put_prev_task(rq, p);
f6b53205 6026
1da177e4 6027 oldprio = p->prio;
dd41f596 6028 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6029
0e1f3483
HS
6030 if (running)
6031 p->sched_class->set_curr_task(rq);
dd41f596
IM
6032 if (on_rq) {
6033 activate_task(rq, p, 0);
cb469845
SR
6034
6035 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6036 }
b29739f9
IM
6037 __task_rq_unlock(rq);
6038 spin_unlock_irqrestore(&p->pi_lock, flags);
6039
95e02ca9
TG
6040 rt_mutex_adjust_pi(p);
6041
1da177e4
LT
6042 return 0;
6043}
961ccddd
RR
6044
6045/**
6046 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6047 * @p: the task in question.
6048 * @policy: new policy.
6049 * @param: structure containing the new RT priority.
6050 *
6051 * NOTE that the task may be already dead.
6052 */
6053int sched_setscheduler(struct task_struct *p, int policy,
6054 struct sched_param *param)
6055{
6056 return __sched_setscheduler(p, policy, param, true);
6057}
1da177e4
LT
6058EXPORT_SYMBOL_GPL(sched_setscheduler);
6059
961ccddd
RR
6060/**
6061 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6062 * @p: the task in question.
6063 * @policy: new policy.
6064 * @param: structure containing the new RT priority.
6065 *
6066 * Just like sched_setscheduler, only don't bother checking if the
6067 * current context has permission. For example, this is needed in
6068 * stop_machine(): we create temporary high priority worker threads,
6069 * but our caller might not have that capability.
6070 */
6071int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6072 struct sched_param *param)
6073{
6074 return __sched_setscheduler(p, policy, param, false);
6075}
6076
95cdf3b7
IM
6077static int
6078do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6079{
1da177e4
LT
6080 struct sched_param lparam;
6081 struct task_struct *p;
36c8b586 6082 int retval;
1da177e4
LT
6083
6084 if (!param || pid < 0)
6085 return -EINVAL;
6086 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6087 return -EFAULT;
5fe1d75f
ON
6088
6089 rcu_read_lock();
6090 retval = -ESRCH;
1da177e4 6091 p = find_process_by_pid(pid);
5fe1d75f
ON
6092 if (p != NULL)
6093 retval = sched_setscheduler(p, policy, &lparam);
6094 rcu_read_unlock();
36c8b586 6095
1da177e4
LT
6096 return retval;
6097}
6098
6099/**
6100 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6101 * @pid: the pid in question.
6102 * @policy: new policy.
6103 * @param: structure containing the new RT priority.
6104 */
5add95d4
HC
6105SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6106 struct sched_param __user *, param)
1da177e4 6107{
c21761f1
JB
6108 /* negative values for policy are not valid */
6109 if (policy < 0)
6110 return -EINVAL;
6111
1da177e4
LT
6112 return do_sched_setscheduler(pid, policy, param);
6113}
6114
6115/**
6116 * sys_sched_setparam - set/change the RT priority of a thread
6117 * @pid: the pid in question.
6118 * @param: structure containing the new RT priority.
6119 */
5add95d4 6120SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6121{
6122 return do_sched_setscheduler(pid, -1, param);
6123}
6124
6125/**
6126 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6127 * @pid: the pid in question.
6128 */
5add95d4 6129SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6130{
36c8b586 6131 struct task_struct *p;
3a5c359a 6132 int retval;
1da177e4
LT
6133
6134 if (pid < 0)
3a5c359a 6135 return -EINVAL;
1da177e4
LT
6136
6137 retval = -ESRCH;
6138 read_lock(&tasklist_lock);
6139 p = find_process_by_pid(pid);
6140 if (p) {
6141 retval = security_task_getscheduler(p);
6142 if (!retval)
6143 retval = p->policy;
6144 }
6145 read_unlock(&tasklist_lock);
1da177e4
LT
6146 return retval;
6147}
6148
6149/**
6150 * sys_sched_getscheduler - get the RT priority of a thread
6151 * @pid: the pid in question.
6152 * @param: structure containing the RT priority.
6153 */
5add95d4 6154SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6155{
6156 struct sched_param lp;
36c8b586 6157 struct task_struct *p;
3a5c359a 6158 int retval;
1da177e4
LT
6159
6160 if (!param || pid < 0)
3a5c359a 6161 return -EINVAL;
1da177e4
LT
6162
6163 read_lock(&tasklist_lock);
6164 p = find_process_by_pid(pid);
6165 retval = -ESRCH;
6166 if (!p)
6167 goto out_unlock;
6168
6169 retval = security_task_getscheduler(p);
6170 if (retval)
6171 goto out_unlock;
6172
6173 lp.sched_priority = p->rt_priority;
6174 read_unlock(&tasklist_lock);
6175
6176 /*
6177 * This one might sleep, we cannot do it with a spinlock held ...
6178 */
6179 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6180
1da177e4
LT
6181 return retval;
6182
6183out_unlock:
6184 read_unlock(&tasklist_lock);
6185 return retval;
6186}
6187
96f874e2 6188long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6189{
5a16f3d3 6190 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6191 struct task_struct *p;
6192 int retval;
1da177e4 6193
95402b38 6194 get_online_cpus();
1da177e4
LT
6195 read_lock(&tasklist_lock);
6196
6197 p = find_process_by_pid(pid);
6198 if (!p) {
6199 read_unlock(&tasklist_lock);
95402b38 6200 put_online_cpus();
1da177e4
LT
6201 return -ESRCH;
6202 }
6203
6204 /*
6205 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6206 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6207 * usage count and then drop tasklist_lock.
6208 */
6209 get_task_struct(p);
6210 read_unlock(&tasklist_lock);
6211
5a16f3d3
RR
6212 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6213 retval = -ENOMEM;
6214 goto out_put_task;
6215 }
6216 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6217 retval = -ENOMEM;
6218 goto out_free_cpus_allowed;
6219 }
1da177e4 6220 retval = -EPERM;
c69e8d9c 6221 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6222 goto out_unlock;
6223
e7834f8f
DQ
6224 retval = security_task_setscheduler(p, 0, NULL);
6225 if (retval)
6226 goto out_unlock;
6227
5a16f3d3
RR
6228 cpuset_cpus_allowed(p, cpus_allowed);
6229 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6230 again:
5a16f3d3 6231 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6232
8707d8b8 6233 if (!retval) {
5a16f3d3
RR
6234 cpuset_cpus_allowed(p, cpus_allowed);
6235 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6236 /*
6237 * We must have raced with a concurrent cpuset
6238 * update. Just reset the cpus_allowed to the
6239 * cpuset's cpus_allowed
6240 */
5a16f3d3 6241 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6242 goto again;
6243 }
6244 }
1da177e4 6245out_unlock:
5a16f3d3
RR
6246 free_cpumask_var(new_mask);
6247out_free_cpus_allowed:
6248 free_cpumask_var(cpus_allowed);
6249out_put_task:
1da177e4 6250 put_task_struct(p);
95402b38 6251 put_online_cpus();
1da177e4
LT
6252 return retval;
6253}
6254
6255static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6256 struct cpumask *new_mask)
1da177e4 6257{
96f874e2
RR
6258 if (len < cpumask_size())
6259 cpumask_clear(new_mask);
6260 else if (len > cpumask_size())
6261 len = cpumask_size();
6262
1da177e4
LT
6263 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6264}
6265
6266/**
6267 * sys_sched_setaffinity - set the cpu affinity of a process
6268 * @pid: pid of the process
6269 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6270 * @user_mask_ptr: user-space pointer to the new cpu mask
6271 */
5add95d4
HC
6272SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6273 unsigned long __user *, user_mask_ptr)
1da177e4 6274{
5a16f3d3 6275 cpumask_var_t new_mask;
1da177e4
LT
6276 int retval;
6277
5a16f3d3
RR
6278 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6279 return -ENOMEM;
1da177e4 6280
5a16f3d3
RR
6281 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6282 if (retval == 0)
6283 retval = sched_setaffinity(pid, new_mask);
6284 free_cpumask_var(new_mask);
6285 return retval;
1da177e4
LT
6286}
6287
96f874e2 6288long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6289{
36c8b586 6290 struct task_struct *p;
1da177e4 6291 int retval;
1da177e4 6292
95402b38 6293 get_online_cpus();
1da177e4
LT
6294 read_lock(&tasklist_lock);
6295
6296 retval = -ESRCH;
6297 p = find_process_by_pid(pid);
6298 if (!p)
6299 goto out_unlock;
6300
e7834f8f
DQ
6301 retval = security_task_getscheduler(p);
6302 if (retval)
6303 goto out_unlock;
6304
96f874e2 6305 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6306
6307out_unlock:
6308 read_unlock(&tasklist_lock);
95402b38 6309 put_online_cpus();
1da177e4 6310
9531b62f 6311 return retval;
1da177e4
LT
6312}
6313
6314/**
6315 * sys_sched_getaffinity - get the cpu affinity of a process
6316 * @pid: pid of the process
6317 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6318 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6319 */
5add95d4
HC
6320SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6321 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6322{
6323 int ret;
f17c8607 6324 cpumask_var_t mask;
1da177e4 6325
f17c8607 6326 if (len < cpumask_size())
1da177e4
LT
6327 return -EINVAL;
6328
f17c8607
RR
6329 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6330 return -ENOMEM;
1da177e4 6331
f17c8607
RR
6332 ret = sched_getaffinity(pid, mask);
6333 if (ret == 0) {
6334 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6335 ret = -EFAULT;
6336 else
6337 ret = cpumask_size();
6338 }
6339 free_cpumask_var(mask);
1da177e4 6340
f17c8607 6341 return ret;
1da177e4
LT
6342}
6343
6344/**
6345 * sys_sched_yield - yield the current processor to other threads.
6346 *
dd41f596
IM
6347 * This function yields the current CPU to other tasks. If there are no
6348 * other threads running on this CPU then this function will return.
1da177e4 6349 */
5add95d4 6350SYSCALL_DEFINE0(sched_yield)
1da177e4 6351{
70b97a7f 6352 struct rq *rq = this_rq_lock();
1da177e4 6353
2d72376b 6354 schedstat_inc(rq, yld_count);
4530d7ab 6355 current->sched_class->yield_task(rq);
1da177e4
LT
6356
6357 /*
6358 * Since we are going to call schedule() anyway, there's
6359 * no need to preempt or enable interrupts:
6360 */
6361 __release(rq->lock);
8a25d5de 6362 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6363 _raw_spin_unlock(&rq->lock);
6364 preempt_enable_no_resched();
6365
6366 schedule();
6367
6368 return 0;
6369}
6370
e7b38404 6371static void __cond_resched(void)
1da177e4 6372{
8e0a43d8
IM
6373#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6374 __might_sleep(__FILE__, __LINE__);
6375#endif
5bbcfd90
IM
6376 /*
6377 * The BKS might be reacquired before we have dropped
6378 * PREEMPT_ACTIVE, which could trigger a second
6379 * cond_resched() call.
6380 */
1da177e4
LT
6381 do {
6382 add_preempt_count(PREEMPT_ACTIVE);
6383 schedule();
6384 sub_preempt_count(PREEMPT_ACTIVE);
6385 } while (need_resched());
6386}
6387
02b67cc3 6388int __sched _cond_resched(void)
1da177e4 6389{
9414232f
IM
6390 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6391 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6392 __cond_resched();
6393 return 1;
6394 }
6395 return 0;
6396}
02b67cc3 6397EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6398
6399/*
6400 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6401 * call schedule, and on return reacquire the lock.
6402 *
41a2d6cf 6403 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6404 * operations here to prevent schedule() from being called twice (once via
6405 * spin_unlock(), once by hand).
6406 */
95cdf3b7 6407int cond_resched_lock(spinlock_t *lock)
1da177e4 6408{
95c354fe 6409 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6410 int ret = 0;
6411
95c354fe 6412 if (spin_needbreak(lock) || resched) {
1da177e4 6413 spin_unlock(lock);
95c354fe
NP
6414 if (resched && need_resched())
6415 __cond_resched();
6416 else
6417 cpu_relax();
6df3cecb 6418 ret = 1;
1da177e4 6419 spin_lock(lock);
1da177e4 6420 }
6df3cecb 6421 return ret;
1da177e4 6422}
1da177e4
LT
6423EXPORT_SYMBOL(cond_resched_lock);
6424
6425int __sched cond_resched_softirq(void)
6426{
6427 BUG_ON(!in_softirq());
6428
9414232f 6429 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6430 local_bh_enable();
1da177e4
LT
6431 __cond_resched();
6432 local_bh_disable();
6433 return 1;
6434 }
6435 return 0;
6436}
1da177e4
LT
6437EXPORT_SYMBOL(cond_resched_softirq);
6438
1da177e4
LT
6439/**
6440 * yield - yield the current processor to other threads.
6441 *
72fd4a35 6442 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6443 * thread runnable and calls sys_sched_yield().
6444 */
6445void __sched yield(void)
6446{
6447 set_current_state(TASK_RUNNING);
6448 sys_sched_yield();
6449}
1da177e4
LT
6450EXPORT_SYMBOL(yield);
6451
6452/*
41a2d6cf 6453 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6454 * that process accounting knows that this is a task in IO wait state.
6455 *
6456 * But don't do that if it is a deliberate, throttling IO wait (this task
6457 * has set its backing_dev_info: the queue against which it should throttle)
6458 */
6459void __sched io_schedule(void)
6460{
70b97a7f 6461 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6462
0ff92245 6463 delayacct_blkio_start();
1da177e4
LT
6464 atomic_inc(&rq->nr_iowait);
6465 schedule();
6466 atomic_dec(&rq->nr_iowait);
0ff92245 6467 delayacct_blkio_end();
1da177e4 6468}
1da177e4
LT
6469EXPORT_SYMBOL(io_schedule);
6470
6471long __sched io_schedule_timeout(long timeout)
6472{
70b97a7f 6473 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6474 long ret;
6475
0ff92245 6476 delayacct_blkio_start();
1da177e4
LT
6477 atomic_inc(&rq->nr_iowait);
6478 ret = schedule_timeout(timeout);
6479 atomic_dec(&rq->nr_iowait);
0ff92245 6480 delayacct_blkio_end();
1da177e4
LT
6481 return ret;
6482}
6483
6484/**
6485 * sys_sched_get_priority_max - return maximum RT priority.
6486 * @policy: scheduling class.
6487 *
6488 * this syscall returns the maximum rt_priority that can be used
6489 * by a given scheduling class.
6490 */
5add95d4 6491SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6492{
6493 int ret = -EINVAL;
6494
6495 switch (policy) {
6496 case SCHED_FIFO:
6497 case SCHED_RR:
6498 ret = MAX_USER_RT_PRIO-1;
6499 break;
6500 case SCHED_NORMAL:
b0a9499c 6501 case SCHED_BATCH:
dd41f596 6502 case SCHED_IDLE:
1da177e4
LT
6503 ret = 0;
6504 break;
6505 }
6506 return ret;
6507}
6508
6509/**
6510 * sys_sched_get_priority_min - return minimum RT priority.
6511 * @policy: scheduling class.
6512 *
6513 * this syscall returns the minimum rt_priority that can be used
6514 * by a given scheduling class.
6515 */
5add95d4 6516SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6517{
6518 int ret = -EINVAL;
6519
6520 switch (policy) {
6521 case SCHED_FIFO:
6522 case SCHED_RR:
6523 ret = 1;
6524 break;
6525 case SCHED_NORMAL:
b0a9499c 6526 case SCHED_BATCH:
dd41f596 6527 case SCHED_IDLE:
1da177e4
LT
6528 ret = 0;
6529 }
6530 return ret;
6531}
6532
6533/**
6534 * sys_sched_rr_get_interval - return the default timeslice of a process.
6535 * @pid: pid of the process.
6536 * @interval: userspace pointer to the timeslice value.
6537 *
6538 * this syscall writes the default timeslice value of a given process
6539 * into the user-space timespec buffer. A value of '0' means infinity.
6540 */
17da2bd9 6541SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6542 struct timespec __user *, interval)
1da177e4 6543{
36c8b586 6544 struct task_struct *p;
a4ec24b4 6545 unsigned int time_slice;
3a5c359a 6546 int retval;
1da177e4 6547 struct timespec t;
1da177e4
LT
6548
6549 if (pid < 0)
3a5c359a 6550 return -EINVAL;
1da177e4
LT
6551
6552 retval = -ESRCH;
6553 read_lock(&tasklist_lock);
6554 p = find_process_by_pid(pid);
6555 if (!p)
6556 goto out_unlock;
6557
6558 retval = security_task_getscheduler(p);
6559 if (retval)
6560 goto out_unlock;
6561
77034937
IM
6562 /*
6563 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6564 * tasks that are on an otherwise idle runqueue:
6565 */
6566 time_slice = 0;
6567 if (p->policy == SCHED_RR) {
a4ec24b4 6568 time_slice = DEF_TIMESLICE;
1868f958 6569 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6570 struct sched_entity *se = &p->se;
6571 unsigned long flags;
6572 struct rq *rq;
6573
6574 rq = task_rq_lock(p, &flags);
77034937
IM
6575 if (rq->cfs.load.weight)
6576 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6577 task_rq_unlock(rq, &flags);
6578 }
1da177e4 6579 read_unlock(&tasklist_lock);
a4ec24b4 6580 jiffies_to_timespec(time_slice, &t);
1da177e4 6581 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6582 return retval;
3a5c359a 6583
1da177e4
LT
6584out_unlock:
6585 read_unlock(&tasklist_lock);
6586 return retval;
6587}
6588
7c731e0a 6589static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6590
82a1fcb9 6591void sched_show_task(struct task_struct *p)
1da177e4 6592{
1da177e4 6593 unsigned long free = 0;
36c8b586 6594 unsigned state;
1da177e4 6595
1da177e4 6596 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6597 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6598 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6599#if BITS_PER_LONG == 32
1da177e4 6600 if (state == TASK_RUNNING)
cc4ea795 6601 printk(KERN_CONT " running ");
1da177e4 6602 else
cc4ea795 6603 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6604#else
6605 if (state == TASK_RUNNING)
cc4ea795 6606 printk(KERN_CONT " running task ");
1da177e4 6607 else
cc4ea795 6608 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6609#endif
6610#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6611 free = stack_not_used(p);
1da177e4 6612#endif
aa47b7e0
DR
6613 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6614 task_pid_nr(p), task_pid_nr(p->real_parent),
6615 (unsigned long)task_thread_info(p)->flags);
1da177e4 6616
5fb5e6de 6617 show_stack(p, NULL);
1da177e4
LT
6618}
6619
e59e2ae2 6620void show_state_filter(unsigned long state_filter)
1da177e4 6621{
36c8b586 6622 struct task_struct *g, *p;
1da177e4 6623
4bd77321
IM
6624#if BITS_PER_LONG == 32
6625 printk(KERN_INFO
6626 " task PC stack pid father\n");
1da177e4 6627#else
4bd77321
IM
6628 printk(KERN_INFO
6629 " task PC stack pid father\n");
1da177e4
LT
6630#endif
6631 read_lock(&tasklist_lock);
6632 do_each_thread(g, p) {
6633 /*
6634 * reset the NMI-timeout, listing all files on a slow
6635 * console might take alot of time:
6636 */
6637 touch_nmi_watchdog();
39bc89fd 6638 if (!state_filter || (p->state & state_filter))
82a1fcb9 6639 sched_show_task(p);
1da177e4
LT
6640 } while_each_thread(g, p);
6641
04c9167f
JF
6642 touch_all_softlockup_watchdogs();
6643
dd41f596
IM
6644#ifdef CONFIG_SCHED_DEBUG
6645 sysrq_sched_debug_show();
6646#endif
1da177e4 6647 read_unlock(&tasklist_lock);
e59e2ae2
IM
6648 /*
6649 * Only show locks if all tasks are dumped:
6650 */
6651 if (state_filter == -1)
6652 debug_show_all_locks();
1da177e4
LT
6653}
6654
1df21055
IM
6655void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6656{
dd41f596 6657 idle->sched_class = &idle_sched_class;
1df21055
IM
6658}
6659
f340c0d1
IM
6660/**
6661 * init_idle - set up an idle thread for a given CPU
6662 * @idle: task in question
6663 * @cpu: cpu the idle task belongs to
6664 *
6665 * NOTE: this function does not set the idle thread's NEED_RESCHED
6666 * flag, to make booting more robust.
6667 */
5c1e1767 6668void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6669{
70b97a7f 6670 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6671 unsigned long flags;
6672
5cbd54ef
IM
6673 spin_lock_irqsave(&rq->lock, flags);
6674
dd41f596
IM
6675 __sched_fork(idle);
6676 idle->se.exec_start = sched_clock();
6677
b29739f9 6678 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6679 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6680 __set_task_cpu(idle, cpu);
1da177e4 6681
1da177e4 6682 rq->curr = rq->idle = idle;
4866cde0
NP
6683#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6684 idle->oncpu = 1;
6685#endif
1da177e4
LT
6686 spin_unlock_irqrestore(&rq->lock, flags);
6687
6688 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6689#if defined(CONFIG_PREEMPT)
6690 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6691#else
a1261f54 6692 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6693#endif
dd41f596
IM
6694 /*
6695 * The idle tasks have their own, simple scheduling class:
6696 */
6697 idle->sched_class = &idle_sched_class;
fb52607a 6698 ftrace_graph_init_task(idle);
1da177e4
LT
6699}
6700
6701/*
6702 * In a system that switches off the HZ timer nohz_cpu_mask
6703 * indicates which cpus entered this state. This is used
6704 * in the rcu update to wait only for active cpus. For system
6705 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6706 * always be CPU_BITS_NONE.
1da177e4 6707 */
6a7b3dc3 6708cpumask_var_t nohz_cpu_mask;
1da177e4 6709
19978ca6
IM
6710/*
6711 * Increase the granularity value when there are more CPUs,
6712 * because with more CPUs the 'effective latency' as visible
6713 * to users decreases. But the relationship is not linear,
6714 * so pick a second-best guess by going with the log2 of the
6715 * number of CPUs.
6716 *
6717 * This idea comes from the SD scheduler of Con Kolivas:
6718 */
6719static inline void sched_init_granularity(void)
6720{
6721 unsigned int factor = 1 + ilog2(num_online_cpus());
6722 const unsigned long limit = 200000000;
6723
6724 sysctl_sched_min_granularity *= factor;
6725 if (sysctl_sched_min_granularity > limit)
6726 sysctl_sched_min_granularity = limit;
6727
6728 sysctl_sched_latency *= factor;
6729 if (sysctl_sched_latency > limit)
6730 sysctl_sched_latency = limit;
6731
6732 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6733
6734 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6735}
6736
1da177e4
LT
6737#ifdef CONFIG_SMP
6738/*
6739 * This is how migration works:
6740 *
70b97a7f 6741 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6742 * runqueue and wake up that CPU's migration thread.
6743 * 2) we down() the locked semaphore => thread blocks.
6744 * 3) migration thread wakes up (implicitly it forces the migrated
6745 * thread off the CPU)
6746 * 4) it gets the migration request and checks whether the migrated
6747 * task is still in the wrong runqueue.
6748 * 5) if it's in the wrong runqueue then the migration thread removes
6749 * it and puts it into the right queue.
6750 * 6) migration thread up()s the semaphore.
6751 * 7) we wake up and the migration is done.
6752 */
6753
6754/*
6755 * Change a given task's CPU affinity. Migrate the thread to a
6756 * proper CPU and schedule it away if the CPU it's executing on
6757 * is removed from the allowed bitmask.
6758 *
6759 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6760 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6761 * call is not atomic; no spinlocks may be held.
6762 */
96f874e2 6763int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6764{
70b97a7f 6765 struct migration_req req;
1da177e4 6766 unsigned long flags;
70b97a7f 6767 struct rq *rq;
48f24c4d 6768 int ret = 0;
1da177e4
LT
6769
6770 rq = task_rq_lock(p, &flags);
96f874e2 6771 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6772 ret = -EINVAL;
6773 goto out;
6774 }
6775
9985b0ba 6776 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6777 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6778 ret = -EINVAL;
6779 goto out;
6780 }
6781
73fe6aae 6782 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6783 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6784 else {
96f874e2
RR
6785 cpumask_copy(&p->cpus_allowed, new_mask);
6786 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6787 }
6788
1da177e4 6789 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6790 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6791 goto out;
6792
1e5ce4f4 6793 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6794 /* Need help from migration thread: drop lock and wait. */
6795 task_rq_unlock(rq, &flags);
6796 wake_up_process(rq->migration_thread);
6797 wait_for_completion(&req.done);
6798 tlb_migrate_finish(p->mm);
6799 return 0;
6800 }
6801out:
6802 task_rq_unlock(rq, &flags);
48f24c4d 6803
1da177e4
LT
6804 return ret;
6805}
cd8ba7cd 6806EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6807
6808/*
41a2d6cf 6809 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6810 * this because either it can't run here any more (set_cpus_allowed()
6811 * away from this CPU, or CPU going down), or because we're
6812 * attempting to rebalance this task on exec (sched_exec).
6813 *
6814 * So we race with normal scheduler movements, but that's OK, as long
6815 * as the task is no longer on this CPU.
efc30814
KK
6816 *
6817 * Returns non-zero if task was successfully migrated.
1da177e4 6818 */
efc30814 6819static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6820{
70b97a7f 6821 struct rq *rq_dest, *rq_src;
dd41f596 6822 int ret = 0, on_rq;
1da177e4 6823
e761b772 6824 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6825 return ret;
1da177e4
LT
6826
6827 rq_src = cpu_rq(src_cpu);
6828 rq_dest = cpu_rq(dest_cpu);
6829
6830 double_rq_lock(rq_src, rq_dest);
6831 /* Already moved. */
6832 if (task_cpu(p) != src_cpu)
b1e38734 6833 goto done;
1da177e4 6834 /* Affinity changed (again). */
96f874e2 6835 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6836 goto fail;
1da177e4 6837
dd41f596 6838 on_rq = p->se.on_rq;
6e82a3be 6839 if (on_rq)
2e1cb74a 6840 deactivate_task(rq_src, p, 0);
6e82a3be 6841
1da177e4 6842 set_task_cpu(p, dest_cpu);
dd41f596
IM
6843 if (on_rq) {
6844 activate_task(rq_dest, p, 0);
15afe09b 6845 check_preempt_curr(rq_dest, p, 0);
1da177e4 6846 }
b1e38734 6847done:
efc30814 6848 ret = 1;
b1e38734 6849fail:
1da177e4 6850 double_rq_unlock(rq_src, rq_dest);
efc30814 6851 return ret;
1da177e4
LT
6852}
6853
6854/*
6855 * migration_thread - this is a highprio system thread that performs
6856 * thread migration by bumping thread off CPU then 'pushing' onto
6857 * another runqueue.
6858 */
95cdf3b7 6859static int migration_thread(void *data)
1da177e4 6860{
1da177e4 6861 int cpu = (long)data;
70b97a7f 6862 struct rq *rq;
1da177e4
LT
6863
6864 rq = cpu_rq(cpu);
6865 BUG_ON(rq->migration_thread != current);
6866
6867 set_current_state(TASK_INTERRUPTIBLE);
6868 while (!kthread_should_stop()) {
70b97a7f 6869 struct migration_req *req;
1da177e4 6870 struct list_head *head;
1da177e4 6871
1da177e4
LT
6872 spin_lock_irq(&rq->lock);
6873
6874 if (cpu_is_offline(cpu)) {
6875 spin_unlock_irq(&rq->lock);
6876 goto wait_to_die;
6877 }
6878
6879 if (rq->active_balance) {
6880 active_load_balance(rq, cpu);
6881 rq->active_balance = 0;
6882 }
6883
6884 head = &rq->migration_queue;
6885
6886 if (list_empty(head)) {
6887 spin_unlock_irq(&rq->lock);
6888 schedule();
6889 set_current_state(TASK_INTERRUPTIBLE);
6890 continue;
6891 }
70b97a7f 6892 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6893 list_del_init(head->next);
6894
674311d5
NP
6895 spin_unlock(&rq->lock);
6896 __migrate_task(req->task, cpu, req->dest_cpu);
6897 local_irq_enable();
1da177e4
LT
6898
6899 complete(&req->done);
6900 }
6901 __set_current_state(TASK_RUNNING);
6902 return 0;
6903
6904wait_to_die:
6905 /* Wait for kthread_stop */
6906 set_current_state(TASK_INTERRUPTIBLE);
6907 while (!kthread_should_stop()) {
6908 schedule();
6909 set_current_state(TASK_INTERRUPTIBLE);
6910 }
6911 __set_current_state(TASK_RUNNING);
6912 return 0;
6913}
6914
6915#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6916
6917static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6918{
6919 int ret;
6920
6921 local_irq_disable();
6922 ret = __migrate_task(p, src_cpu, dest_cpu);
6923 local_irq_enable();
6924 return ret;
6925}
6926
054b9108 6927/*
3a4fa0a2 6928 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6929 */
48f24c4d 6930static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6931{
70b97a7f 6932 int dest_cpu;
6ca09dfc 6933 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6934
6935again:
6936 /* Look for allowed, online CPU in same node. */
6937 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6938 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6939 goto move;
6940
6941 /* Any allowed, online CPU? */
6942 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6943 if (dest_cpu < nr_cpu_ids)
6944 goto move;
6945
6946 /* No more Mr. Nice Guy. */
6947 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6948 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6949 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6950
e76bd8d9
RR
6951 /*
6952 * Don't tell them about moving exiting tasks or
6953 * kernel threads (both mm NULL), since they never
6954 * leave kernel.
6955 */
6956 if (p->mm && printk_ratelimit()) {
6957 printk(KERN_INFO "process %d (%s) no "
6958 "longer affine to cpu%d\n",
6959 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6960 }
e76bd8d9
RR
6961 }
6962
6963move:
6964 /* It can have affinity changed while we were choosing. */
6965 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6966 goto again;
1da177e4
LT
6967}
6968
6969/*
6970 * While a dead CPU has no uninterruptible tasks queued at this point,
6971 * it might still have a nonzero ->nr_uninterruptible counter, because
6972 * for performance reasons the counter is not stricly tracking tasks to
6973 * their home CPUs. So we just add the counter to another CPU's counter,
6974 * to keep the global sum constant after CPU-down:
6975 */
70b97a7f 6976static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6977{
1e5ce4f4 6978 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6979 unsigned long flags;
6980
6981 local_irq_save(flags);
6982 double_rq_lock(rq_src, rq_dest);
6983 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6984 rq_src->nr_uninterruptible = 0;
6985 double_rq_unlock(rq_src, rq_dest);
6986 local_irq_restore(flags);
6987}
6988
6989/* Run through task list and migrate tasks from the dead cpu. */
6990static void migrate_live_tasks(int src_cpu)
6991{
48f24c4d 6992 struct task_struct *p, *t;
1da177e4 6993
f7b4cddc 6994 read_lock(&tasklist_lock);
1da177e4 6995
48f24c4d
IM
6996 do_each_thread(t, p) {
6997 if (p == current)
1da177e4
LT
6998 continue;
6999
48f24c4d
IM
7000 if (task_cpu(p) == src_cpu)
7001 move_task_off_dead_cpu(src_cpu, p);
7002 } while_each_thread(t, p);
1da177e4 7003
f7b4cddc 7004 read_unlock(&tasklist_lock);
1da177e4
LT
7005}
7006
dd41f596
IM
7007/*
7008 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7009 * It does so by boosting its priority to highest possible.
7010 * Used by CPU offline code.
1da177e4
LT
7011 */
7012void sched_idle_next(void)
7013{
48f24c4d 7014 int this_cpu = smp_processor_id();
70b97a7f 7015 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7016 struct task_struct *p = rq->idle;
7017 unsigned long flags;
7018
7019 /* cpu has to be offline */
48f24c4d 7020 BUG_ON(cpu_online(this_cpu));
1da177e4 7021
48f24c4d
IM
7022 /*
7023 * Strictly not necessary since rest of the CPUs are stopped by now
7024 * and interrupts disabled on the current cpu.
1da177e4
LT
7025 */
7026 spin_lock_irqsave(&rq->lock, flags);
7027
dd41f596 7028 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7029
94bc9a7b
DA
7030 update_rq_clock(rq);
7031 activate_task(rq, p, 0);
1da177e4
LT
7032
7033 spin_unlock_irqrestore(&rq->lock, flags);
7034}
7035
48f24c4d
IM
7036/*
7037 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7038 * offline.
7039 */
7040void idle_task_exit(void)
7041{
7042 struct mm_struct *mm = current->active_mm;
7043
7044 BUG_ON(cpu_online(smp_processor_id()));
7045
7046 if (mm != &init_mm)
7047 switch_mm(mm, &init_mm, current);
7048 mmdrop(mm);
7049}
7050
054b9108 7051/* called under rq->lock with disabled interrupts */
36c8b586 7052static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7053{
70b97a7f 7054 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7055
7056 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7057 BUG_ON(!p->exit_state);
1da177e4
LT
7058
7059 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7060 BUG_ON(p->state == TASK_DEAD);
1da177e4 7061
48f24c4d 7062 get_task_struct(p);
1da177e4
LT
7063
7064 /*
7065 * Drop lock around migration; if someone else moves it,
41a2d6cf 7066 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7067 * fine.
7068 */
f7b4cddc 7069 spin_unlock_irq(&rq->lock);
48f24c4d 7070 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7071 spin_lock_irq(&rq->lock);
1da177e4 7072
48f24c4d 7073 put_task_struct(p);
1da177e4
LT
7074}
7075
7076/* release_task() removes task from tasklist, so we won't find dead tasks. */
7077static void migrate_dead_tasks(unsigned int dead_cpu)
7078{
70b97a7f 7079 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7080 struct task_struct *next;
48f24c4d 7081
dd41f596
IM
7082 for ( ; ; ) {
7083 if (!rq->nr_running)
7084 break;
a8e504d2 7085 update_rq_clock(rq);
b67802ea 7086 next = pick_next_task(rq);
dd41f596
IM
7087 if (!next)
7088 break;
79c53799 7089 next->sched_class->put_prev_task(rq, next);
dd41f596 7090 migrate_dead(dead_cpu, next);
e692ab53 7091
1da177e4
LT
7092 }
7093}
7094#endif /* CONFIG_HOTPLUG_CPU */
7095
e692ab53
NP
7096#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7097
7098static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7099 {
7100 .procname = "sched_domain",
c57baf1e 7101 .mode = 0555,
e0361851 7102 },
38605cae 7103 {0, },
e692ab53
NP
7104};
7105
7106static struct ctl_table sd_ctl_root[] = {
e0361851 7107 {
c57baf1e 7108 .ctl_name = CTL_KERN,
e0361851 7109 .procname = "kernel",
c57baf1e 7110 .mode = 0555,
e0361851
AD
7111 .child = sd_ctl_dir,
7112 },
38605cae 7113 {0, },
e692ab53
NP
7114};
7115
7116static struct ctl_table *sd_alloc_ctl_entry(int n)
7117{
7118 struct ctl_table *entry =
5cf9f062 7119 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7120
e692ab53
NP
7121 return entry;
7122}
7123
6382bc90
MM
7124static void sd_free_ctl_entry(struct ctl_table **tablep)
7125{
cd790076 7126 struct ctl_table *entry;
6382bc90 7127
cd790076
MM
7128 /*
7129 * In the intermediate directories, both the child directory and
7130 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7131 * will always be set. In the lowest directory the names are
cd790076
MM
7132 * static strings and all have proc handlers.
7133 */
7134 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7135 if (entry->child)
7136 sd_free_ctl_entry(&entry->child);
cd790076
MM
7137 if (entry->proc_handler == NULL)
7138 kfree(entry->procname);
7139 }
6382bc90
MM
7140
7141 kfree(*tablep);
7142 *tablep = NULL;
7143}
7144
e692ab53 7145static void
e0361851 7146set_table_entry(struct ctl_table *entry,
e692ab53
NP
7147 const char *procname, void *data, int maxlen,
7148 mode_t mode, proc_handler *proc_handler)
7149{
e692ab53
NP
7150 entry->procname = procname;
7151 entry->data = data;
7152 entry->maxlen = maxlen;
7153 entry->mode = mode;
7154 entry->proc_handler = proc_handler;
7155}
7156
7157static struct ctl_table *
7158sd_alloc_ctl_domain_table(struct sched_domain *sd)
7159{
a5d8c348 7160 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7161
ad1cdc1d
MM
7162 if (table == NULL)
7163 return NULL;
7164
e0361851 7165 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7166 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7167 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7168 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7169 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7170 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7171 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7172 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7173 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7174 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7175 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7176 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7177 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7178 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7179 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7180 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7181 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7182 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7183 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7184 &sd->cache_nice_tries,
7185 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7186 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7187 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7188 set_table_entry(&table[11], "name", sd->name,
7189 CORENAME_MAX_SIZE, 0444, proc_dostring);
7190 /* &table[12] is terminator */
e692ab53
NP
7191
7192 return table;
7193}
7194
9a4e7159 7195static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7196{
7197 struct ctl_table *entry, *table;
7198 struct sched_domain *sd;
7199 int domain_num = 0, i;
7200 char buf[32];
7201
7202 for_each_domain(cpu, sd)
7203 domain_num++;
7204 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7205 if (table == NULL)
7206 return NULL;
e692ab53
NP
7207
7208 i = 0;
7209 for_each_domain(cpu, sd) {
7210 snprintf(buf, 32, "domain%d", i);
e692ab53 7211 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7212 entry->mode = 0555;
e692ab53
NP
7213 entry->child = sd_alloc_ctl_domain_table(sd);
7214 entry++;
7215 i++;
7216 }
7217 return table;
7218}
7219
7220static struct ctl_table_header *sd_sysctl_header;
6382bc90 7221static void register_sched_domain_sysctl(void)
e692ab53
NP
7222{
7223 int i, cpu_num = num_online_cpus();
7224 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7225 char buf[32];
7226
7378547f
MM
7227 WARN_ON(sd_ctl_dir[0].child);
7228 sd_ctl_dir[0].child = entry;
7229
ad1cdc1d
MM
7230 if (entry == NULL)
7231 return;
7232
97b6ea7b 7233 for_each_online_cpu(i) {
e692ab53 7234 snprintf(buf, 32, "cpu%d", i);
e692ab53 7235 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7236 entry->mode = 0555;
e692ab53 7237 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7238 entry++;
e692ab53 7239 }
7378547f
MM
7240
7241 WARN_ON(sd_sysctl_header);
e692ab53
NP
7242 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7243}
6382bc90 7244
7378547f 7245/* may be called multiple times per register */
6382bc90
MM
7246static void unregister_sched_domain_sysctl(void)
7247{
7378547f
MM
7248 if (sd_sysctl_header)
7249 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7250 sd_sysctl_header = NULL;
7378547f
MM
7251 if (sd_ctl_dir[0].child)
7252 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7253}
e692ab53 7254#else
6382bc90
MM
7255static void register_sched_domain_sysctl(void)
7256{
7257}
7258static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7259{
7260}
7261#endif
7262
1f11eb6a
GH
7263static void set_rq_online(struct rq *rq)
7264{
7265 if (!rq->online) {
7266 const struct sched_class *class;
7267
c6c4927b 7268 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7269 rq->online = 1;
7270
7271 for_each_class(class) {
7272 if (class->rq_online)
7273 class->rq_online(rq);
7274 }
7275 }
7276}
7277
7278static void set_rq_offline(struct rq *rq)
7279{
7280 if (rq->online) {
7281 const struct sched_class *class;
7282
7283 for_each_class(class) {
7284 if (class->rq_offline)
7285 class->rq_offline(rq);
7286 }
7287
c6c4927b 7288 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7289 rq->online = 0;
7290 }
7291}
7292
1da177e4
LT
7293/*
7294 * migration_call - callback that gets triggered when a CPU is added.
7295 * Here we can start up the necessary migration thread for the new CPU.
7296 */
48f24c4d
IM
7297static int __cpuinit
7298migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7299{
1da177e4 7300 struct task_struct *p;
48f24c4d 7301 int cpu = (long)hcpu;
1da177e4 7302 unsigned long flags;
70b97a7f 7303 struct rq *rq;
1da177e4
LT
7304
7305 switch (action) {
5be9361c 7306
1da177e4 7307 case CPU_UP_PREPARE:
8bb78442 7308 case CPU_UP_PREPARE_FROZEN:
dd41f596 7309 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7310 if (IS_ERR(p))
7311 return NOTIFY_BAD;
1da177e4
LT
7312 kthread_bind(p, cpu);
7313 /* Must be high prio: stop_machine expects to yield to it. */
7314 rq = task_rq_lock(p, &flags);
dd41f596 7315 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7316 task_rq_unlock(rq, &flags);
7317 cpu_rq(cpu)->migration_thread = p;
7318 break;
48f24c4d 7319
1da177e4 7320 case CPU_ONLINE:
8bb78442 7321 case CPU_ONLINE_FROZEN:
3a4fa0a2 7322 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7323 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7324
7325 /* Update our root-domain */
7326 rq = cpu_rq(cpu);
7327 spin_lock_irqsave(&rq->lock, flags);
7328 if (rq->rd) {
c6c4927b 7329 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7330
7331 set_rq_online(rq);
1f94ef59
GH
7332 }
7333 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7334 break;
48f24c4d 7335
1da177e4
LT
7336#ifdef CONFIG_HOTPLUG_CPU
7337 case CPU_UP_CANCELED:
8bb78442 7338 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7339 if (!cpu_rq(cpu)->migration_thread)
7340 break;
41a2d6cf 7341 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7342 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7343 cpumask_any(cpu_online_mask));
1da177e4
LT
7344 kthread_stop(cpu_rq(cpu)->migration_thread);
7345 cpu_rq(cpu)->migration_thread = NULL;
7346 break;
48f24c4d 7347
1da177e4 7348 case CPU_DEAD:
8bb78442 7349 case CPU_DEAD_FROZEN:
470fd646 7350 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7351 migrate_live_tasks(cpu);
7352 rq = cpu_rq(cpu);
7353 kthread_stop(rq->migration_thread);
7354 rq->migration_thread = NULL;
7355 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7356 spin_lock_irq(&rq->lock);
a8e504d2 7357 update_rq_clock(rq);
2e1cb74a 7358 deactivate_task(rq, rq->idle, 0);
1da177e4 7359 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7360 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7361 rq->idle->sched_class = &idle_sched_class;
1da177e4 7362 migrate_dead_tasks(cpu);
d2da272a 7363 spin_unlock_irq(&rq->lock);
470fd646 7364 cpuset_unlock();
1da177e4
LT
7365 migrate_nr_uninterruptible(rq);
7366 BUG_ON(rq->nr_running != 0);
7367
41a2d6cf
IM
7368 /*
7369 * No need to migrate the tasks: it was best-effort if
7370 * they didn't take sched_hotcpu_mutex. Just wake up
7371 * the requestors.
7372 */
1da177e4
LT
7373 spin_lock_irq(&rq->lock);
7374 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7375 struct migration_req *req;
7376
1da177e4 7377 req = list_entry(rq->migration_queue.next,
70b97a7f 7378 struct migration_req, list);
1da177e4 7379 list_del_init(&req->list);
9a2bd244 7380 spin_unlock_irq(&rq->lock);
1da177e4 7381 complete(&req->done);
9a2bd244 7382 spin_lock_irq(&rq->lock);
1da177e4
LT
7383 }
7384 spin_unlock_irq(&rq->lock);
7385 break;
57d885fe 7386
08f503b0
GH
7387 case CPU_DYING:
7388 case CPU_DYING_FROZEN:
57d885fe
GH
7389 /* Update our root-domain */
7390 rq = cpu_rq(cpu);
7391 spin_lock_irqsave(&rq->lock, flags);
7392 if (rq->rd) {
c6c4927b 7393 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7394 set_rq_offline(rq);
57d885fe
GH
7395 }
7396 spin_unlock_irqrestore(&rq->lock, flags);
7397 break;
1da177e4
LT
7398#endif
7399 }
7400 return NOTIFY_OK;
7401}
7402
7403/* Register at highest priority so that task migration (migrate_all_tasks)
7404 * happens before everything else.
7405 */
26c2143b 7406static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7407 .notifier_call = migration_call,
7408 .priority = 10
7409};
7410
7babe8db 7411static int __init migration_init(void)
1da177e4
LT
7412{
7413 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7414 int err;
48f24c4d
IM
7415
7416 /* Start one for the boot CPU: */
07dccf33
AM
7417 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7418 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7419 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7420 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7421
7422 return err;
1da177e4 7423}
7babe8db 7424early_initcall(migration_init);
1da177e4
LT
7425#endif
7426
7427#ifdef CONFIG_SMP
476f3534 7428
3e9830dc 7429#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7430
7c16ec58 7431static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7432 struct cpumask *groupmask)
1da177e4 7433{
4dcf6aff 7434 struct sched_group *group = sd->groups;
434d53b0 7435 char str[256];
1da177e4 7436
968ea6d8 7437 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7438 cpumask_clear(groupmask);
4dcf6aff
IM
7439
7440 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7441
7442 if (!(sd->flags & SD_LOAD_BALANCE)) {
7443 printk("does not load-balance\n");
7444 if (sd->parent)
7445 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7446 " has parent");
7447 return -1;
41c7ce9a
NP
7448 }
7449
eefd796a 7450 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7451
758b2cdc 7452 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7453 printk(KERN_ERR "ERROR: domain->span does not contain "
7454 "CPU%d\n", cpu);
7455 }
758b2cdc 7456 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7457 printk(KERN_ERR "ERROR: domain->groups does not contain"
7458 " CPU%d\n", cpu);
7459 }
1da177e4 7460
4dcf6aff 7461 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7462 do {
4dcf6aff
IM
7463 if (!group) {
7464 printk("\n");
7465 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7466 break;
7467 }
7468
4dcf6aff
IM
7469 if (!group->__cpu_power) {
7470 printk(KERN_CONT "\n");
7471 printk(KERN_ERR "ERROR: domain->cpu_power not "
7472 "set\n");
7473 break;
7474 }
1da177e4 7475
758b2cdc 7476 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7477 printk(KERN_CONT "\n");
7478 printk(KERN_ERR "ERROR: empty group\n");
7479 break;
7480 }
1da177e4 7481
758b2cdc 7482 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7483 printk(KERN_CONT "\n");
7484 printk(KERN_ERR "ERROR: repeated CPUs\n");
7485 break;
7486 }
1da177e4 7487
758b2cdc 7488 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7489
968ea6d8 7490 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7491
7492 printk(KERN_CONT " %s", str);
7493 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7494 printk(KERN_CONT " (__cpu_power = %d)",
7495 group->__cpu_power);
7496 }
1da177e4 7497
4dcf6aff
IM
7498 group = group->next;
7499 } while (group != sd->groups);
7500 printk(KERN_CONT "\n");
1da177e4 7501
758b2cdc 7502 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7503 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7504
758b2cdc
RR
7505 if (sd->parent &&
7506 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7507 printk(KERN_ERR "ERROR: parent span is not a superset "
7508 "of domain->span\n");
7509 return 0;
7510}
1da177e4 7511
4dcf6aff
IM
7512static void sched_domain_debug(struct sched_domain *sd, int cpu)
7513{
d5dd3db1 7514 cpumask_var_t groupmask;
4dcf6aff 7515 int level = 0;
1da177e4 7516
4dcf6aff
IM
7517 if (!sd) {
7518 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7519 return;
7520 }
1da177e4 7521
4dcf6aff
IM
7522 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7523
d5dd3db1 7524 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7525 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7526 return;
7527 }
7528
4dcf6aff 7529 for (;;) {
7c16ec58 7530 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7531 break;
1da177e4
LT
7532 level++;
7533 sd = sd->parent;
33859f7f 7534 if (!sd)
4dcf6aff
IM
7535 break;
7536 }
d5dd3db1 7537 free_cpumask_var(groupmask);
1da177e4 7538}
6d6bc0ad 7539#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7540# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7541#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7542
1a20ff27 7543static int sd_degenerate(struct sched_domain *sd)
245af2c7 7544{
758b2cdc 7545 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7546 return 1;
7547
7548 /* Following flags need at least 2 groups */
7549 if (sd->flags & (SD_LOAD_BALANCE |
7550 SD_BALANCE_NEWIDLE |
7551 SD_BALANCE_FORK |
89c4710e
SS
7552 SD_BALANCE_EXEC |
7553 SD_SHARE_CPUPOWER |
7554 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7555 if (sd->groups != sd->groups->next)
7556 return 0;
7557 }
7558
7559 /* Following flags don't use groups */
7560 if (sd->flags & (SD_WAKE_IDLE |
7561 SD_WAKE_AFFINE |
7562 SD_WAKE_BALANCE))
7563 return 0;
7564
7565 return 1;
7566}
7567
48f24c4d
IM
7568static int
7569sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7570{
7571 unsigned long cflags = sd->flags, pflags = parent->flags;
7572
7573 if (sd_degenerate(parent))
7574 return 1;
7575
758b2cdc 7576 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7577 return 0;
7578
7579 /* Does parent contain flags not in child? */
7580 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7581 if (cflags & SD_WAKE_AFFINE)
7582 pflags &= ~SD_WAKE_BALANCE;
7583 /* Flags needing groups don't count if only 1 group in parent */
7584 if (parent->groups == parent->groups->next) {
7585 pflags &= ~(SD_LOAD_BALANCE |
7586 SD_BALANCE_NEWIDLE |
7587 SD_BALANCE_FORK |
89c4710e
SS
7588 SD_BALANCE_EXEC |
7589 SD_SHARE_CPUPOWER |
7590 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7591 if (nr_node_ids == 1)
7592 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7593 }
7594 if (~cflags & pflags)
7595 return 0;
7596
7597 return 1;
7598}
7599
c6c4927b
RR
7600static void free_rootdomain(struct root_domain *rd)
7601{
68e74568
RR
7602 cpupri_cleanup(&rd->cpupri);
7603
c6c4927b
RR
7604 free_cpumask_var(rd->rto_mask);
7605 free_cpumask_var(rd->online);
7606 free_cpumask_var(rd->span);
7607 kfree(rd);
7608}
7609
57d885fe
GH
7610static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7611{
a0490fa3 7612 struct root_domain *old_rd = NULL;
57d885fe 7613 unsigned long flags;
57d885fe
GH
7614
7615 spin_lock_irqsave(&rq->lock, flags);
7616
7617 if (rq->rd) {
a0490fa3 7618 old_rd = rq->rd;
57d885fe 7619
c6c4927b 7620 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7621 set_rq_offline(rq);
57d885fe 7622
c6c4927b 7623 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7624
a0490fa3
IM
7625 /*
7626 * If we dont want to free the old_rt yet then
7627 * set old_rd to NULL to skip the freeing later
7628 * in this function:
7629 */
7630 if (!atomic_dec_and_test(&old_rd->refcount))
7631 old_rd = NULL;
57d885fe
GH
7632 }
7633
7634 atomic_inc(&rd->refcount);
7635 rq->rd = rd;
7636
c6c4927b
RR
7637 cpumask_set_cpu(rq->cpu, rd->span);
7638 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7639 set_rq_online(rq);
57d885fe
GH
7640
7641 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7642
7643 if (old_rd)
7644 free_rootdomain(old_rd);
57d885fe
GH
7645}
7646
db2f59c8 7647static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7648{
7649 memset(rd, 0, sizeof(*rd));
7650
c6c4927b
RR
7651 if (bootmem) {
7652 alloc_bootmem_cpumask_var(&def_root_domain.span);
7653 alloc_bootmem_cpumask_var(&def_root_domain.online);
7654 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7655 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7656 return 0;
7657 }
7658
7659 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7660 goto out;
c6c4927b
RR
7661 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7662 goto free_span;
7663 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7664 goto free_online;
6e0534f2 7665
68e74568
RR
7666 if (cpupri_init(&rd->cpupri, false) != 0)
7667 goto free_rto_mask;
c6c4927b 7668 return 0;
6e0534f2 7669
68e74568
RR
7670free_rto_mask:
7671 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7672free_online:
7673 free_cpumask_var(rd->online);
7674free_span:
7675 free_cpumask_var(rd->span);
0c910d28 7676out:
c6c4927b 7677 return -ENOMEM;
57d885fe
GH
7678}
7679
7680static void init_defrootdomain(void)
7681{
c6c4927b
RR
7682 init_rootdomain(&def_root_domain, true);
7683
57d885fe
GH
7684 atomic_set(&def_root_domain.refcount, 1);
7685}
7686
dc938520 7687static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7688{
7689 struct root_domain *rd;
7690
7691 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7692 if (!rd)
7693 return NULL;
7694
c6c4927b
RR
7695 if (init_rootdomain(rd, false) != 0) {
7696 kfree(rd);
7697 return NULL;
7698 }
57d885fe
GH
7699
7700 return rd;
7701}
7702
1da177e4 7703/*
0eab9146 7704 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7705 * hold the hotplug lock.
7706 */
0eab9146
IM
7707static void
7708cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7709{
70b97a7f 7710 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7711 struct sched_domain *tmp;
7712
7713 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7714 for (tmp = sd; tmp; ) {
245af2c7
SS
7715 struct sched_domain *parent = tmp->parent;
7716 if (!parent)
7717 break;
f29c9b1c 7718
1a848870 7719 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7720 tmp->parent = parent->parent;
1a848870
SS
7721 if (parent->parent)
7722 parent->parent->child = tmp;
f29c9b1c
LZ
7723 } else
7724 tmp = tmp->parent;
245af2c7
SS
7725 }
7726
1a848870 7727 if (sd && sd_degenerate(sd)) {
245af2c7 7728 sd = sd->parent;
1a848870
SS
7729 if (sd)
7730 sd->child = NULL;
7731 }
1da177e4
LT
7732
7733 sched_domain_debug(sd, cpu);
7734
57d885fe 7735 rq_attach_root(rq, rd);
674311d5 7736 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7737}
7738
7739/* cpus with isolated domains */
dcc30a35 7740static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7741
7742/* Setup the mask of cpus configured for isolated domains */
7743static int __init isolated_cpu_setup(char *str)
7744{
968ea6d8 7745 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7746 return 1;
7747}
7748
8927f494 7749__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7750
7751/*
6711cab4
SS
7752 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7753 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7754 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7755 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7756 *
7757 * init_sched_build_groups will build a circular linked list of the groups
7758 * covered by the given span, and will set each group's ->cpumask correctly,
7759 * and ->cpu_power to 0.
7760 */
a616058b 7761static void
96f874e2
RR
7762init_sched_build_groups(const struct cpumask *span,
7763 const struct cpumask *cpu_map,
7764 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7765 struct sched_group **sg,
96f874e2
RR
7766 struct cpumask *tmpmask),
7767 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7768{
7769 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7770 int i;
7771
96f874e2 7772 cpumask_clear(covered);
7c16ec58 7773
abcd083a 7774 for_each_cpu(i, span) {
6711cab4 7775 struct sched_group *sg;
7c16ec58 7776 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7777 int j;
7778
758b2cdc 7779 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7780 continue;
7781
758b2cdc 7782 cpumask_clear(sched_group_cpus(sg));
5517d86b 7783 sg->__cpu_power = 0;
1da177e4 7784
abcd083a 7785 for_each_cpu(j, span) {
7c16ec58 7786 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7787 continue;
7788
96f874e2 7789 cpumask_set_cpu(j, covered);
758b2cdc 7790 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7791 }
7792 if (!first)
7793 first = sg;
7794 if (last)
7795 last->next = sg;
7796 last = sg;
7797 }
7798 last->next = first;
7799}
7800
9c1cfda2 7801#define SD_NODES_PER_DOMAIN 16
1da177e4 7802
9c1cfda2 7803#ifdef CONFIG_NUMA
198e2f18 7804
9c1cfda2
JH
7805/**
7806 * find_next_best_node - find the next node to include in a sched_domain
7807 * @node: node whose sched_domain we're building
7808 * @used_nodes: nodes already in the sched_domain
7809 *
41a2d6cf 7810 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7811 * finds the closest node not already in the @used_nodes map.
7812 *
7813 * Should use nodemask_t.
7814 */
c5f59f08 7815static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7816{
7817 int i, n, val, min_val, best_node = 0;
7818
7819 min_val = INT_MAX;
7820
076ac2af 7821 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7822 /* Start at @node */
076ac2af 7823 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7824
7825 if (!nr_cpus_node(n))
7826 continue;
7827
7828 /* Skip already used nodes */
c5f59f08 7829 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7830 continue;
7831
7832 /* Simple min distance search */
7833 val = node_distance(node, n);
7834
7835 if (val < min_val) {
7836 min_val = val;
7837 best_node = n;
7838 }
7839 }
7840
c5f59f08 7841 node_set(best_node, *used_nodes);
9c1cfda2
JH
7842 return best_node;
7843}
7844
7845/**
7846 * sched_domain_node_span - get a cpumask for a node's sched_domain
7847 * @node: node whose cpumask we're constructing
73486722 7848 * @span: resulting cpumask
9c1cfda2 7849 *
41a2d6cf 7850 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7851 * should be one that prevents unnecessary balancing, but also spreads tasks
7852 * out optimally.
7853 */
96f874e2 7854static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7855{
c5f59f08 7856 nodemask_t used_nodes;
48f24c4d 7857 int i;
9c1cfda2 7858
6ca09dfc 7859 cpumask_clear(span);
c5f59f08 7860 nodes_clear(used_nodes);
9c1cfda2 7861
6ca09dfc 7862 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7863 node_set(node, used_nodes);
9c1cfda2
JH
7864
7865 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7866 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7867
6ca09dfc 7868 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7869 }
9c1cfda2 7870}
6d6bc0ad 7871#endif /* CONFIG_NUMA */
9c1cfda2 7872
5c45bf27 7873int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7874
6c99e9ad
RR
7875/*
7876 * The cpus mask in sched_group and sched_domain hangs off the end.
7877 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7878 * for nr_cpu_ids < CONFIG_NR_CPUS.
7879 */
7880struct static_sched_group {
7881 struct sched_group sg;
7882 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7883};
7884
7885struct static_sched_domain {
7886 struct sched_domain sd;
7887 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7888};
7889
9c1cfda2 7890/*
48f24c4d 7891 * SMT sched-domains:
9c1cfda2 7892 */
1da177e4 7893#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7894static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7895static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7896
41a2d6cf 7897static int
96f874e2
RR
7898cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7899 struct sched_group **sg, struct cpumask *unused)
1da177e4 7900{
6711cab4 7901 if (sg)
6c99e9ad 7902 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7903 return cpu;
7904}
6d6bc0ad 7905#endif /* CONFIG_SCHED_SMT */
1da177e4 7906
48f24c4d
IM
7907/*
7908 * multi-core sched-domains:
7909 */
1e9f28fa 7910#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7911static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7912static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7913#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7914
7915#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7916static int
96f874e2
RR
7917cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7918 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7919{
6711cab4 7920 int group;
7c16ec58 7921
c69fc56d 7922 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7923 group = cpumask_first(mask);
6711cab4 7924 if (sg)
6c99e9ad 7925 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7926 return group;
1e9f28fa
SS
7927}
7928#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7929static int
96f874e2
RR
7930cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7931 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7932{
6711cab4 7933 if (sg)
6c99e9ad 7934 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7935 return cpu;
7936}
7937#endif
7938
6c99e9ad
RR
7939static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7940static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7941
41a2d6cf 7942static int
96f874e2
RR
7943cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7944 struct sched_group **sg, struct cpumask *mask)
1da177e4 7945{
6711cab4 7946 int group;
48f24c4d 7947#ifdef CONFIG_SCHED_MC
6ca09dfc 7948 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7949 group = cpumask_first(mask);
1e9f28fa 7950#elif defined(CONFIG_SCHED_SMT)
c69fc56d 7951 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7952 group = cpumask_first(mask);
1da177e4 7953#else
6711cab4 7954 group = cpu;
1da177e4 7955#endif
6711cab4 7956 if (sg)
6c99e9ad 7957 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7958 return group;
1da177e4
LT
7959}
7960
7961#ifdef CONFIG_NUMA
1da177e4 7962/*
9c1cfda2
JH
7963 * The init_sched_build_groups can't handle what we want to do with node
7964 * groups, so roll our own. Now each node has its own list of groups which
7965 * gets dynamically allocated.
1da177e4 7966 */
62ea9ceb 7967static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7968static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7969
62ea9ceb 7970static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7971static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7972
96f874e2
RR
7973static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7974 struct sched_group **sg,
7975 struct cpumask *nodemask)
9c1cfda2 7976{
6711cab4
SS
7977 int group;
7978
6ca09dfc 7979 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7980 group = cpumask_first(nodemask);
6711cab4
SS
7981
7982 if (sg)
6c99e9ad 7983 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7984 return group;
1da177e4 7985}
6711cab4 7986
08069033
SS
7987static void init_numa_sched_groups_power(struct sched_group *group_head)
7988{
7989 struct sched_group *sg = group_head;
7990 int j;
7991
7992 if (!sg)
7993 return;
3a5c359a 7994 do {
758b2cdc 7995 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7996 struct sched_domain *sd;
08069033 7997
6c99e9ad 7998 sd = &per_cpu(phys_domains, j).sd;
13318a71 7999 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8000 /*
8001 * Only add "power" once for each
8002 * physical package.
8003 */
8004 continue;
8005 }
08069033 8006
3a5c359a
AK
8007 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8008 }
8009 sg = sg->next;
8010 } while (sg != group_head);
08069033 8011}
6d6bc0ad 8012#endif /* CONFIG_NUMA */
1da177e4 8013
a616058b 8014#ifdef CONFIG_NUMA
51888ca2 8015/* Free memory allocated for various sched_group structures */
96f874e2
RR
8016static void free_sched_groups(const struct cpumask *cpu_map,
8017 struct cpumask *nodemask)
51888ca2 8018{
a616058b 8019 int cpu, i;
51888ca2 8020
abcd083a 8021 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8022 struct sched_group **sched_group_nodes
8023 = sched_group_nodes_bycpu[cpu];
8024
51888ca2
SV
8025 if (!sched_group_nodes)
8026 continue;
8027
076ac2af 8028 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8029 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8030
6ca09dfc 8031 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8032 if (cpumask_empty(nodemask))
51888ca2
SV
8033 continue;
8034
8035 if (sg == NULL)
8036 continue;
8037 sg = sg->next;
8038next_sg:
8039 oldsg = sg;
8040 sg = sg->next;
8041 kfree(oldsg);
8042 if (oldsg != sched_group_nodes[i])
8043 goto next_sg;
8044 }
8045 kfree(sched_group_nodes);
8046 sched_group_nodes_bycpu[cpu] = NULL;
8047 }
51888ca2 8048}
6d6bc0ad 8049#else /* !CONFIG_NUMA */
96f874e2
RR
8050static void free_sched_groups(const struct cpumask *cpu_map,
8051 struct cpumask *nodemask)
a616058b
SS
8052{
8053}
6d6bc0ad 8054#endif /* CONFIG_NUMA */
51888ca2 8055
89c4710e
SS
8056/*
8057 * Initialize sched groups cpu_power.
8058 *
8059 * cpu_power indicates the capacity of sched group, which is used while
8060 * distributing the load between different sched groups in a sched domain.
8061 * Typically cpu_power for all the groups in a sched domain will be same unless
8062 * there are asymmetries in the topology. If there are asymmetries, group
8063 * having more cpu_power will pickup more load compared to the group having
8064 * less cpu_power.
8065 *
8066 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8067 * the maximum number of tasks a group can handle in the presence of other idle
8068 * or lightly loaded groups in the same sched domain.
8069 */
8070static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8071{
8072 struct sched_domain *child;
8073 struct sched_group *group;
8074
8075 WARN_ON(!sd || !sd->groups);
8076
13318a71 8077 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8078 return;
8079
8080 child = sd->child;
8081
5517d86b
ED
8082 sd->groups->__cpu_power = 0;
8083
89c4710e
SS
8084 /*
8085 * For perf policy, if the groups in child domain share resources
8086 * (for example cores sharing some portions of the cache hierarchy
8087 * or SMT), then set this domain groups cpu_power such that each group
8088 * can handle only one task, when there are other idle groups in the
8089 * same sched domain.
8090 */
8091 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8092 (child->flags &
8093 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8094 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8095 return;
8096 }
8097
89c4710e
SS
8098 /*
8099 * add cpu_power of each child group to this groups cpu_power
8100 */
8101 group = child->groups;
8102 do {
5517d86b 8103 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8104 group = group->next;
8105 } while (group != child->groups);
8106}
8107
7c16ec58
MT
8108/*
8109 * Initializers for schedule domains
8110 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8111 */
8112
a5d8c348
IM
8113#ifdef CONFIG_SCHED_DEBUG
8114# define SD_INIT_NAME(sd, type) sd->name = #type
8115#else
8116# define SD_INIT_NAME(sd, type) do { } while (0)
8117#endif
8118
7c16ec58 8119#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8120
7c16ec58
MT
8121#define SD_INIT_FUNC(type) \
8122static noinline void sd_init_##type(struct sched_domain *sd) \
8123{ \
8124 memset(sd, 0, sizeof(*sd)); \
8125 *sd = SD_##type##_INIT; \
1d3504fc 8126 sd->level = SD_LV_##type; \
a5d8c348 8127 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8128}
8129
8130SD_INIT_FUNC(CPU)
8131#ifdef CONFIG_NUMA
8132 SD_INIT_FUNC(ALLNODES)
8133 SD_INIT_FUNC(NODE)
8134#endif
8135#ifdef CONFIG_SCHED_SMT
8136 SD_INIT_FUNC(SIBLING)
8137#endif
8138#ifdef CONFIG_SCHED_MC
8139 SD_INIT_FUNC(MC)
8140#endif
8141
1d3504fc
HS
8142static int default_relax_domain_level = -1;
8143
8144static int __init setup_relax_domain_level(char *str)
8145{
30e0e178
LZ
8146 unsigned long val;
8147
8148 val = simple_strtoul(str, NULL, 0);
8149 if (val < SD_LV_MAX)
8150 default_relax_domain_level = val;
8151
1d3504fc
HS
8152 return 1;
8153}
8154__setup("relax_domain_level=", setup_relax_domain_level);
8155
8156static void set_domain_attribute(struct sched_domain *sd,
8157 struct sched_domain_attr *attr)
8158{
8159 int request;
8160
8161 if (!attr || attr->relax_domain_level < 0) {
8162 if (default_relax_domain_level < 0)
8163 return;
8164 else
8165 request = default_relax_domain_level;
8166 } else
8167 request = attr->relax_domain_level;
8168 if (request < sd->level) {
8169 /* turn off idle balance on this domain */
8170 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8171 } else {
8172 /* turn on idle balance on this domain */
8173 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8174 }
8175}
8176
1da177e4 8177/*
1a20ff27
DG
8178 * Build sched domains for a given set of cpus and attach the sched domains
8179 * to the individual cpus
1da177e4 8180 */
96f874e2 8181static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8182 struct sched_domain_attr *attr)
1da177e4 8183{
3404c8d9 8184 int i, err = -ENOMEM;
57d885fe 8185 struct root_domain *rd;
3404c8d9
RR
8186 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8187 tmpmask;
d1b55138 8188#ifdef CONFIG_NUMA
3404c8d9 8189 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8190 struct sched_group **sched_group_nodes = NULL;
6711cab4 8191 int sd_allnodes = 0;
d1b55138 8192
3404c8d9
RR
8193 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8194 goto out;
8195 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8196 goto free_domainspan;
8197 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8198 goto free_covered;
8199#endif
8200
8201 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8202 goto free_notcovered;
8203 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8204 goto free_nodemask;
8205 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8206 goto free_this_sibling_map;
8207 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8208 goto free_this_core_map;
8209 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8210 goto free_send_covered;
8211
8212#ifdef CONFIG_NUMA
d1b55138
JH
8213 /*
8214 * Allocate the per-node list of sched groups
8215 */
076ac2af 8216 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8217 GFP_KERNEL);
d1b55138
JH
8218 if (!sched_group_nodes) {
8219 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8220 goto free_tmpmask;
d1b55138 8221 }
d1b55138 8222#endif
1da177e4 8223
dc938520 8224 rd = alloc_rootdomain();
57d885fe
GH
8225 if (!rd) {
8226 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8227 goto free_sched_groups;
57d885fe
GH
8228 }
8229
7c16ec58 8230#ifdef CONFIG_NUMA
96f874e2 8231 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8232#endif
8233
1da177e4 8234 /*
1a20ff27 8235 * Set up domains for cpus specified by the cpu_map.
1da177e4 8236 */
abcd083a 8237 for_each_cpu(i, cpu_map) {
1da177e4 8238 struct sched_domain *sd = NULL, *p;
1da177e4 8239
6ca09dfc 8240 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8241
8242#ifdef CONFIG_NUMA
96f874e2
RR
8243 if (cpumask_weight(cpu_map) >
8244 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8245 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8246 SD_INIT(sd, ALLNODES);
1d3504fc 8247 set_domain_attribute(sd, attr);
758b2cdc 8248 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8249 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8250 p = sd;
6711cab4 8251 sd_allnodes = 1;
9c1cfda2
JH
8252 } else
8253 p = NULL;
8254
62ea9ceb 8255 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8256 SD_INIT(sd, NODE);
1d3504fc 8257 set_domain_attribute(sd, attr);
758b2cdc 8258 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8259 sd->parent = p;
1a848870
SS
8260 if (p)
8261 p->child = sd;
758b2cdc
RR
8262 cpumask_and(sched_domain_span(sd),
8263 sched_domain_span(sd), cpu_map);
1da177e4
LT
8264#endif
8265
8266 p = sd;
6c99e9ad 8267 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8268 SD_INIT(sd, CPU);
1d3504fc 8269 set_domain_attribute(sd, attr);
758b2cdc 8270 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8271 sd->parent = p;
1a848870
SS
8272 if (p)
8273 p->child = sd;
7c16ec58 8274 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8275
1e9f28fa
SS
8276#ifdef CONFIG_SCHED_MC
8277 p = sd;
6c99e9ad 8278 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8279 SD_INIT(sd, MC);
1d3504fc 8280 set_domain_attribute(sd, attr);
6ca09dfc
MT
8281 cpumask_and(sched_domain_span(sd), cpu_map,
8282 cpu_coregroup_mask(i));
1e9f28fa 8283 sd->parent = p;
1a848870 8284 p->child = sd;
7c16ec58 8285 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8286#endif
8287
1da177e4
LT
8288#ifdef CONFIG_SCHED_SMT
8289 p = sd;
6c99e9ad 8290 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8291 SD_INIT(sd, SIBLING);
1d3504fc 8292 set_domain_attribute(sd, attr);
758b2cdc 8293 cpumask_and(sched_domain_span(sd),
c69fc56d 8294 topology_thread_cpumask(i), cpu_map);
1da177e4 8295 sd->parent = p;
1a848870 8296 p->child = sd;
7c16ec58 8297 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8298#endif
8299 }
8300
8301#ifdef CONFIG_SCHED_SMT
8302 /* Set up CPU (sibling) groups */
abcd083a 8303 for_each_cpu(i, cpu_map) {
96f874e2 8304 cpumask_and(this_sibling_map,
c69fc56d 8305 topology_thread_cpumask(i), cpu_map);
96f874e2 8306 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8307 continue;
8308
dd41f596 8309 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8310 &cpu_to_cpu_group,
8311 send_covered, tmpmask);
1da177e4
LT
8312 }
8313#endif
8314
1e9f28fa
SS
8315#ifdef CONFIG_SCHED_MC
8316 /* Set up multi-core groups */
abcd083a 8317 for_each_cpu(i, cpu_map) {
6ca09dfc 8318 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8319 if (i != cpumask_first(this_core_map))
1e9f28fa 8320 continue;
7c16ec58 8321
dd41f596 8322 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8323 &cpu_to_core_group,
8324 send_covered, tmpmask);
1e9f28fa
SS
8325 }
8326#endif
8327
1da177e4 8328 /* Set up physical groups */
076ac2af 8329 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8330 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8331 if (cpumask_empty(nodemask))
1da177e4
LT
8332 continue;
8333
7c16ec58
MT
8334 init_sched_build_groups(nodemask, cpu_map,
8335 &cpu_to_phys_group,
8336 send_covered, tmpmask);
1da177e4
LT
8337 }
8338
8339#ifdef CONFIG_NUMA
8340 /* Set up node groups */
7c16ec58 8341 if (sd_allnodes) {
7c16ec58
MT
8342 init_sched_build_groups(cpu_map, cpu_map,
8343 &cpu_to_allnodes_group,
8344 send_covered, tmpmask);
8345 }
9c1cfda2 8346
076ac2af 8347 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8348 /* Set up node groups */
8349 struct sched_group *sg, *prev;
9c1cfda2
JH
8350 int j;
8351
96f874e2 8352 cpumask_clear(covered);
6ca09dfc 8353 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8354 if (cpumask_empty(nodemask)) {
d1b55138 8355 sched_group_nodes[i] = NULL;
9c1cfda2 8356 continue;
d1b55138 8357 }
9c1cfda2 8358
4bdbaad3 8359 sched_domain_node_span(i, domainspan);
96f874e2 8360 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8361
6c99e9ad
RR
8362 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8363 GFP_KERNEL, i);
51888ca2
SV
8364 if (!sg) {
8365 printk(KERN_WARNING "Can not alloc domain group for "
8366 "node %d\n", i);
8367 goto error;
8368 }
9c1cfda2 8369 sched_group_nodes[i] = sg;
abcd083a 8370 for_each_cpu(j, nodemask) {
9c1cfda2 8371 struct sched_domain *sd;
9761eea8 8372
62ea9ceb 8373 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8374 sd->groups = sg;
9c1cfda2 8375 }
5517d86b 8376 sg->__cpu_power = 0;
758b2cdc 8377 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8378 sg->next = sg;
96f874e2 8379 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8380 prev = sg;
8381
076ac2af 8382 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8383 int n = (i + j) % nr_node_ids;
9c1cfda2 8384
96f874e2
RR
8385 cpumask_complement(notcovered, covered);
8386 cpumask_and(tmpmask, notcovered, cpu_map);
8387 cpumask_and(tmpmask, tmpmask, domainspan);
8388 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8389 break;
8390
6ca09dfc 8391 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8392 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8393 continue;
8394
6c99e9ad
RR
8395 sg = kmalloc_node(sizeof(struct sched_group) +
8396 cpumask_size(),
15f0b676 8397 GFP_KERNEL, i);
9c1cfda2
JH
8398 if (!sg) {
8399 printk(KERN_WARNING
8400 "Can not alloc domain group for node %d\n", j);
51888ca2 8401 goto error;
9c1cfda2 8402 }
5517d86b 8403 sg->__cpu_power = 0;
758b2cdc 8404 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8405 sg->next = prev->next;
96f874e2 8406 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8407 prev->next = sg;
8408 prev = sg;
8409 }
9c1cfda2 8410 }
1da177e4
LT
8411#endif
8412
8413 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8414#ifdef CONFIG_SCHED_SMT
abcd083a 8415 for_each_cpu(i, cpu_map) {
6c99e9ad 8416 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8417
89c4710e 8418 init_sched_groups_power(i, sd);
5c45bf27 8419 }
1da177e4 8420#endif
1e9f28fa 8421#ifdef CONFIG_SCHED_MC
abcd083a 8422 for_each_cpu(i, cpu_map) {
6c99e9ad 8423 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8424
89c4710e 8425 init_sched_groups_power(i, sd);
5c45bf27
SS
8426 }
8427#endif
1e9f28fa 8428
abcd083a 8429 for_each_cpu(i, cpu_map) {
6c99e9ad 8430 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8431
89c4710e 8432 init_sched_groups_power(i, sd);
1da177e4
LT
8433 }
8434
9c1cfda2 8435#ifdef CONFIG_NUMA
076ac2af 8436 for (i = 0; i < nr_node_ids; i++)
08069033 8437 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8438
6711cab4
SS
8439 if (sd_allnodes) {
8440 struct sched_group *sg;
f712c0c7 8441
96f874e2 8442 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8443 tmpmask);
f712c0c7
SS
8444 init_numa_sched_groups_power(sg);
8445 }
9c1cfda2
JH
8446#endif
8447
1da177e4 8448 /* Attach the domains */
abcd083a 8449 for_each_cpu(i, cpu_map) {
1da177e4
LT
8450 struct sched_domain *sd;
8451#ifdef CONFIG_SCHED_SMT
6c99e9ad 8452 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8453#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8454 sd = &per_cpu(core_domains, i).sd;
1da177e4 8455#else
6c99e9ad 8456 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8457#endif
57d885fe 8458 cpu_attach_domain(sd, rd, i);
1da177e4 8459 }
51888ca2 8460
3404c8d9
RR
8461 err = 0;
8462
8463free_tmpmask:
8464 free_cpumask_var(tmpmask);
8465free_send_covered:
8466 free_cpumask_var(send_covered);
8467free_this_core_map:
8468 free_cpumask_var(this_core_map);
8469free_this_sibling_map:
8470 free_cpumask_var(this_sibling_map);
8471free_nodemask:
8472 free_cpumask_var(nodemask);
8473free_notcovered:
8474#ifdef CONFIG_NUMA
8475 free_cpumask_var(notcovered);
8476free_covered:
8477 free_cpumask_var(covered);
8478free_domainspan:
8479 free_cpumask_var(domainspan);
8480out:
8481#endif
8482 return err;
8483
8484free_sched_groups:
8485#ifdef CONFIG_NUMA
8486 kfree(sched_group_nodes);
8487#endif
8488 goto free_tmpmask;
51888ca2 8489
a616058b 8490#ifdef CONFIG_NUMA
51888ca2 8491error:
7c16ec58 8492 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8493 free_rootdomain(rd);
3404c8d9 8494 goto free_tmpmask;
a616058b 8495#endif
1da177e4 8496}
029190c5 8497
96f874e2 8498static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8499{
8500 return __build_sched_domains(cpu_map, NULL);
8501}
8502
96f874e2 8503static struct cpumask *doms_cur; /* current sched domains */
029190c5 8504static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8505static struct sched_domain_attr *dattr_cur;
8506 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8507
8508/*
8509 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8510 * cpumask) fails, then fallback to a single sched domain,
8511 * as determined by the single cpumask fallback_doms.
029190c5 8512 */
4212823f 8513static cpumask_var_t fallback_doms;
029190c5 8514
ee79d1bd
HC
8515/*
8516 * arch_update_cpu_topology lets virtualized architectures update the
8517 * cpu core maps. It is supposed to return 1 if the topology changed
8518 * or 0 if it stayed the same.
8519 */
8520int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8521{
ee79d1bd 8522 return 0;
22e52b07
HC
8523}
8524
1a20ff27 8525/*
41a2d6cf 8526 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8527 * For now this just excludes isolated cpus, but could be used to
8528 * exclude other special cases in the future.
1a20ff27 8529 */
96f874e2 8530static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8531{
7378547f
MM
8532 int err;
8533
22e52b07 8534 arch_update_cpu_topology();
029190c5 8535 ndoms_cur = 1;
96f874e2 8536 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8537 if (!doms_cur)
4212823f 8538 doms_cur = fallback_doms;
dcc30a35 8539 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8540 dattr_cur = NULL;
7378547f 8541 err = build_sched_domains(doms_cur);
6382bc90 8542 register_sched_domain_sysctl();
7378547f
MM
8543
8544 return err;
1a20ff27
DG
8545}
8546
96f874e2
RR
8547static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8548 struct cpumask *tmpmask)
1da177e4 8549{
7c16ec58 8550 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8551}
1da177e4 8552
1a20ff27
DG
8553/*
8554 * Detach sched domains from a group of cpus specified in cpu_map
8555 * These cpus will now be attached to the NULL domain
8556 */
96f874e2 8557static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8558{
96f874e2
RR
8559 /* Save because hotplug lock held. */
8560 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8561 int i;
8562
abcd083a 8563 for_each_cpu(i, cpu_map)
57d885fe 8564 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8565 synchronize_sched();
96f874e2 8566 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8567}
8568
1d3504fc
HS
8569/* handle null as "default" */
8570static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8571 struct sched_domain_attr *new, int idx_new)
8572{
8573 struct sched_domain_attr tmp;
8574
8575 /* fast path */
8576 if (!new && !cur)
8577 return 1;
8578
8579 tmp = SD_ATTR_INIT;
8580 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8581 new ? (new + idx_new) : &tmp,
8582 sizeof(struct sched_domain_attr));
8583}
8584
029190c5
PJ
8585/*
8586 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8587 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8588 * doms_new[] to the current sched domain partitioning, doms_cur[].
8589 * It destroys each deleted domain and builds each new domain.
8590 *
96f874e2 8591 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8592 * The masks don't intersect (don't overlap.) We should setup one
8593 * sched domain for each mask. CPUs not in any of the cpumasks will
8594 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8595 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8596 * it as it is.
8597 *
41a2d6cf
IM
8598 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8599 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8600 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8601 * ndoms_new == 1, and partition_sched_domains() will fallback to
8602 * the single partition 'fallback_doms', it also forces the domains
8603 * to be rebuilt.
029190c5 8604 *
96f874e2 8605 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8606 * ndoms_new == 0 is a special case for destroying existing domains,
8607 * and it will not create the default domain.
dfb512ec 8608 *
029190c5
PJ
8609 * Call with hotplug lock held
8610 */
96f874e2
RR
8611/* FIXME: Change to struct cpumask *doms_new[] */
8612void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8613 struct sched_domain_attr *dattr_new)
029190c5 8614{
dfb512ec 8615 int i, j, n;
d65bd5ec 8616 int new_topology;
029190c5 8617
712555ee 8618 mutex_lock(&sched_domains_mutex);
a1835615 8619
7378547f
MM
8620 /* always unregister in case we don't destroy any domains */
8621 unregister_sched_domain_sysctl();
8622
d65bd5ec
HC
8623 /* Let architecture update cpu core mappings. */
8624 new_topology = arch_update_cpu_topology();
8625
dfb512ec 8626 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8627
8628 /* Destroy deleted domains */
8629 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8630 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8631 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8632 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8633 goto match1;
8634 }
8635 /* no match - a current sched domain not in new doms_new[] */
8636 detach_destroy_domains(doms_cur + i);
8637match1:
8638 ;
8639 }
8640
e761b772
MK
8641 if (doms_new == NULL) {
8642 ndoms_cur = 0;
4212823f 8643 doms_new = fallback_doms;
dcc30a35 8644 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8645 WARN_ON_ONCE(dattr_new);
e761b772
MK
8646 }
8647
029190c5
PJ
8648 /* Build new domains */
8649 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8650 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8651 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8652 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8653 goto match2;
8654 }
8655 /* no match - add a new doms_new */
1d3504fc
HS
8656 __build_sched_domains(doms_new + i,
8657 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8658match2:
8659 ;
8660 }
8661
8662 /* Remember the new sched domains */
4212823f 8663 if (doms_cur != fallback_doms)
029190c5 8664 kfree(doms_cur);
1d3504fc 8665 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8666 doms_cur = doms_new;
1d3504fc 8667 dattr_cur = dattr_new;
029190c5 8668 ndoms_cur = ndoms_new;
7378547f
MM
8669
8670 register_sched_domain_sysctl();
a1835615 8671
712555ee 8672 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8673}
8674
5c45bf27 8675#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8676static void arch_reinit_sched_domains(void)
5c45bf27 8677{
95402b38 8678 get_online_cpus();
dfb512ec
MK
8679
8680 /* Destroy domains first to force the rebuild */
8681 partition_sched_domains(0, NULL, NULL);
8682
e761b772 8683 rebuild_sched_domains();
95402b38 8684 put_online_cpus();
5c45bf27
SS
8685}
8686
8687static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8688{
afb8a9b7 8689 unsigned int level = 0;
5c45bf27 8690
afb8a9b7
GS
8691 if (sscanf(buf, "%u", &level) != 1)
8692 return -EINVAL;
8693
8694 /*
8695 * level is always be positive so don't check for
8696 * level < POWERSAVINGS_BALANCE_NONE which is 0
8697 * What happens on 0 or 1 byte write,
8698 * need to check for count as well?
8699 */
8700
8701 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8702 return -EINVAL;
8703
8704 if (smt)
afb8a9b7 8705 sched_smt_power_savings = level;
5c45bf27 8706 else
afb8a9b7 8707 sched_mc_power_savings = level;
5c45bf27 8708
c70f22d2 8709 arch_reinit_sched_domains();
5c45bf27 8710
c70f22d2 8711 return count;
5c45bf27
SS
8712}
8713
5c45bf27 8714#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8715static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8716 char *page)
5c45bf27
SS
8717{
8718 return sprintf(page, "%u\n", sched_mc_power_savings);
8719}
f718cd4a 8720static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8721 const char *buf, size_t count)
5c45bf27
SS
8722{
8723 return sched_power_savings_store(buf, count, 0);
8724}
f718cd4a
AK
8725static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8726 sched_mc_power_savings_show,
8727 sched_mc_power_savings_store);
5c45bf27
SS
8728#endif
8729
8730#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8731static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8732 char *page)
5c45bf27
SS
8733{
8734 return sprintf(page, "%u\n", sched_smt_power_savings);
8735}
f718cd4a 8736static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8737 const char *buf, size_t count)
5c45bf27
SS
8738{
8739 return sched_power_savings_store(buf, count, 1);
8740}
f718cd4a
AK
8741static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8742 sched_smt_power_savings_show,
6707de00
AB
8743 sched_smt_power_savings_store);
8744#endif
8745
39aac648 8746int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8747{
8748 int err = 0;
8749
8750#ifdef CONFIG_SCHED_SMT
8751 if (smt_capable())
8752 err = sysfs_create_file(&cls->kset.kobj,
8753 &attr_sched_smt_power_savings.attr);
8754#endif
8755#ifdef CONFIG_SCHED_MC
8756 if (!err && mc_capable())
8757 err = sysfs_create_file(&cls->kset.kobj,
8758 &attr_sched_mc_power_savings.attr);
8759#endif
8760 return err;
8761}
6d6bc0ad 8762#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8763
e761b772 8764#ifndef CONFIG_CPUSETS
1da177e4 8765/*
e761b772
MK
8766 * Add online and remove offline CPUs from the scheduler domains.
8767 * When cpusets are enabled they take over this function.
1da177e4
LT
8768 */
8769static int update_sched_domains(struct notifier_block *nfb,
8770 unsigned long action, void *hcpu)
e761b772
MK
8771{
8772 switch (action) {
8773 case CPU_ONLINE:
8774 case CPU_ONLINE_FROZEN:
8775 case CPU_DEAD:
8776 case CPU_DEAD_FROZEN:
dfb512ec 8777 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8778 return NOTIFY_OK;
8779
8780 default:
8781 return NOTIFY_DONE;
8782 }
8783}
8784#endif
8785
8786static int update_runtime(struct notifier_block *nfb,
8787 unsigned long action, void *hcpu)
1da177e4 8788{
7def2be1
PZ
8789 int cpu = (int)(long)hcpu;
8790
1da177e4 8791 switch (action) {
1da177e4 8792 case CPU_DOWN_PREPARE:
8bb78442 8793 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8794 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8795 return NOTIFY_OK;
8796
1da177e4 8797 case CPU_DOWN_FAILED:
8bb78442 8798 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8799 case CPU_ONLINE:
8bb78442 8800 case CPU_ONLINE_FROZEN:
7def2be1 8801 enable_runtime(cpu_rq(cpu));
e761b772
MK
8802 return NOTIFY_OK;
8803
1da177e4
LT
8804 default:
8805 return NOTIFY_DONE;
8806 }
1da177e4 8807}
1da177e4
LT
8808
8809void __init sched_init_smp(void)
8810{
dcc30a35
RR
8811 cpumask_var_t non_isolated_cpus;
8812
8813 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8814
434d53b0
MT
8815#if defined(CONFIG_NUMA)
8816 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8817 GFP_KERNEL);
8818 BUG_ON(sched_group_nodes_bycpu == NULL);
8819#endif
95402b38 8820 get_online_cpus();
712555ee 8821 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8822 arch_init_sched_domains(cpu_online_mask);
8823 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8824 if (cpumask_empty(non_isolated_cpus))
8825 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8826 mutex_unlock(&sched_domains_mutex);
95402b38 8827 put_online_cpus();
e761b772
MK
8828
8829#ifndef CONFIG_CPUSETS
1da177e4
LT
8830 /* XXX: Theoretical race here - CPU may be hotplugged now */
8831 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8832#endif
8833
8834 /* RT runtime code needs to handle some hotplug events */
8835 hotcpu_notifier(update_runtime, 0);
8836
b328ca18 8837 init_hrtick();
5c1e1767
NP
8838
8839 /* Move init over to a non-isolated CPU */
dcc30a35 8840 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8841 BUG();
19978ca6 8842 sched_init_granularity();
dcc30a35 8843 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8844
8845 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8846 init_sched_rt_class();
1da177e4
LT
8847}
8848#else
8849void __init sched_init_smp(void)
8850{
19978ca6 8851 sched_init_granularity();
1da177e4
LT
8852}
8853#endif /* CONFIG_SMP */
8854
8855int in_sched_functions(unsigned long addr)
8856{
1da177e4
LT
8857 return in_lock_functions(addr) ||
8858 (addr >= (unsigned long)__sched_text_start
8859 && addr < (unsigned long)__sched_text_end);
8860}
8861
a9957449 8862static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8863{
8864 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8865 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8866#ifdef CONFIG_FAIR_GROUP_SCHED
8867 cfs_rq->rq = rq;
8868#endif
67e9fb2a 8869 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8870}
8871
fa85ae24
PZ
8872static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8873{
8874 struct rt_prio_array *array;
8875 int i;
8876
8877 array = &rt_rq->active;
8878 for (i = 0; i < MAX_RT_PRIO; i++) {
8879 INIT_LIST_HEAD(array->queue + i);
8880 __clear_bit(i, array->bitmap);
8881 }
8882 /* delimiter for bitsearch: */
8883 __set_bit(MAX_RT_PRIO, array->bitmap);
8884
052f1dc7 8885#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8886 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8887#ifdef CONFIG_SMP
e864c499 8888 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8889#endif
48d5e258 8890#endif
fa85ae24
PZ
8891#ifdef CONFIG_SMP
8892 rt_rq->rt_nr_migratory = 0;
fa85ae24 8893 rt_rq->overloaded = 0;
917b627d 8894 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8895#endif
8896
8897 rt_rq->rt_time = 0;
8898 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8899 rt_rq->rt_runtime = 0;
8900 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8901
052f1dc7 8902#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8903 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8904 rt_rq->rq = rq;
8905#endif
fa85ae24
PZ
8906}
8907
6f505b16 8908#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8909static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8910 struct sched_entity *se, int cpu, int add,
8911 struct sched_entity *parent)
6f505b16 8912{
ec7dc8ac 8913 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8914 tg->cfs_rq[cpu] = cfs_rq;
8915 init_cfs_rq(cfs_rq, rq);
8916 cfs_rq->tg = tg;
8917 if (add)
8918 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8919
8920 tg->se[cpu] = se;
354d60c2
DG
8921 /* se could be NULL for init_task_group */
8922 if (!se)
8923 return;
8924
ec7dc8ac
DG
8925 if (!parent)
8926 se->cfs_rq = &rq->cfs;
8927 else
8928 se->cfs_rq = parent->my_q;
8929
6f505b16
PZ
8930 se->my_q = cfs_rq;
8931 se->load.weight = tg->shares;
e05510d0 8932 se->load.inv_weight = 0;
ec7dc8ac 8933 se->parent = parent;
6f505b16 8934}
052f1dc7 8935#endif
6f505b16 8936
052f1dc7 8937#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8938static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8939 struct sched_rt_entity *rt_se, int cpu, int add,
8940 struct sched_rt_entity *parent)
6f505b16 8941{
ec7dc8ac
DG
8942 struct rq *rq = cpu_rq(cpu);
8943
6f505b16
PZ
8944 tg->rt_rq[cpu] = rt_rq;
8945 init_rt_rq(rt_rq, rq);
8946 rt_rq->tg = tg;
8947 rt_rq->rt_se = rt_se;
ac086bc2 8948 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8949 if (add)
8950 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8951
8952 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8953 if (!rt_se)
8954 return;
8955
ec7dc8ac
DG
8956 if (!parent)
8957 rt_se->rt_rq = &rq->rt;
8958 else
8959 rt_se->rt_rq = parent->my_q;
8960
6f505b16 8961 rt_se->my_q = rt_rq;
ec7dc8ac 8962 rt_se->parent = parent;
6f505b16
PZ
8963 INIT_LIST_HEAD(&rt_se->run_list);
8964}
8965#endif
8966
1da177e4
LT
8967void __init sched_init(void)
8968{
dd41f596 8969 int i, j;
434d53b0
MT
8970 unsigned long alloc_size = 0, ptr;
8971
8972#ifdef CONFIG_FAIR_GROUP_SCHED
8973 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8974#endif
8975#ifdef CONFIG_RT_GROUP_SCHED
8976 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8977#endif
8978#ifdef CONFIG_USER_SCHED
8979 alloc_size *= 2;
df7c8e84
RR
8980#endif
8981#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8982 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
8983#endif
8984 /*
8985 * As sched_init() is called before page_alloc is setup,
8986 * we use alloc_bootmem().
8987 */
8988 if (alloc_size) {
5a9d3225 8989 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8990
8991#ifdef CONFIG_FAIR_GROUP_SCHED
8992 init_task_group.se = (struct sched_entity **)ptr;
8993 ptr += nr_cpu_ids * sizeof(void **);
8994
8995 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8996 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8997
8998#ifdef CONFIG_USER_SCHED
8999 root_task_group.se = (struct sched_entity **)ptr;
9000 ptr += nr_cpu_ids * sizeof(void **);
9001
9002 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9003 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9004#endif /* CONFIG_USER_SCHED */
9005#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9006#ifdef CONFIG_RT_GROUP_SCHED
9007 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9008 ptr += nr_cpu_ids * sizeof(void **);
9009
9010 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9011 ptr += nr_cpu_ids * sizeof(void **);
9012
9013#ifdef CONFIG_USER_SCHED
9014 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9015 ptr += nr_cpu_ids * sizeof(void **);
9016
9017 root_task_group.rt_rq = (struct rt_rq **)ptr;
9018 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9019#endif /* CONFIG_USER_SCHED */
9020#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9021#ifdef CONFIG_CPUMASK_OFFSTACK
9022 for_each_possible_cpu(i) {
9023 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9024 ptr += cpumask_size();
9025 }
9026#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9027 }
dd41f596 9028
57d885fe
GH
9029#ifdef CONFIG_SMP
9030 init_defrootdomain();
9031#endif
9032
d0b27fa7
PZ
9033 init_rt_bandwidth(&def_rt_bandwidth,
9034 global_rt_period(), global_rt_runtime());
9035
9036#ifdef CONFIG_RT_GROUP_SCHED
9037 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9038 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9039#ifdef CONFIG_USER_SCHED
9040 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9041 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9042#endif /* CONFIG_USER_SCHED */
9043#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9044
052f1dc7 9045#ifdef CONFIG_GROUP_SCHED
6f505b16 9046 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9047 INIT_LIST_HEAD(&init_task_group.children);
9048
9049#ifdef CONFIG_USER_SCHED
9050 INIT_LIST_HEAD(&root_task_group.children);
9051 init_task_group.parent = &root_task_group;
9052 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9053#endif /* CONFIG_USER_SCHED */
9054#endif /* CONFIG_GROUP_SCHED */
6f505b16 9055
0a945022 9056 for_each_possible_cpu(i) {
70b97a7f 9057 struct rq *rq;
1da177e4
LT
9058
9059 rq = cpu_rq(i);
9060 spin_lock_init(&rq->lock);
7897986b 9061 rq->nr_running = 0;
dd41f596 9062 init_cfs_rq(&rq->cfs, rq);
6f505b16 9063 init_rt_rq(&rq->rt, rq);
dd41f596 9064#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9065 init_task_group.shares = init_task_group_load;
6f505b16 9066 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9067#ifdef CONFIG_CGROUP_SCHED
9068 /*
9069 * How much cpu bandwidth does init_task_group get?
9070 *
9071 * In case of task-groups formed thr' the cgroup filesystem, it
9072 * gets 100% of the cpu resources in the system. This overall
9073 * system cpu resource is divided among the tasks of
9074 * init_task_group and its child task-groups in a fair manner,
9075 * based on each entity's (task or task-group's) weight
9076 * (se->load.weight).
9077 *
9078 * In other words, if init_task_group has 10 tasks of weight
9079 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9080 * then A0's share of the cpu resource is:
9081 *
9082 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9083 *
9084 * We achieve this by letting init_task_group's tasks sit
9085 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9086 */
ec7dc8ac 9087 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9088#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9089 root_task_group.shares = NICE_0_LOAD;
9090 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9091 /*
9092 * In case of task-groups formed thr' the user id of tasks,
9093 * init_task_group represents tasks belonging to root user.
9094 * Hence it forms a sibling of all subsequent groups formed.
9095 * In this case, init_task_group gets only a fraction of overall
9096 * system cpu resource, based on the weight assigned to root
9097 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9098 * by letting tasks of init_task_group sit in a separate cfs_rq
9099 * (init_cfs_rq) and having one entity represent this group of
9100 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9101 */
ec7dc8ac 9102 init_tg_cfs_entry(&init_task_group,
6f505b16 9103 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9104 &per_cpu(init_sched_entity, i), i, 1,
9105 root_task_group.se[i]);
6f505b16 9106
052f1dc7 9107#endif
354d60c2
DG
9108#endif /* CONFIG_FAIR_GROUP_SCHED */
9109
9110 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9111#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9112 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9113#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9114 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9115#elif defined CONFIG_USER_SCHED
eff766a6 9116 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9117 init_tg_rt_entry(&init_task_group,
6f505b16 9118 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9119 &per_cpu(init_sched_rt_entity, i), i, 1,
9120 root_task_group.rt_se[i]);
354d60c2 9121#endif
dd41f596 9122#endif
1da177e4 9123
dd41f596
IM
9124 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9125 rq->cpu_load[j] = 0;
1da177e4 9126#ifdef CONFIG_SMP
41c7ce9a 9127 rq->sd = NULL;
57d885fe 9128 rq->rd = NULL;
1da177e4 9129 rq->active_balance = 0;
dd41f596 9130 rq->next_balance = jiffies;
1da177e4 9131 rq->push_cpu = 0;
0a2966b4 9132 rq->cpu = i;
1f11eb6a 9133 rq->online = 0;
1da177e4
LT
9134 rq->migration_thread = NULL;
9135 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9136 rq_attach_root(rq, &def_root_domain);
1da177e4 9137#endif
8f4d37ec 9138 init_rq_hrtick(rq);
1da177e4 9139 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9140 }
9141
2dd73a4f 9142 set_load_weight(&init_task);
b50f60ce 9143
e107be36
AK
9144#ifdef CONFIG_PREEMPT_NOTIFIERS
9145 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9146#endif
9147
c9819f45 9148#ifdef CONFIG_SMP
962cf36c 9149 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9150#endif
9151
b50f60ce
HC
9152#ifdef CONFIG_RT_MUTEXES
9153 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9154#endif
9155
1da177e4
LT
9156 /*
9157 * The boot idle thread does lazy MMU switching as well:
9158 */
9159 atomic_inc(&init_mm.mm_count);
9160 enter_lazy_tlb(&init_mm, current);
9161
9162 /*
9163 * Make us the idle thread. Technically, schedule() should not be
9164 * called from this thread, however somewhere below it might be,
9165 * but because we are the idle thread, we just pick up running again
9166 * when this runqueue becomes "idle".
9167 */
9168 init_idle(current, smp_processor_id());
dd41f596
IM
9169 /*
9170 * During early bootup we pretend to be a normal task:
9171 */
9172 current->sched_class = &fair_sched_class;
6892b75e 9173
6a7b3dc3
RR
9174 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9175 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 9176#ifdef CONFIG_SMP
7d1e6a9b
RR
9177#ifdef CONFIG_NO_HZ
9178 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
f711f609 9179 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
7d1e6a9b 9180#endif
dcc30a35 9181 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 9182#endif /* SMP */
6a7b3dc3 9183
6892b75e 9184 scheduler_running = 1;
1da177e4
LT
9185}
9186
9187#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9188void __might_sleep(char *file, int line)
9189{
48f24c4d 9190#ifdef in_atomic
1da177e4
LT
9191 static unsigned long prev_jiffy; /* ratelimiting */
9192
aef745fc
IM
9193 if ((!in_atomic() && !irqs_disabled()) ||
9194 system_state != SYSTEM_RUNNING || oops_in_progress)
9195 return;
9196 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9197 return;
9198 prev_jiffy = jiffies;
9199
9200 printk(KERN_ERR
9201 "BUG: sleeping function called from invalid context at %s:%d\n",
9202 file, line);
9203 printk(KERN_ERR
9204 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9205 in_atomic(), irqs_disabled(),
9206 current->pid, current->comm);
9207
9208 debug_show_held_locks(current);
9209 if (irqs_disabled())
9210 print_irqtrace_events(current);
9211 dump_stack();
1da177e4
LT
9212#endif
9213}
9214EXPORT_SYMBOL(__might_sleep);
9215#endif
9216
9217#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9218static void normalize_task(struct rq *rq, struct task_struct *p)
9219{
9220 int on_rq;
3e51f33f 9221
3a5e4dc1
AK
9222 update_rq_clock(rq);
9223 on_rq = p->se.on_rq;
9224 if (on_rq)
9225 deactivate_task(rq, p, 0);
9226 __setscheduler(rq, p, SCHED_NORMAL, 0);
9227 if (on_rq) {
9228 activate_task(rq, p, 0);
9229 resched_task(rq->curr);
9230 }
9231}
9232
1da177e4
LT
9233void normalize_rt_tasks(void)
9234{
a0f98a1c 9235 struct task_struct *g, *p;
1da177e4 9236 unsigned long flags;
70b97a7f 9237 struct rq *rq;
1da177e4 9238
4cf5d77a 9239 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9240 do_each_thread(g, p) {
178be793
IM
9241 /*
9242 * Only normalize user tasks:
9243 */
9244 if (!p->mm)
9245 continue;
9246
6cfb0d5d 9247 p->se.exec_start = 0;
6cfb0d5d 9248#ifdef CONFIG_SCHEDSTATS
dd41f596 9249 p->se.wait_start = 0;
dd41f596 9250 p->se.sleep_start = 0;
dd41f596 9251 p->se.block_start = 0;
6cfb0d5d 9252#endif
dd41f596
IM
9253
9254 if (!rt_task(p)) {
9255 /*
9256 * Renice negative nice level userspace
9257 * tasks back to 0:
9258 */
9259 if (TASK_NICE(p) < 0 && p->mm)
9260 set_user_nice(p, 0);
1da177e4 9261 continue;
dd41f596 9262 }
1da177e4 9263
4cf5d77a 9264 spin_lock(&p->pi_lock);
b29739f9 9265 rq = __task_rq_lock(p);
1da177e4 9266
178be793 9267 normalize_task(rq, p);
3a5e4dc1 9268
b29739f9 9269 __task_rq_unlock(rq);
4cf5d77a 9270 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9271 } while_each_thread(g, p);
9272
4cf5d77a 9273 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9274}
9275
9276#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9277
9278#ifdef CONFIG_IA64
9279/*
9280 * These functions are only useful for the IA64 MCA handling.
9281 *
9282 * They can only be called when the whole system has been
9283 * stopped - every CPU needs to be quiescent, and no scheduling
9284 * activity can take place. Using them for anything else would
9285 * be a serious bug, and as a result, they aren't even visible
9286 * under any other configuration.
9287 */
9288
9289/**
9290 * curr_task - return the current task for a given cpu.
9291 * @cpu: the processor in question.
9292 *
9293 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9294 */
36c8b586 9295struct task_struct *curr_task(int cpu)
1df5c10a
LT
9296{
9297 return cpu_curr(cpu);
9298}
9299
9300/**
9301 * set_curr_task - set the current task for a given cpu.
9302 * @cpu: the processor in question.
9303 * @p: the task pointer to set.
9304 *
9305 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9306 * are serviced on a separate stack. It allows the architecture to switch the
9307 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9308 * must be called with all CPU's synchronized, and interrupts disabled, the
9309 * and caller must save the original value of the current task (see
9310 * curr_task() above) and restore that value before reenabling interrupts and
9311 * re-starting the system.
9312 *
9313 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9314 */
36c8b586 9315void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9316{
9317 cpu_curr(cpu) = p;
9318}
9319
9320#endif
29f59db3 9321
bccbe08a
PZ
9322#ifdef CONFIG_FAIR_GROUP_SCHED
9323static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9324{
9325 int i;
9326
9327 for_each_possible_cpu(i) {
9328 if (tg->cfs_rq)
9329 kfree(tg->cfs_rq[i]);
9330 if (tg->se)
9331 kfree(tg->se[i]);
6f505b16
PZ
9332 }
9333
9334 kfree(tg->cfs_rq);
9335 kfree(tg->se);
6f505b16
PZ
9336}
9337
ec7dc8ac
DG
9338static
9339int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9340{
29f59db3 9341 struct cfs_rq *cfs_rq;
eab17229 9342 struct sched_entity *se;
9b5b7751 9343 struct rq *rq;
29f59db3
SV
9344 int i;
9345
434d53b0 9346 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9347 if (!tg->cfs_rq)
9348 goto err;
434d53b0 9349 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9350 if (!tg->se)
9351 goto err;
052f1dc7
PZ
9352
9353 tg->shares = NICE_0_LOAD;
29f59db3
SV
9354
9355 for_each_possible_cpu(i) {
9b5b7751 9356 rq = cpu_rq(i);
29f59db3 9357
eab17229
LZ
9358 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9359 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9360 if (!cfs_rq)
9361 goto err;
9362
eab17229
LZ
9363 se = kzalloc_node(sizeof(struct sched_entity),
9364 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9365 if (!se)
9366 goto err;
9367
eab17229 9368 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9369 }
9370
9371 return 1;
9372
9373 err:
9374 return 0;
9375}
9376
9377static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9378{
9379 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9380 &cpu_rq(cpu)->leaf_cfs_rq_list);
9381}
9382
9383static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9384{
9385 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9386}
6d6bc0ad 9387#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9388static inline void free_fair_sched_group(struct task_group *tg)
9389{
9390}
9391
ec7dc8ac
DG
9392static inline
9393int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9394{
9395 return 1;
9396}
9397
9398static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9399{
9400}
9401
9402static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9403{
9404}
6d6bc0ad 9405#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9406
9407#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9408static void free_rt_sched_group(struct task_group *tg)
9409{
9410 int i;
9411
d0b27fa7
PZ
9412 destroy_rt_bandwidth(&tg->rt_bandwidth);
9413
bccbe08a
PZ
9414 for_each_possible_cpu(i) {
9415 if (tg->rt_rq)
9416 kfree(tg->rt_rq[i]);
9417 if (tg->rt_se)
9418 kfree(tg->rt_se[i]);
9419 }
9420
9421 kfree(tg->rt_rq);
9422 kfree(tg->rt_se);
9423}
9424
ec7dc8ac
DG
9425static
9426int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9427{
9428 struct rt_rq *rt_rq;
eab17229 9429 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9430 struct rq *rq;
9431 int i;
9432
434d53b0 9433 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9434 if (!tg->rt_rq)
9435 goto err;
434d53b0 9436 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9437 if (!tg->rt_se)
9438 goto err;
9439
d0b27fa7
PZ
9440 init_rt_bandwidth(&tg->rt_bandwidth,
9441 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9442
9443 for_each_possible_cpu(i) {
9444 rq = cpu_rq(i);
9445
eab17229
LZ
9446 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9447 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9448 if (!rt_rq)
9449 goto err;
29f59db3 9450
eab17229
LZ
9451 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9452 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9453 if (!rt_se)
9454 goto err;
29f59db3 9455
eab17229 9456 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9457 }
9458
bccbe08a
PZ
9459 return 1;
9460
9461 err:
9462 return 0;
9463}
9464
9465static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9466{
9467 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9468 &cpu_rq(cpu)->leaf_rt_rq_list);
9469}
9470
9471static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9472{
9473 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9474}
6d6bc0ad 9475#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9476static inline void free_rt_sched_group(struct task_group *tg)
9477{
9478}
9479
ec7dc8ac
DG
9480static inline
9481int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9482{
9483 return 1;
9484}
9485
9486static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9487{
9488}
9489
9490static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9491{
9492}
6d6bc0ad 9493#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9494
d0b27fa7 9495#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9496static void free_sched_group(struct task_group *tg)
9497{
9498 free_fair_sched_group(tg);
9499 free_rt_sched_group(tg);
9500 kfree(tg);
9501}
9502
9503/* allocate runqueue etc for a new task group */
ec7dc8ac 9504struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9505{
9506 struct task_group *tg;
9507 unsigned long flags;
9508 int i;
9509
9510 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9511 if (!tg)
9512 return ERR_PTR(-ENOMEM);
9513
ec7dc8ac 9514 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9515 goto err;
9516
ec7dc8ac 9517 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9518 goto err;
9519
8ed36996 9520 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9521 for_each_possible_cpu(i) {
bccbe08a
PZ
9522 register_fair_sched_group(tg, i);
9523 register_rt_sched_group(tg, i);
9b5b7751 9524 }
6f505b16 9525 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9526
9527 WARN_ON(!parent); /* root should already exist */
9528
9529 tg->parent = parent;
f473aa5e 9530 INIT_LIST_HEAD(&tg->children);
09f2724a 9531 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9532 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9533
9b5b7751 9534 return tg;
29f59db3
SV
9535
9536err:
6f505b16 9537 free_sched_group(tg);
29f59db3
SV
9538 return ERR_PTR(-ENOMEM);
9539}
9540
9b5b7751 9541/* rcu callback to free various structures associated with a task group */
6f505b16 9542static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9543{
29f59db3 9544 /* now it should be safe to free those cfs_rqs */
6f505b16 9545 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9546}
9547
9b5b7751 9548/* Destroy runqueue etc associated with a task group */
4cf86d77 9549void sched_destroy_group(struct task_group *tg)
29f59db3 9550{
8ed36996 9551 unsigned long flags;
9b5b7751 9552 int i;
29f59db3 9553
8ed36996 9554 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9555 for_each_possible_cpu(i) {
bccbe08a
PZ
9556 unregister_fair_sched_group(tg, i);
9557 unregister_rt_sched_group(tg, i);
9b5b7751 9558 }
6f505b16 9559 list_del_rcu(&tg->list);
f473aa5e 9560 list_del_rcu(&tg->siblings);
8ed36996 9561 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9562
9b5b7751 9563 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9564 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9565}
9566
9b5b7751 9567/* change task's runqueue when it moves between groups.
3a252015
IM
9568 * The caller of this function should have put the task in its new group
9569 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9570 * reflect its new group.
9b5b7751
SV
9571 */
9572void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9573{
9574 int on_rq, running;
9575 unsigned long flags;
9576 struct rq *rq;
9577
9578 rq = task_rq_lock(tsk, &flags);
9579
29f59db3
SV
9580 update_rq_clock(rq);
9581
051a1d1a 9582 running = task_current(rq, tsk);
29f59db3
SV
9583 on_rq = tsk->se.on_rq;
9584
0e1f3483 9585 if (on_rq)
29f59db3 9586 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9587 if (unlikely(running))
9588 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9589
6f505b16 9590 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9591
810b3817
PZ
9592#ifdef CONFIG_FAIR_GROUP_SCHED
9593 if (tsk->sched_class->moved_group)
9594 tsk->sched_class->moved_group(tsk);
9595#endif
9596
0e1f3483
HS
9597 if (unlikely(running))
9598 tsk->sched_class->set_curr_task(rq);
9599 if (on_rq)
7074badb 9600 enqueue_task(rq, tsk, 0);
29f59db3 9601
29f59db3
SV
9602 task_rq_unlock(rq, &flags);
9603}
6d6bc0ad 9604#endif /* CONFIG_GROUP_SCHED */
29f59db3 9605
052f1dc7 9606#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9607static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9608{
9609 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9610 int on_rq;
9611
29f59db3 9612 on_rq = se->on_rq;
62fb1851 9613 if (on_rq)
29f59db3
SV
9614 dequeue_entity(cfs_rq, se, 0);
9615
9616 se->load.weight = shares;
e05510d0 9617 se->load.inv_weight = 0;
29f59db3 9618
62fb1851 9619 if (on_rq)
29f59db3 9620 enqueue_entity(cfs_rq, se, 0);
c09595f6 9621}
62fb1851 9622
c09595f6
PZ
9623static void set_se_shares(struct sched_entity *se, unsigned long shares)
9624{
9625 struct cfs_rq *cfs_rq = se->cfs_rq;
9626 struct rq *rq = cfs_rq->rq;
9627 unsigned long flags;
9628
9629 spin_lock_irqsave(&rq->lock, flags);
9630 __set_se_shares(se, shares);
9631 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9632}
9633
8ed36996
PZ
9634static DEFINE_MUTEX(shares_mutex);
9635
4cf86d77 9636int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9637{
9638 int i;
8ed36996 9639 unsigned long flags;
c61935fd 9640
ec7dc8ac
DG
9641 /*
9642 * We can't change the weight of the root cgroup.
9643 */
9644 if (!tg->se[0])
9645 return -EINVAL;
9646
18d95a28
PZ
9647 if (shares < MIN_SHARES)
9648 shares = MIN_SHARES;
cb4ad1ff
MX
9649 else if (shares > MAX_SHARES)
9650 shares = MAX_SHARES;
62fb1851 9651
8ed36996 9652 mutex_lock(&shares_mutex);
9b5b7751 9653 if (tg->shares == shares)
5cb350ba 9654 goto done;
29f59db3 9655
8ed36996 9656 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9657 for_each_possible_cpu(i)
9658 unregister_fair_sched_group(tg, i);
f473aa5e 9659 list_del_rcu(&tg->siblings);
8ed36996 9660 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9661
9662 /* wait for any ongoing reference to this group to finish */
9663 synchronize_sched();
9664
9665 /*
9666 * Now we are free to modify the group's share on each cpu
9667 * w/o tripping rebalance_share or load_balance_fair.
9668 */
9b5b7751 9669 tg->shares = shares;
c09595f6
PZ
9670 for_each_possible_cpu(i) {
9671 /*
9672 * force a rebalance
9673 */
9674 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9675 set_se_shares(tg->se[i], shares);
c09595f6 9676 }
29f59db3 9677
6b2d7700
SV
9678 /*
9679 * Enable load balance activity on this group, by inserting it back on
9680 * each cpu's rq->leaf_cfs_rq_list.
9681 */
8ed36996 9682 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9683 for_each_possible_cpu(i)
9684 register_fair_sched_group(tg, i);
f473aa5e 9685 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9686 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9687done:
8ed36996 9688 mutex_unlock(&shares_mutex);
9b5b7751 9689 return 0;
29f59db3
SV
9690}
9691
5cb350ba
DG
9692unsigned long sched_group_shares(struct task_group *tg)
9693{
9694 return tg->shares;
9695}
052f1dc7 9696#endif
5cb350ba 9697
052f1dc7 9698#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9699/*
9f0c1e56 9700 * Ensure that the real time constraints are schedulable.
6f505b16 9701 */
9f0c1e56
PZ
9702static DEFINE_MUTEX(rt_constraints_mutex);
9703
9704static unsigned long to_ratio(u64 period, u64 runtime)
9705{
9706 if (runtime == RUNTIME_INF)
9a7e0b18 9707 return 1ULL << 20;
9f0c1e56 9708
9a7e0b18 9709 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9710}
9711
9a7e0b18
PZ
9712/* Must be called with tasklist_lock held */
9713static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9714{
9a7e0b18 9715 struct task_struct *g, *p;
b40b2e8e 9716
9a7e0b18
PZ
9717 do_each_thread(g, p) {
9718 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9719 return 1;
9720 } while_each_thread(g, p);
b40b2e8e 9721
9a7e0b18
PZ
9722 return 0;
9723}
b40b2e8e 9724
9a7e0b18
PZ
9725struct rt_schedulable_data {
9726 struct task_group *tg;
9727 u64 rt_period;
9728 u64 rt_runtime;
9729};
b40b2e8e 9730
9a7e0b18
PZ
9731static int tg_schedulable(struct task_group *tg, void *data)
9732{
9733 struct rt_schedulable_data *d = data;
9734 struct task_group *child;
9735 unsigned long total, sum = 0;
9736 u64 period, runtime;
b40b2e8e 9737
9a7e0b18
PZ
9738 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9739 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9740
9a7e0b18
PZ
9741 if (tg == d->tg) {
9742 period = d->rt_period;
9743 runtime = d->rt_runtime;
b40b2e8e 9744 }
b40b2e8e 9745
98a4826b
PZ
9746#ifdef CONFIG_USER_SCHED
9747 if (tg == &root_task_group) {
9748 period = global_rt_period();
9749 runtime = global_rt_runtime();
9750 }
9751#endif
9752
4653f803
PZ
9753 /*
9754 * Cannot have more runtime than the period.
9755 */
9756 if (runtime > period && runtime != RUNTIME_INF)
9757 return -EINVAL;
6f505b16 9758
4653f803
PZ
9759 /*
9760 * Ensure we don't starve existing RT tasks.
9761 */
9a7e0b18
PZ
9762 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9763 return -EBUSY;
6f505b16 9764
9a7e0b18 9765 total = to_ratio(period, runtime);
6f505b16 9766
4653f803
PZ
9767 /*
9768 * Nobody can have more than the global setting allows.
9769 */
9770 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9771 return -EINVAL;
6f505b16 9772
4653f803
PZ
9773 /*
9774 * The sum of our children's runtime should not exceed our own.
9775 */
9a7e0b18
PZ
9776 list_for_each_entry_rcu(child, &tg->children, siblings) {
9777 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9778 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9779
9a7e0b18
PZ
9780 if (child == d->tg) {
9781 period = d->rt_period;
9782 runtime = d->rt_runtime;
9783 }
6f505b16 9784
9a7e0b18 9785 sum += to_ratio(period, runtime);
9f0c1e56 9786 }
6f505b16 9787
9a7e0b18
PZ
9788 if (sum > total)
9789 return -EINVAL;
9790
9791 return 0;
6f505b16
PZ
9792}
9793
9a7e0b18 9794static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9795{
9a7e0b18
PZ
9796 struct rt_schedulable_data data = {
9797 .tg = tg,
9798 .rt_period = period,
9799 .rt_runtime = runtime,
9800 };
9801
9802 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9803}
9804
d0b27fa7
PZ
9805static int tg_set_bandwidth(struct task_group *tg,
9806 u64 rt_period, u64 rt_runtime)
6f505b16 9807{
ac086bc2 9808 int i, err = 0;
9f0c1e56 9809
9f0c1e56 9810 mutex_lock(&rt_constraints_mutex);
521f1a24 9811 read_lock(&tasklist_lock);
9a7e0b18
PZ
9812 err = __rt_schedulable(tg, rt_period, rt_runtime);
9813 if (err)
9f0c1e56 9814 goto unlock;
ac086bc2
PZ
9815
9816 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9817 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9818 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9819
9820 for_each_possible_cpu(i) {
9821 struct rt_rq *rt_rq = tg->rt_rq[i];
9822
9823 spin_lock(&rt_rq->rt_runtime_lock);
9824 rt_rq->rt_runtime = rt_runtime;
9825 spin_unlock(&rt_rq->rt_runtime_lock);
9826 }
9827 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9828 unlock:
521f1a24 9829 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9830 mutex_unlock(&rt_constraints_mutex);
9831
9832 return err;
6f505b16
PZ
9833}
9834
d0b27fa7
PZ
9835int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9836{
9837 u64 rt_runtime, rt_period;
9838
9839 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9840 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9841 if (rt_runtime_us < 0)
9842 rt_runtime = RUNTIME_INF;
9843
9844 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9845}
9846
9f0c1e56
PZ
9847long sched_group_rt_runtime(struct task_group *tg)
9848{
9849 u64 rt_runtime_us;
9850
d0b27fa7 9851 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9852 return -1;
9853
d0b27fa7 9854 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9855 do_div(rt_runtime_us, NSEC_PER_USEC);
9856 return rt_runtime_us;
9857}
d0b27fa7
PZ
9858
9859int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9860{
9861 u64 rt_runtime, rt_period;
9862
9863 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9864 rt_runtime = tg->rt_bandwidth.rt_runtime;
9865
619b0488
R
9866 if (rt_period == 0)
9867 return -EINVAL;
9868
d0b27fa7
PZ
9869 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9870}
9871
9872long sched_group_rt_period(struct task_group *tg)
9873{
9874 u64 rt_period_us;
9875
9876 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9877 do_div(rt_period_us, NSEC_PER_USEC);
9878 return rt_period_us;
9879}
9880
9881static int sched_rt_global_constraints(void)
9882{
4653f803 9883 u64 runtime, period;
d0b27fa7
PZ
9884 int ret = 0;
9885
ec5d4989
HS
9886 if (sysctl_sched_rt_period <= 0)
9887 return -EINVAL;
9888
4653f803
PZ
9889 runtime = global_rt_runtime();
9890 period = global_rt_period();
9891
9892 /*
9893 * Sanity check on the sysctl variables.
9894 */
9895 if (runtime > period && runtime != RUNTIME_INF)
9896 return -EINVAL;
10b612f4 9897
d0b27fa7 9898 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9899 read_lock(&tasklist_lock);
4653f803 9900 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9901 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9902 mutex_unlock(&rt_constraints_mutex);
9903
9904 return ret;
9905}
54e99124
DG
9906
9907int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9908{
9909 /* Don't accept realtime tasks when there is no way for them to run */
9910 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9911 return 0;
9912
9913 return 1;
9914}
9915
6d6bc0ad 9916#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9917static int sched_rt_global_constraints(void)
9918{
ac086bc2
PZ
9919 unsigned long flags;
9920 int i;
9921
ec5d4989
HS
9922 if (sysctl_sched_rt_period <= 0)
9923 return -EINVAL;
9924
60aa605d
PZ
9925 /*
9926 * There's always some RT tasks in the root group
9927 * -- migration, kstopmachine etc..
9928 */
9929 if (sysctl_sched_rt_runtime == 0)
9930 return -EBUSY;
9931
ac086bc2
PZ
9932 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9933 for_each_possible_cpu(i) {
9934 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9935
9936 spin_lock(&rt_rq->rt_runtime_lock);
9937 rt_rq->rt_runtime = global_rt_runtime();
9938 spin_unlock(&rt_rq->rt_runtime_lock);
9939 }
9940 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9941
d0b27fa7
PZ
9942 return 0;
9943}
6d6bc0ad 9944#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9945
9946int sched_rt_handler(struct ctl_table *table, int write,
9947 struct file *filp, void __user *buffer, size_t *lenp,
9948 loff_t *ppos)
9949{
9950 int ret;
9951 int old_period, old_runtime;
9952 static DEFINE_MUTEX(mutex);
9953
9954 mutex_lock(&mutex);
9955 old_period = sysctl_sched_rt_period;
9956 old_runtime = sysctl_sched_rt_runtime;
9957
9958 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9959
9960 if (!ret && write) {
9961 ret = sched_rt_global_constraints();
9962 if (ret) {
9963 sysctl_sched_rt_period = old_period;
9964 sysctl_sched_rt_runtime = old_runtime;
9965 } else {
9966 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9967 def_rt_bandwidth.rt_period =
9968 ns_to_ktime(global_rt_period());
9969 }
9970 }
9971 mutex_unlock(&mutex);
9972
9973 return ret;
9974}
68318b8e 9975
052f1dc7 9976#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9977
9978/* return corresponding task_group object of a cgroup */
2b01dfe3 9979static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9980{
2b01dfe3
PM
9981 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9982 struct task_group, css);
68318b8e
SV
9983}
9984
9985static struct cgroup_subsys_state *
2b01dfe3 9986cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9987{
ec7dc8ac 9988 struct task_group *tg, *parent;
68318b8e 9989
2b01dfe3 9990 if (!cgrp->parent) {
68318b8e 9991 /* This is early initialization for the top cgroup */
68318b8e
SV
9992 return &init_task_group.css;
9993 }
9994
ec7dc8ac
DG
9995 parent = cgroup_tg(cgrp->parent);
9996 tg = sched_create_group(parent);
68318b8e
SV
9997 if (IS_ERR(tg))
9998 return ERR_PTR(-ENOMEM);
9999
68318b8e
SV
10000 return &tg->css;
10001}
10002
41a2d6cf
IM
10003static void
10004cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10005{
2b01dfe3 10006 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10007
10008 sched_destroy_group(tg);
10009}
10010
41a2d6cf
IM
10011static int
10012cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10013 struct task_struct *tsk)
68318b8e 10014{
b68aa230 10015#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10016 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10017 return -EINVAL;
10018#else
68318b8e
SV
10019 /* We don't support RT-tasks being in separate groups */
10020 if (tsk->sched_class != &fair_sched_class)
10021 return -EINVAL;
b68aa230 10022#endif
68318b8e
SV
10023
10024 return 0;
10025}
10026
10027static void
2b01dfe3 10028cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10029 struct cgroup *old_cont, struct task_struct *tsk)
10030{
10031 sched_move_task(tsk);
10032}
10033
052f1dc7 10034#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10035static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10036 u64 shareval)
68318b8e 10037{
2b01dfe3 10038 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10039}
10040
f4c753b7 10041static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10042{
2b01dfe3 10043 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10044
10045 return (u64) tg->shares;
10046}
6d6bc0ad 10047#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10048
052f1dc7 10049#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10050static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10051 s64 val)
6f505b16 10052{
06ecb27c 10053 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10054}
10055
06ecb27c 10056static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10057{
06ecb27c 10058 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10059}
d0b27fa7
PZ
10060
10061static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10062 u64 rt_period_us)
10063{
10064 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10065}
10066
10067static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10068{
10069 return sched_group_rt_period(cgroup_tg(cgrp));
10070}
6d6bc0ad 10071#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10072
fe5c7cc2 10073static struct cftype cpu_files[] = {
052f1dc7 10074#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10075 {
10076 .name = "shares",
f4c753b7
PM
10077 .read_u64 = cpu_shares_read_u64,
10078 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10079 },
052f1dc7
PZ
10080#endif
10081#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10082 {
9f0c1e56 10083 .name = "rt_runtime_us",
06ecb27c
PM
10084 .read_s64 = cpu_rt_runtime_read,
10085 .write_s64 = cpu_rt_runtime_write,
6f505b16 10086 },
d0b27fa7
PZ
10087 {
10088 .name = "rt_period_us",
f4c753b7
PM
10089 .read_u64 = cpu_rt_period_read_uint,
10090 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10091 },
052f1dc7 10092#endif
68318b8e
SV
10093};
10094
10095static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10096{
fe5c7cc2 10097 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10098}
10099
10100struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10101 .name = "cpu",
10102 .create = cpu_cgroup_create,
10103 .destroy = cpu_cgroup_destroy,
10104 .can_attach = cpu_cgroup_can_attach,
10105 .attach = cpu_cgroup_attach,
10106 .populate = cpu_cgroup_populate,
10107 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10108 .early_init = 1,
10109};
10110
052f1dc7 10111#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10112
10113#ifdef CONFIG_CGROUP_CPUACCT
10114
10115/*
10116 * CPU accounting code for task groups.
10117 *
10118 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10119 * (balbir@in.ibm.com).
10120 */
10121
934352f2 10122/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10123struct cpuacct {
10124 struct cgroup_subsys_state css;
10125 /* cpuusage holds pointer to a u64-type object on every cpu */
10126 u64 *cpuusage;
ef12fefa 10127 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10128 struct cpuacct *parent;
d842de87
SV
10129};
10130
10131struct cgroup_subsys cpuacct_subsys;
10132
10133/* return cpu accounting group corresponding to this container */
32cd756a 10134static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10135{
32cd756a 10136 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10137 struct cpuacct, css);
10138}
10139
10140/* return cpu accounting group to which this task belongs */
10141static inline struct cpuacct *task_ca(struct task_struct *tsk)
10142{
10143 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10144 struct cpuacct, css);
10145}
10146
10147/* create a new cpu accounting group */
10148static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10149 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10150{
10151 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10152 int i;
d842de87
SV
10153
10154 if (!ca)
ef12fefa 10155 goto out;
d842de87
SV
10156
10157 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10158 if (!ca->cpuusage)
10159 goto out_free_ca;
10160
10161 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10162 if (percpu_counter_init(&ca->cpustat[i], 0))
10163 goto out_free_counters;
d842de87 10164
934352f2
BR
10165 if (cgrp->parent)
10166 ca->parent = cgroup_ca(cgrp->parent);
10167
d842de87 10168 return &ca->css;
ef12fefa
BR
10169
10170out_free_counters:
10171 while (--i >= 0)
10172 percpu_counter_destroy(&ca->cpustat[i]);
10173 free_percpu(ca->cpuusage);
10174out_free_ca:
10175 kfree(ca);
10176out:
10177 return ERR_PTR(-ENOMEM);
d842de87
SV
10178}
10179
10180/* destroy an existing cpu accounting group */
41a2d6cf 10181static void
32cd756a 10182cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10183{
32cd756a 10184 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10185 int i;
d842de87 10186
ef12fefa
BR
10187 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10188 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10189 free_percpu(ca->cpuusage);
10190 kfree(ca);
10191}
10192
720f5498
KC
10193static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10194{
b36128c8 10195 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10196 u64 data;
10197
10198#ifndef CONFIG_64BIT
10199 /*
10200 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10201 */
10202 spin_lock_irq(&cpu_rq(cpu)->lock);
10203 data = *cpuusage;
10204 spin_unlock_irq(&cpu_rq(cpu)->lock);
10205#else
10206 data = *cpuusage;
10207#endif
10208
10209 return data;
10210}
10211
10212static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10213{
b36128c8 10214 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10215
10216#ifndef CONFIG_64BIT
10217 /*
10218 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10219 */
10220 spin_lock_irq(&cpu_rq(cpu)->lock);
10221 *cpuusage = val;
10222 spin_unlock_irq(&cpu_rq(cpu)->lock);
10223#else
10224 *cpuusage = val;
10225#endif
10226}
10227
d842de87 10228/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10229static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10230{
32cd756a 10231 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10232 u64 totalcpuusage = 0;
10233 int i;
10234
720f5498
KC
10235 for_each_present_cpu(i)
10236 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10237
10238 return totalcpuusage;
10239}
10240
0297b803
DG
10241static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10242 u64 reset)
10243{
10244 struct cpuacct *ca = cgroup_ca(cgrp);
10245 int err = 0;
10246 int i;
10247
10248 if (reset) {
10249 err = -EINVAL;
10250 goto out;
10251 }
10252
720f5498
KC
10253 for_each_present_cpu(i)
10254 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10255
0297b803
DG
10256out:
10257 return err;
10258}
10259
e9515c3c
KC
10260static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10261 struct seq_file *m)
10262{
10263 struct cpuacct *ca = cgroup_ca(cgroup);
10264 u64 percpu;
10265 int i;
10266
10267 for_each_present_cpu(i) {
10268 percpu = cpuacct_cpuusage_read(ca, i);
10269 seq_printf(m, "%llu ", (unsigned long long) percpu);
10270 }
10271 seq_printf(m, "\n");
10272 return 0;
10273}
10274
ef12fefa
BR
10275static const char *cpuacct_stat_desc[] = {
10276 [CPUACCT_STAT_USER] = "user",
10277 [CPUACCT_STAT_SYSTEM] = "system",
10278};
10279
10280static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10281 struct cgroup_map_cb *cb)
10282{
10283 struct cpuacct *ca = cgroup_ca(cgrp);
10284 int i;
10285
10286 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10287 s64 val = percpu_counter_read(&ca->cpustat[i]);
10288 val = cputime64_to_clock_t(val);
10289 cb->fill(cb, cpuacct_stat_desc[i], val);
10290 }
10291 return 0;
10292}
10293
d842de87
SV
10294static struct cftype files[] = {
10295 {
10296 .name = "usage",
f4c753b7
PM
10297 .read_u64 = cpuusage_read,
10298 .write_u64 = cpuusage_write,
d842de87 10299 },
e9515c3c
KC
10300 {
10301 .name = "usage_percpu",
10302 .read_seq_string = cpuacct_percpu_seq_read,
10303 },
ef12fefa
BR
10304 {
10305 .name = "stat",
10306 .read_map = cpuacct_stats_show,
10307 },
d842de87
SV
10308};
10309
32cd756a 10310static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10311{
32cd756a 10312 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10313}
10314
10315/*
10316 * charge this task's execution time to its accounting group.
10317 *
10318 * called with rq->lock held.
10319 */
10320static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10321{
10322 struct cpuacct *ca;
934352f2 10323 int cpu;
d842de87 10324
c40c6f85 10325 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10326 return;
10327
934352f2 10328 cpu = task_cpu(tsk);
a18b83b7
BR
10329
10330 rcu_read_lock();
10331
d842de87 10332 ca = task_ca(tsk);
d842de87 10333
934352f2 10334 for (; ca; ca = ca->parent) {
b36128c8 10335 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10336 *cpuusage += cputime;
10337 }
a18b83b7
BR
10338
10339 rcu_read_unlock();
d842de87
SV
10340}
10341
ef12fefa
BR
10342/*
10343 * Charge the system/user time to the task's accounting group.
10344 */
10345static void cpuacct_update_stats(struct task_struct *tsk,
10346 enum cpuacct_stat_index idx, cputime_t val)
10347{
10348 struct cpuacct *ca;
10349
10350 if (unlikely(!cpuacct_subsys.active))
10351 return;
10352
10353 rcu_read_lock();
10354 ca = task_ca(tsk);
10355
10356 do {
10357 percpu_counter_add(&ca->cpustat[idx], val);
10358 ca = ca->parent;
10359 } while (ca);
10360 rcu_read_unlock();
10361}
10362
d842de87
SV
10363struct cgroup_subsys cpuacct_subsys = {
10364 .name = "cpuacct",
10365 .create = cpuacct_create,
10366 .destroy = cpuacct_destroy,
10367 .populate = cpuacct_populate,
10368 .subsys_id = cpuacct_subsys_id,
10369};
10370#endif /* CONFIG_CGROUP_CPUACCT */