]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: rt-group: deal with PI
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
1da177e4 69
5517d86b 70#include <asm/tlb.h>
838225b4 71#include <asm/irq_regs.h>
1da177e4 72
b035b6de
AD
73/*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78unsigned long long __attribute__((weak)) sched_clock(void)
79{
d6322faf 80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
81}
82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
5517d86b
ED
117#ifdef CONFIG_SMP
118/*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123{
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125}
126
127/*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132{
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135}
136#endif
137
e05606d3
IM
138static inline int rt_policy(int policy)
139{
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143}
144
145static inline int task_has_rt_policy(struct task_struct *p)
146{
147 return rt_policy(p->policy);
148}
149
1da177e4 150/*
6aa645ea 151 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 152 */
6aa645ea
IM
153struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156};
157
29f59db3
SV
158#ifdef CONFIG_FAIR_GROUP_SCHED
159
68318b8e
SV
160#include <linux/cgroup.h>
161
29f59db3
SV
162struct cfs_rq;
163
6f505b16
PZ
164static LIST_HEAD(task_groups);
165
29f59db3 166/* task group related information */
4cf86d77 167struct task_group {
68318b8e
SV
168#ifdef CONFIG_FAIR_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170#endif
29f59db3
SV
171 /* schedulable entities of this group on each cpu */
172 struct sched_entity **se;
173 /* runqueue "owned" by this group on each cpu */
174 struct cfs_rq **cfs_rq;
6b2d7700 175
6f505b16
PZ
176 struct sched_rt_entity **rt_se;
177 struct rt_rq **rt_rq;
178
179 unsigned int rt_ratio;
180
6b2d7700
SV
181 /*
182 * shares assigned to a task group governs how much of cpu bandwidth
183 * is allocated to the group. The more shares a group has, the more is
184 * the cpu bandwidth allocated to it.
185 *
186 * For ex, lets say that there are three task groups, A, B and C which
187 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
188 * cpu bandwidth allocated by the scheduler to task groups A, B and C
189 * should be:
190 *
191 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
192 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
03319ec8 193 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
6b2d7700
SV
194 *
195 * The weight assigned to a task group's schedulable entities on every
196 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
197 * group's shares. For ex: lets say that task group A has been
198 * assigned shares of 1000 and there are two CPUs in a system. Then,
199 *
200 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
201 *
202 * Note: It's not necessary that each of a task's group schedulable
03319ec8
IM
203 * entity have the same weight on all CPUs. If the group
204 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
205 * better distribution of weight could be:
6b2d7700
SV
206 *
207 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
208 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
209 *
210 * rebalance_shares() is responsible for distributing the shares of a
211 * task groups like this among the group's schedulable entities across
212 * cpus.
213 *
214 */
29f59db3 215 unsigned long shares;
6b2d7700 216
ae8393e5 217 struct rcu_head rcu;
6f505b16 218 struct list_head list;
29f59db3
SV
219};
220
221/* Default task group's sched entity on each cpu */
222static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
223/* Default task group's cfs_rq on each cpu */
224static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
225
6f505b16
PZ
226static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
227static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
228
9b5b7751
SV
229static struct sched_entity *init_sched_entity_p[NR_CPUS];
230static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 231
6f505b16
PZ
232static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
233static struct rt_rq *init_rt_rq_p[NR_CPUS];
234
8ed36996 235/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
236 * a task group's cpu shares.
237 */
8ed36996 238static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 239
a1835615
SV
240/* doms_cur_mutex serializes access to doms_cur[] array */
241static DEFINE_MUTEX(doms_cur_mutex);
242
6b2d7700
SV
243#ifdef CONFIG_SMP
244/* kernel thread that runs rebalance_shares() periodically */
245static struct task_struct *lb_monitor_task;
246static int load_balance_monitor(void *unused);
247#endif
248
249static void set_se_shares(struct sched_entity *se, unsigned long shares);
250
29f59db3 251/* Default task group.
3a252015 252 * Every task in system belong to this group at bootup.
29f59db3 253 */
4cf86d77 254struct task_group init_task_group = {
0eab9146 255 .se = init_sched_entity_p,
3a252015 256 .cfs_rq = init_cfs_rq_p,
6f505b16
PZ
257
258 .rt_se = init_sched_rt_entity_p,
259 .rt_rq = init_rt_rq_p,
3a252015 260};
9b5b7751 261
24e377a8 262#ifdef CONFIG_FAIR_USER_SCHED
0eab9146 263# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
24e377a8 264#else
93f992cc 265# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
266#endif
267
0eab9146 268#define MIN_GROUP_SHARES 2
6b2d7700 269
93f992cc 270static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
271
272/* return group to which a task belongs */
4cf86d77 273static inline struct task_group *task_group(struct task_struct *p)
29f59db3 274{
4cf86d77 275 struct task_group *tg;
9b5b7751 276
24e377a8
SV
277#ifdef CONFIG_FAIR_USER_SCHED
278 tg = p->user->tg;
68318b8e
SV
279#elif defined(CONFIG_FAIR_CGROUP_SCHED)
280 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
281 struct task_group, css);
24e377a8 282#else
41a2d6cf 283 tg = &init_task_group;
24e377a8 284#endif
9b5b7751 285 return tg;
29f59db3
SV
286}
287
288/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 289static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 290{
ce96b5ac
DA
291 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
292 p->se.parent = task_group(p)->se[cpu];
6f505b16
PZ
293
294 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
295 p->rt.parent = task_group(p)->rt_se[cpu];
29f59db3
SV
296}
297
a1835615
SV
298static inline void lock_doms_cur(void)
299{
300 mutex_lock(&doms_cur_mutex);
301}
302
303static inline void unlock_doms_cur(void)
304{
305 mutex_unlock(&doms_cur_mutex);
306}
307
29f59db3
SV
308#else
309
6f505b16 310static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
311static inline void lock_doms_cur(void) { }
312static inline void unlock_doms_cur(void) { }
29f59db3
SV
313
314#endif /* CONFIG_FAIR_GROUP_SCHED */
315
6aa645ea
IM
316/* CFS-related fields in a runqueue */
317struct cfs_rq {
318 struct load_weight load;
319 unsigned long nr_running;
320
6aa645ea 321 u64 exec_clock;
e9acbff6 322 u64 min_vruntime;
6aa645ea
IM
323
324 struct rb_root tasks_timeline;
325 struct rb_node *rb_leftmost;
326 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
327 /* 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr;
ddc97297
PZ
331
332 unsigned long nr_spread_over;
333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
347#endif
348};
1da177e4 349
6aa645ea
IM
350/* Real-Time classes' related field in a runqueue: */
351struct rt_rq {
352 struct rt_prio_array active;
63489e45 353 unsigned long rt_nr_running;
6f505b16
PZ
354#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
355 int highest_prio; /* highest queued rt task prio */
356#endif
fa85ae24 357#ifdef CONFIG_SMP
73fe6aae 358 unsigned long rt_nr_migratory;
a22d7fc1 359 int overloaded;
fa85ae24 360#endif
6f505b16 361 int rt_throttled;
fa85ae24 362 u64 rt_time;
6f505b16
PZ
363
364#ifdef CONFIG_FAIR_GROUP_SCHED
23b0fdfc
PZ
365 unsigned long rt_nr_boosted;
366
6f505b16
PZ
367 struct rq *rq;
368 struct list_head leaf_rt_rq_list;
369 struct task_group *tg;
370 struct sched_rt_entity *rt_se;
371#endif
6aa645ea
IM
372};
373
57d885fe
GH
374#ifdef CONFIG_SMP
375
376/*
377 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
378 * variables. Each exclusive cpuset essentially defines an island domain by
379 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
380 * exclusive cpuset is created, we also create and attach a new root-domain
381 * object.
382 *
57d885fe
GH
383 */
384struct root_domain {
385 atomic_t refcount;
386 cpumask_t span;
387 cpumask_t online;
637f5085 388
0eab9146 389 /*
637f5085
GH
390 * The "RT overload" flag: it gets set if a CPU has more than
391 * one runnable RT task.
392 */
393 cpumask_t rto_mask;
0eab9146 394 atomic_t rto_count;
57d885fe
GH
395};
396
dc938520
GH
397/*
398 * By default the system creates a single root-domain with all cpus as
399 * members (mimicking the global state we have today).
400 */
57d885fe
GH
401static struct root_domain def_root_domain;
402
403#endif
404
1da177e4
LT
405/*
406 * This is the main, per-CPU runqueue data structure.
407 *
408 * Locking rule: those places that want to lock multiple runqueues
409 * (such as the load balancing or the thread migration code), lock
410 * acquire operations must be ordered by ascending &runqueue.
411 */
70b97a7f 412struct rq {
d8016491
IM
413 /* runqueue lock: */
414 spinlock_t lock;
1da177e4
LT
415
416 /*
417 * nr_running and cpu_load should be in the same cacheline because
418 * remote CPUs use both these fields when doing load calculation.
419 */
420 unsigned long nr_running;
6aa645ea
IM
421 #define CPU_LOAD_IDX_MAX 5
422 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 423 unsigned char idle_at_tick;
46cb4b7c
SS
424#ifdef CONFIG_NO_HZ
425 unsigned char in_nohz_recently;
426#endif
d8016491
IM
427 /* capture load from *all* tasks on this cpu: */
428 struct load_weight load;
6aa645ea
IM
429 unsigned long nr_load_updates;
430 u64 nr_switches;
431
432 struct cfs_rq cfs;
6f505b16
PZ
433 struct rt_rq rt;
434 u64 rt_period_expire;
48d5e258 435 int rt_throttled;
6f505b16 436
6aa645ea 437#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
438 /* list of leaf cfs_rq on this cpu: */
439 struct list_head leaf_cfs_rq_list;
6f505b16 440 struct list_head leaf_rt_rq_list;
1da177e4 441#endif
1da177e4
LT
442
443 /*
444 * This is part of a global counter where only the total sum
445 * over all CPUs matters. A task can increase this counter on
446 * one CPU and if it got migrated afterwards it may decrease
447 * it on another CPU. Always updated under the runqueue lock:
448 */
449 unsigned long nr_uninterruptible;
450
36c8b586 451 struct task_struct *curr, *idle;
c9819f45 452 unsigned long next_balance;
1da177e4 453 struct mm_struct *prev_mm;
6aa645ea 454
6aa645ea
IM
455 u64 clock, prev_clock_raw;
456 s64 clock_max_delta;
457
cc203d24 458 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
459 u64 idle_clock;
460 unsigned int clock_deep_idle_events;
529c7726 461 u64 tick_timestamp;
6aa645ea 462
1da177e4
LT
463 atomic_t nr_iowait;
464
465#ifdef CONFIG_SMP
0eab9146 466 struct root_domain *rd;
1da177e4
LT
467 struct sched_domain *sd;
468
469 /* For active balancing */
470 int active_balance;
471 int push_cpu;
d8016491
IM
472 /* cpu of this runqueue: */
473 int cpu;
1da177e4 474
36c8b586 475 struct task_struct *migration_thread;
1da177e4
LT
476 struct list_head migration_queue;
477#endif
478
8f4d37ec
PZ
479#ifdef CONFIG_SCHED_HRTICK
480 unsigned long hrtick_flags;
481 ktime_t hrtick_expire;
482 struct hrtimer hrtick_timer;
483#endif
484
1da177e4
LT
485#ifdef CONFIG_SCHEDSTATS
486 /* latency stats */
487 struct sched_info rq_sched_info;
488
489 /* sys_sched_yield() stats */
480b9434
KC
490 unsigned int yld_exp_empty;
491 unsigned int yld_act_empty;
492 unsigned int yld_both_empty;
493 unsigned int yld_count;
1da177e4
LT
494
495 /* schedule() stats */
480b9434
KC
496 unsigned int sched_switch;
497 unsigned int sched_count;
498 unsigned int sched_goidle;
1da177e4
LT
499
500 /* try_to_wake_up() stats */
480b9434
KC
501 unsigned int ttwu_count;
502 unsigned int ttwu_local;
b8efb561
IM
503
504 /* BKL stats */
480b9434 505 unsigned int bkl_count;
1da177e4 506#endif
fcb99371 507 struct lock_class_key rq_lock_key;
1da177e4
LT
508};
509
f34e3b61 510static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 511
dd41f596
IM
512static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
513{
514 rq->curr->sched_class->check_preempt_curr(rq, p);
515}
516
0a2966b4
CL
517static inline int cpu_of(struct rq *rq)
518{
519#ifdef CONFIG_SMP
520 return rq->cpu;
521#else
522 return 0;
523#endif
524}
525
20d315d4 526/*
b04a0f4c
IM
527 * Update the per-runqueue clock, as finegrained as the platform can give
528 * us, but without assuming monotonicity, etc.:
20d315d4 529 */
b04a0f4c 530static void __update_rq_clock(struct rq *rq)
20d315d4
IM
531{
532 u64 prev_raw = rq->prev_clock_raw;
533 u64 now = sched_clock();
534 s64 delta = now - prev_raw;
535 u64 clock = rq->clock;
536
b04a0f4c
IM
537#ifdef CONFIG_SCHED_DEBUG
538 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
539#endif
20d315d4
IM
540 /*
541 * Protect against sched_clock() occasionally going backwards:
542 */
543 if (unlikely(delta < 0)) {
544 clock++;
545 rq->clock_warps++;
546 } else {
547 /*
548 * Catch too large forward jumps too:
549 */
529c7726
IM
550 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
551 if (clock < rq->tick_timestamp + TICK_NSEC)
552 clock = rq->tick_timestamp + TICK_NSEC;
553 else
554 clock++;
20d315d4
IM
555 rq->clock_overflows++;
556 } else {
557 if (unlikely(delta > rq->clock_max_delta))
558 rq->clock_max_delta = delta;
559 clock += delta;
560 }
561 }
562
563 rq->prev_clock_raw = now;
564 rq->clock = clock;
b04a0f4c 565}
20d315d4 566
b04a0f4c
IM
567static void update_rq_clock(struct rq *rq)
568{
569 if (likely(smp_processor_id() == cpu_of(rq)))
570 __update_rq_clock(rq);
20d315d4
IM
571}
572
674311d5
NP
573/*
574 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 575 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
576 *
577 * The domain tree of any CPU may only be accessed from within
578 * preempt-disabled sections.
579 */
48f24c4d
IM
580#define for_each_domain(cpu, __sd) \
581 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
582
583#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
584#define this_rq() (&__get_cpu_var(runqueues))
585#define task_rq(p) cpu_rq(task_cpu(p))
586#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
587
48d5e258
PZ
588unsigned long rt_needs_cpu(int cpu)
589{
590 struct rq *rq = cpu_rq(cpu);
591 u64 delta;
592
593 if (!rq->rt_throttled)
594 return 0;
595
596 if (rq->clock > rq->rt_period_expire)
597 return 1;
598
599 delta = rq->rt_period_expire - rq->clock;
600 do_div(delta, NSEC_PER_SEC / HZ);
601
602 return (unsigned long)delta;
603}
604
bf5c91ba
IM
605/*
606 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
607 */
608#ifdef CONFIG_SCHED_DEBUG
609# define const_debug __read_mostly
610#else
611# define const_debug static const
612#endif
613
614/*
615 * Debugging: various feature bits
616 */
617enum {
bbdba7c0 618 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
619 SCHED_FEAT_WAKEUP_PREEMPT = 2,
620 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
621 SCHED_FEAT_TREE_AVG = 8,
622 SCHED_FEAT_APPROX_AVG = 16,
8f4d37ec
PZ
623 SCHED_FEAT_HRTICK = 32,
624 SCHED_FEAT_DOUBLE_TICK = 64,
bf5c91ba
IM
625};
626
627const_debug unsigned int sysctl_sched_features =
8401f775 628 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 629 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
630 SCHED_FEAT_START_DEBIT * 1 |
631 SCHED_FEAT_TREE_AVG * 0 |
8f4d37ec
PZ
632 SCHED_FEAT_APPROX_AVG * 0 |
633 SCHED_FEAT_HRTICK * 1 |
634 SCHED_FEAT_DOUBLE_TICK * 0;
bf5c91ba
IM
635
636#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
637
b82d9fdd
PZ
638/*
639 * Number of tasks to iterate in a single balance run.
640 * Limited because this is done with IRQs disabled.
641 */
642const_debug unsigned int sysctl_sched_nr_migrate = 32;
643
fa85ae24
PZ
644/*
645 * period over which we measure -rt task cpu usage in ms.
646 * default: 1s
647 */
648const_debug unsigned int sysctl_sched_rt_period = 1000;
649
650#define SCHED_RT_FRAC_SHIFT 16
651#define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
652
653/*
654 * ratio of time -rt tasks may consume.
6f505b16 655 * default: 95%
fa85ae24 656 */
6f505b16 657const_debug unsigned int sysctl_sched_rt_ratio = 62259;
fa85ae24 658
e436d800
IM
659/*
660 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
661 * clock constructed from sched_clock():
662 */
663unsigned long long cpu_clock(int cpu)
664{
e436d800
IM
665 unsigned long long now;
666 unsigned long flags;
b04a0f4c 667 struct rq *rq;
e436d800 668
2cd4d0ea 669 local_irq_save(flags);
b04a0f4c 670 rq = cpu_rq(cpu);
8ced5f69
IM
671 /*
672 * Only call sched_clock() if the scheduler has already been
673 * initialized (some code might call cpu_clock() very early):
674 */
675 if (rq->idle)
676 update_rq_clock(rq);
b04a0f4c 677 now = rq->clock;
2cd4d0ea 678 local_irq_restore(flags);
e436d800
IM
679
680 return now;
681}
a58f6f25 682EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 683
1da177e4 684#ifndef prepare_arch_switch
4866cde0
NP
685# define prepare_arch_switch(next) do { } while (0)
686#endif
687#ifndef finish_arch_switch
688# define finish_arch_switch(prev) do { } while (0)
689#endif
690
051a1d1a
DA
691static inline int task_current(struct rq *rq, struct task_struct *p)
692{
693 return rq->curr == p;
694}
695
4866cde0 696#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 697static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 698{
051a1d1a 699 return task_current(rq, p);
4866cde0
NP
700}
701
70b97a7f 702static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
703{
704}
705
70b97a7f 706static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 707{
da04c035
IM
708#ifdef CONFIG_DEBUG_SPINLOCK
709 /* this is a valid case when another task releases the spinlock */
710 rq->lock.owner = current;
711#endif
8a25d5de
IM
712 /*
713 * If we are tracking spinlock dependencies then we have to
714 * fix up the runqueue lock - which gets 'carried over' from
715 * prev into current:
716 */
717 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
718
4866cde0
NP
719 spin_unlock_irq(&rq->lock);
720}
721
722#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 723static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
724{
725#ifdef CONFIG_SMP
726 return p->oncpu;
727#else
051a1d1a 728 return task_current(rq, p);
4866cde0
NP
729#endif
730}
731
70b97a7f 732static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
733{
734#ifdef CONFIG_SMP
735 /*
736 * We can optimise this out completely for !SMP, because the
737 * SMP rebalancing from interrupt is the only thing that cares
738 * here.
739 */
740 next->oncpu = 1;
741#endif
742#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
743 spin_unlock_irq(&rq->lock);
744#else
745 spin_unlock(&rq->lock);
746#endif
747}
748
70b97a7f 749static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
750{
751#ifdef CONFIG_SMP
752 /*
753 * After ->oncpu is cleared, the task can be moved to a different CPU.
754 * We must ensure this doesn't happen until the switch is completely
755 * finished.
756 */
757 smp_wmb();
758 prev->oncpu = 0;
759#endif
760#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
761 local_irq_enable();
1da177e4 762#endif
4866cde0
NP
763}
764#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 765
b29739f9
IM
766/*
767 * __task_rq_lock - lock the runqueue a given task resides on.
768 * Must be called interrupts disabled.
769 */
70b97a7f 770static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
771 __acquires(rq->lock)
772{
3a5c359a
AK
773 for (;;) {
774 struct rq *rq = task_rq(p);
775 spin_lock(&rq->lock);
776 if (likely(rq == task_rq(p)))
777 return rq;
b29739f9 778 spin_unlock(&rq->lock);
b29739f9 779 }
b29739f9
IM
780}
781
1da177e4
LT
782/*
783 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 784 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
785 * explicitly disabling preemption.
786 */
70b97a7f 787static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
788 __acquires(rq->lock)
789{
70b97a7f 790 struct rq *rq;
1da177e4 791
3a5c359a
AK
792 for (;;) {
793 local_irq_save(*flags);
794 rq = task_rq(p);
795 spin_lock(&rq->lock);
796 if (likely(rq == task_rq(p)))
797 return rq;
1da177e4 798 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 799 }
1da177e4
LT
800}
801
a9957449 802static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
803 __releases(rq->lock)
804{
805 spin_unlock(&rq->lock);
806}
807
70b97a7f 808static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
809 __releases(rq->lock)
810{
811 spin_unlock_irqrestore(&rq->lock, *flags);
812}
813
1da177e4 814/*
cc2a73b5 815 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 816 */
a9957449 817static struct rq *this_rq_lock(void)
1da177e4
LT
818 __acquires(rq->lock)
819{
70b97a7f 820 struct rq *rq;
1da177e4
LT
821
822 local_irq_disable();
823 rq = this_rq();
824 spin_lock(&rq->lock);
825
826 return rq;
827}
828
1b9f19c2 829/*
2aa44d05 830 * We are going deep-idle (irqs are disabled):
1b9f19c2 831 */
2aa44d05 832void sched_clock_idle_sleep_event(void)
1b9f19c2 833{
2aa44d05
IM
834 struct rq *rq = cpu_rq(smp_processor_id());
835
836 spin_lock(&rq->lock);
837 __update_rq_clock(rq);
838 spin_unlock(&rq->lock);
839 rq->clock_deep_idle_events++;
840}
841EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
842
843/*
844 * We just idled delta nanoseconds (called with irqs disabled):
845 */
846void sched_clock_idle_wakeup_event(u64 delta_ns)
847{
848 struct rq *rq = cpu_rq(smp_processor_id());
849 u64 now = sched_clock();
1b9f19c2 850
2aa44d05
IM
851 rq->idle_clock += delta_ns;
852 /*
853 * Override the previous timestamp and ignore all
854 * sched_clock() deltas that occured while we idled,
855 * and use the PM-provided delta_ns to advance the
856 * rq clock:
857 */
858 spin_lock(&rq->lock);
859 rq->prev_clock_raw = now;
860 rq->clock += delta_ns;
861 spin_unlock(&rq->lock);
782daeee 862 touch_softlockup_watchdog();
1b9f19c2 863}
2aa44d05 864EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 865
8f4d37ec
PZ
866static void __resched_task(struct task_struct *p, int tif_bit);
867
868static inline void resched_task(struct task_struct *p)
869{
870 __resched_task(p, TIF_NEED_RESCHED);
871}
872
873#ifdef CONFIG_SCHED_HRTICK
874/*
875 * Use HR-timers to deliver accurate preemption points.
876 *
877 * Its all a bit involved since we cannot program an hrt while holding the
878 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
879 * reschedule event.
880 *
881 * When we get rescheduled we reprogram the hrtick_timer outside of the
882 * rq->lock.
883 */
884static inline void resched_hrt(struct task_struct *p)
885{
886 __resched_task(p, TIF_HRTICK_RESCHED);
887}
888
889static inline void resched_rq(struct rq *rq)
890{
891 unsigned long flags;
892
893 spin_lock_irqsave(&rq->lock, flags);
894 resched_task(rq->curr);
895 spin_unlock_irqrestore(&rq->lock, flags);
896}
897
898enum {
899 HRTICK_SET, /* re-programm hrtick_timer */
900 HRTICK_RESET, /* not a new slice */
901};
902
903/*
904 * Use hrtick when:
905 * - enabled by features
906 * - hrtimer is actually high res
907 */
908static inline int hrtick_enabled(struct rq *rq)
909{
910 if (!sched_feat(HRTICK))
911 return 0;
912 return hrtimer_is_hres_active(&rq->hrtick_timer);
913}
914
915/*
916 * Called to set the hrtick timer state.
917 *
918 * called with rq->lock held and irqs disabled
919 */
920static void hrtick_start(struct rq *rq, u64 delay, int reset)
921{
922 assert_spin_locked(&rq->lock);
923
924 /*
925 * preempt at: now + delay
926 */
927 rq->hrtick_expire =
928 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
929 /*
930 * indicate we need to program the timer
931 */
932 __set_bit(HRTICK_SET, &rq->hrtick_flags);
933 if (reset)
934 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
935
936 /*
937 * New slices are called from the schedule path and don't need a
938 * forced reschedule.
939 */
940 if (reset)
941 resched_hrt(rq->curr);
942}
943
944static void hrtick_clear(struct rq *rq)
945{
946 if (hrtimer_active(&rq->hrtick_timer))
947 hrtimer_cancel(&rq->hrtick_timer);
948}
949
950/*
951 * Update the timer from the possible pending state.
952 */
953static void hrtick_set(struct rq *rq)
954{
955 ktime_t time;
956 int set, reset;
957 unsigned long flags;
958
959 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
960
961 spin_lock_irqsave(&rq->lock, flags);
962 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
963 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
964 time = rq->hrtick_expire;
965 clear_thread_flag(TIF_HRTICK_RESCHED);
966 spin_unlock_irqrestore(&rq->lock, flags);
967
968 if (set) {
969 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
970 if (reset && !hrtimer_active(&rq->hrtick_timer))
971 resched_rq(rq);
972 } else
973 hrtick_clear(rq);
974}
975
976/*
977 * High-resolution timer tick.
978 * Runs from hardirq context with interrupts disabled.
979 */
980static enum hrtimer_restart hrtick(struct hrtimer *timer)
981{
982 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
983
984 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
985
986 spin_lock(&rq->lock);
987 __update_rq_clock(rq);
988 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
989 spin_unlock(&rq->lock);
990
991 return HRTIMER_NORESTART;
992}
993
994static inline void init_rq_hrtick(struct rq *rq)
995{
996 rq->hrtick_flags = 0;
997 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
998 rq->hrtick_timer.function = hrtick;
999 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1000}
1001
1002void hrtick_resched(void)
1003{
1004 struct rq *rq;
1005 unsigned long flags;
1006
1007 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1008 return;
1009
1010 local_irq_save(flags);
1011 rq = cpu_rq(smp_processor_id());
1012 hrtick_set(rq);
1013 local_irq_restore(flags);
1014}
1015#else
1016static inline void hrtick_clear(struct rq *rq)
1017{
1018}
1019
1020static inline void hrtick_set(struct rq *rq)
1021{
1022}
1023
1024static inline void init_rq_hrtick(struct rq *rq)
1025{
1026}
1027
1028void hrtick_resched(void)
1029{
1030}
1031#endif
1032
c24d20db
IM
1033/*
1034 * resched_task - mark a task 'to be rescheduled now'.
1035 *
1036 * On UP this means the setting of the need_resched flag, on SMP it
1037 * might also involve a cross-CPU call to trigger the scheduler on
1038 * the target CPU.
1039 */
1040#ifdef CONFIG_SMP
1041
1042#ifndef tsk_is_polling
1043#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1044#endif
1045
8f4d37ec 1046static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1047{
1048 int cpu;
1049
1050 assert_spin_locked(&task_rq(p)->lock);
1051
8f4d37ec 1052 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1053 return;
1054
8f4d37ec 1055 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1056
1057 cpu = task_cpu(p);
1058 if (cpu == smp_processor_id())
1059 return;
1060
1061 /* NEED_RESCHED must be visible before we test polling */
1062 smp_mb();
1063 if (!tsk_is_polling(p))
1064 smp_send_reschedule(cpu);
1065}
1066
1067static void resched_cpu(int cpu)
1068{
1069 struct rq *rq = cpu_rq(cpu);
1070 unsigned long flags;
1071
1072 if (!spin_trylock_irqsave(&rq->lock, flags))
1073 return;
1074 resched_task(cpu_curr(cpu));
1075 spin_unlock_irqrestore(&rq->lock, flags);
1076}
1077#else
8f4d37ec 1078static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1079{
1080 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1081 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1082}
1083#endif
1084
45bf76df
IM
1085#if BITS_PER_LONG == 32
1086# define WMULT_CONST (~0UL)
1087#else
1088# define WMULT_CONST (1UL << 32)
1089#endif
1090
1091#define WMULT_SHIFT 32
1092
194081eb
IM
1093/*
1094 * Shift right and round:
1095 */
cf2ab469 1096#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1097
cb1c4fc9 1098static unsigned long
45bf76df
IM
1099calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1100 struct load_weight *lw)
1101{
1102 u64 tmp;
1103
1104 if (unlikely(!lw->inv_weight))
194081eb 1105 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
1106
1107 tmp = (u64)delta_exec * weight;
1108 /*
1109 * Check whether we'd overflow the 64-bit multiplication:
1110 */
194081eb 1111 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1112 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1113 WMULT_SHIFT/2);
1114 else
cf2ab469 1115 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1116
ecf691da 1117 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1118}
1119
1120static inline unsigned long
1121calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1122{
1123 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1124}
1125
1091985b 1126static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1127{
1128 lw->weight += inc;
45bf76df
IM
1129}
1130
1091985b 1131static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1132{
1133 lw->weight -= dec;
45bf76df
IM
1134}
1135
2dd73a4f
PW
1136/*
1137 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1138 * of tasks with abnormal "nice" values across CPUs the contribution that
1139 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1140 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1141 * scaled version of the new time slice allocation that they receive on time
1142 * slice expiry etc.
1143 */
1144
dd41f596
IM
1145#define WEIGHT_IDLEPRIO 2
1146#define WMULT_IDLEPRIO (1 << 31)
1147
1148/*
1149 * Nice levels are multiplicative, with a gentle 10% change for every
1150 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1151 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1152 * that remained on nice 0.
1153 *
1154 * The "10% effect" is relative and cumulative: from _any_ nice level,
1155 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1156 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1157 * If a task goes up by ~10% and another task goes down by ~10% then
1158 * the relative distance between them is ~25%.)
dd41f596
IM
1159 */
1160static const int prio_to_weight[40] = {
254753dc
IM
1161 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1162 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1163 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1164 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1165 /* 0 */ 1024, 820, 655, 526, 423,
1166 /* 5 */ 335, 272, 215, 172, 137,
1167 /* 10 */ 110, 87, 70, 56, 45,
1168 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1169};
1170
5714d2de
IM
1171/*
1172 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1173 *
1174 * In cases where the weight does not change often, we can use the
1175 * precalculated inverse to speed up arithmetics by turning divisions
1176 * into multiplications:
1177 */
dd41f596 1178static const u32 prio_to_wmult[40] = {
254753dc
IM
1179 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1180 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1181 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1182 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1183 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1184 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1185 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1186 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1187};
2dd73a4f 1188
dd41f596
IM
1189static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1190
1191/*
1192 * runqueue iterator, to support SMP load-balancing between different
1193 * scheduling classes, without having to expose their internal data
1194 * structures to the load-balancing proper:
1195 */
1196struct rq_iterator {
1197 void *arg;
1198 struct task_struct *(*start)(void *);
1199 struct task_struct *(*next)(void *);
1200};
1201
e1d1484f
PW
1202#ifdef CONFIG_SMP
1203static unsigned long
1204balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1205 unsigned long max_load_move, struct sched_domain *sd,
1206 enum cpu_idle_type idle, int *all_pinned,
1207 int *this_best_prio, struct rq_iterator *iterator);
1208
1209static int
1210iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1211 struct sched_domain *sd, enum cpu_idle_type idle,
1212 struct rq_iterator *iterator);
e1d1484f 1213#endif
dd41f596 1214
d842de87
SV
1215#ifdef CONFIG_CGROUP_CPUACCT
1216static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1217#else
1218static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1219#endif
1220
58e2d4ca
SV
1221static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1222{
1223 update_load_add(&rq->load, load);
1224}
1225
1226static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1227{
1228 update_load_sub(&rq->load, load);
1229}
1230
e7693a36
GH
1231#ifdef CONFIG_SMP
1232static unsigned long source_load(int cpu, int type);
1233static unsigned long target_load(int cpu, int type);
1234static unsigned long cpu_avg_load_per_task(int cpu);
1235static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1236#endif /* CONFIG_SMP */
1237
dd41f596 1238#include "sched_stats.h"
dd41f596 1239#include "sched_idletask.c"
5522d5d5
IM
1240#include "sched_fair.c"
1241#include "sched_rt.c"
dd41f596
IM
1242#ifdef CONFIG_SCHED_DEBUG
1243# include "sched_debug.c"
1244#endif
1245
1246#define sched_class_highest (&rt_sched_class)
1247
5aff0531 1248static void inc_nr_running(struct rq *rq)
9c217245
IM
1249{
1250 rq->nr_running++;
9c217245
IM
1251}
1252
5aff0531 1253static void dec_nr_running(struct rq *rq)
9c217245
IM
1254{
1255 rq->nr_running--;
9c217245
IM
1256}
1257
45bf76df
IM
1258static void set_load_weight(struct task_struct *p)
1259{
1260 if (task_has_rt_policy(p)) {
dd41f596
IM
1261 p->se.load.weight = prio_to_weight[0] * 2;
1262 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1263 return;
1264 }
45bf76df 1265
dd41f596
IM
1266 /*
1267 * SCHED_IDLE tasks get minimal weight:
1268 */
1269 if (p->policy == SCHED_IDLE) {
1270 p->se.load.weight = WEIGHT_IDLEPRIO;
1271 p->se.load.inv_weight = WMULT_IDLEPRIO;
1272 return;
1273 }
71f8bd46 1274
dd41f596
IM
1275 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1276 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1277}
1278
8159f87e 1279static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1280{
dd41f596 1281 sched_info_queued(p);
fd390f6a 1282 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1283 p->se.on_rq = 1;
71f8bd46
IM
1284}
1285
69be72c1 1286static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1287{
f02231e5 1288 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1289 p->se.on_rq = 0;
71f8bd46
IM
1290}
1291
14531189 1292/*
dd41f596 1293 * __normal_prio - return the priority that is based on the static prio
14531189 1294 */
14531189
IM
1295static inline int __normal_prio(struct task_struct *p)
1296{
dd41f596 1297 return p->static_prio;
14531189
IM
1298}
1299
b29739f9
IM
1300/*
1301 * Calculate the expected normal priority: i.e. priority
1302 * without taking RT-inheritance into account. Might be
1303 * boosted by interactivity modifiers. Changes upon fork,
1304 * setprio syscalls, and whenever the interactivity
1305 * estimator recalculates.
1306 */
36c8b586 1307static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1308{
1309 int prio;
1310
e05606d3 1311 if (task_has_rt_policy(p))
b29739f9
IM
1312 prio = MAX_RT_PRIO-1 - p->rt_priority;
1313 else
1314 prio = __normal_prio(p);
1315 return prio;
1316}
1317
1318/*
1319 * Calculate the current priority, i.e. the priority
1320 * taken into account by the scheduler. This value might
1321 * be boosted by RT tasks, or might be boosted by
1322 * interactivity modifiers. Will be RT if the task got
1323 * RT-boosted. If not then it returns p->normal_prio.
1324 */
36c8b586 1325static int effective_prio(struct task_struct *p)
b29739f9
IM
1326{
1327 p->normal_prio = normal_prio(p);
1328 /*
1329 * If we are RT tasks or we were boosted to RT priority,
1330 * keep the priority unchanged. Otherwise, update priority
1331 * to the normal priority:
1332 */
1333 if (!rt_prio(p->prio))
1334 return p->normal_prio;
1335 return p->prio;
1336}
1337
1da177e4 1338/*
dd41f596 1339 * activate_task - move a task to the runqueue.
1da177e4 1340 */
dd41f596 1341static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1342{
d9514f6c 1343 if (task_contributes_to_load(p))
dd41f596 1344 rq->nr_uninterruptible--;
1da177e4 1345
8159f87e 1346 enqueue_task(rq, p, wakeup);
5aff0531 1347 inc_nr_running(rq);
1da177e4
LT
1348}
1349
1da177e4
LT
1350/*
1351 * deactivate_task - remove a task from the runqueue.
1352 */
2e1cb74a 1353static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1354{
d9514f6c 1355 if (task_contributes_to_load(p))
dd41f596
IM
1356 rq->nr_uninterruptible++;
1357
69be72c1 1358 dequeue_task(rq, p, sleep);
5aff0531 1359 dec_nr_running(rq);
1da177e4
LT
1360}
1361
1da177e4
LT
1362/**
1363 * task_curr - is this task currently executing on a CPU?
1364 * @p: the task in question.
1365 */
36c8b586 1366inline int task_curr(const struct task_struct *p)
1da177e4
LT
1367{
1368 return cpu_curr(task_cpu(p)) == p;
1369}
1370
2dd73a4f
PW
1371/* Used instead of source_load when we know the type == 0 */
1372unsigned long weighted_cpuload(const int cpu)
1373{
495eca49 1374 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1375}
1376
1377static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1378{
6f505b16 1379 set_task_rq(p, cpu);
dd41f596 1380#ifdef CONFIG_SMP
ce96b5ac
DA
1381 /*
1382 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1383 * successfuly executed on another CPU. We must ensure that updates of
1384 * per-task data have been completed by this moment.
1385 */
1386 smp_wmb();
dd41f596 1387 task_thread_info(p)->cpu = cpu;
dd41f596 1388#endif
2dd73a4f
PW
1389}
1390
cb469845
SR
1391static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1392 const struct sched_class *prev_class,
1393 int oldprio, int running)
1394{
1395 if (prev_class != p->sched_class) {
1396 if (prev_class->switched_from)
1397 prev_class->switched_from(rq, p, running);
1398 p->sched_class->switched_to(rq, p, running);
1399 } else
1400 p->sched_class->prio_changed(rq, p, oldprio, running);
1401}
1402
1da177e4 1403#ifdef CONFIG_SMP
c65cc870 1404
cc367732
IM
1405/*
1406 * Is this task likely cache-hot:
1407 */
e7693a36 1408static int
cc367732
IM
1409task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1410{
1411 s64 delta;
1412
1413 if (p->sched_class != &fair_sched_class)
1414 return 0;
1415
6bc1665b
IM
1416 if (sysctl_sched_migration_cost == -1)
1417 return 1;
1418 if (sysctl_sched_migration_cost == 0)
1419 return 0;
1420
cc367732
IM
1421 delta = now - p->se.exec_start;
1422
1423 return delta < (s64)sysctl_sched_migration_cost;
1424}
1425
1426
dd41f596 1427void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1428{
dd41f596
IM
1429 int old_cpu = task_cpu(p);
1430 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1431 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1432 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1433 u64 clock_offset;
dd41f596
IM
1434
1435 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1436
1437#ifdef CONFIG_SCHEDSTATS
1438 if (p->se.wait_start)
1439 p->se.wait_start -= clock_offset;
dd41f596
IM
1440 if (p->se.sleep_start)
1441 p->se.sleep_start -= clock_offset;
1442 if (p->se.block_start)
1443 p->se.block_start -= clock_offset;
cc367732
IM
1444 if (old_cpu != new_cpu) {
1445 schedstat_inc(p, se.nr_migrations);
1446 if (task_hot(p, old_rq->clock, NULL))
1447 schedstat_inc(p, se.nr_forced2_migrations);
1448 }
6cfb0d5d 1449#endif
2830cf8c
SV
1450 p->se.vruntime -= old_cfsrq->min_vruntime -
1451 new_cfsrq->min_vruntime;
dd41f596
IM
1452
1453 __set_task_cpu(p, new_cpu);
c65cc870
IM
1454}
1455
70b97a7f 1456struct migration_req {
1da177e4 1457 struct list_head list;
1da177e4 1458
36c8b586 1459 struct task_struct *task;
1da177e4
LT
1460 int dest_cpu;
1461
1da177e4 1462 struct completion done;
70b97a7f 1463};
1da177e4
LT
1464
1465/*
1466 * The task's runqueue lock must be held.
1467 * Returns true if you have to wait for migration thread.
1468 */
36c8b586 1469static int
70b97a7f 1470migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1471{
70b97a7f 1472 struct rq *rq = task_rq(p);
1da177e4
LT
1473
1474 /*
1475 * If the task is not on a runqueue (and not running), then
1476 * it is sufficient to simply update the task's cpu field.
1477 */
dd41f596 1478 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1479 set_task_cpu(p, dest_cpu);
1480 return 0;
1481 }
1482
1483 init_completion(&req->done);
1da177e4
LT
1484 req->task = p;
1485 req->dest_cpu = dest_cpu;
1486 list_add(&req->list, &rq->migration_queue);
48f24c4d 1487
1da177e4
LT
1488 return 1;
1489}
1490
1491/*
1492 * wait_task_inactive - wait for a thread to unschedule.
1493 *
1494 * The caller must ensure that the task *will* unschedule sometime soon,
1495 * else this function might spin for a *long* time. This function can't
1496 * be called with interrupts off, or it may introduce deadlock with
1497 * smp_call_function() if an IPI is sent by the same process we are
1498 * waiting to become inactive.
1499 */
36c8b586 1500void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1501{
1502 unsigned long flags;
dd41f596 1503 int running, on_rq;
70b97a7f 1504 struct rq *rq;
1da177e4 1505
3a5c359a
AK
1506 for (;;) {
1507 /*
1508 * We do the initial early heuristics without holding
1509 * any task-queue locks at all. We'll only try to get
1510 * the runqueue lock when things look like they will
1511 * work out!
1512 */
1513 rq = task_rq(p);
fa490cfd 1514
3a5c359a
AK
1515 /*
1516 * If the task is actively running on another CPU
1517 * still, just relax and busy-wait without holding
1518 * any locks.
1519 *
1520 * NOTE! Since we don't hold any locks, it's not
1521 * even sure that "rq" stays as the right runqueue!
1522 * But we don't care, since "task_running()" will
1523 * return false if the runqueue has changed and p
1524 * is actually now running somewhere else!
1525 */
1526 while (task_running(rq, p))
1527 cpu_relax();
fa490cfd 1528
3a5c359a
AK
1529 /*
1530 * Ok, time to look more closely! We need the rq
1531 * lock now, to be *sure*. If we're wrong, we'll
1532 * just go back and repeat.
1533 */
1534 rq = task_rq_lock(p, &flags);
1535 running = task_running(rq, p);
1536 on_rq = p->se.on_rq;
1537 task_rq_unlock(rq, &flags);
fa490cfd 1538
3a5c359a
AK
1539 /*
1540 * Was it really running after all now that we
1541 * checked with the proper locks actually held?
1542 *
1543 * Oops. Go back and try again..
1544 */
1545 if (unlikely(running)) {
1546 cpu_relax();
1547 continue;
1548 }
fa490cfd 1549
3a5c359a
AK
1550 /*
1551 * It's not enough that it's not actively running,
1552 * it must be off the runqueue _entirely_, and not
1553 * preempted!
1554 *
1555 * So if it wa still runnable (but just not actively
1556 * running right now), it's preempted, and we should
1557 * yield - it could be a while.
1558 */
1559 if (unlikely(on_rq)) {
1560 schedule_timeout_uninterruptible(1);
1561 continue;
1562 }
fa490cfd 1563
3a5c359a
AK
1564 /*
1565 * Ahh, all good. It wasn't running, and it wasn't
1566 * runnable, which means that it will never become
1567 * running in the future either. We're all done!
1568 */
1569 break;
1570 }
1da177e4
LT
1571}
1572
1573/***
1574 * kick_process - kick a running thread to enter/exit the kernel
1575 * @p: the to-be-kicked thread
1576 *
1577 * Cause a process which is running on another CPU to enter
1578 * kernel-mode, without any delay. (to get signals handled.)
1579 *
1580 * NOTE: this function doesnt have to take the runqueue lock,
1581 * because all it wants to ensure is that the remote task enters
1582 * the kernel. If the IPI races and the task has been migrated
1583 * to another CPU then no harm is done and the purpose has been
1584 * achieved as well.
1585 */
36c8b586 1586void kick_process(struct task_struct *p)
1da177e4
LT
1587{
1588 int cpu;
1589
1590 preempt_disable();
1591 cpu = task_cpu(p);
1592 if ((cpu != smp_processor_id()) && task_curr(p))
1593 smp_send_reschedule(cpu);
1594 preempt_enable();
1595}
1596
1597/*
2dd73a4f
PW
1598 * Return a low guess at the load of a migration-source cpu weighted
1599 * according to the scheduling class and "nice" value.
1da177e4
LT
1600 *
1601 * We want to under-estimate the load of migration sources, to
1602 * balance conservatively.
1603 */
a9957449 1604static unsigned long source_load(int cpu, int type)
1da177e4 1605{
70b97a7f 1606 struct rq *rq = cpu_rq(cpu);
dd41f596 1607 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1608
3b0bd9bc 1609 if (type == 0)
dd41f596 1610 return total;
b910472d 1611
dd41f596 1612 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1613}
1614
1615/*
2dd73a4f
PW
1616 * Return a high guess at the load of a migration-target cpu weighted
1617 * according to the scheduling class and "nice" value.
1da177e4 1618 */
a9957449 1619static unsigned long target_load(int cpu, int type)
1da177e4 1620{
70b97a7f 1621 struct rq *rq = cpu_rq(cpu);
dd41f596 1622 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1623
7897986b 1624 if (type == 0)
dd41f596 1625 return total;
3b0bd9bc 1626
dd41f596 1627 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1628}
1629
1630/*
1631 * Return the average load per task on the cpu's run queue
1632 */
e7693a36 1633static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1634{
70b97a7f 1635 struct rq *rq = cpu_rq(cpu);
dd41f596 1636 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1637 unsigned long n = rq->nr_running;
1638
dd41f596 1639 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1640}
1641
147cbb4b
NP
1642/*
1643 * find_idlest_group finds and returns the least busy CPU group within the
1644 * domain.
1645 */
1646static struct sched_group *
1647find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1648{
1649 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1650 unsigned long min_load = ULONG_MAX, this_load = 0;
1651 int load_idx = sd->forkexec_idx;
1652 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1653
1654 do {
1655 unsigned long load, avg_load;
1656 int local_group;
1657 int i;
1658
da5a5522
BD
1659 /* Skip over this group if it has no CPUs allowed */
1660 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1661 continue;
da5a5522 1662
147cbb4b 1663 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1664
1665 /* Tally up the load of all CPUs in the group */
1666 avg_load = 0;
1667
1668 for_each_cpu_mask(i, group->cpumask) {
1669 /* Bias balancing toward cpus of our domain */
1670 if (local_group)
1671 load = source_load(i, load_idx);
1672 else
1673 load = target_load(i, load_idx);
1674
1675 avg_load += load;
1676 }
1677
1678 /* Adjust by relative CPU power of the group */
5517d86b
ED
1679 avg_load = sg_div_cpu_power(group,
1680 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1681
1682 if (local_group) {
1683 this_load = avg_load;
1684 this = group;
1685 } else if (avg_load < min_load) {
1686 min_load = avg_load;
1687 idlest = group;
1688 }
3a5c359a 1689 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1690
1691 if (!idlest || 100*this_load < imbalance*min_load)
1692 return NULL;
1693 return idlest;
1694}
1695
1696/*
0feaece9 1697 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1698 */
95cdf3b7
IM
1699static int
1700find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1701{
da5a5522 1702 cpumask_t tmp;
147cbb4b
NP
1703 unsigned long load, min_load = ULONG_MAX;
1704 int idlest = -1;
1705 int i;
1706
da5a5522
BD
1707 /* Traverse only the allowed CPUs */
1708 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1709
1710 for_each_cpu_mask(i, tmp) {
2dd73a4f 1711 load = weighted_cpuload(i);
147cbb4b
NP
1712
1713 if (load < min_load || (load == min_load && i == this_cpu)) {
1714 min_load = load;
1715 idlest = i;
1716 }
1717 }
1718
1719 return idlest;
1720}
1721
476d139c
NP
1722/*
1723 * sched_balance_self: balance the current task (running on cpu) in domains
1724 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1725 * SD_BALANCE_EXEC.
1726 *
1727 * Balance, ie. select the least loaded group.
1728 *
1729 * Returns the target CPU number, or the same CPU if no balancing is needed.
1730 *
1731 * preempt must be disabled.
1732 */
1733static int sched_balance_self(int cpu, int flag)
1734{
1735 struct task_struct *t = current;
1736 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1737
c96d145e 1738 for_each_domain(cpu, tmp) {
9761eea8
IM
1739 /*
1740 * If power savings logic is enabled for a domain, stop there.
1741 */
5c45bf27
SS
1742 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1743 break;
476d139c
NP
1744 if (tmp->flags & flag)
1745 sd = tmp;
c96d145e 1746 }
476d139c
NP
1747
1748 while (sd) {
1749 cpumask_t span;
1750 struct sched_group *group;
1a848870
SS
1751 int new_cpu, weight;
1752
1753 if (!(sd->flags & flag)) {
1754 sd = sd->child;
1755 continue;
1756 }
476d139c
NP
1757
1758 span = sd->span;
1759 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1760 if (!group) {
1761 sd = sd->child;
1762 continue;
1763 }
476d139c 1764
da5a5522 1765 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1766 if (new_cpu == -1 || new_cpu == cpu) {
1767 /* Now try balancing at a lower domain level of cpu */
1768 sd = sd->child;
1769 continue;
1770 }
476d139c 1771
1a848870 1772 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1773 cpu = new_cpu;
476d139c
NP
1774 sd = NULL;
1775 weight = cpus_weight(span);
1776 for_each_domain(cpu, tmp) {
1777 if (weight <= cpus_weight(tmp->span))
1778 break;
1779 if (tmp->flags & flag)
1780 sd = tmp;
1781 }
1782 /* while loop will break here if sd == NULL */
1783 }
1784
1785 return cpu;
1786}
1787
1788#endif /* CONFIG_SMP */
1da177e4 1789
1da177e4
LT
1790/***
1791 * try_to_wake_up - wake up a thread
1792 * @p: the to-be-woken-up thread
1793 * @state: the mask of task states that can be woken
1794 * @sync: do a synchronous wakeup?
1795 *
1796 * Put it on the run-queue if it's not already there. The "current"
1797 * thread is always on the run-queue (except when the actual
1798 * re-schedule is in progress), and as such you're allowed to do
1799 * the simpler "current->state = TASK_RUNNING" to mark yourself
1800 * runnable without the overhead of this.
1801 *
1802 * returns failure only if the task is already active.
1803 */
36c8b586 1804static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1805{
cc367732 1806 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1807 unsigned long flags;
1808 long old_state;
70b97a7f 1809 struct rq *rq;
1da177e4
LT
1810
1811 rq = task_rq_lock(p, &flags);
1812 old_state = p->state;
1813 if (!(old_state & state))
1814 goto out;
1815
dd41f596 1816 if (p->se.on_rq)
1da177e4
LT
1817 goto out_running;
1818
1819 cpu = task_cpu(p);
cc367732 1820 orig_cpu = cpu;
1da177e4
LT
1821 this_cpu = smp_processor_id();
1822
1823#ifdef CONFIG_SMP
1824 if (unlikely(task_running(rq, p)))
1825 goto out_activate;
1826
5d2f5a61
DA
1827 cpu = p->sched_class->select_task_rq(p, sync);
1828 if (cpu != orig_cpu) {
1829 set_task_cpu(p, cpu);
1da177e4
LT
1830 task_rq_unlock(rq, &flags);
1831 /* might preempt at this point */
1832 rq = task_rq_lock(p, &flags);
1833 old_state = p->state;
1834 if (!(old_state & state))
1835 goto out;
dd41f596 1836 if (p->se.on_rq)
1da177e4
LT
1837 goto out_running;
1838
1839 this_cpu = smp_processor_id();
1840 cpu = task_cpu(p);
1841 }
1842
e7693a36
GH
1843#ifdef CONFIG_SCHEDSTATS
1844 schedstat_inc(rq, ttwu_count);
1845 if (cpu == this_cpu)
1846 schedstat_inc(rq, ttwu_local);
1847 else {
1848 struct sched_domain *sd;
1849 for_each_domain(this_cpu, sd) {
1850 if (cpu_isset(cpu, sd->span)) {
1851 schedstat_inc(sd, ttwu_wake_remote);
1852 break;
1853 }
1854 }
1855 }
e7693a36
GH
1856#endif
1857
1da177e4
LT
1858out_activate:
1859#endif /* CONFIG_SMP */
cc367732
IM
1860 schedstat_inc(p, se.nr_wakeups);
1861 if (sync)
1862 schedstat_inc(p, se.nr_wakeups_sync);
1863 if (orig_cpu != cpu)
1864 schedstat_inc(p, se.nr_wakeups_migrate);
1865 if (cpu == this_cpu)
1866 schedstat_inc(p, se.nr_wakeups_local);
1867 else
1868 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1869 update_rq_clock(rq);
dd41f596 1870 activate_task(rq, p, 1);
9c63d9c0 1871 check_preempt_curr(rq, p);
1da177e4
LT
1872 success = 1;
1873
1874out_running:
1875 p->state = TASK_RUNNING;
9a897c5a
SR
1876#ifdef CONFIG_SMP
1877 if (p->sched_class->task_wake_up)
1878 p->sched_class->task_wake_up(rq, p);
1879#endif
1da177e4
LT
1880out:
1881 task_rq_unlock(rq, &flags);
1882
1883 return success;
1884}
1885
7ad5b3a5 1886int wake_up_process(struct task_struct *p)
1da177e4 1887{
d9514f6c 1888 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1889}
1da177e4
LT
1890EXPORT_SYMBOL(wake_up_process);
1891
7ad5b3a5 1892int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1893{
1894 return try_to_wake_up(p, state, 0);
1895}
1896
1da177e4
LT
1897/*
1898 * Perform scheduler related setup for a newly forked process p.
1899 * p is forked by current.
dd41f596
IM
1900 *
1901 * __sched_fork() is basic setup used by init_idle() too:
1902 */
1903static void __sched_fork(struct task_struct *p)
1904{
dd41f596
IM
1905 p->se.exec_start = 0;
1906 p->se.sum_exec_runtime = 0;
f6cf891c 1907 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1908
1909#ifdef CONFIG_SCHEDSTATS
1910 p->se.wait_start = 0;
dd41f596
IM
1911 p->se.sum_sleep_runtime = 0;
1912 p->se.sleep_start = 0;
dd41f596
IM
1913 p->se.block_start = 0;
1914 p->se.sleep_max = 0;
1915 p->se.block_max = 0;
1916 p->se.exec_max = 0;
eba1ed4b 1917 p->se.slice_max = 0;
dd41f596 1918 p->se.wait_max = 0;
6cfb0d5d 1919#endif
476d139c 1920
fa717060 1921 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 1922 p->se.on_rq = 0;
476d139c 1923
e107be36
AK
1924#ifdef CONFIG_PREEMPT_NOTIFIERS
1925 INIT_HLIST_HEAD(&p->preempt_notifiers);
1926#endif
1927
1da177e4
LT
1928 /*
1929 * We mark the process as running here, but have not actually
1930 * inserted it onto the runqueue yet. This guarantees that
1931 * nobody will actually run it, and a signal or other external
1932 * event cannot wake it up and insert it on the runqueue either.
1933 */
1934 p->state = TASK_RUNNING;
dd41f596
IM
1935}
1936
1937/*
1938 * fork()/clone()-time setup:
1939 */
1940void sched_fork(struct task_struct *p, int clone_flags)
1941{
1942 int cpu = get_cpu();
1943
1944 __sched_fork(p);
1945
1946#ifdef CONFIG_SMP
1947 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1948#endif
02e4bac2 1949 set_task_cpu(p, cpu);
b29739f9
IM
1950
1951 /*
1952 * Make sure we do not leak PI boosting priority to the child:
1953 */
1954 p->prio = current->normal_prio;
2ddbf952
HS
1955 if (!rt_prio(p->prio))
1956 p->sched_class = &fair_sched_class;
b29739f9 1957
52f17b6c 1958#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1959 if (likely(sched_info_on()))
52f17b6c 1960 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1961#endif
d6077cb8 1962#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1963 p->oncpu = 0;
1964#endif
1da177e4 1965#ifdef CONFIG_PREEMPT
4866cde0 1966 /* Want to start with kernel preemption disabled. */
a1261f54 1967 task_thread_info(p)->preempt_count = 1;
1da177e4 1968#endif
476d139c 1969 put_cpu();
1da177e4
LT
1970}
1971
1972/*
1973 * wake_up_new_task - wake up a newly created task for the first time.
1974 *
1975 * This function will do some initial scheduler statistics housekeeping
1976 * that must be done for every newly created context, then puts the task
1977 * on the runqueue and wakes it.
1978 */
7ad5b3a5 1979void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1980{
1981 unsigned long flags;
dd41f596 1982 struct rq *rq;
1da177e4
LT
1983
1984 rq = task_rq_lock(p, &flags);
147cbb4b 1985 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1986 update_rq_clock(rq);
1da177e4
LT
1987
1988 p->prio = effective_prio(p);
1989
b9dca1e0 1990 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1991 activate_task(rq, p, 0);
1da177e4 1992 } else {
1da177e4 1993 /*
dd41f596
IM
1994 * Let the scheduling class do new task startup
1995 * management (if any):
1da177e4 1996 */
ee0827d8 1997 p->sched_class->task_new(rq, p);
5aff0531 1998 inc_nr_running(rq);
1da177e4 1999 }
dd41f596 2000 check_preempt_curr(rq, p);
9a897c5a
SR
2001#ifdef CONFIG_SMP
2002 if (p->sched_class->task_wake_up)
2003 p->sched_class->task_wake_up(rq, p);
2004#endif
dd41f596 2005 task_rq_unlock(rq, &flags);
1da177e4
LT
2006}
2007
e107be36
AK
2008#ifdef CONFIG_PREEMPT_NOTIFIERS
2009
2010/**
421cee29
RD
2011 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2012 * @notifier: notifier struct to register
e107be36
AK
2013 */
2014void preempt_notifier_register(struct preempt_notifier *notifier)
2015{
2016 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2017}
2018EXPORT_SYMBOL_GPL(preempt_notifier_register);
2019
2020/**
2021 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2022 * @notifier: notifier struct to unregister
e107be36
AK
2023 *
2024 * This is safe to call from within a preemption notifier.
2025 */
2026void preempt_notifier_unregister(struct preempt_notifier *notifier)
2027{
2028 hlist_del(&notifier->link);
2029}
2030EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2031
2032static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2033{
2034 struct preempt_notifier *notifier;
2035 struct hlist_node *node;
2036
2037 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2038 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2039}
2040
2041static void
2042fire_sched_out_preempt_notifiers(struct task_struct *curr,
2043 struct task_struct *next)
2044{
2045 struct preempt_notifier *notifier;
2046 struct hlist_node *node;
2047
2048 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2049 notifier->ops->sched_out(notifier, next);
2050}
2051
2052#else
2053
2054static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2055{
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062}
2063
2064#endif
2065
4866cde0
NP
2066/**
2067 * prepare_task_switch - prepare to switch tasks
2068 * @rq: the runqueue preparing to switch
421cee29 2069 * @prev: the current task that is being switched out
4866cde0
NP
2070 * @next: the task we are going to switch to.
2071 *
2072 * This is called with the rq lock held and interrupts off. It must
2073 * be paired with a subsequent finish_task_switch after the context
2074 * switch.
2075 *
2076 * prepare_task_switch sets up locking and calls architecture specific
2077 * hooks.
2078 */
e107be36
AK
2079static inline void
2080prepare_task_switch(struct rq *rq, struct task_struct *prev,
2081 struct task_struct *next)
4866cde0 2082{
e107be36 2083 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2084 prepare_lock_switch(rq, next);
2085 prepare_arch_switch(next);
2086}
2087
1da177e4
LT
2088/**
2089 * finish_task_switch - clean up after a task-switch
344babaa 2090 * @rq: runqueue associated with task-switch
1da177e4
LT
2091 * @prev: the thread we just switched away from.
2092 *
4866cde0
NP
2093 * finish_task_switch must be called after the context switch, paired
2094 * with a prepare_task_switch call before the context switch.
2095 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2096 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2097 *
2098 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2099 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2100 * with the lock held can cause deadlocks; see schedule() for
2101 * details.)
2102 */
a9957449 2103static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2104 __releases(rq->lock)
2105{
1da177e4 2106 struct mm_struct *mm = rq->prev_mm;
55a101f8 2107 long prev_state;
1da177e4
LT
2108
2109 rq->prev_mm = NULL;
2110
2111 /*
2112 * A task struct has one reference for the use as "current".
c394cc9f 2113 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2114 * schedule one last time. The schedule call will never return, and
2115 * the scheduled task must drop that reference.
c394cc9f 2116 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2117 * still held, otherwise prev could be scheduled on another cpu, die
2118 * there before we look at prev->state, and then the reference would
2119 * be dropped twice.
2120 * Manfred Spraul <manfred@colorfullife.com>
2121 */
55a101f8 2122 prev_state = prev->state;
4866cde0
NP
2123 finish_arch_switch(prev);
2124 finish_lock_switch(rq, prev);
9a897c5a
SR
2125#ifdef CONFIG_SMP
2126 if (current->sched_class->post_schedule)
2127 current->sched_class->post_schedule(rq);
2128#endif
e8fa1362 2129
e107be36 2130 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2131 if (mm)
2132 mmdrop(mm);
c394cc9f 2133 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2134 /*
2135 * Remove function-return probe instances associated with this
2136 * task and put them back on the free list.
9761eea8 2137 */
c6fd91f0 2138 kprobe_flush_task(prev);
1da177e4 2139 put_task_struct(prev);
c6fd91f0 2140 }
1da177e4
LT
2141}
2142
2143/**
2144 * schedule_tail - first thing a freshly forked thread must call.
2145 * @prev: the thread we just switched away from.
2146 */
36c8b586 2147asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2148 __releases(rq->lock)
2149{
70b97a7f
IM
2150 struct rq *rq = this_rq();
2151
4866cde0
NP
2152 finish_task_switch(rq, prev);
2153#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2154 /* In this case, finish_task_switch does not reenable preemption */
2155 preempt_enable();
2156#endif
1da177e4 2157 if (current->set_child_tid)
b488893a 2158 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2159}
2160
2161/*
2162 * context_switch - switch to the new MM and the new
2163 * thread's register state.
2164 */
dd41f596 2165static inline void
70b97a7f 2166context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2167 struct task_struct *next)
1da177e4 2168{
dd41f596 2169 struct mm_struct *mm, *oldmm;
1da177e4 2170
e107be36 2171 prepare_task_switch(rq, prev, next);
dd41f596
IM
2172 mm = next->mm;
2173 oldmm = prev->active_mm;
9226d125
ZA
2174 /*
2175 * For paravirt, this is coupled with an exit in switch_to to
2176 * combine the page table reload and the switch backend into
2177 * one hypercall.
2178 */
2179 arch_enter_lazy_cpu_mode();
2180
dd41f596 2181 if (unlikely(!mm)) {
1da177e4
LT
2182 next->active_mm = oldmm;
2183 atomic_inc(&oldmm->mm_count);
2184 enter_lazy_tlb(oldmm, next);
2185 } else
2186 switch_mm(oldmm, mm, next);
2187
dd41f596 2188 if (unlikely(!prev->mm)) {
1da177e4 2189 prev->active_mm = NULL;
1da177e4
LT
2190 rq->prev_mm = oldmm;
2191 }
3a5f5e48
IM
2192 /*
2193 * Since the runqueue lock will be released by the next
2194 * task (which is an invalid locking op but in the case
2195 * of the scheduler it's an obvious special-case), so we
2196 * do an early lockdep release here:
2197 */
2198#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2199 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2200#endif
1da177e4
LT
2201
2202 /* Here we just switch the register state and the stack. */
2203 switch_to(prev, next, prev);
2204
dd41f596
IM
2205 barrier();
2206 /*
2207 * this_rq must be evaluated again because prev may have moved
2208 * CPUs since it called schedule(), thus the 'rq' on its stack
2209 * frame will be invalid.
2210 */
2211 finish_task_switch(this_rq(), prev);
1da177e4
LT
2212}
2213
2214/*
2215 * nr_running, nr_uninterruptible and nr_context_switches:
2216 *
2217 * externally visible scheduler statistics: current number of runnable
2218 * threads, current number of uninterruptible-sleeping threads, total
2219 * number of context switches performed since bootup.
2220 */
2221unsigned long nr_running(void)
2222{
2223 unsigned long i, sum = 0;
2224
2225 for_each_online_cpu(i)
2226 sum += cpu_rq(i)->nr_running;
2227
2228 return sum;
2229}
2230
2231unsigned long nr_uninterruptible(void)
2232{
2233 unsigned long i, sum = 0;
2234
0a945022 2235 for_each_possible_cpu(i)
1da177e4
LT
2236 sum += cpu_rq(i)->nr_uninterruptible;
2237
2238 /*
2239 * Since we read the counters lockless, it might be slightly
2240 * inaccurate. Do not allow it to go below zero though:
2241 */
2242 if (unlikely((long)sum < 0))
2243 sum = 0;
2244
2245 return sum;
2246}
2247
2248unsigned long long nr_context_switches(void)
2249{
cc94abfc
SR
2250 int i;
2251 unsigned long long sum = 0;
1da177e4 2252
0a945022 2253 for_each_possible_cpu(i)
1da177e4
LT
2254 sum += cpu_rq(i)->nr_switches;
2255
2256 return sum;
2257}
2258
2259unsigned long nr_iowait(void)
2260{
2261 unsigned long i, sum = 0;
2262
0a945022 2263 for_each_possible_cpu(i)
1da177e4
LT
2264 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2265
2266 return sum;
2267}
2268
db1b1fef
JS
2269unsigned long nr_active(void)
2270{
2271 unsigned long i, running = 0, uninterruptible = 0;
2272
2273 for_each_online_cpu(i) {
2274 running += cpu_rq(i)->nr_running;
2275 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2276 }
2277
2278 if (unlikely((long)uninterruptible < 0))
2279 uninterruptible = 0;
2280
2281 return running + uninterruptible;
2282}
2283
48f24c4d 2284/*
dd41f596
IM
2285 * Update rq->cpu_load[] statistics. This function is usually called every
2286 * scheduler tick (TICK_NSEC).
48f24c4d 2287 */
dd41f596 2288static void update_cpu_load(struct rq *this_rq)
48f24c4d 2289{
495eca49 2290 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2291 int i, scale;
2292
2293 this_rq->nr_load_updates++;
dd41f596
IM
2294
2295 /* Update our load: */
2296 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2297 unsigned long old_load, new_load;
2298
2299 /* scale is effectively 1 << i now, and >> i divides by scale */
2300
2301 old_load = this_rq->cpu_load[i];
2302 new_load = this_load;
a25707f3
IM
2303 /*
2304 * Round up the averaging division if load is increasing. This
2305 * prevents us from getting stuck on 9 if the load is 10, for
2306 * example.
2307 */
2308 if (new_load > old_load)
2309 new_load += scale-1;
dd41f596
IM
2310 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2311 }
48f24c4d
IM
2312}
2313
dd41f596
IM
2314#ifdef CONFIG_SMP
2315
1da177e4
LT
2316/*
2317 * double_rq_lock - safely lock two runqueues
2318 *
2319 * Note this does not disable interrupts like task_rq_lock,
2320 * you need to do so manually before calling.
2321 */
70b97a7f 2322static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2323 __acquires(rq1->lock)
2324 __acquires(rq2->lock)
2325{
054b9108 2326 BUG_ON(!irqs_disabled());
1da177e4
LT
2327 if (rq1 == rq2) {
2328 spin_lock(&rq1->lock);
2329 __acquire(rq2->lock); /* Fake it out ;) */
2330 } else {
c96d145e 2331 if (rq1 < rq2) {
1da177e4
LT
2332 spin_lock(&rq1->lock);
2333 spin_lock(&rq2->lock);
2334 } else {
2335 spin_lock(&rq2->lock);
2336 spin_lock(&rq1->lock);
2337 }
2338 }
6e82a3be
IM
2339 update_rq_clock(rq1);
2340 update_rq_clock(rq2);
1da177e4
LT
2341}
2342
2343/*
2344 * double_rq_unlock - safely unlock two runqueues
2345 *
2346 * Note this does not restore interrupts like task_rq_unlock,
2347 * you need to do so manually after calling.
2348 */
70b97a7f 2349static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2350 __releases(rq1->lock)
2351 __releases(rq2->lock)
2352{
2353 spin_unlock(&rq1->lock);
2354 if (rq1 != rq2)
2355 spin_unlock(&rq2->lock);
2356 else
2357 __release(rq2->lock);
2358}
2359
2360/*
2361 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2362 */
e8fa1362 2363static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2364 __releases(this_rq->lock)
2365 __acquires(busiest->lock)
2366 __acquires(this_rq->lock)
2367{
e8fa1362
SR
2368 int ret = 0;
2369
054b9108
KK
2370 if (unlikely(!irqs_disabled())) {
2371 /* printk() doesn't work good under rq->lock */
2372 spin_unlock(&this_rq->lock);
2373 BUG_ON(1);
2374 }
1da177e4 2375 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2376 if (busiest < this_rq) {
1da177e4
LT
2377 spin_unlock(&this_rq->lock);
2378 spin_lock(&busiest->lock);
2379 spin_lock(&this_rq->lock);
e8fa1362 2380 ret = 1;
1da177e4
LT
2381 } else
2382 spin_lock(&busiest->lock);
2383 }
e8fa1362 2384 return ret;
1da177e4
LT
2385}
2386
1da177e4
LT
2387/*
2388 * If dest_cpu is allowed for this process, migrate the task to it.
2389 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2390 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2391 * the cpu_allowed mask is restored.
2392 */
36c8b586 2393static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2394{
70b97a7f 2395 struct migration_req req;
1da177e4 2396 unsigned long flags;
70b97a7f 2397 struct rq *rq;
1da177e4
LT
2398
2399 rq = task_rq_lock(p, &flags);
2400 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2401 || unlikely(cpu_is_offline(dest_cpu)))
2402 goto out;
2403
2404 /* force the process onto the specified CPU */
2405 if (migrate_task(p, dest_cpu, &req)) {
2406 /* Need to wait for migration thread (might exit: take ref). */
2407 struct task_struct *mt = rq->migration_thread;
36c8b586 2408
1da177e4
LT
2409 get_task_struct(mt);
2410 task_rq_unlock(rq, &flags);
2411 wake_up_process(mt);
2412 put_task_struct(mt);
2413 wait_for_completion(&req.done);
36c8b586 2414
1da177e4
LT
2415 return;
2416 }
2417out:
2418 task_rq_unlock(rq, &flags);
2419}
2420
2421/*
476d139c
NP
2422 * sched_exec - execve() is a valuable balancing opportunity, because at
2423 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2424 */
2425void sched_exec(void)
2426{
1da177e4 2427 int new_cpu, this_cpu = get_cpu();
476d139c 2428 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2429 put_cpu();
476d139c
NP
2430 if (new_cpu != this_cpu)
2431 sched_migrate_task(current, new_cpu);
1da177e4
LT
2432}
2433
2434/*
2435 * pull_task - move a task from a remote runqueue to the local runqueue.
2436 * Both runqueues must be locked.
2437 */
dd41f596
IM
2438static void pull_task(struct rq *src_rq, struct task_struct *p,
2439 struct rq *this_rq, int this_cpu)
1da177e4 2440{
2e1cb74a 2441 deactivate_task(src_rq, p, 0);
1da177e4 2442 set_task_cpu(p, this_cpu);
dd41f596 2443 activate_task(this_rq, p, 0);
1da177e4
LT
2444 /*
2445 * Note that idle threads have a prio of MAX_PRIO, for this test
2446 * to be always true for them.
2447 */
dd41f596 2448 check_preempt_curr(this_rq, p);
1da177e4
LT
2449}
2450
2451/*
2452 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2453 */
858119e1 2454static
70b97a7f 2455int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2456 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2457 int *all_pinned)
1da177e4
LT
2458{
2459 /*
2460 * We do not migrate tasks that are:
2461 * 1) running (obviously), or
2462 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2463 * 3) are cache-hot on their current CPU.
2464 */
cc367732
IM
2465 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2466 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2467 return 0;
cc367732 2468 }
81026794
NP
2469 *all_pinned = 0;
2470
cc367732
IM
2471 if (task_running(rq, p)) {
2472 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2473 return 0;
cc367732 2474 }
1da177e4 2475
da84d961
IM
2476 /*
2477 * Aggressive migration if:
2478 * 1) task is cache cold, or
2479 * 2) too many balance attempts have failed.
2480 */
2481
6bc1665b
IM
2482 if (!task_hot(p, rq->clock, sd) ||
2483 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2484#ifdef CONFIG_SCHEDSTATS
cc367732 2485 if (task_hot(p, rq->clock, sd)) {
da84d961 2486 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2487 schedstat_inc(p, se.nr_forced_migrations);
2488 }
da84d961
IM
2489#endif
2490 return 1;
2491 }
2492
cc367732
IM
2493 if (task_hot(p, rq->clock, sd)) {
2494 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2495 return 0;
cc367732 2496 }
1da177e4
LT
2497 return 1;
2498}
2499
e1d1484f
PW
2500static unsigned long
2501balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2502 unsigned long max_load_move, struct sched_domain *sd,
2503 enum cpu_idle_type idle, int *all_pinned,
2504 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2505{
b82d9fdd 2506 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2507 struct task_struct *p;
2508 long rem_load_move = max_load_move;
1da177e4 2509
e1d1484f 2510 if (max_load_move == 0)
1da177e4
LT
2511 goto out;
2512
81026794
NP
2513 pinned = 1;
2514
1da177e4 2515 /*
dd41f596 2516 * Start the load-balancing iterator:
1da177e4 2517 */
dd41f596
IM
2518 p = iterator->start(iterator->arg);
2519next:
b82d9fdd 2520 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2521 goto out;
50ddd969 2522 /*
b82d9fdd 2523 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2524 * skip a task if it will be the highest priority task (i.e. smallest
2525 * prio value) on its new queue regardless of its load weight
2526 */
dd41f596
IM
2527 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2528 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2529 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2530 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2531 p = iterator->next(iterator->arg);
2532 goto next;
1da177e4
LT
2533 }
2534
dd41f596 2535 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2536 pulled++;
dd41f596 2537 rem_load_move -= p->se.load.weight;
1da177e4 2538
2dd73a4f 2539 /*
b82d9fdd 2540 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2541 */
e1d1484f 2542 if (rem_load_move > 0) {
a4ac01c3
PW
2543 if (p->prio < *this_best_prio)
2544 *this_best_prio = p->prio;
dd41f596
IM
2545 p = iterator->next(iterator->arg);
2546 goto next;
1da177e4
LT
2547 }
2548out:
2549 /*
e1d1484f 2550 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2551 * so we can safely collect pull_task() stats here rather than
2552 * inside pull_task().
2553 */
2554 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2555
2556 if (all_pinned)
2557 *all_pinned = pinned;
e1d1484f
PW
2558
2559 return max_load_move - rem_load_move;
1da177e4
LT
2560}
2561
dd41f596 2562/*
43010659
PW
2563 * move_tasks tries to move up to max_load_move weighted load from busiest to
2564 * this_rq, as part of a balancing operation within domain "sd".
2565 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2566 *
2567 * Called with both runqueues locked.
2568 */
2569static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2570 unsigned long max_load_move,
dd41f596
IM
2571 struct sched_domain *sd, enum cpu_idle_type idle,
2572 int *all_pinned)
2573{
5522d5d5 2574 const struct sched_class *class = sched_class_highest;
43010659 2575 unsigned long total_load_moved = 0;
a4ac01c3 2576 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2577
2578 do {
43010659
PW
2579 total_load_moved +=
2580 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2581 max_load_move - total_load_moved,
a4ac01c3 2582 sd, idle, all_pinned, &this_best_prio);
dd41f596 2583 class = class->next;
43010659 2584 } while (class && max_load_move > total_load_moved);
dd41f596 2585
43010659
PW
2586 return total_load_moved > 0;
2587}
2588
e1d1484f
PW
2589static int
2590iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2591 struct sched_domain *sd, enum cpu_idle_type idle,
2592 struct rq_iterator *iterator)
2593{
2594 struct task_struct *p = iterator->start(iterator->arg);
2595 int pinned = 0;
2596
2597 while (p) {
2598 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2599 pull_task(busiest, p, this_rq, this_cpu);
2600 /*
2601 * Right now, this is only the second place pull_task()
2602 * is called, so we can safely collect pull_task()
2603 * stats here rather than inside pull_task().
2604 */
2605 schedstat_inc(sd, lb_gained[idle]);
2606
2607 return 1;
2608 }
2609 p = iterator->next(iterator->arg);
2610 }
2611
2612 return 0;
2613}
2614
43010659
PW
2615/*
2616 * move_one_task tries to move exactly one task from busiest to this_rq, as
2617 * part of active balancing operations within "domain".
2618 * Returns 1 if successful and 0 otherwise.
2619 *
2620 * Called with both runqueues locked.
2621 */
2622static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2623 struct sched_domain *sd, enum cpu_idle_type idle)
2624{
5522d5d5 2625 const struct sched_class *class;
43010659
PW
2626
2627 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2628 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2629 return 1;
2630
2631 return 0;
dd41f596
IM
2632}
2633
1da177e4
LT
2634/*
2635 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2636 * domain. It calculates and returns the amount of weighted load which
2637 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2638 */
2639static struct sched_group *
2640find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2641 unsigned long *imbalance, enum cpu_idle_type idle,
2642 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2643{
2644 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2645 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2646 unsigned long max_pull;
2dd73a4f
PW
2647 unsigned long busiest_load_per_task, busiest_nr_running;
2648 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2649 int load_idx, group_imb = 0;
5c45bf27
SS
2650#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2651 int power_savings_balance = 1;
2652 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2653 unsigned long min_nr_running = ULONG_MAX;
2654 struct sched_group *group_min = NULL, *group_leader = NULL;
2655#endif
1da177e4
LT
2656
2657 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2658 busiest_load_per_task = busiest_nr_running = 0;
2659 this_load_per_task = this_nr_running = 0;
d15bcfdb 2660 if (idle == CPU_NOT_IDLE)
7897986b 2661 load_idx = sd->busy_idx;
d15bcfdb 2662 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2663 load_idx = sd->newidle_idx;
2664 else
2665 load_idx = sd->idle_idx;
1da177e4
LT
2666
2667 do {
908a7c1b 2668 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2669 int local_group;
2670 int i;
908a7c1b 2671 int __group_imb = 0;
783609c6 2672 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2673 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2674
2675 local_group = cpu_isset(this_cpu, group->cpumask);
2676
783609c6
SS
2677 if (local_group)
2678 balance_cpu = first_cpu(group->cpumask);
2679
1da177e4 2680 /* Tally up the load of all CPUs in the group */
2dd73a4f 2681 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2682 max_cpu_load = 0;
2683 min_cpu_load = ~0UL;
1da177e4
LT
2684
2685 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2686 struct rq *rq;
2687
2688 if (!cpu_isset(i, *cpus))
2689 continue;
2690
2691 rq = cpu_rq(i);
2dd73a4f 2692
9439aab8 2693 if (*sd_idle && rq->nr_running)
5969fe06
NP
2694 *sd_idle = 0;
2695
1da177e4 2696 /* Bias balancing toward cpus of our domain */
783609c6
SS
2697 if (local_group) {
2698 if (idle_cpu(i) && !first_idle_cpu) {
2699 first_idle_cpu = 1;
2700 balance_cpu = i;
2701 }
2702
a2000572 2703 load = target_load(i, load_idx);
908a7c1b 2704 } else {
a2000572 2705 load = source_load(i, load_idx);
908a7c1b
KC
2706 if (load > max_cpu_load)
2707 max_cpu_load = load;
2708 if (min_cpu_load > load)
2709 min_cpu_load = load;
2710 }
1da177e4
LT
2711
2712 avg_load += load;
2dd73a4f 2713 sum_nr_running += rq->nr_running;
dd41f596 2714 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2715 }
2716
783609c6
SS
2717 /*
2718 * First idle cpu or the first cpu(busiest) in this sched group
2719 * is eligible for doing load balancing at this and above
9439aab8
SS
2720 * domains. In the newly idle case, we will allow all the cpu's
2721 * to do the newly idle load balance.
783609c6 2722 */
9439aab8
SS
2723 if (idle != CPU_NEWLY_IDLE && local_group &&
2724 balance_cpu != this_cpu && balance) {
783609c6
SS
2725 *balance = 0;
2726 goto ret;
2727 }
2728
1da177e4 2729 total_load += avg_load;
5517d86b 2730 total_pwr += group->__cpu_power;
1da177e4
LT
2731
2732 /* Adjust by relative CPU power of the group */
5517d86b
ED
2733 avg_load = sg_div_cpu_power(group,
2734 avg_load * SCHED_LOAD_SCALE);
1da177e4 2735
908a7c1b
KC
2736 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2737 __group_imb = 1;
2738
5517d86b 2739 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2740
1da177e4
LT
2741 if (local_group) {
2742 this_load = avg_load;
2743 this = group;
2dd73a4f
PW
2744 this_nr_running = sum_nr_running;
2745 this_load_per_task = sum_weighted_load;
2746 } else if (avg_load > max_load &&
908a7c1b 2747 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2748 max_load = avg_load;
2749 busiest = group;
2dd73a4f
PW
2750 busiest_nr_running = sum_nr_running;
2751 busiest_load_per_task = sum_weighted_load;
908a7c1b 2752 group_imb = __group_imb;
1da177e4 2753 }
5c45bf27
SS
2754
2755#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2756 /*
2757 * Busy processors will not participate in power savings
2758 * balance.
2759 */
dd41f596
IM
2760 if (idle == CPU_NOT_IDLE ||
2761 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2762 goto group_next;
5c45bf27
SS
2763
2764 /*
2765 * If the local group is idle or completely loaded
2766 * no need to do power savings balance at this domain
2767 */
2768 if (local_group && (this_nr_running >= group_capacity ||
2769 !this_nr_running))
2770 power_savings_balance = 0;
2771
dd41f596 2772 /*
5c45bf27
SS
2773 * If a group is already running at full capacity or idle,
2774 * don't include that group in power savings calculations
dd41f596
IM
2775 */
2776 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2777 || !sum_nr_running)
dd41f596 2778 goto group_next;
5c45bf27 2779
dd41f596 2780 /*
5c45bf27 2781 * Calculate the group which has the least non-idle load.
dd41f596
IM
2782 * This is the group from where we need to pick up the load
2783 * for saving power
2784 */
2785 if ((sum_nr_running < min_nr_running) ||
2786 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2787 first_cpu(group->cpumask) <
2788 first_cpu(group_min->cpumask))) {
dd41f596
IM
2789 group_min = group;
2790 min_nr_running = sum_nr_running;
5c45bf27
SS
2791 min_load_per_task = sum_weighted_load /
2792 sum_nr_running;
dd41f596 2793 }
5c45bf27 2794
dd41f596 2795 /*
5c45bf27 2796 * Calculate the group which is almost near its
dd41f596
IM
2797 * capacity but still has some space to pick up some load
2798 * from other group and save more power
2799 */
2800 if (sum_nr_running <= group_capacity - 1) {
2801 if (sum_nr_running > leader_nr_running ||
2802 (sum_nr_running == leader_nr_running &&
2803 first_cpu(group->cpumask) >
2804 first_cpu(group_leader->cpumask))) {
2805 group_leader = group;
2806 leader_nr_running = sum_nr_running;
2807 }
48f24c4d 2808 }
5c45bf27
SS
2809group_next:
2810#endif
1da177e4
LT
2811 group = group->next;
2812 } while (group != sd->groups);
2813
2dd73a4f 2814 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2815 goto out_balanced;
2816
2817 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2818
2819 if (this_load >= avg_load ||
2820 100*max_load <= sd->imbalance_pct*this_load)
2821 goto out_balanced;
2822
2dd73a4f 2823 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2824 if (group_imb)
2825 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2826
1da177e4
LT
2827 /*
2828 * We're trying to get all the cpus to the average_load, so we don't
2829 * want to push ourselves above the average load, nor do we wish to
2830 * reduce the max loaded cpu below the average load, as either of these
2831 * actions would just result in more rebalancing later, and ping-pong
2832 * tasks around. Thus we look for the minimum possible imbalance.
2833 * Negative imbalances (*we* are more loaded than anyone else) will
2834 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2835 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2836 * appear as very large values with unsigned longs.
2837 */
2dd73a4f
PW
2838 if (max_load <= busiest_load_per_task)
2839 goto out_balanced;
2840
2841 /*
2842 * In the presence of smp nice balancing, certain scenarios can have
2843 * max load less than avg load(as we skip the groups at or below
2844 * its cpu_power, while calculating max_load..)
2845 */
2846 if (max_load < avg_load) {
2847 *imbalance = 0;
2848 goto small_imbalance;
2849 }
0c117f1b
SS
2850
2851 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2852 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2853
1da177e4 2854 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2855 *imbalance = min(max_pull * busiest->__cpu_power,
2856 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2857 / SCHED_LOAD_SCALE;
2858
2dd73a4f
PW
2859 /*
2860 * if *imbalance is less than the average load per runnable task
2861 * there is no gaurantee that any tasks will be moved so we'll have
2862 * a think about bumping its value to force at least one task to be
2863 * moved
2864 */
7fd0d2dd 2865 if (*imbalance < busiest_load_per_task) {
48f24c4d 2866 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2867 unsigned int imbn;
2868
2869small_imbalance:
2870 pwr_move = pwr_now = 0;
2871 imbn = 2;
2872 if (this_nr_running) {
2873 this_load_per_task /= this_nr_running;
2874 if (busiest_load_per_task > this_load_per_task)
2875 imbn = 1;
2876 } else
2877 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2878
dd41f596
IM
2879 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2880 busiest_load_per_task * imbn) {
2dd73a4f 2881 *imbalance = busiest_load_per_task;
1da177e4
LT
2882 return busiest;
2883 }
2884
2885 /*
2886 * OK, we don't have enough imbalance to justify moving tasks,
2887 * however we may be able to increase total CPU power used by
2888 * moving them.
2889 */
2890
5517d86b
ED
2891 pwr_now += busiest->__cpu_power *
2892 min(busiest_load_per_task, max_load);
2893 pwr_now += this->__cpu_power *
2894 min(this_load_per_task, this_load);
1da177e4
LT
2895 pwr_now /= SCHED_LOAD_SCALE;
2896
2897 /* Amount of load we'd subtract */
5517d86b
ED
2898 tmp = sg_div_cpu_power(busiest,
2899 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2900 if (max_load > tmp)
5517d86b 2901 pwr_move += busiest->__cpu_power *
2dd73a4f 2902 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2903
2904 /* Amount of load we'd add */
5517d86b 2905 if (max_load * busiest->__cpu_power <
33859f7f 2906 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2907 tmp = sg_div_cpu_power(this,
2908 max_load * busiest->__cpu_power);
1da177e4 2909 else
5517d86b
ED
2910 tmp = sg_div_cpu_power(this,
2911 busiest_load_per_task * SCHED_LOAD_SCALE);
2912 pwr_move += this->__cpu_power *
2913 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2914 pwr_move /= SCHED_LOAD_SCALE;
2915
2916 /* Move if we gain throughput */
7fd0d2dd
SS
2917 if (pwr_move > pwr_now)
2918 *imbalance = busiest_load_per_task;
1da177e4
LT
2919 }
2920
1da177e4
LT
2921 return busiest;
2922
2923out_balanced:
5c45bf27 2924#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2925 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2926 goto ret;
1da177e4 2927
5c45bf27
SS
2928 if (this == group_leader && group_leader != group_min) {
2929 *imbalance = min_load_per_task;
2930 return group_min;
2931 }
5c45bf27 2932#endif
783609c6 2933ret:
1da177e4
LT
2934 *imbalance = 0;
2935 return NULL;
2936}
2937
2938/*
2939 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2940 */
70b97a7f 2941static struct rq *
d15bcfdb 2942find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2943 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2944{
70b97a7f 2945 struct rq *busiest = NULL, *rq;
2dd73a4f 2946 unsigned long max_load = 0;
1da177e4
LT
2947 int i;
2948
2949 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2950 unsigned long wl;
0a2966b4
CL
2951
2952 if (!cpu_isset(i, *cpus))
2953 continue;
2954
48f24c4d 2955 rq = cpu_rq(i);
dd41f596 2956 wl = weighted_cpuload(i);
2dd73a4f 2957
dd41f596 2958 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2959 continue;
1da177e4 2960
dd41f596
IM
2961 if (wl > max_load) {
2962 max_load = wl;
48f24c4d 2963 busiest = rq;
1da177e4
LT
2964 }
2965 }
2966
2967 return busiest;
2968}
2969
77391d71
NP
2970/*
2971 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2972 * so long as it is large enough.
2973 */
2974#define MAX_PINNED_INTERVAL 512
2975
1da177e4
LT
2976/*
2977 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2978 * tasks if there is an imbalance.
1da177e4 2979 */
70b97a7f 2980static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2981 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2982 int *balance)
1da177e4 2983{
43010659 2984 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2985 struct sched_group *group;
1da177e4 2986 unsigned long imbalance;
70b97a7f 2987 struct rq *busiest;
0a2966b4 2988 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2989 unsigned long flags;
5969fe06 2990
89c4710e
SS
2991 /*
2992 * When power savings policy is enabled for the parent domain, idle
2993 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2994 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2995 * portraying it as CPU_NOT_IDLE.
89c4710e 2996 */
d15bcfdb 2997 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2998 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2999 sd_idle = 1;
1da177e4 3000
2d72376b 3001 schedstat_inc(sd, lb_count[idle]);
1da177e4 3002
0a2966b4
CL
3003redo:
3004 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
3005 &cpus, balance);
3006
06066714 3007 if (*balance == 0)
783609c6 3008 goto out_balanced;
783609c6 3009
1da177e4
LT
3010 if (!group) {
3011 schedstat_inc(sd, lb_nobusyg[idle]);
3012 goto out_balanced;
3013 }
3014
0a2966b4 3015 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
3016 if (!busiest) {
3017 schedstat_inc(sd, lb_nobusyq[idle]);
3018 goto out_balanced;
3019 }
3020
db935dbd 3021 BUG_ON(busiest == this_rq);
1da177e4
LT
3022
3023 schedstat_add(sd, lb_imbalance[idle], imbalance);
3024
43010659 3025 ld_moved = 0;
1da177e4
LT
3026 if (busiest->nr_running > 1) {
3027 /*
3028 * Attempt to move tasks. If find_busiest_group has found
3029 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3030 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3031 * correctly treated as an imbalance.
3032 */
fe2eea3f 3033 local_irq_save(flags);
e17224bf 3034 double_rq_lock(this_rq, busiest);
43010659 3035 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3036 imbalance, sd, idle, &all_pinned);
e17224bf 3037 double_rq_unlock(this_rq, busiest);
fe2eea3f 3038 local_irq_restore(flags);
81026794 3039
46cb4b7c
SS
3040 /*
3041 * some other cpu did the load balance for us.
3042 */
43010659 3043 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3044 resched_cpu(this_cpu);
3045
81026794 3046 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
3047 if (unlikely(all_pinned)) {
3048 cpu_clear(cpu_of(busiest), cpus);
3049 if (!cpus_empty(cpus))
3050 goto redo;
81026794 3051 goto out_balanced;
0a2966b4 3052 }
1da177e4 3053 }
81026794 3054
43010659 3055 if (!ld_moved) {
1da177e4
LT
3056 schedstat_inc(sd, lb_failed[idle]);
3057 sd->nr_balance_failed++;
3058
3059 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3060
fe2eea3f 3061 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3062
3063 /* don't kick the migration_thread, if the curr
3064 * task on busiest cpu can't be moved to this_cpu
3065 */
3066 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3067 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3068 all_pinned = 1;
3069 goto out_one_pinned;
3070 }
3071
1da177e4
LT
3072 if (!busiest->active_balance) {
3073 busiest->active_balance = 1;
3074 busiest->push_cpu = this_cpu;
81026794 3075 active_balance = 1;
1da177e4 3076 }
fe2eea3f 3077 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3078 if (active_balance)
1da177e4
LT
3079 wake_up_process(busiest->migration_thread);
3080
3081 /*
3082 * We've kicked active balancing, reset the failure
3083 * counter.
3084 */
39507451 3085 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3086 }
81026794 3087 } else
1da177e4
LT
3088 sd->nr_balance_failed = 0;
3089
81026794 3090 if (likely(!active_balance)) {
1da177e4
LT
3091 /* We were unbalanced, so reset the balancing interval */
3092 sd->balance_interval = sd->min_interval;
81026794
NP
3093 } else {
3094 /*
3095 * If we've begun active balancing, start to back off. This
3096 * case may not be covered by the all_pinned logic if there
3097 * is only 1 task on the busy runqueue (because we don't call
3098 * move_tasks).
3099 */
3100 if (sd->balance_interval < sd->max_interval)
3101 sd->balance_interval *= 2;
1da177e4
LT
3102 }
3103
43010659 3104 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3105 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3106 return -1;
43010659 3107 return ld_moved;
1da177e4
LT
3108
3109out_balanced:
1da177e4
LT
3110 schedstat_inc(sd, lb_balanced[idle]);
3111
16cfb1c0 3112 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3113
3114out_one_pinned:
1da177e4 3115 /* tune up the balancing interval */
77391d71
NP
3116 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3117 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3118 sd->balance_interval *= 2;
3119
48f24c4d 3120 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3121 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3122 return -1;
1da177e4
LT
3123 return 0;
3124}
3125
3126/*
3127 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3128 * tasks if there is an imbalance.
3129 *
d15bcfdb 3130 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3131 * this_rq is locked.
3132 */
48f24c4d 3133static int
70b97a7f 3134load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
3135{
3136 struct sched_group *group;
70b97a7f 3137 struct rq *busiest = NULL;
1da177e4 3138 unsigned long imbalance;
43010659 3139 int ld_moved = 0;
5969fe06 3140 int sd_idle = 0;
969bb4e4 3141 int all_pinned = 0;
0a2966b4 3142 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 3143
89c4710e
SS
3144 /*
3145 * When power savings policy is enabled for the parent domain, idle
3146 * sibling can pick up load irrespective of busy siblings. In this case,
3147 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3148 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3149 */
3150 if (sd->flags & SD_SHARE_CPUPOWER &&
3151 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3152 sd_idle = 1;
1da177e4 3153
2d72376b 3154 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3155redo:
d15bcfdb 3156 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 3157 &sd_idle, &cpus, NULL);
1da177e4 3158 if (!group) {
d15bcfdb 3159 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3160 goto out_balanced;
1da177e4
LT
3161 }
3162
d15bcfdb 3163 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 3164 &cpus);
db935dbd 3165 if (!busiest) {
d15bcfdb 3166 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3167 goto out_balanced;
1da177e4
LT
3168 }
3169
db935dbd
NP
3170 BUG_ON(busiest == this_rq);
3171
d15bcfdb 3172 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3173
43010659 3174 ld_moved = 0;
d6d5cfaf
NP
3175 if (busiest->nr_running > 1) {
3176 /* Attempt to move tasks */
3177 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3178 /* this_rq->clock is already updated */
3179 update_rq_clock(busiest);
43010659 3180 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3181 imbalance, sd, CPU_NEWLY_IDLE,
3182 &all_pinned);
d6d5cfaf 3183 spin_unlock(&busiest->lock);
0a2966b4 3184
969bb4e4 3185 if (unlikely(all_pinned)) {
0a2966b4
CL
3186 cpu_clear(cpu_of(busiest), cpus);
3187 if (!cpus_empty(cpus))
3188 goto redo;
3189 }
d6d5cfaf
NP
3190 }
3191
43010659 3192 if (!ld_moved) {
d15bcfdb 3193 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3194 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3195 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3196 return -1;
3197 } else
16cfb1c0 3198 sd->nr_balance_failed = 0;
1da177e4 3199
43010659 3200 return ld_moved;
16cfb1c0
NP
3201
3202out_balanced:
d15bcfdb 3203 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3204 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3205 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3206 return -1;
16cfb1c0 3207 sd->nr_balance_failed = 0;
48f24c4d 3208
16cfb1c0 3209 return 0;
1da177e4
LT
3210}
3211
3212/*
3213 * idle_balance is called by schedule() if this_cpu is about to become
3214 * idle. Attempts to pull tasks from other CPUs.
3215 */
70b97a7f 3216static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3217{
3218 struct sched_domain *sd;
dd41f596
IM
3219 int pulled_task = -1;
3220 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3221
3222 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3223 unsigned long interval;
3224
3225 if (!(sd->flags & SD_LOAD_BALANCE))
3226 continue;
3227
3228 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3229 /* If we've pulled tasks over stop searching: */
1bd77f2d 3230 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3231 this_rq, sd);
3232
3233 interval = msecs_to_jiffies(sd->balance_interval);
3234 if (time_after(next_balance, sd->last_balance + interval))
3235 next_balance = sd->last_balance + interval;
3236 if (pulled_task)
3237 break;
1da177e4 3238 }
dd41f596 3239 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3240 /*
3241 * We are going idle. next_balance may be set based on
3242 * a busy processor. So reset next_balance.
3243 */
3244 this_rq->next_balance = next_balance;
dd41f596 3245 }
1da177e4
LT
3246}
3247
3248/*
3249 * active_load_balance is run by migration threads. It pushes running tasks
3250 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3251 * running on each physical CPU where possible, and avoids physical /
3252 * logical imbalances.
3253 *
3254 * Called with busiest_rq locked.
3255 */
70b97a7f 3256static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3257{
39507451 3258 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3259 struct sched_domain *sd;
3260 struct rq *target_rq;
39507451 3261
48f24c4d 3262 /* Is there any task to move? */
39507451 3263 if (busiest_rq->nr_running <= 1)
39507451
NP
3264 return;
3265
3266 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3267
3268 /*
39507451 3269 * This condition is "impossible", if it occurs
41a2d6cf 3270 * we need to fix it. Originally reported by
39507451 3271 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3272 */
39507451 3273 BUG_ON(busiest_rq == target_rq);
1da177e4 3274
39507451
NP
3275 /* move a task from busiest_rq to target_rq */
3276 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3277 update_rq_clock(busiest_rq);
3278 update_rq_clock(target_rq);
39507451
NP
3279
3280 /* Search for an sd spanning us and the target CPU. */
c96d145e 3281 for_each_domain(target_cpu, sd) {
39507451 3282 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3283 cpu_isset(busiest_cpu, sd->span))
39507451 3284 break;
c96d145e 3285 }
39507451 3286
48f24c4d 3287 if (likely(sd)) {
2d72376b 3288 schedstat_inc(sd, alb_count);
39507451 3289
43010659
PW
3290 if (move_one_task(target_rq, target_cpu, busiest_rq,
3291 sd, CPU_IDLE))
48f24c4d
IM
3292 schedstat_inc(sd, alb_pushed);
3293 else
3294 schedstat_inc(sd, alb_failed);
3295 }
39507451 3296 spin_unlock(&target_rq->lock);
1da177e4
LT
3297}
3298
46cb4b7c
SS
3299#ifdef CONFIG_NO_HZ
3300static struct {
3301 atomic_t load_balancer;
41a2d6cf 3302 cpumask_t cpu_mask;
46cb4b7c
SS
3303} nohz ____cacheline_aligned = {
3304 .load_balancer = ATOMIC_INIT(-1),
3305 .cpu_mask = CPU_MASK_NONE,
3306};
3307
7835b98b 3308/*
46cb4b7c
SS
3309 * This routine will try to nominate the ilb (idle load balancing)
3310 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3311 * load balancing on behalf of all those cpus. If all the cpus in the system
3312 * go into this tickless mode, then there will be no ilb owner (as there is
3313 * no need for one) and all the cpus will sleep till the next wakeup event
3314 * arrives...
3315 *
3316 * For the ilb owner, tick is not stopped. And this tick will be used
3317 * for idle load balancing. ilb owner will still be part of
3318 * nohz.cpu_mask..
7835b98b 3319 *
46cb4b7c
SS
3320 * While stopping the tick, this cpu will become the ilb owner if there
3321 * is no other owner. And will be the owner till that cpu becomes busy
3322 * or if all cpus in the system stop their ticks at which point
3323 * there is no need for ilb owner.
3324 *
3325 * When the ilb owner becomes busy, it nominates another owner, during the
3326 * next busy scheduler_tick()
3327 */
3328int select_nohz_load_balancer(int stop_tick)
3329{
3330 int cpu = smp_processor_id();
3331
3332 if (stop_tick) {
3333 cpu_set(cpu, nohz.cpu_mask);
3334 cpu_rq(cpu)->in_nohz_recently = 1;
3335
3336 /*
3337 * If we are going offline and still the leader, give up!
3338 */
3339 if (cpu_is_offline(cpu) &&
3340 atomic_read(&nohz.load_balancer) == cpu) {
3341 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3342 BUG();
3343 return 0;
3344 }
3345
3346 /* time for ilb owner also to sleep */
3347 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3348 if (atomic_read(&nohz.load_balancer) == cpu)
3349 atomic_set(&nohz.load_balancer, -1);
3350 return 0;
3351 }
3352
3353 if (atomic_read(&nohz.load_balancer) == -1) {
3354 /* make me the ilb owner */
3355 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3356 return 1;
3357 } else if (atomic_read(&nohz.load_balancer) == cpu)
3358 return 1;
3359 } else {
3360 if (!cpu_isset(cpu, nohz.cpu_mask))
3361 return 0;
3362
3363 cpu_clear(cpu, nohz.cpu_mask);
3364
3365 if (atomic_read(&nohz.load_balancer) == cpu)
3366 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3367 BUG();
3368 }
3369 return 0;
3370}
3371#endif
3372
3373static DEFINE_SPINLOCK(balancing);
3374
3375/*
7835b98b
CL
3376 * It checks each scheduling domain to see if it is due to be balanced,
3377 * and initiates a balancing operation if so.
3378 *
3379 * Balancing parameters are set up in arch_init_sched_domains.
3380 */
a9957449 3381static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3382{
46cb4b7c
SS
3383 int balance = 1;
3384 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3385 unsigned long interval;
3386 struct sched_domain *sd;
46cb4b7c 3387 /* Earliest time when we have to do rebalance again */
c9819f45 3388 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3389 int update_next_balance = 0;
1da177e4 3390
46cb4b7c 3391 for_each_domain(cpu, sd) {
1da177e4
LT
3392 if (!(sd->flags & SD_LOAD_BALANCE))
3393 continue;
3394
3395 interval = sd->balance_interval;
d15bcfdb 3396 if (idle != CPU_IDLE)
1da177e4
LT
3397 interval *= sd->busy_factor;
3398
3399 /* scale ms to jiffies */
3400 interval = msecs_to_jiffies(interval);
3401 if (unlikely(!interval))
3402 interval = 1;
dd41f596
IM
3403 if (interval > HZ*NR_CPUS/10)
3404 interval = HZ*NR_CPUS/10;
3405
1da177e4 3406
08c183f3
CL
3407 if (sd->flags & SD_SERIALIZE) {
3408 if (!spin_trylock(&balancing))
3409 goto out;
3410 }
3411
c9819f45 3412 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3413 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3414 /*
3415 * We've pulled tasks over so either we're no
5969fe06
NP
3416 * longer idle, or one of our SMT siblings is
3417 * not idle.
3418 */
d15bcfdb 3419 idle = CPU_NOT_IDLE;
1da177e4 3420 }
1bd77f2d 3421 sd->last_balance = jiffies;
1da177e4 3422 }
08c183f3
CL
3423 if (sd->flags & SD_SERIALIZE)
3424 spin_unlock(&balancing);
3425out:
f549da84 3426 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3427 next_balance = sd->last_balance + interval;
f549da84
SS
3428 update_next_balance = 1;
3429 }
783609c6
SS
3430
3431 /*
3432 * Stop the load balance at this level. There is another
3433 * CPU in our sched group which is doing load balancing more
3434 * actively.
3435 */
3436 if (!balance)
3437 break;
1da177e4 3438 }
f549da84
SS
3439
3440 /*
3441 * next_balance will be updated only when there is a need.
3442 * When the cpu is attached to null domain for ex, it will not be
3443 * updated.
3444 */
3445 if (likely(update_next_balance))
3446 rq->next_balance = next_balance;
46cb4b7c
SS
3447}
3448
3449/*
3450 * run_rebalance_domains is triggered when needed from the scheduler tick.
3451 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3452 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3453 */
3454static void run_rebalance_domains(struct softirq_action *h)
3455{
dd41f596
IM
3456 int this_cpu = smp_processor_id();
3457 struct rq *this_rq = cpu_rq(this_cpu);
3458 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3459 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3460
dd41f596 3461 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3462
3463#ifdef CONFIG_NO_HZ
3464 /*
3465 * If this cpu is the owner for idle load balancing, then do the
3466 * balancing on behalf of the other idle cpus whose ticks are
3467 * stopped.
3468 */
dd41f596
IM
3469 if (this_rq->idle_at_tick &&
3470 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3471 cpumask_t cpus = nohz.cpu_mask;
3472 struct rq *rq;
3473 int balance_cpu;
3474
dd41f596 3475 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3476 for_each_cpu_mask(balance_cpu, cpus) {
3477 /*
3478 * If this cpu gets work to do, stop the load balancing
3479 * work being done for other cpus. Next load
3480 * balancing owner will pick it up.
3481 */
3482 if (need_resched())
3483 break;
3484
de0cf899 3485 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3486
3487 rq = cpu_rq(balance_cpu);
dd41f596
IM
3488 if (time_after(this_rq->next_balance, rq->next_balance))
3489 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3490 }
3491 }
3492#endif
3493}
3494
3495/*
3496 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3497 *
3498 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3499 * idle load balancing owner or decide to stop the periodic load balancing,
3500 * if the whole system is idle.
3501 */
dd41f596 3502static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3503{
46cb4b7c
SS
3504#ifdef CONFIG_NO_HZ
3505 /*
3506 * If we were in the nohz mode recently and busy at the current
3507 * scheduler tick, then check if we need to nominate new idle
3508 * load balancer.
3509 */
3510 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3511 rq->in_nohz_recently = 0;
3512
3513 if (atomic_read(&nohz.load_balancer) == cpu) {
3514 cpu_clear(cpu, nohz.cpu_mask);
3515 atomic_set(&nohz.load_balancer, -1);
3516 }
3517
3518 if (atomic_read(&nohz.load_balancer) == -1) {
3519 /*
3520 * simple selection for now: Nominate the
3521 * first cpu in the nohz list to be the next
3522 * ilb owner.
3523 *
3524 * TBD: Traverse the sched domains and nominate
3525 * the nearest cpu in the nohz.cpu_mask.
3526 */
3527 int ilb = first_cpu(nohz.cpu_mask);
3528
3529 if (ilb != NR_CPUS)
3530 resched_cpu(ilb);
3531 }
3532 }
3533
3534 /*
3535 * If this cpu is idle and doing idle load balancing for all the
3536 * cpus with ticks stopped, is it time for that to stop?
3537 */
3538 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3539 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3540 resched_cpu(cpu);
3541 return;
3542 }
3543
3544 /*
3545 * If this cpu is idle and the idle load balancing is done by
3546 * someone else, then no need raise the SCHED_SOFTIRQ
3547 */
3548 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3549 cpu_isset(cpu, nohz.cpu_mask))
3550 return;
3551#endif
3552 if (time_after_eq(jiffies, rq->next_balance))
3553 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3554}
dd41f596
IM
3555
3556#else /* CONFIG_SMP */
3557
1da177e4
LT
3558/*
3559 * on UP we do not need to balance between CPUs:
3560 */
70b97a7f 3561static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3562{
3563}
dd41f596 3564
1da177e4
LT
3565#endif
3566
1da177e4
LT
3567DEFINE_PER_CPU(struct kernel_stat, kstat);
3568
3569EXPORT_PER_CPU_SYMBOL(kstat);
3570
3571/*
41b86e9c
IM
3572 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3573 * that have not yet been banked in case the task is currently running.
1da177e4 3574 */
41b86e9c 3575unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3576{
1da177e4 3577 unsigned long flags;
41b86e9c
IM
3578 u64 ns, delta_exec;
3579 struct rq *rq;
48f24c4d 3580
41b86e9c
IM
3581 rq = task_rq_lock(p, &flags);
3582 ns = p->se.sum_exec_runtime;
051a1d1a 3583 if (task_current(rq, p)) {
a8e504d2
IM
3584 update_rq_clock(rq);
3585 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3586 if ((s64)delta_exec > 0)
3587 ns += delta_exec;
3588 }
3589 task_rq_unlock(rq, &flags);
48f24c4d 3590
1da177e4
LT
3591 return ns;
3592}
3593
1da177e4
LT
3594/*
3595 * Account user cpu time to a process.
3596 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3597 * @cputime: the cpu time spent in user space since the last update
3598 */
3599void account_user_time(struct task_struct *p, cputime_t cputime)
3600{
3601 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3602 cputime64_t tmp;
3603
3604 p->utime = cputime_add(p->utime, cputime);
3605
3606 /* Add user time to cpustat. */
3607 tmp = cputime_to_cputime64(cputime);
3608 if (TASK_NICE(p) > 0)
3609 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3610 else
3611 cpustat->user = cputime64_add(cpustat->user, tmp);
3612}
3613
94886b84
LV
3614/*
3615 * Account guest cpu time to a process.
3616 * @p: the process that the cpu time gets accounted to
3617 * @cputime: the cpu time spent in virtual machine since the last update
3618 */
f7402e03 3619static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3620{
3621 cputime64_t tmp;
3622 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3623
3624 tmp = cputime_to_cputime64(cputime);
3625
3626 p->utime = cputime_add(p->utime, cputime);
3627 p->gtime = cputime_add(p->gtime, cputime);
3628
3629 cpustat->user = cputime64_add(cpustat->user, tmp);
3630 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3631}
3632
c66f08be
MN
3633/*
3634 * Account scaled user cpu time to a process.
3635 * @p: the process that the cpu time gets accounted to
3636 * @cputime: the cpu time spent in user space since the last update
3637 */
3638void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3639{
3640 p->utimescaled = cputime_add(p->utimescaled, cputime);
3641}
3642
1da177e4
LT
3643/*
3644 * Account system cpu time to a process.
3645 * @p: the process that the cpu time gets accounted to
3646 * @hardirq_offset: the offset to subtract from hardirq_count()
3647 * @cputime: the cpu time spent in kernel space since the last update
3648 */
3649void account_system_time(struct task_struct *p, int hardirq_offset,
3650 cputime_t cputime)
3651{
3652 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3653 struct rq *rq = this_rq();
1da177e4
LT
3654 cputime64_t tmp;
3655
9778385d
CB
3656 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3657 return account_guest_time(p, cputime);
94886b84 3658
1da177e4
LT
3659 p->stime = cputime_add(p->stime, cputime);
3660
3661 /* Add system time to cpustat. */
3662 tmp = cputime_to_cputime64(cputime);
3663 if (hardirq_count() - hardirq_offset)
3664 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3665 else if (softirq_count())
3666 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3667 else if (p != rq->idle)
1da177e4 3668 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3669 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3670 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3671 else
3672 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3673 /* Account for system time used */
3674 acct_update_integrals(p);
1da177e4
LT
3675}
3676
c66f08be
MN
3677/*
3678 * Account scaled system cpu time to a process.
3679 * @p: the process that the cpu time gets accounted to
3680 * @hardirq_offset: the offset to subtract from hardirq_count()
3681 * @cputime: the cpu time spent in kernel space since the last update
3682 */
3683void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3684{
3685 p->stimescaled = cputime_add(p->stimescaled, cputime);
3686}
3687
1da177e4
LT
3688/*
3689 * Account for involuntary wait time.
3690 * @p: the process from which the cpu time has been stolen
3691 * @steal: the cpu time spent in involuntary wait
3692 */
3693void account_steal_time(struct task_struct *p, cputime_t steal)
3694{
3695 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3696 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3697 struct rq *rq = this_rq();
1da177e4
LT
3698
3699 if (p == rq->idle) {
3700 p->stime = cputime_add(p->stime, steal);
3701 if (atomic_read(&rq->nr_iowait) > 0)
3702 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3703 else
3704 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3705 } else
1da177e4
LT
3706 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3707}
3708
7835b98b
CL
3709/*
3710 * This function gets called by the timer code, with HZ frequency.
3711 * We call it with interrupts disabled.
3712 *
3713 * It also gets called by the fork code, when changing the parent's
3714 * timeslices.
3715 */
3716void scheduler_tick(void)
3717{
7835b98b
CL
3718 int cpu = smp_processor_id();
3719 struct rq *rq = cpu_rq(cpu);
dd41f596 3720 struct task_struct *curr = rq->curr;
529c7726 3721 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3722
3723 spin_lock(&rq->lock);
546fe3c9 3724 __update_rq_clock(rq);
529c7726
IM
3725 /*
3726 * Let rq->clock advance by at least TICK_NSEC:
3727 */
cc203d24 3728 if (unlikely(rq->clock < next_tick)) {
529c7726 3729 rq->clock = next_tick;
cc203d24
GC
3730 rq->clock_underflows++;
3731 }
529c7726 3732 rq->tick_timestamp = rq->clock;
f1a438d8 3733 update_cpu_load(rq);
fa85ae24
PZ
3734 curr->sched_class->task_tick(rq, curr, 0);
3735 update_sched_rt_period(rq);
dd41f596 3736 spin_unlock(&rq->lock);
7835b98b 3737
e418e1c2 3738#ifdef CONFIG_SMP
dd41f596
IM
3739 rq->idle_at_tick = idle_cpu(cpu);
3740 trigger_load_balance(rq, cpu);
e418e1c2 3741#endif
1da177e4
LT
3742}
3743
1da177e4
LT
3744#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3745
7ad5b3a5 3746void add_preempt_count(int val)
1da177e4
LT
3747{
3748 /*
3749 * Underflow?
3750 */
9a11b49a
IM
3751 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3752 return;
1da177e4
LT
3753 preempt_count() += val;
3754 /*
3755 * Spinlock count overflowing soon?
3756 */
33859f7f
MOS
3757 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3758 PREEMPT_MASK - 10);
1da177e4
LT
3759}
3760EXPORT_SYMBOL(add_preempt_count);
3761
7ad5b3a5 3762void sub_preempt_count(int val)
1da177e4
LT
3763{
3764 /*
3765 * Underflow?
3766 */
9a11b49a
IM
3767 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3768 return;
1da177e4
LT
3769 /*
3770 * Is the spinlock portion underflowing?
3771 */
9a11b49a
IM
3772 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3773 !(preempt_count() & PREEMPT_MASK)))
3774 return;
3775
1da177e4
LT
3776 preempt_count() -= val;
3777}
3778EXPORT_SYMBOL(sub_preempt_count);
3779
3780#endif
3781
3782/*
dd41f596 3783 * Print scheduling while atomic bug:
1da177e4 3784 */
dd41f596 3785static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3786{
838225b4
SS
3787 struct pt_regs *regs = get_irq_regs();
3788
3789 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3790 prev->comm, prev->pid, preempt_count());
3791
dd41f596
IM
3792 debug_show_held_locks(prev);
3793 if (irqs_disabled())
3794 print_irqtrace_events(prev);
838225b4
SS
3795
3796 if (regs)
3797 show_regs(regs);
3798 else
3799 dump_stack();
dd41f596 3800}
1da177e4 3801
dd41f596
IM
3802/*
3803 * Various schedule()-time debugging checks and statistics:
3804 */
3805static inline void schedule_debug(struct task_struct *prev)
3806{
1da177e4 3807 /*
41a2d6cf 3808 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3809 * schedule() atomically, we ignore that path for now.
3810 * Otherwise, whine if we are scheduling when we should not be.
3811 */
dd41f596
IM
3812 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3813 __schedule_bug(prev);
3814
1da177e4
LT
3815 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3816
2d72376b 3817 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3818#ifdef CONFIG_SCHEDSTATS
3819 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3820 schedstat_inc(this_rq(), bkl_count);
3821 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3822 }
3823#endif
dd41f596
IM
3824}
3825
3826/*
3827 * Pick up the highest-prio task:
3828 */
3829static inline struct task_struct *
ff95f3df 3830pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3831{
5522d5d5 3832 const struct sched_class *class;
dd41f596 3833 struct task_struct *p;
1da177e4
LT
3834
3835 /*
dd41f596
IM
3836 * Optimization: we know that if all tasks are in
3837 * the fair class we can call that function directly:
1da177e4 3838 */
dd41f596 3839 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3840 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3841 if (likely(p))
3842 return p;
1da177e4
LT
3843 }
3844
dd41f596
IM
3845 class = sched_class_highest;
3846 for ( ; ; ) {
fb8d4724 3847 p = class->pick_next_task(rq);
dd41f596
IM
3848 if (p)
3849 return p;
3850 /*
3851 * Will never be NULL as the idle class always
3852 * returns a non-NULL p:
3853 */
3854 class = class->next;
3855 }
3856}
1da177e4 3857
dd41f596
IM
3858/*
3859 * schedule() is the main scheduler function.
3860 */
3861asmlinkage void __sched schedule(void)
3862{
3863 struct task_struct *prev, *next;
3864 long *switch_count;
3865 struct rq *rq;
dd41f596
IM
3866 int cpu;
3867
3868need_resched:
3869 preempt_disable();
3870 cpu = smp_processor_id();
3871 rq = cpu_rq(cpu);
3872 rcu_qsctr_inc(cpu);
3873 prev = rq->curr;
3874 switch_count = &prev->nivcsw;
3875
3876 release_kernel_lock(prev);
3877need_resched_nonpreemptible:
3878
3879 schedule_debug(prev);
1da177e4 3880
8f4d37ec
PZ
3881 hrtick_clear(rq);
3882
1e819950
IM
3883 /*
3884 * Do the rq-clock update outside the rq lock:
3885 */
3886 local_irq_disable();
c1b3da3e 3887 __update_rq_clock(rq);
1e819950
IM
3888 spin_lock(&rq->lock);
3889 clear_tsk_need_resched(prev);
1da177e4 3890
1da177e4 3891 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3892 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3893 unlikely(signal_pending(prev)))) {
1da177e4 3894 prev->state = TASK_RUNNING;
dd41f596 3895 } else {
2e1cb74a 3896 deactivate_task(rq, prev, 1);
1da177e4 3897 }
dd41f596 3898 switch_count = &prev->nvcsw;
1da177e4
LT
3899 }
3900
9a897c5a
SR
3901#ifdef CONFIG_SMP
3902 if (prev->sched_class->pre_schedule)
3903 prev->sched_class->pre_schedule(rq, prev);
3904#endif
f65eda4f 3905
dd41f596 3906 if (unlikely(!rq->nr_running))
1da177e4 3907 idle_balance(cpu, rq);
1da177e4 3908
31ee529c 3909 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3910 next = pick_next_task(rq, prev);
1da177e4
LT
3911
3912 sched_info_switch(prev, next);
dd41f596 3913
1da177e4 3914 if (likely(prev != next)) {
1da177e4
LT
3915 rq->nr_switches++;
3916 rq->curr = next;
3917 ++*switch_count;
3918
dd41f596 3919 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3920 /*
3921 * the context switch might have flipped the stack from under
3922 * us, hence refresh the local variables.
3923 */
3924 cpu = smp_processor_id();
3925 rq = cpu_rq(cpu);
1da177e4
LT
3926 } else
3927 spin_unlock_irq(&rq->lock);
3928
8f4d37ec
PZ
3929 hrtick_set(rq);
3930
3931 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 3932 goto need_resched_nonpreemptible;
8f4d37ec 3933
1da177e4
LT
3934 preempt_enable_no_resched();
3935 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3936 goto need_resched;
3937}
1da177e4
LT
3938EXPORT_SYMBOL(schedule);
3939
3940#ifdef CONFIG_PREEMPT
3941/*
2ed6e34f 3942 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3943 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3944 * occur there and call schedule directly.
3945 */
3946asmlinkage void __sched preempt_schedule(void)
3947{
3948 struct thread_info *ti = current_thread_info();
1da177e4
LT
3949 struct task_struct *task = current;
3950 int saved_lock_depth;
6478d880 3951
1da177e4
LT
3952 /*
3953 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3954 * we do not want to preempt the current task. Just return..
1da177e4 3955 */
beed33a8 3956 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3957 return;
3958
3a5c359a
AK
3959 do {
3960 add_preempt_count(PREEMPT_ACTIVE);
3961
3962 /*
3963 * We keep the big kernel semaphore locked, but we
3964 * clear ->lock_depth so that schedule() doesnt
3965 * auto-release the semaphore:
3966 */
3a5c359a
AK
3967 saved_lock_depth = task->lock_depth;
3968 task->lock_depth = -1;
3a5c359a 3969 schedule();
3a5c359a 3970 task->lock_depth = saved_lock_depth;
3a5c359a 3971 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3972
3a5c359a
AK
3973 /*
3974 * Check again in case we missed a preemption opportunity
3975 * between schedule and now.
3976 */
3977 barrier();
3978 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3979}
1da177e4
LT
3980EXPORT_SYMBOL(preempt_schedule);
3981
3982/*
2ed6e34f 3983 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3984 * off of irq context.
3985 * Note, that this is called and return with irqs disabled. This will
3986 * protect us against recursive calling from irq.
3987 */
3988asmlinkage void __sched preempt_schedule_irq(void)
3989{
3990 struct thread_info *ti = current_thread_info();
1da177e4
LT
3991 struct task_struct *task = current;
3992 int saved_lock_depth;
6478d880 3993
2ed6e34f 3994 /* Catch callers which need to be fixed */
1da177e4
LT
3995 BUG_ON(ti->preempt_count || !irqs_disabled());
3996
3a5c359a
AK
3997 do {
3998 add_preempt_count(PREEMPT_ACTIVE);
3999
4000 /*
4001 * We keep the big kernel semaphore locked, but we
4002 * clear ->lock_depth so that schedule() doesnt
4003 * auto-release the semaphore:
4004 */
3a5c359a
AK
4005 saved_lock_depth = task->lock_depth;
4006 task->lock_depth = -1;
3a5c359a
AK
4007 local_irq_enable();
4008 schedule();
4009 local_irq_disable();
3a5c359a 4010 task->lock_depth = saved_lock_depth;
3a5c359a 4011 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4012
3a5c359a
AK
4013 /*
4014 * Check again in case we missed a preemption opportunity
4015 * between schedule and now.
4016 */
4017 barrier();
4018 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4019}
4020
4021#endif /* CONFIG_PREEMPT */
4022
95cdf3b7
IM
4023int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4024 void *key)
1da177e4 4025{
48f24c4d 4026 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4027}
1da177e4
LT
4028EXPORT_SYMBOL(default_wake_function);
4029
4030/*
41a2d6cf
IM
4031 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4032 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4033 * number) then we wake all the non-exclusive tasks and one exclusive task.
4034 *
4035 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4036 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4037 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4038 */
4039static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4040 int nr_exclusive, int sync, void *key)
4041{
2e45874c 4042 wait_queue_t *curr, *next;
1da177e4 4043
2e45874c 4044 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4045 unsigned flags = curr->flags;
4046
1da177e4 4047 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4048 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4049 break;
4050 }
4051}
4052
4053/**
4054 * __wake_up - wake up threads blocked on a waitqueue.
4055 * @q: the waitqueue
4056 * @mode: which threads
4057 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4058 * @key: is directly passed to the wakeup function
1da177e4 4059 */
7ad5b3a5 4060void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4061 int nr_exclusive, void *key)
1da177e4
LT
4062{
4063 unsigned long flags;
4064
4065 spin_lock_irqsave(&q->lock, flags);
4066 __wake_up_common(q, mode, nr_exclusive, 0, key);
4067 spin_unlock_irqrestore(&q->lock, flags);
4068}
1da177e4
LT
4069EXPORT_SYMBOL(__wake_up);
4070
4071/*
4072 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4073 */
7ad5b3a5 4074void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4075{
4076 __wake_up_common(q, mode, 1, 0, NULL);
4077}
4078
4079/**
67be2dd1 4080 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4081 * @q: the waitqueue
4082 * @mode: which threads
4083 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4084 *
4085 * The sync wakeup differs that the waker knows that it will schedule
4086 * away soon, so while the target thread will be woken up, it will not
4087 * be migrated to another CPU - ie. the two threads are 'synchronized'
4088 * with each other. This can prevent needless bouncing between CPUs.
4089 *
4090 * On UP it can prevent extra preemption.
4091 */
7ad5b3a5 4092void
95cdf3b7 4093__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4094{
4095 unsigned long flags;
4096 int sync = 1;
4097
4098 if (unlikely(!q))
4099 return;
4100
4101 if (unlikely(!nr_exclusive))
4102 sync = 0;
4103
4104 spin_lock_irqsave(&q->lock, flags);
4105 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4106 spin_unlock_irqrestore(&q->lock, flags);
4107}
4108EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4109
b15136e9 4110void complete(struct completion *x)
1da177e4
LT
4111{
4112 unsigned long flags;
4113
4114 spin_lock_irqsave(&x->wait.lock, flags);
4115 x->done++;
d9514f6c 4116 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4117 spin_unlock_irqrestore(&x->wait.lock, flags);
4118}
4119EXPORT_SYMBOL(complete);
4120
b15136e9 4121void complete_all(struct completion *x)
1da177e4
LT
4122{
4123 unsigned long flags;
4124
4125 spin_lock_irqsave(&x->wait.lock, flags);
4126 x->done += UINT_MAX/2;
d9514f6c 4127 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4128 spin_unlock_irqrestore(&x->wait.lock, flags);
4129}
4130EXPORT_SYMBOL(complete_all);
4131
8cbbe86d
AK
4132static inline long __sched
4133do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4134{
1da177e4
LT
4135 if (!x->done) {
4136 DECLARE_WAITQUEUE(wait, current);
4137
4138 wait.flags |= WQ_FLAG_EXCLUSIVE;
4139 __add_wait_queue_tail(&x->wait, &wait);
4140 do {
009e577e
MW
4141 if ((state == TASK_INTERRUPTIBLE &&
4142 signal_pending(current)) ||
4143 (state == TASK_KILLABLE &&
4144 fatal_signal_pending(current))) {
8cbbe86d
AK
4145 __remove_wait_queue(&x->wait, &wait);
4146 return -ERESTARTSYS;
4147 }
4148 __set_current_state(state);
1da177e4
LT
4149 spin_unlock_irq(&x->wait.lock);
4150 timeout = schedule_timeout(timeout);
4151 spin_lock_irq(&x->wait.lock);
4152 if (!timeout) {
4153 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4154 return timeout;
1da177e4
LT
4155 }
4156 } while (!x->done);
4157 __remove_wait_queue(&x->wait, &wait);
4158 }
4159 x->done--;
1da177e4
LT
4160 return timeout;
4161}
1da177e4 4162
8cbbe86d
AK
4163static long __sched
4164wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4165{
1da177e4
LT
4166 might_sleep();
4167
4168 spin_lock_irq(&x->wait.lock);
8cbbe86d 4169 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4170 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4171 return timeout;
4172}
1da177e4 4173
b15136e9 4174void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4175{
4176 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4177}
8cbbe86d 4178EXPORT_SYMBOL(wait_for_completion);
1da177e4 4179
b15136e9 4180unsigned long __sched
8cbbe86d 4181wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4182{
8cbbe86d 4183 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4184}
8cbbe86d 4185EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4186
8cbbe86d 4187int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4188{
51e97990
AK
4189 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4190 if (t == -ERESTARTSYS)
4191 return t;
4192 return 0;
0fec171c 4193}
8cbbe86d 4194EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4195
b15136e9 4196unsigned long __sched
8cbbe86d
AK
4197wait_for_completion_interruptible_timeout(struct completion *x,
4198 unsigned long timeout)
0fec171c 4199{
8cbbe86d 4200 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4201}
8cbbe86d 4202EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4203
009e577e
MW
4204int __sched wait_for_completion_killable(struct completion *x)
4205{
4206 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4207 if (t == -ERESTARTSYS)
4208 return t;
4209 return 0;
4210}
4211EXPORT_SYMBOL(wait_for_completion_killable);
4212
8cbbe86d
AK
4213static long __sched
4214sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4215{
0fec171c
IM
4216 unsigned long flags;
4217 wait_queue_t wait;
4218
4219 init_waitqueue_entry(&wait, current);
1da177e4 4220
8cbbe86d 4221 __set_current_state(state);
1da177e4 4222
8cbbe86d
AK
4223 spin_lock_irqsave(&q->lock, flags);
4224 __add_wait_queue(q, &wait);
4225 spin_unlock(&q->lock);
4226 timeout = schedule_timeout(timeout);
4227 spin_lock_irq(&q->lock);
4228 __remove_wait_queue(q, &wait);
4229 spin_unlock_irqrestore(&q->lock, flags);
4230
4231 return timeout;
4232}
4233
4234void __sched interruptible_sleep_on(wait_queue_head_t *q)
4235{
4236 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4237}
1da177e4
LT
4238EXPORT_SYMBOL(interruptible_sleep_on);
4239
0fec171c 4240long __sched
95cdf3b7 4241interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4242{
8cbbe86d 4243 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4244}
1da177e4
LT
4245EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4246
0fec171c 4247void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4248{
8cbbe86d 4249 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4250}
1da177e4
LT
4251EXPORT_SYMBOL(sleep_on);
4252
0fec171c 4253long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4254{
8cbbe86d 4255 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4256}
1da177e4
LT
4257EXPORT_SYMBOL(sleep_on_timeout);
4258
b29739f9
IM
4259#ifdef CONFIG_RT_MUTEXES
4260
4261/*
4262 * rt_mutex_setprio - set the current priority of a task
4263 * @p: task
4264 * @prio: prio value (kernel-internal form)
4265 *
4266 * This function changes the 'effective' priority of a task. It does
4267 * not touch ->normal_prio like __setscheduler().
4268 *
4269 * Used by the rt_mutex code to implement priority inheritance logic.
4270 */
36c8b586 4271void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4272{
4273 unsigned long flags;
83b699ed 4274 int oldprio, on_rq, running;
70b97a7f 4275 struct rq *rq;
cb469845 4276 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4277
4278 BUG_ON(prio < 0 || prio > MAX_PRIO);
4279
4280 rq = task_rq_lock(p, &flags);
a8e504d2 4281 update_rq_clock(rq);
b29739f9 4282
d5f9f942 4283 oldprio = p->prio;
dd41f596 4284 on_rq = p->se.on_rq;
051a1d1a 4285 running = task_current(rq, p);
83b699ed 4286 if (on_rq) {
69be72c1 4287 dequeue_task(rq, p, 0);
83b699ed
SV
4288 if (running)
4289 p->sched_class->put_prev_task(rq, p);
4290 }
dd41f596
IM
4291
4292 if (rt_prio(prio))
4293 p->sched_class = &rt_sched_class;
4294 else
4295 p->sched_class = &fair_sched_class;
4296
b29739f9
IM
4297 p->prio = prio;
4298
dd41f596 4299 if (on_rq) {
83b699ed
SV
4300 if (running)
4301 p->sched_class->set_curr_task(rq);
cb469845 4302
8159f87e 4303 enqueue_task(rq, p, 0);
cb469845
SR
4304
4305 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4306 }
4307 task_rq_unlock(rq, &flags);
4308}
4309
4310#endif
4311
36c8b586 4312void set_user_nice(struct task_struct *p, long nice)
1da177e4 4313{
dd41f596 4314 int old_prio, delta, on_rq;
1da177e4 4315 unsigned long flags;
70b97a7f 4316 struct rq *rq;
1da177e4
LT
4317
4318 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4319 return;
4320 /*
4321 * We have to be careful, if called from sys_setpriority(),
4322 * the task might be in the middle of scheduling on another CPU.
4323 */
4324 rq = task_rq_lock(p, &flags);
a8e504d2 4325 update_rq_clock(rq);
1da177e4
LT
4326 /*
4327 * The RT priorities are set via sched_setscheduler(), but we still
4328 * allow the 'normal' nice value to be set - but as expected
4329 * it wont have any effect on scheduling until the task is
dd41f596 4330 * SCHED_FIFO/SCHED_RR:
1da177e4 4331 */
e05606d3 4332 if (task_has_rt_policy(p)) {
1da177e4
LT
4333 p->static_prio = NICE_TO_PRIO(nice);
4334 goto out_unlock;
4335 }
dd41f596 4336 on_rq = p->se.on_rq;
58e2d4ca 4337 if (on_rq)
69be72c1 4338 dequeue_task(rq, p, 0);
1da177e4 4339
1da177e4 4340 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4341 set_load_weight(p);
b29739f9
IM
4342 old_prio = p->prio;
4343 p->prio = effective_prio(p);
4344 delta = p->prio - old_prio;
1da177e4 4345
dd41f596 4346 if (on_rq) {
8159f87e 4347 enqueue_task(rq, p, 0);
1da177e4 4348 /*
d5f9f942
AM
4349 * If the task increased its priority or is running and
4350 * lowered its priority, then reschedule its CPU:
1da177e4 4351 */
d5f9f942 4352 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4353 resched_task(rq->curr);
4354 }
4355out_unlock:
4356 task_rq_unlock(rq, &flags);
4357}
1da177e4
LT
4358EXPORT_SYMBOL(set_user_nice);
4359
e43379f1
MM
4360/*
4361 * can_nice - check if a task can reduce its nice value
4362 * @p: task
4363 * @nice: nice value
4364 */
36c8b586 4365int can_nice(const struct task_struct *p, const int nice)
e43379f1 4366{
024f4747
MM
4367 /* convert nice value [19,-20] to rlimit style value [1,40] */
4368 int nice_rlim = 20 - nice;
48f24c4d 4369
e43379f1
MM
4370 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4371 capable(CAP_SYS_NICE));
4372}
4373
1da177e4
LT
4374#ifdef __ARCH_WANT_SYS_NICE
4375
4376/*
4377 * sys_nice - change the priority of the current process.
4378 * @increment: priority increment
4379 *
4380 * sys_setpriority is a more generic, but much slower function that
4381 * does similar things.
4382 */
4383asmlinkage long sys_nice(int increment)
4384{
48f24c4d 4385 long nice, retval;
1da177e4
LT
4386
4387 /*
4388 * Setpriority might change our priority at the same moment.
4389 * We don't have to worry. Conceptually one call occurs first
4390 * and we have a single winner.
4391 */
e43379f1
MM
4392 if (increment < -40)
4393 increment = -40;
1da177e4
LT
4394 if (increment > 40)
4395 increment = 40;
4396
4397 nice = PRIO_TO_NICE(current->static_prio) + increment;
4398 if (nice < -20)
4399 nice = -20;
4400 if (nice > 19)
4401 nice = 19;
4402
e43379f1
MM
4403 if (increment < 0 && !can_nice(current, nice))
4404 return -EPERM;
4405
1da177e4
LT
4406 retval = security_task_setnice(current, nice);
4407 if (retval)
4408 return retval;
4409
4410 set_user_nice(current, nice);
4411 return 0;
4412}
4413
4414#endif
4415
4416/**
4417 * task_prio - return the priority value of a given task.
4418 * @p: the task in question.
4419 *
4420 * This is the priority value as seen by users in /proc.
4421 * RT tasks are offset by -200. Normal tasks are centered
4422 * around 0, value goes from -16 to +15.
4423 */
36c8b586 4424int task_prio(const struct task_struct *p)
1da177e4
LT
4425{
4426 return p->prio - MAX_RT_PRIO;
4427}
4428
4429/**
4430 * task_nice - return the nice value of a given task.
4431 * @p: the task in question.
4432 */
36c8b586 4433int task_nice(const struct task_struct *p)
1da177e4
LT
4434{
4435 return TASK_NICE(p);
4436}
1da177e4 4437EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4438
4439/**
4440 * idle_cpu - is a given cpu idle currently?
4441 * @cpu: the processor in question.
4442 */
4443int idle_cpu(int cpu)
4444{
4445 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4446}
4447
1da177e4
LT
4448/**
4449 * idle_task - return the idle task for a given cpu.
4450 * @cpu: the processor in question.
4451 */
36c8b586 4452struct task_struct *idle_task(int cpu)
1da177e4
LT
4453{
4454 return cpu_rq(cpu)->idle;
4455}
4456
4457/**
4458 * find_process_by_pid - find a process with a matching PID value.
4459 * @pid: the pid in question.
4460 */
a9957449 4461static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4462{
228ebcbe 4463 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4464}
4465
4466/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4467static void
4468__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4469{
dd41f596 4470 BUG_ON(p->se.on_rq);
48f24c4d 4471
1da177e4 4472 p->policy = policy;
dd41f596
IM
4473 switch (p->policy) {
4474 case SCHED_NORMAL:
4475 case SCHED_BATCH:
4476 case SCHED_IDLE:
4477 p->sched_class = &fair_sched_class;
4478 break;
4479 case SCHED_FIFO:
4480 case SCHED_RR:
4481 p->sched_class = &rt_sched_class;
4482 break;
4483 }
4484
1da177e4 4485 p->rt_priority = prio;
b29739f9
IM
4486 p->normal_prio = normal_prio(p);
4487 /* we are holding p->pi_lock already */
4488 p->prio = rt_mutex_getprio(p);
2dd73a4f 4489 set_load_weight(p);
1da177e4
LT
4490}
4491
4492/**
72fd4a35 4493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4494 * @p: the task in question.
4495 * @policy: new policy.
4496 * @param: structure containing the new RT priority.
5fe1d75f 4497 *
72fd4a35 4498 * NOTE that the task may be already dead.
1da177e4 4499 */
95cdf3b7
IM
4500int sched_setscheduler(struct task_struct *p, int policy,
4501 struct sched_param *param)
1da177e4 4502{
83b699ed 4503 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4504 unsigned long flags;
cb469845 4505 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4506 struct rq *rq;
1da177e4 4507
66e5393a
SR
4508 /* may grab non-irq protected spin_locks */
4509 BUG_ON(in_interrupt());
1da177e4
LT
4510recheck:
4511 /* double check policy once rq lock held */
4512 if (policy < 0)
4513 policy = oldpolicy = p->policy;
4514 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4515 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4516 policy != SCHED_IDLE)
b0a9499c 4517 return -EINVAL;
1da177e4
LT
4518 /*
4519 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4520 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4521 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4522 */
4523 if (param->sched_priority < 0 ||
95cdf3b7 4524 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4525 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4526 return -EINVAL;
e05606d3 4527 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4528 return -EINVAL;
4529
37e4ab3f
OC
4530 /*
4531 * Allow unprivileged RT tasks to decrease priority:
4532 */
4533 if (!capable(CAP_SYS_NICE)) {
e05606d3 4534 if (rt_policy(policy)) {
8dc3e909 4535 unsigned long rlim_rtprio;
8dc3e909
ON
4536
4537 if (!lock_task_sighand(p, &flags))
4538 return -ESRCH;
4539 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4540 unlock_task_sighand(p, &flags);
4541
4542 /* can't set/change the rt policy */
4543 if (policy != p->policy && !rlim_rtprio)
4544 return -EPERM;
4545
4546 /* can't increase priority */
4547 if (param->sched_priority > p->rt_priority &&
4548 param->sched_priority > rlim_rtprio)
4549 return -EPERM;
4550 }
dd41f596
IM
4551 /*
4552 * Like positive nice levels, dont allow tasks to
4553 * move out of SCHED_IDLE either:
4554 */
4555 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4556 return -EPERM;
5fe1d75f 4557
37e4ab3f
OC
4558 /* can't change other user's priorities */
4559 if ((current->euid != p->euid) &&
4560 (current->euid != p->uid))
4561 return -EPERM;
4562 }
1da177e4
LT
4563
4564 retval = security_task_setscheduler(p, policy, param);
4565 if (retval)
4566 return retval;
b29739f9
IM
4567 /*
4568 * make sure no PI-waiters arrive (or leave) while we are
4569 * changing the priority of the task:
4570 */
4571 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4572 /*
4573 * To be able to change p->policy safely, the apropriate
4574 * runqueue lock must be held.
4575 */
b29739f9 4576 rq = __task_rq_lock(p);
1da177e4
LT
4577 /* recheck policy now with rq lock held */
4578 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4579 policy = oldpolicy = -1;
b29739f9
IM
4580 __task_rq_unlock(rq);
4581 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4582 goto recheck;
4583 }
2daa3577 4584 update_rq_clock(rq);
dd41f596 4585 on_rq = p->se.on_rq;
051a1d1a 4586 running = task_current(rq, p);
83b699ed 4587 if (on_rq) {
2e1cb74a 4588 deactivate_task(rq, p, 0);
83b699ed
SV
4589 if (running)
4590 p->sched_class->put_prev_task(rq, p);
4591 }
f6b53205 4592
1da177e4 4593 oldprio = p->prio;
dd41f596 4594 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4595
dd41f596 4596 if (on_rq) {
83b699ed
SV
4597 if (running)
4598 p->sched_class->set_curr_task(rq);
cb469845 4599
dd41f596 4600 activate_task(rq, p, 0);
cb469845
SR
4601
4602 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4603 }
b29739f9
IM
4604 __task_rq_unlock(rq);
4605 spin_unlock_irqrestore(&p->pi_lock, flags);
4606
95e02ca9
TG
4607 rt_mutex_adjust_pi(p);
4608
1da177e4
LT
4609 return 0;
4610}
4611EXPORT_SYMBOL_GPL(sched_setscheduler);
4612
95cdf3b7
IM
4613static int
4614do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4615{
1da177e4
LT
4616 struct sched_param lparam;
4617 struct task_struct *p;
36c8b586 4618 int retval;
1da177e4
LT
4619
4620 if (!param || pid < 0)
4621 return -EINVAL;
4622 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4623 return -EFAULT;
5fe1d75f
ON
4624
4625 rcu_read_lock();
4626 retval = -ESRCH;
1da177e4 4627 p = find_process_by_pid(pid);
5fe1d75f
ON
4628 if (p != NULL)
4629 retval = sched_setscheduler(p, policy, &lparam);
4630 rcu_read_unlock();
36c8b586 4631
1da177e4
LT
4632 return retval;
4633}
4634
4635/**
4636 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4637 * @pid: the pid in question.
4638 * @policy: new policy.
4639 * @param: structure containing the new RT priority.
4640 */
41a2d6cf
IM
4641asmlinkage long
4642sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4643{
c21761f1
JB
4644 /* negative values for policy are not valid */
4645 if (policy < 0)
4646 return -EINVAL;
4647
1da177e4
LT
4648 return do_sched_setscheduler(pid, policy, param);
4649}
4650
4651/**
4652 * sys_sched_setparam - set/change the RT priority of a thread
4653 * @pid: the pid in question.
4654 * @param: structure containing the new RT priority.
4655 */
4656asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4657{
4658 return do_sched_setscheduler(pid, -1, param);
4659}
4660
4661/**
4662 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4663 * @pid: the pid in question.
4664 */
4665asmlinkage long sys_sched_getscheduler(pid_t pid)
4666{
36c8b586 4667 struct task_struct *p;
3a5c359a 4668 int retval;
1da177e4
LT
4669
4670 if (pid < 0)
3a5c359a 4671 return -EINVAL;
1da177e4
LT
4672
4673 retval = -ESRCH;
4674 read_lock(&tasklist_lock);
4675 p = find_process_by_pid(pid);
4676 if (p) {
4677 retval = security_task_getscheduler(p);
4678 if (!retval)
4679 retval = p->policy;
4680 }
4681 read_unlock(&tasklist_lock);
1da177e4
LT
4682 return retval;
4683}
4684
4685/**
4686 * sys_sched_getscheduler - get the RT priority of a thread
4687 * @pid: the pid in question.
4688 * @param: structure containing the RT priority.
4689 */
4690asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4691{
4692 struct sched_param lp;
36c8b586 4693 struct task_struct *p;
3a5c359a 4694 int retval;
1da177e4
LT
4695
4696 if (!param || pid < 0)
3a5c359a 4697 return -EINVAL;
1da177e4
LT
4698
4699 read_lock(&tasklist_lock);
4700 p = find_process_by_pid(pid);
4701 retval = -ESRCH;
4702 if (!p)
4703 goto out_unlock;
4704
4705 retval = security_task_getscheduler(p);
4706 if (retval)
4707 goto out_unlock;
4708
4709 lp.sched_priority = p->rt_priority;
4710 read_unlock(&tasklist_lock);
4711
4712 /*
4713 * This one might sleep, we cannot do it with a spinlock held ...
4714 */
4715 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4716
1da177e4
LT
4717 return retval;
4718
4719out_unlock:
4720 read_unlock(&tasklist_lock);
4721 return retval;
4722}
4723
4724long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4725{
1da177e4 4726 cpumask_t cpus_allowed;
36c8b586
IM
4727 struct task_struct *p;
4728 int retval;
1da177e4 4729
95402b38 4730 get_online_cpus();
1da177e4
LT
4731 read_lock(&tasklist_lock);
4732
4733 p = find_process_by_pid(pid);
4734 if (!p) {
4735 read_unlock(&tasklist_lock);
95402b38 4736 put_online_cpus();
1da177e4
LT
4737 return -ESRCH;
4738 }
4739
4740 /*
4741 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4742 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4743 * usage count and then drop tasklist_lock.
4744 */
4745 get_task_struct(p);
4746 read_unlock(&tasklist_lock);
4747
4748 retval = -EPERM;
4749 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4750 !capable(CAP_SYS_NICE))
4751 goto out_unlock;
4752
e7834f8f
DQ
4753 retval = security_task_setscheduler(p, 0, NULL);
4754 if (retval)
4755 goto out_unlock;
4756
1da177e4
LT
4757 cpus_allowed = cpuset_cpus_allowed(p);
4758 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4759 again:
1da177e4
LT
4760 retval = set_cpus_allowed(p, new_mask);
4761
8707d8b8
PM
4762 if (!retval) {
4763 cpus_allowed = cpuset_cpus_allowed(p);
4764 if (!cpus_subset(new_mask, cpus_allowed)) {
4765 /*
4766 * We must have raced with a concurrent cpuset
4767 * update. Just reset the cpus_allowed to the
4768 * cpuset's cpus_allowed
4769 */
4770 new_mask = cpus_allowed;
4771 goto again;
4772 }
4773 }
1da177e4
LT
4774out_unlock:
4775 put_task_struct(p);
95402b38 4776 put_online_cpus();
1da177e4
LT
4777 return retval;
4778}
4779
4780static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4781 cpumask_t *new_mask)
4782{
4783 if (len < sizeof(cpumask_t)) {
4784 memset(new_mask, 0, sizeof(cpumask_t));
4785 } else if (len > sizeof(cpumask_t)) {
4786 len = sizeof(cpumask_t);
4787 }
4788 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4789}
4790
4791/**
4792 * sys_sched_setaffinity - set the cpu affinity of a process
4793 * @pid: pid of the process
4794 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4795 * @user_mask_ptr: user-space pointer to the new cpu mask
4796 */
4797asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4798 unsigned long __user *user_mask_ptr)
4799{
4800 cpumask_t new_mask;
4801 int retval;
4802
4803 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4804 if (retval)
4805 return retval;
4806
4807 return sched_setaffinity(pid, new_mask);
4808}
4809
4810/*
4811 * Represents all cpu's present in the system
4812 * In systems capable of hotplug, this map could dynamically grow
4813 * as new cpu's are detected in the system via any platform specific
4814 * method, such as ACPI for e.g.
4815 */
4816
4cef0c61 4817cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4818EXPORT_SYMBOL(cpu_present_map);
4819
4820#ifndef CONFIG_SMP
4cef0c61 4821cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4822EXPORT_SYMBOL(cpu_online_map);
4823
4cef0c61 4824cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4825EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4826#endif
4827
4828long sched_getaffinity(pid_t pid, cpumask_t *mask)
4829{
36c8b586 4830 struct task_struct *p;
1da177e4 4831 int retval;
1da177e4 4832
95402b38 4833 get_online_cpus();
1da177e4
LT
4834 read_lock(&tasklist_lock);
4835
4836 retval = -ESRCH;
4837 p = find_process_by_pid(pid);
4838 if (!p)
4839 goto out_unlock;
4840
e7834f8f
DQ
4841 retval = security_task_getscheduler(p);
4842 if (retval)
4843 goto out_unlock;
4844
2f7016d9 4845 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4846
4847out_unlock:
4848 read_unlock(&tasklist_lock);
95402b38 4849 put_online_cpus();
1da177e4 4850
9531b62f 4851 return retval;
1da177e4
LT
4852}
4853
4854/**
4855 * sys_sched_getaffinity - get the cpu affinity of a process
4856 * @pid: pid of the process
4857 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4858 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4859 */
4860asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4861 unsigned long __user *user_mask_ptr)
4862{
4863 int ret;
4864 cpumask_t mask;
4865
4866 if (len < sizeof(cpumask_t))
4867 return -EINVAL;
4868
4869 ret = sched_getaffinity(pid, &mask);
4870 if (ret < 0)
4871 return ret;
4872
4873 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4874 return -EFAULT;
4875
4876 return sizeof(cpumask_t);
4877}
4878
4879/**
4880 * sys_sched_yield - yield the current processor to other threads.
4881 *
dd41f596
IM
4882 * This function yields the current CPU to other tasks. If there are no
4883 * other threads running on this CPU then this function will return.
1da177e4
LT
4884 */
4885asmlinkage long sys_sched_yield(void)
4886{
70b97a7f 4887 struct rq *rq = this_rq_lock();
1da177e4 4888
2d72376b 4889 schedstat_inc(rq, yld_count);
4530d7ab 4890 current->sched_class->yield_task(rq);
1da177e4
LT
4891
4892 /*
4893 * Since we are going to call schedule() anyway, there's
4894 * no need to preempt or enable interrupts:
4895 */
4896 __release(rq->lock);
8a25d5de 4897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4898 _raw_spin_unlock(&rq->lock);
4899 preempt_enable_no_resched();
4900
4901 schedule();
4902
4903 return 0;
4904}
4905
e7b38404 4906static void __cond_resched(void)
1da177e4 4907{
8e0a43d8
IM
4908#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4909 __might_sleep(__FILE__, __LINE__);
4910#endif
5bbcfd90
IM
4911 /*
4912 * The BKS might be reacquired before we have dropped
4913 * PREEMPT_ACTIVE, which could trigger a second
4914 * cond_resched() call.
4915 */
1da177e4
LT
4916 do {
4917 add_preempt_count(PREEMPT_ACTIVE);
4918 schedule();
4919 sub_preempt_count(PREEMPT_ACTIVE);
4920 } while (need_resched());
4921}
4922
02b67cc3
HX
4923#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4924int __sched _cond_resched(void)
1da177e4 4925{
9414232f
IM
4926 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4927 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4928 __cond_resched();
4929 return 1;
4930 }
4931 return 0;
4932}
02b67cc3
HX
4933EXPORT_SYMBOL(_cond_resched);
4934#endif
1da177e4
LT
4935
4936/*
4937 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4938 * call schedule, and on return reacquire the lock.
4939 *
41a2d6cf 4940 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4941 * operations here to prevent schedule() from being called twice (once via
4942 * spin_unlock(), once by hand).
4943 */
95cdf3b7 4944int cond_resched_lock(spinlock_t *lock)
1da177e4 4945{
95c354fe 4946 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
4947 int ret = 0;
4948
95c354fe 4949 if (spin_needbreak(lock) || resched) {
1da177e4 4950 spin_unlock(lock);
95c354fe
NP
4951 if (resched && need_resched())
4952 __cond_resched();
4953 else
4954 cpu_relax();
6df3cecb 4955 ret = 1;
1da177e4 4956 spin_lock(lock);
1da177e4 4957 }
6df3cecb 4958 return ret;
1da177e4 4959}
1da177e4
LT
4960EXPORT_SYMBOL(cond_resched_lock);
4961
4962int __sched cond_resched_softirq(void)
4963{
4964 BUG_ON(!in_softirq());
4965
9414232f 4966 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4967 local_bh_enable();
1da177e4
LT
4968 __cond_resched();
4969 local_bh_disable();
4970 return 1;
4971 }
4972 return 0;
4973}
1da177e4
LT
4974EXPORT_SYMBOL(cond_resched_softirq);
4975
1da177e4
LT
4976/**
4977 * yield - yield the current processor to other threads.
4978 *
72fd4a35 4979 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4980 * thread runnable and calls sys_sched_yield().
4981 */
4982void __sched yield(void)
4983{
4984 set_current_state(TASK_RUNNING);
4985 sys_sched_yield();
4986}
1da177e4
LT
4987EXPORT_SYMBOL(yield);
4988
4989/*
41a2d6cf 4990 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4991 * that process accounting knows that this is a task in IO wait state.
4992 *
4993 * But don't do that if it is a deliberate, throttling IO wait (this task
4994 * has set its backing_dev_info: the queue against which it should throttle)
4995 */
4996void __sched io_schedule(void)
4997{
70b97a7f 4998 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4999
0ff92245 5000 delayacct_blkio_start();
1da177e4
LT
5001 atomic_inc(&rq->nr_iowait);
5002 schedule();
5003 atomic_dec(&rq->nr_iowait);
0ff92245 5004 delayacct_blkio_end();
1da177e4 5005}
1da177e4
LT
5006EXPORT_SYMBOL(io_schedule);
5007
5008long __sched io_schedule_timeout(long timeout)
5009{
70b97a7f 5010 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5011 long ret;
5012
0ff92245 5013 delayacct_blkio_start();
1da177e4
LT
5014 atomic_inc(&rq->nr_iowait);
5015 ret = schedule_timeout(timeout);
5016 atomic_dec(&rq->nr_iowait);
0ff92245 5017 delayacct_blkio_end();
1da177e4
LT
5018 return ret;
5019}
5020
5021/**
5022 * sys_sched_get_priority_max - return maximum RT priority.
5023 * @policy: scheduling class.
5024 *
5025 * this syscall returns the maximum rt_priority that can be used
5026 * by a given scheduling class.
5027 */
5028asmlinkage long sys_sched_get_priority_max(int policy)
5029{
5030 int ret = -EINVAL;
5031
5032 switch (policy) {
5033 case SCHED_FIFO:
5034 case SCHED_RR:
5035 ret = MAX_USER_RT_PRIO-1;
5036 break;
5037 case SCHED_NORMAL:
b0a9499c 5038 case SCHED_BATCH:
dd41f596 5039 case SCHED_IDLE:
1da177e4
LT
5040 ret = 0;
5041 break;
5042 }
5043 return ret;
5044}
5045
5046/**
5047 * sys_sched_get_priority_min - return minimum RT priority.
5048 * @policy: scheduling class.
5049 *
5050 * this syscall returns the minimum rt_priority that can be used
5051 * by a given scheduling class.
5052 */
5053asmlinkage long sys_sched_get_priority_min(int policy)
5054{
5055 int ret = -EINVAL;
5056
5057 switch (policy) {
5058 case SCHED_FIFO:
5059 case SCHED_RR:
5060 ret = 1;
5061 break;
5062 case SCHED_NORMAL:
b0a9499c 5063 case SCHED_BATCH:
dd41f596 5064 case SCHED_IDLE:
1da177e4
LT
5065 ret = 0;
5066 }
5067 return ret;
5068}
5069
5070/**
5071 * sys_sched_rr_get_interval - return the default timeslice of a process.
5072 * @pid: pid of the process.
5073 * @interval: userspace pointer to the timeslice value.
5074 *
5075 * this syscall writes the default timeslice value of a given process
5076 * into the user-space timespec buffer. A value of '0' means infinity.
5077 */
5078asmlinkage
5079long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5080{
36c8b586 5081 struct task_struct *p;
a4ec24b4 5082 unsigned int time_slice;
3a5c359a 5083 int retval;
1da177e4 5084 struct timespec t;
1da177e4
LT
5085
5086 if (pid < 0)
3a5c359a 5087 return -EINVAL;
1da177e4
LT
5088
5089 retval = -ESRCH;
5090 read_lock(&tasklist_lock);
5091 p = find_process_by_pid(pid);
5092 if (!p)
5093 goto out_unlock;
5094
5095 retval = security_task_getscheduler(p);
5096 if (retval)
5097 goto out_unlock;
5098
77034937
IM
5099 /*
5100 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5101 * tasks that are on an otherwise idle runqueue:
5102 */
5103 time_slice = 0;
5104 if (p->policy == SCHED_RR) {
a4ec24b4 5105 time_slice = DEF_TIMESLICE;
77034937 5106 } else {
a4ec24b4
DA
5107 struct sched_entity *se = &p->se;
5108 unsigned long flags;
5109 struct rq *rq;
5110
5111 rq = task_rq_lock(p, &flags);
77034937
IM
5112 if (rq->cfs.load.weight)
5113 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5114 task_rq_unlock(rq, &flags);
5115 }
1da177e4 5116 read_unlock(&tasklist_lock);
a4ec24b4 5117 jiffies_to_timespec(time_slice, &t);
1da177e4 5118 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5119 return retval;
3a5c359a 5120
1da177e4
LT
5121out_unlock:
5122 read_unlock(&tasklist_lock);
5123 return retval;
5124}
5125
2ed6e34f 5126static const char stat_nam[] = "RSDTtZX";
36c8b586 5127
82a1fcb9 5128void sched_show_task(struct task_struct *p)
1da177e4 5129{
1da177e4 5130 unsigned long free = 0;
36c8b586 5131 unsigned state;
1da177e4 5132
1da177e4 5133 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5134 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5135 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5136#if BITS_PER_LONG == 32
1da177e4 5137 if (state == TASK_RUNNING)
cc4ea795 5138 printk(KERN_CONT " running ");
1da177e4 5139 else
cc4ea795 5140 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5141#else
5142 if (state == TASK_RUNNING)
cc4ea795 5143 printk(KERN_CONT " running task ");
1da177e4 5144 else
cc4ea795 5145 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5146#endif
5147#ifdef CONFIG_DEBUG_STACK_USAGE
5148 {
10ebffde 5149 unsigned long *n = end_of_stack(p);
1da177e4
LT
5150 while (!*n)
5151 n++;
10ebffde 5152 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5153 }
5154#endif
ba25f9dc 5155 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5156 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5157
5fb5e6de 5158 show_stack(p, NULL);
1da177e4
LT
5159}
5160
e59e2ae2 5161void show_state_filter(unsigned long state_filter)
1da177e4 5162{
36c8b586 5163 struct task_struct *g, *p;
1da177e4 5164
4bd77321
IM
5165#if BITS_PER_LONG == 32
5166 printk(KERN_INFO
5167 " task PC stack pid father\n");
1da177e4 5168#else
4bd77321
IM
5169 printk(KERN_INFO
5170 " task PC stack pid father\n");
1da177e4
LT
5171#endif
5172 read_lock(&tasklist_lock);
5173 do_each_thread(g, p) {
5174 /*
5175 * reset the NMI-timeout, listing all files on a slow
5176 * console might take alot of time:
5177 */
5178 touch_nmi_watchdog();
39bc89fd 5179 if (!state_filter || (p->state & state_filter))
82a1fcb9 5180 sched_show_task(p);
1da177e4
LT
5181 } while_each_thread(g, p);
5182
04c9167f
JF
5183 touch_all_softlockup_watchdogs();
5184
dd41f596
IM
5185#ifdef CONFIG_SCHED_DEBUG
5186 sysrq_sched_debug_show();
5187#endif
1da177e4 5188 read_unlock(&tasklist_lock);
e59e2ae2
IM
5189 /*
5190 * Only show locks if all tasks are dumped:
5191 */
5192 if (state_filter == -1)
5193 debug_show_all_locks();
1da177e4
LT
5194}
5195
1df21055
IM
5196void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5197{
dd41f596 5198 idle->sched_class = &idle_sched_class;
1df21055
IM
5199}
5200
f340c0d1
IM
5201/**
5202 * init_idle - set up an idle thread for a given CPU
5203 * @idle: task in question
5204 * @cpu: cpu the idle task belongs to
5205 *
5206 * NOTE: this function does not set the idle thread's NEED_RESCHED
5207 * flag, to make booting more robust.
5208 */
5c1e1767 5209void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5210{
70b97a7f 5211 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5212 unsigned long flags;
5213
dd41f596
IM
5214 __sched_fork(idle);
5215 idle->se.exec_start = sched_clock();
5216
b29739f9 5217 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5218 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5219 __set_task_cpu(idle, cpu);
1da177e4
LT
5220
5221 spin_lock_irqsave(&rq->lock, flags);
5222 rq->curr = rq->idle = idle;
4866cde0
NP
5223#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5224 idle->oncpu = 1;
5225#endif
1da177e4
LT
5226 spin_unlock_irqrestore(&rq->lock, flags);
5227
5228 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5229 task_thread_info(idle)->preempt_count = 0;
6478d880 5230
dd41f596
IM
5231 /*
5232 * The idle tasks have their own, simple scheduling class:
5233 */
5234 idle->sched_class = &idle_sched_class;
1da177e4
LT
5235}
5236
5237/*
5238 * In a system that switches off the HZ timer nohz_cpu_mask
5239 * indicates which cpus entered this state. This is used
5240 * in the rcu update to wait only for active cpus. For system
5241 * which do not switch off the HZ timer nohz_cpu_mask should
5242 * always be CPU_MASK_NONE.
5243 */
5244cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5245
19978ca6
IM
5246/*
5247 * Increase the granularity value when there are more CPUs,
5248 * because with more CPUs the 'effective latency' as visible
5249 * to users decreases. But the relationship is not linear,
5250 * so pick a second-best guess by going with the log2 of the
5251 * number of CPUs.
5252 *
5253 * This idea comes from the SD scheduler of Con Kolivas:
5254 */
5255static inline void sched_init_granularity(void)
5256{
5257 unsigned int factor = 1 + ilog2(num_online_cpus());
5258 const unsigned long limit = 200000000;
5259
5260 sysctl_sched_min_granularity *= factor;
5261 if (sysctl_sched_min_granularity > limit)
5262 sysctl_sched_min_granularity = limit;
5263
5264 sysctl_sched_latency *= factor;
5265 if (sysctl_sched_latency > limit)
5266 sysctl_sched_latency = limit;
5267
5268 sysctl_sched_wakeup_granularity *= factor;
5269 sysctl_sched_batch_wakeup_granularity *= factor;
5270}
5271
1da177e4
LT
5272#ifdef CONFIG_SMP
5273/*
5274 * This is how migration works:
5275 *
70b97a7f 5276 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5277 * runqueue and wake up that CPU's migration thread.
5278 * 2) we down() the locked semaphore => thread blocks.
5279 * 3) migration thread wakes up (implicitly it forces the migrated
5280 * thread off the CPU)
5281 * 4) it gets the migration request and checks whether the migrated
5282 * task is still in the wrong runqueue.
5283 * 5) if it's in the wrong runqueue then the migration thread removes
5284 * it and puts it into the right queue.
5285 * 6) migration thread up()s the semaphore.
5286 * 7) we wake up and the migration is done.
5287 */
5288
5289/*
5290 * Change a given task's CPU affinity. Migrate the thread to a
5291 * proper CPU and schedule it away if the CPU it's executing on
5292 * is removed from the allowed bitmask.
5293 *
5294 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5295 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5296 * call is not atomic; no spinlocks may be held.
5297 */
36c8b586 5298int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5299{
70b97a7f 5300 struct migration_req req;
1da177e4 5301 unsigned long flags;
70b97a7f 5302 struct rq *rq;
48f24c4d 5303 int ret = 0;
1da177e4
LT
5304
5305 rq = task_rq_lock(p, &flags);
5306 if (!cpus_intersects(new_mask, cpu_online_map)) {
5307 ret = -EINVAL;
5308 goto out;
5309 }
5310
73fe6aae
GH
5311 if (p->sched_class->set_cpus_allowed)
5312 p->sched_class->set_cpus_allowed(p, &new_mask);
5313 else {
0eab9146 5314 p->cpus_allowed = new_mask;
6f505b16 5315 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
73fe6aae
GH
5316 }
5317
1da177e4
LT
5318 /* Can the task run on the task's current CPU? If so, we're done */
5319 if (cpu_isset(task_cpu(p), new_mask))
5320 goto out;
5321
5322 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5323 /* Need help from migration thread: drop lock and wait. */
5324 task_rq_unlock(rq, &flags);
5325 wake_up_process(rq->migration_thread);
5326 wait_for_completion(&req.done);
5327 tlb_migrate_finish(p->mm);
5328 return 0;
5329 }
5330out:
5331 task_rq_unlock(rq, &flags);
48f24c4d 5332
1da177e4
LT
5333 return ret;
5334}
1da177e4
LT
5335EXPORT_SYMBOL_GPL(set_cpus_allowed);
5336
5337/*
41a2d6cf 5338 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5339 * this because either it can't run here any more (set_cpus_allowed()
5340 * away from this CPU, or CPU going down), or because we're
5341 * attempting to rebalance this task on exec (sched_exec).
5342 *
5343 * So we race with normal scheduler movements, but that's OK, as long
5344 * as the task is no longer on this CPU.
efc30814
KK
5345 *
5346 * Returns non-zero if task was successfully migrated.
1da177e4 5347 */
efc30814 5348static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5349{
70b97a7f 5350 struct rq *rq_dest, *rq_src;
dd41f596 5351 int ret = 0, on_rq;
1da177e4
LT
5352
5353 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5354 return ret;
1da177e4
LT
5355
5356 rq_src = cpu_rq(src_cpu);
5357 rq_dest = cpu_rq(dest_cpu);
5358
5359 double_rq_lock(rq_src, rq_dest);
5360 /* Already moved. */
5361 if (task_cpu(p) != src_cpu)
5362 goto out;
5363 /* Affinity changed (again). */
5364 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5365 goto out;
5366
dd41f596 5367 on_rq = p->se.on_rq;
6e82a3be 5368 if (on_rq)
2e1cb74a 5369 deactivate_task(rq_src, p, 0);
6e82a3be 5370
1da177e4 5371 set_task_cpu(p, dest_cpu);
dd41f596
IM
5372 if (on_rq) {
5373 activate_task(rq_dest, p, 0);
5374 check_preempt_curr(rq_dest, p);
1da177e4 5375 }
efc30814 5376 ret = 1;
1da177e4
LT
5377out:
5378 double_rq_unlock(rq_src, rq_dest);
efc30814 5379 return ret;
1da177e4
LT
5380}
5381
5382/*
5383 * migration_thread - this is a highprio system thread that performs
5384 * thread migration by bumping thread off CPU then 'pushing' onto
5385 * another runqueue.
5386 */
95cdf3b7 5387static int migration_thread(void *data)
1da177e4 5388{
1da177e4 5389 int cpu = (long)data;
70b97a7f 5390 struct rq *rq;
1da177e4
LT
5391
5392 rq = cpu_rq(cpu);
5393 BUG_ON(rq->migration_thread != current);
5394
5395 set_current_state(TASK_INTERRUPTIBLE);
5396 while (!kthread_should_stop()) {
70b97a7f 5397 struct migration_req *req;
1da177e4 5398 struct list_head *head;
1da177e4 5399
1da177e4
LT
5400 spin_lock_irq(&rq->lock);
5401
5402 if (cpu_is_offline(cpu)) {
5403 spin_unlock_irq(&rq->lock);
5404 goto wait_to_die;
5405 }
5406
5407 if (rq->active_balance) {
5408 active_load_balance(rq, cpu);
5409 rq->active_balance = 0;
5410 }
5411
5412 head = &rq->migration_queue;
5413
5414 if (list_empty(head)) {
5415 spin_unlock_irq(&rq->lock);
5416 schedule();
5417 set_current_state(TASK_INTERRUPTIBLE);
5418 continue;
5419 }
70b97a7f 5420 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5421 list_del_init(head->next);
5422
674311d5
NP
5423 spin_unlock(&rq->lock);
5424 __migrate_task(req->task, cpu, req->dest_cpu);
5425 local_irq_enable();
1da177e4
LT
5426
5427 complete(&req->done);
5428 }
5429 __set_current_state(TASK_RUNNING);
5430 return 0;
5431
5432wait_to_die:
5433 /* Wait for kthread_stop */
5434 set_current_state(TASK_INTERRUPTIBLE);
5435 while (!kthread_should_stop()) {
5436 schedule();
5437 set_current_state(TASK_INTERRUPTIBLE);
5438 }
5439 __set_current_state(TASK_RUNNING);
5440 return 0;
5441}
5442
5443#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5444
5445static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5446{
5447 int ret;
5448
5449 local_irq_disable();
5450 ret = __migrate_task(p, src_cpu, dest_cpu);
5451 local_irq_enable();
5452 return ret;
5453}
5454
054b9108 5455/*
3a4fa0a2 5456 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5457 * NOTE: interrupts should be disabled by the caller
5458 */
48f24c4d 5459static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5460{
efc30814 5461 unsigned long flags;
1da177e4 5462 cpumask_t mask;
70b97a7f
IM
5463 struct rq *rq;
5464 int dest_cpu;
1da177e4 5465
3a5c359a
AK
5466 do {
5467 /* On same node? */
5468 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5469 cpus_and(mask, mask, p->cpus_allowed);
5470 dest_cpu = any_online_cpu(mask);
5471
5472 /* On any allowed CPU? */
5473 if (dest_cpu == NR_CPUS)
5474 dest_cpu = any_online_cpu(p->cpus_allowed);
5475
5476 /* No more Mr. Nice Guy. */
5477 if (dest_cpu == NR_CPUS) {
470fd646
CW
5478 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5479 /*
5480 * Try to stay on the same cpuset, where the
5481 * current cpuset may be a subset of all cpus.
5482 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5483 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5484 * called within calls to cpuset_lock/cpuset_unlock.
5485 */
3a5c359a 5486 rq = task_rq_lock(p, &flags);
470fd646 5487 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5488 dest_cpu = any_online_cpu(p->cpus_allowed);
5489 task_rq_unlock(rq, &flags);
1da177e4 5490
3a5c359a
AK
5491 /*
5492 * Don't tell them about moving exiting tasks or
5493 * kernel threads (both mm NULL), since they never
5494 * leave kernel.
5495 */
41a2d6cf 5496 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5497 printk(KERN_INFO "process %d (%s) no "
5498 "longer affine to cpu%d\n",
41a2d6cf
IM
5499 task_pid_nr(p), p->comm, dead_cpu);
5500 }
3a5c359a 5501 }
f7b4cddc 5502 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5503}
5504
5505/*
5506 * While a dead CPU has no uninterruptible tasks queued at this point,
5507 * it might still have a nonzero ->nr_uninterruptible counter, because
5508 * for performance reasons the counter is not stricly tracking tasks to
5509 * their home CPUs. So we just add the counter to another CPU's counter,
5510 * to keep the global sum constant after CPU-down:
5511 */
70b97a7f 5512static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5513{
70b97a7f 5514 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5515 unsigned long flags;
5516
5517 local_irq_save(flags);
5518 double_rq_lock(rq_src, rq_dest);
5519 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5520 rq_src->nr_uninterruptible = 0;
5521 double_rq_unlock(rq_src, rq_dest);
5522 local_irq_restore(flags);
5523}
5524
5525/* Run through task list and migrate tasks from the dead cpu. */
5526static void migrate_live_tasks(int src_cpu)
5527{
48f24c4d 5528 struct task_struct *p, *t;
1da177e4 5529
f7b4cddc 5530 read_lock(&tasklist_lock);
1da177e4 5531
48f24c4d
IM
5532 do_each_thread(t, p) {
5533 if (p == current)
1da177e4
LT
5534 continue;
5535
48f24c4d
IM
5536 if (task_cpu(p) == src_cpu)
5537 move_task_off_dead_cpu(src_cpu, p);
5538 } while_each_thread(t, p);
1da177e4 5539
f7b4cddc 5540 read_unlock(&tasklist_lock);
1da177e4
LT
5541}
5542
dd41f596
IM
5543/*
5544 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5545 * It does so by boosting its priority to highest possible.
5546 * Used by CPU offline code.
1da177e4
LT
5547 */
5548void sched_idle_next(void)
5549{
48f24c4d 5550 int this_cpu = smp_processor_id();
70b97a7f 5551 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5552 struct task_struct *p = rq->idle;
5553 unsigned long flags;
5554
5555 /* cpu has to be offline */
48f24c4d 5556 BUG_ON(cpu_online(this_cpu));
1da177e4 5557
48f24c4d
IM
5558 /*
5559 * Strictly not necessary since rest of the CPUs are stopped by now
5560 * and interrupts disabled on the current cpu.
1da177e4
LT
5561 */
5562 spin_lock_irqsave(&rq->lock, flags);
5563
dd41f596 5564 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5565
94bc9a7b
DA
5566 update_rq_clock(rq);
5567 activate_task(rq, p, 0);
1da177e4
LT
5568
5569 spin_unlock_irqrestore(&rq->lock, flags);
5570}
5571
48f24c4d
IM
5572/*
5573 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5574 * offline.
5575 */
5576void idle_task_exit(void)
5577{
5578 struct mm_struct *mm = current->active_mm;
5579
5580 BUG_ON(cpu_online(smp_processor_id()));
5581
5582 if (mm != &init_mm)
5583 switch_mm(mm, &init_mm, current);
5584 mmdrop(mm);
5585}
5586
054b9108 5587/* called under rq->lock with disabled interrupts */
36c8b586 5588static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5589{
70b97a7f 5590 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5591
5592 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5593 BUG_ON(!p->exit_state);
1da177e4
LT
5594
5595 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5596 BUG_ON(p->state == TASK_DEAD);
1da177e4 5597
48f24c4d 5598 get_task_struct(p);
1da177e4
LT
5599
5600 /*
5601 * Drop lock around migration; if someone else moves it,
41a2d6cf 5602 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5603 * fine.
5604 */
f7b4cddc 5605 spin_unlock_irq(&rq->lock);
48f24c4d 5606 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5607 spin_lock_irq(&rq->lock);
1da177e4 5608
48f24c4d 5609 put_task_struct(p);
1da177e4
LT
5610}
5611
5612/* release_task() removes task from tasklist, so we won't find dead tasks. */
5613static void migrate_dead_tasks(unsigned int dead_cpu)
5614{
70b97a7f 5615 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5616 struct task_struct *next;
48f24c4d 5617
dd41f596
IM
5618 for ( ; ; ) {
5619 if (!rq->nr_running)
5620 break;
a8e504d2 5621 update_rq_clock(rq);
ff95f3df 5622 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5623 if (!next)
5624 break;
5625 migrate_dead(dead_cpu, next);
e692ab53 5626
1da177e4
LT
5627 }
5628}
5629#endif /* CONFIG_HOTPLUG_CPU */
5630
e692ab53
NP
5631#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5632
5633static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5634 {
5635 .procname = "sched_domain",
c57baf1e 5636 .mode = 0555,
e0361851 5637 },
38605cae 5638 {0, },
e692ab53
NP
5639};
5640
5641static struct ctl_table sd_ctl_root[] = {
e0361851 5642 {
c57baf1e 5643 .ctl_name = CTL_KERN,
e0361851 5644 .procname = "kernel",
c57baf1e 5645 .mode = 0555,
e0361851
AD
5646 .child = sd_ctl_dir,
5647 },
38605cae 5648 {0, },
e692ab53
NP
5649};
5650
5651static struct ctl_table *sd_alloc_ctl_entry(int n)
5652{
5653 struct ctl_table *entry =
5cf9f062 5654 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5655
e692ab53
NP
5656 return entry;
5657}
5658
6382bc90
MM
5659static void sd_free_ctl_entry(struct ctl_table **tablep)
5660{
cd790076 5661 struct ctl_table *entry;
6382bc90 5662
cd790076
MM
5663 /*
5664 * In the intermediate directories, both the child directory and
5665 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5666 * will always be set. In the lowest directory the names are
cd790076
MM
5667 * static strings and all have proc handlers.
5668 */
5669 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5670 if (entry->child)
5671 sd_free_ctl_entry(&entry->child);
cd790076
MM
5672 if (entry->proc_handler == NULL)
5673 kfree(entry->procname);
5674 }
6382bc90
MM
5675
5676 kfree(*tablep);
5677 *tablep = NULL;
5678}
5679
e692ab53 5680static void
e0361851 5681set_table_entry(struct ctl_table *entry,
e692ab53
NP
5682 const char *procname, void *data, int maxlen,
5683 mode_t mode, proc_handler *proc_handler)
5684{
e692ab53
NP
5685 entry->procname = procname;
5686 entry->data = data;
5687 entry->maxlen = maxlen;
5688 entry->mode = mode;
5689 entry->proc_handler = proc_handler;
5690}
5691
5692static struct ctl_table *
5693sd_alloc_ctl_domain_table(struct sched_domain *sd)
5694{
ace8b3d6 5695 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5696
ad1cdc1d
MM
5697 if (table == NULL)
5698 return NULL;
5699
e0361851 5700 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5701 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5702 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5703 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5704 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5705 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5706 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5707 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5708 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5709 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5710 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5711 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5712 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5713 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5714 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5715 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5716 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5717 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5718 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5719 &sd->cache_nice_tries,
5720 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5721 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5722 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5723 /* &table[11] is terminator */
e692ab53
NP
5724
5725 return table;
5726}
5727
9a4e7159 5728static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5729{
5730 struct ctl_table *entry, *table;
5731 struct sched_domain *sd;
5732 int domain_num = 0, i;
5733 char buf[32];
5734
5735 for_each_domain(cpu, sd)
5736 domain_num++;
5737 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5738 if (table == NULL)
5739 return NULL;
e692ab53
NP
5740
5741 i = 0;
5742 for_each_domain(cpu, sd) {
5743 snprintf(buf, 32, "domain%d", i);
e692ab53 5744 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5745 entry->mode = 0555;
e692ab53
NP
5746 entry->child = sd_alloc_ctl_domain_table(sd);
5747 entry++;
5748 i++;
5749 }
5750 return table;
5751}
5752
5753static struct ctl_table_header *sd_sysctl_header;
6382bc90 5754static void register_sched_domain_sysctl(void)
e692ab53
NP
5755{
5756 int i, cpu_num = num_online_cpus();
5757 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5758 char buf[32];
5759
7378547f
MM
5760 WARN_ON(sd_ctl_dir[0].child);
5761 sd_ctl_dir[0].child = entry;
5762
ad1cdc1d
MM
5763 if (entry == NULL)
5764 return;
5765
97b6ea7b 5766 for_each_online_cpu(i) {
e692ab53 5767 snprintf(buf, 32, "cpu%d", i);
e692ab53 5768 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5769 entry->mode = 0555;
e692ab53 5770 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5771 entry++;
e692ab53 5772 }
7378547f
MM
5773
5774 WARN_ON(sd_sysctl_header);
e692ab53
NP
5775 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5776}
6382bc90 5777
7378547f 5778/* may be called multiple times per register */
6382bc90
MM
5779static void unregister_sched_domain_sysctl(void)
5780{
7378547f
MM
5781 if (sd_sysctl_header)
5782 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5783 sd_sysctl_header = NULL;
7378547f
MM
5784 if (sd_ctl_dir[0].child)
5785 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5786}
e692ab53 5787#else
6382bc90
MM
5788static void register_sched_domain_sysctl(void)
5789{
5790}
5791static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5792{
5793}
5794#endif
5795
1da177e4
LT
5796/*
5797 * migration_call - callback that gets triggered when a CPU is added.
5798 * Here we can start up the necessary migration thread for the new CPU.
5799 */
48f24c4d
IM
5800static int __cpuinit
5801migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5802{
1da177e4 5803 struct task_struct *p;
48f24c4d 5804 int cpu = (long)hcpu;
1da177e4 5805 unsigned long flags;
70b97a7f 5806 struct rq *rq;
1da177e4
LT
5807
5808 switch (action) {
5be9361c 5809
1da177e4 5810 case CPU_UP_PREPARE:
8bb78442 5811 case CPU_UP_PREPARE_FROZEN:
dd41f596 5812 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5813 if (IS_ERR(p))
5814 return NOTIFY_BAD;
1da177e4
LT
5815 kthread_bind(p, cpu);
5816 /* Must be high prio: stop_machine expects to yield to it. */
5817 rq = task_rq_lock(p, &flags);
dd41f596 5818 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5819 task_rq_unlock(rq, &flags);
5820 cpu_rq(cpu)->migration_thread = p;
5821 break;
48f24c4d 5822
1da177e4 5823 case CPU_ONLINE:
8bb78442 5824 case CPU_ONLINE_FROZEN:
3a4fa0a2 5825 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5826 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5827
5828 /* Update our root-domain */
5829 rq = cpu_rq(cpu);
5830 spin_lock_irqsave(&rq->lock, flags);
5831 if (rq->rd) {
5832 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5833 cpu_set(cpu, rq->rd->online);
5834 }
5835 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5836 break;
48f24c4d 5837
1da177e4
LT
5838#ifdef CONFIG_HOTPLUG_CPU
5839 case CPU_UP_CANCELED:
8bb78442 5840 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5841 if (!cpu_rq(cpu)->migration_thread)
5842 break;
41a2d6cf 5843 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5844 kthread_bind(cpu_rq(cpu)->migration_thread,
5845 any_online_cpu(cpu_online_map));
1da177e4
LT
5846 kthread_stop(cpu_rq(cpu)->migration_thread);
5847 cpu_rq(cpu)->migration_thread = NULL;
5848 break;
48f24c4d 5849
1da177e4 5850 case CPU_DEAD:
8bb78442 5851 case CPU_DEAD_FROZEN:
470fd646 5852 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5853 migrate_live_tasks(cpu);
5854 rq = cpu_rq(cpu);
5855 kthread_stop(rq->migration_thread);
5856 rq->migration_thread = NULL;
5857 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5858 spin_lock_irq(&rq->lock);
a8e504d2 5859 update_rq_clock(rq);
2e1cb74a 5860 deactivate_task(rq, rq->idle, 0);
1da177e4 5861 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5862 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5863 rq->idle->sched_class = &idle_sched_class;
1da177e4 5864 migrate_dead_tasks(cpu);
d2da272a 5865 spin_unlock_irq(&rq->lock);
470fd646 5866 cpuset_unlock();
1da177e4
LT
5867 migrate_nr_uninterruptible(rq);
5868 BUG_ON(rq->nr_running != 0);
5869
41a2d6cf
IM
5870 /*
5871 * No need to migrate the tasks: it was best-effort if
5872 * they didn't take sched_hotcpu_mutex. Just wake up
5873 * the requestors.
5874 */
1da177e4
LT
5875 spin_lock_irq(&rq->lock);
5876 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5877 struct migration_req *req;
5878
1da177e4 5879 req = list_entry(rq->migration_queue.next,
70b97a7f 5880 struct migration_req, list);
1da177e4
LT
5881 list_del_init(&req->list);
5882 complete(&req->done);
5883 }
5884 spin_unlock_irq(&rq->lock);
5885 break;
57d885fe
GH
5886
5887 case CPU_DOWN_PREPARE:
5888 /* Update our root-domain */
5889 rq = cpu_rq(cpu);
5890 spin_lock_irqsave(&rq->lock, flags);
5891 if (rq->rd) {
5892 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5893 cpu_clear(cpu, rq->rd->online);
5894 }
5895 spin_unlock_irqrestore(&rq->lock, flags);
5896 break;
1da177e4
LT
5897#endif
5898 }
5899 return NOTIFY_OK;
5900}
5901
5902/* Register at highest priority so that task migration (migrate_all_tasks)
5903 * happens before everything else.
5904 */
26c2143b 5905static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5906 .notifier_call = migration_call,
5907 .priority = 10
5908};
5909
e6fe6649 5910void __init migration_init(void)
1da177e4
LT
5911{
5912 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5913 int err;
48f24c4d
IM
5914
5915 /* Start one for the boot CPU: */
07dccf33
AM
5916 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5917 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5918 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5919 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5920}
5921#endif
5922
5923#ifdef CONFIG_SMP
476f3534
CL
5924
5925/* Number of possible processor ids */
5926int nr_cpu_ids __read_mostly = NR_CPUS;
5927EXPORT_SYMBOL(nr_cpu_ids);
5928
3e9830dc 5929#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5930
5931static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5932{
4dcf6aff
IM
5933 struct sched_group *group = sd->groups;
5934 cpumask_t groupmask;
5935 char str[NR_CPUS];
1da177e4 5936
4dcf6aff
IM
5937 cpumask_scnprintf(str, NR_CPUS, sd->span);
5938 cpus_clear(groupmask);
5939
5940 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5941
5942 if (!(sd->flags & SD_LOAD_BALANCE)) {
5943 printk("does not load-balance\n");
5944 if (sd->parent)
5945 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5946 " has parent");
5947 return -1;
41c7ce9a
NP
5948 }
5949
4dcf6aff
IM
5950 printk(KERN_CONT "span %s\n", str);
5951
5952 if (!cpu_isset(cpu, sd->span)) {
5953 printk(KERN_ERR "ERROR: domain->span does not contain "
5954 "CPU%d\n", cpu);
5955 }
5956 if (!cpu_isset(cpu, group->cpumask)) {
5957 printk(KERN_ERR "ERROR: domain->groups does not contain"
5958 " CPU%d\n", cpu);
5959 }
1da177e4 5960
4dcf6aff 5961 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5962 do {
4dcf6aff
IM
5963 if (!group) {
5964 printk("\n");
5965 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5966 break;
5967 }
5968
4dcf6aff
IM
5969 if (!group->__cpu_power) {
5970 printk(KERN_CONT "\n");
5971 printk(KERN_ERR "ERROR: domain->cpu_power not "
5972 "set\n");
5973 break;
5974 }
1da177e4 5975
4dcf6aff
IM
5976 if (!cpus_weight(group->cpumask)) {
5977 printk(KERN_CONT "\n");
5978 printk(KERN_ERR "ERROR: empty group\n");
5979 break;
5980 }
1da177e4 5981
4dcf6aff
IM
5982 if (cpus_intersects(groupmask, group->cpumask)) {
5983 printk(KERN_CONT "\n");
5984 printk(KERN_ERR "ERROR: repeated CPUs\n");
5985 break;
5986 }
1da177e4 5987
4dcf6aff 5988 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5989
4dcf6aff
IM
5990 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5991 printk(KERN_CONT " %s", str);
1da177e4 5992
4dcf6aff
IM
5993 group = group->next;
5994 } while (group != sd->groups);
5995 printk(KERN_CONT "\n");
1da177e4 5996
4dcf6aff
IM
5997 if (!cpus_equal(sd->span, groupmask))
5998 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5999
4dcf6aff
IM
6000 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6001 printk(KERN_ERR "ERROR: parent span is not a superset "
6002 "of domain->span\n");
6003 return 0;
6004}
1da177e4 6005
4dcf6aff
IM
6006static void sched_domain_debug(struct sched_domain *sd, int cpu)
6007{
6008 int level = 0;
1da177e4 6009
4dcf6aff
IM
6010 if (!sd) {
6011 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6012 return;
6013 }
1da177e4 6014
4dcf6aff
IM
6015 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6016
6017 for (;;) {
6018 if (sched_domain_debug_one(sd, cpu, level))
6019 break;
1da177e4
LT
6020 level++;
6021 sd = sd->parent;
33859f7f 6022 if (!sd)
4dcf6aff
IM
6023 break;
6024 }
1da177e4
LT
6025}
6026#else
48f24c4d 6027# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6028#endif
6029
1a20ff27 6030static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6031{
6032 if (cpus_weight(sd->span) == 1)
6033 return 1;
6034
6035 /* Following flags need at least 2 groups */
6036 if (sd->flags & (SD_LOAD_BALANCE |
6037 SD_BALANCE_NEWIDLE |
6038 SD_BALANCE_FORK |
89c4710e
SS
6039 SD_BALANCE_EXEC |
6040 SD_SHARE_CPUPOWER |
6041 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6042 if (sd->groups != sd->groups->next)
6043 return 0;
6044 }
6045
6046 /* Following flags don't use groups */
6047 if (sd->flags & (SD_WAKE_IDLE |
6048 SD_WAKE_AFFINE |
6049 SD_WAKE_BALANCE))
6050 return 0;
6051
6052 return 1;
6053}
6054
48f24c4d
IM
6055static int
6056sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6057{
6058 unsigned long cflags = sd->flags, pflags = parent->flags;
6059
6060 if (sd_degenerate(parent))
6061 return 1;
6062
6063 if (!cpus_equal(sd->span, parent->span))
6064 return 0;
6065
6066 /* Does parent contain flags not in child? */
6067 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6068 if (cflags & SD_WAKE_AFFINE)
6069 pflags &= ~SD_WAKE_BALANCE;
6070 /* Flags needing groups don't count if only 1 group in parent */
6071 if (parent->groups == parent->groups->next) {
6072 pflags &= ~(SD_LOAD_BALANCE |
6073 SD_BALANCE_NEWIDLE |
6074 SD_BALANCE_FORK |
89c4710e
SS
6075 SD_BALANCE_EXEC |
6076 SD_SHARE_CPUPOWER |
6077 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6078 }
6079 if (~cflags & pflags)
6080 return 0;
6081
6082 return 1;
6083}
6084
57d885fe
GH
6085static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6086{
6087 unsigned long flags;
6088 const struct sched_class *class;
6089
6090 spin_lock_irqsave(&rq->lock, flags);
6091
6092 if (rq->rd) {
6093 struct root_domain *old_rd = rq->rd;
6094
0eab9146 6095 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6096 if (class->leave_domain)
6097 class->leave_domain(rq);
0eab9146 6098 }
57d885fe 6099
dc938520
GH
6100 cpu_clear(rq->cpu, old_rd->span);
6101 cpu_clear(rq->cpu, old_rd->online);
6102
57d885fe
GH
6103 if (atomic_dec_and_test(&old_rd->refcount))
6104 kfree(old_rd);
6105 }
6106
6107 atomic_inc(&rd->refcount);
6108 rq->rd = rd;
6109
dc938520
GH
6110 cpu_set(rq->cpu, rd->span);
6111 if (cpu_isset(rq->cpu, cpu_online_map))
6112 cpu_set(rq->cpu, rd->online);
6113
0eab9146 6114 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6115 if (class->join_domain)
6116 class->join_domain(rq);
0eab9146 6117 }
57d885fe
GH
6118
6119 spin_unlock_irqrestore(&rq->lock, flags);
6120}
6121
dc938520 6122static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6123{
6124 memset(rd, 0, sizeof(*rd));
6125
dc938520
GH
6126 cpus_clear(rd->span);
6127 cpus_clear(rd->online);
57d885fe
GH
6128}
6129
6130static void init_defrootdomain(void)
6131{
dc938520 6132 init_rootdomain(&def_root_domain);
57d885fe
GH
6133 atomic_set(&def_root_domain.refcount, 1);
6134}
6135
dc938520 6136static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6137{
6138 struct root_domain *rd;
6139
6140 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6141 if (!rd)
6142 return NULL;
6143
dc938520 6144 init_rootdomain(rd);
57d885fe
GH
6145
6146 return rd;
6147}
6148
1da177e4 6149/*
0eab9146 6150 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6151 * hold the hotplug lock.
6152 */
0eab9146
IM
6153static void
6154cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6155{
70b97a7f 6156 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6157 struct sched_domain *tmp;
6158
6159 /* Remove the sched domains which do not contribute to scheduling. */
6160 for (tmp = sd; tmp; tmp = tmp->parent) {
6161 struct sched_domain *parent = tmp->parent;
6162 if (!parent)
6163 break;
1a848870 6164 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6165 tmp->parent = parent->parent;
1a848870
SS
6166 if (parent->parent)
6167 parent->parent->child = tmp;
6168 }
245af2c7
SS
6169 }
6170
1a848870 6171 if (sd && sd_degenerate(sd)) {
245af2c7 6172 sd = sd->parent;
1a848870
SS
6173 if (sd)
6174 sd->child = NULL;
6175 }
1da177e4
LT
6176
6177 sched_domain_debug(sd, cpu);
6178
57d885fe 6179 rq_attach_root(rq, rd);
674311d5 6180 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6181}
6182
6183/* cpus with isolated domains */
67af63a6 6184static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6185
6186/* Setup the mask of cpus configured for isolated domains */
6187static int __init isolated_cpu_setup(char *str)
6188{
6189 int ints[NR_CPUS], i;
6190
6191 str = get_options(str, ARRAY_SIZE(ints), ints);
6192 cpus_clear(cpu_isolated_map);
6193 for (i = 1; i <= ints[0]; i++)
6194 if (ints[i] < NR_CPUS)
6195 cpu_set(ints[i], cpu_isolated_map);
6196 return 1;
6197}
6198
8927f494 6199__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6200
6201/*
6711cab4
SS
6202 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6203 * to a function which identifies what group(along with sched group) a CPU
6204 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6205 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6206 *
6207 * init_sched_build_groups will build a circular linked list of the groups
6208 * covered by the given span, and will set each group's ->cpumask correctly,
6209 * and ->cpu_power to 0.
6210 */
a616058b 6211static void
6711cab4
SS
6212init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6213 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6214 struct sched_group **sg))
1da177e4
LT
6215{
6216 struct sched_group *first = NULL, *last = NULL;
6217 cpumask_t covered = CPU_MASK_NONE;
6218 int i;
6219
6220 for_each_cpu_mask(i, span) {
6711cab4
SS
6221 struct sched_group *sg;
6222 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
6223 int j;
6224
6225 if (cpu_isset(i, covered))
6226 continue;
6227
6228 sg->cpumask = CPU_MASK_NONE;
5517d86b 6229 sg->__cpu_power = 0;
1da177e4
LT
6230
6231 for_each_cpu_mask(j, span) {
6711cab4 6232 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
6233 continue;
6234
6235 cpu_set(j, covered);
6236 cpu_set(j, sg->cpumask);
6237 }
6238 if (!first)
6239 first = sg;
6240 if (last)
6241 last->next = sg;
6242 last = sg;
6243 }
6244 last->next = first;
6245}
6246
9c1cfda2 6247#define SD_NODES_PER_DOMAIN 16
1da177e4 6248
9c1cfda2 6249#ifdef CONFIG_NUMA
198e2f18 6250
9c1cfda2
JH
6251/**
6252 * find_next_best_node - find the next node to include in a sched_domain
6253 * @node: node whose sched_domain we're building
6254 * @used_nodes: nodes already in the sched_domain
6255 *
41a2d6cf 6256 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6257 * finds the closest node not already in the @used_nodes map.
6258 *
6259 * Should use nodemask_t.
6260 */
6261static int find_next_best_node(int node, unsigned long *used_nodes)
6262{
6263 int i, n, val, min_val, best_node = 0;
6264
6265 min_val = INT_MAX;
6266
6267 for (i = 0; i < MAX_NUMNODES; i++) {
6268 /* Start at @node */
6269 n = (node + i) % MAX_NUMNODES;
6270
6271 if (!nr_cpus_node(n))
6272 continue;
6273
6274 /* Skip already used nodes */
6275 if (test_bit(n, used_nodes))
6276 continue;
6277
6278 /* Simple min distance search */
6279 val = node_distance(node, n);
6280
6281 if (val < min_val) {
6282 min_val = val;
6283 best_node = n;
6284 }
6285 }
6286
6287 set_bit(best_node, used_nodes);
6288 return best_node;
6289}
6290
6291/**
6292 * sched_domain_node_span - get a cpumask for a node's sched_domain
6293 * @node: node whose cpumask we're constructing
6294 * @size: number of nodes to include in this span
6295 *
41a2d6cf 6296 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6297 * should be one that prevents unnecessary balancing, but also spreads tasks
6298 * out optimally.
6299 */
6300static cpumask_t sched_domain_node_span(int node)
6301{
9c1cfda2 6302 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6303 cpumask_t span, nodemask;
6304 int i;
9c1cfda2
JH
6305
6306 cpus_clear(span);
6307 bitmap_zero(used_nodes, MAX_NUMNODES);
6308
6309 nodemask = node_to_cpumask(node);
6310 cpus_or(span, span, nodemask);
6311 set_bit(node, used_nodes);
6312
6313 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6314 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6315
9c1cfda2
JH
6316 nodemask = node_to_cpumask(next_node);
6317 cpus_or(span, span, nodemask);
6318 }
6319
6320 return span;
6321}
6322#endif
6323
5c45bf27 6324int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6325
9c1cfda2 6326/*
48f24c4d 6327 * SMT sched-domains:
9c1cfda2 6328 */
1da177e4
LT
6329#ifdef CONFIG_SCHED_SMT
6330static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6331static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6332
41a2d6cf
IM
6333static int
6334cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6335{
6711cab4
SS
6336 if (sg)
6337 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6338 return cpu;
6339}
6340#endif
6341
48f24c4d
IM
6342/*
6343 * multi-core sched-domains:
6344 */
1e9f28fa
SS
6345#ifdef CONFIG_SCHED_MC
6346static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6347static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6348#endif
6349
6350#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6351static int
6352cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6353{
6711cab4 6354 int group;
d5a7430d 6355 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6356 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6357 group = first_cpu(mask);
6358 if (sg)
6359 *sg = &per_cpu(sched_group_core, group);
6360 return group;
1e9f28fa
SS
6361}
6362#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6363static int
6364cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6365{
6711cab4
SS
6366 if (sg)
6367 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6368 return cpu;
6369}
6370#endif
6371
1da177e4 6372static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6373static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6374
41a2d6cf
IM
6375static int
6376cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6377{
6711cab4 6378 int group;
48f24c4d 6379#ifdef CONFIG_SCHED_MC
1e9f28fa 6380 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6381 cpus_and(mask, mask, *cpu_map);
6711cab4 6382 group = first_cpu(mask);
1e9f28fa 6383#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6384 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6385 cpus_and(mask, mask, *cpu_map);
6711cab4 6386 group = first_cpu(mask);
1da177e4 6387#else
6711cab4 6388 group = cpu;
1da177e4 6389#endif
6711cab4
SS
6390 if (sg)
6391 *sg = &per_cpu(sched_group_phys, group);
6392 return group;
1da177e4
LT
6393}
6394
6395#ifdef CONFIG_NUMA
1da177e4 6396/*
9c1cfda2
JH
6397 * The init_sched_build_groups can't handle what we want to do with node
6398 * groups, so roll our own. Now each node has its own list of groups which
6399 * gets dynamically allocated.
1da177e4 6400 */
9c1cfda2 6401static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6402static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6403
9c1cfda2 6404static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6405static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6406
6711cab4
SS
6407static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6408 struct sched_group **sg)
9c1cfda2 6409{
6711cab4
SS
6410 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6411 int group;
6412
6413 cpus_and(nodemask, nodemask, *cpu_map);
6414 group = first_cpu(nodemask);
6415
6416 if (sg)
6417 *sg = &per_cpu(sched_group_allnodes, group);
6418 return group;
1da177e4 6419}
6711cab4 6420
08069033
SS
6421static void init_numa_sched_groups_power(struct sched_group *group_head)
6422{
6423 struct sched_group *sg = group_head;
6424 int j;
6425
6426 if (!sg)
6427 return;
3a5c359a
AK
6428 do {
6429 for_each_cpu_mask(j, sg->cpumask) {
6430 struct sched_domain *sd;
08069033 6431
3a5c359a
AK
6432 sd = &per_cpu(phys_domains, j);
6433 if (j != first_cpu(sd->groups->cpumask)) {
6434 /*
6435 * Only add "power" once for each
6436 * physical package.
6437 */
6438 continue;
6439 }
08069033 6440
3a5c359a
AK
6441 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6442 }
6443 sg = sg->next;
6444 } while (sg != group_head);
08069033 6445}
1da177e4
LT
6446#endif
6447
a616058b 6448#ifdef CONFIG_NUMA
51888ca2
SV
6449/* Free memory allocated for various sched_group structures */
6450static void free_sched_groups(const cpumask_t *cpu_map)
6451{
a616058b 6452 int cpu, i;
51888ca2
SV
6453
6454 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6455 struct sched_group **sched_group_nodes
6456 = sched_group_nodes_bycpu[cpu];
6457
51888ca2
SV
6458 if (!sched_group_nodes)
6459 continue;
6460
6461 for (i = 0; i < MAX_NUMNODES; i++) {
6462 cpumask_t nodemask = node_to_cpumask(i);
6463 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6464
6465 cpus_and(nodemask, nodemask, *cpu_map);
6466 if (cpus_empty(nodemask))
6467 continue;
6468
6469 if (sg == NULL)
6470 continue;
6471 sg = sg->next;
6472next_sg:
6473 oldsg = sg;
6474 sg = sg->next;
6475 kfree(oldsg);
6476 if (oldsg != sched_group_nodes[i])
6477 goto next_sg;
6478 }
6479 kfree(sched_group_nodes);
6480 sched_group_nodes_bycpu[cpu] = NULL;
6481 }
51888ca2 6482}
a616058b
SS
6483#else
6484static void free_sched_groups(const cpumask_t *cpu_map)
6485{
6486}
6487#endif
51888ca2 6488
89c4710e
SS
6489/*
6490 * Initialize sched groups cpu_power.
6491 *
6492 * cpu_power indicates the capacity of sched group, which is used while
6493 * distributing the load between different sched groups in a sched domain.
6494 * Typically cpu_power for all the groups in a sched domain will be same unless
6495 * there are asymmetries in the topology. If there are asymmetries, group
6496 * having more cpu_power will pickup more load compared to the group having
6497 * less cpu_power.
6498 *
6499 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6500 * the maximum number of tasks a group can handle in the presence of other idle
6501 * or lightly loaded groups in the same sched domain.
6502 */
6503static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6504{
6505 struct sched_domain *child;
6506 struct sched_group *group;
6507
6508 WARN_ON(!sd || !sd->groups);
6509
6510 if (cpu != first_cpu(sd->groups->cpumask))
6511 return;
6512
6513 child = sd->child;
6514
5517d86b
ED
6515 sd->groups->__cpu_power = 0;
6516
89c4710e
SS
6517 /*
6518 * For perf policy, if the groups in child domain share resources
6519 * (for example cores sharing some portions of the cache hierarchy
6520 * or SMT), then set this domain groups cpu_power such that each group
6521 * can handle only one task, when there are other idle groups in the
6522 * same sched domain.
6523 */
6524 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6525 (child->flags &
6526 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6527 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6528 return;
6529 }
6530
89c4710e
SS
6531 /*
6532 * add cpu_power of each child group to this groups cpu_power
6533 */
6534 group = child->groups;
6535 do {
5517d86b 6536 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6537 group = group->next;
6538 } while (group != child->groups);
6539}
6540
1da177e4 6541/*
1a20ff27
DG
6542 * Build sched domains for a given set of cpus and attach the sched domains
6543 * to the individual cpus
1da177e4 6544 */
51888ca2 6545static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6546{
6547 int i;
57d885fe 6548 struct root_domain *rd;
d1b55138
JH
6549#ifdef CONFIG_NUMA
6550 struct sched_group **sched_group_nodes = NULL;
6711cab4 6551 int sd_allnodes = 0;
d1b55138
JH
6552
6553 /*
6554 * Allocate the per-node list of sched groups
6555 */
5cf9f062 6556 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6557 GFP_KERNEL);
d1b55138
JH
6558 if (!sched_group_nodes) {
6559 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6560 return -ENOMEM;
d1b55138
JH
6561 }
6562 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6563#endif
1da177e4 6564
dc938520 6565 rd = alloc_rootdomain();
57d885fe
GH
6566 if (!rd) {
6567 printk(KERN_WARNING "Cannot alloc root domain\n");
6568 return -ENOMEM;
6569 }
6570
1da177e4 6571 /*
1a20ff27 6572 * Set up domains for cpus specified by the cpu_map.
1da177e4 6573 */
1a20ff27 6574 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6575 struct sched_domain *sd = NULL, *p;
6576 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6577
1a20ff27 6578 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6579
6580#ifdef CONFIG_NUMA
dd41f596
IM
6581 if (cpus_weight(*cpu_map) >
6582 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6583 sd = &per_cpu(allnodes_domains, i);
6584 *sd = SD_ALLNODES_INIT;
6585 sd->span = *cpu_map;
6711cab4 6586 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6587 p = sd;
6711cab4 6588 sd_allnodes = 1;
9c1cfda2
JH
6589 } else
6590 p = NULL;
6591
1da177e4 6592 sd = &per_cpu(node_domains, i);
1da177e4 6593 *sd = SD_NODE_INIT;
9c1cfda2
JH
6594 sd->span = sched_domain_node_span(cpu_to_node(i));
6595 sd->parent = p;
1a848870
SS
6596 if (p)
6597 p->child = sd;
9c1cfda2 6598 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6599#endif
6600
6601 p = sd;
6602 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6603 *sd = SD_CPU_INIT;
6604 sd->span = nodemask;
6605 sd->parent = p;
1a848870
SS
6606 if (p)
6607 p->child = sd;
6711cab4 6608 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6609
1e9f28fa
SS
6610#ifdef CONFIG_SCHED_MC
6611 p = sd;
6612 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6613 *sd = SD_MC_INIT;
6614 sd->span = cpu_coregroup_map(i);
6615 cpus_and(sd->span, sd->span, *cpu_map);
6616 sd->parent = p;
1a848870 6617 p->child = sd;
6711cab4 6618 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6619#endif
6620
1da177e4
LT
6621#ifdef CONFIG_SCHED_SMT
6622 p = sd;
6623 sd = &per_cpu(cpu_domains, i);
1da177e4 6624 *sd = SD_SIBLING_INIT;
d5a7430d 6625 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6626 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6627 sd->parent = p;
1a848870 6628 p->child = sd;
6711cab4 6629 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6630#endif
6631 }
6632
6633#ifdef CONFIG_SCHED_SMT
6634 /* Set up CPU (sibling) groups */
9c1cfda2 6635 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6636 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6637 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6638 if (i != first_cpu(this_sibling_map))
6639 continue;
6640
dd41f596
IM
6641 init_sched_build_groups(this_sibling_map, cpu_map,
6642 &cpu_to_cpu_group);
1da177e4
LT
6643 }
6644#endif
6645
1e9f28fa
SS
6646#ifdef CONFIG_SCHED_MC
6647 /* Set up multi-core groups */
6648 for_each_cpu_mask(i, *cpu_map) {
6649 cpumask_t this_core_map = cpu_coregroup_map(i);
6650 cpus_and(this_core_map, this_core_map, *cpu_map);
6651 if (i != first_cpu(this_core_map))
6652 continue;
dd41f596
IM
6653 init_sched_build_groups(this_core_map, cpu_map,
6654 &cpu_to_core_group);
1e9f28fa
SS
6655 }
6656#endif
6657
1da177e4
LT
6658 /* Set up physical groups */
6659 for (i = 0; i < MAX_NUMNODES; i++) {
6660 cpumask_t nodemask = node_to_cpumask(i);
6661
1a20ff27 6662 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6663 if (cpus_empty(nodemask))
6664 continue;
6665
6711cab4 6666 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6667 }
6668
6669#ifdef CONFIG_NUMA
6670 /* Set up node groups */
6711cab4 6671 if (sd_allnodes)
dd41f596
IM
6672 init_sched_build_groups(*cpu_map, cpu_map,
6673 &cpu_to_allnodes_group);
9c1cfda2
JH
6674
6675 for (i = 0; i < MAX_NUMNODES; i++) {
6676 /* Set up node groups */
6677 struct sched_group *sg, *prev;
6678 cpumask_t nodemask = node_to_cpumask(i);
6679 cpumask_t domainspan;
6680 cpumask_t covered = CPU_MASK_NONE;
6681 int j;
6682
6683 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6684 if (cpus_empty(nodemask)) {
6685 sched_group_nodes[i] = NULL;
9c1cfda2 6686 continue;
d1b55138 6687 }
9c1cfda2
JH
6688
6689 domainspan = sched_domain_node_span(i);
6690 cpus_and(domainspan, domainspan, *cpu_map);
6691
15f0b676 6692 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6693 if (!sg) {
6694 printk(KERN_WARNING "Can not alloc domain group for "
6695 "node %d\n", i);
6696 goto error;
6697 }
9c1cfda2
JH
6698 sched_group_nodes[i] = sg;
6699 for_each_cpu_mask(j, nodemask) {
6700 struct sched_domain *sd;
9761eea8 6701
9c1cfda2
JH
6702 sd = &per_cpu(node_domains, j);
6703 sd->groups = sg;
9c1cfda2 6704 }
5517d86b 6705 sg->__cpu_power = 0;
9c1cfda2 6706 sg->cpumask = nodemask;
51888ca2 6707 sg->next = sg;
9c1cfda2
JH
6708 cpus_or(covered, covered, nodemask);
6709 prev = sg;
6710
6711 for (j = 0; j < MAX_NUMNODES; j++) {
6712 cpumask_t tmp, notcovered;
6713 int n = (i + j) % MAX_NUMNODES;
6714
6715 cpus_complement(notcovered, covered);
6716 cpus_and(tmp, notcovered, *cpu_map);
6717 cpus_and(tmp, tmp, domainspan);
6718 if (cpus_empty(tmp))
6719 break;
6720
6721 nodemask = node_to_cpumask(n);
6722 cpus_and(tmp, tmp, nodemask);
6723 if (cpus_empty(tmp))
6724 continue;
6725
15f0b676
SV
6726 sg = kmalloc_node(sizeof(struct sched_group),
6727 GFP_KERNEL, i);
9c1cfda2
JH
6728 if (!sg) {
6729 printk(KERN_WARNING
6730 "Can not alloc domain group for node %d\n", j);
51888ca2 6731 goto error;
9c1cfda2 6732 }
5517d86b 6733 sg->__cpu_power = 0;
9c1cfda2 6734 sg->cpumask = tmp;
51888ca2 6735 sg->next = prev->next;
9c1cfda2
JH
6736 cpus_or(covered, covered, tmp);
6737 prev->next = sg;
6738 prev = sg;
6739 }
9c1cfda2 6740 }
1da177e4
LT
6741#endif
6742
6743 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6744#ifdef CONFIG_SCHED_SMT
1a20ff27 6745 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6746 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6747
89c4710e 6748 init_sched_groups_power(i, sd);
5c45bf27 6749 }
1da177e4 6750#endif
1e9f28fa 6751#ifdef CONFIG_SCHED_MC
5c45bf27 6752 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6753 struct sched_domain *sd = &per_cpu(core_domains, i);
6754
89c4710e 6755 init_sched_groups_power(i, sd);
5c45bf27
SS
6756 }
6757#endif
1e9f28fa 6758
5c45bf27 6759 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6760 struct sched_domain *sd = &per_cpu(phys_domains, i);
6761
89c4710e 6762 init_sched_groups_power(i, sd);
1da177e4
LT
6763 }
6764
9c1cfda2 6765#ifdef CONFIG_NUMA
08069033
SS
6766 for (i = 0; i < MAX_NUMNODES; i++)
6767 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6768
6711cab4
SS
6769 if (sd_allnodes) {
6770 struct sched_group *sg;
f712c0c7 6771
6711cab4 6772 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6773 init_numa_sched_groups_power(sg);
6774 }
9c1cfda2
JH
6775#endif
6776
1da177e4 6777 /* Attach the domains */
1a20ff27 6778 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6779 struct sched_domain *sd;
6780#ifdef CONFIG_SCHED_SMT
6781 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6782#elif defined(CONFIG_SCHED_MC)
6783 sd = &per_cpu(core_domains, i);
1da177e4
LT
6784#else
6785 sd = &per_cpu(phys_domains, i);
6786#endif
57d885fe 6787 cpu_attach_domain(sd, rd, i);
1da177e4 6788 }
51888ca2
SV
6789
6790 return 0;
6791
a616058b 6792#ifdef CONFIG_NUMA
51888ca2
SV
6793error:
6794 free_sched_groups(cpu_map);
6795 return -ENOMEM;
a616058b 6796#endif
1da177e4 6797}
029190c5
PJ
6798
6799static cpumask_t *doms_cur; /* current sched domains */
6800static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6801
6802/*
6803 * Special case: If a kmalloc of a doms_cur partition (array of
6804 * cpumask_t) fails, then fallback to a single sched domain,
6805 * as determined by the single cpumask_t fallback_doms.
6806 */
6807static cpumask_t fallback_doms;
6808
1a20ff27 6809/*
41a2d6cf 6810 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6811 * For now this just excludes isolated cpus, but could be used to
6812 * exclude other special cases in the future.
1a20ff27 6813 */
51888ca2 6814static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6815{
7378547f
MM
6816 int err;
6817
029190c5
PJ
6818 ndoms_cur = 1;
6819 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6820 if (!doms_cur)
6821 doms_cur = &fallback_doms;
6822 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6823 err = build_sched_domains(doms_cur);
6382bc90 6824 register_sched_domain_sysctl();
7378547f
MM
6825
6826 return err;
1a20ff27
DG
6827}
6828
6829static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6830{
51888ca2 6831 free_sched_groups(cpu_map);
9c1cfda2 6832}
1da177e4 6833
1a20ff27
DG
6834/*
6835 * Detach sched domains from a group of cpus specified in cpu_map
6836 * These cpus will now be attached to the NULL domain
6837 */
858119e1 6838static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6839{
6840 int i;
6841
6382bc90
MM
6842 unregister_sched_domain_sysctl();
6843
1a20ff27 6844 for_each_cpu_mask(i, *cpu_map)
57d885fe 6845 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6846 synchronize_sched();
6847 arch_destroy_sched_domains(cpu_map);
6848}
6849
029190c5
PJ
6850/*
6851 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6852 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6853 * doms_new[] to the current sched domain partitioning, doms_cur[].
6854 * It destroys each deleted domain and builds each new domain.
6855 *
6856 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6857 * The masks don't intersect (don't overlap.) We should setup one
6858 * sched domain for each mask. CPUs not in any of the cpumasks will
6859 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6860 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6861 * it as it is.
6862 *
41a2d6cf
IM
6863 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6864 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6865 * failed the kmalloc call, then it can pass in doms_new == NULL,
6866 * and partition_sched_domains() will fallback to the single partition
6867 * 'fallback_doms'.
6868 *
6869 * Call with hotplug lock held
6870 */
6871void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6872{
6873 int i, j;
6874
a1835615
SV
6875 lock_doms_cur();
6876
7378547f
MM
6877 /* always unregister in case we don't destroy any domains */
6878 unregister_sched_domain_sysctl();
6879
029190c5
PJ
6880 if (doms_new == NULL) {
6881 ndoms_new = 1;
6882 doms_new = &fallback_doms;
6883 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6884 }
6885
6886 /* Destroy deleted domains */
6887 for (i = 0; i < ndoms_cur; i++) {
6888 for (j = 0; j < ndoms_new; j++) {
6889 if (cpus_equal(doms_cur[i], doms_new[j]))
6890 goto match1;
6891 }
6892 /* no match - a current sched domain not in new doms_new[] */
6893 detach_destroy_domains(doms_cur + i);
6894match1:
6895 ;
6896 }
6897
6898 /* Build new domains */
6899 for (i = 0; i < ndoms_new; i++) {
6900 for (j = 0; j < ndoms_cur; j++) {
6901 if (cpus_equal(doms_new[i], doms_cur[j]))
6902 goto match2;
6903 }
6904 /* no match - add a new doms_new */
6905 build_sched_domains(doms_new + i);
6906match2:
6907 ;
6908 }
6909
6910 /* Remember the new sched domains */
6911 if (doms_cur != &fallback_doms)
6912 kfree(doms_cur);
6913 doms_cur = doms_new;
6914 ndoms_cur = ndoms_new;
7378547f
MM
6915
6916 register_sched_domain_sysctl();
a1835615
SV
6917
6918 unlock_doms_cur();
029190c5
PJ
6919}
6920
5c45bf27 6921#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6922static int arch_reinit_sched_domains(void)
5c45bf27
SS
6923{
6924 int err;
6925
95402b38 6926 get_online_cpus();
5c45bf27
SS
6927 detach_destroy_domains(&cpu_online_map);
6928 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6929 put_online_cpus();
5c45bf27
SS
6930
6931 return err;
6932}
6933
6934static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6935{
6936 int ret;
6937
6938 if (buf[0] != '0' && buf[0] != '1')
6939 return -EINVAL;
6940
6941 if (smt)
6942 sched_smt_power_savings = (buf[0] == '1');
6943 else
6944 sched_mc_power_savings = (buf[0] == '1');
6945
6946 ret = arch_reinit_sched_domains();
6947
6948 return ret ? ret : count;
6949}
6950
5c45bf27
SS
6951#ifdef CONFIG_SCHED_MC
6952static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6953{
6954 return sprintf(page, "%u\n", sched_mc_power_savings);
6955}
48f24c4d
IM
6956static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6957 const char *buf, size_t count)
5c45bf27
SS
6958{
6959 return sched_power_savings_store(buf, count, 0);
6960}
6707de00
AB
6961static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6962 sched_mc_power_savings_store);
5c45bf27
SS
6963#endif
6964
6965#ifdef CONFIG_SCHED_SMT
6966static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6967{
6968 return sprintf(page, "%u\n", sched_smt_power_savings);
6969}
48f24c4d
IM
6970static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6971 const char *buf, size_t count)
5c45bf27
SS
6972{
6973 return sched_power_savings_store(buf, count, 1);
6974}
6707de00
AB
6975static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6976 sched_smt_power_savings_store);
6977#endif
6978
6979int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6980{
6981 int err = 0;
6982
6983#ifdef CONFIG_SCHED_SMT
6984 if (smt_capable())
6985 err = sysfs_create_file(&cls->kset.kobj,
6986 &attr_sched_smt_power_savings.attr);
6987#endif
6988#ifdef CONFIG_SCHED_MC
6989 if (!err && mc_capable())
6990 err = sysfs_create_file(&cls->kset.kobj,
6991 &attr_sched_mc_power_savings.attr);
6992#endif
6993 return err;
6994}
5c45bf27
SS
6995#endif
6996
1da177e4 6997/*
41a2d6cf 6998 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6999 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7000 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7001 * which will prevent rebalancing while the sched domains are recalculated.
7002 */
7003static int update_sched_domains(struct notifier_block *nfb,
7004 unsigned long action, void *hcpu)
7005{
1da177e4
LT
7006 switch (action) {
7007 case CPU_UP_PREPARE:
8bb78442 7008 case CPU_UP_PREPARE_FROZEN:
1da177e4 7009 case CPU_DOWN_PREPARE:
8bb78442 7010 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7011 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7012 return NOTIFY_OK;
7013
7014 case CPU_UP_CANCELED:
8bb78442 7015 case CPU_UP_CANCELED_FROZEN:
1da177e4 7016 case CPU_DOWN_FAILED:
8bb78442 7017 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7018 case CPU_ONLINE:
8bb78442 7019 case CPU_ONLINE_FROZEN:
1da177e4 7020 case CPU_DEAD:
8bb78442 7021 case CPU_DEAD_FROZEN:
1da177e4
LT
7022 /*
7023 * Fall through and re-initialise the domains.
7024 */
7025 break;
7026 default:
7027 return NOTIFY_DONE;
7028 }
7029
7030 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7031 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7032
7033 return NOTIFY_OK;
7034}
1da177e4
LT
7035
7036void __init sched_init_smp(void)
7037{
5c1e1767
NP
7038 cpumask_t non_isolated_cpus;
7039
95402b38 7040 get_online_cpus();
1a20ff27 7041 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7042 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7043 if (cpus_empty(non_isolated_cpus))
7044 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7045 put_online_cpus();
1da177e4
LT
7046 /* XXX: Theoretical race here - CPU may be hotplugged now */
7047 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7048
7049 /* Move init over to a non-isolated CPU */
7050 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7051 BUG();
19978ca6 7052 sched_init_granularity();
6b2d7700
SV
7053
7054#ifdef CONFIG_FAIR_GROUP_SCHED
7055 if (nr_cpu_ids == 1)
7056 return;
7057
7058 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7059 "group_balance");
7060 if (!IS_ERR(lb_monitor_task)) {
7061 lb_monitor_task->flags |= PF_NOFREEZE;
7062 wake_up_process(lb_monitor_task);
7063 } else {
7064 printk(KERN_ERR "Could not create load balance monitor thread"
7065 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7066 }
7067#endif
1da177e4
LT
7068}
7069#else
7070void __init sched_init_smp(void)
7071{
19978ca6 7072 sched_init_granularity();
1da177e4
LT
7073}
7074#endif /* CONFIG_SMP */
7075
7076int in_sched_functions(unsigned long addr)
7077{
1da177e4
LT
7078 return in_lock_functions(addr) ||
7079 (addr >= (unsigned long)__sched_text_start
7080 && addr < (unsigned long)__sched_text_end);
7081}
7082
a9957449 7083static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7084{
7085 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7086#ifdef CONFIG_FAIR_GROUP_SCHED
7087 cfs_rq->rq = rq;
7088#endif
67e9fb2a 7089 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7090}
7091
fa85ae24
PZ
7092static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7093{
7094 struct rt_prio_array *array;
7095 int i;
7096
7097 array = &rt_rq->active;
7098 for (i = 0; i < MAX_RT_PRIO; i++) {
7099 INIT_LIST_HEAD(array->queue + i);
7100 __clear_bit(i, array->bitmap);
7101 }
7102 /* delimiter for bitsearch: */
7103 __set_bit(MAX_RT_PRIO, array->bitmap);
7104
48d5e258
PZ
7105#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
7106 rt_rq->highest_prio = MAX_RT_PRIO;
7107#endif
fa85ae24
PZ
7108#ifdef CONFIG_SMP
7109 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7110 rt_rq->overloaded = 0;
7111#endif
7112
7113 rt_rq->rt_time = 0;
7114 rt_rq->rt_throttled = 0;
6f505b16
PZ
7115
7116#ifdef CONFIG_FAIR_GROUP_SCHED
23b0fdfc 7117 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7118 rt_rq->rq = rq;
7119#endif
fa85ae24
PZ
7120}
7121
6f505b16
PZ
7122#ifdef CONFIG_FAIR_GROUP_SCHED
7123static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7124 struct cfs_rq *cfs_rq, struct sched_entity *se,
7125 int cpu, int add)
7126{
7127 tg->cfs_rq[cpu] = cfs_rq;
7128 init_cfs_rq(cfs_rq, rq);
7129 cfs_rq->tg = tg;
7130 if (add)
7131 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7132
7133 tg->se[cpu] = se;
7134 se->cfs_rq = &rq->cfs;
7135 se->my_q = cfs_rq;
7136 se->load.weight = tg->shares;
7137 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7138 se->parent = NULL;
7139}
7140
7141static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7142 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7143 int cpu, int add)
7144{
7145 tg->rt_rq[cpu] = rt_rq;
7146 init_rt_rq(rt_rq, rq);
7147 rt_rq->tg = tg;
7148 rt_rq->rt_se = rt_se;
7149 if (add)
7150 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7151
7152 tg->rt_se[cpu] = rt_se;
7153 rt_se->rt_rq = &rq->rt;
7154 rt_se->my_q = rt_rq;
7155 rt_se->parent = NULL;
7156 INIT_LIST_HEAD(&rt_se->run_list);
7157}
7158#endif
7159
1da177e4
LT
7160void __init sched_init(void)
7161{
476f3534 7162 int highest_cpu = 0;
dd41f596
IM
7163 int i, j;
7164
57d885fe
GH
7165#ifdef CONFIG_SMP
7166 init_defrootdomain();
7167#endif
7168
6f505b16
PZ
7169#ifdef CONFIG_FAIR_GROUP_SCHED
7170 list_add(&init_task_group.list, &task_groups);
7171#endif
7172
0a945022 7173 for_each_possible_cpu(i) {
70b97a7f 7174 struct rq *rq;
1da177e4
LT
7175
7176 rq = cpu_rq(i);
7177 spin_lock_init(&rq->lock);
fcb99371 7178 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7179 rq->nr_running = 0;
dd41f596
IM
7180 rq->clock = 1;
7181 init_cfs_rq(&rq->cfs, rq);
6f505b16 7182 init_rt_rq(&rq->rt, rq);
dd41f596 7183#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7184 init_task_group.shares = init_task_group_load;
6f505b16
PZ
7185 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7186 init_tg_cfs_entry(rq, &init_task_group,
7187 &per_cpu(init_cfs_rq, i),
7188 &per_cpu(init_sched_entity, i), i, 1);
7189
7190 init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
7191 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7192 init_tg_rt_entry(rq, &init_task_group,
7193 &per_cpu(init_rt_rq, i),
7194 &per_cpu(init_sched_rt_entity, i), i, 1);
dd41f596 7195#endif
fa85ae24 7196 rq->rt_period_expire = 0;
48d5e258 7197 rq->rt_throttled = 0;
1da177e4 7198
dd41f596
IM
7199 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7200 rq->cpu_load[j] = 0;
1da177e4 7201#ifdef CONFIG_SMP
41c7ce9a 7202 rq->sd = NULL;
57d885fe 7203 rq->rd = NULL;
1da177e4 7204 rq->active_balance = 0;
dd41f596 7205 rq->next_balance = jiffies;
1da177e4 7206 rq->push_cpu = 0;
0a2966b4 7207 rq->cpu = i;
1da177e4
LT
7208 rq->migration_thread = NULL;
7209 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7210 rq_attach_root(rq, &def_root_domain);
1da177e4 7211#endif
8f4d37ec 7212 init_rq_hrtick(rq);
1da177e4 7213 atomic_set(&rq->nr_iowait, 0);
476f3534 7214 highest_cpu = i;
1da177e4
LT
7215 }
7216
2dd73a4f 7217 set_load_weight(&init_task);
b50f60ce 7218
e107be36
AK
7219#ifdef CONFIG_PREEMPT_NOTIFIERS
7220 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7221#endif
7222
c9819f45 7223#ifdef CONFIG_SMP
476f3534 7224 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
7225 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7226#endif
7227
b50f60ce
HC
7228#ifdef CONFIG_RT_MUTEXES
7229 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7230#endif
7231
1da177e4
LT
7232 /*
7233 * The boot idle thread does lazy MMU switching as well:
7234 */
7235 atomic_inc(&init_mm.mm_count);
7236 enter_lazy_tlb(&init_mm, current);
7237
7238 /*
7239 * Make us the idle thread. Technically, schedule() should not be
7240 * called from this thread, however somewhere below it might be,
7241 * but because we are the idle thread, we just pick up running again
7242 * when this runqueue becomes "idle".
7243 */
7244 init_idle(current, smp_processor_id());
dd41f596
IM
7245 /*
7246 * During early bootup we pretend to be a normal task:
7247 */
7248 current->sched_class = &fair_sched_class;
1da177e4
LT
7249}
7250
7251#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7252void __might_sleep(char *file, int line)
7253{
48f24c4d 7254#ifdef in_atomic
1da177e4
LT
7255 static unsigned long prev_jiffy; /* ratelimiting */
7256
7257 if ((in_atomic() || irqs_disabled()) &&
7258 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7259 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7260 return;
7261 prev_jiffy = jiffies;
91368d73 7262 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7263 " context at %s:%d\n", file, line);
7264 printk("in_atomic():%d, irqs_disabled():%d\n",
7265 in_atomic(), irqs_disabled());
a4c410f0 7266 debug_show_held_locks(current);
3117df04
IM
7267 if (irqs_disabled())
7268 print_irqtrace_events(current);
1da177e4
LT
7269 dump_stack();
7270 }
7271#endif
7272}
7273EXPORT_SYMBOL(__might_sleep);
7274#endif
7275
7276#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7277static void normalize_task(struct rq *rq, struct task_struct *p)
7278{
7279 int on_rq;
7280 update_rq_clock(rq);
7281 on_rq = p->se.on_rq;
7282 if (on_rq)
7283 deactivate_task(rq, p, 0);
7284 __setscheduler(rq, p, SCHED_NORMAL, 0);
7285 if (on_rq) {
7286 activate_task(rq, p, 0);
7287 resched_task(rq->curr);
7288 }
7289}
7290
1da177e4
LT
7291void normalize_rt_tasks(void)
7292{
a0f98a1c 7293 struct task_struct *g, *p;
1da177e4 7294 unsigned long flags;
70b97a7f 7295 struct rq *rq;
1da177e4 7296
4cf5d77a 7297 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7298 do_each_thread(g, p) {
178be793
IM
7299 /*
7300 * Only normalize user tasks:
7301 */
7302 if (!p->mm)
7303 continue;
7304
6cfb0d5d 7305 p->se.exec_start = 0;
6cfb0d5d 7306#ifdef CONFIG_SCHEDSTATS
dd41f596 7307 p->se.wait_start = 0;
dd41f596 7308 p->se.sleep_start = 0;
dd41f596 7309 p->se.block_start = 0;
6cfb0d5d 7310#endif
dd41f596
IM
7311 task_rq(p)->clock = 0;
7312
7313 if (!rt_task(p)) {
7314 /*
7315 * Renice negative nice level userspace
7316 * tasks back to 0:
7317 */
7318 if (TASK_NICE(p) < 0 && p->mm)
7319 set_user_nice(p, 0);
1da177e4 7320 continue;
dd41f596 7321 }
1da177e4 7322
4cf5d77a 7323 spin_lock(&p->pi_lock);
b29739f9 7324 rq = __task_rq_lock(p);
1da177e4 7325
178be793 7326 normalize_task(rq, p);
3a5e4dc1 7327
b29739f9 7328 __task_rq_unlock(rq);
4cf5d77a 7329 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7330 } while_each_thread(g, p);
7331
4cf5d77a 7332 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7333}
7334
7335#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7336
7337#ifdef CONFIG_IA64
7338/*
7339 * These functions are only useful for the IA64 MCA handling.
7340 *
7341 * They can only be called when the whole system has been
7342 * stopped - every CPU needs to be quiescent, and no scheduling
7343 * activity can take place. Using them for anything else would
7344 * be a serious bug, and as a result, they aren't even visible
7345 * under any other configuration.
7346 */
7347
7348/**
7349 * curr_task - return the current task for a given cpu.
7350 * @cpu: the processor in question.
7351 *
7352 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7353 */
36c8b586 7354struct task_struct *curr_task(int cpu)
1df5c10a
LT
7355{
7356 return cpu_curr(cpu);
7357}
7358
7359/**
7360 * set_curr_task - set the current task for a given cpu.
7361 * @cpu: the processor in question.
7362 * @p: the task pointer to set.
7363 *
7364 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7365 * are serviced on a separate stack. It allows the architecture to switch the
7366 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7367 * must be called with all CPU's synchronized, and interrupts disabled, the
7368 * and caller must save the original value of the current task (see
7369 * curr_task() above) and restore that value before reenabling interrupts and
7370 * re-starting the system.
7371 *
7372 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7373 */
36c8b586 7374void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7375{
7376 cpu_curr(cpu) = p;
7377}
7378
7379#endif
29f59db3
SV
7380
7381#ifdef CONFIG_FAIR_GROUP_SCHED
7382
6b2d7700
SV
7383#ifdef CONFIG_SMP
7384/*
7385 * distribute shares of all task groups among their schedulable entities,
fa85ae24 7386 * to reflect load distribution across cpus.
6b2d7700
SV
7387 */
7388static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7389{
7390 struct cfs_rq *cfs_rq;
7391 struct rq *rq = cpu_rq(this_cpu);
7392 cpumask_t sdspan = sd->span;
7393 int balanced = 1;
7394
7395 /* Walk thr' all the task groups that we have */
7396 for_each_leaf_cfs_rq(rq, cfs_rq) {
7397 int i;
7398 unsigned long total_load = 0, total_shares;
7399 struct task_group *tg = cfs_rq->tg;
7400
7401 /* Gather total task load of this group across cpus */
7402 for_each_cpu_mask(i, sdspan)
7403 total_load += tg->cfs_rq[i]->load.weight;
7404
0eab9146 7405 /* Nothing to do if this group has no load */
6b2d7700
SV
7406 if (!total_load)
7407 continue;
7408
7409 /*
7410 * tg->shares represents the number of cpu shares the task group
7411 * is eligible to hold on a single cpu. On N cpus, it is
7412 * eligible to hold (N * tg->shares) number of cpu shares.
7413 */
7414 total_shares = tg->shares * cpus_weight(sdspan);
7415
7416 /*
7417 * redistribute total_shares across cpus as per the task load
7418 * distribution.
7419 */
7420 for_each_cpu_mask(i, sdspan) {
7421 unsigned long local_load, local_shares;
7422
7423 local_load = tg->cfs_rq[i]->load.weight;
7424 local_shares = (local_load * total_shares) / total_load;
7425 if (!local_shares)
7426 local_shares = MIN_GROUP_SHARES;
7427 if (local_shares == tg->se[i]->load.weight)
7428 continue;
7429
7430 spin_lock_irq(&cpu_rq(i)->lock);
7431 set_se_shares(tg->se[i], local_shares);
7432 spin_unlock_irq(&cpu_rq(i)->lock);
7433 balanced = 0;
7434 }
7435 }
7436
7437 return balanced;
7438}
7439
7440/*
7441 * How frequently should we rebalance_shares() across cpus?
7442 *
7443 * The more frequently we rebalance shares, the more accurate is the fairness
7444 * of cpu bandwidth distribution between task groups. However higher frequency
7445 * also implies increased scheduling overhead.
7446 *
7447 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7448 * consecutive calls to rebalance_shares() in the same sched domain.
7449 *
7450 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7451 * consecutive calls to rebalance_shares() in the same sched domain.
7452 *
fa85ae24 7453 * These settings allows for the appropriate trade-off between accuracy of
6b2d7700
SV
7454 * fairness and the associated overhead.
7455 *
7456 */
7457
7458/* default: 8ms, units: milliseconds */
7459const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7460
7461/* default: 128ms, units: milliseconds */
7462const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7463
7464/* kernel thread that runs rebalance_shares() periodically */
7465static int load_balance_monitor(void *unused)
7466{
7467 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7468 struct sched_param schedparm;
7469 int ret;
7470
7471 /*
7472 * We don't want this thread's execution to be limited by the shares
7473 * assigned to default group (init_task_group). Hence make it run
7474 * as a SCHED_RR RT task at the lowest priority.
7475 */
7476 schedparm.sched_priority = 1;
7477 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7478 if (ret)
7479 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7480 " monitor thread (error = %d) \n", ret);
7481
7482 while (!kthread_should_stop()) {
7483 int i, cpu, balanced = 1;
7484
7485 /* Prevent cpus going down or coming up */
86ef5c9a 7486 get_online_cpus();
6b2d7700
SV
7487 /* lockout changes to doms_cur[] array */
7488 lock_doms_cur();
7489 /*
7490 * Enter a rcu read-side critical section to safely walk rq->sd
7491 * chain on various cpus and to walk task group list
7492 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7493 */
7494 rcu_read_lock();
7495
7496 for (i = 0; i < ndoms_cur; i++) {
7497 cpumask_t cpumap = doms_cur[i];
7498 struct sched_domain *sd = NULL, *sd_prev = NULL;
7499
7500 cpu = first_cpu(cpumap);
7501
7502 /* Find the highest domain at which to balance shares */
7503 for_each_domain(cpu, sd) {
7504 if (!(sd->flags & SD_LOAD_BALANCE))
7505 continue;
7506 sd_prev = sd;
7507 }
7508
7509 sd = sd_prev;
7510 /* sd == NULL? No load balance reqd in this domain */
7511 if (!sd)
7512 continue;
7513
7514 balanced &= rebalance_shares(sd, cpu);
7515 }
7516
7517 rcu_read_unlock();
7518
7519 unlock_doms_cur();
86ef5c9a 7520 put_online_cpus();
6b2d7700
SV
7521
7522 if (!balanced)
7523 timeout = sysctl_sched_min_bal_int_shares;
7524 else if (timeout < sysctl_sched_max_bal_int_shares)
7525 timeout *= 2;
7526
7527 msleep_interruptible(timeout);
7528 }
7529
7530 return 0;
7531}
7532#endif /* CONFIG_SMP */
7533
6f505b16
PZ
7534static void free_sched_group(struct task_group *tg)
7535{
7536 int i;
7537
7538 for_each_possible_cpu(i) {
7539 if (tg->cfs_rq)
7540 kfree(tg->cfs_rq[i]);
7541 if (tg->se)
7542 kfree(tg->se[i]);
7543 if (tg->rt_rq)
7544 kfree(tg->rt_rq[i]);
7545 if (tg->rt_se)
7546 kfree(tg->rt_se[i]);
7547 }
7548
7549 kfree(tg->cfs_rq);
7550 kfree(tg->se);
7551 kfree(tg->rt_rq);
7552 kfree(tg->rt_se);
7553 kfree(tg);
7554}
7555
29f59db3 7556/* allocate runqueue etc for a new task group */
4cf86d77 7557struct task_group *sched_create_group(void)
29f59db3 7558{
4cf86d77 7559 struct task_group *tg;
29f59db3
SV
7560 struct cfs_rq *cfs_rq;
7561 struct sched_entity *se;
6f505b16
PZ
7562 struct rt_rq *rt_rq;
7563 struct sched_rt_entity *rt_se;
9b5b7751 7564 struct rq *rq;
8ed36996 7565 unsigned long flags;
29f59db3
SV
7566 int i;
7567
29f59db3
SV
7568 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7569 if (!tg)
7570 return ERR_PTR(-ENOMEM);
7571
9b5b7751 7572 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7573 if (!tg->cfs_rq)
7574 goto err;
9b5b7751 7575 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7576 if (!tg->se)
7577 goto err;
6f505b16
PZ
7578 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7579 if (!tg->rt_rq)
7580 goto err;
7581 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7582 if (!tg->rt_se)
7583 goto err;
7584
7585 tg->shares = NICE_0_LOAD;
7586 tg->rt_ratio = 0; /* XXX */
29f59db3
SV
7587
7588 for_each_possible_cpu(i) {
9b5b7751 7589 rq = cpu_rq(i);
29f59db3 7590
6f505b16
PZ
7591 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7592 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7593 if (!cfs_rq)
7594 goto err;
7595
6f505b16
PZ
7596 se = kmalloc_node(sizeof(struct sched_entity),
7597 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7598 if (!se)
7599 goto err;
7600
6f505b16
PZ
7601 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7602 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7603 if (!rt_rq)
7604 goto err;
29f59db3 7605
6f505b16
PZ
7606 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7607 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7608 if (!rt_se)
7609 goto err;
29f59db3 7610
6f505b16
PZ
7611 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7612 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7613 }
7614
8ed36996 7615 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751
SV
7616 for_each_possible_cpu(i) {
7617 rq = cpu_rq(i);
7618 cfs_rq = tg->cfs_rq[i];
7619 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6f505b16
PZ
7620 rt_rq = tg->rt_rq[i];
7621 list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9b5b7751 7622 }
6f505b16 7623 list_add_rcu(&tg->list, &task_groups);
8ed36996 7624 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7625
9b5b7751 7626 return tg;
29f59db3
SV
7627
7628err:
6f505b16 7629 free_sched_group(tg);
29f59db3
SV
7630 return ERR_PTR(-ENOMEM);
7631}
7632
9b5b7751 7633/* rcu callback to free various structures associated with a task group */
6f505b16 7634static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7635{
29f59db3 7636 /* now it should be safe to free those cfs_rqs */
6f505b16 7637 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7638}
7639
9b5b7751 7640/* Destroy runqueue etc associated with a task group */
4cf86d77 7641void sched_destroy_group(struct task_group *tg)
29f59db3 7642{
7bae49d4 7643 struct cfs_rq *cfs_rq = NULL;
6f505b16 7644 struct rt_rq *rt_rq = NULL;
8ed36996 7645 unsigned long flags;
9b5b7751 7646 int i;
29f59db3 7647
8ed36996 7648 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751
SV
7649 for_each_possible_cpu(i) {
7650 cfs_rq = tg->cfs_rq[i];
7651 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6f505b16
PZ
7652 rt_rq = tg->rt_rq[i];
7653 list_del_rcu(&rt_rq->leaf_rt_rq_list);
9b5b7751 7654 }
6f505b16 7655 list_del_rcu(&tg->list);
8ed36996 7656 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7657
7bae49d4 7658 BUG_ON(!cfs_rq);
9b5b7751
SV
7659
7660 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7661 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7662}
7663
9b5b7751 7664/* change task's runqueue when it moves between groups.
3a252015
IM
7665 * The caller of this function should have put the task in its new group
7666 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7667 * reflect its new group.
9b5b7751
SV
7668 */
7669void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7670{
7671 int on_rq, running;
7672 unsigned long flags;
7673 struct rq *rq;
7674
7675 rq = task_rq_lock(tsk, &flags);
7676
29f59db3
SV
7677 update_rq_clock(rq);
7678
051a1d1a 7679 running = task_current(rq, tsk);
29f59db3
SV
7680 on_rq = tsk->se.on_rq;
7681
83b699ed 7682 if (on_rq) {
29f59db3 7683 dequeue_task(rq, tsk, 0);
83b699ed
SV
7684 if (unlikely(running))
7685 tsk->sched_class->put_prev_task(rq, tsk);
7686 }
29f59db3 7687
6f505b16 7688 set_task_rq(tsk, task_cpu(tsk));
29f59db3 7689
83b699ed
SV
7690 if (on_rq) {
7691 if (unlikely(running))
7692 tsk->sched_class->set_curr_task(rq);
7074badb 7693 enqueue_task(rq, tsk, 0);
83b699ed 7694 }
29f59db3 7695
29f59db3
SV
7696 task_rq_unlock(rq, &flags);
7697}
7698
6b2d7700 7699/* rq->lock to be locked by caller */
29f59db3
SV
7700static void set_se_shares(struct sched_entity *se, unsigned long shares)
7701{
7702 struct cfs_rq *cfs_rq = se->cfs_rq;
7703 struct rq *rq = cfs_rq->rq;
7704 int on_rq;
7705
6b2d7700
SV
7706 if (!shares)
7707 shares = MIN_GROUP_SHARES;
29f59db3
SV
7708
7709 on_rq = se->on_rq;
6b2d7700 7710 if (on_rq) {
29f59db3 7711 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7712 dec_cpu_load(rq, se->load.weight);
7713 }
29f59db3
SV
7714
7715 se->load.weight = shares;
7716 se->load.inv_weight = div64_64((1ULL<<32), shares);
7717
6b2d7700 7718 if (on_rq) {
29f59db3 7719 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7720 inc_cpu_load(rq, se->load.weight);
7721 }
29f59db3
SV
7722}
7723
8ed36996
PZ
7724static DEFINE_MUTEX(shares_mutex);
7725
4cf86d77 7726int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7727{
7728 int i;
6b2d7700
SV
7729 struct cfs_rq *cfs_rq;
7730 struct rq *rq;
8ed36996 7731 unsigned long flags;
c61935fd 7732
8ed36996 7733 mutex_lock(&shares_mutex);
9b5b7751 7734 if (tg->shares == shares)
5cb350ba 7735 goto done;
29f59db3 7736
6b2d7700
SV
7737 if (shares < MIN_GROUP_SHARES)
7738 shares = MIN_GROUP_SHARES;
7739
7740 /*
7741 * Prevent any load balance activity (rebalance_shares,
7742 * load_balance_fair) from referring to this group first,
7743 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7744 */
8ed36996 7745 spin_lock_irqsave(&task_group_lock, flags);
6b2d7700
SV
7746 for_each_possible_cpu(i) {
7747 cfs_rq = tg->cfs_rq[i];
7748 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7749 }
8ed36996 7750 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
7751
7752 /* wait for any ongoing reference to this group to finish */
7753 synchronize_sched();
7754
7755 /*
7756 * Now we are free to modify the group's share on each cpu
7757 * w/o tripping rebalance_share or load_balance_fair.
7758 */
9b5b7751 7759 tg->shares = shares;
6b2d7700
SV
7760 for_each_possible_cpu(i) {
7761 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7762 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7763 spin_unlock_irq(&cpu_rq(i)->lock);
7764 }
29f59db3 7765
6b2d7700
SV
7766 /*
7767 * Enable load balance activity on this group, by inserting it back on
7768 * each cpu's rq->leaf_cfs_rq_list.
7769 */
8ed36996 7770 spin_lock_irqsave(&task_group_lock, flags);
6b2d7700
SV
7771 for_each_possible_cpu(i) {
7772 rq = cpu_rq(i);
7773 cfs_rq = tg->cfs_rq[i];
7774 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7775 }
8ed36996 7776 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 7777done:
8ed36996 7778 mutex_unlock(&shares_mutex);
9b5b7751 7779 return 0;
29f59db3
SV
7780}
7781
5cb350ba
DG
7782unsigned long sched_group_shares(struct task_group *tg)
7783{
7784 return tg->shares;
7785}
7786
6f505b16
PZ
7787/*
7788 * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
7789 */
7790int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
7791{
7792 struct task_group *tgi;
7793 unsigned long total = 0;
7794
7795 rcu_read_lock();
7796 list_for_each_entry_rcu(tgi, &task_groups, list)
7797 total += tgi->rt_ratio;
7798 rcu_read_unlock();
7799
7800 if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
7801 return -EINVAL;
7802
7803 tg->rt_ratio = rt_ratio;
7804 return 0;
7805}
7806
7807unsigned long sched_group_rt_ratio(struct task_group *tg)
7808{
7809 return tg->rt_ratio;
7810}
7811
3a252015 7812#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7813
7814#ifdef CONFIG_FAIR_CGROUP_SCHED
7815
7816/* return corresponding task_group object of a cgroup */
2b01dfe3 7817static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7818{
2b01dfe3
PM
7819 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7820 struct task_group, css);
68318b8e
SV
7821}
7822
7823static struct cgroup_subsys_state *
2b01dfe3 7824cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7825{
7826 struct task_group *tg;
7827
2b01dfe3 7828 if (!cgrp->parent) {
68318b8e 7829 /* This is early initialization for the top cgroup */
2b01dfe3 7830 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7831 return &init_task_group.css;
7832 }
7833
7834 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7835 if (cgrp->parent->parent)
68318b8e
SV
7836 return ERR_PTR(-EINVAL);
7837
7838 tg = sched_create_group();
7839 if (IS_ERR(tg))
7840 return ERR_PTR(-ENOMEM);
7841
7842 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7843 tg->css.cgroup = cgrp;
68318b8e
SV
7844
7845 return &tg->css;
7846}
7847
41a2d6cf
IM
7848static void
7849cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7850{
2b01dfe3 7851 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7852
7853 sched_destroy_group(tg);
7854}
7855
41a2d6cf
IM
7856static int
7857cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7858 struct task_struct *tsk)
68318b8e
SV
7859{
7860 /* We don't support RT-tasks being in separate groups */
7861 if (tsk->sched_class != &fair_sched_class)
7862 return -EINVAL;
7863
7864 return 0;
7865}
7866
7867static void
2b01dfe3 7868cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7869 struct cgroup *old_cont, struct task_struct *tsk)
7870{
7871 sched_move_task(tsk);
7872}
7873
2b01dfe3
PM
7874static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7875 u64 shareval)
68318b8e 7876{
2b01dfe3 7877 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7878}
7879
2b01dfe3 7880static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7881{
2b01dfe3 7882 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7883
7884 return (u64) tg->shares;
7885}
7886
6f505b16
PZ
7887static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7888 u64 rt_ratio_val)
7889{
7890 return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
7891}
7892
7893static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
7894{
7895 struct task_group *tg = cgroup_tg(cgrp);
7896
7897 return (u64) tg->rt_ratio;
7898}
7899
fe5c7cc2
PM
7900static struct cftype cpu_files[] = {
7901 {
7902 .name = "shares",
7903 .read_uint = cpu_shares_read_uint,
7904 .write_uint = cpu_shares_write_uint,
7905 },
6f505b16
PZ
7906 {
7907 .name = "rt_ratio",
7908 .read_uint = cpu_rt_ratio_read_uint,
7909 .write_uint = cpu_rt_ratio_write_uint,
7910 },
68318b8e
SV
7911};
7912
7913static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7914{
fe5c7cc2 7915 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7916}
7917
7918struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7919 .name = "cpu",
7920 .create = cpu_cgroup_create,
7921 .destroy = cpu_cgroup_destroy,
7922 .can_attach = cpu_cgroup_can_attach,
7923 .attach = cpu_cgroup_attach,
7924 .populate = cpu_cgroup_populate,
7925 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7926 .early_init = 1,
7927};
7928
7929#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7930
7931#ifdef CONFIG_CGROUP_CPUACCT
7932
7933/*
7934 * CPU accounting code for task groups.
7935 *
7936 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7937 * (balbir@in.ibm.com).
7938 */
7939
7940/* track cpu usage of a group of tasks */
7941struct cpuacct {
7942 struct cgroup_subsys_state css;
7943 /* cpuusage holds pointer to a u64-type object on every cpu */
7944 u64 *cpuusage;
7945};
7946
7947struct cgroup_subsys cpuacct_subsys;
7948
7949/* return cpu accounting group corresponding to this container */
7950static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7951{
7952 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7953 struct cpuacct, css);
7954}
7955
7956/* return cpu accounting group to which this task belongs */
7957static inline struct cpuacct *task_ca(struct task_struct *tsk)
7958{
7959 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7960 struct cpuacct, css);
7961}
7962
7963/* create a new cpu accounting group */
7964static struct cgroup_subsys_state *cpuacct_create(
7965 struct cgroup_subsys *ss, struct cgroup *cont)
7966{
7967 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7968
7969 if (!ca)
7970 return ERR_PTR(-ENOMEM);
7971
7972 ca->cpuusage = alloc_percpu(u64);
7973 if (!ca->cpuusage) {
7974 kfree(ca);
7975 return ERR_PTR(-ENOMEM);
7976 }
7977
7978 return &ca->css;
7979}
7980
7981/* destroy an existing cpu accounting group */
41a2d6cf
IM
7982static void
7983cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7984{
7985 struct cpuacct *ca = cgroup_ca(cont);
7986
7987 free_percpu(ca->cpuusage);
7988 kfree(ca);
7989}
7990
7991/* return total cpu usage (in nanoseconds) of a group */
7992static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7993{
7994 struct cpuacct *ca = cgroup_ca(cont);
7995 u64 totalcpuusage = 0;
7996 int i;
7997
7998 for_each_possible_cpu(i) {
7999 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8000
8001 /*
8002 * Take rq->lock to make 64-bit addition safe on 32-bit
8003 * platforms.
8004 */
8005 spin_lock_irq(&cpu_rq(i)->lock);
8006 totalcpuusage += *cpuusage;
8007 spin_unlock_irq(&cpu_rq(i)->lock);
8008 }
8009
8010 return totalcpuusage;
8011}
8012
8013static struct cftype files[] = {
8014 {
8015 .name = "usage",
8016 .read_uint = cpuusage_read,
8017 },
8018};
8019
8020static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8021{
8022 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8023}
8024
8025/*
8026 * charge this task's execution time to its accounting group.
8027 *
8028 * called with rq->lock held.
8029 */
8030static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8031{
8032 struct cpuacct *ca;
8033
8034 if (!cpuacct_subsys.active)
8035 return;
8036
8037 ca = task_ca(tsk);
8038 if (ca) {
8039 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8040
8041 *cpuusage += cputime;
8042 }
8043}
8044
8045struct cgroup_subsys cpuacct_subsys = {
8046 .name = "cpuacct",
8047 .create = cpuacct_create,
8048 .destroy = cpuacct_destroy,
8049 .populate = cpuacct_populate,
8050 .subsys_id = cpuacct_subsys_id,
8051};
8052#endif /* CONFIG_CGROUP_CPUACCT */