]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
b035b6de
AD
77/*
78 * Scheduler clock - returns current time in nanosec units.
79 * This is default implementation.
80 * Architectures and sub-architectures can override this.
81 */
82unsigned long long __attribute__((weak)) sched_clock(void)
83{
d6322faf 84 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
85}
86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
5517d86b
ED
126#ifdef CONFIG_SMP
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
149 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
218 if (rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start(&rt_b->rt_period_timer,
232 rt_b->rt_period_timer.expires,
233 HRTIMER_MODE_ABS);
234 }
235 spin_unlock(&rt_b->rt_runtime_lock);
236}
237
238#ifdef CONFIG_RT_GROUP_SCHED
239static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240{
241 hrtimer_cancel(&rt_b->rt_period_timer);
242}
243#endif
244
052f1dc7 245#ifdef CONFIG_GROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
29f59db3 253/* task group related information */
4cf86d77 254struct task_group {
052f1dc7 255#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
256 struct cgroup_subsys_state css;
257#endif
052f1dc7
PZ
258
259#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
260 /* schedulable entities of this group on each cpu */
261 struct sched_entity **se;
262 /* runqueue "owned" by this group on each cpu */
263 struct cfs_rq **cfs_rq;
264 unsigned long shares;
052f1dc7
PZ
265#endif
266
267#ifdef CONFIG_RT_GROUP_SCHED
268 struct sched_rt_entity **rt_se;
269 struct rt_rq **rt_rq;
270
d0b27fa7 271 struct rt_bandwidth rt_bandwidth;
052f1dc7 272#endif
6b2d7700 273
ae8393e5 274 struct rcu_head rcu;
6f505b16 275 struct list_head list;
f473aa5e
PZ
276
277 struct task_group *parent;
278 struct list_head siblings;
279 struct list_head children;
29f59db3
SV
280};
281
354d60c2 282#ifdef CONFIG_USER_SCHED
eff766a6
PZ
283
284/*
285 * Root task group.
286 * Every UID task group (including init_task_group aka UID-0) will
287 * be a child to this group.
288 */
289struct task_group root_task_group;
290
052f1dc7 291#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
292/* Default task group's sched entity on each cpu */
293static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
294/* Default task group's cfs_rq on each cpu */
295static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
296#endif
297
298#ifdef CONFIG_RT_GROUP_SCHED
299static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
300static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 301#endif
eff766a6
PZ
302#else
303#define root_task_group init_task_group
354d60c2 304#endif
6f505b16 305
8ed36996 306/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
307 * a task group's cpu shares.
308 */
8ed36996 309static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 310
a1835615
SV
311/* doms_cur_mutex serializes access to doms_cur[] array */
312static DEFINE_MUTEX(doms_cur_mutex);
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
315#ifdef CONFIG_USER_SCHED
316# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
317#else
318# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
319#endif
320
18d95a28
PZ
321#define MIN_SHARES 2
322
052f1dc7
PZ
323static int init_task_group_load = INIT_TASK_GROUP_LOAD;
324#endif
325
29f59db3 326/* Default task group.
3a252015 327 * Every task in system belong to this group at bootup.
29f59db3 328 */
434d53b0 329struct task_group init_task_group;
29f59db3
SV
330
331/* return group to which a task belongs */
4cf86d77 332static inline struct task_group *task_group(struct task_struct *p)
29f59db3 333{
4cf86d77 334 struct task_group *tg;
9b5b7751 335
052f1dc7 336#ifdef CONFIG_USER_SCHED
24e377a8 337 tg = p->user->tg;
052f1dc7 338#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
339 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
340 struct task_group, css);
24e377a8 341#else
41a2d6cf 342 tg = &init_task_group;
24e377a8 343#endif
9b5b7751 344 return tg;
29f59db3
SV
345}
346
347/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 348static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 349{
052f1dc7 350#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
351 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
352 p->se.parent = task_group(p)->se[cpu];
052f1dc7 353#endif
6f505b16 354
052f1dc7 355#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
356 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
357 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 358#endif
29f59db3
SV
359}
360
a1835615
SV
361static inline void lock_doms_cur(void)
362{
363 mutex_lock(&doms_cur_mutex);
364}
365
366static inline void unlock_doms_cur(void)
367{
368 mutex_unlock(&doms_cur_mutex);
369}
370
29f59db3
SV
371#else
372
6f505b16 373static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
374static inline void lock_doms_cur(void) { }
375static inline void unlock_doms_cur(void) { }
29f59db3 376
052f1dc7 377#endif /* CONFIG_GROUP_SCHED */
29f59db3 378
6aa645ea
IM
379/* CFS-related fields in a runqueue */
380struct cfs_rq {
381 struct load_weight load;
382 unsigned long nr_running;
383
6aa645ea 384 u64 exec_clock;
e9acbff6 385 u64 min_vruntime;
6aa645ea
IM
386
387 struct rb_root tasks_timeline;
388 struct rb_node *rb_leftmost;
4a55bd5e
PZ
389
390 struct list_head tasks;
391 struct list_head *balance_iterator;
392
393 /*
394 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
395 * It is set to NULL otherwise (i.e when none are currently running).
396 */
aa2ac252 397 struct sched_entity *curr, *next;
ddc97297
PZ
398
399 unsigned long nr_spread_over;
400
62160e3f 401#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
402 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
403
41a2d6cf
IM
404 /*
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
408 *
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
411 */
41a2d6cf
IM
412 struct list_head leaf_cfs_rq_list;
413 struct task_group *tg; /* group that "owns" this runqueue */
18d95a28
PZ
414
415#ifdef CONFIG_SMP
416 unsigned long task_weight;
417 unsigned long shares;
418 /*
419 * We need space to build a sched_domain wide view of the full task
420 * group tree, in order to avoid depending on dynamic memory allocation
421 * during the load balancing we place this in the per cpu task group
422 * hierarchy. This limits the load balancing to one instance per cpu,
423 * but more should not be needed anyway.
424 */
425 struct aggregate_struct {
426 /*
427 * load = weight(cpus) * f(tg)
428 *
429 * Where f(tg) is the recursive weight fraction assigned to
430 * this group.
431 */
432 unsigned long load;
433
434 /*
435 * part of the group weight distributed to this span.
436 */
437 unsigned long shares;
438
439 /*
440 * The sum of all runqueue weights within this span.
441 */
442 unsigned long rq_weight;
443
444 /*
445 * Weight contributed by tasks; this is the part we can
446 * influence by moving tasks around.
447 */
448 unsigned long task_weight;
449 } aggregate;
450#endif
6aa645ea
IM
451#endif
452};
1da177e4 453
6aa645ea
IM
454/* Real-Time classes' related field in a runqueue: */
455struct rt_rq {
456 struct rt_prio_array active;
63489e45 457 unsigned long rt_nr_running;
052f1dc7 458#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
459 int highest_prio; /* highest queued rt task prio */
460#endif
fa85ae24 461#ifdef CONFIG_SMP
73fe6aae 462 unsigned long rt_nr_migratory;
a22d7fc1 463 int overloaded;
fa85ae24 464#endif
6f505b16 465 int rt_throttled;
fa85ae24 466 u64 rt_time;
ac086bc2 467 u64 rt_runtime;
ea736ed5 468 /* Nests inside the rq lock: */
ac086bc2 469 spinlock_t rt_runtime_lock;
6f505b16 470
052f1dc7 471#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
472 unsigned long rt_nr_boosted;
473
6f505b16
PZ
474 struct rq *rq;
475 struct list_head leaf_rt_rq_list;
476 struct task_group *tg;
477 struct sched_rt_entity *rt_se;
478#endif
6aa645ea
IM
479};
480
57d885fe
GH
481#ifdef CONFIG_SMP
482
483/*
484 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
485 * variables. Each exclusive cpuset essentially defines an island domain by
486 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
487 * exclusive cpuset is created, we also create and attach a new root-domain
488 * object.
489 *
57d885fe
GH
490 */
491struct root_domain {
492 atomic_t refcount;
493 cpumask_t span;
494 cpumask_t online;
637f5085 495
0eab9146 496 /*
637f5085
GH
497 * The "RT overload" flag: it gets set if a CPU has more than
498 * one runnable RT task.
499 */
500 cpumask_t rto_mask;
0eab9146 501 atomic_t rto_count;
57d885fe
GH
502};
503
dc938520
GH
504/*
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
507 */
57d885fe
GH
508static struct root_domain def_root_domain;
509
510#endif
511
1da177e4
LT
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
70b97a7f 519struct rq {
d8016491
IM
520 /* runqueue lock: */
521 spinlock_t lock;
1da177e4
LT
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
527 unsigned long nr_running;
6aa645ea
IM
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 530 unsigned char idle_at_tick;
46cb4b7c 531#ifdef CONFIG_NO_HZ
15934a37 532 unsigned long last_tick_seen;
46cb4b7c
SS
533 unsigned char in_nohz_recently;
534#endif
d8016491
IM
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
6aa645ea
IM
537 unsigned long nr_load_updates;
538 u64 nr_switches;
539
540 struct cfs_rq cfs;
6f505b16 541 struct rt_rq rt;
6f505b16 542
6aa645ea 543#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
546#endif
547#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 548 struct list_head leaf_rt_rq_list;
1da177e4 549#endif
1da177e4
LT
550
551 /*
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
556 */
557 unsigned long nr_uninterruptible;
558
36c8b586 559 struct task_struct *curr, *idle;
c9819f45 560 unsigned long next_balance;
1da177e4 561 struct mm_struct *prev_mm;
6aa645ea 562
6aa645ea
IM
563 u64 clock, prev_clock_raw;
564 s64 clock_max_delta;
565
cc203d24 566 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
567 u64 idle_clock;
568 unsigned int clock_deep_idle_events;
529c7726 569 u64 tick_timestamp;
6aa645ea 570
1da177e4
LT
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
0eab9146 574 struct root_domain *rd;
1da177e4
LT
575 struct sched_domain *sd;
576
577 /* For active balancing */
578 int active_balance;
579 int push_cpu;
d8016491
IM
580 /* cpu of this runqueue: */
581 int cpu;
1da177e4 582
36c8b586 583 struct task_struct *migration_thread;
1da177e4
LT
584 struct list_head migration_queue;
585#endif
586
8f4d37ec
PZ
587#ifdef CONFIG_SCHED_HRTICK
588 unsigned long hrtick_flags;
589 ktime_t hrtick_expire;
590 struct hrtimer hrtick_timer;
591#endif
592
1da177e4
LT
593#ifdef CONFIG_SCHEDSTATS
594 /* latency stats */
595 struct sched_info rq_sched_info;
596
597 /* sys_sched_yield() stats */
480b9434
KC
598 unsigned int yld_exp_empty;
599 unsigned int yld_act_empty;
600 unsigned int yld_both_empty;
601 unsigned int yld_count;
1da177e4
LT
602
603 /* schedule() stats */
480b9434
KC
604 unsigned int sched_switch;
605 unsigned int sched_count;
606 unsigned int sched_goidle;
1da177e4
LT
607
608 /* try_to_wake_up() stats */
480b9434
KC
609 unsigned int ttwu_count;
610 unsigned int ttwu_local;
b8efb561
IM
611
612 /* BKL stats */
480b9434 613 unsigned int bkl_count;
1da177e4 614#endif
fcb99371 615 struct lock_class_key rq_lock_key;
1da177e4
LT
616};
617
f34e3b61 618static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 619
dd41f596
IM
620static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
621{
622 rq->curr->sched_class->check_preempt_curr(rq, p);
623}
624
0a2966b4
CL
625static inline int cpu_of(struct rq *rq)
626{
627#ifdef CONFIG_SMP
628 return rq->cpu;
629#else
630 return 0;
631#endif
632}
633
15934a37
GC
634#ifdef CONFIG_NO_HZ
635static inline bool nohz_on(int cpu)
636{
637 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
638}
639
640static inline u64 max_skipped_ticks(struct rq *rq)
641{
642 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
643}
644
645static inline void update_last_tick_seen(struct rq *rq)
646{
647 rq->last_tick_seen = jiffies;
648}
649#else
650static inline u64 max_skipped_ticks(struct rq *rq)
651{
652 return 1;
653}
654
655static inline void update_last_tick_seen(struct rq *rq)
656{
657}
658#endif
659
20d315d4 660/*
b04a0f4c
IM
661 * Update the per-runqueue clock, as finegrained as the platform can give
662 * us, but without assuming monotonicity, etc.:
20d315d4 663 */
b04a0f4c 664static void __update_rq_clock(struct rq *rq)
20d315d4
IM
665{
666 u64 prev_raw = rq->prev_clock_raw;
667 u64 now = sched_clock();
668 s64 delta = now - prev_raw;
669 u64 clock = rq->clock;
670
b04a0f4c
IM
671#ifdef CONFIG_SCHED_DEBUG
672 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
673#endif
20d315d4
IM
674 /*
675 * Protect against sched_clock() occasionally going backwards:
676 */
677 if (unlikely(delta < 0)) {
678 clock++;
679 rq->clock_warps++;
680 } else {
681 /*
682 * Catch too large forward jumps too:
683 */
15934a37
GC
684 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
685 u64 max_time = rq->tick_timestamp + max_jump;
686
687 if (unlikely(clock + delta > max_time)) {
688 if (clock < max_time)
689 clock = max_time;
529c7726
IM
690 else
691 clock++;
20d315d4
IM
692 rq->clock_overflows++;
693 } else {
694 if (unlikely(delta > rq->clock_max_delta))
695 rq->clock_max_delta = delta;
696 clock += delta;
697 }
698 }
699
700 rq->prev_clock_raw = now;
701 rq->clock = clock;
b04a0f4c 702}
20d315d4 703
b04a0f4c
IM
704static void update_rq_clock(struct rq *rq)
705{
706 if (likely(smp_processor_id() == cpu_of(rq)))
707 __update_rq_clock(rq);
20d315d4
IM
708}
709
674311d5
NP
710/*
711 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 712 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
713 *
714 * The domain tree of any CPU may only be accessed from within
715 * preempt-disabled sections.
716 */
48f24c4d
IM
717#define for_each_domain(cpu, __sd) \
718 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
719
720#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
721#define this_rq() (&__get_cpu_var(runqueues))
722#define task_rq(p) cpu_rq(task_cpu(p))
723#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
724
bf5c91ba
IM
725/*
726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
727 */
728#ifdef CONFIG_SCHED_DEBUG
729# define const_debug __read_mostly
730#else
731# define const_debug static const
732#endif
733
734/*
735 * Debugging: various feature bits
736 */
f00b45c1
PZ
737
738#define SCHED_FEAT(name, enabled) \
739 __SCHED_FEAT_##name ,
740
bf5c91ba 741enum {
f00b45c1 742#include "sched_features.h"
bf5c91ba
IM
743};
744
f00b45c1
PZ
745#undef SCHED_FEAT
746
747#define SCHED_FEAT(name, enabled) \
748 (1UL << __SCHED_FEAT_##name) * enabled |
749
bf5c91ba 750const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
751#include "sched_features.h"
752 0;
753
754#undef SCHED_FEAT
755
756#ifdef CONFIG_SCHED_DEBUG
757#define SCHED_FEAT(name, enabled) \
758 #name ,
759
760__read_mostly char *sched_feat_names[] = {
761#include "sched_features.h"
762 NULL
763};
764
765#undef SCHED_FEAT
766
767int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 filp->private_data = inode->i_private;
770 return 0;
771}
772
773static ssize_t
774sched_feat_read(struct file *filp, char __user *ubuf,
775 size_t cnt, loff_t *ppos)
776{
777 char *buf;
778 int r = 0;
779 int len = 0;
780 int i;
781
782 for (i = 0; sched_feat_names[i]; i++) {
783 len += strlen(sched_feat_names[i]);
784 len += 4;
785 }
786
787 buf = kmalloc(len + 2, GFP_KERNEL);
788 if (!buf)
789 return -ENOMEM;
790
791 for (i = 0; sched_feat_names[i]; i++) {
792 if (sysctl_sched_features & (1UL << i))
793 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
794 else
c24b7c52 795 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
796 }
797
798 r += sprintf(buf + r, "\n");
799 WARN_ON(r >= len + 2);
800
801 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
802
803 kfree(buf);
804
805 return r;
806}
807
808static ssize_t
809sched_feat_write(struct file *filp, const char __user *ubuf,
810 size_t cnt, loff_t *ppos)
811{
812 char buf[64];
813 char *cmp = buf;
814 int neg = 0;
815 int i;
816
817 if (cnt > 63)
818 cnt = 63;
819
820 if (copy_from_user(&buf, ubuf, cnt))
821 return -EFAULT;
822
823 buf[cnt] = 0;
824
c24b7c52 825 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
826 neg = 1;
827 cmp += 3;
828 }
829
830 for (i = 0; sched_feat_names[i]; i++) {
831 int len = strlen(sched_feat_names[i]);
832
833 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
834 if (neg)
835 sysctl_sched_features &= ~(1UL << i);
836 else
837 sysctl_sched_features |= (1UL << i);
838 break;
839 }
840 }
841
842 if (!sched_feat_names[i])
843 return -EINVAL;
844
845 filp->f_pos += cnt;
846
847 return cnt;
848}
849
850static struct file_operations sched_feat_fops = {
851 .open = sched_feat_open,
852 .read = sched_feat_read,
853 .write = sched_feat_write,
854};
855
856static __init int sched_init_debug(void)
857{
f00b45c1
PZ
858 debugfs_create_file("sched_features", 0644, NULL, NULL,
859 &sched_feat_fops);
860
861 return 0;
862}
863late_initcall(sched_init_debug);
864
865#endif
866
867#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 868
b82d9fdd
PZ
869/*
870 * Number of tasks to iterate in a single balance run.
871 * Limited because this is done with IRQs disabled.
872 */
873const_debug unsigned int sysctl_sched_nr_migrate = 32;
874
fa85ae24 875/*
9f0c1e56 876 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
877 * default: 1s
878 */
9f0c1e56 879unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 880
6892b75e
IM
881static __read_mostly int scheduler_running;
882
9f0c1e56
PZ
883/*
884 * part of the period that we allow rt tasks to run in us.
885 * default: 0.95s
886 */
887int sysctl_sched_rt_runtime = 950000;
fa85ae24 888
d0b27fa7
PZ
889static inline u64 global_rt_period(void)
890{
891 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
892}
893
894static inline u64 global_rt_runtime(void)
895{
896 if (sysctl_sched_rt_period < 0)
897 return RUNTIME_INF;
898
899 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
900}
fa85ae24 901
27ec4407
IM
902static const unsigned long long time_sync_thresh = 100000;
903
904static DEFINE_PER_CPU(unsigned long long, time_offset);
905static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
906
e436d800 907/*
27ec4407
IM
908 * Global lock which we take every now and then to synchronize
909 * the CPUs time. This method is not warp-safe, but it's good
910 * enough to synchronize slowly diverging time sources and thus
911 * it's good enough for tracing:
e436d800 912 */
27ec4407
IM
913static DEFINE_SPINLOCK(time_sync_lock);
914static unsigned long long prev_global_time;
915
916static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
917{
918 unsigned long flags;
919
920 spin_lock_irqsave(&time_sync_lock, flags);
921
922 if (time < prev_global_time) {
923 per_cpu(time_offset, cpu) += prev_global_time - time;
924 time = prev_global_time;
925 } else {
926 prev_global_time = time;
927 }
928
929 spin_unlock_irqrestore(&time_sync_lock, flags);
930
931 return time;
932}
933
934static unsigned long long __cpu_clock(int cpu)
e436d800 935{
e436d800
IM
936 unsigned long long now;
937 unsigned long flags;
b04a0f4c 938 struct rq *rq;
e436d800 939
8ced5f69
IM
940 /*
941 * Only call sched_clock() if the scheduler has already been
942 * initialized (some code might call cpu_clock() very early):
943 */
6892b75e
IM
944 if (unlikely(!scheduler_running))
945 return 0;
946
947 local_irq_save(flags);
948 rq = cpu_rq(cpu);
949 update_rq_clock(rq);
b04a0f4c 950 now = rq->clock;
2cd4d0ea 951 local_irq_restore(flags);
e436d800
IM
952
953 return now;
954}
27ec4407
IM
955
956/*
957 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
958 * clock constructed from sched_clock():
959 */
960unsigned long long cpu_clock(int cpu)
961{
962 unsigned long long prev_cpu_time, time, delta_time;
963
964 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
965 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
966 delta_time = time-prev_cpu_time;
967
968 if (unlikely(delta_time > time_sync_thresh))
969 time = __sync_cpu_clock(time, cpu);
970
971 return time;
972}
a58f6f25 973EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 974
1da177e4 975#ifndef prepare_arch_switch
4866cde0
NP
976# define prepare_arch_switch(next) do { } while (0)
977#endif
978#ifndef finish_arch_switch
979# define finish_arch_switch(prev) do { } while (0)
980#endif
981
051a1d1a
DA
982static inline int task_current(struct rq *rq, struct task_struct *p)
983{
984 return rq->curr == p;
985}
986
4866cde0 987#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 988static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 989{
051a1d1a 990 return task_current(rq, p);
4866cde0
NP
991}
992
70b97a7f 993static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
994{
995}
996
70b97a7f 997static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 998{
da04c035
IM
999#ifdef CONFIG_DEBUG_SPINLOCK
1000 /* this is a valid case when another task releases the spinlock */
1001 rq->lock.owner = current;
1002#endif
8a25d5de
IM
1003 /*
1004 * If we are tracking spinlock dependencies then we have to
1005 * fix up the runqueue lock - which gets 'carried over' from
1006 * prev into current:
1007 */
1008 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1009
4866cde0
NP
1010 spin_unlock_irq(&rq->lock);
1011}
1012
1013#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1014static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
1015{
1016#ifdef CONFIG_SMP
1017 return p->oncpu;
1018#else
051a1d1a 1019 return task_current(rq, p);
4866cde0
NP
1020#endif
1021}
1022
70b97a7f 1023static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1024{
1025#ifdef CONFIG_SMP
1026 /*
1027 * We can optimise this out completely for !SMP, because the
1028 * SMP rebalancing from interrupt is the only thing that cares
1029 * here.
1030 */
1031 next->oncpu = 1;
1032#endif
1033#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1034 spin_unlock_irq(&rq->lock);
1035#else
1036 spin_unlock(&rq->lock);
1037#endif
1038}
1039
70b97a7f 1040static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1041{
1042#ifdef CONFIG_SMP
1043 /*
1044 * After ->oncpu is cleared, the task can be moved to a different CPU.
1045 * We must ensure this doesn't happen until the switch is completely
1046 * finished.
1047 */
1048 smp_wmb();
1049 prev->oncpu = 0;
1050#endif
1051#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1052 local_irq_enable();
1da177e4 1053#endif
4866cde0
NP
1054}
1055#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1056
b29739f9
IM
1057/*
1058 * __task_rq_lock - lock the runqueue a given task resides on.
1059 * Must be called interrupts disabled.
1060 */
70b97a7f 1061static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1062 __acquires(rq->lock)
1063{
3a5c359a
AK
1064 for (;;) {
1065 struct rq *rq = task_rq(p);
1066 spin_lock(&rq->lock);
1067 if (likely(rq == task_rq(p)))
1068 return rq;
b29739f9 1069 spin_unlock(&rq->lock);
b29739f9 1070 }
b29739f9
IM
1071}
1072
1da177e4
LT
1073/*
1074 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 1075 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
1076 * explicitly disabling preemption.
1077 */
70b97a7f 1078static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
1079 __acquires(rq->lock)
1080{
70b97a7f 1081 struct rq *rq;
1da177e4 1082
3a5c359a
AK
1083 for (;;) {
1084 local_irq_save(*flags);
1085 rq = task_rq(p);
1086 spin_lock(&rq->lock);
1087 if (likely(rq == task_rq(p)))
1088 return rq;
1da177e4 1089 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1090 }
1da177e4
LT
1091}
1092
a9957449 1093static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1094 __releases(rq->lock)
1095{
1096 spin_unlock(&rq->lock);
1097}
1098
70b97a7f 1099static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1100 __releases(rq->lock)
1101{
1102 spin_unlock_irqrestore(&rq->lock, *flags);
1103}
1104
1da177e4 1105/*
cc2a73b5 1106 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1107 */
a9957449 1108static struct rq *this_rq_lock(void)
1da177e4
LT
1109 __acquires(rq->lock)
1110{
70b97a7f 1111 struct rq *rq;
1da177e4
LT
1112
1113 local_irq_disable();
1114 rq = this_rq();
1115 spin_lock(&rq->lock);
1116
1117 return rq;
1118}
1119
1b9f19c2 1120/*
2aa44d05 1121 * We are going deep-idle (irqs are disabled):
1b9f19c2 1122 */
2aa44d05 1123void sched_clock_idle_sleep_event(void)
1b9f19c2 1124{
2aa44d05
IM
1125 struct rq *rq = cpu_rq(smp_processor_id());
1126
1127 spin_lock(&rq->lock);
1128 __update_rq_clock(rq);
1129 spin_unlock(&rq->lock);
1130 rq->clock_deep_idle_events++;
1131}
1132EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
1133
1134/*
1135 * We just idled delta nanoseconds (called with irqs disabled):
1136 */
1137void sched_clock_idle_wakeup_event(u64 delta_ns)
1138{
1139 struct rq *rq = cpu_rq(smp_processor_id());
1140 u64 now = sched_clock();
1b9f19c2 1141
2aa44d05
IM
1142 rq->idle_clock += delta_ns;
1143 /*
1144 * Override the previous timestamp and ignore all
1145 * sched_clock() deltas that occured while we idled,
1146 * and use the PM-provided delta_ns to advance the
1147 * rq clock:
1148 */
1149 spin_lock(&rq->lock);
1150 rq->prev_clock_raw = now;
1151 rq->clock += delta_ns;
1152 spin_unlock(&rq->lock);
782daeee 1153 touch_softlockup_watchdog();
1b9f19c2 1154}
2aa44d05 1155EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 1156
8f4d37ec
PZ
1157static void __resched_task(struct task_struct *p, int tif_bit);
1158
1159static inline void resched_task(struct task_struct *p)
1160{
1161 __resched_task(p, TIF_NEED_RESCHED);
1162}
1163
1164#ifdef CONFIG_SCHED_HRTICK
1165/*
1166 * Use HR-timers to deliver accurate preemption points.
1167 *
1168 * Its all a bit involved since we cannot program an hrt while holding the
1169 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1170 * reschedule event.
1171 *
1172 * When we get rescheduled we reprogram the hrtick_timer outside of the
1173 * rq->lock.
1174 */
1175static inline void resched_hrt(struct task_struct *p)
1176{
1177 __resched_task(p, TIF_HRTICK_RESCHED);
1178}
1179
1180static inline void resched_rq(struct rq *rq)
1181{
1182 unsigned long flags;
1183
1184 spin_lock_irqsave(&rq->lock, flags);
1185 resched_task(rq->curr);
1186 spin_unlock_irqrestore(&rq->lock, flags);
1187}
1188
1189enum {
1190 HRTICK_SET, /* re-programm hrtick_timer */
1191 HRTICK_RESET, /* not a new slice */
1192};
1193
1194/*
1195 * Use hrtick when:
1196 * - enabled by features
1197 * - hrtimer is actually high res
1198 */
1199static inline int hrtick_enabled(struct rq *rq)
1200{
1201 if (!sched_feat(HRTICK))
1202 return 0;
1203 return hrtimer_is_hres_active(&rq->hrtick_timer);
1204}
1205
1206/*
1207 * Called to set the hrtick timer state.
1208 *
1209 * called with rq->lock held and irqs disabled
1210 */
1211static void hrtick_start(struct rq *rq, u64 delay, int reset)
1212{
1213 assert_spin_locked(&rq->lock);
1214
1215 /*
1216 * preempt at: now + delay
1217 */
1218 rq->hrtick_expire =
1219 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1220 /*
1221 * indicate we need to program the timer
1222 */
1223 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1224 if (reset)
1225 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1226
1227 /*
1228 * New slices are called from the schedule path and don't need a
1229 * forced reschedule.
1230 */
1231 if (reset)
1232 resched_hrt(rq->curr);
1233}
1234
1235static void hrtick_clear(struct rq *rq)
1236{
1237 if (hrtimer_active(&rq->hrtick_timer))
1238 hrtimer_cancel(&rq->hrtick_timer);
1239}
1240
1241/*
1242 * Update the timer from the possible pending state.
1243 */
1244static void hrtick_set(struct rq *rq)
1245{
1246 ktime_t time;
1247 int set, reset;
1248 unsigned long flags;
1249
1250 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1251
1252 spin_lock_irqsave(&rq->lock, flags);
1253 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1254 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1255 time = rq->hrtick_expire;
1256 clear_thread_flag(TIF_HRTICK_RESCHED);
1257 spin_unlock_irqrestore(&rq->lock, flags);
1258
1259 if (set) {
1260 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1261 if (reset && !hrtimer_active(&rq->hrtick_timer))
1262 resched_rq(rq);
1263 } else
1264 hrtick_clear(rq);
1265}
1266
1267/*
1268 * High-resolution timer tick.
1269 * Runs from hardirq context with interrupts disabled.
1270 */
1271static enum hrtimer_restart hrtick(struct hrtimer *timer)
1272{
1273 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1274
1275 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1276
1277 spin_lock(&rq->lock);
1278 __update_rq_clock(rq);
1279 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1280 spin_unlock(&rq->lock);
1281
1282 return HRTIMER_NORESTART;
1283}
1284
1285static inline void init_rq_hrtick(struct rq *rq)
1286{
1287 rq->hrtick_flags = 0;
1288 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1289 rq->hrtick_timer.function = hrtick;
1290 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1291}
1292
1293void hrtick_resched(void)
1294{
1295 struct rq *rq;
1296 unsigned long flags;
1297
1298 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1299 return;
1300
1301 local_irq_save(flags);
1302 rq = cpu_rq(smp_processor_id());
1303 hrtick_set(rq);
1304 local_irq_restore(flags);
1305}
1306#else
1307static inline void hrtick_clear(struct rq *rq)
1308{
1309}
1310
1311static inline void hrtick_set(struct rq *rq)
1312{
1313}
1314
1315static inline void init_rq_hrtick(struct rq *rq)
1316{
1317}
1318
1319void hrtick_resched(void)
1320{
1321}
1322#endif
1323
c24d20db
IM
1324/*
1325 * resched_task - mark a task 'to be rescheduled now'.
1326 *
1327 * On UP this means the setting of the need_resched flag, on SMP it
1328 * might also involve a cross-CPU call to trigger the scheduler on
1329 * the target CPU.
1330 */
1331#ifdef CONFIG_SMP
1332
1333#ifndef tsk_is_polling
1334#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1335#endif
1336
8f4d37ec 1337static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1338{
1339 int cpu;
1340
1341 assert_spin_locked(&task_rq(p)->lock);
1342
8f4d37ec 1343 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1344 return;
1345
8f4d37ec 1346 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1347
1348 cpu = task_cpu(p);
1349 if (cpu == smp_processor_id())
1350 return;
1351
1352 /* NEED_RESCHED must be visible before we test polling */
1353 smp_mb();
1354 if (!tsk_is_polling(p))
1355 smp_send_reschedule(cpu);
1356}
1357
1358static void resched_cpu(int cpu)
1359{
1360 struct rq *rq = cpu_rq(cpu);
1361 unsigned long flags;
1362
1363 if (!spin_trylock_irqsave(&rq->lock, flags))
1364 return;
1365 resched_task(cpu_curr(cpu));
1366 spin_unlock_irqrestore(&rq->lock, flags);
1367}
06d8308c
TG
1368
1369#ifdef CONFIG_NO_HZ
1370/*
1371 * When add_timer_on() enqueues a timer into the timer wheel of an
1372 * idle CPU then this timer might expire before the next timer event
1373 * which is scheduled to wake up that CPU. In case of a completely
1374 * idle system the next event might even be infinite time into the
1375 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1376 * leaves the inner idle loop so the newly added timer is taken into
1377 * account when the CPU goes back to idle and evaluates the timer
1378 * wheel for the next timer event.
1379 */
1380void wake_up_idle_cpu(int cpu)
1381{
1382 struct rq *rq = cpu_rq(cpu);
1383
1384 if (cpu == smp_processor_id())
1385 return;
1386
1387 /*
1388 * This is safe, as this function is called with the timer
1389 * wheel base lock of (cpu) held. When the CPU is on the way
1390 * to idle and has not yet set rq->curr to idle then it will
1391 * be serialized on the timer wheel base lock and take the new
1392 * timer into account automatically.
1393 */
1394 if (rq->curr != rq->idle)
1395 return;
1396
1397 /*
1398 * We can set TIF_RESCHED on the idle task of the other CPU
1399 * lockless. The worst case is that the other CPU runs the
1400 * idle task through an additional NOOP schedule()
1401 */
1402 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1403
1404 /* NEED_RESCHED must be visible before we test polling */
1405 smp_mb();
1406 if (!tsk_is_polling(rq->idle))
1407 smp_send_reschedule(cpu);
1408}
1409#endif
1410
c24d20db 1411#else
8f4d37ec 1412static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1413{
1414 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1415 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1416}
1417#endif
1418
45bf76df
IM
1419#if BITS_PER_LONG == 32
1420# define WMULT_CONST (~0UL)
1421#else
1422# define WMULT_CONST (1UL << 32)
1423#endif
1424
1425#define WMULT_SHIFT 32
1426
194081eb
IM
1427/*
1428 * Shift right and round:
1429 */
cf2ab469 1430#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1431
8f1bc385
PZ
1432/*
1433 * delta *= weight / lw
1434 */
cb1c4fc9 1435static unsigned long
45bf76df
IM
1436calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1437 struct load_weight *lw)
1438{
1439 u64 tmp;
1440
1441 if (unlikely(!lw->inv_weight))
27d11726 1442 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1443
1444 tmp = (u64)delta_exec * weight;
1445 /*
1446 * Check whether we'd overflow the 64-bit multiplication:
1447 */
194081eb 1448 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1449 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1450 WMULT_SHIFT/2);
1451 else
cf2ab469 1452 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1453
ecf691da 1454 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1455}
1456
1091985b 1457static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1458{
1459 lw->weight += inc;
e89996ae 1460 lw->inv_weight = 0;
45bf76df
IM
1461}
1462
1091985b 1463static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1464{
1465 lw->weight -= dec;
e89996ae 1466 lw->inv_weight = 0;
45bf76df
IM
1467}
1468
2dd73a4f
PW
1469/*
1470 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1471 * of tasks with abnormal "nice" values across CPUs the contribution that
1472 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1473 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1474 * scaled version of the new time slice allocation that they receive on time
1475 * slice expiry etc.
1476 */
1477
dd41f596
IM
1478#define WEIGHT_IDLEPRIO 2
1479#define WMULT_IDLEPRIO (1 << 31)
1480
1481/*
1482 * Nice levels are multiplicative, with a gentle 10% change for every
1483 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1484 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1485 * that remained on nice 0.
1486 *
1487 * The "10% effect" is relative and cumulative: from _any_ nice level,
1488 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1489 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1490 * If a task goes up by ~10% and another task goes down by ~10% then
1491 * the relative distance between them is ~25%.)
dd41f596
IM
1492 */
1493static const int prio_to_weight[40] = {
254753dc
IM
1494 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1495 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1496 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1497 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1498 /* 0 */ 1024, 820, 655, 526, 423,
1499 /* 5 */ 335, 272, 215, 172, 137,
1500 /* 10 */ 110, 87, 70, 56, 45,
1501 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1502};
1503
5714d2de
IM
1504/*
1505 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1506 *
1507 * In cases where the weight does not change often, we can use the
1508 * precalculated inverse to speed up arithmetics by turning divisions
1509 * into multiplications:
1510 */
dd41f596 1511static const u32 prio_to_wmult[40] = {
254753dc
IM
1512 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1513 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1514 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1515 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1516 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1517 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1518 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1519 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1520};
2dd73a4f 1521
dd41f596
IM
1522static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1523
1524/*
1525 * runqueue iterator, to support SMP load-balancing between different
1526 * scheduling classes, without having to expose their internal data
1527 * structures to the load-balancing proper:
1528 */
1529struct rq_iterator {
1530 void *arg;
1531 struct task_struct *(*start)(void *);
1532 struct task_struct *(*next)(void *);
1533};
1534
e1d1484f
PW
1535#ifdef CONFIG_SMP
1536static unsigned long
1537balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1538 unsigned long max_load_move, struct sched_domain *sd,
1539 enum cpu_idle_type idle, int *all_pinned,
1540 int *this_best_prio, struct rq_iterator *iterator);
1541
1542static int
1543iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1544 struct sched_domain *sd, enum cpu_idle_type idle,
1545 struct rq_iterator *iterator);
e1d1484f 1546#endif
dd41f596 1547
d842de87
SV
1548#ifdef CONFIG_CGROUP_CPUACCT
1549static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1550#else
1551static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1552#endif
1553
18d95a28
PZ
1554static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1555{
1556 update_load_add(&rq->load, load);
1557}
1558
1559static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1560{
1561 update_load_sub(&rq->load, load);
1562}
1563
e7693a36
GH
1564#ifdef CONFIG_SMP
1565static unsigned long source_load(int cpu, int type);
1566static unsigned long target_load(int cpu, int type);
1567static unsigned long cpu_avg_load_per_task(int cpu);
1568static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1569
1570#ifdef CONFIG_FAIR_GROUP_SCHED
1571
1572/*
1573 * Group load balancing.
1574 *
1575 * We calculate a few balance domain wide aggregate numbers; load and weight.
1576 * Given the pictures below, and assuming each item has equal weight:
1577 *
1578 * root 1 - thread
1579 * / | \ A - group
1580 * A 1 B
1581 * /|\ / \
1582 * C 2 D 3 4
1583 * | |
1584 * 5 6
1585 *
1586 * load:
1587 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1588 * which equals 1/9-th of the total load.
1589 *
1590 * shares:
1591 * The weight of this group on the selected cpus.
1592 *
1593 * rq_weight:
1594 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1595 * B would get 2.
1596 *
1597 * task_weight:
1598 * Part of the rq_weight contributed by tasks; all groups except B would
1599 * get 1, B gets 2.
1600 */
1601
1602static inline struct aggregate_struct *
1603aggregate(struct task_group *tg, struct sched_domain *sd)
1604{
1605 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1606}
1607
1608typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1609
1610/*
1611 * Iterate the full tree, calling @down when first entering a node and @up when
1612 * leaving it for the final time.
1613 */
1614static
1615void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1616 struct sched_domain *sd)
1617{
1618 struct task_group *parent, *child;
1619
1620 rcu_read_lock();
1621 parent = &root_task_group;
1622down:
1623 (*down)(parent, sd);
1624 list_for_each_entry_rcu(child, &parent->children, siblings) {
1625 parent = child;
1626 goto down;
1627
1628up:
1629 continue;
1630 }
1631 (*up)(parent, sd);
1632
1633 child = parent;
1634 parent = parent->parent;
1635 if (parent)
1636 goto up;
1637 rcu_read_unlock();
1638}
1639
1640/*
1641 * Calculate the aggregate runqueue weight.
1642 */
1643static
1644void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1645{
1646 unsigned long rq_weight = 0;
1647 unsigned long task_weight = 0;
1648 int i;
1649
1650 for_each_cpu_mask(i, sd->span) {
1651 rq_weight += tg->cfs_rq[i]->load.weight;
1652 task_weight += tg->cfs_rq[i]->task_weight;
1653 }
1654
1655 aggregate(tg, sd)->rq_weight = rq_weight;
1656 aggregate(tg, sd)->task_weight = task_weight;
1657}
1658
1659/*
1660 * Redistribute tg->shares amongst all tg->cfs_rq[]s.
1661 */
1662static void __aggregate_redistribute_shares(struct task_group *tg)
1663{
1664 int i, max_cpu = smp_processor_id();
1665 unsigned long rq_weight = 0;
1666 unsigned long shares, max_shares = 0, shares_rem = tg->shares;
1667
1668 for_each_possible_cpu(i)
1669 rq_weight += tg->cfs_rq[i]->load.weight;
1670
1671 for_each_possible_cpu(i) {
1672 /*
1673 * divide shares proportional to the rq_weights.
1674 */
1675 shares = tg->shares * tg->cfs_rq[i]->load.weight;
1676 shares /= rq_weight + 1;
1677
1678 tg->cfs_rq[i]->shares = shares;
1679
1680 if (shares > max_shares) {
1681 max_shares = shares;
1682 max_cpu = i;
1683 }
1684 shares_rem -= shares;
1685 }
1686
1687 /*
1688 * Ensure it all adds up to tg->shares; we can loose a few
1689 * due to rounding down when computing the per-cpu shares.
1690 */
1691 if (shares_rem)
1692 tg->cfs_rq[max_cpu]->shares += shares_rem;
1693}
1694
1695/*
1696 * Compute the weight of this group on the given cpus.
1697 */
1698static
1699void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1700{
1701 unsigned long shares = 0;
1702 int i;
1703
1704again:
1705 for_each_cpu_mask(i, sd->span)
1706 shares += tg->cfs_rq[i]->shares;
1707
1708 /*
1709 * When the span doesn't have any shares assigned, but does have
1710 * tasks to run do a machine wide rebalance (should be rare).
1711 */
1712 if (unlikely(!shares && aggregate(tg, sd)->rq_weight)) {
1713 __aggregate_redistribute_shares(tg);
1714 goto again;
1715 }
1716
1717 aggregate(tg, sd)->shares = shares;
1718}
1719
1720/*
1721 * Compute the load fraction assigned to this group, relies on the aggregate
1722 * weight and this group's parent's load, i.e. top-down.
1723 */
1724static
1725void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1726{
1727 unsigned long load;
1728
1729 if (!tg->parent) {
1730 int i;
1731
1732 load = 0;
1733 for_each_cpu_mask(i, sd->span)
1734 load += cpu_rq(i)->load.weight;
1735
1736 } else {
1737 load = aggregate(tg->parent, sd)->load;
1738
1739 /*
1740 * shares is our weight in the parent's rq so
1741 * shares/parent->rq_weight gives our fraction of the load
1742 */
1743 load *= aggregate(tg, sd)->shares;
1744 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1745 }
1746
1747 aggregate(tg, sd)->load = load;
1748}
1749
1750static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1751
1752/*
1753 * Calculate and set the cpu's group shares.
1754 */
1755static void
1756__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1757 int tcpu)
1758{
1759 int boost = 0;
1760 unsigned long shares;
1761 unsigned long rq_weight;
1762
1763 if (!tg->se[tcpu])
1764 return;
1765
1766 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1767
1768 /*
1769 * If there are currently no tasks on the cpu pretend there is one of
1770 * average load so that when a new task gets to run here it will not
1771 * get delayed by group starvation.
1772 */
1773 if (!rq_weight) {
1774 boost = 1;
1775 rq_weight = NICE_0_LOAD;
1776 }
1777
1778 /*
1779 * \Sum shares * rq_weight
1780 * shares = -----------------------
1781 * \Sum rq_weight
1782 *
1783 */
1784 shares = aggregate(tg, sd)->shares * rq_weight;
1785 shares /= aggregate(tg, sd)->rq_weight + 1;
1786
1787 /*
1788 * record the actual number of shares, not the boosted amount.
1789 */
1790 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1791
1792 if (shares < MIN_SHARES)
1793 shares = MIN_SHARES;
1794
1795 __set_se_shares(tg->se[tcpu], shares);
1796}
1797
1798/*
1799 * Re-adjust the weights on the cpu the task came from and on the cpu the
1800 * task went to.
1801 */
1802static void
1803__move_group_shares(struct task_group *tg, struct sched_domain *sd,
1804 int scpu, int dcpu)
1805{
1806 unsigned long shares;
1807
1808 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1809
1810 __update_group_shares_cpu(tg, sd, scpu);
1811 __update_group_shares_cpu(tg, sd, dcpu);
1812
1813 /*
1814 * ensure we never loose shares due to rounding errors in the
1815 * above redistribution.
1816 */
1817 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1818 if (shares)
1819 tg->cfs_rq[dcpu]->shares += shares;
1820}
1821
1822/*
1823 * Because changing a group's shares changes the weight of the super-group
1824 * we need to walk up the tree and change all shares until we hit the root.
1825 */
1826static void
1827move_group_shares(struct task_group *tg, struct sched_domain *sd,
1828 int scpu, int dcpu)
1829{
1830 while (tg) {
1831 __move_group_shares(tg, sd, scpu, dcpu);
1832 tg = tg->parent;
1833 }
1834}
1835
1836static
1837void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1838{
1839 unsigned long shares = aggregate(tg, sd)->shares;
1840 int i;
1841
1842 for_each_cpu_mask(i, sd->span) {
1843 struct rq *rq = cpu_rq(i);
1844 unsigned long flags;
1845
1846 spin_lock_irqsave(&rq->lock, flags);
1847 __update_group_shares_cpu(tg, sd, i);
1848 spin_unlock_irqrestore(&rq->lock, flags);
1849 }
1850
1851 aggregate_group_shares(tg, sd);
1852
1853 /*
1854 * ensure we never loose shares due to rounding errors in the
1855 * above redistribution.
1856 */
1857 shares -= aggregate(tg, sd)->shares;
1858 if (shares) {
1859 tg->cfs_rq[sd->first_cpu]->shares += shares;
1860 aggregate(tg, sd)->shares += shares;
1861 }
1862}
1863
1864/*
1865 * Calculate the accumulative weight and recursive load of each task group
1866 * while walking down the tree.
1867 */
1868static
1869void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1870{
1871 aggregate_group_weight(tg, sd);
1872 aggregate_group_shares(tg, sd);
1873 aggregate_group_load(tg, sd);
1874}
1875
1876/*
1877 * Rebalance the cpu shares while walking back up the tree.
1878 */
1879static
1880void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1881{
1882 aggregate_group_set_shares(tg, sd);
1883}
1884
1885static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1886
1887static void __init init_aggregate(void)
1888{
1889 int i;
1890
1891 for_each_possible_cpu(i)
1892 spin_lock_init(&per_cpu(aggregate_lock, i));
1893}
1894
1895static int get_aggregate(struct sched_domain *sd)
1896{
1897 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1898 return 0;
1899
1900 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1901 return 1;
1902}
1903
1904static void put_aggregate(struct sched_domain *sd)
1905{
1906 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1907}
1908
1909static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1910{
1911 cfs_rq->shares = shares;
1912}
1913
1914#else
1915
1916static inline void init_aggregate(void)
1917{
1918}
1919
1920static inline int get_aggregate(struct sched_domain *sd)
1921{
1922 return 0;
1923}
1924
1925static inline void put_aggregate(struct sched_domain *sd)
1926{
1927}
1928#endif
1929
1930#else /* CONFIG_SMP */
1931
1932#ifdef CONFIG_FAIR_GROUP_SCHED
1933static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1934{
1935}
1936#endif
1937
e7693a36
GH
1938#endif /* CONFIG_SMP */
1939
dd41f596 1940#include "sched_stats.h"
dd41f596 1941#include "sched_idletask.c"
5522d5d5
IM
1942#include "sched_fair.c"
1943#include "sched_rt.c"
dd41f596
IM
1944#ifdef CONFIG_SCHED_DEBUG
1945# include "sched_debug.c"
1946#endif
1947
1948#define sched_class_highest (&rt_sched_class)
1949
18d95a28 1950static void inc_nr_running(struct rq *rq)
9c217245
IM
1951{
1952 rq->nr_running++;
9c217245
IM
1953}
1954
18d95a28 1955static void dec_nr_running(struct rq *rq)
9c217245
IM
1956{
1957 rq->nr_running--;
9c217245
IM
1958}
1959
45bf76df
IM
1960static void set_load_weight(struct task_struct *p)
1961{
1962 if (task_has_rt_policy(p)) {
dd41f596
IM
1963 p->se.load.weight = prio_to_weight[0] * 2;
1964 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1965 return;
1966 }
45bf76df 1967
dd41f596
IM
1968 /*
1969 * SCHED_IDLE tasks get minimal weight:
1970 */
1971 if (p->policy == SCHED_IDLE) {
1972 p->se.load.weight = WEIGHT_IDLEPRIO;
1973 p->se.load.inv_weight = WMULT_IDLEPRIO;
1974 return;
1975 }
71f8bd46 1976
dd41f596
IM
1977 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1978 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1979}
1980
8159f87e 1981static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1982{
dd41f596 1983 sched_info_queued(p);
fd390f6a 1984 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1985 p->se.on_rq = 1;
71f8bd46
IM
1986}
1987
69be72c1 1988static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1989{
f02231e5 1990 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1991 p->se.on_rq = 0;
71f8bd46
IM
1992}
1993
14531189 1994/*
dd41f596 1995 * __normal_prio - return the priority that is based on the static prio
14531189 1996 */
14531189
IM
1997static inline int __normal_prio(struct task_struct *p)
1998{
dd41f596 1999 return p->static_prio;
14531189
IM
2000}
2001
b29739f9
IM
2002/*
2003 * Calculate the expected normal priority: i.e. priority
2004 * without taking RT-inheritance into account. Might be
2005 * boosted by interactivity modifiers. Changes upon fork,
2006 * setprio syscalls, and whenever the interactivity
2007 * estimator recalculates.
2008 */
36c8b586 2009static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2010{
2011 int prio;
2012
e05606d3 2013 if (task_has_rt_policy(p))
b29739f9
IM
2014 prio = MAX_RT_PRIO-1 - p->rt_priority;
2015 else
2016 prio = __normal_prio(p);
2017 return prio;
2018}
2019
2020/*
2021 * Calculate the current priority, i.e. the priority
2022 * taken into account by the scheduler. This value might
2023 * be boosted by RT tasks, or might be boosted by
2024 * interactivity modifiers. Will be RT if the task got
2025 * RT-boosted. If not then it returns p->normal_prio.
2026 */
36c8b586 2027static int effective_prio(struct task_struct *p)
b29739f9
IM
2028{
2029 p->normal_prio = normal_prio(p);
2030 /*
2031 * If we are RT tasks or we were boosted to RT priority,
2032 * keep the priority unchanged. Otherwise, update priority
2033 * to the normal priority:
2034 */
2035 if (!rt_prio(p->prio))
2036 return p->normal_prio;
2037 return p->prio;
2038}
2039
1da177e4 2040/*
dd41f596 2041 * activate_task - move a task to the runqueue.
1da177e4 2042 */
dd41f596 2043static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 2044{
d9514f6c 2045 if (task_contributes_to_load(p))
dd41f596 2046 rq->nr_uninterruptible--;
1da177e4 2047
8159f87e 2048 enqueue_task(rq, p, wakeup);
18d95a28 2049 inc_nr_running(rq);
1da177e4
LT
2050}
2051
1da177e4
LT
2052/*
2053 * deactivate_task - remove a task from the runqueue.
2054 */
2e1cb74a 2055static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 2056{
d9514f6c 2057 if (task_contributes_to_load(p))
dd41f596
IM
2058 rq->nr_uninterruptible++;
2059
69be72c1 2060 dequeue_task(rq, p, sleep);
18d95a28 2061 dec_nr_running(rq);
1da177e4
LT
2062}
2063
1da177e4
LT
2064/**
2065 * task_curr - is this task currently executing on a CPU?
2066 * @p: the task in question.
2067 */
36c8b586 2068inline int task_curr(const struct task_struct *p)
1da177e4
LT
2069{
2070 return cpu_curr(task_cpu(p)) == p;
2071}
2072
2dd73a4f
PW
2073/* Used instead of source_load when we know the type == 0 */
2074unsigned long weighted_cpuload(const int cpu)
2075{
495eca49 2076 return cpu_rq(cpu)->load.weight;
dd41f596
IM
2077}
2078
2079static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2080{
6f505b16 2081 set_task_rq(p, cpu);
dd41f596 2082#ifdef CONFIG_SMP
ce96b5ac
DA
2083 /*
2084 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2085 * successfuly executed on another CPU. We must ensure that updates of
2086 * per-task data have been completed by this moment.
2087 */
2088 smp_wmb();
dd41f596 2089 task_thread_info(p)->cpu = cpu;
dd41f596 2090#endif
2dd73a4f
PW
2091}
2092
cb469845
SR
2093static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2094 const struct sched_class *prev_class,
2095 int oldprio, int running)
2096{
2097 if (prev_class != p->sched_class) {
2098 if (prev_class->switched_from)
2099 prev_class->switched_from(rq, p, running);
2100 p->sched_class->switched_to(rq, p, running);
2101 } else
2102 p->sched_class->prio_changed(rq, p, oldprio, running);
2103}
2104
1da177e4 2105#ifdef CONFIG_SMP
c65cc870 2106
cc367732
IM
2107/*
2108 * Is this task likely cache-hot:
2109 */
e7693a36 2110static int
cc367732
IM
2111task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2112{
2113 s64 delta;
2114
f540a608
IM
2115 /*
2116 * Buddy candidates are cache hot:
2117 */
d25ce4cd 2118 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
2119 return 1;
2120
cc367732
IM
2121 if (p->sched_class != &fair_sched_class)
2122 return 0;
2123
6bc1665b
IM
2124 if (sysctl_sched_migration_cost == -1)
2125 return 1;
2126 if (sysctl_sched_migration_cost == 0)
2127 return 0;
2128
cc367732
IM
2129 delta = now - p->se.exec_start;
2130
2131 return delta < (s64)sysctl_sched_migration_cost;
2132}
2133
2134
dd41f596 2135void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2136{
dd41f596
IM
2137 int old_cpu = task_cpu(p);
2138 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2139 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2140 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2141 u64 clock_offset;
dd41f596
IM
2142
2143 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
2144
2145#ifdef CONFIG_SCHEDSTATS
2146 if (p->se.wait_start)
2147 p->se.wait_start -= clock_offset;
dd41f596
IM
2148 if (p->se.sleep_start)
2149 p->se.sleep_start -= clock_offset;
2150 if (p->se.block_start)
2151 p->se.block_start -= clock_offset;
cc367732
IM
2152 if (old_cpu != new_cpu) {
2153 schedstat_inc(p, se.nr_migrations);
2154 if (task_hot(p, old_rq->clock, NULL))
2155 schedstat_inc(p, se.nr_forced2_migrations);
2156 }
6cfb0d5d 2157#endif
2830cf8c
SV
2158 p->se.vruntime -= old_cfsrq->min_vruntime -
2159 new_cfsrq->min_vruntime;
dd41f596
IM
2160
2161 __set_task_cpu(p, new_cpu);
c65cc870
IM
2162}
2163
70b97a7f 2164struct migration_req {
1da177e4 2165 struct list_head list;
1da177e4 2166
36c8b586 2167 struct task_struct *task;
1da177e4
LT
2168 int dest_cpu;
2169
1da177e4 2170 struct completion done;
70b97a7f 2171};
1da177e4
LT
2172
2173/*
2174 * The task's runqueue lock must be held.
2175 * Returns true if you have to wait for migration thread.
2176 */
36c8b586 2177static int
70b97a7f 2178migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2179{
70b97a7f 2180 struct rq *rq = task_rq(p);
1da177e4
LT
2181
2182 /*
2183 * If the task is not on a runqueue (and not running), then
2184 * it is sufficient to simply update the task's cpu field.
2185 */
dd41f596 2186 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2187 set_task_cpu(p, dest_cpu);
2188 return 0;
2189 }
2190
2191 init_completion(&req->done);
1da177e4
LT
2192 req->task = p;
2193 req->dest_cpu = dest_cpu;
2194 list_add(&req->list, &rq->migration_queue);
48f24c4d 2195
1da177e4
LT
2196 return 1;
2197}
2198
2199/*
2200 * wait_task_inactive - wait for a thread to unschedule.
2201 *
2202 * The caller must ensure that the task *will* unschedule sometime soon,
2203 * else this function might spin for a *long* time. This function can't
2204 * be called with interrupts off, or it may introduce deadlock with
2205 * smp_call_function() if an IPI is sent by the same process we are
2206 * waiting to become inactive.
2207 */
36c8b586 2208void wait_task_inactive(struct task_struct *p)
1da177e4
LT
2209{
2210 unsigned long flags;
dd41f596 2211 int running, on_rq;
70b97a7f 2212 struct rq *rq;
1da177e4 2213
3a5c359a
AK
2214 for (;;) {
2215 /*
2216 * We do the initial early heuristics without holding
2217 * any task-queue locks at all. We'll only try to get
2218 * the runqueue lock when things look like they will
2219 * work out!
2220 */
2221 rq = task_rq(p);
fa490cfd 2222
3a5c359a
AK
2223 /*
2224 * If the task is actively running on another CPU
2225 * still, just relax and busy-wait without holding
2226 * any locks.
2227 *
2228 * NOTE! Since we don't hold any locks, it's not
2229 * even sure that "rq" stays as the right runqueue!
2230 * But we don't care, since "task_running()" will
2231 * return false if the runqueue has changed and p
2232 * is actually now running somewhere else!
2233 */
2234 while (task_running(rq, p))
2235 cpu_relax();
fa490cfd 2236
3a5c359a
AK
2237 /*
2238 * Ok, time to look more closely! We need the rq
2239 * lock now, to be *sure*. If we're wrong, we'll
2240 * just go back and repeat.
2241 */
2242 rq = task_rq_lock(p, &flags);
2243 running = task_running(rq, p);
2244 on_rq = p->se.on_rq;
2245 task_rq_unlock(rq, &flags);
fa490cfd 2246
3a5c359a
AK
2247 /*
2248 * Was it really running after all now that we
2249 * checked with the proper locks actually held?
2250 *
2251 * Oops. Go back and try again..
2252 */
2253 if (unlikely(running)) {
2254 cpu_relax();
2255 continue;
2256 }
fa490cfd 2257
3a5c359a
AK
2258 /*
2259 * It's not enough that it's not actively running,
2260 * it must be off the runqueue _entirely_, and not
2261 * preempted!
2262 *
2263 * So if it wa still runnable (but just not actively
2264 * running right now), it's preempted, and we should
2265 * yield - it could be a while.
2266 */
2267 if (unlikely(on_rq)) {
2268 schedule_timeout_uninterruptible(1);
2269 continue;
2270 }
fa490cfd 2271
3a5c359a
AK
2272 /*
2273 * Ahh, all good. It wasn't running, and it wasn't
2274 * runnable, which means that it will never become
2275 * running in the future either. We're all done!
2276 */
2277 break;
2278 }
1da177e4
LT
2279}
2280
2281/***
2282 * kick_process - kick a running thread to enter/exit the kernel
2283 * @p: the to-be-kicked thread
2284 *
2285 * Cause a process which is running on another CPU to enter
2286 * kernel-mode, without any delay. (to get signals handled.)
2287 *
2288 * NOTE: this function doesnt have to take the runqueue lock,
2289 * because all it wants to ensure is that the remote task enters
2290 * the kernel. If the IPI races and the task has been migrated
2291 * to another CPU then no harm is done and the purpose has been
2292 * achieved as well.
2293 */
36c8b586 2294void kick_process(struct task_struct *p)
1da177e4
LT
2295{
2296 int cpu;
2297
2298 preempt_disable();
2299 cpu = task_cpu(p);
2300 if ((cpu != smp_processor_id()) && task_curr(p))
2301 smp_send_reschedule(cpu);
2302 preempt_enable();
2303}
2304
2305/*
2dd73a4f
PW
2306 * Return a low guess at the load of a migration-source cpu weighted
2307 * according to the scheduling class and "nice" value.
1da177e4
LT
2308 *
2309 * We want to under-estimate the load of migration sources, to
2310 * balance conservatively.
2311 */
a9957449 2312static unsigned long source_load(int cpu, int type)
1da177e4 2313{
70b97a7f 2314 struct rq *rq = cpu_rq(cpu);
dd41f596 2315 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2316
3b0bd9bc 2317 if (type == 0)
dd41f596 2318 return total;
b910472d 2319
dd41f596 2320 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2321}
2322
2323/*
2dd73a4f
PW
2324 * Return a high guess at the load of a migration-target cpu weighted
2325 * according to the scheduling class and "nice" value.
1da177e4 2326 */
a9957449 2327static unsigned long target_load(int cpu, int type)
1da177e4 2328{
70b97a7f 2329 struct rq *rq = cpu_rq(cpu);
dd41f596 2330 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2331
7897986b 2332 if (type == 0)
dd41f596 2333 return total;
3b0bd9bc 2334
dd41f596 2335 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2336}
2337
2338/*
2339 * Return the average load per task on the cpu's run queue
2340 */
e7693a36 2341static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2342{
70b97a7f 2343 struct rq *rq = cpu_rq(cpu);
dd41f596 2344 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2345 unsigned long n = rq->nr_running;
2346
dd41f596 2347 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2348}
2349
147cbb4b
NP
2350/*
2351 * find_idlest_group finds and returns the least busy CPU group within the
2352 * domain.
2353 */
2354static struct sched_group *
2355find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2356{
2357 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2358 unsigned long min_load = ULONG_MAX, this_load = 0;
2359 int load_idx = sd->forkexec_idx;
2360 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2361
2362 do {
2363 unsigned long load, avg_load;
2364 int local_group;
2365 int i;
2366
da5a5522
BD
2367 /* Skip over this group if it has no CPUs allowed */
2368 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2369 continue;
da5a5522 2370
147cbb4b 2371 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2372
2373 /* Tally up the load of all CPUs in the group */
2374 avg_load = 0;
2375
2376 for_each_cpu_mask(i, group->cpumask) {
2377 /* Bias balancing toward cpus of our domain */
2378 if (local_group)
2379 load = source_load(i, load_idx);
2380 else
2381 load = target_load(i, load_idx);
2382
2383 avg_load += load;
2384 }
2385
2386 /* Adjust by relative CPU power of the group */
5517d86b
ED
2387 avg_load = sg_div_cpu_power(group,
2388 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2389
2390 if (local_group) {
2391 this_load = avg_load;
2392 this = group;
2393 } else if (avg_load < min_load) {
2394 min_load = avg_load;
2395 idlest = group;
2396 }
3a5c359a 2397 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2398
2399 if (!idlest || 100*this_load < imbalance*min_load)
2400 return NULL;
2401 return idlest;
2402}
2403
2404/*
0feaece9 2405 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2406 */
95cdf3b7 2407static int
7c16ec58
MT
2408find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2409 cpumask_t *tmp)
147cbb4b
NP
2410{
2411 unsigned long load, min_load = ULONG_MAX;
2412 int idlest = -1;
2413 int i;
2414
da5a5522 2415 /* Traverse only the allowed CPUs */
7c16ec58 2416 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2417
7c16ec58 2418 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2419 load = weighted_cpuload(i);
147cbb4b
NP
2420
2421 if (load < min_load || (load == min_load && i == this_cpu)) {
2422 min_load = load;
2423 idlest = i;
2424 }
2425 }
2426
2427 return idlest;
2428}
2429
476d139c
NP
2430/*
2431 * sched_balance_self: balance the current task (running on cpu) in domains
2432 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2433 * SD_BALANCE_EXEC.
2434 *
2435 * Balance, ie. select the least loaded group.
2436 *
2437 * Returns the target CPU number, or the same CPU if no balancing is needed.
2438 *
2439 * preempt must be disabled.
2440 */
2441static int sched_balance_self(int cpu, int flag)
2442{
2443 struct task_struct *t = current;
2444 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2445
c96d145e 2446 for_each_domain(cpu, tmp) {
9761eea8
IM
2447 /*
2448 * If power savings logic is enabled for a domain, stop there.
2449 */
5c45bf27
SS
2450 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2451 break;
476d139c
NP
2452 if (tmp->flags & flag)
2453 sd = tmp;
c96d145e 2454 }
476d139c
NP
2455
2456 while (sd) {
7c16ec58 2457 cpumask_t span, tmpmask;
476d139c 2458 struct sched_group *group;
1a848870
SS
2459 int new_cpu, weight;
2460
2461 if (!(sd->flags & flag)) {
2462 sd = sd->child;
2463 continue;
2464 }
476d139c
NP
2465
2466 span = sd->span;
2467 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2468 if (!group) {
2469 sd = sd->child;
2470 continue;
2471 }
476d139c 2472
7c16ec58 2473 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2474 if (new_cpu == -1 || new_cpu == cpu) {
2475 /* Now try balancing at a lower domain level of cpu */
2476 sd = sd->child;
2477 continue;
2478 }
476d139c 2479
1a848870 2480 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2481 cpu = new_cpu;
476d139c
NP
2482 sd = NULL;
2483 weight = cpus_weight(span);
2484 for_each_domain(cpu, tmp) {
2485 if (weight <= cpus_weight(tmp->span))
2486 break;
2487 if (tmp->flags & flag)
2488 sd = tmp;
2489 }
2490 /* while loop will break here if sd == NULL */
2491 }
2492
2493 return cpu;
2494}
2495
2496#endif /* CONFIG_SMP */
1da177e4 2497
1da177e4
LT
2498/***
2499 * try_to_wake_up - wake up a thread
2500 * @p: the to-be-woken-up thread
2501 * @state: the mask of task states that can be woken
2502 * @sync: do a synchronous wakeup?
2503 *
2504 * Put it on the run-queue if it's not already there. The "current"
2505 * thread is always on the run-queue (except when the actual
2506 * re-schedule is in progress), and as such you're allowed to do
2507 * the simpler "current->state = TASK_RUNNING" to mark yourself
2508 * runnable without the overhead of this.
2509 *
2510 * returns failure only if the task is already active.
2511 */
36c8b586 2512static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2513{
cc367732 2514 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2515 unsigned long flags;
2516 long old_state;
70b97a7f 2517 struct rq *rq;
1da177e4 2518
b85d0667
IM
2519 if (!sched_feat(SYNC_WAKEUPS))
2520 sync = 0;
2521
04e2f174 2522 smp_wmb();
1da177e4
LT
2523 rq = task_rq_lock(p, &flags);
2524 old_state = p->state;
2525 if (!(old_state & state))
2526 goto out;
2527
dd41f596 2528 if (p->se.on_rq)
1da177e4
LT
2529 goto out_running;
2530
2531 cpu = task_cpu(p);
cc367732 2532 orig_cpu = cpu;
1da177e4
LT
2533 this_cpu = smp_processor_id();
2534
2535#ifdef CONFIG_SMP
2536 if (unlikely(task_running(rq, p)))
2537 goto out_activate;
2538
5d2f5a61
DA
2539 cpu = p->sched_class->select_task_rq(p, sync);
2540 if (cpu != orig_cpu) {
2541 set_task_cpu(p, cpu);
1da177e4
LT
2542 task_rq_unlock(rq, &flags);
2543 /* might preempt at this point */
2544 rq = task_rq_lock(p, &flags);
2545 old_state = p->state;
2546 if (!(old_state & state))
2547 goto out;
dd41f596 2548 if (p->se.on_rq)
1da177e4
LT
2549 goto out_running;
2550
2551 this_cpu = smp_processor_id();
2552 cpu = task_cpu(p);
2553 }
2554
e7693a36
GH
2555#ifdef CONFIG_SCHEDSTATS
2556 schedstat_inc(rq, ttwu_count);
2557 if (cpu == this_cpu)
2558 schedstat_inc(rq, ttwu_local);
2559 else {
2560 struct sched_domain *sd;
2561 for_each_domain(this_cpu, sd) {
2562 if (cpu_isset(cpu, sd->span)) {
2563 schedstat_inc(sd, ttwu_wake_remote);
2564 break;
2565 }
2566 }
2567 }
e7693a36
GH
2568#endif
2569
1da177e4
LT
2570out_activate:
2571#endif /* CONFIG_SMP */
cc367732
IM
2572 schedstat_inc(p, se.nr_wakeups);
2573 if (sync)
2574 schedstat_inc(p, se.nr_wakeups_sync);
2575 if (orig_cpu != cpu)
2576 schedstat_inc(p, se.nr_wakeups_migrate);
2577 if (cpu == this_cpu)
2578 schedstat_inc(p, se.nr_wakeups_local);
2579 else
2580 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2581 update_rq_clock(rq);
dd41f596 2582 activate_task(rq, p, 1);
1da177e4
LT
2583 success = 1;
2584
2585out_running:
4ae7d5ce
IM
2586 check_preempt_curr(rq, p);
2587
1da177e4 2588 p->state = TASK_RUNNING;
9a897c5a
SR
2589#ifdef CONFIG_SMP
2590 if (p->sched_class->task_wake_up)
2591 p->sched_class->task_wake_up(rq, p);
2592#endif
1da177e4
LT
2593out:
2594 task_rq_unlock(rq, &flags);
2595
2596 return success;
2597}
2598
7ad5b3a5 2599int wake_up_process(struct task_struct *p)
1da177e4 2600{
d9514f6c 2601 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2602}
1da177e4
LT
2603EXPORT_SYMBOL(wake_up_process);
2604
7ad5b3a5 2605int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2606{
2607 return try_to_wake_up(p, state, 0);
2608}
2609
1da177e4
LT
2610/*
2611 * Perform scheduler related setup for a newly forked process p.
2612 * p is forked by current.
dd41f596
IM
2613 *
2614 * __sched_fork() is basic setup used by init_idle() too:
2615 */
2616static void __sched_fork(struct task_struct *p)
2617{
dd41f596
IM
2618 p->se.exec_start = 0;
2619 p->se.sum_exec_runtime = 0;
f6cf891c 2620 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2621 p->se.last_wakeup = 0;
2622 p->se.avg_overlap = 0;
6cfb0d5d
IM
2623
2624#ifdef CONFIG_SCHEDSTATS
2625 p->se.wait_start = 0;
dd41f596
IM
2626 p->se.sum_sleep_runtime = 0;
2627 p->se.sleep_start = 0;
dd41f596
IM
2628 p->se.block_start = 0;
2629 p->se.sleep_max = 0;
2630 p->se.block_max = 0;
2631 p->se.exec_max = 0;
eba1ed4b 2632 p->se.slice_max = 0;
dd41f596 2633 p->se.wait_max = 0;
6cfb0d5d 2634#endif
476d139c 2635
fa717060 2636 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2637 p->se.on_rq = 0;
4a55bd5e 2638 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2639
e107be36
AK
2640#ifdef CONFIG_PREEMPT_NOTIFIERS
2641 INIT_HLIST_HEAD(&p->preempt_notifiers);
2642#endif
2643
1da177e4
LT
2644 /*
2645 * We mark the process as running here, but have not actually
2646 * inserted it onto the runqueue yet. This guarantees that
2647 * nobody will actually run it, and a signal or other external
2648 * event cannot wake it up and insert it on the runqueue either.
2649 */
2650 p->state = TASK_RUNNING;
dd41f596
IM
2651}
2652
2653/*
2654 * fork()/clone()-time setup:
2655 */
2656void sched_fork(struct task_struct *p, int clone_flags)
2657{
2658 int cpu = get_cpu();
2659
2660 __sched_fork(p);
2661
2662#ifdef CONFIG_SMP
2663 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2664#endif
02e4bac2 2665 set_task_cpu(p, cpu);
b29739f9
IM
2666
2667 /*
2668 * Make sure we do not leak PI boosting priority to the child:
2669 */
2670 p->prio = current->normal_prio;
2ddbf952
HS
2671 if (!rt_prio(p->prio))
2672 p->sched_class = &fair_sched_class;
b29739f9 2673
52f17b6c 2674#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2675 if (likely(sched_info_on()))
52f17b6c 2676 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2677#endif
d6077cb8 2678#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2679 p->oncpu = 0;
2680#endif
1da177e4 2681#ifdef CONFIG_PREEMPT
4866cde0 2682 /* Want to start with kernel preemption disabled. */
a1261f54 2683 task_thread_info(p)->preempt_count = 1;
1da177e4 2684#endif
476d139c 2685 put_cpu();
1da177e4
LT
2686}
2687
2688/*
2689 * wake_up_new_task - wake up a newly created task for the first time.
2690 *
2691 * This function will do some initial scheduler statistics housekeeping
2692 * that must be done for every newly created context, then puts the task
2693 * on the runqueue and wakes it.
2694 */
7ad5b3a5 2695void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2696{
2697 unsigned long flags;
dd41f596 2698 struct rq *rq;
1da177e4
LT
2699
2700 rq = task_rq_lock(p, &flags);
147cbb4b 2701 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2702 update_rq_clock(rq);
1da177e4
LT
2703
2704 p->prio = effective_prio(p);
2705
b9dca1e0 2706 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2707 activate_task(rq, p, 0);
1da177e4 2708 } else {
1da177e4 2709 /*
dd41f596
IM
2710 * Let the scheduling class do new task startup
2711 * management (if any):
1da177e4 2712 */
ee0827d8 2713 p->sched_class->task_new(rq, p);
18d95a28 2714 inc_nr_running(rq);
1da177e4 2715 }
dd41f596 2716 check_preempt_curr(rq, p);
9a897c5a
SR
2717#ifdef CONFIG_SMP
2718 if (p->sched_class->task_wake_up)
2719 p->sched_class->task_wake_up(rq, p);
2720#endif
dd41f596 2721 task_rq_unlock(rq, &flags);
1da177e4
LT
2722}
2723
e107be36
AK
2724#ifdef CONFIG_PREEMPT_NOTIFIERS
2725
2726/**
421cee29
RD
2727 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2728 * @notifier: notifier struct to register
e107be36
AK
2729 */
2730void preempt_notifier_register(struct preempt_notifier *notifier)
2731{
2732 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2733}
2734EXPORT_SYMBOL_GPL(preempt_notifier_register);
2735
2736/**
2737 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2738 * @notifier: notifier struct to unregister
e107be36
AK
2739 *
2740 * This is safe to call from within a preemption notifier.
2741 */
2742void preempt_notifier_unregister(struct preempt_notifier *notifier)
2743{
2744 hlist_del(&notifier->link);
2745}
2746EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2747
2748static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2749{
2750 struct preempt_notifier *notifier;
2751 struct hlist_node *node;
2752
2753 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2754 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2755}
2756
2757static void
2758fire_sched_out_preempt_notifiers(struct task_struct *curr,
2759 struct task_struct *next)
2760{
2761 struct preempt_notifier *notifier;
2762 struct hlist_node *node;
2763
2764 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2765 notifier->ops->sched_out(notifier, next);
2766}
2767
2768#else
2769
2770static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2771{
2772}
2773
2774static void
2775fire_sched_out_preempt_notifiers(struct task_struct *curr,
2776 struct task_struct *next)
2777{
2778}
2779
2780#endif
2781
4866cde0
NP
2782/**
2783 * prepare_task_switch - prepare to switch tasks
2784 * @rq: the runqueue preparing to switch
421cee29 2785 * @prev: the current task that is being switched out
4866cde0
NP
2786 * @next: the task we are going to switch to.
2787 *
2788 * This is called with the rq lock held and interrupts off. It must
2789 * be paired with a subsequent finish_task_switch after the context
2790 * switch.
2791 *
2792 * prepare_task_switch sets up locking and calls architecture specific
2793 * hooks.
2794 */
e107be36
AK
2795static inline void
2796prepare_task_switch(struct rq *rq, struct task_struct *prev,
2797 struct task_struct *next)
4866cde0 2798{
e107be36 2799 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2800 prepare_lock_switch(rq, next);
2801 prepare_arch_switch(next);
2802}
2803
1da177e4
LT
2804/**
2805 * finish_task_switch - clean up after a task-switch
344babaa 2806 * @rq: runqueue associated with task-switch
1da177e4
LT
2807 * @prev: the thread we just switched away from.
2808 *
4866cde0
NP
2809 * finish_task_switch must be called after the context switch, paired
2810 * with a prepare_task_switch call before the context switch.
2811 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2812 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2813 *
2814 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2815 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2816 * with the lock held can cause deadlocks; see schedule() for
2817 * details.)
2818 */
a9957449 2819static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2820 __releases(rq->lock)
2821{
1da177e4 2822 struct mm_struct *mm = rq->prev_mm;
55a101f8 2823 long prev_state;
1da177e4
LT
2824
2825 rq->prev_mm = NULL;
2826
2827 /*
2828 * A task struct has one reference for the use as "current".
c394cc9f 2829 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2830 * schedule one last time. The schedule call will never return, and
2831 * the scheduled task must drop that reference.
c394cc9f 2832 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2833 * still held, otherwise prev could be scheduled on another cpu, die
2834 * there before we look at prev->state, and then the reference would
2835 * be dropped twice.
2836 * Manfred Spraul <manfred@colorfullife.com>
2837 */
55a101f8 2838 prev_state = prev->state;
4866cde0
NP
2839 finish_arch_switch(prev);
2840 finish_lock_switch(rq, prev);
9a897c5a
SR
2841#ifdef CONFIG_SMP
2842 if (current->sched_class->post_schedule)
2843 current->sched_class->post_schedule(rq);
2844#endif
e8fa1362 2845
e107be36 2846 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2847 if (mm)
2848 mmdrop(mm);
c394cc9f 2849 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2850 /*
2851 * Remove function-return probe instances associated with this
2852 * task and put them back on the free list.
9761eea8 2853 */
c6fd91f0 2854 kprobe_flush_task(prev);
1da177e4 2855 put_task_struct(prev);
c6fd91f0 2856 }
1da177e4
LT
2857}
2858
2859/**
2860 * schedule_tail - first thing a freshly forked thread must call.
2861 * @prev: the thread we just switched away from.
2862 */
36c8b586 2863asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2864 __releases(rq->lock)
2865{
70b97a7f
IM
2866 struct rq *rq = this_rq();
2867
4866cde0
NP
2868 finish_task_switch(rq, prev);
2869#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2870 /* In this case, finish_task_switch does not reenable preemption */
2871 preempt_enable();
2872#endif
1da177e4 2873 if (current->set_child_tid)
b488893a 2874 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2875}
2876
2877/*
2878 * context_switch - switch to the new MM and the new
2879 * thread's register state.
2880 */
dd41f596 2881static inline void
70b97a7f 2882context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2883 struct task_struct *next)
1da177e4 2884{
dd41f596 2885 struct mm_struct *mm, *oldmm;
1da177e4 2886
e107be36 2887 prepare_task_switch(rq, prev, next);
dd41f596
IM
2888 mm = next->mm;
2889 oldmm = prev->active_mm;
9226d125
ZA
2890 /*
2891 * For paravirt, this is coupled with an exit in switch_to to
2892 * combine the page table reload and the switch backend into
2893 * one hypercall.
2894 */
2895 arch_enter_lazy_cpu_mode();
2896
dd41f596 2897 if (unlikely(!mm)) {
1da177e4
LT
2898 next->active_mm = oldmm;
2899 atomic_inc(&oldmm->mm_count);
2900 enter_lazy_tlb(oldmm, next);
2901 } else
2902 switch_mm(oldmm, mm, next);
2903
dd41f596 2904 if (unlikely(!prev->mm)) {
1da177e4 2905 prev->active_mm = NULL;
1da177e4
LT
2906 rq->prev_mm = oldmm;
2907 }
3a5f5e48
IM
2908 /*
2909 * Since the runqueue lock will be released by the next
2910 * task (which is an invalid locking op but in the case
2911 * of the scheduler it's an obvious special-case), so we
2912 * do an early lockdep release here:
2913 */
2914#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2915 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2916#endif
1da177e4
LT
2917
2918 /* Here we just switch the register state and the stack. */
2919 switch_to(prev, next, prev);
2920
dd41f596
IM
2921 barrier();
2922 /*
2923 * this_rq must be evaluated again because prev may have moved
2924 * CPUs since it called schedule(), thus the 'rq' on its stack
2925 * frame will be invalid.
2926 */
2927 finish_task_switch(this_rq(), prev);
1da177e4
LT
2928}
2929
2930/*
2931 * nr_running, nr_uninterruptible and nr_context_switches:
2932 *
2933 * externally visible scheduler statistics: current number of runnable
2934 * threads, current number of uninterruptible-sleeping threads, total
2935 * number of context switches performed since bootup.
2936 */
2937unsigned long nr_running(void)
2938{
2939 unsigned long i, sum = 0;
2940
2941 for_each_online_cpu(i)
2942 sum += cpu_rq(i)->nr_running;
2943
2944 return sum;
2945}
2946
2947unsigned long nr_uninterruptible(void)
2948{
2949 unsigned long i, sum = 0;
2950
0a945022 2951 for_each_possible_cpu(i)
1da177e4
LT
2952 sum += cpu_rq(i)->nr_uninterruptible;
2953
2954 /*
2955 * Since we read the counters lockless, it might be slightly
2956 * inaccurate. Do not allow it to go below zero though:
2957 */
2958 if (unlikely((long)sum < 0))
2959 sum = 0;
2960
2961 return sum;
2962}
2963
2964unsigned long long nr_context_switches(void)
2965{
cc94abfc
SR
2966 int i;
2967 unsigned long long sum = 0;
1da177e4 2968
0a945022 2969 for_each_possible_cpu(i)
1da177e4
LT
2970 sum += cpu_rq(i)->nr_switches;
2971
2972 return sum;
2973}
2974
2975unsigned long nr_iowait(void)
2976{
2977 unsigned long i, sum = 0;
2978
0a945022 2979 for_each_possible_cpu(i)
1da177e4
LT
2980 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2981
2982 return sum;
2983}
2984
db1b1fef
JS
2985unsigned long nr_active(void)
2986{
2987 unsigned long i, running = 0, uninterruptible = 0;
2988
2989 for_each_online_cpu(i) {
2990 running += cpu_rq(i)->nr_running;
2991 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2992 }
2993
2994 if (unlikely((long)uninterruptible < 0))
2995 uninterruptible = 0;
2996
2997 return running + uninterruptible;
2998}
2999
48f24c4d 3000/*
dd41f596
IM
3001 * Update rq->cpu_load[] statistics. This function is usually called every
3002 * scheduler tick (TICK_NSEC).
48f24c4d 3003 */
dd41f596 3004static void update_cpu_load(struct rq *this_rq)
48f24c4d 3005{
495eca49 3006 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3007 int i, scale;
3008
3009 this_rq->nr_load_updates++;
dd41f596
IM
3010
3011 /* Update our load: */
3012 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3013 unsigned long old_load, new_load;
3014
3015 /* scale is effectively 1 << i now, and >> i divides by scale */
3016
3017 old_load = this_rq->cpu_load[i];
3018 new_load = this_load;
a25707f3
IM
3019 /*
3020 * Round up the averaging division if load is increasing. This
3021 * prevents us from getting stuck on 9 if the load is 10, for
3022 * example.
3023 */
3024 if (new_load > old_load)
3025 new_load += scale-1;
dd41f596
IM
3026 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3027 }
48f24c4d
IM
3028}
3029
dd41f596
IM
3030#ifdef CONFIG_SMP
3031
1da177e4
LT
3032/*
3033 * double_rq_lock - safely lock two runqueues
3034 *
3035 * Note this does not disable interrupts like task_rq_lock,
3036 * you need to do so manually before calling.
3037 */
70b97a7f 3038static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3039 __acquires(rq1->lock)
3040 __acquires(rq2->lock)
3041{
054b9108 3042 BUG_ON(!irqs_disabled());
1da177e4
LT
3043 if (rq1 == rq2) {
3044 spin_lock(&rq1->lock);
3045 __acquire(rq2->lock); /* Fake it out ;) */
3046 } else {
c96d145e 3047 if (rq1 < rq2) {
1da177e4
LT
3048 spin_lock(&rq1->lock);
3049 spin_lock(&rq2->lock);
3050 } else {
3051 spin_lock(&rq2->lock);
3052 spin_lock(&rq1->lock);
3053 }
3054 }
6e82a3be
IM
3055 update_rq_clock(rq1);
3056 update_rq_clock(rq2);
1da177e4
LT
3057}
3058
3059/*
3060 * double_rq_unlock - safely unlock two runqueues
3061 *
3062 * Note this does not restore interrupts like task_rq_unlock,
3063 * you need to do so manually after calling.
3064 */
70b97a7f 3065static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3066 __releases(rq1->lock)
3067 __releases(rq2->lock)
3068{
3069 spin_unlock(&rq1->lock);
3070 if (rq1 != rq2)
3071 spin_unlock(&rq2->lock);
3072 else
3073 __release(rq2->lock);
3074}
3075
3076/*
3077 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3078 */
e8fa1362 3079static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
3080 __releases(this_rq->lock)
3081 __acquires(busiest->lock)
3082 __acquires(this_rq->lock)
3083{
e8fa1362
SR
3084 int ret = 0;
3085
054b9108
KK
3086 if (unlikely(!irqs_disabled())) {
3087 /* printk() doesn't work good under rq->lock */
3088 spin_unlock(&this_rq->lock);
3089 BUG_ON(1);
3090 }
1da177e4 3091 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 3092 if (busiest < this_rq) {
1da177e4
LT
3093 spin_unlock(&this_rq->lock);
3094 spin_lock(&busiest->lock);
3095 spin_lock(&this_rq->lock);
e8fa1362 3096 ret = 1;
1da177e4
LT
3097 } else
3098 spin_lock(&busiest->lock);
3099 }
e8fa1362 3100 return ret;
1da177e4
LT
3101}
3102
1da177e4
LT
3103/*
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3107 * the cpu_allowed mask is restored.
3108 */
36c8b586 3109static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3110{
70b97a7f 3111 struct migration_req req;
1da177e4 3112 unsigned long flags;
70b97a7f 3113 struct rq *rq;
1da177e4
LT
3114
3115 rq = task_rq_lock(p, &flags);
3116 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3117 || unlikely(cpu_is_offline(dest_cpu)))
3118 goto out;
3119
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p, dest_cpu, &req)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct *mt = rq->migration_thread;
36c8b586 3124
1da177e4
LT
3125 get_task_struct(mt);
3126 task_rq_unlock(rq, &flags);
3127 wake_up_process(mt);
3128 put_task_struct(mt);
3129 wait_for_completion(&req.done);
36c8b586 3130
1da177e4
LT
3131 return;
3132 }
3133out:
3134 task_rq_unlock(rq, &flags);
3135}
3136
3137/*
476d139c
NP
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3140 */
3141void sched_exec(void)
3142{
1da177e4 3143 int new_cpu, this_cpu = get_cpu();
476d139c 3144 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3145 put_cpu();
476d139c
NP
3146 if (new_cpu != this_cpu)
3147 sched_migrate_task(current, new_cpu);
1da177e4
LT
3148}
3149
3150/*
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3153 */
dd41f596
IM
3154static void pull_task(struct rq *src_rq, struct task_struct *p,
3155 struct rq *this_rq, int this_cpu)
1da177e4 3156{
2e1cb74a 3157 deactivate_task(src_rq, p, 0);
1da177e4 3158 set_task_cpu(p, this_cpu);
dd41f596 3159 activate_task(this_rq, p, 0);
1da177e4
LT
3160 /*
3161 * Note that idle threads have a prio of MAX_PRIO, for this test
3162 * to be always true for them.
3163 */
dd41f596 3164 check_preempt_curr(this_rq, p);
1da177e4
LT
3165}
3166
3167/*
3168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3169 */
858119e1 3170static
70b97a7f 3171int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3172 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3173 int *all_pinned)
1da177e4
LT
3174{
3175 /*
3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU.
3180 */
cc367732
IM
3181 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3182 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3183 return 0;
cc367732 3184 }
81026794
NP
3185 *all_pinned = 0;
3186
cc367732
IM
3187 if (task_running(rq, p)) {
3188 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3189 return 0;
cc367732 3190 }
1da177e4 3191
da84d961
IM
3192 /*
3193 * Aggressive migration if:
3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed.
3196 */
3197
6bc1665b
IM
3198 if (!task_hot(p, rq->clock, sd) ||
3199 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3200#ifdef CONFIG_SCHEDSTATS
cc367732 3201 if (task_hot(p, rq->clock, sd)) {
da84d961 3202 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3203 schedstat_inc(p, se.nr_forced_migrations);
3204 }
da84d961
IM
3205#endif
3206 return 1;
3207 }
3208
cc367732
IM
3209 if (task_hot(p, rq->clock, sd)) {
3210 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3211 return 0;
cc367732 3212 }
1da177e4
LT
3213 return 1;
3214}
3215
e1d1484f
PW
3216static unsigned long
3217balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3218 unsigned long max_load_move, struct sched_domain *sd,
3219 enum cpu_idle_type idle, int *all_pinned,
3220 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3221{
b82d9fdd 3222 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
3223 struct task_struct *p;
3224 long rem_load_move = max_load_move;
1da177e4 3225
e1d1484f 3226 if (max_load_move == 0)
1da177e4
LT
3227 goto out;
3228
81026794
NP
3229 pinned = 1;
3230
1da177e4 3231 /*
dd41f596 3232 * Start the load-balancing iterator:
1da177e4 3233 */
dd41f596
IM
3234 p = iterator->start(iterator->arg);
3235next:
b82d9fdd 3236 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3237 goto out;
50ddd969 3238 /*
b82d9fdd 3239 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
3240 * skip a task if it will be the highest priority task (i.e. smallest
3241 * prio value) on its new queue regardless of its load weight
3242 */
dd41f596
IM
3243 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3244 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 3245 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 3246 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3247 p = iterator->next(iterator->arg);
3248 goto next;
1da177e4
LT
3249 }
3250
dd41f596 3251 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3252 pulled++;
dd41f596 3253 rem_load_move -= p->se.load.weight;
1da177e4 3254
2dd73a4f 3255 /*
b82d9fdd 3256 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3257 */
e1d1484f 3258 if (rem_load_move > 0) {
a4ac01c3
PW
3259 if (p->prio < *this_best_prio)
3260 *this_best_prio = p->prio;
dd41f596
IM
3261 p = iterator->next(iterator->arg);
3262 goto next;
1da177e4
LT
3263 }
3264out:
3265 /*
e1d1484f 3266 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3267 * so we can safely collect pull_task() stats here rather than
3268 * inside pull_task().
3269 */
3270 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3271
3272 if (all_pinned)
3273 *all_pinned = pinned;
e1d1484f
PW
3274
3275 return max_load_move - rem_load_move;
1da177e4
LT
3276}
3277
dd41f596 3278/*
43010659
PW
3279 * move_tasks tries to move up to max_load_move weighted load from busiest to
3280 * this_rq, as part of a balancing operation within domain "sd".
3281 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3282 *
3283 * Called with both runqueues locked.
3284 */
3285static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3286 unsigned long max_load_move,
dd41f596
IM
3287 struct sched_domain *sd, enum cpu_idle_type idle,
3288 int *all_pinned)
3289{
5522d5d5 3290 const struct sched_class *class = sched_class_highest;
43010659 3291 unsigned long total_load_moved = 0;
a4ac01c3 3292 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3293
3294 do {
43010659
PW
3295 total_load_moved +=
3296 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3297 max_load_move - total_load_moved,
a4ac01c3 3298 sd, idle, all_pinned, &this_best_prio);
dd41f596 3299 class = class->next;
43010659 3300 } while (class && max_load_move > total_load_moved);
dd41f596 3301
43010659
PW
3302 return total_load_moved > 0;
3303}
3304
e1d1484f
PW
3305static int
3306iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3307 struct sched_domain *sd, enum cpu_idle_type idle,
3308 struct rq_iterator *iterator)
3309{
3310 struct task_struct *p = iterator->start(iterator->arg);
3311 int pinned = 0;
3312
3313 while (p) {
3314 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3315 pull_task(busiest, p, this_rq, this_cpu);
3316 /*
3317 * Right now, this is only the second place pull_task()
3318 * is called, so we can safely collect pull_task()
3319 * stats here rather than inside pull_task().
3320 */
3321 schedstat_inc(sd, lb_gained[idle]);
3322
3323 return 1;
3324 }
3325 p = iterator->next(iterator->arg);
3326 }
3327
3328 return 0;
3329}
3330
43010659
PW
3331/*
3332 * move_one_task tries to move exactly one task from busiest to this_rq, as
3333 * part of active balancing operations within "domain".
3334 * Returns 1 if successful and 0 otherwise.
3335 *
3336 * Called with both runqueues locked.
3337 */
3338static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3339 struct sched_domain *sd, enum cpu_idle_type idle)
3340{
5522d5d5 3341 const struct sched_class *class;
43010659
PW
3342
3343 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3344 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3345 return 1;
3346
3347 return 0;
dd41f596
IM
3348}
3349
1da177e4
LT
3350/*
3351 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3352 * domain. It calculates and returns the amount of weighted load which
3353 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3354 */
3355static struct sched_group *
3356find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3357 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3358 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3359{
3360 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3361 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3362 unsigned long max_pull;
2dd73a4f
PW
3363 unsigned long busiest_load_per_task, busiest_nr_running;
3364 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3365 int load_idx, group_imb = 0;
5c45bf27
SS
3366#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3367 int power_savings_balance = 1;
3368 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3369 unsigned long min_nr_running = ULONG_MAX;
3370 struct sched_group *group_min = NULL, *group_leader = NULL;
3371#endif
1da177e4
LT
3372
3373 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3374 busiest_load_per_task = busiest_nr_running = 0;
3375 this_load_per_task = this_nr_running = 0;
d15bcfdb 3376 if (idle == CPU_NOT_IDLE)
7897986b 3377 load_idx = sd->busy_idx;
d15bcfdb 3378 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3379 load_idx = sd->newidle_idx;
3380 else
3381 load_idx = sd->idle_idx;
1da177e4
LT
3382
3383 do {
908a7c1b 3384 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3385 int local_group;
3386 int i;
908a7c1b 3387 int __group_imb = 0;
783609c6 3388 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3389 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3390
3391 local_group = cpu_isset(this_cpu, group->cpumask);
3392
783609c6
SS
3393 if (local_group)
3394 balance_cpu = first_cpu(group->cpumask);
3395
1da177e4 3396 /* Tally up the load of all CPUs in the group */
2dd73a4f 3397 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3398 max_cpu_load = 0;
3399 min_cpu_load = ~0UL;
1da177e4
LT
3400
3401 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3402 struct rq *rq;
3403
3404 if (!cpu_isset(i, *cpus))
3405 continue;
3406
3407 rq = cpu_rq(i);
2dd73a4f 3408
9439aab8 3409 if (*sd_idle && rq->nr_running)
5969fe06
NP
3410 *sd_idle = 0;
3411
1da177e4 3412 /* Bias balancing toward cpus of our domain */
783609c6
SS
3413 if (local_group) {
3414 if (idle_cpu(i) && !first_idle_cpu) {
3415 first_idle_cpu = 1;
3416 balance_cpu = i;
3417 }
3418
a2000572 3419 load = target_load(i, load_idx);
908a7c1b 3420 } else {
a2000572 3421 load = source_load(i, load_idx);
908a7c1b
KC
3422 if (load > max_cpu_load)
3423 max_cpu_load = load;
3424 if (min_cpu_load > load)
3425 min_cpu_load = load;
3426 }
1da177e4
LT
3427
3428 avg_load += load;
2dd73a4f 3429 sum_nr_running += rq->nr_running;
dd41f596 3430 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3431 }
3432
783609c6
SS
3433 /*
3434 * First idle cpu or the first cpu(busiest) in this sched group
3435 * is eligible for doing load balancing at this and above
9439aab8
SS
3436 * domains. In the newly idle case, we will allow all the cpu's
3437 * to do the newly idle load balance.
783609c6 3438 */
9439aab8
SS
3439 if (idle != CPU_NEWLY_IDLE && local_group &&
3440 balance_cpu != this_cpu && balance) {
783609c6
SS
3441 *balance = 0;
3442 goto ret;
3443 }
3444
1da177e4 3445 total_load += avg_load;
5517d86b 3446 total_pwr += group->__cpu_power;
1da177e4
LT
3447
3448 /* Adjust by relative CPU power of the group */
5517d86b
ED
3449 avg_load = sg_div_cpu_power(group,
3450 avg_load * SCHED_LOAD_SCALE);
1da177e4 3451
908a7c1b
KC
3452 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3453 __group_imb = 1;
3454
5517d86b 3455 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3456
1da177e4
LT
3457 if (local_group) {
3458 this_load = avg_load;
3459 this = group;
2dd73a4f
PW
3460 this_nr_running = sum_nr_running;
3461 this_load_per_task = sum_weighted_load;
3462 } else if (avg_load > max_load &&
908a7c1b 3463 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3464 max_load = avg_load;
3465 busiest = group;
2dd73a4f
PW
3466 busiest_nr_running = sum_nr_running;
3467 busiest_load_per_task = sum_weighted_load;
908a7c1b 3468 group_imb = __group_imb;
1da177e4 3469 }
5c45bf27
SS
3470
3471#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3472 /*
3473 * Busy processors will not participate in power savings
3474 * balance.
3475 */
dd41f596
IM
3476 if (idle == CPU_NOT_IDLE ||
3477 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3478 goto group_next;
5c45bf27
SS
3479
3480 /*
3481 * If the local group is idle or completely loaded
3482 * no need to do power savings balance at this domain
3483 */
3484 if (local_group && (this_nr_running >= group_capacity ||
3485 !this_nr_running))
3486 power_savings_balance = 0;
3487
dd41f596 3488 /*
5c45bf27
SS
3489 * If a group is already running at full capacity or idle,
3490 * don't include that group in power savings calculations
dd41f596
IM
3491 */
3492 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3493 || !sum_nr_running)
dd41f596 3494 goto group_next;
5c45bf27 3495
dd41f596 3496 /*
5c45bf27 3497 * Calculate the group which has the least non-idle load.
dd41f596
IM
3498 * This is the group from where we need to pick up the load
3499 * for saving power
3500 */
3501 if ((sum_nr_running < min_nr_running) ||
3502 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3503 first_cpu(group->cpumask) <
3504 first_cpu(group_min->cpumask))) {
dd41f596
IM
3505 group_min = group;
3506 min_nr_running = sum_nr_running;
5c45bf27
SS
3507 min_load_per_task = sum_weighted_load /
3508 sum_nr_running;
dd41f596 3509 }
5c45bf27 3510
dd41f596 3511 /*
5c45bf27 3512 * Calculate the group which is almost near its
dd41f596
IM
3513 * capacity but still has some space to pick up some load
3514 * from other group and save more power
3515 */
3516 if (sum_nr_running <= group_capacity - 1) {
3517 if (sum_nr_running > leader_nr_running ||
3518 (sum_nr_running == leader_nr_running &&
3519 first_cpu(group->cpumask) >
3520 first_cpu(group_leader->cpumask))) {
3521 group_leader = group;
3522 leader_nr_running = sum_nr_running;
3523 }
48f24c4d 3524 }
5c45bf27
SS
3525group_next:
3526#endif
1da177e4
LT
3527 group = group->next;
3528 } while (group != sd->groups);
3529
2dd73a4f 3530 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3531 goto out_balanced;
3532
3533 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3534
3535 if (this_load >= avg_load ||
3536 100*max_load <= sd->imbalance_pct*this_load)
3537 goto out_balanced;
3538
2dd73a4f 3539 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3540 if (group_imb)
3541 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3542
1da177e4
LT
3543 /*
3544 * We're trying to get all the cpus to the average_load, so we don't
3545 * want to push ourselves above the average load, nor do we wish to
3546 * reduce the max loaded cpu below the average load, as either of these
3547 * actions would just result in more rebalancing later, and ping-pong
3548 * tasks around. Thus we look for the minimum possible imbalance.
3549 * Negative imbalances (*we* are more loaded than anyone else) will
3550 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3551 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3552 * appear as very large values with unsigned longs.
3553 */
2dd73a4f
PW
3554 if (max_load <= busiest_load_per_task)
3555 goto out_balanced;
3556
3557 /*
3558 * In the presence of smp nice balancing, certain scenarios can have
3559 * max load less than avg load(as we skip the groups at or below
3560 * its cpu_power, while calculating max_load..)
3561 */
3562 if (max_load < avg_load) {
3563 *imbalance = 0;
3564 goto small_imbalance;
3565 }
0c117f1b
SS
3566
3567 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3568 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3569
1da177e4 3570 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3571 *imbalance = min(max_pull * busiest->__cpu_power,
3572 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3573 / SCHED_LOAD_SCALE;
3574
2dd73a4f
PW
3575 /*
3576 * if *imbalance is less than the average load per runnable task
3577 * there is no gaurantee that any tasks will be moved so we'll have
3578 * a think about bumping its value to force at least one task to be
3579 * moved
3580 */
7fd0d2dd 3581 if (*imbalance < busiest_load_per_task) {
48f24c4d 3582 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3583 unsigned int imbn;
3584
3585small_imbalance:
3586 pwr_move = pwr_now = 0;
3587 imbn = 2;
3588 if (this_nr_running) {
3589 this_load_per_task /= this_nr_running;
3590 if (busiest_load_per_task > this_load_per_task)
3591 imbn = 1;
3592 } else
3593 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3594
dd41f596
IM
3595 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3596 busiest_load_per_task * imbn) {
2dd73a4f 3597 *imbalance = busiest_load_per_task;
1da177e4
LT
3598 return busiest;
3599 }
3600
3601 /*
3602 * OK, we don't have enough imbalance to justify moving tasks,
3603 * however we may be able to increase total CPU power used by
3604 * moving them.
3605 */
3606
5517d86b
ED
3607 pwr_now += busiest->__cpu_power *
3608 min(busiest_load_per_task, max_load);
3609 pwr_now += this->__cpu_power *
3610 min(this_load_per_task, this_load);
1da177e4
LT
3611 pwr_now /= SCHED_LOAD_SCALE;
3612
3613 /* Amount of load we'd subtract */
5517d86b
ED
3614 tmp = sg_div_cpu_power(busiest,
3615 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3616 if (max_load > tmp)
5517d86b 3617 pwr_move += busiest->__cpu_power *
2dd73a4f 3618 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3619
3620 /* Amount of load we'd add */
5517d86b 3621 if (max_load * busiest->__cpu_power <
33859f7f 3622 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3623 tmp = sg_div_cpu_power(this,
3624 max_load * busiest->__cpu_power);
1da177e4 3625 else
5517d86b
ED
3626 tmp = sg_div_cpu_power(this,
3627 busiest_load_per_task * SCHED_LOAD_SCALE);
3628 pwr_move += this->__cpu_power *
3629 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3630 pwr_move /= SCHED_LOAD_SCALE;
3631
3632 /* Move if we gain throughput */
7fd0d2dd
SS
3633 if (pwr_move > pwr_now)
3634 *imbalance = busiest_load_per_task;
1da177e4
LT
3635 }
3636
1da177e4
LT
3637 return busiest;
3638
3639out_balanced:
5c45bf27 3640#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3641 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3642 goto ret;
1da177e4 3643
5c45bf27
SS
3644 if (this == group_leader && group_leader != group_min) {
3645 *imbalance = min_load_per_task;
3646 return group_min;
3647 }
5c45bf27 3648#endif
783609c6 3649ret:
1da177e4
LT
3650 *imbalance = 0;
3651 return NULL;
3652}
3653
3654/*
3655 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3656 */
70b97a7f 3657static struct rq *
d15bcfdb 3658find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3659 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3660{
70b97a7f 3661 struct rq *busiest = NULL, *rq;
2dd73a4f 3662 unsigned long max_load = 0;
1da177e4
LT
3663 int i;
3664
3665 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3666 unsigned long wl;
0a2966b4
CL
3667
3668 if (!cpu_isset(i, *cpus))
3669 continue;
3670
48f24c4d 3671 rq = cpu_rq(i);
dd41f596 3672 wl = weighted_cpuload(i);
2dd73a4f 3673
dd41f596 3674 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3675 continue;
1da177e4 3676
dd41f596
IM
3677 if (wl > max_load) {
3678 max_load = wl;
48f24c4d 3679 busiest = rq;
1da177e4
LT
3680 }
3681 }
3682
3683 return busiest;
3684}
3685
77391d71
NP
3686/*
3687 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3688 * so long as it is large enough.
3689 */
3690#define MAX_PINNED_INTERVAL 512
3691
1da177e4
LT
3692/*
3693 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3694 * tasks if there is an imbalance.
1da177e4 3695 */
70b97a7f 3696static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3697 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3698 int *balance, cpumask_t *cpus)
1da177e4 3699{
43010659 3700 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3701 struct sched_group *group;
1da177e4 3702 unsigned long imbalance;
70b97a7f 3703 struct rq *busiest;
fe2eea3f 3704 unsigned long flags;
18d95a28 3705 int unlock_aggregate;
5969fe06 3706
7c16ec58
MT
3707 cpus_setall(*cpus);
3708
18d95a28
PZ
3709 unlock_aggregate = get_aggregate(sd);
3710
89c4710e
SS
3711 /*
3712 * When power savings policy is enabled for the parent domain, idle
3713 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3714 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3715 * portraying it as CPU_NOT_IDLE.
89c4710e 3716 */
d15bcfdb 3717 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3718 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3719 sd_idle = 1;
1da177e4 3720
2d72376b 3721 schedstat_inc(sd, lb_count[idle]);
1da177e4 3722
0a2966b4
CL
3723redo:
3724 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3725 cpus, balance);
783609c6 3726
06066714 3727 if (*balance == 0)
783609c6 3728 goto out_balanced;
783609c6 3729
1da177e4
LT
3730 if (!group) {
3731 schedstat_inc(sd, lb_nobusyg[idle]);
3732 goto out_balanced;
3733 }
3734
7c16ec58 3735 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3736 if (!busiest) {
3737 schedstat_inc(sd, lb_nobusyq[idle]);
3738 goto out_balanced;
3739 }
3740
db935dbd 3741 BUG_ON(busiest == this_rq);
1da177e4
LT
3742
3743 schedstat_add(sd, lb_imbalance[idle], imbalance);
3744
43010659 3745 ld_moved = 0;
1da177e4
LT
3746 if (busiest->nr_running > 1) {
3747 /*
3748 * Attempt to move tasks. If find_busiest_group has found
3749 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3750 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3751 * correctly treated as an imbalance.
3752 */
fe2eea3f 3753 local_irq_save(flags);
e17224bf 3754 double_rq_lock(this_rq, busiest);
43010659 3755 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3756 imbalance, sd, idle, &all_pinned);
e17224bf 3757 double_rq_unlock(this_rq, busiest);
fe2eea3f 3758 local_irq_restore(flags);
81026794 3759
46cb4b7c
SS
3760 /*
3761 * some other cpu did the load balance for us.
3762 */
43010659 3763 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3764 resched_cpu(this_cpu);
3765
81026794 3766 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3767 if (unlikely(all_pinned)) {
7c16ec58
MT
3768 cpu_clear(cpu_of(busiest), *cpus);
3769 if (!cpus_empty(*cpus))
0a2966b4 3770 goto redo;
81026794 3771 goto out_balanced;
0a2966b4 3772 }
1da177e4 3773 }
81026794 3774
43010659 3775 if (!ld_moved) {
1da177e4
LT
3776 schedstat_inc(sd, lb_failed[idle]);
3777 sd->nr_balance_failed++;
3778
3779 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3780
fe2eea3f 3781 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3782
3783 /* don't kick the migration_thread, if the curr
3784 * task on busiest cpu can't be moved to this_cpu
3785 */
3786 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3787 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3788 all_pinned = 1;
3789 goto out_one_pinned;
3790 }
3791
1da177e4
LT
3792 if (!busiest->active_balance) {
3793 busiest->active_balance = 1;
3794 busiest->push_cpu = this_cpu;
81026794 3795 active_balance = 1;
1da177e4 3796 }
fe2eea3f 3797 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3798 if (active_balance)
1da177e4
LT
3799 wake_up_process(busiest->migration_thread);
3800
3801 /*
3802 * We've kicked active balancing, reset the failure
3803 * counter.
3804 */
39507451 3805 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3806 }
81026794 3807 } else
1da177e4
LT
3808 sd->nr_balance_failed = 0;
3809
81026794 3810 if (likely(!active_balance)) {
1da177e4
LT
3811 /* We were unbalanced, so reset the balancing interval */
3812 sd->balance_interval = sd->min_interval;
81026794
NP
3813 } else {
3814 /*
3815 * If we've begun active balancing, start to back off. This
3816 * case may not be covered by the all_pinned logic if there
3817 * is only 1 task on the busy runqueue (because we don't call
3818 * move_tasks).
3819 */
3820 if (sd->balance_interval < sd->max_interval)
3821 sd->balance_interval *= 2;
1da177e4
LT
3822 }
3823
43010659 3824 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3826 ld_moved = -1;
3827
3828 goto out;
1da177e4
LT
3829
3830out_balanced:
1da177e4
LT
3831 schedstat_inc(sd, lb_balanced[idle]);
3832
16cfb1c0 3833 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3834
3835out_one_pinned:
1da177e4 3836 /* tune up the balancing interval */
77391d71
NP
3837 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3838 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3839 sd->balance_interval *= 2;
3840
48f24c4d 3841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3843 ld_moved = -1;
3844 else
3845 ld_moved = 0;
3846out:
3847 if (unlock_aggregate)
3848 put_aggregate(sd);
3849 return ld_moved;
1da177e4
LT
3850}
3851
3852/*
3853 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3854 * tasks if there is an imbalance.
3855 *
d15bcfdb 3856 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3857 * this_rq is locked.
3858 */
48f24c4d 3859static int
7c16ec58
MT
3860load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3861 cpumask_t *cpus)
1da177e4
LT
3862{
3863 struct sched_group *group;
70b97a7f 3864 struct rq *busiest = NULL;
1da177e4 3865 unsigned long imbalance;
43010659 3866 int ld_moved = 0;
5969fe06 3867 int sd_idle = 0;
969bb4e4 3868 int all_pinned = 0;
7c16ec58
MT
3869
3870 cpus_setall(*cpus);
5969fe06 3871
89c4710e
SS
3872 /*
3873 * When power savings policy is enabled for the parent domain, idle
3874 * sibling can pick up load irrespective of busy siblings. In this case,
3875 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3876 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3877 */
3878 if (sd->flags & SD_SHARE_CPUPOWER &&
3879 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3880 sd_idle = 1;
1da177e4 3881
2d72376b 3882 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3883redo:
d15bcfdb 3884 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3885 &sd_idle, cpus, NULL);
1da177e4 3886 if (!group) {
d15bcfdb 3887 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3888 goto out_balanced;
1da177e4
LT
3889 }
3890
7c16ec58 3891 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3892 if (!busiest) {
d15bcfdb 3893 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3894 goto out_balanced;
1da177e4
LT
3895 }
3896
db935dbd
NP
3897 BUG_ON(busiest == this_rq);
3898
d15bcfdb 3899 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3900
43010659 3901 ld_moved = 0;
d6d5cfaf
NP
3902 if (busiest->nr_running > 1) {
3903 /* Attempt to move tasks */
3904 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3905 /* this_rq->clock is already updated */
3906 update_rq_clock(busiest);
43010659 3907 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3908 imbalance, sd, CPU_NEWLY_IDLE,
3909 &all_pinned);
d6d5cfaf 3910 spin_unlock(&busiest->lock);
0a2966b4 3911
969bb4e4 3912 if (unlikely(all_pinned)) {
7c16ec58
MT
3913 cpu_clear(cpu_of(busiest), *cpus);
3914 if (!cpus_empty(*cpus))
0a2966b4
CL
3915 goto redo;
3916 }
d6d5cfaf
NP
3917 }
3918
43010659 3919 if (!ld_moved) {
d15bcfdb 3920 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3921 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3922 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3923 return -1;
3924 } else
16cfb1c0 3925 sd->nr_balance_failed = 0;
1da177e4 3926
43010659 3927 return ld_moved;
16cfb1c0
NP
3928
3929out_balanced:
d15bcfdb 3930 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3931 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3932 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3933 return -1;
16cfb1c0 3934 sd->nr_balance_failed = 0;
48f24c4d 3935
16cfb1c0 3936 return 0;
1da177e4
LT
3937}
3938
3939/*
3940 * idle_balance is called by schedule() if this_cpu is about to become
3941 * idle. Attempts to pull tasks from other CPUs.
3942 */
70b97a7f 3943static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3944{
3945 struct sched_domain *sd;
dd41f596
IM
3946 int pulled_task = -1;
3947 unsigned long next_balance = jiffies + HZ;
7c16ec58 3948 cpumask_t tmpmask;
1da177e4
LT
3949
3950 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3951 unsigned long interval;
3952
3953 if (!(sd->flags & SD_LOAD_BALANCE))
3954 continue;
3955
3956 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3957 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3958 pulled_task = load_balance_newidle(this_cpu, this_rq,
3959 sd, &tmpmask);
92c4ca5c
CL
3960
3961 interval = msecs_to_jiffies(sd->balance_interval);
3962 if (time_after(next_balance, sd->last_balance + interval))
3963 next_balance = sd->last_balance + interval;
3964 if (pulled_task)
3965 break;
1da177e4 3966 }
dd41f596 3967 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3968 /*
3969 * We are going idle. next_balance may be set based on
3970 * a busy processor. So reset next_balance.
3971 */
3972 this_rq->next_balance = next_balance;
dd41f596 3973 }
1da177e4
LT
3974}
3975
3976/*
3977 * active_load_balance is run by migration threads. It pushes running tasks
3978 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3979 * running on each physical CPU where possible, and avoids physical /
3980 * logical imbalances.
3981 *
3982 * Called with busiest_rq locked.
3983 */
70b97a7f 3984static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3985{
39507451 3986 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3987 struct sched_domain *sd;
3988 struct rq *target_rq;
39507451 3989
48f24c4d 3990 /* Is there any task to move? */
39507451 3991 if (busiest_rq->nr_running <= 1)
39507451
NP
3992 return;
3993
3994 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3995
3996 /*
39507451 3997 * This condition is "impossible", if it occurs
41a2d6cf 3998 * we need to fix it. Originally reported by
39507451 3999 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4000 */
39507451 4001 BUG_ON(busiest_rq == target_rq);
1da177e4 4002
39507451
NP
4003 /* move a task from busiest_rq to target_rq */
4004 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4005 update_rq_clock(busiest_rq);
4006 update_rq_clock(target_rq);
39507451
NP
4007
4008 /* Search for an sd spanning us and the target CPU. */
c96d145e 4009 for_each_domain(target_cpu, sd) {
39507451 4010 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 4011 cpu_isset(busiest_cpu, sd->span))
39507451 4012 break;
c96d145e 4013 }
39507451 4014
48f24c4d 4015 if (likely(sd)) {
2d72376b 4016 schedstat_inc(sd, alb_count);
39507451 4017
43010659
PW
4018 if (move_one_task(target_rq, target_cpu, busiest_rq,
4019 sd, CPU_IDLE))
48f24c4d
IM
4020 schedstat_inc(sd, alb_pushed);
4021 else
4022 schedstat_inc(sd, alb_failed);
4023 }
39507451 4024 spin_unlock(&target_rq->lock);
1da177e4
LT
4025}
4026
46cb4b7c
SS
4027#ifdef CONFIG_NO_HZ
4028static struct {
4029 atomic_t load_balancer;
41a2d6cf 4030 cpumask_t cpu_mask;
46cb4b7c
SS
4031} nohz ____cacheline_aligned = {
4032 .load_balancer = ATOMIC_INIT(-1),
4033 .cpu_mask = CPU_MASK_NONE,
4034};
4035
7835b98b 4036/*
46cb4b7c
SS
4037 * This routine will try to nominate the ilb (idle load balancing)
4038 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4039 * load balancing on behalf of all those cpus. If all the cpus in the system
4040 * go into this tickless mode, then there will be no ilb owner (as there is
4041 * no need for one) and all the cpus will sleep till the next wakeup event
4042 * arrives...
4043 *
4044 * For the ilb owner, tick is not stopped. And this tick will be used
4045 * for idle load balancing. ilb owner will still be part of
4046 * nohz.cpu_mask..
7835b98b 4047 *
46cb4b7c
SS
4048 * While stopping the tick, this cpu will become the ilb owner if there
4049 * is no other owner. And will be the owner till that cpu becomes busy
4050 * or if all cpus in the system stop their ticks at which point
4051 * there is no need for ilb owner.
4052 *
4053 * When the ilb owner becomes busy, it nominates another owner, during the
4054 * next busy scheduler_tick()
4055 */
4056int select_nohz_load_balancer(int stop_tick)
4057{
4058 int cpu = smp_processor_id();
4059
4060 if (stop_tick) {
4061 cpu_set(cpu, nohz.cpu_mask);
4062 cpu_rq(cpu)->in_nohz_recently = 1;
4063
4064 /*
4065 * If we are going offline and still the leader, give up!
4066 */
4067 if (cpu_is_offline(cpu) &&
4068 atomic_read(&nohz.load_balancer) == cpu) {
4069 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4070 BUG();
4071 return 0;
4072 }
4073
4074 /* time for ilb owner also to sleep */
4075 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4076 if (atomic_read(&nohz.load_balancer) == cpu)
4077 atomic_set(&nohz.load_balancer, -1);
4078 return 0;
4079 }
4080
4081 if (atomic_read(&nohz.load_balancer) == -1) {
4082 /* make me the ilb owner */
4083 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4084 return 1;
4085 } else if (atomic_read(&nohz.load_balancer) == cpu)
4086 return 1;
4087 } else {
4088 if (!cpu_isset(cpu, nohz.cpu_mask))
4089 return 0;
4090
4091 cpu_clear(cpu, nohz.cpu_mask);
4092
4093 if (atomic_read(&nohz.load_balancer) == cpu)
4094 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4095 BUG();
4096 }
4097 return 0;
4098}
4099#endif
4100
4101static DEFINE_SPINLOCK(balancing);
4102
4103/*
7835b98b
CL
4104 * It checks each scheduling domain to see if it is due to be balanced,
4105 * and initiates a balancing operation if so.
4106 *
4107 * Balancing parameters are set up in arch_init_sched_domains.
4108 */
a9957449 4109static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4110{
46cb4b7c
SS
4111 int balance = 1;
4112 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4113 unsigned long interval;
4114 struct sched_domain *sd;
46cb4b7c 4115 /* Earliest time when we have to do rebalance again */
c9819f45 4116 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4117 int update_next_balance = 0;
7c16ec58 4118 cpumask_t tmp;
1da177e4 4119
46cb4b7c 4120 for_each_domain(cpu, sd) {
1da177e4
LT
4121 if (!(sd->flags & SD_LOAD_BALANCE))
4122 continue;
4123
4124 interval = sd->balance_interval;
d15bcfdb 4125 if (idle != CPU_IDLE)
1da177e4
LT
4126 interval *= sd->busy_factor;
4127
4128 /* scale ms to jiffies */
4129 interval = msecs_to_jiffies(interval);
4130 if (unlikely(!interval))
4131 interval = 1;
dd41f596
IM
4132 if (interval > HZ*NR_CPUS/10)
4133 interval = HZ*NR_CPUS/10;
4134
1da177e4 4135
08c183f3
CL
4136 if (sd->flags & SD_SERIALIZE) {
4137 if (!spin_trylock(&balancing))
4138 goto out;
4139 }
4140
c9819f45 4141 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 4142 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
4143 /*
4144 * We've pulled tasks over so either we're no
5969fe06
NP
4145 * longer idle, or one of our SMT siblings is
4146 * not idle.
4147 */
d15bcfdb 4148 idle = CPU_NOT_IDLE;
1da177e4 4149 }
1bd77f2d 4150 sd->last_balance = jiffies;
1da177e4 4151 }
08c183f3
CL
4152 if (sd->flags & SD_SERIALIZE)
4153 spin_unlock(&balancing);
4154out:
f549da84 4155 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4156 next_balance = sd->last_balance + interval;
f549da84
SS
4157 update_next_balance = 1;
4158 }
783609c6
SS
4159
4160 /*
4161 * Stop the load balance at this level. There is another
4162 * CPU in our sched group which is doing load balancing more
4163 * actively.
4164 */
4165 if (!balance)
4166 break;
1da177e4 4167 }
f549da84
SS
4168
4169 /*
4170 * next_balance will be updated only when there is a need.
4171 * When the cpu is attached to null domain for ex, it will not be
4172 * updated.
4173 */
4174 if (likely(update_next_balance))
4175 rq->next_balance = next_balance;
46cb4b7c
SS
4176}
4177
4178/*
4179 * run_rebalance_domains is triggered when needed from the scheduler tick.
4180 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4181 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4182 */
4183static void run_rebalance_domains(struct softirq_action *h)
4184{
dd41f596
IM
4185 int this_cpu = smp_processor_id();
4186 struct rq *this_rq = cpu_rq(this_cpu);
4187 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4188 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4189
dd41f596 4190 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4191
4192#ifdef CONFIG_NO_HZ
4193 /*
4194 * If this cpu is the owner for idle load balancing, then do the
4195 * balancing on behalf of the other idle cpus whose ticks are
4196 * stopped.
4197 */
dd41f596
IM
4198 if (this_rq->idle_at_tick &&
4199 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4200 cpumask_t cpus = nohz.cpu_mask;
4201 struct rq *rq;
4202 int balance_cpu;
4203
dd41f596 4204 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
4205 for_each_cpu_mask(balance_cpu, cpus) {
4206 /*
4207 * If this cpu gets work to do, stop the load balancing
4208 * work being done for other cpus. Next load
4209 * balancing owner will pick it up.
4210 */
4211 if (need_resched())
4212 break;
4213
de0cf899 4214 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4215
4216 rq = cpu_rq(balance_cpu);
dd41f596
IM
4217 if (time_after(this_rq->next_balance, rq->next_balance))
4218 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4219 }
4220 }
4221#endif
4222}
4223
4224/*
4225 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4226 *
4227 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4228 * idle load balancing owner or decide to stop the periodic load balancing,
4229 * if the whole system is idle.
4230 */
dd41f596 4231static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4232{
46cb4b7c
SS
4233#ifdef CONFIG_NO_HZ
4234 /*
4235 * If we were in the nohz mode recently and busy at the current
4236 * scheduler tick, then check if we need to nominate new idle
4237 * load balancer.
4238 */
4239 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4240 rq->in_nohz_recently = 0;
4241
4242 if (atomic_read(&nohz.load_balancer) == cpu) {
4243 cpu_clear(cpu, nohz.cpu_mask);
4244 atomic_set(&nohz.load_balancer, -1);
4245 }
4246
4247 if (atomic_read(&nohz.load_balancer) == -1) {
4248 /*
4249 * simple selection for now: Nominate the
4250 * first cpu in the nohz list to be the next
4251 * ilb owner.
4252 *
4253 * TBD: Traverse the sched domains and nominate
4254 * the nearest cpu in the nohz.cpu_mask.
4255 */
4256 int ilb = first_cpu(nohz.cpu_mask);
4257
434d53b0 4258 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4259 resched_cpu(ilb);
4260 }
4261 }
4262
4263 /*
4264 * If this cpu is idle and doing idle load balancing for all the
4265 * cpus with ticks stopped, is it time for that to stop?
4266 */
4267 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4268 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4269 resched_cpu(cpu);
4270 return;
4271 }
4272
4273 /*
4274 * If this cpu is idle and the idle load balancing is done by
4275 * someone else, then no need raise the SCHED_SOFTIRQ
4276 */
4277 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4278 cpu_isset(cpu, nohz.cpu_mask))
4279 return;
4280#endif
4281 if (time_after_eq(jiffies, rq->next_balance))
4282 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4283}
dd41f596
IM
4284
4285#else /* CONFIG_SMP */
4286
1da177e4
LT
4287/*
4288 * on UP we do not need to balance between CPUs:
4289 */
70b97a7f 4290static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4291{
4292}
dd41f596 4293
1da177e4
LT
4294#endif
4295
1da177e4
LT
4296DEFINE_PER_CPU(struct kernel_stat, kstat);
4297
4298EXPORT_PER_CPU_SYMBOL(kstat);
4299
4300/*
41b86e9c
IM
4301 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4302 * that have not yet been banked in case the task is currently running.
1da177e4 4303 */
41b86e9c 4304unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4305{
1da177e4 4306 unsigned long flags;
41b86e9c
IM
4307 u64 ns, delta_exec;
4308 struct rq *rq;
48f24c4d 4309
41b86e9c
IM
4310 rq = task_rq_lock(p, &flags);
4311 ns = p->se.sum_exec_runtime;
051a1d1a 4312 if (task_current(rq, p)) {
a8e504d2
IM
4313 update_rq_clock(rq);
4314 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4315 if ((s64)delta_exec > 0)
4316 ns += delta_exec;
4317 }
4318 task_rq_unlock(rq, &flags);
48f24c4d 4319
1da177e4
LT
4320 return ns;
4321}
4322
1da177e4
LT
4323/*
4324 * Account user cpu time to a process.
4325 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4326 * @cputime: the cpu time spent in user space since the last update
4327 */
4328void account_user_time(struct task_struct *p, cputime_t cputime)
4329{
4330 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4331 cputime64_t tmp;
4332
4333 p->utime = cputime_add(p->utime, cputime);
4334
4335 /* Add user time to cpustat. */
4336 tmp = cputime_to_cputime64(cputime);
4337 if (TASK_NICE(p) > 0)
4338 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4339 else
4340 cpustat->user = cputime64_add(cpustat->user, tmp);
4341}
4342
94886b84
LV
4343/*
4344 * Account guest cpu time to a process.
4345 * @p: the process that the cpu time gets accounted to
4346 * @cputime: the cpu time spent in virtual machine since the last update
4347 */
f7402e03 4348static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4349{
4350 cputime64_t tmp;
4351 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4352
4353 tmp = cputime_to_cputime64(cputime);
4354
4355 p->utime = cputime_add(p->utime, cputime);
4356 p->gtime = cputime_add(p->gtime, cputime);
4357
4358 cpustat->user = cputime64_add(cpustat->user, tmp);
4359 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4360}
4361
c66f08be
MN
4362/*
4363 * Account scaled user cpu time to a process.
4364 * @p: the process that the cpu time gets accounted to
4365 * @cputime: the cpu time spent in user space since the last update
4366 */
4367void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4368{
4369 p->utimescaled = cputime_add(p->utimescaled, cputime);
4370}
4371
1da177e4
LT
4372/*
4373 * Account system cpu time to a process.
4374 * @p: the process that the cpu time gets accounted to
4375 * @hardirq_offset: the offset to subtract from hardirq_count()
4376 * @cputime: the cpu time spent in kernel space since the last update
4377 */
4378void account_system_time(struct task_struct *p, int hardirq_offset,
4379 cputime_t cputime)
4380{
4381 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4382 struct rq *rq = this_rq();
1da177e4
LT
4383 cputime64_t tmp;
4384
9778385d
CB
4385 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
4386 return account_guest_time(p, cputime);
94886b84 4387
1da177e4
LT
4388 p->stime = cputime_add(p->stime, cputime);
4389
4390 /* Add system time to cpustat. */
4391 tmp = cputime_to_cputime64(cputime);
4392 if (hardirq_count() - hardirq_offset)
4393 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4394 else if (softirq_count())
4395 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4396 else if (p != rq->idle)
1da177e4 4397 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4398 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4399 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4400 else
4401 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4402 /* Account for system time used */
4403 acct_update_integrals(p);
1da177e4
LT
4404}
4405
c66f08be
MN
4406/*
4407 * Account scaled system cpu time to a process.
4408 * @p: the process that the cpu time gets accounted to
4409 * @hardirq_offset: the offset to subtract from hardirq_count()
4410 * @cputime: the cpu time spent in kernel space since the last update
4411 */
4412void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4413{
4414 p->stimescaled = cputime_add(p->stimescaled, cputime);
4415}
4416
1da177e4
LT
4417/*
4418 * Account for involuntary wait time.
4419 * @p: the process from which the cpu time has been stolen
4420 * @steal: the cpu time spent in involuntary wait
4421 */
4422void account_steal_time(struct task_struct *p, cputime_t steal)
4423{
4424 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4425 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4426 struct rq *rq = this_rq();
1da177e4
LT
4427
4428 if (p == rq->idle) {
4429 p->stime = cputime_add(p->stime, steal);
4430 if (atomic_read(&rq->nr_iowait) > 0)
4431 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4432 else
4433 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4434 } else
1da177e4
LT
4435 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4436}
4437
7835b98b
CL
4438/*
4439 * This function gets called by the timer code, with HZ frequency.
4440 * We call it with interrupts disabled.
4441 *
4442 * It also gets called by the fork code, when changing the parent's
4443 * timeslices.
4444 */
4445void scheduler_tick(void)
4446{
7835b98b
CL
4447 int cpu = smp_processor_id();
4448 struct rq *rq = cpu_rq(cpu);
dd41f596 4449 struct task_struct *curr = rq->curr;
529c7726 4450 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
4451
4452 spin_lock(&rq->lock);
546fe3c9 4453 __update_rq_clock(rq);
529c7726
IM
4454 /*
4455 * Let rq->clock advance by at least TICK_NSEC:
4456 */
cc203d24 4457 if (unlikely(rq->clock < next_tick)) {
529c7726 4458 rq->clock = next_tick;
cc203d24
GC
4459 rq->clock_underflows++;
4460 }
529c7726 4461 rq->tick_timestamp = rq->clock;
15934a37 4462 update_last_tick_seen(rq);
f1a438d8 4463 update_cpu_load(rq);
fa85ae24 4464 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4465 spin_unlock(&rq->lock);
7835b98b 4466
e418e1c2 4467#ifdef CONFIG_SMP
dd41f596
IM
4468 rq->idle_at_tick = idle_cpu(cpu);
4469 trigger_load_balance(rq, cpu);
e418e1c2 4470#endif
1da177e4
LT
4471}
4472
1da177e4
LT
4473#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4474
43627582 4475void __kprobes add_preempt_count(int val)
1da177e4
LT
4476{
4477 /*
4478 * Underflow?
4479 */
9a11b49a
IM
4480 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4481 return;
1da177e4
LT
4482 preempt_count() += val;
4483 /*
4484 * Spinlock count overflowing soon?
4485 */
33859f7f
MOS
4486 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4487 PREEMPT_MASK - 10);
1da177e4
LT
4488}
4489EXPORT_SYMBOL(add_preempt_count);
4490
43627582 4491void __kprobes sub_preempt_count(int val)
1da177e4
LT
4492{
4493 /*
4494 * Underflow?
4495 */
9a11b49a
IM
4496 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4497 return;
1da177e4
LT
4498 /*
4499 * Is the spinlock portion underflowing?
4500 */
9a11b49a
IM
4501 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4502 !(preempt_count() & PREEMPT_MASK)))
4503 return;
4504
1da177e4
LT
4505 preempt_count() -= val;
4506}
4507EXPORT_SYMBOL(sub_preempt_count);
4508
4509#endif
4510
4511/*
dd41f596 4512 * Print scheduling while atomic bug:
1da177e4 4513 */
dd41f596 4514static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4515{
838225b4
SS
4516 struct pt_regs *regs = get_irq_regs();
4517
4518 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4519 prev->comm, prev->pid, preempt_count());
4520
dd41f596
IM
4521 debug_show_held_locks(prev);
4522 if (irqs_disabled())
4523 print_irqtrace_events(prev);
838225b4
SS
4524
4525 if (regs)
4526 show_regs(regs);
4527 else
4528 dump_stack();
dd41f596 4529}
1da177e4 4530
dd41f596
IM
4531/*
4532 * Various schedule()-time debugging checks and statistics:
4533 */
4534static inline void schedule_debug(struct task_struct *prev)
4535{
1da177e4 4536 /*
41a2d6cf 4537 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4538 * schedule() atomically, we ignore that path for now.
4539 * Otherwise, whine if we are scheduling when we should not be.
4540 */
dd41f596
IM
4541 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4542 __schedule_bug(prev);
4543
1da177e4
LT
4544 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4545
2d72376b 4546 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4547#ifdef CONFIG_SCHEDSTATS
4548 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4549 schedstat_inc(this_rq(), bkl_count);
4550 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4551 }
4552#endif
dd41f596
IM
4553}
4554
4555/*
4556 * Pick up the highest-prio task:
4557 */
4558static inline struct task_struct *
ff95f3df 4559pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4560{
5522d5d5 4561 const struct sched_class *class;
dd41f596 4562 struct task_struct *p;
1da177e4
LT
4563
4564 /*
dd41f596
IM
4565 * Optimization: we know that if all tasks are in
4566 * the fair class we can call that function directly:
1da177e4 4567 */
dd41f596 4568 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4569 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4570 if (likely(p))
4571 return p;
1da177e4
LT
4572 }
4573
dd41f596
IM
4574 class = sched_class_highest;
4575 for ( ; ; ) {
fb8d4724 4576 p = class->pick_next_task(rq);
dd41f596
IM
4577 if (p)
4578 return p;
4579 /*
4580 * Will never be NULL as the idle class always
4581 * returns a non-NULL p:
4582 */
4583 class = class->next;
4584 }
4585}
1da177e4 4586
dd41f596
IM
4587/*
4588 * schedule() is the main scheduler function.
4589 */
4590asmlinkage void __sched schedule(void)
4591{
4592 struct task_struct *prev, *next;
67ca7bde 4593 unsigned long *switch_count;
dd41f596 4594 struct rq *rq;
dd41f596
IM
4595 int cpu;
4596
4597need_resched:
4598 preempt_disable();
4599 cpu = smp_processor_id();
4600 rq = cpu_rq(cpu);
4601 rcu_qsctr_inc(cpu);
4602 prev = rq->curr;
4603 switch_count = &prev->nivcsw;
4604
4605 release_kernel_lock(prev);
4606need_resched_nonpreemptible:
4607
4608 schedule_debug(prev);
1da177e4 4609
8f4d37ec
PZ
4610 hrtick_clear(rq);
4611
1e819950
IM
4612 /*
4613 * Do the rq-clock update outside the rq lock:
4614 */
4615 local_irq_disable();
c1b3da3e 4616 __update_rq_clock(rq);
1e819950
IM
4617 spin_lock(&rq->lock);
4618 clear_tsk_need_resched(prev);
1da177e4 4619
1da177e4 4620 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4621 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4622 signal_pending(prev))) {
1da177e4 4623 prev->state = TASK_RUNNING;
dd41f596 4624 } else {
2e1cb74a 4625 deactivate_task(rq, prev, 1);
1da177e4 4626 }
dd41f596 4627 switch_count = &prev->nvcsw;
1da177e4
LT
4628 }
4629
9a897c5a
SR
4630#ifdef CONFIG_SMP
4631 if (prev->sched_class->pre_schedule)
4632 prev->sched_class->pre_schedule(rq, prev);
4633#endif
f65eda4f 4634
dd41f596 4635 if (unlikely(!rq->nr_running))
1da177e4 4636 idle_balance(cpu, rq);
1da177e4 4637
31ee529c 4638 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4639 next = pick_next_task(rq, prev);
1da177e4
LT
4640
4641 sched_info_switch(prev, next);
dd41f596 4642
1da177e4 4643 if (likely(prev != next)) {
1da177e4
LT
4644 rq->nr_switches++;
4645 rq->curr = next;
4646 ++*switch_count;
4647
dd41f596 4648 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4649 /*
4650 * the context switch might have flipped the stack from under
4651 * us, hence refresh the local variables.
4652 */
4653 cpu = smp_processor_id();
4654 rq = cpu_rq(cpu);
1da177e4
LT
4655 } else
4656 spin_unlock_irq(&rq->lock);
4657
8f4d37ec
PZ
4658 hrtick_set(rq);
4659
4660 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4661 goto need_resched_nonpreemptible;
8f4d37ec 4662
1da177e4
LT
4663 preempt_enable_no_resched();
4664 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4665 goto need_resched;
4666}
1da177e4
LT
4667EXPORT_SYMBOL(schedule);
4668
4669#ifdef CONFIG_PREEMPT
4670/*
2ed6e34f 4671 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4672 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4673 * occur there and call schedule directly.
4674 */
4675asmlinkage void __sched preempt_schedule(void)
4676{
4677 struct thread_info *ti = current_thread_info();
1da177e4
LT
4678 struct task_struct *task = current;
4679 int saved_lock_depth;
6478d880 4680
1da177e4
LT
4681 /*
4682 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4683 * we do not want to preempt the current task. Just return..
1da177e4 4684 */
beed33a8 4685 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4686 return;
4687
3a5c359a
AK
4688 do {
4689 add_preempt_count(PREEMPT_ACTIVE);
4690
4691 /*
4692 * We keep the big kernel semaphore locked, but we
4693 * clear ->lock_depth so that schedule() doesnt
4694 * auto-release the semaphore:
4695 */
3a5c359a
AK
4696 saved_lock_depth = task->lock_depth;
4697 task->lock_depth = -1;
3a5c359a 4698 schedule();
3a5c359a 4699 task->lock_depth = saved_lock_depth;
3a5c359a 4700 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4701
3a5c359a
AK
4702 /*
4703 * Check again in case we missed a preemption opportunity
4704 * between schedule and now.
4705 */
4706 barrier();
4707 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4708}
1da177e4
LT
4709EXPORT_SYMBOL(preempt_schedule);
4710
4711/*
2ed6e34f 4712 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4713 * off of irq context.
4714 * Note, that this is called and return with irqs disabled. This will
4715 * protect us against recursive calling from irq.
4716 */
4717asmlinkage void __sched preempt_schedule_irq(void)
4718{
4719 struct thread_info *ti = current_thread_info();
1da177e4
LT
4720 struct task_struct *task = current;
4721 int saved_lock_depth;
6478d880 4722
2ed6e34f 4723 /* Catch callers which need to be fixed */
1da177e4
LT
4724 BUG_ON(ti->preempt_count || !irqs_disabled());
4725
3a5c359a
AK
4726 do {
4727 add_preempt_count(PREEMPT_ACTIVE);
4728
4729 /*
4730 * We keep the big kernel semaphore locked, but we
4731 * clear ->lock_depth so that schedule() doesnt
4732 * auto-release the semaphore:
4733 */
3a5c359a
AK
4734 saved_lock_depth = task->lock_depth;
4735 task->lock_depth = -1;
3a5c359a
AK
4736 local_irq_enable();
4737 schedule();
4738 local_irq_disable();
3a5c359a 4739 task->lock_depth = saved_lock_depth;
3a5c359a 4740 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4741
3a5c359a
AK
4742 /*
4743 * Check again in case we missed a preemption opportunity
4744 * between schedule and now.
4745 */
4746 barrier();
4747 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4748}
4749
4750#endif /* CONFIG_PREEMPT */
4751
95cdf3b7
IM
4752int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4753 void *key)
1da177e4 4754{
48f24c4d 4755 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4756}
1da177e4
LT
4757EXPORT_SYMBOL(default_wake_function);
4758
4759/*
41a2d6cf
IM
4760 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4761 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4762 * number) then we wake all the non-exclusive tasks and one exclusive task.
4763 *
4764 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4765 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4766 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4767 */
4768static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4769 int nr_exclusive, int sync, void *key)
4770{
2e45874c 4771 wait_queue_t *curr, *next;
1da177e4 4772
2e45874c 4773 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4774 unsigned flags = curr->flags;
4775
1da177e4 4776 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4777 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4778 break;
4779 }
4780}
4781
4782/**
4783 * __wake_up - wake up threads blocked on a waitqueue.
4784 * @q: the waitqueue
4785 * @mode: which threads
4786 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4787 * @key: is directly passed to the wakeup function
1da177e4 4788 */
7ad5b3a5 4789void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4790 int nr_exclusive, void *key)
1da177e4
LT
4791{
4792 unsigned long flags;
4793
4794 spin_lock_irqsave(&q->lock, flags);
4795 __wake_up_common(q, mode, nr_exclusive, 0, key);
4796 spin_unlock_irqrestore(&q->lock, flags);
4797}
1da177e4
LT
4798EXPORT_SYMBOL(__wake_up);
4799
4800/*
4801 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4802 */
7ad5b3a5 4803void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4804{
4805 __wake_up_common(q, mode, 1, 0, NULL);
4806}
4807
4808/**
67be2dd1 4809 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4810 * @q: the waitqueue
4811 * @mode: which threads
4812 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4813 *
4814 * The sync wakeup differs that the waker knows that it will schedule
4815 * away soon, so while the target thread will be woken up, it will not
4816 * be migrated to another CPU - ie. the two threads are 'synchronized'
4817 * with each other. This can prevent needless bouncing between CPUs.
4818 *
4819 * On UP it can prevent extra preemption.
4820 */
7ad5b3a5 4821void
95cdf3b7 4822__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4823{
4824 unsigned long flags;
4825 int sync = 1;
4826
4827 if (unlikely(!q))
4828 return;
4829
4830 if (unlikely(!nr_exclusive))
4831 sync = 0;
4832
4833 spin_lock_irqsave(&q->lock, flags);
4834 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4835 spin_unlock_irqrestore(&q->lock, flags);
4836}
4837EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4838
b15136e9 4839void complete(struct completion *x)
1da177e4
LT
4840{
4841 unsigned long flags;
4842
4843 spin_lock_irqsave(&x->wait.lock, flags);
4844 x->done++;
d9514f6c 4845 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4846 spin_unlock_irqrestore(&x->wait.lock, flags);
4847}
4848EXPORT_SYMBOL(complete);
4849
b15136e9 4850void complete_all(struct completion *x)
1da177e4
LT
4851{
4852 unsigned long flags;
4853
4854 spin_lock_irqsave(&x->wait.lock, flags);
4855 x->done += UINT_MAX/2;
d9514f6c 4856 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4857 spin_unlock_irqrestore(&x->wait.lock, flags);
4858}
4859EXPORT_SYMBOL(complete_all);
4860
8cbbe86d
AK
4861static inline long __sched
4862do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4863{
1da177e4
LT
4864 if (!x->done) {
4865 DECLARE_WAITQUEUE(wait, current);
4866
4867 wait.flags |= WQ_FLAG_EXCLUSIVE;
4868 __add_wait_queue_tail(&x->wait, &wait);
4869 do {
009e577e
MW
4870 if ((state == TASK_INTERRUPTIBLE &&
4871 signal_pending(current)) ||
4872 (state == TASK_KILLABLE &&
4873 fatal_signal_pending(current))) {
8cbbe86d
AK
4874 __remove_wait_queue(&x->wait, &wait);
4875 return -ERESTARTSYS;
4876 }
4877 __set_current_state(state);
1da177e4
LT
4878 spin_unlock_irq(&x->wait.lock);
4879 timeout = schedule_timeout(timeout);
4880 spin_lock_irq(&x->wait.lock);
4881 if (!timeout) {
4882 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4883 return timeout;
1da177e4
LT
4884 }
4885 } while (!x->done);
4886 __remove_wait_queue(&x->wait, &wait);
4887 }
4888 x->done--;
1da177e4
LT
4889 return timeout;
4890}
1da177e4 4891
8cbbe86d
AK
4892static long __sched
4893wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4894{
1da177e4
LT
4895 might_sleep();
4896
4897 spin_lock_irq(&x->wait.lock);
8cbbe86d 4898 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4899 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4900 return timeout;
4901}
1da177e4 4902
b15136e9 4903void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4904{
4905 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4906}
8cbbe86d 4907EXPORT_SYMBOL(wait_for_completion);
1da177e4 4908
b15136e9 4909unsigned long __sched
8cbbe86d 4910wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4911{
8cbbe86d 4912 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4913}
8cbbe86d 4914EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4915
8cbbe86d 4916int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4917{
51e97990
AK
4918 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4919 if (t == -ERESTARTSYS)
4920 return t;
4921 return 0;
0fec171c 4922}
8cbbe86d 4923EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4924
b15136e9 4925unsigned long __sched
8cbbe86d
AK
4926wait_for_completion_interruptible_timeout(struct completion *x,
4927 unsigned long timeout)
0fec171c 4928{
8cbbe86d 4929 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4930}
8cbbe86d 4931EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4932
009e577e
MW
4933int __sched wait_for_completion_killable(struct completion *x)
4934{
4935 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4936 if (t == -ERESTARTSYS)
4937 return t;
4938 return 0;
4939}
4940EXPORT_SYMBOL(wait_for_completion_killable);
4941
8cbbe86d
AK
4942static long __sched
4943sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4944{
0fec171c
IM
4945 unsigned long flags;
4946 wait_queue_t wait;
4947
4948 init_waitqueue_entry(&wait, current);
1da177e4 4949
8cbbe86d 4950 __set_current_state(state);
1da177e4 4951
8cbbe86d
AK
4952 spin_lock_irqsave(&q->lock, flags);
4953 __add_wait_queue(q, &wait);
4954 spin_unlock(&q->lock);
4955 timeout = schedule_timeout(timeout);
4956 spin_lock_irq(&q->lock);
4957 __remove_wait_queue(q, &wait);
4958 spin_unlock_irqrestore(&q->lock, flags);
4959
4960 return timeout;
4961}
4962
4963void __sched interruptible_sleep_on(wait_queue_head_t *q)
4964{
4965 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4966}
1da177e4
LT
4967EXPORT_SYMBOL(interruptible_sleep_on);
4968
0fec171c 4969long __sched
95cdf3b7 4970interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4971{
8cbbe86d 4972 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4973}
1da177e4
LT
4974EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4975
0fec171c 4976void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4977{
8cbbe86d 4978 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4979}
1da177e4
LT
4980EXPORT_SYMBOL(sleep_on);
4981
0fec171c 4982long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4983{
8cbbe86d 4984 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4985}
1da177e4
LT
4986EXPORT_SYMBOL(sleep_on_timeout);
4987
b29739f9
IM
4988#ifdef CONFIG_RT_MUTEXES
4989
4990/*
4991 * rt_mutex_setprio - set the current priority of a task
4992 * @p: task
4993 * @prio: prio value (kernel-internal form)
4994 *
4995 * This function changes the 'effective' priority of a task. It does
4996 * not touch ->normal_prio like __setscheduler().
4997 *
4998 * Used by the rt_mutex code to implement priority inheritance logic.
4999 */
36c8b586 5000void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5001{
5002 unsigned long flags;
83b699ed 5003 int oldprio, on_rq, running;
70b97a7f 5004 struct rq *rq;
cb469845 5005 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5006
5007 BUG_ON(prio < 0 || prio > MAX_PRIO);
5008
5009 rq = task_rq_lock(p, &flags);
a8e504d2 5010 update_rq_clock(rq);
b29739f9 5011
d5f9f942 5012 oldprio = p->prio;
dd41f596 5013 on_rq = p->se.on_rq;
051a1d1a 5014 running = task_current(rq, p);
0e1f3483 5015 if (on_rq)
69be72c1 5016 dequeue_task(rq, p, 0);
0e1f3483
HS
5017 if (running)
5018 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5019
5020 if (rt_prio(prio))
5021 p->sched_class = &rt_sched_class;
5022 else
5023 p->sched_class = &fair_sched_class;
5024
b29739f9
IM
5025 p->prio = prio;
5026
0e1f3483
HS
5027 if (running)
5028 p->sched_class->set_curr_task(rq);
dd41f596 5029 if (on_rq) {
8159f87e 5030 enqueue_task(rq, p, 0);
cb469845
SR
5031
5032 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5033 }
5034 task_rq_unlock(rq, &flags);
5035}
5036
5037#endif
5038
36c8b586 5039void set_user_nice(struct task_struct *p, long nice)
1da177e4 5040{
dd41f596 5041 int old_prio, delta, on_rq;
1da177e4 5042 unsigned long flags;
70b97a7f 5043 struct rq *rq;
1da177e4
LT
5044
5045 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5046 return;
5047 /*
5048 * We have to be careful, if called from sys_setpriority(),
5049 * the task might be in the middle of scheduling on another CPU.
5050 */
5051 rq = task_rq_lock(p, &flags);
a8e504d2 5052 update_rq_clock(rq);
1da177e4
LT
5053 /*
5054 * The RT priorities are set via sched_setscheduler(), but we still
5055 * allow the 'normal' nice value to be set - but as expected
5056 * it wont have any effect on scheduling until the task is
dd41f596 5057 * SCHED_FIFO/SCHED_RR:
1da177e4 5058 */
e05606d3 5059 if (task_has_rt_policy(p)) {
1da177e4
LT
5060 p->static_prio = NICE_TO_PRIO(nice);
5061 goto out_unlock;
5062 }
dd41f596 5063 on_rq = p->se.on_rq;
18d95a28 5064 if (on_rq)
69be72c1 5065 dequeue_task(rq, p, 0);
1da177e4 5066
1da177e4 5067 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5068 set_load_weight(p);
b29739f9
IM
5069 old_prio = p->prio;
5070 p->prio = effective_prio(p);
5071 delta = p->prio - old_prio;
1da177e4 5072
dd41f596 5073 if (on_rq) {
8159f87e 5074 enqueue_task(rq, p, 0);
1da177e4 5075 /*
d5f9f942
AM
5076 * If the task increased its priority or is running and
5077 * lowered its priority, then reschedule its CPU:
1da177e4 5078 */
d5f9f942 5079 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5080 resched_task(rq->curr);
5081 }
5082out_unlock:
5083 task_rq_unlock(rq, &flags);
5084}
1da177e4
LT
5085EXPORT_SYMBOL(set_user_nice);
5086
e43379f1
MM
5087/*
5088 * can_nice - check if a task can reduce its nice value
5089 * @p: task
5090 * @nice: nice value
5091 */
36c8b586 5092int can_nice(const struct task_struct *p, const int nice)
e43379f1 5093{
024f4747
MM
5094 /* convert nice value [19,-20] to rlimit style value [1,40] */
5095 int nice_rlim = 20 - nice;
48f24c4d 5096
e43379f1
MM
5097 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5098 capable(CAP_SYS_NICE));
5099}
5100
1da177e4
LT
5101#ifdef __ARCH_WANT_SYS_NICE
5102
5103/*
5104 * sys_nice - change the priority of the current process.
5105 * @increment: priority increment
5106 *
5107 * sys_setpriority is a more generic, but much slower function that
5108 * does similar things.
5109 */
5110asmlinkage long sys_nice(int increment)
5111{
48f24c4d 5112 long nice, retval;
1da177e4
LT
5113
5114 /*
5115 * Setpriority might change our priority at the same moment.
5116 * We don't have to worry. Conceptually one call occurs first
5117 * and we have a single winner.
5118 */
e43379f1
MM
5119 if (increment < -40)
5120 increment = -40;
1da177e4
LT
5121 if (increment > 40)
5122 increment = 40;
5123
5124 nice = PRIO_TO_NICE(current->static_prio) + increment;
5125 if (nice < -20)
5126 nice = -20;
5127 if (nice > 19)
5128 nice = 19;
5129
e43379f1
MM
5130 if (increment < 0 && !can_nice(current, nice))
5131 return -EPERM;
5132
1da177e4
LT
5133 retval = security_task_setnice(current, nice);
5134 if (retval)
5135 return retval;
5136
5137 set_user_nice(current, nice);
5138 return 0;
5139}
5140
5141#endif
5142
5143/**
5144 * task_prio - return the priority value of a given task.
5145 * @p: the task in question.
5146 *
5147 * This is the priority value as seen by users in /proc.
5148 * RT tasks are offset by -200. Normal tasks are centered
5149 * around 0, value goes from -16 to +15.
5150 */
36c8b586 5151int task_prio(const struct task_struct *p)
1da177e4
LT
5152{
5153 return p->prio - MAX_RT_PRIO;
5154}
5155
5156/**
5157 * task_nice - return the nice value of a given task.
5158 * @p: the task in question.
5159 */
36c8b586 5160int task_nice(const struct task_struct *p)
1da177e4
LT
5161{
5162 return TASK_NICE(p);
5163}
150d8bed 5164EXPORT_SYMBOL(task_nice);
1da177e4
LT
5165
5166/**
5167 * idle_cpu - is a given cpu idle currently?
5168 * @cpu: the processor in question.
5169 */
5170int idle_cpu(int cpu)
5171{
5172 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5173}
5174
1da177e4
LT
5175/**
5176 * idle_task - return the idle task for a given cpu.
5177 * @cpu: the processor in question.
5178 */
36c8b586 5179struct task_struct *idle_task(int cpu)
1da177e4
LT
5180{
5181 return cpu_rq(cpu)->idle;
5182}
5183
5184/**
5185 * find_process_by_pid - find a process with a matching PID value.
5186 * @pid: the pid in question.
5187 */
a9957449 5188static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5189{
228ebcbe 5190 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5191}
5192
5193/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5194static void
5195__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5196{
dd41f596 5197 BUG_ON(p->se.on_rq);
48f24c4d 5198
1da177e4 5199 p->policy = policy;
dd41f596
IM
5200 switch (p->policy) {
5201 case SCHED_NORMAL:
5202 case SCHED_BATCH:
5203 case SCHED_IDLE:
5204 p->sched_class = &fair_sched_class;
5205 break;
5206 case SCHED_FIFO:
5207 case SCHED_RR:
5208 p->sched_class = &rt_sched_class;
5209 break;
5210 }
5211
1da177e4 5212 p->rt_priority = prio;
b29739f9
IM
5213 p->normal_prio = normal_prio(p);
5214 /* we are holding p->pi_lock already */
5215 p->prio = rt_mutex_getprio(p);
2dd73a4f 5216 set_load_weight(p);
1da177e4
LT
5217}
5218
5219/**
72fd4a35 5220 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
5221 * @p: the task in question.
5222 * @policy: new policy.
5223 * @param: structure containing the new RT priority.
5fe1d75f 5224 *
72fd4a35 5225 * NOTE that the task may be already dead.
1da177e4 5226 */
95cdf3b7
IM
5227int sched_setscheduler(struct task_struct *p, int policy,
5228 struct sched_param *param)
1da177e4 5229{
83b699ed 5230 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5231 unsigned long flags;
cb469845 5232 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5233 struct rq *rq;
1da177e4 5234
66e5393a
SR
5235 /* may grab non-irq protected spin_locks */
5236 BUG_ON(in_interrupt());
1da177e4
LT
5237recheck:
5238 /* double check policy once rq lock held */
5239 if (policy < 0)
5240 policy = oldpolicy = p->policy;
5241 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5242 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5243 policy != SCHED_IDLE)
b0a9499c 5244 return -EINVAL;
1da177e4
LT
5245 /*
5246 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5247 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5248 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5249 */
5250 if (param->sched_priority < 0 ||
95cdf3b7 5251 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5252 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5253 return -EINVAL;
e05606d3 5254 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5255 return -EINVAL;
5256
37e4ab3f
OC
5257 /*
5258 * Allow unprivileged RT tasks to decrease priority:
5259 */
5260 if (!capable(CAP_SYS_NICE)) {
e05606d3 5261 if (rt_policy(policy)) {
8dc3e909 5262 unsigned long rlim_rtprio;
8dc3e909
ON
5263
5264 if (!lock_task_sighand(p, &flags))
5265 return -ESRCH;
5266 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5267 unlock_task_sighand(p, &flags);
5268
5269 /* can't set/change the rt policy */
5270 if (policy != p->policy && !rlim_rtprio)
5271 return -EPERM;
5272
5273 /* can't increase priority */
5274 if (param->sched_priority > p->rt_priority &&
5275 param->sched_priority > rlim_rtprio)
5276 return -EPERM;
5277 }
dd41f596
IM
5278 /*
5279 * Like positive nice levels, dont allow tasks to
5280 * move out of SCHED_IDLE either:
5281 */
5282 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5283 return -EPERM;
5fe1d75f 5284
37e4ab3f
OC
5285 /* can't change other user's priorities */
5286 if ((current->euid != p->euid) &&
5287 (current->euid != p->uid))
5288 return -EPERM;
5289 }
1da177e4 5290
b68aa230
PZ
5291#ifdef CONFIG_RT_GROUP_SCHED
5292 /*
5293 * Do not allow realtime tasks into groups that have no runtime
5294 * assigned.
5295 */
d0b27fa7 5296 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5297 return -EPERM;
5298#endif
5299
1da177e4
LT
5300 retval = security_task_setscheduler(p, policy, param);
5301 if (retval)
5302 return retval;
b29739f9
IM
5303 /*
5304 * make sure no PI-waiters arrive (or leave) while we are
5305 * changing the priority of the task:
5306 */
5307 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5308 /*
5309 * To be able to change p->policy safely, the apropriate
5310 * runqueue lock must be held.
5311 */
b29739f9 5312 rq = __task_rq_lock(p);
1da177e4
LT
5313 /* recheck policy now with rq lock held */
5314 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5315 policy = oldpolicy = -1;
b29739f9
IM
5316 __task_rq_unlock(rq);
5317 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5318 goto recheck;
5319 }
2daa3577 5320 update_rq_clock(rq);
dd41f596 5321 on_rq = p->se.on_rq;
051a1d1a 5322 running = task_current(rq, p);
0e1f3483 5323 if (on_rq)
2e1cb74a 5324 deactivate_task(rq, p, 0);
0e1f3483
HS
5325 if (running)
5326 p->sched_class->put_prev_task(rq, p);
f6b53205 5327
1da177e4 5328 oldprio = p->prio;
dd41f596 5329 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5330
0e1f3483
HS
5331 if (running)
5332 p->sched_class->set_curr_task(rq);
dd41f596
IM
5333 if (on_rq) {
5334 activate_task(rq, p, 0);
cb469845
SR
5335
5336 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5337 }
b29739f9
IM
5338 __task_rq_unlock(rq);
5339 spin_unlock_irqrestore(&p->pi_lock, flags);
5340
95e02ca9
TG
5341 rt_mutex_adjust_pi(p);
5342
1da177e4
LT
5343 return 0;
5344}
5345EXPORT_SYMBOL_GPL(sched_setscheduler);
5346
95cdf3b7
IM
5347static int
5348do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5349{
1da177e4
LT
5350 struct sched_param lparam;
5351 struct task_struct *p;
36c8b586 5352 int retval;
1da177e4
LT
5353
5354 if (!param || pid < 0)
5355 return -EINVAL;
5356 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5357 return -EFAULT;
5fe1d75f
ON
5358
5359 rcu_read_lock();
5360 retval = -ESRCH;
1da177e4 5361 p = find_process_by_pid(pid);
5fe1d75f
ON
5362 if (p != NULL)
5363 retval = sched_setscheduler(p, policy, &lparam);
5364 rcu_read_unlock();
36c8b586 5365
1da177e4
LT
5366 return retval;
5367}
5368
5369/**
5370 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5371 * @pid: the pid in question.
5372 * @policy: new policy.
5373 * @param: structure containing the new RT priority.
5374 */
41a2d6cf
IM
5375asmlinkage long
5376sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5377{
c21761f1
JB
5378 /* negative values for policy are not valid */
5379 if (policy < 0)
5380 return -EINVAL;
5381
1da177e4
LT
5382 return do_sched_setscheduler(pid, policy, param);
5383}
5384
5385/**
5386 * sys_sched_setparam - set/change the RT priority of a thread
5387 * @pid: the pid in question.
5388 * @param: structure containing the new RT priority.
5389 */
5390asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5391{
5392 return do_sched_setscheduler(pid, -1, param);
5393}
5394
5395/**
5396 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5397 * @pid: the pid in question.
5398 */
5399asmlinkage long sys_sched_getscheduler(pid_t pid)
5400{
36c8b586 5401 struct task_struct *p;
3a5c359a 5402 int retval;
1da177e4
LT
5403
5404 if (pid < 0)
3a5c359a 5405 return -EINVAL;
1da177e4
LT
5406
5407 retval = -ESRCH;
5408 read_lock(&tasklist_lock);
5409 p = find_process_by_pid(pid);
5410 if (p) {
5411 retval = security_task_getscheduler(p);
5412 if (!retval)
5413 retval = p->policy;
5414 }
5415 read_unlock(&tasklist_lock);
1da177e4
LT
5416 return retval;
5417}
5418
5419/**
5420 * sys_sched_getscheduler - get the RT priority of a thread
5421 * @pid: the pid in question.
5422 * @param: structure containing the RT priority.
5423 */
5424asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5425{
5426 struct sched_param lp;
36c8b586 5427 struct task_struct *p;
3a5c359a 5428 int retval;
1da177e4
LT
5429
5430 if (!param || pid < 0)
3a5c359a 5431 return -EINVAL;
1da177e4
LT
5432
5433 read_lock(&tasklist_lock);
5434 p = find_process_by_pid(pid);
5435 retval = -ESRCH;
5436 if (!p)
5437 goto out_unlock;
5438
5439 retval = security_task_getscheduler(p);
5440 if (retval)
5441 goto out_unlock;
5442
5443 lp.sched_priority = p->rt_priority;
5444 read_unlock(&tasklist_lock);
5445
5446 /*
5447 * This one might sleep, we cannot do it with a spinlock held ...
5448 */
5449 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5450
1da177e4
LT
5451 return retval;
5452
5453out_unlock:
5454 read_unlock(&tasklist_lock);
5455 return retval;
5456}
5457
b53e921b 5458long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5459{
1da177e4 5460 cpumask_t cpus_allowed;
b53e921b 5461 cpumask_t new_mask = *in_mask;
36c8b586
IM
5462 struct task_struct *p;
5463 int retval;
1da177e4 5464
95402b38 5465 get_online_cpus();
1da177e4
LT
5466 read_lock(&tasklist_lock);
5467
5468 p = find_process_by_pid(pid);
5469 if (!p) {
5470 read_unlock(&tasklist_lock);
95402b38 5471 put_online_cpus();
1da177e4
LT
5472 return -ESRCH;
5473 }
5474
5475 /*
5476 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5477 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5478 * usage count and then drop tasklist_lock.
5479 */
5480 get_task_struct(p);
5481 read_unlock(&tasklist_lock);
5482
5483 retval = -EPERM;
5484 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5485 !capable(CAP_SYS_NICE))
5486 goto out_unlock;
5487
e7834f8f
DQ
5488 retval = security_task_setscheduler(p, 0, NULL);
5489 if (retval)
5490 goto out_unlock;
5491
f9a86fcb 5492 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5493 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5494 again:
7c16ec58 5495 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5496
8707d8b8 5497 if (!retval) {
f9a86fcb 5498 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5499 if (!cpus_subset(new_mask, cpus_allowed)) {
5500 /*
5501 * We must have raced with a concurrent cpuset
5502 * update. Just reset the cpus_allowed to the
5503 * cpuset's cpus_allowed
5504 */
5505 new_mask = cpus_allowed;
5506 goto again;
5507 }
5508 }
1da177e4
LT
5509out_unlock:
5510 put_task_struct(p);
95402b38 5511 put_online_cpus();
1da177e4
LT
5512 return retval;
5513}
5514
5515static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5516 cpumask_t *new_mask)
5517{
5518 if (len < sizeof(cpumask_t)) {
5519 memset(new_mask, 0, sizeof(cpumask_t));
5520 } else if (len > sizeof(cpumask_t)) {
5521 len = sizeof(cpumask_t);
5522 }
5523 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5524}
5525
5526/**
5527 * sys_sched_setaffinity - set the cpu affinity of a process
5528 * @pid: pid of the process
5529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5530 * @user_mask_ptr: user-space pointer to the new cpu mask
5531 */
5532asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5533 unsigned long __user *user_mask_ptr)
5534{
5535 cpumask_t new_mask;
5536 int retval;
5537
5538 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5539 if (retval)
5540 return retval;
5541
b53e921b 5542 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5543}
5544
5545/*
5546 * Represents all cpu's present in the system
5547 * In systems capable of hotplug, this map could dynamically grow
5548 * as new cpu's are detected in the system via any platform specific
5549 * method, such as ACPI for e.g.
5550 */
5551
4cef0c61 5552cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5553EXPORT_SYMBOL(cpu_present_map);
5554
5555#ifndef CONFIG_SMP
4cef0c61 5556cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5557EXPORT_SYMBOL(cpu_online_map);
5558
4cef0c61 5559cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5560EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5561#endif
5562
5563long sched_getaffinity(pid_t pid, cpumask_t *mask)
5564{
36c8b586 5565 struct task_struct *p;
1da177e4 5566 int retval;
1da177e4 5567
95402b38 5568 get_online_cpus();
1da177e4
LT
5569 read_lock(&tasklist_lock);
5570
5571 retval = -ESRCH;
5572 p = find_process_by_pid(pid);
5573 if (!p)
5574 goto out_unlock;
5575
e7834f8f
DQ
5576 retval = security_task_getscheduler(p);
5577 if (retval)
5578 goto out_unlock;
5579
2f7016d9 5580 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5581
5582out_unlock:
5583 read_unlock(&tasklist_lock);
95402b38 5584 put_online_cpus();
1da177e4 5585
9531b62f 5586 return retval;
1da177e4
LT
5587}
5588
5589/**
5590 * sys_sched_getaffinity - get the cpu affinity of a process
5591 * @pid: pid of the process
5592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5593 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5594 */
5595asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5596 unsigned long __user *user_mask_ptr)
5597{
5598 int ret;
5599 cpumask_t mask;
5600
5601 if (len < sizeof(cpumask_t))
5602 return -EINVAL;
5603
5604 ret = sched_getaffinity(pid, &mask);
5605 if (ret < 0)
5606 return ret;
5607
5608 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5609 return -EFAULT;
5610
5611 return sizeof(cpumask_t);
5612}
5613
5614/**
5615 * sys_sched_yield - yield the current processor to other threads.
5616 *
dd41f596
IM
5617 * This function yields the current CPU to other tasks. If there are no
5618 * other threads running on this CPU then this function will return.
1da177e4
LT
5619 */
5620asmlinkage long sys_sched_yield(void)
5621{
70b97a7f 5622 struct rq *rq = this_rq_lock();
1da177e4 5623
2d72376b 5624 schedstat_inc(rq, yld_count);
4530d7ab 5625 current->sched_class->yield_task(rq);
1da177e4
LT
5626
5627 /*
5628 * Since we are going to call schedule() anyway, there's
5629 * no need to preempt or enable interrupts:
5630 */
5631 __release(rq->lock);
8a25d5de 5632 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5633 _raw_spin_unlock(&rq->lock);
5634 preempt_enable_no_resched();
5635
5636 schedule();
5637
5638 return 0;
5639}
5640
e7b38404 5641static void __cond_resched(void)
1da177e4 5642{
8e0a43d8
IM
5643#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5644 __might_sleep(__FILE__, __LINE__);
5645#endif
5bbcfd90
IM
5646 /*
5647 * The BKS might be reacquired before we have dropped
5648 * PREEMPT_ACTIVE, which could trigger a second
5649 * cond_resched() call.
5650 */
1da177e4
LT
5651 do {
5652 add_preempt_count(PREEMPT_ACTIVE);
5653 schedule();
5654 sub_preempt_count(PREEMPT_ACTIVE);
5655 } while (need_resched());
5656}
5657
02b67cc3
HX
5658#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5659int __sched _cond_resched(void)
1da177e4 5660{
9414232f
IM
5661 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5662 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5663 __cond_resched();
5664 return 1;
5665 }
5666 return 0;
5667}
02b67cc3
HX
5668EXPORT_SYMBOL(_cond_resched);
5669#endif
1da177e4
LT
5670
5671/*
5672 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5673 * call schedule, and on return reacquire the lock.
5674 *
41a2d6cf 5675 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5676 * operations here to prevent schedule() from being called twice (once via
5677 * spin_unlock(), once by hand).
5678 */
95cdf3b7 5679int cond_resched_lock(spinlock_t *lock)
1da177e4 5680{
95c354fe 5681 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5682 int ret = 0;
5683
95c354fe 5684 if (spin_needbreak(lock) || resched) {
1da177e4 5685 spin_unlock(lock);
95c354fe
NP
5686 if (resched && need_resched())
5687 __cond_resched();
5688 else
5689 cpu_relax();
6df3cecb 5690 ret = 1;
1da177e4 5691 spin_lock(lock);
1da177e4 5692 }
6df3cecb 5693 return ret;
1da177e4 5694}
1da177e4
LT
5695EXPORT_SYMBOL(cond_resched_lock);
5696
5697int __sched cond_resched_softirq(void)
5698{
5699 BUG_ON(!in_softirq());
5700
9414232f 5701 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5702 local_bh_enable();
1da177e4
LT
5703 __cond_resched();
5704 local_bh_disable();
5705 return 1;
5706 }
5707 return 0;
5708}
1da177e4
LT
5709EXPORT_SYMBOL(cond_resched_softirq);
5710
1da177e4
LT
5711/**
5712 * yield - yield the current processor to other threads.
5713 *
72fd4a35 5714 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5715 * thread runnable and calls sys_sched_yield().
5716 */
5717void __sched yield(void)
5718{
5719 set_current_state(TASK_RUNNING);
5720 sys_sched_yield();
5721}
1da177e4
LT
5722EXPORT_SYMBOL(yield);
5723
5724/*
41a2d6cf 5725 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5726 * that process accounting knows that this is a task in IO wait state.
5727 *
5728 * But don't do that if it is a deliberate, throttling IO wait (this task
5729 * has set its backing_dev_info: the queue against which it should throttle)
5730 */
5731void __sched io_schedule(void)
5732{
70b97a7f 5733 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5734
0ff92245 5735 delayacct_blkio_start();
1da177e4
LT
5736 atomic_inc(&rq->nr_iowait);
5737 schedule();
5738 atomic_dec(&rq->nr_iowait);
0ff92245 5739 delayacct_blkio_end();
1da177e4 5740}
1da177e4
LT
5741EXPORT_SYMBOL(io_schedule);
5742
5743long __sched io_schedule_timeout(long timeout)
5744{
70b97a7f 5745 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5746 long ret;
5747
0ff92245 5748 delayacct_blkio_start();
1da177e4
LT
5749 atomic_inc(&rq->nr_iowait);
5750 ret = schedule_timeout(timeout);
5751 atomic_dec(&rq->nr_iowait);
0ff92245 5752 delayacct_blkio_end();
1da177e4
LT
5753 return ret;
5754}
5755
5756/**
5757 * sys_sched_get_priority_max - return maximum RT priority.
5758 * @policy: scheduling class.
5759 *
5760 * this syscall returns the maximum rt_priority that can be used
5761 * by a given scheduling class.
5762 */
5763asmlinkage long sys_sched_get_priority_max(int policy)
5764{
5765 int ret = -EINVAL;
5766
5767 switch (policy) {
5768 case SCHED_FIFO:
5769 case SCHED_RR:
5770 ret = MAX_USER_RT_PRIO-1;
5771 break;
5772 case SCHED_NORMAL:
b0a9499c 5773 case SCHED_BATCH:
dd41f596 5774 case SCHED_IDLE:
1da177e4
LT
5775 ret = 0;
5776 break;
5777 }
5778 return ret;
5779}
5780
5781/**
5782 * sys_sched_get_priority_min - return minimum RT priority.
5783 * @policy: scheduling class.
5784 *
5785 * this syscall returns the minimum rt_priority that can be used
5786 * by a given scheduling class.
5787 */
5788asmlinkage long sys_sched_get_priority_min(int policy)
5789{
5790 int ret = -EINVAL;
5791
5792 switch (policy) {
5793 case SCHED_FIFO:
5794 case SCHED_RR:
5795 ret = 1;
5796 break;
5797 case SCHED_NORMAL:
b0a9499c 5798 case SCHED_BATCH:
dd41f596 5799 case SCHED_IDLE:
1da177e4
LT
5800 ret = 0;
5801 }
5802 return ret;
5803}
5804
5805/**
5806 * sys_sched_rr_get_interval - return the default timeslice of a process.
5807 * @pid: pid of the process.
5808 * @interval: userspace pointer to the timeslice value.
5809 *
5810 * this syscall writes the default timeslice value of a given process
5811 * into the user-space timespec buffer. A value of '0' means infinity.
5812 */
5813asmlinkage
5814long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5815{
36c8b586 5816 struct task_struct *p;
a4ec24b4 5817 unsigned int time_slice;
3a5c359a 5818 int retval;
1da177e4 5819 struct timespec t;
1da177e4
LT
5820
5821 if (pid < 0)
3a5c359a 5822 return -EINVAL;
1da177e4
LT
5823
5824 retval = -ESRCH;
5825 read_lock(&tasklist_lock);
5826 p = find_process_by_pid(pid);
5827 if (!p)
5828 goto out_unlock;
5829
5830 retval = security_task_getscheduler(p);
5831 if (retval)
5832 goto out_unlock;
5833
77034937
IM
5834 /*
5835 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5836 * tasks that are on an otherwise idle runqueue:
5837 */
5838 time_slice = 0;
5839 if (p->policy == SCHED_RR) {
a4ec24b4 5840 time_slice = DEF_TIMESLICE;
1868f958 5841 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5842 struct sched_entity *se = &p->se;
5843 unsigned long flags;
5844 struct rq *rq;
5845
5846 rq = task_rq_lock(p, &flags);
77034937
IM
5847 if (rq->cfs.load.weight)
5848 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5849 task_rq_unlock(rq, &flags);
5850 }
1da177e4 5851 read_unlock(&tasklist_lock);
a4ec24b4 5852 jiffies_to_timespec(time_slice, &t);
1da177e4 5853 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5854 return retval;
3a5c359a 5855
1da177e4
LT
5856out_unlock:
5857 read_unlock(&tasklist_lock);
5858 return retval;
5859}
5860
2ed6e34f 5861static const char stat_nam[] = "RSDTtZX";
36c8b586 5862
82a1fcb9 5863void sched_show_task(struct task_struct *p)
1da177e4 5864{
1da177e4 5865 unsigned long free = 0;
36c8b586 5866 unsigned state;
1da177e4 5867
1da177e4 5868 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5869 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5870 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5871#if BITS_PER_LONG == 32
1da177e4 5872 if (state == TASK_RUNNING)
cc4ea795 5873 printk(KERN_CONT " running ");
1da177e4 5874 else
cc4ea795 5875 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5876#else
5877 if (state == TASK_RUNNING)
cc4ea795 5878 printk(KERN_CONT " running task ");
1da177e4 5879 else
cc4ea795 5880 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5881#endif
5882#ifdef CONFIG_DEBUG_STACK_USAGE
5883 {
10ebffde 5884 unsigned long *n = end_of_stack(p);
1da177e4
LT
5885 while (!*n)
5886 n++;
10ebffde 5887 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5888 }
5889#endif
ba25f9dc 5890 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5891 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5892
5fb5e6de 5893 show_stack(p, NULL);
1da177e4
LT
5894}
5895
e59e2ae2 5896void show_state_filter(unsigned long state_filter)
1da177e4 5897{
36c8b586 5898 struct task_struct *g, *p;
1da177e4 5899
4bd77321
IM
5900#if BITS_PER_LONG == 32
5901 printk(KERN_INFO
5902 " task PC stack pid father\n");
1da177e4 5903#else
4bd77321
IM
5904 printk(KERN_INFO
5905 " task PC stack pid father\n");
1da177e4
LT
5906#endif
5907 read_lock(&tasklist_lock);
5908 do_each_thread(g, p) {
5909 /*
5910 * reset the NMI-timeout, listing all files on a slow
5911 * console might take alot of time:
5912 */
5913 touch_nmi_watchdog();
39bc89fd 5914 if (!state_filter || (p->state & state_filter))
82a1fcb9 5915 sched_show_task(p);
1da177e4
LT
5916 } while_each_thread(g, p);
5917
04c9167f
JF
5918 touch_all_softlockup_watchdogs();
5919
dd41f596
IM
5920#ifdef CONFIG_SCHED_DEBUG
5921 sysrq_sched_debug_show();
5922#endif
1da177e4 5923 read_unlock(&tasklist_lock);
e59e2ae2
IM
5924 /*
5925 * Only show locks if all tasks are dumped:
5926 */
5927 if (state_filter == -1)
5928 debug_show_all_locks();
1da177e4
LT
5929}
5930
1df21055
IM
5931void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5932{
dd41f596 5933 idle->sched_class = &idle_sched_class;
1df21055
IM
5934}
5935
f340c0d1
IM
5936/**
5937 * init_idle - set up an idle thread for a given CPU
5938 * @idle: task in question
5939 * @cpu: cpu the idle task belongs to
5940 *
5941 * NOTE: this function does not set the idle thread's NEED_RESCHED
5942 * flag, to make booting more robust.
5943 */
5c1e1767 5944void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5945{
70b97a7f 5946 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5947 unsigned long flags;
5948
dd41f596
IM
5949 __sched_fork(idle);
5950 idle->se.exec_start = sched_clock();
5951
b29739f9 5952 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5953 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5954 __set_task_cpu(idle, cpu);
1da177e4
LT
5955
5956 spin_lock_irqsave(&rq->lock, flags);
5957 rq->curr = rq->idle = idle;
4866cde0
NP
5958#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5959 idle->oncpu = 1;
5960#endif
1da177e4
LT
5961 spin_unlock_irqrestore(&rq->lock, flags);
5962
5963 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5964 task_thread_info(idle)->preempt_count = 0;
6478d880 5965
dd41f596
IM
5966 /*
5967 * The idle tasks have their own, simple scheduling class:
5968 */
5969 idle->sched_class = &idle_sched_class;
1da177e4
LT
5970}
5971
5972/*
5973 * In a system that switches off the HZ timer nohz_cpu_mask
5974 * indicates which cpus entered this state. This is used
5975 * in the rcu update to wait only for active cpus. For system
5976 * which do not switch off the HZ timer nohz_cpu_mask should
5977 * always be CPU_MASK_NONE.
5978 */
5979cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5980
19978ca6
IM
5981/*
5982 * Increase the granularity value when there are more CPUs,
5983 * because with more CPUs the 'effective latency' as visible
5984 * to users decreases. But the relationship is not linear,
5985 * so pick a second-best guess by going with the log2 of the
5986 * number of CPUs.
5987 *
5988 * This idea comes from the SD scheduler of Con Kolivas:
5989 */
5990static inline void sched_init_granularity(void)
5991{
5992 unsigned int factor = 1 + ilog2(num_online_cpus());
5993 const unsigned long limit = 200000000;
5994
5995 sysctl_sched_min_granularity *= factor;
5996 if (sysctl_sched_min_granularity > limit)
5997 sysctl_sched_min_granularity = limit;
5998
5999 sysctl_sched_latency *= factor;
6000 if (sysctl_sched_latency > limit)
6001 sysctl_sched_latency = limit;
6002
6003 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
6004}
6005
1da177e4
LT
6006#ifdef CONFIG_SMP
6007/*
6008 * This is how migration works:
6009 *
70b97a7f 6010 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6011 * runqueue and wake up that CPU's migration thread.
6012 * 2) we down() the locked semaphore => thread blocks.
6013 * 3) migration thread wakes up (implicitly it forces the migrated
6014 * thread off the CPU)
6015 * 4) it gets the migration request and checks whether the migrated
6016 * task is still in the wrong runqueue.
6017 * 5) if it's in the wrong runqueue then the migration thread removes
6018 * it and puts it into the right queue.
6019 * 6) migration thread up()s the semaphore.
6020 * 7) we wake up and the migration is done.
6021 */
6022
6023/*
6024 * Change a given task's CPU affinity. Migrate the thread to a
6025 * proper CPU and schedule it away if the CPU it's executing on
6026 * is removed from the allowed bitmask.
6027 *
6028 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6029 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6030 * call is not atomic; no spinlocks may be held.
6031 */
cd8ba7cd 6032int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 6033{
70b97a7f 6034 struct migration_req req;
1da177e4 6035 unsigned long flags;
70b97a7f 6036 struct rq *rq;
48f24c4d 6037 int ret = 0;
1da177e4
LT
6038
6039 rq = task_rq_lock(p, &flags);
cd8ba7cd 6040 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
6041 ret = -EINVAL;
6042 goto out;
6043 }
6044
73fe6aae 6045 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6046 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6047 else {
cd8ba7cd
MT
6048 p->cpus_allowed = *new_mask;
6049 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
6050 }
6051
1da177e4 6052 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 6053 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
6054 goto out;
6055
cd8ba7cd 6056 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
6057 /* Need help from migration thread: drop lock and wait. */
6058 task_rq_unlock(rq, &flags);
6059 wake_up_process(rq->migration_thread);
6060 wait_for_completion(&req.done);
6061 tlb_migrate_finish(p->mm);
6062 return 0;
6063 }
6064out:
6065 task_rq_unlock(rq, &flags);
48f24c4d 6066
1da177e4
LT
6067 return ret;
6068}
cd8ba7cd 6069EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6070
6071/*
41a2d6cf 6072 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6073 * this because either it can't run here any more (set_cpus_allowed()
6074 * away from this CPU, or CPU going down), or because we're
6075 * attempting to rebalance this task on exec (sched_exec).
6076 *
6077 * So we race with normal scheduler movements, but that's OK, as long
6078 * as the task is no longer on this CPU.
efc30814
KK
6079 *
6080 * Returns non-zero if task was successfully migrated.
1da177e4 6081 */
efc30814 6082static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6083{
70b97a7f 6084 struct rq *rq_dest, *rq_src;
dd41f596 6085 int ret = 0, on_rq;
1da177e4
LT
6086
6087 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 6088 return ret;
1da177e4
LT
6089
6090 rq_src = cpu_rq(src_cpu);
6091 rq_dest = cpu_rq(dest_cpu);
6092
6093 double_rq_lock(rq_src, rq_dest);
6094 /* Already moved. */
6095 if (task_cpu(p) != src_cpu)
6096 goto out;
6097 /* Affinity changed (again). */
6098 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6099 goto out;
6100
dd41f596 6101 on_rq = p->se.on_rq;
6e82a3be 6102 if (on_rq)
2e1cb74a 6103 deactivate_task(rq_src, p, 0);
6e82a3be 6104
1da177e4 6105 set_task_cpu(p, dest_cpu);
dd41f596
IM
6106 if (on_rq) {
6107 activate_task(rq_dest, p, 0);
6108 check_preempt_curr(rq_dest, p);
1da177e4 6109 }
efc30814 6110 ret = 1;
1da177e4
LT
6111out:
6112 double_rq_unlock(rq_src, rq_dest);
efc30814 6113 return ret;
1da177e4
LT
6114}
6115
6116/*
6117 * migration_thread - this is a highprio system thread that performs
6118 * thread migration by bumping thread off CPU then 'pushing' onto
6119 * another runqueue.
6120 */
95cdf3b7 6121static int migration_thread(void *data)
1da177e4 6122{
1da177e4 6123 int cpu = (long)data;
70b97a7f 6124 struct rq *rq;
1da177e4
LT
6125
6126 rq = cpu_rq(cpu);
6127 BUG_ON(rq->migration_thread != current);
6128
6129 set_current_state(TASK_INTERRUPTIBLE);
6130 while (!kthread_should_stop()) {
70b97a7f 6131 struct migration_req *req;
1da177e4 6132 struct list_head *head;
1da177e4 6133
1da177e4
LT
6134 spin_lock_irq(&rq->lock);
6135
6136 if (cpu_is_offline(cpu)) {
6137 spin_unlock_irq(&rq->lock);
6138 goto wait_to_die;
6139 }
6140
6141 if (rq->active_balance) {
6142 active_load_balance(rq, cpu);
6143 rq->active_balance = 0;
6144 }
6145
6146 head = &rq->migration_queue;
6147
6148 if (list_empty(head)) {
6149 spin_unlock_irq(&rq->lock);
6150 schedule();
6151 set_current_state(TASK_INTERRUPTIBLE);
6152 continue;
6153 }
70b97a7f 6154 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6155 list_del_init(head->next);
6156
674311d5
NP
6157 spin_unlock(&rq->lock);
6158 __migrate_task(req->task, cpu, req->dest_cpu);
6159 local_irq_enable();
1da177e4
LT
6160
6161 complete(&req->done);
6162 }
6163 __set_current_state(TASK_RUNNING);
6164 return 0;
6165
6166wait_to_die:
6167 /* Wait for kthread_stop */
6168 set_current_state(TASK_INTERRUPTIBLE);
6169 while (!kthread_should_stop()) {
6170 schedule();
6171 set_current_state(TASK_INTERRUPTIBLE);
6172 }
6173 __set_current_state(TASK_RUNNING);
6174 return 0;
6175}
6176
6177#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6178
6179static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6180{
6181 int ret;
6182
6183 local_irq_disable();
6184 ret = __migrate_task(p, src_cpu, dest_cpu);
6185 local_irq_enable();
6186 return ret;
6187}
6188
054b9108 6189/*
3a4fa0a2 6190 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6191 * NOTE: interrupts should be disabled by the caller
6192 */
48f24c4d 6193static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6194{
efc30814 6195 unsigned long flags;
1da177e4 6196 cpumask_t mask;
70b97a7f
IM
6197 struct rq *rq;
6198 int dest_cpu;
1da177e4 6199
3a5c359a
AK
6200 do {
6201 /* On same node? */
6202 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6203 cpus_and(mask, mask, p->cpus_allowed);
6204 dest_cpu = any_online_cpu(mask);
6205
6206 /* On any allowed CPU? */
434d53b0 6207 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6208 dest_cpu = any_online_cpu(p->cpus_allowed);
6209
6210 /* No more Mr. Nice Guy. */
434d53b0 6211 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6212 cpumask_t cpus_allowed;
6213
6214 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6215 /*
6216 * Try to stay on the same cpuset, where the
6217 * current cpuset may be a subset of all cpus.
6218 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6219 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6220 * called within calls to cpuset_lock/cpuset_unlock.
6221 */
3a5c359a 6222 rq = task_rq_lock(p, &flags);
470fd646 6223 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6224 dest_cpu = any_online_cpu(p->cpus_allowed);
6225 task_rq_unlock(rq, &flags);
1da177e4 6226
3a5c359a
AK
6227 /*
6228 * Don't tell them about moving exiting tasks or
6229 * kernel threads (both mm NULL), since they never
6230 * leave kernel.
6231 */
41a2d6cf 6232 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6233 printk(KERN_INFO "process %d (%s) no "
6234 "longer affine to cpu%d\n",
41a2d6cf
IM
6235 task_pid_nr(p), p->comm, dead_cpu);
6236 }
3a5c359a 6237 }
f7b4cddc 6238 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6239}
6240
6241/*
6242 * While a dead CPU has no uninterruptible tasks queued at this point,
6243 * it might still have a nonzero ->nr_uninterruptible counter, because
6244 * for performance reasons the counter is not stricly tracking tasks to
6245 * their home CPUs. So we just add the counter to another CPU's counter,
6246 * to keep the global sum constant after CPU-down:
6247 */
70b97a7f 6248static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6249{
7c16ec58 6250 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6251 unsigned long flags;
6252
6253 local_irq_save(flags);
6254 double_rq_lock(rq_src, rq_dest);
6255 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6256 rq_src->nr_uninterruptible = 0;
6257 double_rq_unlock(rq_src, rq_dest);
6258 local_irq_restore(flags);
6259}
6260
6261/* Run through task list and migrate tasks from the dead cpu. */
6262static void migrate_live_tasks(int src_cpu)
6263{
48f24c4d 6264 struct task_struct *p, *t;
1da177e4 6265
f7b4cddc 6266 read_lock(&tasklist_lock);
1da177e4 6267
48f24c4d
IM
6268 do_each_thread(t, p) {
6269 if (p == current)
1da177e4
LT
6270 continue;
6271
48f24c4d
IM
6272 if (task_cpu(p) == src_cpu)
6273 move_task_off_dead_cpu(src_cpu, p);
6274 } while_each_thread(t, p);
1da177e4 6275
f7b4cddc 6276 read_unlock(&tasklist_lock);
1da177e4
LT
6277}
6278
dd41f596
IM
6279/*
6280 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6281 * It does so by boosting its priority to highest possible.
6282 * Used by CPU offline code.
1da177e4
LT
6283 */
6284void sched_idle_next(void)
6285{
48f24c4d 6286 int this_cpu = smp_processor_id();
70b97a7f 6287 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6288 struct task_struct *p = rq->idle;
6289 unsigned long flags;
6290
6291 /* cpu has to be offline */
48f24c4d 6292 BUG_ON(cpu_online(this_cpu));
1da177e4 6293
48f24c4d
IM
6294 /*
6295 * Strictly not necessary since rest of the CPUs are stopped by now
6296 * and interrupts disabled on the current cpu.
1da177e4
LT
6297 */
6298 spin_lock_irqsave(&rq->lock, flags);
6299
dd41f596 6300 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6301
94bc9a7b
DA
6302 update_rq_clock(rq);
6303 activate_task(rq, p, 0);
1da177e4
LT
6304
6305 spin_unlock_irqrestore(&rq->lock, flags);
6306}
6307
48f24c4d
IM
6308/*
6309 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6310 * offline.
6311 */
6312void idle_task_exit(void)
6313{
6314 struct mm_struct *mm = current->active_mm;
6315
6316 BUG_ON(cpu_online(smp_processor_id()));
6317
6318 if (mm != &init_mm)
6319 switch_mm(mm, &init_mm, current);
6320 mmdrop(mm);
6321}
6322
054b9108 6323/* called under rq->lock with disabled interrupts */
36c8b586 6324static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6325{
70b97a7f 6326 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6327
6328 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6329 BUG_ON(!p->exit_state);
1da177e4
LT
6330
6331 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6332 BUG_ON(p->state == TASK_DEAD);
1da177e4 6333
48f24c4d 6334 get_task_struct(p);
1da177e4
LT
6335
6336 /*
6337 * Drop lock around migration; if someone else moves it,
41a2d6cf 6338 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6339 * fine.
6340 */
f7b4cddc 6341 spin_unlock_irq(&rq->lock);
48f24c4d 6342 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6343 spin_lock_irq(&rq->lock);
1da177e4 6344
48f24c4d 6345 put_task_struct(p);
1da177e4
LT
6346}
6347
6348/* release_task() removes task from tasklist, so we won't find dead tasks. */
6349static void migrate_dead_tasks(unsigned int dead_cpu)
6350{
70b97a7f 6351 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6352 struct task_struct *next;
48f24c4d 6353
dd41f596
IM
6354 for ( ; ; ) {
6355 if (!rq->nr_running)
6356 break;
a8e504d2 6357 update_rq_clock(rq);
ff95f3df 6358 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6359 if (!next)
6360 break;
6361 migrate_dead(dead_cpu, next);
e692ab53 6362
1da177e4
LT
6363 }
6364}
6365#endif /* CONFIG_HOTPLUG_CPU */
6366
e692ab53
NP
6367#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6368
6369static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6370 {
6371 .procname = "sched_domain",
c57baf1e 6372 .mode = 0555,
e0361851 6373 },
38605cae 6374 {0, },
e692ab53
NP
6375};
6376
6377static struct ctl_table sd_ctl_root[] = {
e0361851 6378 {
c57baf1e 6379 .ctl_name = CTL_KERN,
e0361851 6380 .procname = "kernel",
c57baf1e 6381 .mode = 0555,
e0361851
AD
6382 .child = sd_ctl_dir,
6383 },
38605cae 6384 {0, },
e692ab53
NP
6385};
6386
6387static struct ctl_table *sd_alloc_ctl_entry(int n)
6388{
6389 struct ctl_table *entry =
5cf9f062 6390 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6391
e692ab53
NP
6392 return entry;
6393}
6394
6382bc90
MM
6395static void sd_free_ctl_entry(struct ctl_table **tablep)
6396{
cd790076 6397 struct ctl_table *entry;
6382bc90 6398
cd790076
MM
6399 /*
6400 * In the intermediate directories, both the child directory and
6401 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6402 * will always be set. In the lowest directory the names are
cd790076
MM
6403 * static strings and all have proc handlers.
6404 */
6405 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6406 if (entry->child)
6407 sd_free_ctl_entry(&entry->child);
cd790076
MM
6408 if (entry->proc_handler == NULL)
6409 kfree(entry->procname);
6410 }
6382bc90
MM
6411
6412 kfree(*tablep);
6413 *tablep = NULL;
6414}
6415
e692ab53 6416static void
e0361851 6417set_table_entry(struct ctl_table *entry,
e692ab53
NP
6418 const char *procname, void *data, int maxlen,
6419 mode_t mode, proc_handler *proc_handler)
6420{
e692ab53
NP
6421 entry->procname = procname;
6422 entry->data = data;
6423 entry->maxlen = maxlen;
6424 entry->mode = mode;
6425 entry->proc_handler = proc_handler;
6426}
6427
6428static struct ctl_table *
6429sd_alloc_ctl_domain_table(struct sched_domain *sd)
6430{
ace8b3d6 6431 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6432
ad1cdc1d
MM
6433 if (table == NULL)
6434 return NULL;
6435
e0361851 6436 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6437 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6438 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6439 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6440 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6441 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6442 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6443 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6444 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6445 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6446 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6447 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6448 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6449 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6450 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6451 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6452 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6453 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6454 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6455 &sd->cache_nice_tries,
6456 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6457 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6458 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6459 /* &table[11] is terminator */
e692ab53
NP
6460
6461 return table;
6462}
6463
9a4e7159 6464static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6465{
6466 struct ctl_table *entry, *table;
6467 struct sched_domain *sd;
6468 int domain_num = 0, i;
6469 char buf[32];
6470
6471 for_each_domain(cpu, sd)
6472 domain_num++;
6473 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6474 if (table == NULL)
6475 return NULL;
e692ab53
NP
6476
6477 i = 0;
6478 for_each_domain(cpu, sd) {
6479 snprintf(buf, 32, "domain%d", i);
e692ab53 6480 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6481 entry->mode = 0555;
e692ab53
NP
6482 entry->child = sd_alloc_ctl_domain_table(sd);
6483 entry++;
6484 i++;
6485 }
6486 return table;
6487}
6488
6489static struct ctl_table_header *sd_sysctl_header;
6382bc90 6490static void register_sched_domain_sysctl(void)
e692ab53
NP
6491{
6492 int i, cpu_num = num_online_cpus();
6493 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6494 char buf[32];
6495
7378547f
MM
6496 WARN_ON(sd_ctl_dir[0].child);
6497 sd_ctl_dir[0].child = entry;
6498
ad1cdc1d
MM
6499 if (entry == NULL)
6500 return;
6501
97b6ea7b 6502 for_each_online_cpu(i) {
e692ab53 6503 snprintf(buf, 32, "cpu%d", i);
e692ab53 6504 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6505 entry->mode = 0555;
e692ab53 6506 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6507 entry++;
e692ab53 6508 }
7378547f
MM
6509
6510 WARN_ON(sd_sysctl_header);
e692ab53
NP
6511 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6512}
6382bc90 6513
7378547f 6514/* may be called multiple times per register */
6382bc90
MM
6515static void unregister_sched_domain_sysctl(void)
6516{
7378547f
MM
6517 if (sd_sysctl_header)
6518 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6519 sd_sysctl_header = NULL;
7378547f
MM
6520 if (sd_ctl_dir[0].child)
6521 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6522}
e692ab53 6523#else
6382bc90
MM
6524static void register_sched_domain_sysctl(void)
6525{
6526}
6527static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6528{
6529}
6530#endif
6531
1da177e4
LT
6532/*
6533 * migration_call - callback that gets triggered when a CPU is added.
6534 * Here we can start up the necessary migration thread for the new CPU.
6535 */
48f24c4d
IM
6536static int __cpuinit
6537migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6538{
1da177e4 6539 struct task_struct *p;
48f24c4d 6540 int cpu = (long)hcpu;
1da177e4 6541 unsigned long flags;
70b97a7f 6542 struct rq *rq;
1da177e4
LT
6543
6544 switch (action) {
5be9361c 6545
1da177e4 6546 case CPU_UP_PREPARE:
8bb78442 6547 case CPU_UP_PREPARE_FROZEN:
dd41f596 6548 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6549 if (IS_ERR(p))
6550 return NOTIFY_BAD;
1da177e4
LT
6551 kthread_bind(p, cpu);
6552 /* Must be high prio: stop_machine expects to yield to it. */
6553 rq = task_rq_lock(p, &flags);
dd41f596 6554 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6555 task_rq_unlock(rq, &flags);
6556 cpu_rq(cpu)->migration_thread = p;
6557 break;
48f24c4d 6558
1da177e4 6559 case CPU_ONLINE:
8bb78442 6560 case CPU_ONLINE_FROZEN:
3a4fa0a2 6561 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6562 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6563
6564 /* Update our root-domain */
6565 rq = cpu_rq(cpu);
6566 spin_lock_irqsave(&rq->lock, flags);
6567 if (rq->rd) {
6568 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6569 cpu_set(cpu, rq->rd->online);
6570 }
6571 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6572 break;
48f24c4d 6573
1da177e4
LT
6574#ifdef CONFIG_HOTPLUG_CPU
6575 case CPU_UP_CANCELED:
8bb78442 6576 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6577 if (!cpu_rq(cpu)->migration_thread)
6578 break;
41a2d6cf 6579 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6580 kthread_bind(cpu_rq(cpu)->migration_thread,
6581 any_online_cpu(cpu_online_map));
1da177e4
LT
6582 kthread_stop(cpu_rq(cpu)->migration_thread);
6583 cpu_rq(cpu)->migration_thread = NULL;
6584 break;
48f24c4d 6585
1da177e4 6586 case CPU_DEAD:
8bb78442 6587 case CPU_DEAD_FROZEN:
470fd646 6588 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6589 migrate_live_tasks(cpu);
6590 rq = cpu_rq(cpu);
6591 kthread_stop(rq->migration_thread);
6592 rq->migration_thread = NULL;
6593 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6594 spin_lock_irq(&rq->lock);
a8e504d2 6595 update_rq_clock(rq);
2e1cb74a 6596 deactivate_task(rq, rq->idle, 0);
1da177e4 6597 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6598 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6599 rq->idle->sched_class = &idle_sched_class;
1da177e4 6600 migrate_dead_tasks(cpu);
d2da272a 6601 spin_unlock_irq(&rq->lock);
470fd646 6602 cpuset_unlock();
1da177e4
LT
6603 migrate_nr_uninterruptible(rq);
6604 BUG_ON(rq->nr_running != 0);
6605
41a2d6cf
IM
6606 /*
6607 * No need to migrate the tasks: it was best-effort if
6608 * they didn't take sched_hotcpu_mutex. Just wake up
6609 * the requestors.
6610 */
1da177e4
LT
6611 spin_lock_irq(&rq->lock);
6612 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6613 struct migration_req *req;
6614
1da177e4 6615 req = list_entry(rq->migration_queue.next,
70b97a7f 6616 struct migration_req, list);
1da177e4
LT
6617 list_del_init(&req->list);
6618 complete(&req->done);
6619 }
6620 spin_unlock_irq(&rq->lock);
6621 break;
57d885fe 6622
08f503b0
GH
6623 case CPU_DYING:
6624 case CPU_DYING_FROZEN:
57d885fe
GH
6625 /* Update our root-domain */
6626 rq = cpu_rq(cpu);
6627 spin_lock_irqsave(&rq->lock, flags);
6628 if (rq->rd) {
6629 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6630 cpu_clear(cpu, rq->rd->online);
6631 }
6632 spin_unlock_irqrestore(&rq->lock, flags);
6633 break;
1da177e4
LT
6634#endif
6635 }
6636 return NOTIFY_OK;
6637}
6638
6639/* Register at highest priority so that task migration (migrate_all_tasks)
6640 * happens before everything else.
6641 */
26c2143b 6642static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6643 .notifier_call = migration_call,
6644 .priority = 10
6645};
6646
e6fe6649 6647void __init migration_init(void)
1da177e4
LT
6648{
6649 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6650 int err;
48f24c4d
IM
6651
6652 /* Start one for the boot CPU: */
07dccf33
AM
6653 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6654 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6655 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6656 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6657}
6658#endif
6659
6660#ifdef CONFIG_SMP
476f3534 6661
3e9830dc 6662#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6663
7c16ec58
MT
6664static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6665 cpumask_t *groupmask)
1da177e4 6666{
4dcf6aff 6667 struct sched_group *group = sd->groups;
434d53b0 6668 char str[256];
1da177e4 6669
434d53b0 6670 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6671 cpus_clear(*groupmask);
4dcf6aff
IM
6672
6673 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6674
6675 if (!(sd->flags & SD_LOAD_BALANCE)) {
6676 printk("does not load-balance\n");
6677 if (sd->parent)
6678 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6679 " has parent");
6680 return -1;
41c7ce9a
NP
6681 }
6682
4dcf6aff
IM
6683 printk(KERN_CONT "span %s\n", str);
6684
6685 if (!cpu_isset(cpu, sd->span)) {
6686 printk(KERN_ERR "ERROR: domain->span does not contain "
6687 "CPU%d\n", cpu);
6688 }
6689 if (!cpu_isset(cpu, group->cpumask)) {
6690 printk(KERN_ERR "ERROR: domain->groups does not contain"
6691 " CPU%d\n", cpu);
6692 }
1da177e4 6693
4dcf6aff 6694 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6695 do {
4dcf6aff
IM
6696 if (!group) {
6697 printk("\n");
6698 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6699 break;
6700 }
6701
4dcf6aff
IM
6702 if (!group->__cpu_power) {
6703 printk(KERN_CONT "\n");
6704 printk(KERN_ERR "ERROR: domain->cpu_power not "
6705 "set\n");
6706 break;
6707 }
1da177e4 6708
4dcf6aff
IM
6709 if (!cpus_weight(group->cpumask)) {
6710 printk(KERN_CONT "\n");
6711 printk(KERN_ERR "ERROR: empty group\n");
6712 break;
6713 }
1da177e4 6714
7c16ec58 6715 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6716 printk(KERN_CONT "\n");
6717 printk(KERN_ERR "ERROR: repeated CPUs\n");
6718 break;
6719 }
1da177e4 6720
7c16ec58 6721 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6722
434d53b0 6723 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6724 printk(KERN_CONT " %s", str);
1da177e4 6725
4dcf6aff
IM
6726 group = group->next;
6727 } while (group != sd->groups);
6728 printk(KERN_CONT "\n");
1da177e4 6729
7c16ec58 6730 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6731 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6732
7c16ec58 6733 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6734 printk(KERN_ERR "ERROR: parent span is not a superset "
6735 "of domain->span\n");
6736 return 0;
6737}
1da177e4 6738
4dcf6aff
IM
6739static void sched_domain_debug(struct sched_domain *sd, int cpu)
6740{
7c16ec58 6741 cpumask_t *groupmask;
4dcf6aff 6742 int level = 0;
1da177e4 6743
4dcf6aff
IM
6744 if (!sd) {
6745 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6746 return;
6747 }
1da177e4 6748
4dcf6aff
IM
6749 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6750
7c16ec58
MT
6751 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6752 if (!groupmask) {
6753 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6754 return;
6755 }
6756
4dcf6aff 6757 for (;;) {
7c16ec58 6758 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6759 break;
1da177e4
LT
6760 level++;
6761 sd = sd->parent;
33859f7f 6762 if (!sd)
4dcf6aff
IM
6763 break;
6764 }
7c16ec58 6765 kfree(groupmask);
1da177e4
LT
6766}
6767#else
48f24c4d 6768# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6769#endif
6770
1a20ff27 6771static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6772{
6773 if (cpus_weight(sd->span) == 1)
6774 return 1;
6775
6776 /* Following flags need at least 2 groups */
6777 if (sd->flags & (SD_LOAD_BALANCE |
6778 SD_BALANCE_NEWIDLE |
6779 SD_BALANCE_FORK |
89c4710e
SS
6780 SD_BALANCE_EXEC |
6781 SD_SHARE_CPUPOWER |
6782 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6783 if (sd->groups != sd->groups->next)
6784 return 0;
6785 }
6786
6787 /* Following flags don't use groups */
6788 if (sd->flags & (SD_WAKE_IDLE |
6789 SD_WAKE_AFFINE |
6790 SD_WAKE_BALANCE))
6791 return 0;
6792
6793 return 1;
6794}
6795
48f24c4d
IM
6796static int
6797sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6798{
6799 unsigned long cflags = sd->flags, pflags = parent->flags;
6800
6801 if (sd_degenerate(parent))
6802 return 1;
6803
6804 if (!cpus_equal(sd->span, parent->span))
6805 return 0;
6806
6807 /* Does parent contain flags not in child? */
6808 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6809 if (cflags & SD_WAKE_AFFINE)
6810 pflags &= ~SD_WAKE_BALANCE;
6811 /* Flags needing groups don't count if only 1 group in parent */
6812 if (parent->groups == parent->groups->next) {
6813 pflags &= ~(SD_LOAD_BALANCE |
6814 SD_BALANCE_NEWIDLE |
6815 SD_BALANCE_FORK |
89c4710e
SS
6816 SD_BALANCE_EXEC |
6817 SD_SHARE_CPUPOWER |
6818 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6819 }
6820 if (~cflags & pflags)
6821 return 0;
6822
6823 return 1;
6824}
6825
57d885fe
GH
6826static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6827{
6828 unsigned long flags;
6829 const struct sched_class *class;
6830
6831 spin_lock_irqsave(&rq->lock, flags);
6832
6833 if (rq->rd) {
6834 struct root_domain *old_rd = rq->rd;
6835
0eab9146 6836 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6837 if (class->leave_domain)
6838 class->leave_domain(rq);
0eab9146 6839 }
57d885fe 6840
dc938520
GH
6841 cpu_clear(rq->cpu, old_rd->span);
6842 cpu_clear(rq->cpu, old_rd->online);
6843
57d885fe
GH
6844 if (atomic_dec_and_test(&old_rd->refcount))
6845 kfree(old_rd);
6846 }
6847
6848 atomic_inc(&rd->refcount);
6849 rq->rd = rd;
6850
dc938520 6851 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6852 if (cpu_isset(rq->cpu, cpu_online_map))
6853 cpu_set(rq->cpu, rd->online);
dc938520 6854
0eab9146 6855 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6856 if (class->join_domain)
6857 class->join_domain(rq);
0eab9146 6858 }
57d885fe
GH
6859
6860 spin_unlock_irqrestore(&rq->lock, flags);
6861}
6862
dc938520 6863static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6864{
6865 memset(rd, 0, sizeof(*rd));
6866
dc938520
GH
6867 cpus_clear(rd->span);
6868 cpus_clear(rd->online);
57d885fe
GH
6869}
6870
6871static void init_defrootdomain(void)
6872{
dc938520 6873 init_rootdomain(&def_root_domain);
57d885fe
GH
6874 atomic_set(&def_root_domain.refcount, 1);
6875}
6876
dc938520 6877static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6878{
6879 struct root_domain *rd;
6880
6881 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6882 if (!rd)
6883 return NULL;
6884
dc938520 6885 init_rootdomain(rd);
57d885fe
GH
6886
6887 return rd;
6888}
6889
1da177e4 6890/*
0eab9146 6891 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6892 * hold the hotplug lock.
6893 */
0eab9146
IM
6894static void
6895cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6896{
70b97a7f 6897 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6898 struct sched_domain *tmp;
6899
6900 /* Remove the sched domains which do not contribute to scheduling. */
6901 for (tmp = sd; tmp; tmp = tmp->parent) {
6902 struct sched_domain *parent = tmp->parent;
6903 if (!parent)
6904 break;
1a848870 6905 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6906 tmp->parent = parent->parent;
1a848870
SS
6907 if (parent->parent)
6908 parent->parent->child = tmp;
6909 }
245af2c7
SS
6910 }
6911
1a848870 6912 if (sd && sd_degenerate(sd)) {
245af2c7 6913 sd = sd->parent;
1a848870
SS
6914 if (sd)
6915 sd->child = NULL;
6916 }
1da177e4
LT
6917
6918 sched_domain_debug(sd, cpu);
6919
57d885fe 6920 rq_attach_root(rq, rd);
674311d5 6921 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6922}
6923
6924/* cpus with isolated domains */
67af63a6 6925static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6926
6927/* Setup the mask of cpus configured for isolated domains */
6928static int __init isolated_cpu_setup(char *str)
6929{
6930 int ints[NR_CPUS], i;
6931
6932 str = get_options(str, ARRAY_SIZE(ints), ints);
6933 cpus_clear(cpu_isolated_map);
6934 for (i = 1; i <= ints[0]; i++)
6935 if (ints[i] < NR_CPUS)
6936 cpu_set(ints[i], cpu_isolated_map);
6937 return 1;
6938}
6939
8927f494 6940__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6941
6942/*
6711cab4
SS
6943 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6944 * to a function which identifies what group(along with sched group) a CPU
6945 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6946 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6947 *
6948 * init_sched_build_groups will build a circular linked list of the groups
6949 * covered by the given span, and will set each group's ->cpumask correctly,
6950 * and ->cpu_power to 0.
6951 */
a616058b 6952static void
7c16ec58 6953init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6954 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6955 struct sched_group **sg,
6956 cpumask_t *tmpmask),
6957 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6958{
6959 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6960 int i;
6961
7c16ec58
MT
6962 cpus_clear(*covered);
6963
6964 for_each_cpu_mask(i, *span) {
6711cab4 6965 struct sched_group *sg;
7c16ec58 6966 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6967 int j;
6968
7c16ec58 6969 if (cpu_isset(i, *covered))
1da177e4
LT
6970 continue;
6971
7c16ec58 6972 cpus_clear(sg->cpumask);
5517d86b 6973 sg->__cpu_power = 0;
1da177e4 6974
7c16ec58
MT
6975 for_each_cpu_mask(j, *span) {
6976 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6977 continue;
6978
7c16ec58 6979 cpu_set(j, *covered);
1da177e4
LT
6980 cpu_set(j, sg->cpumask);
6981 }
6982 if (!first)
6983 first = sg;
6984 if (last)
6985 last->next = sg;
6986 last = sg;
6987 }
6988 last->next = first;
6989}
6990
9c1cfda2 6991#define SD_NODES_PER_DOMAIN 16
1da177e4 6992
9c1cfda2 6993#ifdef CONFIG_NUMA
198e2f18 6994
9c1cfda2
JH
6995/**
6996 * find_next_best_node - find the next node to include in a sched_domain
6997 * @node: node whose sched_domain we're building
6998 * @used_nodes: nodes already in the sched_domain
6999 *
41a2d6cf 7000 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7001 * finds the closest node not already in the @used_nodes map.
7002 *
7003 * Should use nodemask_t.
7004 */
c5f59f08 7005static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7006{
7007 int i, n, val, min_val, best_node = 0;
7008
7009 min_val = INT_MAX;
7010
7011 for (i = 0; i < MAX_NUMNODES; i++) {
7012 /* Start at @node */
7013 n = (node + i) % MAX_NUMNODES;
7014
7015 if (!nr_cpus_node(n))
7016 continue;
7017
7018 /* Skip already used nodes */
c5f59f08 7019 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7020 continue;
7021
7022 /* Simple min distance search */
7023 val = node_distance(node, n);
7024
7025 if (val < min_val) {
7026 min_val = val;
7027 best_node = n;
7028 }
7029 }
7030
c5f59f08 7031 node_set(best_node, *used_nodes);
9c1cfda2
JH
7032 return best_node;
7033}
7034
7035/**
7036 * sched_domain_node_span - get a cpumask for a node's sched_domain
7037 * @node: node whose cpumask we're constructing
9c1cfda2 7038 *
41a2d6cf 7039 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7040 * should be one that prevents unnecessary balancing, but also spreads tasks
7041 * out optimally.
7042 */
4bdbaad3 7043static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7044{
c5f59f08 7045 nodemask_t used_nodes;
c5f59f08 7046 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7047 int i;
9c1cfda2 7048
4bdbaad3 7049 cpus_clear(*span);
c5f59f08 7050 nodes_clear(used_nodes);
9c1cfda2 7051
4bdbaad3 7052 cpus_or(*span, *span, *nodemask);
c5f59f08 7053 node_set(node, used_nodes);
9c1cfda2
JH
7054
7055 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7056 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7057
c5f59f08 7058 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7059 cpus_or(*span, *span, *nodemask);
9c1cfda2 7060 }
9c1cfda2
JH
7061}
7062#endif
7063
5c45bf27 7064int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7065
9c1cfda2 7066/*
48f24c4d 7067 * SMT sched-domains:
9c1cfda2 7068 */
1da177e4
LT
7069#ifdef CONFIG_SCHED_SMT
7070static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7071static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7072
41a2d6cf 7073static int
7c16ec58
MT
7074cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7075 cpumask_t *unused)
1da177e4 7076{
6711cab4
SS
7077 if (sg)
7078 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7079 return cpu;
7080}
7081#endif
7082
48f24c4d
IM
7083/*
7084 * multi-core sched-domains:
7085 */
1e9f28fa
SS
7086#ifdef CONFIG_SCHED_MC
7087static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7088static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
7089#endif
7090
7091#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7092static int
7c16ec58
MT
7093cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7094 cpumask_t *mask)
1e9f28fa 7095{
6711cab4 7096 int group;
7c16ec58
MT
7097
7098 *mask = per_cpu(cpu_sibling_map, cpu);
7099 cpus_and(*mask, *mask, *cpu_map);
7100 group = first_cpu(*mask);
6711cab4
SS
7101 if (sg)
7102 *sg = &per_cpu(sched_group_core, group);
7103 return group;
1e9f28fa
SS
7104}
7105#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7106static int
7c16ec58
MT
7107cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7108 cpumask_t *unused)
1e9f28fa 7109{
6711cab4
SS
7110 if (sg)
7111 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7112 return cpu;
7113}
7114#endif
7115
1da177e4 7116static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7117static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7118
41a2d6cf 7119static int
7c16ec58
MT
7120cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7121 cpumask_t *mask)
1da177e4 7122{
6711cab4 7123 int group;
48f24c4d 7124#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7125 *mask = cpu_coregroup_map(cpu);
7126 cpus_and(*mask, *mask, *cpu_map);
7127 group = first_cpu(*mask);
1e9f28fa 7128#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7129 *mask = per_cpu(cpu_sibling_map, cpu);
7130 cpus_and(*mask, *mask, *cpu_map);
7131 group = first_cpu(*mask);
1da177e4 7132#else
6711cab4 7133 group = cpu;
1da177e4 7134#endif
6711cab4
SS
7135 if (sg)
7136 *sg = &per_cpu(sched_group_phys, group);
7137 return group;
1da177e4
LT
7138}
7139
7140#ifdef CONFIG_NUMA
1da177e4 7141/*
9c1cfda2
JH
7142 * The init_sched_build_groups can't handle what we want to do with node
7143 * groups, so roll our own. Now each node has its own list of groups which
7144 * gets dynamically allocated.
1da177e4 7145 */
9c1cfda2 7146static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7147static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7148
9c1cfda2 7149static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7150static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7151
6711cab4 7152static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7153 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7154{
6711cab4
SS
7155 int group;
7156
7c16ec58
MT
7157 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7158 cpus_and(*nodemask, *nodemask, *cpu_map);
7159 group = first_cpu(*nodemask);
6711cab4
SS
7160
7161 if (sg)
7162 *sg = &per_cpu(sched_group_allnodes, group);
7163 return group;
1da177e4 7164}
6711cab4 7165
08069033
SS
7166static void init_numa_sched_groups_power(struct sched_group *group_head)
7167{
7168 struct sched_group *sg = group_head;
7169 int j;
7170
7171 if (!sg)
7172 return;
3a5c359a
AK
7173 do {
7174 for_each_cpu_mask(j, sg->cpumask) {
7175 struct sched_domain *sd;
08069033 7176
3a5c359a
AK
7177 sd = &per_cpu(phys_domains, j);
7178 if (j != first_cpu(sd->groups->cpumask)) {
7179 /*
7180 * Only add "power" once for each
7181 * physical package.
7182 */
7183 continue;
7184 }
08069033 7185
3a5c359a
AK
7186 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7187 }
7188 sg = sg->next;
7189 } while (sg != group_head);
08069033 7190}
1da177e4
LT
7191#endif
7192
a616058b 7193#ifdef CONFIG_NUMA
51888ca2 7194/* Free memory allocated for various sched_group structures */
7c16ec58 7195static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7196{
a616058b 7197 int cpu, i;
51888ca2
SV
7198
7199 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7200 struct sched_group **sched_group_nodes
7201 = sched_group_nodes_bycpu[cpu];
7202
51888ca2
SV
7203 if (!sched_group_nodes)
7204 continue;
7205
7206 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
7207 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7208
7c16ec58
MT
7209 *nodemask = node_to_cpumask(i);
7210 cpus_and(*nodemask, *nodemask, *cpu_map);
7211 if (cpus_empty(*nodemask))
51888ca2
SV
7212 continue;
7213
7214 if (sg == NULL)
7215 continue;
7216 sg = sg->next;
7217next_sg:
7218 oldsg = sg;
7219 sg = sg->next;
7220 kfree(oldsg);
7221 if (oldsg != sched_group_nodes[i])
7222 goto next_sg;
7223 }
7224 kfree(sched_group_nodes);
7225 sched_group_nodes_bycpu[cpu] = NULL;
7226 }
51888ca2 7227}
a616058b 7228#else
7c16ec58 7229static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7230{
7231}
7232#endif
51888ca2 7233
89c4710e
SS
7234/*
7235 * Initialize sched groups cpu_power.
7236 *
7237 * cpu_power indicates the capacity of sched group, which is used while
7238 * distributing the load between different sched groups in a sched domain.
7239 * Typically cpu_power for all the groups in a sched domain will be same unless
7240 * there are asymmetries in the topology. If there are asymmetries, group
7241 * having more cpu_power will pickup more load compared to the group having
7242 * less cpu_power.
7243 *
7244 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7245 * the maximum number of tasks a group can handle in the presence of other idle
7246 * or lightly loaded groups in the same sched domain.
7247 */
7248static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7249{
7250 struct sched_domain *child;
7251 struct sched_group *group;
7252
7253 WARN_ON(!sd || !sd->groups);
7254
7255 if (cpu != first_cpu(sd->groups->cpumask))
7256 return;
7257
7258 child = sd->child;
7259
5517d86b
ED
7260 sd->groups->__cpu_power = 0;
7261
89c4710e
SS
7262 /*
7263 * For perf policy, if the groups in child domain share resources
7264 * (for example cores sharing some portions of the cache hierarchy
7265 * or SMT), then set this domain groups cpu_power such that each group
7266 * can handle only one task, when there are other idle groups in the
7267 * same sched domain.
7268 */
7269 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7270 (child->flags &
7271 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7272 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7273 return;
7274 }
7275
89c4710e
SS
7276 /*
7277 * add cpu_power of each child group to this groups cpu_power
7278 */
7279 group = child->groups;
7280 do {
5517d86b 7281 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7282 group = group->next;
7283 } while (group != child->groups);
7284}
7285
7c16ec58
MT
7286/*
7287 * Initializers for schedule domains
7288 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7289 */
7290
7291#define SD_INIT(sd, type) sd_init_##type(sd)
7292#define SD_INIT_FUNC(type) \
7293static noinline void sd_init_##type(struct sched_domain *sd) \
7294{ \
7295 memset(sd, 0, sizeof(*sd)); \
7296 *sd = SD_##type##_INIT; \
1d3504fc 7297 sd->level = SD_LV_##type; \
7c16ec58
MT
7298}
7299
7300SD_INIT_FUNC(CPU)
7301#ifdef CONFIG_NUMA
7302 SD_INIT_FUNC(ALLNODES)
7303 SD_INIT_FUNC(NODE)
7304#endif
7305#ifdef CONFIG_SCHED_SMT
7306 SD_INIT_FUNC(SIBLING)
7307#endif
7308#ifdef CONFIG_SCHED_MC
7309 SD_INIT_FUNC(MC)
7310#endif
7311
7312/*
7313 * To minimize stack usage kmalloc room for cpumasks and share the
7314 * space as the usage in build_sched_domains() dictates. Used only
7315 * if the amount of space is significant.
7316 */
7317struct allmasks {
7318 cpumask_t tmpmask; /* make this one first */
7319 union {
7320 cpumask_t nodemask;
7321 cpumask_t this_sibling_map;
7322 cpumask_t this_core_map;
7323 };
7324 cpumask_t send_covered;
7325
7326#ifdef CONFIG_NUMA
7327 cpumask_t domainspan;
7328 cpumask_t covered;
7329 cpumask_t notcovered;
7330#endif
7331};
7332
7333#if NR_CPUS > 128
7334#define SCHED_CPUMASK_ALLOC 1
7335#define SCHED_CPUMASK_FREE(v) kfree(v)
7336#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7337#else
7338#define SCHED_CPUMASK_ALLOC 0
7339#define SCHED_CPUMASK_FREE(v)
7340#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7341#endif
7342
7343#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7344 ((unsigned long)(a) + offsetof(struct allmasks, v))
7345
1d3504fc
HS
7346static int default_relax_domain_level = -1;
7347
7348static int __init setup_relax_domain_level(char *str)
7349{
7350 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7351 return 1;
7352}
7353__setup("relax_domain_level=", setup_relax_domain_level);
7354
7355static void set_domain_attribute(struct sched_domain *sd,
7356 struct sched_domain_attr *attr)
7357{
7358 int request;
7359
7360 if (!attr || attr->relax_domain_level < 0) {
7361 if (default_relax_domain_level < 0)
7362 return;
7363 else
7364 request = default_relax_domain_level;
7365 } else
7366 request = attr->relax_domain_level;
7367 if (request < sd->level) {
7368 /* turn off idle balance on this domain */
7369 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7370 } else {
7371 /* turn on idle balance on this domain */
7372 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7373 }
7374}
7375
1da177e4 7376/*
1a20ff27
DG
7377 * Build sched domains for a given set of cpus and attach the sched domains
7378 * to the individual cpus
1da177e4 7379 */
1d3504fc
HS
7380static int __build_sched_domains(const cpumask_t *cpu_map,
7381 struct sched_domain_attr *attr)
1da177e4
LT
7382{
7383 int i;
57d885fe 7384 struct root_domain *rd;
7c16ec58
MT
7385 SCHED_CPUMASK_DECLARE(allmasks);
7386 cpumask_t *tmpmask;
d1b55138
JH
7387#ifdef CONFIG_NUMA
7388 struct sched_group **sched_group_nodes = NULL;
6711cab4 7389 int sd_allnodes = 0;
d1b55138
JH
7390
7391 /*
7392 * Allocate the per-node list of sched groups
7393 */
5cf9f062 7394 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7395 GFP_KERNEL);
d1b55138
JH
7396 if (!sched_group_nodes) {
7397 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7398 return -ENOMEM;
d1b55138 7399 }
d1b55138 7400#endif
1da177e4 7401
dc938520 7402 rd = alloc_rootdomain();
57d885fe
GH
7403 if (!rd) {
7404 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7405#ifdef CONFIG_NUMA
7406 kfree(sched_group_nodes);
7407#endif
57d885fe
GH
7408 return -ENOMEM;
7409 }
7410
7c16ec58
MT
7411#if SCHED_CPUMASK_ALLOC
7412 /* get space for all scratch cpumask variables */
7413 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7414 if (!allmasks) {
7415 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7416 kfree(rd);
7417#ifdef CONFIG_NUMA
7418 kfree(sched_group_nodes);
7419#endif
7420 return -ENOMEM;
7421 }
7422#endif
7423 tmpmask = (cpumask_t *)allmasks;
7424
7425
7426#ifdef CONFIG_NUMA
7427 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7428#endif
7429
1da177e4 7430 /*
1a20ff27 7431 * Set up domains for cpus specified by the cpu_map.
1da177e4 7432 */
1a20ff27 7433 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7434 struct sched_domain *sd = NULL, *p;
7c16ec58 7435 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7436
7c16ec58
MT
7437 *nodemask = node_to_cpumask(cpu_to_node(i));
7438 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7439
7440#ifdef CONFIG_NUMA
dd41f596 7441 if (cpus_weight(*cpu_map) >
7c16ec58 7442 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7443 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7444 SD_INIT(sd, ALLNODES);
1d3504fc 7445 set_domain_attribute(sd, attr);
9c1cfda2 7446 sd->span = *cpu_map;
18d95a28 7447 sd->first_cpu = first_cpu(sd->span);
7c16ec58 7448 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7449 p = sd;
6711cab4 7450 sd_allnodes = 1;
9c1cfda2
JH
7451 } else
7452 p = NULL;
7453
1da177e4 7454 sd = &per_cpu(node_domains, i);
7c16ec58 7455 SD_INIT(sd, NODE);
1d3504fc 7456 set_domain_attribute(sd, attr);
4bdbaad3 7457 sched_domain_node_span(cpu_to_node(i), &sd->span);
18d95a28 7458 sd->first_cpu = first_cpu(sd->span);
9c1cfda2 7459 sd->parent = p;
1a848870
SS
7460 if (p)
7461 p->child = sd;
9c1cfda2 7462 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7463#endif
7464
7465 p = sd;
7466 sd = &per_cpu(phys_domains, i);
7c16ec58 7467 SD_INIT(sd, CPU);
1d3504fc 7468 set_domain_attribute(sd, attr);
7c16ec58 7469 sd->span = *nodemask;
18d95a28 7470 sd->first_cpu = first_cpu(sd->span);
1da177e4 7471 sd->parent = p;
1a848870
SS
7472 if (p)
7473 p->child = sd;
7c16ec58 7474 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7475
1e9f28fa
SS
7476#ifdef CONFIG_SCHED_MC
7477 p = sd;
7478 sd = &per_cpu(core_domains, i);
7c16ec58 7479 SD_INIT(sd, MC);
1d3504fc 7480 set_domain_attribute(sd, attr);
1e9f28fa 7481 sd->span = cpu_coregroup_map(i);
18d95a28 7482 sd->first_cpu = first_cpu(sd->span);
1e9f28fa
SS
7483 cpus_and(sd->span, sd->span, *cpu_map);
7484 sd->parent = p;
1a848870 7485 p->child = sd;
7c16ec58 7486 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7487#endif
7488
1da177e4
LT
7489#ifdef CONFIG_SCHED_SMT
7490 p = sd;
7491 sd = &per_cpu(cpu_domains, i);
7c16ec58 7492 SD_INIT(sd, SIBLING);
1d3504fc 7493 set_domain_attribute(sd, attr);
d5a7430d 7494 sd->span = per_cpu(cpu_sibling_map, i);
18d95a28 7495 sd->first_cpu = first_cpu(sd->span);
1a20ff27 7496 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7497 sd->parent = p;
1a848870 7498 p->child = sd;
7c16ec58 7499 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7500#endif
7501 }
7502
7503#ifdef CONFIG_SCHED_SMT
7504 /* Set up CPU (sibling) groups */
9c1cfda2 7505 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7506 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7507 SCHED_CPUMASK_VAR(send_covered, allmasks);
7508
7509 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7510 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7511 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7512 continue;
7513
dd41f596 7514 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7515 &cpu_to_cpu_group,
7516 send_covered, tmpmask);
1da177e4
LT
7517 }
7518#endif
7519
1e9f28fa
SS
7520#ifdef CONFIG_SCHED_MC
7521 /* Set up multi-core groups */
7522 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7523 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7524 SCHED_CPUMASK_VAR(send_covered, allmasks);
7525
7526 *this_core_map = cpu_coregroup_map(i);
7527 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7528 if (i != first_cpu(*this_core_map))
1e9f28fa 7529 continue;
7c16ec58 7530
dd41f596 7531 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7532 &cpu_to_core_group,
7533 send_covered, tmpmask);
1e9f28fa
SS
7534 }
7535#endif
7536
1da177e4
LT
7537 /* Set up physical groups */
7538 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7539 SCHED_CPUMASK_VAR(nodemask, allmasks);
7540 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7541
7c16ec58
MT
7542 *nodemask = node_to_cpumask(i);
7543 cpus_and(*nodemask, *nodemask, *cpu_map);
7544 if (cpus_empty(*nodemask))
1da177e4
LT
7545 continue;
7546
7c16ec58
MT
7547 init_sched_build_groups(nodemask, cpu_map,
7548 &cpu_to_phys_group,
7549 send_covered, tmpmask);
1da177e4
LT
7550 }
7551
7552#ifdef CONFIG_NUMA
7553 /* Set up node groups */
7c16ec58
MT
7554 if (sd_allnodes) {
7555 SCHED_CPUMASK_VAR(send_covered, allmasks);
7556
7557 init_sched_build_groups(cpu_map, cpu_map,
7558 &cpu_to_allnodes_group,
7559 send_covered, tmpmask);
7560 }
9c1cfda2
JH
7561
7562 for (i = 0; i < MAX_NUMNODES; i++) {
7563 /* Set up node groups */
7564 struct sched_group *sg, *prev;
7c16ec58
MT
7565 SCHED_CPUMASK_VAR(nodemask, allmasks);
7566 SCHED_CPUMASK_VAR(domainspan, allmasks);
7567 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7568 int j;
7569
7c16ec58
MT
7570 *nodemask = node_to_cpumask(i);
7571 cpus_clear(*covered);
7572
7573 cpus_and(*nodemask, *nodemask, *cpu_map);
7574 if (cpus_empty(*nodemask)) {
d1b55138 7575 sched_group_nodes[i] = NULL;
9c1cfda2 7576 continue;
d1b55138 7577 }
9c1cfda2 7578
4bdbaad3 7579 sched_domain_node_span(i, domainspan);
7c16ec58 7580 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7581
15f0b676 7582 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7583 if (!sg) {
7584 printk(KERN_WARNING "Can not alloc domain group for "
7585 "node %d\n", i);
7586 goto error;
7587 }
9c1cfda2 7588 sched_group_nodes[i] = sg;
7c16ec58 7589 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7590 struct sched_domain *sd;
9761eea8 7591
9c1cfda2
JH
7592 sd = &per_cpu(node_domains, j);
7593 sd->groups = sg;
9c1cfda2 7594 }
5517d86b 7595 sg->__cpu_power = 0;
7c16ec58 7596 sg->cpumask = *nodemask;
51888ca2 7597 sg->next = sg;
7c16ec58 7598 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7599 prev = sg;
7600
7601 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7602 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7603 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7604 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7605
7c16ec58
MT
7606 cpus_complement(*notcovered, *covered);
7607 cpus_and(*tmpmask, *notcovered, *cpu_map);
7608 cpus_and(*tmpmask, *tmpmask, *domainspan);
7609 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7610 break;
7611
7c16ec58
MT
7612 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7613 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7614 continue;
7615
15f0b676
SV
7616 sg = kmalloc_node(sizeof(struct sched_group),
7617 GFP_KERNEL, i);
9c1cfda2
JH
7618 if (!sg) {
7619 printk(KERN_WARNING
7620 "Can not alloc domain group for node %d\n", j);
51888ca2 7621 goto error;
9c1cfda2 7622 }
5517d86b 7623 sg->__cpu_power = 0;
7c16ec58 7624 sg->cpumask = *tmpmask;
51888ca2 7625 sg->next = prev->next;
7c16ec58 7626 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7627 prev->next = sg;
7628 prev = sg;
7629 }
9c1cfda2 7630 }
1da177e4
LT
7631#endif
7632
7633 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7634#ifdef CONFIG_SCHED_SMT
1a20ff27 7635 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7636 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7637
89c4710e 7638 init_sched_groups_power(i, sd);
5c45bf27 7639 }
1da177e4 7640#endif
1e9f28fa 7641#ifdef CONFIG_SCHED_MC
5c45bf27 7642 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7643 struct sched_domain *sd = &per_cpu(core_domains, i);
7644
89c4710e 7645 init_sched_groups_power(i, sd);
5c45bf27
SS
7646 }
7647#endif
1e9f28fa 7648
5c45bf27 7649 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7650 struct sched_domain *sd = &per_cpu(phys_domains, i);
7651
89c4710e 7652 init_sched_groups_power(i, sd);
1da177e4
LT
7653 }
7654
9c1cfda2 7655#ifdef CONFIG_NUMA
08069033
SS
7656 for (i = 0; i < MAX_NUMNODES; i++)
7657 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7658
6711cab4
SS
7659 if (sd_allnodes) {
7660 struct sched_group *sg;
f712c0c7 7661
7c16ec58
MT
7662 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7663 tmpmask);
f712c0c7
SS
7664 init_numa_sched_groups_power(sg);
7665 }
9c1cfda2
JH
7666#endif
7667
1da177e4 7668 /* Attach the domains */
1a20ff27 7669 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7670 struct sched_domain *sd;
7671#ifdef CONFIG_SCHED_SMT
7672 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7673#elif defined(CONFIG_SCHED_MC)
7674 sd = &per_cpu(core_domains, i);
1da177e4
LT
7675#else
7676 sd = &per_cpu(phys_domains, i);
7677#endif
57d885fe 7678 cpu_attach_domain(sd, rd, i);
1da177e4 7679 }
51888ca2 7680
7c16ec58 7681 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7682 return 0;
7683
a616058b 7684#ifdef CONFIG_NUMA
51888ca2 7685error:
7c16ec58
MT
7686 free_sched_groups(cpu_map, tmpmask);
7687 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7688 return -ENOMEM;
a616058b 7689#endif
1da177e4 7690}
029190c5 7691
1d3504fc
HS
7692static int build_sched_domains(const cpumask_t *cpu_map)
7693{
7694 return __build_sched_domains(cpu_map, NULL);
7695}
7696
029190c5
PJ
7697static cpumask_t *doms_cur; /* current sched domains */
7698static int ndoms_cur; /* number of sched domains in 'doms_cur' */
1d3504fc
HS
7699static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7700 in 'doms_cur' */
029190c5
PJ
7701
7702/*
7703 * Special case: If a kmalloc of a doms_cur partition (array of
7704 * cpumask_t) fails, then fallback to a single sched domain,
7705 * as determined by the single cpumask_t fallback_doms.
7706 */
7707static cpumask_t fallback_doms;
7708
22e52b07
HC
7709void __attribute__((weak)) arch_update_cpu_topology(void)
7710{
7711}
7712
1a20ff27 7713/*
41a2d6cf 7714 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7715 * For now this just excludes isolated cpus, but could be used to
7716 * exclude other special cases in the future.
1a20ff27 7717 */
51888ca2 7718static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7719{
7378547f
MM
7720 int err;
7721
22e52b07 7722 arch_update_cpu_topology();
029190c5
PJ
7723 ndoms_cur = 1;
7724 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7725 if (!doms_cur)
7726 doms_cur = &fallback_doms;
7727 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7728 dattr_cur = NULL;
7378547f 7729 err = build_sched_domains(doms_cur);
6382bc90 7730 register_sched_domain_sysctl();
7378547f
MM
7731
7732 return err;
1a20ff27
DG
7733}
7734
7c16ec58
MT
7735static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7736 cpumask_t *tmpmask)
1da177e4 7737{
7c16ec58 7738 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7739}
1da177e4 7740
1a20ff27
DG
7741/*
7742 * Detach sched domains from a group of cpus specified in cpu_map
7743 * These cpus will now be attached to the NULL domain
7744 */
858119e1 7745static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7746{
7c16ec58 7747 cpumask_t tmpmask;
1a20ff27
DG
7748 int i;
7749
6382bc90
MM
7750 unregister_sched_domain_sysctl();
7751
1a20ff27 7752 for_each_cpu_mask(i, *cpu_map)
57d885fe 7753 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7754 synchronize_sched();
7c16ec58 7755 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7756}
7757
1d3504fc
HS
7758/* handle null as "default" */
7759static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7760 struct sched_domain_attr *new, int idx_new)
7761{
7762 struct sched_domain_attr tmp;
7763
7764 /* fast path */
7765 if (!new && !cur)
7766 return 1;
7767
7768 tmp = SD_ATTR_INIT;
7769 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7770 new ? (new + idx_new) : &tmp,
7771 sizeof(struct sched_domain_attr));
7772}
7773
029190c5
PJ
7774/*
7775 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7776 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7777 * doms_new[] to the current sched domain partitioning, doms_cur[].
7778 * It destroys each deleted domain and builds each new domain.
7779 *
7780 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7781 * The masks don't intersect (don't overlap.) We should setup one
7782 * sched domain for each mask. CPUs not in any of the cpumasks will
7783 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7784 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7785 * it as it is.
7786 *
41a2d6cf
IM
7787 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7788 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7789 * failed the kmalloc call, then it can pass in doms_new == NULL,
7790 * and partition_sched_domains() will fallback to the single partition
7791 * 'fallback_doms'.
7792 *
7793 * Call with hotplug lock held
7794 */
1d3504fc
HS
7795void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7796 struct sched_domain_attr *dattr_new)
029190c5
PJ
7797{
7798 int i, j;
7799
a1835615
SV
7800 lock_doms_cur();
7801
7378547f
MM
7802 /* always unregister in case we don't destroy any domains */
7803 unregister_sched_domain_sysctl();
7804
029190c5
PJ
7805 if (doms_new == NULL) {
7806 ndoms_new = 1;
7807 doms_new = &fallback_doms;
7808 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7809 dattr_new = NULL;
029190c5
PJ
7810 }
7811
7812 /* Destroy deleted domains */
7813 for (i = 0; i < ndoms_cur; i++) {
7814 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7815 if (cpus_equal(doms_cur[i], doms_new[j])
7816 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7817 goto match1;
7818 }
7819 /* no match - a current sched domain not in new doms_new[] */
7820 detach_destroy_domains(doms_cur + i);
7821match1:
7822 ;
7823 }
7824
7825 /* Build new domains */
7826 for (i = 0; i < ndoms_new; i++) {
7827 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7828 if (cpus_equal(doms_new[i], doms_cur[j])
7829 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7830 goto match2;
7831 }
7832 /* no match - add a new doms_new */
1d3504fc
HS
7833 __build_sched_domains(doms_new + i,
7834 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7835match2:
7836 ;
7837 }
7838
7839 /* Remember the new sched domains */
7840 if (doms_cur != &fallback_doms)
7841 kfree(doms_cur);
1d3504fc 7842 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7843 doms_cur = doms_new;
1d3504fc 7844 dattr_cur = dattr_new;
029190c5 7845 ndoms_cur = ndoms_new;
7378547f
MM
7846
7847 register_sched_domain_sysctl();
a1835615
SV
7848
7849 unlock_doms_cur();
029190c5
PJ
7850}
7851
5c45bf27 7852#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7853int arch_reinit_sched_domains(void)
5c45bf27
SS
7854{
7855 int err;
7856
95402b38 7857 get_online_cpus();
5c45bf27
SS
7858 detach_destroy_domains(&cpu_online_map);
7859 err = arch_init_sched_domains(&cpu_online_map);
95402b38 7860 put_online_cpus();
5c45bf27
SS
7861
7862 return err;
7863}
7864
7865static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7866{
7867 int ret;
7868
7869 if (buf[0] != '0' && buf[0] != '1')
7870 return -EINVAL;
7871
7872 if (smt)
7873 sched_smt_power_savings = (buf[0] == '1');
7874 else
7875 sched_mc_power_savings = (buf[0] == '1');
7876
7877 ret = arch_reinit_sched_domains();
7878
7879 return ret ? ret : count;
7880}
7881
5c45bf27
SS
7882#ifdef CONFIG_SCHED_MC
7883static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7884{
7885 return sprintf(page, "%u\n", sched_mc_power_savings);
7886}
48f24c4d
IM
7887static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7888 const char *buf, size_t count)
5c45bf27
SS
7889{
7890 return sched_power_savings_store(buf, count, 0);
7891}
6707de00
AB
7892static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7893 sched_mc_power_savings_store);
5c45bf27
SS
7894#endif
7895
7896#ifdef CONFIG_SCHED_SMT
7897static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7898{
7899 return sprintf(page, "%u\n", sched_smt_power_savings);
7900}
48f24c4d
IM
7901static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7902 const char *buf, size_t count)
5c45bf27
SS
7903{
7904 return sched_power_savings_store(buf, count, 1);
7905}
6707de00
AB
7906static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7907 sched_smt_power_savings_store);
7908#endif
7909
7910int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7911{
7912 int err = 0;
7913
7914#ifdef CONFIG_SCHED_SMT
7915 if (smt_capable())
7916 err = sysfs_create_file(&cls->kset.kobj,
7917 &attr_sched_smt_power_savings.attr);
7918#endif
7919#ifdef CONFIG_SCHED_MC
7920 if (!err && mc_capable())
7921 err = sysfs_create_file(&cls->kset.kobj,
7922 &attr_sched_mc_power_savings.attr);
7923#endif
7924 return err;
7925}
5c45bf27
SS
7926#endif
7927
1da177e4 7928/*
41a2d6cf 7929 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7930 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7931 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7932 * which will prevent rebalancing while the sched domains are recalculated.
7933 */
7934static int update_sched_domains(struct notifier_block *nfb,
7935 unsigned long action, void *hcpu)
7936{
1da177e4
LT
7937 switch (action) {
7938 case CPU_UP_PREPARE:
8bb78442 7939 case CPU_UP_PREPARE_FROZEN:
1da177e4 7940 case CPU_DOWN_PREPARE:
8bb78442 7941 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7942 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7943 return NOTIFY_OK;
7944
7945 case CPU_UP_CANCELED:
8bb78442 7946 case CPU_UP_CANCELED_FROZEN:
1da177e4 7947 case CPU_DOWN_FAILED:
8bb78442 7948 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7949 case CPU_ONLINE:
8bb78442 7950 case CPU_ONLINE_FROZEN:
1da177e4 7951 case CPU_DEAD:
8bb78442 7952 case CPU_DEAD_FROZEN:
1da177e4
LT
7953 /*
7954 * Fall through and re-initialise the domains.
7955 */
7956 break;
7957 default:
7958 return NOTIFY_DONE;
7959 }
7960
7961 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7962 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7963
7964 return NOTIFY_OK;
7965}
1da177e4
LT
7966
7967void __init sched_init_smp(void)
7968{
5c1e1767
NP
7969 cpumask_t non_isolated_cpus;
7970
434d53b0
MT
7971#if defined(CONFIG_NUMA)
7972 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7973 GFP_KERNEL);
7974 BUG_ON(sched_group_nodes_bycpu == NULL);
7975#endif
95402b38 7976 get_online_cpus();
1a20ff27 7977 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7978 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7979 if (cpus_empty(non_isolated_cpus))
7980 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7981 put_online_cpus();
1da177e4
LT
7982 /* XXX: Theoretical race here - CPU may be hotplugged now */
7983 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7984
7985 /* Move init over to a non-isolated CPU */
7c16ec58 7986 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7987 BUG();
19978ca6 7988 sched_init_granularity();
1da177e4
LT
7989}
7990#else
7991void __init sched_init_smp(void)
7992{
434d53b0
MT
7993#if defined(CONFIG_NUMA)
7994 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7995 GFP_KERNEL);
7996 BUG_ON(sched_group_nodes_bycpu == NULL);
7997#endif
19978ca6 7998 sched_init_granularity();
1da177e4
LT
7999}
8000#endif /* CONFIG_SMP */
8001
8002int in_sched_functions(unsigned long addr)
8003{
1da177e4
LT
8004 return in_lock_functions(addr) ||
8005 (addr >= (unsigned long)__sched_text_start
8006 && addr < (unsigned long)__sched_text_end);
8007}
8008
a9957449 8009static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8010{
8011 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8012 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8013#ifdef CONFIG_FAIR_GROUP_SCHED
8014 cfs_rq->rq = rq;
8015#endif
67e9fb2a 8016 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8017}
8018
fa85ae24
PZ
8019static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8020{
8021 struct rt_prio_array *array;
8022 int i;
8023
8024 array = &rt_rq->active;
8025 for (i = 0; i < MAX_RT_PRIO; i++) {
8026 INIT_LIST_HEAD(array->queue + i);
8027 __clear_bit(i, array->bitmap);
8028 }
8029 /* delimiter for bitsearch: */
8030 __set_bit(MAX_RT_PRIO, array->bitmap);
8031
052f1dc7 8032#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8033 rt_rq->highest_prio = MAX_RT_PRIO;
8034#endif
fa85ae24
PZ
8035#ifdef CONFIG_SMP
8036 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8037 rt_rq->overloaded = 0;
8038#endif
8039
8040 rt_rq->rt_time = 0;
8041 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8042 rt_rq->rt_runtime = 0;
8043 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8044
052f1dc7 8045#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8046 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8047 rt_rq->rq = rq;
8048#endif
fa85ae24
PZ
8049}
8050
6f505b16 8051#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8052static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8053 struct sched_entity *se, int cpu, int add,
8054 struct sched_entity *parent)
6f505b16 8055{
ec7dc8ac 8056 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8057 tg->cfs_rq[cpu] = cfs_rq;
8058 init_cfs_rq(cfs_rq, rq);
8059 cfs_rq->tg = tg;
8060 if (add)
8061 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8062
8063 tg->se[cpu] = se;
354d60c2
DG
8064 /* se could be NULL for init_task_group */
8065 if (!se)
8066 return;
8067
ec7dc8ac
DG
8068 if (!parent)
8069 se->cfs_rq = &rq->cfs;
8070 else
8071 se->cfs_rq = parent->my_q;
8072
6f505b16
PZ
8073 se->my_q = cfs_rq;
8074 se->load.weight = tg->shares;
8075 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
ec7dc8ac 8076 se->parent = parent;
6f505b16 8077}
052f1dc7 8078#endif
6f505b16 8079
052f1dc7 8080#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8081static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8082 struct sched_rt_entity *rt_se, int cpu, int add,
8083 struct sched_rt_entity *parent)
6f505b16 8084{
ec7dc8ac
DG
8085 struct rq *rq = cpu_rq(cpu);
8086
6f505b16
PZ
8087 tg->rt_rq[cpu] = rt_rq;
8088 init_rt_rq(rt_rq, rq);
8089 rt_rq->tg = tg;
8090 rt_rq->rt_se = rt_se;
ac086bc2 8091 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8092 if (add)
8093 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8094
8095 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8096 if (!rt_se)
8097 return;
8098
ec7dc8ac
DG
8099 if (!parent)
8100 rt_se->rt_rq = &rq->rt;
8101 else
8102 rt_se->rt_rq = parent->my_q;
8103
6f505b16
PZ
8104 rt_se->rt_rq = &rq->rt;
8105 rt_se->my_q = rt_rq;
ec7dc8ac 8106 rt_se->parent = parent;
6f505b16
PZ
8107 INIT_LIST_HEAD(&rt_se->run_list);
8108}
8109#endif
8110
1da177e4
LT
8111void __init sched_init(void)
8112{
dd41f596 8113 int i, j;
434d53b0
MT
8114 unsigned long alloc_size = 0, ptr;
8115
8116#ifdef CONFIG_FAIR_GROUP_SCHED
8117 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8118#endif
8119#ifdef CONFIG_RT_GROUP_SCHED
8120 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8121#endif
8122#ifdef CONFIG_USER_SCHED
8123 alloc_size *= 2;
434d53b0
MT
8124#endif
8125 /*
8126 * As sched_init() is called before page_alloc is setup,
8127 * we use alloc_bootmem().
8128 */
8129 if (alloc_size) {
8130 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
8131
8132#ifdef CONFIG_FAIR_GROUP_SCHED
8133 init_task_group.se = (struct sched_entity **)ptr;
8134 ptr += nr_cpu_ids * sizeof(void **);
8135
8136 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8137 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8138
8139#ifdef CONFIG_USER_SCHED
8140 root_task_group.se = (struct sched_entity **)ptr;
8141 ptr += nr_cpu_ids * sizeof(void **);
8142
8143 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8144 ptr += nr_cpu_ids * sizeof(void **);
8145#endif
434d53b0
MT
8146#endif
8147#ifdef CONFIG_RT_GROUP_SCHED
8148 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8149 ptr += nr_cpu_ids * sizeof(void **);
8150
8151 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8152 ptr += nr_cpu_ids * sizeof(void **);
8153
8154#ifdef CONFIG_USER_SCHED
8155 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8156 ptr += nr_cpu_ids * sizeof(void **);
8157
8158 root_task_group.rt_rq = (struct rt_rq **)ptr;
8159 ptr += nr_cpu_ids * sizeof(void **);
8160#endif
434d53b0
MT
8161#endif
8162 }
dd41f596 8163
57d885fe 8164#ifdef CONFIG_SMP
18d95a28 8165 init_aggregate();
57d885fe
GH
8166 init_defrootdomain();
8167#endif
8168
d0b27fa7
PZ
8169 init_rt_bandwidth(&def_rt_bandwidth,
8170 global_rt_period(), global_rt_runtime());
8171
8172#ifdef CONFIG_RT_GROUP_SCHED
8173 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8174 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8175#ifdef CONFIG_USER_SCHED
8176 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8177 global_rt_period(), RUNTIME_INF);
8178#endif
d0b27fa7
PZ
8179#endif
8180
052f1dc7 8181#ifdef CONFIG_GROUP_SCHED
6f505b16 8182 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8183 INIT_LIST_HEAD(&init_task_group.children);
8184
8185#ifdef CONFIG_USER_SCHED
8186 INIT_LIST_HEAD(&root_task_group.children);
8187 init_task_group.parent = &root_task_group;
8188 list_add(&init_task_group.siblings, &root_task_group.children);
8189#endif
6f505b16
PZ
8190#endif
8191
0a945022 8192 for_each_possible_cpu(i) {
70b97a7f 8193 struct rq *rq;
1da177e4
LT
8194
8195 rq = cpu_rq(i);
8196 spin_lock_init(&rq->lock);
fcb99371 8197 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8198 rq->nr_running = 0;
dd41f596 8199 rq->clock = 1;
15934a37 8200 update_last_tick_seen(rq);
dd41f596 8201 init_cfs_rq(&rq->cfs, rq);
6f505b16 8202 init_rt_rq(&rq->rt, rq);
dd41f596 8203#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8204 init_task_group.shares = init_task_group_load;
6f505b16 8205 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8206#ifdef CONFIG_CGROUP_SCHED
8207 /*
8208 * How much cpu bandwidth does init_task_group get?
8209 *
8210 * In case of task-groups formed thr' the cgroup filesystem, it
8211 * gets 100% of the cpu resources in the system. This overall
8212 * system cpu resource is divided among the tasks of
8213 * init_task_group and its child task-groups in a fair manner,
8214 * based on each entity's (task or task-group's) weight
8215 * (se->load.weight).
8216 *
8217 * In other words, if init_task_group has 10 tasks of weight
8218 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8219 * then A0's share of the cpu resource is:
8220 *
8221 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8222 *
8223 * We achieve this by letting init_task_group's tasks sit
8224 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8225 */
ec7dc8ac 8226 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8227#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8228 root_task_group.shares = NICE_0_LOAD;
8229 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8230 /*
8231 * In case of task-groups formed thr' the user id of tasks,
8232 * init_task_group represents tasks belonging to root user.
8233 * Hence it forms a sibling of all subsequent groups formed.
8234 * In this case, init_task_group gets only a fraction of overall
8235 * system cpu resource, based on the weight assigned to root
8236 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8237 * by letting tasks of init_task_group sit in a separate cfs_rq
8238 * (init_cfs_rq) and having one entity represent this group of
8239 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8240 */
ec7dc8ac 8241 init_tg_cfs_entry(&init_task_group,
6f505b16 8242 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8243 &per_cpu(init_sched_entity, i), i, 1,
8244 root_task_group.se[i]);
6f505b16 8245
052f1dc7 8246#endif
354d60c2
DG
8247#endif /* CONFIG_FAIR_GROUP_SCHED */
8248
8249 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8250#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8251 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8252#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8253 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8254#elif defined CONFIG_USER_SCHED
eff766a6 8255 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8256 init_tg_rt_entry(&init_task_group,
6f505b16 8257 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8258 &per_cpu(init_sched_rt_entity, i), i, 1,
8259 root_task_group.rt_se[i]);
354d60c2 8260#endif
dd41f596 8261#endif
1da177e4 8262
dd41f596
IM
8263 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8264 rq->cpu_load[j] = 0;
1da177e4 8265#ifdef CONFIG_SMP
41c7ce9a 8266 rq->sd = NULL;
57d885fe 8267 rq->rd = NULL;
1da177e4 8268 rq->active_balance = 0;
dd41f596 8269 rq->next_balance = jiffies;
1da177e4 8270 rq->push_cpu = 0;
0a2966b4 8271 rq->cpu = i;
1da177e4
LT
8272 rq->migration_thread = NULL;
8273 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8274 rq_attach_root(rq, &def_root_domain);
1da177e4 8275#endif
8f4d37ec 8276 init_rq_hrtick(rq);
1da177e4 8277 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8278 }
8279
2dd73a4f 8280 set_load_weight(&init_task);
b50f60ce 8281
e107be36
AK
8282#ifdef CONFIG_PREEMPT_NOTIFIERS
8283 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8284#endif
8285
c9819f45
CL
8286#ifdef CONFIG_SMP
8287 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8288#endif
8289
b50f60ce
HC
8290#ifdef CONFIG_RT_MUTEXES
8291 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8292#endif
8293
1da177e4
LT
8294 /*
8295 * The boot idle thread does lazy MMU switching as well:
8296 */
8297 atomic_inc(&init_mm.mm_count);
8298 enter_lazy_tlb(&init_mm, current);
8299
8300 /*
8301 * Make us the idle thread. Technically, schedule() should not be
8302 * called from this thread, however somewhere below it might be,
8303 * but because we are the idle thread, we just pick up running again
8304 * when this runqueue becomes "idle".
8305 */
8306 init_idle(current, smp_processor_id());
dd41f596
IM
8307 /*
8308 * During early bootup we pretend to be a normal task:
8309 */
8310 current->sched_class = &fair_sched_class;
6892b75e
IM
8311
8312 scheduler_running = 1;
1da177e4
LT
8313}
8314
8315#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8316void __might_sleep(char *file, int line)
8317{
48f24c4d 8318#ifdef in_atomic
1da177e4
LT
8319 static unsigned long prev_jiffy; /* ratelimiting */
8320
8321 if ((in_atomic() || irqs_disabled()) &&
8322 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8323 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8324 return;
8325 prev_jiffy = jiffies;
91368d73 8326 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8327 " context at %s:%d\n", file, line);
8328 printk("in_atomic():%d, irqs_disabled():%d\n",
8329 in_atomic(), irqs_disabled());
a4c410f0 8330 debug_show_held_locks(current);
3117df04
IM
8331 if (irqs_disabled())
8332 print_irqtrace_events(current);
1da177e4
LT
8333 dump_stack();
8334 }
8335#endif
8336}
8337EXPORT_SYMBOL(__might_sleep);
8338#endif
8339
8340#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8341static void normalize_task(struct rq *rq, struct task_struct *p)
8342{
8343 int on_rq;
8344 update_rq_clock(rq);
8345 on_rq = p->se.on_rq;
8346 if (on_rq)
8347 deactivate_task(rq, p, 0);
8348 __setscheduler(rq, p, SCHED_NORMAL, 0);
8349 if (on_rq) {
8350 activate_task(rq, p, 0);
8351 resched_task(rq->curr);
8352 }
8353}
8354
1da177e4
LT
8355void normalize_rt_tasks(void)
8356{
a0f98a1c 8357 struct task_struct *g, *p;
1da177e4 8358 unsigned long flags;
70b97a7f 8359 struct rq *rq;
1da177e4 8360
4cf5d77a 8361 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8362 do_each_thread(g, p) {
178be793
IM
8363 /*
8364 * Only normalize user tasks:
8365 */
8366 if (!p->mm)
8367 continue;
8368
6cfb0d5d 8369 p->se.exec_start = 0;
6cfb0d5d 8370#ifdef CONFIG_SCHEDSTATS
dd41f596 8371 p->se.wait_start = 0;
dd41f596 8372 p->se.sleep_start = 0;
dd41f596 8373 p->se.block_start = 0;
6cfb0d5d 8374#endif
dd41f596
IM
8375 task_rq(p)->clock = 0;
8376
8377 if (!rt_task(p)) {
8378 /*
8379 * Renice negative nice level userspace
8380 * tasks back to 0:
8381 */
8382 if (TASK_NICE(p) < 0 && p->mm)
8383 set_user_nice(p, 0);
1da177e4 8384 continue;
dd41f596 8385 }
1da177e4 8386
4cf5d77a 8387 spin_lock(&p->pi_lock);
b29739f9 8388 rq = __task_rq_lock(p);
1da177e4 8389
178be793 8390 normalize_task(rq, p);
3a5e4dc1 8391
b29739f9 8392 __task_rq_unlock(rq);
4cf5d77a 8393 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8394 } while_each_thread(g, p);
8395
4cf5d77a 8396 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8397}
8398
8399#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8400
8401#ifdef CONFIG_IA64
8402/*
8403 * These functions are only useful for the IA64 MCA handling.
8404 *
8405 * They can only be called when the whole system has been
8406 * stopped - every CPU needs to be quiescent, and no scheduling
8407 * activity can take place. Using them for anything else would
8408 * be a serious bug, and as a result, they aren't even visible
8409 * under any other configuration.
8410 */
8411
8412/**
8413 * curr_task - return the current task for a given cpu.
8414 * @cpu: the processor in question.
8415 *
8416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8417 */
36c8b586 8418struct task_struct *curr_task(int cpu)
1df5c10a
LT
8419{
8420 return cpu_curr(cpu);
8421}
8422
8423/**
8424 * set_curr_task - set the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 * @p: the task pointer to set.
8427 *
8428 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8429 * are serviced on a separate stack. It allows the architecture to switch the
8430 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8431 * must be called with all CPU's synchronized, and interrupts disabled, the
8432 * and caller must save the original value of the current task (see
8433 * curr_task() above) and restore that value before reenabling interrupts and
8434 * re-starting the system.
8435 *
8436 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8437 */
36c8b586 8438void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8439{
8440 cpu_curr(cpu) = p;
8441}
8442
8443#endif
29f59db3 8444
bccbe08a
PZ
8445#ifdef CONFIG_FAIR_GROUP_SCHED
8446static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8447{
8448 int i;
8449
8450 for_each_possible_cpu(i) {
8451 if (tg->cfs_rq)
8452 kfree(tg->cfs_rq[i]);
8453 if (tg->se)
8454 kfree(tg->se[i]);
6f505b16
PZ
8455 }
8456
8457 kfree(tg->cfs_rq);
8458 kfree(tg->se);
6f505b16
PZ
8459}
8460
ec7dc8ac
DG
8461static
8462int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8463{
29f59db3 8464 struct cfs_rq *cfs_rq;
ec7dc8ac 8465 struct sched_entity *se, *parent_se;
9b5b7751 8466 struct rq *rq;
29f59db3
SV
8467 int i;
8468
434d53b0 8469 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8470 if (!tg->cfs_rq)
8471 goto err;
434d53b0 8472 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8473 if (!tg->se)
8474 goto err;
052f1dc7
PZ
8475
8476 tg->shares = NICE_0_LOAD;
29f59db3
SV
8477
8478 for_each_possible_cpu(i) {
9b5b7751 8479 rq = cpu_rq(i);
29f59db3 8480
6f505b16
PZ
8481 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8482 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8483 if (!cfs_rq)
8484 goto err;
8485
6f505b16
PZ
8486 se = kmalloc_node(sizeof(struct sched_entity),
8487 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8488 if (!se)
8489 goto err;
8490
ec7dc8ac
DG
8491 parent_se = parent ? parent->se[i] : NULL;
8492 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8493 }
8494
8495 return 1;
8496
8497 err:
8498 return 0;
8499}
8500
8501static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8502{
8503 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8504 &cpu_rq(cpu)->leaf_cfs_rq_list);
8505}
8506
8507static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8508{
8509 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8510}
8511#else
8512static inline void free_fair_sched_group(struct task_group *tg)
8513{
8514}
8515
ec7dc8ac
DG
8516static inline
8517int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8518{
8519 return 1;
8520}
8521
8522static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8523{
8524}
8525
8526static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8527{
8528}
052f1dc7
PZ
8529#endif
8530
8531#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8532static void free_rt_sched_group(struct task_group *tg)
8533{
8534 int i;
8535
d0b27fa7
PZ
8536 destroy_rt_bandwidth(&tg->rt_bandwidth);
8537
bccbe08a
PZ
8538 for_each_possible_cpu(i) {
8539 if (tg->rt_rq)
8540 kfree(tg->rt_rq[i]);
8541 if (tg->rt_se)
8542 kfree(tg->rt_se[i]);
8543 }
8544
8545 kfree(tg->rt_rq);
8546 kfree(tg->rt_se);
8547}
8548
ec7dc8ac
DG
8549static
8550int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8551{
8552 struct rt_rq *rt_rq;
ec7dc8ac 8553 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8554 struct rq *rq;
8555 int i;
8556
434d53b0 8557 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8558 if (!tg->rt_rq)
8559 goto err;
434d53b0 8560 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8561 if (!tg->rt_se)
8562 goto err;
8563
d0b27fa7
PZ
8564 init_rt_bandwidth(&tg->rt_bandwidth,
8565 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8566
8567 for_each_possible_cpu(i) {
8568 rq = cpu_rq(i);
8569
6f505b16
PZ
8570 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8571 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8572 if (!rt_rq)
8573 goto err;
29f59db3 8574
6f505b16
PZ
8575 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8576 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8577 if (!rt_se)
8578 goto err;
29f59db3 8579
ec7dc8ac
DG
8580 parent_se = parent ? parent->rt_se[i] : NULL;
8581 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8582 }
8583
bccbe08a
PZ
8584 return 1;
8585
8586 err:
8587 return 0;
8588}
8589
8590static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8591{
8592 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8593 &cpu_rq(cpu)->leaf_rt_rq_list);
8594}
8595
8596static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8597{
8598 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8599}
8600#else
8601static inline void free_rt_sched_group(struct task_group *tg)
8602{
8603}
8604
ec7dc8ac
DG
8605static inline
8606int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8607{
8608 return 1;
8609}
8610
8611static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8612{
8613}
8614
8615static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8616{
8617}
8618#endif
8619
d0b27fa7 8620#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8621static void free_sched_group(struct task_group *tg)
8622{
8623 free_fair_sched_group(tg);
8624 free_rt_sched_group(tg);
8625 kfree(tg);
8626}
8627
8628/* allocate runqueue etc for a new task group */
ec7dc8ac 8629struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8630{
8631 struct task_group *tg;
8632 unsigned long flags;
8633 int i;
8634
8635 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8636 if (!tg)
8637 return ERR_PTR(-ENOMEM);
8638
ec7dc8ac 8639 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8640 goto err;
8641
ec7dc8ac 8642 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8643 goto err;
8644
8ed36996 8645 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8646 for_each_possible_cpu(i) {
bccbe08a
PZ
8647 register_fair_sched_group(tg, i);
8648 register_rt_sched_group(tg, i);
9b5b7751 8649 }
6f505b16 8650 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8651
8652 WARN_ON(!parent); /* root should already exist */
8653
8654 tg->parent = parent;
8655 list_add_rcu(&tg->siblings, &parent->children);
8656 INIT_LIST_HEAD(&tg->children);
8ed36996 8657 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8658
9b5b7751 8659 return tg;
29f59db3
SV
8660
8661err:
6f505b16 8662 free_sched_group(tg);
29f59db3
SV
8663 return ERR_PTR(-ENOMEM);
8664}
8665
9b5b7751 8666/* rcu callback to free various structures associated with a task group */
6f505b16 8667static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8668{
29f59db3 8669 /* now it should be safe to free those cfs_rqs */
6f505b16 8670 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8671}
8672
9b5b7751 8673/* Destroy runqueue etc associated with a task group */
4cf86d77 8674void sched_destroy_group(struct task_group *tg)
29f59db3 8675{
8ed36996 8676 unsigned long flags;
9b5b7751 8677 int i;
29f59db3 8678
8ed36996 8679 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8680 for_each_possible_cpu(i) {
bccbe08a
PZ
8681 unregister_fair_sched_group(tg, i);
8682 unregister_rt_sched_group(tg, i);
9b5b7751 8683 }
6f505b16 8684 list_del_rcu(&tg->list);
f473aa5e 8685 list_del_rcu(&tg->siblings);
8ed36996 8686 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8687
9b5b7751 8688 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8689 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8690}
8691
9b5b7751 8692/* change task's runqueue when it moves between groups.
3a252015
IM
8693 * The caller of this function should have put the task in its new group
8694 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8695 * reflect its new group.
9b5b7751
SV
8696 */
8697void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8698{
8699 int on_rq, running;
8700 unsigned long flags;
8701 struct rq *rq;
8702
8703 rq = task_rq_lock(tsk, &flags);
8704
29f59db3
SV
8705 update_rq_clock(rq);
8706
051a1d1a 8707 running = task_current(rq, tsk);
29f59db3
SV
8708 on_rq = tsk->se.on_rq;
8709
0e1f3483 8710 if (on_rq)
29f59db3 8711 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8712 if (unlikely(running))
8713 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8714
6f505b16 8715 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8716
810b3817
PZ
8717#ifdef CONFIG_FAIR_GROUP_SCHED
8718 if (tsk->sched_class->moved_group)
8719 tsk->sched_class->moved_group(tsk);
8720#endif
8721
0e1f3483
HS
8722 if (unlikely(running))
8723 tsk->sched_class->set_curr_task(rq);
8724 if (on_rq)
7074badb 8725 enqueue_task(rq, tsk, 0);
29f59db3 8726
29f59db3
SV
8727 task_rq_unlock(rq, &flags);
8728}
d0b27fa7 8729#endif
29f59db3 8730
052f1dc7 8731#ifdef CONFIG_FAIR_GROUP_SCHED
18d95a28 8732static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8733{
8734 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8735 int on_rq;
8736
29f59db3 8737 on_rq = se->on_rq;
62fb1851 8738 if (on_rq)
29f59db3
SV
8739 dequeue_entity(cfs_rq, se, 0);
8740
8741 se->load.weight = shares;
8742 se->load.inv_weight = div64_64((1ULL<<32), shares);
8743
62fb1851 8744 if (on_rq)
29f59db3 8745 enqueue_entity(cfs_rq, se, 0);
18d95a28 8746}
62fb1851 8747
18d95a28
PZ
8748static void set_se_shares(struct sched_entity *se, unsigned long shares)
8749{
8750 struct cfs_rq *cfs_rq = se->cfs_rq;
8751 struct rq *rq = cfs_rq->rq;
8752 unsigned long flags;
8753
8754 spin_lock_irqsave(&rq->lock, flags);
8755 __set_se_shares(se, shares);
8756 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8757}
8758
8ed36996
PZ
8759static DEFINE_MUTEX(shares_mutex);
8760
4cf86d77 8761int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8762{
8763 int i;
8ed36996 8764 unsigned long flags;
c61935fd 8765
ec7dc8ac
DG
8766 /*
8767 * We can't change the weight of the root cgroup.
8768 */
8769 if (!tg->se[0])
8770 return -EINVAL;
8771
62fb1851
PZ
8772 /*
8773 * A weight of 0 or 1 can cause arithmetics problems.
8774 * (The default weight is 1024 - so there's no practical
8775 * limitation from this.)
8776 */
18d95a28
PZ
8777 if (shares < MIN_SHARES)
8778 shares = MIN_SHARES;
62fb1851 8779
8ed36996 8780 mutex_lock(&shares_mutex);
9b5b7751 8781 if (tg->shares == shares)
5cb350ba 8782 goto done;
29f59db3 8783
8ed36996 8784 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8785 for_each_possible_cpu(i)
8786 unregister_fair_sched_group(tg, i);
f473aa5e 8787 list_del_rcu(&tg->siblings);
8ed36996 8788 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8789
8790 /* wait for any ongoing reference to this group to finish */
8791 synchronize_sched();
8792
8793 /*
8794 * Now we are free to modify the group's share on each cpu
8795 * w/o tripping rebalance_share or load_balance_fair.
8796 */
9b5b7751 8797 tg->shares = shares;
18d95a28
PZ
8798 for_each_possible_cpu(i) {
8799 /*
8800 * force a rebalance
8801 */
8802 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8803 set_se_shares(tg->se[i], shares/nr_cpu_ids);
8804 }
29f59db3 8805
6b2d7700
SV
8806 /*
8807 * Enable load balance activity on this group, by inserting it back on
8808 * each cpu's rq->leaf_cfs_rq_list.
8809 */
8ed36996 8810 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8811 for_each_possible_cpu(i)
8812 register_fair_sched_group(tg, i);
f473aa5e 8813 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8814 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8815done:
8ed36996 8816 mutex_unlock(&shares_mutex);
9b5b7751 8817 return 0;
29f59db3
SV
8818}
8819
5cb350ba
DG
8820unsigned long sched_group_shares(struct task_group *tg)
8821{
8822 return tg->shares;
8823}
052f1dc7 8824#endif
5cb350ba 8825
052f1dc7 8826#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8827/*
9f0c1e56 8828 * Ensure that the real time constraints are schedulable.
6f505b16 8829 */
9f0c1e56
PZ
8830static DEFINE_MUTEX(rt_constraints_mutex);
8831
8832static unsigned long to_ratio(u64 period, u64 runtime)
8833{
8834 if (runtime == RUNTIME_INF)
8835 return 1ULL << 16;
8836
2692a240 8837 return div64_64(runtime << 16, period);
9f0c1e56
PZ
8838}
8839
b40b2e8e
PZ
8840#ifdef CONFIG_CGROUP_SCHED
8841static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8842{
8843 struct task_group *tgi, *parent = tg->parent;
8844 unsigned long total = 0;
8845
8846 if (!parent) {
8847 if (global_rt_period() < period)
8848 return 0;
8849
8850 return to_ratio(period, runtime) <
8851 to_ratio(global_rt_period(), global_rt_runtime());
8852 }
8853
8854 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8855 return 0;
8856
8857 rcu_read_lock();
8858 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8859 if (tgi == tg)
8860 continue;
8861
8862 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8863 tgi->rt_bandwidth.rt_runtime);
8864 }
8865 rcu_read_unlock();
8866
8867 return total + to_ratio(period, runtime) <
8868 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8869 parent->rt_bandwidth.rt_runtime);
8870}
8871#elif defined CONFIG_USER_SCHED
9f0c1e56 8872static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8873{
8874 struct task_group *tgi;
8875 unsigned long total = 0;
9f0c1e56 8876 unsigned long global_ratio =
d0b27fa7 8877 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8878
8879 rcu_read_lock();
9f0c1e56
PZ
8880 list_for_each_entry_rcu(tgi, &task_groups, list) {
8881 if (tgi == tg)
8882 continue;
6f505b16 8883
d0b27fa7
PZ
8884 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8885 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8886 }
8887 rcu_read_unlock();
6f505b16 8888
9f0c1e56 8889 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8890}
b40b2e8e 8891#endif
6f505b16 8892
521f1a24
DG
8893/* Must be called with tasklist_lock held */
8894static inline int tg_has_rt_tasks(struct task_group *tg)
8895{
8896 struct task_struct *g, *p;
8897 do_each_thread(g, p) {
8898 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8899 return 1;
8900 } while_each_thread(g, p);
8901 return 0;
8902}
8903
d0b27fa7
PZ
8904static int tg_set_bandwidth(struct task_group *tg,
8905 u64 rt_period, u64 rt_runtime)
6f505b16 8906{
ac086bc2 8907 int i, err = 0;
9f0c1e56 8908
9f0c1e56 8909 mutex_lock(&rt_constraints_mutex);
521f1a24 8910 read_lock(&tasklist_lock);
ac086bc2 8911 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8912 err = -EBUSY;
8913 goto unlock;
8914 }
9f0c1e56
PZ
8915 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8916 err = -EINVAL;
8917 goto unlock;
8918 }
ac086bc2
PZ
8919
8920 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8921 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8922 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8923
8924 for_each_possible_cpu(i) {
8925 struct rt_rq *rt_rq = tg->rt_rq[i];
8926
8927 spin_lock(&rt_rq->rt_runtime_lock);
8928 rt_rq->rt_runtime = rt_runtime;
8929 spin_unlock(&rt_rq->rt_runtime_lock);
8930 }
8931 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8932 unlock:
521f1a24 8933 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8934 mutex_unlock(&rt_constraints_mutex);
8935
8936 return err;
6f505b16
PZ
8937}
8938
d0b27fa7
PZ
8939int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8940{
8941 u64 rt_runtime, rt_period;
8942
8943 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8944 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8945 if (rt_runtime_us < 0)
8946 rt_runtime = RUNTIME_INF;
8947
8948 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8949}
8950
9f0c1e56
PZ
8951long sched_group_rt_runtime(struct task_group *tg)
8952{
8953 u64 rt_runtime_us;
8954
d0b27fa7 8955 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8956 return -1;
8957
d0b27fa7 8958 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8959 do_div(rt_runtime_us, NSEC_PER_USEC);
8960 return rt_runtime_us;
8961}
d0b27fa7
PZ
8962
8963int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8964{
8965 u64 rt_runtime, rt_period;
8966
8967 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8968 rt_runtime = tg->rt_bandwidth.rt_runtime;
8969
8970 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8971}
8972
8973long sched_group_rt_period(struct task_group *tg)
8974{
8975 u64 rt_period_us;
8976
8977 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8978 do_div(rt_period_us, NSEC_PER_USEC);
8979 return rt_period_us;
8980}
8981
8982static int sched_rt_global_constraints(void)
8983{
8984 int ret = 0;
8985
8986 mutex_lock(&rt_constraints_mutex);
8987 if (!__rt_schedulable(NULL, 1, 0))
8988 ret = -EINVAL;
8989 mutex_unlock(&rt_constraints_mutex);
8990
8991 return ret;
8992}
8993#else
8994static int sched_rt_global_constraints(void)
8995{
ac086bc2
PZ
8996 unsigned long flags;
8997 int i;
8998
8999 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9000 for_each_possible_cpu(i) {
9001 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9002
9003 spin_lock(&rt_rq->rt_runtime_lock);
9004 rt_rq->rt_runtime = global_rt_runtime();
9005 spin_unlock(&rt_rq->rt_runtime_lock);
9006 }
9007 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9008
d0b27fa7
PZ
9009 return 0;
9010}
052f1dc7 9011#endif
d0b27fa7
PZ
9012
9013int sched_rt_handler(struct ctl_table *table, int write,
9014 struct file *filp, void __user *buffer, size_t *lenp,
9015 loff_t *ppos)
9016{
9017 int ret;
9018 int old_period, old_runtime;
9019 static DEFINE_MUTEX(mutex);
9020
9021 mutex_lock(&mutex);
9022 old_period = sysctl_sched_rt_period;
9023 old_runtime = sysctl_sched_rt_runtime;
9024
9025 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9026
9027 if (!ret && write) {
9028 ret = sched_rt_global_constraints();
9029 if (ret) {
9030 sysctl_sched_rt_period = old_period;
9031 sysctl_sched_rt_runtime = old_runtime;
9032 } else {
9033 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9034 def_rt_bandwidth.rt_period =
9035 ns_to_ktime(global_rt_period());
9036 }
9037 }
9038 mutex_unlock(&mutex);
9039
9040 return ret;
9041}
68318b8e 9042
052f1dc7 9043#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9044
9045/* return corresponding task_group object of a cgroup */
2b01dfe3 9046static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9047{
2b01dfe3
PM
9048 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9049 struct task_group, css);
68318b8e
SV
9050}
9051
9052static struct cgroup_subsys_state *
2b01dfe3 9053cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9054{
ec7dc8ac 9055 struct task_group *tg, *parent;
68318b8e 9056
2b01dfe3 9057 if (!cgrp->parent) {
68318b8e 9058 /* This is early initialization for the top cgroup */
2b01dfe3 9059 init_task_group.css.cgroup = cgrp;
68318b8e
SV
9060 return &init_task_group.css;
9061 }
9062
ec7dc8ac
DG
9063 parent = cgroup_tg(cgrp->parent);
9064 tg = sched_create_group(parent);
68318b8e
SV
9065 if (IS_ERR(tg))
9066 return ERR_PTR(-ENOMEM);
9067
9068 /* Bind the cgroup to task_group object we just created */
2b01dfe3 9069 tg->css.cgroup = cgrp;
68318b8e
SV
9070
9071 return &tg->css;
9072}
9073
41a2d6cf
IM
9074static void
9075cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9076{
2b01dfe3 9077 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9078
9079 sched_destroy_group(tg);
9080}
9081
41a2d6cf
IM
9082static int
9083cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9084 struct task_struct *tsk)
68318b8e 9085{
b68aa230
PZ
9086#ifdef CONFIG_RT_GROUP_SCHED
9087 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9088 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9089 return -EINVAL;
9090#else
68318b8e
SV
9091 /* We don't support RT-tasks being in separate groups */
9092 if (tsk->sched_class != &fair_sched_class)
9093 return -EINVAL;
b68aa230 9094#endif
68318b8e
SV
9095
9096 return 0;
9097}
9098
9099static void
2b01dfe3 9100cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9101 struct cgroup *old_cont, struct task_struct *tsk)
9102{
9103 sched_move_task(tsk);
9104}
9105
052f1dc7 9106#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
9107static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9108 u64 shareval)
68318b8e 9109{
2b01dfe3 9110 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9111}
9112
2b01dfe3 9113static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9114{
2b01dfe3 9115 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9116
9117 return (u64) tg->shares;
9118}
052f1dc7 9119#endif
68318b8e 9120
052f1dc7 9121#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 9122static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9f0c1e56
PZ
9123 struct file *file,
9124 const char __user *userbuf,
9125 size_t nbytes, loff_t *unused_ppos)
6f505b16 9126{
9f0c1e56
PZ
9127 char buffer[64];
9128 int retval = 0;
9129 s64 val;
9130 char *end;
9131
9132 if (!nbytes)
9133 return -EINVAL;
9134 if (nbytes >= sizeof(buffer))
9135 return -E2BIG;
9136 if (copy_from_user(buffer, userbuf, nbytes))
9137 return -EFAULT;
9138
9139 buffer[nbytes] = 0; /* nul-terminate */
9140
9141 /* strip newline if necessary */
9142 if (nbytes && (buffer[nbytes-1] == '\n'))
9143 buffer[nbytes-1] = 0;
9144 val = simple_strtoll(buffer, &end, 0);
9145 if (*end)
9146 return -EINVAL;
9147
9148 /* Pass to subsystem */
9149 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9150 if (!retval)
9151 retval = nbytes;
9152 return retval;
6f505b16
PZ
9153}
9154
9f0c1e56
PZ
9155static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
9156 struct file *file,
9157 char __user *buf, size_t nbytes,
9158 loff_t *ppos)
6f505b16 9159{
9f0c1e56
PZ
9160 char tmp[64];
9161 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
9162 int len = sprintf(tmp, "%ld\n", val);
6f505b16 9163
9f0c1e56 9164 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 9165}
d0b27fa7
PZ
9166
9167static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9168 u64 rt_period_us)
9169{
9170 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9171}
9172
9173static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9174{
9175 return sched_group_rt_period(cgroup_tg(cgrp));
9176}
052f1dc7 9177#endif
6f505b16 9178
fe5c7cc2 9179static struct cftype cpu_files[] = {
052f1dc7 9180#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9181 {
9182 .name = "shares",
9183 .read_uint = cpu_shares_read_uint,
9184 .write_uint = cpu_shares_write_uint,
9185 },
052f1dc7
PZ
9186#endif
9187#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9188 {
9f0c1e56
PZ
9189 .name = "rt_runtime_us",
9190 .read = cpu_rt_runtime_read,
9191 .write = cpu_rt_runtime_write,
6f505b16 9192 },
d0b27fa7
PZ
9193 {
9194 .name = "rt_period_us",
9195 .read_uint = cpu_rt_period_read_uint,
9196 .write_uint = cpu_rt_period_write_uint,
9197 },
052f1dc7 9198#endif
68318b8e
SV
9199};
9200
9201static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9202{
fe5c7cc2 9203 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9204}
9205
9206struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9207 .name = "cpu",
9208 .create = cpu_cgroup_create,
9209 .destroy = cpu_cgroup_destroy,
9210 .can_attach = cpu_cgroup_can_attach,
9211 .attach = cpu_cgroup_attach,
9212 .populate = cpu_cgroup_populate,
9213 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9214 .early_init = 1,
9215};
9216
052f1dc7 9217#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9218
9219#ifdef CONFIG_CGROUP_CPUACCT
9220
9221/*
9222 * CPU accounting code for task groups.
9223 *
9224 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9225 * (balbir@in.ibm.com).
9226 */
9227
9228/* track cpu usage of a group of tasks */
9229struct cpuacct {
9230 struct cgroup_subsys_state css;
9231 /* cpuusage holds pointer to a u64-type object on every cpu */
9232 u64 *cpuusage;
9233};
9234
9235struct cgroup_subsys cpuacct_subsys;
9236
9237/* return cpu accounting group corresponding to this container */
32cd756a 9238static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9239{
32cd756a 9240 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9241 struct cpuacct, css);
9242}
9243
9244/* return cpu accounting group to which this task belongs */
9245static inline struct cpuacct *task_ca(struct task_struct *tsk)
9246{
9247 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9248 struct cpuacct, css);
9249}
9250
9251/* create a new cpu accounting group */
9252static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9253 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9254{
9255 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9256
9257 if (!ca)
9258 return ERR_PTR(-ENOMEM);
9259
9260 ca->cpuusage = alloc_percpu(u64);
9261 if (!ca->cpuusage) {
9262 kfree(ca);
9263 return ERR_PTR(-ENOMEM);
9264 }
9265
9266 return &ca->css;
9267}
9268
9269/* destroy an existing cpu accounting group */
41a2d6cf 9270static void
32cd756a 9271cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9272{
32cd756a 9273 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9274
9275 free_percpu(ca->cpuusage);
9276 kfree(ca);
9277}
9278
9279/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9280static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9281{
32cd756a 9282 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9283 u64 totalcpuusage = 0;
9284 int i;
9285
9286 for_each_possible_cpu(i) {
9287 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9288
9289 /*
9290 * Take rq->lock to make 64-bit addition safe on 32-bit
9291 * platforms.
9292 */
9293 spin_lock_irq(&cpu_rq(i)->lock);
9294 totalcpuusage += *cpuusage;
9295 spin_unlock_irq(&cpu_rq(i)->lock);
9296 }
9297
9298 return totalcpuusage;
9299}
9300
0297b803
DG
9301static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9302 u64 reset)
9303{
9304 struct cpuacct *ca = cgroup_ca(cgrp);
9305 int err = 0;
9306 int i;
9307
9308 if (reset) {
9309 err = -EINVAL;
9310 goto out;
9311 }
9312
9313 for_each_possible_cpu(i) {
9314 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9315
9316 spin_lock_irq(&cpu_rq(i)->lock);
9317 *cpuusage = 0;
9318 spin_unlock_irq(&cpu_rq(i)->lock);
9319 }
9320out:
9321 return err;
9322}
9323
d842de87
SV
9324static struct cftype files[] = {
9325 {
9326 .name = "usage",
9327 .read_uint = cpuusage_read,
0297b803 9328 .write_uint = cpuusage_write,
d842de87
SV
9329 },
9330};
9331
32cd756a 9332static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9333{
32cd756a 9334 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9335}
9336
9337/*
9338 * charge this task's execution time to its accounting group.
9339 *
9340 * called with rq->lock held.
9341 */
9342static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9343{
9344 struct cpuacct *ca;
9345
9346 if (!cpuacct_subsys.active)
9347 return;
9348
9349 ca = task_ca(tsk);
9350 if (ca) {
9351 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9352
9353 *cpuusage += cputime;
9354 }
9355}
9356
9357struct cgroup_subsys cpuacct_subsys = {
9358 .name = "cpuacct",
9359 .create = cpuacct_create,
9360 .destroy = cpuacct_destroy,
9361 .populate = cpuacct_populate,
9362 .subsys_id = cpuacct_subsys_id,
9363};
9364#endif /* CONFIG_CGROUP_CPUACCT */