]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
dm snapshot: create function for chunk_is_tracked wait
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 817
ffda12a1
PZ
818/*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823unsigned int sysctl_sched_shares_thresh = 4;
824
e9e9250b
PZ
825/*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
6e275637 1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
7f1e2ca9 1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1129 HRTIMER_MODE_REL_PINNED, 0);
31656519 1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
5ed0cec0 1183 if (test_tsk_need_resched(p))
c24d20db
IM
1184 return;
1185
5ed0cec0 1186 set_tsk_need_resched(p);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
5ed0cec0 1242 set_tsk_need_resched(rq->idle);
06d8308c
TG
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
e9e9250b
PZ
1251static u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db
IM
1274{
1275 assert_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
6d6bc0ad 1282#endif /* CONFIG_SMP */
c24d20db 1283
45bf76df
IM
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST (~0UL)
1286#else
1287# define WMULT_CONST (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT 32
1291
194081eb
IM
1292/*
1293 * Shift right and round:
1294 */
cf2ab469 1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1296
a7be37ac
PZ
1297/*
1298 * delta *= weight / lw
1299 */
cb1c4fc9 1300static unsigned long
45bf76df
IM
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303{
1304 u64 tmp;
1305
7a232e03
LJ
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
45bf76df
IM
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
194081eb 1318 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1320 WMULT_SHIFT/2);
1321 else
cf2ab469 1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1323
ecf691da 1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1325}
1326
1091985b 1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1328{
1329 lw->weight += inc;
e89996ae 1330 lw->inv_weight = 0;
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1334{
1335 lw->weight -= dec;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
2dd73a4f
PW
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
cce7ade8
PZ
1348#define WEIGHT_IDLEPRIO 3
1349#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
dd41f596
IM
1362 */
1363static const int prio_to_weight[40] = {
254753dc
IM
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1372};
1373
5714d2de
IM
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
dd41f596 1381static const u32 prio_to_wmult[40] = {
254753dc
IM
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1390};
2dd73a4f 1391
dd41f596
IM
1392static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394/*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403};
1404
e1d1484f
PW
1405#ifdef CONFIG_SMP
1406static unsigned long
1407balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412static int
1413iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
e1d1484f 1416#endif
dd41f596 1417
ef12fefa
BR
1418/* Time spent by the tasks of the cpu accounting group executing in ... */
1419enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424};
1425
d842de87
SV
1426#ifdef CONFIG_CGROUP_CPUACCT
1427static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1428static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1432static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1434#endif
1435
18d95a28
PZ
1436static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437{
1438 update_load_add(&rq->load, load);
1439}
1440
1441static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_sub(&rq->load, load);
1444}
1445
7940ca36 1446#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1447typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1448
1449/*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
eb755805 1453static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
eb755805 1456 int ret;
c09595f6
PZ
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460down:
eb755805
PZ
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468up:
1469 continue;
1470 }
eb755805
PZ
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
eb755805 1479out_unlock:
c09595f6 1480 rcu_read_unlock();
eb755805
PZ
1481
1482 return ret;
c09595f6
PZ
1483}
1484
eb755805
PZ
1485static int tg_nop(struct task_group *tg, void *data)
1486{
1487 return 0;
c09595f6 1488}
eb755805
PZ
1489#endif
1490
1491#ifdef CONFIG_SMP
f5f08f39
PZ
1492/* Used instead of source_load when we know the type == 0 */
1493static unsigned long weighted_cpuload(const int cpu)
1494{
1495 return cpu_rq(cpu)->load.weight;
1496}
1497
1498/*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505static unsigned long source_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514}
1515
1516/*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520static unsigned long target_load(int cpu, int type)
1521{
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529}
1530
ae154be1
PZ
1531static struct sched_group *group_of(int cpu)
1532{
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539}
1540
1541static unsigned long power_of(int cpu)
1542{
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549}
1550
eb755805
PZ
1551static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553static unsigned long cpu_avg_load_per_task(int cpu)
1554{
1555 struct rq *rq = cpu_rq(cpu);
af6d596f 1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1557
4cd42620
SR
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1560 else
1561 rq->avg_load_per_task = 0;
eb755805
PZ
1562
1563 return rq->avg_load_per_task;
1564}
1565
1566#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1567
4a6cc4bd 1568static __read_mostly unsigned long *update_shares_data;
34d76c41 1569
c09595f6
PZ
1570static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572/*
1573 * Calculate and set the cpu's group shares.
1574 */
34d76c41
PZ
1575static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
4a6cc4bd 1578 unsigned long *usd_rq_weight)
18d95a28 1579{
34d76c41 1580 unsigned long shares, rq_weight;
a5004278 1581 int boost = 0;
c09595f6 1582
4a6cc4bd 1583 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
c8cba857 1588
c09595f6 1589 /*
a8af7246
PZ
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
c09595f6 1593 */
ec4e0e2f 1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1596
ffda12a1
PZ
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
c09595f6 1601
ffda12a1 1602 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
18d95a28 1608}
c09595f6
PZ
1609
1610/*
c8cba857
PZ
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
c09595f6 1614 */
eb755805 1615static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1616{
34d76c41 1617 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1618 unsigned long *usd_rq_weight;
eb755805 1619 struct sched_domain *sd = data;
34d76c41 1620 unsigned long flags;
c8cba857 1621 int i;
c09595f6 1622
34d76c41
PZ
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
4a6cc4bd 1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1630 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1631 usd_rq_weight[i] = weight;
34d76c41 1632
ec4e0e2f
KC
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
ec4e0e2f
KC
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
ec4e0e2f 1641 rq_weight += weight;
c8cba857 1642 shares += tg->cfs_rq[i]->shares;
c09595f6 1643 }
c09595f6 1644
c8cba857
PZ
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
c09595f6 1650
758b2cdc 1651 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1653
1654 local_irq_restore(flags);
eb755805
PZ
1655
1656 return 0;
c09595f6
PZ
1657}
1658
1659/*
c8cba857
PZ
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
c09595f6 1663 */
eb755805 1664static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1665{
c8cba857 1666 unsigned long load;
eb755805 1667 long cpu = (long)data;
c09595f6 1668
c8cba857
PZ
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
c09595f6 1676
c8cba857 1677 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1678
eb755805 1679 return 0;
c09595f6
PZ
1680}
1681
c8cba857 1682static void update_shares(struct sched_domain *sd)
4d8d595d 1683{
e7097159
PZ
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
2398f2c6
PZ
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
eb755805 1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1696 }
4d8d595d
PZ
1697}
1698
3e5459b4
PZ
1699static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700{
e7097159
PZ
1701 if (root_task_group_empty())
1702 return;
1703
3e5459b4
PZ
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707}
1708
eb755805 1709static void update_h_load(long cpu)
c09595f6 1710{
e7097159
PZ
1711 if (root_task_group_empty())
1712 return;
1713
eb755805 1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1715}
1716
c09595f6
PZ
1717#else
1718
c8cba857 1719static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1720{
1721}
1722
3e5459b4
PZ
1723static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724{
1725}
1726
18d95a28
PZ
1727#endif
1728
8f45e2b5
GH
1729#ifdef CONFIG_PREEMPT
1730
b78bb868
PZ
1731static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
70574a99 1733/*
8f45e2b5
GH
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
70574a99 1740 */
8f45e2b5
GH
1741static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745{
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750}
1751
1752#else
1753/*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764{
1765 int ret = 0;
1766
70574a99
AD
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777}
1778
8f45e2b5
GH
1779#endif /* CONFIG_PREEMPT */
1780
1781/*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793}
1794
70574a99
AD
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797{
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800}
18d95a28
PZ
1801#endif
1802
30432094 1803#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1804static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805{
30432094 1806#ifdef CONFIG_SMP
34e83e85
IM
1807 cfs_rq->shares = shares;
1808#endif
1809}
30432094 1810#endif
e7693a36 1811
dce48a84
TG
1812static void calc_load_account_active(struct rq *this_rq);
1813
dd41f596 1814#include "sched_stats.h"
dd41f596 1815#include "sched_idletask.c"
5522d5d5
IM
1816#include "sched_fair.c"
1817#include "sched_rt.c"
dd41f596
IM
1818#ifdef CONFIG_SCHED_DEBUG
1819# include "sched_debug.c"
1820#endif
1821
1822#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1823#define for_each_class(class) \
1824 for (class = sched_class_highest; class; class = class->next)
dd41f596 1825
c09595f6 1826static void inc_nr_running(struct rq *rq)
9c217245
IM
1827{
1828 rq->nr_running++;
9c217245
IM
1829}
1830
c09595f6 1831static void dec_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running--;
9c217245
IM
1834}
1835
45bf76df
IM
1836static void set_load_weight(struct task_struct *p)
1837{
1838 if (task_has_rt_policy(p)) {
dd41f596
IM
1839 p->se.load.weight = prio_to_weight[0] * 2;
1840 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1841 return;
1842 }
45bf76df 1843
dd41f596
IM
1844 /*
1845 * SCHED_IDLE tasks get minimal weight:
1846 */
1847 if (p->policy == SCHED_IDLE) {
1848 p->se.load.weight = WEIGHT_IDLEPRIO;
1849 p->se.load.inv_weight = WMULT_IDLEPRIO;
1850 return;
1851 }
71f8bd46 1852
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1854 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1855}
1856
2087a1ad
GH
1857static void update_avg(u64 *avg, u64 sample)
1858{
1859 s64 diff = sample - *avg;
1860 *avg += diff >> 3;
1861}
1862
8159f87e 1863static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1864{
831451ac
PZ
1865 if (wakeup)
1866 p->se.start_runtime = p->se.sum_exec_runtime;
1867
dd41f596 1868 sched_info_queued(p);
fd390f6a 1869 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1870 p->se.on_rq = 1;
71f8bd46
IM
1871}
1872
69be72c1 1873static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1874{
831451ac
PZ
1875 if (sleep) {
1876 if (p->se.last_wakeup) {
1877 update_avg(&p->se.avg_overlap,
1878 p->se.sum_exec_runtime - p->se.last_wakeup);
1879 p->se.last_wakeup = 0;
1880 } else {
1881 update_avg(&p->se.avg_wakeup,
1882 sysctl_sched_wakeup_granularity);
1883 }
2087a1ad
GH
1884 }
1885
46ac22ba 1886 sched_info_dequeued(p);
f02231e5 1887 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1888 p->se.on_rq = 0;
71f8bd46
IM
1889}
1890
14531189 1891/*
dd41f596 1892 * __normal_prio - return the priority that is based on the static prio
14531189 1893 */
14531189
IM
1894static inline int __normal_prio(struct task_struct *p)
1895{
dd41f596 1896 return p->static_prio;
14531189
IM
1897}
1898
b29739f9
IM
1899/*
1900 * Calculate the expected normal priority: i.e. priority
1901 * without taking RT-inheritance into account. Might be
1902 * boosted by interactivity modifiers. Changes upon fork,
1903 * setprio syscalls, and whenever the interactivity
1904 * estimator recalculates.
1905 */
36c8b586 1906static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1907{
1908 int prio;
1909
e05606d3 1910 if (task_has_rt_policy(p))
b29739f9
IM
1911 prio = MAX_RT_PRIO-1 - p->rt_priority;
1912 else
1913 prio = __normal_prio(p);
1914 return prio;
1915}
1916
1917/*
1918 * Calculate the current priority, i.e. the priority
1919 * taken into account by the scheduler. This value might
1920 * be boosted by RT tasks, or might be boosted by
1921 * interactivity modifiers. Will be RT if the task got
1922 * RT-boosted. If not then it returns p->normal_prio.
1923 */
36c8b586 1924static int effective_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 p->normal_prio = normal_prio(p);
1927 /*
1928 * If we are RT tasks or we were boosted to RT priority,
1929 * keep the priority unchanged. Otherwise, update priority
1930 * to the normal priority:
1931 */
1932 if (!rt_prio(p->prio))
1933 return p->normal_prio;
1934 return p->prio;
1935}
1936
1da177e4 1937/*
dd41f596 1938 * activate_task - move a task to the runqueue.
1da177e4 1939 */
dd41f596 1940static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1941{
d9514f6c 1942 if (task_contributes_to_load(p))
dd41f596 1943 rq->nr_uninterruptible--;
1da177e4 1944
8159f87e 1945 enqueue_task(rq, p, wakeup);
c09595f6 1946 inc_nr_running(rq);
1da177e4
LT
1947}
1948
1da177e4
LT
1949/*
1950 * deactivate_task - remove a task from the runqueue.
1951 */
2e1cb74a 1952static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1953{
d9514f6c 1954 if (task_contributes_to_load(p))
dd41f596
IM
1955 rq->nr_uninterruptible++;
1956
69be72c1 1957 dequeue_task(rq, p, sleep);
c09595f6 1958 dec_nr_running(rq);
1da177e4
LT
1959}
1960
1da177e4
LT
1961/**
1962 * task_curr - is this task currently executing on a CPU?
1963 * @p: the task in question.
1964 */
36c8b586 1965inline int task_curr(const struct task_struct *p)
1da177e4
LT
1966{
1967 return cpu_curr(task_cpu(p)) == p;
1968}
1969
dd41f596
IM
1970static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971{
6f505b16 1972 set_task_rq(p, cpu);
dd41f596 1973#ifdef CONFIG_SMP
ce96b5ac
DA
1974 /*
1975 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1976 * successfuly executed on another CPU. We must ensure that updates of
1977 * per-task data have been completed by this moment.
1978 */
1979 smp_wmb();
dd41f596 1980 task_thread_info(p)->cpu = cpu;
dd41f596 1981#endif
2dd73a4f
PW
1982}
1983
cb469845
SR
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987{
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994}
1995
b84ff7d6
MG
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 1998 * @p: thread created by kthread_create().
b84ff7d6
MG
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
055a0086 2020 update_rq_clock(rq);
b84ff7d6
MG
2021 set_task_cpu(p, cpu);
2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2023 p->rt.nr_cpus_allowed = 1;
2024 p->flags |= PF_THREAD_BOUND;
2025 spin_unlock_irqrestore(&rq->lock, flags);
2026}
2027EXPORT_SYMBOL(kthread_bind);
2028
1da177e4 2029#ifdef CONFIG_SMP
cc367732
IM
2030/*
2031 * Is this task likely cache-hot:
2032 */
e7693a36 2033static int
cc367732
IM
2034task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2035{
2036 s64 delta;
2037
f540a608
IM
2038 /*
2039 * Buddy candidates are cache hot:
2040 */
f685ceac 2041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2042 (&p->se == cfs_rq_of(&p->se)->next ||
2043 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2044 return 1;
2045
cc367732
IM
2046 if (p->sched_class != &fair_sched_class)
2047 return 0;
2048
6bc1665b
IM
2049 if (sysctl_sched_migration_cost == -1)
2050 return 1;
2051 if (sysctl_sched_migration_cost == 0)
2052 return 0;
2053
cc367732
IM
2054 delta = now - p->se.exec_start;
2055
2056 return delta < (s64)sysctl_sched_migration_cost;
2057}
2058
2059
dd41f596 2060void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2061{
dd41f596
IM
2062 int old_cpu = task_cpu(p);
2063 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2064 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2065 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2066 u64 clock_offset;
dd41f596
IM
2067
2068 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2069
de1d7286 2070 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2071
6cfb0d5d
IM
2072#ifdef CONFIG_SCHEDSTATS
2073 if (p->se.wait_start)
2074 p->se.wait_start -= clock_offset;
dd41f596
IM
2075 if (p->se.sleep_start)
2076 p->se.sleep_start -= clock_offset;
2077 if (p->se.block_start)
2078 p->se.block_start -= clock_offset;
6c594c21 2079#endif
cc367732 2080 if (old_cpu != new_cpu) {
6c594c21
IM
2081 p->se.nr_migrations++;
2082#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2083 if (task_hot(p, old_rq->clock, NULL))
2084 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2085#endif
cdd6c482 2086 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2087 1, 1, NULL, 0);
6c594c21 2088 }
2830cf8c
SV
2089 p->se.vruntime -= old_cfsrq->min_vruntime -
2090 new_cfsrq->min_vruntime;
dd41f596
IM
2091
2092 __set_task_cpu(p, new_cpu);
c65cc870
IM
2093}
2094
70b97a7f 2095struct migration_req {
1da177e4 2096 struct list_head list;
1da177e4 2097
36c8b586 2098 struct task_struct *task;
1da177e4
LT
2099 int dest_cpu;
2100
1da177e4 2101 struct completion done;
70b97a7f 2102};
1da177e4
LT
2103
2104/*
2105 * The task's runqueue lock must be held.
2106 * Returns true if you have to wait for migration thread.
2107 */
36c8b586 2108static int
70b97a7f 2109migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2110{
70b97a7f 2111 struct rq *rq = task_rq(p);
1da177e4
LT
2112
2113 /*
2114 * If the task is not on a runqueue (and not running), then
2115 * it is sufficient to simply update the task's cpu field.
2116 */
dd41f596 2117 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2118 update_rq_clock(rq);
1da177e4
LT
2119 set_task_cpu(p, dest_cpu);
2120 return 0;
2121 }
2122
2123 init_completion(&req->done);
1da177e4
LT
2124 req->task = p;
2125 req->dest_cpu = dest_cpu;
2126 list_add(&req->list, &rq->migration_queue);
48f24c4d 2127
1da177e4
LT
2128 return 1;
2129}
2130
a26b89f0
MM
2131/*
2132 * wait_task_context_switch - wait for a thread to complete at least one
2133 * context switch.
2134 *
2135 * @p must not be current.
2136 */
2137void wait_task_context_switch(struct task_struct *p)
2138{
2139 unsigned long nvcsw, nivcsw, flags;
2140 int running;
2141 struct rq *rq;
2142
2143 nvcsw = p->nvcsw;
2144 nivcsw = p->nivcsw;
2145 for (;;) {
2146 /*
2147 * The runqueue is assigned before the actual context
2148 * switch. We need to take the runqueue lock.
2149 *
2150 * We could check initially without the lock but it is
2151 * very likely that we need to take the lock in every
2152 * iteration.
2153 */
2154 rq = task_rq_lock(p, &flags);
2155 running = task_running(rq, p);
2156 task_rq_unlock(rq, &flags);
2157
2158 if (likely(!running))
2159 break;
2160 /*
2161 * The switch count is incremented before the actual
2162 * context switch. We thus wait for two switches to be
2163 * sure at least one completed.
2164 */
2165 if ((p->nvcsw - nvcsw) > 1)
2166 break;
2167 if ((p->nivcsw - nivcsw) > 1)
2168 break;
2169
2170 cpu_relax();
2171 }
2172}
2173
1da177e4
LT
2174/*
2175 * wait_task_inactive - wait for a thread to unschedule.
2176 *
85ba2d86
RM
2177 * If @match_state is nonzero, it's the @p->state value just checked and
2178 * not expected to change. If it changes, i.e. @p might have woken up,
2179 * then return zero. When we succeed in waiting for @p to be off its CPU,
2180 * we return a positive number (its total switch count). If a second call
2181 * a short while later returns the same number, the caller can be sure that
2182 * @p has remained unscheduled the whole time.
2183 *
1da177e4
LT
2184 * The caller must ensure that the task *will* unschedule sometime soon,
2185 * else this function might spin for a *long* time. This function can't
2186 * be called with interrupts off, or it may introduce deadlock with
2187 * smp_call_function() if an IPI is sent by the same process we are
2188 * waiting to become inactive.
2189 */
85ba2d86 2190unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2191{
2192 unsigned long flags;
dd41f596 2193 int running, on_rq;
85ba2d86 2194 unsigned long ncsw;
70b97a7f 2195 struct rq *rq;
1da177e4 2196
3a5c359a
AK
2197 for (;;) {
2198 /*
2199 * We do the initial early heuristics without holding
2200 * any task-queue locks at all. We'll only try to get
2201 * the runqueue lock when things look like they will
2202 * work out!
2203 */
2204 rq = task_rq(p);
fa490cfd 2205
3a5c359a
AK
2206 /*
2207 * If the task is actively running on another CPU
2208 * still, just relax and busy-wait without holding
2209 * any locks.
2210 *
2211 * NOTE! Since we don't hold any locks, it's not
2212 * even sure that "rq" stays as the right runqueue!
2213 * But we don't care, since "task_running()" will
2214 * return false if the runqueue has changed and p
2215 * is actually now running somewhere else!
2216 */
85ba2d86
RM
2217 while (task_running(rq, p)) {
2218 if (match_state && unlikely(p->state != match_state))
2219 return 0;
3a5c359a 2220 cpu_relax();
85ba2d86 2221 }
fa490cfd 2222
3a5c359a
AK
2223 /*
2224 * Ok, time to look more closely! We need the rq
2225 * lock now, to be *sure*. If we're wrong, we'll
2226 * just go back and repeat.
2227 */
2228 rq = task_rq_lock(p, &flags);
0a16b607 2229 trace_sched_wait_task(rq, p);
3a5c359a
AK
2230 running = task_running(rq, p);
2231 on_rq = p->se.on_rq;
85ba2d86 2232 ncsw = 0;
f31e11d8 2233 if (!match_state || p->state == match_state)
93dcf55f 2234 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2235 task_rq_unlock(rq, &flags);
fa490cfd 2236
85ba2d86
RM
2237 /*
2238 * If it changed from the expected state, bail out now.
2239 */
2240 if (unlikely(!ncsw))
2241 break;
2242
3a5c359a
AK
2243 /*
2244 * Was it really running after all now that we
2245 * checked with the proper locks actually held?
2246 *
2247 * Oops. Go back and try again..
2248 */
2249 if (unlikely(running)) {
2250 cpu_relax();
2251 continue;
2252 }
fa490cfd 2253
3a5c359a
AK
2254 /*
2255 * It's not enough that it's not actively running,
2256 * it must be off the runqueue _entirely_, and not
2257 * preempted!
2258 *
80dd99b3 2259 * So if it was still runnable (but just not actively
3a5c359a
AK
2260 * running right now), it's preempted, and we should
2261 * yield - it could be a while.
2262 */
2263 if (unlikely(on_rq)) {
2264 schedule_timeout_uninterruptible(1);
2265 continue;
2266 }
fa490cfd 2267
3a5c359a
AK
2268 /*
2269 * Ahh, all good. It wasn't running, and it wasn't
2270 * runnable, which means that it will never become
2271 * running in the future either. We're all done!
2272 */
2273 break;
2274 }
85ba2d86
RM
2275
2276 return ncsw;
1da177e4
LT
2277}
2278
2279/***
2280 * kick_process - kick a running thread to enter/exit the kernel
2281 * @p: the to-be-kicked thread
2282 *
2283 * Cause a process which is running on another CPU to enter
2284 * kernel-mode, without any delay. (to get signals handled.)
2285 *
2286 * NOTE: this function doesnt have to take the runqueue lock,
2287 * because all it wants to ensure is that the remote task enters
2288 * the kernel. If the IPI races and the task has been migrated
2289 * to another CPU then no harm is done and the purpose has been
2290 * achieved as well.
2291 */
36c8b586 2292void kick_process(struct task_struct *p)
1da177e4
LT
2293{
2294 int cpu;
2295
2296 preempt_disable();
2297 cpu = task_cpu(p);
2298 if ((cpu != smp_processor_id()) && task_curr(p))
2299 smp_send_reschedule(cpu);
2300 preempt_enable();
2301}
b43e3521 2302EXPORT_SYMBOL_GPL(kick_process);
476d139c 2303#endif /* CONFIG_SMP */
1da177e4 2304
0793a61d
TG
2305/**
2306 * task_oncpu_function_call - call a function on the cpu on which a task runs
2307 * @p: the task to evaluate
2308 * @func: the function to be called
2309 * @info: the function call argument
2310 *
2311 * Calls the function @func when the task is currently running. This might
2312 * be on the current CPU, which just calls the function directly
2313 */
2314void task_oncpu_function_call(struct task_struct *p,
2315 void (*func) (void *info), void *info)
2316{
2317 int cpu;
2318
2319 preempt_disable();
2320 cpu = task_cpu(p);
2321 if (task_curr(p))
2322 smp_call_function_single(cpu, func, info, 1);
2323 preempt_enable();
2324}
2325
1da177e4
LT
2326/***
2327 * try_to_wake_up - wake up a thread
2328 * @p: the to-be-woken-up thread
2329 * @state: the mask of task states that can be woken
2330 * @sync: do a synchronous wakeup?
2331 *
2332 * Put it on the run-queue if it's not already there. The "current"
2333 * thread is always on the run-queue (except when the actual
2334 * re-schedule is in progress), and as such you're allowed to do
2335 * the simpler "current->state = TASK_RUNNING" to mark yourself
2336 * runnable without the overhead of this.
2337 *
2338 * returns failure only if the task is already active.
2339 */
7d478721
PZ
2340static int try_to_wake_up(struct task_struct *p, unsigned int state,
2341 int wake_flags)
1da177e4 2342{
cc367732 2343 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2344 unsigned long flags;
f5dc3753 2345 struct rq *rq, *orig_rq;
1da177e4 2346
b85d0667 2347 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2348 wake_flags &= ~WF_SYNC;
2398f2c6 2349
e9c84311 2350 this_cpu = get_cpu();
2398f2c6 2351
04e2f174 2352 smp_wmb();
f5dc3753 2353 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2354 update_rq_clock(rq);
e9c84311 2355 if (!(p->state & state))
1da177e4
LT
2356 goto out;
2357
dd41f596 2358 if (p->se.on_rq)
1da177e4
LT
2359 goto out_running;
2360
2361 cpu = task_cpu(p);
cc367732 2362 orig_cpu = cpu;
1da177e4
LT
2363
2364#ifdef CONFIG_SMP
2365 if (unlikely(task_running(rq, p)))
2366 goto out_activate;
2367
e9c84311
PZ
2368 /*
2369 * In order to handle concurrent wakeups and release the rq->lock
2370 * we put the task in TASK_WAKING state.
eb24073b
IM
2371 *
2372 * First fix up the nr_uninterruptible count:
e9c84311 2373 */
eb24073b
IM
2374 if (task_contributes_to_load(p))
2375 rq->nr_uninterruptible--;
e9c84311
PZ
2376 p->state = TASK_WAKING;
2377 task_rq_unlock(rq, &flags);
2378
7d478721 2379 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
055a0086
MG
2380 if (cpu != orig_cpu) {
2381 local_irq_save(flags);
2382 rq = cpu_rq(cpu);
2383 update_rq_clock(rq);
5d2f5a61 2384 set_task_cpu(p, cpu);
055a0086
MG
2385 local_irq_restore(flags);
2386 }
e9c84311 2387 rq = task_rq_lock(p, &flags);
f5dc3753 2388
e9c84311
PZ
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
1da177e4 2391
e7693a36
GH
2392#ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
758b2cdc 2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2402 }
2403 }
2404 }
6d6bc0ad 2405#endif /* CONFIG_SCHEDSTATS */
e7693a36 2406
1da177e4
LT
2407out_activate:
2408#endif /* CONFIG_SMP */
cc367732 2409 schedstat_inc(p, se.nr_wakeups);
7d478721 2410 if (wake_flags & WF_SYNC)
cc367732
IM
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2418 activate_task(rq, p, 1);
1da177e4
LT
2419 success = 1;
2420
831451ac
PZ
2421 /*
2422 * Only attribute actual wakeups done by this task.
2423 */
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2427
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2433
2434 se->last_wakeup = se->sum_exec_runtime;
2435 }
2436
1da177e4 2437out_running:
468a15bb 2438 trace_sched_wakeup(rq, p, success);
7d478721 2439 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2440
1da177e4 2441 p->state = TASK_RUNNING;
9a897c5a
SR
2442#ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
9a897c5a 2456#endif
1da177e4
LT
2457out:
2458 task_rq_unlock(rq, &flags);
e9c84311 2459 put_cpu();
1da177e4
LT
2460
2461 return success;
2462}
2463
50fa610a
DH
2464/**
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2467 *
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2471 *
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2474 */
7ad5b3a5 2475int wake_up_process(struct task_struct *p)
1da177e4 2476{
d9514f6c 2477 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2478}
1da177e4
LT
2479EXPORT_SYMBOL(wake_up_process);
2480
7ad5b3a5 2481int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2482{
2483 return try_to_wake_up(p, state, 0);
2484}
2485
1da177e4
LT
2486/*
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
dd41f596
IM
2489 *
2490 * __sched_fork() is basic setup used by init_idle() too:
2491 */
2492static void __sched_fork(struct task_struct *p)
2493{
dd41f596
IM
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
f6cf891c 2496 p->se.prev_sum_exec_runtime = 0;
6c594c21 2497 p->se.nr_migrations = 0;
4ae7d5ce
IM
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
831451ac
PZ
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2502 p->se.avg_running = 0;
6cfb0d5d
IM
2503
2504#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2505 p->se.wait_start = 0;
2506 p->se.wait_max = 0;
2507 p->se.wait_count = 0;
2508 p->se.wait_sum = 0;
2509
2510 p->se.sleep_start = 0;
2511 p->se.sleep_max = 0;
2512 p->se.sum_sleep_runtime = 0;
2513
2514 p->se.block_start = 0;
2515 p->se.block_max = 0;
2516 p->se.exec_max = 0;
2517 p->se.slice_max = 0;
2518
2519 p->se.nr_migrations_cold = 0;
2520 p->se.nr_failed_migrations_affine = 0;
2521 p->se.nr_failed_migrations_running = 0;
2522 p->se.nr_failed_migrations_hot = 0;
2523 p->se.nr_forced_migrations = 0;
2524 p->se.nr_forced2_migrations = 0;
2525
2526 p->se.nr_wakeups = 0;
2527 p->se.nr_wakeups_sync = 0;
2528 p->se.nr_wakeups_migrate = 0;
2529 p->se.nr_wakeups_local = 0;
2530 p->se.nr_wakeups_remote = 0;
2531 p->se.nr_wakeups_affine = 0;
2532 p->se.nr_wakeups_affine_attempts = 0;
2533 p->se.nr_wakeups_passive = 0;
2534 p->se.nr_wakeups_idle = 0;
2535
6cfb0d5d 2536#endif
476d139c 2537
fa717060 2538 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2539 p->se.on_rq = 0;
4a55bd5e 2540 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2541
e107be36
AK
2542#ifdef CONFIG_PREEMPT_NOTIFIERS
2543 INIT_HLIST_HEAD(&p->preempt_notifiers);
2544#endif
2545
1da177e4
LT
2546 /*
2547 * We mark the process as running here, but have not actually
2548 * inserted it onto the runqueue yet. This guarantees that
2549 * nobody will actually run it, and a signal or other external
2550 * event cannot wake it up and insert it on the runqueue either.
2551 */
2552 p->state = TASK_RUNNING;
dd41f596
IM
2553}
2554
2555/*
2556 * fork()/clone()-time setup:
2557 */
2558void sched_fork(struct task_struct *p, int clone_flags)
2559{
2560 int cpu = get_cpu();
055a0086 2561 unsigned long flags;
dd41f596
IM
2562
2563 __sched_fork(p);
2564
b9dc29e7
MG
2565 /*
2566 * Revert to default priority/policy on fork if requested.
2567 */
2568 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2569 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2570 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2571 p->normal_prio = p->static_prio;
2572 }
b9dc29e7 2573
6c697bdf
MG
2574 if (PRIO_TO_NICE(p->static_prio) < 0) {
2575 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2576 p->normal_prio = p->static_prio;
6c697bdf
MG
2577 set_load_weight(p);
2578 }
2579
b9dc29e7
MG
2580 /*
2581 * We don't need the reset flag anymore after the fork. It has
2582 * fulfilled its duty:
2583 */
2584 p->sched_reset_on_fork = 0;
2585 }
ca94c442 2586
f83f9ac2
PW
2587 /*
2588 * Make sure we do not leak PI boosting priority to the child.
2589 */
2590 p->prio = current->normal_prio;
2591
2ddbf952
HS
2592 if (!rt_prio(p->prio))
2593 p->sched_class = &fair_sched_class;
b29739f9 2594
5f3edc1b
PZ
2595#ifdef CONFIG_SMP
2596 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2597#endif
055a0086
MG
2598 local_irq_save(flags);
2599 update_rq_clock(cpu_rq(cpu));
5f3edc1b 2600 set_task_cpu(p, cpu);
055a0086 2601 local_irq_restore(flags);
5f3edc1b 2602
52f17b6c 2603#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2604 if (likely(sched_info_on()))
52f17b6c 2605 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2606#endif
d6077cb8 2607#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2608 p->oncpu = 0;
2609#endif
1da177e4 2610#ifdef CONFIG_PREEMPT
4866cde0 2611 /* Want to start with kernel preemption disabled. */
a1261f54 2612 task_thread_info(p)->preempt_count = 1;
1da177e4 2613#endif
917b627d
GH
2614 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2615
476d139c 2616 put_cpu();
1da177e4
LT
2617}
2618
2619/*
2620 * wake_up_new_task - wake up a newly created task for the first time.
2621 *
2622 * This function will do some initial scheduler statistics housekeeping
2623 * that must be done for every newly created context, then puts the task
2624 * on the runqueue and wakes it.
2625 */
7ad5b3a5 2626void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2627{
2628 unsigned long flags;
dd41f596 2629 struct rq *rq;
1da177e4
LT
2630
2631 rq = task_rq_lock(p, &flags);
147cbb4b 2632 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2633 update_rq_clock(rq);
1da177e4 2634
b9dca1e0 2635 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2636 activate_task(rq, p, 0);
1da177e4 2637 } else {
1da177e4 2638 /*
dd41f596
IM
2639 * Let the scheduling class do new task startup
2640 * management (if any):
1da177e4 2641 */
ee0827d8 2642 p->sched_class->task_new(rq, p);
c09595f6 2643 inc_nr_running(rq);
1da177e4 2644 }
c71dd42d 2645 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2646 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2647#ifdef CONFIG_SMP
2648 if (p->sched_class->task_wake_up)
2649 p->sched_class->task_wake_up(rq, p);
2650#endif
dd41f596 2651 task_rq_unlock(rq, &flags);
1da177e4
LT
2652}
2653
e107be36
AK
2654#ifdef CONFIG_PREEMPT_NOTIFIERS
2655
2656/**
80dd99b3 2657 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2658 * @notifier: notifier struct to register
e107be36
AK
2659 */
2660void preempt_notifier_register(struct preempt_notifier *notifier)
2661{
2662 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2663}
2664EXPORT_SYMBOL_GPL(preempt_notifier_register);
2665
2666/**
2667 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2668 * @notifier: notifier struct to unregister
e107be36
AK
2669 *
2670 * This is safe to call from within a preemption notifier.
2671 */
2672void preempt_notifier_unregister(struct preempt_notifier *notifier)
2673{
2674 hlist_del(&notifier->link);
2675}
2676EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2677
2678static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2679{
2680 struct preempt_notifier *notifier;
2681 struct hlist_node *node;
2682
2683 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2684 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2685}
2686
2687static void
2688fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690{
2691 struct preempt_notifier *notifier;
2692 struct hlist_node *node;
2693
2694 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2695 notifier->ops->sched_out(notifier, next);
2696}
2697
6d6bc0ad 2698#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2699
2700static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2701{
2702}
2703
2704static void
2705fire_sched_out_preempt_notifiers(struct task_struct *curr,
2706 struct task_struct *next)
2707{
2708}
2709
6d6bc0ad 2710#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2711
4866cde0
NP
2712/**
2713 * prepare_task_switch - prepare to switch tasks
2714 * @rq: the runqueue preparing to switch
421cee29 2715 * @prev: the current task that is being switched out
4866cde0
NP
2716 * @next: the task we are going to switch to.
2717 *
2718 * This is called with the rq lock held and interrupts off. It must
2719 * be paired with a subsequent finish_task_switch after the context
2720 * switch.
2721 *
2722 * prepare_task_switch sets up locking and calls architecture specific
2723 * hooks.
2724 */
e107be36
AK
2725static inline void
2726prepare_task_switch(struct rq *rq, struct task_struct *prev,
2727 struct task_struct *next)
4866cde0 2728{
e107be36 2729 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2730 prepare_lock_switch(rq, next);
2731 prepare_arch_switch(next);
2732}
2733
1da177e4
LT
2734/**
2735 * finish_task_switch - clean up after a task-switch
344babaa 2736 * @rq: runqueue associated with task-switch
1da177e4
LT
2737 * @prev: the thread we just switched away from.
2738 *
4866cde0
NP
2739 * finish_task_switch must be called after the context switch, paired
2740 * with a prepare_task_switch call before the context switch.
2741 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2742 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2743 *
2744 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2745 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2746 * with the lock held can cause deadlocks; see schedule() for
2747 * details.)
2748 */
a9957449 2749static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2750 __releases(rq->lock)
2751{
1da177e4 2752 struct mm_struct *mm = rq->prev_mm;
55a101f8 2753 long prev_state;
1da177e4
LT
2754
2755 rq->prev_mm = NULL;
2756
2757 /*
2758 * A task struct has one reference for the use as "current".
c394cc9f 2759 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2760 * schedule one last time. The schedule call will never return, and
2761 * the scheduled task must drop that reference.
c394cc9f 2762 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2763 * still held, otherwise prev could be scheduled on another cpu, die
2764 * there before we look at prev->state, and then the reference would
2765 * be dropped twice.
2766 * Manfred Spraul <manfred@colorfullife.com>
2767 */
55a101f8 2768 prev_state = prev->state;
4866cde0 2769 finish_arch_switch(prev);
cdd6c482 2770 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2771 finish_lock_switch(rq, prev);
e8fa1362 2772
e107be36 2773 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2774 if (mm)
2775 mmdrop(mm);
c394cc9f 2776 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2777 /*
2778 * Remove function-return probe instances associated with this
2779 * task and put them back on the free list.
9761eea8 2780 */
c6fd91f0 2781 kprobe_flush_task(prev);
1da177e4 2782 put_task_struct(prev);
c6fd91f0 2783 }
1da177e4
LT
2784}
2785
3f029d3c
GH
2786#ifdef CONFIG_SMP
2787
2788/* assumes rq->lock is held */
2789static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2790{
2791 if (prev->sched_class->pre_schedule)
2792 prev->sched_class->pre_schedule(rq, prev);
2793}
2794
2795/* rq->lock is NOT held, but preemption is disabled */
2796static inline void post_schedule(struct rq *rq)
2797{
2798 if (rq->post_schedule) {
2799 unsigned long flags;
2800
2801 spin_lock_irqsave(&rq->lock, flags);
2802 if (rq->curr->sched_class->post_schedule)
2803 rq->curr->sched_class->post_schedule(rq);
2804 spin_unlock_irqrestore(&rq->lock, flags);
2805
2806 rq->post_schedule = 0;
2807 }
2808}
2809
2810#else
da19ab51 2811
3f029d3c
GH
2812static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2813{
2814}
2815
2816static inline void post_schedule(struct rq *rq)
2817{
1da177e4
LT
2818}
2819
3f029d3c
GH
2820#endif
2821
1da177e4
LT
2822/**
2823 * schedule_tail - first thing a freshly forked thread must call.
2824 * @prev: the thread we just switched away from.
2825 */
36c8b586 2826asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2827 __releases(rq->lock)
2828{
70b97a7f
IM
2829 struct rq *rq = this_rq();
2830
4866cde0 2831 finish_task_switch(rq, prev);
da19ab51 2832
3f029d3c
GH
2833 /*
2834 * FIXME: do we need to worry about rq being invalidated by the
2835 * task_switch?
2836 */
2837 post_schedule(rq);
70b97a7f 2838
4866cde0
NP
2839#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2840 /* In this case, finish_task_switch does not reenable preemption */
2841 preempt_enable();
2842#endif
1da177e4 2843 if (current->set_child_tid)
b488893a 2844 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2845}
2846
2847/*
2848 * context_switch - switch to the new MM and the new
2849 * thread's register state.
2850 */
dd41f596 2851static inline void
70b97a7f 2852context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2853 struct task_struct *next)
1da177e4 2854{
dd41f596 2855 struct mm_struct *mm, *oldmm;
1da177e4 2856
e107be36 2857 prepare_task_switch(rq, prev, next);
0a16b607 2858 trace_sched_switch(rq, prev, next);
dd41f596
IM
2859 mm = next->mm;
2860 oldmm = prev->active_mm;
9226d125
ZA
2861 /*
2862 * For paravirt, this is coupled with an exit in switch_to to
2863 * combine the page table reload and the switch backend into
2864 * one hypercall.
2865 */
224101ed 2866 arch_start_context_switch(prev);
9226d125 2867
710390d9 2868 if (likely(!mm)) {
1da177e4
LT
2869 next->active_mm = oldmm;
2870 atomic_inc(&oldmm->mm_count);
2871 enter_lazy_tlb(oldmm, next);
2872 } else
2873 switch_mm(oldmm, mm, next);
2874
710390d9 2875 if (likely(!prev->mm)) {
1da177e4 2876 prev->active_mm = NULL;
1da177e4
LT
2877 rq->prev_mm = oldmm;
2878 }
3a5f5e48
IM
2879 /*
2880 * Since the runqueue lock will be released by the next
2881 * task (which is an invalid locking op but in the case
2882 * of the scheduler it's an obvious special-case), so we
2883 * do an early lockdep release here:
2884 */
2885#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2886 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2887#endif
1da177e4
LT
2888
2889 /* Here we just switch the register state and the stack. */
2890 switch_to(prev, next, prev);
2891
dd41f596
IM
2892 barrier();
2893 /*
2894 * this_rq must be evaluated again because prev may have moved
2895 * CPUs since it called schedule(), thus the 'rq' on its stack
2896 * frame will be invalid.
2897 */
2898 finish_task_switch(this_rq(), prev);
1da177e4
LT
2899}
2900
2901/*
2902 * nr_running, nr_uninterruptible and nr_context_switches:
2903 *
2904 * externally visible scheduler statistics: current number of runnable
2905 * threads, current number of uninterruptible-sleeping threads, total
2906 * number of context switches performed since bootup.
2907 */
2908unsigned long nr_running(void)
2909{
2910 unsigned long i, sum = 0;
2911
2912 for_each_online_cpu(i)
2913 sum += cpu_rq(i)->nr_running;
2914
2915 return sum;
2916}
2917
2918unsigned long nr_uninterruptible(void)
2919{
2920 unsigned long i, sum = 0;
2921
0a945022 2922 for_each_possible_cpu(i)
1da177e4
LT
2923 sum += cpu_rq(i)->nr_uninterruptible;
2924
2925 /*
2926 * Since we read the counters lockless, it might be slightly
2927 * inaccurate. Do not allow it to go below zero though:
2928 */
2929 if (unlikely((long)sum < 0))
2930 sum = 0;
2931
2932 return sum;
2933}
2934
2935unsigned long long nr_context_switches(void)
2936{
cc94abfc
SR
2937 int i;
2938 unsigned long long sum = 0;
1da177e4 2939
0a945022 2940 for_each_possible_cpu(i)
1da177e4
LT
2941 sum += cpu_rq(i)->nr_switches;
2942
2943 return sum;
2944}
2945
2946unsigned long nr_iowait(void)
2947{
2948 unsigned long i, sum = 0;
2949
0a945022 2950 for_each_possible_cpu(i)
1da177e4
LT
2951 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2952
2953 return sum;
2954}
2955
69d25870
AV
2956unsigned long nr_iowait_cpu(void)
2957{
2958 struct rq *this = this_rq();
2959 return atomic_read(&this->nr_iowait);
2960}
2961
2962unsigned long this_cpu_load(void)
2963{
2964 struct rq *this = this_rq();
2965 return this->cpu_load[0];
2966}
2967
2968
dce48a84
TG
2969/* Variables and functions for calc_load */
2970static atomic_long_t calc_load_tasks;
2971static unsigned long calc_load_update;
2972unsigned long avenrun[3];
2973EXPORT_SYMBOL(avenrun);
2974
2d02494f
TG
2975/**
2976 * get_avenrun - get the load average array
2977 * @loads: pointer to dest load array
2978 * @offset: offset to add
2979 * @shift: shift count to shift the result left
2980 *
2981 * These values are estimates at best, so no need for locking.
2982 */
2983void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2984{
2985 loads[0] = (avenrun[0] + offset) << shift;
2986 loads[1] = (avenrun[1] + offset) << shift;
2987 loads[2] = (avenrun[2] + offset) << shift;
2988}
2989
dce48a84
TG
2990static unsigned long
2991calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2992{
dce48a84
TG
2993 load *= exp;
2994 load += active * (FIXED_1 - exp);
2995 return load >> FSHIFT;
2996}
db1b1fef 2997
dce48a84
TG
2998/*
2999 * calc_load - update the avenrun load estimates 10 ticks after the
3000 * CPUs have updated calc_load_tasks.
3001 */
3002void calc_global_load(void)
3003{
3004 unsigned long upd = calc_load_update + 10;
3005 long active;
3006
3007 if (time_before(jiffies, upd))
3008 return;
db1b1fef 3009
dce48a84
TG
3010 active = atomic_long_read(&calc_load_tasks);
3011 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3012
dce48a84
TG
3013 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3014 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3015 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3016
3017 calc_load_update += LOAD_FREQ;
3018}
3019
3020/*
3021 * Either called from update_cpu_load() or from a cpu going idle
3022 */
3023static void calc_load_account_active(struct rq *this_rq)
3024{
3025 long nr_active, delta;
3026
3027 nr_active = this_rq->nr_running;
3028 nr_active += (long) this_rq->nr_uninterruptible;
3029
3030 if (nr_active != this_rq->calc_load_active) {
3031 delta = nr_active - this_rq->calc_load_active;
3032 this_rq->calc_load_active = nr_active;
3033 atomic_long_add(delta, &calc_load_tasks);
3034 }
db1b1fef
JS
3035}
3036
48f24c4d 3037/*
dd41f596
IM
3038 * Update rq->cpu_load[] statistics. This function is usually called every
3039 * scheduler tick (TICK_NSEC).
48f24c4d 3040 */
dd41f596 3041static void update_cpu_load(struct rq *this_rq)
48f24c4d 3042{
495eca49 3043 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3044 int i, scale;
3045
3046 this_rq->nr_load_updates++;
dd41f596
IM
3047
3048 /* Update our load: */
3049 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3050 unsigned long old_load, new_load;
3051
3052 /* scale is effectively 1 << i now, and >> i divides by scale */
3053
3054 old_load = this_rq->cpu_load[i];
3055 new_load = this_load;
a25707f3
IM
3056 /*
3057 * Round up the averaging division if load is increasing. This
3058 * prevents us from getting stuck on 9 if the load is 10, for
3059 * example.
3060 */
3061 if (new_load > old_load)
3062 new_load += scale-1;
dd41f596
IM
3063 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3064 }
dce48a84
TG
3065
3066 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3067 this_rq->calc_load_update += LOAD_FREQ;
3068 calc_load_account_active(this_rq);
3069 }
48f24c4d
IM
3070}
3071
dd41f596
IM
3072#ifdef CONFIG_SMP
3073
1da177e4
LT
3074/*
3075 * double_rq_lock - safely lock two runqueues
3076 *
3077 * Note this does not disable interrupts like task_rq_lock,
3078 * you need to do so manually before calling.
3079 */
70b97a7f 3080static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3081 __acquires(rq1->lock)
3082 __acquires(rq2->lock)
3083{
054b9108 3084 BUG_ON(!irqs_disabled());
1da177e4
LT
3085 if (rq1 == rq2) {
3086 spin_lock(&rq1->lock);
3087 __acquire(rq2->lock); /* Fake it out ;) */
3088 } else {
c96d145e 3089 if (rq1 < rq2) {
1da177e4 3090 spin_lock(&rq1->lock);
5e710e37 3091 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3092 } else {
3093 spin_lock(&rq2->lock);
5e710e37 3094 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3095 }
3096 }
6e82a3be
IM
3097 update_rq_clock(rq1);
3098 update_rq_clock(rq2);
1da177e4
LT
3099}
3100
3101/*
3102 * double_rq_unlock - safely unlock two runqueues
3103 *
3104 * Note this does not restore interrupts like task_rq_unlock,
3105 * you need to do so manually after calling.
3106 */
70b97a7f 3107static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3108 __releases(rq1->lock)
3109 __releases(rq2->lock)
3110{
3111 spin_unlock(&rq1->lock);
3112 if (rq1 != rq2)
3113 spin_unlock(&rq2->lock);
3114 else
3115 __release(rq2->lock);
3116}
3117
1da177e4
LT
3118/*
3119 * If dest_cpu is allowed for this process, migrate the task to it.
3120 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3121 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3122 * the cpu_allowed mask is restored.
3123 */
36c8b586 3124static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3125{
70b97a7f 3126 struct migration_req req;
1da177e4 3127 unsigned long flags;
70b97a7f 3128 struct rq *rq;
1da177e4
LT
3129
3130 rq = task_rq_lock(p, &flags);
96f874e2 3131 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3132 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3133 goto out;
3134
3135 /* force the process onto the specified CPU */
3136 if (migrate_task(p, dest_cpu, &req)) {
3137 /* Need to wait for migration thread (might exit: take ref). */
3138 struct task_struct *mt = rq->migration_thread;
36c8b586 3139
1da177e4
LT
3140 get_task_struct(mt);
3141 task_rq_unlock(rq, &flags);
3142 wake_up_process(mt);
3143 put_task_struct(mt);
3144 wait_for_completion(&req.done);
36c8b586 3145
1da177e4
LT
3146 return;
3147 }
3148out:
3149 task_rq_unlock(rq, &flags);
3150}
3151
3152/*
476d139c
NP
3153 * sched_exec - execve() is a valuable balancing opportunity, because at
3154 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3155 */
3156void sched_exec(void)
3157{
1da177e4 3158 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3159 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3160 put_cpu();
476d139c
NP
3161 if (new_cpu != this_cpu)
3162 sched_migrate_task(current, new_cpu);
1da177e4
LT
3163}
3164
3165/*
3166 * pull_task - move a task from a remote runqueue to the local runqueue.
3167 * Both runqueues must be locked.
3168 */
dd41f596
IM
3169static void pull_task(struct rq *src_rq, struct task_struct *p,
3170 struct rq *this_rq, int this_cpu)
1da177e4 3171{
2e1cb74a 3172 deactivate_task(src_rq, p, 0);
1da177e4 3173 set_task_cpu(p, this_cpu);
dd41f596 3174 activate_task(this_rq, p, 0);
1da177e4
LT
3175 /*
3176 * Note that idle threads have a prio of MAX_PRIO, for this test
3177 * to be always true for them.
3178 */
15afe09b 3179 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3180}
3181
3182/*
3183 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3184 */
858119e1 3185static
70b97a7f 3186int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3187 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3188 int *all_pinned)
1da177e4 3189{
708dc512 3190 int tsk_cache_hot = 0;
1da177e4
LT
3191 /*
3192 * We do not migrate tasks that are:
3193 * 1) running (obviously), or
3194 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3195 * 3) are cache-hot on their current CPU.
3196 */
96f874e2 3197 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3198 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3199 return 0;
cc367732 3200 }
81026794
NP
3201 *all_pinned = 0;
3202
cc367732
IM
3203 if (task_running(rq, p)) {
3204 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3205 return 0;
cc367732 3206 }
1da177e4 3207
da84d961
IM
3208 /*
3209 * Aggressive migration if:
3210 * 1) task is cache cold, or
3211 * 2) too many balance attempts have failed.
3212 */
3213
708dc512
LH
3214 tsk_cache_hot = task_hot(p, rq->clock, sd);
3215 if (!tsk_cache_hot ||
3216 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3217#ifdef CONFIG_SCHEDSTATS
708dc512 3218 if (tsk_cache_hot) {
da84d961 3219 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3220 schedstat_inc(p, se.nr_forced_migrations);
3221 }
da84d961
IM
3222#endif
3223 return 1;
3224 }
3225
708dc512 3226 if (tsk_cache_hot) {
cc367732 3227 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3228 return 0;
cc367732 3229 }
1da177e4
LT
3230 return 1;
3231}
3232
e1d1484f
PW
3233static unsigned long
3234balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3235 unsigned long max_load_move, struct sched_domain *sd,
3236 enum cpu_idle_type idle, int *all_pinned,
3237 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3238{
051c6764 3239 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3240 struct task_struct *p;
3241 long rem_load_move = max_load_move;
1da177e4 3242
e1d1484f 3243 if (max_load_move == 0)
1da177e4
LT
3244 goto out;
3245
81026794
NP
3246 pinned = 1;
3247
1da177e4 3248 /*
dd41f596 3249 * Start the load-balancing iterator:
1da177e4 3250 */
dd41f596
IM
3251 p = iterator->start(iterator->arg);
3252next:
b82d9fdd 3253 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3254 goto out;
051c6764
PZ
3255
3256 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3257 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3258 p = iterator->next(iterator->arg);
3259 goto next;
1da177e4
LT
3260 }
3261
dd41f596 3262 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3263 pulled++;
dd41f596 3264 rem_load_move -= p->se.load.weight;
1da177e4 3265
7e96fa58
GH
3266#ifdef CONFIG_PREEMPT
3267 /*
3268 * NEWIDLE balancing is a source of latency, so preemptible kernels
3269 * will stop after the first task is pulled to minimize the critical
3270 * section.
3271 */
3272 if (idle == CPU_NEWLY_IDLE)
3273 goto out;
3274#endif
3275
2dd73a4f 3276 /*
b82d9fdd 3277 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3278 */
e1d1484f 3279 if (rem_load_move > 0) {
a4ac01c3
PW
3280 if (p->prio < *this_best_prio)
3281 *this_best_prio = p->prio;
dd41f596
IM
3282 p = iterator->next(iterator->arg);
3283 goto next;
1da177e4
LT
3284 }
3285out:
3286 /*
e1d1484f 3287 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3288 * so we can safely collect pull_task() stats here rather than
3289 * inside pull_task().
3290 */
3291 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3292
3293 if (all_pinned)
3294 *all_pinned = pinned;
e1d1484f
PW
3295
3296 return max_load_move - rem_load_move;
1da177e4
LT
3297}
3298
dd41f596 3299/*
43010659
PW
3300 * move_tasks tries to move up to max_load_move weighted load from busiest to
3301 * this_rq, as part of a balancing operation within domain "sd".
3302 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3303 *
3304 * Called with both runqueues locked.
3305 */
3306static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3307 unsigned long max_load_move,
dd41f596
IM
3308 struct sched_domain *sd, enum cpu_idle_type idle,
3309 int *all_pinned)
3310{
5522d5d5 3311 const struct sched_class *class = sched_class_highest;
43010659 3312 unsigned long total_load_moved = 0;
a4ac01c3 3313 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3314
3315 do {
43010659
PW
3316 total_load_moved +=
3317 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3318 max_load_move - total_load_moved,
a4ac01c3 3319 sd, idle, all_pinned, &this_best_prio);
dd41f596 3320 class = class->next;
c4acb2c0 3321
7e96fa58
GH
3322#ifdef CONFIG_PREEMPT
3323 /*
3324 * NEWIDLE balancing is a source of latency, so preemptible
3325 * kernels will stop after the first task is pulled to minimize
3326 * the critical section.
3327 */
c4acb2c0
GH
3328 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3329 break;
7e96fa58 3330#endif
43010659 3331 } while (class && max_load_move > total_load_moved);
dd41f596 3332
43010659
PW
3333 return total_load_moved > 0;
3334}
3335
e1d1484f
PW
3336static int
3337iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3338 struct sched_domain *sd, enum cpu_idle_type idle,
3339 struct rq_iterator *iterator)
3340{
3341 struct task_struct *p = iterator->start(iterator->arg);
3342 int pinned = 0;
3343
3344 while (p) {
3345 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3346 pull_task(busiest, p, this_rq, this_cpu);
3347 /*
3348 * Right now, this is only the second place pull_task()
3349 * is called, so we can safely collect pull_task()
3350 * stats here rather than inside pull_task().
3351 */
3352 schedstat_inc(sd, lb_gained[idle]);
3353
3354 return 1;
3355 }
3356 p = iterator->next(iterator->arg);
3357 }
3358
3359 return 0;
3360}
3361
43010659
PW
3362/*
3363 * move_one_task tries to move exactly one task from busiest to this_rq, as
3364 * part of active balancing operations within "domain".
3365 * Returns 1 if successful and 0 otherwise.
3366 *
3367 * Called with both runqueues locked.
3368 */
3369static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3370 struct sched_domain *sd, enum cpu_idle_type idle)
3371{
5522d5d5 3372 const struct sched_class *class;
43010659 3373
cde7e5ca 3374 for_each_class(class) {
e1d1484f 3375 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3376 return 1;
cde7e5ca 3377 }
43010659
PW
3378
3379 return 0;
dd41f596 3380}
67bb6c03 3381/********** Helpers for find_busiest_group ************************/
1da177e4 3382/*
222d656d
GS
3383 * sd_lb_stats - Structure to store the statistics of a sched_domain
3384 * during load balancing.
1da177e4 3385 */
222d656d
GS
3386struct sd_lb_stats {
3387 struct sched_group *busiest; /* Busiest group in this sd */
3388 struct sched_group *this; /* Local group in this sd */
3389 unsigned long total_load; /* Total load of all groups in sd */
3390 unsigned long total_pwr; /* Total power of all groups in sd */
3391 unsigned long avg_load; /* Average load across all groups in sd */
3392
3393 /** Statistics of this group */
3394 unsigned long this_load;
3395 unsigned long this_load_per_task;
3396 unsigned long this_nr_running;
3397
3398 /* Statistics of the busiest group */
3399 unsigned long max_load;
3400 unsigned long busiest_load_per_task;
3401 unsigned long busiest_nr_running;
3402
3403 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3404#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3405 int power_savings_balance; /* Is powersave balance needed for this sd */
3406 struct sched_group *group_min; /* Least loaded group in sd */
3407 struct sched_group *group_leader; /* Group which relieves group_min */
3408 unsigned long min_load_per_task; /* load_per_task in group_min */
3409 unsigned long leader_nr_running; /* Nr running of group_leader */
3410 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3411#endif
222d656d 3412};
1da177e4 3413
d5ac537e 3414/*
381be78f
GS
3415 * sg_lb_stats - stats of a sched_group required for load_balancing
3416 */
3417struct sg_lb_stats {
3418 unsigned long avg_load; /*Avg load across the CPUs of the group */
3419 unsigned long group_load; /* Total load over the CPUs of the group */
3420 unsigned long sum_nr_running; /* Nr tasks running in the group */
3421 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3422 unsigned long group_capacity;
3423 int group_imb; /* Is there an imbalance in the group ? */
3424};
408ed066 3425
67bb6c03
GS
3426/**
3427 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3428 * @group: The group whose first cpu is to be returned.
3429 */
3430static inline unsigned int group_first_cpu(struct sched_group *group)
3431{
3432 return cpumask_first(sched_group_cpus(group));
3433}
3434
3435/**
3436 * get_sd_load_idx - Obtain the load index for a given sched domain.
3437 * @sd: The sched_domain whose load_idx is to be obtained.
3438 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3439 */
3440static inline int get_sd_load_idx(struct sched_domain *sd,
3441 enum cpu_idle_type idle)
3442{
3443 int load_idx;
3444
3445 switch (idle) {
3446 case CPU_NOT_IDLE:
7897986b 3447 load_idx = sd->busy_idx;
67bb6c03
GS
3448 break;
3449
3450 case CPU_NEWLY_IDLE:
7897986b 3451 load_idx = sd->newidle_idx;
67bb6c03
GS
3452 break;
3453 default:
7897986b 3454 load_idx = sd->idle_idx;
67bb6c03
GS
3455 break;
3456 }
1da177e4 3457
67bb6c03
GS
3458 return load_idx;
3459}
1da177e4 3460
1da177e4 3461
c071df18
GS
3462#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3463/**
3464 * init_sd_power_savings_stats - Initialize power savings statistics for
3465 * the given sched_domain, during load balancing.
3466 *
3467 * @sd: Sched domain whose power-savings statistics are to be initialized.
3468 * @sds: Variable containing the statistics for sd.
3469 * @idle: Idle status of the CPU at which we're performing load-balancing.
3470 */
3471static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3472 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3473{
3474 /*
3475 * Busy processors will not participate in power savings
3476 * balance.
3477 */
3478 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3479 sds->power_savings_balance = 0;
3480 else {
3481 sds->power_savings_balance = 1;
3482 sds->min_nr_running = ULONG_MAX;
3483 sds->leader_nr_running = 0;
3484 }
3485}
783609c6 3486
c071df18
GS
3487/**
3488 * update_sd_power_savings_stats - Update the power saving stats for a
3489 * sched_domain while performing load balancing.
3490 *
3491 * @group: sched_group belonging to the sched_domain under consideration.
3492 * @sds: Variable containing the statistics of the sched_domain
3493 * @local_group: Does group contain the CPU for which we're performing
3494 * load balancing ?
3495 * @sgs: Variable containing the statistics of the group.
3496 */
3497static inline void update_sd_power_savings_stats(struct sched_group *group,
3498 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3499{
408ed066 3500
c071df18
GS
3501 if (!sds->power_savings_balance)
3502 return;
1da177e4 3503
c071df18
GS
3504 /*
3505 * If the local group is idle or completely loaded
3506 * no need to do power savings balance at this domain
3507 */
3508 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3509 !sds->this_nr_running))
3510 sds->power_savings_balance = 0;
2dd73a4f 3511
c071df18
GS
3512 /*
3513 * If a group is already running at full capacity or idle,
3514 * don't include that group in power savings calculations
3515 */
3516 if (!sds->power_savings_balance ||
3517 sgs->sum_nr_running >= sgs->group_capacity ||
3518 !sgs->sum_nr_running)
3519 return;
5969fe06 3520
c071df18
GS
3521 /*
3522 * Calculate the group which has the least non-idle load.
3523 * This is the group from where we need to pick up the load
3524 * for saving power
3525 */
3526 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3527 (sgs->sum_nr_running == sds->min_nr_running &&
3528 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3529 sds->group_min = group;
3530 sds->min_nr_running = sgs->sum_nr_running;
3531 sds->min_load_per_task = sgs->sum_weighted_load /
3532 sgs->sum_nr_running;
3533 }
783609c6 3534
c071df18
GS
3535 /*
3536 * Calculate the group which is almost near its
3537 * capacity but still has some space to pick up some load
3538 * from other group and save more power
3539 */
d899a789 3540 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3541 return;
1da177e4 3542
c071df18
GS
3543 if (sgs->sum_nr_running > sds->leader_nr_running ||
3544 (sgs->sum_nr_running == sds->leader_nr_running &&
3545 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3546 sds->group_leader = group;
3547 sds->leader_nr_running = sgs->sum_nr_running;
3548 }
3549}
408ed066 3550
c071df18 3551/**
d5ac537e 3552 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3553 * @sds: Variable containing the statistics of the sched_domain
3554 * under consideration.
3555 * @this_cpu: Cpu at which we're currently performing load-balancing.
3556 * @imbalance: Variable to store the imbalance.
3557 *
d5ac537e
RD
3558 * Description:
3559 * Check if we have potential to perform some power-savings balance.
3560 * If yes, set the busiest group to be the least loaded group in the
3561 * sched_domain, so that it's CPUs can be put to idle.
3562 *
c071df18
GS
3563 * Returns 1 if there is potential to perform power-savings balance.
3564 * Else returns 0.
3565 */
3566static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3567 int this_cpu, unsigned long *imbalance)
3568{
3569 if (!sds->power_savings_balance)
3570 return 0;
1da177e4 3571
c071df18
GS
3572 if (sds->this != sds->group_leader ||
3573 sds->group_leader == sds->group_min)
3574 return 0;
783609c6 3575
c071df18
GS
3576 *imbalance = sds->min_load_per_task;
3577 sds->busiest = sds->group_min;
1da177e4 3578
c071df18 3579 return 1;
1da177e4 3580
c071df18
GS
3581}
3582#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3583static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3584 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3585{
3586 return;
3587}
408ed066 3588
c071df18
GS
3589static inline void update_sd_power_savings_stats(struct sched_group *group,
3590 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3591{
3592 return;
3593}
3594
3595static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3596 int this_cpu, unsigned long *imbalance)
3597{
3598 return 0;
3599}
3600#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3601
d6a59aa3
PZ
3602
3603unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3604{
3605 return SCHED_LOAD_SCALE;
3606}
3607
3608unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3609{
3610 return default_scale_freq_power(sd, cpu);
3611}
3612
3613unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3614{
3615 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3616 unsigned long smt_gain = sd->smt_gain;
3617
3618 smt_gain /= weight;
3619
3620 return smt_gain;
3621}
3622
d6a59aa3
PZ
3623unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3624{
3625 return default_scale_smt_power(sd, cpu);
3626}
3627
e9e9250b
PZ
3628unsigned long scale_rt_power(int cpu)
3629{
3630 struct rq *rq = cpu_rq(cpu);
3631 u64 total, available;
3632
3633 sched_avg_update(rq);
3634
3635 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3636 available = total - rq->rt_avg;
3637
3638 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3639 total = SCHED_LOAD_SCALE;
3640
3641 total >>= SCHED_LOAD_SHIFT;
3642
3643 return div_u64(available, total);
3644}
3645
ab29230e
PZ
3646static void update_cpu_power(struct sched_domain *sd, int cpu)
3647{
3648 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3649 unsigned long power = SCHED_LOAD_SCALE;
3650 struct sched_group *sdg = sd->groups;
ab29230e 3651
8e6598af
PZ
3652 if (sched_feat(ARCH_POWER))
3653 power *= arch_scale_freq_power(sd, cpu);
3654 else
3655 power *= default_scale_freq_power(sd, cpu);
3656
d6a59aa3 3657 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3658
3659 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3660 if (sched_feat(ARCH_POWER))
3661 power *= arch_scale_smt_power(sd, cpu);
3662 else
3663 power *= default_scale_smt_power(sd, cpu);
3664
ab29230e
PZ
3665 power >>= SCHED_LOAD_SHIFT;
3666 }
3667
e9e9250b
PZ
3668 power *= scale_rt_power(cpu);
3669 power >>= SCHED_LOAD_SHIFT;
3670
3671 if (!power)
3672 power = 1;
ab29230e 3673
18a3885f 3674 sdg->cpu_power = power;
ab29230e
PZ
3675}
3676
3677static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3678{
3679 struct sched_domain *child = sd->child;
3680 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3681 unsigned long power;
cc9fba7d
PZ
3682
3683 if (!child) {
ab29230e 3684 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3685 return;
3686 }
3687
d7ea17a7 3688 power = 0;
cc9fba7d
PZ
3689
3690 group = child->groups;
3691 do {
d7ea17a7 3692 power += group->cpu_power;
cc9fba7d
PZ
3693 group = group->next;
3694 } while (group != child->groups);
d7ea17a7
IM
3695
3696 sdg->cpu_power = power;
cc9fba7d 3697}
c071df18 3698
1f8c553d
GS
3699/**
3700 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3701 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3702 * @group: sched_group whose statistics are to be updated.
3703 * @this_cpu: Cpu for which load balance is currently performed.
3704 * @idle: Idle status of this_cpu
3705 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3706 * @sd_idle: Idle status of the sched_domain containing group.
3707 * @local_group: Does group contain this_cpu.
3708 * @cpus: Set of cpus considered for load balancing.
3709 * @balance: Should we balance.
3710 * @sgs: variable to hold the statistics for this group.
3711 */
cc9fba7d
PZ
3712static inline void update_sg_lb_stats(struct sched_domain *sd,
3713 struct sched_group *group, int this_cpu,
1f8c553d
GS
3714 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3715 int local_group, const struct cpumask *cpus,
3716 int *balance, struct sg_lb_stats *sgs)
3717{
3718 unsigned long load, max_cpu_load, min_cpu_load;
3719 int i;
3720 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3721 unsigned long sum_avg_load_per_task;
3722 unsigned long avg_load_per_task;
3723
cc9fba7d 3724 if (local_group) {
1f8c553d 3725 balance_cpu = group_first_cpu(group);
cc9fba7d 3726 if (balance_cpu == this_cpu)
ab29230e 3727 update_group_power(sd, this_cpu);
cc9fba7d 3728 }
1f8c553d
GS
3729
3730 /* Tally up the load of all CPUs in the group */
3731 sum_avg_load_per_task = avg_load_per_task = 0;
3732 max_cpu_load = 0;
3733 min_cpu_load = ~0UL;
408ed066 3734
1f8c553d
GS
3735 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3736 struct rq *rq = cpu_rq(i);
908a7c1b 3737
1f8c553d
GS
3738 if (*sd_idle && rq->nr_running)
3739 *sd_idle = 0;
5c45bf27 3740
1f8c553d 3741 /* Bias balancing toward cpus of our domain */
1da177e4 3742 if (local_group) {
1f8c553d
GS
3743 if (idle_cpu(i) && !first_idle_cpu) {
3744 first_idle_cpu = 1;
3745 balance_cpu = i;
3746 }
3747
3748 load = target_load(i, load_idx);
3749 } else {
3750 load = source_load(i, load_idx);
3751 if (load > max_cpu_load)
3752 max_cpu_load = load;
3753 if (min_cpu_load > load)
3754 min_cpu_load = load;
1da177e4 3755 }
5c45bf27 3756
1f8c553d
GS
3757 sgs->group_load += load;
3758 sgs->sum_nr_running += rq->nr_running;
3759 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3760
1f8c553d
GS
3761 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3762 }
5c45bf27 3763
1f8c553d
GS
3764 /*
3765 * First idle cpu or the first cpu(busiest) in this sched group
3766 * is eligible for doing load balancing at this and above
3767 * domains. In the newly idle case, we will allow all the cpu's
3768 * to do the newly idle load balance.
3769 */
3770 if (idle != CPU_NEWLY_IDLE && local_group &&
3771 balance_cpu != this_cpu && balance) {
3772 *balance = 0;
3773 return;
3774 }
5c45bf27 3775
1f8c553d 3776 /* Adjust by relative CPU power of the group */
18a3885f 3777 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3778
1f8c553d
GS
3779
3780 /*
3781 * Consider the group unbalanced when the imbalance is larger
3782 * than the average weight of two tasks.
3783 *
3784 * APZ: with cgroup the avg task weight can vary wildly and
3785 * might not be a suitable number - should we keep a
3786 * normalized nr_running number somewhere that negates
3787 * the hierarchy?
3788 */
18a3885f
PZ
3789 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3790 group->cpu_power;
1f8c553d
GS
3791
3792 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3793 sgs->group_imb = 1;
3794
bdb94aa5 3795 sgs->group_capacity =
18a3885f 3796 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3797}
dd41f596 3798
37abe198
GS
3799/**
3800 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3801 * @sd: sched_domain whose statistics are to be updated.
3802 * @this_cpu: Cpu for which load balance is currently performed.
3803 * @idle: Idle status of this_cpu
3804 * @sd_idle: Idle status of the sched_domain containing group.
3805 * @cpus: Set of cpus considered for load balancing.
3806 * @balance: Should we balance.
3807 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3808 */
37abe198
GS
3809static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3810 enum cpu_idle_type idle, int *sd_idle,
3811 const struct cpumask *cpus, int *balance,
3812 struct sd_lb_stats *sds)
1da177e4 3813{
b5d978e0 3814 struct sched_domain *child = sd->child;
222d656d 3815 struct sched_group *group = sd->groups;
37abe198 3816 struct sg_lb_stats sgs;
b5d978e0
PZ
3817 int load_idx, prefer_sibling = 0;
3818
3819 if (child && child->flags & SD_PREFER_SIBLING)
3820 prefer_sibling = 1;
222d656d 3821
c071df18 3822 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3823 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3824
3825 do {
1da177e4 3826 int local_group;
1da177e4 3827
758b2cdc
RR
3828 local_group = cpumask_test_cpu(this_cpu,
3829 sched_group_cpus(group));
381be78f 3830 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3831 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3832 local_group, cpus, balance, &sgs);
1da177e4 3833
37abe198
GS
3834 if (local_group && balance && !(*balance))
3835 return;
783609c6 3836
37abe198 3837 sds->total_load += sgs.group_load;
18a3885f 3838 sds->total_pwr += group->cpu_power;
1da177e4 3839
b5d978e0
PZ
3840 /*
3841 * In case the child domain prefers tasks go to siblings
3842 * first, lower the group capacity to one so that we'll try
3843 * and move all the excess tasks away.
3844 */
3845 if (prefer_sibling)
bdb94aa5 3846 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3847
1da177e4 3848 if (local_group) {
37abe198
GS
3849 sds->this_load = sgs.avg_load;
3850 sds->this = group;
3851 sds->this_nr_running = sgs.sum_nr_running;
3852 sds->this_load_per_task = sgs.sum_weighted_load;
3853 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3854 (sgs.sum_nr_running > sgs.group_capacity ||
3855 sgs.group_imb)) {
37abe198
GS
3856 sds->max_load = sgs.avg_load;
3857 sds->busiest = group;
3858 sds->busiest_nr_running = sgs.sum_nr_running;
3859 sds->busiest_load_per_task = sgs.sum_weighted_load;
3860 sds->group_imb = sgs.group_imb;
48f24c4d 3861 }
5c45bf27 3862
c071df18 3863 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3864 group = group->next;
3865 } while (group != sd->groups);
37abe198 3866}
1da177e4 3867
2e6f44ae
GS
3868/**
3869 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3870 * amongst the groups of a sched_domain, during
3871 * load balancing.
2e6f44ae
GS
3872 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3873 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3874 * @imbalance: Variable to store the imbalance.
3875 */
3876static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3877 int this_cpu, unsigned long *imbalance)
3878{
3879 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3880 unsigned int imbn = 2;
3881
3882 if (sds->this_nr_running) {
3883 sds->this_load_per_task /= sds->this_nr_running;
3884 if (sds->busiest_load_per_task >
3885 sds->this_load_per_task)
3886 imbn = 1;
3887 } else
3888 sds->this_load_per_task =
3889 cpu_avg_load_per_task(this_cpu);
1da177e4 3890
2e6f44ae
GS
3891 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3892 sds->busiest_load_per_task * imbn) {
3893 *imbalance = sds->busiest_load_per_task;
3894 return;
3895 }
908a7c1b 3896
1da177e4 3897 /*
2e6f44ae
GS
3898 * OK, we don't have enough imbalance to justify moving tasks,
3899 * however we may be able to increase total CPU power used by
3900 * moving them.
1da177e4 3901 */
2dd73a4f 3902
18a3885f 3903 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3904 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3905 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3906 min(sds->this_load_per_task, sds->this_load);
3907 pwr_now /= SCHED_LOAD_SCALE;
3908
3909 /* Amount of load we'd subtract */
18a3885f
PZ
3910 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3911 sds->busiest->cpu_power;
2e6f44ae 3912 if (sds->max_load > tmp)
18a3885f 3913 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3914 min(sds->busiest_load_per_task, sds->max_load - tmp);
3915
3916 /* Amount of load we'd add */
18a3885f 3917 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3918 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3919 tmp = (sds->max_load * sds->busiest->cpu_power) /
3920 sds->this->cpu_power;
2e6f44ae 3921 else
18a3885f
PZ
3922 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3923 sds->this->cpu_power;
3924 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3925 min(sds->this_load_per_task, sds->this_load + tmp);
3926 pwr_move /= SCHED_LOAD_SCALE;
3927
3928 /* Move if we gain throughput */
3929 if (pwr_move > pwr_now)
3930 *imbalance = sds->busiest_load_per_task;
3931}
dbc523a3
GS
3932
3933/**
3934 * calculate_imbalance - Calculate the amount of imbalance present within the
3935 * groups of a given sched_domain during load balance.
3936 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3937 * @this_cpu: Cpu for which currently load balance is being performed.
3938 * @imbalance: The variable to store the imbalance.
3939 */
3940static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3941 unsigned long *imbalance)
3942{
3943 unsigned long max_pull;
2dd73a4f
PW
3944 /*
3945 * In the presence of smp nice balancing, certain scenarios can have
3946 * max load less than avg load(as we skip the groups at or below
3947 * its cpu_power, while calculating max_load..)
3948 */
dbc523a3 3949 if (sds->max_load < sds->avg_load) {
2dd73a4f 3950 *imbalance = 0;
dbc523a3 3951 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3952 }
0c117f1b
SS
3953
3954 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3955 max_pull = min(sds->max_load - sds->avg_load,
3956 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3957
1da177e4 3958 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3959 *imbalance = min(max_pull * sds->busiest->cpu_power,
3960 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3961 / SCHED_LOAD_SCALE;
3962
2dd73a4f
PW
3963 /*
3964 * if *imbalance is less than the average load per runnable task
3965 * there is no gaurantee that any tasks will be moved so we'll have
3966 * a think about bumping its value to force at least one task to be
3967 * moved
3968 */
dbc523a3
GS
3969 if (*imbalance < sds->busiest_load_per_task)
3970 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3971
dbc523a3 3972}
37abe198 3973/******* find_busiest_group() helpers end here *********************/
1da177e4 3974
b7bb4c9b
GS
3975/**
3976 * find_busiest_group - Returns the busiest group within the sched_domain
3977 * if there is an imbalance. If there isn't an imbalance, and
3978 * the user has opted for power-savings, it returns a group whose
3979 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3980 * such a group exists.
3981 *
3982 * Also calculates the amount of weighted load which should be moved
3983 * to restore balance.
3984 *
3985 * @sd: The sched_domain whose busiest group is to be returned.
3986 * @this_cpu: The cpu for which load balancing is currently being performed.
3987 * @imbalance: Variable which stores amount of weighted load which should
3988 * be moved to restore balance/put a group to idle.
3989 * @idle: The idle status of this_cpu.
3990 * @sd_idle: The idleness of sd
3991 * @cpus: The set of CPUs under consideration for load-balancing.
3992 * @balance: Pointer to a variable indicating if this_cpu
3993 * is the appropriate cpu to perform load balancing at this_level.
3994 *
3995 * Returns: - the busiest group if imbalance exists.
3996 * - If no imbalance and user has opted for power-savings balance,
3997 * return the least loaded group whose CPUs can be
3998 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3999 */
4000static struct sched_group *
4001find_busiest_group(struct sched_domain *sd, int this_cpu,
4002 unsigned long *imbalance, enum cpu_idle_type idle,
4003 int *sd_idle, const struct cpumask *cpus, int *balance)
4004{
4005 struct sd_lb_stats sds;
1da177e4 4006
37abe198 4007 memset(&sds, 0, sizeof(sds));
1da177e4 4008
37abe198
GS
4009 /*
4010 * Compute the various statistics relavent for load balancing at
4011 * this level.
4012 */
4013 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4014 balance, &sds);
4015
b7bb4c9b
GS
4016 /* Cases where imbalance does not exist from POV of this_cpu */
4017 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4018 * at this level.
4019 * 2) There is no busy sibling group to pull from.
4020 * 3) This group is the busiest group.
4021 * 4) This group is more busy than the avg busieness at this
4022 * sched_domain.
4023 * 5) The imbalance is within the specified limit.
4024 * 6) Any rebalance would lead to ping-pong
4025 */
37abe198
GS
4026 if (balance && !(*balance))
4027 goto ret;
1da177e4 4028
b7bb4c9b
GS
4029 if (!sds.busiest || sds.busiest_nr_running == 0)
4030 goto out_balanced;
1da177e4 4031
b7bb4c9b 4032 if (sds.this_load >= sds.max_load)
1da177e4 4033 goto out_balanced;
1da177e4 4034
222d656d 4035 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4036
b7bb4c9b
GS
4037 if (sds.this_load >= sds.avg_load)
4038 goto out_balanced;
4039
4040 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4041 goto out_balanced;
4042
222d656d
GS
4043 sds.busiest_load_per_task /= sds.busiest_nr_running;
4044 if (sds.group_imb)
4045 sds.busiest_load_per_task =
4046 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4047
1da177e4
LT
4048 /*
4049 * We're trying to get all the cpus to the average_load, so we don't
4050 * want to push ourselves above the average load, nor do we wish to
4051 * reduce the max loaded cpu below the average load, as either of these
4052 * actions would just result in more rebalancing later, and ping-pong
4053 * tasks around. Thus we look for the minimum possible imbalance.
4054 * Negative imbalances (*we* are more loaded than anyone else) will
4055 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4056 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4057 * appear as very large values with unsigned longs.
4058 */
222d656d 4059 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4060 goto out_balanced;
4061
dbc523a3
GS
4062 /* Looks like there is an imbalance. Compute it */
4063 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4064 return sds.busiest;
1da177e4
LT
4065
4066out_balanced:
c071df18
GS
4067 /*
4068 * There is no obvious imbalance. But check if we can do some balancing
4069 * to save power.
4070 */
4071 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4072 return sds.busiest;
783609c6 4073ret:
1da177e4
LT
4074 *imbalance = 0;
4075 return NULL;
4076}
4077
4078/*
4079 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4080 */
70b97a7f 4081static struct rq *
d15bcfdb 4082find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4083 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4084{
70b97a7f 4085 struct rq *busiest = NULL, *rq;
2dd73a4f 4086 unsigned long max_load = 0;
1da177e4
LT
4087 int i;
4088
758b2cdc 4089 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4090 unsigned long power = power_of(i);
4091 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4092 unsigned long wl;
0a2966b4 4093
96f874e2 4094 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4095 continue;
4096
48f24c4d 4097 rq = cpu_rq(i);
bdb94aa5
PZ
4098 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4099 wl /= power;
2dd73a4f 4100
bdb94aa5 4101 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4102 continue;
1da177e4 4103
dd41f596
IM
4104 if (wl > max_load) {
4105 max_load = wl;
48f24c4d 4106 busiest = rq;
1da177e4
LT
4107 }
4108 }
4109
4110 return busiest;
4111}
4112
77391d71
NP
4113/*
4114 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4115 * so long as it is large enough.
4116 */
4117#define MAX_PINNED_INTERVAL 512
4118
df7c8e84
RR
4119/* Working cpumask for load_balance and load_balance_newidle. */
4120static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4121
1da177e4
LT
4122/*
4123 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4124 * tasks if there is an imbalance.
1da177e4 4125 */
70b97a7f 4126static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4127 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4128 int *balance)
1da177e4 4129{
43010659 4130 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4131 struct sched_group *group;
1da177e4 4132 unsigned long imbalance;
70b97a7f 4133 struct rq *busiest;
fe2eea3f 4134 unsigned long flags;
df7c8e84 4135 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4136
eae0c9df 4137 cpumask_copy(cpus, cpu_online_mask);
7c16ec58 4138
89c4710e
SS
4139 /*
4140 * When power savings policy is enabled for the parent domain, idle
4141 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4142 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4143 * portraying it as CPU_NOT_IDLE.
89c4710e 4144 */
d15bcfdb 4145 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4147 sd_idle = 1;
1da177e4 4148
2d72376b 4149 schedstat_inc(sd, lb_count[idle]);
1da177e4 4150
0a2966b4 4151redo:
c8cba857 4152 update_shares(sd);
0a2966b4 4153 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4154 cpus, balance);
783609c6 4155
06066714 4156 if (*balance == 0)
783609c6 4157 goto out_balanced;
783609c6 4158
1da177e4
LT
4159 if (!group) {
4160 schedstat_inc(sd, lb_nobusyg[idle]);
4161 goto out_balanced;
4162 }
4163
7c16ec58 4164 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4165 if (!busiest) {
4166 schedstat_inc(sd, lb_nobusyq[idle]);
4167 goto out_balanced;
4168 }
4169
db935dbd 4170 BUG_ON(busiest == this_rq);
1da177e4
LT
4171
4172 schedstat_add(sd, lb_imbalance[idle], imbalance);
4173
43010659 4174 ld_moved = 0;
1da177e4
LT
4175 if (busiest->nr_running > 1) {
4176 /*
4177 * Attempt to move tasks. If find_busiest_group has found
4178 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4179 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4180 * correctly treated as an imbalance.
4181 */
fe2eea3f 4182 local_irq_save(flags);
e17224bf 4183 double_rq_lock(this_rq, busiest);
43010659 4184 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4185 imbalance, sd, idle, &all_pinned);
e17224bf 4186 double_rq_unlock(this_rq, busiest);
fe2eea3f 4187 local_irq_restore(flags);
81026794 4188
46cb4b7c
SS
4189 /*
4190 * some other cpu did the load balance for us.
4191 */
43010659 4192 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4193 resched_cpu(this_cpu);
4194
81026794 4195 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4196 if (unlikely(all_pinned)) {
96f874e2
RR
4197 cpumask_clear_cpu(cpu_of(busiest), cpus);
4198 if (!cpumask_empty(cpus))
0a2966b4 4199 goto redo;
81026794 4200 goto out_balanced;
0a2966b4 4201 }
1da177e4 4202 }
81026794 4203
43010659 4204 if (!ld_moved) {
1da177e4
LT
4205 schedstat_inc(sd, lb_failed[idle]);
4206 sd->nr_balance_failed++;
4207
4208 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4209
fe2eea3f 4210 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4211
4212 /* don't kick the migration_thread, if the curr
4213 * task on busiest cpu can't be moved to this_cpu
4214 */
96f874e2
RR
4215 if (!cpumask_test_cpu(this_cpu,
4216 &busiest->curr->cpus_allowed)) {
fe2eea3f 4217 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4218 all_pinned = 1;
4219 goto out_one_pinned;
4220 }
4221
1da177e4
LT
4222 if (!busiest->active_balance) {
4223 busiest->active_balance = 1;
4224 busiest->push_cpu = this_cpu;
81026794 4225 active_balance = 1;
1da177e4 4226 }
fe2eea3f 4227 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4228 if (active_balance)
1da177e4
LT
4229 wake_up_process(busiest->migration_thread);
4230
4231 /*
4232 * We've kicked active balancing, reset the failure
4233 * counter.
4234 */
39507451 4235 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4236 }
81026794 4237 } else
1da177e4
LT
4238 sd->nr_balance_failed = 0;
4239
81026794 4240 if (likely(!active_balance)) {
1da177e4
LT
4241 /* We were unbalanced, so reset the balancing interval */
4242 sd->balance_interval = sd->min_interval;
81026794
NP
4243 } else {
4244 /*
4245 * If we've begun active balancing, start to back off. This
4246 * case may not be covered by the all_pinned logic if there
4247 * is only 1 task on the busy runqueue (because we don't call
4248 * move_tasks).
4249 */
4250 if (sd->balance_interval < sd->max_interval)
4251 sd->balance_interval *= 2;
1da177e4
LT
4252 }
4253
43010659 4254 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4256 ld_moved = -1;
4257
4258 goto out;
1da177e4
LT
4259
4260out_balanced:
1da177e4
LT
4261 schedstat_inc(sd, lb_balanced[idle]);
4262
16cfb1c0 4263 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4264
4265out_one_pinned:
1da177e4 4266 /* tune up the balancing interval */
77391d71
NP
4267 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4268 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4269 sd->balance_interval *= 2;
4270
48f24c4d 4271 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4272 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4273 ld_moved = -1;
4274 else
4275 ld_moved = 0;
4276out:
c8cba857
PZ
4277 if (ld_moved)
4278 update_shares(sd);
c09595f6 4279 return ld_moved;
1da177e4
LT
4280}
4281
4282/*
4283 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4284 * tasks if there is an imbalance.
4285 *
d15bcfdb 4286 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4287 * this_rq is locked.
4288 */
48f24c4d 4289static int
df7c8e84 4290load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4291{
4292 struct sched_group *group;
70b97a7f 4293 struct rq *busiest = NULL;
1da177e4 4294 unsigned long imbalance;
43010659 4295 int ld_moved = 0;
5969fe06 4296 int sd_idle = 0;
969bb4e4 4297 int all_pinned = 0;
df7c8e84 4298 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4299
eae0c9df 4300 cpumask_copy(cpus, cpu_online_mask);
5969fe06 4301
89c4710e
SS
4302 /*
4303 * When power savings policy is enabled for the parent domain, idle
4304 * sibling can pick up load irrespective of busy siblings. In this case,
4305 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4306 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4307 */
4308 if (sd->flags & SD_SHARE_CPUPOWER &&
4309 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4310 sd_idle = 1;
1da177e4 4311
2d72376b 4312 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4313redo:
3e5459b4 4314 update_shares_locked(this_rq, sd);
d15bcfdb 4315 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4316 &sd_idle, cpus, NULL);
1da177e4 4317 if (!group) {
d15bcfdb 4318 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4319 goto out_balanced;
1da177e4
LT
4320 }
4321
7c16ec58 4322 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4323 if (!busiest) {
d15bcfdb 4324 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4325 goto out_balanced;
1da177e4
LT
4326 }
4327
db935dbd
NP
4328 BUG_ON(busiest == this_rq);
4329
d15bcfdb 4330 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4331
43010659 4332 ld_moved = 0;
d6d5cfaf
NP
4333 if (busiest->nr_running > 1) {
4334 /* Attempt to move tasks */
4335 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4336 /* this_rq->clock is already updated */
4337 update_rq_clock(busiest);
43010659 4338 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4339 imbalance, sd, CPU_NEWLY_IDLE,
4340 &all_pinned);
1b12bbc7 4341 double_unlock_balance(this_rq, busiest);
0a2966b4 4342
969bb4e4 4343 if (unlikely(all_pinned)) {
96f874e2
RR
4344 cpumask_clear_cpu(cpu_of(busiest), cpus);
4345 if (!cpumask_empty(cpus))
0a2966b4
CL
4346 goto redo;
4347 }
d6d5cfaf
NP
4348 }
4349
43010659 4350 if (!ld_moved) {
36dffab6 4351 int active_balance = 0;
ad273b32 4352
d15bcfdb 4353 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4354 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4355 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4356 return -1;
ad273b32
VS
4357
4358 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4359 return -1;
4360
4361 if (sd->nr_balance_failed++ < 2)
4362 return -1;
4363
4364 /*
4365 * The only task running in a non-idle cpu can be moved to this
4366 * cpu in an attempt to completely freeup the other CPU
4367 * package. The same method used to move task in load_balance()
4368 * have been extended for load_balance_newidle() to speedup
4369 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4370 *
4371 * The package power saving logic comes from
4372 * find_busiest_group(). If there are no imbalance, then
4373 * f_b_g() will return NULL. However when sched_mc={1,2} then
4374 * f_b_g() will select a group from which a running task may be
4375 * pulled to this cpu in order to make the other package idle.
4376 * If there is no opportunity to make a package idle and if
4377 * there are no imbalance, then f_b_g() will return NULL and no
4378 * action will be taken in load_balance_newidle().
4379 *
4380 * Under normal task pull operation due to imbalance, there
4381 * will be more than one task in the source run queue and
4382 * move_tasks() will succeed. ld_moved will be true and this
4383 * active balance code will not be triggered.
4384 */
4385
4386 /* Lock busiest in correct order while this_rq is held */
4387 double_lock_balance(this_rq, busiest);
4388
4389 /*
4390 * don't kick the migration_thread, if the curr
4391 * task on busiest cpu can't be moved to this_cpu
4392 */
6ca09dfc 4393 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4394 double_unlock_balance(this_rq, busiest);
4395 all_pinned = 1;
4396 return ld_moved;
4397 }
4398
4399 if (!busiest->active_balance) {
4400 busiest->active_balance = 1;
4401 busiest->push_cpu = this_cpu;
4402 active_balance = 1;
4403 }
4404
4405 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4406 /*
4407 * Should not call ttwu while holding a rq->lock
4408 */
4409 spin_unlock(&this_rq->lock);
ad273b32
VS
4410 if (active_balance)
4411 wake_up_process(busiest->migration_thread);
da8d5089 4412 spin_lock(&this_rq->lock);
ad273b32 4413
5969fe06 4414 } else
16cfb1c0 4415 sd->nr_balance_failed = 0;
1da177e4 4416
3e5459b4 4417 update_shares_locked(this_rq, sd);
43010659 4418 return ld_moved;
16cfb1c0
NP
4419
4420out_balanced:
d15bcfdb 4421 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4422 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4423 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4424 return -1;
16cfb1c0 4425 sd->nr_balance_failed = 0;
48f24c4d 4426
16cfb1c0 4427 return 0;
1da177e4
LT
4428}
4429
4430/*
4431 * idle_balance is called by schedule() if this_cpu is about to become
4432 * idle. Attempts to pull tasks from other CPUs.
4433 */
70b97a7f 4434static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4435{
4436 struct sched_domain *sd;
efbe027e 4437 int pulled_task = 0;
dd41f596 4438 unsigned long next_balance = jiffies + HZ;
1da177e4 4439
1b9508f6
MG
4440 this_rq->idle_stamp = this_rq->clock;
4441
4442 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4443 return;
4444
1da177e4 4445 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4446 unsigned long interval;
4447
4448 if (!(sd->flags & SD_LOAD_BALANCE))
4449 continue;
4450
4451 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4452 /* If we've pulled tasks over stop searching: */
7c16ec58 4453 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4454 sd);
92c4ca5c
CL
4455
4456 interval = msecs_to_jiffies(sd->balance_interval);
4457 if (time_after(next_balance, sd->last_balance + interval))
4458 next_balance = sd->last_balance + interval;
1b9508f6
MG
4459 if (pulled_task) {
4460 this_rq->idle_stamp = 0;
92c4ca5c 4461 break;
1b9508f6 4462 }
1da177e4 4463 }
dd41f596 4464 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4465 /*
4466 * We are going idle. next_balance may be set based on
4467 * a busy processor. So reset next_balance.
4468 */
4469 this_rq->next_balance = next_balance;
dd41f596 4470 }
1da177e4
LT
4471}
4472
4473/*
4474 * active_load_balance is run by migration threads. It pushes running tasks
4475 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4476 * running on each physical CPU where possible, and avoids physical /
4477 * logical imbalances.
4478 *
4479 * Called with busiest_rq locked.
4480 */
70b97a7f 4481static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4482{
39507451 4483 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4484 struct sched_domain *sd;
4485 struct rq *target_rq;
39507451 4486
48f24c4d 4487 /* Is there any task to move? */
39507451 4488 if (busiest_rq->nr_running <= 1)
39507451
NP
4489 return;
4490
4491 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4492
4493 /*
39507451 4494 * This condition is "impossible", if it occurs
41a2d6cf 4495 * we need to fix it. Originally reported by
39507451 4496 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4497 */
39507451 4498 BUG_ON(busiest_rq == target_rq);
1da177e4 4499
39507451
NP
4500 /* move a task from busiest_rq to target_rq */
4501 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4502 update_rq_clock(busiest_rq);
4503 update_rq_clock(target_rq);
39507451
NP
4504
4505 /* Search for an sd spanning us and the target CPU. */
c96d145e 4506 for_each_domain(target_cpu, sd) {
39507451 4507 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4508 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4509 break;
c96d145e 4510 }
39507451 4511
48f24c4d 4512 if (likely(sd)) {
2d72376b 4513 schedstat_inc(sd, alb_count);
39507451 4514
43010659
PW
4515 if (move_one_task(target_rq, target_cpu, busiest_rq,
4516 sd, CPU_IDLE))
48f24c4d
IM
4517 schedstat_inc(sd, alb_pushed);
4518 else
4519 schedstat_inc(sd, alb_failed);
4520 }
1b12bbc7 4521 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4522}
4523
46cb4b7c
SS
4524#ifdef CONFIG_NO_HZ
4525static struct {
4526 atomic_t load_balancer;
7d1e6a9b 4527 cpumask_var_t cpu_mask;
f711f609 4528 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4529} nohz ____cacheline_aligned = {
4530 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4531};
4532
eea08f32
AB
4533int get_nohz_load_balancer(void)
4534{
4535 return atomic_read(&nohz.load_balancer);
4536}
4537
f711f609
GS
4538#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4539/**
4540 * lowest_flag_domain - Return lowest sched_domain containing flag.
4541 * @cpu: The cpu whose lowest level of sched domain is to
4542 * be returned.
4543 * @flag: The flag to check for the lowest sched_domain
4544 * for the given cpu.
4545 *
4546 * Returns the lowest sched_domain of a cpu which contains the given flag.
4547 */
4548static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4549{
4550 struct sched_domain *sd;
4551
4552 for_each_domain(cpu, sd)
4553 if (sd && (sd->flags & flag))
4554 break;
4555
4556 return sd;
4557}
4558
4559/**
4560 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4561 * @cpu: The cpu whose domains we're iterating over.
4562 * @sd: variable holding the value of the power_savings_sd
4563 * for cpu.
4564 * @flag: The flag to filter the sched_domains to be iterated.
4565 *
4566 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4567 * set, starting from the lowest sched_domain to the highest.
4568 */
4569#define for_each_flag_domain(cpu, sd, flag) \
4570 for (sd = lowest_flag_domain(cpu, flag); \
4571 (sd && (sd->flags & flag)); sd = sd->parent)
4572
4573/**
4574 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4575 * @ilb_group: group to be checked for semi-idleness
4576 *
4577 * Returns: 1 if the group is semi-idle. 0 otherwise.
4578 *
4579 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4580 * and atleast one non-idle CPU. This helper function checks if the given
4581 * sched_group is semi-idle or not.
4582 */
4583static inline int is_semi_idle_group(struct sched_group *ilb_group)
4584{
4585 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4586 sched_group_cpus(ilb_group));
4587
4588 /*
4589 * A sched_group is semi-idle when it has atleast one busy cpu
4590 * and atleast one idle cpu.
4591 */
4592 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4593 return 0;
4594
4595 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4596 return 0;
4597
4598 return 1;
4599}
4600/**
4601 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4602 * @cpu: The cpu which is nominating a new idle_load_balancer.
4603 *
4604 * Returns: Returns the id of the idle load balancer if it exists,
4605 * Else, returns >= nr_cpu_ids.
4606 *
4607 * This algorithm picks the idle load balancer such that it belongs to a
4608 * semi-idle powersavings sched_domain. The idea is to try and avoid
4609 * completely idle packages/cores just for the purpose of idle load balancing
4610 * when there are other idle cpu's which are better suited for that job.
4611 */
4612static int find_new_ilb(int cpu)
4613{
4614 struct sched_domain *sd;
4615 struct sched_group *ilb_group;
4616
4617 /*
4618 * Have idle load balancer selection from semi-idle packages only
4619 * when power-aware load balancing is enabled
4620 */
4621 if (!(sched_smt_power_savings || sched_mc_power_savings))
4622 goto out_done;
4623
4624 /*
4625 * Optimize for the case when we have no idle CPUs or only one
4626 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4627 */
4628 if (cpumask_weight(nohz.cpu_mask) < 2)
4629 goto out_done;
4630
4631 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4632 ilb_group = sd->groups;
4633
4634 do {
4635 if (is_semi_idle_group(ilb_group))
4636 return cpumask_first(nohz.ilb_grp_nohz_mask);
4637
4638 ilb_group = ilb_group->next;
4639
4640 } while (ilb_group != sd->groups);
4641 }
4642
4643out_done:
4644 return cpumask_first(nohz.cpu_mask);
4645}
4646#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4647static inline int find_new_ilb(int call_cpu)
4648{
6e29ec57 4649 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4650}
4651#endif
4652
7835b98b 4653/*
46cb4b7c
SS
4654 * This routine will try to nominate the ilb (idle load balancing)
4655 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4656 * load balancing on behalf of all those cpus. If all the cpus in the system
4657 * go into this tickless mode, then there will be no ilb owner (as there is
4658 * no need for one) and all the cpus will sleep till the next wakeup event
4659 * arrives...
4660 *
4661 * For the ilb owner, tick is not stopped. And this tick will be used
4662 * for idle load balancing. ilb owner will still be part of
4663 * nohz.cpu_mask..
7835b98b 4664 *
46cb4b7c
SS
4665 * While stopping the tick, this cpu will become the ilb owner if there
4666 * is no other owner. And will be the owner till that cpu becomes busy
4667 * or if all cpus in the system stop their ticks at which point
4668 * there is no need for ilb owner.
4669 *
4670 * When the ilb owner becomes busy, it nominates another owner, during the
4671 * next busy scheduler_tick()
4672 */
4673int select_nohz_load_balancer(int stop_tick)
4674{
4675 int cpu = smp_processor_id();
4676
4677 if (stop_tick) {
46cb4b7c
SS
4678 cpu_rq(cpu)->in_nohz_recently = 1;
4679
483b4ee6
SS
4680 if (!cpu_active(cpu)) {
4681 if (atomic_read(&nohz.load_balancer) != cpu)
4682 return 0;
4683
4684 /*
4685 * If we are going offline and still the leader,
4686 * give up!
4687 */
46cb4b7c
SS
4688 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4689 BUG();
483b4ee6 4690
46cb4b7c
SS
4691 return 0;
4692 }
4693
483b4ee6
SS
4694 cpumask_set_cpu(cpu, nohz.cpu_mask);
4695
46cb4b7c 4696 /* time for ilb owner also to sleep */
7d1e6a9b 4697 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4698 if (atomic_read(&nohz.load_balancer) == cpu)
4699 atomic_set(&nohz.load_balancer, -1);
4700 return 0;
4701 }
4702
4703 if (atomic_read(&nohz.load_balancer) == -1) {
4704 /* make me the ilb owner */
4705 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4706 return 1;
e790fb0b
GS
4707 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4708 int new_ilb;
4709
4710 if (!(sched_smt_power_savings ||
4711 sched_mc_power_savings))
4712 return 1;
4713 /*
4714 * Check to see if there is a more power-efficient
4715 * ilb.
4716 */
4717 new_ilb = find_new_ilb(cpu);
4718 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4719 atomic_set(&nohz.load_balancer, -1);
4720 resched_cpu(new_ilb);
4721 return 0;
4722 }
46cb4b7c 4723 return 1;
e790fb0b 4724 }
46cb4b7c 4725 } else {
7d1e6a9b 4726 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4727 return 0;
4728
7d1e6a9b 4729 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4730
4731 if (atomic_read(&nohz.load_balancer) == cpu)
4732 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4733 BUG();
4734 }
4735 return 0;
4736}
4737#endif
4738
4739static DEFINE_SPINLOCK(balancing);
4740
4741/*
7835b98b
CL
4742 * It checks each scheduling domain to see if it is due to be balanced,
4743 * and initiates a balancing operation if so.
4744 *
4745 * Balancing parameters are set up in arch_init_sched_domains.
4746 */
a9957449 4747static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4748{
46cb4b7c
SS
4749 int balance = 1;
4750 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4751 unsigned long interval;
4752 struct sched_domain *sd;
46cb4b7c 4753 /* Earliest time when we have to do rebalance again */
c9819f45 4754 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4755 int update_next_balance = 0;
d07355f5 4756 int need_serialize;
1da177e4 4757
46cb4b7c 4758 for_each_domain(cpu, sd) {
1da177e4
LT
4759 if (!(sd->flags & SD_LOAD_BALANCE))
4760 continue;
4761
4762 interval = sd->balance_interval;
d15bcfdb 4763 if (idle != CPU_IDLE)
1da177e4
LT
4764 interval *= sd->busy_factor;
4765
4766 /* scale ms to jiffies */
4767 interval = msecs_to_jiffies(interval);
4768 if (unlikely(!interval))
4769 interval = 1;
dd41f596
IM
4770 if (interval > HZ*NR_CPUS/10)
4771 interval = HZ*NR_CPUS/10;
4772
d07355f5 4773 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4774
d07355f5 4775 if (need_serialize) {
08c183f3
CL
4776 if (!spin_trylock(&balancing))
4777 goto out;
4778 }
4779
c9819f45 4780 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4781 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4782 /*
4783 * We've pulled tasks over so either we're no
5969fe06
NP
4784 * longer idle, or one of our SMT siblings is
4785 * not idle.
4786 */
d15bcfdb 4787 idle = CPU_NOT_IDLE;
1da177e4 4788 }
1bd77f2d 4789 sd->last_balance = jiffies;
1da177e4 4790 }
d07355f5 4791 if (need_serialize)
08c183f3
CL
4792 spin_unlock(&balancing);
4793out:
f549da84 4794 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4795 next_balance = sd->last_balance + interval;
f549da84
SS
4796 update_next_balance = 1;
4797 }
783609c6
SS
4798
4799 /*
4800 * Stop the load balance at this level. There is another
4801 * CPU in our sched group which is doing load balancing more
4802 * actively.
4803 */
4804 if (!balance)
4805 break;
1da177e4 4806 }
f549da84
SS
4807
4808 /*
4809 * next_balance will be updated only when there is a need.
4810 * When the cpu is attached to null domain for ex, it will not be
4811 * updated.
4812 */
4813 if (likely(update_next_balance))
4814 rq->next_balance = next_balance;
46cb4b7c
SS
4815}
4816
4817/*
4818 * run_rebalance_domains is triggered when needed from the scheduler tick.
4819 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4820 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4821 */
4822static void run_rebalance_domains(struct softirq_action *h)
4823{
dd41f596
IM
4824 int this_cpu = smp_processor_id();
4825 struct rq *this_rq = cpu_rq(this_cpu);
4826 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4827 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4828
dd41f596 4829 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4830
4831#ifdef CONFIG_NO_HZ
4832 /*
4833 * If this cpu is the owner for idle load balancing, then do the
4834 * balancing on behalf of the other idle cpus whose ticks are
4835 * stopped.
4836 */
dd41f596
IM
4837 if (this_rq->idle_at_tick &&
4838 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4839 struct rq *rq;
4840 int balance_cpu;
4841
7d1e6a9b
RR
4842 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4843 if (balance_cpu == this_cpu)
4844 continue;
4845
46cb4b7c
SS
4846 /*
4847 * If this cpu gets work to do, stop the load balancing
4848 * work being done for other cpus. Next load
4849 * balancing owner will pick it up.
4850 */
4851 if (need_resched())
4852 break;
4853
de0cf899 4854 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4855
4856 rq = cpu_rq(balance_cpu);
dd41f596
IM
4857 if (time_after(this_rq->next_balance, rq->next_balance))
4858 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4859 }
4860 }
4861#endif
4862}
4863
8a0be9ef
FW
4864static inline int on_null_domain(int cpu)
4865{
4866 return !rcu_dereference(cpu_rq(cpu)->sd);
4867}
4868
46cb4b7c
SS
4869/*
4870 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4871 *
4872 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4873 * idle load balancing owner or decide to stop the periodic load balancing,
4874 * if the whole system is idle.
4875 */
dd41f596 4876static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4877{
46cb4b7c
SS
4878#ifdef CONFIG_NO_HZ
4879 /*
4880 * If we were in the nohz mode recently and busy at the current
4881 * scheduler tick, then check if we need to nominate new idle
4882 * load balancer.
4883 */
4884 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4885 rq->in_nohz_recently = 0;
4886
4887 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4888 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4889 atomic_set(&nohz.load_balancer, -1);
4890 }
4891
4892 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4893 int ilb = find_new_ilb(cpu);
46cb4b7c 4894
434d53b0 4895 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4896 resched_cpu(ilb);
4897 }
4898 }
4899
4900 /*
4901 * If this cpu is idle and doing idle load balancing for all the
4902 * cpus with ticks stopped, is it time for that to stop?
4903 */
4904 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4905 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4906 resched_cpu(cpu);
4907 return;
4908 }
4909
4910 /*
4911 * If this cpu is idle and the idle load balancing is done by
4912 * someone else, then no need raise the SCHED_SOFTIRQ
4913 */
4914 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4915 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4916 return;
4917#endif
8a0be9ef
FW
4918 /* Don't need to rebalance while attached to NULL domain */
4919 if (time_after_eq(jiffies, rq->next_balance) &&
4920 likely(!on_null_domain(cpu)))
46cb4b7c 4921 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4922}
dd41f596
IM
4923
4924#else /* CONFIG_SMP */
4925
1da177e4
LT
4926/*
4927 * on UP we do not need to balance between CPUs:
4928 */
70b97a7f 4929static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4930{
4931}
dd41f596 4932
1da177e4
LT
4933#endif
4934
1da177e4
LT
4935DEFINE_PER_CPU(struct kernel_stat, kstat);
4936
4937EXPORT_PER_CPU_SYMBOL(kstat);
4938
4939/*
c5f8d995 4940 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4941 * @p in case that task is currently running.
c5f8d995
HS
4942 *
4943 * Called with task_rq_lock() held on @rq.
1da177e4 4944 */
c5f8d995
HS
4945static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4946{
4947 u64 ns = 0;
4948
4949 if (task_current(rq, p)) {
4950 update_rq_clock(rq);
4951 ns = rq->clock - p->se.exec_start;
4952 if ((s64)ns < 0)
4953 ns = 0;
4954 }
4955
4956 return ns;
4957}
4958
bb34d92f 4959unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4960{
1da177e4 4961 unsigned long flags;
41b86e9c 4962 struct rq *rq;
bb34d92f 4963 u64 ns = 0;
48f24c4d 4964
41b86e9c 4965 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4966 ns = do_task_delta_exec(p, rq);
4967 task_rq_unlock(rq, &flags);
1508487e 4968
c5f8d995
HS
4969 return ns;
4970}
f06febc9 4971
c5f8d995
HS
4972/*
4973 * Return accounted runtime for the task.
4974 * In case the task is currently running, return the runtime plus current's
4975 * pending runtime that have not been accounted yet.
4976 */
4977unsigned long long task_sched_runtime(struct task_struct *p)
4978{
4979 unsigned long flags;
4980 struct rq *rq;
4981 u64 ns = 0;
4982
4983 rq = task_rq_lock(p, &flags);
4984 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4985 task_rq_unlock(rq, &flags);
4986
4987 return ns;
4988}
48f24c4d 4989
c5f8d995
HS
4990/*
4991 * Return sum_exec_runtime for the thread group.
4992 * In case the task is currently running, return the sum plus current's
4993 * pending runtime that have not been accounted yet.
4994 *
4995 * Note that the thread group might have other running tasks as well,
4996 * so the return value not includes other pending runtime that other
4997 * running tasks might have.
4998 */
4999unsigned long long thread_group_sched_runtime(struct task_struct *p)
5000{
5001 struct task_cputime totals;
5002 unsigned long flags;
5003 struct rq *rq;
5004 u64 ns;
5005
5006 rq = task_rq_lock(p, &flags);
5007 thread_group_cputime(p, &totals);
5008 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5009 task_rq_unlock(rq, &flags);
48f24c4d 5010
1da177e4
LT
5011 return ns;
5012}
5013
1da177e4
LT
5014/*
5015 * Account user cpu time to a process.
5016 * @p: the process that the cpu time gets accounted to
1da177e4 5017 * @cputime: the cpu time spent in user space since the last update
457533a7 5018 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5019 */
457533a7
MS
5020void account_user_time(struct task_struct *p, cputime_t cputime,
5021 cputime_t cputime_scaled)
1da177e4
LT
5022{
5023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5024 cputime64_t tmp;
5025
457533a7 5026 /* Add user time to process. */
1da177e4 5027 p->utime = cputime_add(p->utime, cputime);
457533a7 5028 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5029 account_group_user_time(p, cputime);
1da177e4
LT
5030
5031 /* Add user time to cpustat. */
5032 tmp = cputime_to_cputime64(cputime);
5033 if (TASK_NICE(p) > 0)
5034 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5035 else
5036 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5037
5038 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5039 /* Account for user time used */
5040 acct_update_integrals(p);
1da177e4
LT
5041}
5042
94886b84
LV
5043/*
5044 * Account guest cpu time to a process.
5045 * @p: the process that the cpu time gets accounted to
5046 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5047 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5048 */
457533a7
MS
5049static void account_guest_time(struct task_struct *p, cputime_t cputime,
5050 cputime_t cputime_scaled)
94886b84
LV
5051{
5052 cputime64_t tmp;
5053 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5054
5055 tmp = cputime_to_cputime64(cputime);
5056
457533a7 5057 /* Add guest time to process. */
94886b84 5058 p->utime = cputime_add(p->utime, cputime);
457533a7 5059 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5060 account_group_user_time(p, cputime);
94886b84
LV
5061 p->gtime = cputime_add(p->gtime, cputime);
5062
457533a7 5063 /* Add guest time to cpustat. */
ce0e7b28
RO
5064 if (TASK_NICE(p) > 0) {
5065 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5066 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5067 } else {
5068 cpustat->user = cputime64_add(cpustat->user, tmp);
5069 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5070 }
94886b84
LV
5071}
5072
1da177e4
LT
5073/*
5074 * Account system cpu time to a process.
5075 * @p: the process that the cpu time gets accounted to
5076 * @hardirq_offset: the offset to subtract from hardirq_count()
5077 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5078 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5079 */
5080void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5081 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5082{
5083 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5084 cputime64_t tmp;
5085
983ed7a6 5086 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5087 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5088 return;
5089 }
94886b84 5090
457533a7 5091 /* Add system time to process. */
1da177e4 5092 p->stime = cputime_add(p->stime, cputime);
457533a7 5093 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5094 account_group_system_time(p, cputime);
1da177e4
LT
5095
5096 /* Add system time to cpustat. */
5097 tmp = cputime_to_cputime64(cputime);
5098 if (hardirq_count() - hardirq_offset)
5099 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5100 else if (softirq_count())
5101 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5102 else
79741dd3
MS
5103 cpustat->system = cputime64_add(cpustat->system, tmp);
5104
ef12fefa
BR
5105 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5106
1da177e4
LT
5107 /* Account for system time used */
5108 acct_update_integrals(p);
1da177e4
LT
5109}
5110
c66f08be 5111/*
1da177e4 5112 * Account for involuntary wait time.
1da177e4 5113 * @steal: the cpu time spent in involuntary wait
c66f08be 5114 */
79741dd3 5115void account_steal_time(cputime_t cputime)
c66f08be 5116{
79741dd3
MS
5117 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5118 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5119
5120 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5121}
5122
1da177e4 5123/*
79741dd3
MS
5124 * Account for idle time.
5125 * @cputime: the cpu time spent in idle wait
1da177e4 5126 */
79741dd3 5127void account_idle_time(cputime_t cputime)
1da177e4
LT
5128{
5129 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5130 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5131 struct rq *rq = this_rq();
1da177e4 5132
79741dd3
MS
5133 if (atomic_read(&rq->nr_iowait) > 0)
5134 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5135 else
5136 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5137}
5138
79741dd3
MS
5139#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5140
5141/*
5142 * Account a single tick of cpu time.
5143 * @p: the process that the cpu time gets accounted to
5144 * @user_tick: indicates if the tick is a user or a system tick
5145 */
5146void account_process_tick(struct task_struct *p, int user_tick)
5147{
a42548a1 5148 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5149 struct rq *rq = this_rq();
5150
5151 if (user_tick)
a42548a1 5152 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5153 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5154 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5155 one_jiffy_scaled);
5156 else
a42548a1 5157 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5158}
5159
5160/*
5161 * Account multiple ticks of steal time.
5162 * @p: the process from which the cpu time has been stolen
5163 * @ticks: number of stolen ticks
5164 */
5165void account_steal_ticks(unsigned long ticks)
5166{
5167 account_steal_time(jiffies_to_cputime(ticks));
5168}
5169
5170/*
5171 * Account multiple ticks of idle time.
5172 * @ticks: number of stolen ticks
5173 */
5174void account_idle_ticks(unsigned long ticks)
5175{
5176 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5177}
5178
79741dd3
MS
5179#endif
5180
49048622
BS
5181/*
5182 * Use precise platform statistics if available:
5183 */
5184#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5185void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5186{
d99ca3b9
HS
5187 *ut = p->utime;
5188 *st = p->stime;
49048622
BS
5189}
5190
0cf55e1e 5191void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5192{
0cf55e1e
HS
5193 struct task_cputime cputime;
5194
5195 thread_group_cputime(p, &cputime);
5196
5197 *ut = cputime.utime;
5198 *st = cputime.stime;
49048622
BS
5199}
5200#else
761b1d26
HS
5201
5202#ifndef nsecs_to_cputime
b7b20df9 5203# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5204#endif
5205
d180c5bc 5206void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5207{
d99ca3b9 5208 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5209
5210 /*
5211 * Use CFS's precise accounting:
5212 */
d180c5bc 5213 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5214
5215 if (total) {
d180c5bc
HS
5216 u64 temp;
5217
5218 temp = (u64)(rtime * utime);
49048622 5219 do_div(temp, total);
d180c5bc
HS
5220 utime = (cputime_t)temp;
5221 } else
5222 utime = rtime;
49048622 5223
d180c5bc
HS
5224 /*
5225 * Compare with previous values, to keep monotonicity:
5226 */
761b1d26 5227 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5228 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5229
d99ca3b9
HS
5230 *ut = p->prev_utime;
5231 *st = p->prev_stime;
49048622
BS
5232}
5233
0cf55e1e
HS
5234/*
5235 * Must be called with siglock held.
5236 */
5237void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5238{
0cf55e1e
HS
5239 struct signal_struct *sig = p->signal;
5240 struct task_cputime cputime;
5241 cputime_t rtime, utime, total;
49048622 5242
0cf55e1e 5243 thread_group_cputime(p, &cputime);
49048622 5244
0cf55e1e
HS
5245 total = cputime_add(cputime.utime, cputime.stime);
5246 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5247
0cf55e1e
HS
5248 if (total) {
5249 u64 temp;
49048622 5250
0cf55e1e
HS
5251 temp = (u64)(rtime * cputime.utime);
5252 do_div(temp, total);
5253 utime = (cputime_t)temp;
5254 } else
5255 utime = rtime;
5256
5257 sig->prev_utime = max(sig->prev_utime, utime);
5258 sig->prev_stime = max(sig->prev_stime,
5259 cputime_sub(rtime, sig->prev_utime));
5260
5261 *ut = sig->prev_utime;
5262 *st = sig->prev_stime;
49048622 5263}
49048622 5264#endif
49048622 5265
7835b98b
CL
5266/*
5267 * This function gets called by the timer code, with HZ frequency.
5268 * We call it with interrupts disabled.
5269 *
5270 * It also gets called by the fork code, when changing the parent's
5271 * timeslices.
5272 */
5273void scheduler_tick(void)
5274{
7835b98b
CL
5275 int cpu = smp_processor_id();
5276 struct rq *rq = cpu_rq(cpu);
dd41f596 5277 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5278
5279 sched_clock_tick();
dd41f596
IM
5280
5281 spin_lock(&rq->lock);
3e51f33f 5282 update_rq_clock(rq);
f1a438d8 5283 update_cpu_load(rq);
fa85ae24 5284 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5285 spin_unlock(&rq->lock);
7835b98b 5286
cdd6c482 5287 perf_event_task_tick(curr, cpu);
e220d2dc 5288
e418e1c2 5289#ifdef CONFIG_SMP
dd41f596
IM
5290 rq->idle_at_tick = idle_cpu(cpu);
5291 trigger_load_balance(rq, cpu);
e418e1c2 5292#endif
1da177e4
LT
5293}
5294
132380a0 5295notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5296{
5297 if (in_lock_functions(addr)) {
5298 addr = CALLER_ADDR2;
5299 if (in_lock_functions(addr))
5300 addr = CALLER_ADDR3;
5301 }
5302 return addr;
5303}
1da177e4 5304
7e49fcce
SR
5305#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5306 defined(CONFIG_PREEMPT_TRACER))
5307
43627582 5308void __kprobes add_preempt_count(int val)
1da177e4 5309{
6cd8a4bb 5310#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5311 /*
5312 * Underflow?
5313 */
9a11b49a
IM
5314 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5315 return;
6cd8a4bb 5316#endif
1da177e4 5317 preempt_count() += val;
6cd8a4bb 5318#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5319 /*
5320 * Spinlock count overflowing soon?
5321 */
33859f7f
MOS
5322 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5323 PREEMPT_MASK - 10);
6cd8a4bb
SR
5324#endif
5325 if (preempt_count() == val)
5326 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5327}
5328EXPORT_SYMBOL(add_preempt_count);
5329
43627582 5330void __kprobes sub_preempt_count(int val)
1da177e4 5331{
6cd8a4bb 5332#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5333 /*
5334 * Underflow?
5335 */
01e3eb82 5336 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5337 return;
1da177e4
LT
5338 /*
5339 * Is the spinlock portion underflowing?
5340 */
9a11b49a
IM
5341 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5342 !(preempt_count() & PREEMPT_MASK)))
5343 return;
6cd8a4bb 5344#endif
9a11b49a 5345
6cd8a4bb
SR
5346 if (preempt_count() == val)
5347 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5348 preempt_count() -= val;
5349}
5350EXPORT_SYMBOL(sub_preempt_count);
5351
5352#endif
5353
5354/*
dd41f596 5355 * Print scheduling while atomic bug:
1da177e4 5356 */
dd41f596 5357static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5358{
838225b4
SS
5359 struct pt_regs *regs = get_irq_regs();
5360
5361 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5362 prev->comm, prev->pid, preempt_count());
5363
dd41f596 5364 debug_show_held_locks(prev);
e21f5b15 5365 print_modules();
dd41f596
IM
5366 if (irqs_disabled())
5367 print_irqtrace_events(prev);
838225b4
SS
5368
5369 if (regs)
5370 show_regs(regs);
5371 else
5372 dump_stack();
dd41f596 5373}
1da177e4 5374
dd41f596
IM
5375/*
5376 * Various schedule()-time debugging checks and statistics:
5377 */
5378static inline void schedule_debug(struct task_struct *prev)
5379{
1da177e4 5380 /*
41a2d6cf 5381 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5382 * schedule() atomically, we ignore that path for now.
5383 * Otherwise, whine if we are scheduling when we should not be.
5384 */
3f33a7ce 5385 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5386 __schedule_bug(prev);
5387
1da177e4
LT
5388 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5389
2d72376b 5390 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5391#ifdef CONFIG_SCHEDSTATS
5392 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5393 schedstat_inc(this_rq(), bkl_count);
5394 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5395 }
5396#endif
dd41f596
IM
5397}
5398
ad4b78bb 5399static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5400{
ad4b78bb 5401 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5402
ad4b78bb 5403 update_avg(&p->se.avg_running, runtime);
df1c99d4 5404
ad4b78bb 5405 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5406 /*
5407 * In order to avoid avg_overlap growing stale when we are
5408 * indeed overlapping and hence not getting put to sleep, grow
5409 * the avg_overlap on preemption.
5410 *
5411 * We use the average preemption runtime because that
5412 * correlates to the amount of cache footprint a task can
5413 * build up.
5414 */
ad4b78bb
PZ
5415 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5416 update_avg(&p->se.avg_overlap, runtime);
5417 } else {
5418 update_avg(&p->se.avg_running, 0);
df1c99d4 5419 }
ad4b78bb 5420 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5421}
5422
dd41f596
IM
5423/*
5424 * Pick up the highest-prio task:
5425 */
5426static inline struct task_struct *
b67802ea 5427pick_next_task(struct rq *rq)
dd41f596 5428{
5522d5d5 5429 const struct sched_class *class;
dd41f596 5430 struct task_struct *p;
1da177e4
LT
5431
5432 /*
dd41f596
IM
5433 * Optimization: we know that if all tasks are in
5434 * the fair class we can call that function directly:
1da177e4 5435 */
dd41f596 5436 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5437 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5438 if (likely(p))
5439 return p;
1da177e4
LT
5440 }
5441
dd41f596
IM
5442 class = sched_class_highest;
5443 for ( ; ; ) {
fb8d4724 5444 p = class->pick_next_task(rq);
dd41f596
IM
5445 if (p)
5446 return p;
5447 /*
5448 * Will never be NULL as the idle class always
5449 * returns a non-NULL p:
5450 */
5451 class = class->next;
5452 }
5453}
1da177e4 5454
dd41f596
IM
5455/*
5456 * schedule() is the main scheduler function.
5457 */
ff743345 5458asmlinkage void __sched schedule(void)
dd41f596
IM
5459{
5460 struct task_struct *prev, *next;
67ca7bde 5461 unsigned long *switch_count;
dd41f596 5462 struct rq *rq;
31656519 5463 int cpu;
dd41f596 5464
ff743345
PZ
5465need_resched:
5466 preempt_disable();
dd41f596
IM
5467 cpu = smp_processor_id();
5468 rq = cpu_rq(cpu);
d6714c22 5469 rcu_sched_qs(cpu);
dd41f596
IM
5470 prev = rq->curr;
5471 switch_count = &prev->nivcsw;
5472
5473 release_kernel_lock(prev);
5474need_resched_nonpreemptible:
5475
5476 schedule_debug(prev);
1da177e4 5477
31656519 5478 if (sched_feat(HRTICK))
f333fdc9 5479 hrtick_clear(rq);
8f4d37ec 5480
8cd162ce 5481 spin_lock_irq(&rq->lock);
3e51f33f 5482 update_rq_clock(rq);
1e819950 5483 clear_tsk_need_resched(prev);
1da177e4 5484
1da177e4 5485 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5486 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5487 prev->state = TASK_RUNNING;
16882c1e 5488 else
2e1cb74a 5489 deactivate_task(rq, prev, 1);
dd41f596 5490 switch_count = &prev->nvcsw;
1da177e4
LT
5491 }
5492
3f029d3c 5493 pre_schedule(rq, prev);
f65eda4f 5494
dd41f596 5495 if (unlikely(!rq->nr_running))
1da177e4 5496 idle_balance(cpu, rq);
1da177e4 5497
df1c99d4 5498 put_prev_task(rq, prev);
b67802ea 5499 next = pick_next_task(rq);
1da177e4 5500
1da177e4 5501 if (likely(prev != next)) {
673a90a1 5502 sched_info_switch(prev, next);
cdd6c482 5503 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5504
1da177e4
LT
5505 rq->nr_switches++;
5506 rq->curr = next;
5507 ++*switch_count;
5508
dd41f596 5509 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5510 /*
5511 * the context switch might have flipped the stack from under
5512 * us, hence refresh the local variables.
5513 */
5514 cpu = smp_processor_id();
5515 rq = cpu_rq(cpu);
1da177e4
LT
5516 } else
5517 spin_unlock_irq(&rq->lock);
5518
3f029d3c 5519 post_schedule(rq);
1da177e4 5520
8f4d37ec 5521 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5522 goto need_resched_nonpreemptible;
8f4d37ec 5523
1da177e4 5524 preempt_enable_no_resched();
ff743345 5525 if (need_resched())
1da177e4
LT
5526 goto need_resched;
5527}
1da177e4
LT
5528EXPORT_SYMBOL(schedule);
5529
c08f7829 5530#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5531/*
5532 * Look out! "owner" is an entirely speculative pointer
5533 * access and not reliable.
5534 */
5535int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5536{
5537 unsigned int cpu;
5538 struct rq *rq;
5539
5540 if (!sched_feat(OWNER_SPIN))
5541 return 0;
5542
5543#ifdef CONFIG_DEBUG_PAGEALLOC
5544 /*
5545 * Need to access the cpu field knowing that
5546 * DEBUG_PAGEALLOC could have unmapped it if
5547 * the mutex owner just released it and exited.
5548 */
5549 if (probe_kernel_address(&owner->cpu, cpu))
5550 goto out;
5551#else
5552 cpu = owner->cpu;
5553#endif
5554
5555 /*
5556 * Even if the access succeeded (likely case),
5557 * the cpu field may no longer be valid.
5558 */
5559 if (cpu >= nr_cpumask_bits)
5560 goto out;
5561
5562 /*
5563 * We need to validate that we can do a
5564 * get_cpu() and that we have the percpu area.
5565 */
5566 if (!cpu_online(cpu))
5567 goto out;
5568
5569 rq = cpu_rq(cpu);
5570
5571 for (;;) {
5572 /*
5573 * Owner changed, break to re-assess state.
5574 */
5575 if (lock->owner != owner)
5576 break;
5577
5578 /*
5579 * Is that owner really running on that cpu?
5580 */
5581 if (task_thread_info(rq->curr) != owner || need_resched())
5582 return 0;
5583
5584 cpu_relax();
5585 }
5586out:
5587 return 1;
5588}
5589#endif
5590
1da177e4
LT
5591#ifdef CONFIG_PREEMPT
5592/*
2ed6e34f 5593 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5594 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5595 * occur there and call schedule directly.
5596 */
5597asmlinkage void __sched preempt_schedule(void)
5598{
5599 struct thread_info *ti = current_thread_info();
6478d880 5600
1da177e4
LT
5601 /*
5602 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5603 * we do not want to preempt the current task. Just return..
1da177e4 5604 */
beed33a8 5605 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5606 return;
5607
3a5c359a
AK
5608 do {
5609 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5610 schedule();
3a5c359a 5611 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5612
3a5c359a
AK
5613 /*
5614 * Check again in case we missed a preemption opportunity
5615 * between schedule and now.
5616 */
5617 barrier();
5ed0cec0 5618 } while (need_resched());
1da177e4 5619}
1da177e4
LT
5620EXPORT_SYMBOL(preempt_schedule);
5621
5622/*
2ed6e34f 5623 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5624 * off of irq context.
5625 * Note, that this is called and return with irqs disabled. This will
5626 * protect us against recursive calling from irq.
5627 */
5628asmlinkage void __sched preempt_schedule_irq(void)
5629{
5630 struct thread_info *ti = current_thread_info();
6478d880 5631
2ed6e34f 5632 /* Catch callers which need to be fixed */
1da177e4
LT
5633 BUG_ON(ti->preempt_count || !irqs_disabled());
5634
3a5c359a
AK
5635 do {
5636 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5637 local_irq_enable();
5638 schedule();
5639 local_irq_disable();
3a5c359a 5640 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5641
3a5c359a
AK
5642 /*
5643 * Check again in case we missed a preemption opportunity
5644 * between schedule and now.
5645 */
5646 barrier();
5ed0cec0 5647 } while (need_resched());
1da177e4
LT
5648}
5649
5650#endif /* CONFIG_PREEMPT */
5651
63859d4f 5652int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5653 void *key)
1da177e4 5654{
63859d4f 5655 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5656}
1da177e4
LT
5657EXPORT_SYMBOL(default_wake_function);
5658
5659/*
41a2d6cf
IM
5660 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5661 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5662 * number) then we wake all the non-exclusive tasks and one exclusive task.
5663 *
5664 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5665 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5666 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5667 */
78ddb08f 5668static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5669 int nr_exclusive, int wake_flags, void *key)
1da177e4 5670{
2e45874c 5671 wait_queue_t *curr, *next;
1da177e4 5672
2e45874c 5673 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5674 unsigned flags = curr->flags;
5675
63859d4f 5676 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5677 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5678 break;
5679 }
5680}
5681
5682/**
5683 * __wake_up - wake up threads blocked on a waitqueue.
5684 * @q: the waitqueue
5685 * @mode: which threads
5686 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5687 * @key: is directly passed to the wakeup function
50fa610a
DH
5688 *
5689 * It may be assumed that this function implies a write memory barrier before
5690 * changing the task state if and only if any tasks are woken up.
1da177e4 5691 */
7ad5b3a5 5692void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5693 int nr_exclusive, void *key)
1da177e4
LT
5694{
5695 unsigned long flags;
5696
5697 spin_lock_irqsave(&q->lock, flags);
5698 __wake_up_common(q, mode, nr_exclusive, 0, key);
5699 spin_unlock_irqrestore(&q->lock, flags);
5700}
1da177e4
LT
5701EXPORT_SYMBOL(__wake_up);
5702
5703/*
5704 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5705 */
7ad5b3a5 5706void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5707{
5708 __wake_up_common(q, mode, 1, 0, NULL);
5709}
5710
4ede816a
DL
5711void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5712{
5713 __wake_up_common(q, mode, 1, 0, key);
5714}
5715
1da177e4 5716/**
4ede816a 5717 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5718 * @q: the waitqueue
5719 * @mode: which threads
5720 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5721 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5722 *
5723 * The sync wakeup differs that the waker knows that it will schedule
5724 * away soon, so while the target thread will be woken up, it will not
5725 * be migrated to another CPU - ie. the two threads are 'synchronized'
5726 * with each other. This can prevent needless bouncing between CPUs.
5727 *
5728 * On UP it can prevent extra preemption.
50fa610a
DH
5729 *
5730 * It may be assumed that this function implies a write memory barrier before
5731 * changing the task state if and only if any tasks are woken up.
1da177e4 5732 */
4ede816a
DL
5733void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5734 int nr_exclusive, void *key)
1da177e4
LT
5735{
5736 unsigned long flags;
7d478721 5737 int wake_flags = WF_SYNC;
1da177e4
LT
5738
5739 if (unlikely(!q))
5740 return;
5741
5742 if (unlikely(!nr_exclusive))
7d478721 5743 wake_flags = 0;
1da177e4
LT
5744
5745 spin_lock_irqsave(&q->lock, flags);
7d478721 5746 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5747 spin_unlock_irqrestore(&q->lock, flags);
5748}
4ede816a
DL
5749EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5750
5751/*
5752 * __wake_up_sync - see __wake_up_sync_key()
5753 */
5754void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5755{
5756 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5757}
1da177e4
LT
5758EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5759
65eb3dc6
KD
5760/**
5761 * complete: - signals a single thread waiting on this completion
5762 * @x: holds the state of this particular completion
5763 *
5764 * This will wake up a single thread waiting on this completion. Threads will be
5765 * awakened in the same order in which they were queued.
5766 *
5767 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5768 *
5769 * It may be assumed that this function implies a write memory barrier before
5770 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5771 */
b15136e9 5772void complete(struct completion *x)
1da177e4
LT
5773{
5774 unsigned long flags;
5775
5776 spin_lock_irqsave(&x->wait.lock, flags);
5777 x->done++;
d9514f6c 5778 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5779 spin_unlock_irqrestore(&x->wait.lock, flags);
5780}
5781EXPORT_SYMBOL(complete);
5782
65eb3dc6
KD
5783/**
5784 * complete_all: - signals all threads waiting on this completion
5785 * @x: holds the state of this particular completion
5786 *
5787 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5788 *
5789 * It may be assumed that this function implies a write memory barrier before
5790 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5791 */
b15136e9 5792void complete_all(struct completion *x)
1da177e4
LT
5793{
5794 unsigned long flags;
5795
5796 spin_lock_irqsave(&x->wait.lock, flags);
5797 x->done += UINT_MAX/2;
d9514f6c 5798 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5799 spin_unlock_irqrestore(&x->wait.lock, flags);
5800}
5801EXPORT_SYMBOL(complete_all);
5802
8cbbe86d
AK
5803static inline long __sched
5804do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5805{
1da177e4
LT
5806 if (!x->done) {
5807 DECLARE_WAITQUEUE(wait, current);
5808
5809 wait.flags |= WQ_FLAG_EXCLUSIVE;
5810 __add_wait_queue_tail(&x->wait, &wait);
5811 do {
94d3d824 5812 if (signal_pending_state(state, current)) {
ea71a546
ON
5813 timeout = -ERESTARTSYS;
5814 break;
8cbbe86d
AK
5815 }
5816 __set_current_state(state);
1da177e4
LT
5817 spin_unlock_irq(&x->wait.lock);
5818 timeout = schedule_timeout(timeout);
5819 spin_lock_irq(&x->wait.lock);
ea71a546 5820 } while (!x->done && timeout);
1da177e4 5821 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5822 if (!x->done)
5823 return timeout;
1da177e4
LT
5824 }
5825 x->done--;
ea71a546 5826 return timeout ?: 1;
1da177e4 5827}
1da177e4 5828
8cbbe86d
AK
5829static long __sched
5830wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5831{
1da177e4
LT
5832 might_sleep();
5833
5834 spin_lock_irq(&x->wait.lock);
8cbbe86d 5835 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5836 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5837 return timeout;
5838}
1da177e4 5839
65eb3dc6
KD
5840/**
5841 * wait_for_completion: - waits for completion of a task
5842 * @x: holds the state of this particular completion
5843 *
5844 * This waits to be signaled for completion of a specific task. It is NOT
5845 * interruptible and there is no timeout.
5846 *
5847 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5848 * and interrupt capability. Also see complete().
5849 */
b15136e9 5850void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5851{
5852 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5853}
8cbbe86d 5854EXPORT_SYMBOL(wait_for_completion);
1da177e4 5855
65eb3dc6
KD
5856/**
5857 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5858 * @x: holds the state of this particular completion
5859 * @timeout: timeout value in jiffies
5860 *
5861 * This waits for either a completion of a specific task to be signaled or for a
5862 * specified timeout to expire. The timeout is in jiffies. It is not
5863 * interruptible.
5864 */
b15136e9 5865unsigned long __sched
8cbbe86d 5866wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5867{
8cbbe86d 5868 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5869}
8cbbe86d 5870EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5871
65eb3dc6
KD
5872/**
5873 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5874 * @x: holds the state of this particular completion
5875 *
5876 * This waits for completion of a specific task to be signaled. It is
5877 * interruptible.
5878 */
8cbbe86d 5879int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5880{
51e97990
AK
5881 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5882 if (t == -ERESTARTSYS)
5883 return t;
5884 return 0;
0fec171c 5885}
8cbbe86d 5886EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5887
65eb3dc6
KD
5888/**
5889 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5890 * @x: holds the state of this particular completion
5891 * @timeout: timeout value in jiffies
5892 *
5893 * This waits for either a completion of a specific task to be signaled or for a
5894 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5895 */
b15136e9 5896unsigned long __sched
8cbbe86d
AK
5897wait_for_completion_interruptible_timeout(struct completion *x,
5898 unsigned long timeout)
0fec171c 5899{
8cbbe86d 5900 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5901}
8cbbe86d 5902EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5903
65eb3dc6
KD
5904/**
5905 * wait_for_completion_killable: - waits for completion of a task (killable)
5906 * @x: holds the state of this particular completion
5907 *
5908 * This waits to be signaled for completion of a specific task. It can be
5909 * interrupted by a kill signal.
5910 */
009e577e
MW
5911int __sched wait_for_completion_killable(struct completion *x)
5912{
5913 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5914 if (t == -ERESTARTSYS)
5915 return t;
5916 return 0;
5917}
5918EXPORT_SYMBOL(wait_for_completion_killable);
5919
be4de352
DC
5920/**
5921 * try_wait_for_completion - try to decrement a completion without blocking
5922 * @x: completion structure
5923 *
5924 * Returns: 0 if a decrement cannot be done without blocking
5925 * 1 if a decrement succeeded.
5926 *
5927 * If a completion is being used as a counting completion,
5928 * attempt to decrement the counter without blocking. This
5929 * enables us to avoid waiting if the resource the completion
5930 * is protecting is not available.
5931 */
5932bool try_wait_for_completion(struct completion *x)
5933{
5934 int ret = 1;
5935
5936 spin_lock_irq(&x->wait.lock);
5937 if (!x->done)
5938 ret = 0;
5939 else
5940 x->done--;
5941 spin_unlock_irq(&x->wait.lock);
5942 return ret;
5943}
5944EXPORT_SYMBOL(try_wait_for_completion);
5945
5946/**
5947 * completion_done - Test to see if a completion has any waiters
5948 * @x: completion structure
5949 *
5950 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5951 * 1 if there are no waiters.
5952 *
5953 */
5954bool completion_done(struct completion *x)
5955{
5956 int ret = 1;
5957
5958 spin_lock_irq(&x->wait.lock);
5959 if (!x->done)
5960 ret = 0;
5961 spin_unlock_irq(&x->wait.lock);
5962 return ret;
5963}
5964EXPORT_SYMBOL(completion_done);
5965
8cbbe86d
AK
5966static long __sched
5967sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5968{
0fec171c
IM
5969 unsigned long flags;
5970 wait_queue_t wait;
5971
5972 init_waitqueue_entry(&wait, current);
1da177e4 5973
8cbbe86d 5974 __set_current_state(state);
1da177e4 5975
8cbbe86d
AK
5976 spin_lock_irqsave(&q->lock, flags);
5977 __add_wait_queue(q, &wait);
5978 spin_unlock(&q->lock);
5979 timeout = schedule_timeout(timeout);
5980 spin_lock_irq(&q->lock);
5981 __remove_wait_queue(q, &wait);
5982 spin_unlock_irqrestore(&q->lock, flags);
5983
5984 return timeout;
5985}
5986
5987void __sched interruptible_sleep_on(wait_queue_head_t *q)
5988{
5989 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5990}
1da177e4
LT
5991EXPORT_SYMBOL(interruptible_sleep_on);
5992
0fec171c 5993long __sched
95cdf3b7 5994interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5995{
8cbbe86d 5996 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5997}
1da177e4
LT
5998EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5999
0fec171c 6000void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6001{
8cbbe86d 6002 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6003}
1da177e4
LT
6004EXPORT_SYMBOL(sleep_on);
6005
0fec171c 6006long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6007{
8cbbe86d 6008 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6009}
1da177e4
LT
6010EXPORT_SYMBOL(sleep_on_timeout);
6011
b29739f9
IM
6012#ifdef CONFIG_RT_MUTEXES
6013
6014/*
6015 * rt_mutex_setprio - set the current priority of a task
6016 * @p: task
6017 * @prio: prio value (kernel-internal form)
6018 *
6019 * This function changes the 'effective' priority of a task. It does
6020 * not touch ->normal_prio like __setscheduler().
6021 *
6022 * Used by the rt_mutex code to implement priority inheritance logic.
6023 */
36c8b586 6024void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6025{
6026 unsigned long flags;
83b699ed 6027 int oldprio, on_rq, running;
70b97a7f 6028 struct rq *rq;
cb469845 6029 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6030
6031 BUG_ON(prio < 0 || prio > MAX_PRIO);
6032
6033 rq = task_rq_lock(p, &flags);
a8e504d2 6034 update_rq_clock(rq);
b29739f9 6035
d5f9f942 6036 oldprio = p->prio;
dd41f596 6037 on_rq = p->se.on_rq;
051a1d1a 6038 running = task_current(rq, p);
0e1f3483 6039 if (on_rq)
69be72c1 6040 dequeue_task(rq, p, 0);
0e1f3483
HS
6041 if (running)
6042 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6043
6044 if (rt_prio(prio))
6045 p->sched_class = &rt_sched_class;
6046 else
6047 p->sched_class = &fair_sched_class;
6048
b29739f9
IM
6049 p->prio = prio;
6050
0e1f3483
HS
6051 if (running)
6052 p->sched_class->set_curr_task(rq);
dd41f596 6053 if (on_rq) {
8159f87e 6054 enqueue_task(rq, p, 0);
cb469845
SR
6055
6056 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6057 }
6058 task_rq_unlock(rq, &flags);
6059}
6060
6061#endif
6062
36c8b586 6063void set_user_nice(struct task_struct *p, long nice)
1da177e4 6064{
dd41f596 6065 int old_prio, delta, on_rq;
1da177e4 6066 unsigned long flags;
70b97a7f 6067 struct rq *rq;
1da177e4
LT
6068
6069 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6070 return;
6071 /*
6072 * We have to be careful, if called from sys_setpriority(),
6073 * the task might be in the middle of scheduling on another CPU.
6074 */
6075 rq = task_rq_lock(p, &flags);
a8e504d2 6076 update_rq_clock(rq);
1da177e4
LT
6077 /*
6078 * The RT priorities are set via sched_setscheduler(), but we still
6079 * allow the 'normal' nice value to be set - but as expected
6080 * it wont have any effect on scheduling until the task is
dd41f596 6081 * SCHED_FIFO/SCHED_RR:
1da177e4 6082 */
e05606d3 6083 if (task_has_rt_policy(p)) {
1da177e4
LT
6084 p->static_prio = NICE_TO_PRIO(nice);
6085 goto out_unlock;
6086 }
dd41f596 6087 on_rq = p->se.on_rq;
c09595f6 6088 if (on_rq)
69be72c1 6089 dequeue_task(rq, p, 0);
1da177e4 6090
1da177e4 6091 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6092 set_load_weight(p);
b29739f9
IM
6093 old_prio = p->prio;
6094 p->prio = effective_prio(p);
6095 delta = p->prio - old_prio;
1da177e4 6096
dd41f596 6097 if (on_rq) {
8159f87e 6098 enqueue_task(rq, p, 0);
1da177e4 6099 /*
d5f9f942
AM
6100 * If the task increased its priority or is running and
6101 * lowered its priority, then reschedule its CPU:
1da177e4 6102 */
d5f9f942 6103 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6104 resched_task(rq->curr);
6105 }
6106out_unlock:
6107 task_rq_unlock(rq, &flags);
6108}
1da177e4
LT
6109EXPORT_SYMBOL(set_user_nice);
6110
e43379f1
MM
6111/*
6112 * can_nice - check if a task can reduce its nice value
6113 * @p: task
6114 * @nice: nice value
6115 */
36c8b586 6116int can_nice(const struct task_struct *p, const int nice)
e43379f1 6117{
024f4747
MM
6118 /* convert nice value [19,-20] to rlimit style value [1,40] */
6119 int nice_rlim = 20 - nice;
48f24c4d 6120
e43379f1
MM
6121 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6122 capable(CAP_SYS_NICE));
6123}
6124
1da177e4
LT
6125#ifdef __ARCH_WANT_SYS_NICE
6126
6127/*
6128 * sys_nice - change the priority of the current process.
6129 * @increment: priority increment
6130 *
6131 * sys_setpriority is a more generic, but much slower function that
6132 * does similar things.
6133 */
5add95d4 6134SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6135{
48f24c4d 6136 long nice, retval;
1da177e4
LT
6137
6138 /*
6139 * Setpriority might change our priority at the same moment.
6140 * We don't have to worry. Conceptually one call occurs first
6141 * and we have a single winner.
6142 */
e43379f1
MM
6143 if (increment < -40)
6144 increment = -40;
1da177e4
LT
6145 if (increment > 40)
6146 increment = 40;
6147
2b8f836f 6148 nice = TASK_NICE(current) + increment;
1da177e4
LT
6149 if (nice < -20)
6150 nice = -20;
6151 if (nice > 19)
6152 nice = 19;
6153
e43379f1
MM
6154 if (increment < 0 && !can_nice(current, nice))
6155 return -EPERM;
6156
1da177e4
LT
6157 retval = security_task_setnice(current, nice);
6158 if (retval)
6159 return retval;
6160
6161 set_user_nice(current, nice);
6162 return 0;
6163}
6164
6165#endif
6166
6167/**
6168 * task_prio - return the priority value of a given task.
6169 * @p: the task in question.
6170 *
6171 * This is the priority value as seen by users in /proc.
6172 * RT tasks are offset by -200. Normal tasks are centered
6173 * around 0, value goes from -16 to +15.
6174 */
36c8b586 6175int task_prio(const struct task_struct *p)
1da177e4
LT
6176{
6177 return p->prio - MAX_RT_PRIO;
6178}
6179
6180/**
6181 * task_nice - return the nice value of a given task.
6182 * @p: the task in question.
6183 */
36c8b586 6184int task_nice(const struct task_struct *p)
1da177e4
LT
6185{
6186 return TASK_NICE(p);
6187}
150d8bed 6188EXPORT_SYMBOL(task_nice);
1da177e4
LT
6189
6190/**
6191 * idle_cpu - is a given cpu idle currently?
6192 * @cpu: the processor in question.
6193 */
6194int idle_cpu(int cpu)
6195{
6196 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6197}
6198
1da177e4
LT
6199/**
6200 * idle_task - return the idle task for a given cpu.
6201 * @cpu: the processor in question.
6202 */
36c8b586 6203struct task_struct *idle_task(int cpu)
1da177e4
LT
6204{
6205 return cpu_rq(cpu)->idle;
6206}
6207
6208/**
6209 * find_process_by_pid - find a process with a matching PID value.
6210 * @pid: the pid in question.
6211 */
a9957449 6212static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6213{
228ebcbe 6214 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6215}
6216
6217/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6218static void
6219__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6220{
dd41f596 6221 BUG_ON(p->se.on_rq);
48f24c4d 6222
1da177e4
LT
6223 p->policy = policy;
6224 p->rt_priority = prio;
b29739f9
IM
6225 p->normal_prio = normal_prio(p);
6226 /* we are holding p->pi_lock already */
6227 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6228 if (rt_prio(p->prio))
6229 p->sched_class = &rt_sched_class;
6230 else
6231 p->sched_class = &fair_sched_class;
2dd73a4f 6232 set_load_weight(p);
1da177e4
LT
6233}
6234
c69e8d9c
DH
6235/*
6236 * check the target process has a UID that matches the current process's
6237 */
6238static bool check_same_owner(struct task_struct *p)
6239{
6240 const struct cred *cred = current_cred(), *pcred;
6241 bool match;
6242
6243 rcu_read_lock();
6244 pcred = __task_cred(p);
6245 match = (cred->euid == pcred->euid ||
6246 cred->euid == pcred->uid);
6247 rcu_read_unlock();
6248 return match;
6249}
6250
961ccddd
RR
6251static int __sched_setscheduler(struct task_struct *p, int policy,
6252 struct sched_param *param, bool user)
1da177e4 6253{
83b699ed 6254 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6255 unsigned long flags;
cb469845 6256 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6257 struct rq *rq;
ca94c442 6258 int reset_on_fork;
1da177e4 6259
66e5393a
SR
6260 /* may grab non-irq protected spin_locks */
6261 BUG_ON(in_interrupt());
1da177e4
LT
6262recheck:
6263 /* double check policy once rq lock held */
ca94c442
LP
6264 if (policy < 0) {
6265 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6266 policy = oldpolicy = p->policy;
ca94c442
LP
6267 } else {
6268 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6269 policy &= ~SCHED_RESET_ON_FORK;
6270
6271 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6272 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6273 policy != SCHED_IDLE)
6274 return -EINVAL;
6275 }
6276
1da177e4
LT
6277 /*
6278 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6279 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6280 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6281 */
6282 if (param->sched_priority < 0 ||
95cdf3b7 6283 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6284 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6285 return -EINVAL;
e05606d3 6286 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6287 return -EINVAL;
6288
37e4ab3f
OC
6289 /*
6290 * Allow unprivileged RT tasks to decrease priority:
6291 */
961ccddd 6292 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6293 if (rt_policy(policy)) {
8dc3e909 6294 unsigned long rlim_rtprio;
8dc3e909
ON
6295
6296 if (!lock_task_sighand(p, &flags))
6297 return -ESRCH;
6298 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6299 unlock_task_sighand(p, &flags);
6300
6301 /* can't set/change the rt policy */
6302 if (policy != p->policy && !rlim_rtprio)
6303 return -EPERM;
6304
6305 /* can't increase priority */
6306 if (param->sched_priority > p->rt_priority &&
6307 param->sched_priority > rlim_rtprio)
6308 return -EPERM;
6309 }
dd41f596
IM
6310 /*
6311 * Like positive nice levels, dont allow tasks to
6312 * move out of SCHED_IDLE either:
6313 */
6314 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6315 return -EPERM;
5fe1d75f 6316
37e4ab3f 6317 /* can't change other user's priorities */
c69e8d9c 6318 if (!check_same_owner(p))
37e4ab3f 6319 return -EPERM;
ca94c442
LP
6320
6321 /* Normal users shall not reset the sched_reset_on_fork flag */
6322 if (p->sched_reset_on_fork && !reset_on_fork)
6323 return -EPERM;
37e4ab3f 6324 }
1da177e4 6325
725aad24 6326 if (user) {
b68aa230 6327#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6328 /*
6329 * Do not allow realtime tasks into groups that have no runtime
6330 * assigned.
6331 */
9a7e0b18
PZ
6332 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6333 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6334 return -EPERM;
b68aa230
PZ
6335#endif
6336
725aad24
JF
6337 retval = security_task_setscheduler(p, policy, param);
6338 if (retval)
6339 return retval;
6340 }
6341
b29739f9
IM
6342 /*
6343 * make sure no PI-waiters arrive (or leave) while we are
6344 * changing the priority of the task:
6345 */
6346 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6347 /*
6348 * To be able to change p->policy safely, the apropriate
6349 * runqueue lock must be held.
6350 */
b29739f9 6351 rq = __task_rq_lock(p);
1da177e4
LT
6352 /* recheck policy now with rq lock held */
6353 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6354 policy = oldpolicy = -1;
b29739f9
IM
6355 __task_rq_unlock(rq);
6356 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6357 goto recheck;
6358 }
2daa3577 6359 update_rq_clock(rq);
dd41f596 6360 on_rq = p->se.on_rq;
051a1d1a 6361 running = task_current(rq, p);
0e1f3483 6362 if (on_rq)
2e1cb74a 6363 deactivate_task(rq, p, 0);
0e1f3483
HS
6364 if (running)
6365 p->sched_class->put_prev_task(rq, p);
f6b53205 6366
ca94c442
LP
6367 p->sched_reset_on_fork = reset_on_fork;
6368
1da177e4 6369 oldprio = p->prio;
dd41f596 6370 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6371
0e1f3483
HS
6372 if (running)
6373 p->sched_class->set_curr_task(rq);
dd41f596
IM
6374 if (on_rq) {
6375 activate_task(rq, p, 0);
cb469845
SR
6376
6377 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6378 }
b29739f9
IM
6379 __task_rq_unlock(rq);
6380 spin_unlock_irqrestore(&p->pi_lock, flags);
6381
95e02ca9
TG
6382 rt_mutex_adjust_pi(p);
6383
1da177e4
LT
6384 return 0;
6385}
961ccddd
RR
6386
6387/**
6388 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6389 * @p: the task in question.
6390 * @policy: new policy.
6391 * @param: structure containing the new RT priority.
6392 *
6393 * NOTE that the task may be already dead.
6394 */
6395int sched_setscheduler(struct task_struct *p, int policy,
6396 struct sched_param *param)
6397{
6398 return __sched_setscheduler(p, policy, param, true);
6399}
1da177e4
LT
6400EXPORT_SYMBOL_GPL(sched_setscheduler);
6401
961ccddd
RR
6402/**
6403 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6404 * @p: the task in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6407 *
6408 * Just like sched_setscheduler, only don't bother checking if the
6409 * current context has permission. For example, this is needed in
6410 * stop_machine(): we create temporary high priority worker threads,
6411 * but our caller might not have that capability.
6412 */
6413int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6414 struct sched_param *param)
6415{
6416 return __sched_setscheduler(p, policy, param, false);
6417}
6418
95cdf3b7
IM
6419static int
6420do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6421{
1da177e4
LT
6422 struct sched_param lparam;
6423 struct task_struct *p;
36c8b586 6424 int retval;
1da177e4
LT
6425
6426 if (!param || pid < 0)
6427 return -EINVAL;
6428 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6429 return -EFAULT;
5fe1d75f
ON
6430
6431 rcu_read_lock();
6432 retval = -ESRCH;
1da177e4 6433 p = find_process_by_pid(pid);
5fe1d75f
ON
6434 if (p != NULL)
6435 retval = sched_setscheduler(p, policy, &lparam);
6436 rcu_read_unlock();
36c8b586 6437
1da177e4
LT
6438 return retval;
6439}
6440
6441/**
6442 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6443 * @pid: the pid in question.
6444 * @policy: new policy.
6445 * @param: structure containing the new RT priority.
6446 */
5add95d4
HC
6447SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6448 struct sched_param __user *, param)
1da177e4 6449{
c21761f1
JB
6450 /* negative values for policy are not valid */
6451 if (policy < 0)
6452 return -EINVAL;
6453
1da177e4
LT
6454 return do_sched_setscheduler(pid, policy, param);
6455}
6456
6457/**
6458 * sys_sched_setparam - set/change the RT priority of a thread
6459 * @pid: the pid in question.
6460 * @param: structure containing the new RT priority.
6461 */
5add95d4 6462SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6463{
6464 return do_sched_setscheduler(pid, -1, param);
6465}
6466
6467/**
6468 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6469 * @pid: the pid in question.
6470 */
5add95d4 6471SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6472{
36c8b586 6473 struct task_struct *p;
3a5c359a 6474 int retval;
1da177e4
LT
6475
6476 if (pid < 0)
3a5c359a 6477 return -EINVAL;
1da177e4
LT
6478
6479 retval = -ESRCH;
6480 read_lock(&tasklist_lock);
6481 p = find_process_by_pid(pid);
6482 if (p) {
6483 retval = security_task_getscheduler(p);
6484 if (!retval)
ca94c442
LP
6485 retval = p->policy
6486 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6487 }
6488 read_unlock(&tasklist_lock);
1da177e4
LT
6489 return retval;
6490}
6491
6492/**
ca94c442 6493 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6494 * @pid: the pid in question.
6495 * @param: structure containing the RT priority.
6496 */
5add95d4 6497SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6498{
6499 struct sched_param lp;
36c8b586 6500 struct task_struct *p;
3a5c359a 6501 int retval;
1da177e4
LT
6502
6503 if (!param || pid < 0)
3a5c359a 6504 return -EINVAL;
1da177e4
LT
6505
6506 read_lock(&tasklist_lock);
6507 p = find_process_by_pid(pid);
6508 retval = -ESRCH;
6509 if (!p)
6510 goto out_unlock;
6511
6512 retval = security_task_getscheduler(p);
6513 if (retval)
6514 goto out_unlock;
6515
6516 lp.sched_priority = p->rt_priority;
6517 read_unlock(&tasklist_lock);
6518
6519 /*
6520 * This one might sleep, we cannot do it with a spinlock held ...
6521 */
6522 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6523
1da177e4
LT
6524 return retval;
6525
6526out_unlock:
6527 read_unlock(&tasklist_lock);
6528 return retval;
6529}
6530
96f874e2 6531long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6532{
5a16f3d3 6533 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6534 struct task_struct *p;
6535 int retval;
1da177e4 6536
95402b38 6537 get_online_cpus();
1da177e4
LT
6538 read_lock(&tasklist_lock);
6539
6540 p = find_process_by_pid(pid);
6541 if (!p) {
6542 read_unlock(&tasklist_lock);
95402b38 6543 put_online_cpus();
1da177e4
LT
6544 return -ESRCH;
6545 }
6546
6547 /*
6548 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6549 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6550 * usage count and then drop tasklist_lock.
6551 */
6552 get_task_struct(p);
6553 read_unlock(&tasklist_lock);
6554
5a16f3d3
RR
6555 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6556 retval = -ENOMEM;
6557 goto out_put_task;
6558 }
6559 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6560 retval = -ENOMEM;
6561 goto out_free_cpus_allowed;
6562 }
1da177e4 6563 retval = -EPERM;
c69e8d9c 6564 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6565 goto out_unlock;
6566
e7834f8f
DQ
6567 retval = security_task_setscheduler(p, 0, NULL);
6568 if (retval)
6569 goto out_unlock;
6570
5a16f3d3
RR
6571 cpuset_cpus_allowed(p, cpus_allowed);
6572 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6573 again:
5a16f3d3 6574 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6575
8707d8b8 6576 if (!retval) {
5a16f3d3
RR
6577 cpuset_cpus_allowed(p, cpus_allowed);
6578 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6579 /*
6580 * We must have raced with a concurrent cpuset
6581 * update. Just reset the cpus_allowed to the
6582 * cpuset's cpus_allowed
6583 */
5a16f3d3 6584 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6585 goto again;
6586 }
6587 }
1da177e4 6588out_unlock:
5a16f3d3
RR
6589 free_cpumask_var(new_mask);
6590out_free_cpus_allowed:
6591 free_cpumask_var(cpus_allowed);
6592out_put_task:
1da177e4 6593 put_task_struct(p);
95402b38 6594 put_online_cpus();
1da177e4
LT
6595 return retval;
6596}
6597
6598static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6599 struct cpumask *new_mask)
1da177e4 6600{
96f874e2
RR
6601 if (len < cpumask_size())
6602 cpumask_clear(new_mask);
6603 else if (len > cpumask_size())
6604 len = cpumask_size();
6605
1da177e4
LT
6606 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6607}
6608
6609/**
6610 * sys_sched_setaffinity - set the cpu affinity of a process
6611 * @pid: pid of the process
6612 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6613 * @user_mask_ptr: user-space pointer to the new cpu mask
6614 */
5add95d4
HC
6615SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6616 unsigned long __user *, user_mask_ptr)
1da177e4 6617{
5a16f3d3 6618 cpumask_var_t new_mask;
1da177e4
LT
6619 int retval;
6620
5a16f3d3
RR
6621 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6622 return -ENOMEM;
1da177e4 6623
5a16f3d3
RR
6624 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6625 if (retval == 0)
6626 retval = sched_setaffinity(pid, new_mask);
6627 free_cpumask_var(new_mask);
6628 return retval;
1da177e4
LT
6629}
6630
96f874e2 6631long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6632{
36c8b586 6633 struct task_struct *p;
1da177e4 6634 int retval;
1da177e4 6635
95402b38 6636 get_online_cpus();
1da177e4
LT
6637 read_lock(&tasklist_lock);
6638
6639 retval = -ESRCH;
6640 p = find_process_by_pid(pid);
6641 if (!p)
6642 goto out_unlock;
6643
e7834f8f
DQ
6644 retval = security_task_getscheduler(p);
6645 if (retval)
6646 goto out_unlock;
6647
96f874e2 6648 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6649
6650out_unlock:
6651 read_unlock(&tasklist_lock);
95402b38 6652 put_online_cpus();
1da177e4 6653
9531b62f 6654 return retval;
1da177e4
LT
6655}
6656
6657/**
6658 * sys_sched_getaffinity - get the cpu affinity of a process
6659 * @pid: pid of the process
6660 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6661 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6662 */
5add95d4
HC
6663SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6664 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6665{
6666 int ret;
f17c8607 6667 cpumask_var_t mask;
1da177e4 6668
f17c8607 6669 if (len < cpumask_size())
1da177e4
LT
6670 return -EINVAL;
6671
f17c8607
RR
6672 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6673 return -ENOMEM;
1da177e4 6674
f17c8607
RR
6675 ret = sched_getaffinity(pid, mask);
6676 if (ret == 0) {
6677 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6678 ret = -EFAULT;
6679 else
6680 ret = cpumask_size();
6681 }
6682 free_cpumask_var(mask);
1da177e4 6683
f17c8607 6684 return ret;
1da177e4
LT
6685}
6686
6687/**
6688 * sys_sched_yield - yield the current processor to other threads.
6689 *
dd41f596
IM
6690 * This function yields the current CPU to other tasks. If there are no
6691 * other threads running on this CPU then this function will return.
1da177e4 6692 */
5add95d4 6693SYSCALL_DEFINE0(sched_yield)
1da177e4 6694{
70b97a7f 6695 struct rq *rq = this_rq_lock();
1da177e4 6696
2d72376b 6697 schedstat_inc(rq, yld_count);
4530d7ab 6698 current->sched_class->yield_task(rq);
1da177e4
LT
6699
6700 /*
6701 * Since we are going to call schedule() anyway, there's
6702 * no need to preempt or enable interrupts:
6703 */
6704 __release(rq->lock);
8a25d5de 6705 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6706 _raw_spin_unlock(&rq->lock);
6707 preempt_enable_no_resched();
6708
6709 schedule();
6710
6711 return 0;
6712}
6713
d86ee480
PZ
6714static inline int should_resched(void)
6715{
6716 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6717}
6718
e7b38404 6719static void __cond_resched(void)
1da177e4 6720{
e7aaaa69
FW
6721 add_preempt_count(PREEMPT_ACTIVE);
6722 schedule();
6723 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6724}
6725
02b67cc3 6726int __sched _cond_resched(void)
1da177e4 6727{
d86ee480 6728 if (should_resched()) {
1da177e4
LT
6729 __cond_resched();
6730 return 1;
6731 }
6732 return 0;
6733}
02b67cc3 6734EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6735
6736/*
613afbf8 6737 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6738 * call schedule, and on return reacquire the lock.
6739 *
41a2d6cf 6740 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6741 * operations here to prevent schedule() from being called twice (once via
6742 * spin_unlock(), once by hand).
6743 */
613afbf8 6744int __cond_resched_lock(spinlock_t *lock)
1da177e4 6745{
d86ee480 6746 int resched = should_resched();
6df3cecb
JK
6747 int ret = 0;
6748
f607c668
PZ
6749 lockdep_assert_held(lock);
6750
95c354fe 6751 if (spin_needbreak(lock) || resched) {
1da177e4 6752 spin_unlock(lock);
d86ee480 6753 if (resched)
95c354fe
NP
6754 __cond_resched();
6755 else
6756 cpu_relax();
6df3cecb 6757 ret = 1;
1da177e4 6758 spin_lock(lock);
1da177e4 6759 }
6df3cecb 6760 return ret;
1da177e4 6761}
613afbf8 6762EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6763
613afbf8 6764int __sched __cond_resched_softirq(void)
1da177e4
LT
6765{
6766 BUG_ON(!in_softirq());
6767
d86ee480 6768 if (should_resched()) {
98d82567 6769 local_bh_enable();
1da177e4
LT
6770 __cond_resched();
6771 local_bh_disable();
6772 return 1;
6773 }
6774 return 0;
6775}
613afbf8 6776EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6777
1da177e4
LT
6778/**
6779 * yield - yield the current processor to other threads.
6780 *
72fd4a35 6781 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6782 * thread runnable and calls sys_sched_yield().
6783 */
6784void __sched yield(void)
6785{
6786 set_current_state(TASK_RUNNING);
6787 sys_sched_yield();
6788}
1da177e4
LT
6789EXPORT_SYMBOL(yield);
6790
6791/*
41a2d6cf 6792 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6793 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6794 */
6795void __sched io_schedule(void)
6796{
54d35f29 6797 struct rq *rq = raw_rq();
1da177e4 6798
0ff92245 6799 delayacct_blkio_start();
1da177e4 6800 atomic_inc(&rq->nr_iowait);
8f0dfc34 6801 current->in_iowait = 1;
1da177e4 6802 schedule();
8f0dfc34 6803 current->in_iowait = 0;
1da177e4 6804 atomic_dec(&rq->nr_iowait);
0ff92245 6805 delayacct_blkio_end();
1da177e4 6806}
1da177e4
LT
6807EXPORT_SYMBOL(io_schedule);
6808
6809long __sched io_schedule_timeout(long timeout)
6810{
54d35f29 6811 struct rq *rq = raw_rq();
1da177e4
LT
6812 long ret;
6813
0ff92245 6814 delayacct_blkio_start();
1da177e4 6815 atomic_inc(&rq->nr_iowait);
8f0dfc34 6816 current->in_iowait = 1;
1da177e4 6817 ret = schedule_timeout(timeout);
8f0dfc34 6818 current->in_iowait = 0;
1da177e4 6819 atomic_dec(&rq->nr_iowait);
0ff92245 6820 delayacct_blkio_end();
1da177e4
LT
6821 return ret;
6822}
6823
6824/**
6825 * sys_sched_get_priority_max - return maximum RT priority.
6826 * @policy: scheduling class.
6827 *
6828 * this syscall returns the maximum rt_priority that can be used
6829 * by a given scheduling class.
6830 */
5add95d4 6831SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6832{
6833 int ret = -EINVAL;
6834
6835 switch (policy) {
6836 case SCHED_FIFO:
6837 case SCHED_RR:
6838 ret = MAX_USER_RT_PRIO-1;
6839 break;
6840 case SCHED_NORMAL:
b0a9499c 6841 case SCHED_BATCH:
dd41f596 6842 case SCHED_IDLE:
1da177e4
LT
6843 ret = 0;
6844 break;
6845 }
6846 return ret;
6847}
6848
6849/**
6850 * sys_sched_get_priority_min - return minimum RT priority.
6851 * @policy: scheduling class.
6852 *
6853 * this syscall returns the minimum rt_priority that can be used
6854 * by a given scheduling class.
6855 */
5add95d4 6856SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6857{
6858 int ret = -EINVAL;
6859
6860 switch (policy) {
6861 case SCHED_FIFO:
6862 case SCHED_RR:
6863 ret = 1;
6864 break;
6865 case SCHED_NORMAL:
b0a9499c 6866 case SCHED_BATCH:
dd41f596 6867 case SCHED_IDLE:
1da177e4
LT
6868 ret = 0;
6869 }
6870 return ret;
6871}
6872
6873/**
6874 * sys_sched_rr_get_interval - return the default timeslice of a process.
6875 * @pid: pid of the process.
6876 * @interval: userspace pointer to the timeslice value.
6877 *
6878 * this syscall writes the default timeslice value of a given process
6879 * into the user-space timespec buffer. A value of '0' means infinity.
6880 */
17da2bd9 6881SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6882 struct timespec __user *, interval)
1da177e4 6883{
36c8b586 6884 struct task_struct *p;
a4ec24b4 6885 unsigned int time_slice;
3a5c359a 6886 int retval;
1da177e4 6887 struct timespec t;
1da177e4
LT
6888
6889 if (pid < 0)
3a5c359a 6890 return -EINVAL;
1da177e4
LT
6891
6892 retval = -ESRCH;
6893 read_lock(&tasklist_lock);
6894 p = find_process_by_pid(pid);
6895 if (!p)
6896 goto out_unlock;
6897
6898 retval = security_task_getscheduler(p);
6899 if (retval)
6900 goto out_unlock;
6901
0d721cea 6902 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6903
1da177e4 6904 read_unlock(&tasklist_lock);
a4ec24b4 6905 jiffies_to_timespec(time_slice, &t);
1da177e4 6906 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6907 return retval;
3a5c359a 6908
1da177e4
LT
6909out_unlock:
6910 read_unlock(&tasklist_lock);
6911 return retval;
6912}
6913
7c731e0a 6914static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6915
82a1fcb9 6916void sched_show_task(struct task_struct *p)
1da177e4 6917{
1da177e4 6918 unsigned long free = 0;
36c8b586 6919 unsigned state;
1da177e4 6920
1da177e4 6921 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6922 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6923 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6924#if BITS_PER_LONG == 32
1da177e4 6925 if (state == TASK_RUNNING)
cc4ea795 6926 printk(KERN_CONT " running ");
1da177e4 6927 else
cc4ea795 6928 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6929#else
6930 if (state == TASK_RUNNING)
cc4ea795 6931 printk(KERN_CONT " running task ");
1da177e4 6932 else
cc4ea795 6933 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6934#endif
6935#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6936 free = stack_not_used(p);
1da177e4 6937#endif
aa47b7e0
DR
6938 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6939 task_pid_nr(p), task_pid_nr(p->real_parent),
6940 (unsigned long)task_thread_info(p)->flags);
1da177e4 6941
5fb5e6de 6942 show_stack(p, NULL);
1da177e4
LT
6943}
6944
e59e2ae2 6945void show_state_filter(unsigned long state_filter)
1da177e4 6946{
36c8b586 6947 struct task_struct *g, *p;
1da177e4 6948
4bd77321
IM
6949#if BITS_PER_LONG == 32
6950 printk(KERN_INFO
6951 " task PC stack pid father\n");
1da177e4 6952#else
4bd77321
IM
6953 printk(KERN_INFO
6954 " task PC stack pid father\n");
1da177e4
LT
6955#endif
6956 read_lock(&tasklist_lock);
6957 do_each_thread(g, p) {
6958 /*
6959 * reset the NMI-timeout, listing all files on a slow
6960 * console might take alot of time:
6961 */
6962 touch_nmi_watchdog();
39bc89fd 6963 if (!state_filter || (p->state & state_filter))
82a1fcb9 6964 sched_show_task(p);
1da177e4
LT
6965 } while_each_thread(g, p);
6966
04c9167f
JF
6967 touch_all_softlockup_watchdogs();
6968
dd41f596
IM
6969#ifdef CONFIG_SCHED_DEBUG
6970 sysrq_sched_debug_show();
6971#endif
1da177e4 6972 read_unlock(&tasklist_lock);
e59e2ae2
IM
6973 /*
6974 * Only show locks if all tasks are dumped:
6975 */
93335a21 6976 if (!state_filter)
e59e2ae2 6977 debug_show_all_locks();
1da177e4
LT
6978}
6979
1df21055
IM
6980void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6981{
dd41f596 6982 idle->sched_class = &idle_sched_class;
1df21055
IM
6983}
6984
f340c0d1
IM
6985/**
6986 * init_idle - set up an idle thread for a given CPU
6987 * @idle: task in question
6988 * @cpu: cpu the idle task belongs to
6989 *
6990 * NOTE: this function does not set the idle thread's NEED_RESCHED
6991 * flag, to make booting more robust.
6992 */
5c1e1767 6993void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6994{
70b97a7f 6995 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6996 unsigned long flags;
6997
5cbd54ef
IM
6998 spin_lock_irqsave(&rq->lock, flags);
6999
dd41f596
IM
7000 __sched_fork(idle);
7001 idle->se.exec_start = sched_clock();
7002
b29739f9 7003 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 7004 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7005 __set_task_cpu(idle, cpu);
1da177e4 7006
1da177e4 7007 rq->curr = rq->idle = idle;
4866cde0
NP
7008#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7009 idle->oncpu = 1;
7010#endif
1da177e4
LT
7011 spin_unlock_irqrestore(&rq->lock, flags);
7012
7013 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7014#if defined(CONFIG_PREEMPT)
7015 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7016#else
a1261f54 7017 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7018#endif
dd41f596
IM
7019 /*
7020 * The idle tasks have their own, simple scheduling class:
7021 */
7022 idle->sched_class = &idle_sched_class;
fb52607a 7023 ftrace_graph_init_task(idle);
1da177e4
LT
7024}
7025
7026/*
7027 * In a system that switches off the HZ timer nohz_cpu_mask
7028 * indicates which cpus entered this state. This is used
7029 * in the rcu update to wait only for active cpus. For system
7030 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7031 * always be CPU_BITS_NONE.
1da177e4 7032 */
6a7b3dc3 7033cpumask_var_t nohz_cpu_mask;
1da177e4 7034
19978ca6
IM
7035/*
7036 * Increase the granularity value when there are more CPUs,
7037 * because with more CPUs the 'effective latency' as visible
7038 * to users decreases. But the relationship is not linear,
7039 * so pick a second-best guess by going with the log2 of the
7040 * number of CPUs.
7041 *
7042 * This idea comes from the SD scheduler of Con Kolivas:
7043 */
7044static inline void sched_init_granularity(void)
7045{
7046 unsigned int factor = 1 + ilog2(num_online_cpus());
7047 const unsigned long limit = 200000000;
7048
7049 sysctl_sched_min_granularity *= factor;
7050 if (sysctl_sched_min_granularity > limit)
7051 sysctl_sched_min_granularity = limit;
7052
7053 sysctl_sched_latency *= factor;
7054 if (sysctl_sched_latency > limit)
7055 sysctl_sched_latency = limit;
7056
7057 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7058
7059 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7060}
7061
1da177e4
LT
7062#ifdef CONFIG_SMP
7063/*
7064 * This is how migration works:
7065 *
70b97a7f 7066 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7067 * runqueue and wake up that CPU's migration thread.
7068 * 2) we down() the locked semaphore => thread blocks.
7069 * 3) migration thread wakes up (implicitly it forces the migrated
7070 * thread off the CPU)
7071 * 4) it gets the migration request and checks whether the migrated
7072 * task is still in the wrong runqueue.
7073 * 5) if it's in the wrong runqueue then the migration thread removes
7074 * it and puts it into the right queue.
7075 * 6) migration thread up()s the semaphore.
7076 * 7) we wake up and the migration is done.
7077 */
7078
7079/*
7080 * Change a given task's CPU affinity. Migrate the thread to a
7081 * proper CPU and schedule it away if the CPU it's executing on
7082 * is removed from the allowed bitmask.
7083 *
7084 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7085 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7086 * call is not atomic; no spinlocks may be held.
7087 */
96f874e2 7088int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7089{
70b97a7f 7090 struct migration_req req;
1da177e4 7091 unsigned long flags;
70b97a7f 7092 struct rq *rq;
48f24c4d 7093 int ret = 0;
1da177e4
LT
7094
7095 rq = task_rq_lock(p, &flags);
96f874e2 7096 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7097 ret = -EINVAL;
7098 goto out;
7099 }
7100
9985b0ba 7101 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7102 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7103 ret = -EINVAL;
7104 goto out;
7105 }
7106
73fe6aae 7107 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7108 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7109 else {
96f874e2
RR
7110 cpumask_copy(&p->cpus_allowed, new_mask);
7111 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7112 }
7113
1da177e4 7114 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7116 goto out;
7117
1e5ce4f4 7118 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7119 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7120 struct task_struct *mt = rq->migration_thread;
7121
7122 get_task_struct(mt);
1da177e4
LT
7123 task_rq_unlock(rq, &flags);
7124 wake_up_process(rq->migration_thread);
693525e3 7125 put_task_struct(mt);
1da177e4
LT
7126 wait_for_completion(&req.done);
7127 tlb_migrate_finish(p->mm);
7128 return 0;
7129 }
7130out:
7131 task_rq_unlock(rq, &flags);
48f24c4d 7132
1da177e4
LT
7133 return ret;
7134}
cd8ba7cd 7135EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7136
7137/*
41a2d6cf 7138 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7139 * this because either it can't run here any more (set_cpus_allowed()
7140 * away from this CPU, or CPU going down), or because we're
7141 * attempting to rebalance this task on exec (sched_exec).
7142 *
7143 * So we race with normal scheduler movements, but that's OK, as long
7144 * as the task is no longer on this CPU.
efc30814
KK
7145 *
7146 * Returns non-zero if task was successfully migrated.
1da177e4 7147 */
efc30814 7148static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7149{
70b97a7f 7150 struct rq *rq_dest, *rq_src;
dd41f596 7151 int ret = 0, on_rq;
1da177e4 7152
e761b772 7153 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7154 return ret;
1da177e4
LT
7155
7156 rq_src = cpu_rq(src_cpu);
7157 rq_dest = cpu_rq(dest_cpu);
7158
7159 double_rq_lock(rq_src, rq_dest);
7160 /* Already moved. */
7161 if (task_cpu(p) != src_cpu)
b1e38734 7162 goto done;
1da177e4 7163 /* Affinity changed (again). */
96f874e2 7164 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7165 goto fail;
1da177e4 7166
dd41f596 7167 on_rq = p->se.on_rq;
6e82a3be 7168 if (on_rq)
2e1cb74a 7169 deactivate_task(rq_src, p, 0);
6e82a3be 7170
1da177e4 7171 set_task_cpu(p, dest_cpu);
dd41f596
IM
7172 if (on_rq) {
7173 activate_task(rq_dest, p, 0);
15afe09b 7174 check_preempt_curr(rq_dest, p, 0);
1da177e4 7175 }
b1e38734 7176done:
efc30814 7177 ret = 1;
b1e38734 7178fail:
1da177e4 7179 double_rq_unlock(rq_src, rq_dest);
efc30814 7180 return ret;
1da177e4
LT
7181}
7182
03b042bf
PM
7183#define RCU_MIGRATION_IDLE 0
7184#define RCU_MIGRATION_NEED_QS 1
7185#define RCU_MIGRATION_GOT_QS 2
7186#define RCU_MIGRATION_MUST_SYNC 3
7187
1da177e4
LT
7188/*
7189 * migration_thread - this is a highprio system thread that performs
7190 * thread migration by bumping thread off CPU then 'pushing' onto
7191 * another runqueue.
7192 */
95cdf3b7 7193static int migration_thread(void *data)
1da177e4 7194{
03b042bf 7195 int badcpu;
1da177e4 7196 int cpu = (long)data;
70b97a7f 7197 struct rq *rq;
1da177e4
LT
7198
7199 rq = cpu_rq(cpu);
7200 BUG_ON(rq->migration_thread != current);
7201
7202 set_current_state(TASK_INTERRUPTIBLE);
7203 while (!kthread_should_stop()) {
70b97a7f 7204 struct migration_req *req;
1da177e4 7205 struct list_head *head;
1da177e4 7206
1da177e4
LT
7207 spin_lock_irq(&rq->lock);
7208
7209 if (cpu_is_offline(cpu)) {
7210 spin_unlock_irq(&rq->lock);
371cbb38 7211 break;
1da177e4
LT
7212 }
7213
7214 if (rq->active_balance) {
7215 active_load_balance(rq, cpu);
7216 rq->active_balance = 0;
7217 }
7218
7219 head = &rq->migration_queue;
7220
7221 if (list_empty(head)) {
7222 spin_unlock_irq(&rq->lock);
7223 schedule();
7224 set_current_state(TASK_INTERRUPTIBLE);
7225 continue;
7226 }
70b97a7f 7227 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7228 list_del_init(head->next);
7229
03b042bf
PM
7230 if (req->task != NULL) {
7231 spin_unlock(&rq->lock);
7232 __migrate_task(req->task, cpu, req->dest_cpu);
7233 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7234 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7235 spin_unlock(&rq->lock);
7236 } else {
7237 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7238 spin_unlock(&rq->lock);
7239 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7240 }
674311d5 7241 local_irq_enable();
1da177e4
LT
7242
7243 complete(&req->done);
7244 }
7245 __set_current_state(TASK_RUNNING);
1da177e4 7246
1da177e4
LT
7247 return 0;
7248}
7249
7250#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7251
7252static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7253{
7254 int ret;
7255
7256 local_irq_disable();
7257 ret = __migrate_task(p, src_cpu, dest_cpu);
7258 local_irq_enable();
7259 return ret;
7260}
7261
054b9108 7262/*
3a4fa0a2 7263 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7264 */
48f24c4d 7265static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7266{
70b97a7f 7267 int dest_cpu;
6ca09dfc 7268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7269
7270again:
7271 /* Look for allowed, online CPU in same node. */
7272 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7273 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7274 goto move;
7275
7276 /* Any allowed, online CPU? */
7277 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7278 if (dest_cpu < nr_cpu_ids)
7279 goto move;
7280
7281 /* No more Mr. Nice Guy. */
7282 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7283 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7284 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7285
e76bd8d9
RR
7286 /*
7287 * Don't tell them about moving exiting tasks or
7288 * kernel threads (both mm NULL), since they never
7289 * leave kernel.
7290 */
7291 if (p->mm && printk_ratelimit()) {
7292 printk(KERN_INFO "process %d (%s) no "
7293 "longer affine to cpu%d\n",
7294 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7295 }
e76bd8d9
RR
7296 }
7297
7298move:
7299 /* It can have affinity changed while we were choosing. */
7300 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7301 goto again;
1da177e4
LT
7302}
7303
7304/*
7305 * While a dead CPU has no uninterruptible tasks queued at this point,
7306 * it might still have a nonzero ->nr_uninterruptible counter, because
7307 * for performance reasons the counter is not stricly tracking tasks to
7308 * their home CPUs. So we just add the counter to another CPU's counter,
7309 * to keep the global sum constant after CPU-down:
7310 */
70b97a7f 7311static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7312{
1e5ce4f4 7313 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7314 unsigned long flags;
7315
7316 local_irq_save(flags);
7317 double_rq_lock(rq_src, rq_dest);
7318 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7319 rq_src->nr_uninterruptible = 0;
7320 double_rq_unlock(rq_src, rq_dest);
7321 local_irq_restore(flags);
7322}
7323
7324/* Run through task list and migrate tasks from the dead cpu. */
7325static void migrate_live_tasks(int src_cpu)
7326{
48f24c4d 7327 struct task_struct *p, *t;
1da177e4 7328
f7b4cddc 7329 read_lock(&tasklist_lock);
1da177e4 7330
48f24c4d
IM
7331 do_each_thread(t, p) {
7332 if (p == current)
1da177e4
LT
7333 continue;
7334
48f24c4d
IM
7335 if (task_cpu(p) == src_cpu)
7336 move_task_off_dead_cpu(src_cpu, p);
7337 } while_each_thread(t, p);
1da177e4 7338
f7b4cddc 7339 read_unlock(&tasklist_lock);
1da177e4
LT
7340}
7341
dd41f596
IM
7342/*
7343 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7344 * It does so by boosting its priority to highest possible.
7345 * Used by CPU offline code.
1da177e4
LT
7346 */
7347void sched_idle_next(void)
7348{
48f24c4d 7349 int this_cpu = smp_processor_id();
70b97a7f 7350 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7351 struct task_struct *p = rq->idle;
7352 unsigned long flags;
7353
7354 /* cpu has to be offline */
48f24c4d 7355 BUG_ON(cpu_online(this_cpu));
1da177e4 7356
48f24c4d
IM
7357 /*
7358 * Strictly not necessary since rest of the CPUs are stopped by now
7359 * and interrupts disabled on the current cpu.
1da177e4
LT
7360 */
7361 spin_lock_irqsave(&rq->lock, flags);
7362
dd41f596 7363 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7364
94bc9a7b
DA
7365 update_rq_clock(rq);
7366 activate_task(rq, p, 0);
1da177e4
LT
7367
7368 spin_unlock_irqrestore(&rq->lock, flags);
7369}
7370
48f24c4d
IM
7371/*
7372 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7373 * offline.
7374 */
7375void idle_task_exit(void)
7376{
7377 struct mm_struct *mm = current->active_mm;
7378
7379 BUG_ON(cpu_online(smp_processor_id()));
7380
7381 if (mm != &init_mm)
7382 switch_mm(mm, &init_mm, current);
7383 mmdrop(mm);
7384}
7385
054b9108 7386/* called under rq->lock with disabled interrupts */
36c8b586 7387static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7388{
70b97a7f 7389 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7390
7391 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7392 BUG_ON(!p->exit_state);
1da177e4
LT
7393
7394 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7395 BUG_ON(p->state == TASK_DEAD);
1da177e4 7396
48f24c4d 7397 get_task_struct(p);
1da177e4
LT
7398
7399 /*
7400 * Drop lock around migration; if someone else moves it,
41a2d6cf 7401 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7402 * fine.
7403 */
f7b4cddc 7404 spin_unlock_irq(&rq->lock);
48f24c4d 7405 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7406 spin_lock_irq(&rq->lock);
1da177e4 7407
48f24c4d 7408 put_task_struct(p);
1da177e4
LT
7409}
7410
7411/* release_task() removes task from tasklist, so we won't find dead tasks. */
7412static void migrate_dead_tasks(unsigned int dead_cpu)
7413{
70b97a7f 7414 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7415 struct task_struct *next;
48f24c4d 7416
dd41f596
IM
7417 for ( ; ; ) {
7418 if (!rq->nr_running)
7419 break;
a8e504d2 7420 update_rq_clock(rq);
b67802ea 7421 next = pick_next_task(rq);
dd41f596
IM
7422 if (!next)
7423 break;
79c53799 7424 next->sched_class->put_prev_task(rq, next);
dd41f596 7425 migrate_dead(dead_cpu, next);
e692ab53 7426
1da177e4
LT
7427 }
7428}
dce48a84
TG
7429
7430/*
7431 * remove the tasks which were accounted by rq from calc_load_tasks.
7432 */
7433static void calc_global_load_remove(struct rq *rq)
7434{
7435 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7436 rq->calc_load_active = 0;
dce48a84 7437}
1da177e4
LT
7438#endif /* CONFIG_HOTPLUG_CPU */
7439
e692ab53
NP
7440#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7441
7442static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7443 {
7444 .procname = "sched_domain",
c57baf1e 7445 .mode = 0555,
e0361851 7446 },
56992309 7447 {}
e692ab53
NP
7448};
7449
7450static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7451 {
7452 .procname = "kernel",
c57baf1e 7453 .mode = 0555,
e0361851
AD
7454 .child = sd_ctl_dir,
7455 },
56992309 7456 {}
e692ab53
NP
7457};
7458
7459static struct ctl_table *sd_alloc_ctl_entry(int n)
7460{
7461 struct ctl_table *entry =
5cf9f062 7462 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7463
e692ab53
NP
7464 return entry;
7465}
7466
6382bc90
MM
7467static void sd_free_ctl_entry(struct ctl_table **tablep)
7468{
cd790076 7469 struct ctl_table *entry;
6382bc90 7470
cd790076
MM
7471 /*
7472 * In the intermediate directories, both the child directory and
7473 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7474 * will always be set. In the lowest directory the names are
cd790076
MM
7475 * static strings and all have proc handlers.
7476 */
7477 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7478 if (entry->child)
7479 sd_free_ctl_entry(&entry->child);
cd790076
MM
7480 if (entry->proc_handler == NULL)
7481 kfree(entry->procname);
7482 }
6382bc90
MM
7483
7484 kfree(*tablep);
7485 *tablep = NULL;
7486}
7487
e692ab53 7488static void
e0361851 7489set_table_entry(struct ctl_table *entry,
e692ab53
NP
7490 const char *procname, void *data, int maxlen,
7491 mode_t mode, proc_handler *proc_handler)
7492{
e692ab53
NP
7493 entry->procname = procname;
7494 entry->data = data;
7495 entry->maxlen = maxlen;
7496 entry->mode = mode;
7497 entry->proc_handler = proc_handler;
7498}
7499
7500static struct ctl_table *
7501sd_alloc_ctl_domain_table(struct sched_domain *sd)
7502{
a5d8c348 7503 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7504
ad1cdc1d
MM
7505 if (table == NULL)
7506 return NULL;
7507
e0361851 7508 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7509 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7510 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7511 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7512 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7513 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7514 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7515 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7516 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7517 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7518 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7519 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7520 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7521 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7522 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7523 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7524 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7525 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7526 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7527 &sd->cache_nice_tries,
7528 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7529 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7530 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7531 set_table_entry(&table[11], "name", sd->name,
7532 CORENAME_MAX_SIZE, 0444, proc_dostring);
7533 /* &table[12] is terminator */
e692ab53
NP
7534
7535 return table;
7536}
7537
9a4e7159 7538static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7539{
7540 struct ctl_table *entry, *table;
7541 struct sched_domain *sd;
7542 int domain_num = 0, i;
7543 char buf[32];
7544
7545 for_each_domain(cpu, sd)
7546 domain_num++;
7547 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7548 if (table == NULL)
7549 return NULL;
e692ab53
NP
7550
7551 i = 0;
7552 for_each_domain(cpu, sd) {
7553 snprintf(buf, 32, "domain%d", i);
e692ab53 7554 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7555 entry->mode = 0555;
e692ab53
NP
7556 entry->child = sd_alloc_ctl_domain_table(sd);
7557 entry++;
7558 i++;
7559 }
7560 return table;
7561}
7562
7563static struct ctl_table_header *sd_sysctl_header;
6382bc90 7564static void register_sched_domain_sysctl(void)
e692ab53
NP
7565{
7566 int i, cpu_num = num_online_cpus();
7567 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7568 char buf[32];
7569
7378547f
MM
7570 WARN_ON(sd_ctl_dir[0].child);
7571 sd_ctl_dir[0].child = entry;
7572
ad1cdc1d
MM
7573 if (entry == NULL)
7574 return;
7575
97b6ea7b 7576 for_each_online_cpu(i) {
e692ab53 7577 snprintf(buf, 32, "cpu%d", i);
e692ab53 7578 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7579 entry->mode = 0555;
e692ab53 7580 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7581 entry++;
e692ab53 7582 }
7378547f
MM
7583
7584 WARN_ON(sd_sysctl_header);
e692ab53
NP
7585 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7586}
6382bc90 7587
7378547f 7588/* may be called multiple times per register */
6382bc90
MM
7589static void unregister_sched_domain_sysctl(void)
7590{
7378547f
MM
7591 if (sd_sysctl_header)
7592 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7593 sd_sysctl_header = NULL;
7378547f
MM
7594 if (sd_ctl_dir[0].child)
7595 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7596}
e692ab53 7597#else
6382bc90
MM
7598static void register_sched_domain_sysctl(void)
7599{
7600}
7601static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7602{
7603}
7604#endif
7605
1f11eb6a
GH
7606static void set_rq_online(struct rq *rq)
7607{
7608 if (!rq->online) {
7609 const struct sched_class *class;
7610
c6c4927b 7611 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7612 rq->online = 1;
7613
7614 for_each_class(class) {
7615 if (class->rq_online)
7616 class->rq_online(rq);
7617 }
7618 }
7619}
7620
7621static void set_rq_offline(struct rq *rq)
7622{
7623 if (rq->online) {
7624 const struct sched_class *class;
7625
7626 for_each_class(class) {
7627 if (class->rq_offline)
7628 class->rq_offline(rq);
7629 }
7630
c6c4927b 7631 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7632 rq->online = 0;
7633 }
7634}
7635
1da177e4
LT
7636/*
7637 * migration_call - callback that gets triggered when a CPU is added.
7638 * Here we can start up the necessary migration thread for the new CPU.
7639 */
48f24c4d
IM
7640static int __cpuinit
7641migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7642{
1da177e4 7643 struct task_struct *p;
48f24c4d 7644 int cpu = (long)hcpu;
1da177e4 7645 unsigned long flags;
70b97a7f 7646 struct rq *rq;
1da177e4
LT
7647
7648 switch (action) {
5be9361c 7649
1da177e4 7650 case CPU_UP_PREPARE:
8bb78442 7651 case CPU_UP_PREPARE_FROZEN:
dd41f596 7652 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7653 if (IS_ERR(p))
7654 return NOTIFY_BAD;
1da177e4
LT
7655 kthread_bind(p, cpu);
7656 /* Must be high prio: stop_machine expects to yield to it. */
7657 rq = task_rq_lock(p, &flags);
dd41f596 7658 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7659 task_rq_unlock(rq, &flags);
371cbb38 7660 get_task_struct(p);
1da177e4 7661 cpu_rq(cpu)->migration_thread = p;
a468d389 7662 rq->calc_load_update = calc_load_update;
1da177e4 7663 break;
48f24c4d 7664
1da177e4 7665 case CPU_ONLINE:
8bb78442 7666 case CPU_ONLINE_FROZEN:
3a4fa0a2 7667 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7668 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7669
7670 /* Update our root-domain */
7671 rq = cpu_rq(cpu);
7672 spin_lock_irqsave(&rq->lock, flags);
7673 if (rq->rd) {
c6c4927b 7674 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7675
7676 set_rq_online(rq);
1f94ef59
GH
7677 }
7678 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7679 break;
48f24c4d 7680
1da177e4
LT
7681#ifdef CONFIG_HOTPLUG_CPU
7682 case CPU_UP_CANCELED:
8bb78442 7683 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7684 if (!cpu_rq(cpu)->migration_thread)
7685 break;
41a2d6cf 7686 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7687 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7688 cpumask_any(cpu_online_mask));
1da177e4 7689 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7690 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7691 cpu_rq(cpu)->migration_thread = NULL;
7692 break;
48f24c4d 7693
1da177e4 7694 case CPU_DEAD:
8bb78442 7695 case CPU_DEAD_FROZEN:
470fd646 7696 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7697 migrate_live_tasks(cpu);
7698 rq = cpu_rq(cpu);
7699 kthread_stop(rq->migration_thread);
371cbb38 7700 put_task_struct(rq->migration_thread);
1da177e4
LT
7701 rq->migration_thread = NULL;
7702 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7703 spin_lock_irq(&rq->lock);
a8e504d2 7704 update_rq_clock(rq);
2e1cb74a 7705 deactivate_task(rq, rq->idle, 0);
1da177e4 7706 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7707 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7708 rq->idle->sched_class = &idle_sched_class;
1da177e4 7709 migrate_dead_tasks(cpu);
d2da272a 7710 spin_unlock_irq(&rq->lock);
470fd646 7711 cpuset_unlock();
1da177e4
LT
7712 migrate_nr_uninterruptible(rq);
7713 BUG_ON(rq->nr_running != 0);
dce48a84 7714 calc_global_load_remove(rq);
41a2d6cf
IM
7715 /*
7716 * No need to migrate the tasks: it was best-effort if
7717 * they didn't take sched_hotcpu_mutex. Just wake up
7718 * the requestors.
7719 */
1da177e4
LT
7720 spin_lock_irq(&rq->lock);
7721 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7722 struct migration_req *req;
7723
1da177e4 7724 req = list_entry(rq->migration_queue.next,
70b97a7f 7725 struct migration_req, list);
1da177e4 7726 list_del_init(&req->list);
9a2bd244 7727 spin_unlock_irq(&rq->lock);
1da177e4 7728 complete(&req->done);
9a2bd244 7729 spin_lock_irq(&rq->lock);
1da177e4
LT
7730 }
7731 spin_unlock_irq(&rq->lock);
7732 break;
57d885fe 7733
08f503b0
GH
7734 case CPU_DYING:
7735 case CPU_DYING_FROZEN:
57d885fe
GH
7736 /* Update our root-domain */
7737 rq = cpu_rq(cpu);
7738 spin_lock_irqsave(&rq->lock, flags);
7739 if (rq->rd) {
c6c4927b 7740 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7741 set_rq_offline(rq);
57d885fe
GH
7742 }
7743 spin_unlock_irqrestore(&rq->lock, flags);
7744 break;
1da177e4
LT
7745#endif
7746 }
7747 return NOTIFY_OK;
7748}
7749
f38b0820
PM
7750/*
7751 * Register at high priority so that task migration (migrate_all_tasks)
7752 * happens before everything else. This has to be lower priority than
cdd6c482 7753 * the notifier in the perf_event subsystem, though.
1da177e4 7754 */
26c2143b 7755static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7756 .notifier_call = migration_call,
7757 .priority = 10
7758};
7759
7babe8db 7760static int __init migration_init(void)
1da177e4
LT
7761{
7762 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7763 int err;
48f24c4d
IM
7764
7765 /* Start one for the boot CPU: */
07dccf33
AM
7766 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7767 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7768 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7769 register_cpu_notifier(&migration_notifier);
7babe8db 7770
a004cd42 7771 return 0;
1da177e4 7772}
7babe8db 7773early_initcall(migration_init);
1da177e4
LT
7774#endif
7775
7776#ifdef CONFIG_SMP
476f3534 7777
3e9830dc 7778#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7779
f6630114
MT
7780static __read_mostly int sched_domain_debug_enabled;
7781
7782static int __init sched_domain_debug_setup(char *str)
7783{
7784 sched_domain_debug_enabled = 1;
7785
7786 return 0;
7787}
7788early_param("sched_debug", sched_domain_debug_setup);
7789
7c16ec58 7790static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7791 struct cpumask *groupmask)
1da177e4 7792{
4dcf6aff 7793 struct sched_group *group = sd->groups;
434d53b0 7794 char str[256];
1da177e4 7795
968ea6d8 7796 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7797 cpumask_clear(groupmask);
4dcf6aff
IM
7798
7799 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7800
7801 if (!(sd->flags & SD_LOAD_BALANCE)) {
7802 printk("does not load-balance\n");
7803 if (sd->parent)
7804 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7805 " has parent");
7806 return -1;
41c7ce9a
NP
7807 }
7808
eefd796a 7809 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7810
758b2cdc 7811 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7812 printk(KERN_ERR "ERROR: domain->span does not contain "
7813 "CPU%d\n", cpu);
7814 }
758b2cdc 7815 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7816 printk(KERN_ERR "ERROR: domain->groups does not contain"
7817 " CPU%d\n", cpu);
7818 }
1da177e4 7819
4dcf6aff 7820 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7821 do {
4dcf6aff
IM
7822 if (!group) {
7823 printk("\n");
7824 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7825 break;
7826 }
7827
18a3885f 7828 if (!group->cpu_power) {
4dcf6aff
IM
7829 printk(KERN_CONT "\n");
7830 printk(KERN_ERR "ERROR: domain->cpu_power not "
7831 "set\n");
7832 break;
7833 }
1da177e4 7834
758b2cdc 7835 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7836 printk(KERN_CONT "\n");
7837 printk(KERN_ERR "ERROR: empty group\n");
7838 break;
7839 }
1da177e4 7840
758b2cdc 7841 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7842 printk(KERN_CONT "\n");
7843 printk(KERN_ERR "ERROR: repeated CPUs\n");
7844 break;
7845 }
1da177e4 7846
758b2cdc 7847 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7848
968ea6d8 7849 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7850
7851 printk(KERN_CONT " %s", str);
18a3885f
PZ
7852 if (group->cpu_power != SCHED_LOAD_SCALE) {
7853 printk(KERN_CONT " (cpu_power = %d)",
7854 group->cpu_power);
381512cf 7855 }
1da177e4 7856
4dcf6aff
IM
7857 group = group->next;
7858 } while (group != sd->groups);
7859 printk(KERN_CONT "\n");
1da177e4 7860
758b2cdc 7861 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7862 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7863
758b2cdc
RR
7864 if (sd->parent &&
7865 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7866 printk(KERN_ERR "ERROR: parent span is not a superset "
7867 "of domain->span\n");
7868 return 0;
7869}
1da177e4 7870
4dcf6aff
IM
7871static void sched_domain_debug(struct sched_domain *sd, int cpu)
7872{
d5dd3db1 7873 cpumask_var_t groupmask;
4dcf6aff 7874 int level = 0;
1da177e4 7875
f6630114
MT
7876 if (!sched_domain_debug_enabled)
7877 return;
7878
4dcf6aff
IM
7879 if (!sd) {
7880 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7881 return;
7882 }
1da177e4 7883
4dcf6aff
IM
7884 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7885
d5dd3db1 7886 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7887 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7888 return;
7889 }
7890
4dcf6aff 7891 for (;;) {
7c16ec58 7892 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7893 break;
1da177e4
LT
7894 level++;
7895 sd = sd->parent;
33859f7f 7896 if (!sd)
4dcf6aff
IM
7897 break;
7898 }
d5dd3db1 7899 free_cpumask_var(groupmask);
1da177e4 7900}
6d6bc0ad 7901#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7902# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7903#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7904
1a20ff27 7905static int sd_degenerate(struct sched_domain *sd)
245af2c7 7906{
758b2cdc 7907 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7908 return 1;
7909
7910 /* Following flags need at least 2 groups */
7911 if (sd->flags & (SD_LOAD_BALANCE |
7912 SD_BALANCE_NEWIDLE |
7913 SD_BALANCE_FORK |
89c4710e
SS
7914 SD_BALANCE_EXEC |
7915 SD_SHARE_CPUPOWER |
7916 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7917 if (sd->groups != sd->groups->next)
7918 return 0;
7919 }
7920
7921 /* Following flags don't use groups */
c88d5910 7922 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7923 return 0;
7924
7925 return 1;
7926}
7927
48f24c4d
IM
7928static int
7929sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7930{
7931 unsigned long cflags = sd->flags, pflags = parent->flags;
7932
7933 if (sd_degenerate(parent))
7934 return 1;
7935
758b2cdc 7936 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7937 return 0;
7938
245af2c7
SS
7939 /* Flags needing groups don't count if only 1 group in parent */
7940 if (parent->groups == parent->groups->next) {
7941 pflags &= ~(SD_LOAD_BALANCE |
7942 SD_BALANCE_NEWIDLE |
7943 SD_BALANCE_FORK |
89c4710e
SS
7944 SD_BALANCE_EXEC |
7945 SD_SHARE_CPUPOWER |
7946 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7947 if (nr_node_ids == 1)
7948 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7949 }
7950 if (~cflags & pflags)
7951 return 0;
7952
7953 return 1;
7954}
7955
c6c4927b
RR
7956static void free_rootdomain(struct root_domain *rd)
7957{
047106ad
PZ
7958 synchronize_sched();
7959
68e74568
RR
7960 cpupri_cleanup(&rd->cpupri);
7961
c6c4927b
RR
7962 free_cpumask_var(rd->rto_mask);
7963 free_cpumask_var(rd->online);
7964 free_cpumask_var(rd->span);
7965 kfree(rd);
7966}
7967
57d885fe
GH
7968static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7969{
a0490fa3 7970 struct root_domain *old_rd = NULL;
57d885fe 7971 unsigned long flags;
57d885fe
GH
7972
7973 spin_lock_irqsave(&rq->lock, flags);
7974
7975 if (rq->rd) {
a0490fa3 7976 old_rd = rq->rd;
57d885fe 7977
c6c4927b 7978 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7979 set_rq_offline(rq);
57d885fe 7980
c6c4927b 7981 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7982
a0490fa3
IM
7983 /*
7984 * If we dont want to free the old_rt yet then
7985 * set old_rd to NULL to skip the freeing later
7986 * in this function:
7987 */
7988 if (!atomic_dec_and_test(&old_rd->refcount))
7989 old_rd = NULL;
57d885fe
GH
7990 }
7991
7992 atomic_inc(&rd->refcount);
7993 rq->rd = rd;
7994
c6c4927b 7995 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7996 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7997 set_rq_online(rq);
57d885fe
GH
7998
7999 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8000
8001 if (old_rd)
8002 free_rootdomain(old_rd);
57d885fe
GH
8003}
8004
fd5e1b5d 8005static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8006{
36b7b6d4
PE
8007 gfp_t gfp = GFP_KERNEL;
8008
57d885fe
GH
8009 memset(rd, 0, sizeof(*rd));
8010
36b7b6d4
PE
8011 if (bootmem)
8012 gfp = GFP_NOWAIT;
c6c4927b 8013
36b7b6d4 8014 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8015 goto out;
36b7b6d4 8016 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8017 goto free_span;
36b7b6d4 8018 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8019 goto free_online;
6e0534f2 8020
0fb53029 8021 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8022 goto free_rto_mask;
c6c4927b 8023 return 0;
6e0534f2 8024
68e74568
RR
8025free_rto_mask:
8026 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8027free_online:
8028 free_cpumask_var(rd->online);
8029free_span:
8030 free_cpumask_var(rd->span);
0c910d28 8031out:
c6c4927b 8032 return -ENOMEM;
57d885fe
GH
8033}
8034
8035static void init_defrootdomain(void)
8036{
c6c4927b
RR
8037 init_rootdomain(&def_root_domain, true);
8038
57d885fe
GH
8039 atomic_set(&def_root_domain.refcount, 1);
8040}
8041
dc938520 8042static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8043{
8044 struct root_domain *rd;
8045
8046 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8047 if (!rd)
8048 return NULL;
8049
c6c4927b
RR
8050 if (init_rootdomain(rd, false) != 0) {
8051 kfree(rd);
8052 return NULL;
8053 }
57d885fe
GH
8054
8055 return rd;
8056}
8057
1da177e4 8058/*
0eab9146 8059 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8060 * hold the hotplug lock.
8061 */
0eab9146
IM
8062static void
8063cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8064{
70b97a7f 8065 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8066 struct sched_domain *tmp;
8067
8068 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8069 for (tmp = sd; tmp; ) {
245af2c7
SS
8070 struct sched_domain *parent = tmp->parent;
8071 if (!parent)
8072 break;
f29c9b1c 8073
1a848870 8074 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8075 tmp->parent = parent->parent;
1a848870
SS
8076 if (parent->parent)
8077 parent->parent->child = tmp;
f29c9b1c
LZ
8078 } else
8079 tmp = tmp->parent;
245af2c7
SS
8080 }
8081
1a848870 8082 if (sd && sd_degenerate(sd)) {
245af2c7 8083 sd = sd->parent;
1a848870
SS
8084 if (sd)
8085 sd->child = NULL;
8086 }
1da177e4
LT
8087
8088 sched_domain_debug(sd, cpu);
8089
57d885fe 8090 rq_attach_root(rq, rd);
674311d5 8091 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8092}
8093
8094/* cpus with isolated domains */
dcc30a35 8095static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8096
8097/* Setup the mask of cpus configured for isolated domains */
8098static int __init isolated_cpu_setup(char *str)
8099{
bdddd296 8100 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8101 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8102 return 1;
8103}
8104
8927f494 8105__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8106
8107/*
6711cab4
SS
8108 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8109 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8110 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8111 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8112 *
8113 * init_sched_build_groups will build a circular linked list of the groups
8114 * covered by the given span, and will set each group's ->cpumask correctly,
8115 * and ->cpu_power to 0.
8116 */
a616058b 8117static void
96f874e2
RR
8118init_sched_build_groups(const struct cpumask *span,
8119 const struct cpumask *cpu_map,
8120 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8121 struct sched_group **sg,
96f874e2
RR
8122 struct cpumask *tmpmask),
8123 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8124{
8125 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8126 int i;
8127
96f874e2 8128 cpumask_clear(covered);
7c16ec58 8129
abcd083a 8130 for_each_cpu(i, span) {
6711cab4 8131 struct sched_group *sg;
7c16ec58 8132 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8133 int j;
8134
758b2cdc 8135 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8136 continue;
8137
758b2cdc 8138 cpumask_clear(sched_group_cpus(sg));
18a3885f 8139 sg->cpu_power = 0;
1da177e4 8140
abcd083a 8141 for_each_cpu(j, span) {
7c16ec58 8142 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8143 continue;
8144
96f874e2 8145 cpumask_set_cpu(j, covered);
758b2cdc 8146 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8147 }
8148 if (!first)
8149 first = sg;
8150 if (last)
8151 last->next = sg;
8152 last = sg;
8153 }
8154 last->next = first;
8155}
8156
9c1cfda2 8157#define SD_NODES_PER_DOMAIN 16
1da177e4 8158
9c1cfda2 8159#ifdef CONFIG_NUMA
198e2f18 8160
9c1cfda2
JH
8161/**
8162 * find_next_best_node - find the next node to include in a sched_domain
8163 * @node: node whose sched_domain we're building
8164 * @used_nodes: nodes already in the sched_domain
8165 *
41a2d6cf 8166 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8167 * finds the closest node not already in the @used_nodes map.
8168 *
8169 * Should use nodemask_t.
8170 */
c5f59f08 8171static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8172{
8173 int i, n, val, min_val, best_node = 0;
8174
8175 min_val = INT_MAX;
8176
076ac2af 8177 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8178 /* Start at @node */
076ac2af 8179 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8180
8181 if (!nr_cpus_node(n))
8182 continue;
8183
8184 /* Skip already used nodes */
c5f59f08 8185 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8186 continue;
8187
8188 /* Simple min distance search */
8189 val = node_distance(node, n);
8190
8191 if (val < min_val) {
8192 min_val = val;
8193 best_node = n;
8194 }
8195 }
8196
c5f59f08 8197 node_set(best_node, *used_nodes);
9c1cfda2
JH
8198 return best_node;
8199}
8200
8201/**
8202 * sched_domain_node_span - get a cpumask for a node's sched_domain
8203 * @node: node whose cpumask we're constructing
73486722 8204 * @span: resulting cpumask
9c1cfda2 8205 *
41a2d6cf 8206 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8207 * should be one that prevents unnecessary balancing, but also spreads tasks
8208 * out optimally.
8209 */
96f874e2 8210static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8211{
c5f59f08 8212 nodemask_t used_nodes;
48f24c4d 8213 int i;
9c1cfda2 8214
6ca09dfc 8215 cpumask_clear(span);
c5f59f08 8216 nodes_clear(used_nodes);
9c1cfda2 8217
6ca09dfc 8218 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8219 node_set(node, used_nodes);
9c1cfda2
JH
8220
8221 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8222 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8223
6ca09dfc 8224 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8225 }
9c1cfda2 8226}
6d6bc0ad 8227#endif /* CONFIG_NUMA */
9c1cfda2 8228
5c45bf27 8229int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8230
6c99e9ad
RR
8231/*
8232 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8233 *
8234 * ( See the the comments in include/linux/sched.h:struct sched_group
8235 * and struct sched_domain. )
6c99e9ad
RR
8236 */
8237struct static_sched_group {
8238 struct sched_group sg;
8239 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8240};
8241
8242struct static_sched_domain {
8243 struct sched_domain sd;
8244 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8245};
8246
49a02c51
AH
8247struct s_data {
8248#ifdef CONFIG_NUMA
8249 int sd_allnodes;
8250 cpumask_var_t domainspan;
8251 cpumask_var_t covered;
8252 cpumask_var_t notcovered;
8253#endif
8254 cpumask_var_t nodemask;
8255 cpumask_var_t this_sibling_map;
8256 cpumask_var_t this_core_map;
8257 cpumask_var_t send_covered;
8258 cpumask_var_t tmpmask;
8259 struct sched_group **sched_group_nodes;
8260 struct root_domain *rd;
8261};
8262
2109b99e
AH
8263enum s_alloc {
8264 sa_sched_groups = 0,
8265 sa_rootdomain,
8266 sa_tmpmask,
8267 sa_send_covered,
8268 sa_this_core_map,
8269 sa_this_sibling_map,
8270 sa_nodemask,
8271 sa_sched_group_nodes,
8272#ifdef CONFIG_NUMA
8273 sa_notcovered,
8274 sa_covered,
8275 sa_domainspan,
8276#endif
8277 sa_none,
8278};
8279
9c1cfda2 8280/*
48f24c4d 8281 * SMT sched-domains:
9c1cfda2 8282 */
1da177e4 8283#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8284static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8285static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8286
41a2d6cf 8287static int
96f874e2
RR
8288cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8289 struct sched_group **sg, struct cpumask *unused)
1da177e4 8290{
6711cab4 8291 if (sg)
6c99e9ad 8292 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8293 return cpu;
8294}
6d6bc0ad 8295#endif /* CONFIG_SCHED_SMT */
1da177e4 8296
48f24c4d
IM
8297/*
8298 * multi-core sched-domains:
8299 */
1e9f28fa 8300#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8301static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8302static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8303#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8304
8305#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8306static int
96f874e2
RR
8307cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8308 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8309{
6711cab4 8310 int group;
7c16ec58 8311
c69fc56d 8312 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8313 group = cpumask_first(mask);
6711cab4 8314 if (sg)
6c99e9ad 8315 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8316 return group;
1e9f28fa
SS
8317}
8318#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8319static int
96f874e2
RR
8320cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8321 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8322{
6711cab4 8323 if (sg)
6c99e9ad 8324 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8325 return cpu;
8326}
8327#endif
8328
6c99e9ad
RR
8329static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8330static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8331
41a2d6cf 8332static int
96f874e2
RR
8333cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8334 struct sched_group **sg, struct cpumask *mask)
1da177e4 8335{
6711cab4 8336 int group;
48f24c4d 8337#ifdef CONFIG_SCHED_MC
6ca09dfc 8338 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8339 group = cpumask_first(mask);
1e9f28fa 8340#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8341 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8342 group = cpumask_first(mask);
1da177e4 8343#else
6711cab4 8344 group = cpu;
1da177e4 8345#endif
6711cab4 8346 if (sg)
6c99e9ad 8347 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8348 return group;
1da177e4
LT
8349}
8350
8351#ifdef CONFIG_NUMA
1da177e4 8352/*
9c1cfda2
JH
8353 * The init_sched_build_groups can't handle what we want to do with node
8354 * groups, so roll our own. Now each node has its own list of groups which
8355 * gets dynamically allocated.
1da177e4 8356 */
62ea9ceb 8357static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8358static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8359
62ea9ceb 8360static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8361static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8362
96f874e2
RR
8363static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8364 struct sched_group **sg,
8365 struct cpumask *nodemask)
9c1cfda2 8366{
6711cab4
SS
8367 int group;
8368
6ca09dfc 8369 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8370 group = cpumask_first(nodemask);
6711cab4
SS
8371
8372 if (sg)
6c99e9ad 8373 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8374 return group;
1da177e4 8375}
6711cab4 8376
08069033
SS
8377static void init_numa_sched_groups_power(struct sched_group *group_head)
8378{
8379 struct sched_group *sg = group_head;
8380 int j;
8381
8382 if (!sg)
8383 return;
3a5c359a 8384 do {
758b2cdc 8385 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8386 struct sched_domain *sd;
08069033 8387
6c99e9ad 8388 sd = &per_cpu(phys_domains, j).sd;
13318a71 8389 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8390 /*
8391 * Only add "power" once for each
8392 * physical package.
8393 */
8394 continue;
8395 }
08069033 8396
18a3885f 8397 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8398 }
8399 sg = sg->next;
8400 } while (sg != group_head);
08069033 8401}
0601a88d
AH
8402
8403static int build_numa_sched_groups(struct s_data *d,
8404 const struct cpumask *cpu_map, int num)
8405{
8406 struct sched_domain *sd;
8407 struct sched_group *sg, *prev;
8408 int n, j;
8409
8410 cpumask_clear(d->covered);
8411 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8412 if (cpumask_empty(d->nodemask)) {
8413 d->sched_group_nodes[num] = NULL;
8414 goto out;
8415 }
8416
8417 sched_domain_node_span(num, d->domainspan);
8418 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8419
8420 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8421 GFP_KERNEL, num);
8422 if (!sg) {
8423 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8424 num);
8425 return -ENOMEM;
8426 }
8427 d->sched_group_nodes[num] = sg;
8428
8429 for_each_cpu(j, d->nodemask) {
8430 sd = &per_cpu(node_domains, j).sd;
8431 sd->groups = sg;
8432 }
8433
18a3885f 8434 sg->cpu_power = 0;
0601a88d
AH
8435 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8436 sg->next = sg;
8437 cpumask_or(d->covered, d->covered, d->nodemask);
8438
8439 prev = sg;
8440 for (j = 0; j < nr_node_ids; j++) {
8441 n = (num + j) % nr_node_ids;
8442 cpumask_complement(d->notcovered, d->covered);
8443 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8444 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8445 if (cpumask_empty(d->tmpmask))
8446 break;
8447 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8448 if (cpumask_empty(d->tmpmask))
8449 continue;
8450 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8451 GFP_KERNEL, num);
8452 if (!sg) {
8453 printk(KERN_WARNING
8454 "Can not alloc domain group for node %d\n", j);
8455 return -ENOMEM;
8456 }
18a3885f 8457 sg->cpu_power = 0;
0601a88d
AH
8458 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8459 sg->next = prev->next;
8460 cpumask_or(d->covered, d->covered, d->tmpmask);
8461 prev->next = sg;
8462 prev = sg;
8463 }
8464out:
8465 return 0;
8466}
6d6bc0ad 8467#endif /* CONFIG_NUMA */
1da177e4 8468
a616058b 8469#ifdef CONFIG_NUMA
51888ca2 8470/* Free memory allocated for various sched_group structures */
96f874e2
RR
8471static void free_sched_groups(const struct cpumask *cpu_map,
8472 struct cpumask *nodemask)
51888ca2 8473{
a616058b 8474 int cpu, i;
51888ca2 8475
abcd083a 8476 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8477 struct sched_group **sched_group_nodes
8478 = sched_group_nodes_bycpu[cpu];
8479
51888ca2
SV
8480 if (!sched_group_nodes)
8481 continue;
8482
076ac2af 8483 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8484 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8485
6ca09dfc 8486 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8487 if (cpumask_empty(nodemask))
51888ca2
SV
8488 continue;
8489
8490 if (sg == NULL)
8491 continue;
8492 sg = sg->next;
8493next_sg:
8494 oldsg = sg;
8495 sg = sg->next;
8496 kfree(oldsg);
8497 if (oldsg != sched_group_nodes[i])
8498 goto next_sg;
8499 }
8500 kfree(sched_group_nodes);
8501 sched_group_nodes_bycpu[cpu] = NULL;
8502 }
51888ca2 8503}
6d6bc0ad 8504#else /* !CONFIG_NUMA */
96f874e2
RR
8505static void free_sched_groups(const struct cpumask *cpu_map,
8506 struct cpumask *nodemask)
a616058b
SS
8507{
8508}
6d6bc0ad 8509#endif /* CONFIG_NUMA */
51888ca2 8510
89c4710e
SS
8511/*
8512 * Initialize sched groups cpu_power.
8513 *
8514 * cpu_power indicates the capacity of sched group, which is used while
8515 * distributing the load between different sched groups in a sched domain.
8516 * Typically cpu_power for all the groups in a sched domain will be same unless
8517 * there are asymmetries in the topology. If there are asymmetries, group
8518 * having more cpu_power will pickup more load compared to the group having
8519 * less cpu_power.
89c4710e
SS
8520 */
8521static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8522{
8523 struct sched_domain *child;
8524 struct sched_group *group;
f93e65c1
PZ
8525 long power;
8526 int weight;
89c4710e
SS
8527
8528 WARN_ON(!sd || !sd->groups);
8529
13318a71 8530 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8531 return;
8532
8533 child = sd->child;
8534
18a3885f 8535 sd->groups->cpu_power = 0;
5517d86b 8536
f93e65c1
PZ
8537 if (!child) {
8538 power = SCHED_LOAD_SCALE;
8539 weight = cpumask_weight(sched_domain_span(sd));
8540 /*
8541 * SMT siblings share the power of a single core.
a52bfd73
PZ
8542 * Usually multiple threads get a better yield out of
8543 * that one core than a single thread would have,
8544 * reflect that in sd->smt_gain.
f93e65c1 8545 */
a52bfd73
PZ
8546 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8547 power *= sd->smt_gain;
f93e65c1 8548 power /= weight;
a52bfd73
PZ
8549 power >>= SCHED_LOAD_SHIFT;
8550 }
18a3885f 8551 sd->groups->cpu_power += power;
89c4710e
SS
8552 return;
8553 }
8554
89c4710e 8555 /*
f93e65c1 8556 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8557 */
8558 group = child->groups;
8559 do {
18a3885f 8560 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8561 group = group->next;
8562 } while (group != child->groups);
8563}
8564
7c16ec58
MT
8565/*
8566 * Initializers for schedule domains
8567 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8568 */
8569
a5d8c348
IM
8570#ifdef CONFIG_SCHED_DEBUG
8571# define SD_INIT_NAME(sd, type) sd->name = #type
8572#else
8573# define SD_INIT_NAME(sd, type) do { } while (0)
8574#endif
8575
7c16ec58 8576#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8577
7c16ec58
MT
8578#define SD_INIT_FUNC(type) \
8579static noinline void sd_init_##type(struct sched_domain *sd) \
8580{ \
8581 memset(sd, 0, sizeof(*sd)); \
8582 *sd = SD_##type##_INIT; \
1d3504fc 8583 sd->level = SD_LV_##type; \
a5d8c348 8584 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8585}
8586
8587SD_INIT_FUNC(CPU)
8588#ifdef CONFIG_NUMA
8589 SD_INIT_FUNC(ALLNODES)
8590 SD_INIT_FUNC(NODE)
8591#endif
8592#ifdef CONFIG_SCHED_SMT
8593 SD_INIT_FUNC(SIBLING)
8594#endif
8595#ifdef CONFIG_SCHED_MC
8596 SD_INIT_FUNC(MC)
8597#endif
8598
1d3504fc
HS
8599static int default_relax_domain_level = -1;
8600
8601static int __init setup_relax_domain_level(char *str)
8602{
30e0e178
LZ
8603 unsigned long val;
8604
8605 val = simple_strtoul(str, NULL, 0);
8606 if (val < SD_LV_MAX)
8607 default_relax_domain_level = val;
8608
1d3504fc
HS
8609 return 1;
8610}
8611__setup("relax_domain_level=", setup_relax_domain_level);
8612
8613static void set_domain_attribute(struct sched_domain *sd,
8614 struct sched_domain_attr *attr)
8615{
8616 int request;
8617
8618 if (!attr || attr->relax_domain_level < 0) {
8619 if (default_relax_domain_level < 0)
8620 return;
8621 else
8622 request = default_relax_domain_level;
8623 } else
8624 request = attr->relax_domain_level;
8625 if (request < sd->level) {
8626 /* turn off idle balance on this domain */
c88d5910 8627 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8628 } else {
8629 /* turn on idle balance on this domain */
c88d5910 8630 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8631 }
8632}
8633
2109b99e
AH
8634static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8635 const struct cpumask *cpu_map)
8636{
8637 switch (what) {
8638 case sa_sched_groups:
8639 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8640 d->sched_group_nodes = NULL;
8641 case sa_rootdomain:
8642 free_rootdomain(d->rd); /* fall through */
8643 case sa_tmpmask:
8644 free_cpumask_var(d->tmpmask); /* fall through */
8645 case sa_send_covered:
8646 free_cpumask_var(d->send_covered); /* fall through */
8647 case sa_this_core_map:
8648 free_cpumask_var(d->this_core_map); /* fall through */
8649 case sa_this_sibling_map:
8650 free_cpumask_var(d->this_sibling_map); /* fall through */
8651 case sa_nodemask:
8652 free_cpumask_var(d->nodemask); /* fall through */
8653 case sa_sched_group_nodes:
d1b55138 8654#ifdef CONFIG_NUMA
2109b99e
AH
8655 kfree(d->sched_group_nodes); /* fall through */
8656 case sa_notcovered:
8657 free_cpumask_var(d->notcovered); /* fall through */
8658 case sa_covered:
8659 free_cpumask_var(d->covered); /* fall through */
8660 case sa_domainspan:
8661 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8662#endif
2109b99e
AH
8663 case sa_none:
8664 break;
8665 }
8666}
3404c8d9 8667
2109b99e
AH
8668static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8669 const struct cpumask *cpu_map)
8670{
3404c8d9 8671#ifdef CONFIG_NUMA
2109b99e
AH
8672 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8673 return sa_none;
8674 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8675 return sa_domainspan;
8676 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8677 return sa_covered;
8678 /* Allocate the per-node list of sched groups */
8679 d->sched_group_nodes = kcalloc(nr_node_ids,
8680 sizeof(struct sched_group *), GFP_KERNEL);
8681 if (!d->sched_group_nodes) {
d1b55138 8682 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8683 return sa_notcovered;
d1b55138 8684 }
2109b99e 8685 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8686#endif
2109b99e
AH
8687 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8688 return sa_sched_group_nodes;
8689 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8690 return sa_nodemask;
8691 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8692 return sa_this_sibling_map;
8693 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8694 return sa_this_core_map;
8695 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8696 return sa_send_covered;
8697 d->rd = alloc_rootdomain();
8698 if (!d->rd) {
57d885fe 8699 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8700 return sa_tmpmask;
57d885fe 8701 }
2109b99e
AH
8702 return sa_rootdomain;
8703}
57d885fe 8704
7f4588f3
AH
8705static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8706 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8707{
8708 struct sched_domain *sd = NULL;
7c16ec58 8709#ifdef CONFIG_NUMA
7f4588f3 8710 struct sched_domain *parent;
1da177e4 8711
7f4588f3
AH
8712 d->sd_allnodes = 0;
8713 if (cpumask_weight(cpu_map) >
8714 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8715 sd = &per_cpu(allnodes_domains, i).sd;
8716 SD_INIT(sd, ALLNODES);
1d3504fc 8717 set_domain_attribute(sd, attr);
7f4588f3
AH
8718 cpumask_copy(sched_domain_span(sd), cpu_map);
8719 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8720 d->sd_allnodes = 1;
8721 }
8722 parent = sd;
8723
8724 sd = &per_cpu(node_domains, i).sd;
8725 SD_INIT(sd, NODE);
8726 set_domain_attribute(sd, attr);
8727 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8728 sd->parent = parent;
8729 if (parent)
8730 parent->child = sd;
8731 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8732#endif
7f4588f3
AH
8733 return sd;
8734}
1da177e4 8735
87cce662
AH
8736static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8737 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8738 struct sched_domain *parent, int i)
8739{
8740 struct sched_domain *sd;
8741 sd = &per_cpu(phys_domains, i).sd;
8742 SD_INIT(sd, CPU);
8743 set_domain_attribute(sd, attr);
8744 cpumask_copy(sched_domain_span(sd), d->nodemask);
8745 sd->parent = parent;
8746 if (parent)
8747 parent->child = sd;
8748 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8749 return sd;
8750}
1da177e4 8751
410c4081
AH
8752static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8753 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8754 struct sched_domain *parent, int i)
8755{
8756 struct sched_domain *sd = parent;
1e9f28fa 8757#ifdef CONFIG_SCHED_MC
410c4081
AH
8758 sd = &per_cpu(core_domains, i).sd;
8759 SD_INIT(sd, MC);
8760 set_domain_attribute(sd, attr);
8761 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8762 sd->parent = parent;
8763 parent->child = sd;
8764 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8765#endif
410c4081
AH
8766 return sd;
8767}
1e9f28fa 8768
d8173535
AH
8769static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8770 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8771 struct sched_domain *parent, int i)
8772{
8773 struct sched_domain *sd = parent;
1da177e4 8774#ifdef CONFIG_SCHED_SMT
d8173535
AH
8775 sd = &per_cpu(cpu_domains, i).sd;
8776 SD_INIT(sd, SIBLING);
8777 set_domain_attribute(sd, attr);
8778 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8779 sd->parent = parent;
8780 parent->child = sd;
8781 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8782#endif
d8173535
AH
8783 return sd;
8784}
1da177e4 8785
0e8e85c9
AH
8786static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8787 const struct cpumask *cpu_map, int cpu)
8788{
8789 switch (l) {
1da177e4 8790#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8791 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8792 cpumask_and(d->this_sibling_map, cpu_map,
8793 topology_thread_cpumask(cpu));
8794 if (cpu == cpumask_first(d->this_sibling_map))
8795 init_sched_build_groups(d->this_sibling_map, cpu_map,
8796 &cpu_to_cpu_group,
8797 d->send_covered, d->tmpmask);
8798 break;
1da177e4 8799#endif
1e9f28fa 8800#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8801 case SD_LV_MC: /* set up multi-core groups */
8802 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8803 if (cpu == cpumask_first(d->this_core_map))
8804 init_sched_build_groups(d->this_core_map, cpu_map,
8805 &cpu_to_core_group,
8806 d->send_covered, d->tmpmask);
8807 break;
1e9f28fa 8808#endif
86548096
AH
8809 case SD_LV_CPU: /* set up physical groups */
8810 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8811 if (!cpumask_empty(d->nodemask))
8812 init_sched_build_groups(d->nodemask, cpu_map,
8813 &cpu_to_phys_group,
8814 d->send_covered, d->tmpmask);
8815 break;
1da177e4 8816#ifdef CONFIG_NUMA
de616e36
AH
8817 case SD_LV_ALLNODES:
8818 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8819 d->send_covered, d->tmpmask);
8820 break;
8821#endif
0e8e85c9
AH
8822 default:
8823 break;
7c16ec58 8824 }
0e8e85c9 8825}
9c1cfda2 8826
2109b99e
AH
8827/*
8828 * Build sched domains for a given set of cpus and attach the sched domains
8829 * to the individual cpus
8830 */
8831static int __build_sched_domains(const struct cpumask *cpu_map,
8832 struct sched_domain_attr *attr)
8833{
8834 enum s_alloc alloc_state = sa_none;
8835 struct s_data d;
294b0c96 8836 struct sched_domain *sd;
2109b99e 8837 int i;
7c16ec58 8838#ifdef CONFIG_NUMA
2109b99e 8839 d.sd_allnodes = 0;
7c16ec58 8840#endif
9c1cfda2 8841
2109b99e
AH
8842 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8843 if (alloc_state != sa_rootdomain)
8844 goto error;
8845 alloc_state = sa_sched_groups;
9c1cfda2 8846
1da177e4 8847 /*
1a20ff27 8848 * Set up domains for cpus specified by the cpu_map.
1da177e4 8849 */
abcd083a 8850 for_each_cpu(i, cpu_map) {
49a02c51
AH
8851 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8852 cpu_map);
9761eea8 8853
7f4588f3 8854 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8855 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8856 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8857 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8858 }
9c1cfda2 8859
abcd083a 8860 for_each_cpu(i, cpu_map) {
0e8e85c9 8861 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8862 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8863 }
9c1cfda2 8864
1da177e4 8865 /* Set up physical groups */
86548096
AH
8866 for (i = 0; i < nr_node_ids; i++)
8867 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8868
1da177e4
LT
8869#ifdef CONFIG_NUMA
8870 /* Set up node groups */
de616e36
AH
8871 if (d.sd_allnodes)
8872 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8873
0601a88d
AH
8874 for (i = 0; i < nr_node_ids; i++)
8875 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8876 goto error;
1da177e4
LT
8877#endif
8878
8879 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8880#ifdef CONFIG_SCHED_SMT
abcd083a 8881 for_each_cpu(i, cpu_map) {
294b0c96 8882 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8883 init_sched_groups_power(i, sd);
5c45bf27 8884 }
1da177e4 8885#endif
1e9f28fa 8886#ifdef CONFIG_SCHED_MC
abcd083a 8887 for_each_cpu(i, cpu_map) {
294b0c96 8888 sd = &per_cpu(core_domains, i).sd;
89c4710e 8889 init_sched_groups_power(i, sd);
5c45bf27
SS
8890 }
8891#endif
1e9f28fa 8892
abcd083a 8893 for_each_cpu(i, cpu_map) {
294b0c96 8894 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8895 init_sched_groups_power(i, sd);
1da177e4
LT
8896 }
8897
9c1cfda2 8898#ifdef CONFIG_NUMA
076ac2af 8899 for (i = 0; i < nr_node_ids; i++)
49a02c51 8900 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8901
49a02c51 8902 if (d.sd_allnodes) {
6711cab4 8903 struct sched_group *sg;
f712c0c7 8904
96f874e2 8905 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8906 d.tmpmask);
f712c0c7
SS
8907 init_numa_sched_groups_power(sg);
8908 }
9c1cfda2
JH
8909#endif
8910
1da177e4 8911 /* Attach the domains */
abcd083a 8912 for_each_cpu(i, cpu_map) {
1da177e4 8913#ifdef CONFIG_SCHED_SMT
6c99e9ad 8914 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8915#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8916 sd = &per_cpu(core_domains, i).sd;
1da177e4 8917#else
6c99e9ad 8918 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8919#endif
49a02c51 8920 cpu_attach_domain(sd, d.rd, i);
1da177e4 8921 }
51888ca2 8922
2109b99e
AH
8923 d.sched_group_nodes = NULL; /* don't free this we still need it */
8924 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8925 return 0;
51888ca2 8926
51888ca2 8927error:
2109b99e
AH
8928 __free_domain_allocs(&d, alloc_state, cpu_map);
8929 return -ENOMEM;
1da177e4 8930}
029190c5 8931
96f874e2 8932static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8933{
8934 return __build_sched_domains(cpu_map, NULL);
8935}
8936
acc3f5d7 8937static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8938static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8939static struct sched_domain_attr *dattr_cur;
8940 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8941
8942/*
8943 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8944 * cpumask) fails, then fallback to a single sched domain,
8945 * as determined by the single cpumask fallback_doms.
029190c5 8946 */
4212823f 8947static cpumask_var_t fallback_doms;
029190c5 8948
ee79d1bd
HC
8949/*
8950 * arch_update_cpu_topology lets virtualized architectures update the
8951 * cpu core maps. It is supposed to return 1 if the topology changed
8952 * or 0 if it stayed the same.
8953 */
8954int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8955{
ee79d1bd 8956 return 0;
22e52b07
HC
8957}
8958
acc3f5d7
RR
8959cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8960{
8961 int i;
8962 cpumask_var_t *doms;
8963
8964 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8965 if (!doms)
8966 return NULL;
8967 for (i = 0; i < ndoms; i++) {
8968 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8969 free_sched_domains(doms, i);
8970 return NULL;
8971 }
8972 }
8973 return doms;
8974}
8975
8976void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8977{
8978 unsigned int i;
8979 for (i = 0; i < ndoms; i++)
8980 free_cpumask_var(doms[i]);
8981 kfree(doms);
8982}
8983
1a20ff27 8984/*
41a2d6cf 8985 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8986 * For now this just excludes isolated cpus, but could be used to
8987 * exclude other special cases in the future.
1a20ff27 8988 */
96f874e2 8989static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8990{
7378547f
MM
8991 int err;
8992
22e52b07 8993 arch_update_cpu_topology();
029190c5 8994 ndoms_cur = 1;
acc3f5d7 8995 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 8996 if (!doms_cur)
acc3f5d7
RR
8997 doms_cur = &fallback_doms;
8998 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 8999 dattr_cur = NULL;
acc3f5d7 9000 err = build_sched_domains(doms_cur[0]);
6382bc90 9001 register_sched_domain_sysctl();
7378547f
MM
9002
9003 return err;
1a20ff27
DG
9004}
9005
96f874e2
RR
9006static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9007 struct cpumask *tmpmask)
1da177e4 9008{
7c16ec58 9009 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9010}
1da177e4 9011
1a20ff27
DG
9012/*
9013 * Detach sched domains from a group of cpus specified in cpu_map
9014 * These cpus will now be attached to the NULL domain
9015 */
96f874e2 9016static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9017{
96f874e2
RR
9018 /* Save because hotplug lock held. */
9019 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9020 int i;
9021
abcd083a 9022 for_each_cpu(i, cpu_map)
57d885fe 9023 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9024 synchronize_sched();
96f874e2 9025 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9026}
9027
1d3504fc
HS
9028/* handle null as "default" */
9029static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9030 struct sched_domain_attr *new, int idx_new)
9031{
9032 struct sched_domain_attr tmp;
9033
9034 /* fast path */
9035 if (!new && !cur)
9036 return 1;
9037
9038 tmp = SD_ATTR_INIT;
9039 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9040 new ? (new + idx_new) : &tmp,
9041 sizeof(struct sched_domain_attr));
9042}
9043
029190c5
PJ
9044/*
9045 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9046 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9047 * doms_new[] to the current sched domain partitioning, doms_cur[].
9048 * It destroys each deleted domain and builds each new domain.
9049 *
acc3f5d7 9050 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9051 * The masks don't intersect (don't overlap.) We should setup one
9052 * sched domain for each mask. CPUs not in any of the cpumasks will
9053 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9054 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9055 * it as it is.
9056 *
acc3f5d7
RR
9057 * The passed in 'doms_new' should be allocated using
9058 * alloc_sched_domains. This routine takes ownership of it and will
9059 * free_sched_domains it when done with it. If the caller failed the
9060 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9061 * and partition_sched_domains() will fallback to the single partition
9062 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9063 *
96f874e2 9064 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9065 * ndoms_new == 0 is a special case for destroying existing domains,
9066 * and it will not create the default domain.
dfb512ec 9067 *
029190c5
PJ
9068 * Call with hotplug lock held
9069 */
acc3f5d7 9070void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9071 struct sched_domain_attr *dattr_new)
029190c5 9072{
dfb512ec 9073 int i, j, n;
d65bd5ec 9074 int new_topology;
029190c5 9075
712555ee 9076 mutex_lock(&sched_domains_mutex);
a1835615 9077
7378547f
MM
9078 /* always unregister in case we don't destroy any domains */
9079 unregister_sched_domain_sysctl();
9080
d65bd5ec
HC
9081 /* Let architecture update cpu core mappings. */
9082 new_topology = arch_update_cpu_topology();
9083
dfb512ec 9084 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9085
9086 /* Destroy deleted domains */
9087 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9088 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9089 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9090 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9091 goto match1;
9092 }
9093 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9094 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9095match1:
9096 ;
9097 }
9098
e761b772
MK
9099 if (doms_new == NULL) {
9100 ndoms_cur = 0;
acc3f5d7
RR
9101 doms_new = &fallback_doms;
9102 cpumask_andnot(doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9103 WARN_ON_ONCE(dattr_new);
e761b772
MK
9104 }
9105
029190c5
PJ
9106 /* Build new domains */
9107 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9108 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9109 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9110 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9111 goto match2;
9112 }
9113 /* no match - add a new doms_new */
acc3f5d7 9114 __build_sched_domains(doms_new[i],
1d3504fc 9115 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9116match2:
9117 ;
9118 }
9119
9120 /* Remember the new sched domains */
acc3f5d7
RR
9121 if (doms_cur != &fallback_doms)
9122 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9123 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9124 doms_cur = doms_new;
1d3504fc 9125 dattr_cur = dattr_new;
029190c5 9126 ndoms_cur = ndoms_new;
7378547f
MM
9127
9128 register_sched_domain_sysctl();
a1835615 9129
712555ee 9130 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9131}
9132
5c45bf27 9133#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9134static void arch_reinit_sched_domains(void)
5c45bf27 9135{
95402b38 9136 get_online_cpus();
dfb512ec
MK
9137
9138 /* Destroy domains first to force the rebuild */
9139 partition_sched_domains(0, NULL, NULL);
9140
e761b772 9141 rebuild_sched_domains();
95402b38 9142 put_online_cpus();
5c45bf27
SS
9143}
9144
9145static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9146{
afb8a9b7 9147 unsigned int level = 0;
5c45bf27 9148
afb8a9b7
GS
9149 if (sscanf(buf, "%u", &level) != 1)
9150 return -EINVAL;
9151
9152 /*
9153 * level is always be positive so don't check for
9154 * level < POWERSAVINGS_BALANCE_NONE which is 0
9155 * What happens on 0 or 1 byte write,
9156 * need to check for count as well?
9157 */
9158
9159 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9160 return -EINVAL;
9161
9162 if (smt)
afb8a9b7 9163 sched_smt_power_savings = level;
5c45bf27 9164 else
afb8a9b7 9165 sched_mc_power_savings = level;
5c45bf27 9166
c70f22d2 9167 arch_reinit_sched_domains();
5c45bf27 9168
c70f22d2 9169 return count;
5c45bf27
SS
9170}
9171
5c45bf27 9172#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9173static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9174 char *page)
5c45bf27
SS
9175{
9176 return sprintf(page, "%u\n", sched_mc_power_savings);
9177}
f718cd4a 9178static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9179 const char *buf, size_t count)
5c45bf27
SS
9180{
9181 return sched_power_savings_store(buf, count, 0);
9182}
f718cd4a
AK
9183static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9184 sched_mc_power_savings_show,
9185 sched_mc_power_savings_store);
5c45bf27
SS
9186#endif
9187
9188#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9189static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9190 char *page)
5c45bf27
SS
9191{
9192 return sprintf(page, "%u\n", sched_smt_power_savings);
9193}
f718cd4a 9194static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9195 const char *buf, size_t count)
5c45bf27
SS
9196{
9197 return sched_power_savings_store(buf, count, 1);
9198}
f718cd4a
AK
9199static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9200 sched_smt_power_savings_show,
6707de00
AB
9201 sched_smt_power_savings_store);
9202#endif
9203
39aac648 9204int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9205{
9206 int err = 0;
9207
9208#ifdef CONFIG_SCHED_SMT
9209 if (smt_capable())
9210 err = sysfs_create_file(&cls->kset.kobj,
9211 &attr_sched_smt_power_savings.attr);
9212#endif
9213#ifdef CONFIG_SCHED_MC
9214 if (!err && mc_capable())
9215 err = sysfs_create_file(&cls->kset.kobj,
9216 &attr_sched_mc_power_savings.attr);
9217#endif
9218 return err;
9219}
6d6bc0ad 9220#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9221
e761b772 9222#ifndef CONFIG_CPUSETS
1da177e4 9223/*
e761b772
MK
9224 * Add online and remove offline CPUs from the scheduler domains.
9225 * When cpusets are enabled they take over this function.
1da177e4
LT
9226 */
9227static int update_sched_domains(struct notifier_block *nfb,
9228 unsigned long action, void *hcpu)
e761b772
MK
9229{
9230 switch (action) {
9231 case CPU_ONLINE:
9232 case CPU_ONLINE_FROZEN:
9233 case CPU_DEAD:
9234 case CPU_DEAD_FROZEN:
dfb512ec 9235 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9236 return NOTIFY_OK;
9237
9238 default:
9239 return NOTIFY_DONE;
9240 }
9241}
9242#endif
9243
9244static int update_runtime(struct notifier_block *nfb,
9245 unsigned long action, void *hcpu)
1da177e4 9246{
7def2be1
PZ
9247 int cpu = (int)(long)hcpu;
9248
1da177e4 9249 switch (action) {
1da177e4 9250 case CPU_DOWN_PREPARE:
8bb78442 9251 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9252 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9253 return NOTIFY_OK;
9254
1da177e4 9255 case CPU_DOWN_FAILED:
8bb78442 9256 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9257 case CPU_ONLINE:
8bb78442 9258 case CPU_ONLINE_FROZEN:
7def2be1 9259 enable_runtime(cpu_rq(cpu));
e761b772
MK
9260 return NOTIFY_OK;
9261
1da177e4
LT
9262 default:
9263 return NOTIFY_DONE;
9264 }
1da177e4 9265}
1da177e4
LT
9266
9267void __init sched_init_smp(void)
9268{
dcc30a35
RR
9269 cpumask_var_t non_isolated_cpus;
9270
9271 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9272 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9273
434d53b0
MT
9274#if defined(CONFIG_NUMA)
9275 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9276 GFP_KERNEL);
9277 BUG_ON(sched_group_nodes_bycpu == NULL);
9278#endif
95402b38 9279 get_online_cpus();
712555ee 9280 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9281 arch_init_sched_domains(cpu_online_mask);
9282 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9283 if (cpumask_empty(non_isolated_cpus))
9284 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9285 mutex_unlock(&sched_domains_mutex);
95402b38 9286 put_online_cpus();
e761b772
MK
9287
9288#ifndef CONFIG_CPUSETS
1da177e4
LT
9289 /* XXX: Theoretical race here - CPU may be hotplugged now */
9290 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9291#endif
9292
9293 /* RT runtime code needs to handle some hotplug events */
9294 hotcpu_notifier(update_runtime, 0);
9295
b328ca18 9296 init_hrtick();
5c1e1767
NP
9297
9298 /* Move init over to a non-isolated CPU */
dcc30a35 9299 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9300 BUG();
19978ca6 9301 sched_init_granularity();
dcc30a35 9302 free_cpumask_var(non_isolated_cpus);
4212823f 9303
0e3900e6 9304 init_sched_rt_class();
1da177e4
LT
9305}
9306#else
9307void __init sched_init_smp(void)
9308{
19978ca6 9309 sched_init_granularity();
1da177e4
LT
9310}
9311#endif /* CONFIG_SMP */
9312
cd1bb94b
AB
9313const_debug unsigned int sysctl_timer_migration = 1;
9314
1da177e4
LT
9315int in_sched_functions(unsigned long addr)
9316{
1da177e4
LT
9317 return in_lock_functions(addr) ||
9318 (addr >= (unsigned long)__sched_text_start
9319 && addr < (unsigned long)__sched_text_end);
9320}
9321
a9957449 9322static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9323{
9324 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9325 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9326#ifdef CONFIG_FAIR_GROUP_SCHED
9327 cfs_rq->rq = rq;
9328#endif
67e9fb2a 9329 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9330}
9331
fa85ae24
PZ
9332static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9333{
9334 struct rt_prio_array *array;
9335 int i;
9336
9337 array = &rt_rq->active;
9338 for (i = 0; i < MAX_RT_PRIO; i++) {
9339 INIT_LIST_HEAD(array->queue + i);
9340 __clear_bit(i, array->bitmap);
9341 }
9342 /* delimiter for bitsearch: */
9343 __set_bit(MAX_RT_PRIO, array->bitmap);
9344
052f1dc7 9345#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9346 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9347#ifdef CONFIG_SMP
e864c499 9348 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9349#endif
48d5e258 9350#endif
fa85ae24
PZ
9351#ifdef CONFIG_SMP
9352 rt_rq->rt_nr_migratory = 0;
fa85ae24 9353 rt_rq->overloaded = 0;
c20b08e3 9354 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9355#endif
9356
9357 rt_rq->rt_time = 0;
9358 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9359 rt_rq->rt_runtime = 0;
9360 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9361
052f1dc7 9362#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9363 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9364 rt_rq->rq = rq;
9365#endif
fa85ae24
PZ
9366}
9367
6f505b16 9368#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9369static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9370 struct sched_entity *se, int cpu, int add,
9371 struct sched_entity *parent)
6f505b16 9372{
ec7dc8ac 9373 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9374 tg->cfs_rq[cpu] = cfs_rq;
9375 init_cfs_rq(cfs_rq, rq);
9376 cfs_rq->tg = tg;
9377 if (add)
9378 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9379
9380 tg->se[cpu] = se;
354d60c2
DG
9381 /* se could be NULL for init_task_group */
9382 if (!se)
9383 return;
9384
ec7dc8ac
DG
9385 if (!parent)
9386 se->cfs_rq = &rq->cfs;
9387 else
9388 se->cfs_rq = parent->my_q;
9389
6f505b16
PZ
9390 se->my_q = cfs_rq;
9391 se->load.weight = tg->shares;
e05510d0 9392 se->load.inv_weight = 0;
ec7dc8ac 9393 se->parent = parent;
6f505b16 9394}
052f1dc7 9395#endif
6f505b16 9396
052f1dc7 9397#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9398static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9399 struct sched_rt_entity *rt_se, int cpu, int add,
9400 struct sched_rt_entity *parent)
6f505b16 9401{
ec7dc8ac
DG
9402 struct rq *rq = cpu_rq(cpu);
9403
6f505b16
PZ
9404 tg->rt_rq[cpu] = rt_rq;
9405 init_rt_rq(rt_rq, rq);
9406 rt_rq->tg = tg;
9407 rt_rq->rt_se = rt_se;
ac086bc2 9408 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9409 if (add)
9410 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9411
9412 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9413 if (!rt_se)
9414 return;
9415
ec7dc8ac
DG
9416 if (!parent)
9417 rt_se->rt_rq = &rq->rt;
9418 else
9419 rt_se->rt_rq = parent->my_q;
9420
6f505b16 9421 rt_se->my_q = rt_rq;
ec7dc8ac 9422 rt_se->parent = parent;
6f505b16
PZ
9423 INIT_LIST_HEAD(&rt_se->run_list);
9424}
9425#endif
9426
1da177e4
LT
9427void __init sched_init(void)
9428{
dd41f596 9429 int i, j;
434d53b0
MT
9430 unsigned long alloc_size = 0, ptr;
9431
9432#ifdef CONFIG_FAIR_GROUP_SCHED
9433 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9434#endif
9435#ifdef CONFIG_RT_GROUP_SCHED
9436 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9437#endif
9438#ifdef CONFIG_USER_SCHED
9439 alloc_size *= 2;
df7c8e84
RR
9440#endif
9441#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9442 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9443#endif
434d53b0 9444 if (alloc_size) {
36b7b6d4 9445 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9446
9447#ifdef CONFIG_FAIR_GROUP_SCHED
9448 init_task_group.se = (struct sched_entity **)ptr;
9449 ptr += nr_cpu_ids * sizeof(void **);
9450
9451 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9452 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9453
9454#ifdef CONFIG_USER_SCHED
9455 root_task_group.se = (struct sched_entity **)ptr;
9456 ptr += nr_cpu_ids * sizeof(void **);
9457
9458 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9459 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9460#endif /* CONFIG_USER_SCHED */
9461#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9462#ifdef CONFIG_RT_GROUP_SCHED
9463 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9464 ptr += nr_cpu_ids * sizeof(void **);
9465
9466 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9467 ptr += nr_cpu_ids * sizeof(void **);
9468
9469#ifdef CONFIG_USER_SCHED
9470 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9471 ptr += nr_cpu_ids * sizeof(void **);
9472
9473 root_task_group.rt_rq = (struct rt_rq **)ptr;
9474 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9475#endif /* CONFIG_USER_SCHED */
9476#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9477#ifdef CONFIG_CPUMASK_OFFSTACK
9478 for_each_possible_cpu(i) {
9479 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9480 ptr += cpumask_size();
9481 }
9482#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9483 }
dd41f596 9484
57d885fe
GH
9485#ifdef CONFIG_SMP
9486 init_defrootdomain();
9487#endif
9488
d0b27fa7
PZ
9489 init_rt_bandwidth(&def_rt_bandwidth,
9490 global_rt_period(), global_rt_runtime());
9491
9492#ifdef CONFIG_RT_GROUP_SCHED
9493 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9494 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9495#ifdef CONFIG_USER_SCHED
9496 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9497 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9498#endif /* CONFIG_USER_SCHED */
9499#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9500
052f1dc7 9501#ifdef CONFIG_GROUP_SCHED
6f505b16 9502 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9503 INIT_LIST_HEAD(&init_task_group.children);
9504
9505#ifdef CONFIG_USER_SCHED
9506 INIT_LIST_HEAD(&root_task_group.children);
9507 init_task_group.parent = &root_task_group;
9508 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9509#endif /* CONFIG_USER_SCHED */
9510#endif /* CONFIG_GROUP_SCHED */
6f505b16 9511
4a6cc4bd
JK
9512#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9513 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9514 __alignof__(unsigned long));
9515#endif
0a945022 9516 for_each_possible_cpu(i) {
70b97a7f 9517 struct rq *rq;
1da177e4
LT
9518
9519 rq = cpu_rq(i);
9520 spin_lock_init(&rq->lock);
7897986b 9521 rq->nr_running = 0;
dce48a84
TG
9522 rq->calc_load_active = 0;
9523 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9524 init_cfs_rq(&rq->cfs, rq);
6f505b16 9525 init_rt_rq(&rq->rt, rq);
dd41f596 9526#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9527 init_task_group.shares = init_task_group_load;
6f505b16 9528 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9529#ifdef CONFIG_CGROUP_SCHED
9530 /*
9531 * How much cpu bandwidth does init_task_group get?
9532 *
9533 * In case of task-groups formed thr' the cgroup filesystem, it
9534 * gets 100% of the cpu resources in the system. This overall
9535 * system cpu resource is divided among the tasks of
9536 * init_task_group and its child task-groups in a fair manner,
9537 * based on each entity's (task or task-group's) weight
9538 * (se->load.weight).
9539 *
9540 * In other words, if init_task_group has 10 tasks of weight
9541 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9542 * then A0's share of the cpu resource is:
9543 *
0d905bca 9544 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9545 *
9546 * We achieve this by letting init_task_group's tasks sit
9547 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9548 */
ec7dc8ac 9549 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9550#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9551 root_task_group.shares = NICE_0_LOAD;
9552 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9553 /*
9554 * In case of task-groups formed thr' the user id of tasks,
9555 * init_task_group represents tasks belonging to root user.
9556 * Hence it forms a sibling of all subsequent groups formed.
9557 * In this case, init_task_group gets only a fraction of overall
9558 * system cpu resource, based on the weight assigned to root
9559 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9560 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9561 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9562 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9563 */
ec7dc8ac 9564 init_tg_cfs_entry(&init_task_group,
84e9dabf 9565 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9566 &per_cpu(init_sched_entity, i), i, 1,
9567 root_task_group.se[i]);
6f505b16 9568
052f1dc7 9569#endif
354d60c2
DG
9570#endif /* CONFIG_FAIR_GROUP_SCHED */
9571
9572 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9573#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9574 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9575#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9576 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9577#elif defined CONFIG_USER_SCHED
eff766a6 9578 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9579 init_tg_rt_entry(&init_task_group,
6f505b16 9580 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9581 &per_cpu(init_sched_rt_entity, i), i, 1,
9582 root_task_group.rt_se[i]);
354d60c2 9583#endif
dd41f596 9584#endif
1da177e4 9585
dd41f596
IM
9586 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9587 rq->cpu_load[j] = 0;
1da177e4 9588#ifdef CONFIG_SMP
41c7ce9a 9589 rq->sd = NULL;
57d885fe 9590 rq->rd = NULL;
3f029d3c 9591 rq->post_schedule = 0;
1da177e4 9592 rq->active_balance = 0;
dd41f596 9593 rq->next_balance = jiffies;
1da177e4 9594 rq->push_cpu = 0;
0a2966b4 9595 rq->cpu = i;
1f11eb6a 9596 rq->online = 0;
1da177e4 9597 rq->migration_thread = NULL;
eae0c9df
MG
9598 rq->idle_stamp = 0;
9599 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9600 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9601 rq_attach_root(rq, &def_root_domain);
1da177e4 9602#endif
8f4d37ec 9603 init_rq_hrtick(rq);
1da177e4 9604 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9605 }
9606
2dd73a4f 9607 set_load_weight(&init_task);
b50f60ce 9608
e107be36
AK
9609#ifdef CONFIG_PREEMPT_NOTIFIERS
9610 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9611#endif
9612
c9819f45 9613#ifdef CONFIG_SMP
962cf36c 9614 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9615#endif
9616
b50f60ce
HC
9617#ifdef CONFIG_RT_MUTEXES
9618 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9619#endif
9620
1da177e4
LT
9621 /*
9622 * The boot idle thread does lazy MMU switching as well:
9623 */
9624 atomic_inc(&init_mm.mm_count);
9625 enter_lazy_tlb(&init_mm, current);
9626
9627 /*
9628 * Make us the idle thread. Technically, schedule() should not be
9629 * called from this thread, however somewhere below it might be,
9630 * but because we are the idle thread, we just pick up running again
9631 * when this runqueue becomes "idle".
9632 */
9633 init_idle(current, smp_processor_id());
dce48a84
TG
9634
9635 calc_load_update = jiffies + LOAD_FREQ;
9636
dd41f596
IM
9637 /*
9638 * During early bootup we pretend to be a normal task:
9639 */
9640 current->sched_class = &fair_sched_class;
6892b75e 9641
6a7b3dc3 9642 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9643 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9644#ifdef CONFIG_SMP
7d1e6a9b 9645#ifdef CONFIG_NO_HZ
49557e62 9646 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9647 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9648#endif
bdddd296
RR
9649 /* May be allocated at isolcpus cmdline parse time */
9650 if (cpu_isolated_map == NULL)
9651 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9652#endif /* SMP */
6a7b3dc3 9653
cdd6c482 9654 perf_event_init();
0d905bca 9655
6892b75e 9656 scheduler_running = 1;
1da177e4
LT
9657}
9658
9659#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9660static inline int preempt_count_equals(int preempt_offset)
9661{
9662 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9663
9664 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9665}
9666
9667void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9668{
48f24c4d 9669#ifdef in_atomic
1da177e4
LT
9670 static unsigned long prev_jiffy; /* ratelimiting */
9671
e4aafea2
FW
9672 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9673 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9674 return;
9675 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9676 return;
9677 prev_jiffy = jiffies;
9678
9679 printk(KERN_ERR
9680 "BUG: sleeping function called from invalid context at %s:%d\n",
9681 file, line);
9682 printk(KERN_ERR
9683 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9684 in_atomic(), irqs_disabled(),
9685 current->pid, current->comm);
9686
9687 debug_show_held_locks(current);
9688 if (irqs_disabled())
9689 print_irqtrace_events(current);
9690 dump_stack();
1da177e4
LT
9691#endif
9692}
9693EXPORT_SYMBOL(__might_sleep);
9694#endif
9695
9696#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9697static void normalize_task(struct rq *rq, struct task_struct *p)
9698{
9699 int on_rq;
3e51f33f 9700
3a5e4dc1
AK
9701 update_rq_clock(rq);
9702 on_rq = p->se.on_rq;
9703 if (on_rq)
9704 deactivate_task(rq, p, 0);
9705 __setscheduler(rq, p, SCHED_NORMAL, 0);
9706 if (on_rq) {
9707 activate_task(rq, p, 0);
9708 resched_task(rq->curr);
9709 }
9710}
9711
1da177e4
LT
9712void normalize_rt_tasks(void)
9713{
a0f98a1c 9714 struct task_struct *g, *p;
1da177e4 9715 unsigned long flags;
70b97a7f 9716 struct rq *rq;
1da177e4 9717
4cf5d77a 9718 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9719 do_each_thread(g, p) {
178be793
IM
9720 /*
9721 * Only normalize user tasks:
9722 */
9723 if (!p->mm)
9724 continue;
9725
6cfb0d5d 9726 p->se.exec_start = 0;
6cfb0d5d 9727#ifdef CONFIG_SCHEDSTATS
dd41f596 9728 p->se.wait_start = 0;
dd41f596 9729 p->se.sleep_start = 0;
dd41f596 9730 p->se.block_start = 0;
6cfb0d5d 9731#endif
dd41f596
IM
9732
9733 if (!rt_task(p)) {
9734 /*
9735 * Renice negative nice level userspace
9736 * tasks back to 0:
9737 */
9738 if (TASK_NICE(p) < 0 && p->mm)
9739 set_user_nice(p, 0);
1da177e4 9740 continue;
dd41f596 9741 }
1da177e4 9742
4cf5d77a 9743 spin_lock(&p->pi_lock);
b29739f9 9744 rq = __task_rq_lock(p);
1da177e4 9745
178be793 9746 normalize_task(rq, p);
3a5e4dc1 9747
b29739f9 9748 __task_rq_unlock(rq);
4cf5d77a 9749 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9750 } while_each_thread(g, p);
9751
4cf5d77a 9752 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9753}
9754
9755#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9756
9757#ifdef CONFIG_IA64
9758/*
9759 * These functions are only useful for the IA64 MCA handling.
9760 *
9761 * They can only be called when the whole system has been
9762 * stopped - every CPU needs to be quiescent, and no scheduling
9763 * activity can take place. Using them for anything else would
9764 * be a serious bug, and as a result, they aren't even visible
9765 * under any other configuration.
9766 */
9767
9768/**
9769 * curr_task - return the current task for a given cpu.
9770 * @cpu: the processor in question.
9771 *
9772 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9773 */
36c8b586 9774struct task_struct *curr_task(int cpu)
1df5c10a
LT
9775{
9776 return cpu_curr(cpu);
9777}
9778
9779/**
9780 * set_curr_task - set the current task for a given cpu.
9781 * @cpu: the processor in question.
9782 * @p: the task pointer to set.
9783 *
9784 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9785 * are serviced on a separate stack. It allows the architecture to switch the
9786 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9787 * must be called with all CPU's synchronized, and interrupts disabled, the
9788 * and caller must save the original value of the current task (see
9789 * curr_task() above) and restore that value before reenabling interrupts and
9790 * re-starting the system.
9791 *
9792 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9793 */
36c8b586 9794void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9795{
9796 cpu_curr(cpu) = p;
9797}
9798
9799#endif
29f59db3 9800
bccbe08a
PZ
9801#ifdef CONFIG_FAIR_GROUP_SCHED
9802static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9803{
9804 int i;
9805
9806 for_each_possible_cpu(i) {
9807 if (tg->cfs_rq)
9808 kfree(tg->cfs_rq[i]);
9809 if (tg->se)
9810 kfree(tg->se[i]);
6f505b16
PZ
9811 }
9812
9813 kfree(tg->cfs_rq);
9814 kfree(tg->se);
6f505b16
PZ
9815}
9816
ec7dc8ac
DG
9817static
9818int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9819{
29f59db3 9820 struct cfs_rq *cfs_rq;
eab17229 9821 struct sched_entity *se;
9b5b7751 9822 struct rq *rq;
29f59db3
SV
9823 int i;
9824
434d53b0 9825 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9826 if (!tg->cfs_rq)
9827 goto err;
434d53b0 9828 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9829 if (!tg->se)
9830 goto err;
052f1dc7
PZ
9831
9832 tg->shares = NICE_0_LOAD;
29f59db3
SV
9833
9834 for_each_possible_cpu(i) {
9b5b7751 9835 rq = cpu_rq(i);
29f59db3 9836
eab17229
LZ
9837 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9838 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9839 if (!cfs_rq)
9840 goto err;
9841
eab17229
LZ
9842 se = kzalloc_node(sizeof(struct sched_entity),
9843 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9844 if (!se)
9845 goto err;
9846
eab17229 9847 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9848 }
9849
9850 return 1;
9851
9852 err:
9853 return 0;
9854}
9855
9856static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9857{
9858 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9859 &cpu_rq(cpu)->leaf_cfs_rq_list);
9860}
9861
9862static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9863{
9864 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9865}
6d6bc0ad 9866#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9867static inline void free_fair_sched_group(struct task_group *tg)
9868{
9869}
9870
ec7dc8ac
DG
9871static inline
9872int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9873{
9874 return 1;
9875}
9876
9877static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9878{
9879}
9880
9881static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9882{
9883}
6d6bc0ad 9884#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9885
9886#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9887static void free_rt_sched_group(struct task_group *tg)
9888{
9889 int i;
9890
d0b27fa7
PZ
9891 destroy_rt_bandwidth(&tg->rt_bandwidth);
9892
bccbe08a
PZ
9893 for_each_possible_cpu(i) {
9894 if (tg->rt_rq)
9895 kfree(tg->rt_rq[i]);
9896 if (tg->rt_se)
9897 kfree(tg->rt_se[i]);
9898 }
9899
9900 kfree(tg->rt_rq);
9901 kfree(tg->rt_se);
9902}
9903
ec7dc8ac
DG
9904static
9905int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9906{
9907 struct rt_rq *rt_rq;
eab17229 9908 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9909 struct rq *rq;
9910 int i;
9911
434d53b0 9912 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9913 if (!tg->rt_rq)
9914 goto err;
434d53b0 9915 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9916 if (!tg->rt_se)
9917 goto err;
9918
d0b27fa7
PZ
9919 init_rt_bandwidth(&tg->rt_bandwidth,
9920 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9921
9922 for_each_possible_cpu(i) {
9923 rq = cpu_rq(i);
9924
eab17229
LZ
9925 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9926 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9927 if (!rt_rq)
9928 goto err;
29f59db3 9929
eab17229
LZ
9930 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9931 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9932 if (!rt_se)
9933 goto err;
29f59db3 9934
eab17229 9935 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9936 }
9937
bccbe08a
PZ
9938 return 1;
9939
9940 err:
9941 return 0;
9942}
9943
9944static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9945{
9946 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9947 &cpu_rq(cpu)->leaf_rt_rq_list);
9948}
9949
9950static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9951{
9952 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9953}
6d6bc0ad 9954#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9955static inline void free_rt_sched_group(struct task_group *tg)
9956{
9957}
9958
ec7dc8ac
DG
9959static inline
9960int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9961{
9962 return 1;
9963}
9964
9965static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9966{
9967}
9968
9969static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9970{
9971}
6d6bc0ad 9972#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9973
d0b27fa7 9974#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9975static void free_sched_group(struct task_group *tg)
9976{
9977 free_fair_sched_group(tg);
9978 free_rt_sched_group(tg);
9979 kfree(tg);
9980}
9981
9982/* allocate runqueue etc for a new task group */
ec7dc8ac 9983struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9984{
9985 struct task_group *tg;
9986 unsigned long flags;
9987 int i;
9988
9989 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9990 if (!tg)
9991 return ERR_PTR(-ENOMEM);
9992
ec7dc8ac 9993 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9994 goto err;
9995
ec7dc8ac 9996 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9997 goto err;
9998
8ed36996 9999 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10000 for_each_possible_cpu(i) {
bccbe08a
PZ
10001 register_fair_sched_group(tg, i);
10002 register_rt_sched_group(tg, i);
9b5b7751 10003 }
6f505b16 10004 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10005
10006 WARN_ON(!parent); /* root should already exist */
10007
10008 tg->parent = parent;
f473aa5e 10009 INIT_LIST_HEAD(&tg->children);
09f2724a 10010 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10011 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10012
9b5b7751 10013 return tg;
29f59db3
SV
10014
10015err:
6f505b16 10016 free_sched_group(tg);
29f59db3
SV
10017 return ERR_PTR(-ENOMEM);
10018}
10019
9b5b7751 10020/* rcu callback to free various structures associated with a task group */
6f505b16 10021static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10022{
29f59db3 10023 /* now it should be safe to free those cfs_rqs */
6f505b16 10024 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10025}
10026
9b5b7751 10027/* Destroy runqueue etc associated with a task group */
4cf86d77 10028void sched_destroy_group(struct task_group *tg)
29f59db3 10029{
8ed36996 10030 unsigned long flags;
9b5b7751 10031 int i;
29f59db3 10032
8ed36996 10033 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10034 for_each_possible_cpu(i) {
bccbe08a
PZ
10035 unregister_fair_sched_group(tg, i);
10036 unregister_rt_sched_group(tg, i);
9b5b7751 10037 }
6f505b16 10038 list_del_rcu(&tg->list);
f473aa5e 10039 list_del_rcu(&tg->siblings);
8ed36996 10040 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10041
9b5b7751 10042 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10043 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10044}
10045
9b5b7751 10046/* change task's runqueue when it moves between groups.
3a252015
IM
10047 * The caller of this function should have put the task in its new group
10048 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10049 * reflect its new group.
9b5b7751
SV
10050 */
10051void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10052{
10053 int on_rq, running;
10054 unsigned long flags;
10055 struct rq *rq;
10056
10057 rq = task_rq_lock(tsk, &flags);
10058
29f59db3
SV
10059 update_rq_clock(rq);
10060
051a1d1a 10061 running = task_current(rq, tsk);
29f59db3
SV
10062 on_rq = tsk->se.on_rq;
10063
0e1f3483 10064 if (on_rq)
29f59db3 10065 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10066 if (unlikely(running))
10067 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10068
6f505b16 10069 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10070
810b3817
PZ
10071#ifdef CONFIG_FAIR_GROUP_SCHED
10072 if (tsk->sched_class->moved_group)
10073 tsk->sched_class->moved_group(tsk);
10074#endif
10075
0e1f3483
HS
10076 if (unlikely(running))
10077 tsk->sched_class->set_curr_task(rq);
10078 if (on_rq)
7074badb 10079 enqueue_task(rq, tsk, 0);
29f59db3 10080
29f59db3
SV
10081 task_rq_unlock(rq, &flags);
10082}
6d6bc0ad 10083#endif /* CONFIG_GROUP_SCHED */
29f59db3 10084
052f1dc7 10085#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10086static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10087{
10088 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10089 int on_rq;
10090
29f59db3 10091 on_rq = se->on_rq;
62fb1851 10092 if (on_rq)
29f59db3
SV
10093 dequeue_entity(cfs_rq, se, 0);
10094
10095 se->load.weight = shares;
e05510d0 10096 se->load.inv_weight = 0;
29f59db3 10097
62fb1851 10098 if (on_rq)
29f59db3 10099 enqueue_entity(cfs_rq, se, 0);
c09595f6 10100}
62fb1851 10101
c09595f6
PZ
10102static void set_se_shares(struct sched_entity *se, unsigned long shares)
10103{
10104 struct cfs_rq *cfs_rq = se->cfs_rq;
10105 struct rq *rq = cfs_rq->rq;
10106 unsigned long flags;
10107
10108 spin_lock_irqsave(&rq->lock, flags);
10109 __set_se_shares(se, shares);
10110 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10111}
10112
8ed36996
PZ
10113static DEFINE_MUTEX(shares_mutex);
10114
4cf86d77 10115int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10116{
10117 int i;
8ed36996 10118 unsigned long flags;
c61935fd 10119
ec7dc8ac
DG
10120 /*
10121 * We can't change the weight of the root cgroup.
10122 */
10123 if (!tg->se[0])
10124 return -EINVAL;
10125
18d95a28
PZ
10126 if (shares < MIN_SHARES)
10127 shares = MIN_SHARES;
cb4ad1ff
MX
10128 else if (shares > MAX_SHARES)
10129 shares = MAX_SHARES;
62fb1851 10130
8ed36996 10131 mutex_lock(&shares_mutex);
9b5b7751 10132 if (tg->shares == shares)
5cb350ba 10133 goto done;
29f59db3 10134
8ed36996 10135 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10136 for_each_possible_cpu(i)
10137 unregister_fair_sched_group(tg, i);
f473aa5e 10138 list_del_rcu(&tg->siblings);
8ed36996 10139 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10140
10141 /* wait for any ongoing reference to this group to finish */
10142 synchronize_sched();
10143
10144 /*
10145 * Now we are free to modify the group's share on each cpu
10146 * w/o tripping rebalance_share or load_balance_fair.
10147 */
9b5b7751 10148 tg->shares = shares;
c09595f6
PZ
10149 for_each_possible_cpu(i) {
10150 /*
10151 * force a rebalance
10152 */
10153 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10154 set_se_shares(tg->se[i], shares);
c09595f6 10155 }
29f59db3 10156
6b2d7700
SV
10157 /*
10158 * Enable load balance activity on this group, by inserting it back on
10159 * each cpu's rq->leaf_cfs_rq_list.
10160 */
8ed36996 10161 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10162 for_each_possible_cpu(i)
10163 register_fair_sched_group(tg, i);
f473aa5e 10164 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10165 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10166done:
8ed36996 10167 mutex_unlock(&shares_mutex);
9b5b7751 10168 return 0;
29f59db3
SV
10169}
10170
5cb350ba
DG
10171unsigned long sched_group_shares(struct task_group *tg)
10172{
10173 return tg->shares;
10174}
052f1dc7 10175#endif
5cb350ba 10176
052f1dc7 10177#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10178/*
9f0c1e56 10179 * Ensure that the real time constraints are schedulable.
6f505b16 10180 */
9f0c1e56
PZ
10181static DEFINE_MUTEX(rt_constraints_mutex);
10182
10183static unsigned long to_ratio(u64 period, u64 runtime)
10184{
10185 if (runtime == RUNTIME_INF)
9a7e0b18 10186 return 1ULL << 20;
9f0c1e56 10187
9a7e0b18 10188 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10189}
10190
9a7e0b18
PZ
10191/* Must be called with tasklist_lock held */
10192static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10193{
9a7e0b18 10194 struct task_struct *g, *p;
b40b2e8e 10195
9a7e0b18
PZ
10196 do_each_thread(g, p) {
10197 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10198 return 1;
10199 } while_each_thread(g, p);
b40b2e8e 10200
9a7e0b18
PZ
10201 return 0;
10202}
b40b2e8e 10203
9a7e0b18
PZ
10204struct rt_schedulable_data {
10205 struct task_group *tg;
10206 u64 rt_period;
10207 u64 rt_runtime;
10208};
b40b2e8e 10209
9a7e0b18
PZ
10210static int tg_schedulable(struct task_group *tg, void *data)
10211{
10212 struct rt_schedulable_data *d = data;
10213 struct task_group *child;
10214 unsigned long total, sum = 0;
10215 u64 period, runtime;
b40b2e8e 10216
9a7e0b18
PZ
10217 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10218 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10219
9a7e0b18
PZ
10220 if (tg == d->tg) {
10221 period = d->rt_period;
10222 runtime = d->rt_runtime;
b40b2e8e 10223 }
b40b2e8e 10224
98a4826b
PZ
10225#ifdef CONFIG_USER_SCHED
10226 if (tg == &root_task_group) {
10227 period = global_rt_period();
10228 runtime = global_rt_runtime();
10229 }
10230#endif
10231
4653f803
PZ
10232 /*
10233 * Cannot have more runtime than the period.
10234 */
10235 if (runtime > period && runtime != RUNTIME_INF)
10236 return -EINVAL;
6f505b16 10237
4653f803
PZ
10238 /*
10239 * Ensure we don't starve existing RT tasks.
10240 */
9a7e0b18
PZ
10241 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10242 return -EBUSY;
6f505b16 10243
9a7e0b18 10244 total = to_ratio(period, runtime);
6f505b16 10245
4653f803
PZ
10246 /*
10247 * Nobody can have more than the global setting allows.
10248 */
10249 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10250 return -EINVAL;
6f505b16 10251
4653f803
PZ
10252 /*
10253 * The sum of our children's runtime should not exceed our own.
10254 */
9a7e0b18
PZ
10255 list_for_each_entry_rcu(child, &tg->children, siblings) {
10256 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10257 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10258
9a7e0b18
PZ
10259 if (child == d->tg) {
10260 period = d->rt_period;
10261 runtime = d->rt_runtime;
10262 }
6f505b16 10263
9a7e0b18 10264 sum += to_ratio(period, runtime);
9f0c1e56 10265 }
6f505b16 10266
9a7e0b18
PZ
10267 if (sum > total)
10268 return -EINVAL;
10269
10270 return 0;
6f505b16
PZ
10271}
10272
9a7e0b18 10273static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10274{
9a7e0b18
PZ
10275 struct rt_schedulable_data data = {
10276 .tg = tg,
10277 .rt_period = period,
10278 .rt_runtime = runtime,
10279 };
10280
10281 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10282}
10283
d0b27fa7
PZ
10284static int tg_set_bandwidth(struct task_group *tg,
10285 u64 rt_period, u64 rt_runtime)
6f505b16 10286{
ac086bc2 10287 int i, err = 0;
9f0c1e56 10288
9f0c1e56 10289 mutex_lock(&rt_constraints_mutex);
521f1a24 10290 read_lock(&tasklist_lock);
9a7e0b18
PZ
10291 err = __rt_schedulable(tg, rt_period, rt_runtime);
10292 if (err)
9f0c1e56 10293 goto unlock;
ac086bc2
PZ
10294
10295 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10296 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10297 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10298
10299 for_each_possible_cpu(i) {
10300 struct rt_rq *rt_rq = tg->rt_rq[i];
10301
10302 spin_lock(&rt_rq->rt_runtime_lock);
10303 rt_rq->rt_runtime = rt_runtime;
10304 spin_unlock(&rt_rq->rt_runtime_lock);
10305 }
10306 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10307 unlock:
521f1a24 10308 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10309 mutex_unlock(&rt_constraints_mutex);
10310
10311 return err;
6f505b16
PZ
10312}
10313
d0b27fa7
PZ
10314int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10315{
10316 u64 rt_runtime, rt_period;
10317
10318 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10319 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10320 if (rt_runtime_us < 0)
10321 rt_runtime = RUNTIME_INF;
10322
10323 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10324}
10325
9f0c1e56
PZ
10326long sched_group_rt_runtime(struct task_group *tg)
10327{
10328 u64 rt_runtime_us;
10329
d0b27fa7 10330 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10331 return -1;
10332
d0b27fa7 10333 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10334 do_div(rt_runtime_us, NSEC_PER_USEC);
10335 return rt_runtime_us;
10336}
d0b27fa7
PZ
10337
10338int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10339{
10340 u64 rt_runtime, rt_period;
10341
10342 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10343 rt_runtime = tg->rt_bandwidth.rt_runtime;
10344
619b0488
R
10345 if (rt_period == 0)
10346 return -EINVAL;
10347
d0b27fa7
PZ
10348 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10349}
10350
10351long sched_group_rt_period(struct task_group *tg)
10352{
10353 u64 rt_period_us;
10354
10355 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10356 do_div(rt_period_us, NSEC_PER_USEC);
10357 return rt_period_us;
10358}
10359
10360static int sched_rt_global_constraints(void)
10361{
4653f803 10362 u64 runtime, period;
d0b27fa7
PZ
10363 int ret = 0;
10364
ec5d4989
HS
10365 if (sysctl_sched_rt_period <= 0)
10366 return -EINVAL;
10367
4653f803
PZ
10368 runtime = global_rt_runtime();
10369 period = global_rt_period();
10370
10371 /*
10372 * Sanity check on the sysctl variables.
10373 */
10374 if (runtime > period && runtime != RUNTIME_INF)
10375 return -EINVAL;
10b612f4 10376
d0b27fa7 10377 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10378 read_lock(&tasklist_lock);
4653f803 10379 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10380 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10381 mutex_unlock(&rt_constraints_mutex);
10382
10383 return ret;
10384}
54e99124
DG
10385
10386int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10387{
10388 /* Don't accept realtime tasks when there is no way for them to run */
10389 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10390 return 0;
10391
10392 return 1;
10393}
10394
6d6bc0ad 10395#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10396static int sched_rt_global_constraints(void)
10397{
ac086bc2
PZ
10398 unsigned long flags;
10399 int i;
10400
ec5d4989
HS
10401 if (sysctl_sched_rt_period <= 0)
10402 return -EINVAL;
10403
60aa605d
PZ
10404 /*
10405 * There's always some RT tasks in the root group
10406 * -- migration, kstopmachine etc..
10407 */
10408 if (sysctl_sched_rt_runtime == 0)
10409 return -EBUSY;
10410
ac086bc2
PZ
10411 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10412 for_each_possible_cpu(i) {
10413 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10414
10415 spin_lock(&rt_rq->rt_runtime_lock);
10416 rt_rq->rt_runtime = global_rt_runtime();
10417 spin_unlock(&rt_rq->rt_runtime_lock);
10418 }
10419 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10420
d0b27fa7
PZ
10421 return 0;
10422}
6d6bc0ad 10423#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10424
10425int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10426 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10427 loff_t *ppos)
10428{
10429 int ret;
10430 int old_period, old_runtime;
10431 static DEFINE_MUTEX(mutex);
10432
10433 mutex_lock(&mutex);
10434 old_period = sysctl_sched_rt_period;
10435 old_runtime = sysctl_sched_rt_runtime;
10436
8d65af78 10437 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10438
10439 if (!ret && write) {
10440 ret = sched_rt_global_constraints();
10441 if (ret) {
10442 sysctl_sched_rt_period = old_period;
10443 sysctl_sched_rt_runtime = old_runtime;
10444 } else {
10445 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10446 def_rt_bandwidth.rt_period =
10447 ns_to_ktime(global_rt_period());
10448 }
10449 }
10450 mutex_unlock(&mutex);
10451
10452 return ret;
10453}
68318b8e 10454
052f1dc7 10455#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10456
10457/* return corresponding task_group object of a cgroup */
2b01dfe3 10458static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10459{
2b01dfe3
PM
10460 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10461 struct task_group, css);
68318b8e
SV
10462}
10463
10464static struct cgroup_subsys_state *
2b01dfe3 10465cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10466{
ec7dc8ac 10467 struct task_group *tg, *parent;
68318b8e 10468
2b01dfe3 10469 if (!cgrp->parent) {
68318b8e 10470 /* This is early initialization for the top cgroup */
68318b8e
SV
10471 return &init_task_group.css;
10472 }
10473
ec7dc8ac
DG
10474 parent = cgroup_tg(cgrp->parent);
10475 tg = sched_create_group(parent);
68318b8e
SV
10476 if (IS_ERR(tg))
10477 return ERR_PTR(-ENOMEM);
10478
68318b8e
SV
10479 return &tg->css;
10480}
10481
41a2d6cf
IM
10482static void
10483cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10484{
2b01dfe3 10485 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10486
10487 sched_destroy_group(tg);
10488}
10489
41a2d6cf 10490static int
be367d09 10491cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10492{
b68aa230 10493#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10494 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10495 return -EINVAL;
10496#else
68318b8e
SV
10497 /* We don't support RT-tasks being in separate groups */
10498 if (tsk->sched_class != &fair_sched_class)
10499 return -EINVAL;
b68aa230 10500#endif
be367d09
BB
10501 return 0;
10502}
68318b8e 10503
be367d09
BB
10504static int
10505cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10506 struct task_struct *tsk, bool threadgroup)
10507{
10508 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10509 if (retval)
10510 return retval;
10511 if (threadgroup) {
10512 struct task_struct *c;
10513 rcu_read_lock();
10514 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10515 retval = cpu_cgroup_can_attach_task(cgrp, c);
10516 if (retval) {
10517 rcu_read_unlock();
10518 return retval;
10519 }
10520 }
10521 rcu_read_unlock();
10522 }
68318b8e
SV
10523 return 0;
10524}
10525
10526static void
2b01dfe3 10527cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10528 struct cgroup *old_cont, struct task_struct *tsk,
10529 bool threadgroup)
68318b8e
SV
10530{
10531 sched_move_task(tsk);
be367d09
BB
10532 if (threadgroup) {
10533 struct task_struct *c;
10534 rcu_read_lock();
10535 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10536 sched_move_task(c);
10537 }
10538 rcu_read_unlock();
10539 }
68318b8e
SV
10540}
10541
052f1dc7 10542#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10543static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10544 u64 shareval)
68318b8e 10545{
2b01dfe3 10546 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10547}
10548
f4c753b7 10549static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10550{
2b01dfe3 10551 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10552
10553 return (u64) tg->shares;
10554}
6d6bc0ad 10555#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10556
052f1dc7 10557#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10558static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10559 s64 val)
6f505b16 10560{
06ecb27c 10561 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10562}
10563
06ecb27c 10564static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10565{
06ecb27c 10566 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10567}
d0b27fa7
PZ
10568
10569static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10570 u64 rt_period_us)
10571{
10572 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10573}
10574
10575static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10576{
10577 return sched_group_rt_period(cgroup_tg(cgrp));
10578}
6d6bc0ad 10579#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10580
fe5c7cc2 10581static struct cftype cpu_files[] = {
052f1dc7 10582#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10583 {
10584 .name = "shares",
f4c753b7
PM
10585 .read_u64 = cpu_shares_read_u64,
10586 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10587 },
052f1dc7
PZ
10588#endif
10589#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10590 {
9f0c1e56 10591 .name = "rt_runtime_us",
06ecb27c
PM
10592 .read_s64 = cpu_rt_runtime_read,
10593 .write_s64 = cpu_rt_runtime_write,
6f505b16 10594 },
d0b27fa7
PZ
10595 {
10596 .name = "rt_period_us",
f4c753b7
PM
10597 .read_u64 = cpu_rt_period_read_uint,
10598 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10599 },
052f1dc7 10600#endif
68318b8e
SV
10601};
10602
10603static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10604{
fe5c7cc2 10605 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10606}
10607
10608struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10609 .name = "cpu",
10610 .create = cpu_cgroup_create,
10611 .destroy = cpu_cgroup_destroy,
10612 .can_attach = cpu_cgroup_can_attach,
10613 .attach = cpu_cgroup_attach,
10614 .populate = cpu_cgroup_populate,
10615 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10616 .early_init = 1,
10617};
10618
052f1dc7 10619#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10620
10621#ifdef CONFIG_CGROUP_CPUACCT
10622
10623/*
10624 * CPU accounting code for task groups.
10625 *
10626 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10627 * (balbir@in.ibm.com).
10628 */
10629
934352f2 10630/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10631struct cpuacct {
10632 struct cgroup_subsys_state css;
10633 /* cpuusage holds pointer to a u64-type object on every cpu */
10634 u64 *cpuusage;
ef12fefa 10635 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10636 struct cpuacct *parent;
d842de87
SV
10637};
10638
10639struct cgroup_subsys cpuacct_subsys;
10640
10641/* return cpu accounting group corresponding to this container */
32cd756a 10642static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10643{
32cd756a 10644 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10645 struct cpuacct, css);
10646}
10647
10648/* return cpu accounting group to which this task belongs */
10649static inline struct cpuacct *task_ca(struct task_struct *tsk)
10650{
10651 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10652 struct cpuacct, css);
10653}
10654
10655/* create a new cpu accounting group */
10656static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10657 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10658{
10659 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10660 int i;
d842de87
SV
10661
10662 if (!ca)
ef12fefa 10663 goto out;
d842de87
SV
10664
10665 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10666 if (!ca->cpuusage)
10667 goto out_free_ca;
10668
10669 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10670 if (percpu_counter_init(&ca->cpustat[i], 0))
10671 goto out_free_counters;
d842de87 10672
934352f2
BR
10673 if (cgrp->parent)
10674 ca->parent = cgroup_ca(cgrp->parent);
10675
d842de87 10676 return &ca->css;
ef12fefa
BR
10677
10678out_free_counters:
10679 while (--i >= 0)
10680 percpu_counter_destroy(&ca->cpustat[i]);
10681 free_percpu(ca->cpuusage);
10682out_free_ca:
10683 kfree(ca);
10684out:
10685 return ERR_PTR(-ENOMEM);
d842de87
SV
10686}
10687
10688/* destroy an existing cpu accounting group */
41a2d6cf 10689static void
32cd756a 10690cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10691{
32cd756a 10692 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10693 int i;
d842de87 10694
ef12fefa
BR
10695 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10696 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10697 free_percpu(ca->cpuusage);
10698 kfree(ca);
10699}
10700
720f5498
KC
10701static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10702{
b36128c8 10703 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10704 u64 data;
10705
10706#ifndef CONFIG_64BIT
10707 /*
10708 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10709 */
10710 spin_lock_irq(&cpu_rq(cpu)->lock);
10711 data = *cpuusage;
10712 spin_unlock_irq(&cpu_rq(cpu)->lock);
10713#else
10714 data = *cpuusage;
10715#endif
10716
10717 return data;
10718}
10719
10720static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10721{
b36128c8 10722 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10723
10724#ifndef CONFIG_64BIT
10725 /*
10726 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10727 */
10728 spin_lock_irq(&cpu_rq(cpu)->lock);
10729 *cpuusage = val;
10730 spin_unlock_irq(&cpu_rq(cpu)->lock);
10731#else
10732 *cpuusage = val;
10733#endif
10734}
10735
d842de87 10736/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10737static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10738{
32cd756a 10739 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10740 u64 totalcpuusage = 0;
10741 int i;
10742
720f5498
KC
10743 for_each_present_cpu(i)
10744 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10745
10746 return totalcpuusage;
10747}
10748
0297b803
DG
10749static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10750 u64 reset)
10751{
10752 struct cpuacct *ca = cgroup_ca(cgrp);
10753 int err = 0;
10754 int i;
10755
10756 if (reset) {
10757 err = -EINVAL;
10758 goto out;
10759 }
10760
720f5498
KC
10761 for_each_present_cpu(i)
10762 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10763
0297b803
DG
10764out:
10765 return err;
10766}
10767
e9515c3c
KC
10768static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10769 struct seq_file *m)
10770{
10771 struct cpuacct *ca = cgroup_ca(cgroup);
10772 u64 percpu;
10773 int i;
10774
10775 for_each_present_cpu(i) {
10776 percpu = cpuacct_cpuusage_read(ca, i);
10777 seq_printf(m, "%llu ", (unsigned long long) percpu);
10778 }
10779 seq_printf(m, "\n");
10780 return 0;
10781}
10782
ef12fefa
BR
10783static const char *cpuacct_stat_desc[] = {
10784 [CPUACCT_STAT_USER] = "user",
10785 [CPUACCT_STAT_SYSTEM] = "system",
10786};
10787
10788static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10789 struct cgroup_map_cb *cb)
10790{
10791 struct cpuacct *ca = cgroup_ca(cgrp);
10792 int i;
10793
10794 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10795 s64 val = percpu_counter_read(&ca->cpustat[i]);
10796 val = cputime64_to_clock_t(val);
10797 cb->fill(cb, cpuacct_stat_desc[i], val);
10798 }
10799 return 0;
10800}
10801
d842de87
SV
10802static struct cftype files[] = {
10803 {
10804 .name = "usage",
f4c753b7
PM
10805 .read_u64 = cpuusage_read,
10806 .write_u64 = cpuusage_write,
d842de87 10807 },
e9515c3c
KC
10808 {
10809 .name = "usage_percpu",
10810 .read_seq_string = cpuacct_percpu_seq_read,
10811 },
ef12fefa
BR
10812 {
10813 .name = "stat",
10814 .read_map = cpuacct_stats_show,
10815 },
d842de87
SV
10816};
10817
32cd756a 10818static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10819{
32cd756a 10820 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10821}
10822
10823/*
10824 * charge this task's execution time to its accounting group.
10825 *
10826 * called with rq->lock held.
10827 */
10828static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10829{
10830 struct cpuacct *ca;
934352f2 10831 int cpu;
d842de87 10832
c40c6f85 10833 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10834 return;
10835
934352f2 10836 cpu = task_cpu(tsk);
a18b83b7
BR
10837
10838 rcu_read_lock();
10839
d842de87 10840 ca = task_ca(tsk);
d842de87 10841
934352f2 10842 for (; ca; ca = ca->parent) {
b36128c8 10843 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10844 *cpuusage += cputime;
10845 }
a18b83b7
BR
10846
10847 rcu_read_unlock();
d842de87
SV
10848}
10849
ef12fefa
BR
10850/*
10851 * Charge the system/user time to the task's accounting group.
10852 */
10853static void cpuacct_update_stats(struct task_struct *tsk,
10854 enum cpuacct_stat_index idx, cputime_t val)
10855{
10856 struct cpuacct *ca;
10857
10858 if (unlikely(!cpuacct_subsys.active))
10859 return;
10860
10861 rcu_read_lock();
10862 ca = task_ca(tsk);
10863
10864 do {
10865 percpu_counter_add(&ca->cpustat[idx], val);
10866 ca = ca->parent;
10867 } while (ca);
10868 rcu_read_unlock();
10869}
10870
d842de87
SV
10871struct cgroup_subsys cpuacct_subsys = {
10872 .name = "cpuacct",
10873 .create = cpuacct_create,
10874 .destroy = cpuacct_destroy,
10875 .populate = cpuacct_populate,
10876 .subsys_id = cpuacct_subsys_id,
10877};
10878#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10879
10880#ifndef CONFIG_SMP
10881
10882int rcu_expedited_torture_stats(char *page)
10883{
10884 return 0;
10885}
10886EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10887
10888void synchronize_sched_expedited(void)
10889{
10890}
10891EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10892
10893#else /* #ifndef CONFIG_SMP */
10894
10895static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10896static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10897
10898#define RCU_EXPEDITED_STATE_POST -2
10899#define RCU_EXPEDITED_STATE_IDLE -1
10900
10901static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10902
10903int rcu_expedited_torture_stats(char *page)
10904{
10905 int cnt = 0;
10906 int cpu;
10907
10908 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10909 for_each_online_cpu(cpu) {
10910 cnt += sprintf(&page[cnt], " %d:%d",
10911 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10912 }
10913 cnt += sprintf(&page[cnt], "\n");
10914 return cnt;
10915}
10916EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10917
10918static long synchronize_sched_expedited_count;
10919
10920/*
10921 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10922 * approach to force grace period to end quickly. This consumes
10923 * significant time on all CPUs, and is thus not recommended for
10924 * any sort of common-case code.
10925 *
10926 * Note that it is illegal to call this function while holding any
10927 * lock that is acquired by a CPU-hotplug notifier. Failing to
10928 * observe this restriction will result in deadlock.
10929 */
10930void synchronize_sched_expedited(void)
10931{
10932 int cpu;
10933 unsigned long flags;
10934 bool need_full_sync = 0;
10935 struct rq *rq;
10936 struct migration_req *req;
10937 long snap;
10938 int trycount = 0;
10939
10940 smp_mb(); /* ensure prior mod happens before capturing snap. */
10941 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10942 get_online_cpus();
10943 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10944 put_online_cpus();
10945 if (trycount++ < 10)
10946 udelay(trycount * num_online_cpus());
10947 else {
10948 synchronize_sched();
10949 return;
10950 }
10951 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10952 smp_mb(); /* ensure test happens before caller kfree */
10953 return;
10954 }
10955 get_online_cpus();
10956 }
10957 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10958 for_each_online_cpu(cpu) {
10959 rq = cpu_rq(cpu);
10960 req = &per_cpu(rcu_migration_req, cpu);
10961 init_completion(&req->done);
10962 req->task = NULL;
10963 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10964 spin_lock_irqsave(&rq->lock, flags);
10965 list_add(&req->list, &rq->migration_queue);
10966 spin_unlock_irqrestore(&rq->lock, flags);
10967 wake_up_process(rq->migration_thread);
10968 }
10969 for_each_online_cpu(cpu) {
10970 rcu_expedited_state = cpu;
10971 req = &per_cpu(rcu_migration_req, cpu);
10972 rq = cpu_rq(cpu);
10973 wait_for_completion(&req->done);
10974 spin_lock_irqsave(&rq->lock, flags);
10975 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10976 need_full_sync = 1;
10977 req->dest_cpu = RCU_MIGRATION_IDLE;
10978 spin_unlock_irqrestore(&rq->lock, flags);
10979 }
10980 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10981 synchronize_sched_expedited_count++;
03b042bf
PM
10982 mutex_unlock(&rcu_sched_expedited_mutex);
10983 put_online_cpus();
10984 if (need_full_sync)
10985 synchronize_sched();
10986}
10987EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10988
10989#endif /* #else #ifndef CONFIG_SMP */