]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
ATM: mpc, fix use after free
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2
GH
429#ifdef CONFIG_SMP
430 struct cpupri cpupri;
431#endif
57d885fe
GH
432};
433
dc938520
GH
434/*
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
437 */
57d885fe
GH
438static struct root_domain def_root_domain;
439
440#endif
441
1da177e4
LT
442/*
443 * This is the main, per-CPU runqueue data structure.
444 *
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
448 */
70b97a7f 449struct rq {
d8016491 450 /* runqueue lock: */
05fa785c 451 raw_spinlock_t lock;
1da177e4
LT
452
453 /*
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
456 */
457 unsigned long nr_running;
6aa645ea
IM
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 460 unsigned long last_load_update_tick;
46cb4b7c 461#ifdef CONFIG_NO_HZ
39c0cbe2 462 u64 nohz_stamp;
83cd4fe2 463 unsigned char nohz_balance_kick;
46cb4b7c 464#endif
a64692a3
MG
465 unsigned int skip_clock_update;
466
d8016491
IM
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load;
6aa645ea
IM
469 unsigned long nr_load_updates;
470 u64 nr_switches;
471
472 struct cfs_rq cfs;
6f505b16 473 struct rt_rq rt;
6f505b16 474
6aa645ea 475#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
478#endif
479#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 480 struct list_head leaf_rt_rq_list;
1da177e4 481#endif
1da177e4
LT
482
483 /*
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
488 */
489 unsigned long nr_uninterruptible;
490
36c8b586 491 struct task_struct *curr, *idle;
c9819f45 492 unsigned long next_balance;
1da177e4 493 struct mm_struct *prev_mm;
6aa645ea 494
3e51f33f 495 u64 clock;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
dce48a84
TG
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
526
8f4d37ec 527#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
528#ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531#endif
8f4d37ec
PZ
532 struct hrtimer hrtick_timer;
533#endif
534
1da177e4
LT
535#ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
9c2c4802
KC
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
540
541 /* sys_sched_yield() stats */
480b9434 542 unsigned int yld_count;
1da177e4
LT
543
544 /* schedule() stats */
480b9434
KC
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
1da177e4
LT
548
549 /* try_to_wake_up() stats */
480b9434
KC
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
b8efb561
IM
552
553 /* BKL stats */
480b9434 554 unsigned int bkl_count;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
7d478721
PZ
560static inline
561void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 562{
7d478721 563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
564
565 /*
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
568 */
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
dd41f596
IM
571}
572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
615 struct cgroup_subsys_state *css;
616
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
620}
621
622/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624{
625#ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628#endif
629
630#ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633#endif
634}
635
636#else /* CONFIG_CGROUP_SCHED */
637
638static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639static inline struct task_group *task_group(struct task_struct *p)
640{
641 return NULL;
642}
643
644#endif /* CONFIG_CGROUP_SCHED */
645
aa9c4c0f 646inline void update_rq_clock(struct rq *rq)
3e51f33f 647{
a64692a3
MG
648 if (!rq->skip_clock_update)
649 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
e17b38bf 663 * @cpu: the processor in question.
017730c1
IM
664 *
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
726 char *cmp = buf;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737
c24b7c52 738 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
739 neg = 1;
740 cmp += 3;
741 }
742
743 for (i = 0; sched_feat_names[i]; i++) {
744 int len = strlen(sched_feat_names[i]);
745
746 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
42994724 758 *ppos += cnt;
f00b45c1
PZ
759
760 return cnt;
761}
762
34f3a814
LZ
763static int sched_feat_open(struct inode *inode, struct file *filp)
764{
765 return single_open(filp, sched_feat_show, NULL);
766}
767
828c0950 768static const struct file_operations sched_feat_fops = {
34f3a814
LZ
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
f00b45c1
PZ
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
2398f2c6
PZ
795/*
796 * ratelimit for updating the group shares.
55cd5340 797 * default: 0.25ms
2398f2c6 798 */
55cd5340 799unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 800unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 801
ffda12a1
PZ
802/*
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
806 */
807unsigned int sysctl_sched_shares_thresh = 4;
808
e9e9250b
PZ
809/*
810 * period over which we average the RT time consumption, measured
811 * in ms.
812 *
813 * default: 1s
814 */
815const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816
fa85ae24 817/*
9f0c1e56 818 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
819 * default: 1s
820 */
9f0c1e56 821unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 822
6892b75e
IM
823static __read_mostly int scheduler_running;
824
9f0c1e56
PZ
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
fa85ae24 830
d0b27fa7
PZ
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
e26873bb 838 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
fa85ae24 843
1da177e4 844#ifndef prepare_arch_switch
4866cde0
NP
845# define prepare_arch_switch(next) do { } while (0)
846#endif
847#ifndef finish_arch_switch
848# define finish_arch_switch(prev) do { } while (0)
849#endif
850
051a1d1a
DA
851static inline int task_current(struct rq *rq, struct task_struct *p)
852{
853 return rq->curr == p;
854}
855
4866cde0 856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 857static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 858{
051a1d1a 859 return task_current(rq, p);
4866cde0
NP
860}
861
70b97a7f 862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
863{
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
da04c035
IM
868#ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871#endif
8a25d5de
IM
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
05fa785c 879 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
880}
881
882#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 return p->oncpu;
887#else
051a1d1a 888 return task_current(rq, p);
4866cde0
NP
889#endif
890}
891
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
65cc8e48
PZ
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
0970d299
PZ
929 */
930static inline int task_is_waking(struct task_struct *p)
931{
0017d735 932 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
933}
934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
0970d299
PZ
942 struct rq *rq;
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4
LT
953/*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 955 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
956 * explicitly disabling preemption.
957 */
70b97a7f 958static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
959 __acquires(rq->lock)
960{
70b97a7f 961 struct rq *rq;
1da177e4 962
3a5c359a
AK
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
05fa785c 966 raw_spin_lock(&rq->lock);
65cc8e48 967 if (likely(rq == task_rq(p)))
3a5c359a 968 return rq;
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
70b97a7f 979static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1197/*
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1200 *
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1204 */
1205int get_nohz_timer_target(void)
1206{
1207 int cpu = smp_processor_id();
1208 int i;
1209 struct sched_domain *sd;
1210
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1213 if (!idle_cpu(i))
1214 return i;
1215 }
1216 return cpu;
1217}
06d8308c
TG
1218/*
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1227 */
1228void wake_up_idle_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231
1232 if (cpu == smp_processor_id())
1233 return;
1234
1235 /*
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1241 */
1242 if (rq->curr != rq->idle)
1243 return;
1244
1245 /*
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1249 */
5ed0cec0 1250 set_tsk_need_resched(rq->idle);
06d8308c
TG
1251
1252 /* NEED_RESCHED must be visible before we test polling */
1253 smp_mb();
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1256}
39c0cbe2 1257
6d6bc0ad 1258#endif /* CONFIG_NO_HZ */
06d8308c 1259
e9e9250b
PZ
1260static u64 sched_avg_period(void)
1261{
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1263}
1264
1265static void sched_avg_update(struct rq *rq)
1266{
1267 s64 period = sched_avg_period();
1268
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1270 /*
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1274 */
1275 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1276 rq->age_stamp += period;
1277 rq->rt_avg /= 2;
1278 }
1279}
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1285}
1286
6d6bc0ad 1287#else /* !CONFIG_SMP */
31656519 1288static void resched_task(struct task_struct *p)
c24d20db 1289{
05fa785c 1290 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1291 set_tsk_need_resched(p);
c24d20db 1292}
e9e9250b
PZ
1293
1294static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1295{
1296}
da2b71ed
SS
1297
1298static void sched_avg_update(struct rq *rq)
1299{
1300}
6d6bc0ad 1301#endif /* CONFIG_SMP */
c24d20db 1302
45bf76df
IM
1303#if BITS_PER_LONG == 32
1304# define WMULT_CONST (~0UL)
1305#else
1306# define WMULT_CONST (1UL << 32)
1307#endif
1308
1309#define WMULT_SHIFT 32
1310
194081eb
IM
1311/*
1312 * Shift right and round:
1313 */
cf2ab469 1314#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1315
a7be37ac
PZ
1316/*
1317 * delta *= weight / lw
1318 */
cb1c4fc9 1319static unsigned long
45bf76df
IM
1320calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1322{
1323 u64 tmp;
1324
7a232e03
LJ
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1327 lw->inv_weight = 1;
1328 else
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1330 / (lw->weight+1);
1331 }
45bf76df
IM
1332
1333 tmp = (u64)delta_exec * weight;
1334 /*
1335 * Check whether we'd overflow the 64-bit multiplication:
1336 */
194081eb 1337 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1339 WMULT_SHIFT/2);
1340 else
cf2ab469 1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1342
ecf691da 1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1344}
1345
1091985b 1346static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1347{
1348 lw->weight += inc;
e89996ae 1349 lw->inv_weight = 0;
45bf76df
IM
1350}
1351
1091985b 1352static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1353{
1354 lw->weight -= dec;
e89996ae 1355 lw->inv_weight = 0;
45bf76df
IM
1356}
1357
2dd73a4f
PW
1358/*
1359 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1360 * of tasks with abnormal "nice" values across CPUs the contribution that
1361 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1362 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1363 * scaled version of the new time slice allocation that they receive on time
1364 * slice expiry etc.
1365 */
1366
cce7ade8
PZ
1367#define WEIGHT_IDLEPRIO 3
1368#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1369
1370/*
1371 * Nice levels are multiplicative, with a gentle 10% change for every
1372 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1373 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1374 * that remained on nice 0.
1375 *
1376 * The "10% effect" is relative and cumulative: from _any_ nice level,
1377 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1378 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1379 * If a task goes up by ~10% and another task goes down by ~10% then
1380 * the relative distance between them is ~25%.)
dd41f596
IM
1381 */
1382static const int prio_to_weight[40] = {
254753dc
IM
1383 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1384 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1385 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1386 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1387 /* 0 */ 1024, 820, 655, 526, 423,
1388 /* 5 */ 335, 272, 215, 172, 137,
1389 /* 10 */ 110, 87, 70, 56, 45,
1390 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1391};
1392
5714d2de
IM
1393/*
1394 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1395 *
1396 * In cases where the weight does not change often, we can use the
1397 * precalculated inverse to speed up arithmetics by turning divisions
1398 * into multiplications:
1399 */
dd41f596 1400static const u32 prio_to_wmult[40] = {
254753dc
IM
1401 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1402 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1403 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1404 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1405 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1406 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1407 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1408 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1409};
2dd73a4f 1410
ef12fefa
BR
1411/* Time spent by the tasks of the cpu accounting group executing in ... */
1412enum cpuacct_stat_index {
1413 CPUACCT_STAT_USER, /* ... user mode */
1414 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1415
1416 CPUACCT_STAT_NSTATS,
1417};
1418
d842de87
SV
1419#ifdef CONFIG_CGROUP_CPUACCT
1420static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1421static void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1423#else
1424static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1425static inline void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1427#endif
1428
18d95a28
PZ
1429static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1430{
1431 update_load_add(&rq->load, load);
1432}
1433
1434static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_sub(&rq->load, load);
1437}
1438
7940ca36 1439#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1440typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1441
1442/*
1443 * Iterate the full tree, calling @down when first entering a node and @up when
1444 * leaving it for the final time.
1445 */
eb755805 1446static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1447{
1448 struct task_group *parent, *child;
eb755805 1449 int ret;
c09595f6
PZ
1450
1451 rcu_read_lock();
1452 parent = &root_task_group;
1453down:
eb755805
PZ
1454 ret = (*down)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457 list_for_each_entry_rcu(child, &parent->children, siblings) {
1458 parent = child;
1459 goto down;
1460
1461up:
1462 continue;
1463 }
eb755805
PZ
1464 ret = (*up)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467
1468 child = parent;
1469 parent = parent->parent;
1470 if (parent)
1471 goto up;
eb755805 1472out_unlock:
c09595f6 1473 rcu_read_unlock();
eb755805
PZ
1474
1475 return ret;
c09595f6
PZ
1476}
1477
eb755805
PZ
1478static int tg_nop(struct task_group *tg, void *data)
1479{
1480 return 0;
c09595f6 1481}
eb755805
PZ
1482#endif
1483
1484#ifdef CONFIG_SMP
f5f08f39
PZ
1485/* Used instead of source_load when we know the type == 0 */
1486static unsigned long weighted_cpuload(const int cpu)
1487{
1488 return cpu_rq(cpu)->load.weight;
1489}
1490
1491/*
1492 * Return a low guess at the load of a migration-source cpu weighted
1493 * according to the scheduling class and "nice" value.
1494 *
1495 * We want to under-estimate the load of migration sources, to
1496 * balance conservatively.
1497 */
1498static unsigned long source_load(int cpu, int type)
1499{
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return min(rq->cpu_load[type-1], total);
1507}
1508
1509/*
1510 * Return a high guess at the load of a migration-target cpu weighted
1511 * according to the scheduling class and "nice" value.
1512 */
1513static unsigned long target_load(int cpu, int type)
1514{
1515 struct rq *rq = cpu_rq(cpu);
1516 unsigned long total = weighted_cpuload(cpu);
1517
1518 if (type == 0 || !sched_feat(LB_BIAS))
1519 return total;
1520
1521 return max(rq->cpu_load[type-1], total);
1522}
1523
ae154be1
PZ
1524static unsigned long power_of(int cpu)
1525{
e51fd5e2 1526 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1527}
1528
eb755805
PZ
1529static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531static unsigned long cpu_avg_load_per_task(int cpu)
1532{
1533 struct rq *rq = cpu_rq(cpu);
af6d596f 1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1535
4cd42620
SR
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1538 else
1539 rq->avg_load_per_task = 0;
eb755805
PZ
1540
1541 return rq->avg_load_per_task;
1542}
1543
1544#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1545
43cf38eb 1546static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1547
c09595f6
PZ
1548static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550/*
1551 * Calculate and set the cpu's group shares.
1552 */
34d76c41
PZ
1553static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
4a6cc4bd 1556 unsigned long *usd_rq_weight)
18d95a28 1557{
34d76c41 1558 unsigned long shares, rq_weight;
a5004278 1559 int boost = 0;
c09595f6 1560
4a6cc4bd 1561 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
c8cba857 1566
c09595f6 1567 /*
a8af7246
PZ
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
c09595f6 1571 */
ec4e0e2f 1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1574
ffda12a1
PZ
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
c09595f6 1579
05fa785c 1580 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1583 __set_se_shares(tg->se[cpu], shares);
05fa785c 1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1585 }
18d95a28 1586}
c09595f6
PZ
1587
1588/*
c8cba857
PZ
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
c09595f6 1592 */
eb755805 1593static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1594{
cd8ad40d 1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1596 unsigned long *usd_rq_weight;
eb755805 1597 struct sched_domain *sd = data;
34d76c41 1598 unsigned long flags;
c8cba857 1599 int i;
c09595f6 1600
34d76c41
PZ
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
4a6cc4bd 1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1606
758b2cdc 1607 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1608 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1609 usd_rq_weight[i] = weight;
34d76c41 1610
cd8ad40d 1611 rq_weight += weight;
ec4e0e2f
KC
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
ec4e0e2f
KC
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
cd8ad40d 1620 sum_weight += weight;
c8cba857 1621 shares += tg->cfs_rq[i]->shares;
c09595f6 1622 }
c09595f6 1623
cd8ad40d
PZ
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
c8cba857
PZ
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
c09595f6 1632
758b2cdc 1633 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1635
1636 local_irq_restore(flags);
eb755805
PZ
1637
1638 return 0;
c09595f6
PZ
1639}
1640
1641/*
c8cba857
PZ
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
c09595f6 1645 */
eb755805 1646static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1647{
c8cba857 1648 unsigned long load;
eb755805 1649 long cpu = (long)data;
c09595f6 1650
c8cba857
PZ
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
c09595f6 1658
c8cba857 1659 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1660
eb755805 1661 return 0;
c09595f6
PZ
1662}
1663
c8cba857 1664static void update_shares(struct sched_domain *sd)
4d8d595d 1665{
e7097159
PZ
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
c676329a 1672 now = local_clock();
e7097159 1673 elapsed = now - sd->last_update;
2398f2c6
PZ
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
eb755805 1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1678 }
4d8d595d
PZ
1679}
1680
eb755805 1681static void update_h_load(long cpu)
c09595f6 1682{
eb755805 1683 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1684}
1685
c09595f6
PZ
1686#else
1687
c8cba857 1688static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1689{
1690}
1691
18d95a28
PZ
1692#endif
1693
8f45e2b5
GH
1694#ifdef CONFIG_PREEMPT
1695
b78bb868
PZ
1696static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1697
70574a99 1698/*
8f45e2b5
GH
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all
1701 * invocations. This assures that the double_lock is acquired using the
1702 * same underlying policy as the spinlock_t on this architecture, which
1703 * reduces latency compared to the unfair variant below. However, it
1704 * also adds more overhead and therefore may reduce throughput.
70574a99 1705 */
8f45e2b5
GH
1706static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710{
05fa785c 1711 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1712 double_rq_lock(this_rq, busiest);
1713
1714 return 1;
1715}
1716
1717#else
1718/*
1719 * Unfair double_lock_balance: Optimizes throughput at the expense of
1720 * latency by eliminating extra atomic operations when the locks are
1721 * already in proper order on entry. This favors lower cpu-ids and will
1722 * grant the double lock to lower cpus over higher ids under contention,
1723 * regardless of entry order into the function.
1724 */
1725static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1729{
1730 int ret = 0;
1731
05fa785c 1732 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1733 if (busiest < this_rq) {
05fa785c
TG
1734 raw_spin_unlock(&this_rq->lock);
1735 raw_spin_lock(&busiest->lock);
1736 raw_spin_lock_nested(&this_rq->lock,
1737 SINGLE_DEPTH_NESTING);
70574a99
AD
1738 ret = 1;
1739 } else
05fa785c
TG
1740 raw_spin_lock_nested(&busiest->lock,
1741 SINGLE_DEPTH_NESTING);
70574a99
AD
1742 }
1743 return ret;
1744}
1745
8f45e2b5
GH
1746#endif /* CONFIG_PREEMPT */
1747
1748/*
1749 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1750 */
1751static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1752{
1753 if (unlikely(!irqs_disabled())) {
1754 /* printk() doesn't work good under rq->lock */
05fa785c 1755 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1756 BUG_ON(1);
1757 }
1758
1759 return _double_lock_balance(this_rq, busiest);
1760}
1761
70574a99
AD
1762static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(busiest->lock)
1764{
05fa785c 1765 raw_spin_unlock(&busiest->lock);
70574a99
AD
1766 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1767}
1e3c88bd
PZ
1768
1769/*
1770 * double_rq_lock - safely lock two runqueues
1771 *
1772 * Note this does not disable interrupts like task_rq_lock,
1773 * you need to do so manually before calling.
1774 */
1775static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1776 __acquires(rq1->lock)
1777 __acquires(rq2->lock)
1778{
1779 BUG_ON(!irqs_disabled());
1780 if (rq1 == rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 __acquire(rq2->lock); /* Fake it out ;) */
1783 } else {
1784 if (rq1 < rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1787 } else {
1788 raw_spin_lock(&rq2->lock);
1789 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1790 }
1791 }
1e3c88bd
PZ
1792}
1793
1794/*
1795 * double_rq_unlock - safely unlock two runqueues
1796 *
1797 * Note this does not restore interrupts like task_rq_unlock,
1798 * you need to do so manually after calling.
1799 */
1800static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1801 __releases(rq1->lock)
1802 __releases(rq2->lock)
1803{
1804 raw_spin_unlock(&rq1->lock);
1805 if (rq1 != rq2)
1806 raw_spin_unlock(&rq2->lock);
1807 else
1808 __release(rq2->lock);
1809}
1810
18d95a28
PZ
1811#endif
1812
30432094 1813#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1814static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1815{
30432094 1816#ifdef CONFIG_SMP
34e83e85
IM
1817 cfs_rq->shares = shares;
1818#endif
1819}
30432094 1820#endif
e7693a36 1821
74f5187a 1822static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1823static void update_sysctl(void);
acb4a848 1824static int get_update_sysctl_factor(void);
fdf3e95d 1825static void update_cpu_load(struct rq *this_rq);
dce48a84 1826
cd29fe6f
PZ
1827static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1828{
1829 set_task_rq(p, cpu);
1830#ifdef CONFIG_SMP
1831 /*
1832 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1833 * successfuly executed on another CPU. We must ensure that updates of
1834 * per-task data have been completed by this moment.
1835 */
1836 smp_wmb();
1837 task_thread_info(p)->cpu = cpu;
1838#endif
1839}
dce48a84 1840
1e3c88bd 1841static const struct sched_class rt_sched_class;
dd41f596
IM
1842
1843#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1844#define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
dd41f596 1846
1e3c88bd
PZ
1847#include "sched_stats.h"
1848
c09595f6 1849static void inc_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running++;
9c217245
IM
1852}
1853
c09595f6 1854static void dec_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running--;
9c217245
IM
1857}
1858
45bf76df
IM
1859static void set_load_weight(struct task_struct *p)
1860{
1861 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1862 p->se.load.weight = 0;
1863 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1864 return;
1865 }
45bf76df 1866
dd41f596
IM
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
71f8bd46 1875
dd41f596
IM
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1878}
1879
371fd7e7 1880static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1881{
a64692a3 1882 update_rq_clock(rq);
dd41f596 1883 sched_info_queued(p);
371fd7e7 1884 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1885 p->se.on_rq = 1;
71f8bd46
IM
1886}
1887
371fd7e7 1888static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1889{
a64692a3 1890 update_rq_clock(rq);
46ac22ba 1891 sched_info_dequeued(p);
371fd7e7 1892 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1893 p->se.on_rq = 0;
71f8bd46
IM
1894}
1895
1e3c88bd
PZ
1896/*
1897 * activate_task - move a task to the runqueue.
1898 */
371fd7e7 1899static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1900{
1901 if (task_contributes_to_load(p))
1902 rq->nr_uninterruptible--;
1903
371fd7e7 1904 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1905 inc_nr_running(rq);
1906}
1907
1908/*
1909 * deactivate_task - remove a task from the runqueue.
1910 */
371fd7e7 1911static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1912{
1913 if (task_contributes_to_load(p))
1914 rq->nr_uninterruptible++;
1915
371fd7e7 1916 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1917 dec_nr_running(rq);
1918}
1919
1920#include "sched_idletask.c"
1921#include "sched_fair.c"
1922#include "sched_rt.c"
1923#ifdef CONFIG_SCHED_DEBUG
1924# include "sched_debug.c"
1925#endif
1926
14531189 1927/*
dd41f596 1928 * __normal_prio - return the priority that is based on the static prio
14531189 1929 */
14531189
IM
1930static inline int __normal_prio(struct task_struct *p)
1931{
dd41f596 1932 return p->static_prio;
14531189
IM
1933}
1934
b29739f9
IM
1935/*
1936 * Calculate the expected normal priority: i.e. priority
1937 * without taking RT-inheritance into account. Might be
1938 * boosted by interactivity modifiers. Changes upon fork,
1939 * setprio syscalls, and whenever the interactivity
1940 * estimator recalculates.
1941 */
36c8b586 1942static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1943{
1944 int prio;
1945
e05606d3 1946 if (task_has_rt_policy(p))
b29739f9
IM
1947 prio = MAX_RT_PRIO-1 - p->rt_priority;
1948 else
1949 prio = __normal_prio(p);
1950 return prio;
1951}
1952
1953/*
1954 * Calculate the current priority, i.e. the priority
1955 * taken into account by the scheduler. This value might
1956 * be boosted by RT tasks, or might be boosted by
1957 * interactivity modifiers. Will be RT if the task got
1958 * RT-boosted. If not then it returns p->normal_prio.
1959 */
36c8b586 1960static int effective_prio(struct task_struct *p)
b29739f9
IM
1961{
1962 p->normal_prio = normal_prio(p);
1963 /*
1964 * If we are RT tasks or we were boosted to RT priority,
1965 * keep the priority unchanged. Otherwise, update priority
1966 * to the normal priority:
1967 */
1968 if (!rt_prio(p->prio))
1969 return p->normal_prio;
1970 return p->prio;
1971}
1972
1da177e4
LT
1973/**
1974 * task_curr - is this task currently executing on a CPU?
1975 * @p: the task in question.
1976 */
36c8b586 1977inline int task_curr(const struct task_struct *p)
1da177e4
LT
1978{
1979 return cpu_curr(task_cpu(p)) == p;
1980}
1981
cb469845
SR
1982static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1983 const struct sched_class *prev_class,
1984 int oldprio, int running)
1985{
1986 if (prev_class != p->sched_class) {
1987 if (prev_class->switched_from)
1988 prev_class->switched_from(rq, p, running);
1989 p->sched_class->switched_to(rq, p, running);
1990 } else
1991 p->sched_class->prio_changed(rq, p, oldprio, running);
1992}
1993
1da177e4 1994#ifdef CONFIG_SMP
cc367732
IM
1995/*
1996 * Is this task likely cache-hot:
1997 */
e7693a36 1998static int
cc367732
IM
1999task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2000{
2001 s64 delta;
2002
e6c8fba7
PZ
2003 if (p->sched_class != &fair_sched_class)
2004 return 0;
2005
f540a608
IM
2006 /*
2007 * Buddy candidates are cache hot:
2008 */
f685ceac 2009 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2010 (&p->se == cfs_rq_of(&p->se)->next ||
2011 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2012 return 1;
2013
6bc1665b
IM
2014 if (sysctl_sched_migration_cost == -1)
2015 return 1;
2016 if (sysctl_sched_migration_cost == 0)
2017 return 0;
2018
cc367732
IM
2019 delta = now - p->se.exec_start;
2020
2021 return delta < (s64)sysctl_sched_migration_cost;
2022}
2023
dd41f596 2024void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2025{
e2912009
PZ
2026#ifdef CONFIG_SCHED_DEBUG
2027 /*
2028 * We should never call set_task_cpu() on a blocked task,
2029 * ttwu() will sort out the placement.
2030 */
077614ee
PZ
2031 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2032 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2033#endif
2034
de1d7286 2035 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2036
0c69774e
PZ
2037 if (task_cpu(p) != new_cpu) {
2038 p->se.nr_migrations++;
2039 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2040 }
dd41f596
IM
2041
2042 __set_task_cpu(p, new_cpu);
c65cc870
IM
2043}
2044
969c7921 2045struct migration_arg {
36c8b586 2046 struct task_struct *task;
1da177e4 2047 int dest_cpu;
70b97a7f 2048};
1da177e4 2049
969c7921
TH
2050static int migration_cpu_stop(void *data);
2051
1da177e4
LT
2052/*
2053 * The task's runqueue lock must be held.
2054 * Returns true if you have to wait for migration thread.
2055 */
969c7921 2056static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2057{
70b97a7f 2058 struct rq *rq = task_rq(p);
1da177e4
LT
2059
2060 /*
2061 * If the task is not on a runqueue (and not running), then
e2912009 2062 * the next wake-up will properly place the task.
1da177e4 2063 */
969c7921 2064 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2065}
2066
2067/*
2068 * wait_task_inactive - wait for a thread to unschedule.
2069 *
85ba2d86
RM
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2076 *
1da177e4
LT
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2082 */
85ba2d86 2083unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2084{
2085 unsigned long flags;
dd41f596 2086 int running, on_rq;
85ba2d86 2087 unsigned long ncsw;
70b97a7f 2088 struct rq *rq;
1da177e4 2089
3a5c359a
AK
2090 for (;;) {
2091 /*
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2096 */
2097 rq = task_rq(p);
fa490cfd 2098
3a5c359a
AK
2099 /*
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2103 *
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2109 */
85ba2d86
RM
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
3a5c359a 2113 cpu_relax();
85ba2d86 2114 }
fa490cfd 2115
3a5c359a
AK
2116 /*
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2120 */
2121 rq = task_rq_lock(p, &flags);
27a9da65 2122 trace_sched_wait_task(p);
3a5c359a
AK
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
85ba2d86 2125 ncsw = 0;
f31e11d8 2126 if (!match_state || p->state == match_state)
93dcf55f 2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2128 task_rq_unlock(rq, &flags);
fa490cfd 2129
85ba2d86
RM
2130 /*
2131 * If it changed from the expected state, bail out now.
2132 */
2133 if (unlikely(!ncsw))
2134 break;
2135
3a5c359a
AK
2136 /*
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2139 *
2140 * Oops. Go back and try again..
2141 */
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2145 }
fa490cfd 2146
3a5c359a
AK
2147 /*
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2151 *
80dd99b3 2152 * So if it was still runnable (but just not actively
3a5c359a
AK
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2155 */
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2159 }
fa490cfd 2160
3a5c359a
AK
2161 /*
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2165 */
2166 break;
2167 }
85ba2d86
RM
2168
2169 return ncsw;
1da177e4
LT
2170}
2171
2172/***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2175 *
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2178 *
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2184 */
36c8b586 2185void kick_process(struct task_struct *p)
1da177e4
LT
2186{
2187 int cpu;
2188
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2194}
b43e3521 2195EXPORT_SYMBOL_GPL(kick_process);
476d139c 2196#endif /* CONFIG_SMP */
1da177e4 2197
0793a61d
TG
2198/**
2199 * task_oncpu_function_call - call a function on the cpu on which a task runs
2200 * @p: the task to evaluate
2201 * @func: the function to be called
2202 * @info: the function call argument
2203 *
2204 * Calls the function @func when the task is currently running. This might
2205 * be on the current CPU, which just calls the function directly
2206 */
2207void task_oncpu_function_call(struct task_struct *p,
2208 void (*func) (void *info), void *info)
2209{
2210 int cpu;
2211
2212 preempt_disable();
2213 cpu = task_cpu(p);
2214 if (task_curr(p))
2215 smp_call_function_single(cpu, func, info, 1);
2216 preempt_enable();
2217}
2218
970b13ba 2219#ifdef CONFIG_SMP
30da688e
ON
2220/*
2221 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2222 */
5da9a0fb
PZ
2223static int select_fallback_rq(int cpu, struct task_struct *p)
2224{
2225 int dest_cpu;
2226 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2227
2228 /* Look for allowed, online CPU in same node. */
2229 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2230 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2231 return dest_cpu;
2232
2233 /* Any allowed, online CPU? */
2234 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2235 if (dest_cpu < nr_cpu_ids)
2236 return dest_cpu;
2237
2238 /* No more Mr. Nice Guy. */
897f0b3c 2239 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2240 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2241 /*
2242 * Don't tell them about moving exiting tasks or
2243 * kernel threads (both mm NULL), since they never
2244 * leave kernel.
2245 */
2246 if (p->mm && printk_ratelimit()) {
2247 printk(KERN_INFO "process %d (%s) no "
2248 "longer affine to cpu%d\n",
2249 task_pid_nr(p), p->comm, cpu);
2250 }
2251 }
2252
2253 return dest_cpu;
2254}
2255
e2912009 2256/*
30da688e 2257 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2258 */
970b13ba 2259static inline
0017d735 2260int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2261{
0017d735 2262 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2263
2264 /*
2265 * In order not to call set_task_cpu() on a blocking task we need
2266 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2267 * cpu.
2268 *
2269 * Since this is common to all placement strategies, this lives here.
2270 *
2271 * [ this allows ->select_task() to simply return task_cpu(p) and
2272 * not worry about this generic constraint ]
2273 */
2274 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2275 !cpu_online(cpu)))
5da9a0fb 2276 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2277
2278 return cpu;
970b13ba 2279}
09a40af5
MG
2280
2281static void update_avg(u64 *avg, u64 sample)
2282{
2283 s64 diff = sample - *avg;
2284 *avg += diff >> 3;
2285}
970b13ba
PZ
2286#endif
2287
9ed3811a
TH
2288static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2289 bool is_sync, bool is_migrate, bool is_local,
2290 unsigned long en_flags)
2291{
2292 schedstat_inc(p, se.statistics.nr_wakeups);
2293 if (is_sync)
2294 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2295 if (is_migrate)
2296 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2297 if (is_local)
2298 schedstat_inc(p, se.statistics.nr_wakeups_local);
2299 else
2300 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2301
2302 activate_task(rq, p, en_flags);
2303}
2304
2305static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2306 int wake_flags, bool success)
2307{
2308 trace_sched_wakeup(p, success);
2309 check_preempt_curr(rq, p, wake_flags);
2310
2311 p->state = TASK_RUNNING;
2312#ifdef CONFIG_SMP
2313 if (p->sched_class->task_woken)
2314 p->sched_class->task_woken(rq, p);
2315
2316 if (unlikely(rq->idle_stamp)) {
2317 u64 delta = rq->clock - rq->idle_stamp;
2318 u64 max = 2*sysctl_sched_migration_cost;
2319
2320 if (delta > max)
2321 rq->avg_idle = max;
2322 else
2323 update_avg(&rq->avg_idle, delta);
2324 rq->idle_stamp = 0;
2325 }
2326#endif
21aa9af0
TH
2327 /* if a worker is waking up, notify workqueue */
2328 if ((p->flags & PF_WQ_WORKER) && success)
2329 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2330}
2331
2332/**
1da177e4 2333 * try_to_wake_up - wake up a thread
9ed3811a 2334 * @p: the thread to be awakened
1da177e4 2335 * @state: the mask of task states that can be woken
9ed3811a 2336 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2337 *
2338 * Put it on the run-queue if it's not already there. The "current"
2339 * thread is always on the run-queue (except when the actual
2340 * re-schedule is in progress), and as such you're allowed to do
2341 * the simpler "current->state = TASK_RUNNING" to mark yourself
2342 * runnable without the overhead of this.
2343 *
9ed3811a
TH
2344 * Returns %true if @p was woken up, %false if it was already running
2345 * or @state didn't match @p's state.
1da177e4 2346 */
7d478721
PZ
2347static int try_to_wake_up(struct task_struct *p, unsigned int state,
2348 int wake_flags)
1da177e4 2349{
cc367732 2350 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2351 unsigned long flags;
371fd7e7 2352 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2353 struct rq *rq;
1da177e4 2354
e9c84311 2355 this_cpu = get_cpu();
2398f2c6 2356
04e2f174 2357 smp_wmb();
ab3b3aa5 2358 rq = task_rq_lock(p, &flags);
e9c84311 2359 if (!(p->state & state))
1da177e4
LT
2360 goto out;
2361
dd41f596 2362 if (p->se.on_rq)
1da177e4
LT
2363 goto out_running;
2364
2365 cpu = task_cpu(p);
cc367732 2366 orig_cpu = cpu;
1da177e4
LT
2367
2368#ifdef CONFIG_SMP
2369 if (unlikely(task_running(rq, p)))
2370 goto out_activate;
2371
e9c84311
PZ
2372 /*
2373 * In order to handle concurrent wakeups and release the rq->lock
2374 * we put the task in TASK_WAKING state.
eb24073b
IM
2375 *
2376 * First fix up the nr_uninterruptible count:
e9c84311 2377 */
cc87f76a
PZ
2378 if (task_contributes_to_load(p)) {
2379 if (likely(cpu_online(orig_cpu)))
2380 rq->nr_uninterruptible--;
2381 else
2382 this_rq()->nr_uninterruptible--;
2383 }
e9c84311 2384 p->state = TASK_WAKING;
efbbd05a 2385
371fd7e7 2386 if (p->sched_class->task_waking) {
efbbd05a 2387 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2388 en_flags |= ENQUEUE_WAKING;
2389 }
efbbd05a 2390
0017d735
PZ
2391 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2392 if (cpu != orig_cpu)
5d2f5a61 2393 set_task_cpu(p, cpu);
0017d735 2394 __task_rq_unlock(rq);
ab19cb23 2395
0970d299
PZ
2396 rq = cpu_rq(cpu);
2397 raw_spin_lock(&rq->lock);
f5dc3753 2398
0970d299
PZ
2399 /*
2400 * We migrated the task without holding either rq->lock, however
2401 * since the task is not on the task list itself, nobody else
2402 * will try and migrate the task, hence the rq should match the
2403 * cpu we just moved it to.
2404 */
2405 WARN_ON(task_cpu(p) != cpu);
e9c84311 2406 WARN_ON(p->state != TASK_WAKING);
1da177e4 2407
e7693a36
GH
2408#ifdef CONFIG_SCHEDSTATS
2409 schedstat_inc(rq, ttwu_count);
2410 if (cpu == this_cpu)
2411 schedstat_inc(rq, ttwu_local);
2412 else {
2413 struct sched_domain *sd;
2414 for_each_domain(this_cpu, sd) {
758b2cdc 2415 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2416 schedstat_inc(sd, ttwu_wake_remote);
2417 break;
2418 }
2419 }
2420 }
6d6bc0ad 2421#endif /* CONFIG_SCHEDSTATS */
e7693a36 2422
1da177e4
LT
2423out_activate:
2424#endif /* CONFIG_SMP */
9ed3811a
TH
2425 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2426 cpu == this_cpu, en_flags);
1da177e4 2427 success = 1;
1da177e4 2428out_running:
9ed3811a 2429 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2430out:
2431 task_rq_unlock(rq, &flags);
e9c84311 2432 put_cpu();
1da177e4
LT
2433
2434 return success;
2435}
2436
21aa9af0
TH
2437/**
2438 * try_to_wake_up_local - try to wake up a local task with rq lock held
2439 * @p: the thread to be awakened
2440 *
2441 * Put @p on the run-queue if it's not alredy there. The caller must
2442 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2443 * the current task. this_rq() stays locked over invocation.
2444 */
2445static void try_to_wake_up_local(struct task_struct *p)
2446{
2447 struct rq *rq = task_rq(p);
2448 bool success = false;
2449
2450 BUG_ON(rq != this_rq());
2451 BUG_ON(p == current);
2452 lockdep_assert_held(&rq->lock);
2453
2454 if (!(p->state & TASK_NORMAL))
2455 return;
2456
2457 if (!p->se.on_rq) {
2458 if (likely(!task_running(rq, p))) {
2459 schedstat_inc(rq, ttwu_count);
2460 schedstat_inc(rq, ttwu_local);
2461 }
2462 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2463 success = true;
2464 }
2465 ttwu_post_activation(p, rq, 0, success);
2466}
2467
50fa610a
DH
2468/**
2469 * wake_up_process - Wake up a specific process
2470 * @p: The process to be woken up.
2471 *
2472 * Attempt to wake up the nominated process and move it to the set of runnable
2473 * processes. Returns 1 if the process was woken up, 0 if it was already
2474 * running.
2475 *
2476 * It may be assumed that this function implies a write memory barrier before
2477 * changing the task state if and only if any tasks are woken up.
2478 */
7ad5b3a5 2479int wake_up_process(struct task_struct *p)
1da177e4 2480{
d9514f6c 2481 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2482}
1da177e4
LT
2483EXPORT_SYMBOL(wake_up_process);
2484
7ad5b3a5 2485int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2486{
2487 return try_to_wake_up(p, state, 0);
2488}
2489
1da177e4
LT
2490/*
2491 * Perform scheduler related setup for a newly forked process p.
2492 * p is forked by current.
dd41f596
IM
2493 *
2494 * __sched_fork() is basic setup used by init_idle() too:
2495 */
2496static void __sched_fork(struct task_struct *p)
2497{
dd41f596
IM
2498 p->se.exec_start = 0;
2499 p->se.sum_exec_runtime = 0;
f6cf891c 2500 p->se.prev_sum_exec_runtime = 0;
6c594c21 2501 p->se.nr_migrations = 0;
6cfb0d5d
IM
2502
2503#ifdef CONFIG_SCHEDSTATS
41acab88 2504 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2505#endif
476d139c 2506
fa717060 2507 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2508 p->se.on_rq = 0;
4a55bd5e 2509 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2510
e107be36
AK
2511#ifdef CONFIG_PREEMPT_NOTIFIERS
2512 INIT_HLIST_HEAD(&p->preempt_notifiers);
2513#endif
dd41f596
IM
2514}
2515
2516/*
2517 * fork()/clone()-time setup:
2518 */
2519void sched_fork(struct task_struct *p, int clone_flags)
2520{
2521 int cpu = get_cpu();
2522
2523 __sched_fork(p);
06b83b5f 2524 /*
0017d735 2525 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2526 * nobody will actually run it, and a signal or other external
2527 * event cannot wake it up and insert it on the runqueue either.
2528 */
0017d735 2529 p->state = TASK_RUNNING;
dd41f596 2530
b9dc29e7
MG
2531 /*
2532 * Revert to default priority/policy on fork if requested.
2533 */
2534 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2535 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2536 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2537 p->normal_prio = p->static_prio;
2538 }
b9dc29e7 2539
6c697bdf
MG
2540 if (PRIO_TO_NICE(p->static_prio) < 0) {
2541 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2542 p->normal_prio = p->static_prio;
6c697bdf
MG
2543 set_load_weight(p);
2544 }
2545
b9dc29e7
MG
2546 /*
2547 * We don't need the reset flag anymore after the fork. It has
2548 * fulfilled its duty:
2549 */
2550 p->sched_reset_on_fork = 0;
2551 }
ca94c442 2552
f83f9ac2
PW
2553 /*
2554 * Make sure we do not leak PI boosting priority to the child.
2555 */
2556 p->prio = current->normal_prio;
2557
2ddbf952
HS
2558 if (!rt_prio(p->prio))
2559 p->sched_class = &fair_sched_class;
b29739f9 2560
cd29fe6f
PZ
2561 if (p->sched_class->task_fork)
2562 p->sched_class->task_fork(p);
2563
86951599
PZ
2564 /*
2565 * The child is not yet in the pid-hash so no cgroup attach races,
2566 * and the cgroup is pinned to this child due to cgroup_fork()
2567 * is ran before sched_fork().
2568 *
2569 * Silence PROVE_RCU.
2570 */
2571 rcu_read_lock();
5f3edc1b 2572 set_task_cpu(p, cpu);
86951599 2573 rcu_read_unlock();
5f3edc1b 2574
52f17b6c 2575#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2576 if (likely(sched_info_on()))
52f17b6c 2577 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2578#endif
d6077cb8 2579#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2580 p->oncpu = 0;
2581#endif
1da177e4 2582#ifdef CONFIG_PREEMPT
4866cde0 2583 /* Want to start with kernel preemption disabled. */
a1261f54 2584 task_thread_info(p)->preempt_count = 1;
1da177e4 2585#endif
917b627d
GH
2586 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2587
476d139c 2588 put_cpu();
1da177e4
LT
2589}
2590
2591/*
2592 * wake_up_new_task - wake up a newly created task for the first time.
2593 *
2594 * This function will do some initial scheduler statistics housekeeping
2595 * that must be done for every newly created context, then puts the task
2596 * on the runqueue and wakes it.
2597 */
7ad5b3a5 2598void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2599{
2600 unsigned long flags;
dd41f596 2601 struct rq *rq;
c890692b 2602 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2603
2604#ifdef CONFIG_SMP
0017d735
PZ
2605 rq = task_rq_lock(p, &flags);
2606 p->state = TASK_WAKING;
2607
fabf318e
PZ
2608 /*
2609 * Fork balancing, do it here and not earlier because:
2610 * - cpus_allowed can change in the fork path
2611 * - any previously selected cpu might disappear through hotplug
2612 *
0017d735
PZ
2613 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2614 * without people poking at ->cpus_allowed.
fabf318e 2615 */
0017d735 2616 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2617 set_task_cpu(p, cpu);
1da177e4 2618
06b83b5f 2619 p->state = TASK_RUNNING;
0017d735
PZ
2620 task_rq_unlock(rq, &flags);
2621#endif
2622
2623 rq = task_rq_lock(p, &flags);
cd29fe6f 2624 activate_task(rq, p, 0);
27a9da65 2625 trace_sched_wakeup_new(p, 1);
a7558e01 2626 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2627#ifdef CONFIG_SMP
efbbd05a
PZ
2628 if (p->sched_class->task_woken)
2629 p->sched_class->task_woken(rq, p);
9a897c5a 2630#endif
dd41f596 2631 task_rq_unlock(rq, &flags);
fabf318e 2632 put_cpu();
1da177e4
LT
2633}
2634
e107be36
AK
2635#ifdef CONFIG_PREEMPT_NOTIFIERS
2636
2637/**
80dd99b3 2638 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2639 * @notifier: notifier struct to register
e107be36
AK
2640 */
2641void preempt_notifier_register(struct preempt_notifier *notifier)
2642{
2643 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2644}
2645EXPORT_SYMBOL_GPL(preempt_notifier_register);
2646
2647/**
2648 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2649 * @notifier: notifier struct to unregister
e107be36
AK
2650 *
2651 * This is safe to call from within a preemption notifier.
2652 */
2653void preempt_notifier_unregister(struct preempt_notifier *notifier)
2654{
2655 hlist_del(&notifier->link);
2656}
2657EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2658
2659static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2660{
2661 struct preempt_notifier *notifier;
2662 struct hlist_node *node;
2663
2664 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2665 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2666}
2667
2668static void
2669fire_sched_out_preempt_notifiers(struct task_struct *curr,
2670 struct task_struct *next)
2671{
2672 struct preempt_notifier *notifier;
2673 struct hlist_node *node;
2674
2675 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2676 notifier->ops->sched_out(notifier, next);
2677}
2678
6d6bc0ad 2679#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2680
2681static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2682{
2683}
2684
2685static void
2686fire_sched_out_preempt_notifiers(struct task_struct *curr,
2687 struct task_struct *next)
2688{
2689}
2690
6d6bc0ad 2691#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2692
4866cde0
NP
2693/**
2694 * prepare_task_switch - prepare to switch tasks
2695 * @rq: the runqueue preparing to switch
421cee29 2696 * @prev: the current task that is being switched out
4866cde0
NP
2697 * @next: the task we are going to switch to.
2698 *
2699 * This is called with the rq lock held and interrupts off. It must
2700 * be paired with a subsequent finish_task_switch after the context
2701 * switch.
2702 *
2703 * prepare_task_switch sets up locking and calls architecture specific
2704 * hooks.
2705 */
e107be36
AK
2706static inline void
2707prepare_task_switch(struct rq *rq, struct task_struct *prev,
2708 struct task_struct *next)
4866cde0 2709{
e107be36 2710 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2711 prepare_lock_switch(rq, next);
2712 prepare_arch_switch(next);
2713}
2714
1da177e4
LT
2715/**
2716 * finish_task_switch - clean up after a task-switch
344babaa 2717 * @rq: runqueue associated with task-switch
1da177e4
LT
2718 * @prev: the thread we just switched away from.
2719 *
4866cde0
NP
2720 * finish_task_switch must be called after the context switch, paired
2721 * with a prepare_task_switch call before the context switch.
2722 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2723 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2724 *
2725 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2726 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2727 * with the lock held can cause deadlocks; see schedule() for
2728 * details.)
2729 */
a9957449 2730static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2731 __releases(rq->lock)
2732{
1da177e4 2733 struct mm_struct *mm = rq->prev_mm;
55a101f8 2734 long prev_state;
1da177e4
LT
2735
2736 rq->prev_mm = NULL;
2737
2738 /*
2739 * A task struct has one reference for the use as "current".
c394cc9f 2740 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2741 * schedule one last time. The schedule call will never return, and
2742 * the scheduled task must drop that reference.
c394cc9f 2743 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2744 * still held, otherwise prev could be scheduled on another cpu, die
2745 * there before we look at prev->state, and then the reference would
2746 * be dropped twice.
2747 * Manfred Spraul <manfred@colorfullife.com>
2748 */
55a101f8 2749 prev_state = prev->state;
4866cde0 2750 finish_arch_switch(prev);
8381f65d
JI
2751#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2752 local_irq_disable();
2753#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2754 perf_event_task_sched_in(current);
8381f65d
JI
2755#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2756 local_irq_enable();
2757#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2758 finish_lock_switch(rq, prev);
e8fa1362 2759
e107be36 2760 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2761 if (mm)
2762 mmdrop(mm);
c394cc9f 2763 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2764 /*
2765 * Remove function-return probe instances associated with this
2766 * task and put them back on the free list.
9761eea8 2767 */
c6fd91f0 2768 kprobe_flush_task(prev);
1da177e4 2769 put_task_struct(prev);
c6fd91f0 2770 }
1da177e4
LT
2771}
2772
3f029d3c
GH
2773#ifdef CONFIG_SMP
2774
2775/* assumes rq->lock is held */
2776static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2777{
2778 if (prev->sched_class->pre_schedule)
2779 prev->sched_class->pre_schedule(rq, prev);
2780}
2781
2782/* rq->lock is NOT held, but preemption is disabled */
2783static inline void post_schedule(struct rq *rq)
2784{
2785 if (rq->post_schedule) {
2786 unsigned long flags;
2787
05fa785c 2788 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2789 if (rq->curr->sched_class->post_schedule)
2790 rq->curr->sched_class->post_schedule(rq);
05fa785c 2791 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2792
2793 rq->post_schedule = 0;
2794 }
2795}
2796
2797#else
da19ab51 2798
3f029d3c
GH
2799static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2800{
2801}
2802
2803static inline void post_schedule(struct rq *rq)
2804{
1da177e4
LT
2805}
2806
3f029d3c
GH
2807#endif
2808
1da177e4
LT
2809/**
2810 * schedule_tail - first thing a freshly forked thread must call.
2811 * @prev: the thread we just switched away from.
2812 */
36c8b586 2813asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2814 __releases(rq->lock)
2815{
70b97a7f
IM
2816 struct rq *rq = this_rq();
2817
4866cde0 2818 finish_task_switch(rq, prev);
da19ab51 2819
3f029d3c
GH
2820 /*
2821 * FIXME: do we need to worry about rq being invalidated by the
2822 * task_switch?
2823 */
2824 post_schedule(rq);
70b97a7f 2825
4866cde0
NP
2826#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2827 /* In this case, finish_task_switch does not reenable preemption */
2828 preempt_enable();
2829#endif
1da177e4 2830 if (current->set_child_tid)
b488893a 2831 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2832}
2833
2834/*
2835 * context_switch - switch to the new MM and the new
2836 * thread's register state.
2837 */
dd41f596 2838static inline void
70b97a7f 2839context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2840 struct task_struct *next)
1da177e4 2841{
dd41f596 2842 struct mm_struct *mm, *oldmm;
1da177e4 2843
e107be36 2844 prepare_task_switch(rq, prev, next);
27a9da65 2845 trace_sched_switch(prev, next);
dd41f596
IM
2846 mm = next->mm;
2847 oldmm = prev->active_mm;
9226d125
ZA
2848 /*
2849 * For paravirt, this is coupled with an exit in switch_to to
2850 * combine the page table reload and the switch backend into
2851 * one hypercall.
2852 */
224101ed 2853 arch_start_context_switch(prev);
9226d125 2854
710390d9 2855 if (likely(!mm)) {
1da177e4
LT
2856 next->active_mm = oldmm;
2857 atomic_inc(&oldmm->mm_count);
2858 enter_lazy_tlb(oldmm, next);
2859 } else
2860 switch_mm(oldmm, mm, next);
2861
710390d9 2862 if (likely(!prev->mm)) {
1da177e4 2863 prev->active_mm = NULL;
1da177e4
LT
2864 rq->prev_mm = oldmm;
2865 }
3a5f5e48
IM
2866 /*
2867 * Since the runqueue lock will be released by the next
2868 * task (which is an invalid locking op but in the case
2869 * of the scheduler it's an obvious special-case), so we
2870 * do an early lockdep release here:
2871 */
2872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2873 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2874#endif
1da177e4
LT
2875
2876 /* Here we just switch the register state and the stack. */
2877 switch_to(prev, next, prev);
2878
dd41f596
IM
2879 barrier();
2880 /*
2881 * this_rq must be evaluated again because prev may have moved
2882 * CPUs since it called schedule(), thus the 'rq' on its stack
2883 * frame will be invalid.
2884 */
2885 finish_task_switch(this_rq(), prev);
1da177e4
LT
2886}
2887
2888/*
2889 * nr_running, nr_uninterruptible and nr_context_switches:
2890 *
2891 * externally visible scheduler statistics: current number of runnable
2892 * threads, current number of uninterruptible-sleeping threads, total
2893 * number of context switches performed since bootup.
2894 */
2895unsigned long nr_running(void)
2896{
2897 unsigned long i, sum = 0;
2898
2899 for_each_online_cpu(i)
2900 sum += cpu_rq(i)->nr_running;
2901
2902 return sum;
f711f609 2903}
1da177e4
LT
2904
2905unsigned long nr_uninterruptible(void)
f711f609 2906{
1da177e4 2907 unsigned long i, sum = 0;
f711f609 2908
0a945022 2909 for_each_possible_cpu(i)
1da177e4 2910 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2911
2912 /*
1da177e4
LT
2913 * Since we read the counters lockless, it might be slightly
2914 * inaccurate. Do not allow it to go below zero though:
f711f609 2915 */
1da177e4
LT
2916 if (unlikely((long)sum < 0))
2917 sum = 0;
f711f609 2918
1da177e4 2919 return sum;
f711f609 2920}
f711f609 2921
1da177e4 2922unsigned long long nr_context_switches(void)
46cb4b7c 2923{
cc94abfc
SR
2924 int i;
2925 unsigned long long sum = 0;
46cb4b7c 2926
0a945022 2927 for_each_possible_cpu(i)
1da177e4 2928 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2929
1da177e4
LT
2930 return sum;
2931}
483b4ee6 2932
1da177e4
LT
2933unsigned long nr_iowait(void)
2934{
2935 unsigned long i, sum = 0;
483b4ee6 2936
0a945022 2937 for_each_possible_cpu(i)
1da177e4 2938 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2939
1da177e4
LT
2940 return sum;
2941}
483b4ee6 2942
8c215bd3 2943unsigned long nr_iowait_cpu(int cpu)
69d25870 2944{
8c215bd3 2945 struct rq *this = cpu_rq(cpu);
69d25870
AV
2946 return atomic_read(&this->nr_iowait);
2947}
46cb4b7c 2948
69d25870
AV
2949unsigned long this_cpu_load(void)
2950{
2951 struct rq *this = this_rq();
2952 return this->cpu_load[0];
2953}
e790fb0b 2954
46cb4b7c 2955
dce48a84
TG
2956/* Variables and functions for calc_load */
2957static atomic_long_t calc_load_tasks;
2958static unsigned long calc_load_update;
2959unsigned long avenrun[3];
2960EXPORT_SYMBOL(avenrun);
46cb4b7c 2961
74f5187a
PZ
2962static long calc_load_fold_active(struct rq *this_rq)
2963{
2964 long nr_active, delta = 0;
2965
2966 nr_active = this_rq->nr_running;
2967 nr_active += (long) this_rq->nr_uninterruptible;
2968
2969 if (nr_active != this_rq->calc_load_active) {
2970 delta = nr_active - this_rq->calc_load_active;
2971 this_rq->calc_load_active = nr_active;
2972 }
2973
2974 return delta;
2975}
2976
2977#ifdef CONFIG_NO_HZ
2978/*
2979 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2980 *
2981 * When making the ILB scale, we should try to pull this in as well.
2982 */
2983static atomic_long_t calc_load_tasks_idle;
2984
2985static void calc_load_account_idle(struct rq *this_rq)
2986{
2987 long delta;
2988
2989 delta = calc_load_fold_active(this_rq);
2990 if (delta)
2991 atomic_long_add(delta, &calc_load_tasks_idle);
2992}
2993
2994static long calc_load_fold_idle(void)
2995{
2996 long delta = 0;
2997
2998 /*
2999 * Its got a race, we don't care...
3000 */
3001 if (atomic_long_read(&calc_load_tasks_idle))
3002 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3003
3004 return delta;
3005}
3006#else
3007static void calc_load_account_idle(struct rq *this_rq)
3008{
3009}
3010
3011static inline long calc_load_fold_idle(void)
3012{
3013 return 0;
3014}
3015#endif
3016
2d02494f
TG
3017/**
3018 * get_avenrun - get the load average array
3019 * @loads: pointer to dest load array
3020 * @offset: offset to add
3021 * @shift: shift count to shift the result left
3022 *
3023 * These values are estimates at best, so no need for locking.
3024 */
3025void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3026{
3027 loads[0] = (avenrun[0] + offset) << shift;
3028 loads[1] = (avenrun[1] + offset) << shift;
3029 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3030}
46cb4b7c 3031
dce48a84
TG
3032static unsigned long
3033calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3034{
dce48a84
TG
3035 load *= exp;
3036 load += active * (FIXED_1 - exp);
3037 return load >> FSHIFT;
3038}
46cb4b7c
SS
3039
3040/*
dce48a84
TG
3041 * calc_load - update the avenrun load estimates 10 ticks after the
3042 * CPUs have updated calc_load_tasks.
7835b98b 3043 */
dce48a84 3044void calc_global_load(void)
7835b98b 3045{
dce48a84
TG
3046 unsigned long upd = calc_load_update + 10;
3047 long active;
1da177e4 3048
dce48a84
TG
3049 if (time_before(jiffies, upd))
3050 return;
1da177e4 3051
dce48a84
TG
3052 active = atomic_long_read(&calc_load_tasks);
3053 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3054
dce48a84
TG
3055 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3056 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3057 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3058
dce48a84
TG
3059 calc_load_update += LOAD_FREQ;
3060}
1da177e4 3061
dce48a84 3062/*
74f5187a
PZ
3063 * Called from update_cpu_load() to periodically update this CPU's
3064 * active count.
dce48a84
TG
3065 */
3066static void calc_load_account_active(struct rq *this_rq)
3067{
74f5187a 3068 long delta;
08c183f3 3069
74f5187a
PZ
3070 if (time_before(jiffies, this_rq->calc_load_update))
3071 return;
783609c6 3072
74f5187a
PZ
3073 delta = calc_load_fold_active(this_rq);
3074 delta += calc_load_fold_idle();
3075 if (delta)
dce48a84 3076 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3077
3078 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3079}
3080
fdf3e95d
VP
3081/*
3082 * The exact cpuload at various idx values, calculated at every tick would be
3083 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3084 *
3085 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3086 * on nth tick when cpu may be busy, then we have:
3087 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3088 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3089 *
3090 * decay_load_missed() below does efficient calculation of
3091 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3092 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3093 *
3094 * The calculation is approximated on a 128 point scale.
3095 * degrade_zero_ticks is the number of ticks after which load at any
3096 * particular idx is approximated to be zero.
3097 * degrade_factor is a precomputed table, a row for each load idx.
3098 * Each column corresponds to degradation factor for a power of two ticks,
3099 * based on 128 point scale.
3100 * Example:
3101 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3102 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3103 *
3104 * With this power of 2 load factors, we can degrade the load n times
3105 * by looking at 1 bits in n and doing as many mult/shift instead of
3106 * n mult/shifts needed by the exact degradation.
3107 */
3108#define DEGRADE_SHIFT 7
3109static const unsigned char
3110 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3111static const unsigned char
3112 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3113 {0, 0, 0, 0, 0, 0, 0, 0},
3114 {64, 32, 8, 0, 0, 0, 0, 0},
3115 {96, 72, 40, 12, 1, 0, 0},
3116 {112, 98, 75, 43, 15, 1, 0},
3117 {120, 112, 98, 76, 45, 16, 2} };
3118
3119/*
3120 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3121 * would be when CPU is idle and so we just decay the old load without
3122 * adding any new load.
3123 */
3124static unsigned long
3125decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3126{
3127 int j = 0;
3128
3129 if (!missed_updates)
3130 return load;
3131
3132 if (missed_updates >= degrade_zero_ticks[idx])
3133 return 0;
3134
3135 if (idx == 1)
3136 return load >> missed_updates;
3137
3138 while (missed_updates) {
3139 if (missed_updates % 2)
3140 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3141
3142 missed_updates >>= 1;
3143 j++;
3144 }
3145 return load;
3146}
3147
46cb4b7c 3148/*
dd41f596 3149 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3150 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3151 * every tick. We fix it up based on jiffies.
46cb4b7c 3152 */
dd41f596 3153static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3154{
495eca49 3155 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3156 unsigned long curr_jiffies = jiffies;
3157 unsigned long pending_updates;
dd41f596 3158 int i, scale;
46cb4b7c 3159
dd41f596 3160 this_rq->nr_load_updates++;
46cb4b7c 3161
fdf3e95d
VP
3162 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3163 if (curr_jiffies == this_rq->last_load_update_tick)
3164 return;
3165
3166 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3167 this_rq->last_load_update_tick = curr_jiffies;
3168
dd41f596 3169 /* Update our load: */
fdf3e95d
VP
3170 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3171 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3172 unsigned long old_load, new_load;
7d1e6a9b 3173
dd41f596 3174 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3175
dd41f596 3176 old_load = this_rq->cpu_load[i];
fdf3e95d 3177 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3178 new_load = this_load;
a25707f3
IM
3179 /*
3180 * Round up the averaging division if load is increasing. This
3181 * prevents us from getting stuck on 9 if the load is 10, for
3182 * example.
3183 */
3184 if (new_load > old_load)
fdf3e95d
VP
3185 new_load += scale - 1;
3186
3187 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3188 }
da2b71ed
SS
3189
3190 sched_avg_update(this_rq);
fdf3e95d
VP
3191}
3192
3193static void update_cpu_load_active(struct rq *this_rq)
3194{
3195 update_cpu_load(this_rq);
46cb4b7c 3196
74f5187a 3197 calc_load_account_active(this_rq);
46cb4b7c
SS
3198}
3199
dd41f596 3200#ifdef CONFIG_SMP
8a0be9ef 3201
46cb4b7c 3202/*
38022906
PZ
3203 * sched_exec - execve() is a valuable balancing opportunity, because at
3204 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3205 */
38022906 3206void sched_exec(void)
46cb4b7c 3207{
38022906 3208 struct task_struct *p = current;
1da177e4 3209 unsigned long flags;
70b97a7f 3210 struct rq *rq;
0017d735 3211 int dest_cpu;
46cb4b7c 3212
1da177e4 3213 rq = task_rq_lock(p, &flags);
0017d735
PZ
3214 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3215 if (dest_cpu == smp_processor_id())
3216 goto unlock;
38022906 3217
46cb4b7c 3218 /*
38022906 3219 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3220 */
30da688e 3221 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3222 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3223 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3224
1da177e4 3225 task_rq_unlock(rq, &flags);
969c7921 3226 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3227 return;
3228 }
0017d735 3229unlock:
1da177e4 3230 task_rq_unlock(rq, &flags);
1da177e4 3231}
dd41f596 3232
1da177e4
LT
3233#endif
3234
1da177e4
LT
3235DEFINE_PER_CPU(struct kernel_stat, kstat);
3236
3237EXPORT_PER_CPU_SYMBOL(kstat);
3238
3239/*
c5f8d995 3240 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3241 * @p in case that task is currently running.
c5f8d995
HS
3242 *
3243 * Called with task_rq_lock() held on @rq.
1da177e4 3244 */
c5f8d995
HS
3245static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3246{
3247 u64 ns = 0;
3248
3249 if (task_current(rq, p)) {
3250 update_rq_clock(rq);
3251 ns = rq->clock - p->se.exec_start;
3252 if ((s64)ns < 0)
3253 ns = 0;
3254 }
3255
3256 return ns;
3257}
3258
bb34d92f 3259unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3260{
1da177e4 3261 unsigned long flags;
41b86e9c 3262 struct rq *rq;
bb34d92f 3263 u64 ns = 0;
48f24c4d 3264
41b86e9c 3265 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3266 ns = do_task_delta_exec(p, rq);
3267 task_rq_unlock(rq, &flags);
1508487e 3268
c5f8d995
HS
3269 return ns;
3270}
f06febc9 3271
c5f8d995
HS
3272/*
3273 * Return accounted runtime for the task.
3274 * In case the task is currently running, return the runtime plus current's
3275 * pending runtime that have not been accounted yet.
3276 */
3277unsigned long long task_sched_runtime(struct task_struct *p)
3278{
3279 unsigned long flags;
3280 struct rq *rq;
3281 u64 ns = 0;
3282
3283 rq = task_rq_lock(p, &flags);
3284 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3285 task_rq_unlock(rq, &flags);
3286
3287 return ns;
3288}
48f24c4d 3289
c5f8d995
HS
3290/*
3291 * Return sum_exec_runtime for the thread group.
3292 * In case the task is currently running, return the sum plus current's
3293 * pending runtime that have not been accounted yet.
3294 *
3295 * Note that the thread group might have other running tasks as well,
3296 * so the return value not includes other pending runtime that other
3297 * running tasks might have.
3298 */
3299unsigned long long thread_group_sched_runtime(struct task_struct *p)
3300{
3301 struct task_cputime totals;
3302 unsigned long flags;
3303 struct rq *rq;
3304 u64 ns;
3305
3306 rq = task_rq_lock(p, &flags);
3307 thread_group_cputime(p, &totals);
3308 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3309 task_rq_unlock(rq, &flags);
48f24c4d 3310
1da177e4
LT
3311 return ns;
3312}
3313
1da177e4
LT
3314/*
3315 * Account user cpu time to a process.
3316 * @p: the process that the cpu time gets accounted to
1da177e4 3317 * @cputime: the cpu time spent in user space since the last update
457533a7 3318 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3319 */
457533a7
MS
3320void account_user_time(struct task_struct *p, cputime_t cputime,
3321 cputime_t cputime_scaled)
1da177e4
LT
3322{
3323 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3324 cputime64_t tmp;
3325
457533a7 3326 /* Add user time to process. */
1da177e4 3327 p->utime = cputime_add(p->utime, cputime);
457533a7 3328 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3329 account_group_user_time(p, cputime);
1da177e4
LT
3330
3331 /* Add user time to cpustat. */
3332 tmp = cputime_to_cputime64(cputime);
3333 if (TASK_NICE(p) > 0)
3334 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3335 else
3336 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3337
3338 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3339 /* Account for user time used */
3340 acct_update_integrals(p);
1da177e4
LT
3341}
3342
94886b84
LV
3343/*
3344 * Account guest cpu time to a process.
3345 * @p: the process that the cpu time gets accounted to
3346 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3347 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3348 */
457533a7
MS
3349static void account_guest_time(struct task_struct *p, cputime_t cputime,
3350 cputime_t cputime_scaled)
94886b84
LV
3351{
3352 cputime64_t tmp;
3353 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3354
3355 tmp = cputime_to_cputime64(cputime);
3356
457533a7 3357 /* Add guest time to process. */
94886b84 3358 p->utime = cputime_add(p->utime, cputime);
457533a7 3359 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3360 account_group_user_time(p, cputime);
94886b84
LV
3361 p->gtime = cputime_add(p->gtime, cputime);
3362
457533a7 3363 /* Add guest time to cpustat. */
ce0e7b28
RO
3364 if (TASK_NICE(p) > 0) {
3365 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3366 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3367 } else {
3368 cpustat->user = cputime64_add(cpustat->user, tmp);
3369 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3370 }
94886b84
LV
3371}
3372
1da177e4
LT
3373/*
3374 * Account system cpu time to a process.
3375 * @p: the process that the cpu time gets accounted to
3376 * @hardirq_offset: the offset to subtract from hardirq_count()
3377 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3378 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3379 */
3380void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3381 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3382{
3383 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3384 cputime64_t tmp;
3385
983ed7a6 3386 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3387 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3388 return;
3389 }
94886b84 3390
457533a7 3391 /* Add system time to process. */
1da177e4 3392 p->stime = cputime_add(p->stime, cputime);
457533a7 3393 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3394 account_group_system_time(p, cputime);
1da177e4
LT
3395
3396 /* Add system time to cpustat. */
3397 tmp = cputime_to_cputime64(cputime);
3398 if (hardirq_count() - hardirq_offset)
3399 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3400 else if (softirq_count())
3401 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3402 else
79741dd3
MS
3403 cpustat->system = cputime64_add(cpustat->system, tmp);
3404
ef12fefa
BR
3405 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3406
1da177e4
LT
3407 /* Account for system time used */
3408 acct_update_integrals(p);
1da177e4
LT
3409}
3410
c66f08be 3411/*
1da177e4 3412 * Account for involuntary wait time.
1da177e4 3413 * @steal: the cpu time spent in involuntary wait
c66f08be 3414 */
79741dd3 3415void account_steal_time(cputime_t cputime)
c66f08be 3416{
79741dd3
MS
3417 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3418 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3419
3420 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3421}
3422
1da177e4 3423/*
79741dd3
MS
3424 * Account for idle time.
3425 * @cputime: the cpu time spent in idle wait
1da177e4 3426 */
79741dd3 3427void account_idle_time(cputime_t cputime)
1da177e4
LT
3428{
3429 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3430 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3431 struct rq *rq = this_rq();
1da177e4 3432
79741dd3
MS
3433 if (atomic_read(&rq->nr_iowait) > 0)
3434 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3435 else
3436 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3437}
3438
79741dd3
MS
3439#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3440
3441/*
3442 * Account a single tick of cpu time.
3443 * @p: the process that the cpu time gets accounted to
3444 * @user_tick: indicates if the tick is a user or a system tick
3445 */
3446void account_process_tick(struct task_struct *p, int user_tick)
3447{
a42548a1 3448 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3449 struct rq *rq = this_rq();
3450
3451 if (user_tick)
a42548a1 3452 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3453 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3454 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3455 one_jiffy_scaled);
3456 else
a42548a1 3457 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3458}
3459
3460/*
3461 * Account multiple ticks of steal time.
3462 * @p: the process from which the cpu time has been stolen
3463 * @ticks: number of stolen ticks
3464 */
3465void account_steal_ticks(unsigned long ticks)
3466{
3467 account_steal_time(jiffies_to_cputime(ticks));
3468}
3469
3470/*
3471 * Account multiple ticks of idle time.
3472 * @ticks: number of stolen ticks
3473 */
3474void account_idle_ticks(unsigned long ticks)
3475{
3476 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3477}
3478
79741dd3
MS
3479#endif
3480
49048622
BS
3481/*
3482 * Use precise platform statistics if available:
3483 */
3484#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3485void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3486{
d99ca3b9
HS
3487 *ut = p->utime;
3488 *st = p->stime;
49048622
BS
3489}
3490
0cf55e1e 3491void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3492{
0cf55e1e
HS
3493 struct task_cputime cputime;
3494
3495 thread_group_cputime(p, &cputime);
3496
3497 *ut = cputime.utime;
3498 *st = cputime.stime;
49048622
BS
3499}
3500#else
761b1d26
HS
3501
3502#ifndef nsecs_to_cputime
b7b20df9 3503# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3504#endif
3505
d180c5bc 3506void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3507{
d99ca3b9 3508 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3509
3510 /*
3511 * Use CFS's precise accounting:
3512 */
d180c5bc 3513 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3514
3515 if (total) {
e75e863d 3516 u64 temp = rtime;
d180c5bc 3517
e75e863d 3518 temp *= utime;
49048622 3519 do_div(temp, total);
d180c5bc
HS
3520 utime = (cputime_t)temp;
3521 } else
3522 utime = rtime;
49048622 3523
d180c5bc
HS
3524 /*
3525 * Compare with previous values, to keep monotonicity:
3526 */
761b1d26 3527 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3528 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3529
d99ca3b9
HS
3530 *ut = p->prev_utime;
3531 *st = p->prev_stime;
49048622
BS
3532}
3533
0cf55e1e
HS
3534/*
3535 * Must be called with siglock held.
3536 */
3537void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3538{
0cf55e1e
HS
3539 struct signal_struct *sig = p->signal;
3540 struct task_cputime cputime;
3541 cputime_t rtime, utime, total;
49048622 3542
0cf55e1e 3543 thread_group_cputime(p, &cputime);
49048622 3544
0cf55e1e
HS
3545 total = cputime_add(cputime.utime, cputime.stime);
3546 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3547
0cf55e1e 3548 if (total) {
e75e863d 3549 u64 temp = rtime;
49048622 3550
e75e863d 3551 temp *= cputime.utime;
0cf55e1e
HS
3552 do_div(temp, total);
3553 utime = (cputime_t)temp;
3554 } else
3555 utime = rtime;
3556
3557 sig->prev_utime = max(sig->prev_utime, utime);
3558 sig->prev_stime = max(sig->prev_stime,
3559 cputime_sub(rtime, sig->prev_utime));
3560
3561 *ut = sig->prev_utime;
3562 *st = sig->prev_stime;
49048622 3563}
49048622 3564#endif
49048622 3565
7835b98b
CL
3566/*
3567 * This function gets called by the timer code, with HZ frequency.
3568 * We call it with interrupts disabled.
3569 *
3570 * It also gets called by the fork code, when changing the parent's
3571 * timeslices.
3572 */
3573void scheduler_tick(void)
3574{
7835b98b
CL
3575 int cpu = smp_processor_id();
3576 struct rq *rq = cpu_rq(cpu);
dd41f596 3577 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3578
3579 sched_clock_tick();
dd41f596 3580
05fa785c 3581 raw_spin_lock(&rq->lock);
3e51f33f 3582 update_rq_clock(rq);
fdf3e95d 3583 update_cpu_load_active(rq);
fa85ae24 3584 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3585 raw_spin_unlock(&rq->lock);
7835b98b 3586
49f47433 3587 perf_event_task_tick(curr);
e220d2dc 3588
e418e1c2 3589#ifdef CONFIG_SMP
dd41f596
IM
3590 rq->idle_at_tick = idle_cpu(cpu);
3591 trigger_load_balance(rq, cpu);
e418e1c2 3592#endif
1da177e4
LT
3593}
3594
132380a0 3595notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3596{
3597 if (in_lock_functions(addr)) {
3598 addr = CALLER_ADDR2;
3599 if (in_lock_functions(addr))
3600 addr = CALLER_ADDR3;
3601 }
3602 return addr;
3603}
1da177e4 3604
7e49fcce
SR
3605#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3606 defined(CONFIG_PREEMPT_TRACER))
3607
43627582 3608void __kprobes add_preempt_count(int val)
1da177e4 3609{
6cd8a4bb 3610#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3611 /*
3612 * Underflow?
3613 */
9a11b49a
IM
3614 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3615 return;
6cd8a4bb 3616#endif
1da177e4 3617 preempt_count() += val;
6cd8a4bb 3618#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3619 /*
3620 * Spinlock count overflowing soon?
3621 */
33859f7f
MOS
3622 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3623 PREEMPT_MASK - 10);
6cd8a4bb
SR
3624#endif
3625 if (preempt_count() == val)
3626 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3627}
3628EXPORT_SYMBOL(add_preempt_count);
3629
43627582 3630void __kprobes sub_preempt_count(int val)
1da177e4 3631{
6cd8a4bb 3632#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3633 /*
3634 * Underflow?
3635 */
01e3eb82 3636 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3637 return;
1da177e4
LT
3638 /*
3639 * Is the spinlock portion underflowing?
3640 */
9a11b49a
IM
3641 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3642 !(preempt_count() & PREEMPT_MASK)))
3643 return;
6cd8a4bb 3644#endif
9a11b49a 3645
6cd8a4bb
SR
3646 if (preempt_count() == val)
3647 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3648 preempt_count() -= val;
3649}
3650EXPORT_SYMBOL(sub_preempt_count);
3651
3652#endif
3653
3654/*
dd41f596 3655 * Print scheduling while atomic bug:
1da177e4 3656 */
dd41f596 3657static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3658{
838225b4
SS
3659 struct pt_regs *regs = get_irq_regs();
3660
3df0fc5b
PZ
3661 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3662 prev->comm, prev->pid, preempt_count());
838225b4 3663
dd41f596 3664 debug_show_held_locks(prev);
e21f5b15 3665 print_modules();
dd41f596
IM
3666 if (irqs_disabled())
3667 print_irqtrace_events(prev);
838225b4
SS
3668
3669 if (regs)
3670 show_regs(regs);
3671 else
3672 dump_stack();
dd41f596 3673}
1da177e4 3674
dd41f596
IM
3675/*
3676 * Various schedule()-time debugging checks and statistics:
3677 */
3678static inline void schedule_debug(struct task_struct *prev)
3679{
1da177e4 3680 /*
41a2d6cf 3681 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3682 * schedule() atomically, we ignore that path for now.
3683 * Otherwise, whine if we are scheduling when we should not be.
3684 */
3f33a7ce 3685 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3686 __schedule_bug(prev);
3687
1da177e4
LT
3688 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3689
2d72376b 3690 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3691#ifdef CONFIG_SCHEDSTATS
3692 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3693 schedstat_inc(this_rq(), bkl_count);
3694 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3695 }
3696#endif
dd41f596
IM
3697}
3698
6cecd084 3699static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3700{
a64692a3
MG
3701 if (prev->se.on_rq)
3702 update_rq_clock(rq);
3703 rq->skip_clock_update = 0;
6cecd084 3704 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3705}
3706
dd41f596
IM
3707/*
3708 * Pick up the highest-prio task:
3709 */
3710static inline struct task_struct *
b67802ea 3711pick_next_task(struct rq *rq)
dd41f596 3712{
5522d5d5 3713 const struct sched_class *class;
dd41f596 3714 struct task_struct *p;
1da177e4
LT
3715
3716 /*
dd41f596
IM
3717 * Optimization: we know that if all tasks are in
3718 * the fair class we can call that function directly:
1da177e4 3719 */
dd41f596 3720 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3721 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3722 if (likely(p))
3723 return p;
1da177e4
LT
3724 }
3725
dd41f596
IM
3726 class = sched_class_highest;
3727 for ( ; ; ) {
fb8d4724 3728 p = class->pick_next_task(rq);
dd41f596
IM
3729 if (p)
3730 return p;
3731 /*
3732 * Will never be NULL as the idle class always
3733 * returns a non-NULL p:
3734 */
3735 class = class->next;
3736 }
3737}
1da177e4 3738
dd41f596
IM
3739/*
3740 * schedule() is the main scheduler function.
3741 */
ff743345 3742asmlinkage void __sched schedule(void)
dd41f596
IM
3743{
3744 struct task_struct *prev, *next;
67ca7bde 3745 unsigned long *switch_count;
dd41f596 3746 struct rq *rq;
31656519 3747 int cpu;
dd41f596 3748
ff743345
PZ
3749need_resched:
3750 preempt_disable();
dd41f596
IM
3751 cpu = smp_processor_id();
3752 rq = cpu_rq(cpu);
25502a6c 3753 rcu_note_context_switch(cpu);
dd41f596 3754 prev = rq->curr;
dd41f596
IM
3755
3756 release_kernel_lock(prev);
3757need_resched_nonpreemptible:
3758
3759 schedule_debug(prev);
1da177e4 3760
31656519 3761 if (sched_feat(HRTICK))
f333fdc9 3762 hrtick_clear(rq);
8f4d37ec 3763
05fa785c 3764 raw_spin_lock_irq(&rq->lock);
1e819950 3765 clear_tsk_need_resched(prev);
1da177e4 3766
246d86b5 3767 switch_count = &prev->nivcsw;
1da177e4 3768 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3769 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3770 prev->state = TASK_RUNNING;
21aa9af0
TH
3771 } else {
3772 /*
3773 * If a worker is going to sleep, notify and
3774 * ask workqueue whether it wants to wake up a
3775 * task to maintain concurrency. If so, wake
3776 * up the task.
3777 */
3778 if (prev->flags & PF_WQ_WORKER) {
3779 struct task_struct *to_wakeup;
3780
3781 to_wakeup = wq_worker_sleeping(prev, cpu);
3782 if (to_wakeup)
3783 try_to_wake_up_local(to_wakeup);
3784 }
371fd7e7 3785 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3786 }
dd41f596 3787 switch_count = &prev->nvcsw;
1da177e4
LT
3788 }
3789
3f029d3c 3790 pre_schedule(rq, prev);
f65eda4f 3791
dd41f596 3792 if (unlikely(!rq->nr_running))
1da177e4 3793 idle_balance(cpu, rq);
1da177e4 3794
df1c99d4 3795 put_prev_task(rq, prev);
b67802ea 3796 next = pick_next_task(rq);
1da177e4 3797
1da177e4 3798 if (likely(prev != next)) {
673a90a1 3799 sched_info_switch(prev, next);
49f47433 3800 perf_event_task_sched_out(prev, next);
673a90a1 3801
1da177e4
LT
3802 rq->nr_switches++;
3803 rq->curr = next;
3804 ++*switch_count;
3805
dd41f596 3806 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3807 /*
246d86b5
ON
3808 * The context switch have flipped the stack from under us
3809 * and restored the local variables which were saved when
3810 * this task called schedule() in the past. prev == current
3811 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3812 */
3813 cpu = smp_processor_id();
3814 rq = cpu_rq(cpu);
1da177e4 3815 } else
05fa785c 3816 raw_spin_unlock_irq(&rq->lock);
1da177e4 3817
3f029d3c 3818 post_schedule(rq);
1da177e4 3819
246d86b5 3820 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3821 goto need_resched_nonpreemptible;
8f4d37ec 3822
1da177e4 3823 preempt_enable_no_resched();
ff743345 3824 if (need_resched())
1da177e4
LT
3825 goto need_resched;
3826}
1da177e4
LT
3827EXPORT_SYMBOL(schedule);
3828
c08f7829 3829#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3830/*
3831 * Look out! "owner" is an entirely speculative pointer
3832 * access and not reliable.
3833 */
3834int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3835{
3836 unsigned int cpu;
3837 struct rq *rq;
3838
3839 if (!sched_feat(OWNER_SPIN))
3840 return 0;
3841
3842#ifdef CONFIG_DEBUG_PAGEALLOC
3843 /*
3844 * Need to access the cpu field knowing that
3845 * DEBUG_PAGEALLOC could have unmapped it if
3846 * the mutex owner just released it and exited.
3847 */
3848 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3849 return 0;
0d66bf6d
PZ
3850#else
3851 cpu = owner->cpu;
3852#endif
3853
3854 /*
3855 * Even if the access succeeded (likely case),
3856 * the cpu field may no longer be valid.
3857 */
3858 if (cpu >= nr_cpumask_bits)
4b402210 3859 return 0;
0d66bf6d
PZ
3860
3861 /*
3862 * We need to validate that we can do a
3863 * get_cpu() and that we have the percpu area.
3864 */
3865 if (!cpu_online(cpu))
4b402210 3866 return 0;
0d66bf6d
PZ
3867
3868 rq = cpu_rq(cpu);
3869
3870 for (;;) {
3871 /*
3872 * Owner changed, break to re-assess state.
3873 */
9d0f4dcc
TC
3874 if (lock->owner != owner) {
3875 /*
3876 * If the lock has switched to a different owner,
3877 * we likely have heavy contention. Return 0 to quit
3878 * optimistic spinning and not contend further:
3879 */
3880 if (lock->owner)
3881 return 0;
0d66bf6d 3882 break;
9d0f4dcc 3883 }
0d66bf6d
PZ
3884
3885 /*
3886 * Is that owner really running on that cpu?
3887 */
3888 if (task_thread_info(rq->curr) != owner || need_resched())
3889 return 0;
3890
3891 cpu_relax();
3892 }
4b402210 3893
0d66bf6d
PZ
3894 return 1;
3895}
3896#endif
3897
1da177e4
LT
3898#ifdef CONFIG_PREEMPT
3899/*
2ed6e34f 3900 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3901 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3902 * occur there and call schedule directly.
3903 */
d1f74e20 3904asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3905{
3906 struct thread_info *ti = current_thread_info();
6478d880 3907
1da177e4
LT
3908 /*
3909 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3910 * we do not want to preempt the current task. Just return..
1da177e4 3911 */
beed33a8 3912 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3913 return;
3914
3a5c359a 3915 do {
d1f74e20 3916 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3917 schedule();
d1f74e20 3918 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3919
3a5c359a
AK
3920 /*
3921 * Check again in case we missed a preemption opportunity
3922 * between schedule and now.
3923 */
3924 barrier();
5ed0cec0 3925 } while (need_resched());
1da177e4 3926}
1da177e4
LT
3927EXPORT_SYMBOL(preempt_schedule);
3928
3929/*
2ed6e34f 3930 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3931 * off of irq context.
3932 * Note, that this is called and return with irqs disabled. This will
3933 * protect us against recursive calling from irq.
3934 */
3935asmlinkage void __sched preempt_schedule_irq(void)
3936{
3937 struct thread_info *ti = current_thread_info();
6478d880 3938
2ed6e34f 3939 /* Catch callers which need to be fixed */
1da177e4
LT
3940 BUG_ON(ti->preempt_count || !irqs_disabled());
3941
3a5c359a
AK
3942 do {
3943 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3944 local_irq_enable();
3945 schedule();
3946 local_irq_disable();
3a5c359a 3947 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3948
3a5c359a
AK
3949 /*
3950 * Check again in case we missed a preemption opportunity
3951 * between schedule and now.
3952 */
3953 barrier();
5ed0cec0 3954 } while (need_resched());
1da177e4
LT
3955}
3956
3957#endif /* CONFIG_PREEMPT */
3958
63859d4f 3959int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3960 void *key)
1da177e4 3961{
63859d4f 3962 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3963}
1da177e4
LT
3964EXPORT_SYMBOL(default_wake_function);
3965
3966/*
41a2d6cf
IM
3967 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3968 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3969 * number) then we wake all the non-exclusive tasks and one exclusive task.
3970 *
3971 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3972 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3973 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3974 */
78ddb08f 3975static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3976 int nr_exclusive, int wake_flags, void *key)
1da177e4 3977{
2e45874c 3978 wait_queue_t *curr, *next;
1da177e4 3979
2e45874c 3980 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3981 unsigned flags = curr->flags;
3982
63859d4f 3983 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3984 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3985 break;
3986 }
3987}
3988
3989/**
3990 * __wake_up - wake up threads blocked on a waitqueue.
3991 * @q: the waitqueue
3992 * @mode: which threads
3993 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3994 * @key: is directly passed to the wakeup function
50fa610a
DH
3995 *
3996 * It may be assumed that this function implies a write memory barrier before
3997 * changing the task state if and only if any tasks are woken up.
1da177e4 3998 */
7ad5b3a5 3999void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4000 int nr_exclusive, void *key)
1da177e4
LT
4001{
4002 unsigned long flags;
4003
4004 spin_lock_irqsave(&q->lock, flags);
4005 __wake_up_common(q, mode, nr_exclusive, 0, key);
4006 spin_unlock_irqrestore(&q->lock, flags);
4007}
1da177e4
LT
4008EXPORT_SYMBOL(__wake_up);
4009
4010/*
4011 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4012 */
7ad5b3a5 4013void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4014{
4015 __wake_up_common(q, mode, 1, 0, NULL);
4016}
22c43c81 4017EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4018
4ede816a
DL
4019void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4020{
4021 __wake_up_common(q, mode, 1, 0, key);
4022}
4023
1da177e4 4024/**
4ede816a 4025 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4026 * @q: the waitqueue
4027 * @mode: which threads
4028 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4029 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4030 *
4031 * The sync wakeup differs that the waker knows that it will schedule
4032 * away soon, so while the target thread will be woken up, it will not
4033 * be migrated to another CPU - ie. the two threads are 'synchronized'
4034 * with each other. This can prevent needless bouncing between CPUs.
4035 *
4036 * On UP it can prevent extra preemption.
50fa610a
DH
4037 *
4038 * It may be assumed that this function implies a write memory barrier before
4039 * changing the task state if and only if any tasks are woken up.
1da177e4 4040 */
4ede816a
DL
4041void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4042 int nr_exclusive, void *key)
1da177e4
LT
4043{
4044 unsigned long flags;
7d478721 4045 int wake_flags = WF_SYNC;
1da177e4
LT
4046
4047 if (unlikely(!q))
4048 return;
4049
4050 if (unlikely(!nr_exclusive))
7d478721 4051 wake_flags = 0;
1da177e4
LT
4052
4053 spin_lock_irqsave(&q->lock, flags);
7d478721 4054 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4055 spin_unlock_irqrestore(&q->lock, flags);
4056}
4ede816a
DL
4057EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4058
4059/*
4060 * __wake_up_sync - see __wake_up_sync_key()
4061 */
4062void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4063{
4064 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4065}
1da177e4
LT
4066EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4067
65eb3dc6
KD
4068/**
4069 * complete: - signals a single thread waiting on this completion
4070 * @x: holds the state of this particular completion
4071 *
4072 * This will wake up a single thread waiting on this completion. Threads will be
4073 * awakened in the same order in which they were queued.
4074 *
4075 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4076 *
4077 * It may be assumed that this function implies a write memory barrier before
4078 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4079 */
b15136e9 4080void complete(struct completion *x)
1da177e4
LT
4081{
4082 unsigned long flags;
4083
4084 spin_lock_irqsave(&x->wait.lock, flags);
4085 x->done++;
d9514f6c 4086 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4087 spin_unlock_irqrestore(&x->wait.lock, flags);
4088}
4089EXPORT_SYMBOL(complete);
4090
65eb3dc6
KD
4091/**
4092 * complete_all: - signals all threads waiting on this completion
4093 * @x: holds the state of this particular completion
4094 *
4095 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4096 *
4097 * It may be assumed that this function implies a write memory barrier before
4098 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4099 */
b15136e9 4100void complete_all(struct completion *x)
1da177e4
LT
4101{
4102 unsigned long flags;
4103
4104 spin_lock_irqsave(&x->wait.lock, flags);
4105 x->done += UINT_MAX/2;
d9514f6c 4106 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4107 spin_unlock_irqrestore(&x->wait.lock, flags);
4108}
4109EXPORT_SYMBOL(complete_all);
4110
8cbbe86d
AK
4111static inline long __sched
4112do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4113{
1da177e4
LT
4114 if (!x->done) {
4115 DECLARE_WAITQUEUE(wait, current);
4116
a93d2f17 4117 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4118 do {
94d3d824 4119 if (signal_pending_state(state, current)) {
ea71a546
ON
4120 timeout = -ERESTARTSYS;
4121 break;
8cbbe86d
AK
4122 }
4123 __set_current_state(state);
1da177e4
LT
4124 spin_unlock_irq(&x->wait.lock);
4125 timeout = schedule_timeout(timeout);
4126 spin_lock_irq(&x->wait.lock);
ea71a546 4127 } while (!x->done && timeout);
1da177e4 4128 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4129 if (!x->done)
4130 return timeout;
1da177e4
LT
4131 }
4132 x->done--;
ea71a546 4133 return timeout ?: 1;
1da177e4 4134}
1da177e4 4135
8cbbe86d
AK
4136static long __sched
4137wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4138{
1da177e4
LT
4139 might_sleep();
4140
4141 spin_lock_irq(&x->wait.lock);
8cbbe86d 4142 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4143 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4144 return timeout;
4145}
1da177e4 4146
65eb3dc6
KD
4147/**
4148 * wait_for_completion: - waits for completion of a task
4149 * @x: holds the state of this particular completion
4150 *
4151 * This waits to be signaled for completion of a specific task. It is NOT
4152 * interruptible and there is no timeout.
4153 *
4154 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4155 * and interrupt capability. Also see complete().
4156 */
b15136e9 4157void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4158{
4159 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4160}
8cbbe86d 4161EXPORT_SYMBOL(wait_for_completion);
1da177e4 4162
65eb3dc6
KD
4163/**
4164 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4165 * @x: holds the state of this particular completion
4166 * @timeout: timeout value in jiffies
4167 *
4168 * This waits for either a completion of a specific task to be signaled or for a
4169 * specified timeout to expire. The timeout is in jiffies. It is not
4170 * interruptible.
4171 */
b15136e9 4172unsigned long __sched
8cbbe86d 4173wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4174{
8cbbe86d 4175 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4176}
8cbbe86d 4177EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4178
65eb3dc6
KD
4179/**
4180 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4181 * @x: holds the state of this particular completion
4182 *
4183 * This waits for completion of a specific task to be signaled. It is
4184 * interruptible.
4185 */
8cbbe86d 4186int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4187{
51e97990
AK
4188 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4189 if (t == -ERESTARTSYS)
4190 return t;
4191 return 0;
0fec171c 4192}
8cbbe86d 4193EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4194
65eb3dc6
KD
4195/**
4196 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4197 * @x: holds the state of this particular completion
4198 * @timeout: timeout value in jiffies
4199 *
4200 * This waits for either a completion of a specific task to be signaled or for a
4201 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4202 */
b15136e9 4203unsigned long __sched
8cbbe86d
AK
4204wait_for_completion_interruptible_timeout(struct completion *x,
4205 unsigned long timeout)
0fec171c 4206{
8cbbe86d 4207 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4208}
8cbbe86d 4209EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4210
65eb3dc6
KD
4211/**
4212 * wait_for_completion_killable: - waits for completion of a task (killable)
4213 * @x: holds the state of this particular completion
4214 *
4215 * This waits to be signaled for completion of a specific task. It can be
4216 * interrupted by a kill signal.
4217 */
009e577e
MW
4218int __sched wait_for_completion_killable(struct completion *x)
4219{
4220 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4221 if (t == -ERESTARTSYS)
4222 return t;
4223 return 0;
4224}
4225EXPORT_SYMBOL(wait_for_completion_killable);
4226
0aa12fb4
SW
4227/**
4228 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4229 * @x: holds the state of this particular completion
4230 * @timeout: timeout value in jiffies
4231 *
4232 * This waits for either a completion of a specific task to be
4233 * signaled or for a specified timeout to expire. It can be
4234 * interrupted by a kill signal. The timeout is in jiffies.
4235 */
4236unsigned long __sched
4237wait_for_completion_killable_timeout(struct completion *x,
4238 unsigned long timeout)
4239{
4240 return wait_for_common(x, timeout, TASK_KILLABLE);
4241}
4242EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4243
be4de352
DC
4244/**
4245 * try_wait_for_completion - try to decrement a completion without blocking
4246 * @x: completion structure
4247 *
4248 * Returns: 0 if a decrement cannot be done without blocking
4249 * 1 if a decrement succeeded.
4250 *
4251 * If a completion is being used as a counting completion,
4252 * attempt to decrement the counter without blocking. This
4253 * enables us to avoid waiting if the resource the completion
4254 * is protecting is not available.
4255 */
4256bool try_wait_for_completion(struct completion *x)
4257{
7539a3b3 4258 unsigned long flags;
be4de352
DC
4259 int ret = 1;
4260
7539a3b3 4261 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4262 if (!x->done)
4263 ret = 0;
4264 else
4265 x->done--;
7539a3b3 4266 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4267 return ret;
4268}
4269EXPORT_SYMBOL(try_wait_for_completion);
4270
4271/**
4272 * completion_done - Test to see if a completion has any waiters
4273 * @x: completion structure
4274 *
4275 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4276 * 1 if there are no waiters.
4277 *
4278 */
4279bool completion_done(struct completion *x)
4280{
7539a3b3 4281 unsigned long flags;
be4de352
DC
4282 int ret = 1;
4283
7539a3b3 4284 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4285 if (!x->done)
4286 ret = 0;
7539a3b3 4287 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4288 return ret;
4289}
4290EXPORT_SYMBOL(completion_done);
4291
8cbbe86d
AK
4292static long __sched
4293sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4294{
0fec171c
IM
4295 unsigned long flags;
4296 wait_queue_t wait;
4297
4298 init_waitqueue_entry(&wait, current);
1da177e4 4299
8cbbe86d 4300 __set_current_state(state);
1da177e4 4301
8cbbe86d
AK
4302 spin_lock_irqsave(&q->lock, flags);
4303 __add_wait_queue(q, &wait);
4304 spin_unlock(&q->lock);
4305 timeout = schedule_timeout(timeout);
4306 spin_lock_irq(&q->lock);
4307 __remove_wait_queue(q, &wait);
4308 spin_unlock_irqrestore(&q->lock, flags);
4309
4310 return timeout;
4311}
4312
4313void __sched interruptible_sleep_on(wait_queue_head_t *q)
4314{
4315 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4316}
1da177e4
LT
4317EXPORT_SYMBOL(interruptible_sleep_on);
4318
0fec171c 4319long __sched
95cdf3b7 4320interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4321{
8cbbe86d 4322 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4323}
1da177e4
LT
4324EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4325
0fec171c 4326void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4327{
8cbbe86d 4328 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4329}
1da177e4
LT
4330EXPORT_SYMBOL(sleep_on);
4331
0fec171c 4332long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4333{
8cbbe86d 4334 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4335}
1da177e4
LT
4336EXPORT_SYMBOL(sleep_on_timeout);
4337
b29739f9
IM
4338#ifdef CONFIG_RT_MUTEXES
4339
4340/*
4341 * rt_mutex_setprio - set the current priority of a task
4342 * @p: task
4343 * @prio: prio value (kernel-internal form)
4344 *
4345 * This function changes the 'effective' priority of a task. It does
4346 * not touch ->normal_prio like __setscheduler().
4347 *
4348 * Used by the rt_mutex code to implement priority inheritance logic.
4349 */
36c8b586 4350void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4351{
4352 unsigned long flags;
83b699ed 4353 int oldprio, on_rq, running;
70b97a7f 4354 struct rq *rq;
83ab0aa0 4355 const struct sched_class *prev_class;
b29739f9
IM
4356
4357 BUG_ON(prio < 0 || prio > MAX_PRIO);
4358
4359 rq = task_rq_lock(p, &flags);
4360
d5f9f942 4361 oldprio = p->prio;
83ab0aa0 4362 prev_class = p->sched_class;
dd41f596 4363 on_rq = p->se.on_rq;
051a1d1a 4364 running = task_current(rq, p);
0e1f3483 4365 if (on_rq)
69be72c1 4366 dequeue_task(rq, p, 0);
0e1f3483
HS
4367 if (running)
4368 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4369
4370 if (rt_prio(prio))
4371 p->sched_class = &rt_sched_class;
4372 else
4373 p->sched_class = &fair_sched_class;
4374
b29739f9
IM
4375 p->prio = prio;
4376
0e1f3483
HS
4377 if (running)
4378 p->sched_class->set_curr_task(rq);
dd41f596 4379 if (on_rq) {
371fd7e7 4380 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4381
4382 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4383 }
4384 task_rq_unlock(rq, &flags);
4385}
4386
4387#endif
4388
36c8b586 4389void set_user_nice(struct task_struct *p, long nice)
1da177e4 4390{
dd41f596 4391 int old_prio, delta, on_rq;
1da177e4 4392 unsigned long flags;
70b97a7f 4393 struct rq *rq;
1da177e4
LT
4394
4395 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4396 return;
4397 /*
4398 * We have to be careful, if called from sys_setpriority(),
4399 * the task might be in the middle of scheduling on another CPU.
4400 */
4401 rq = task_rq_lock(p, &flags);
4402 /*
4403 * The RT priorities are set via sched_setscheduler(), but we still
4404 * allow the 'normal' nice value to be set - but as expected
4405 * it wont have any effect on scheduling until the task is
dd41f596 4406 * SCHED_FIFO/SCHED_RR:
1da177e4 4407 */
e05606d3 4408 if (task_has_rt_policy(p)) {
1da177e4
LT
4409 p->static_prio = NICE_TO_PRIO(nice);
4410 goto out_unlock;
4411 }
dd41f596 4412 on_rq = p->se.on_rq;
c09595f6 4413 if (on_rq)
69be72c1 4414 dequeue_task(rq, p, 0);
1da177e4 4415
1da177e4 4416 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4417 set_load_weight(p);
b29739f9
IM
4418 old_prio = p->prio;
4419 p->prio = effective_prio(p);
4420 delta = p->prio - old_prio;
1da177e4 4421
dd41f596 4422 if (on_rq) {
371fd7e7 4423 enqueue_task(rq, p, 0);
1da177e4 4424 /*
d5f9f942
AM
4425 * If the task increased its priority or is running and
4426 * lowered its priority, then reschedule its CPU:
1da177e4 4427 */
d5f9f942 4428 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4429 resched_task(rq->curr);
4430 }
4431out_unlock:
4432 task_rq_unlock(rq, &flags);
4433}
1da177e4
LT
4434EXPORT_SYMBOL(set_user_nice);
4435
e43379f1
MM
4436/*
4437 * can_nice - check if a task can reduce its nice value
4438 * @p: task
4439 * @nice: nice value
4440 */
36c8b586 4441int can_nice(const struct task_struct *p, const int nice)
e43379f1 4442{
024f4747
MM
4443 /* convert nice value [19,-20] to rlimit style value [1,40] */
4444 int nice_rlim = 20 - nice;
48f24c4d 4445
78d7d407 4446 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4447 capable(CAP_SYS_NICE));
4448}
4449
1da177e4
LT
4450#ifdef __ARCH_WANT_SYS_NICE
4451
4452/*
4453 * sys_nice - change the priority of the current process.
4454 * @increment: priority increment
4455 *
4456 * sys_setpriority is a more generic, but much slower function that
4457 * does similar things.
4458 */
5add95d4 4459SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4460{
48f24c4d 4461 long nice, retval;
1da177e4
LT
4462
4463 /*
4464 * Setpriority might change our priority at the same moment.
4465 * We don't have to worry. Conceptually one call occurs first
4466 * and we have a single winner.
4467 */
e43379f1
MM
4468 if (increment < -40)
4469 increment = -40;
1da177e4
LT
4470 if (increment > 40)
4471 increment = 40;
4472
2b8f836f 4473 nice = TASK_NICE(current) + increment;
1da177e4
LT
4474 if (nice < -20)
4475 nice = -20;
4476 if (nice > 19)
4477 nice = 19;
4478
e43379f1
MM
4479 if (increment < 0 && !can_nice(current, nice))
4480 return -EPERM;
4481
1da177e4
LT
4482 retval = security_task_setnice(current, nice);
4483 if (retval)
4484 return retval;
4485
4486 set_user_nice(current, nice);
4487 return 0;
4488}
4489
4490#endif
4491
4492/**
4493 * task_prio - return the priority value of a given task.
4494 * @p: the task in question.
4495 *
4496 * This is the priority value as seen by users in /proc.
4497 * RT tasks are offset by -200. Normal tasks are centered
4498 * around 0, value goes from -16 to +15.
4499 */
36c8b586 4500int task_prio(const struct task_struct *p)
1da177e4
LT
4501{
4502 return p->prio - MAX_RT_PRIO;
4503}
4504
4505/**
4506 * task_nice - return the nice value of a given task.
4507 * @p: the task in question.
4508 */
36c8b586 4509int task_nice(const struct task_struct *p)
1da177e4
LT
4510{
4511 return TASK_NICE(p);
4512}
150d8bed 4513EXPORT_SYMBOL(task_nice);
1da177e4
LT
4514
4515/**
4516 * idle_cpu - is a given cpu idle currently?
4517 * @cpu: the processor in question.
4518 */
4519int idle_cpu(int cpu)
4520{
4521 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4522}
4523
1da177e4
LT
4524/**
4525 * idle_task - return the idle task for a given cpu.
4526 * @cpu: the processor in question.
4527 */
36c8b586 4528struct task_struct *idle_task(int cpu)
1da177e4
LT
4529{
4530 return cpu_rq(cpu)->idle;
4531}
4532
4533/**
4534 * find_process_by_pid - find a process with a matching PID value.
4535 * @pid: the pid in question.
4536 */
a9957449 4537static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4538{
228ebcbe 4539 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4540}
4541
4542/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4543static void
4544__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4545{
dd41f596 4546 BUG_ON(p->se.on_rq);
48f24c4d 4547
1da177e4
LT
4548 p->policy = policy;
4549 p->rt_priority = prio;
b29739f9
IM
4550 p->normal_prio = normal_prio(p);
4551 /* we are holding p->pi_lock already */
4552 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4553 if (rt_prio(p->prio))
4554 p->sched_class = &rt_sched_class;
4555 else
4556 p->sched_class = &fair_sched_class;
2dd73a4f 4557 set_load_weight(p);
1da177e4
LT
4558}
4559
c69e8d9c
DH
4560/*
4561 * check the target process has a UID that matches the current process's
4562 */
4563static bool check_same_owner(struct task_struct *p)
4564{
4565 const struct cred *cred = current_cred(), *pcred;
4566 bool match;
4567
4568 rcu_read_lock();
4569 pcred = __task_cred(p);
4570 match = (cred->euid == pcred->euid ||
4571 cred->euid == pcred->uid);
4572 rcu_read_unlock();
4573 return match;
4574}
4575
961ccddd
RR
4576static int __sched_setscheduler(struct task_struct *p, int policy,
4577 struct sched_param *param, bool user)
1da177e4 4578{
83b699ed 4579 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4580 unsigned long flags;
83ab0aa0 4581 const struct sched_class *prev_class;
70b97a7f 4582 struct rq *rq;
ca94c442 4583 int reset_on_fork;
1da177e4 4584
66e5393a
SR
4585 /* may grab non-irq protected spin_locks */
4586 BUG_ON(in_interrupt());
1da177e4
LT
4587recheck:
4588 /* double check policy once rq lock held */
ca94c442
LP
4589 if (policy < 0) {
4590 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4591 policy = oldpolicy = p->policy;
ca94c442
LP
4592 } else {
4593 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4594 policy &= ~SCHED_RESET_ON_FORK;
4595
4596 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4597 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4598 policy != SCHED_IDLE)
4599 return -EINVAL;
4600 }
4601
1da177e4
LT
4602 /*
4603 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4604 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4605 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4606 */
4607 if (param->sched_priority < 0 ||
95cdf3b7 4608 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4609 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4610 return -EINVAL;
e05606d3 4611 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4612 return -EINVAL;
4613
37e4ab3f
OC
4614 /*
4615 * Allow unprivileged RT tasks to decrease priority:
4616 */
961ccddd 4617 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4618 if (rt_policy(policy)) {
a44702e8
ON
4619 unsigned long rlim_rtprio =
4620 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4621
4622 /* can't set/change the rt policy */
4623 if (policy != p->policy && !rlim_rtprio)
4624 return -EPERM;
4625
4626 /* can't increase priority */
4627 if (param->sched_priority > p->rt_priority &&
4628 param->sched_priority > rlim_rtprio)
4629 return -EPERM;
4630 }
dd41f596
IM
4631 /*
4632 * Like positive nice levels, dont allow tasks to
4633 * move out of SCHED_IDLE either:
4634 */
4635 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4636 return -EPERM;
5fe1d75f 4637
37e4ab3f 4638 /* can't change other user's priorities */
c69e8d9c 4639 if (!check_same_owner(p))
37e4ab3f 4640 return -EPERM;
ca94c442
LP
4641
4642 /* Normal users shall not reset the sched_reset_on_fork flag */
4643 if (p->sched_reset_on_fork && !reset_on_fork)
4644 return -EPERM;
37e4ab3f 4645 }
1da177e4 4646
725aad24 4647 if (user) {
725aad24
JF
4648 retval = security_task_setscheduler(p, policy, param);
4649 if (retval)
4650 return retval;
4651 }
4652
b29739f9
IM
4653 /*
4654 * make sure no PI-waiters arrive (or leave) while we are
4655 * changing the priority of the task:
4656 */
1d615482 4657 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4658 /*
4659 * To be able to change p->policy safely, the apropriate
4660 * runqueue lock must be held.
4661 */
b29739f9 4662 rq = __task_rq_lock(p);
dc61b1d6
PZ
4663
4664#ifdef CONFIG_RT_GROUP_SCHED
4665 if (user) {
4666 /*
4667 * Do not allow realtime tasks into groups that have no runtime
4668 * assigned.
4669 */
4670 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4671 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4672 __task_rq_unlock(rq);
4673 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4674 return -EPERM;
4675 }
4676 }
4677#endif
4678
1da177e4
LT
4679 /* recheck policy now with rq lock held */
4680 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4681 policy = oldpolicy = -1;
b29739f9 4682 __task_rq_unlock(rq);
1d615482 4683 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4684 goto recheck;
4685 }
dd41f596 4686 on_rq = p->se.on_rq;
051a1d1a 4687 running = task_current(rq, p);
0e1f3483 4688 if (on_rq)
2e1cb74a 4689 deactivate_task(rq, p, 0);
0e1f3483
HS
4690 if (running)
4691 p->sched_class->put_prev_task(rq, p);
f6b53205 4692
ca94c442
LP
4693 p->sched_reset_on_fork = reset_on_fork;
4694
1da177e4 4695 oldprio = p->prio;
83ab0aa0 4696 prev_class = p->sched_class;
dd41f596 4697 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4698
0e1f3483
HS
4699 if (running)
4700 p->sched_class->set_curr_task(rq);
dd41f596
IM
4701 if (on_rq) {
4702 activate_task(rq, p, 0);
cb469845
SR
4703
4704 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4705 }
b29739f9 4706 __task_rq_unlock(rq);
1d615482 4707 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4708
95e02ca9
TG
4709 rt_mutex_adjust_pi(p);
4710
1da177e4
LT
4711 return 0;
4712}
961ccddd
RR
4713
4714/**
4715 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4716 * @p: the task in question.
4717 * @policy: new policy.
4718 * @param: structure containing the new RT priority.
4719 *
4720 * NOTE that the task may be already dead.
4721 */
4722int sched_setscheduler(struct task_struct *p, int policy,
4723 struct sched_param *param)
4724{
4725 return __sched_setscheduler(p, policy, param, true);
4726}
1da177e4
LT
4727EXPORT_SYMBOL_GPL(sched_setscheduler);
4728
961ccddd
RR
4729/**
4730 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4731 * @p: the task in question.
4732 * @policy: new policy.
4733 * @param: structure containing the new RT priority.
4734 *
4735 * Just like sched_setscheduler, only don't bother checking if the
4736 * current context has permission. For example, this is needed in
4737 * stop_machine(): we create temporary high priority worker threads,
4738 * but our caller might not have that capability.
4739 */
4740int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4741 struct sched_param *param)
4742{
4743 return __sched_setscheduler(p, policy, param, false);
4744}
4745
95cdf3b7
IM
4746static int
4747do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4748{
1da177e4
LT
4749 struct sched_param lparam;
4750 struct task_struct *p;
36c8b586 4751 int retval;
1da177e4
LT
4752
4753 if (!param || pid < 0)
4754 return -EINVAL;
4755 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4756 return -EFAULT;
5fe1d75f
ON
4757
4758 rcu_read_lock();
4759 retval = -ESRCH;
1da177e4 4760 p = find_process_by_pid(pid);
5fe1d75f
ON
4761 if (p != NULL)
4762 retval = sched_setscheduler(p, policy, &lparam);
4763 rcu_read_unlock();
36c8b586 4764
1da177e4
LT
4765 return retval;
4766}
4767
4768/**
4769 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4770 * @pid: the pid in question.
4771 * @policy: new policy.
4772 * @param: structure containing the new RT priority.
4773 */
5add95d4
HC
4774SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4775 struct sched_param __user *, param)
1da177e4 4776{
c21761f1
JB
4777 /* negative values for policy are not valid */
4778 if (policy < 0)
4779 return -EINVAL;
4780
1da177e4
LT
4781 return do_sched_setscheduler(pid, policy, param);
4782}
4783
4784/**
4785 * sys_sched_setparam - set/change the RT priority of a thread
4786 * @pid: the pid in question.
4787 * @param: structure containing the new RT priority.
4788 */
5add95d4 4789SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4790{
4791 return do_sched_setscheduler(pid, -1, param);
4792}
4793
4794/**
4795 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4796 * @pid: the pid in question.
4797 */
5add95d4 4798SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4799{
36c8b586 4800 struct task_struct *p;
3a5c359a 4801 int retval;
1da177e4
LT
4802
4803 if (pid < 0)
3a5c359a 4804 return -EINVAL;
1da177e4
LT
4805
4806 retval = -ESRCH;
5fe85be0 4807 rcu_read_lock();
1da177e4
LT
4808 p = find_process_by_pid(pid);
4809 if (p) {
4810 retval = security_task_getscheduler(p);
4811 if (!retval)
ca94c442
LP
4812 retval = p->policy
4813 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4814 }
5fe85be0 4815 rcu_read_unlock();
1da177e4
LT
4816 return retval;
4817}
4818
4819/**
ca94c442 4820 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4821 * @pid: the pid in question.
4822 * @param: structure containing the RT priority.
4823 */
5add95d4 4824SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4825{
4826 struct sched_param lp;
36c8b586 4827 struct task_struct *p;
3a5c359a 4828 int retval;
1da177e4
LT
4829
4830 if (!param || pid < 0)
3a5c359a 4831 return -EINVAL;
1da177e4 4832
5fe85be0 4833 rcu_read_lock();
1da177e4
LT
4834 p = find_process_by_pid(pid);
4835 retval = -ESRCH;
4836 if (!p)
4837 goto out_unlock;
4838
4839 retval = security_task_getscheduler(p);
4840 if (retval)
4841 goto out_unlock;
4842
4843 lp.sched_priority = p->rt_priority;
5fe85be0 4844 rcu_read_unlock();
1da177e4
LT
4845
4846 /*
4847 * This one might sleep, we cannot do it with a spinlock held ...
4848 */
4849 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4850
1da177e4
LT
4851 return retval;
4852
4853out_unlock:
5fe85be0 4854 rcu_read_unlock();
1da177e4
LT
4855 return retval;
4856}
4857
96f874e2 4858long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4859{
5a16f3d3 4860 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4861 struct task_struct *p;
4862 int retval;
1da177e4 4863
95402b38 4864 get_online_cpus();
23f5d142 4865 rcu_read_lock();
1da177e4
LT
4866
4867 p = find_process_by_pid(pid);
4868 if (!p) {
23f5d142 4869 rcu_read_unlock();
95402b38 4870 put_online_cpus();
1da177e4
LT
4871 return -ESRCH;
4872 }
4873
23f5d142 4874 /* Prevent p going away */
1da177e4 4875 get_task_struct(p);
23f5d142 4876 rcu_read_unlock();
1da177e4 4877
5a16f3d3
RR
4878 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4879 retval = -ENOMEM;
4880 goto out_put_task;
4881 }
4882 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4883 retval = -ENOMEM;
4884 goto out_free_cpus_allowed;
4885 }
1da177e4 4886 retval = -EPERM;
c69e8d9c 4887 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4888 goto out_unlock;
4889
e7834f8f
DQ
4890 retval = security_task_setscheduler(p, 0, NULL);
4891 if (retval)
4892 goto out_unlock;
4893
5a16f3d3
RR
4894 cpuset_cpus_allowed(p, cpus_allowed);
4895 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4896 again:
5a16f3d3 4897 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4898
8707d8b8 4899 if (!retval) {
5a16f3d3
RR
4900 cpuset_cpus_allowed(p, cpus_allowed);
4901 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4902 /*
4903 * We must have raced with a concurrent cpuset
4904 * update. Just reset the cpus_allowed to the
4905 * cpuset's cpus_allowed
4906 */
5a16f3d3 4907 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4908 goto again;
4909 }
4910 }
1da177e4 4911out_unlock:
5a16f3d3
RR
4912 free_cpumask_var(new_mask);
4913out_free_cpus_allowed:
4914 free_cpumask_var(cpus_allowed);
4915out_put_task:
1da177e4 4916 put_task_struct(p);
95402b38 4917 put_online_cpus();
1da177e4
LT
4918 return retval;
4919}
4920
4921static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4922 struct cpumask *new_mask)
1da177e4 4923{
96f874e2
RR
4924 if (len < cpumask_size())
4925 cpumask_clear(new_mask);
4926 else if (len > cpumask_size())
4927 len = cpumask_size();
4928
1da177e4
LT
4929 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4930}
4931
4932/**
4933 * sys_sched_setaffinity - set the cpu affinity of a process
4934 * @pid: pid of the process
4935 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4936 * @user_mask_ptr: user-space pointer to the new cpu mask
4937 */
5add95d4
HC
4938SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4939 unsigned long __user *, user_mask_ptr)
1da177e4 4940{
5a16f3d3 4941 cpumask_var_t new_mask;
1da177e4
LT
4942 int retval;
4943
5a16f3d3
RR
4944 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4945 return -ENOMEM;
1da177e4 4946
5a16f3d3
RR
4947 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4948 if (retval == 0)
4949 retval = sched_setaffinity(pid, new_mask);
4950 free_cpumask_var(new_mask);
4951 return retval;
1da177e4
LT
4952}
4953
96f874e2 4954long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4955{
36c8b586 4956 struct task_struct *p;
31605683
TG
4957 unsigned long flags;
4958 struct rq *rq;
1da177e4 4959 int retval;
1da177e4 4960
95402b38 4961 get_online_cpus();
23f5d142 4962 rcu_read_lock();
1da177e4
LT
4963
4964 retval = -ESRCH;
4965 p = find_process_by_pid(pid);
4966 if (!p)
4967 goto out_unlock;
4968
e7834f8f
DQ
4969 retval = security_task_getscheduler(p);
4970 if (retval)
4971 goto out_unlock;
4972
31605683 4973 rq = task_rq_lock(p, &flags);
96f874e2 4974 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4975 task_rq_unlock(rq, &flags);
1da177e4
LT
4976
4977out_unlock:
23f5d142 4978 rcu_read_unlock();
95402b38 4979 put_online_cpus();
1da177e4 4980
9531b62f 4981 return retval;
1da177e4
LT
4982}
4983
4984/**
4985 * sys_sched_getaffinity - get the cpu affinity of a process
4986 * @pid: pid of the process
4987 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4988 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4989 */
5add95d4
HC
4990SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4991 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4992{
4993 int ret;
f17c8607 4994 cpumask_var_t mask;
1da177e4 4995
84fba5ec 4996 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4997 return -EINVAL;
4998 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4999 return -EINVAL;
5000
f17c8607
RR
5001 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5002 return -ENOMEM;
1da177e4 5003
f17c8607
RR
5004 ret = sched_getaffinity(pid, mask);
5005 if (ret == 0) {
8bc037fb 5006 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5007
5008 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5009 ret = -EFAULT;
5010 else
cd3d8031 5011 ret = retlen;
f17c8607
RR
5012 }
5013 free_cpumask_var(mask);
1da177e4 5014
f17c8607 5015 return ret;
1da177e4
LT
5016}
5017
5018/**
5019 * sys_sched_yield - yield the current processor to other threads.
5020 *
dd41f596
IM
5021 * This function yields the current CPU to other tasks. If there are no
5022 * other threads running on this CPU then this function will return.
1da177e4 5023 */
5add95d4 5024SYSCALL_DEFINE0(sched_yield)
1da177e4 5025{
70b97a7f 5026 struct rq *rq = this_rq_lock();
1da177e4 5027
2d72376b 5028 schedstat_inc(rq, yld_count);
4530d7ab 5029 current->sched_class->yield_task(rq);
1da177e4
LT
5030
5031 /*
5032 * Since we are going to call schedule() anyway, there's
5033 * no need to preempt or enable interrupts:
5034 */
5035 __release(rq->lock);
8a25d5de 5036 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5037 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5038 preempt_enable_no_resched();
5039
5040 schedule();
5041
5042 return 0;
5043}
5044
d86ee480
PZ
5045static inline int should_resched(void)
5046{
5047 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5048}
5049
e7b38404 5050static void __cond_resched(void)
1da177e4 5051{
e7aaaa69
FW
5052 add_preempt_count(PREEMPT_ACTIVE);
5053 schedule();
5054 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5055}
5056
02b67cc3 5057int __sched _cond_resched(void)
1da177e4 5058{
d86ee480 5059 if (should_resched()) {
1da177e4
LT
5060 __cond_resched();
5061 return 1;
5062 }
5063 return 0;
5064}
02b67cc3 5065EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5066
5067/*
613afbf8 5068 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5069 * call schedule, and on return reacquire the lock.
5070 *
41a2d6cf 5071 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5072 * operations here to prevent schedule() from being called twice (once via
5073 * spin_unlock(), once by hand).
5074 */
613afbf8 5075int __cond_resched_lock(spinlock_t *lock)
1da177e4 5076{
d86ee480 5077 int resched = should_resched();
6df3cecb
JK
5078 int ret = 0;
5079
f607c668
PZ
5080 lockdep_assert_held(lock);
5081
95c354fe 5082 if (spin_needbreak(lock) || resched) {
1da177e4 5083 spin_unlock(lock);
d86ee480 5084 if (resched)
95c354fe
NP
5085 __cond_resched();
5086 else
5087 cpu_relax();
6df3cecb 5088 ret = 1;
1da177e4 5089 spin_lock(lock);
1da177e4 5090 }
6df3cecb 5091 return ret;
1da177e4 5092}
613afbf8 5093EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5094
613afbf8 5095int __sched __cond_resched_softirq(void)
1da177e4
LT
5096{
5097 BUG_ON(!in_softirq());
5098
d86ee480 5099 if (should_resched()) {
98d82567 5100 local_bh_enable();
1da177e4
LT
5101 __cond_resched();
5102 local_bh_disable();
5103 return 1;
5104 }
5105 return 0;
5106}
613afbf8 5107EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5108
1da177e4
LT
5109/**
5110 * yield - yield the current processor to other threads.
5111 *
72fd4a35 5112 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5113 * thread runnable and calls sys_sched_yield().
5114 */
5115void __sched yield(void)
5116{
5117 set_current_state(TASK_RUNNING);
5118 sys_sched_yield();
5119}
1da177e4
LT
5120EXPORT_SYMBOL(yield);
5121
5122/*
41a2d6cf 5123 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5124 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5125 */
5126void __sched io_schedule(void)
5127{
54d35f29 5128 struct rq *rq = raw_rq();
1da177e4 5129
0ff92245 5130 delayacct_blkio_start();
1da177e4 5131 atomic_inc(&rq->nr_iowait);
8f0dfc34 5132 current->in_iowait = 1;
1da177e4 5133 schedule();
8f0dfc34 5134 current->in_iowait = 0;
1da177e4 5135 atomic_dec(&rq->nr_iowait);
0ff92245 5136 delayacct_blkio_end();
1da177e4 5137}
1da177e4
LT
5138EXPORT_SYMBOL(io_schedule);
5139
5140long __sched io_schedule_timeout(long timeout)
5141{
54d35f29 5142 struct rq *rq = raw_rq();
1da177e4
LT
5143 long ret;
5144
0ff92245 5145 delayacct_blkio_start();
1da177e4 5146 atomic_inc(&rq->nr_iowait);
8f0dfc34 5147 current->in_iowait = 1;
1da177e4 5148 ret = schedule_timeout(timeout);
8f0dfc34 5149 current->in_iowait = 0;
1da177e4 5150 atomic_dec(&rq->nr_iowait);
0ff92245 5151 delayacct_blkio_end();
1da177e4
LT
5152 return ret;
5153}
5154
5155/**
5156 * sys_sched_get_priority_max - return maximum RT priority.
5157 * @policy: scheduling class.
5158 *
5159 * this syscall returns the maximum rt_priority that can be used
5160 * by a given scheduling class.
5161 */
5add95d4 5162SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5163{
5164 int ret = -EINVAL;
5165
5166 switch (policy) {
5167 case SCHED_FIFO:
5168 case SCHED_RR:
5169 ret = MAX_USER_RT_PRIO-1;
5170 break;
5171 case SCHED_NORMAL:
b0a9499c 5172 case SCHED_BATCH:
dd41f596 5173 case SCHED_IDLE:
1da177e4
LT
5174 ret = 0;
5175 break;
5176 }
5177 return ret;
5178}
5179
5180/**
5181 * sys_sched_get_priority_min - return minimum RT priority.
5182 * @policy: scheduling class.
5183 *
5184 * this syscall returns the minimum rt_priority that can be used
5185 * by a given scheduling class.
5186 */
5add95d4 5187SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5188{
5189 int ret = -EINVAL;
5190
5191 switch (policy) {
5192 case SCHED_FIFO:
5193 case SCHED_RR:
5194 ret = 1;
5195 break;
5196 case SCHED_NORMAL:
b0a9499c 5197 case SCHED_BATCH:
dd41f596 5198 case SCHED_IDLE:
1da177e4
LT
5199 ret = 0;
5200 }
5201 return ret;
5202}
5203
5204/**
5205 * sys_sched_rr_get_interval - return the default timeslice of a process.
5206 * @pid: pid of the process.
5207 * @interval: userspace pointer to the timeslice value.
5208 *
5209 * this syscall writes the default timeslice value of a given process
5210 * into the user-space timespec buffer. A value of '0' means infinity.
5211 */
17da2bd9 5212SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5213 struct timespec __user *, interval)
1da177e4 5214{
36c8b586 5215 struct task_struct *p;
a4ec24b4 5216 unsigned int time_slice;
dba091b9
TG
5217 unsigned long flags;
5218 struct rq *rq;
3a5c359a 5219 int retval;
1da177e4 5220 struct timespec t;
1da177e4
LT
5221
5222 if (pid < 0)
3a5c359a 5223 return -EINVAL;
1da177e4
LT
5224
5225 retval = -ESRCH;
1a551ae7 5226 rcu_read_lock();
1da177e4
LT
5227 p = find_process_by_pid(pid);
5228 if (!p)
5229 goto out_unlock;
5230
5231 retval = security_task_getscheduler(p);
5232 if (retval)
5233 goto out_unlock;
5234
dba091b9
TG
5235 rq = task_rq_lock(p, &flags);
5236 time_slice = p->sched_class->get_rr_interval(rq, p);
5237 task_rq_unlock(rq, &flags);
a4ec24b4 5238
1a551ae7 5239 rcu_read_unlock();
a4ec24b4 5240 jiffies_to_timespec(time_slice, &t);
1da177e4 5241 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5242 return retval;
3a5c359a 5243
1da177e4 5244out_unlock:
1a551ae7 5245 rcu_read_unlock();
1da177e4
LT
5246 return retval;
5247}
5248
7c731e0a 5249static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5250
82a1fcb9 5251void sched_show_task(struct task_struct *p)
1da177e4 5252{
1da177e4 5253 unsigned long free = 0;
36c8b586 5254 unsigned state;
1da177e4 5255
1da177e4 5256 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5257 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5258 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5259#if BITS_PER_LONG == 32
1da177e4 5260 if (state == TASK_RUNNING)
3df0fc5b 5261 printk(KERN_CONT " running ");
1da177e4 5262 else
3df0fc5b 5263 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5264#else
5265 if (state == TASK_RUNNING)
3df0fc5b 5266 printk(KERN_CONT " running task ");
1da177e4 5267 else
3df0fc5b 5268 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5269#endif
5270#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5271 free = stack_not_used(p);
1da177e4 5272#endif
3df0fc5b 5273 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5274 task_pid_nr(p), task_pid_nr(p->real_parent),
5275 (unsigned long)task_thread_info(p)->flags);
1da177e4 5276
5fb5e6de 5277 show_stack(p, NULL);
1da177e4
LT
5278}
5279
e59e2ae2 5280void show_state_filter(unsigned long state_filter)
1da177e4 5281{
36c8b586 5282 struct task_struct *g, *p;
1da177e4 5283
4bd77321 5284#if BITS_PER_LONG == 32
3df0fc5b
PZ
5285 printk(KERN_INFO
5286 " task PC stack pid father\n");
1da177e4 5287#else
3df0fc5b
PZ
5288 printk(KERN_INFO
5289 " task PC stack pid father\n");
1da177e4
LT
5290#endif
5291 read_lock(&tasklist_lock);
5292 do_each_thread(g, p) {
5293 /*
5294 * reset the NMI-timeout, listing all files on a slow
5295 * console might take alot of time:
5296 */
5297 touch_nmi_watchdog();
39bc89fd 5298 if (!state_filter || (p->state & state_filter))
82a1fcb9 5299 sched_show_task(p);
1da177e4
LT
5300 } while_each_thread(g, p);
5301
04c9167f
JF
5302 touch_all_softlockup_watchdogs();
5303
dd41f596
IM
5304#ifdef CONFIG_SCHED_DEBUG
5305 sysrq_sched_debug_show();
5306#endif
1da177e4 5307 read_unlock(&tasklist_lock);
e59e2ae2
IM
5308 /*
5309 * Only show locks if all tasks are dumped:
5310 */
93335a21 5311 if (!state_filter)
e59e2ae2 5312 debug_show_all_locks();
1da177e4
LT
5313}
5314
1df21055
IM
5315void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5316{
dd41f596 5317 idle->sched_class = &idle_sched_class;
1df21055
IM
5318}
5319
f340c0d1
IM
5320/**
5321 * init_idle - set up an idle thread for a given CPU
5322 * @idle: task in question
5323 * @cpu: cpu the idle task belongs to
5324 *
5325 * NOTE: this function does not set the idle thread's NEED_RESCHED
5326 * flag, to make booting more robust.
5327 */
5c1e1767 5328void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5329{
70b97a7f 5330 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5331 unsigned long flags;
5332
05fa785c 5333 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5334
dd41f596 5335 __sched_fork(idle);
06b83b5f 5336 idle->state = TASK_RUNNING;
dd41f596
IM
5337 idle->se.exec_start = sched_clock();
5338
96f874e2 5339 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5340 __set_task_cpu(idle, cpu);
1da177e4 5341
1da177e4 5342 rq->curr = rq->idle = idle;
4866cde0
NP
5343#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5344 idle->oncpu = 1;
5345#endif
05fa785c 5346 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5347
5348 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5349#if defined(CONFIG_PREEMPT)
5350 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5351#else
a1261f54 5352 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5353#endif
dd41f596
IM
5354 /*
5355 * The idle tasks have their own, simple scheduling class:
5356 */
5357 idle->sched_class = &idle_sched_class;
fb52607a 5358 ftrace_graph_init_task(idle);
1da177e4
LT
5359}
5360
5361/*
5362 * In a system that switches off the HZ timer nohz_cpu_mask
5363 * indicates which cpus entered this state. This is used
5364 * in the rcu update to wait only for active cpus. For system
5365 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5366 * always be CPU_BITS_NONE.
1da177e4 5367 */
6a7b3dc3 5368cpumask_var_t nohz_cpu_mask;
1da177e4 5369
19978ca6
IM
5370/*
5371 * Increase the granularity value when there are more CPUs,
5372 * because with more CPUs the 'effective latency' as visible
5373 * to users decreases. But the relationship is not linear,
5374 * so pick a second-best guess by going with the log2 of the
5375 * number of CPUs.
5376 *
5377 * This idea comes from the SD scheduler of Con Kolivas:
5378 */
acb4a848 5379static int get_update_sysctl_factor(void)
19978ca6 5380{
4ca3ef71 5381 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5382 unsigned int factor;
5383
5384 switch (sysctl_sched_tunable_scaling) {
5385 case SCHED_TUNABLESCALING_NONE:
5386 factor = 1;
5387 break;
5388 case SCHED_TUNABLESCALING_LINEAR:
5389 factor = cpus;
5390 break;
5391 case SCHED_TUNABLESCALING_LOG:
5392 default:
5393 factor = 1 + ilog2(cpus);
5394 break;
5395 }
19978ca6 5396
acb4a848
CE
5397 return factor;
5398}
19978ca6 5399
acb4a848
CE
5400static void update_sysctl(void)
5401{
5402 unsigned int factor = get_update_sysctl_factor();
19978ca6 5403
0bcdcf28
CE
5404#define SET_SYSCTL(name) \
5405 (sysctl_##name = (factor) * normalized_sysctl_##name)
5406 SET_SYSCTL(sched_min_granularity);
5407 SET_SYSCTL(sched_latency);
5408 SET_SYSCTL(sched_wakeup_granularity);
5409 SET_SYSCTL(sched_shares_ratelimit);
5410#undef SET_SYSCTL
5411}
55cd5340 5412
0bcdcf28
CE
5413static inline void sched_init_granularity(void)
5414{
5415 update_sysctl();
19978ca6
IM
5416}
5417
1da177e4
LT
5418#ifdef CONFIG_SMP
5419/*
5420 * This is how migration works:
5421 *
969c7921
TH
5422 * 1) we invoke migration_cpu_stop() on the target CPU using
5423 * stop_one_cpu().
5424 * 2) stopper starts to run (implicitly forcing the migrated thread
5425 * off the CPU)
5426 * 3) it checks whether the migrated task is still in the wrong runqueue.
5427 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5428 * it and puts it into the right queue.
969c7921
TH
5429 * 5) stopper completes and stop_one_cpu() returns and the migration
5430 * is done.
1da177e4
LT
5431 */
5432
5433/*
5434 * Change a given task's CPU affinity. Migrate the thread to a
5435 * proper CPU and schedule it away if the CPU it's executing on
5436 * is removed from the allowed bitmask.
5437 *
5438 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5439 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5440 * call is not atomic; no spinlocks may be held.
5441 */
96f874e2 5442int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5443{
5444 unsigned long flags;
70b97a7f 5445 struct rq *rq;
969c7921 5446 unsigned int dest_cpu;
48f24c4d 5447 int ret = 0;
1da177e4 5448
65cc8e48
PZ
5449 /*
5450 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5451 * drop the rq->lock and still rely on ->cpus_allowed.
5452 */
5453again:
5454 while (task_is_waking(p))
5455 cpu_relax();
1da177e4 5456 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5457 if (task_is_waking(p)) {
5458 task_rq_unlock(rq, &flags);
5459 goto again;
5460 }
e2912009 5461
6ad4c188 5462 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5463 ret = -EINVAL;
5464 goto out;
5465 }
5466
9985b0ba 5467 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5468 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5469 ret = -EINVAL;
5470 goto out;
5471 }
5472
73fe6aae 5473 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5474 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5475 else {
96f874e2
RR
5476 cpumask_copy(&p->cpus_allowed, new_mask);
5477 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5478 }
5479
1da177e4 5480 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5481 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5482 goto out;
5483
969c7921
TH
5484 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5485 if (migrate_task(p, dest_cpu)) {
5486 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5487 /* Need help from migration thread: drop lock and wait. */
5488 task_rq_unlock(rq, &flags);
969c7921 5489 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5490 tlb_migrate_finish(p->mm);
5491 return 0;
5492 }
5493out:
5494 task_rq_unlock(rq, &flags);
48f24c4d 5495
1da177e4
LT
5496 return ret;
5497}
cd8ba7cd 5498EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5499
5500/*
41a2d6cf 5501 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5502 * this because either it can't run here any more (set_cpus_allowed()
5503 * away from this CPU, or CPU going down), or because we're
5504 * attempting to rebalance this task on exec (sched_exec).
5505 *
5506 * So we race with normal scheduler movements, but that's OK, as long
5507 * as the task is no longer on this CPU.
efc30814
KK
5508 *
5509 * Returns non-zero if task was successfully migrated.
1da177e4 5510 */
efc30814 5511static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5512{
70b97a7f 5513 struct rq *rq_dest, *rq_src;
e2912009 5514 int ret = 0;
1da177e4 5515
e761b772 5516 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5517 return ret;
1da177e4
LT
5518
5519 rq_src = cpu_rq(src_cpu);
5520 rq_dest = cpu_rq(dest_cpu);
5521
5522 double_rq_lock(rq_src, rq_dest);
5523 /* Already moved. */
5524 if (task_cpu(p) != src_cpu)
b1e38734 5525 goto done;
1da177e4 5526 /* Affinity changed (again). */
96f874e2 5527 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5528 goto fail;
1da177e4 5529
e2912009
PZ
5530 /*
5531 * If we're not on a rq, the next wake-up will ensure we're
5532 * placed properly.
5533 */
5534 if (p->se.on_rq) {
2e1cb74a 5535 deactivate_task(rq_src, p, 0);
e2912009 5536 set_task_cpu(p, dest_cpu);
dd41f596 5537 activate_task(rq_dest, p, 0);
15afe09b 5538 check_preempt_curr(rq_dest, p, 0);
1da177e4 5539 }
b1e38734 5540done:
efc30814 5541 ret = 1;
b1e38734 5542fail:
1da177e4 5543 double_rq_unlock(rq_src, rq_dest);
efc30814 5544 return ret;
1da177e4
LT
5545}
5546
5547/*
969c7921
TH
5548 * migration_cpu_stop - this will be executed by a highprio stopper thread
5549 * and performs thread migration by bumping thread off CPU then
5550 * 'pushing' onto another runqueue.
1da177e4 5551 */
969c7921 5552static int migration_cpu_stop(void *data)
1da177e4 5553{
969c7921 5554 struct migration_arg *arg = data;
f7b4cddc 5555
969c7921
TH
5556 /*
5557 * The original target cpu might have gone down and we might
5558 * be on another cpu but it doesn't matter.
5559 */
f7b4cddc 5560 local_irq_disable();
969c7921 5561 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5562 local_irq_enable();
1da177e4 5563 return 0;
f7b4cddc
ON
5564}
5565
1da177e4 5566#ifdef CONFIG_HOTPLUG_CPU
054b9108 5567/*
3a4fa0a2 5568 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5569 */
6a1bdc1b 5570void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5571{
1445c08d
ON
5572 struct rq *rq = cpu_rq(dead_cpu);
5573 int needs_cpu, uninitialized_var(dest_cpu);
5574 unsigned long flags;
e76bd8d9 5575
1445c08d 5576 local_irq_save(flags);
e76bd8d9 5577
1445c08d
ON
5578 raw_spin_lock(&rq->lock);
5579 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5580 if (needs_cpu)
5581 dest_cpu = select_fallback_rq(dead_cpu, p);
5582 raw_spin_unlock(&rq->lock);
c1804d54
ON
5583 /*
5584 * It can only fail if we race with set_cpus_allowed(),
5585 * in the racer should migrate the task anyway.
5586 */
1445c08d 5587 if (needs_cpu)
c1804d54 5588 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5589 local_irq_restore(flags);
1da177e4
LT
5590}
5591
5592/*
5593 * While a dead CPU has no uninterruptible tasks queued at this point,
5594 * it might still have a nonzero ->nr_uninterruptible counter, because
5595 * for performance reasons the counter is not stricly tracking tasks to
5596 * their home CPUs. So we just add the counter to another CPU's counter,
5597 * to keep the global sum constant after CPU-down:
5598 */
70b97a7f 5599static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5600{
6ad4c188 5601 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5602 unsigned long flags;
5603
5604 local_irq_save(flags);
5605 double_rq_lock(rq_src, rq_dest);
5606 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5607 rq_src->nr_uninterruptible = 0;
5608 double_rq_unlock(rq_src, rq_dest);
5609 local_irq_restore(flags);
5610}
5611
5612/* Run through task list and migrate tasks from the dead cpu. */
5613static void migrate_live_tasks(int src_cpu)
5614{
48f24c4d 5615 struct task_struct *p, *t;
1da177e4 5616
f7b4cddc 5617 read_lock(&tasklist_lock);
1da177e4 5618
48f24c4d
IM
5619 do_each_thread(t, p) {
5620 if (p == current)
1da177e4
LT
5621 continue;
5622
48f24c4d
IM
5623 if (task_cpu(p) == src_cpu)
5624 move_task_off_dead_cpu(src_cpu, p);
5625 } while_each_thread(t, p);
1da177e4 5626
f7b4cddc 5627 read_unlock(&tasklist_lock);
1da177e4
LT
5628}
5629
dd41f596
IM
5630/*
5631 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5632 * It does so by boosting its priority to highest possible.
5633 * Used by CPU offline code.
1da177e4
LT
5634 */
5635void sched_idle_next(void)
5636{
48f24c4d 5637 int this_cpu = smp_processor_id();
70b97a7f 5638 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5639 struct task_struct *p = rq->idle;
5640 unsigned long flags;
5641
5642 /* cpu has to be offline */
48f24c4d 5643 BUG_ON(cpu_online(this_cpu));
1da177e4 5644
48f24c4d
IM
5645 /*
5646 * Strictly not necessary since rest of the CPUs are stopped by now
5647 * and interrupts disabled on the current cpu.
1da177e4 5648 */
05fa785c 5649 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5650
dd41f596 5651 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5652
94bc9a7b 5653 activate_task(rq, p, 0);
1da177e4 5654
05fa785c 5655 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5656}
5657
48f24c4d
IM
5658/*
5659 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5660 * offline.
5661 */
5662void idle_task_exit(void)
5663{
5664 struct mm_struct *mm = current->active_mm;
5665
5666 BUG_ON(cpu_online(smp_processor_id()));
5667
5668 if (mm != &init_mm)
5669 switch_mm(mm, &init_mm, current);
5670 mmdrop(mm);
5671}
5672
054b9108 5673/* called under rq->lock with disabled interrupts */
36c8b586 5674static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5675{
70b97a7f 5676 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5677
5678 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5679 BUG_ON(!p->exit_state);
1da177e4
LT
5680
5681 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5682 BUG_ON(p->state == TASK_DEAD);
1da177e4 5683
48f24c4d 5684 get_task_struct(p);
1da177e4
LT
5685
5686 /*
5687 * Drop lock around migration; if someone else moves it,
41a2d6cf 5688 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5689 * fine.
5690 */
05fa785c 5691 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5692 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5693 raw_spin_lock_irq(&rq->lock);
1da177e4 5694
48f24c4d 5695 put_task_struct(p);
1da177e4
LT
5696}
5697
5698/* release_task() removes task from tasklist, so we won't find dead tasks. */
5699static void migrate_dead_tasks(unsigned int dead_cpu)
5700{
70b97a7f 5701 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5702 struct task_struct *next;
48f24c4d 5703
dd41f596
IM
5704 for ( ; ; ) {
5705 if (!rq->nr_running)
5706 break;
b67802ea 5707 next = pick_next_task(rq);
dd41f596
IM
5708 if (!next)
5709 break;
79c53799 5710 next->sched_class->put_prev_task(rq, next);
dd41f596 5711 migrate_dead(dead_cpu, next);
e692ab53 5712
1da177e4
LT
5713 }
5714}
dce48a84
TG
5715
5716/*
5717 * remove the tasks which were accounted by rq from calc_load_tasks.
5718 */
5719static void calc_global_load_remove(struct rq *rq)
5720{
5721 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5722 rq->calc_load_active = 0;
dce48a84 5723}
1da177e4
LT
5724#endif /* CONFIG_HOTPLUG_CPU */
5725
e692ab53
NP
5726#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5727
5728static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5729 {
5730 .procname = "sched_domain",
c57baf1e 5731 .mode = 0555,
e0361851 5732 },
56992309 5733 {}
e692ab53
NP
5734};
5735
5736static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5737 {
5738 .procname = "kernel",
c57baf1e 5739 .mode = 0555,
e0361851
AD
5740 .child = sd_ctl_dir,
5741 },
56992309 5742 {}
e692ab53
NP
5743};
5744
5745static struct ctl_table *sd_alloc_ctl_entry(int n)
5746{
5747 struct ctl_table *entry =
5cf9f062 5748 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5749
e692ab53
NP
5750 return entry;
5751}
5752
6382bc90
MM
5753static void sd_free_ctl_entry(struct ctl_table **tablep)
5754{
cd790076 5755 struct ctl_table *entry;
6382bc90 5756
cd790076
MM
5757 /*
5758 * In the intermediate directories, both the child directory and
5759 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5760 * will always be set. In the lowest directory the names are
cd790076
MM
5761 * static strings and all have proc handlers.
5762 */
5763 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5764 if (entry->child)
5765 sd_free_ctl_entry(&entry->child);
cd790076
MM
5766 if (entry->proc_handler == NULL)
5767 kfree(entry->procname);
5768 }
6382bc90
MM
5769
5770 kfree(*tablep);
5771 *tablep = NULL;
5772}
5773
e692ab53 5774static void
e0361851 5775set_table_entry(struct ctl_table *entry,
e692ab53
NP
5776 const char *procname, void *data, int maxlen,
5777 mode_t mode, proc_handler *proc_handler)
5778{
e692ab53
NP
5779 entry->procname = procname;
5780 entry->data = data;
5781 entry->maxlen = maxlen;
5782 entry->mode = mode;
5783 entry->proc_handler = proc_handler;
5784}
5785
5786static struct ctl_table *
5787sd_alloc_ctl_domain_table(struct sched_domain *sd)
5788{
a5d8c348 5789 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5790
ad1cdc1d
MM
5791 if (table == NULL)
5792 return NULL;
5793
e0361851 5794 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5795 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5796 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5797 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5798 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5799 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5800 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5801 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5802 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5803 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5804 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5805 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5806 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5807 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5808 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5809 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5810 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5811 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5812 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5813 &sd->cache_nice_tries,
5814 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5815 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5816 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5817 set_table_entry(&table[11], "name", sd->name,
5818 CORENAME_MAX_SIZE, 0444, proc_dostring);
5819 /* &table[12] is terminator */
e692ab53
NP
5820
5821 return table;
5822}
5823
9a4e7159 5824static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5825{
5826 struct ctl_table *entry, *table;
5827 struct sched_domain *sd;
5828 int domain_num = 0, i;
5829 char buf[32];
5830
5831 for_each_domain(cpu, sd)
5832 domain_num++;
5833 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5834 if (table == NULL)
5835 return NULL;
e692ab53
NP
5836
5837 i = 0;
5838 for_each_domain(cpu, sd) {
5839 snprintf(buf, 32, "domain%d", i);
e692ab53 5840 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5841 entry->mode = 0555;
e692ab53
NP
5842 entry->child = sd_alloc_ctl_domain_table(sd);
5843 entry++;
5844 i++;
5845 }
5846 return table;
5847}
5848
5849static struct ctl_table_header *sd_sysctl_header;
6382bc90 5850static void register_sched_domain_sysctl(void)
e692ab53 5851{
6ad4c188 5852 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5853 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5854 char buf[32];
5855
7378547f
MM
5856 WARN_ON(sd_ctl_dir[0].child);
5857 sd_ctl_dir[0].child = entry;
5858
ad1cdc1d
MM
5859 if (entry == NULL)
5860 return;
5861
6ad4c188 5862 for_each_possible_cpu(i) {
e692ab53 5863 snprintf(buf, 32, "cpu%d", i);
e692ab53 5864 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5865 entry->mode = 0555;
e692ab53 5866 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5867 entry++;
e692ab53 5868 }
7378547f
MM
5869
5870 WARN_ON(sd_sysctl_header);
e692ab53
NP
5871 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5872}
6382bc90 5873
7378547f 5874/* may be called multiple times per register */
6382bc90
MM
5875static void unregister_sched_domain_sysctl(void)
5876{
7378547f
MM
5877 if (sd_sysctl_header)
5878 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5879 sd_sysctl_header = NULL;
7378547f
MM
5880 if (sd_ctl_dir[0].child)
5881 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5882}
e692ab53 5883#else
6382bc90
MM
5884static void register_sched_domain_sysctl(void)
5885{
5886}
5887static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5888{
5889}
5890#endif
5891
1f11eb6a
GH
5892static void set_rq_online(struct rq *rq)
5893{
5894 if (!rq->online) {
5895 const struct sched_class *class;
5896
c6c4927b 5897 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5898 rq->online = 1;
5899
5900 for_each_class(class) {
5901 if (class->rq_online)
5902 class->rq_online(rq);
5903 }
5904 }
5905}
5906
5907static void set_rq_offline(struct rq *rq)
5908{
5909 if (rq->online) {
5910 const struct sched_class *class;
5911
5912 for_each_class(class) {
5913 if (class->rq_offline)
5914 class->rq_offline(rq);
5915 }
5916
c6c4927b 5917 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5918 rq->online = 0;
5919 }
5920}
5921
1da177e4
LT
5922/*
5923 * migration_call - callback that gets triggered when a CPU is added.
5924 * Here we can start up the necessary migration thread for the new CPU.
5925 */
48f24c4d
IM
5926static int __cpuinit
5927migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5928{
48f24c4d 5929 int cpu = (long)hcpu;
1da177e4 5930 unsigned long flags;
969c7921 5931 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5932
5933 switch (action) {
5be9361c 5934
1da177e4 5935 case CPU_UP_PREPARE:
8bb78442 5936 case CPU_UP_PREPARE_FROZEN:
a468d389 5937 rq->calc_load_update = calc_load_update;
1da177e4 5938 break;
48f24c4d 5939
1da177e4 5940 case CPU_ONLINE:
8bb78442 5941 case CPU_ONLINE_FROZEN:
1f94ef59 5942 /* Update our root-domain */
05fa785c 5943 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5944 if (rq->rd) {
c6c4927b 5945 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5946
5947 set_rq_online(rq);
1f94ef59 5948 }
05fa785c 5949 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5950 break;
48f24c4d 5951
1da177e4 5952#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5953 case CPU_DEAD:
8bb78442 5954 case CPU_DEAD_FROZEN:
1da177e4 5955 migrate_live_tasks(cpu);
1da177e4 5956 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5957 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5958 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5959 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5960 rq->idle->sched_class = &idle_sched_class;
1da177e4 5961 migrate_dead_tasks(cpu);
05fa785c 5962 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5963 migrate_nr_uninterruptible(rq);
5964 BUG_ON(rq->nr_running != 0);
dce48a84 5965 calc_global_load_remove(rq);
1da177e4 5966 break;
57d885fe 5967
08f503b0
GH
5968 case CPU_DYING:
5969 case CPU_DYING_FROZEN:
57d885fe 5970 /* Update our root-domain */
05fa785c 5971 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5972 if (rq->rd) {
c6c4927b 5973 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5974 set_rq_offline(rq);
57d885fe 5975 }
05fa785c 5976 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5977 break;
1da177e4
LT
5978#endif
5979 }
5980 return NOTIFY_OK;
5981}
5982
f38b0820
PM
5983/*
5984 * Register at high priority so that task migration (migrate_all_tasks)
5985 * happens before everything else. This has to be lower priority than
cdd6c482 5986 * the notifier in the perf_event subsystem, though.
1da177e4 5987 */
26c2143b 5988static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5989 .notifier_call = migration_call,
50a323b7 5990 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5991};
5992
3a101d05
TH
5993static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5994 unsigned long action, void *hcpu)
5995{
5996 switch (action & ~CPU_TASKS_FROZEN) {
5997 case CPU_ONLINE:
5998 case CPU_DOWN_FAILED:
5999 set_cpu_active((long)hcpu, true);
6000 return NOTIFY_OK;
6001 default:
6002 return NOTIFY_DONE;
6003 }
6004}
6005
6006static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6007 unsigned long action, void *hcpu)
6008{
6009 switch (action & ~CPU_TASKS_FROZEN) {
6010 case CPU_DOWN_PREPARE:
6011 set_cpu_active((long)hcpu, false);
6012 return NOTIFY_OK;
6013 default:
6014 return NOTIFY_DONE;
6015 }
6016}
6017
7babe8db 6018static int __init migration_init(void)
1da177e4
LT
6019{
6020 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6021 int err;
48f24c4d 6022
3a101d05 6023 /* Initialize migration for the boot CPU */
07dccf33
AM
6024 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6025 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6026 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6027 register_cpu_notifier(&migration_notifier);
7babe8db 6028
3a101d05
TH
6029 /* Register cpu active notifiers */
6030 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6031 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6032
a004cd42 6033 return 0;
1da177e4 6034}
7babe8db 6035early_initcall(migration_init);
1da177e4
LT
6036#endif
6037
6038#ifdef CONFIG_SMP
476f3534 6039
3e9830dc 6040#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6041
f6630114
MT
6042static __read_mostly int sched_domain_debug_enabled;
6043
6044static int __init sched_domain_debug_setup(char *str)
6045{
6046 sched_domain_debug_enabled = 1;
6047
6048 return 0;
6049}
6050early_param("sched_debug", sched_domain_debug_setup);
6051
7c16ec58 6052static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6053 struct cpumask *groupmask)
1da177e4 6054{
4dcf6aff 6055 struct sched_group *group = sd->groups;
434d53b0 6056 char str[256];
1da177e4 6057
968ea6d8 6058 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6059 cpumask_clear(groupmask);
4dcf6aff
IM
6060
6061 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6062
6063 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6064 printk("does not load-balance\n");
4dcf6aff 6065 if (sd->parent)
3df0fc5b
PZ
6066 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6067 " has parent");
4dcf6aff 6068 return -1;
41c7ce9a
NP
6069 }
6070
3df0fc5b 6071 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6072
758b2cdc 6073 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6074 printk(KERN_ERR "ERROR: domain->span does not contain "
6075 "CPU%d\n", cpu);
4dcf6aff 6076 }
758b2cdc 6077 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6078 printk(KERN_ERR "ERROR: domain->groups does not contain"
6079 " CPU%d\n", cpu);
4dcf6aff 6080 }
1da177e4 6081
4dcf6aff 6082 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6083 do {
4dcf6aff 6084 if (!group) {
3df0fc5b
PZ
6085 printk("\n");
6086 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6087 break;
6088 }
6089
18a3885f 6090 if (!group->cpu_power) {
3df0fc5b
PZ
6091 printk(KERN_CONT "\n");
6092 printk(KERN_ERR "ERROR: domain->cpu_power not "
6093 "set\n");
4dcf6aff
IM
6094 break;
6095 }
1da177e4 6096
758b2cdc 6097 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6098 printk(KERN_CONT "\n");
6099 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6100 break;
6101 }
1da177e4 6102
758b2cdc 6103 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6104 printk(KERN_CONT "\n");
6105 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6106 break;
6107 }
1da177e4 6108
758b2cdc 6109 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6110
968ea6d8 6111 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6112
3df0fc5b 6113 printk(KERN_CONT " %s", str);
18a3885f 6114 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6115 printk(KERN_CONT " (cpu_power = %d)",
6116 group->cpu_power);
381512cf 6117 }
1da177e4 6118
4dcf6aff
IM
6119 group = group->next;
6120 } while (group != sd->groups);
3df0fc5b 6121 printk(KERN_CONT "\n");
1da177e4 6122
758b2cdc 6123 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6124 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6125
758b2cdc
RR
6126 if (sd->parent &&
6127 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6128 printk(KERN_ERR "ERROR: parent span is not a superset "
6129 "of domain->span\n");
4dcf6aff
IM
6130 return 0;
6131}
1da177e4 6132
4dcf6aff
IM
6133static void sched_domain_debug(struct sched_domain *sd, int cpu)
6134{
d5dd3db1 6135 cpumask_var_t groupmask;
4dcf6aff 6136 int level = 0;
1da177e4 6137
f6630114
MT
6138 if (!sched_domain_debug_enabled)
6139 return;
6140
4dcf6aff
IM
6141 if (!sd) {
6142 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6143 return;
6144 }
1da177e4 6145
4dcf6aff
IM
6146 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6147
d5dd3db1 6148 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6149 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6150 return;
6151 }
6152
4dcf6aff 6153 for (;;) {
7c16ec58 6154 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6155 break;
1da177e4
LT
6156 level++;
6157 sd = sd->parent;
33859f7f 6158 if (!sd)
4dcf6aff
IM
6159 break;
6160 }
d5dd3db1 6161 free_cpumask_var(groupmask);
1da177e4 6162}
6d6bc0ad 6163#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6164# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6165#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6166
1a20ff27 6167static int sd_degenerate(struct sched_domain *sd)
245af2c7 6168{
758b2cdc 6169 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6170 return 1;
6171
6172 /* Following flags need at least 2 groups */
6173 if (sd->flags & (SD_LOAD_BALANCE |
6174 SD_BALANCE_NEWIDLE |
6175 SD_BALANCE_FORK |
89c4710e
SS
6176 SD_BALANCE_EXEC |
6177 SD_SHARE_CPUPOWER |
6178 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6179 if (sd->groups != sd->groups->next)
6180 return 0;
6181 }
6182
6183 /* Following flags don't use groups */
c88d5910 6184 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6185 return 0;
6186
6187 return 1;
6188}
6189
48f24c4d
IM
6190static int
6191sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6192{
6193 unsigned long cflags = sd->flags, pflags = parent->flags;
6194
6195 if (sd_degenerate(parent))
6196 return 1;
6197
758b2cdc 6198 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6199 return 0;
6200
245af2c7
SS
6201 /* Flags needing groups don't count if only 1 group in parent */
6202 if (parent->groups == parent->groups->next) {
6203 pflags &= ~(SD_LOAD_BALANCE |
6204 SD_BALANCE_NEWIDLE |
6205 SD_BALANCE_FORK |
89c4710e
SS
6206 SD_BALANCE_EXEC |
6207 SD_SHARE_CPUPOWER |
6208 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6209 if (nr_node_ids == 1)
6210 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6211 }
6212 if (~cflags & pflags)
6213 return 0;
6214
6215 return 1;
6216}
6217
c6c4927b
RR
6218static void free_rootdomain(struct root_domain *rd)
6219{
047106ad
PZ
6220 synchronize_sched();
6221
68e74568
RR
6222 cpupri_cleanup(&rd->cpupri);
6223
c6c4927b
RR
6224 free_cpumask_var(rd->rto_mask);
6225 free_cpumask_var(rd->online);
6226 free_cpumask_var(rd->span);
6227 kfree(rd);
6228}
6229
57d885fe
GH
6230static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6231{
a0490fa3 6232 struct root_domain *old_rd = NULL;
57d885fe 6233 unsigned long flags;
57d885fe 6234
05fa785c 6235 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6236
6237 if (rq->rd) {
a0490fa3 6238 old_rd = rq->rd;
57d885fe 6239
c6c4927b 6240 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6241 set_rq_offline(rq);
57d885fe 6242
c6c4927b 6243 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6244
a0490fa3
IM
6245 /*
6246 * If we dont want to free the old_rt yet then
6247 * set old_rd to NULL to skip the freeing later
6248 * in this function:
6249 */
6250 if (!atomic_dec_and_test(&old_rd->refcount))
6251 old_rd = NULL;
57d885fe
GH
6252 }
6253
6254 atomic_inc(&rd->refcount);
6255 rq->rd = rd;
6256
c6c4927b 6257 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6258 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6259 set_rq_online(rq);
57d885fe 6260
05fa785c 6261 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6262
6263 if (old_rd)
6264 free_rootdomain(old_rd);
57d885fe
GH
6265}
6266
68c38fc3 6267static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6268{
6269 memset(rd, 0, sizeof(*rd));
6270
68c38fc3 6271 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6272 goto out;
68c38fc3 6273 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6274 goto free_span;
68c38fc3 6275 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6276 goto free_online;
6e0534f2 6277
68c38fc3 6278 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6279 goto free_rto_mask;
c6c4927b 6280 return 0;
6e0534f2 6281
68e74568
RR
6282free_rto_mask:
6283 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6284free_online:
6285 free_cpumask_var(rd->online);
6286free_span:
6287 free_cpumask_var(rd->span);
0c910d28 6288out:
c6c4927b 6289 return -ENOMEM;
57d885fe
GH
6290}
6291
6292static void init_defrootdomain(void)
6293{
68c38fc3 6294 init_rootdomain(&def_root_domain);
c6c4927b 6295
57d885fe
GH
6296 atomic_set(&def_root_domain.refcount, 1);
6297}
6298
dc938520 6299static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6300{
6301 struct root_domain *rd;
6302
6303 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6304 if (!rd)
6305 return NULL;
6306
68c38fc3 6307 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6308 kfree(rd);
6309 return NULL;
6310 }
57d885fe
GH
6311
6312 return rd;
6313}
6314
1da177e4 6315/*
0eab9146 6316 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6317 * hold the hotplug lock.
6318 */
0eab9146
IM
6319static void
6320cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6321{
70b97a7f 6322 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6323 struct sched_domain *tmp;
6324
669c55e9
PZ
6325 for (tmp = sd; tmp; tmp = tmp->parent)
6326 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6327
245af2c7 6328 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6329 for (tmp = sd; tmp; ) {
245af2c7
SS
6330 struct sched_domain *parent = tmp->parent;
6331 if (!parent)
6332 break;
f29c9b1c 6333
1a848870 6334 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6335 tmp->parent = parent->parent;
1a848870
SS
6336 if (parent->parent)
6337 parent->parent->child = tmp;
f29c9b1c
LZ
6338 } else
6339 tmp = tmp->parent;
245af2c7
SS
6340 }
6341
1a848870 6342 if (sd && sd_degenerate(sd)) {
245af2c7 6343 sd = sd->parent;
1a848870
SS
6344 if (sd)
6345 sd->child = NULL;
6346 }
1da177e4
LT
6347
6348 sched_domain_debug(sd, cpu);
6349
57d885fe 6350 rq_attach_root(rq, rd);
674311d5 6351 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6352}
6353
6354/* cpus with isolated domains */
dcc30a35 6355static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6356
6357/* Setup the mask of cpus configured for isolated domains */
6358static int __init isolated_cpu_setup(char *str)
6359{
bdddd296 6360 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6361 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6362 return 1;
6363}
6364
8927f494 6365__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6366
6367/*
6711cab4
SS
6368 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6369 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6370 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6371 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6372 *
6373 * init_sched_build_groups will build a circular linked list of the groups
6374 * covered by the given span, and will set each group's ->cpumask correctly,
6375 * and ->cpu_power to 0.
6376 */
a616058b 6377static void
96f874e2
RR
6378init_sched_build_groups(const struct cpumask *span,
6379 const struct cpumask *cpu_map,
6380 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6381 struct sched_group **sg,
96f874e2
RR
6382 struct cpumask *tmpmask),
6383 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6384{
6385 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6386 int i;
6387
96f874e2 6388 cpumask_clear(covered);
7c16ec58 6389
abcd083a 6390 for_each_cpu(i, span) {
6711cab4 6391 struct sched_group *sg;
7c16ec58 6392 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6393 int j;
6394
758b2cdc 6395 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6396 continue;
6397
758b2cdc 6398 cpumask_clear(sched_group_cpus(sg));
18a3885f 6399 sg->cpu_power = 0;
1da177e4 6400
abcd083a 6401 for_each_cpu(j, span) {
7c16ec58 6402 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6403 continue;
6404
96f874e2 6405 cpumask_set_cpu(j, covered);
758b2cdc 6406 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6407 }
6408 if (!first)
6409 first = sg;
6410 if (last)
6411 last->next = sg;
6412 last = sg;
6413 }
6414 last->next = first;
6415}
6416
9c1cfda2 6417#define SD_NODES_PER_DOMAIN 16
1da177e4 6418
9c1cfda2 6419#ifdef CONFIG_NUMA
198e2f18 6420
9c1cfda2
JH
6421/**
6422 * find_next_best_node - find the next node to include in a sched_domain
6423 * @node: node whose sched_domain we're building
6424 * @used_nodes: nodes already in the sched_domain
6425 *
41a2d6cf 6426 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6427 * finds the closest node not already in the @used_nodes map.
6428 *
6429 * Should use nodemask_t.
6430 */
c5f59f08 6431static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6432{
6433 int i, n, val, min_val, best_node = 0;
6434
6435 min_val = INT_MAX;
6436
076ac2af 6437 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6438 /* Start at @node */
076ac2af 6439 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6440
6441 if (!nr_cpus_node(n))
6442 continue;
6443
6444 /* Skip already used nodes */
c5f59f08 6445 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6446 continue;
6447
6448 /* Simple min distance search */
6449 val = node_distance(node, n);
6450
6451 if (val < min_val) {
6452 min_val = val;
6453 best_node = n;
6454 }
6455 }
6456
c5f59f08 6457 node_set(best_node, *used_nodes);
9c1cfda2
JH
6458 return best_node;
6459}
6460
6461/**
6462 * sched_domain_node_span - get a cpumask for a node's sched_domain
6463 * @node: node whose cpumask we're constructing
73486722 6464 * @span: resulting cpumask
9c1cfda2 6465 *
41a2d6cf 6466 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6467 * should be one that prevents unnecessary balancing, but also spreads tasks
6468 * out optimally.
6469 */
96f874e2 6470static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6471{
c5f59f08 6472 nodemask_t used_nodes;
48f24c4d 6473 int i;
9c1cfda2 6474
6ca09dfc 6475 cpumask_clear(span);
c5f59f08 6476 nodes_clear(used_nodes);
9c1cfda2 6477
6ca09dfc 6478 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6479 node_set(node, used_nodes);
9c1cfda2
JH
6480
6481 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6482 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6483
6ca09dfc 6484 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6485 }
9c1cfda2 6486}
6d6bc0ad 6487#endif /* CONFIG_NUMA */
9c1cfda2 6488
5c45bf27 6489int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6490
6c99e9ad
RR
6491/*
6492 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6493 *
6494 * ( See the the comments in include/linux/sched.h:struct sched_group
6495 * and struct sched_domain. )
6c99e9ad
RR
6496 */
6497struct static_sched_group {
6498 struct sched_group sg;
6499 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6500};
6501
6502struct static_sched_domain {
6503 struct sched_domain sd;
6504 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6505};
6506
49a02c51
AH
6507struct s_data {
6508#ifdef CONFIG_NUMA
6509 int sd_allnodes;
6510 cpumask_var_t domainspan;
6511 cpumask_var_t covered;
6512 cpumask_var_t notcovered;
6513#endif
6514 cpumask_var_t nodemask;
6515 cpumask_var_t this_sibling_map;
6516 cpumask_var_t this_core_map;
6517 cpumask_var_t send_covered;
6518 cpumask_var_t tmpmask;
6519 struct sched_group **sched_group_nodes;
6520 struct root_domain *rd;
6521};
6522
2109b99e
AH
6523enum s_alloc {
6524 sa_sched_groups = 0,
6525 sa_rootdomain,
6526 sa_tmpmask,
6527 sa_send_covered,
6528 sa_this_core_map,
6529 sa_this_sibling_map,
6530 sa_nodemask,
6531 sa_sched_group_nodes,
6532#ifdef CONFIG_NUMA
6533 sa_notcovered,
6534 sa_covered,
6535 sa_domainspan,
6536#endif
6537 sa_none,
6538};
6539
9c1cfda2 6540/*
48f24c4d 6541 * SMT sched-domains:
9c1cfda2 6542 */
1da177e4 6543#ifdef CONFIG_SCHED_SMT
6c99e9ad 6544static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6545static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6546
41a2d6cf 6547static int
96f874e2
RR
6548cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6549 struct sched_group **sg, struct cpumask *unused)
1da177e4 6550{
6711cab4 6551 if (sg)
1871e52c 6552 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6553 return cpu;
6554}
6d6bc0ad 6555#endif /* CONFIG_SCHED_SMT */
1da177e4 6556
48f24c4d
IM
6557/*
6558 * multi-core sched-domains:
6559 */
1e9f28fa 6560#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6561static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6562static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6563#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6564
6565#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6566static int
96f874e2
RR
6567cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6568 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6569{
6711cab4 6570 int group;
7c16ec58 6571
c69fc56d 6572 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6573 group = cpumask_first(mask);
6711cab4 6574 if (sg)
6c99e9ad 6575 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6576 return group;
1e9f28fa
SS
6577}
6578#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6579static int
96f874e2
RR
6580cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6581 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6582{
6711cab4 6583 if (sg)
6c99e9ad 6584 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6585 return cpu;
6586}
6587#endif
6588
6c99e9ad
RR
6589static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6590static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6591
41a2d6cf 6592static int
96f874e2
RR
6593cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6594 struct sched_group **sg, struct cpumask *mask)
1da177e4 6595{
6711cab4 6596 int group;
48f24c4d 6597#ifdef CONFIG_SCHED_MC
6ca09dfc 6598 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6599 group = cpumask_first(mask);
1e9f28fa 6600#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6601 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6602 group = cpumask_first(mask);
1da177e4 6603#else
6711cab4 6604 group = cpu;
1da177e4 6605#endif
6711cab4 6606 if (sg)
6c99e9ad 6607 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6608 return group;
1da177e4
LT
6609}
6610
6611#ifdef CONFIG_NUMA
1da177e4 6612/*
9c1cfda2
JH
6613 * The init_sched_build_groups can't handle what we want to do with node
6614 * groups, so roll our own. Now each node has its own list of groups which
6615 * gets dynamically allocated.
1da177e4 6616 */
62ea9ceb 6617static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6618static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6619
62ea9ceb 6620static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6621static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6622
96f874e2
RR
6623static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6624 struct sched_group **sg,
6625 struct cpumask *nodemask)
9c1cfda2 6626{
6711cab4
SS
6627 int group;
6628
6ca09dfc 6629 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6630 group = cpumask_first(nodemask);
6711cab4
SS
6631
6632 if (sg)
6c99e9ad 6633 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6634 return group;
1da177e4 6635}
6711cab4 6636
08069033
SS
6637static void init_numa_sched_groups_power(struct sched_group *group_head)
6638{
6639 struct sched_group *sg = group_head;
6640 int j;
6641
6642 if (!sg)
6643 return;
3a5c359a 6644 do {
758b2cdc 6645 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6646 struct sched_domain *sd;
08069033 6647
6c99e9ad 6648 sd = &per_cpu(phys_domains, j).sd;
13318a71 6649 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6650 /*
6651 * Only add "power" once for each
6652 * physical package.
6653 */
6654 continue;
6655 }
08069033 6656
18a3885f 6657 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6658 }
6659 sg = sg->next;
6660 } while (sg != group_head);
08069033 6661}
0601a88d
AH
6662
6663static int build_numa_sched_groups(struct s_data *d,
6664 const struct cpumask *cpu_map, int num)
6665{
6666 struct sched_domain *sd;
6667 struct sched_group *sg, *prev;
6668 int n, j;
6669
6670 cpumask_clear(d->covered);
6671 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6672 if (cpumask_empty(d->nodemask)) {
6673 d->sched_group_nodes[num] = NULL;
6674 goto out;
6675 }
6676
6677 sched_domain_node_span(num, d->domainspan);
6678 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6679
6680 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6681 GFP_KERNEL, num);
6682 if (!sg) {
3df0fc5b
PZ
6683 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6684 num);
0601a88d
AH
6685 return -ENOMEM;
6686 }
6687 d->sched_group_nodes[num] = sg;
6688
6689 for_each_cpu(j, d->nodemask) {
6690 sd = &per_cpu(node_domains, j).sd;
6691 sd->groups = sg;
6692 }
6693
18a3885f 6694 sg->cpu_power = 0;
0601a88d
AH
6695 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6696 sg->next = sg;
6697 cpumask_or(d->covered, d->covered, d->nodemask);
6698
6699 prev = sg;
6700 for (j = 0; j < nr_node_ids; j++) {
6701 n = (num + j) % nr_node_ids;
6702 cpumask_complement(d->notcovered, d->covered);
6703 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6704 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6705 if (cpumask_empty(d->tmpmask))
6706 break;
6707 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6708 if (cpumask_empty(d->tmpmask))
6709 continue;
6710 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6711 GFP_KERNEL, num);
6712 if (!sg) {
3df0fc5b
PZ
6713 printk(KERN_WARNING
6714 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6715 return -ENOMEM;
6716 }
18a3885f 6717 sg->cpu_power = 0;
0601a88d
AH
6718 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6719 sg->next = prev->next;
6720 cpumask_or(d->covered, d->covered, d->tmpmask);
6721 prev->next = sg;
6722 prev = sg;
6723 }
6724out:
6725 return 0;
6726}
6d6bc0ad 6727#endif /* CONFIG_NUMA */
1da177e4 6728
a616058b 6729#ifdef CONFIG_NUMA
51888ca2 6730/* Free memory allocated for various sched_group structures */
96f874e2
RR
6731static void free_sched_groups(const struct cpumask *cpu_map,
6732 struct cpumask *nodemask)
51888ca2 6733{
a616058b 6734 int cpu, i;
51888ca2 6735
abcd083a 6736 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6737 struct sched_group **sched_group_nodes
6738 = sched_group_nodes_bycpu[cpu];
6739
51888ca2
SV
6740 if (!sched_group_nodes)
6741 continue;
6742
076ac2af 6743 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6744 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6745
6ca09dfc 6746 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6747 if (cpumask_empty(nodemask))
51888ca2
SV
6748 continue;
6749
6750 if (sg == NULL)
6751 continue;
6752 sg = sg->next;
6753next_sg:
6754 oldsg = sg;
6755 sg = sg->next;
6756 kfree(oldsg);
6757 if (oldsg != sched_group_nodes[i])
6758 goto next_sg;
6759 }
6760 kfree(sched_group_nodes);
6761 sched_group_nodes_bycpu[cpu] = NULL;
6762 }
51888ca2 6763}
6d6bc0ad 6764#else /* !CONFIG_NUMA */
96f874e2
RR
6765static void free_sched_groups(const struct cpumask *cpu_map,
6766 struct cpumask *nodemask)
a616058b
SS
6767{
6768}
6d6bc0ad 6769#endif /* CONFIG_NUMA */
51888ca2 6770
89c4710e
SS
6771/*
6772 * Initialize sched groups cpu_power.
6773 *
6774 * cpu_power indicates the capacity of sched group, which is used while
6775 * distributing the load between different sched groups in a sched domain.
6776 * Typically cpu_power for all the groups in a sched domain will be same unless
6777 * there are asymmetries in the topology. If there are asymmetries, group
6778 * having more cpu_power will pickup more load compared to the group having
6779 * less cpu_power.
89c4710e
SS
6780 */
6781static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6782{
6783 struct sched_domain *child;
6784 struct sched_group *group;
f93e65c1
PZ
6785 long power;
6786 int weight;
89c4710e
SS
6787
6788 WARN_ON(!sd || !sd->groups);
6789
13318a71 6790 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6791 return;
6792
6793 child = sd->child;
6794
18a3885f 6795 sd->groups->cpu_power = 0;
5517d86b 6796
f93e65c1
PZ
6797 if (!child) {
6798 power = SCHED_LOAD_SCALE;
6799 weight = cpumask_weight(sched_domain_span(sd));
6800 /*
6801 * SMT siblings share the power of a single core.
a52bfd73
PZ
6802 * Usually multiple threads get a better yield out of
6803 * that one core than a single thread would have,
6804 * reflect that in sd->smt_gain.
f93e65c1 6805 */
a52bfd73
PZ
6806 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6807 power *= sd->smt_gain;
f93e65c1 6808 power /= weight;
a52bfd73
PZ
6809 power >>= SCHED_LOAD_SHIFT;
6810 }
18a3885f 6811 sd->groups->cpu_power += power;
89c4710e
SS
6812 return;
6813 }
6814
89c4710e 6815 /*
f93e65c1 6816 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6817 */
6818 group = child->groups;
6819 do {
18a3885f 6820 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6821 group = group->next;
6822 } while (group != child->groups);
6823}
6824
7c16ec58
MT
6825/*
6826 * Initializers for schedule domains
6827 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6828 */
6829
a5d8c348
IM
6830#ifdef CONFIG_SCHED_DEBUG
6831# define SD_INIT_NAME(sd, type) sd->name = #type
6832#else
6833# define SD_INIT_NAME(sd, type) do { } while (0)
6834#endif
6835
7c16ec58 6836#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6837
7c16ec58
MT
6838#define SD_INIT_FUNC(type) \
6839static noinline void sd_init_##type(struct sched_domain *sd) \
6840{ \
6841 memset(sd, 0, sizeof(*sd)); \
6842 *sd = SD_##type##_INIT; \
1d3504fc 6843 sd->level = SD_LV_##type; \
a5d8c348 6844 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6845}
6846
6847SD_INIT_FUNC(CPU)
6848#ifdef CONFIG_NUMA
6849 SD_INIT_FUNC(ALLNODES)
6850 SD_INIT_FUNC(NODE)
6851#endif
6852#ifdef CONFIG_SCHED_SMT
6853 SD_INIT_FUNC(SIBLING)
6854#endif
6855#ifdef CONFIG_SCHED_MC
6856 SD_INIT_FUNC(MC)
6857#endif
6858
1d3504fc
HS
6859static int default_relax_domain_level = -1;
6860
6861static int __init setup_relax_domain_level(char *str)
6862{
30e0e178
LZ
6863 unsigned long val;
6864
6865 val = simple_strtoul(str, NULL, 0);
6866 if (val < SD_LV_MAX)
6867 default_relax_domain_level = val;
6868
1d3504fc
HS
6869 return 1;
6870}
6871__setup("relax_domain_level=", setup_relax_domain_level);
6872
6873static void set_domain_attribute(struct sched_domain *sd,
6874 struct sched_domain_attr *attr)
6875{
6876 int request;
6877
6878 if (!attr || attr->relax_domain_level < 0) {
6879 if (default_relax_domain_level < 0)
6880 return;
6881 else
6882 request = default_relax_domain_level;
6883 } else
6884 request = attr->relax_domain_level;
6885 if (request < sd->level) {
6886 /* turn off idle balance on this domain */
c88d5910 6887 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6888 } else {
6889 /* turn on idle balance on this domain */
c88d5910 6890 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6891 }
6892}
6893
2109b99e
AH
6894static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6895 const struct cpumask *cpu_map)
6896{
6897 switch (what) {
6898 case sa_sched_groups:
6899 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6900 d->sched_group_nodes = NULL;
6901 case sa_rootdomain:
6902 free_rootdomain(d->rd); /* fall through */
6903 case sa_tmpmask:
6904 free_cpumask_var(d->tmpmask); /* fall through */
6905 case sa_send_covered:
6906 free_cpumask_var(d->send_covered); /* fall through */
6907 case sa_this_core_map:
6908 free_cpumask_var(d->this_core_map); /* fall through */
6909 case sa_this_sibling_map:
6910 free_cpumask_var(d->this_sibling_map); /* fall through */
6911 case sa_nodemask:
6912 free_cpumask_var(d->nodemask); /* fall through */
6913 case sa_sched_group_nodes:
d1b55138 6914#ifdef CONFIG_NUMA
2109b99e
AH
6915 kfree(d->sched_group_nodes); /* fall through */
6916 case sa_notcovered:
6917 free_cpumask_var(d->notcovered); /* fall through */
6918 case sa_covered:
6919 free_cpumask_var(d->covered); /* fall through */
6920 case sa_domainspan:
6921 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6922#endif
2109b99e
AH
6923 case sa_none:
6924 break;
6925 }
6926}
3404c8d9 6927
2109b99e
AH
6928static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6929 const struct cpumask *cpu_map)
6930{
3404c8d9 6931#ifdef CONFIG_NUMA
2109b99e
AH
6932 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6933 return sa_none;
6934 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6935 return sa_domainspan;
6936 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6937 return sa_covered;
6938 /* Allocate the per-node list of sched groups */
6939 d->sched_group_nodes = kcalloc(nr_node_ids,
6940 sizeof(struct sched_group *), GFP_KERNEL);
6941 if (!d->sched_group_nodes) {
3df0fc5b 6942 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6943 return sa_notcovered;
d1b55138 6944 }
2109b99e 6945 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6946#endif
2109b99e
AH
6947 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6948 return sa_sched_group_nodes;
6949 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6950 return sa_nodemask;
6951 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6952 return sa_this_sibling_map;
6953 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6954 return sa_this_core_map;
6955 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6956 return sa_send_covered;
6957 d->rd = alloc_rootdomain();
6958 if (!d->rd) {
3df0fc5b 6959 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6960 return sa_tmpmask;
57d885fe 6961 }
2109b99e
AH
6962 return sa_rootdomain;
6963}
57d885fe 6964
7f4588f3
AH
6965static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6966 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6967{
6968 struct sched_domain *sd = NULL;
7c16ec58 6969#ifdef CONFIG_NUMA
7f4588f3 6970 struct sched_domain *parent;
1da177e4 6971
7f4588f3
AH
6972 d->sd_allnodes = 0;
6973 if (cpumask_weight(cpu_map) >
6974 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6975 sd = &per_cpu(allnodes_domains, i).sd;
6976 SD_INIT(sd, ALLNODES);
1d3504fc 6977 set_domain_attribute(sd, attr);
7f4588f3
AH
6978 cpumask_copy(sched_domain_span(sd), cpu_map);
6979 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6980 d->sd_allnodes = 1;
6981 }
6982 parent = sd;
6983
6984 sd = &per_cpu(node_domains, i).sd;
6985 SD_INIT(sd, NODE);
6986 set_domain_attribute(sd, attr);
6987 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6988 sd->parent = parent;
6989 if (parent)
6990 parent->child = sd;
6991 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6992#endif
7f4588f3
AH
6993 return sd;
6994}
1da177e4 6995
87cce662
AH
6996static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6997 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6998 struct sched_domain *parent, int i)
6999{
7000 struct sched_domain *sd;
7001 sd = &per_cpu(phys_domains, i).sd;
7002 SD_INIT(sd, CPU);
7003 set_domain_attribute(sd, attr);
7004 cpumask_copy(sched_domain_span(sd), d->nodemask);
7005 sd->parent = parent;
7006 if (parent)
7007 parent->child = sd;
7008 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7009 return sd;
7010}
1da177e4 7011
410c4081
AH
7012static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7013 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7014 struct sched_domain *parent, int i)
7015{
7016 struct sched_domain *sd = parent;
1e9f28fa 7017#ifdef CONFIG_SCHED_MC
410c4081
AH
7018 sd = &per_cpu(core_domains, i).sd;
7019 SD_INIT(sd, MC);
7020 set_domain_attribute(sd, attr);
7021 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7022 sd->parent = parent;
7023 parent->child = sd;
7024 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7025#endif
410c4081
AH
7026 return sd;
7027}
1e9f28fa 7028
d8173535
AH
7029static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7030 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7031 struct sched_domain *parent, int i)
7032{
7033 struct sched_domain *sd = parent;
1da177e4 7034#ifdef CONFIG_SCHED_SMT
d8173535
AH
7035 sd = &per_cpu(cpu_domains, i).sd;
7036 SD_INIT(sd, SIBLING);
7037 set_domain_attribute(sd, attr);
7038 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7039 sd->parent = parent;
7040 parent->child = sd;
7041 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7042#endif
d8173535
AH
7043 return sd;
7044}
1da177e4 7045
0e8e85c9
AH
7046static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7047 const struct cpumask *cpu_map, int cpu)
7048{
7049 switch (l) {
1da177e4 7050#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7051 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7052 cpumask_and(d->this_sibling_map, cpu_map,
7053 topology_thread_cpumask(cpu));
7054 if (cpu == cpumask_first(d->this_sibling_map))
7055 init_sched_build_groups(d->this_sibling_map, cpu_map,
7056 &cpu_to_cpu_group,
7057 d->send_covered, d->tmpmask);
7058 break;
1da177e4 7059#endif
1e9f28fa 7060#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7061 case SD_LV_MC: /* set up multi-core groups */
7062 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7063 if (cpu == cpumask_first(d->this_core_map))
7064 init_sched_build_groups(d->this_core_map, cpu_map,
7065 &cpu_to_core_group,
7066 d->send_covered, d->tmpmask);
7067 break;
1e9f28fa 7068#endif
86548096
AH
7069 case SD_LV_CPU: /* set up physical groups */
7070 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7071 if (!cpumask_empty(d->nodemask))
7072 init_sched_build_groups(d->nodemask, cpu_map,
7073 &cpu_to_phys_group,
7074 d->send_covered, d->tmpmask);
7075 break;
1da177e4 7076#ifdef CONFIG_NUMA
de616e36
AH
7077 case SD_LV_ALLNODES:
7078 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7079 d->send_covered, d->tmpmask);
7080 break;
7081#endif
0e8e85c9
AH
7082 default:
7083 break;
7c16ec58 7084 }
0e8e85c9 7085}
9c1cfda2 7086
2109b99e
AH
7087/*
7088 * Build sched domains for a given set of cpus and attach the sched domains
7089 * to the individual cpus
7090 */
7091static int __build_sched_domains(const struct cpumask *cpu_map,
7092 struct sched_domain_attr *attr)
7093{
7094 enum s_alloc alloc_state = sa_none;
7095 struct s_data d;
294b0c96 7096 struct sched_domain *sd;
2109b99e 7097 int i;
7c16ec58 7098#ifdef CONFIG_NUMA
2109b99e 7099 d.sd_allnodes = 0;
7c16ec58 7100#endif
9c1cfda2 7101
2109b99e
AH
7102 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7103 if (alloc_state != sa_rootdomain)
7104 goto error;
7105 alloc_state = sa_sched_groups;
9c1cfda2 7106
1da177e4 7107 /*
1a20ff27 7108 * Set up domains for cpus specified by the cpu_map.
1da177e4 7109 */
abcd083a 7110 for_each_cpu(i, cpu_map) {
49a02c51
AH
7111 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7112 cpu_map);
9761eea8 7113
7f4588f3 7114 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7115 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7116 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7117 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7118 }
9c1cfda2 7119
abcd083a 7120 for_each_cpu(i, cpu_map) {
0e8e85c9 7121 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7122 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7123 }
9c1cfda2 7124
1da177e4 7125 /* Set up physical groups */
86548096
AH
7126 for (i = 0; i < nr_node_ids; i++)
7127 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7128
1da177e4
LT
7129#ifdef CONFIG_NUMA
7130 /* Set up node groups */
de616e36
AH
7131 if (d.sd_allnodes)
7132 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7133
0601a88d
AH
7134 for (i = 0; i < nr_node_ids; i++)
7135 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7136 goto error;
1da177e4
LT
7137#endif
7138
7139 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7140#ifdef CONFIG_SCHED_SMT
abcd083a 7141 for_each_cpu(i, cpu_map) {
294b0c96 7142 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7143 init_sched_groups_power(i, sd);
5c45bf27 7144 }
1da177e4 7145#endif
1e9f28fa 7146#ifdef CONFIG_SCHED_MC
abcd083a 7147 for_each_cpu(i, cpu_map) {
294b0c96 7148 sd = &per_cpu(core_domains, i).sd;
89c4710e 7149 init_sched_groups_power(i, sd);
5c45bf27
SS
7150 }
7151#endif
1e9f28fa 7152
abcd083a 7153 for_each_cpu(i, cpu_map) {
294b0c96 7154 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7155 init_sched_groups_power(i, sd);
1da177e4
LT
7156 }
7157
9c1cfda2 7158#ifdef CONFIG_NUMA
076ac2af 7159 for (i = 0; i < nr_node_ids; i++)
49a02c51 7160 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7161
49a02c51 7162 if (d.sd_allnodes) {
6711cab4 7163 struct sched_group *sg;
f712c0c7 7164
96f874e2 7165 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7166 d.tmpmask);
f712c0c7
SS
7167 init_numa_sched_groups_power(sg);
7168 }
9c1cfda2
JH
7169#endif
7170
1da177e4 7171 /* Attach the domains */
abcd083a 7172 for_each_cpu(i, cpu_map) {
1da177e4 7173#ifdef CONFIG_SCHED_SMT
6c99e9ad 7174 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7175#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7176 sd = &per_cpu(core_domains, i).sd;
1da177e4 7177#else
6c99e9ad 7178 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7179#endif
49a02c51 7180 cpu_attach_domain(sd, d.rd, i);
1da177e4 7181 }
51888ca2 7182
2109b99e
AH
7183 d.sched_group_nodes = NULL; /* don't free this we still need it */
7184 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7185 return 0;
51888ca2 7186
51888ca2 7187error:
2109b99e
AH
7188 __free_domain_allocs(&d, alloc_state, cpu_map);
7189 return -ENOMEM;
1da177e4 7190}
029190c5 7191
96f874e2 7192static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7193{
7194 return __build_sched_domains(cpu_map, NULL);
7195}
7196
acc3f5d7 7197static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7198static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7199static struct sched_domain_attr *dattr_cur;
7200 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7201
7202/*
7203 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7204 * cpumask) fails, then fallback to a single sched domain,
7205 * as determined by the single cpumask fallback_doms.
029190c5 7206 */
4212823f 7207static cpumask_var_t fallback_doms;
029190c5 7208
ee79d1bd
HC
7209/*
7210 * arch_update_cpu_topology lets virtualized architectures update the
7211 * cpu core maps. It is supposed to return 1 if the topology changed
7212 * or 0 if it stayed the same.
7213 */
7214int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7215{
ee79d1bd 7216 return 0;
22e52b07
HC
7217}
7218
acc3f5d7
RR
7219cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7220{
7221 int i;
7222 cpumask_var_t *doms;
7223
7224 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7225 if (!doms)
7226 return NULL;
7227 for (i = 0; i < ndoms; i++) {
7228 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7229 free_sched_domains(doms, i);
7230 return NULL;
7231 }
7232 }
7233 return doms;
7234}
7235
7236void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7237{
7238 unsigned int i;
7239 for (i = 0; i < ndoms; i++)
7240 free_cpumask_var(doms[i]);
7241 kfree(doms);
7242}
7243
1a20ff27 7244/*
41a2d6cf 7245 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7246 * For now this just excludes isolated cpus, but could be used to
7247 * exclude other special cases in the future.
1a20ff27 7248 */
96f874e2 7249static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7250{
7378547f
MM
7251 int err;
7252
22e52b07 7253 arch_update_cpu_topology();
029190c5 7254 ndoms_cur = 1;
acc3f5d7 7255 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7256 if (!doms_cur)
acc3f5d7
RR
7257 doms_cur = &fallback_doms;
7258 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7259 dattr_cur = NULL;
acc3f5d7 7260 err = build_sched_domains(doms_cur[0]);
6382bc90 7261 register_sched_domain_sysctl();
7378547f
MM
7262
7263 return err;
1a20ff27
DG
7264}
7265
96f874e2
RR
7266static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7267 struct cpumask *tmpmask)
1da177e4 7268{
7c16ec58 7269 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7270}
1da177e4 7271
1a20ff27
DG
7272/*
7273 * Detach sched domains from a group of cpus specified in cpu_map
7274 * These cpus will now be attached to the NULL domain
7275 */
96f874e2 7276static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7277{
96f874e2
RR
7278 /* Save because hotplug lock held. */
7279 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7280 int i;
7281
abcd083a 7282 for_each_cpu(i, cpu_map)
57d885fe 7283 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7284 synchronize_sched();
96f874e2 7285 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7286}
7287
1d3504fc
HS
7288/* handle null as "default" */
7289static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7290 struct sched_domain_attr *new, int idx_new)
7291{
7292 struct sched_domain_attr tmp;
7293
7294 /* fast path */
7295 if (!new && !cur)
7296 return 1;
7297
7298 tmp = SD_ATTR_INIT;
7299 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7300 new ? (new + idx_new) : &tmp,
7301 sizeof(struct sched_domain_attr));
7302}
7303
029190c5
PJ
7304/*
7305 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7306 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7307 * doms_new[] to the current sched domain partitioning, doms_cur[].
7308 * It destroys each deleted domain and builds each new domain.
7309 *
acc3f5d7 7310 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7311 * The masks don't intersect (don't overlap.) We should setup one
7312 * sched domain for each mask. CPUs not in any of the cpumasks will
7313 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7314 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7315 * it as it is.
7316 *
acc3f5d7
RR
7317 * The passed in 'doms_new' should be allocated using
7318 * alloc_sched_domains. This routine takes ownership of it and will
7319 * free_sched_domains it when done with it. If the caller failed the
7320 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7321 * and partition_sched_domains() will fallback to the single partition
7322 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7323 *
96f874e2 7324 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7325 * ndoms_new == 0 is a special case for destroying existing domains,
7326 * and it will not create the default domain.
dfb512ec 7327 *
029190c5
PJ
7328 * Call with hotplug lock held
7329 */
acc3f5d7 7330void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7331 struct sched_domain_attr *dattr_new)
029190c5 7332{
dfb512ec 7333 int i, j, n;
d65bd5ec 7334 int new_topology;
029190c5 7335
712555ee 7336 mutex_lock(&sched_domains_mutex);
a1835615 7337
7378547f
MM
7338 /* always unregister in case we don't destroy any domains */
7339 unregister_sched_domain_sysctl();
7340
d65bd5ec
HC
7341 /* Let architecture update cpu core mappings. */
7342 new_topology = arch_update_cpu_topology();
7343
dfb512ec 7344 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7345
7346 /* Destroy deleted domains */
7347 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7348 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7349 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7350 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7351 goto match1;
7352 }
7353 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7354 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7355match1:
7356 ;
7357 }
7358
e761b772
MK
7359 if (doms_new == NULL) {
7360 ndoms_cur = 0;
acc3f5d7 7361 doms_new = &fallback_doms;
6ad4c188 7362 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7363 WARN_ON_ONCE(dattr_new);
e761b772
MK
7364 }
7365
029190c5
PJ
7366 /* Build new domains */
7367 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7368 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7369 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7370 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7371 goto match2;
7372 }
7373 /* no match - add a new doms_new */
acc3f5d7 7374 __build_sched_domains(doms_new[i],
1d3504fc 7375 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7376match2:
7377 ;
7378 }
7379
7380 /* Remember the new sched domains */
acc3f5d7
RR
7381 if (doms_cur != &fallback_doms)
7382 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7383 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7384 doms_cur = doms_new;
1d3504fc 7385 dattr_cur = dattr_new;
029190c5 7386 ndoms_cur = ndoms_new;
7378547f
MM
7387
7388 register_sched_domain_sysctl();
a1835615 7389
712555ee 7390 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7391}
7392
5c45bf27 7393#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7394static void arch_reinit_sched_domains(void)
5c45bf27 7395{
95402b38 7396 get_online_cpus();
dfb512ec
MK
7397
7398 /* Destroy domains first to force the rebuild */
7399 partition_sched_domains(0, NULL, NULL);
7400
e761b772 7401 rebuild_sched_domains();
95402b38 7402 put_online_cpus();
5c45bf27
SS
7403}
7404
7405static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7406{
afb8a9b7 7407 unsigned int level = 0;
5c45bf27 7408
afb8a9b7
GS
7409 if (sscanf(buf, "%u", &level) != 1)
7410 return -EINVAL;
7411
7412 /*
7413 * level is always be positive so don't check for
7414 * level < POWERSAVINGS_BALANCE_NONE which is 0
7415 * What happens on 0 or 1 byte write,
7416 * need to check for count as well?
7417 */
7418
7419 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7420 return -EINVAL;
7421
7422 if (smt)
afb8a9b7 7423 sched_smt_power_savings = level;
5c45bf27 7424 else
afb8a9b7 7425 sched_mc_power_savings = level;
5c45bf27 7426
c70f22d2 7427 arch_reinit_sched_domains();
5c45bf27 7428
c70f22d2 7429 return count;
5c45bf27
SS
7430}
7431
5c45bf27 7432#ifdef CONFIG_SCHED_MC
f718cd4a 7433static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7434 struct sysdev_class_attribute *attr,
f718cd4a 7435 char *page)
5c45bf27
SS
7436{
7437 return sprintf(page, "%u\n", sched_mc_power_savings);
7438}
f718cd4a 7439static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7440 struct sysdev_class_attribute *attr,
48f24c4d 7441 const char *buf, size_t count)
5c45bf27
SS
7442{
7443 return sched_power_savings_store(buf, count, 0);
7444}
f718cd4a
AK
7445static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7446 sched_mc_power_savings_show,
7447 sched_mc_power_savings_store);
5c45bf27
SS
7448#endif
7449
7450#ifdef CONFIG_SCHED_SMT
f718cd4a 7451static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7452 struct sysdev_class_attribute *attr,
f718cd4a 7453 char *page)
5c45bf27
SS
7454{
7455 return sprintf(page, "%u\n", sched_smt_power_savings);
7456}
f718cd4a 7457static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7458 struct sysdev_class_attribute *attr,
48f24c4d 7459 const char *buf, size_t count)
5c45bf27
SS
7460{
7461 return sched_power_savings_store(buf, count, 1);
7462}
f718cd4a
AK
7463static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7464 sched_smt_power_savings_show,
6707de00
AB
7465 sched_smt_power_savings_store);
7466#endif
7467
39aac648 7468int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7469{
7470 int err = 0;
7471
7472#ifdef CONFIG_SCHED_SMT
7473 if (smt_capable())
7474 err = sysfs_create_file(&cls->kset.kobj,
7475 &attr_sched_smt_power_savings.attr);
7476#endif
7477#ifdef CONFIG_SCHED_MC
7478 if (!err && mc_capable())
7479 err = sysfs_create_file(&cls->kset.kobj,
7480 &attr_sched_mc_power_savings.attr);
7481#endif
7482 return err;
7483}
6d6bc0ad 7484#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7485
1da177e4 7486/*
3a101d05
TH
7487 * Update cpusets according to cpu_active mask. If cpusets are
7488 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7489 * around partition_sched_domains().
1da177e4 7490 */
0b2e918a
TH
7491static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7492 void *hcpu)
e761b772 7493{
3a101d05 7494 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7495 case CPU_ONLINE:
6ad4c188 7496 case CPU_DOWN_FAILED:
3a101d05 7497 cpuset_update_active_cpus();
e761b772 7498 return NOTIFY_OK;
3a101d05
TH
7499 default:
7500 return NOTIFY_DONE;
7501 }
7502}
e761b772 7503
0b2e918a
TH
7504static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7505 void *hcpu)
3a101d05
TH
7506{
7507 switch (action & ~CPU_TASKS_FROZEN) {
7508 case CPU_DOWN_PREPARE:
7509 cpuset_update_active_cpus();
7510 return NOTIFY_OK;
e761b772
MK
7511 default:
7512 return NOTIFY_DONE;
7513 }
7514}
e761b772
MK
7515
7516static int update_runtime(struct notifier_block *nfb,
7517 unsigned long action, void *hcpu)
1da177e4 7518{
7def2be1
PZ
7519 int cpu = (int)(long)hcpu;
7520
1da177e4 7521 switch (action) {
1da177e4 7522 case CPU_DOWN_PREPARE:
8bb78442 7523 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7524 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7525 return NOTIFY_OK;
7526
1da177e4 7527 case CPU_DOWN_FAILED:
8bb78442 7528 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7529 case CPU_ONLINE:
8bb78442 7530 case CPU_ONLINE_FROZEN:
7def2be1 7531 enable_runtime(cpu_rq(cpu));
e761b772
MK
7532 return NOTIFY_OK;
7533
1da177e4
LT
7534 default:
7535 return NOTIFY_DONE;
7536 }
1da177e4 7537}
1da177e4
LT
7538
7539void __init sched_init_smp(void)
7540{
dcc30a35
RR
7541 cpumask_var_t non_isolated_cpus;
7542
7543 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7544 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7545
434d53b0
MT
7546#if defined(CONFIG_NUMA)
7547 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7548 GFP_KERNEL);
7549 BUG_ON(sched_group_nodes_bycpu == NULL);
7550#endif
95402b38 7551 get_online_cpus();
712555ee 7552 mutex_lock(&sched_domains_mutex);
6ad4c188 7553 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7554 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7555 if (cpumask_empty(non_isolated_cpus))
7556 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7557 mutex_unlock(&sched_domains_mutex);
95402b38 7558 put_online_cpus();
e761b772 7559
3a101d05
TH
7560 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7561 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7562
7563 /* RT runtime code needs to handle some hotplug events */
7564 hotcpu_notifier(update_runtime, 0);
7565
b328ca18 7566 init_hrtick();
5c1e1767
NP
7567
7568 /* Move init over to a non-isolated CPU */
dcc30a35 7569 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7570 BUG();
19978ca6 7571 sched_init_granularity();
dcc30a35 7572 free_cpumask_var(non_isolated_cpus);
4212823f 7573
0e3900e6 7574 init_sched_rt_class();
1da177e4
LT
7575}
7576#else
7577void __init sched_init_smp(void)
7578{
19978ca6 7579 sched_init_granularity();
1da177e4
LT
7580}
7581#endif /* CONFIG_SMP */
7582
cd1bb94b
AB
7583const_debug unsigned int sysctl_timer_migration = 1;
7584
1da177e4
LT
7585int in_sched_functions(unsigned long addr)
7586{
1da177e4
LT
7587 return in_lock_functions(addr) ||
7588 (addr >= (unsigned long)__sched_text_start
7589 && addr < (unsigned long)__sched_text_end);
7590}
7591
a9957449 7592static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7593{
7594 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7595 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7596#ifdef CONFIG_FAIR_GROUP_SCHED
7597 cfs_rq->rq = rq;
7598#endif
67e9fb2a 7599 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7600}
7601
fa85ae24
PZ
7602static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7603{
7604 struct rt_prio_array *array;
7605 int i;
7606
7607 array = &rt_rq->active;
7608 for (i = 0; i < MAX_RT_PRIO; i++) {
7609 INIT_LIST_HEAD(array->queue + i);
7610 __clear_bit(i, array->bitmap);
7611 }
7612 /* delimiter for bitsearch: */
7613 __set_bit(MAX_RT_PRIO, array->bitmap);
7614
052f1dc7 7615#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7616 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7617#ifdef CONFIG_SMP
e864c499 7618 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7619#endif
48d5e258 7620#endif
fa85ae24
PZ
7621#ifdef CONFIG_SMP
7622 rt_rq->rt_nr_migratory = 0;
fa85ae24 7623 rt_rq->overloaded = 0;
05fa785c 7624 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7625#endif
7626
7627 rt_rq->rt_time = 0;
7628 rt_rq->rt_throttled = 0;
ac086bc2 7629 rt_rq->rt_runtime = 0;
0986b11b 7630 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7631
052f1dc7 7632#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7633 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7634 rt_rq->rq = rq;
7635#endif
fa85ae24
PZ
7636}
7637
6f505b16 7638#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7639static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7640 struct sched_entity *se, int cpu, int add,
7641 struct sched_entity *parent)
6f505b16 7642{
ec7dc8ac 7643 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7644 tg->cfs_rq[cpu] = cfs_rq;
7645 init_cfs_rq(cfs_rq, rq);
7646 cfs_rq->tg = tg;
7647 if (add)
7648 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7649
7650 tg->se[cpu] = se;
354d60c2
DG
7651 /* se could be NULL for init_task_group */
7652 if (!se)
7653 return;
7654
ec7dc8ac
DG
7655 if (!parent)
7656 se->cfs_rq = &rq->cfs;
7657 else
7658 se->cfs_rq = parent->my_q;
7659
6f505b16
PZ
7660 se->my_q = cfs_rq;
7661 se->load.weight = tg->shares;
e05510d0 7662 se->load.inv_weight = 0;
ec7dc8ac 7663 se->parent = parent;
6f505b16 7664}
052f1dc7 7665#endif
6f505b16 7666
052f1dc7 7667#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7668static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7669 struct sched_rt_entity *rt_se, int cpu, int add,
7670 struct sched_rt_entity *parent)
6f505b16 7671{
ec7dc8ac
DG
7672 struct rq *rq = cpu_rq(cpu);
7673
6f505b16
PZ
7674 tg->rt_rq[cpu] = rt_rq;
7675 init_rt_rq(rt_rq, rq);
7676 rt_rq->tg = tg;
ac086bc2 7677 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7678 if (add)
7679 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7680
7681 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7682 if (!rt_se)
7683 return;
7684
ec7dc8ac
DG
7685 if (!parent)
7686 rt_se->rt_rq = &rq->rt;
7687 else
7688 rt_se->rt_rq = parent->my_q;
7689
6f505b16 7690 rt_se->my_q = rt_rq;
ec7dc8ac 7691 rt_se->parent = parent;
6f505b16
PZ
7692 INIT_LIST_HEAD(&rt_se->run_list);
7693}
7694#endif
7695
1da177e4
LT
7696void __init sched_init(void)
7697{
dd41f596 7698 int i, j;
434d53b0
MT
7699 unsigned long alloc_size = 0, ptr;
7700
7701#ifdef CONFIG_FAIR_GROUP_SCHED
7702 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7703#endif
7704#ifdef CONFIG_RT_GROUP_SCHED
7705 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7706#endif
df7c8e84 7707#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7708 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7709#endif
434d53b0 7710 if (alloc_size) {
36b7b6d4 7711 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7712
7713#ifdef CONFIG_FAIR_GROUP_SCHED
7714 init_task_group.se = (struct sched_entity **)ptr;
7715 ptr += nr_cpu_ids * sizeof(void **);
7716
7717 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7718 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7719
6d6bc0ad 7720#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7721#ifdef CONFIG_RT_GROUP_SCHED
7722 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7723 ptr += nr_cpu_ids * sizeof(void **);
7724
7725 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7726 ptr += nr_cpu_ids * sizeof(void **);
7727
6d6bc0ad 7728#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7729#ifdef CONFIG_CPUMASK_OFFSTACK
7730 for_each_possible_cpu(i) {
7731 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7732 ptr += cpumask_size();
7733 }
7734#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7735 }
dd41f596 7736
57d885fe
GH
7737#ifdef CONFIG_SMP
7738 init_defrootdomain();
7739#endif
7740
d0b27fa7
PZ
7741 init_rt_bandwidth(&def_rt_bandwidth,
7742 global_rt_period(), global_rt_runtime());
7743
7744#ifdef CONFIG_RT_GROUP_SCHED
7745 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7746 global_rt_period(), global_rt_runtime());
6d6bc0ad 7747#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7748
7c941438 7749#ifdef CONFIG_CGROUP_SCHED
6f505b16 7750 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7751 INIT_LIST_HEAD(&init_task_group.children);
7752
7c941438 7753#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7754
4a6cc4bd
JK
7755#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7756 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7757 __alignof__(unsigned long));
7758#endif
0a945022 7759 for_each_possible_cpu(i) {
70b97a7f 7760 struct rq *rq;
1da177e4
LT
7761
7762 rq = cpu_rq(i);
05fa785c 7763 raw_spin_lock_init(&rq->lock);
7897986b 7764 rq->nr_running = 0;
dce48a84
TG
7765 rq->calc_load_active = 0;
7766 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7767 init_cfs_rq(&rq->cfs, rq);
6f505b16 7768 init_rt_rq(&rq->rt, rq);
dd41f596 7769#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7770 init_task_group.shares = init_task_group_load;
6f505b16 7771 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7772#ifdef CONFIG_CGROUP_SCHED
7773 /*
7774 * How much cpu bandwidth does init_task_group get?
7775 *
7776 * In case of task-groups formed thr' the cgroup filesystem, it
7777 * gets 100% of the cpu resources in the system. This overall
7778 * system cpu resource is divided among the tasks of
7779 * init_task_group and its child task-groups in a fair manner,
7780 * based on each entity's (task or task-group's) weight
7781 * (se->load.weight).
7782 *
7783 * In other words, if init_task_group has 10 tasks of weight
7784 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7785 * then A0's share of the cpu resource is:
7786 *
0d905bca 7787 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7788 *
7789 * We achieve this by letting init_task_group's tasks sit
7790 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7791 */
ec7dc8ac 7792 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7793#endif
354d60c2
DG
7794#endif /* CONFIG_FAIR_GROUP_SCHED */
7795
7796 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7797#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7798 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7799#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7800 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7801#endif
dd41f596 7802#endif
1da177e4 7803
dd41f596
IM
7804 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7805 rq->cpu_load[j] = 0;
fdf3e95d
VP
7806
7807 rq->last_load_update_tick = jiffies;
7808
1da177e4 7809#ifdef CONFIG_SMP
41c7ce9a 7810 rq->sd = NULL;
57d885fe 7811 rq->rd = NULL;
e51fd5e2 7812 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7813 rq->post_schedule = 0;
1da177e4 7814 rq->active_balance = 0;
dd41f596 7815 rq->next_balance = jiffies;
1da177e4 7816 rq->push_cpu = 0;
0a2966b4 7817 rq->cpu = i;
1f11eb6a 7818 rq->online = 0;
eae0c9df
MG
7819 rq->idle_stamp = 0;
7820 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7821 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7822#ifdef CONFIG_NO_HZ
7823 rq->nohz_balance_kick = 0;
7824 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7825#endif
1da177e4 7826#endif
8f4d37ec 7827 init_rq_hrtick(rq);
1da177e4 7828 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7829 }
7830
2dd73a4f 7831 set_load_weight(&init_task);
b50f60ce 7832
e107be36
AK
7833#ifdef CONFIG_PREEMPT_NOTIFIERS
7834 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7835#endif
7836
c9819f45 7837#ifdef CONFIG_SMP
962cf36c 7838 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7839#endif
7840
b50f60ce 7841#ifdef CONFIG_RT_MUTEXES
1d615482 7842 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7843#endif
7844
1da177e4
LT
7845 /*
7846 * The boot idle thread does lazy MMU switching as well:
7847 */
7848 atomic_inc(&init_mm.mm_count);
7849 enter_lazy_tlb(&init_mm, current);
7850
7851 /*
7852 * Make us the idle thread. Technically, schedule() should not be
7853 * called from this thread, however somewhere below it might be,
7854 * but because we are the idle thread, we just pick up running again
7855 * when this runqueue becomes "idle".
7856 */
7857 init_idle(current, smp_processor_id());
dce48a84
TG
7858
7859 calc_load_update = jiffies + LOAD_FREQ;
7860
dd41f596
IM
7861 /*
7862 * During early bootup we pretend to be a normal task:
7863 */
7864 current->sched_class = &fair_sched_class;
6892b75e 7865
6a7b3dc3 7866 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7867 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7868#ifdef CONFIG_SMP
7d1e6a9b 7869#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7870 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7871 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7872 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7873 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7874 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7875#endif
bdddd296
RR
7876 /* May be allocated at isolcpus cmdline parse time */
7877 if (cpu_isolated_map == NULL)
7878 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7879#endif /* SMP */
6a7b3dc3 7880
cdd6c482 7881 perf_event_init();
0d905bca 7882
6892b75e 7883 scheduler_running = 1;
1da177e4
LT
7884}
7885
7886#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7887static inline int preempt_count_equals(int preempt_offset)
7888{
234da7bc 7889 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7890
7891 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7892}
7893
d894837f 7894void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7895{
48f24c4d 7896#ifdef in_atomic
1da177e4
LT
7897 static unsigned long prev_jiffy; /* ratelimiting */
7898
e4aafea2
FW
7899 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7900 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7901 return;
7902 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7903 return;
7904 prev_jiffy = jiffies;
7905
3df0fc5b
PZ
7906 printk(KERN_ERR
7907 "BUG: sleeping function called from invalid context at %s:%d\n",
7908 file, line);
7909 printk(KERN_ERR
7910 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7911 in_atomic(), irqs_disabled(),
7912 current->pid, current->comm);
aef745fc
IM
7913
7914 debug_show_held_locks(current);
7915 if (irqs_disabled())
7916 print_irqtrace_events(current);
7917 dump_stack();
1da177e4
LT
7918#endif
7919}
7920EXPORT_SYMBOL(__might_sleep);
7921#endif
7922
7923#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7924static void normalize_task(struct rq *rq, struct task_struct *p)
7925{
7926 int on_rq;
3e51f33f 7927
3a5e4dc1
AK
7928 on_rq = p->se.on_rq;
7929 if (on_rq)
7930 deactivate_task(rq, p, 0);
7931 __setscheduler(rq, p, SCHED_NORMAL, 0);
7932 if (on_rq) {
7933 activate_task(rq, p, 0);
7934 resched_task(rq->curr);
7935 }
7936}
7937
1da177e4
LT
7938void normalize_rt_tasks(void)
7939{
a0f98a1c 7940 struct task_struct *g, *p;
1da177e4 7941 unsigned long flags;
70b97a7f 7942 struct rq *rq;
1da177e4 7943
4cf5d77a 7944 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7945 do_each_thread(g, p) {
178be793
IM
7946 /*
7947 * Only normalize user tasks:
7948 */
7949 if (!p->mm)
7950 continue;
7951
6cfb0d5d 7952 p->se.exec_start = 0;
6cfb0d5d 7953#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7954 p->se.statistics.wait_start = 0;
7955 p->se.statistics.sleep_start = 0;
7956 p->se.statistics.block_start = 0;
6cfb0d5d 7957#endif
dd41f596
IM
7958
7959 if (!rt_task(p)) {
7960 /*
7961 * Renice negative nice level userspace
7962 * tasks back to 0:
7963 */
7964 if (TASK_NICE(p) < 0 && p->mm)
7965 set_user_nice(p, 0);
1da177e4 7966 continue;
dd41f596 7967 }
1da177e4 7968
1d615482 7969 raw_spin_lock(&p->pi_lock);
b29739f9 7970 rq = __task_rq_lock(p);
1da177e4 7971
178be793 7972 normalize_task(rq, p);
3a5e4dc1 7973
b29739f9 7974 __task_rq_unlock(rq);
1d615482 7975 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7976 } while_each_thread(g, p);
7977
4cf5d77a 7978 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7979}
7980
7981#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7982
67fc4e0c 7983#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7984/*
67fc4e0c 7985 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7986 *
7987 * They can only be called when the whole system has been
7988 * stopped - every CPU needs to be quiescent, and no scheduling
7989 * activity can take place. Using them for anything else would
7990 * be a serious bug, and as a result, they aren't even visible
7991 * under any other configuration.
7992 */
7993
7994/**
7995 * curr_task - return the current task for a given cpu.
7996 * @cpu: the processor in question.
7997 *
7998 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7999 */
36c8b586 8000struct task_struct *curr_task(int cpu)
1df5c10a
LT
8001{
8002 return cpu_curr(cpu);
8003}
8004
67fc4e0c
JW
8005#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8006
8007#ifdef CONFIG_IA64
1df5c10a
LT
8008/**
8009 * set_curr_task - set the current task for a given cpu.
8010 * @cpu: the processor in question.
8011 * @p: the task pointer to set.
8012 *
8013 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8014 * are serviced on a separate stack. It allows the architecture to switch the
8015 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8016 * must be called with all CPU's synchronized, and interrupts disabled, the
8017 * and caller must save the original value of the current task (see
8018 * curr_task() above) and restore that value before reenabling interrupts and
8019 * re-starting the system.
8020 *
8021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8022 */
36c8b586 8023void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8024{
8025 cpu_curr(cpu) = p;
8026}
8027
8028#endif
29f59db3 8029
bccbe08a
PZ
8030#ifdef CONFIG_FAIR_GROUP_SCHED
8031static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8032{
8033 int i;
8034
8035 for_each_possible_cpu(i) {
8036 if (tg->cfs_rq)
8037 kfree(tg->cfs_rq[i]);
8038 if (tg->se)
8039 kfree(tg->se[i]);
6f505b16
PZ
8040 }
8041
8042 kfree(tg->cfs_rq);
8043 kfree(tg->se);
6f505b16
PZ
8044}
8045
ec7dc8ac
DG
8046static
8047int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8048{
29f59db3 8049 struct cfs_rq *cfs_rq;
eab17229 8050 struct sched_entity *se;
9b5b7751 8051 struct rq *rq;
29f59db3
SV
8052 int i;
8053
434d53b0 8054 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8055 if (!tg->cfs_rq)
8056 goto err;
434d53b0 8057 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8058 if (!tg->se)
8059 goto err;
052f1dc7
PZ
8060
8061 tg->shares = NICE_0_LOAD;
29f59db3
SV
8062
8063 for_each_possible_cpu(i) {
9b5b7751 8064 rq = cpu_rq(i);
29f59db3 8065
eab17229
LZ
8066 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8067 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8068 if (!cfs_rq)
8069 goto err;
8070
eab17229
LZ
8071 se = kzalloc_node(sizeof(struct sched_entity),
8072 GFP_KERNEL, cpu_to_node(i));
29f59db3 8073 if (!se)
dfc12eb2 8074 goto err_free_rq;
29f59db3 8075
eab17229 8076 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8077 }
8078
8079 return 1;
8080
dfc12eb2
PC
8081 err_free_rq:
8082 kfree(cfs_rq);
bccbe08a
PZ
8083 err:
8084 return 0;
8085}
8086
8087static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8088{
8089 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8090 &cpu_rq(cpu)->leaf_cfs_rq_list);
8091}
8092
8093static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8094{
8095 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8096}
6d6bc0ad 8097#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8098static inline void free_fair_sched_group(struct task_group *tg)
8099{
8100}
8101
ec7dc8ac
DG
8102static inline
8103int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8104{
8105 return 1;
8106}
8107
8108static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8109{
8110}
8111
8112static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8113{
8114}
6d6bc0ad 8115#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8116
8117#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8118static void free_rt_sched_group(struct task_group *tg)
8119{
8120 int i;
8121
d0b27fa7
PZ
8122 destroy_rt_bandwidth(&tg->rt_bandwidth);
8123
bccbe08a
PZ
8124 for_each_possible_cpu(i) {
8125 if (tg->rt_rq)
8126 kfree(tg->rt_rq[i]);
8127 if (tg->rt_se)
8128 kfree(tg->rt_se[i]);
8129 }
8130
8131 kfree(tg->rt_rq);
8132 kfree(tg->rt_se);
8133}
8134
ec7dc8ac
DG
8135static
8136int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8137{
8138 struct rt_rq *rt_rq;
eab17229 8139 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8140 struct rq *rq;
8141 int i;
8142
434d53b0 8143 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8144 if (!tg->rt_rq)
8145 goto err;
434d53b0 8146 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8147 if (!tg->rt_se)
8148 goto err;
8149
d0b27fa7
PZ
8150 init_rt_bandwidth(&tg->rt_bandwidth,
8151 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8152
8153 for_each_possible_cpu(i) {
8154 rq = cpu_rq(i);
8155
eab17229
LZ
8156 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8157 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8158 if (!rt_rq)
8159 goto err;
29f59db3 8160
eab17229
LZ
8161 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8162 GFP_KERNEL, cpu_to_node(i));
6f505b16 8163 if (!rt_se)
dfc12eb2 8164 goto err_free_rq;
29f59db3 8165
eab17229 8166 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8167 }
8168
bccbe08a
PZ
8169 return 1;
8170
dfc12eb2
PC
8171 err_free_rq:
8172 kfree(rt_rq);
bccbe08a
PZ
8173 err:
8174 return 0;
8175}
8176
8177static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8178{
8179 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8180 &cpu_rq(cpu)->leaf_rt_rq_list);
8181}
8182
8183static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8184{
8185 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8186}
6d6bc0ad 8187#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8188static inline void free_rt_sched_group(struct task_group *tg)
8189{
8190}
8191
ec7dc8ac
DG
8192static inline
8193int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8194{
8195 return 1;
8196}
8197
8198static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8199{
8200}
8201
8202static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8203{
8204}
6d6bc0ad 8205#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8206
7c941438 8207#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8208static void free_sched_group(struct task_group *tg)
8209{
8210 free_fair_sched_group(tg);
8211 free_rt_sched_group(tg);
8212 kfree(tg);
8213}
8214
8215/* allocate runqueue etc for a new task group */
ec7dc8ac 8216struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8217{
8218 struct task_group *tg;
8219 unsigned long flags;
8220 int i;
8221
8222 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8223 if (!tg)
8224 return ERR_PTR(-ENOMEM);
8225
ec7dc8ac 8226 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8227 goto err;
8228
ec7dc8ac 8229 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8230 goto err;
8231
8ed36996 8232 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8233 for_each_possible_cpu(i) {
bccbe08a
PZ
8234 register_fair_sched_group(tg, i);
8235 register_rt_sched_group(tg, i);
9b5b7751 8236 }
6f505b16 8237 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8238
8239 WARN_ON(!parent); /* root should already exist */
8240
8241 tg->parent = parent;
f473aa5e 8242 INIT_LIST_HEAD(&tg->children);
09f2724a 8243 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8244 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8245
9b5b7751 8246 return tg;
29f59db3
SV
8247
8248err:
6f505b16 8249 free_sched_group(tg);
29f59db3
SV
8250 return ERR_PTR(-ENOMEM);
8251}
8252
9b5b7751 8253/* rcu callback to free various structures associated with a task group */
6f505b16 8254static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8255{
29f59db3 8256 /* now it should be safe to free those cfs_rqs */
6f505b16 8257 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8258}
8259
9b5b7751 8260/* Destroy runqueue etc associated with a task group */
4cf86d77 8261void sched_destroy_group(struct task_group *tg)
29f59db3 8262{
8ed36996 8263 unsigned long flags;
9b5b7751 8264 int i;
29f59db3 8265
8ed36996 8266 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8267 for_each_possible_cpu(i) {
bccbe08a
PZ
8268 unregister_fair_sched_group(tg, i);
8269 unregister_rt_sched_group(tg, i);
9b5b7751 8270 }
6f505b16 8271 list_del_rcu(&tg->list);
f473aa5e 8272 list_del_rcu(&tg->siblings);
8ed36996 8273 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8274
9b5b7751 8275 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8276 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8277}
8278
9b5b7751 8279/* change task's runqueue when it moves between groups.
3a252015
IM
8280 * The caller of this function should have put the task in its new group
8281 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8282 * reflect its new group.
9b5b7751
SV
8283 */
8284void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8285{
8286 int on_rq, running;
8287 unsigned long flags;
8288 struct rq *rq;
8289
8290 rq = task_rq_lock(tsk, &flags);
8291
051a1d1a 8292 running = task_current(rq, tsk);
29f59db3
SV
8293 on_rq = tsk->se.on_rq;
8294
0e1f3483 8295 if (on_rq)
29f59db3 8296 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8297 if (unlikely(running))
8298 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8299
6f505b16 8300 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8301
810b3817
PZ
8302#ifdef CONFIG_FAIR_GROUP_SCHED
8303 if (tsk->sched_class->moved_group)
88ec22d3 8304 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8305#endif
8306
0e1f3483
HS
8307 if (unlikely(running))
8308 tsk->sched_class->set_curr_task(rq);
8309 if (on_rq)
371fd7e7 8310 enqueue_task(rq, tsk, 0);
29f59db3 8311
29f59db3
SV
8312 task_rq_unlock(rq, &flags);
8313}
7c941438 8314#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8315
052f1dc7 8316#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8317static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8318{
8319 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8320 int on_rq;
8321
29f59db3 8322 on_rq = se->on_rq;
62fb1851 8323 if (on_rq)
29f59db3
SV
8324 dequeue_entity(cfs_rq, se, 0);
8325
8326 se->load.weight = shares;
e05510d0 8327 se->load.inv_weight = 0;
29f59db3 8328
62fb1851 8329 if (on_rq)
29f59db3 8330 enqueue_entity(cfs_rq, se, 0);
c09595f6 8331}
62fb1851 8332
c09595f6
PZ
8333static void set_se_shares(struct sched_entity *se, unsigned long shares)
8334{
8335 struct cfs_rq *cfs_rq = se->cfs_rq;
8336 struct rq *rq = cfs_rq->rq;
8337 unsigned long flags;
8338
05fa785c 8339 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8340 __set_se_shares(se, shares);
05fa785c 8341 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8342}
8343
8ed36996
PZ
8344static DEFINE_MUTEX(shares_mutex);
8345
4cf86d77 8346int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8347{
8348 int i;
8ed36996 8349 unsigned long flags;
c61935fd 8350
ec7dc8ac
DG
8351 /*
8352 * We can't change the weight of the root cgroup.
8353 */
8354 if (!tg->se[0])
8355 return -EINVAL;
8356
18d95a28
PZ
8357 if (shares < MIN_SHARES)
8358 shares = MIN_SHARES;
cb4ad1ff
MX
8359 else if (shares > MAX_SHARES)
8360 shares = MAX_SHARES;
62fb1851 8361
8ed36996 8362 mutex_lock(&shares_mutex);
9b5b7751 8363 if (tg->shares == shares)
5cb350ba 8364 goto done;
29f59db3 8365
8ed36996 8366 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8367 for_each_possible_cpu(i)
8368 unregister_fair_sched_group(tg, i);
f473aa5e 8369 list_del_rcu(&tg->siblings);
8ed36996 8370 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8371
8372 /* wait for any ongoing reference to this group to finish */
8373 synchronize_sched();
8374
8375 /*
8376 * Now we are free to modify the group's share on each cpu
8377 * w/o tripping rebalance_share or load_balance_fair.
8378 */
9b5b7751 8379 tg->shares = shares;
c09595f6
PZ
8380 for_each_possible_cpu(i) {
8381 /*
8382 * force a rebalance
8383 */
8384 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8385 set_se_shares(tg->se[i], shares);
c09595f6 8386 }
29f59db3 8387
6b2d7700
SV
8388 /*
8389 * Enable load balance activity on this group, by inserting it back on
8390 * each cpu's rq->leaf_cfs_rq_list.
8391 */
8ed36996 8392 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8393 for_each_possible_cpu(i)
8394 register_fair_sched_group(tg, i);
f473aa5e 8395 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8396 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8397done:
8ed36996 8398 mutex_unlock(&shares_mutex);
9b5b7751 8399 return 0;
29f59db3
SV
8400}
8401
5cb350ba
DG
8402unsigned long sched_group_shares(struct task_group *tg)
8403{
8404 return tg->shares;
8405}
052f1dc7 8406#endif
5cb350ba 8407
052f1dc7 8408#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8409/*
9f0c1e56 8410 * Ensure that the real time constraints are schedulable.
6f505b16 8411 */
9f0c1e56
PZ
8412static DEFINE_MUTEX(rt_constraints_mutex);
8413
8414static unsigned long to_ratio(u64 period, u64 runtime)
8415{
8416 if (runtime == RUNTIME_INF)
9a7e0b18 8417 return 1ULL << 20;
9f0c1e56 8418
9a7e0b18 8419 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8420}
8421
9a7e0b18
PZ
8422/* Must be called with tasklist_lock held */
8423static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8424{
9a7e0b18 8425 struct task_struct *g, *p;
b40b2e8e 8426
9a7e0b18
PZ
8427 do_each_thread(g, p) {
8428 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8429 return 1;
8430 } while_each_thread(g, p);
b40b2e8e 8431
9a7e0b18
PZ
8432 return 0;
8433}
b40b2e8e 8434
9a7e0b18
PZ
8435struct rt_schedulable_data {
8436 struct task_group *tg;
8437 u64 rt_period;
8438 u64 rt_runtime;
8439};
b40b2e8e 8440
9a7e0b18
PZ
8441static int tg_schedulable(struct task_group *tg, void *data)
8442{
8443 struct rt_schedulable_data *d = data;
8444 struct task_group *child;
8445 unsigned long total, sum = 0;
8446 u64 period, runtime;
b40b2e8e 8447
9a7e0b18
PZ
8448 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8449 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8450
9a7e0b18
PZ
8451 if (tg == d->tg) {
8452 period = d->rt_period;
8453 runtime = d->rt_runtime;
b40b2e8e 8454 }
b40b2e8e 8455
4653f803
PZ
8456 /*
8457 * Cannot have more runtime than the period.
8458 */
8459 if (runtime > period && runtime != RUNTIME_INF)
8460 return -EINVAL;
6f505b16 8461
4653f803
PZ
8462 /*
8463 * Ensure we don't starve existing RT tasks.
8464 */
9a7e0b18
PZ
8465 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8466 return -EBUSY;
6f505b16 8467
9a7e0b18 8468 total = to_ratio(period, runtime);
6f505b16 8469
4653f803
PZ
8470 /*
8471 * Nobody can have more than the global setting allows.
8472 */
8473 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8474 return -EINVAL;
6f505b16 8475
4653f803
PZ
8476 /*
8477 * The sum of our children's runtime should not exceed our own.
8478 */
9a7e0b18
PZ
8479 list_for_each_entry_rcu(child, &tg->children, siblings) {
8480 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8481 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8482
9a7e0b18
PZ
8483 if (child == d->tg) {
8484 period = d->rt_period;
8485 runtime = d->rt_runtime;
8486 }
6f505b16 8487
9a7e0b18 8488 sum += to_ratio(period, runtime);
9f0c1e56 8489 }
6f505b16 8490
9a7e0b18
PZ
8491 if (sum > total)
8492 return -EINVAL;
8493
8494 return 0;
6f505b16
PZ
8495}
8496
9a7e0b18 8497static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8498{
9a7e0b18
PZ
8499 struct rt_schedulable_data data = {
8500 .tg = tg,
8501 .rt_period = period,
8502 .rt_runtime = runtime,
8503 };
8504
8505 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8506}
8507
d0b27fa7
PZ
8508static int tg_set_bandwidth(struct task_group *tg,
8509 u64 rt_period, u64 rt_runtime)
6f505b16 8510{
ac086bc2 8511 int i, err = 0;
9f0c1e56 8512
9f0c1e56 8513 mutex_lock(&rt_constraints_mutex);
521f1a24 8514 read_lock(&tasklist_lock);
9a7e0b18
PZ
8515 err = __rt_schedulable(tg, rt_period, rt_runtime);
8516 if (err)
9f0c1e56 8517 goto unlock;
ac086bc2 8518
0986b11b 8519 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8520 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8521 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8522
8523 for_each_possible_cpu(i) {
8524 struct rt_rq *rt_rq = tg->rt_rq[i];
8525
0986b11b 8526 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8527 rt_rq->rt_runtime = rt_runtime;
0986b11b 8528 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8529 }
0986b11b 8530 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8531 unlock:
521f1a24 8532 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8533 mutex_unlock(&rt_constraints_mutex);
8534
8535 return err;
6f505b16
PZ
8536}
8537
d0b27fa7
PZ
8538int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8539{
8540 u64 rt_runtime, rt_period;
8541
8542 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8543 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8544 if (rt_runtime_us < 0)
8545 rt_runtime = RUNTIME_INF;
8546
8547 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8548}
8549
9f0c1e56
PZ
8550long sched_group_rt_runtime(struct task_group *tg)
8551{
8552 u64 rt_runtime_us;
8553
d0b27fa7 8554 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8555 return -1;
8556
d0b27fa7 8557 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8558 do_div(rt_runtime_us, NSEC_PER_USEC);
8559 return rt_runtime_us;
8560}
d0b27fa7
PZ
8561
8562int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8563{
8564 u64 rt_runtime, rt_period;
8565
8566 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8567 rt_runtime = tg->rt_bandwidth.rt_runtime;
8568
619b0488
R
8569 if (rt_period == 0)
8570 return -EINVAL;
8571
d0b27fa7
PZ
8572 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8573}
8574
8575long sched_group_rt_period(struct task_group *tg)
8576{
8577 u64 rt_period_us;
8578
8579 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8580 do_div(rt_period_us, NSEC_PER_USEC);
8581 return rt_period_us;
8582}
8583
8584static int sched_rt_global_constraints(void)
8585{
4653f803 8586 u64 runtime, period;
d0b27fa7
PZ
8587 int ret = 0;
8588
ec5d4989
HS
8589 if (sysctl_sched_rt_period <= 0)
8590 return -EINVAL;
8591
4653f803
PZ
8592 runtime = global_rt_runtime();
8593 period = global_rt_period();
8594
8595 /*
8596 * Sanity check on the sysctl variables.
8597 */
8598 if (runtime > period && runtime != RUNTIME_INF)
8599 return -EINVAL;
10b612f4 8600
d0b27fa7 8601 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8602 read_lock(&tasklist_lock);
4653f803 8603 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8604 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8605 mutex_unlock(&rt_constraints_mutex);
8606
8607 return ret;
8608}
54e99124
DG
8609
8610int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8611{
8612 /* Don't accept realtime tasks when there is no way for them to run */
8613 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8614 return 0;
8615
8616 return 1;
8617}
8618
6d6bc0ad 8619#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8620static int sched_rt_global_constraints(void)
8621{
ac086bc2
PZ
8622 unsigned long flags;
8623 int i;
8624
ec5d4989
HS
8625 if (sysctl_sched_rt_period <= 0)
8626 return -EINVAL;
8627
60aa605d
PZ
8628 /*
8629 * There's always some RT tasks in the root group
8630 * -- migration, kstopmachine etc..
8631 */
8632 if (sysctl_sched_rt_runtime == 0)
8633 return -EBUSY;
8634
0986b11b 8635 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8636 for_each_possible_cpu(i) {
8637 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8638
0986b11b 8639 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8640 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8641 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8642 }
0986b11b 8643 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8644
d0b27fa7
PZ
8645 return 0;
8646}
6d6bc0ad 8647#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8648
8649int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8650 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8651 loff_t *ppos)
8652{
8653 int ret;
8654 int old_period, old_runtime;
8655 static DEFINE_MUTEX(mutex);
8656
8657 mutex_lock(&mutex);
8658 old_period = sysctl_sched_rt_period;
8659 old_runtime = sysctl_sched_rt_runtime;
8660
8d65af78 8661 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8662
8663 if (!ret && write) {
8664 ret = sched_rt_global_constraints();
8665 if (ret) {
8666 sysctl_sched_rt_period = old_period;
8667 sysctl_sched_rt_runtime = old_runtime;
8668 } else {
8669 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8670 def_rt_bandwidth.rt_period =
8671 ns_to_ktime(global_rt_period());
8672 }
8673 }
8674 mutex_unlock(&mutex);
8675
8676 return ret;
8677}
68318b8e 8678
052f1dc7 8679#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8680
8681/* return corresponding task_group object of a cgroup */
2b01dfe3 8682static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8683{
2b01dfe3
PM
8684 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8685 struct task_group, css);
68318b8e
SV
8686}
8687
8688static struct cgroup_subsys_state *
2b01dfe3 8689cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8690{
ec7dc8ac 8691 struct task_group *tg, *parent;
68318b8e 8692
2b01dfe3 8693 if (!cgrp->parent) {
68318b8e 8694 /* This is early initialization for the top cgroup */
68318b8e
SV
8695 return &init_task_group.css;
8696 }
8697
ec7dc8ac
DG
8698 parent = cgroup_tg(cgrp->parent);
8699 tg = sched_create_group(parent);
68318b8e
SV
8700 if (IS_ERR(tg))
8701 return ERR_PTR(-ENOMEM);
8702
68318b8e
SV
8703 return &tg->css;
8704}
8705
41a2d6cf
IM
8706static void
8707cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8708{
2b01dfe3 8709 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8710
8711 sched_destroy_group(tg);
8712}
8713
41a2d6cf 8714static int
be367d09 8715cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8716{
b68aa230 8717#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8718 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8719 return -EINVAL;
8720#else
68318b8e
SV
8721 /* We don't support RT-tasks being in separate groups */
8722 if (tsk->sched_class != &fair_sched_class)
8723 return -EINVAL;
b68aa230 8724#endif
be367d09
BB
8725 return 0;
8726}
68318b8e 8727
be367d09
BB
8728static int
8729cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8730 struct task_struct *tsk, bool threadgroup)
8731{
8732 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8733 if (retval)
8734 return retval;
8735 if (threadgroup) {
8736 struct task_struct *c;
8737 rcu_read_lock();
8738 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8739 retval = cpu_cgroup_can_attach_task(cgrp, c);
8740 if (retval) {
8741 rcu_read_unlock();
8742 return retval;
8743 }
8744 }
8745 rcu_read_unlock();
8746 }
68318b8e
SV
8747 return 0;
8748}
8749
8750static void
2b01dfe3 8751cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8752 struct cgroup *old_cont, struct task_struct *tsk,
8753 bool threadgroup)
68318b8e
SV
8754{
8755 sched_move_task(tsk);
be367d09
BB
8756 if (threadgroup) {
8757 struct task_struct *c;
8758 rcu_read_lock();
8759 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8760 sched_move_task(c);
8761 }
8762 rcu_read_unlock();
8763 }
68318b8e
SV
8764}
8765
052f1dc7 8766#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8767static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8768 u64 shareval)
68318b8e 8769{
2b01dfe3 8770 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8771}
8772
f4c753b7 8773static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8774{
2b01dfe3 8775 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8776
8777 return (u64) tg->shares;
8778}
6d6bc0ad 8779#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8780
052f1dc7 8781#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8782static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8783 s64 val)
6f505b16 8784{
06ecb27c 8785 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8786}
8787
06ecb27c 8788static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8789{
06ecb27c 8790 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8791}
d0b27fa7
PZ
8792
8793static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8794 u64 rt_period_us)
8795{
8796 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8797}
8798
8799static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8800{
8801 return sched_group_rt_period(cgroup_tg(cgrp));
8802}
6d6bc0ad 8803#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8804
fe5c7cc2 8805static struct cftype cpu_files[] = {
052f1dc7 8806#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8807 {
8808 .name = "shares",
f4c753b7
PM
8809 .read_u64 = cpu_shares_read_u64,
8810 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8811 },
052f1dc7
PZ
8812#endif
8813#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8814 {
9f0c1e56 8815 .name = "rt_runtime_us",
06ecb27c
PM
8816 .read_s64 = cpu_rt_runtime_read,
8817 .write_s64 = cpu_rt_runtime_write,
6f505b16 8818 },
d0b27fa7
PZ
8819 {
8820 .name = "rt_period_us",
f4c753b7
PM
8821 .read_u64 = cpu_rt_period_read_uint,
8822 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8823 },
052f1dc7 8824#endif
68318b8e
SV
8825};
8826
8827static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8828{
fe5c7cc2 8829 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8830}
8831
8832struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8833 .name = "cpu",
8834 .create = cpu_cgroup_create,
8835 .destroy = cpu_cgroup_destroy,
8836 .can_attach = cpu_cgroup_can_attach,
8837 .attach = cpu_cgroup_attach,
8838 .populate = cpu_cgroup_populate,
8839 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8840 .early_init = 1,
8841};
8842
052f1dc7 8843#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8844
8845#ifdef CONFIG_CGROUP_CPUACCT
8846
8847/*
8848 * CPU accounting code for task groups.
8849 *
8850 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8851 * (balbir@in.ibm.com).
8852 */
8853
934352f2 8854/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8855struct cpuacct {
8856 struct cgroup_subsys_state css;
8857 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8858 u64 __percpu *cpuusage;
ef12fefa 8859 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8860 struct cpuacct *parent;
d842de87
SV
8861};
8862
8863struct cgroup_subsys cpuacct_subsys;
8864
8865/* return cpu accounting group corresponding to this container */
32cd756a 8866static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8867{
32cd756a 8868 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8869 struct cpuacct, css);
8870}
8871
8872/* return cpu accounting group to which this task belongs */
8873static inline struct cpuacct *task_ca(struct task_struct *tsk)
8874{
8875 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8876 struct cpuacct, css);
8877}
8878
8879/* create a new cpu accounting group */
8880static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8881 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8882{
8883 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8884 int i;
d842de87
SV
8885
8886 if (!ca)
ef12fefa 8887 goto out;
d842de87
SV
8888
8889 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8890 if (!ca->cpuusage)
8891 goto out_free_ca;
8892
8893 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8894 if (percpu_counter_init(&ca->cpustat[i], 0))
8895 goto out_free_counters;
d842de87 8896
934352f2
BR
8897 if (cgrp->parent)
8898 ca->parent = cgroup_ca(cgrp->parent);
8899
d842de87 8900 return &ca->css;
ef12fefa
BR
8901
8902out_free_counters:
8903 while (--i >= 0)
8904 percpu_counter_destroy(&ca->cpustat[i]);
8905 free_percpu(ca->cpuusage);
8906out_free_ca:
8907 kfree(ca);
8908out:
8909 return ERR_PTR(-ENOMEM);
d842de87
SV
8910}
8911
8912/* destroy an existing cpu accounting group */
41a2d6cf 8913static void
32cd756a 8914cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8915{
32cd756a 8916 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8917 int i;
d842de87 8918
ef12fefa
BR
8919 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8920 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8921 free_percpu(ca->cpuusage);
8922 kfree(ca);
8923}
8924
720f5498
KC
8925static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8926{
b36128c8 8927 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8928 u64 data;
8929
8930#ifndef CONFIG_64BIT
8931 /*
8932 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8933 */
05fa785c 8934 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8935 data = *cpuusage;
05fa785c 8936 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8937#else
8938 data = *cpuusage;
8939#endif
8940
8941 return data;
8942}
8943
8944static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8945{
b36128c8 8946 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8947
8948#ifndef CONFIG_64BIT
8949 /*
8950 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8951 */
05fa785c 8952 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8953 *cpuusage = val;
05fa785c 8954 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8955#else
8956 *cpuusage = val;
8957#endif
8958}
8959
d842de87 8960/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8961static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8962{
32cd756a 8963 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8964 u64 totalcpuusage = 0;
8965 int i;
8966
720f5498
KC
8967 for_each_present_cpu(i)
8968 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8969
8970 return totalcpuusage;
8971}
8972
0297b803
DG
8973static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8974 u64 reset)
8975{
8976 struct cpuacct *ca = cgroup_ca(cgrp);
8977 int err = 0;
8978 int i;
8979
8980 if (reset) {
8981 err = -EINVAL;
8982 goto out;
8983 }
8984
720f5498
KC
8985 for_each_present_cpu(i)
8986 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8987
0297b803
DG
8988out:
8989 return err;
8990}
8991
e9515c3c
KC
8992static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8993 struct seq_file *m)
8994{
8995 struct cpuacct *ca = cgroup_ca(cgroup);
8996 u64 percpu;
8997 int i;
8998
8999 for_each_present_cpu(i) {
9000 percpu = cpuacct_cpuusage_read(ca, i);
9001 seq_printf(m, "%llu ", (unsigned long long) percpu);
9002 }
9003 seq_printf(m, "\n");
9004 return 0;
9005}
9006
ef12fefa
BR
9007static const char *cpuacct_stat_desc[] = {
9008 [CPUACCT_STAT_USER] = "user",
9009 [CPUACCT_STAT_SYSTEM] = "system",
9010};
9011
9012static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9013 struct cgroup_map_cb *cb)
9014{
9015 struct cpuacct *ca = cgroup_ca(cgrp);
9016 int i;
9017
9018 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9019 s64 val = percpu_counter_read(&ca->cpustat[i]);
9020 val = cputime64_to_clock_t(val);
9021 cb->fill(cb, cpuacct_stat_desc[i], val);
9022 }
9023 return 0;
9024}
9025
d842de87
SV
9026static struct cftype files[] = {
9027 {
9028 .name = "usage",
f4c753b7
PM
9029 .read_u64 = cpuusage_read,
9030 .write_u64 = cpuusage_write,
d842de87 9031 },
e9515c3c
KC
9032 {
9033 .name = "usage_percpu",
9034 .read_seq_string = cpuacct_percpu_seq_read,
9035 },
ef12fefa
BR
9036 {
9037 .name = "stat",
9038 .read_map = cpuacct_stats_show,
9039 },
d842de87
SV
9040};
9041
32cd756a 9042static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9043{
32cd756a 9044 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9045}
9046
9047/*
9048 * charge this task's execution time to its accounting group.
9049 *
9050 * called with rq->lock held.
9051 */
9052static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9053{
9054 struct cpuacct *ca;
934352f2 9055 int cpu;
d842de87 9056
c40c6f85 9057 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9058 return;
9059
934352f2 9060 cpu = task_cpu(tsk);
a18b83b7
BR
9061
9062 rcu_read_lock();
9063
d842de87 9064 ca = task_ca(tsk);
d842de87 9065
934352f2 9066 for (; ca; ca = ca->parent) {
b36128c8 9067 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9068 *cpuusage += cputime;
9069 }
a18b83b7
BR
9070
9071 rcu_read_unlock();
d842de87
SV
9072}
9073
fa535a77
AB
9074/*
9075 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9076 * in cputime_t units. As a result, cpuacct_update_stats calls
9077 * percpu_counter_add with values large enough to always overflow the
9078 * per cpu batch limit causing bad SMP scalability.
9079 *
9080 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9081 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9082 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9083 */
9084#ifdef CONFIG_SMP
9085#define CPUACCT_BATCH \
9086 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9087#else
9088#define CPUACCT_BATCH 0
9089#endif
9090
ef12fefa
BR
9091/*
9092 * Charge the system/user time to the task's accounting group.
9093 */
9094static void cpuacct_update_stats(struct task_struct *tsk,
9095 enum cpuacct_stat_index idx, cputime_t val)
9096{
9097 struct cpuacct *ca;
fa535a77 9098 int batch = CPUACCT_BATCH;
ef12fefa
BR
9099
9100 if (unlikely(!cpuacct_subsys.active))
9101 return;
9102
9103 rcu_read_lock();
9104 ca = task_ca(tsk);
9105
9106 do {
fa535a77 9107 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9108 ca = ca->parent;
9109 } while (ca);
9110 rcu_read_unlock();
9111}
9112
d842de87
SV
9113struct cgroup_subsys cpuacct_subsys = {
9114 .name = "cpuacct",
9115 .create = cpuacct_create,
9116 .destroy = cpuacct_destroy,
9117 .populate = cpuacct_populate,
9118 .subsys_id = cpuacct_subsys_id,
9119};
9120#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9121
9122#ifndef CONFIG_SMP
9123
03b042bf
PM
9124void synchronize_sched_expedited(void)
9125{
fc390cde 9126 barrier();
03b042bf
PM
9127}
9128EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9129
9130#else /* #ifndef CONFIG_SMP */
9131
cc631fb7 9132static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9133
cc631fb7 9134static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9135{
969c7921
TH
9136 /*
9137 * There must be a full memory barrier on each affected CPU
9138 * between the time that try_stop_cpus() is called and the
9139 * time that it returns.
9140 *
9141 * In the current initial implementation of cpu_stop, the
9142 * above condition is already met when the control reaches
9143 * this point and the following smp_mb() is not strictly
9144 * necessary. Do smp_mb() anyway for documentation and
9145 * robustness against future implementation changes.
9146 */
cc631fb7 9147 smp_mb(); /* See above comment block. */
969c7921 9148 return 0;
03b042bf 9149}
03b042bf
PM
9150
9151/*
9152 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9153 * approach to force grace period to end quickly. This consumes
9154 * significant time on all CPUs, and is thus not recommended for
9155 * any sort of common-case code.
9156 *
9157 * Note that it is illegal to call this function while holding any
9158 * lock that is acquired by a CPU-hotplug notifier. Failing to
9159 * observe this restriction will result in deadlock.
9160 */
9161void synchronize_sched_expedited(void)
9162{
969c7921 9163 int snap, trycount = 0;
03b042bf
PM
9164
9165 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9166 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9167 get_online_cpus();
969c7921
TH
9168 while (try_stop_cpus(cpu_online_mask,
9169 synchronize_sched_expedited_cpu_stop,
94458d5e 9170 NULL) == -EAGAIN) {
03b042bf
PM
9171 put_online_cpus();
9172 if (trycount++ < 10)
9173 udelay(trycount * num_online_cpus());
9174 else {
9175 synchronize_sched();
9176 return;
9177 }
969c7921 9178 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9179 smp_mb(); /* ensure test happens before caller kfree */
9180 return;
9181 }
9182 get_online_cpus();
9183 }
969c7921 9184 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9185 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9186 put_online_cpus();
03b042bf
PM
9187}
9188EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9189
9190#endif /* #else #ifndef CONFIG_SMP */